
UNIVERSITY OF SOUTHAMPTON

Practicable Prolog Specialisation

by

Stephen-J ohn Craig

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

June 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Stephen-John Craig

In software development an emphasis is placed on creating reusable general programs

which solve a wide class of problems, however it is a struggle to balance generality with

efficiency. Highly parametrised modular code is reusable but suffers a penalty in terms

of efficiency, in contrast carefully optimising the code by hand produces faster programs

which are less general and have fewer opportunities for reuse. Partial evaluation is an

automatic technique for program optimisation that optimises programs by exploiting

known data.

While partial evaluation is improving, the uptake by mainstream users is disappointing.

The aim of this thesis is to make partial evaluation accessible to a wider audience. A

basic partial evaluation algorithm is given and then extended to handle the features

encountered in real life Prolog implementations including constraint logic programming,

coroutining and non-declarative constructs. Omine partial evaluation methods rely on

an annotated version of the source program to control the specialisation process. A

graphical development environment for specialising logic programs is presented allowing

users to create, visualise and modify their annotated source programs.

An algorithm for automatically generating annotations is given using state of the art

termination analysis, combined with type-based abstract interpretation for propagat

ing the binding types. The algorithm has been fully implemented and we report on

performance of the process on a series of benchmarks. In addition to an algorithm

for generating a safe set of annotations we also investigate the generation of optimal

annotations. A self-tuning system, which derives its own specialisation control for the

particular Prolog compiler and architecture by trial and error is developed. The system

balances the desire for faster code against code explosion and specialisation time.

Additionally it is demonstrated that the developed partial evaluator is self-applicable.

The attempts to self-apply partial evaluators for logic programs have, of yet, not been

all that successful. Compared to earlier attempts, the system is effective and surpris

ingly simple. The power and efficiency of the implementation is evaluated using the

specialisation of a series of non-trivial interpreters.

Contents

Acknow ledgements

1 Introduction
1.1
1.2

1.3

1.4

1.5

1.6
1.7

Partial Evaluation
Controlling Partial Evaluation. .
1.2.1 Online Partial Evaluation
1.2.2 Offline Partial Evaluation
Partial Evaluation of Interpreters
1.3.1 Jones Optimality for Vanilla.
Self-application
Prolog
1.5.1 Constraint Logic Programming
1.5.2 Coroutines .
Contributions
Thesis Organisation

2 The Partial Evaluator
2.1 Logic Programming
2.2
2.3

2.4
2.5

Partial Deduction
An Offline Partial Deduction Algorithm
2.3.1 The Basic Annotations.
2.3.2 The Algorithm
2.3.3 Generalise and Filter ...
2.3.4 Driving the Specialisation
2.3.5 Built-ins.........
2.3.6 Example.........
Local and Global Termination.
Summary ..

3 Self-application
3.1 Introduction

3.1.1 History of Self-application for Logic Programming
3.1.2 A New Attempt at Self-application

3.2 Deriving LIX from LOGEN

3.3 Towards Self-application
3.3.1 The nonvar Binding Type
3.3.2 Treatment of findall ...

II

xi

1
1
3
3
5
6
7

8
9
9

10
11
12

14
14
17
19
19
20
20
22

23
24
25
26

27
27
29
30
31
32
33
34

CONTENTS

3.3.3 Treatment of if ...

3.3.4 Handling the cut . . .
3.3.5 Treatment of assert .

3.4 Self-application........
3.4.1 Generating Extensions
3.4.2 Lix Compiler Generator

3.5 Comparison........
3.5.1 Logen
3.5.2 Logimix and Sage ..
3.5.3 Multi-level Languages

3.6 A Non-trivial Interpreter Example
3.7 New Applications

3.7.1 Several Versions of the Cogen
3.7.2 Extensions for Deforestation/Tupling.

3.8 Summary .

4 PyLogen
4.1 System Overview
4.2 Annotated Files

4.2.1 Clause Annotations
4.2.2 Binding Types

4.3 Summary

5 An Automatic Binding-Time Analysis for Prolog
5.1 Introduction
5.2 Algorithm Overview
5.3 Binding Type Propagation.
5.4 Safety of Built-in Calls.
5.5 Termination Checking
5.6 Example
5.7 Experimental Results.
5.8 Summary

6 Self-tuning Specialisation
6.1 Introduction

6.1.1 Other Approaches and Related Work.
6.2 Controlling Partial Deduction

6.2.1 Some Pitfalls of Partial Deduction
6.3 Annotated Programs
6.4 Mutations
6.5 Deciding Fitness
6.6 Algorithm....
6.7 Experiments ...
6.8 Summary and Future Work

7 Extending Specialisation Techniques
7.1 Coroutines...........

7.1.1 Coroutining Example

III

35
35
36
36
37
39
40
40
41
42
42
44
45
45
46

47
47
48
50
51
52

53
53
56
57
61
62
66
67
69

71
71

72
73
73
77
78
81
83
86
88

91
91
92

CONTENTS

7.1.2 Specialising Coroutines
7.1.3 semiwhen

7.1.4 Specialisation Example

7.2 Online Annotation
7.3 Summary

8 Specialisation of Constraint Logic Programming Languages
8.1 Introduction
8.2 Specialisation of pure CLP(R) and CLP(Q) programs

8.2.1 Memoisation
8.2.2 Unfolding with Constraints ..
8.2.3
8.2.4

Convex Hull and Widening ..
Rounding Errors with CLP(R)

8.3 Non-declarative Programs .
8.4 Examples and Experiments .

8.4.1 Unfolding Example ..
8.4.2 Memoisation Example

8.5 Summary
8.5.1 Experimental Results
8.5.2 Summary...

9 Specialising Interpreters
9.1 Vanilla Self-interpreter
9.2 A Debugging Vanilla Interpreter
9.3 A Profiling Vanilla Interpreter.
9.4 A Caching Vanilla Interpreter
9.5 Binary Clause Semantics ...
9.6 Lloyd Topor Transformation.
9.7 Summary

10 Conclusion and Future Work
10.1 Future Work

A Py Logen Tutorial
A.1 Starting PYLOGEN

A.2 Specialising the Regular Expression Interpreter
A.3 Using the Automatic Binding-time Analysis

B Annotated Lix

C Lix-Cogen

IV

93
94
95
96
98

100
.100

· 102
.102
.106
.107

· 109
.109
.110
.110

· 111
.111

· 111
.112

113
.113
.117

· 121
· 125
.128

· 131
· 136

138

· 141

144
.144
.145
.149

151

158

List of Figures

1.1 Simple program evaluation 1
1.2 Partial Evaluation 2
1.3 Function to compute x Y • . 2
1.4 Specialised power function from Figure 1.3 to compute x 5 3
1.5 Unfolding append([a,bIA], B,C) . 4
1.6 Characteristic Tree 5
1. 7 Overview of offiine partial evaluation 6
1.8 Jones Optimality 7
1.9 2nd Futamura Projection. 8
1.10 3rd Futamura Projection. 8

2.1 Complete and incomplete SLD-trees 17

3.1 pt Futamura Projection . 28

3.2 2nd Futamura Projection. 28
3.3 3rd Futamura Projection. 29
3.4 Comparing LOGEN and LIX 32
3.5 Creating generating extension 37
3.6 Creating LIX-COGEN 39
3.7 Comparison between generating extensions created by LOGEN and LIX 41
3.8 Comparison of LOGEN and the self-applied LIX-COGEN 41

4.1 PYLOGEN Overview. 48
4.2 PYLOGEN screenshot 49

5.1 The role of the BTA for offiine specialisation using LOGEN 54
5.2 Overview of the BTA algorithm 57
5.3 A set of regular types defining the rules for il and in 58
5.4 Type definitions
5.5 Disjoint Types
5.6 Screenshot of transpose example from Listing 5.9

6.1 Non-leftmost non-determinate unfolding for Listing 6.2 .
6.2 Annotated match program
6.3 Safe annotation configurations after filter propagation
6.4 Beam search for W = 2 .
6.5 Self-tuning overview
6.6 Self-tuning output (index) .
6.7 Self-tuning output (match)

v

59
60
68

74
78

81
83
84
85
86

LIST OF FIGURES

7.1 when/2 definition from the SICStus Prolog manual

8.1 Newton's 2nd law
8.2 Unfolding CLP Programs
8.3 Constraint sets specify a convex hull in space
8.4 Convex hull for constraints Figure 8.3(a) U Figure 8.3(b) .

9.1 A definition of subset
9.2 The transformed general program for subset.

10.1 The role of the binding-time analysis
10.2 The role of the self-tuning algorithm

VI

· 91

· 101

· 107
.108

· 108

· 132
· 133

· 139
· 139

List of Tables

3.1
3.2
3.3

5.1

6.1
6.2
6.3
6.4

8.1

9.1
9.2
9.3
9.4
9.5
9.6
9.7

9.8
9.9

Time taken to specialise the functional interpreter
Time taken to create generating extension for the functional interpreter
Time taken to create LIX-COGEN

Benchmark figures for the Automatic Binding-Time Analysis

Initial set of mutations for match
Mutation after filter propagation
Mutation after full automatic binding-time analysis.
Experimental results for the self-tuning algorithm.

Experimental results

Benchmark figures for the vanilla interpreter
Program size comparison for vanilla interpreter
Benchmark figures for the vanilla debugging interpreter
Program size comparison for vanilla interpreter
Benchmark figures for the vanilla profiling interpreter
Program size comparison for the vanilla Profiling interpreters
Benchmark figures for the vanilla caching interpreter
Program size comparison for the vanilla caching interpreter
Benchmark figures for the Lloyd Topor interpreter

9.10 Program size comparison for the Lloyd Topor interpreter.
9.11 Benchmark figures for the interpreters ..
9.12 Program size comparison for interpreters

Vll

44
44
44

68

79
80
80
87

.112

.116

.116

· 121
· 121

· 125
· 125
· 128

· 128
· 135
· 136
· 137
.137

Listings

1.1 Append program
1.2 Vanilla interpreter
1.3 Specialised vanilla
1.4 CLP session
2.1 Append program
2.2 Resultants of the derivations from Figure 2.1(b) .
2.3 Annotated version of append from Listing 2.1
2.4 Resultants from Figure 2.1(b)
2.5 Annotated append in rule format .. .
2.6 Prolog implementation of Algorithm 1
2.7 Specialising append.
3.1 GX example
3.2 Specialised unfolder
3.3 Extending LIX for the nonvar annotation
3.4 Extending LIX for the findall annotation
3.5 Extending LIX to handle the if annotations
3.6 Annotated LIX extract
3.7 Append generating extension
3.8 Using the generating extension
3.9 Specialised un folder
3.10 Calling the specialised unfolder
3.11 Extract from LIX-COGEN .

3.12 Lambda interpreter ..
3.13 Fibonacci
3.14 Specialised Fibonacci ..
4.1 Example annotated file.
5.1 Built-in call patterns .
5.2 Append program ...
5.3 Binary clause example
5.4 Binary clause output
5.5 Convex hull
5.6 Transpose program .
5.7 Propagated filters ..
5.8 Binary clause example
5.9 Annotated transpose .
6.1 inboth/3 example ..
6.2 Specialised inboth/3 .

Vlll

3
7
7

10
17
18
20

20

22
23
24
32
32
33
34
35
36
37
38
38
38
40
42
43
43
48
62
63
63
64
65
66
66
67
67
74
74

LISTINGS

6.3 Specialised inboth/3 ...
6.4 Indexing example
6.5 Specialised index example

6.6 Specialised match/2 '"
7.1 Ground max/3
7.2 Ground max/3 instantiation error.
7.3 Reordering clauses for max
7.4 Using coroutining
7.5 Max using coroutines
7.6 Extending LIX for the reswhen annotation
7.7 Specialising whenJIlax/2
7.8 Specialising whenJIlax/2
7.9 Extending LIX

7.10 Extending LIX for the when annotation
7.11 Extending LIX for the semiwhen annotation
7.12 semiwhen example
7.13 Test query for not_eq/2 in Listing 7.12 .
7.14 Specialising Listing 7.13 (1)
7.15 Specialising Listing 7.13 (2)
7.16 Specialising Listing 7.13 (3)
7.17 app/3 predicate ...

IX

75
75
76
78
92
92
92
92
93
93
93
93
94
94
95
95
95
96
96
96
97

7.18 Safety declarations . 97
7.19 online example (1) . 97
7.20 online example (2) . 97
7.21 online example (3) . 98
7.22 Delayed online example (1) 98
7.23 Delayed online example (2) 98
8.1 CLP version of Newton's 2nd law . 101
8.2 CLP example 101
8.3 CLP example 101
8.4 Non-linear constraints can lead to an inconsistent constraint store . 105
8.5 Extract from a eLP program 105
8.6 Memoisation table 105
8.7 Specialised fragment of Listing 8.5 . 106
8.8 Specialised fragment of Listing 8.5 . 106
8.9 Trivial CLP(Q) multiplication predicate . 106
8.10 Specialising multiply 106
8.11 Example memoisation entry. 107
8.12 Memoisation table after respecialising for CSmpq2 . 108
8.13 CLP(R) rounding errors 109
8.14 Loan Example 110
8.15 Specialised loan example (unfold) 111
8.16 Specialised version of the loan example (memo) . 111
9.1 Vanilla self-interpreter 113
9.2 Example clauses 114
9.3 Annotated vanilla interpreter . 114
9.4 Specialising vanilla 115

LISTINGS

9.5 Memo table
9.6 Renamed residual program .
9.7 Debugging vanilla interpreter
9.8 Specialising debugging vanilla
9.9 Specialised debugging vanilla
9.10 Vanilla debug output
9.11 Profiling Output
9.12 Vanilla profiling interpreter .
9.13 Vanilla profiler specialised code (1)
9.14 Vanilla profiler specialised code (2)
9.15 fib/2

9.16 Vanilla caching interpreter .. .
9.17 Specialised caching interpreter
9.18 Specialised caching interpreter
9.19 Binary clause example
9.20 Extending vanilla for annotations
9.21 Extending vanilla for binary clauses
9.22 Transformed binary clause program.
9.23 Running the specialised binary clause program
9.24 subset/2
9.25 subset/2 with coroutining
9.26 Subset extended program .
9.27 Specialised subset
A.1 Regular expression interpreter.
A.2 Regular expression example ..

x

.115

.116

.117

· 118
· 119
· 120

· 121
· 122
· 123
· 124
· 125
.126

· 127

· 127

· 128
.129
.130

· 130
· 131
· 133
· 133
· 135
· 135
.144

· 145

Acknowledgements

There are many people who have contributed to this thesis in different ways. Without

their help and support this thesis would not have been possible.

Firstly, I would like to thank Michael Leuschel for his guidance during the course of

my PhD. He has offered advice throughout, both as a supervisor and a friend. Upon

completion of this thesis I will set my targets on convincingly beating him at squash.

I have had the good fortune of being involved in the ASAP project. The meetings proved

to be a valuable source of new research ideas. I would like to thank all of the partners

in the project, in particular John Gallagher and Kim Henriksen from Roskilde, Andrew

Moss and Henk Muller from Bristol and German Puebla and Manual Hermenegildo from

Madrid.

Thanks to my friends for supporting me. Jonathan for going to the pub every lunchtime

and the technical discussions over the pool table. John and Dan for proof reading my

thesis, any errors that remain are my own. My colleges at DSSE for an interesting

research environment, in particular Mauricio for having spare coffee whenever I ran out.

On a personal note I am indebted to my girlfriend, Emma, she has been a constant

source of understanding and support. Finally, I would like to thank my family for their

encouragement over the years.

Xl

Chapter 1

Introduction

The software engineer faces an endless struggle trying to balance efficiency and generality.

Highly parameterised programs, using good modularisation offer benefits in the form of

code reuse and maintainability at the price of efficiency. In contrast, optimising the

code by hand for a specific case can produce fast efficient code but makes it difficult to

develop and maintain.

1.1 Partial Evaluation

Program specialisation aims to improve the overall performance of programs through

source to source transformations. This work focuses on a particular approach, known as

partial evaluation (Jones et al., 1993), in which a program is transformed using partial

information about the input of the program. To explain the concept of partial evaluation

we go back to a simple model of program execution, shown in Figure 1.1. Program P

takes two inputs, Sand D, and when executed produces the output Out.

Program
P

FIGURE 1.1: Simple program evaluation

Partial evaluation attempts to classify the input of a program into two main categories:

data that will be known before execution, and data which will only be known at run

time. In Figure 1.2, a program P is specialised by fixing part of the input and then

precomputing those parts of P that depend only on the known parts of the input. The

obtained transformed program pi is less general than the original but can be much more

1

Chapter 1 Introduction 2

efficient. The program pi is called the residual program. The part of the input that is

fixed, in this case 5, is referred to as the static input, while the remainder, labelled D,

is the dynamic input. The residual program computes the same function as the original

program, but naturally only for inputs with the same static data.

Partial
Evaluator

FIGURE 1.2: Partial Evaluation

The theoretical basis for program specialisation was first formulated and proven as

Kleene's s-m-n theorem (Figure 1.1) over 50 years ago (Kleene, 1952). However, Kleene's

constructions were interested in the theoretical issues of computability not efficiency, and

produced specialised versions that were more complex than the originals. In contrast,

partial evaluation aims to derive more efficient programs by exploiting the known static

input.

Forall f(x, y) there exists a primitive recursive function (T such that

f(x, y) = (T(j, x)(y) (1.1)

Partial evaluation has received considerable attention over the past decade both in func

tional (e.g. Jones et al. (1993)), imperative (e.g. Andersen (1994); Peralta and Gallagher

(1997)) and logic programming (e.g. Gallagher (1993); Komorowski (1992); Leuschel

et al. (2004b); Pettorossi and Proietti (1994)).

The classic example from the literature (see e.g. Jones et al. (1993)) involves the power

function shown in Figure 1.3. The recursive function power raises x to the y, if the

power is even then the answer is the square of x¥, otherwise the answer is x x xy-I.

power(x,y) : if y=O then 1
else if even(y) then square(power(x,y/2))
else x * power(x,y-l)

FIGURE 1.3: Function to compute x Y

If y is known before execution, i.e. it is static, we can partially evaluate power for a fixed

y and a dynamic x. For Y = 5, this produces the specialised powerS function shown

Chapter 1 Introduction 3

in Figure 1.4. The recursive calls to power have been unrolled, and all operations only

dependent on the static input variable y have been precomputed. The residual program

is dependent only on the remaining dynamic argument x.

power5(x) : x * square(square(x»

FIGURE 1.4: Specialised power function from Figure 1.3 to compute x 5

1.2 Controlling Partial Evaluation

Partial evaluation is a complex process, in standard evaluation decisions are based on the

programs input, however in partial evaluation some of the input may be missing. These

control issues determine the quality of the produced code and ensure the specialisation

process terminates. The control problem has been approached by two different methods:

online and offline. See Leuschel and Bruynooghe (2002) and GlUck and Sorensen (1996)

for a thorough discussion of control issues relating to the specialisation of logic and

functional languages.

In partial evaluation a decision must be made about each call in the program. The call

can either be made at specialisation time under the control of the partial evaluator, or

become part of the final specialised program. In the power example from Figure 1.4 the

recursive calls to power have been unrolled during specialisation, this process is referred

to as unfolding.

1.2.1 Online Partial Evaluation

In online partial evaluation all of the control decisions are made during the specialisation

phase. Online specialisers usually monitor the growth of the evaluation history during

specialisation, and continue computing as long as there is some evidence that interesting

computations are performed and that it appears to terminate. Online techniques are

potentially more precise as they have all of the static input available for making decisions

but their behaviour can be more difficult to predict.

Take for example the well known Prolog append/3 example, Listing 1.1, specialised for

the goal append ([a, b, AJ, B, C) .

append ([] ,A, A) .

append([AIAs), B. [AICs) :- append(As. B. Cs).

LISTING 1.1: append/3 example in Prolog

An online partial evaluator decides whether to unfold a call based on the current available

static data and the unfolding history. Often the size of the arguments are monitored,

Chapter 1 Introduction 4

if there is a decrease from one iteration to the next then there is some evidence that

the process might terminate. The size of an argument is be represented by a norm, a

mapping function from a term to a natural number. For example, a list length norm

would map a list to a natural number representing the length of the list.

This is illustrated in Figure 1.5. At Step 1 there is a decrease in the size of the first

argument [a, b I AJ (norm = 2 + length(A)) -> [b I AJ (norm = 1 + length(A)), so the

call is safe to unfold and the first clause has not been used so some useful work has been

done. At Step 2 there is again a decrease from [b I AJ (norm = 1 + length(A)) -> A (norm

= length(A)) so we continue unfolding. However at Step 3 we can not demonstrate a

decrease in size from A -> A' , unfolding this call may be unsafe. The important point is

that the available static data at each point was used in the decision process. In contrast,

traditional offline partial evaluation techniques make their unfolding decisions based on

an approximation of the static data and do not use the unfolding history. The only

safe approximation for the goal append ([a, b I AJ, B, C) would be append (dynami c ,

dynamic, dynamic) and no unfolding would take place. The termination criteria for

this example is based on the "size" of the arguments, this relies on well-founded orders

so that it must not be possible to infinitely decrease in size (e.g. Bruynooghe et al.

(1992); Dershowitz and Jouannaud (1990)). Homeomorphic embedding (e.g. Leuschel

et al. (1998); S0rensen and Gluck (1995)) can also be used and checks if an ancestor is

embedded in the value, i.e. can you strike out some part of the value to create something

we have seen before. Deciding whether to unfold a call influences local control, i.e.

Step 1:

Step 2:

Step 3:

append([a,bIA], B, C) ! Clause 2

append([b IA], B, C') ! Clause 2

append(A, B, C", ! Clause 1 ~Iause 2

o append(A', B, C"')

FIGURE 1.5: Unfolding append ([a, b I AJ, B, C)

whether the current computation branch will ever terminate. Global control concerns

the possible creation of an infinite number of different specialised predicates, pO),

p (2), p (3), ... , etc. Step 3 in Figure 1.5 was not unfolded and requires the creation of

an additional specialised predicate for append (A, B, C). In this case we already have a

specialised goal for append ([a, b I AJ, B, C), and by using well-founded orders (Martens

and Gallagher, 1995) again we can determine if it is safe to specialise this goal. If we

are in danger of attempting to specialise an infinite number of goals we must generalise

the goal and respecialise. For example, pO), p(2), p(3), becomes p(X).

Chapter 1 Introduction 5

Another approach to the global termination problem involves characteristic trees (Gal

lagher and Bruynooghe, 1991; Leuschel et al., 1998). Figure 1.6 shows the characteristic

trees for specialising append ([a, b I AJ, B, C) and append (A, B ,C). The characteristic

tree represents the different predicates and the rule chosen to progress at each point,

if two different specialisation goals produce the same characteristic tree then it may be

better to generalise the two goals and produce only one specialised version. For exam

ple the specialisation goals append (A, B, C), append (A, [a], C and append (A, [bJ,

C) all share the same characteristic tree, it is sufficient to produce a single version for

append(A, B, C).

FIGURE 1.6:

append([a.bIA], S.C)

via Clause 2

T ,I, CI,,,e 2

STOP

append(A. S.C)

,I, CI,"~I,",e 2

D STOP

Characteristic Tree for unfolding append ([a, b I AJ, B, C) and
append(A,B,C)

1.2.2 Offline Partial Evaluation

Offline specialisation separates the specialisation into two phases, as depicted in Fig

ure 1.7:

1. A binding-time analysis (BTA) is performed which, given a source program and

an approximation of the input available for specialisation, approximates all values

within the program and generates annotations that steer the specialisation process.

2. A (simplified) specialisation phase, which is guided by the annotations generated

by the BT A. The annotations decide whether a call should be unfolded or resid

ualised.

As most of the control decisions in this approach are taken beforehand it is referred to as

offline. The specialisation phase of the offline approach is in general much more efficient

since control decisions are made prior to and not during the specialisation phase. This is

especially important in the scenario where the same program is to be respecialised several

times. The binding-time analysis only needs to be performed once for the program to

be specialised for different sets of static data.

Chapter 1 Introduction 6

The binding-time analysis is sometimes performed manually based on an approximation

of the input arguments. The set of arguments that will be known at specialisation time is

given, rather than their actual static values. This means the specialiser should make the

same control decisions regardless of the actual static values, making omine specialisation

more predictable. However, without the actual static data it cannot take full advantage

of situations where extra information is known.

Source
Program

Dynamic
Input

1. Binding Time
Analysis

2. Partial
Evaluator

Annotated
Program

FIGURE 1.7: Overview of omine partial evaluation

1.3 Partial Evaluation of Interpreters

Partial evaluation produces useful results when applied to interpreters. The static input

is typically the object program being interpreted, while the actual call to the object

program is dynamic. Partial evaluation can then produce a more efficient, specialised

version of the interpreter, which is sometimes akin to a compiled version of the object

program (Futamura, 1971).

The ultimate goal in that setting is to achieve Jones optimality (Jones et al., 1990, 1993;

Makholm, 2000), i.e., fully removing a layer of interpretation (called the "optimality

criterion" in Jones et al. (1993)). More precisely, if we have a self-interpreter sint for

a programming language L (i.e., an interpreter for L written in that same language L)

and then specialise sint for a particular object program P, we would like to obtain a

specialised interpreter pi which is as least as efficient as P (see Figure 1.8). The reason

one uses a self-interpreter, rather than an interpreter in general, is so as to be able

to directly compare the running times of P and pi (as they are written in the same

programming language L).

Chapter 1 Introduction

E)dynamiC

Source
Program P

,

Partial
Evaluator

FIGURE 1.8: Jones Optimality

at least as
efficient as P

7

More formally, if D is the input domain of P and tp(i) is the running time of the

program P on the input i, we want that 'lid ED: tp/(d) ~ tp(d).

1.3.1 Jones Optimality for Vanilla

We demonstrate the specialisation of interpreters and Jones optimality using the vanilla

interpreter in Listing 1.2. The vanilla interpreter is a self-interpreter for Prolog, a Prolog

interpreter written in Prolog. Calling solve_atom/l looks up the program in the clause

database (my_clause/2), and recursively calls solve/l on the definition.

solve([]).

solve([AITJ) :- solve_atom (A) , solveCT).

solve_atom (A) :- my_clause(A,B), solve(B).

my_clause (app ([] ,L ,L), []).

my _ claus e (app ([H I X] , Y , [H I Z]) , [app (X , Y , Z)]) .

LISTING 1.2: The vanilla self-interpreter for Prolog with definition of app/3

To achieve the optimality criterion from (Jones et al., 1993) the specialiser must be able

to fully remove the overhead of interpretation. Listing 1.3 is a specialised version of

the interpreter for the goal solve_atom(app(A,B,C)). The definition is identical (after

renaming) to the original definition of app/3. The overhead of interpretation has been

removed and the optimality criterion has been met for this interpreter.

solve_atom __ O([], A, A).

solve_atom __ O([AIB], C, [AID]) :

solve_atom __ O(B, C, D).

LISTING 1.3: The vanilla interpreter specialised for solve_atom(app(A,B,C))

We will return to the vanilla interpreter in Chapter 9, where we will present some

applications for specialising the vanilla interpreter.

Chapter 1 Introduction 8

1.4 Self-application

Guided by the Futamura projections (see e.g. Jones et al. (1993)) a lot of effort, especially

in the functional partial evaluation community, has been put into making systems self

applicable. A partial evaluation or deduction system is called self-applicable if it is

able to effectivelyl specialise itself. The most well-known practical interests of such a

capability are related to the second and third Futamura projections (Futamura, 1971).

The first Futamura projection consists of specialising an interpreter for a particular

object program, thereby producing a specialised version of the interpreter which can be

seen as a compiled version of the object program, as already mentioned in Section 1.3

and Figure 1.8.

If the partial evaluator is self-applicable then one can specialise the partial evaluator

for performing the first Futamura projection, thereby obtaining a compiler for the in

terpreter under consideration. This process is called the second Futamura projection.

Source
Program in L

Interpreter
for L

dynamic
... ..
static Partial
---~

Evaluator
Partial

Evaluator

FIGURE 1.9: 2nd Futamura Projection: Specialising the Partial Evaluator and an In
terpreter to produce a compiler

The third Futamura projection (Figure 1.10) now consists of specialising the partial

evaluator to perform the second Futamura projection. By this process we obtain a

compiler generator (cogen).

Interpreter dynamic
...

Partial stati
Evaluator

Partial
Evaluator

FIGURE 1.10: 3rd Futamura Projection: Specialising the Partial Evaluator for per
forming the 2"d Futamum projection, producing a compiler generator

The first successful self-application made use of offline techniques, and was reported

in Jones et al. (1985), and later refined in Jones et al. (1989) (see also Jones et al.

IThis implies some efficiency considerations, e.g. the system has to terminate within reasonable time
constraints, using an appropriate amount of memory.

Chapter 1 Introduction 9

(1993)). Offline techniques are beneficial for self-application as only the second simplified

specialisation phase needs to be self-applied.

1.5 Prolog

Prolog (from Programation et Logique) is an implementation of a formal logic system

(first-order Horn clauses). Throughout this thesis we assume a familiarity with Prolog,

see Sterling and Shapiro (1994) for an introduction. We follow the notational conventions

of Lloyd (1987). In particular, we denote variables by strings starting with an upper

case symbol, while the notations for constants, functions and predicates begin with a

lower-case character.

The declarative nature of Prolog allows programs to be run with incomplete input, a

key concept of partial evaluation. So on the surface it might seem partial evaluation for

Prolog is trivial, however in practice this is not the case. See Chapter 9 of Jones et al.

(1993) or Leuschel et al. (2004b) for an overview. The examples and code presented in

this thesis have been developed using SICStus2 Prolog version 3.11.1.

For a Prolog partial evaluation system to be usable by wider audience it must support

the features of a modern Prolog implementation. Some important developments include

Constraint Logic Programming and coroutines.

1.5.1 Constraint Logic Programming

Constraint Logic Programming (CLP) extends traditional logic programming to include

reasoning about relationships or 'constraints' in a particular domain. CLP(Q) offers a

powerful constraint solver for the domain of rational numbers. See Marriott and Stuckey

(1998) for an introduction to Constraint Logic Programming.

CLP allows the programmer to express the problem in a very high level language, specify

ing relationships between objects, while the underlying engine uses powerful incremental

constraint solvers. For example, take the well known relationship from physics:

Force Mass * Acceleration

This specifies a relationship between the three values Force, Mass and Acceleration.

In traditional languages, you can not program this relationship directly but instead

program how to derive each of the values from the others. To model this relationship the

programmer would need to code three equations and then correctly choose the equation

based on the input arguments.

2http://www.sics.se/isl/sicstuswww/site/index.html

Chapter 1 Introduction 10

Force is Mass * Acceleration

Mass is Force / Acceleration

Acceleration is Force / Mass

Choosing an equation without knowing the right hand side would raise an exception in

a Prolog system. CLP (Q) allows the programmer to represent the relationship directly:

{Force Mass * Acceleration}

As the values for either Force, Mass or Acceleration become known the equation is

updated and solved automatically (Listing 1.4).

I ?- {Force = Mass * Acceleration}, {Force = 10, Acceleration=2}.
Mass = 5.0,
Force = 10.0,

Acceleration 2.0 ?

yes

I ?- {Force = Mass * Acceleration}, {Force

Mass = 5.0,

Force = 10.0,
Acceleration 2.0 ?

yes

10, Mass=5}.

I ?- {Force = Mass * Acceleration}, {Force 10}.

Force = 10.0,

clpr:{10.0-Acceleration*Mass=0.0} ?

yes

LISTING 1.4: Example CLP session, using the values given the CLP solver updates

and attempts to solve the equation

1.5.2 Coroutines

The computation rule in traditional Prolog systems is simple: "pick the leftmost goal

of the current query". However, SICStus Prolog and other modern implementations

support a more complex computation rule "pick the leftmost unblocked goal". A goal

is blocked if the block condition is not satisfied, for example the arguments may not be

sufficiently instantiated. SICStus Prolog defines the W'hen/2 predicate as:

W'hen(+Condition,:Goal)

Blocks Goal until the Condition is true,

W'here Condition is a goal W'ith the restricted syntax:

nonvar(X)

ground (X)

?=(X,Y)

Condition,Condition

Condition; Condition

Chapter 1 Introduction 11

For example, the is/2 predicate must be called with the second argument fully ground.

If it is called with a non-ground argument an exception is thrown:

?- X is Y, Y = 2*5.

! Instantiation error in argument 2 of is/2

! goal: 76 is 77

Coroutines can be used to delay the execution of the is/2 until the second argument is

sufficiently instantiated.

safe_is(X,Y) :- when(ground(Y), X is V).

When the predicate safe_is/2 is called, the is/2 will be delayed until the call becomes

safe.

?- safe_is(X,Y), Y 2*5.

X 10,

Y 2*5?

yes

1.6 Contributions

The main aim of the work in this thesis is to make partial evaluation for Logic Pro

gramming accessible to a wider audience. To appeal to a wider audience it is important

that:

• The system is as automatic as possible, but still gives expert users the power to

control the specialisation .

• The specialiser handles real life programs, including the features of modern Prolog

implementations.

We extend the techniques to handle features encountered in modern Prolog implementa

tions including constraint logic programming, coroutines and some other logic features.

We present a integrated development environment for specialising logic programs. This

environment allows new users to visualise the annotation on their source programs with

out modifying their original code, and specialisation is achievable at the click of a button.

To demonstrate the expressiveness of the system we present a series of increasingly com

plex interpreter specialisation examples, explaining the annotations and produced code.

We demonstrate a fully implemented algorithm for automatically deriving the offline

annotations using state of the art termination analysis techniques, combined with type

based abstract interpretation for propagating binding types. The binding-time analysis

is extended to a self-tuning, resource-aware offline specialisation algorithm. The main

insight was that the annotations from offline specialisation can be used as the base for

a genetic algorithm.

Chapter 1 Introduction 12

We develop the LIX partial evaluator for a considerable subset of full Prolog. \Ve show it

achieves non-trivial specialisation and it can be effectively self-applied. We demonstrate

that, contrary to earlier beliefs, declarativeness and the use of the ground representation

is not the best way to achieve self-application. Our insight is that an effective self

applicable specialiser can be derived by transforming a cogen.

The work in this thesis has contributed to a number of scientific publications, which are

detailed below:

• Stephen-John Craig and Michael Leuschel, "A compiler generator for constraint

logic programs" , in M Broy and A Zamulin, editors, Perspectives of System Infor

matics, volume 2890 of LNCS, pages 148-161. Springer, 2003 (Craig and Leuschel,

2003).

• Stephen-John Craig and Michael Leuschel, "Lix: an effective self-applicable par

tial evaluator for Prolog", in Yukiyoshi Kameyama and Peter J. Stuckey, editors,

Functional and Logic Programming, 7th International Symposium, FLOPS 2004,

Nara, Japan, April 7-9, 2004, Proceedings, pages 85-99, 2004 (Craig and Leuschel,

2004).

• Stephen-John Craig, Michael Leuschel, John Gallagher, and Kim Henriksen, "Fully

automatic Binding Time Analysis for Prolog", in Sandro Etalle, editor, Logic Based

Program Synthesis and Transformation, 14th International Workshop, pages 61-

70, 2004 (Craig et al., 2004).

• Michael Leuschel, Stephen-John Craig, Maurice Bruynooghe, and Wim Vanhoof,

"Specializing interpreters using offline partial deduction" , in Maurice Bruynooghe

and Kung-Kiu Lau, editors, Program Development in Computational Logic, LNCS

3049. Springer-Verlag, 2004a (Leuschel et al., 2004a).

• Stephen-John Craig and Michael Leuschel, "Self-Tuning Resource Aware Special

isation for Prolog", to appear in PPDP, 2005.

1.7 Thesis Organisation

The remainder of this work is organised as follows. Chapter 2 introduces offline partial

deduction for logic programs. Throughout the chapter an algorithm for partial deduction

is derived and developed into the foundations of the partial evaluator, LIX, which is

extended over the course of the thesis. We introduce the basic annotations and binding

types.

Chapter 3 extends the LIX system introduced in Chapter 2 for self-application. Com

pared to earlier attempts at self-application, the LIX system is usable in terms of effi

ciency and can handle natural logic programming examples with partially static data

Chapter 1 Introduction 13

structures, built-ins, side-effects, and some higher order and meta-level features such

as call and findall. The work in this chapter is an extended version of Craig and

Leuschel (2004).

The PYLOGEN system is introduced in Chapter 4. The PYLOGEN system provides a

graphical interface into the LIX and LOGEN partial evaluators. The chapter gives a

high level overview of the implementation and a description of its main features. The

annotations used in the rest of the thesis are summarised.

Omine partial evaluators make use of a binding-time analysis phase as discussed in Sec

tion 1.2.2. Chapter 5 presents an algorithm for a fully automatic binding-time analysis

using state of the art termination analysis techniques, combined with a new type based

abstract interpretation for propagating binding types. The algorithm has been imple

mented as part of the PYLOGEN system and we present experimental results. The work

in this chapter represents a collaboration and has been published as Craig et al. (2004).

In Chapter 6 we present the outline for a self tuning partial evaluation system, which de

rives its own specialisation control for the particular Prolog compiler and architecture by

trial and error. We present the algorithm which is implemented in the PYLOGEN system

and experimental results.

Chapter 7 extends the specialisation techniques to include coroutining. We discuss the

problems specialising programs with coroutines and present specialised examples using

the techniques. The chapter also introduces a new annotation based on the idea of

delayed and guarded execution for partial evaluation.

Constraint Logic Programming (eLP) is an important paradigm in logic programming.

CLP allows the programmer to model the system as a series of constraints over a domain

which can then be reasoned about to produce an answer (or set of answers), in particular

we look at the domain of rational numbers. Chapter 8 demonstrates that the partial

evaluation system can be extended to handle the specialisation of CLP languages. The

work in this chapter has been previously published as Craig and Leuschel (2003).

Chapter 9 presents experimental results using the partial evaluator. The chapter spe

cialises the vanilla interpreter for a number of different purposes. We show that the

partial evaluator is powerful enough to specialise complex interpreters and that it can

achieve Jones Optimality. Notably we present an interpreter that when specialised per

forms the general program transformation given in Lloyd and Topor (1984).

Finally, Chapter 10 summarises the work and outlines the presented contributions. Fu

ture avenues of research are discussed.

Chapter 2

The Partial Evaluator

We now describe the process of offline partial evaluation of logic programs and develop

the foundations of the LIX partial evaluation system. This should give a good under

standing of the basic annotations and the algorithm behind the implementation. Over

the remaining chapters the system will be extended into a fully fledged offline partial

evaluator capable of self-application and the non-trivial specialisation of complex inter

preters.

In the context of pure logic programs partial evaluation is referred to as partial deduction,

the term partial evaluation being reserved for the treatment of impure logic programs

(side effects, cuts). Later the system will be extended to include impure logic features,

but for now we adhere to this terminology because "deduction" places emphasis on

the purely logical nature of most of the source programs. Before presenting partial

deduction, we first present some aspects of the logic programming execution model.

2.1 Logic Programming

To begin with we review the basic components that make up a logic program. The basic

definitions are based on Leuschel (1999), which in turn is inspired by Apt (1990); Lloyd

(1987).

Definition 2.1 (alphabet). An alphabet consists of function symbols, predicate sym

bols, variables, connectives and punctuation symbols. Function and predicate symbols

have an associated arity, indicating the number of arguments they take. Constants are

functions symbols with an arity of 0, while propositions are predicate symbols with an

arity of O.

Definition 2.2 (terms). The set of terms (over some given alphabet) is inductively

defined as follows:

14

Chapter 2 The Partial Evaluator 15

- a variable is a term,

- a constant is a term and

- a function symbol 1 of arity n > 0 applied to a sequence t l , ... ,tn of n terms,

denoted by 1(t1, .. , tn) is also a term.

Definition 2.3 (atoms). The set of atoms (over some given alphabet) is defined in the

following way:

- a proposition is an atom and

- a predicate symbol p of arity n > 0 applied to a sequence tl, ... ,tn of n terms,

denoted by p(tl' ... , tn), is an atom.

Definition 2.4 (literal). If A is an atom then the formulas A and -,A are called literals.

A is called a positive literal and -,A a negative literal.

Definition 2.5 (clause). A clause is a formula of the form V(HI V ... V Hm +- Bl /\ ... !,

En), where m 2: 0, n 2:,0 and HI, ... , Hm, El, ... , En are all literals. HI V ... V Hm is

called the head of the clause and El /\ ... /\ En is called the body. A (normal) program

clause is a clause where m = 1 and HI is an atom. A definite program clause is a normal

program clause in which E 1 , ... , En are atoms. A fact is a program clause with n = O.

A query or goal is a clause with m = 0 and n > O. A definite goal is a goal in which

E l , ... , En are atoms. The empty clause is a clause with n = m = 0, this corresponds

to a contradiction. The symbol 0 is also used to represent the empty clause.

Definition 2.6 (program). A (normal) program is a set of normal program clauses. A

definite program is a set of definite program clauses.

We adhere to the usual logic programming notation:

- The universal quantifier encapsulating the clause is omitted,

- the comma is used instead of the conjunction in the body,

- variables are represented by uppercase letters and

- constants, function symbols and predicate symbols are represented by lowercase

letters.

For example, the clause VX(p(s(X)) +- (q(X) /\ r(X))) is represented as p(s(X)) +

q(X), r(X).

The definitions of substitution and mgu are required for the rest of this introduction.

Definition 2.7 (substitution). A substitution e is a finite set of the form e = {Xdtl' ... ,Xn/tn}

where Xl,." ,Xn are distinct variables and tl, ... ,tn are terms such that Xi =I- ti· Each

element Xdti of e is called a binding.

Chapter 2 The Partial Evaluator 16

Definition 2.8 (mgu). Let S be a finite set of expressions. A substitution e is a called

a unifier of S iff the set se is a singleton. e is called relevant iff its variables vars(e)

all occur in S. e is called a most general unifier or mgu iff for each unifier (J of S there

exists a substitution, such that (J = e,.

The Prolog execution model is based on SLD-resolution (Selection rule-driven Linear

resolution for Definite clauses) see e.g. Lloyd (1987). We now define the components of

SLD-resolution.

Definition 2.9 (SLD-derivation step). Let G =t- L l , ... , L m , . .. ,Lk be a goal and

C = A t- E l , ... ,En a program clause such that k 2:: 1 and n 2:: 0. Then G' is derived

from G and C using e (and Lm) iff the following conditions hold:

1. Lm is an atom, called the selected atom (at position m), in G.

2. e is a relevant and idempotent mgu of Lm and A.

3. G' is the goal t- (L l ,.·., Lm- l , E l , ... , En, Lm+l , ... ,Lk)e.

Definition 2.10 (SLD-derivation). Let P be a definite program and G a definite goal.

An SLD-derivation of PU{ G} is a tuple (9,.c, C, S) consisting of a sequence of goals 9 =

(Go, G l ,·· .), a sequence.c = (La, Ll' ...) of selected literals, a sequence C = (Cl , C2,··.)

of variants of program clauses of P and a sequence S = (e l , e2 , . ..) of mgu's such that:

- for i > 0, vars(Ci) n vars(Go) = 0;

- for i > j, vars(Ci) n vars(Cj) = 0;

- for i 2:: 0, Li is a positive literal in Gi and GHI is derived from Gi and CH 1 using

eHl and Li;

- the sequences g, C, S are maximal given £.

Definition 2.11 (SLD-refutation). An SLD-refutation of P U {G} is a finite SLD

derivation of P U {G} which has the empty clause 0 as the last goal of the derivation.

Definition 2.12 (SLD-tree). An SLD-tree for P U {G} is a labelled tree satisfying the

following:

1. Each node of the tree is labelled with a definite goal along with an indication of

the selected atom

2. The root node is labelled with G.

3. Let t- All ... ' Am, ... ,Ak be the label of a node in the tree and suppose that Am

is the selected atom. Then for each clause A t- B l , ... , Bq in P such that Am and

A are unifiable the node has one child labelled with

t- (AI' ... ' Am-I, El, ... , B q , Am+l ,.··, Ak)e,

where e is an idempotent and relevant mgu of Am and A.

4. Nodes labelled with the empty goal 0 have no children.

Chapter 2 The Partial Evaluator 17

Definition 2.13 (computed answer). Let P be a definite program, G a definite goal

and D an SLD-refutation for P U {G} with the sequence (61 1 , ... , en) of mgu's. The

substitution (61 1 ", en)lvars(G) is then called the computed answer for P U {G} (via D).

Formally, executing a logic program P for an atom A consists of building an SLD-tree

(Definition 2.12) for P U {f- A} and then extracting the computed answer substitutions

(Definition 2.13) from every non-failing branch of that tree.

The append program is shown in Listing 2.1. The SLD-tree for append ([a, b] , [c] ,R)

is presented in Figure 2.1(a). The selected atoms are underlined. In this example there

is only one branch and its computed answer is R = [a, b, c] .

append ([] ,L, L) .

append([HIX],Y,[HIZ]) :- append(X,Y,Z).

LISTING 2.1: Append program

append([a,bl,[cl,R)

~=[aIR21
append([bl.[cl.R2)

~2=[bIR31
append<D.[cl.R3)

r
(a) SLD-tree for (b) Incomplete SLD-tree for append (X , [c] ,R)
append([a,b]. [c],R)

FIGURE 2.1: Complete and incomplete SLD-trees

2.2 Partial Deduction

Partial deduction builds upon this approach with two major differences:

1. At some step in building the SLD-tree, it is possible to not select an atom, hence

leaving a leaf with a non-empty goal. The motivation is that lack of the full in

put may cause the SLD-tree to have extra branches, in particular infinite ones.

The partial evaluator should not only avoid constructing infinite branches, but

also branches which would cause inefficiencies in the specialised program. In

complete branches do not produce computed answers, they produce conditional

answers which can be expressed as program clauses by taking the resultants (Def

inition 2.14) of the branches.

Chapter 2 The Partial Evaluator 18

Figure 2.1(b) is an incomplete SLD-tree for append ex, [c] ,R), whose full SLD

tree would be infinite. The resultants of the derivations in Figure 2.1(b) are shown

in Listing 2.2.

2. As atoms can be left in the leaves, we may have to build a series of SLD-trees

to ensure that every such atom is covered by some root of some tree. The fact

that every leaf is an instance of a root is called closedness (Definition 2.15). In

Figure 2.1 (b) the leaf atom append eX2, [c] ,R2) is already an instance of its root

atom append ex, [c] ,R), hence closed ness is already ensured and there is no need

to build additional trees. If append ex, [b] ,R) were a leaf atom a new tree would

have to be built as it is not an instance of any root atom.

Definition 2.14 (resultant). Let P be a program, G =+- Q a goal, D a finite SLD

derivation of PU{ G} ending in +- B, and e the composition of the mgu's in the derivation

steps, then the formula Qe +- B is called the resultant of D.

append ([] , [c] ,[c]).

append ([H I X2] ,[c] ,[H I R2]) : - append (X2, [c] ,R2).

LISTING 2.2: Resultants of the derivations from Figure 2.1(b)

Definition 2.15 (closedness). For a given set of specialised atoms A the closed ness

condition requires that every atom in the body of the resultant is an instance of an

atom in A. The closed ness condition ensures that A forms a complete description of all

possible runtime calls of the specialised program.

Partial deduction starts from an initial set of atoms A provided by the user, chosen

in such a way that all runtime queries of interest are closed, i.e. each possible goal of

interest is an instance of some atom in A. Constructing a specialised program requires

us to construct an SLD-tree for each atom in A. Moreover, one can easily imagine that

ensuring closedness may require revision of the set A. Hence, when controlling partial

deduction, it is natural to separate the control into two components (Gallagher, 1993;

Martens and Gallagher, 1995):

• The local control controls the construction of the finite SLD-tree for each atom in

A and thus determines what residual clauses are produced for the atoms in A .

• The global control controls the content of A. It decides which atoms are ultimately

partially deduced. Care must be taken that A remains closed for the initial atoms

provided by the user.

More details on exactly how to control partial deduction in general can be found, e.g.,

in Leuschel and Bruynooghe (2002). In offline partial deduction the local control is

Chapter 2 The Partial Evaluator 19

hardwired, in the form of annotations added to the source program during the binding

time analysis phase.

At a given node when building the SLD-tree the specialiser can choose to either:

unfold - continue building the SLD-tree for the selected atom, or

memo - choose not to select an atom, producing a leaf with a non-empty goal. The

generalised atom is added to the set of atoms to specialise (if it is not an instance

of an atom already in the set).

The global control is also partially hard-wired, by specifying which arguments to which

predicate are dynamic and which ones are static. Generalisation of dynamic variables

helps to ensure coveredness. For example, the selection of goals p(l), ... ,p(n) are all

covered by the single atom f(X).

2.3 An Offline Partial Deduction Algorithm

2.3.1 The Basic Annotations

As outlined earlier, an offline specialiser works on an annotated version of the source

program. The annotation file contains two types of annotations:

• Filter declarations declare binding types for the arguments of the predicates. They

specify which arguments are static and which are dynamic. This influences the

global control only.

• Clause annotations indicate how every call in the body should be treated during

unfolding. This influences the local control only. For now we assume that a call

is either annotated by memo indicating that it should not be unfolded, but

instead generalised and specialised independently; or by unfold indicating that

it should be unfolded. More annotations will be introduced over the course of this

thesis.

For compatibility, LIX reuses the annotations format from the LOGEN (Leuschel et al.,

2004b) system. Each call in the program is annotated using logen/2 and the binding

types of arguments are given using filter /1 declarations. The head of a clause is

annotated with an identifier.

First, let us consider an annotated version of the append program (Listing 2.1). The filter

declarations annotate the second argument as static while the remaining arguments

are left dynamic, and the clause annotations annotate the recursive call as memo

Chapter 2 The Partial Evaluator 20

preventing its unfolding. These annotations are shown in Listing 2.3. The heads of both

clauses are annotated with the app identifier.

1* the annotated source program: *1
1* fiLter indicates how to generaLise and fiLter *1

filter append (dynamic ,static ,dynamic).

1* CLause annotations are converted into ruLe cLauses on Loading *1
logen(app, append ([] ,L,L)).

logen (app, append ([H I T], L, [H I T1])) : - logen (memo, append (T ,L, T1)) .

LISTING 2.3: Annotated version of append from Listing 2.1

Given these annotations and a specialisation query append ex, [C] ,Z), offline partial

deduction would unfold exactly as depicted in Figure 2.1 (b) and produce the resultants

shown in Listing 2.2.

2.3.2 The Algorithm

Algorithm 1 is a general algorithm for offline partial deduction given filter declarations

and clause annotations.

In practice, renaming transformations (Gallagher and Bruynooghe, 1990) are also in

volved: every atom in M is assigned to a predicate with a new name and whose arity

is the number of arguments declared as dynamic (static arguments do not need to be

passed around as they have already been built into the specialised code). The resultants

of the derivations in Figure 2.1(b) would be transformed into the code in Listing 2.4.

The second argument from the original append program is static and has been removed.

append __ O ([] ,[C]).

append __ O ([H I X2] , [H I R2]) : - append __ O (X2, R2) .

LISTING 2.4: Resultants of derivations from Figure 2.1(b) after renaming

To give a more precise picture, we present a Prolog version (Listing 2.6) of Algo

rithm 1. It should be noted that the algorithm performs a breadth first traversal of

the atoms to specialise but for simplicity of implementation the Prolog code is depth

first, this does not change the behaviour of the output program (though predicates

may be printed in a different order). The code is runnable (using an implementation

pretty _printing_clauses/2 which prints and formats a list of clauses). We assume

that the filter declarations and clause annotations of the source program are represented

by filter /2 and rule/2 respectively. The annotations from Listing 2.3 are represented

by the clauses in Listing 2.5.

2.3.3 Generalise and Filter

Generalisation and filtering transforms the arguments of a call based on the filter dec

laration. Generalisation is required for global termination, data marked as dynamic

Chapter 2 The Partial Evaluator

Algorithm 1 Offline Partial Deduction
Input:A Program P and an atom A
Global:1V1 emoTable = 0

1: generalise A to give AG
2: filter A G to give AF
3: add (AG,AF) to MemoTable
4: repeat
5: select an unmarked pair (AG,AF) in MemoTable and mark it
6: STEP(AF, 0, ((unfold ,AG)))
7: until all pairs in M emoTable are marked
8:

9: function STEP(Q, B, C)
10: {Q is current goal}
11: {B is current residual code}
12: {C is remaining annotated atoms}
13: if C is E: then
14: pretty print the clause Q:-B
15: else
16: let B = (AI, ... , Ai)
17: let C = ((Annl,AAI), ... , (Annj,AAj))
18: if Annl is memo then
19: generalise AAI to give AG
20: if 3(AG

I
, AFI) EM emoTable s.t. AAI is a variant of AG

I
then

21: {AG has been previously added, compute Call to residual predicate}
22: e = mgu(AAI, AG

/
)

23: AF = AFI e

24: else
25: {Compute residual predicate head and add call to pending list}
26: filter AG to give AF
27: add (AG,AF) to MemoTable
28: end if
29: STEP(Q, (All ... , Ai, A F), ((Ann2' AA2) .. (Annj, AAj)))
30: else if Ann is unfold then
31: for all H ead:-Body in program P do
32: if AAI unifies with Head giving mgu e then
33: e = mgu(Head,AAI)
34: let BA' = concat(Body, (Ann2' AA2), ... , (Annn, AAn))
35: STEP(Qe, Be, BA'e)
36: end if
37: end for
38: end if
39: end if
40: end function

21

Chapter 2 The Partial Evaluator

rule (append ([] ,A, A), true).
rule(append([AIB] ,C, [AID]), logen(memo ,append(B,C,D»).
filter(appendC,_,_), [dynamic ,static ,dynamic]).

LISTING 2.5: Annotated append program from Listing 2.3 using rule/2 and filter/2.

22

should be replaced with fresh variables. For instance a call pO) with first argument

marked dynamic will be transformed into p (X), which can then be reused by a call to

p (2). This is normally done to avoid producing residual code for a possibly infinite set

of goals e.g. p (1), p (2), p (3), etc.

Filtering creates the residual predicate heads that will appear in the specialised code.

Arguments marked static are discarded, and gensym is called to create a unique name

for the predicate. For example a call append(S, [] ,S) with filter declaration [dynamic,

static, dynamic] would be transformed into append_O (X, Y). The second argument

has been removed by filtering and the first and third arguments have been generalised

and replaced by fresh variables.

This generalisation and filtering is performed by generalise_and...filter/3 (lines 34-

45). The second argument returns the generalised original call (no filtering) and the

third argument is the generalised and filtered call.

2.3.4 Driving the Specialisation

An atom A is specialised by calling memo(A,Res). The memo/2 predicate (lines 5-16)

returns in its second argument the call, after generalisation and filtering, to the new

specialised predicate. The global side effect, assert (memo_table (GenCall ,FCall))

(line 11), is used to maintain the list of previously specialised calls. Finally, the last call

to memo_table (Call ,ResCall) (line 14) binds ResCall to the residual version of the

call Call.

Note the difference between ResCall, GenCall and FCall. Consider for example the

filter declaration for append from Listing 2.3 with Call = append (S, [] ,S). The gen

eralised call to be unfolded, GenCall, becomes append (Y , [] ,Z); FCall, the filtered

head of the specialised version, becomes append __ O (Y ,Z); and the original call is to be

replaced by ResCall = append_O (S, S).

The predicate unfold/2 (line 18) computes the bodies of the specialised predicates. A

call annotated as memo is replaced by a call to the specialised version. It is created, if

it does not exist, by the call to memo/2. A call annotated as unfold is further unfolded.

All clauses defining the new predicate are collected using findall/3 and pretty printed.

Chapter 2 The Partial Evaluator 23

2.3.5 Built-ins

To be able to deal with built-ins, we also add two more annotations. A call annotated

as call is completely evaluated and a call annotated as res call is added to the residual

code without modification (for built-ins that cannot be evaluated).

2

3

4

These two annotations can also be useful for user-predicates. A user predicate marked

as call is completely unfolded without further examination of the annotations, while the

rescall annotation can be useful for predicates defined elsewhere or whose code is not

annotated.

dynamic

memo_ table /2,

flag/2.

5 memo(Call,ResCall)

6 (memo_table (Call,ResCall) ->

7 true 1* nothing to be done: aLready speciaLised *1
8

9

10

11

12

13

14

15
16

17

) .

18 unfold(X,Code)

generalise_and_filter (Call, GenCal1 , FCall) ,

assert (memo_table (GenCall ,FCall)),

f indall ((FCal1 : -B) , unfold (GenCall , B) , XClauses) ,

pretty_print_clauses(XClauses),

memo_table (Call,ResCall)

19 rule(X,B),

20 body(B,Code).

21

22 body((A,B) ,(CA,CB)) :-

23 body(A,CA),

24 body(B,CB).

25 body(true,true).

26 body(logen(memo,C),ResC)

27 memo(C,ResC).

28 body(logen(unfold,C),ResCode)

29 unfold(C,ResCode).

30 bodyClogen(call,C),true) :-

31 call(C).

32 bodyClogen(rescall ,C) ,C).

33

34 generalise_and_filter(Call,GCall,FCall)

35 filter(Call,ArgTypes),

36 Call =.. [P 1 Args] ,

37 gen_filter (ArgTypes, Args, GenArgs, FiltArgs),

38 GCall =.. [p 1 GenArgs] ,

39 gensym(P,NelJP), FCall = .. [NelJPIFiltArgs].

40
41 gen_filter ([] , [] , [] , []).

42 gen_filter ([static 1 AT], [Arg 1 ArgT], [Arg 1 GT] ,FT)

43 gen_filter(AT,ArgT,GT,FT).

44 gen_filter ([dynamic 1 AT] , [_I ArgT] , [GenArg 1 GT] , [GenArg 1 FT])

45 gen_filter(AT,ArgT,GT,FT).

Chapter 2 The Partial Evaluator

46
47 1* code for unique symboL generation, using dynamic fLagl2 *1

48 oldvalue (Sym, Value) :-

49 flag(gensym(Sym), Value),

50

51 oldvalue(_, 0).

52
53 set_flag (Sym, Value)

54 nonvar (Sym),

55 retract(flag(Sym,_»,

56 ! ,

57 asserta(flag(Sym,Value».

58 set_flag(Sym, Value) :-
59 nonvar(Sym),

60 asserta(flag(Sym,Value».

61

62 gensym (Head, ResidualHead) :-

63 var(ResidualHead),

64 atom(Head) ,
65 oldval ue (Head, DldVal),

66 NewVal is DldVal+l,

67 set_flag(gensym(Head) , NewVal),
68 name(A __ , " __ "),

69 string_concat(Head, A __ , Head __),

70

71

string_concat(Head __ , NewVal, ResidualHead).

72 append ([], A, A).

73 append ([A I B], C, [A I D])

74 append(B, C, D).

75
76 string_concat(A, B, C)

77 name(A, D),

78 name(B, E),

79 append (D, E, F),

80 name (C, F).

81

82 1* cLause database: AutomaticaLLy created from annotated fiLe *1

83 rule(append([] ,A,A), true).

84 rule(append([AIB],C, [AID]), logen(memo,append(B,C,D»).

85 filter(append(,_,_), [dynamic ,static ,dynamic]).

LISTING 2.6: Prolog implementation of Algorithm 1

2.3.6 Example

24

Let us now examine the behaviour of running the specialiser on the annotated append

example (Listing 2.3). Calling the specialiser with memo (append (X, [c] ,Y) ,R) produces

the specialised program in Listing 2.7.

append __ l([],[c]) :- true.

append __ l ([A I B] , [A I C]) : - append __ l (B, C).

LISTING 2.7: Output from specialiser, running on the append example for the goal

memo (append (X , [c] ,Y),R)

We now step through the execution of memo (append (X, [c] , Y) ,R) on Listing 2.6.

Chapter 2 The Partial Evaluator 25

1. memo (append(X , [c] ,Y), R) is called

2. memo_table/2 is empty so the if test fails

3. Generalise and Filter append (X , [c] ,Y):

• Call = append(X,[c] ,Y)

• GenCal1 = append (A , [c] ,B)

• FCal1 = append __ l(A,B)

4. Store memo_table (append (A , [c] ,B), append_1(A,B))

5. Findall solutions for unfold(append(A, [c] ,B) ,Body)

(a) Matches rule (append ([], [c] ,B), true)

• body (true, true) matches

(b) Matches rule (append ([C I DJ : [cJ , [C I EJ) ,logen (memo, append CD, [c] ,E)))

• body(logen(memo,append(D,[c] ,E)),Res) matches

• call memo (append(D, [c] ,E) ,Rl), this matches entry in memo table

• body is replaced with append __ l (D, E)

6. Pretty print clauses:

• append __ l ([] , [c]) : - true .

• append __ l ([A I B] , [A I C]) : - append __ l (B, C) .

7. Unify R with entry point append __ 1(A,B)

The generation of the code in Listing 2.7 took 0.318 msl. This is a very simple example to

demonstrate the partial evaluator, the specialisation of a non-trivial Functional language

interpreter can be found in Section 3.6 and other examples can be found in Chapter 9

or on the LIX home page2.

The specialisation process can be made much more efficient through self-application,

this is discussed in Chapter 3.

2.4 Local and Global Termination

Without proper annotations of the source program, the above omine specialiser may fail

to terminate. There are essentially two reasons for non-termination:

IBenchmarks performed using SICStus Prolog 3.11.1 for Linux on a Pentium 2.4Ghz with 512MB
RAM. Timings are averaged over 100,000 iterations.

2http://www.ecs.soton.ac.uk/-sjc02r/lix/lix.html

Chapter 2 The Partial Evaluator 26

• Local non-termination: The unfolding predicate unfold/2 may fail to termi

nate or provide infinitely many answers.

" Global non-termination: Even if all calls to unfold/2 terminate, we may still

run into problems because the partial evaluator may try to build infinitely many

specialised versions of some predicate for infinitely many different static values.3

To overcome the first problem of local non-termination, we may have to annotate certain

calls as memo rather than unfold. In the worst case, every call is annotated as memo

which always ensures local termination.

To overcome global termination problems, we modify the filter declarations and declare

more arguments as dynamic rather than static.

Another possible problem appears when built-ins lack enough input to behave as they

do at run-time (either by triggering an error or by giving a different result). When this

happens, we have to mark the offending call as rescall rather than call. The call will

no longer be executed during specialisation and will become part of the residual code.

2.5 Summary

We have presented the basic algorithm for an offline partial evaluator for logic programs.

The algorithm is implemented as the foundations of the LIX partial evaluation system.

We introduced a set of basic annotations to ensure the process terminates and produces

results for simple examples. The binding-time analysis phase annotates the source pro

gram with a safe set of annotations to ensure termination, this can be done by hand

or automatically. The automatic generation of safe annotations is discussed in depth in

Chapter 5. An optimal set of annotations should not only guarantee the specialisation

process terminates but that it also produces good quality residual code. The fine tuning

of the annotations for performance and code size is discussed in Chapter 6.

The implementation is extended in Chapter 3 to become a fully fledged partial evaluator

and demonstrates that effective self-application can be achieved.

30ne often tries to ensure that a static argument is of bounded static variation (Jones et al., 1993),
so that global termination is guaranteed.

Chapter 3

Self-application

The work in this chapter has been previously published as Craig and Leuschel (2004)

f'"'V l-he R"n"t;"na1 anrl T "g;" P"'''g'''amTYl;ng 7th Tnt<>rnat;"nal C:yTYlnOSillill V,i lJl. .L U.L '-' .1.V..l..1.·..1. .I.'-..&-.i..JV..l.V.L.J,.V..L.1. .1..1..1..1..1..1..1. " .L.1..l.'-''-'.I...L \.!J.V..l..... U .l..J..Lr'

This chapter develops LIX into a self-applicable partial evaluator for a considerable

subset of full Prolog. The partial evaluator is shown to achieve non-trivial specialisation

and be effectively self-applied. The attempts to self-apply partial evaluators for logic

programs have, of yet, not been all that successful. Compared to earlier attempts, our

LIX system is usable in terms of efficiency and can handle natural logic programming

examples with partially static data structures, built-ins, side-effects, and some higher

order and meta-level features such as calli! and findall/3. The LIX system is derived

from the development of the LOGEN compiler generator system. It achieves a similar

kind of efficiency and specialisation, but can be used for other applications. Notably,

first attempts at using the system for deforestation and tupling in an offline fashion are

shown. The chapter will demonstrate that, contrary to earlier beliefs, declarativeness

and the use of the ground representation is not necessarily the best way to achieve

self-applicable partial evaluators.

3.1 Introduction

Partial evaluators perform a source to source program transformation, optimising a

program based on known static data. Partial evaluation of interpreters can produce

interesting results. The static input is typically the object program and the actual

runtime query is left dynamic. This specialisers the interpreter for a particular program

(Figure 3.1), the static overhead of interpretation can be removed producing something

akin to a compiled version of the object program (Futamura, 1971).

A partial deduction system is called self-applicable if it is able to successfully specialise

itself and produce a worthwhile result (i.e. non-trivial specialisation).

27

Chapter 3 Self-application

(Input D) ~:namic

Source
Program in L

static
Interpreter

For L
Partial

Evaluator

FIGURE 3.1: 1st Futamura Projection: Specialising an interpreter to produce a compiled
program

28

Using the process shown in Figure 3.1 the user may want to specialise multiple source

programs, each producing a different specialised object program. Each time the partial

evaluator runs on the same interpreter, but each time the source program changes. The

interpreter is static while the source program is dynamic. If the partial evaluator is self

applicable it is possible to partially evaluate the partial evaluator for performing the 1st

Futamura projection producing a specialised partial evaluator for the interpreter. This

specialised partial evaluator can transform any source program in L into a specialised

object program, hence it is referred to as a compiler for language L. This is the basis of

the 2nd Futamura projection (Figure 3.2).

Source
Program in L

(Interpreter
for L

dynamic
...

static Partial
---~

Evaluator
Partial

Evaluator

FIGURE 3.2: 2nd Futamura Projection: Specialising the partial evaluator and an inter
preter to produce a compiler

Using the 2nd Futamura projection the user may want to generate compilers for different

interpreters. Each time specialising the same partial evaluator but for a different inter

preter. The partial evaluator itself is static but the interpreter is dynamic. The partial

evaluator can now be specialised for performing the 2nd Futamura projection producing

a specialised partial evaluator for specialising the partial evaluator. Given an interpreter

it produces a specialised interpreter which in turn can produce specialised object code,

hence it is called a compiler generator (cogen for short). Generating compilers from

interpreters is the basis of the 3rd Futamura projection (Figure 3.3).

The Futamura projections also apply to other programs which are not interpreters. In

this case the compiler is referred to as a generating extension. Specialising the partial

evaluator makes the specialisation process itself much more efficient.

Offline techniques split the specialisation process into two parts: first a binding-time

analysis phase, followed by a simplified specialisation phase which is guided by the

Chapter 3 Self-application

Interpreter

Partial
Evaluator

dynamic ..

Partial
Evaluator

FIGURE 3.3: 3rd Futamura Projection: Specialising the partial evaluator for performing
the 2"d Futamura projection, producing a compiler generator

29

results of the binding-time analysis. This separation is useful for self-application as only

the second simplified phase has to be self-applied (Jones et al., 1993, 1985, 1989). In

the context of logic programming languages the offline approach was used to achieve

self-application in Gurr (1994a); Mogensen and Bondorf (1992).

3.1.1 History of Self-application for Logic Programming

Not surprisingly, writing an effective self-applicable specialiser is a non-trivial task -

the more features one uses in writing the specialiser the more complex the specialisation

process becomes, as the specialiser then has to handle these features as well. For a

long time it was believed that in order to develop a self-applicable specialiser for logic

programs one needed to write a clean, pure and simple specialiser. In practice, this

meant using few (or even no) impure features in the implementation of the specialiser.

For this the ground representation (Hill and Gallagher, 1998) was believed to be key, in

which variables of the source program are represented by constants within the specialiser.

Indeed, the ground representation allows one to freely manipulate the source program

to be specialised in a declarative manner. The non-ground representation, where source

level variables are represented as variables in the program specialiser, can suffer from

semantical problems (Martens and De Schreye, 1995b) and requires some non-declarative

features (such as findall/3) in order to perform the specialisation.

Some early attempts at self-application (Fujita and Furukawa, 1988) used the non-ground

representation, but the self-application led to incorrect results as the specialiser did not

properly handle the non-declarative constructs that were employed in its implement a

tion.1 Other specialisers like MIXTUS (Sahlin, 1993), PADDY (Prestwich, 1992) and ECCE

(Leuschel et a1., 1998) use the non-ground representation, but none of them are able to

effectively specialise themselves (or there is no or little speedup).

The ground representation approach towards self-application was pursued in Bondorf

et a1. (1990), Leuschel (1994), Mogensen and Bondorf (1992), and Bowers and Gurr

(1995); Gurr (1994a,b) leading to some self-applicable specialisers:

1 A problem mentioned in Bondorf et al. (1990), see also Leuschel (1994); Mogensen and Bondorf
(1992).

Chapter 3 Self-application 30

It SAGE (GUIT, 1994a), a self-applicable partial evaluator for Godel. While the

speedups obtained by self-application are respectable, the process takes a very

long time (several hours) and the obtained specialised specialisers are still ex

tremely slow. This is probably due to the explicit unification algorithm required

by the ground representation. To effectively specialise this explicit algorithm a

much more powerful specialisation techniques would be required to obtain reason

ably efficient specialisers (Leuschel and De Schreye, 1996). Similar performance

problems were encountered in the earlier work (Bondorf et al., 1990).

It LOGIMIX (Jones et al., 1993; Mogensen and Bondorf, 1992), a self-applicable par

tial evaluator for a subset of Prolog, including if-then-else, side-effects and some

built-ins. LOGIMIX uses a meta-interpreter (sometimes called InstanceDemo Hill

and Gallagher (1998)) for the ground representation in which the goals are "lifted"

to the non-ground representation for resolution. This avoids the use of an explicit

unification algorithm, at the expense of some power. 2 Unfortunately, LOGIMIX

gives only modest speedups (when compared to results for functional program

ming languages, see Mogensen and Bondorf (1992)), but it was probably the first

practical self-applicable specialiser for a logic programming language.

Given the problem in developing a truly practical self-applicable specialiser for logic

programs, the attention shifted to the cogen approach (Holst, 1989): instead of trying to

write a partial evaluation system which is neither too inefficient nor too difficult to self

apply, one simply writes a compiler generator directly. Indeed, the actual creation of the

cogen according to the third Futamura projection is in general not of much interest to

users since the cogen can be generated once and for all when a specialiser is given. This

approach was pursued in Jorgensen and Leuschel (1996); Leuschel et al. (2004b) leading

to the LOGEN system, which can produce specialised specialisers much more efficiently

than any of the self-applicable systems mentioned above. The resulting specialisers

themselves are also much more efficient.

3.1.2 A New Attempt at Self-application

In a sense the cogen approach has closed the practical debate on self-application for logic

programming languages: one can get most of the benefits of self-application without

writing a self-applicable specialiser. Still, there is the question of academic curiosity: is

it really impossible to derive the cogen written by hand in Jorgensen and Leuschel (1996);

Leuschel et al. (2004b) by self-application? Also, having a self-applicable specialiser is

sometimes more flexible as it can generate different cogens for different purposes (such as

one with debugging enabled). It can produce more or less optimised cogens by tweaking

the specialisation process, and better control the tradeoff between specialisation time and

2 This idea was first used by Gallagher in Gallagher (1993, 1991) and then later in Leuschel and
De Schreye (1995) to write a declarative meta-interpreter for integrity checking in databases.

Chapter 3 Self-application 31

quality of the optimised code. Maybe there are other situations where a self-applicable

partial evaluation system is preferable to a cogen: GlUck's specialiser projections (Gluck,

1994) and the semantic modifiers of Abramov and Gluck (2001) may be such a setting.

This chapter aims to answer some of these questions. Indeed, after the development

of LOGEN it was realised that one could translate LOGEN into the classical style partial

evaluator presented in Chapter 2. Furthermore, using new annotation facilities devel

oped for the second version of LOGEN (Leuschel et al., 2004b), one can actually make

LIX self-applicable. Self-applying LIX produces generating extensions via the second

Futamura projection which are very similar to the ones produced by LOGEN, and the

cogen obtained via the third Futamura projection also has a lot of similarities to the

hand written code of LOGEN. The performance of this self-applicable partial evaluator is

(after self-application) on par with LOGEN, and is thus much faster than any of the pre

vious self-applicable logic programming specialisers. This chapter will also show some

potential practical applications of this self-applicable specialiser.

The code of LIX itself, Listing 2.6, is surprising simple, but uses a few non-declarative

features and does not use the ground representation. So, contrary to earlier belief, declar

ativeness and the ground representation were not the best way to climb the mountain

of self-application. Indeed, the use of the non-ground representation makes our partial

evaluator much more efficient and avoids all the complications related to specialising an

explicit unification algorithm. The only drawback is that to safely deal with the non

ground representation, our partial evaluator needs to use some non-declarative features

such as findall/3, and hence also has to be able to specialise them. Fortunately, this

turned out to be less of a problem than anticipated.

In summary, Futamura's insight was that a cogen could be derived by a self-applicable

specialiser. The insight in Holst (1989) was that a cogen is just a simple extension of

a binding-time analysis, while our insight is that an effective self-applicable specialiser

can be derived by transforming a cogen.

3.2 Deriving LIX from LOGEN

The LIX partial evaluator in Chapter 2 was created by transforming the LOGEN compiler

generator. The basic insight was that it is possible to create a classical partial evaluator

that when specialised would produce similar generating extensions. Figure 3.4 compares

a small extract of code from both LOGEN and LIX, dealing with the call and rescall

annotations.

The body/3 predicate is explained in detail in Leuschel et al. (2004b). Briefly, the first

argument is an annotated call, the second argument is the code that will appear in the

generating extension and the third argument denotes the specialised code. The middle

Chapter 3 Self-application

body(logen(call,Call),Call,true).
body(logen(rescall,Call),true,Call) .
LOG EN

body(logen(call,Call), true) :- call(Call).
body(logen(rescall,Call) , Call) :- true.
LIX

FIGURE 3.4: Extract of body predicate from LOGEN and LIX

32

argument from body/3 in LOGEN has been transformed into a call in the LIX version. This

call is annotated as rescall for self-application, and will hence appear in the generating

extension produced by self-application. A more detailed comparison of the generating

extensions and the produced cogen of LIX and LOGEN can be found in Section 3.5.1.

For example, the definition of p/2 in Listing 3.1 contains two annotated calls. The first

call to is/2 is marked call and the call to print/i is marked rescall.

p(X,Y) :-

Xl is X +1,

print(f(Xl,Y».
XX annotated "call"

XX annotated "rescaZl"

LISTING 3.1: p/2 contains two annotated calls: is/2 marked call and print/1 marked
rescall

The produced generating extension will contain a specialised predicate for handling all

calls to p/2 (Listing 3.2). The p_u/3 predicate contains an additional argument, the

code that will become part of the residual code (in this example the print/i). Calls

marked as call will be performed at specialisation time. This behaviour comes from the

body/3 (LOGEN) and body/2 (LIX) predicates. In LIX the second argument ofbody/2 will

become part of the residual code (it will appear in the extra argument in the specialised

unfolder) and the body calls from body/2 will transformed and become the body of the

specialised unfolder.

p_u(A, B, print(f(C,B»)

C is A+1.

LISTING 3.2: Specialised unfolder for Listing 3.1

3.3 Towards Self-application

The main body of the code for the LIX system has already been given. For a partial

evaluator to be self-applicable it must be able to effectively handle all of the features it

uses. The system presented so far uses a few non-declarative features and does not use

the ground representation. This section will introduce the required extensions to make

LIX self-applicable.

Once the required extensions are added the LIX source code can be correctly annotated

and LIX can be self-applied. Importantly it must handle findall/3, if-then-else and

the cut. An additional binding type is also needed for self-application.

Chapter 3 Self-application 33

3.3.1 The nonvar Binding Type

We now present a new feature derived from LOGEN which is useful when specialising

interpreters. This annotation will be the key for effective self-application.

In addition to marking arguments to predicates as static or dynamic, it is also possible

to use the binding type nonvar. This means that this argument is not a free variable

and will have at least a top-level function symbol, but it is not necessarily ground. For

example f (X), f (a) and f are all nonvar but the variable X is not. During generalisation,

the top level function symbol is kept but all its sub-arguments are replaced by fresh

variables. For filtering, every sub-argument becomes a new argument of the residual

predicate.

A small example will help to illustrate this annotation:

:- filter p(nonvar).

p(f(X)) :- p(g(a)).

p(g(X)) :- p(h(X)).

p(h(a)).

p(h(X)) :- p(f(X)).

If we mark no calls as unfoldable, we get the following specialised program for the call

p(f(Z» :

XXX entry point: p(f(Z))

p __ O(B) :
p __ l(B) :

p __ 2 (a).

p __ 2 (B) :-

p __ l(a).

p __ 2(B).

p __ O(B).

If we mark everything except the last call as unfoldable we obtain:

p __ O(B).
p __ O(B) :- p __ O(a).

The gen-.iilter/2 predicate in the LIX source code, Listing 2.6, is extended to handle

the nonvar annotation (Listing 3.3). The incoming argument is deconstructed into its

functor and sub-arguments, and then the sub-arguments are replaced by fresh variables

making making a more general version. For the call in the final residual code the functor

is discarded but the variables are kept.

gen_filter ([nonvar I A], [B I C], [D I E], F)

B= .. [GIH],

length (H, I),

length (J, I),

D= .. [GIJ),

gen_filter(A, C, E, K),

Chapter 3 Self-application 34

append(J, K, F).

LISTING 3.3: Extending LIX for the nonvar annotation

3.3.2 Treatment of findall

In LIX findall/3 is used to collect the clauses when unfolding a call; hence we have to

be able to treat this feature during specialisation.

assert (memo_ table (GenCall ,FCall») ,

f indall ((FCall : -B) ,unfold (GenCall ,B) ,XClauses) ,

pretty_print_clauses(XClauses),nl,

Handling findall/3 is actually not much different from handling negation in Leuschel

et al. (2004b). There is a static version (findall), in which the call is executed at

specialisation time, and a dynamic version (resfindall), where it is executed at runtime.

In both cases, the second argument must be annotated. For resfindall, much like res not

in Leuschel et al. (2004b), the annotated argument should be deterministic and should

not fail (which can be ensured by wrapping the argument into a hide_nf annotation, see

Leuschel et al. (2004b)). Also, if a findall/3 is marked as static then the call should

be sufficiently instantiated to fully determine the list of solutions. The following code is

used in the subsequent examples:

:- filter all_p(static,dynamic).

all_p(X,Y) :- findall(X,p(X).Y).

:- filter p(static).

pea).

p(b).

If the findall/3 is marked as residual and we memo p CX) inside it then the specialised

program for alLpCa, Y) is:

all_p __ O (A)

p __ 1.

findall(a,p __ 1.A).

If we mark p eX) as unfold we get:

all_p __ O(A) :- findall(a,true,A).

For self-application, only resfindall is actually required. The body /2 predicate is ex

tended to include Listing 3.4.

body (resfindall (Vars, G2, Sols), findall (Vars, VS2, Sols)) :

body (G2 , VS2) .

LISTING 3.4: Extending LIX for the findall annotation

Chapter 3 Self-application 35

3.3.3 Treatment of if

In the LIX code an if-then-else is used in memo/2.

(memo_table (Call,ResCall) ->

Yo aZready speciaZised

Yo needs to be speciaZised

In this case the if is dynamic, the residual body of the conditional along with its

branches will be created and an if statement will be constructed in the residual code.

LIX is also extended to handle a static if which is performed at specialisation time

(Listing 3.5). During specialisation care must be taken to avoid back propagation from

the branches of the if statement. The hide_nf annotation can be used to wrap the calls

and prevent propagation of bindings.

body(resH(A,B,C), (D->E;F)) :

body(A, D),

body(B, E),

body(C, F).

body(if(A,B,C), D)

(body(A,)->

body (B, D)

body (C, D)

) .

LISTING 3.5: Extending LIX to handle the if annotations

3.3.4 Handling the cut

This is actually very easy to do, as with careful annotation the cut can be treated as

a normal built-in call. The cut must be annotated using call where it is performed at

specialisation time, or rescall where it is included in the residual code. It is up to the

annotator to ensure that this is sound i.e. LIX assumes that:

CII if a cut marked call is reached during specialisation then the calls to the left of

the cut will never fail at runtime .

• if a cut is marked as res call within a predicate p, then no calls to p are unfolded.

These conditions are sufficient to handle the cut in a sound, but still useful manner. In

LIX the cut is used when creating unique symbol names. In LIX the cut is dynamic and

is therefor annotated by rescall, this requires that all calls to oldvalue/2 are marked

memo.

Chapter 3 Self-application 36

1* code for unique symboL generation, using dynamic fLagl2 *1

oldvalue(Sym, Value) :-

flag(gensym(Sym), Value),

oldvalue <-, 0).

3.3.5 Treatment of assert

LIX uses the dynamic predicate memo_table/2 to store memo table entries. As all as

sertions and queries to the memo table are performed at run time and not during spe

cialisation these calls can simply be marked as rescall. No further special treatment of

assertions is required to specialise LIX.

3.4 Self-application

Using the features introduced in Section 3.3 and the basic annotations from Section 2.3.1,

LIX can be successfully annotated for self-application. Self-application allows us to

achieve the Futamura projections mentioned earlier in the Chapter.

An extract from the annotated version of the LIX source code can be seen in Listing 3.6.

The full version of the annotated source code can be found in Appendix B. The memo/2

predicate is annotated using the new resfindall and res if annotations.

logen (memo, memo (A, B» :-

resif (logen(rescall ,memo_table (A,B»,

logen(rescall ,true),

(logen(unfold,generalise_and_filter(A,C,D»,

logen (rescall ,assert (memo_ table (C, D») ,

resf indall «D: - E) , logen (memo, unf old (C, E» , F) ,

logen (re scalI, format (, / * - k= - k * / -n' , [D , C])) ,

logen(memo,pretty_print_clauses(F»,

logen(rescall ,memo_table (A,B»

) .
logen(unfold, unfold(A,B»

logen(unfold, ann_clause(_,A,C»,

logen(unfold, body(C,B».

logen(body, body«A,B), (C,D») :

logen(unfold, body(A,C»,

logen(unfold, body(B,D».

logen(body, body(logen(call,A),true»

logen (rescall, call (A».

LISTING 3.6: An extract from the annotated LIX source code

Chapter 3 Self-application 37

3.4.1 Generating Extensions

In Section 2.3.6 we specialised app/3 for the call app (A, [b] ,C). If a partial evaluator is

fully self-applicable then it can specialise itself for performing a particular specialisation,

producing a generating extension. This process is the second Futamura projection.

\Vhen specialising an interpreter the generating extension is a compiler.

A generating extension (Listing 3.7) for the append predicate can be created by call

ing lix Clix (app (A, B, C) ,R) ,Ri), creating a specialised specialiser for append. This

specialises LIX for specialising append (Figure 3.5) .

. :~
stati~

FIGURE 3.5: Specialising LIX for specialising the append program produces a generating
extension for append. This is a specialised specialiser for append.

I*Generated by Lix*1

:- dynamic flag/2, memo_table/2.

1* oLdvaLue __ l(_5557,_5586) = oLdvaLue(_5557,_5586) *1

oldvalue __ l(A, B) :- flag(gensym(A), B), !

oldvalue __ l (_, 0).

1* set_fLag __ 1C7128,_7153) = set_fLag(gensymC7128),_7153) *1

set_flag __ l(A, B) retract(flag(gensym(A),_»,!,

asserta(flag(gensym(A),B».

asserta(flag(gensym(A),B».

1* gensym __ l(_4392) = gensym(app,_4392) *1

gensym __ l(A) :- var(A), oldvalue __ l(app, B),

C is B+l,set_flag __ l (app, C),

name(C, D), name(A, [97,112,112,95,95ID]).

1* Printing and FLatten CLauses removed to save space *1

1* unfoLd __ l(_6925,_6927,_6929,_6956) unfoLd(app(_6925,_6927,_6929),_6956) *1

unfold __ l([J, A, A, true).

unfold __ l([AIBJ, C, [AID], E) :- memo __ 1(B, C, D, E).

1* memo __ l L2453 ,_2455, _2457, _2484) = memo (app L2453 ,_2455, _2457), _2484) *1

memo __ l(A, B, C, D) :-

memo_table (app(A,B,C), D) -> true

gensym __ l (E), F= .. [E,G,H],

assert(memo_table(app(G,B,H),F»,

findall«F:-I), unfold __ l(G,B,H,I), J),

form a t (, / * - k = - k * / - n " [F, a p p (G , B , H)]) ,

pretty_print_clauses __ l(J),

memo_table (app(A,B,C), D)

Chapter 3 Self-application

) .
1* Lix __ 1 (_1288,_1290,_1292,_1319) = Lix(appL1288,_1290,_1292),_1319) *1

lix __ l(A, B, e, D) :- memo __ l(A, B, e, D).

LISTING 3.7: Specialised specialiser or generating extension for the append predicate

38

This is almost entirely equivalent to the proposed specialised unfolders in J0rgensen

and Leuschel (1996); Leuschel et al. (2004b). It is actually slightly better as it will do

flow analysis and only generate unfolders for those predicates that are reachable from

the query to be specialised. Note the gensym/2 predicate is specialised to produce only

symbols of the form app_~. Generation of the above took 3.3 ms.

The generating extension for append can be used to specialise the append predicate for

different sets of static data. Calling the generating extension with lix __ iCA, [b] ,C,R)

creates the same specialised version of the append predicate as in Section 2.3.6:

app __ l([], [b]).

app __ l([AIB], [AIC]) :- app __ l(B, C).

LISTING 3.8: Append specialised using the generating extension (Listing 3.7)

The unfold __ l/4 predicate closely resembles the original app/3 predicate. During spe

cialisation of LIX and the append program, the parsing and handling of the annotations

has been hard coded. The extra argument in unfold_1/4 collects the residual code as

it specialises append. The recursive call to app/3 has been transformed into a call to

memo __ 1/ 4 which will add the call to the memo table and specialise only if it has not

been done before.

1* unfoLd __ 1(_6925,_6927,_6929,_6956) = unfoLd(app(_6925,_6927,_6929),_6956) *1

unfold __ l([], A, A, true).

unfold __ l ([AlB], C, [AID], E) :- memo __ l (B, C, D, E).

LISTING 3.9: Extract from the append generating extension showing a specialised
unfolder

A call to unfold_l/4 can be seen in Listing 3.10. The first answer represents the base

case of append, there is no residual code (true) and bindings are made for A and C. The

second answer is more complicated, the call to memo __ l/4 is made which specialises and

prints the resulting predicate. The residual code is a call to the predicate created by

memo __ 1/4.

?- unfold __ l(A,[b], C, Res).

A [],

e [b] ,

Res = true ? ;

l*app __ 1L812,_810)=appL812,'. '(b,[J),_810)*1

app __ l([], [b]).

app __ l([AIB], [Ale]) :

app __ l(B, C).

Chapter 3 Self-application 39

C = [_A I _C] ,

Res = app __ l(_B,_C) ?

no

LISTING 3.10: Calling the specialised unfolder for append

Using the generating extension is faster, for this small example 0.212 ms instead of

0.318 ms. Using a larger benchmark, unfolding (as opposed to memoising) the append

predicate for a 10,000 item list produces more dramatic results. To generate the same

code the generating extension takes 40 ms compared to 990 ms for LIX. The overhead

of creating the generating extension for the larger benchmark is only 10 ms. Generating

extensions can be very efficient when a program is to be specialised multiple times with

different static data. This speed up is mainly due to the creation of the specialised

unfolders; the code to be executed at specialisation time has only a minimal overhead.

All the code to decipher the annotations has been removed and replaced with direct

calls to either memo or unfold predicates.

3.4.2 Lix Compiler Generator

The third Futamura projection is realised by specialising the partial evaluator to perform

the second Futamura projection. By this process we obtain a compiler generator (cagen

for short): a program that transforms interpreters into compilers. By specialising LIX to

create generating extensions we create LIX-COGEN, a self-applied compiler generator

(Figure 3.6).

FIGURE 3.6: Specialising LIX for specialising creating generating extensions creates the
LIX-COGEN . Given a program it will generate a specialised specialiser.

This can be achieved with the query lix(lix(lix(Call,R) ,R1) ,R2). An extract from

the produced code is now given:

Chapter 3 Self-application

/*7J.n!old __ 13(Annotation, Generated Code, SpeciaLisation Time) */
unfold __ 13 (true, true, true).

unfold __ 13((A,B), (C,D), (E,F))

unfold __ 13(A, C, E),

unfold __ 13 (B, D, F).

unfold __ 13(logen(call,A), true, call(A)).

unfold __ 13 (logen(rescall ,A), A, true).

LISTING 3.11: Extract from LIX-COGEN, created by self-applying LIX via the 3T d

Futamura projection

40

This has basically re-generated the 3-level cogen described in J0rgensen and Leuschel

(1996); Leuschel et al. (2004b). In the rescall annotation, for example, the call (A) will

become part of the residual program, and nothing (true) is performed at specialisation

time.

This code extract demonstrates the importance of the nonvar annotation. The anno

tated version of the original unfold/2 is now shown.

:- filter unfold (nonvar ,dynamic).

logen(unfold, unfold(X,Code)) :

logen(unfold, rule(X,B)),

logen(unfold, body(B,Code)).

Without the nonvar annotation the first argument would be annotated dynamic, as

the arguments to the call being unfolded may not be known at specialisation time.

This would produce a single generic unfolder predicate much like the original LIX. The

nonvar annotation is needed to generate the specialised unfolders.

The generated LIX-COGEN will transform an annotated program directly into a generat

ing extension, like the one found in Section 3.4.1. However LIX-COGEN is faster: to create

the same generating extension from an input program of 1,000 predicates LIX-COGEN

takes only 3.9 s compared to 100.9 s for LIX.

Generation of the LIX-COGEN took only 72 ms. Once LIX-COGEN has been generated

it can be reused for specialising different programs. It only has to be regenerated if

LIX itself changes.

3.5 Comparison

3.5.1 Logen

The LOGEN system is an offline partial evaluation system using the cogen approach. In

stead of using self-application to achieve the third Futamura projection, the LOGEN com

piler generator is hand written. LIX was derived from LOGEN by rewriting it into a clas

sical partial evaluation system. Using the second Futamura projection and self-applying

Chapter 3 Self-application 41

LIX produces almost identical generating extensions to those produced by LOGEN (and

both systems can in principle treat full Prolog). Apart from the predicate names the

specialised unfolders generated by the two systems are the same:

app __ u([] ,A,A,true).
app __ u([AIB] ,C, [AID] ,E) :

app __ m(B,C,D,E).

LOGEN Generating Extension

unfold __ l([], A, A, true).
unfold __ lC [A I B], C, [A I D], E)

memo __ l(B, C, D, E).

LrX-COGEN Generating Extension

FIGURE 3.7: Comparison between generating extensions created by LOGEN and LIX

While LOGEN is a hand written compiler generator, LIX must be self-applied to produce

the same result as in Section 3.4.2. If we compare the LOGEN source code to the LIX

COGEN in Section 3.4.2 we find very similar clauses in the form ofbody/3 (note however,

that the order of the last two arguments is reversed).

body(true,true,true).
body«G,GS),(Gl,GS1),(V,VS» :

body(G,Gl,V),
body(GS,GS1,VS).

body(logen(call,Call),Call,true).
body(logen(rescall,Call),true,Call).
LOGEN

unfold __ 13 (true , true, true).
unfold __ 13«A,B) , (C,D), (E,F»

unfold __ 13(A, C, E),
unfold __ 13(B, D, F).

unfold __ 13 (logen(call ,A) , true, call(A».
unfold 13(logen(rescall,A) , A, true).

LrX-COGEN

FIGURE 3.8: Comparison of LOGEN and the self-applied LIX-COGEN

Unlike LIX, LOGEN does not perform flow analysis. It produces unfolders for all predi

cates in the program, regardless of whether or not they are reachable.

3.5.2 Logimix and Sage

Comparisons of the initial cagen with other systems such as LOGIMIX, PADDY, and SP can

be found in Jorgensen and Leuschel (1996). In essence, LOGEN was was 50 times faster

than LOGIMIX at producing the generating extensions (0.02 s instead of 1.10 s or 0.02 s

instead of 0.98 s), and the specialisation times were about 2 times faster. It is likely that

a similar relationship holds between LIX and LOGIMIX given that LIX and LOGEN have

similar performance. An important difference between LOGIMIX and LIX is the way the

program to specialise is handled. LOGIMIX passes the ground program around as an

argument while LIX makes use of the normal Prolog database to store the program.

This allows LIX to take full advantage of the underlying Prolog engine. Unfortunately,

LOGIMIX no longer runs on current versions of SICStus Prolog and we were thus unable to

compare LIX and LOGIMIX directly. Similarly, Godel no longer runs on current versions

of SICStus Prolog, and hence we could not produce any timings for SAGE. However,

timings from Gurr (1994a) indicate that the use of the ground representation means

that SAGE is far too slow to be practical. Indeed, generating the compiler generator

took about 100 hours and creating a generating extension for the examples in Gurr

Chapter 3 Self-application 42

(1994a) took at least 7.9 hours. The speedups from using the generating extension

instead of the partial evaluator range from 2.7 to 3.6 but the execution times for the

generating extensions still ranged from 113 s to 447 s.

3.5.3 Multi-level Languages

Our annotation scheme can be viewed as a two-level language. Contrary to MetaML

(Taha and Sheard, 2000) our annotations are not part of the programming language

itself (as we treat classical Prolog). It would be interesting to investigate to what extent

one could extend our scheme for multiple levels of specialisation (GlUck and J0rgensen,

1997).

3.6 A Non-trivial Interpreter Example

We now demonstrate that LIX can handle more complicated examples by introducing

an interpreter for a simple functional language. The annotated source code is shown in

Listing 3.12. The interpreter supports arithmetic operations, conditional tests, function

definition and application, constants and variables. Variables are held in a partially

static environment. The source code has been annotated using the annotations presented

in this chapter. The annotations have been removed from the head of the clauses to

increase readability.

eval (cst (A), _, constr (A, []».

eval(constr(A,B), C, constr(A,D»

logen(unfold, l_eval(B,C,D».

eval(var(A), B, C)

logen(unfold, lookup(A,B,C».

eval(plus(A,B), C, constr(D,[]) :-

logen (unfold, eval (A, C, constr (E, []»), logen (unfold, eval (B, C, constr (F, []») ,

logen (rescall, D is E+F).

eval(minus(A,B), C, constr(D,[]) :-

logen (unfold, eval (A, C, constr (E, []»), logen (unfold, eval (B, C, constr (F, []») ,

logen(rescall, D is E-F).

eval(times(A,B), C, constr(D,[]) :-

logen (unfold, eval (A, C, constr (E, []»), logen (unfold, eval (B, C, constr (F, []») ,

logen(rescall, D is E*F).

eval(eq(A,B), C, constr(D,[]) :-

logen(unfold, eval(A,C,E», logen(unfold, eval(B,C,F»,

resif (logen (rescall ,E=F), logen (rescall ,D=true), logen (rescall ,D= false» .

eval(let(A,B,C), D, E) :-

logen(unfold, eval(B,D,F», logen(unfold, store(D,A,F,G»,

logen(unfold, eval(C,G,E».

eval(if(A,B,C), D, E) :-

logen(unfold, eval_if(A,B,C,D,E».

eval(lambda(A,B), _, lambda(A,B».

eval(apply(A,B), C, D) :-

logen(unfold, eval(B,C,lambda(F,G»),

logen(unfold, eval(A,C,H», logen(unfold, store(C,F,H,I»,

logen(memo, eval(G,I,D».

Chapter 3 Self-application

evaICfun(A), _, B) :

logen(unfold, function(A,B».

eval (print (A), _, constr (true, []»

logen(rescall, print(A», logen(rescall, nl).

eval_if(A, B, _, C, D) :-

logen(unfold, test(A,C»,logen(rescall, !), logen(unfold, eval(B,C,D».

eval_if (_, _, A, B, C) :-

logen(unfold, eval(A,B,C».

test(eq(A,B), C) :-

Iogen(unfold, eval(A,C,D», logen(unfold, eval(B,C,D)).

I_eval ([], _, []).

l_eval([AIB], C, [DIE]) :-

logen(unfold, eval(A,C,D», Iogen(unfold, l_eval(B,C,E».

store([], A, B, [A/B]).

store([A/_IB], A, C, [A/CIB]).

store([A/BIC], D, E, [A/BIF]) :-

logen(call, D\==A), logen(unfold, store(C,D,E,F».

lookup(A, [A/BI_], B).

lookup(A, [B/_IC], D) :-

logen(reseall, A\==B), logen(unfold, lookup(A,C,D».

LISTING 3.12: An annotated interpreter for a simple function language

43

Listing 3.13 is the definition of Fibonacci in the functional language. It defines Fibonacci

in a recursive fashion, if x is 0 or 1 the answer is returned directly otherwise it recursively

calls itself.

function(fib, lambda(x,

if (eq (var (x) ,cst (0» ,

est(1),

)) .

if (eq (var (x), cst (1) ,

cst (1) ,

pI us (apply (minus (var (x) , cst (1)) , fun (fib» ,

apply(minus(var(x),cst(2» ,fun(fib»)

LISTING 3.13: Fibonacci definition in the functional interpreter language

Specialising the interpreter (Listing 3.12) for running the Fibonacci definition (List

ing 3.13) produces the specialised code in Listing 3.14. The overhead of interpretation

has been removed, and the only remaining overhead is the extra structure constr /2.

This can be removed with simple post-processing. The specialised code performs the

same naIve Fibonacci calculation but has been converted to Prolog, the source language

of the interpreter.

eval __ l (constr (0, []), eonstr (1, []» ! .

eval __ i (constr (1, []), constr (1, []) ! .

eval __ l (eonstr (A, []), eonstr (B, []»

C is A-i,

eval __ i (constr (C, []), eonstr (D, []» ,

E is A-2,

eval __ i (constr (E, []), constr (F, []» ,

Chapter 3 Self-application 44

B is D+F.

LISTING 3.14: The functional interpreter specialised for the Fibonacci program

We now present the timing information for specialising the functional interpreter. All

these timings are taken from averaging the execution time over 10,000 iterations. Ta

ble 3.1 shows the time taken to specialise the interpreter using LIX and using a generating

extension (a specialised specialiser for the functional interpreter). Specialising using the

generating extension is nearly four times faster than using LIX.

Benchmark Time Taken
using LIX 3.7 4ms
using generating extension 0.94ms

TABLE 3.1: Time taken to specialise the functional interpreter

Table 3.2 shows timings for producing the generating extension. The generating exten

sion can be created by LIX or by using the LIX-COGEN. Using LIX-COGEN is twice as

fast as using LIX . The generating extension can be reused to specialise different source

programs for the functional interpreter, it only has to be regenerated if the interpreter

itself changes.

Benchmark
using LIX
using LIX-COGEN

Time Taken
21.93ms
10.98ms

TABLE 3.2: Time taken to create generating extension for the functional interpreter

Table 3.3 lists the time taken to generate LIX-COGEN. This however only has to be

generated once as it is only dependent on LIX and not on any source programs. It only

has to be regenerated if LIX changes.

Benchmark Time Taken
using LIX 72.15ms

TABLE 3.3: Time taken to create LIX-COGEN

This section has demonstrated the expressive power of LIX by specialising a non-trivial

interpreter for a functional language. Chapter 9 presents a series of increasingly com

plicated interpreters for specialisation.

3.7 New Applications

Apart from the academic satisfaction of building a self-applicable specialiser, we think

that there will be practical applications as well. We elaborate on a few in this section.

Chapter 3 Self-application 45

3.7.1 Several Versions of the Cogen

In the development of new annotation and specialisation techniques it is often useful to

have a debugging specialisation environment without incurring any additional overhead

when it is not required. Using LIX we can produce a debugging or non-debugging

specialiser from the same base code, the overhead of debugging being specialised away

when it is not required. By augmenting LIX with extra options we can produce several

versions of the cogen depending on the requirements:

• a debugging cogen, useful if the specialisation does not work as expected

• a profiling cogen

• a simple cogen, whose generating extensions produce no code but which can be fed

into termination analysers or abstract interpreters to obtain information to check

the annotations.

We could also modify the annotations of LIX to produce more or less aggressive specialis

ers, depending on the desired tradeoff between specialisation time, size of the specialised

code and the generating extensions, and quality of the specialised code. This would be

more flexible and maintainable than re-writing LOGEN to accommodate various tradeoffs.

3.7.2 Extensions for Deforestation/Tupling

LIX is more flexible than LOGEN: we do not have to know beforehand which predicates

are susceptible to being unfolded or memoised. Hence, LIX can handle a potentially

unbounded number of predicates. Using this allows LIX to perform a simple form of

conjunctive partial deduction (De Schreye et al., 1999).

For example, the following is the well known double append example where conjunctive

partial deduction can remove the unnecessary intermediate data structure Xy (this is

deforestation) :

doubleapp(X.Y.Z.XYZ) :- append(X.Y.XY). append(XY.Z.XYZ).

append ([] • L. L) .

append([HIX],Y.[HIZ]) :- append(X.Y.Z).

When annotating this example for LIX we can now simply annotate a conjunction as

memo (which is not allowed in LOGEN):

rule(doubleapp(A.B.C.D). (memo((append(A.B.E).append(E.C.D»»).

Running LIX on this will produce a result where the intermediate data structure has

been removed (after post-processing, as in De Schreye et al. (1999)):

Chapter 3 Self-application

doubleapp(A,B,C,D) :- doubleapp __ O(A,B,C,D).

append __ 2 ([J ,B, B) .

append __ 2([C/D],E,[C/FJ) :- append __ 2(D,E,F).

conj __ l ([J ,[J, B ,B).

conj __ 1C[],[C/D],E,[C/FJ) :- append __ 2(D,E,F).

conL_l([G/H],I,J,[G/KJ) :- conj __ l(H,I,J,K).

doubleapp __ O(B,C,D,E) :- conj __ l(B,C,D,E).

46

For this example to work in LOGEN we would need to declare every possible conjunction

skeleton beforehand, as a specialised unfolder predicate has to be generated for every

such conjunction. LIX is more flexible in that respect, as it can unfold a conjunction

even if it has not been declared before.

We have also managed to deal with the rotate-prune example from De Schreye et al.

(1999), but more research will be needed into the extent that the extra flexibility of

LIX can be used to do deforestation or tupling in practice.

3.8 Summary

This chapter presented an implemented, effective and surprisingly simple self-applicable

partial evaluation system for Prolog, and demonstrated that the ground representation

is not required for a partial evaluation system to be self-applicable. Chapter 9 shows

the LIX system can be used for the specialisation of non-trivial interpreters.

While LIX and LOGEN essentially perform the same task, there are some situations where

a self-applicable partial evaluation system is preferable. LIX can potentially produce

more efficient generating extensions, using specialised versions of gensym and performing

some of the generalisation and filtering beforehand. There is potential for using LIX in

deforestation and in producing multiple cogens from the same code. Tweaking the

annotation of LIX allows the cogen generation to be controlled. The overhead of a

debugging cogen can be removed or a more aggressive specialiser can be generated.

The annotations used to self-apply LIX were added by hand. Chapter 5 introduces

an automatic binding-time analysis algorithm for generating annotations. It is unclear

whether an automatic algorithm could generate the annotations used here due to their

subtleness. However, it should be possible to use the automatic process and then modify

the annotations for the desired results.

Chapter 4

PyLogen

One of the stated aims of this thesis is to make partial evaluation accessible to a wider

audience. For a partial evaluation system to be usable by a wide audience it must

be powerful enough to specialise real programs. Chapter 7 and Chapter 8 introduce

extensions to the developed partial evaluator for constraint programming and coroutines,

thus allowing a larger subset of real life programs to be handled. Chapter 9 demonstrates

the power of the specialiser on a series of increasingly complex interpreters.

While the expressive power of the system is important, the system must also be easy

to use. Annotating files for offline partial evaluation can be a complicated process.

Chapter 5 introduces an implemented algorithm for deriving the annotations, while

Chapter 6 optimises these annotations using a self tuning algorithm.

The final requirement is that the system as a whole is presented to the user in a easy

to use fashion; to address this we have developed the PYLOGEN graphical interface. The

system provides an interface to both the LOGEN and LIX systems. The LIX-COGEN is

generated from LIX by self-application (Section 3.4.2), and once it has been generated

it can be used in the same way as the hand written LOGEN.

This chapter presents the main features of the PYLOGEN interface along with a summary

of the annotations and binding types used throughout the thesis. A more detailed

tutorial of the system can be found in Appendix A.

4.1 System Overview

The underlying partial evaluation system is written in SICStus Prolog (Version 3.11.1)

and is also being ported to Ciao Prolog. The Prolog source code is compiled to executable

47

Chapter 4 PyLogen 48

form for the Linux, Windows and OS X platforms. The graphical interface is written in

a combination of Python 1 and Tk2 as they both offer consistent cross platform support.

All communication between the interface and the underlying engine is performed using

Tep sockets (Figure 4.1). This ensures a clean separation between the two parts and

allows the engine to be potentially run on a remote server. The only restriction is that

the server and client must have access to a shared file server.

Using a cogen to specialise programs can be a complicated process. After annotating the

source file a specialised specialiser is created based on these annotations. This specialised

specialiser (or generating extension) is then executed with the actual specialisation query,

producing the final specialised code. The same generating extension can be reused for

different sets of static data. It only has to be rebuilt if the annotations are modified.

The PYLOGEN system makes this process transparent: the user simply specialises a file

with a specialisation query. The system decides whether or not to rebuild the generating

extension based on the timestamps of the annotated file. It also provides benchmarking

tools and a Prolog shell to test the specialised programs.

Static
Data

PyLogen
Interface

, ,

Dynamic
Data

Annotated
Program

GX
Residual
Program

FIGURE 4.1: PYLOGEN communicates with the underlying partial evaluation engine
using TCP sockets. The user can edit and view annotated files from the interface.

4.2 Annotated Files

Offline partial evaluators make use of an annotated source program to guide the special

isation process. The LIX and LOGEN partial evaluators share a common format for the

annotated file (Listing 4.1).

logen(solve, solve([]».

logen(solve, solve([AIB]»

logen(memo, solve_atom(A»,

1 Python 2.3, http://www . python. org/
2python Tkinter, http://www.python.org/topics/tkinter/

Chapter 4 PyLogen

logen(unfold, solve(B)).

logen(solve_atom, solve_atom(A))

logen(unfold, my_clause(A,B)),

logen(unfold, solve(B)).

logen(my_clause, my_clause (app([) ,A,A), [J)).

logen(my_clause, my_clause(app([AIB) ,C, [AID)),[app(B,C,D)))).
logen(my_clause, my_clause(p, [p))).

filter

solve_atom (nonvar).

LISTING 4.1: Example of the Annotated version of the Vanilla interpreter

49

In the original version of LOGEN, as in most offline partial evaluators, these annotations

are added by manually editing an annotation file. This is a tedious process and makes

modifying the underlying source code difficult as it is marked up with annotations. The

PYLOGEN graphical interface represents annotated files as a colour highlighted version

of the original source code (Figure 4.2). Annotations are added to the program either

using the automatic binding-time analysis (Chapter 5) or through the graphical tool.

Clicking on a call in the pro)Vam displays a menu of annotations. The interface allows

the user to rapidly annotate files for specialisation and provides a simple way to see the

results.

~..,.~~~-... ~~~""""""----~
• py1..Ogen Vers-ioll 08 DEVELOPMENT /110Me 5Jc<l2r,'CI.SJOOf,cogen2/logen_SDurce, btLfHe5.'leo;.ts uuecmedlum pi

;~I~m~k:~f~~~~:;~~~~.~~si~~~~~(~~~~~~~.~:i~~Rx). · int~il li ~!t;iliii~::~;::::t~:.·;
1 im.{minus(Y...Y).Vars.Vals.Res) : - int(X,Vars.Vals.RX). iI J. ':- filter
11"int(!'un(K),Vars.vals.ReS) :- def;)(X.Def), lnt(D~f.vars., . III,' defO(static., qynaInic). I ; 11: - filter !I . I i int(statlC .. (type list(S't.3tic}L (.
~ defO(one,cst'l». . .I !'I:- filter
~ 1·defO(reC,fUn(reCl). I n (dynamic) is nonvar. I ;de£O(bi?£un(blg(fun(big»». i :- filter
:j , 11ii loo)cup(static .. (type list(static»

~ : 111:- filter)1 'I p test (dynamic, dynamic, d1namic).

;/lOOkUP(}li[XI],[Valj],Val). ' ~· i
llOOkupCi~~ fYITL flvaITLResld, .. ;.j
jt;! fi v_~ ';ti Aj t~~~~~#4

J

a..:1§tII§1

~fl1o. J r~J ~ ... --- I
f spee . . ~

J
FIGURE 4.2: Screenshot of a PYLOGEN session. The top left window contains the
annotated source code, the right window contains binding types and the lower pane

displays the residual program.

The screen is split into three panes. The top left pane displays the source code and

coloured annotations. This pane supports two modes: the first to edit the underlying

source code and the second mode is used to change the annotations. The top right

pane displays the filter declarations, which give the arguments of predicates a binding

type. The lower pane is used for output; displaying the specialised file along with the

associated generating extension and memo table.

Chapter 4 PyLogen 50

4.2.1 Clause Annotations

In the annotated program every call is marked with a clause annotation. The clause

annotations control how the call is handled during specialisation. In Listing 4.1 the

memo and unfold annotations are used. The call to solve_atom/l is annotated memo

and the other calls are marked unfold.

III unfold - The call is unfolded under the control of the partial evaluator. The call

is replaced with the predicate body, performing all the needed substitutions.

CD memo The call is not unfolded, instead the call is generalised using the filter

declaration and specialised independently.

III call Static call. The call is made without the control of the partial evalu-

ator. Usually used for calling built-ins, that will be sufficiently instantiated at

specialisation time.

III res call - Dynamic call. The unmodified call will become part of the residual

program.

• online The call will be unfolded/called if the safety criteria is met. See Chap-

ter 7

III if Static if. The condition will be evaluated and the branch will be chosen at

specialisation time.

III res if Dynamic if. The condition and both branches will be evaluated under

the control of the partial evaluator but the if statement will remain in the residual

program .

• hide_nf - Hide substitution and no failure. This annotation wraps calls and

prevents propagation of bindings and failures (Leuschel et al., 2004b).

III when Static when/2. The when/2 is performed at specialisation time and must

be triggered during execution of the current branch. See Chapter 7.

CD reswhen - Dynamic when/2. The when/2 is recreated in the residual program.

The Goal should also be annotated. See Chapter 7

III semiwhen - Semi when/2. If the Condition is triggered during specialisation

then the Goal will be specialised otherwise the when/2 is recreated in the residual

program. See Chapter 7

III findall - Static findall/3. The findall/3 will be evaluated during specialisa

tion. The second argument is higher order and must also be annotated.

Chapter 4 PyLogen 51

• resfindall - Dynamic findall/3. The call will be specialised independently and

the findall/3 will appear in the residual program calling the specialised version

of the call. The second argument is higher order and must also be annotated.

4.2.2 Binding Types

The binding types give information about the structure of arguments in the source pro

gram. The binding types are propagated through the program during the binding time

analysis. The binding types are used for generalisation, i.e. dynamic arguments are

thrown away, and filtering, i.e. static arguments are removed in the residual program.

More information on binding types can be found in Chapter 5.

The basic binding types are:

• static The argument is ground and will be known at specialisation time. The

argument will be filtered and will not appear in the residual program.

• dynamic The argument is not used at specialisation time, instead it will be

replaced with a fresh variable. The argument will appear in the residual program.

• semi - The argument will not be less instantiated at run time. Ground parts of

the argument will be filtered by the specialiser and will not appear in the residual

program.

• nonvar - At least the top level functor will be known at specialisation time. The

arguments will be generalised and replaced with fresh variables. The functor will

be filtered in the residual program but the arguments will remain. See Section 3.3.1

in Chapter 3.

These basic binding types can be combined to produce more complex types. The be

haviour of more complex types is based on their basic binding type components.

We use the ASCII notations of Mercury (Somogyi et al., 1996). For example, to define

a list of dynamic variables:

: - type dynamic_list ---> [] ; [dynamic I dynamic_list] .

During generalisation the contents of the list will be discarded, as they are marked

dynamic. The structure of the list is classed as static and will be kept. The call

p ([A, b, cJ) is generalised to p ([X, Y ,ZJ) and filtered in the specialised programs to

p_1CX, Y ,Z) .

Binding types are displayed in the right panel of Figure 4.2 as filter/l declarations.

The binding-time analysis algorithm introduced in Chapter 5 can also be used to prop

agate the filter declarations through the program based on the current annotations.

Chapter 4 PyLogen 52

4.3 Summary

This chapter introduced the PYLOGEN partial evaluation system. PYLOGEN provides a

graphical interface into the algorithms developed in this thesis along with the LOGEN and

LIX partial evaluators. It allows programs to be loaded into the interface and annotated

either by hand using point and click or using the automatic techniques. Results from

specialisation are shown and can be benchmarked and tested using the built-in tools.

The importance of the interface is to make partial evaluation for logic programming

easier, providing a better environment to develop and specialise Prolog programs. The

interface was used in the development and testing of the interpreter examples given in

Chapter 9.

Chapter 5

An Automatic Binding-Time

Analysis for Prolog

The work in this chapter has been published in the Proceedings of the International

Symposium on Logic-based Program Synthesis and Transformation (LOPSTR) 2004

as Fully Automatic Binding Time Analysis for Prolog by SJ. Craig, M. Leuschel, J.

Gallagher and K. Henriksen.

Offline partial evaluation techniques rely on an annotated version of the source program

to control the specialisation process. These annotations guide the specialisation and

ensure the termination of the partial evaluation. This chapter presents an algorithm

for generating these annotations automatically. The algorithm uses state-of-the-art ter

mination analysis techniques, combined with a new type-based abstract interpretation

(Gallagher and Henriksen, 2004) for propagating the binding types. The algorithm has

been implemented as part of the partial evaluation system and we show experimental

results for a series of benchmarks.

5.1 Introduction

The offline approach to specialisation has proven to be very successful for functional

and imperative programming, and more recently for logic programming. Most offline

approaches perform a binding-time analysis (BTA) prior to the specialisation phase.

Once this has been performed, the specialisation process itself can be done very effi

ciently (Leuschel et al., 2004b) and with a predictable outcome. Compared to online

specialisation, offline specialisation is in principle less powerful (as control decisions are

taken by the BTA before the actual static input is available), but much more efficient

(once the BTA has been performed). This makes offline specialisation very useful for

compiling interpreters (Leuschel et al., 2004a), a key application of partial evaluation.

53

Chapter 5 An Automatic Bin ding- Time Analysis for Prolog 54

However, up until now no automatic BTA for logic programs has been fully implemented

(though there are some partial implementations, discussed in Section 5.8), requiring users

to manually annotate the program. This is an error-prone and tedious process requir

ing considerable expertise. Hence, to make offline specialisation accessible to a wider

audience, a fully automatic BTA is essential.

In essence, a binding-time analysis does the following: given a program and a description

of the input available for specialisation, it approximates all values within the program

and generates annotations that steer the specialisation process. The partial evaluator

(or the compiler generator generating the specialised partial evaluator) then uses the

generated annotated program to guide the specialisation process. This process is illus

trated in Figure 5.1. The figure also shows the graphical editor which allows a user to

inspect the annotations and fine tune them if necessary.

Dynamic Input

BTA

Parfial

Evaluator

Specialised

Program

Graphical A
Interface

L...----...I

Use,

FIGURE 5.1: The role of the BTA for offline specialisation using LOGEN

To guide our partial evaluator the binding-time analysis must provide binding types and

clause annotations, which will now be described.

Binding Types

Each argument of a predicate in an annotated program is given a binding type by means

of a filter declaration. A binding type indicates something about the structure of an

argument at specialisation time. The basic binding types are usually known as static

and dynamic defined as follows.

• static The argument is definitely known at specialisation time .

• dynamic - The argument is possibly unknown at specialisation time.

We will see in Section 5.3 that more precise binding types can be defined by means

of regular type declarations and combined with basic binding types. For example, an

Chapter 5 An Automatic Binding-Time Analysis for Prolog 55

interpreter may use an environment that is a partially static data structure at partial

evaluation time. To model the environment, e.g., as a list of static names mapped to

dynamic variables we could use the following definition:

type binding = static / dynamiC.

type list_env = []; [binding I list_env].

Through the filter declarations we associate binding types with arguments of particular

predicates, as in the following example (taken from the inter _binding from Section 5.7):

filter

int(static, (type list_env), dynamic).

The filter declarations influence global control, since dynamic parts of arguments are

generalised away (that is, replaced by fresh variables) and the known, static parts are left

unchanged. They also influence whether arguments are "filtered out" in the specialised

program. Indeed, static parts are already known at specialisation time and hence do

not have to be passed around at runtime.

Clause Annotations

Clause annotations indicate how each call in the program should be treated during

specialisation. Essentially, these annotations determine whether a call in the body of a

clause is performed at specialisation time or at run time. Clause annotations influence

the local control (Martens and Gallagher, 1995). The developed system has four basic

annotations. These annotations were already discussed in previous chapters but are

reiterated here for completeness.

• unfold The call is unfolded under the control of the partial evaluator. The

call is replaced with the predicate body, performing all the needed substitutions.

• memo The call is not unfolded, instead the call is generalised using the filter

declaration and specialised independently.

• call The call is fully executed without further intervention by the partial

evaluator.

• rescall - The call is left unmodified in the residual code.

Chapter 5 An Automatic Binding-Time Analysis for Prolog 56

5.2 Algorithm Overview

Implementing a fully automatic BTA is a challenging task for several reasons. First,

the binding type information about the static and dynamic parts of arguments has

to be propagated throughout the program. Second, one has to decide how to treat

each body call in the program. This has to be guided by termination issues (avoiding

infinite unfolding) but also safety issues (avoiding calling built-ins that are not sufficiently

instantiated). Furthermore, the decisions made about how to treat body calls in turn

affect the propagation of the binding types, which in turn affect how body calls are to

be treated. In summary, we need

• a precise way to propagate binding types, allowing for new types and partially

static data,

• a way to detect whether the current annotations ensure safety and termination at

specialisation time,

• and an overall algorithm to link the above two together.

Also, if the current annotations do not ensure termination we need a way to identify

the body calls that are causing the (potential) non-termination in order to update the

annotations. For this we have implemented our own termination analyser, based on the

binary clause semantics (Codish and Taboch, 1999). To achieve a precise propagation of

binding types we have used a new analysis framework (Gallagher and Henriksen, 2004)

based on regular types and type determinization.

Figure 5.2 outlines the main steps of the BTA algorithm. The input to the algorithm

consists of a program, a set of binding types, and a filter declaration giving binding

types to the entry query (the query with respect to which the program is to be partially

evaluated). The core of the algorithm is a loop which propagates the binding types from

the entry query with respect to the current clause annotations (step 1), generates the

abstract binary program (steps 2 and 3) and checks for termination conditions (step 4).

If a call is found to be unsafe at step 4 (e.g. might not terminate) the annotations

are modified accordingly. Initially, all calls are annotated as unfold (or call for built

ins), with the exception of imported predicates which are annotated as rescall (step

0). Annotations can be changed to memo or rescall, until termination is established.

Termination of the main loop is ensured since there is initially only a finite number

of unfold or call annotations, and each iteration of the loop eliminates one or more

unfold or call annotation.

Chapter 5 An Automatic Binding-Time Analysis for Prolog

Source
Program .pl

Annotated

Program .ann

4. Termination
Checker

Binarized

Program

o. Generate

Initial Annotations

1. Filter

Propagation

3. Convex Hull

Analyzer

Term Ust
Size Length

Annotated

Program .ann

2. Binarization

using Logen

Binarized
Program

FIGURE 5.2: Overview of the BTA algorithm

5.3 Binding Type Propagation

57

The basis of the BTA is a classification of arguments using abstract values. In this

section we explain how to obtain such a classification for a given program and initial

goal. The method is completely independent of the actual binding types, apart from

requiring that they should include the type dynamic. Usually static and nonvar

are also included. A binding-time division is a set of filter declarations of the form

p(tl"" ,tn), where pin is a program predicate and tl,"" tn are binding types. For the

purpose of explanation we consider only monovariant binding-time divisions, namely

those in which there is at most one filter declaration for each predicate. However, the

algorithm has been extended to polyvariant binding-time divisions, which allow several

filter declarations for each predicate.

A binding-time division defines the binding types occurring in each predicate call in

an execution of the program for a given initial goal. This information in turn is used

when determining which calls to unfold and which to keep in the residual programs.

A binding-time division should be safe in the sense that every possible concrete call

is described by one of the filter declarations, e.g., a call pin will never be made with

arguments that violate the filter declaration for pin.

The use of static-dynamic binding types was introduced for functional programs, and

has been used in BTAs for logic programs (Mogensen and Bondorf, 1992). However,

a simple classification of arguments into "fully known" or "totally unknown" is often

unsatisfactory in logic programs, where partially unknown terms occur frequently at

runtime, and would prevent specialisation of many "natural" logic programs such as the

Chapter 5 An Automatic Binding-Time Analysis for Prolog 58

vanilla meta-interpreter (Hill and Gallagher, 1998; :tv1artens and De Schreye, 1995a) or

most of the benchmarks from the DPPD library (Leuschel, 1996-2004).

We outline a method of describing more expressive binding types and propagating them.

The analysis framework is described in Gallagher and Henriksen (2004). The method

is flexible, allowing standard static and dynamic binding types to be freely mixed with

program-specific types.

Regular Binding Types

Definition 5.1 (regular type rule). A regular type t is defined by a rule of the form: t =

h(tl,b"" tl,ml);"'; in(tn,l,"" tn,mn) where h, ... , in are function symbols (possibly

not distinct) and for all 1 :::; i :::; nand 1 :::; j :::; mi, mi is the arity of Ii, and ti,j are

regular types.

Definition 5.2 (set of regular types). The set of types t l , ... , tp define a collection

of type rules. These rules can be used to assign terms to a particular type. A set of

regular types {tl,"" tp} is covered iff "It : t E {tlo"" tp} /\ t = h(tl,l,"" tl,ml);"';

in(tn,l, ... , tn,mn) =? ((Vi: 1 :::; i :::; n 1\ Vj : 1 :::; j :::; mi) =? ti,j E {tl,"" tp}). A set of

regular types is complete if all terms of interest can be assigned a type.

For example, Figure 5.3 defines the regular types tl and t2' Using these rules the term

s(O) is of type t2 and s(s(O)) is of type tl. The notation t : z is used to denote that the

term t is of type z.

tl = 0; S(t2)
t2 = S(tl)

FIGURE 5.3: A set of regular types defining the rules for tl and tn

The analysis builds upon the use of regular type rules. The interpretation of such rules

is well understood in the framework of regular tree grammars or finite tree automata

(Comon et al., 1997).

Instantiation modes including static (ground term), nonvar (non-variable) and dynamic

(any term) can be coded as regular types for a given fixed signature. For exam

ple, Figure 5.4 gives the definitions of static, nonvar and dynamic for the signature

{D, [,1,]' s/l, 0/0, v}. The constant v, representing a free variable, is a distinguished con

stant not occurring in programs or goals. Note that v is not included in the types static

and nonvar. Therefore any term of type dynamic is possibly a variable. The classical

partial evaluation definition of static can also includes variables (if some instantiation

criteria are satisfied), here we use a definition that restricts static to ground terms.

Chapter 5 An Automatic Binding-Time Analysis for Prolog

static = 0; 0; [static I static]; s(static)
nonvar = 0; 0; [dynamicldynamic]; s(dynamic)
dynamic = 0; 0; [dynamicldynamic]; s(dynamic); v

FIGURE 5.4: Definitions for static, nonvar and dynamic for the signature
{[], [,1,]' s/l, 0/0, v}

59

In addition to modes, regular types can describe common data structures. The set of

all lists, for instance, is given as list = []; [dynamicllist]. The set of lists of lists can be

described by the type listlist = 0; [listllistlist]. As already seen, program-specific types

such as the type of environments are also regular types.

binding = static/dynamic

lisLenv = 0; [bindingllisLenv]

The definitions in Figure 5.4 define overlapping types. The term s(O) matches all three

type rules and therefore occurs in all three types. This can lead to a loss or precision

during propagation. Suppose types tl and t2 are not disjoint; then the terms that are in

the intersection can be represented by both tl and t2 and hence the two types will not

be distinguishable wherever terms from the intersection can arise.

Type Determinization

Definition 5.3 (set of disjoint regular types). The set of regular types, tl,"" tp , is

disjoint if it is covered and V terms t, t : Zl /\ t : Z2 =? Zl = Z2. That is the type

definitions do not overlap and each term can be assigned to only one type.

A given set of regular types is transformed into a set of disjoint regular types. This

process is called determinization and is a standard operation on finite tree automata

(Comon et al., 1997). Such a set of rules corresponds to a bottom-up deterministic

finite tree automata (Comon et al., 1997). The inclusion of the type dynamic ensures

that the set of rules is complete, that is, that every term is a member of exactly one of

the disjoint types.

The advantage of determinized types is that they can be propagated more precisely than

non-disjoint types. In the case of the overlapping types tl and t2 the set of disjoint types

would contain separate types representing tl n t2, tl \ t2 and t2 \ tl. In the worst case, it

can thus be seen that there is an exponential number of disjoint types for a given set of

types. In practice, many of the intersections and set complements are empty and we find

usually that the number of disjoint types is similar to the number of given types. Thus

with disjoint types, we can obtain a more accurate representation of the set of terms

that can appear in a given argument position, while retaining the intuitive, user-oriented

Chapter 5 An Automatic Bin ding- Time Analysis for Prolog 60

notation of arbitrary types. In fact, the type declarations of LOGEN and LIX can be used

without modification to construct an abstract domain.

For example, given the types dynamic, static, nonvar and list as shown above, deter

minization yields definitions of the disjoint sets of terms: (1) non-ground, non-variable

non-lists, (2) non-ground lists, (3) ground lists, (4) variables and (5) ground non-lists.

These are represented in Figure 5.5 the numbers indicate the areas intersecting the vari

ous types. The rules defining these disjoint types are typically hard to read and would be

difficult to write directly. For example, naming the above 5 types ql, ... ,q5 respectively,

the type rule for non-ground lists is q2 = [qllq2j; [q2Iq2]; [q3Iq2]; [q4Iq2j; [q5Iq2j; [q2Iq3j; [qIlq3j;

[q4Iq3j. A more compact representation is actually used (Gallagher and Henriksen, 2004).

Dynamic

Nonvar (1) Var

(4)

FIGURE 5.5: Set of disjoint terms from the initial set dynamic, static, nonvar and
list: (1) non-ground, non-variable non-lists, (2) non-ground lists, (3) ground lists, (4)

variables and (5) ground non-lists.

Propagating the Binding Types

Types can be viewed as an abstraction of terms, i.e. each type represents a set of

terms. They can be used to construct a domain for abstract interpretation (Bruynooghe

and Janssens, 1988; Codish and Demoen, 1994; Codish and Lagoon, 2000; Horiuchi

and Kanamori, 1987). The rules for a complete set of disjoint types define a pre

interpretation, whose domain is the set of disjoint types. A pre-interpretation with

domain D maps all constants to D and all functions fin to D x ... x D -7 D.
"'-..-"

n

An abstract interpretation based on this pre-interpretation gives the least model over

the domain. (Boulanger and Bruynooghe, 1994; Boulanger et al., 1994; Gallagher et al.,

1995). Using bottom up evaluation yields the success patterns for each program pred

icate, over the disjoint types. The termination of the evaluation is guaranteed as the

domain is finite. The success patterns define the set of all possible ways the pred

icate can succeed; that is, each predicate pin has a set of possible success pattern

{p(tL ... , t~J, ... ,p(t1, ... , t~)} where tj are all disjoint regular types.

The success patterns describe all possible instantiation modes that can occur after suc

cess of each predicate in the program. The analysis is interested in the calling patterns

Chapter 5 An Automatic Binding-Time Analysis for Prolog 61

that can occur during specialisation, that is the instantiation modes for each predicate

given an initial typed goal. The magic-set approach is used to obtain the calls, as de

scribed in Codish and Demoen (1993). This yields the set of call patterns for each

predicate pin, {p(Sf,"" s~), ... ,p(s~, ... , s~)} where sj are all disjoint regular types.

Each user predicate in the program is assigned a single filter declaration. This gives

the binding type of all calls at specialisation time. A single predicate may be called

with many different binding types, the different binding types are combined to form

a single binding type. For example, the predicate p/1 called with the pattern P(tl)

and p(t2) can be described by a single call pattern P(tl U t2)' The set of call patterns

{p(sf, ... ,s~), ... ,p(s~, ... , s~)} yields the single filter declaration p(si U ... Us~, ... , s~ U

... U s~). The notation [tll t2] is used to represent the union tl U t2' For example, the

set of call patterns {P(ql' q2),P(q2, q2)} would derive the filter p([q1, q2], [q2]) for the

predicate p/2. For displaying to the user, if required, these filters can be translated back

to a description in terms of the original types, rather than the disjoint types.

Analysing Annotated Programs

The standard methods for computing an abstract model and abstract call patterns have

to be modified in our algorithm, since some body calls may be marked as memo or

reseall. That is, they are not to be unfolded but rather kept in the specialised program.

This obviously affects propagation of binding types, since a call annotated as memo or

reseall cannot contribute any answer bindings.

When building the abstract model of a program, all calls marked memo and reseall

are deleted from the program, as they cannot contribute anything to the model. If C

is a conjunction of calls, C denotes the conjunction obtained deleting memo-ed and

reseall-ed atoms from C. Let P be an annotated program; the success patterns are

computed for the program P = {H f- B I H f- BE P}.

When deriving a call pattern, for an atom Bj in clause H f- E l , . .. , Bj , ... , the answers

to memo-ed and reseall-ed calls occurring in B l , .. . , Bj - l are ignored. That is, only

the clause H f- B l , ... , Bj-ll Bj, ... is considered when computing the calls to Bj.

5.4 Safety of Built-in Calls

The decision on how to annotate calls to built-in predicates cannot be handled by the

termination checker, but is guided by a definition of the allowed calling patterns, with

respect to the given set of binding types. The allowed calling patterns must ensure a

safe execution of the call at specialisation time, that is it must have the same behaviour

as it would at runtime. For instance, considering the simple binding types static and

Chapter 5 An Automatic Binding-Time Analysis for Prolog 62

dynamic the call X > Y can only be guaranteed safe at specialisation time when both X

and Yare static. The call X is Y can be executed whenever Y is static but X is dynamic

(either known or unknown). Some built-ins have more than one allowed calling pattern;

for example functor(T ,F ,N) can be executed if either T is static or both F and N are

static.

Whenever the binding types for a call to a built-in predicate do not match one of the

allowed calling patterns, the call is marked rescall. Thus if no calling patterns are

supplied for some built-in, then all calls to that built-in will be annotated rescall. As

well as safe calling patterns for built-ins we also provide success patterns for propagating

the results.

Listing 5.1 defines the abstract call and success patterns for is/2 and functor/3 using

the binding types static, nonvar and dynamic.

1* The caLL can onLy be made if it matches an aLLowed caLL pattern *1
abstractCall(dynamic is static).

abstractCall (functor (nonvar , dynamic, dynamic)).

abstractCall (functor (dynamic, static, static)).

1* If caLLed it wiLL propagate the foLLowing patterns on s~ccess *1
abstractSuccess(static is static).

abstractSuccess (functor (nonvar , static, static)).

LISTING 5.1: Abstract call and success patterns are provided for built-ins

5.5 Termination Checking

Without proper annotations in the source program, the specialiser may fail to terminate.

There are two reasons for non-termination:

• Local Termination: Unfolding an unsafe call may fail to terminate or provide

infinitely many answers .

• Global Termination: Even if local termination is ensured, the specialisation may

still fail to terminate if it attempts to build infinitely many specialised versions of

some predicate for infinitely many different static values.

Global termination is not addressed in this algorithm (Section 5.8 discusses some of the

issues related to global termination). The local termination problem is approached using

the binary clause semantics (Codish and Taboch, 1999), a representation of a program's

computations that makes it possible to reason about loops and hence termination.

Chapter 5 An Automatic Binding-Time Analysis for Prolog 63

Binary Clause Semantics

Informally, the binary clause semantics of a program is the set of all pairs of atoms (called

binary clauses) p(X)8 +- q(f) such that p is a predicate, p(X) is a most general atom for

p, and there is a finite derivation (with leftmost selection rule) +- p(X), ... , +- (q(t), Q)

with computed answer substitution 8. In other words a call to p(X) is followed some

time later by a call to q(f), computing a substitution 8.

The semantics are modified to include program point information for each call in the

program. A clause p(ppM, X)8 +- q(ppN, f) details that the call p(X) at program point

ppM is followed sometime later by a call to q(f) at program point ppN, computing a

substitution 8. This extra precision is required to correctly identify the actual unsafe

call.

To create the binary clause semantics a modified vanilla interpreter is specialised with

respect to the source program. The interpreter for the binary clause semantics is given

in Chapter 9. Using an interpreter allows us to easily adapt the semantics for the

annotations by adding rules to the interpreter.

For example, take the classic append program shown in Listing 5.2 containing a sin

gle recursive call in the second clause. In this program· there is only one possible

loop, the recursive call to append/3 at program point O. This would be represented

in the binary clause semantics as append(A, B, C)80 +- append(D, E, F) where 80 =

{A/[GIFJ,B/E,C/[GIF]}, a call to append(A,B,C) is followed sometime later by the

same call with the substitution 80 . In fact there are an infinite number of binary clauses

append(A, B, C)8o +- append(D, E, F), append(A, B, C)81 +- append(D, E, F), ... , where

80 = {A/[GIF], B/E, C/[GIF]}, 81 = {A/[G, HIFJ, B/E, C/[G, HIF]}, ... , representing

the infinite number of loops possible through the same program point.

The transformation of append/3 to binary clause semantics is shown in Listing 5.3. The

first clause represents a loop from the call app ([A I BJ, C, [A I DJ) at program point 0

back to itself with the arguments app (B, C, D), the second clause represents the infinite

number of possible loops through the same point. The binary clause semantics can be

obtained by calling bin_sol ve_atom __ 2 (ProgramPoint, Head, Body), producing com

puted answers representing the binary clauses (Listing 5.4). The printed clauses show

the first three binary clauses for append/3.

app ([], B, B).

app([AIAs], B, [AICs]) :- 1* program point 0 *1 app(As, B, Cs).

LISTING 5.2: The append program

bin_solve_atom __ 2(O, app([AIB], C, [AID]), app(B, C, D».

bin_solve_atom __ 2(O, app([AIB], C, [AID]), app(E, F, G» :-

bin_solve_atom __ 2(O, app(B, C, D), app(E, F, G».

LISTING 5.3: The binary clause version of append from Listing 5.2

Chapter 5 An Automatic Binding-Time Analysis for Prolog

I ?- bin_solve_atom __ 2(P, Head,Body), portray_clause((Head:-Body)).
app([AIB], C, [AID]) :-

app(B, C, D).

P = 0,

Body app(_A,_B,_C),

Head = app([_DI_A],_B,LDI_CJ) ?

app ([A, B I C], D, [A, B I E])

app(C, D, E).

P = 0,

Body app(_A,_B,_C),

Head = app([_D,_EI_A] ,_B, [_D,_EI_C]) ?

app([A,B,CID], E, [A,B,CIFJ)

app(D, E, F).

P = 0,

Body
Head =

yes

appCA,_B,_C) ,

app([_D,_E,_FI_A] ,_B, [_D,_E,_FI_C]) ?

LISTING 5.4: Output from Listing 5.3, produces an infinite number of answers repre

senting the infinite number of loops through the same point

Convex Hull Abstraction

64

The binary semantics is in general infinite, but a safe approximation of the set of binary

clauses is made using abstract interpretation. We use a domain of convex hulls (the

convex hull analyser used in our implementation is derived from ones kindly supplied

by Genaim and Codish (2001)Benoy et al. (2004)) to abstract the set of binary clauses

with respect the size of their arguments, as defined below.

Definition 5.4 (norm). A norm is a size function, mapping an arbitrary term to a

natural number. The norm of t is represented as It I and is usually subscripted with the

name of the norm.

A norm is used to measure the size of terms, this maps terms to natural numbers. Two

well known norms are based on the term size and list length. Term size measures the

number of functors in an atom (Equation 5.1) and list length counts the number of

elements in a list Equation 5.2.

Definition 5.5 (rigidity). A term t is rigid W.r.t a norm 1.ln iff for all instances of t,
Itln maps to the same value.

The notion of rigidity ensures that the term is instantiated enough to be accurately

measured. For example, the term [A,B,CJ is rigid w.r.t the list length norm, it will

evaluate to three for all instantiations of A,B and C. However, the term [A, B I ZJ is not

rigid w.r.t the list length norm as different instantiations of Z will result in different

calculated norms.

Chapter 5 An Automatic Binding-Time Analysis for Prolog

{

1 + t Itilterm
Itlterm = 0 i=l

I I · - { 1 + Its I list
t hst - o

otherwise

ift = [tits]

otherwise

65

(5.1)

(5.2)

Abstracting the binary clause program w.r.t a chosen norm produces a finite set of binary

clauses and a set of constraints representing linear relationships between the sizes of the

respective concrete arguments. Listing 5.5 is the binary clause program for append,

Listing 5.3, abstracted using the domain of convex hulls with respect to the list norm.

bin_solve_atomCO, appCA,B,C), appCD,E,F» :-

[A = 1 + D, B = E, C = 1 + F, D > = 0, E >= 0, F >= 0]

LISTING 5.5: Abstract convex hull of Listing 5.3 using the List norm

The constraints represent the relation that a single element of the first and third ar

guments is removed each iteration while the size of the second argument remains un

changed.

We are investigating properties of the program at specialisation time. The propagated

binding types describe the possible values during specialisation time, for an argument

to be rigid w.r.t to a norm at specialisation time its binding type must be rigid w.r.t the

norm (Definition 5.6). The term size norm is only rigid if the term itself is fully ground,

thus only binding types guaranteeing groundness are rigid w.r. t the term size norm. The

list length norm requires that at least a list skeleton is present, therefore only binding

types matching this description are rigid.

Definition 5.6 (rigidity for binding types). A binding type s is rigid w.r.t to a norm n

iff all terms of type s are rigid w.r.t to the norm n.

Checking termination criteria

Loops are represented by binary clauses with the same predicate occurring in the head

and body. Termination can be proven if for every abstract binary clause between p

and p (at the same program point) there is a strict reduction in the size for some rigid

argument (i.e. its binding type must be rigid w.r.t the abstracted norm).

For the loop, p(tl, ... , tn) +- p(t~, ... , t~), to be safe we must show that ::Ii where 1 :S i :S
n/\ Itil > It~1 and the binding type for ti is rigid w.r.t the chosen norm. The constraints

shown in Listing 5.5 show a decrease in the first (A = 1 + D) and third argument

(C = 1 + F). Given the initial filter declaration:

Chapter 5 An Automatic Binding-Time Analysis for Prolog 66

filter app(type list (dynamic) , dynamic, dynamic).

Only the first argument is rigid w.r.t the list norm, as type list (dynamic) guarantees

a valid list skeleton at specialisation time. Termination is proven for this loop using the

first argument and these binding types. However if the filter specified was

filter app(dynamic,type list (dynamic) , dynamic).

then the call would have to be marked unsafe and would be changed from unfold to

memo, as there is no strict decrease in any rigid arguments.

5.6 Example

We demonstrate the binding-time analysis using the transpose example shown in List

ing 5.6. The program takes a matrix, represented as a list of lists, and transposes the

rows and columns.

1* Created by PyLogen *1
1* fiLe: transpose.pL *1
transpose (Xs, []) : - nullroW's (Xs).

transpose(Xs,[YIYs]) makeroW'(Xs,Y,Zs), transpose(Zs,Ys).

makeroW' ([] , [] , []) .

m ak e roW' ([[X I X s] I Y s] , [X I X s 1] , [X s I Z s]) makeroW'(Ys,Xsl,Zs).

nullroW's ([]) .

nullroW's ([[] INs]) nullroW's (Ns).

LISTING 5.6: Program for transposing a matrix

The initial filter declaration, providing the binding types of the entry point is:

:- filter transpose((type list(dynamic)), dynamic).

The first argument is a list of dynamic elements, the length of the list will be known but

the individual elements will not be known at specialisation time. The second argument

is fully dynamic; it will not be given at specialisation time.

All calls in the program are initially annotated as unfold. Using this initial annotation

and the entry types for transpose the binding types are propagated throughout the

program. The resultant binding types are shown in Listing 5.7. The list structure has

been successfully propagated through the clauses of the program.

filter

filter

filter

transpose ((type list(dynamic)), dynamic).

makeroW'((type list(dynamic)), dynamic, dynamic).

nullroW's ((type list (dynamic))).

LISTING 5.7: Propagated filters for Listing 5.6 using the initial filter transpose ((type

list (dynamic», dynamic)

Chapter 5 An Automatic Binding-Time Analysis for Prolog 67

The next stage of the algorithm looks for possibly non-terminating loops in the annotated

program. The result is shown in Listing 5.S. The binary clause representation of the

program has been abstracted with respect to the list norm over the domain of convex

hulls. For termination of each of the loops in Listing 5.S to be proven it must be shown

that there is a strict decrease in any rigid argument. Based on the propagated binding

types only the first argument of each predicate is rigid with respect to the list norm.

The predicate makerow/3 has a strict decrease (A=1. O+D); nullrows/l also has a strict

decrease (A=l. O+B), but the recursive call to transpose/2 has no decrease in a rigid

argument and is therefore unsafe.

bin_solve_atom(3, makerow(A,B,C), makerow(D,E,F» :-

[A=1.0+D,D>=O.O,B=1.0+E,E>=O.O,C=1.0+F,F>=O.O].

bin_solve_atom(4, nullrows(A), nullrbws(B» :-

[A=1.0+B,B>=O.O] .

bin_solve_atom(2, transpose (A,B), transpose (C,D»

[B>D,C>=O.O,D>=O.O,A=C,B=1.0+D].

XX Loop at program point 2 is unsafe (transpose/2)

LISTING 5.8: Binary clause representation of Listing 5.6 abstracted over the domain
of convex hulls with respect to the List norm

Marking the offending unsafe call as memo removes the potential loop and further

iterations through the algorithm produce no additional unsafe calls. The final output of

the BTA algorithm is shown in Listing 5.9. The result is a correctly annotated program

for specialising transpose for a given list length.

logen (transpose, transpose (A, []» :-

logen(unfold, nullrows(A».

logen (transpose, transpose (A, [B I C]»

logen(unfold, makerow(A,B,D»,

logen(memo, transpose(D,C».

logen (maker ow , makerow ([] , [] , [] » .

logen (makerow, makerow ([[A I B] I C] ,[A I D] ,[B IE]»

logen(unfold, makerow(C,D,E».

logen(nullrows, nullrows([]».

logen (nullrows, nullrows ([[] I A]» :-

logen(unfold, nullrows(A».

filter

filter

filter

makerow«type list(dynamic», dynamic, dynamic).

nullrows«type list(dynamic»).

transpose « type list (dynamic», dynamic).

LISTING 5.9: Annotated version of transpose from Listing 5.6

5.7 Experimental Results

The automatic binding-time analysis detailed in this chapter is implemented as part

of the PYLOGEN system. The system has been tested using benchmarks derived from

the DPPD benchmark library (Leuschel, 1996-2004). The figures in Table 5.1 present

Chapter 5 An Automatic Binding-Time Analysis for Prolog 68

[lie fdlt HTA !;ill BTA foSt f'nlcessor 2J>1ions ~ lests .!II!lp

Dl~~~EJl1l~ ~~~~~ ~~~ ~ ~ ~

lii~-~~: ~,::!:;~=;~= .. ~=:'=, ::=", .=, ~=:=;' =' ~,'=': ============:;I..:!:;:j II :~ ~;;ii;;~;;e?r~:;;;;'c~',c ~: ;;;;;;'"~i' ~" ;;;;". ;;;;, =, ';;;;;;;;~=======~l
II makerow((type list(dynamic», dynamic, dynamic) I

I transpose(X5,L]) :- /1 1 ;- filter II

i nullr~ws(X~). I II nullrows«(type list(dynamic»).
!transpose(Xs,lYIYs;) : - ! :- filter
J maker'ow(Xs,Y,Zs), , ,' « »
I I

,' transpose type list(dynamic) , dynamic ,

I
transpose(Zs,Ys). , I,

; i ! i makerow ([} , [J , []) , I ,

l makerow([[XIXs] IYsJ,[XIXs11,[XsIZs]) - I' ':',,!

! makera",,' (Ys I Xsl. Zs) •
;

I null rows ([]) . rill'
I nUllrows~~ii~~:~iN~). ~ I

GO;I!: jii3hspose(IX.v.~ZJ. R)

SpedaIiSIIII RIel ' ~l'aIIk> I 6eIIBr8Ilng,~ I 'ClufpIlt' 1 CIInsOIe I T t I
'1 :- module('transpose.spec' ,[]).
,transpose([A,B,e], D) :-
! transpose __ O(A, B, e, D),
! transpose __ O([J. [J. [J. []),
transpose __ O([AIB], [elDl, [ElF], [[A,e,E]IG])

transpose __ O(B, 0, F, G),

StatUs: I Loaded

FIGURE 5.6: Screenshot of transpose example from Listing 5.9

the timing results! from running the BTA on an unmodified program given an initial

filter declaration. These benchmark examples along with the PYLOGEN system can be

downloaded from the website2 .

Benchmark BTA Original Specialised Relative Time
combined 3220ms 110ms 30ms 0.27
inter binding 13S0ms 60ms lOms 0.17
inter medium 1440ms 140ms 10ms 0.07
inter simple 2670ms SOms 30ms 0.38
match 400ms 90ms 70ms 0.78
regexp 7S0ms 220ms 60ms 0.2S
transpose 5lOms SOms lOms 0.13

TABLE 5.1: Benchmark figures for the Automatic Binding-Time Analysis

• combined - A test case combining the inter simple, inter medium and regular

expression interpreters.

• inter binding - An interpreter using a partially static data structure for an envi

ronment. In this example we combine the list and term norms.

1 The execution time for the Original and Specialised code is based on executing the benchmark
query 20,000 times on a 2.4Ghz Pentium with 512MB running SICStus Prolog 3.11.1. The specialisation
times for all examples was under 20ms.

2http://www.asap.soton.ac.uk/logen

Chapter 5 An Automatic Binding-Time Analysis for Prolog 69

• inter medium - An interpreter with the environment split into two separate lists,

one for the static names the other for the dynamic values.

• inter simple - A simple interpreter with no environment, but contains a selection

of built-in arithmetic functions.

• match - A string pattern matcher.

• regexp - An interpreter for regular expressions.

• transpose - A matrix transpose program.

5.8 Summary

To the best of our knowledge, the first binding-time analysis for logic programming was

Bruynooghe et al. (1998). The approach of Bruynooghe et al. (1998) obtains the required

annotations by analysing the behaviour of an online specialiser on the subject program.

Unfortunately, the approach was overly conservative. Indeed, Bruynooghe et al. (1998)

decides whether or not to unfold a call based on the original program without taking

the current annotations into account. This means that a call can either be completely

unfolded or not at all. Also, the approach was never fully implemented and integrated

into a partial evaluator.

In Section 6 of Leuschel et al. (2004b) a more precise BTA is presented, which has

been partially implemented. It is actually the precursor of the BTA here. However, the

approach was not fully implemented and did not consider the issue of filter propagation

(filters were supposed to be correct). Also, the identification of unsafe calls was less

precise as it did not use the binary clause semantics with program points (i.e., calls may

have been classified as unsafe even though they were not part of a loop).

Vanhoof and Bruynooghe (2001a) is probably the most closely related work to ours. This

work has a lot in common with ours, and we were unaware of this work while developing

our present work. Let us point out the differences. Similar to Leuschel et al. (2004b),

Vanhoof and Bruynooghe (2001a) was not fully implemented (as far as we know, based

on the outcome of the termination analysis, the user still had to manually update the

annotations by hand) and also did not consider the issue of filter propagation. Also,

Vanhoof and Bruynooghe (2001a) cannot handle the nonvar annotation (this means

that, e.g., it can only handle the vanilla interpreter if the call to the object program is

fully static). However, contrary to Leuschel et al. (2004b), and similar to our approach,

Vanhoof and Bruynooghe (2001a) do use the binary clause semantics. It even uses

program point information to identify non-terminating calls. However, we have gone

one step further in using program point information, as we will only look for loops from

one program point back to itself. Take for example the following program:

Chapter 5 An Automatic Bin ding-Time Analysis for Prolog 70

pea) q(a).

q(a) q(b).

q(b) q(b).

Both our approach and Vanhoof and Bruynooghe (2001a) will mark the call q (a) as

unfoldable and the call q (b) in clause 3 as unsafe. However, due to the additional use

of program points, we are able to mark the call q (b) in clause 2 as unfold able (as there

is no loop from that program point back to itself), whereas we believe that Vanhoof and

Bruynooghe (200la) will mark it as unsafe. We believe that this extra precision may

payoff when specialising interpreters. Finally, due to the use of our meta-programming

approach we can handle the full LOG EN annotations (such as call, rescall and res if) and

can adapt our approach to compute memoisation loops and tackle global termination.

The papers Vanhoof (2000); Vanhoof and Bruynooghe (1999); Vanhoof et al. (2004)

describe various BTAs for Mercury, even addressing issues such as modularity and

higher-order predicates. An essential part of these approaches is the classification of

unifications (using Mercury's type and mode information) into tests, assignments, con

structions and deconstructions. Hence, these works cannot be easily ported to a Prolog

setting, although some ideas can be found in Vanhoof et al. (2004).

A promising avenue for future work involves extending the system to derive the norms

automatically from the propagated binding types. Decorte et al. (1993); Vanhoof and

Bruynooghe (2001b) discuss the need for automatic inference of norms and in particular

deriving norms from type information.

Currently our implementation guarantees correctness and termination at the local level,

and correctness but not yet termination at the global level. However, the framework

can easily be extended to ensure global termination as well. Indeed, our binary clause

interpreter can also compute memoisation loops, and we can apply exactly the same

procedure as for local termination. Then, if a memoised call is detected to be unsafe we

have to mark the non-decreasing arguments as dynamic. Finally, as has been shown in

Decorte et al. (1998), one can actually relax the strict decrease requirement for global

termination (i.e., one can use::; rather than <), provided so-called "finitely partitioning"

norms are used.

Chapter 6

Self-tuning Specialisation

The chapter develops a self-tuning resource aware partial evaluation technique for Prolog

programs, which derives its own control strategies tuned for the underlying computer

architecture and Prolog compiler using a genetic algorithm approach. The algorithm is

based on mutating the annotations of offline partial evaluation. Using a set of represen

tative sample queries it decides upon the fitness of annotations, controlling the trade-off

between code explosion, speedup gained and specialisation time. The user can specify

the importance of each of these factors in determining the quality of the produced code,

tailoring the specialisation to the particular problem at hand. Experimental results for

the implemented technique on a series of benchmarks are presented. The results are

compared against the aggressive termination based binding-time analysis from Chap

ter 5 and optimised using different measures for the quality of code. It is shown that

the technique avoids some classical pitfalls of partial evaluation.

6.1 Introduction

Despite over 10 years of research on the specialisation of logic programs, there still exist

research challenges related to improving the actual specialisation capabilities (this is

also true for specialisation of other programming paradigms). For example, existing

specialisers do not use a sufficiently precise model of the compiler for the target system

to guide their decisions during specialisation. This means that specialisers can produce

specialised code that is actually slower than the original. Also, most specialisers focus

solely on improving the execution speed, sacrificing other resources such as code size

and memory consumption. This means that the code size and specialisation effort can

be out of proportion with the actual improvement in speed.

Developing control techniques that are predictable, with reasonable specialisation com

plexity and that can provide a good balance between resources, is a challenging but

worthwhile research objective.

71

Chapter 6 Self-tuning Specialisation 72

This chapter presents a self-tuning system, which derives its own specialisation control

using a genetic algorithm approach. Fitness scores are derived by actually running the

specialised code and hence the particular Prolog compiler and architecture are automat

ically taken into account.

More precisely, we use an omine approach based on the fully automatic binding-time

analysis (Chapter 5). The insight on which this self-tuning technique is based, is that

the annotations can form the genes for a genetic algorithm. 1 Indeed, annotations can

easily be mutated, or even merged. The key ingredients of success in our approach are:

It The fully automatic BTA provides a starting point for the algorithm. The BTA can

be used to check the safety of new annotation configurations. Alternatively, based

on the starting point provided by the BTA, a time-out value can be computed

which can be used to discard unsuccessful mutations (where specialisation takes

too long or does not terminate).

It Overall termination and convergence is guaranteed as mutations only "generalise"

(unfold into memo, static into dynamic).

It Through the use of a representative sample of queries, actual figures for the par

ticular compiler and architecture are obtained. This allows for resource aware

specialisation.

It The overall trade-off between execution time, code size (and other factors such

as specialisation time) can be influenced by tuning the fitness function, used to

discard bad mutations.

This chapter, shows, empirically and through examples, how it avoids pitfalls which other

specialisers such as ECCE (Leuschel et al., 1998) or MIXTUS (Sahlin, 1993) fall into. We

also show how we can achieve a good trade-off between various resource considerations. It

is also demonstrated on a series of benchmark programs the practicality and performance

of the approach.

6.1.1 Other Approaches and Related Work

Such an approach has already proven to be highly successful in the context of optimising

scientific linear algebra software (Whaley et al., 2001). In (Whaley et al., 2001) part of

the installation procedure includes a test and feedback cycle which optimises internal

parameters to give the best performance for the processor architecture, memory and

cache.

lIt is much less obvious to us how one could use a genetic algorithm to effectively optimise online
specialisation.

Chapter 6 Self-tuning Specialisation 73

A suitable low-level cost model would allow a partial evaluation system to make more

informed choices about the local control (e.g., is this unfolding step going to be detri

mental to performance) and global control (e.g., does this extra polyvariance really pay

off).

There has been some promising initial work on cost models for logic and functional

programs in Albert et al. (2001); Albert and Vidal (2002); Brassel et al. (2004); Vidal

(2004). However, such a low-level cost model will depend on both the particular Prolog

compiler and on the target architecture and it is hence unlikely that one can find an

elegant mathematical model that is easy to manipulate and precise. It is also not

entirely clear how such a cost model could be used in practice to guide specialisation.

It is possible that the approach we present in this chapter could make use of a low-level

cost model to determine the quality of specialised code, but a cost model may prove too

inaccurate to give reliable results.

6.2 Controlling Partial Deduction

This thesis has already discussed issues relating to the control of partial deduction. The

issue of control is important as it affects the correctness and termination of the speciali

sation process, as well as the quality of the specialised program. Considerable effort has

been devoted to this crucial issue (see, e.g., the references in Leuschel and Bruynooghe

(2002)), and the issue of correctness is well understood and several powerful techniques

(such as homeomorphic embedding) can be used to ensure termination. However, the

issue of the quality of the specialised program is still relatively open. While it is well

understood that unrestricted unfolding can be detrimental to the efficiency of the spe

cialised program, and that determinate unfolding can be used to avoid most pitfalls

related to this, the overall picture is unclear. Indeed, using just determinate unfolding

will prevent substantial efficiency gains in certain cases, and still may not prevent pro

gram slowdowns and code explosion (with a limited efficiency gain). Below we elaborate

on some of the pitfalls of partial deduction in more detail, showing where it can go wrong

and produce undesirable results.

6.2.1 Some Pitfalls of Partial Deduction

One pitfall related to the local control (unfolding) is known as work duplication. The

problem is illustrated in the following example.

Let P be the program defined in Listing 6.1.

Let A = {inboth(a,L, [X, YJ), member(a,L)}. Performing non-leftmost non-determinate

unfolding for the call inboth(a,L, [X, YJ) in Figure 6.1 (and doing a single unfolding

Chapter 6 Self-tuning Specialisation 74

member(X,[XITJ).
member(X,[YIT]) member(X,T).
inboth(X,Ll,L2) :- member(X,Ll),

member(X,L2).

LISTING 6.1: The inboth/3 example

step for member (a, L)), we obtain the partial deduction pI (Listing 6.2) of P with respect

to A.

member (a, [aIT]).

member(a,[YITJ) :- member(a,T).

inboth(a,L,[a,Y]) :- member(a,L).

inboth(a,L,[X,a]) :- member(a,L).

LISTING 6.2: Specialising Listing 6.1 for {inboth(a,L, [X, YJ), member (a,L) }

Let us examine the run-time goal G =+- inboth(a, [h,g,f, e, d, c, b, a] , [X, Y]) (which

is an instance of an atom in A). Using the Prolog left-to-right computation rule the

expensive sub-goal +- member (a, [h, g, f ,e, d, c, b, a]) is only evaluated once in the

original program P, while it is executed twice in the specialised program P'.

<- inboth(a, L, [X, Y])

!
<- member(a, L), member(a, [X, Y])

{x/;Y ~
<- member(a, L) <- member(a, L), member(a, [Y])

{Y~~
<- member(a, L) <- member(a, L), member(a, [])

I
fail

FIGURE 6.1: Non-leftmost non-determinate unfolding for Listing 6.2

The classical solution to this problem is to disallow non-leftmost unfolding unless it

is deterministic (sp (Gallagher, 1993, 1991; Gallagher and Bruynooghe, 1991), ECCE

(Leuschel et al., 1998)), or allow non-leftmost unfolding but not left-propagate bindings

(PADDY (Prestwich, 1992), MIXTUS (Sahlin, 1993)). Some partial evaluators, for instance,

SAGE (Gurr, 1994a,b) do not prevent such work duplication. This can result in huge

slowdowns (see Bowers and Gurr (1995)).

However, non-leftmost non-determinate unfolding can sometimes have the opposite effect

and lead to big speed-ups, which are thus prevented. Furthermore, 'even determinate

unfolding can still lead to duplication of work, namely in unification with multiple heads:

Let us return to the program in Listing 6.1 with the set A = {inboth (X, [Y] , [V, W]) }.

The query can be fully unfolded producing the partial deduction pI (Listing 6.3) of P

with respect to A.

Chapter 6 Self-tuning Specialisation

inboth (X, [X] , [X, W]) .
inboth (X, [X] , [V, X]) .

LISTING 6.3: Specialising Listing 6.1 for {inboth(X, [YJ, [V,WJ)}

index_test CfC),Y ,Z)
p(a,i).
p(b,2).
p(c,3).
p(d,4).
p(e,5).
pCf,6).
p(g,n.
p(h,8).
pCi,g).
p(j,10).

p(Y,Z).

LISTING 6.4: Example using clause indexing

75

No goal has been duplicated by the leftmost non-determinate unfolding, but the unifi

cation x=y for +-- inboth(X, [YJ , [V, WJ) has been duplicated in the residual code. This

unification can have a substantial cost when the corresponding actual terms are large.

Another trap of partial deduction is the possible loss of indexing. Indeed, Prolog systems

spend a lot of their time looking up clauses that match the current goal. When all calling

arguments are free, the system has no choice but to go through the clauses one by one.

However, if some of the arguments are (at least partially) instantiated then some clauses

that do not match can be skipped. This is achieved using argument indexing and takes

analogy from indexing in database systems. The standard Prolog indexing techniques

rely on first argument clause indexing; that is they by default index on the first argument.

Indexing can provide an important performance boost when searching over a large set

of clauses.

Listing 6.4 is a a simple program with a collection of facts represented by p/2. By

default indexing will be performed on the first argument of p/2, and as long as the first

argument in the call to p/2 is instantiated we will benefit from the speedups of indexing.

During specialisation unfolding may change the behaviour of the clause indexing. Through

unfolding, facts may be subsumed by calling predicates, whose argument orderings dif

fer. When specialising Listing 6.4 for index_test (A, B, C) it is safe to fully unfold the

call to p/2, as termination is guaranteed and it removes a level of redirection. Unfortu

nately in the newly created index_test __ O/3 predicate (Listing 6.5), the first argument

is no longer a useful basis for clause indexing and as a result, the specialised code is

substantially slower than the original program (taking twice as long to complete the

same benchmark).

In Ciao Prolog (and some others), the indexer allows programmers to select the argu

ment(s) to index on. This would be an alternative to not unfolding the call, but would

still require that the specialiser changes the indexing information. The classical solution

Chapter 6 Self-tuning Specialisation

index_test __ O(f(_), a, 1).
index_test __ O(f(_), b, 2) .
index_test __ O(f(_), c, 3) .

index_test __ O(f(_), d, 4) .

index_test __ O(f(_), e, 5) .

index_test __ O(f(_), f, 6) .

index_test __ O(f(_), g, 7).
index_test __ O(f(_), h, 8) .
index_test __ O(f(_), i, 9) .
index_test __ O(f(_), j , 10).

LISTING 6.5: Specialising Listing 6.4 for index_test(A,B,C). The useful clause in
dexing has been lost

76

is to avoid any reordering of arguments, but this is not enough to prevent this problem.

Using pure determinate unfolding (no non-determinate unfolding except at the root of

an SLD-tree) together with no argument reordering avoids most of the problems. How

ever, most determinate unfolding rules are not pure and allow one non-determinate step,

this is often important for precision (see benchmarks in Leuschel et al. (1998)). This is

less of an issue in conjunctive partial deduction, see J0rgensen et al. (1996).

Another related problem is the loss of indexing due to argument filtering. For example,

take the following program:

p(f(a,b».

p(f(b,c».

p(f(d,e».

p(fCe,a».

Specialising for p (f (X, Y)) produces the following specialised code:

p __ 1(a,b).

p __ 1(b,c).

p __ 1(d,e).

p __ 1(e,a).

Filtering has removed the f/2 structure and replaced it with two arguments representing

the substructure. Now, potentially the specialised program will run slower for a run

time query such as p (f (X, a)), provided the underlying Prolog system provides "deep"

indexing (e.g., Ciao Prolog does allow this with the indexer package). This is because

only the first argument is indexed, and the lookup is on the second argument in the

specialised program. However, most Prolog systems only index on the top-level functor

(e.g., SICStus) and hence there is actually no slow-down. In fact the program can run

faster as the functor f/2 no longer needs to be deconstructed.

The behaviour of the indexing in different Prologs is a case where depending on the

Prolog the specialiser could behave differently to produce better quality code. Prolog

systems also impose a maximum number of arguments. Some Prolog systems do not,

but after a certain limit (e.g., 32) all further arguments are simply put into a list. As

Chapter 6 Self-tuning Specialisation 77

argument filtering can increase the number of arguments, this must be taken into ac

count by the specialiser. Other differences may exist between Prologs and platforms, for

example features such as tabling may influence the performance of specialised programs.

In this section we have only scratched the surface of various ways in which existing

partial deduction techniques can go wrong (more pitfalls can be found in Venken and

Demoen (1988), most of which are still valid today) . Also, even when partial deduction

does achieve some speed improvement, this may ensue an unacceptable explosion in the

code size. It is clear that deriving a good specialised program is a non-trivial pursuit,

covered with many pitfalls and difficult to put into a simple mathematical model.

The motivation of this chapter is to provide a method for deriving specialisation control

based on the underlying architecture guided by trial and error, providing the user with

the ability to balance execution time against code explosion, or other program properties.

The algorithm uses empirical measurements to tackle issues that could prove difficult to

handle using a purely mathematical model. We concentrate on offline partial deduction

as it provides a clear separation between specialisation and control.

6.3 Annotated Programs

As emphasised throughout this thesis, offline partial evaluation uses annotated programs

to control the specialisation process. Chapter 5 introduced an automatic binding-time

analysis. The analysis used state-of-the-art termination analysis techniques, combined

with a type-based abstract interpretation for propagating the binding types combined.

Safety of built-ins is guaranteed using a database of allowed calling patterns (with respect

to the propagated binding types). The analysis was designed to be as aggressive as

possible and is guided only by termination, it contains no heuristics for quality of code.

The algorithm described in this chapter is designed to complement the binding-time

analysis, providing control over the quality of the produced specialised programs.

Figure 6.2 is the match program taken from the DPPD library of benchmarks (Leuschel,

1996-2004). The program is a naIve string matcher; the match/2 succeeds if the given

pattern occurs in the string. The program has been annotated using the automatic

binding-time analysis, the specialisation query will contain a static pattern but the

string to search will be dynamic. The analysis has concluded that the first and last

calls can be safely unfolded, i.e. they are guaranteed to terminate at specialisation time.

The recursive call in the second match1/4 clause has been marked memo and cannot be

safely unfolded.

Using the annotations in Figure 6.2 and the specialisation query match ([a, cJ, A), the

specialiser will produce Listing 6.6.

Chapter 6 Self-tuning Specialisation

match(Pat, T) : -
matchl(Pat, T, Pat, T).
, #

V

unfold

matchl([], _Ts, .1', _T).
matchl([A/Ys], [B/_Ts], P, [.-X/T]) : -

A\ == B, matchl(P, T,P, T).
'-v-'" ~

reseall memo
matchl([A/Ps]' [A/Ts], P, T) : -

matchl(Ps, Ts, P, T). , v,-----~

unfold

: -filter match(static, dynamic).
: -filter matchl(static, dynamic, static, dynamic).

FIGURE 6.2: Annotated match program

match([a,c], A) :- match __ O(A).
match __ O ([A I B]) :-

a\==A, matchl __ l(B, B).
match __ O([a,AIB]) :-

c\==A, matchl __ l ([AlB], [AlB]).
match __ O([a,cl_]).
matchl __ l ([AI_], [_IB]) :

a\==A, matchl __ l(B, B).
matchl __ l([a,AI_], LIB]) :

c\==A, matchl __ l (B, B).
matchl __ l ([a, c 1_], _).

LISTING 6.6: Specialising match/2 using the annotations in Figure 6.2

6.4 Mutations

78

This sections examines how annotations can be mutated and thus form the basis of a

genetic algorithm aimed at improving annotations.

A single set of annotations for a program is represented by an annotation configuration

(Definition 6.1).

Definition 6.1 (annotation configuration). (0:, (3) is an annotation configuration for

some program P where 0: E ~~,~c = {u,m,c,T}, (3 E ~j'~f = {s,d}

The length of 0: is the number of body literals in P and the length of (3 is the sum of

the arity of the predicates in P. A configuration represents a set of annotations for the

program P. With u, m, c, T, s, and d representing unfold, memo, call, rescall, static

and dynamic respectively.

For example, the annotations from the match program (Figure 6.2) are represented by

the annotation configuration ((u, T, m, u,), (s, d, s, d, s, d».

The binding-time analysis concentrates on termination and provides a set of aggressive

annotations, doing as much work as possible at specialisation time. However, this does

Chapter 6 Self-tuning Specialisation 79

not always produce the best specialised programs. As already discussed, there are some

circumstances where it is better not to perform an operation at specialisation time or

to discard some static information.

The algorithm presented searches for "better" annotation configurations which, while

less aggressive than the configuration provided by the binding-time analysis, may pro

duce better specialised code. The algorithm explores the possible mutations (Defini

tion 6.2) of the current annotation configuration. A mutation of a configuration is

defined as a new annotation configuration but with one of the annotations modified.

The mutations produce new, less aggressive annotations. For example, a call marked as

unfold can be turned into memo, or an argument that was previously static is treated

as dynamic. This changes the behaviour of the specialiser.

Definition 6.2 (mutation). Let C be an annotation configuration for P, fe and It are

mapping functions defined as fe = {u f--t m, c f--t r}, It = {8 f--t d}. If C is of the

form (aX etC', (3) and X E dom(fe) then the annotation configuration (afe(X)a', (3) is a

mutation of C. If C is of the form (a, (3X (3') and X E dom(It) then the annotation

configuration (a,(3f(X)(3') is a mutation of C.

Definition 6.3 (set of mutations). mutation8(C) is defined as the set of all possible

mutations of C.

Table 6.1 shows the initial set of mutations for the match program in Figure 6.2. The

initial configuration of match has five possible mutations, the mutated element has been

underlined in each mutation.

Original ((u, r, m, u), (8, d, s, d, s, d))
1 ((m, r, m, u), (8, d, 8, d, s, d))
2 ((u, r, m, m), (s, d, s, d, s, d))
3 ((u, r, m, u), (g, d, 8, d, s, d))
4 ((u, r, m, u), (s, d,g, d, s, d))
5 ((u, r, m, u), (8, d, s, d,g, d))

TABLE 6.1: Initial set of mutations for match

It is possible that a mutated annotation configuration may be unsafe. Generalising more

arguments, or memoising rather than unfolding calls, may have repercussions throughout

the rest of the program. The annotation configuration may be unsafe for a number of

reasons:

- The filter information may be incorrect. Marking an argument as dynamic or

memoing a call rather than unfolding may change the propagation of static data

throughout the program.

- A built-in that was previously safe to call, may now not be sufficiently instantiated

at specialisation time.

Chapter 6 Self-tuning Specialisation 80

The specialisation process may fail to terminate. Information that previously

guaranteed termination may have been generalised away.

Unsafe annotations will not produce valid specialised programs and are therefore of

little use. Given an unsafe annotation configuration the automatic binding-time analysis

algorithm can be used to find the next safe configuration. This may require that further

calls are marked as memo or that the filter information is propagated correctly.

The entire binding-time analysis algorithm is complex; however, it is sufficient to run

only the filter propagation and built-in safety checking. Non-termination of the special

isation process can then be monitored using timeouts. A sensible value for the timeout

can be estimated using the specialisation and runtime of the original annotated program

as a base.

Using the filter propagation and built-in checking on the annotations in Table 6.1 pro

duces the new safe annotations in Table 6.2.

Original ((u, r, m, u), (s, d, s, d, s, d))
1 ((m, r, m, u), (s, d, s, d, s, d))
2 ((u, r, m, m), (s, d, s, d, s, d))
3' ((u, r, m, u), (d, d,g, d,g, d))
4 ((u, r, m, u), (s, d, d, d, s, d))
5' ((u, r, m, u), (s, d,g, d, d, d))

TABLE 6.2: Mutation after filter propagation

Two of the mutations have been detected as unsafe and have been modified accordingly.

Figure 6.3 shows the tree of these mutations. Running the filter propagation has fur

ther mutated the annotation configuration producing new configurations with multiple

mutated elements.

It is also possible to run the full binding-time analysis algorithm to find the safe set of

mutations (Table 6.3). The termination analysis has detected that, in additional to the

filters, one of the annotations must be changed from unfold to memo.

Original ((u, r, m, u), (s, d, s, d, s, d))
1 ((m, r, m, u), (s, d, s, d, s, d))
2 ((u, r, m, m), (s, d, s, d, s, d))
3' ((u, r, m, m), (d, d,g, d,g, d))
4' ((u, r, m, m), (s, d, d, d, s, d))
5' ((u, r, m, m), (s, d,g, d, d, d))

TABLE 6.3: Mutation after full automatic binding-time analysis

Chapter 6 Self-tuning Specialisation 81

((u, r,m,u,), (s,d,s,d,s,d))

mutate'l V mutate

~ mutate mutate ~
((m,r,m,u,),(s,d,s,d,s,d)) / \ ((u,r,m,u,),(s,d,s,d,g,d))

mutate

«u ,C, m ,m,) ,(s,d ,s,d,s,d)) 1 ((u,r,m,u,),(s,d,g,d,s,d))
filter-prop

((u,r,m,u,),(g,d,s,d,s,d))

I
filter-prop 1
1

((u,r,m,u,),(s,d,g,d,d,d))

((u,r,m,u,),(d,d,g,d,g,d))

FIGURE 6.3: Safe annotation configurations after filter propagation

6.5 Deciding Fitness

To explore the search space effectively, it is essential to be able to assess the quality of a

particular annotation configuration. Empirical testing is used to determine the quality

of the specialised code. However, each annotation configuration can be used to specialise

the same program for different sets of static data. It is impractical to test for all possible

sets of of static data, so instead a representative set of sample queries is used. These

queries are provided by the user. It is important that the sample queries accurately

reflect the type of queries of interest as the program will be optimised with these queries

in mind.

The quality of the annotation configuration is calculated using characteristics from the

specialisation process:

execution time - The actual execution time of the sample queries. The sample queries

are benchmarked over a number of executions to obtain a final execution time. This

allows the algorithm to optimise for the fastest program.

compiled code size The size of the produced specialised code. The size is taken

after compilation into byte code. Specialisation can result in large code explosion,

sometimes for a very small gain.

specialisation time The time taken to specialise the program for the sample queries.

In situations where the program is to be re-specialised frequently it may be desir

able to take into account the actual specialisation time during optimisation.

Chapter 6 Self-tuning Specialisation 82

It would be possible to measure additional characteristics that may be of interest to the

user. For example, the memory usage during execution.

The different characteristics contain different units and cannot easily be combined. To

allow comparison between the different characteristics, they are first normalised. Nor

malising the values against a common base case produces a new value, where 1.0 signifies

it is the same as the base case, a value of 2.0 indicates it is twice as good as the base

case and a value of 0.5 indicates it is twice as bad as the base case.

A fully dynamic annotation configuration (Definition 6.4) with all calls marked as rescall

or memo is used as a base case. The fully dynamic annotation configuration produces

specialised code which has the same behaviour as the original program, as all static data

is discarded during specialisation and no calls are made at specialisation time. Each

characteristic is normalised by dividing the value with the same characteristic from the

dynamic annotation configuration.

Definition 6.4 (dynamic annotation configuration). The annotation configuration (a, (J)

is fully dynamic if a E L:~" L:c' = {m, r}, {J E L:j" L: f' = {d}.

Where the length of a is the number of body literals in P and the length of {J is the sum

of the arity of the predicates in P.

While it would be possible to optimise the program for a single characteristic, much

more interesting optimisations can be made by combining the different characteristics

into a single score. 2 A fitness function (Definition 6.5) is used to determine the score

given the characteristics.

Definition 6.5 (fitness function). The fitness function is used to determine the quality

of an annotation configuration based on its measured characteristics. The function takes

as input the normalised values for specialisation time (spectime), execution (speedup)

and code size reduction (reduction).

The choice of fitness function is important in determining the quality of code for the

particular requirements. The fitness function is used to balance the trade-off between

the different characteristics. A simple scoring function to find fastest specialised pro

gram would only take into account the execution time. However, sometimes the most

aggressive annotations can cause dramatic code explosion with little actual gain in ex

ecution time. Using a scoring function based on both the execution time and compiled

code size ensures a balance is maintained between the two characteristics.

For example, say the original program executes in 200ms and is 4,000 bytes. Annotation

configuration A executes in lOOms and is 30,000 bytes while annotation configuration

2It may also be possible to use a multi-objective genetic algorithm with multiple fitness functions.
Further research is needed to investigate this possibility.

Chapter 6 Self-tuning Specialisation 83

B executes in 120ms but is only 5,000 bytes. It may be desirable to choose B, which

while slightly slower is much smaller than A.

Currently the default fitness function is defined as score = speedupQ x reduction i3 x

spectimei where the 0:, f3 and 'Y values reflect the importance of the characteristics.

6.6 Algorithm

Using the concepts defined in the previous sections the complete algorithm is now pre

sented. The algorithm is given an initial starting annotation configuration and returns

the best annotation configurations found according to the set fitness function.

To explore the search space the algorithm uses a beam search. The beam search explores

the neighbours at each node (in this case the single mutations), and only descends into

the W best nodes for each level, where W is described as the width of the beam. The

search terminates when the W best nodes remain unchanged through an iteration.

FIGURE 6.4: Beam search for W = 2

Figure 6.4 demonstrates the beam search for W = 2. The values in the nodes represent

the scores, a higher score representing a better selection. At each level the search

proceeds by selecting the best two solutions.

Figure 6.5 outlines the algorithm. Starting with an initial annotated program, the

algorithm proceeds to find mutations of the initial configuration. Each mutation is

checked for safety by running the filter propagation and then the safe configurations

are benchmarked. At each iteration the best annotations are chosen and the algorithm

continues. When no further improvements are found, the algorithm terminates. The

depth of the search tree is bounded by the number of annotations, as at each generation

at least one annotation must be made less aggressive. The filter propagation allows

multiple annotations to be modified in a single step, effectively skipping levels in the

search tree.

Chapter 6 Self-tuning Specialisation 84

Initial

t----M Aggressively 1<IIIIIlI1--------------------,
Annotated

Less
Aggressively

Annotated
Program

Representative
Specialisation +
Runtime Queries

Correctly
Annotated
Program

Program

...
I
I

Run Logen and Run
Specialised Program

Annotation(s)
with best
tradeoff

Mutations: unfold -> memo, call -> rescall
static -> nonvar -> dynamic

Less
Aggressively

Annotated
Program

Optionally rerun BTA to ensure termination

Correctly
Annotated
Program

Measure:

Possibly less
agressive
annotations

specialised code size,
specialisation time,
runtime of specialised code

Repeat if improvement(s) found

FIGURE 6.5: Self-tuning overview

Algorithm 2 describes the self-tuning algorithm in psuedo code. It uses Definition 6.6

to measure the characteristics of an annotation configuration.

Definition 6.6 (tesLconf). Given a program P, an annotation configuration C, a spe

cialisation goal Gsp and a runtime query Crt, tesLconj(P, C, G sp , Grd returns the tuple

(8T, RT, 88). Where 8T is the time taken to specialise P for the goal Gsp , producing

the specialised program P'. RT is the execution time of pi for the goal Crt and 88 is

the compiled code size of pi

For example, running the algorithm on the index_test/3 example (Listing 6.4) produces

the annotations in Figure 6.6. The annotations have be tuned for time and speed. The

algorithm has discovered that the call should not be unfolded (as it is detrimental to

Chapter 6 Self-tuning Specialisation

Algorithm 2 Self-tuning algorithm
Input:Program P
Input:lnitial annotation configuration Cinit
Input:Specialisation goal Gsp
Input:Runtime goal Crt
Input:Beam width W

1: Cdyn = fully dynamic annotation configuration for P
2: (STdyn, RTdyn , SSdyn) = TestConf(P,Cdyn,Gsp,Grt)
3: Cache = {Cdyn f--7 fitnesLfunc(l, 1, I)}
4: CS = {Cinit}
5: repeat
6: CSsaje = CS
7: for all C E C S do
8: msaje = safe set of mutations(C)
9: CSsaje = CSsaje U msaje

10: end for
11: for all C E CSsaje do
12: if C ¢:. dom(Cache) then
13: (ST, RT, SS) = TestConf(P,C,csp,Crt)
14: ST' = ST / STdyn
15: RT' = RT / RTdyn
16: sst = SS/SSdyn
17: Score = fitness_func(ST', RT', sst)
18: Cache = Cache U {C f--7 Score}
19: end if
20: end for
21: Previous = C S
22: C S = Choose best W configurations based on scores from Cache
23: until CS = Previous

85

performace) and has marked it as memo. The tuned annotations produced specialised

code that is twice as fast as the aggressive annotations.

index_test(f(_), Y, Z) : - p(Y, Z).
'--v-"

memo

FIGURE 6.6: Final annotations for index_test/3, optimised for time and size

Figure 6.7 is the self-tuned output for the match/2 program (Figure 6.2), optimised for

both size and time. The algorithm has decided that while the first call can be safely

unfolded, better code can be produced by memoing the call instead. The produced code

is nearly two times smaller than the aggressive annotations and runs faster (full details

can be found in Table 6.4).

Chapter 6 Self-tuning Specialisation

match(Pat, T) : -
matchl(Pat, T, Pat, T).
, v,-----'

memo
matchl([], _Ts,..P, _T).
matchl([AI..ps], [BI_Ts], P, [..xIT]) : -

A \ == B, matchl(P, T, P, T).
'-v--""- ./

Tescall memo
matchl([Alps], [AITs], P, T) : -

matchl(Ps, Ts, P, T).
" ~ v

unfold

: -filter match(static, dynamic).
: -filter matchl(static, dynamic, static, dynamic).

FIGURE 6.7: Final annotations for match/2, optimised for time and size

6.7 Experiments

86

Table 6.4 presents the results of running3 the self-tuning algorithm on a series of bench

marks taken from the DPPD library Leuschel (1996-2004):

advisor - A simple expert system.

inboth - The inboth example form Section 6.2.1.

index_test The indexing example from Section 6.2.1.

match - A simple naIve pattern matcher.

missionaires - A program for the missionaries and cannibals problem.

regexp - A program testing whether a string matches a regular expression (using dif

ference lists).

relative - A simple expert system.

vanilla_bd - A vanilla meta-interpreter, with a "contrived" object program invented

by Bart Demoen.

Each test program has five enteries in the table: the original program, the program after

specialising it using the annotations derived by the BTA of Chapter 5, and the results

from the self-tuning algorithm with three different fitness functions:

time - The normalised time to execute the specialised program. score = speedup.

size - The normalised size of the byte compiled specialised program. score = reduction.

3Benchmarks were performed on a 2.5Ghz Pentium with 512MB running SICStus Prolog 3.11.1

Chapter 6 Self-tuning Specialisation 87

Benchmark Fitness Execution Compiled Specialisation Optimisation Attempted
Program Function Time Size (bytes) Time Time
advisor original 700ms 4098 - - -
advisor BTA 700ms 13929 20ms - -
advisor time 430ms 9256 20ms 21s 14
advisor size 700ms 4098 20ms lOs 16
advisor time & size 440ms 4784 20ms 23s 16
inboth original 850ms 1453 - - -

inboth BTA 450ms 4717 20ms - -

inboth time 370ms 3942 20ms 21s 20
inboth size 820ms 1289 20ms 17s 26
inboth time & size 470ms 1673 20ms 24s 23

index_test original 2570ms 1753 - - -
index_test BTA 5270ms 1675 20ms - -
index_test time 2570ms 1753 20ms 21s 4
index_test size 5270ms 1675 20ms 3s 4
index_test time & size 2570ms 1753 20ms 21s 4

match original 800ms 1037 - - -
match BTA 510ms 2204 20ms - -

match time 440ms 1487 20ms 7s 7
match size 800ms 1037 20ms 5s 8
match time & size 440ms 1487 20ms lOs 8

missionaries original 4710ms 6701 - - -
missionaries BTA 4710ms 55956 80ms - -
missionaries time 3490ms 11802 60ms 2332s 505
missionaries size 3880ms 6259 80ms 413s 688
missionaries time & size 3830ms 6263 60ms 3386s 715

regexp original 3540ms 1620 - - -
regexp BTA 810ms 1417 20ms - -

regexp time 810ms 1417 20ms 44s 19
regexp size 810ms 1417 20ms 16s 24
regexp time & size 810ms 1417 20ms 55s 24
relative original 1400ms 2544 - - -
relative BTA 320ms 2356 20ms - -
relative time 270ms 5411 20ms 47s 33
relative size 280ms 2364 20ms 37s 40
relative time & size 280ms 2364 20ms 28s 22

vanilla_bd original 430ms 9891 - - -
vanilla_bd BTA 760ms 8369 20ms -
vanilla_bd time 260ms 9092 20ms 142s 21
vanilla_bd size 760ms 8369 20ms 87s 14
vanilla_bd time & size 260ms 8938 20ms 142s 21

TABLE 6.4: Experimental results for the self-tuning algorithm

time & szze - An equally weighting of the normalised execution time and program

size. score = speedup x reduction.

The execution time, compiled code size and specialisation time in the table are the non

normalised characteristics from Section 6.5. The optimisation time is the total time

taken to find the annotation configuration, the starting configurations were provided

by the BTA. The number of attempted configurations is the actual number of different

annotations that were tested during the search. Note, the three enteries for the different

fitness functions were timed independently of each other, in practice the cache could be

reused for the different searches.

Chapter 6 Self-tuning Specialisation 88

The results show that the highly aggressive configurations provided by the termination

driven binding-time analysis do not neccessarily produce the best code, either in terms

of code size or execution time. In both the missionaries and advisor examples the BTA

configuration suffers from a code explosion for no actual gain. The missionaries exam

ple suffers an eight-fold increase in size, while the advisor example is three times larger;

with neither program running any faster. The aggressive unfolding in the index_test

example also suffers a performance penalty, the loss of the clause indexing causes the

BTA configuration to run two times slower than the original. Another interesting ex

ample is vanilla_demoen. The purpose of the example was to show that under some

circumstances meta-interpretation has the advantage of creating terms late and that

removing the meta-interpretation can actually slow down the program. The algorithm

here has avoided the pitfall and has actually found a specialisation that improves upon

the original but does not suffer from the problem of creating terms too early.

Solely using execution time as a measure for the quality of code is not always ideal either.

The advisor, inboth, missionaries and relative examples all suffer from an explosion in

code size when optimised only for execution time. Balancing execution time against code

size produces some interesting results. For example, the missionaries program's fastest

solution is 35% faster than the original with an 75% increase in code size; balancing

code size with execution time finds a solution which is 23% faster than the original and

is also actually 7% smaller. In the three other examples, the compromise solution finds

configurations which perform marginally slower than the fastest, but without the code

explosion.

6.8 Summary and Future Work

This chapter has presented a self-tuning, resource-aware offline specialisation technique.

The main insight was that the annotations of offline partial evaluation can be used as

the basis of a genetic algorithm. Indeed, the fitness of annotations can be evaluated by

trial and error using a set of representative sample queries on some target Prolog system

and hardware, taking properties such as execution time and code size into account. This

makes our approach both resource aware and able to fine-tune itself to new hardware or

Prolog systems. Furthermore, annotations can be mutated by toggling individual clause

or predicate annotations. To reduce the search space we make use of the fully automatic

binding-time analysis (Chapter 5) in order to adapt unsafe mutations (of which there

are many) into safe ones. The binding-time analysis also provides a valid starting point

for our algorithm.

The empirical evaluation or our technique has been very encouraging. We have shown

that our self-tuning algorithms avoids pitfalls of ordinary partial evaluation, while being

able to find better specialised code in terms of speedup, code size or both. For example,

Chapter 6 Self-tuning Specialisation 89

the results show that the binding-time analysis can lead to large code explosion for little

gain in efficiency, while our algorithm finds a much better trade-off.

In future it would be useful to examine whether one can use a cost model in place of the

representative sample queries to evaluate the runtime of the specialised programs. An

other important area of future research is the efficiency of the genetic algorithm. While

searching for the final configuration, the algorithm may try many different configura

tions. This is costly as each configuration must be tested for safety, specialised and then

benchmarked. To optimise the algorithm we must either speed up the total time taken

per configuration, or reduce the number of configurations that are tested.

The benchmarking itself must produce timings with enough granularity to distinguish

between the best cases, meaning that the time taken to benchmark each configuration

cannot easily be reduced. In the case where a benchmark is run multiple times to

produce reliable results, it may be possible to change the measurement taken, instead

using the number of iterations possible in a given time period.

At each iteration in the beam search, single stage mutations are added to the set of

configurations. There is currently no attempt at genetic crossover,4 combining configu

rations with good performance in the hope of finding a better one. Of course, naIvely

breeding configurations may not produce better answers, but there are situations where

combining two independent mutations will allow the algorithm to converge on the fi

nal solution faster. Further work is needed to determine when configurations can be

combined and an initial starting point could be mutations affecting different predicates,

or by using some form of dependency analysis. It may also be possible to divide large

programs into smaller sections for optimisation. While this can remove possible optimi

sations, it increases the scalability of the algorithm. Another possible way to improve

the scalability is to introduce randomness into our algorithm (i.e., not compute and

evaluate all possible mutations but only some random subset).

The binding-time analysis is an iterative algorithm. During the algorithm described in

this chapter, the BTA is run on many different configurations to ensure that they are

safe. Most of the configurations differ only slightly from ones previously analysed. The

BTA algorithm, along with the specialisation process itself, could be modified to reuse

previous intermediate results. If a subset of a program has been seen before (with the

same annotations) then it is possible some of the analysis can be reused. This should

provide good opportunities to speed up the safety analysis for each configuration.

The system lends itself well to parallelisation. The different configurations can be tested

on different machines. Care must be taken in the interpretation of the results, since the

algorithm tunes towards the performance of the installed Prolog system and underlying

architecture. While the results can be normalised between machines of differing speeds

4Strictiy speaking our current algorithm is actually closer to an evolutionary algorithm rather than
a genetic algorithm Eiben and Smith (2003).

Chapter 6 Self-tuning Specialisation 90

providing a fair indication of speed, it will not take into account any differences in the

actual architecture, which may affect performance. Initial results of parallelisation look

promising; running the missionaries example on two computers (with similar specifica

tions) produces a 96% improvement in execution time compared with the execution time

on a single machine. Further investigation is needed to fully explore this avenue. In work

of Sperber et al. (1997), the specialisation process itself was parallelised, distributing the

work over a network of work stations producing some good results.

Chapter 7

Extending Specialisation

Techniques

To take specialisation to a wider audience of real users it is important to support the

features of modern Prolog implementations. As well as performing traditional pure

declarative partial deduction LIX has been extended to support many non-declarative

features as well as major Prolog extensions. Coroutining and constraint logic program

ming are two of the recent major extensions to modern Prolog implementations. The

specialisation of constraint logic programs will be discussed separately in Chapter 8.

This chapter focuses on coroutining and introduces a new annotation based on the idea

of delayed execution.

7.1 Coroutines

Coroutines extend the traditional Prolog selection rule from 'leftmost goal' to the 'left

most unblocked goal'. A goal is blocked as long as the blocking condition remains unsat

isfied. The definition from the SICStus Prolog manual is given in Figure 7.1.

when(+Condition,:Goal)
Blocks Goal until the Condition is true,
where Condition is a goal with the restricted syntax:
nonvar(X)
ground (X)
?=(X,Y)
Condition, Condition
Condition; Condition

FIGURE 7.1: when/2 definition from the SICStus Prolog manual

91

Chapter 7 Extending Specialisation Techniques 92

Delaying the execution of a goal allows, for example, the user to program in a declarative

manner without worrying about the instantiation patterns of potentially unsafe or non

terminating calls. For example, is/2 can only be called with the second argument

ground, otherwise an instantiation exception will be thrown at runtime. As a result

the user often has to carefully decide the order of statements so that the arguments are

correctly instantiated.

7.1.1 Coroutining Example

We demonstrate a common use of coroutining using the is/2 built in. The groundJDax/3

predicate given in Listing 7.1 instantiates the third argument with the maximum of the

first two arguments.

ground_max (X, Y, Z) :-

Z is max (X, Y) .

LISTING 7.1: Predicate to find maximum of X and Y providing they are both ground

However, groundJDax/2 is only safe if both the first two arguments are ground when

the call is encountered. Otherwise an exception will be generated as demonstrated in

Listing 7.2.

?- ground_max (X,Y,Z), X = 2, Y = 3.

! Instantiation error in argument 2 of is/2

! goal:

LISTING 7.2: Listing 7.1 throws an instantiation error if called with unground variables

The second argument to is/2 must be ground before the call is made. Using the leftmost

selection rule produces an exception in the example, reordering the clauses would fix this

error (Listing 7.3).

?- X = 2, Y =3, ground_max(X,Y,Z).

X 2,

Y 3,

Z 3?

yes

LISTING 7.3: Reordering the goals from Listing 7.2 fixes the error

Instead of manually reordering the clauses, which is not always possible, a more declar

ative solution is to use coroutines. If we define a blocking condition for the call to is/2

(Listing 7.4) we do not have to worry about the order of the literals. When the call

becomes instantiated enough it will be executed and the results correctly propagated.

The definition of groundJDax/2 can be rewritten to use when/2 (Listing 7.5).

?- yhen(ground((X,Y», Z is max(X,Y», x = 2, Y = 3.

X 2,

Y 3,

Z 3?

Chapter 7 Extending Specialisation Techniques

yes

LISTING 7.4: Using coroutines delays the execution of the is/2 until is is correctly
instantiated

max(X,Y,Z) :-

when(ground«X,Y»), Z is max(X,Y».

LISTING 7.5: Predicate to find maximum of X and Y using coroutines to guarantee
groundness

7.1.2 Specialising Coroutines

93

The specialisation techniques introduced in this thesis must be extended to support

coroutines. Using the existing annotations one must either annotate the when/2 predi

cate as call or rescall.

For these annotation to be safe a when/2 marked as call must only contain built ins,

and must be called and triggered during the execution of the current branch.

A when/2 marked as res call must again contain only built ins, as calls to user predicates

would not be specialised, and the when/2 would simply become part of the residual code.

This condition can be relaxed to allow user defined predicates using the same technique

as findall/3 in Section 3.3.2. The LIX code can easily be extended, Listing 7.6, to

handle the residual when/2, reswhen, annotation.

body(reswhen(Condition,Goal), when(Condition,RGoal»

bodyCGoal,RGoal).

LISTING 7.6: Extending LIX for the reswhen annotation

Annotating the call to when/2 in Listing 7.5 as reswhen and specialising the program

for the call max(X,3,Z) produces the residual code in Listing 7.7. There is room for

further improvement by reducing the condition ground ((A, 3)) to ground (A).

max __ O(A, B) :-

when(ground«A,3», B is max(A,3».

LISTING 7.7: Specialising whenJllax/2 from Listing 7.5 for the goal max(X,3,Z)

However, Listing 7.6 will never remove the overhead of the when/2 even when it is safe to

do so. For instance, specialising the call max (2,3, Z) will produce an unneeded when/2

(Listing 7.8). By checking the blocking condition before producing the residual code,

Listing 7.9, we can produce better code. If the condition is satisfied only the goal is

produced, otherwise the entire when/2 is reproduced.

max __ O(B) :-

when(ground«2,3», B is max(2,3».

LISTING 7.8: Specialising whenJllax/2 from Listing 7.5 for the goal max (2,3, Z), pro

duces unneeded when/2

Chapter 7 Extending Specialisation Techniques

body(reswhen(Condition,Goal), ResidualCode)

body(Goal,RGoal),

(Condition ->

ResidualCode RGoal

ResidualCode when(Condition,RGoal)
) .

LISTING 7.9: Extending Listing 7.6 for simple case where condition is already satisfied

94

The static when annotation executes the when/2 during specialisation (Listing 7.10).

The user must guarantee that the when/2 condition will be satisfied (it will become

unblocked) during specialisation or the code will be lost. The limitations of the static

when annotation will be addressed in Section 7.1.3.

body(when(Cond,Call), Res) :

when(Cond, body(Call, BRes)).

LISTING 7.10: Extending LIX for the when annotation

7.1.3 semiwhen

The extension of Listing 7.9 allows for dynamic use of the when/2 predicate. However

executing the when/2 during specialisation time is more complicated, requiring the user

to carefully check the when/2 will be satisfied during the specialisation of the current

branch. A better solution is to use calLresidue/2 to check for blocked coroutines,

providing a more flexible method for specialising coroutines.

We extend the specialiser to support a semiwhen annotation. The when/2 will be

executed during specialisation and if the condition becomes satisfied then the call will

be executed under the control of the specialiser. If the condition is not satisfied while

specialising the current branch then the goal will be removed from the blocked state,

and the correct residual code will be generated to produce the when/2 predicate in the

final residual code.

The body /2 predicate from LIX is extended to execute the when/2 during specialisation.

Depending on whether or not the when/2 succeeds a different action is performed .

• If the when/2 succeeds then body /2 is called on the blocked call. The call is

performed during specialisation and Res=BRes links up any residual code .

• If the when/2 has not been triggered after all the branch has been computed then

calLresidue/2 will return any blocked goals. The predicate inspectJesidual/l

matches blocked goals and produces a new when/2 declaration for the residual code.

The Res=BRes acts as a place holder, and Res is instantiated with the final residual

code.

Chapter 7 Extending Specialisation Techniques

body (semiwhen (Cond ,Call), Res) :-

when(Cond, (Res=BRes,body(Call, BRes))).

memo(A, B)

(memo_table (A, B) ->

true

generalise_and_filter(A, C, D),

assert(memo_table(C,D)),

findall «D: -E)
(

call_residue(unfold(C,E), Blocked), 7.7.7. Catch residuaL

95

inspect_residual(Blocked), 7.7.7. search residuaL for when

) ,
F) ,

format (' 1*-k=-k*l-n', [D, C]) ,

pretty_print_clauses(F) ,
memo_table (A, B)

) .

inspect_residual([]).

inspect_residual([ResITail])

Res = _-(prolog:when(_,Cond,_Module:(Res=BRes,Call))) , 7.7. untriggered when

! ,

make_residual(Call, ResCall),

Res = when(Cond,ResCall)

inspect_residual(Tail).

7.7.7. produces residuaL code from caLL

7.7.7. rebuiLd the when statement

LISTING 7.11: Extending LIX for the semiwhen annotation

7.1.4 Specialisation Example

We demonstrate the semiwhen annotation using the definition of not_eq/2 in List

ing 7.12. Execution of the inequality is delayed until both arguments are ground, ensur

ing the call will be correctly instantiated.

not_eq(A,B) :

when(ground«A,B)), A \= B).

LISTING 7.12: semiwhen example: not_eq/2 will delay until both arguments are
ground

If the call to when/2 is annotated as semiwhen then the specialiser will attempt to

perform the operation if the goal becomes unblocked during specialisation. If however

the goal remains blocked the when/2 will be regenerated as part of the residual code.

The results of specialising Listing 7.13 for different queries are shown in Listing 7.14,

Listing 7.15 and Listing 7.16.

test(A,B,C) :

not_eq(A, a),

not_eq(B,b),

not_eq(C,c),

B = d. 7.caLL made at speciaLisation time

LISTING 7.13: Test query for not_eq/2 in Listing 7.12

Chapter 7 Extending Specialisation Techniques 96

In Listing 7.14 the program has been specialised for the goal test(A,B,C). One of the

calls to noLeq (B, b) has been removed as it became fully ground during specialisation,

triggering the when/2 and as the values are not equal it succeeded. The remaining

when/2 calls have been rebuilt in the residual code.

test __ O(A, d, B) :

when(ground«A,a)), A\=a),

when(ground«B,c)), B\=c).

LISTING 7.14: Specialising Listing 7.13 for the goal test (A ,B, C)

Listing 7.15 is specialised for the goal test (b, B, C). This time the first argument is

ground and an additional when/2 can be removed.

test __ O (d, A) :

when(ground«A,c)), A\=c).

LISTING 7.15: Specialising Listing 7.13 for the goal test(b,B,C)

Listing 7.16 is specialised for the goal test (a,B, C). The first argument is again ground,

the when/2 is triggered but this time the inequality test fails. This produces correctly

failing residual code.

test __ O <-, _) :
fail.

LISTING 7.16: Specialising Listing 7.13 for the goal test(a,B,C)

7.2 Online Annotation

The semiwhen annotation introduces some online control to the partial evaluator. If

the blocking condition is satisfied then the call will be specialised otherwise it will be

left in the residual code. This idea can be extended into a new annotation. This section

introduces the online annotation.

Offline partial evaluators make the majority of their decisions based not on the actual

static data values but on their binding types. The partial evaluator is then driven by

an annotated source file, providing predictable results and offering the annotator full

control over the specialisation process.

In contrast online partial evaluators make their decisions based on the actual values of

the static data. This makes them potentially more powerful but much less predictable

in practice. The online annotation attempts to combine some of the predictability and

control over specialisation offered by offline techniques but using the actual static data

values rather than an approximation.

The idea behind the online annotation is to annotate a safe call pattern for the calling of

a predicate rather than annotating each individual call to the predicate. Specifying the

Chapter 7 Extending Specialisation Techniques 97

instantiation pattern for making a call during specialisation is very similar to specifying

the guard condition for coroutining. Combining the power of coroutining with the

annotation also creates a very flexible selection strategy, we simply specialise the call for

which we have sufficient information to do something useful. This hopefully propagates

some results which may trigger a guard for another blocked call.

Take for example the classical append program (Listing 7.17). In our offline partial eval

uation setting the recursive call to app/3 is either marked unfold or memo depending

on how the program is called. Using a mono-variant analysis the call must be marked

memo if any call in the program does not provide sufficiently instantiated information,

in the case of app/3 the first or last argument must be a well formed list.

app ([] ,B, B) .

app([HIT], B,[HIT1]) :- app(T,B,T1).

LISTING 7.17: app/3 is the classical predicate to append two lists together

Using our online annotation we specify a safety condition for making the call to app/3

once and it is checked in an online fashion for all calls to app/3 in the program. As the

recursive call will be subject to the same safety criteria we can relax the need for a well

formed list. It is sufficient that either the first or last argument is nonvar, implying that

at least the top level functor is known. Listing 7.18 specifies the two safety requirements

for a call to app/3.

:-is_safe(app(A,_,_),nonvar(A)).

:-is_safe(app(_,_,A),nonvar(A)).

LISTING 7.18: Safety declarations for app/3 in Listing 7.17

The offline specialisation algorithm is now augmented with some decisions based on

actual static data values. Specialising app/3 for the call app (A, B, C), supplying no

static information correctly produces Listing 7.19. As no useful static data was supplied

the code is identical, after renaming, to the original program. This is the same as

marking the recursive call as memo but the decision has been made based on the actual

data.

app __ O([], A, A).

app __ O ([A I B], C, [A I D])

app __ O(B, C, D).

LISTING 7.19: Specialising Listing 7.17 for the goal app(A, B, C)

Specialising app/3 for the call app ([a, b, c], B, C), supplying the first argument to be

a valid list produces Listing 7.20. The recursive call has been fully unfolded and the

redundant argument has been removed. This is the same as marking the recursive call

as unfold.

app([a,b,c], A, B) :

app __ O(A, B).

app __ O(A, [a,b,cIA]).

LISTING 7.20: SpecialisingListing7.17forthegoalapp([a,b,c], B, C)

Chapter 7 Extending Specialisation Techniques 98

Specialising app/3 for the call app (A, B, [a, b, c I C]), supplying a partial list for the

third argument, produces Listing 7.21. The recursive call has been unfolded where

enough information was available but has been correctly memoed when there was not

sufficient information to safely unfold. This would not be possible without the online

annotation as the call would have to be marked as memo and the first argument would

be classed as dynamic. It would therefore not be possible to unfold the partial list.

app __ O([], [a,b,cIA], A).

app __ O([a], [b,cIA], A).

app __ O([a,b], [ciA], A).

app __ O([a,b,cIA], B, C) :-

app __ 1(A, B, C).

app __ 1C[]' A, A).

a pp __ 1 ([A I B], C, [A I D J) :

app __ 1(B, C, D).

LISTING 7.21: Specialising Listing 7.17 for the goal app(A, B, [a,b,cIC])

In addition to introducing online decisions into the specialiser the online annotation also

provides delayed unfolding. We use test_delay/3 defined in Listing 7.22 to demonstrate

this. The predicate contains calls to app/3 followed by a unification which will instantiate

one of the arguments. It is only when the argument is instantiated that the app/3 is

safe to unfold.

test_delay(A,D,E)

app(A,B,C),

app(C,D,E),

C = [a,b,c,d].

LISTING 7.22: Predicate to test delayed unfolding of Listing 7.17

Specialising Listing 7.22 for the goal test (A, B, C) produces Listing 7.23. When first

encountered, the calls to app/3 were not sufficiently instantiated to safely unfold. After

instantiating C, the guard condition for unfolding is triggered on both blocked calls. This

allows the code to be correctly unfolded producing the specialised program (Listing 7.23).

Doing this without the online annotation would require careful modification of the

selection strategy to ensure the correct propagation.

test_delay __ O([], A, [a,b,c,dIAJ).

test_delay __ O([a], A, [a,b,c,dIA]).

test_delay __ O([a,b], A, [a,b,c,dIAJ).

test_delay __ O([a,b,c], A, [a,b,c,dIA]).

test_delay __ O([a,b,c,d], A, [a,b,c,dIA]).

LISTING 7.23: Specialising Listing 7.22 for the goal test (A, B, C)

7.3 Summary

This chapter explored coroutining and specialisation. The partial evaluator has been

extended to handle the when/2 predicate. A call to when/2 can be annotated as when,

Chapter 7 Extending Specialisation Techniques 99

reswhen or semiwhen depending of if the call is static, dynamic or in the case of

semiwhen a decision will be made during specialisation.

Using delayed execution the online annotation was introduced. The online annotation

allows the user to annotate the program by specifying safe call patterns for unfolding a

call instead of annotating every call in the program. The specialiser uses this information

to check the actual static values at specialisation time, and makes an online decision.

The online annotation also extends the selection rule used during specialisation, instead

of choosing the left most goal for specialisation we specify guard conditions for each call.

The specialiser can then choose the call for which it has sufficient information.

Chapter 8 will explore constraint logic programming (clp) and extend the specialisation

techniques to handle clp programs.

Chapter 8

Specialisation of Constraint Logic

Programming Languages

The work in this chapter has been previously published as Craig and Leuschel (2003) for

the Andrei Ershov Fifth International Conference, Perspectives of System Infomatics.

Constraint logic programming extends traditional logic programming to include reason

ing about relationships or 'constraints' in a particular domain. CLP(Q) offers a powerful

constraint solver for the domain of rational numbers. The basic specialisation technique

for CLP(Q) programs is given and is shown to handle non-declarative features. This

chapter presents implementation details along with experimental results.

8.1 Introduction

Constraint logic programming (CLP) over the real domain, CLP(R), and the rational

domain, CLP(Q), offer a powerful mathematical solver for the domains of real and

rational numbers. The CLP(R) and CLP(Q) schemes used in this chapter and related

tool are instances of the general constraint logic programming scheme introduced by

Jaffar & Michaylov Jaffar et al. (1991).

CLP languages allow the programmer to express the problem in a very high level lan

guage, specifying relationships between objects, while the underlying engine uses pow

erful incremental constraint solvers.

Expressing a problem as a set of relations can be a more natural and declarative way

of solving the problem. For example, Newton's second law (Figure 8.1) expresses the

relationship between the force, mass and acceleration of an object.

Listing 8.1 is a Prolog encoding of Newton's 2nd law using constraints. The encoding is

very natural, the actual constraint exactly matches the initial definition in Figure 8.1.

100

Chapter 8 Specialisation of Constraint Logic Programming Languages

Force = Mass x Acceleration

FIGURE 8.1: Newton's 2nd law specifies a relationship between force, mass and accel
eration.

101

Two additional predicates have been added which build upon the encoding of Newton's

law. This example has quickly built up a more complex set of relations by adding more

constraints in a declarative manner.

:- use_module (library(clpq».
newton(Force, Mass, Acceleration)

{Force = Mass * Acceleration}.

moon(Weight, Mass) :-
{G = 9.8, MoonG = G/6},
newton(Weight, Mass, MoonG).

earth(Weight, Mass) :
{G = 9.8},
newton (Weight, Mass, G).

LISTING 8.1: eLP version of Newston's 2nd law. Two new relations, earth/2 and
moon/2, that use newton/3 have been created.

The code in Listing 8.1 can be used to compare the weight of an object on the Moon and

on the Earth (Listing 8.2). eLP can be used in a declarative manner, either the weight

or the mass can be provide to calculate an answer. In fact moon/2 can be called with no

instantiated arguments giving a new relationship between the variables (Listing 8.3).

I ?- moon(WM, Mass), earth(WE, Mass), {Mass = 30}.
WE = 294,
WM = 49,
Mass = 30 ?
yes

LISTING 8.2: Listing 8.1 can be used to compare the weight of an objection on the
Earth and the Moon

I ?- moon(W, M).
{M=301 49* W} ?

yes

LISTING 8.3: Specifying two uninstantiated variables produces a relation between the
variables without needing to ground them

Despite some recent interest, there has been surprisingly little work on the specialisation

of constraint logic programs. Indeed after some work in the early 90's (Smith, 1991;

Smith and Hickey, 1990) there has been a long period of relative inactivity, especially

compared to the success that constraint logic programming has encountered for practical

applications. Only very recently, new research is emerging (Fioravanti et al., 2000, 2001;

Peralta and Gallagher, 2002; Tao et al., 1997) which is trying to tackle this difficult but

practically relevant problem.

Chapter 8 Specialisation of Constraint Logic Programming Languages 102

This chapter presents an introduction to partial evaluation of constraint logic programs

(CLP) and presents a newly developed technique and its implementation. The technique

is implemented and demonstrated using several examples to evaluate the power and

efficiency of the system. This work presents the first offline specialiser for CLP, and it

is also the first compiler generator for CLP. The goal was to develop a system with fast

and predictable specialisation times and to ensure wide applicability it also caters for

non-declarative features.

Specialisation of CLP(R) or CLP(Q) programs using existing offline specialisation tech

niques causes problems as the program state is not limited to the goal stack but also

includes a constraint store. This means that the current specialiser cannot properly

handle CLP programs. Indeed, it could either perform all the constraint processing

at specialisation time, or all the constraint processing at runtime - it is not possible

to partially evaluate constraints. This is obviously a serious limitation and with the

increasing adoption of CLP languages by industry it is important that tools allow for

efficient specialisation of CLP programs.

The partial evaluator is extended to handle full CLP(R) or CLP(Q) programs. Sup

porting constraint specialisation across predicates by memoising constraints and retains

the full power of the specialiser on ordinary logic programming constructs. The next

section explains how this is achieved.

8.2 Specialisation of pure CLP(R) and CLP(Q) programs

Algorithm 1 from Chapter 2 is extended to specialise CLP programs. The modified

algorithm is split into two: the main loop (Algorithm 3) and the STEP function (Algo

rithm 4).

This section uses a projection operation, this "projects" a set of constraints onto a set of

variables. This removes irrelevant constraints, and returns a set of constraints relating to

the projected variables. For example, projecting the constraints {X = Y /\ Y >2} onto

the variable X would give the constraint {X>2}. The projection operation also performs

constraint simplification.

8.2.1 Memoisation

Algorithm 1 in Chapter 2 used a memoisation table to store pairs of generalised and

filtered atoms ((A G, A F)). The filtered atom, A F, is a unique identifier to the residual

predicate for the specialised query AG. The residual predicate AF can only be reused if

the current goal, after generalisation, is an instance of the stored generalised goal A G.

Chapter 8 Specialisation of Constraint Logic Programming Languages 103

For example, a memo table entry (p (2, X, Y), p-1(X, y)) can be reused by a memo

ed call to p(2,a,A) but not by the call p(A,B,C) (as p(A,B,C) is more general than

p (2, X, Y)). If there is no matching entry in the memoisation table then a new entry

must be added. The current goal is generalised and filtered and added to the table.

The main loop selects unmarked entries in the table and specialises them independently,

creating the required residual code.

In the CLP setting the memoisation table must be extended to take the current con

straint store into account. As a CLP variable may be uninstantiated but still bound to

constraints it cannot always be clearly marked as static or dynamic. A new binding

type, constraint, is introduced so that constraints can be propagated throughout the

program. The constraint binding typ'e is effectively the same as the semi binding type

described in Chapter 4. The binding type semi guarantees that the variable will not

be less instantiated at runtime, the variable is kept during generalisation and is only

filtered if the value is completely ground. A variable can still be marked dynamic to

limit the propagation of constraints.

Algorithm 3 Offline Partial Deduction with Constraints
Input:A Program P and an atom A
Global:M emoTable = °

1: generalise A to give AG
2: filter A G to give AF
3: add (AG,AF,0) to MemoTable
4: repeat
5: select an unmarked tuple (AG, AF, CS) in M emoTable and mark it
6: {CS represents a stored set of constraints with the memo entry}
7: STEP(AF, 0, ((unfold, AG)), CS)
8: until all tuples in M emoTable are marked

When a goal, Q, is memoised for the first time the current constraints, projected onto the

arguments of Q, must also be stored. When the goal stored in the memoisation table

is selected for specialisation the initial constraints stored in the table will be reused,

therefore a memoised call can only be reused if the current constraint store is at least

as restrictive as the stored constraints.

For example, a call p ex, Y, a) is memoised with the constraint store {X>2, T<7}. The

filter for p/2 declares the first argument as a constraint, the second dynamic and the

last argument static. The generalised call is p ex, Z, a), the filtered call is p_l (X, Z)

and the projected constraint store is {X>2}. The entry (p (X, Z, a), p_1(X, Z) , {X>2})

is stored in the memoisation table and p (X, Z, a) will be specialised with the initial

constraints {X>2}. This entry can only be used by matching goals, i.e. goals that are an

instance of p ex, Z, a) and have constraints that are at least as restrictive as {X>2} (e.g.

{X>3} but not {X>O}).

Chapter 8 Specialisation of Constraint Logic Programming Languages

Algorithm 4 STEP function with Constraints
1: function STEP(Q, B, C, CS)
2: {Q is current goal}
3: {B is current residual code}
4: {C is remaining annotated atoms}
5: {C S is the current constraint store}
6: if C is c then
7: CS' = projectvars(Q,B) (CS)
8: 3(AC', A F', A CS) s.t. Q unifies with A F' with substitution e
9: CS" = remove constraints from cS'e entailed by Acse

10: B' = CS" 1\ Be
11: pretty print the clause Q:-B'
12: else
13: let B = (AI, ... , Ai)
14: let C = ((Annl,AA1), ... , (Annj,AAj))
15: if Annl is memo then
16: generalise AAI to give AC

104

17: if 3(AC', A F', CS') E MemoTable s.t. AAI is a variant of AC' 1\ CS -+ CS'
then

18: {AC has been previously added with an entailed set of constraints. Com-
pute call to residual predicate}

19: e = mgu(AAl, AC')
20: AF = AF'e
21: else
22: {Compute residual predicate head and add call to pending list}
23: filter AC to give AF
24: remove non-linear constraints from CS and project onto variables of AF to

give constraints C S'
25: add (Ac,AF,CS') to MemoTable
26: end if
27: STEP(Q, (AI, ... , Ai, A F), ((Ann2' AA2) .. (Annj, AAj)), CS)
28: else if Annl is unfold then
29: for all H ead:-AnnBody in program P do
30: if AAI unifies with Head giving mgu e then
31: e = mgu(H ead, AA1)
32: let BA' = concat(AnnBody, (Ann2' AA2), .. . , (Annn, AAn))
33: STEP(Qe, Be, BA'e, CS)
34: end if
35: end for
36: else if Annl is constraint then
37: if CS 1\ AAI is consistent then
38: STEP(Q, B, ((Ann2' AA2) .. (Annj, AAj)), CS 1\ AA1)
39: end if
40: end if
41: end if
42: end function

Chapter 8 Specialisation of Constraint Logic Programming Languages 105

Non-linear constraints

The CLP(Q) system is restricted to solve only linear constraints because the decision

algorithms for general non-linear constraints are prohibitively expensive to run (J affar

et al., 1991). However non-linear constraints are collected by the CLP(Q) engine in the

hope that through the addition of further constraints they might become simple enough

to solve. In Listing 8.4 the constraint store has not failed but has become inconsistent,

there are no values of X that will satisfy the set of equations. During memoisation a

part of the constraint store is stored along with the residual call and subsequent calls

are checked against the stored constraint set. Non-linear constraints cannot be tested

for entailment and calculating a convex hull for non-linear constraints is expensive.

Therefore only linear constraints are stored inside the memoisation points, non-linear

constraints are simplified and added to the residual code.

I ?- {X * X = Y , x * x = z, Z + 2 = Y }.

{Z= -2+Y},

clpq:{-(Z)+X-2=O},

clpq:{X-2-Y=O} ?

yes

LISTING 8.4: Non-linear constraints can lead to an inconsistent constraint store

Collecting constraints

During unfolding constraints are propagated throughout the program. In memoisation

these constraints are collected in constraint collection points, simplified and added to

the residual program. Listing 8.5 is an extract from a CLP program, CSLabel represents

a set of constraints. The call p/2 in r /3 has been annotated as memo and the calls to

£00/1 in both the p/2 clauses have been annotated as unfold. The clauses for £00/1

are not shown in the example.

r(X,Y,Z) :- CSrl, memo(p(X,Y», CS r l.1.

p(A,B) :- CSpl, unfold(foo(A».

p(A,B) :- CS p2, unfoldCfoo(B».

LISTING 8.5: Extract from a CLP program, CSLabel is a set of constraints

For simplicity it is assumed that the initial constraint store projected onto X, Y ,Z is

empty when the call to rex, Y ,Z) is made. The constraints C Srl are added to the

constraint store and the memo-ed call to p ex, Y) is encountered. In Listing 8.6 the

linear constraints from C Srl projected onto the variables in p ex, Y) are stored in the

memo table along with the initial entry point for rex, Y ,Z) .

CSrnp = removeNonLinear(projectvars(p(X,y»(CSrl»
memo_table(p(X,Y) , p_l(X,Y), CS rnp).

memo_table(r(X,Y,Z), r_1(X,Y,Z), 0).

LISTING 8.6: Memoisation table entry for p in Listing 8.5

Chapter 8 Specialisation of Constraint Logic Programming Languages 106

The constraints CSrl.l are added to the constraint store and the residual clause for L1/3

is created. All constraints are collected and projected onto the variables occurring in the

clause and added to the residual code. Listing 8.7 is the final residual code for L1/3.

CSrspec = projectx,Y,z(CSr1 /\ CSr1. 1)

r_1(X,Y,Z) :- CSrspec, p_1(X,Y).

LISTING 8.7: Specialised fragment of Listing 8.5

The two clauses for p/2 are specialised using the initial constraints CSmp , the calls to

£00/1 are unfolded and they become part of the residual code. As the constraint set

CSmp specifies a precondition for all calls to the residual code, p_1 ex, Y), all residual

constraints entailed by CSmp can be safely removed from the final code. If a subsequent

call is made to p ex, Y) it may reuse the specialised code p_1 ex, Y) if and only if the

current linear constraints projected onto the variables X and Yare at least as restrictive

as CSmp ' The final code for p_1/2 is shown in Listing 8.8.

CSpspecl = removeEntailed(CSmp , CSpl /\ unJold(foo(A) , cSp1 /\ CSmp))

cSpspec2 = removeEntailed(CSmp , CSp2 /\ unJold(foo(B), CSp2 /\ CSmp))

p_SpeC[l](A,B) cSpspecl.

p_specf2](A,B) :- CSpspec2.

LISTING 8.8: Specialised fragment of Listing 8.5

8.2.2 Unfolding with Constraints

The classical unfold transformation replaces a predicate call with the predicate body,

performing all the needed substitutions. In CLP the state of the uninstantiated variables

is held in the constraint store. During unfolding constraints are collected and propagated

through the program. The constraints are then collected and simplified at the enclosing

memoisation point (the top-level entry point is treated as a memoised call).

Let us examine the trivial CLP(Q) program in Listing 8.9, which naively multiplies X

by an integer Y to give R. Figure 8.2 demonstrates how to unfold this program for the

call IDultiplyCX,2,R). After each recursive call to multiply, a new constraint is added

to the constraint store (C1..3)' After the unfolding is complete it is not only necessary

to extract the computed answer substitution but also the final residual constraints held

in C3 . These constraints are then projected onto the variables X and R of the top-level

query and simplified to produce the residual program in Listing 8.10.

multiplyC,Y,R)

multiply(X,Y,R)

{Y = 0, R = O}.

{y > 0 ,Y1 = Y -1, R = X + R1}, multiply(X,Y1,R1).

LISTING 8.9: Trivial CLP(Q) multiplication predicate

multiply(X,2.0,R):- {R = 2.0 * X}.

LISTING 8.10: Specialisation of CLP multiply Listing 8.9

Chapter 8 Specialisation of Constraint Logic Programming Languages 107

Careful attention must be paid to the simplification of the residual constraints. Dur

ing unfolding an entailment check ensures that redundant clauses are removed from

the specialised program. Marriott and Stuckey (1993) demonstrates the optimisations

available through constraint reordering and removal when the removal does not effect

control flow. If a constraint is likely to fail and hence cause backtracking then it should

be added to the constraint store as early as possible to ensure less time is wasted in

unneeded calculations.

-- multiply(X,2,R)

+
-- {YI = 2 -I, R= X + RI}, multiply(X,YI,RI)

+ ({R=X+RIDc
1

-- multiply(X,I,RI)

+
-- {Y2 = 1 - I, RI = X + R2} ,multiply(X,Y2,R2)

+
-- multiply(X,0,R2)

+
-- {Y2 = 0, R2 = O}

~ Rl =X+R2

R2 = O} C3

FIGURE 8.2: The multiply predicate is unfolded, producing the residual constraints C3

8.2.3 Convex Hull and Widening

If there is a subsequent call to a memoised predicate and it cannot reuse the existing

residual call then a new entry is added to the memoisation table and the call is re

specialised for the new constraints. It may also be possible to widen the constraint to

encompass both the existing and the new call, reducing residual code size.

For example, consider the memoisation entry in Listing 8.11, the constraints CSmpq

define the convex hull in Figure 8.3(a). A subsequent call to q(X,Y) can only reuse the

entry if its constraints lie inside the defined hull.

CSrnpql = {X > 0, Y > 0, x + Y < 3}
memo_ table eq ex, Y), q __ l ex, Y), CS mpq1)'

LISTING 8.11: Example memoisation entry

A call to q(X,Y) is made with constraints {X>O, Y>O, X<2, Y<2} (Figure 8.3(b)), the

existing memo entry cannot be reused and the call to q (X, y) must be respecialised. Two

strategies are available:

1. Respecialise the predicate for the new constraints {X>O, Y>O, X<2, Y<2} resulting

in the memoisation table Listing 8.12. Two residual predicates for q are created,

q __ l and q __ 2, possibly resulting in duplicated code in the specialised program.

Chapter 8 Specialisation of Constraint Logic Programming Languages

(a) Convex hull defined by the con
straints {X> 0, Y > 0, X + Y < 3}

X<2

(b) Convex hull defined by the con
straints {x> 0, Y> 0, X < 2, Y < 2}

FIGURE 8.3: Constraint sets specify a convex hull in space

108

2. Creating a new set of constraints that encompass both the existing and new con

straints. The new constraint set is a convex hull encompassing the constraints

Figure 8.3(a) U Figure 8.3(b) as shown in Figure 8.4. Once the predicate has been

specialised for these constraints the old residual call can be discarded and the new

one used by both calls. It may also be necessary to widen the set by removing

constraints to ensure termination.

CSmpqI = {X > 0, Y > 0, X + Y < 3}

CSmpq2 = {x> 0, Y > 0, X < 2, Y < 2}
memo_table(q(X,Y) ,q __ 1(X,Y), CSmpqI).

memo_table (q(X,Y) ,q __ 2(X,Y), CS mpq2).

LISTING 8.12: Memoisation table after respecialising for CSmpq2

Y·::;;.-1I2 X + 3
........... _---_

X<3

(a) Approximation of convex hull (b) Optimal convex hull

FIGURE 8.4: Convex hull for constraints Figure 8.3(a) U Figure 8.3(b)

Calculating the optimal convex hull (Figure 8.4(b)) is computationally expensive but it

can be approximated by shifting the existing constraints (possibly to infinity) until they

enclose both of the original constraint spaces (Figure 8.4(a)).

Chapter 8 Specialisation of Constraint Logic Programming Languages 109

8.2.4 Rounding Errors with CLP(R)

Currently the specialisation phase uses the Rational domain, CLP(Q), to generate spe

cialised code for the CLP(R) engine. During the specialisation phase the residual con

straint store becomes part of the specialised program. Listing 8.13 demonstrates that it

is not always possible to retrieve exact numbers from the CLP(R) engine and therefore

truncation errors can be introduced into the specialised program. A CLP(R) program

can be specialised using the CLP(Q) engine however it may take quite big rationals to

accommodate the required level of precision.

I ?- {21/20 * Y > X},{21/20*X > Y}.

{Y-l.05*X<-O.O},
{Y-O.9523809523809523*X>O.O} ?

yes

LISTING 8.13: Demonstration of CLP(R) rounding problems, the output from the CLP

engine is dependent on the ordering of the variables

8.3 Non-declarative Programs

To properly handle Prolog programs with non-declarative features one has to pay spe

cial attention to the left-propagation of bindings and of failure Prestwich (1992); Sahlin

(1993). Indeed, for calls e to predicates with side-effects (such as nl/O) "e ,fail" is

not equivalent to "fail, e". Other predicates are called "propagation sensitive" Sahlin

(1993). For calls e to such predicates, even though e, fail == fail may hold, the equiva

lence (e, X=t) == (X=t, e) does not. One such predicate is var/1, e.g. (var(X) ,X=a)

¢ (X=a, var (X)). Predicates can both be propagation sensitive and have side-effects

(such as print/1). The way this problem is overcome (Leuschel et al., 2004b) is via spe

cial annotations which selectively prevent the left-propagation of bindings and failure.

This allows the system to handle almost full Prolog l , while still being able to left

propagate bindings whenever this is guaranteed to be safe. In a CLP setting, the whole

issue gets more complicated in that one also has to worry about the left-propagation of

constraints. Take for instance the clause p (X) : - var eX) ,X=<2 and suppose we trans

form it into p_1 eX) : - X=<2, var eX). The problem is now that the query X>=2, p_1 eX)

to the specialised program fails while the original query X>=2, p eX) succeeds with a com

puted answer X=2. O. To overcome this problem we have extended the scheme to enable

us to selectively prevent the left-propagation of constraints. Using our new system we

are now in a position to handle full CLP programs with non-declarative features. Take

for example the following simple CLP(Q) program:

pCX,Y) :- {X>Y} , printCY), {X=2}.

Ipredicates which inspect and modify the clause database of the program being specialised, such as
assert/1 and retract/1 are not supported; although it is possible to treat a limited form of them.

Chapter 8 Specialisation of Constraint Logic Programming Languages 110

Using our system we can specialise this program for, e.g., the query p(3,Z) yielding the

following, correct specialised program:

p __ O(Y) :- {3>Y}, print(Y), fail.

8.4 Examples and Experiments

In this section the technique is illustrated on a non-trivial example. Listing 8.14 calcu

lates the balance of a loan over N periods. Balances is a list of length N. The interest

rate is controlled by the loan scheme and decided by the amount of the initial loan. The

map/3 predicate is used to apply the loan scheme over the list of balances.

y.y.y. P = Principa l , B = Balances, R = Repay, T = Term

loan(P, B, R) {P >= 7000} , T = [P I B] , map (schemel, T, R) .

loan(P, B, R) {P>=4000,P<7000}, T = [P I B] , map (scheme2 , T, R).

loan(P, B, R) {P>=1000,P<4000}, T = [P I B] , map (scheme3 , T, R).
loan(P, B, R) {P>=O, P <1000} , T [P I B], map (scheme4 , T, R).

y.y.y. A = Amount, NA = NewAmount, R Repayment, I = Interest

schemel(A, NA, R) {I 0.005} , calcLoan(A, NA, I, R) .

scheme2(A, NA, R) {I 0.01 } , calcLoan(A, NA, I, R) .

scheme3(A, NA, R) {I 0.015} , calcLoan(A, NA, I, R).

scheme4(A, NA, R) {I 0.02 } , calcLoan(A, NA, I, R).

map C, [_], _).
map (SCHEME, [Hl, H21 Tail], Repayment) : - Call = .. [SCHEME, Hl, H2, Repayment],

call(Call), map(SCHEME,[H2ITail], Repayment).

calcLoan (Amount, NewTotal, Interest, Repayment) :-

{NewTotal = Amount + (Amount * Interest) - Repayment}.

LISTING 8.14: Loan.pl, calculates the balance of a loan over N periods for a given loan

scheme and repayment.

8.4.1 Unfolding Example

In Listing 8.15 the 10an/3 predicate has been specialised to calculate the balances over

two periods for a principal loan over 4000. As the length of the list is known all of

the recursive calls can be executed at specialisation time. The map/3, scheme/3, and

calcLoan/4 calls have been unfolded and the resultant code has been inlined into the

specialised code. The two redundant loan schemes have been removed from the final

code as they dealt with loans of less than 4000. The specialised predicate (Listing 8.15)

runs 68% faster than the original predicate in Listing 8.14.

Chapter 8 Specialisation of Constraint Logic Programming Languages

loan __ 1 (Principal ,C,D,E) :-

{ Principal >= (7000), Principal

D = (((201/200) * C) - E) }.

loan __ 1(Principal,G,H,I) :-

{ Principal < (7000),

(((200/201)*C) + ((200/201)*E»,

Principal = (((100/101)*G) + ((100/101)*I), H = (((11/10)*G) - I) }.

loan(Principal, [B,C] ,D) :- {Principal> (4000)}, loan __ 1 (A,B,C,D).

LISTING 8.15: Specialised loan predicate for loan(X, [Pl,P2], R) where {X>4000}

8.4.2 Memoisation Example

III

In Listing 8.16 the map predicate from the loan program has been specialised to use either

schemel or scheme2. The length of the list has not been specified so the recursive call

must be memoised. The calls in the body of map/3 have been unfolded and the residual

code inlined in the specialised code. The removal of the overhead from the univ (= ..)

and call operators combined with the simplification of the loan calculation to include

the hard coded interest rate produces a 57% speed up over the original predicate.

map(scheme1,A,B) map __ 1(A,B).

map(scheme2,A,B) :- map __ 2(A,B).

map __ 1 ([B] ,C).

map __ 1([D,EIF],G) {E = ((201/200) * D) - G}, map __ 1([EIF],G).

map __ 2 ([B] ,C).

map __ 2([D,EIF],G) { E = ((101/100) * D) - G }, map __ 2([EIF],G).

LISTING 8.16: Specialised version of the loan example for calls map(scheme1,T,R)

and map(scheme2, T, R). In this example the recursive call to map __ 1 is memoed as

the length of the list is not known at specialisation time

8.5 Summary

8.5.1 Experimental Results

Table 8.1 summarises our experimental results. The timings were obtained by using

SICStus Prolog 3.11 on a 2.4 Ghz Pentium 4. The second column contains the time

spent by cogen to produce the generating extension. The third column contains the time

that the generating extension needed to specialise the original program for a particular

specialisation query. The fourth column contains the time the specialised program took

for a series of runtime queries and the fifth column contains the results from the original

programs. The final column contains the speedup of the specialised program as compared

to the original. Full details of the experiments (source code and queries) can be found

at the DPPD library (Leuschel, 1996-2004).

The multiply example is the naIve multiply from Section 8.2.2, the two loan examples

are taken from the previous section. CtLclp is a computational tree logic (CTL) model

Chapter 8 Specialisation of Constraint Logic Programming Languages 112

checker written in CLP, it is based upon a CTL model checker written for XSB-Prolog

from the DPPD library. It is specialised for an infinite state Petri net and a safety

property.

Program Cogen Time Genex Time Runtime Original Relative Runtime
multiply Slams 20 ms 10 ms 3780 IDS 0.003

loan_unfold Slams Slams 385 ms 647 ms 0.59
loan_map SlOms SlOms 411 ms 647 IDS 0.63

ctLclp SlOms 100 ms 17946 ms 24245 IDS 0.74

TABLE 8.1: Experimental results

8.5.2 Summary

There has been some early work on specialisation of CLP programs Smith (1991); Smith

and Hickey (1990) and optimisation Marriott and Stuckey (1993). There has been some

recent interest in online specialisation techniques for constraint logic programs Fioravanti

et al. (2000, 2001); Peralta (2000); Peralta and Gallagher (2002); Tao et al. (1997). To

the best of our knowledge there is no work on offline specialisation of CLP programs, and

to our knowledge none of the above techniques can handle non-declarative programs.

There is still scope to improve the code generator of the system, e.g., by using more

sophisticated reordering as advocated in Marriott and Stuckey (1993). Other possibilities

might be to convert CLP operations into standard Prolog arithmetic (e.g., using is/2)

when this is safe.

The specialisation of CLP programs is an important research area for partial evaluation.

This chapter presented a working version of an offline CLP specialiser and first results

look promising. Supporting CLP along with the other feature already developed in this

thesis allows the developed specialiser to handle a large class of full Prolog programs.

Chapter 9

Specialising Interpreters

This chapter presents the results of specialisation using the system on a series of ex

amples. The focus is on the specialisation of interpreters and in addition to presenting

experimental results it is shown that interesting transformations can also be achieved.

In particular, the Lloyd-Topor transformation (Lloyd and Topor, 1984) is performed by

partially evaluating a modified vanilla interpreter. The interpreter used to calculate the

binary clause semantics used for the binding-time analysis in Chapter 5 is also presented.

An interesting application for partial evaluation is the specialised of interpreters. The

object program to interpret is typically static and known at specialisation time, while

the runtime goal remains dynamic. Partial evaluation can remove the overhead of

interpretation, performing all the interpretation tasks at specialisation time and leaving

behind a much more efficient "compiled" program. The ultimate goal is to remove a full

layer of interpretation and achieve the Jones Optimality criterion (Jones et al., 1993).

The Jones Optimality criterion is discussed in Chapter 1.

9.1 Vanilla Self-interpreter

A classic benchmark for partial evaluation of logic programs is the vanilla self-interpreter

(Listing 9.1) . It is a self-interpreter as it is written in the same language it interprets.

While it may look like a simple program it still presents enough challenges for partial

evaluation and will require careful annotation. Once the partial evaluator can success

fully specialise the simple vanilla interpreter it is possible to extend the functionality

and present more powerful transformations.

:- use_mOdule (prolog_reader).

solve([]).

solve ([A I T]) : - solve_atom (A), solve (T).

solve_atom (A) :-

113

Chapter 9 Specialising Interpreters

prolog_reader:get_clause(A,B),

solve (B).

solve_file(File, Goal) :

prolog_reader:load_file(File),

solve_atom(Goal).

LISTING 9.1: Vanilla self-interpreter for Prolog

114

The predicate solve_atom/l looks up the clause definition in the clause database and

calls solve/l its body. Clauses are represented by a head and a list of body literals.

An auxiliary module (prologJeader) is used to load clauses from a file, it defines

load...file/l and geLclause/2. Listing 9.1 has the entry point solve...file/2 which

takes as arguments the name of the file containing the clauses and a entry goal.

The program in Listing 9.2 is used to demonstrate the interpreters in this chapter. It

contains predicates for reversing and appending lists If the partial evaluator is powerful

enough it should be able to achieve Jones optimality, specialising the vanilla interpreter

for Listing 9.2 and produce code which is as at least as efficient as the original program.

rev_app(A,B,C) :-

rev(A,D), append(D,B,C).

rev(A,B) :-

rev (A , [], B) .

append ([] ,B, B) .

append([AIAs],Bs, [AICs]):

append(As, Bs, Cs).

rev ([] ,A, A) .

rev([AIB], C, D) :

rev(B, [AIC] ,D).

LISTING 9.2: Example file containing clauses for append and reversing lists

Both the object program and the entry goal pattern will be known at specialisation

time. Listing 9.3 is the annotated version of the interpreter using the annotation format

introduced in Chapter 2. At specialisation time the object program is given along with

the entry pattern (not a fully instantiated goal). The goal given to solve_atom/l is

marked as nonvar, the top level functor will be kept but the arguments will be replaced

with fresh variables. To ensure termination at specialisation time for all specialisation

goals either the recursive call to solve/lor the call to solve_atom/l must be marked

as memo. In these annotations solve_atom/l is marked as memo, as this will provide

more natural specialised programs. The remaining calls are marked as unfold if they

are user defined or call otherwise. The filename is static and the actual file should be

available during specialisation (the clauses will be loaded at specialisation time).

: -module (vanilla_list, []).

:-use_module (prolog_reader).

logen(solve, solve([])).

logen(solve, solve([AIB])) :-

Chapter 9 Specialising Interpreters

logen(memo, solve_atom(A»,

logen(unfold, solve(B».

logen(solve_atom, solve_atom(A» :-

prolog_reader: logen (call, get_clause (A, B» ,

logen(unfold, solve(B».

logen(solve_file, solve_file(A,B» :-

prolog_reader:logen(call, load_file(A»,

logen(memo, solve_atom (B».

filter

solve_atom(nonvar).

filter

solve_file (static, nonvar).

LISTING 9.3: Annotated version of the vanilla interpreter

115

The vanilla interpreter is specialised for the entry goal rev _app (A ,B ,C) and the object

program from Listing 9.2. The residual program contains all of the code reachable from

rev _app (A, B, C). Notice that the interpreter has been specialised away and only the

translated object clauses appear in the residual code.

: - module (' vanilla_list_inc. spec' , []).

solve_file('append.pl', rev_app(A,B,e»

solve_file __ O(A, B, e).

solve_atom __ l(A, B, e) :-

solve_atom __ 2(A, D),

solve_atom __ 3(D, B, e).

solve_atom __ 2(A, B) :

solve_atom __ 4(A, [], B).

solve_atom __ 3([], A, A).

solve_atom __ 3([AIB], e, [AID]) :

solve_atom __ 3(B, e, D).

solve_atom __ 4([], A, A).

solve_atom __ 4([AIB], e, D) :

solve_atom __ 4(B, [Ale], D).

LISTING 9.4: Specialising the vanilla interpreter for rev _app/3. The output is Jones
Optimal, all interpretation overhead has been removed

Listing 9.5 is the memoisation table produced while specialising the vanilla interpreter.

The table/3 predicate contains the mappings between the original and the specialised

predicates. For example sol ve_atom __ l (A, B, C) represents rev _app (A, B, C) from the

original program.

table(solve_atom(rev_app(A,B,e», solve_atom __ l(A,B,e), []).

table(solve_atom(rev(A,B», solve_atom __ 2(A,B), []).

table(solve_atom(append(A,B,C», solve_atom __ 3(A,B,e), []).

table(solve_atom(rev(A,B,C», solve_atom __ 4(A,B,e), []).

LISTING 9.5: Memo table for Listing 9.4

Renaming Listing 9.4 using these mappings produces the residual program in Listing 9.6.

This program is identical to the original example file, Jones optimality for the vanilla

interpreter has been demonstrated using these annotations, as the specialised program

is identical to the original source program after trivial renaming.

Chapter 9 Specialising Interpreters

rev_app(A, B, e) :

rev(A, D),

appendeD, B, e).

rev (A, B) :-

rev(A, [], B).

append ([], A, A).

append([AIB], e, [AID])

append(B, e, D).

rev ([], A, A).

rev([AIB], e, D) :

rev(B, [Ale], D).

7.soLve_atom __ l

7.soLve_atom __ 2

7.so Lve_ atom __ 3

7.soLve_atom __ 2

7.soLve_atom __ 4
7.soLve_atom __ 3

7.soLve_atom __ 3

7.soLve_atom 3

7.soLve_atom __ 4
7.soLve_atom __ 4
7.soLve_atom __ 4

LISTING 9.6: Renaming Listing 9.4 using the mappings from Listing 9.5 reproduces
the original source program Listing 9.2. Jones optimality has been achieved.

116

To benchmark this program the prologJeader module has been removed and the

clauses from the example file are inlined. This removes the overhead of reloading the

example file for every iteration (as the specialised program does not suffer this overhead).

Benchmarks for the specialised version of the vanilla interpreter can been seen in Ta

ble 9.1. The specialised program is five times faster than the original interpreted version

as the overhead of interpretation has been removed.

Specialisation Original Specialised Relative
Benchmark Iterations Time Runtime Runtime Runtime
Vanilla 3000000 20ms 26280ms 4940ms 0.19

TABLE 9.1: Benchmark figures for the vanilla interpreter

Table 9.2 compares the compiled program size of the original and specialised program.

The specialised code is 30% smaller than the original interpreter and clauses. The

original size included the interpreter along with the program clauses and is therefore

should always be larger than the specialised code (given that Jones Optimality has been

shown).

Original Specialised Relative
Benchmark Program Size Program Size Program Size
Vanilla 2082 bytes 1462 bytes 0.70

TABLE 9.2: Program size comparison for vanilla interpreter

In this example Jones optimality was demonstrated for the vanilla interpreter. Online

partial evaluators such as ECCE (Leuschel et al., 1998) or MIXTUS (Sahlin, 1993) come

close to achieving Jones optimality for many object programs. However, they will not

do so for all object programs and we refer the reader to Martens (1994) (discussing the

parsing problem) and the more recent Vanhoof and Martens (1997) and Leuschel (2002)

for more details. The offline approach provides precise control over the specialisation

process in a predictable manner. Predictability is important, the specialisation of the

interpreter should behave independently of the complexity of the object program. Online

Chapter 9 Specialising Interpreters 117

techniques may work well for many object programs but can be "fooled" by other (often

contrived) object programs. It should be noted that online techniques can be capable

of removing several layers of interpretation in one go, while an offline approach will

typically only be able to remove one layer at a time.

Just having a simple offline partial evaluator is not sufficient to remove all interpreta

tion, the specialiser must also provide expressive annotations. It would not have been

possible to achieve this criterion without the nonvar annotation. The argument to

solve_atom/1 cannot be marked as static (as it can contain variables), and marking it

as dynamic would mean that no useful specialisation could be achieved. Without the

nonvar annotation considerable rewriting of the interpreter would have been required.

The interpreter in Listing 9.1 is written is such a way that the specialiser can distinguish

between conjunctions and object level calls. The body of the clauses are represented as a

list of calls, this allows the specialiser to treat actual object calls differently to program

structure (the enclosing list skeleton). The examples in this chapter will extend the

interpreter to handle the natural representation of Prolog programs.

9.2 A Debugging Vanilla Interpreter

Jones optimality has been demonstrated for the vanilla interpreter, the interpreter is

now extended for debugging purposes. The benefit of having a specialiser capable of

removing the interpretation overhead is that it allows the programmer to extend the

interpreter in an easy fashion with a minimal overhead.

During debugging it is often useful to look at program traces, that is a step by step guide

of the execution. In Prolog this is often represented by tracking Calls, Exits and Failures

of the predicates of interest. Modern Prolog implementations generally come with built

in debugging and trace facilities but here the vanilla interpreter is used to show the

extension. This could also be added to modified vanilla interpreters or interpreters for

other custom languages.

The vanilla interpreter, Listing 9.1, is extended with an extra argument containing a

list of predicates to trace. Each time a call to sol ve/3 is made the call is first checked

against the list of predicates to be traced; if found, the debugging information is printed

on calling, exiting and failure. The indentation level increases and decreases as the

program descends into and exits from calls, the current level is stored in the dynamic

predicate indent/1.

use_module (prolog_reader).

use_module (library(lists)).

dynamic indent/1.

current_indent_level(X)

current_indent_level(O)

indent (X) • ! .

assert(indent(O)).

Chapter 9 Specialising Interpreters

increase_indent_level

decrease_indent_level

solve([],_).

solve ([A IT], Trace)

indent (X), retract all (indent C» , assert (indent (s (X») .

indent(s(X», retractall(indentC»,assert(indent(X».

(trace_call (A, Trace) ->

debug_print ('Call: ' ,A) ,

increase_indent_level,

solve_atom(A, Trace),

decrease_indent_level, debug_print (' Exi t: ' ,A)

(decrease_indent_level, debug_print (' Fail: ' ,A»

solve_atom(A,Trace)

), solve(T,Trace).

sol ve_atom (A, Trace) :

prolog_reader:get_clause(A,B),

solve(B, Trace).

solve_file (File, Goal, Trace) :

reset_indent_level,

prolog_reader:load_file(File),

solve_atom(Goal,Trace).

debug_print (Type, Call) :

current_indent_level(Indent) ,

print_indent(Indent) ,

print (user_error ,Type),

print (user_error ,Call),

nl(user_error).

trace_call (Call, CallsToTrace)

functor(Call, P, A),

member(P/A, CallsToTrace).

print_indent(O).

print _indent (s (A» : - print (user _error, ,>,) ,print _ indent (A) .

LISTING 9.7: Extended version of the vanilla interpreter. Prints debugging information
for watched predicates.

118

The debugging interpreter is first specialised for the goal rev _app (A ,B, C), and provided

with an empty list of goals to trace. The residual code, Listing 9.8, has been specialised

with tracing disabled. The resultant code contains no debugging statements. This

produces identical code to the specialised vanilla code (Listing 9.4), the only difference

is the inclusion of the : - dynamic indent/1. In this example all of the overhead of

debugging, for example the checking of each call against the list of predicates to trace,

has been removed and no clauses related to debugging have been generated.

module C' vanilla_debug_inc. spec' , []).

Chapter 9 Specialising Interpreters

: - dynaIDic indent /1.

solve_file ('append.pl', rev_app(A,B,e),

solve_atoID __ l(A, B, C).

solve_atoID __ l(A, B, C) :-

solve_atoID __ 2(A, D),

solve_atoID __ 3(D, B, C).

sOlve_atoID __ 2 (A, B) :-

solve_atoID __ 4(A, [], B).

sOlve_atoID __ 3([]' A, A).

solve_atoID __ 3([AIB], e, [AID]) :

solve_atoID __ 3(B, e, D).

sOlve_atoID __ 4([]' A, A).

solve_atoID __ 4([AIB], e, D) :

solve_atoID __ 4(B, [Ale], D).

[])

Y. rev_ app/3

Y. rev_ app/3

Y. rev/2

Y. append/3

Y. rev/2

Y. rev/3

Y. append/3

Y. append/3

Y. append/3

Y. rev/3

Y. rev/3

Y. rev/3

LISTING 9.8: Specialising the vanilla debugging interpreter for rev_appeA,B,C), no
predicates have been specified for tracing. No debugging information is produced.

119

A more interesting specialisation query specialises the program with tracing enabled. In

Listing 9.9 the interpreter is specialised for the goal rev _app (A, B, C) and the predicate

[append/3] is marked for tracing. The residual code contains identical fragments to the

original code but tracing print statements have been weaved into the calls to append/3.

Each time a call to append/3 is made it is surrounded by print statements and a guard

condition to catch failure. All predicates without tracing have been left unmodified,

except renaming, introducing no additional overhead for the rest of the program.

: - IDodule (, vanilla_de bug_inc . spec' , []) .

:- dynaIDic(indent / 1).

solve_atoID (rev_app (A,B, C), [append/3])

solve_atoID __ O(A, B, C).

solve_atoID __ O (A, B, C) :

solve_atoID __ l(A, D),

debug_print __ 2 (' Call: " append (D,B, C)),

(increase_indent_level __ 3,

solve_atoID __ 4(D, B, C),

decrease_indent_level __ 5,

debug_print __ 2('Exit:', append(D,B,e))

Y. rev_ ap p/3

Y. rev/2

Y. app/3

decrease_indent_level __ 5, debug_print __ 2 (' Fail: " append (D, B, C))

) .
solve_atoID __ l (A, B) :-

solve_atoID __ 8(A, [], B).

solve_atom __ 4([], A, A).

solve_atom __ 4([AIB], e, [AID]) :-

debug_print __ 2('eall:', append(B,e,D)),

(increase_indent_level __ 3,

solve_atom __ 4(B, e, D),

decrease_indent_level __ 5,

Y.
Y.
Y.
Y.
Y.

Y.

rev/2

rev/3

append/3

append/3

DEBUG Entry

append/3

debug_print __ 2('Exit:', append(B,e,D))y. DEBUG Exit

decrease_indent_level __ 5,

debug_print __ 2('Fail:', append(B,e,D))y. DEBUG FaiL

) .
sol ve_atom __ 8 ([], A, A).

solve_atom __ 8([AIB], e, D)

solve_atom __ 8(B, [Ale], D).

Y. rev/3

Y. rev/3

Y. rev/3

Chapter 9 Specialising Interpreters

decrease_indent_Ievel __ 5 :-

indent (s(A)), retract all (indent C)), assert (indent (A)).

increase_indent_Ievel __ 3 :-

indent(A), retractall(indentC)), assert(indent(s(A))).

debug_print __ 2(A, B) :-

current_indent_Ievel __ 6(C), print_indent __ 7(C) ,

format (user_error , "-w -w-n", [A,B]).

current_indent_Ievel __ 6 (A) indent (A), !.

current_indent_Ievel __ 6(0) assert (indent (0)).

print_indent __ 7(0).

print_indent __ 7(s(A)) :-

print (user_error , », print_indent __ 7(A).

LISTING 9.9: Specialising the vanilla debugging interpreter for rev_app(A,B,C),

append/3 has been marked for tracing.

120

The output from running the specialised code (Listing 9.9) can be seen in Listing 9.10.

Every call to append/3 has been traced on calling and exiting. The indentation levels

line up the call and exit patterns of each individual call. Only append/3 has been traced,

the other predicates are unmodified.

Call: append([h,g,f,e,d,c,b,a] ,[i,j,k,l,m,n,o,p] ,_11928)

>Call: append([g,f,e,d,c,b,a] ,[i,j,k,l,m,n,o,p] ,_12128)

»Call: append([f,e,d,c,b,a],[i,j,k,l,m,n,o,p],_12371)

»>Call: append([e,d,c,b,a], [i,j ,k,l,m,n,o,p] ,_12678)

»»Call: append([d,c,b,a] ,[i,j,k,l,m,n,o,p] ,_13049)

»»>Call: append([c,b,a] ,[i,j,k,l,m,n,o,p] ,_13484)

»»»Call: append([b,a],[i,j,k,l,m,n,o,p],_13983)

»»»>Call: append([a] , [i,j ,k,l,m,n,o,p] ,_14546)

»»»»Call: append([], [i,j ,k,l,m,n,o,p] ,_15173)

»»»»Exi t: append ([] , [i ,j ,k, I, m, n, 0, p] , [i ,j ,k ,I, m, n, 0, p])

»»> > > Exi t: append ([a] , [i, j ,k, I, m, n, 0, p] , [a, i ,j ,k, I, m, n, ° ,p])

»»»Exi t: append ([b, a] , [i ,j ,k, I, m, n, ° ,p] , [b ,a, i ,j ,k, I, m ,n ,0, p])

»»> Exi t: append ([c, b, a] , [i ,j ,k, I, m, n, 0, p] , [c ,b, a, i ,j ,k , I ,m, n, 0, p])

»»Exit: append([d,c,b,a], [i,j ,k,l,m,n,o,p], [d,c,b,a,i,j ,k,l,m,n,o,p])

»>Exit: append([e,d,c,b,a], [i,j ,k,l,m,n,o,p], [e,d,c,b,a,i,j ,k,l,m,n,o,p])

»Exi t: append ([f ,e, d, c , b, a] , [i, j ,k, I, m, n, 0, p] , [f ,e ,d, c , b , a, i ,j ,k, I, m, n, ° ,p])

>Exi t: append ([g, f ,e ,d, c ,b, a] , [i, j ,k, I, m, n, ° ,p] , [g, f ,e ,d , c , b, a, i ,j ,k, I, m, n, 0, p])

Exit: append ([h, g, f ,e ,d, c, b, a] , [i ,j ,k, I, m, n, 0, p] , [h, g, f , e ,d, c, b, a, i, j ,k, I, m, n, 0, p])

LISTING 9.10: Output from the specialised code Listing 9.9.

Table 9.3 contains the benchmark results for running the debugging interpreter. With

tracing disabled the specialised code runs without overhead, while the interpreted code is

much slower. When tracing is enabled the actual printing and indenting of the debugging

statements take up a substantial amount of the computation time so there is little speed

up. However, only predicates that are marked for tracing will suffer a performance

penalty, so the speed increase is dependent on how much of the execution is taken up

with traced calls.

Table 9.4 compares the compiled program sizes of the specialised programs and the

interpreter (with clauses inlined). The specialised program without tracing contains

none of the interpreters code while the tracing program contains extra calls surrounding

all traced calls.

Chapter 9 Specialising Interpreters 121

Specialisation Original Specialised Relative
Benchmark Iterations Time Runtime Runtime Runtime
Debug (No debug) 3000000 30ms 42180ms 5090ms 0.12
Debug (trace rev/2) 30000 30ms 13470ms 12350ms 0.92

TABLE 9.3: Benchmark figures for the vanilla debugging interpreter

Original Specialised Relative
Benchmark Program Size Program Size Program Size
Debug (No debug) 6237 bytes 1625 bytes 0.26
Debug (trace rev/2) 6356 bytes 5032 bytes 0.79

TABLE 9.4: Program si~e comparison for vanilla interpreter

9.3 A Profiling Vanilla Interpreter

The previous section produced specialised tracing code. The vanilla interpreter is now

extended to profile code. The profiling information will track the number of calls to a

clause, this example produces profiling information for each program point. An example

of the profiled output is given in Listing 9.11, here append/3 and rev/2 have been

profiled. Each program point of interest is commented with the number of hits to that

program point. In the example append ([J ,A, A) succeeded once, and the recursive call

to append/3 succeeded eight times.

append ([] ,A, A) . /* 1 */
append ([A I B] ,C, [A I D]) /* 8 */

append(B,C,D). /* 8 */
rev(A,B) /* 1 */

rev(A,[],B). /* 1 */

LISTING 9.11: Output from the profiling vanilla interpreter on the example, Listing 9.2,
for the goal rev_app([a,b,c,d,e,f ,g,h] , [i,j ,k,l,m,n,o,p] ,C) profiling all calls

to rev /2 and append/3.

The original vanilla interpreter, Listing 9.1, is modified to include program point infor

mation. Each call to geLclause/3 returns a unique clause identifier and as solve/3

progresses it counts the number of body literals. This produces a unique identifier in

the form id (ClauseNumber, Li teralNumber) for each point in the program. The de

bugging interpreter passes around a list of predicates of interest, i.e. the predicates will

be profiled. The special case all will profile all predicates in the program. Each time

solve/3 is called the current goal, which is passed as an additional argument, is checked

against the list of predicates to profile. If the predicate is being profiled then a hit is

counted against the current program point, note that an additional hit is made at the

end of the clause to tell if the clause succeeded.

After an execution the dynamic predicate profile_data/2 contains the number of hits

for each program point of interest. To present this to the user in a useful fashion the

Chapter 9 Specialising Interpreters 122

clauses of interest are pretty printed with the profile information contained in comments.

The entry point sol ve_and_print/2 executes the goal and prints the profile information.

use_module(library(lists».

dynamic profile_data/2.

use_module (library(charsio».

1* Extended VaniLLa soLve *1
solve ([] ,ID, ToProfile, Current Goal)

(profile_call (CurrentGoal, ID, ToProfile) ->

hit_pp(ID)

true

) .

solve ([A I T] ,ID, ToProfile, Current Goal) :

(profile_call(CurrentGoal,ID,ToProfile) ->

hit_pp (ID),

solve_atom(A,ToProfile)

solve_atom(A,ToProfile)

), ID = id(CID,LID), NID is LID+1, NEWID

solve(T,NEWID,ToProfile, CurrentGoal).

id(CID, NID),

1* Extended VaniLLa soLve_atom, keeps current goaL *1
solve_atom (A, ToProfile) :-

get_clause(ID,A,B), functor(A, Func, Arity),

solve(B,id(ID,O),ToProfile, Func/Arity).

1* Entry point: First caLLs goaL then prints resuLts of profiLer *1
solve_and_print(Goal, ToProfile)

solve_atom (Goal , ToProfile),

ToProfile = [] -> true

print_profile_data(user_error, ToProfile)

) .

1* Track Program Point hits *1
hit_pp(ID) :

(profile_data(ID, Old) ->

New is Old +1,

retractall (profile_data(ID,_»

New = 1

),assert(profile_data(ID, New».

profile_data(ID, Hits).

1* Is this caLL marked for profiLing? *1
profile_call eCall, _ID, ToProfile) member (all, ToProfile), !.

profile_call(Call, _, ToProfile) member(Call, ToProfile).

1* Pretty Printing CLauses *1
print_profile_data(Stream,ToProfile)

get_clause(CID,Head,Body), numbervars «Head,Body), 0,_),

functor(Head, Func,Arity), profile_call(Func/Arity, _,ToProfile),

print_clause (Stream, Head, Body, CrD), fail.

print_profile_data(_,_).

print_clause (Stream, Head, [], CrD)

Chapter 9 Specialising Interpreters

write_to_chars(Head,CallS) , get_profile_data(id(CID,O) , Hits),

format(Stream,"-s.l* -w *1 -n",[CallS, Hits]).

print_clause(Stream, Head, Body, ID) :

write_to_chars(Head,CallS), get_profile_data(id(ID,O) , Hits),

format(Stream,"-s :-1* -w *1",[CallS, Hits]),

print_profile_body(Stream,ID,O,Body).

print_profile_body(_,_,_,[]).

print_profile_body(Stream,ID,LID, [CallIRest])

write_to_chars(Call, CallS),

NLID is LID + 1, get_profile_data(id(ID,NLID), Hits),

(Rest []->

format (Stream, "-n s. 1* -w *;-n", [CallS, Hits])

format (Stream , "-n s, 1* -w *1", [CallS, Hits]),

print_profile_body(Stream,ID,NLID, Rest)

) .

LISTING 9.12: Extended version of the vanilla interpreter. Collects profiling informa
tion and pretty prints results.

123

As in the case of the debugging interpreter the program is first specialised with profiling

disabled. The resulting code is shown in Listing 9.13, note that no profiling information

has been added to the program and the results are again the same as the original

program. No overhead has been introduced on the non-profiled code.

: - module (' vanilla_profile_inc. spec' , []).

:- dynamic(profile_data I 2).

solve_and_print(rev_app(A,B,C), []) :-

solve_and_print __ O(A, B, C).

solve_and_print __ O(A, B, C)

solve_atom __ l(A, B, C).

solve_atom __ l(A, B, C) :

solve_atom __ 2(A, D),

solve_atom __ 3(D, B, C).

solve_atom __ 2(A, B) :-

solve_atom __ 4(A, [], B).

solve_atom __ 3 ([], A, A).

solve_atom __ 3([AIB], C, [AID]) :

solve_atom __ 3(B, C, D).

sol ve_atom __ 4 ([], A, A).

solve_atom __ 4([AIB], C, D) :

solve_atom __ 4(B, [AIC], D).

y.
y.
y.
y.
y.
y.
y.
y.
y.
y.
y.
y.

rev_ app/3

rev_app/3

rev/2

append/3

rev/2

rev/3

append/3

append/3

append/3

rev/3

rev/3

rev/3

LISTING 9.13: The vanilla profiling interpreter is specialised for solve_and_print/2
for the goal rev _app (A, BJ ,C) without profiling. No profiling overhead is introduced.

Listing 9.12 is next specialised for the same goal rev _app (A, B ,C) but profiling the predi

cates rev/2 and append/3. The specialised code is shown in Listing 9.14, when executed

this code produces the output already seen in Listing 9.11. Only the predicates of in

terest have been modified, non-profiled predicates remain unchanged. The specialised

code also contains a specialised pretty printer for producing the results with minimal

overhead.

Chapter 9 Specialising Interpreters

: - module (' vanilla_profile_inc. spec' ,[]).

:- dynamic (profile_data / 2).

solve_and_print(rev_app(A,B,C), [rev/2,append/3])

solve_and_print __ O(A, B, C).

solve_and_print __ O(A, B, C) :

solve_atom __ 1(A, B, C),

print_profile_data __ 2.

solve_atom __ 1 (A, B, C) :

solve_atom __ 3(A, D),

solve_atom __ 4(D, B, C).

solve_atom __ 3 (A, B) :-

hit_pp __ 5 (id(2,0»,

solve_atom __ 6 (A, [], B),

hit_pp __ 5(id(2,1».

sOlve_atom __ 4([], A, A) :

hit_pp __ 5(id(O,0».

solve3tom __ 4([AIB], C, [AID])

hit_pp __ 5 (idO ,0»,

solve_atom __ 4(B, C, D),

hit_pp __ 5(id(1,1».

solve_atom __ 6([], A, A).

solve_atom __ 6([AIB], C, D) :

solve_atom __ 6(B, [AIC], D).

/* Specialised Pretty Printer */

print_profile_data __ 2 :

profile_data(id(O,O), A),

y. rev_ app/3

y. rev/2
y. append/3
y. rev/2

y. rev/3

y. append/3

y. append/3

y. append/3

y. rev/3
y. rev/3
y. rev/3

format(user_error, "-s./* -w */ -n", ["append([],A,A)",A]),

fail.

print_profile_data __ 2

profile_data(id(l,O), A),

format(user_error, "-s :-/* -w */", ["append([AIB],C,[AID])",A]),

profile_data(id(l,l), B),

format (user_error, "-n

fail.

print_profile_data __ 2

profile_data(id(2,0), A),

s. /* -w */-n", ["append(B,C,D)",B]),

format(user_error, "-s :-/* -w */", ["rev(A,B)",A]),

profile_data(id(2,1), B),

format(user_error, "-n

fail.

print_profile_data __ 2.

hit_pp __ 5(A) :-

(profile_data(A, B) ->

s. /* -w */-n", ["rev(A,[],B)",B]),

C is B+1, retractall(profile_data(A,_»

C=l

) ,
assert(profile_data(A,C».

LISTING 9.14: The vanilla profiling interpreter is specialised for sol ve_and_print/2

and the goal rev _app (A, B, C) with profiling on rev /2 and append/3.

124

Table 9.5 contains the benchmark results for the specialised and original profiling in

terpreters. With profiling removed the specialised program runs without an overhead

compared to the original program, while the non-specialised interpreted version is dra

matically slower. Even with profiling enabled the specialised program executes in 66%

Chapter 9 Specialising Interpreters 125

of the time of the original interpreted version, in this example a large proportion of the

program is being profiled (append/3 takes up almost half of the execution time). With

larger programs the speed increase will be more dramatic depending on how much of

the code is profiled, as non-profiled code runs without overhead.

Specialisation Original Specialised Relative
Benchmark Iterations Time Runtime Runtime Runtime

Profile (no Profile) 3000000 30ms 91280ms 5280ms 0.06
Profile (rev /2,append/3) 30000 30ms 31630ms 20920ms 0.66

TABLE 9.5: Benchmark figures for the vanilla profiling interpreter

Table 9.6 compares code size of the original and specialised programs. Without profiling

all of the interpreter can be removed and smaller code is produced, but as more profiled

predicates are added the size of the code increases. Each profiled predicate will produce

a specialised pretty printer along with the additional hit counters. The annotations

could be modified to produce a single pretty printer instead of the specialised printers

shown in Listing 9.14.

Original Specialised Relative
Benchmark Program Size Program Size Program Size
Profile (no Profile) 9594 bytes 1799 bytes 0.19
Profile (rev /2,append/3) 9594 bytes 7222 bytes 0.75

TABLE 9.6: Program size comparison for the vanilla Profiling interpreters

9.4 A Caching Vanilla Interpreter

The debugging and profiling interpreters both provided extra information to the pro

grammer about the execution of the program. The interpreter is now extended to use

cached values, and as a result produce caching specialised object programs. The follow

ing examples use a naIve implementation of fib/2 to calculate the Fibonacci sequence

(Listing 9.15). It is well known that this implementation of Fibonacci is exponential but

by caching previously values it can be made linear.

fib(O,O).

fib(1,l).

fib(X,Y) :-

Xl is X-l,

X2 is X-2,

fib(Xl, Y1),

fib(X2, Y2),

Y is Yl+Y2.

LISTING 9.15: fib/2 naIvely calculates the Fibonacci sequence

Chapter 9 Specialising Interpreters 126

The existing vanilla interpreter only handles user predicates, the first simple extension

is to support built-ins. The predicate is_buil tin/l is added which specifies which

predicates are built-ins, i.e. not implemented by the user, these calls can then made

directly.

The global dynamic predicate cache/2 is used to hold the cached values. A new predicate

sol ve_atom_cache/2 checks if the current call has caching enabled. If caching is enabled

the answer is first looked up in the cache, if no matching solution is found the original

sol ve_atom/2 is called and the result is added to the cache. The cache is reset before

execution to ensure the benchmark comparisons are fair. The modified interpreter is

shown in Listing 9.16.

use_module (library(lists».

:- dynamic cache/2.

solve([], _).

solve([A!T], ToCache)

solve ([A! TJ, ToCache)

solve_atom(A, ToCache)

get_clause(A,B),

solve(B,ToCache).

is_builtin(A),!, call(A), solve(T, ToCache).

solve_atom_cache(A, ToCache), solve(T, ToCache).

solve_atom_cache(A, ToCache)

functor(A, F, Arity),

(cache_pred(F/Arity, ToCache) ->

(cache(F/Arity, A) ->

) .

true

solve_atom (A,ToCache),

assert(cache(F/Arity, A»

solve_atom(A,ToCache)

solve_file (File, Goal, ToCache) :

prolog_reader: load_file (File),

retractall(cache(_,_»,

solve_atom_cache(Goal, ToCache).

cache_pred (Pred, ToCache) :

member (Pred, ToCache).

LISTING 9.16: Extended version of vanilla interpreter to implement answer caching.

As in the previous examples the interpreter is first specialised with the additional fea

tures disabled. In this case we specialise for calling fib/2 with no clauses marked for

caching. The resulting specialised program, Listing 9.17, is identical (after renaming) to

our original definition of fib/2 from Listing 9.15. Non-cached code has no additional

overhead when used with the caching interpreter.

Chapter 9 Specialising Interpreters

solve_atom_cache __ l(O, 0).

sOlve_atom_cache __ l (1, 1).

sOlve_atom_cache __ l (A, B) :-

C is A-l,

D is A-2,

solve_atom_cache __ l(C, E),

solve_atom_cache __ l(D, F),

B is E+F.

7.
7.
7.

7.
7.

fib/2

fib/2

fib/2

fib/2

fib/2

LISTING 9.17: The caching interpreter is specialised with caching disabled. No over
head is introduced.

127

The definition of fib/2 without caching is not only slow it is also very memory intensive,

running the program on queries greater that fib (25 ,X) produces out of memory errors.

This can be improved by introducing ~ cache of previously calculated values. The vanilla

caching interpreter is specialised again with caching enabled on all calls to fib/2. In the

resulting code, Listing 9.18, a new predicate has been introduced, wrapping the original

definition of fib/2. If the goal has been seen before then the cached value is returned,

otherwise the original definition is called and the answer is stored. Note that all calls

to the original fib/2 in the program will be automatically translated to call the cached

version (as in the case of the two recursive calls).

solve_file __ O(A, B) :-

retract all (cache <-, _)) ,
solve_atom_cache __ l(A, B).

solve_atom_cache __ l (A, B) : - 7. fib_ cache/2

cache (fib/2, fib (A, B)) ->

true

solve_atom __ 2(A, B), 7. fib/2

assert(cache(fib/2,fib(A,B)))

) .

solve_atom __ 2(0, 0).

solve_atom __ 2(1, 1).

solve_atom __ 2(A, B)

C is A-l,

D is A-2,

solve_atom_cache __ l(C, E),

solve_atom_cache __ l(D, F),

B is E+F.

7.
7.
7.

7.
7.

fib/2

fib/2

fib/2

fib_cache/2

fib_ cache/2

LISTING 9.18: The caching interpreter is specialised with caching enabled for fib/2.

The code has inlined cache checking and generation.

Table 9.7 shows the benchmark timings for running the original and specialised pro

grams. With caching disabled only a few number of iterations were possible due to the

high execution times of the naIve implementation. The cached version performs far bet

ter than the uncached version (note the number of iterations in addition to the execution

times). The specialised version runs nearly twice as fast as the interpreted version.

Table 9.8 compares the size of the specialised program against the original interpreter

and clauses. Each cached predicate will contain an extra caching entry point (like

Chapter 9 Specialising Interpreters 128

Specialisation Original Specialised Relative
Benchmark Iterations Time Runtime Runtime Runtime
Cache (no Cache) 100 20ms 76950ms 4780ms 0.06
Cache (fib/2) 100000 20ms 42880ms 23320ms 0.54

TABLE 9.7: Benchmark figures for the vanilla caching interpreter

solve_atom_cache __ 1/2 in Listing 9.18). All other predicates in the program that are

not being cached will remain unchanged (apart from renaming).

Original Specialised Relative
Benchmark Program Size Program Size Program Size
Cache (no Cache) 5810 bytes 1485 bytes 0.26
Cache (fib/2) 5810 bytes 2512 bytes 0.43

TABLE 9.8: Program size comparison for the vanilla caching interpreter

9.5 Binary Clause Semantics

The previous examples produced specialised code that was runnable, either augmented

with extra output or extended for caching. The focus now switches to an example of

code transformation for analysis. Chapter 5 introduced an algorithm for an automatic

binding-time analysis, a part of this algorithm involved converting the program into

binary clause semantics. This was then used to prove properties about the original

program.

The binary clause semantics is a representation of the loops in a program, it is used in

the binding-time analysis algorithm to reason about termination. Informally, the binary

clause semantics of a program P is the set of all pairs of atoms (called binary clauses)

p(X)B.- q(t) such that p is a predicate, p(X) is a most general atom for p, and there is

a finite derivation (with leftmost selection rule) .- p(X), .. . ,+- (q(t), Q) with computed

answer substitution B. In other words a call to p(X) is followed some time later by a

call to q(t), computing a substitution B.

For example take the program fragment in Listing 9.19 for the predicates pll and r/2.

p(O).

p(X) :- r(X,Y),p(Y).

rCs(X), X).

LISTING 9.19: Example program for binary clause transformation.

The analysis is only interested in computing the possible loops in the program, for a

loop to exist there must be a sequence of calls from one program point back to the

same program point. In this case there is one possible loop, the recursive call to p/1.

Chapter 9 Specialising Interpreters 129

This is represented in the binary clause semantics as p(x)eo r- p(Y) where eo :=

{Xis (Y)}. A call from p (X) is followed sometime later by another call to p (Y) with

the substitution {XI s(Y)}. In fact there are an infinite number of binary clauses,

p(X)e1 r- p(Y),P(X)e2 r- p(Y), ... ,p(X)en r- p(Y), ... , with the substitutions e1 .-

{XI s(s(Y))}, e2 := {XI s(s(s(Y)))}, ... ,en := {XI s(s(s(... s(y))))},

The binding-time analysis algorithm works on an annotated versions of the source pro

gram. In each iteration the annotations are refined. The vanilla interpreter is first

extended to handle annotated programs (Listing 9.20). All calls in the program are

surrounded by an annotation, the first argument represents a unique program point

and the second argument the actual call. In Listing 9.20 all calls marked as rescall

are ignored as they are not executed during specialisation and can therefore play no

part in the possible non-termination of the specialisation process. The ease of handling

the different annotation types here demonstrates one of the benefits of writing program

transformation as interpreters. The memo and unfold annotations are treated in the

same manner as they are both effectively executed at specialisation time, though their

behaviour will differ when the interpreter is extended to find possible loops.

solve([]).

solve([unfold(PP,H)IT])

solve_atom (H),

solve(T).

solve([call(PP,H)IT])

call (H) ,

solve(T).

solve([memo(PP,H)IT])

solve_atom (H), solve (T).

solve([rescall(PP,H)IT])

solve(T).

solve_atom (H) :-

get_clause (H, Bdy), solve (Bdy) .

LISTING 9.20: The vanilla interpreter is extended to handle annotated programs with

program point information.

The next addition to the interpreter is to look for possible program loops. A possible

loop exists in an annotated program if there is a finite derivation (through unfolded

calls) from a program point back to the same program point. Listing 9.21 contains

bin_solve/3 an extended solve/l for calculating binary clauses. Again each annotation

in the program is handled differently, memo and res call annotations are ignored (they

can not contribute to loops in an annotated program), call annotations are called and

unfold annotations are treated specially to find potential loops. Calls marked as unfold

are handled in three different ways:

1. If the analysis is currently looking for a loop to the same program point as it is

unfolding it simply succeeds (it has found a loop from the program point back to

itself) .

Chapter 9 Specialising Interpreters 130

2. It descends into the unfolded call looking for any additional loops.

3. The predicate solve_atom/l is called to perform any needed substitutions and

continue looking for loops on the current body.

bin_sol ve (PP, [unfold (PP, H) I _T] ,H).

bin_sol ve (PP , [unf old (PPl ,H) I _ T] , Re cCall)

bin_solve_atom(PP,H,RecCall).

bin_solve (PP, [unfoldC,H) IT] ,RecCall) :-

solve_atom (H) , 1* soLve it and then find recursive caLLs for T *1
bin_solve(PP,T,RecCall).

bin_solve (PP, [memoC,_) IT] ,RecCall)

bin_solve(PP,T,RecCall).

bin_solve (PP, [callC,Call) IT] ,RecCall)

call (Call),

bin_solve(PP,T,RecCall).

bin_solve (PP, [rescall C, _) IT] ,RecCall)

bin_solve(PP,T,RecCall).

bin_solve_atom(PP,H,Rec) :-

get_clause (H,Bdy), bin_solve(PP,Bdy,Rec).

LISTING 9.21: The vanilla interpreter is extended to look for loops.

Running the extended interpreter on the example program Listing 9.19 produces the set

of clauses shown in Listing 9.22. The bin_solve_atom __ l/3 clauses represent the loops

from the recursive call in p/l back to itself. The bin_solve_atom __ 2/3 predicate fails

as there are no possible loops from r/2 to p/1. The solve_atom __ l and solve_atom __ 2

map directly to the original program clauses in Listing 9.19, but all calls marked memo

or rescall are removed.

bin_solve_atom __ l(l, pCA), pCB))

solve_atom __ 2CA, B).

bin_solve_atom __ 1Cl, pCA), pCB))

solve_atom __ 2CA, C),

bin_solve_atom __ l(l, p(C), pCB)).

bin_solve_atom __ l C1, p(A), pCB)) :

bin_solve_atom __ 2(O, r(A,_), pCB)).

bin_solve_atom __ 2(O, rC,_), pC)) :

fail.

solve_atom __ 1CO).

solve_atom __ l (A) :

solve_atom __ 2(A, B),

solve_atom __ 1CB).

solve_atom __ 2(s(A), A).

LISTING 9.22: Output from specialising binary clause interpreter for Listing 9.19

Calling the specialised program, Listing 9.22, for the goal bin_sol ve_atom __ lCA, B, C) .

produces the answers in Listing 9.23. This corresponds to the infinite number of binary

clauses already demonstrated (a loop exists from the program point back to itself and

a loop exists going through the loop an arbitrary number of times). In Chapter 5 this

Chapter 9 Specialising Interpreters 131

output is then analysed by a convex hull analyser to prove termination properties of the

annotated program.

?- bin_solve_atom __ l(A,B,C).

A 0,

B P (s CA)) ,

C p CA) ? ;

A 0,

B p(s(sCA))),

C pCA)?;

A 0,
B p(s(s(s(_A)))),

C pCA)?;

LISTING 9.23: Running the specialised binary clause program

This section extended the vanilla interpreter to produce binary clauses for input pro

grams. The output from specialisation is not a program that is meant to be executed

as in the previous examples but is instead analysed. Using the interpreter approach

allows the programmer to easily and quickly develop quite complex transformation, in

this example the handling of the different annotations is done by adding simple rules to

the interpreter.

Benchmarks are not presented for this interpreter, as the results are program transfor

mations that are not meant to be executed (and would produce an infinite number of

answers).

9.6 Lloyd Topor Transformation

The paper Making Prolog More Expressive (Lloyd and Topor, 1984) introduced extended

programs and goals for logic programming. The extended programs can contain clauses

that have an arbitrary first-order formula in their body. The only requirement for

executing the transformed programs is a sound form of the negation as failure rule. This

example will demonstrate that it is possible to achieve the same program transformation

by specialising an intuitive Prolog interpreter.

In Lloyd and Topor (1984) an extended program P is transformed into a general program

pI, called the general form of P, using a set of transformation rules. The rules (a) ... (j)
are applied until no more transformations can be applied. Lloyd and Topor (1984) proves

this process terminates and always gives a general program.

(a) Replace A +-0: /\ .(V /\ W) /\ f3
by A+-o: /\. V /\ f3
and A+-o: /\·W /\ f3

Chapter 9 Specialising Interpreters

(b) Replace A +-0:: /\ \lxl ... Xn W /\ (3

by A +-0:: /\ .:3xl ... Xn • W /\ (3

(c) Replace A+-o:: /\ .\lxl ... Xn W /\ (3

by A+-o:: /\ :3xl ... Xn • W /\ (3

(d) Replace A +-0:: /\ V +- W /\ (3

by A+-o:: /\ V /\ (3

and A +-0:: /\·W /\ (3

(e) Replace A+-o:: /\ .(V +- W) /\

by A+-o: /\ W /\ • V /\ (3

(f) Replace A+-o:: /\ (V V W) /\ (3

by A+-o: /\ V /\ (3

and A+-o: /\ W /\ (3

(g) Replace A +-0:: /\ .(V V W) /\

by A+-o: /\.V /\.W /\ (3

(h) Replace A +-0:: /\ •• W /\ (3

by A+-o:: /\ W /\ (3

(i) Replace A+-o: /\ :3xl ... Xn W /\

by A+-o: /\ W /\ (3

(3

(3

(3

(j) Replace A +-0:: /\ .:3xl ... Xn W /\

by A+-o: /\ 'P(Yl, ... , Yk /\ (3

(3

) and p(Yl, ... ,Yk) +- :3xl ... Xn W

132

where Yl, ... ,Yk are the free variables in :3xl ... Xn Wand P is a new predicate not

already appearing in the program.

For example, take the definition of subset in Figure 9.1. The definition is written in a

clear mathematical way and has been expressed in a form similar to the specification

of the problem. However this specification cannot be executed directly in Prolog as it

contains \I and +- in its body.

xC;;; Y +- \lu(u E Y +- U E x)

FIGURE 9.1: A definition of subset

Transforming the extended program in Figure 9.1 using the transformation rules pro

duces the general program Figure 9.2. The general program uses negation and requires

a sound implementation of negation as failure. The general program, rewritten in stan

dard Prolog syntax is given in Listing 9.24. The E operator has been replaced by calls

to mem/2.

Chapter 9 Specialising Interpreters

x ~ y <'- ,p(x, y)

p(x, Y) <'- '(11 E Y) 1\ 11 E x

FIGURE 9.2: The transformed general program for subset

subset (X, Y) :

\+p(Y,X).

p(X,Y)

\+mem(A,X),

mem(A,Y).

mem(A, [AI_]).

mem(A, [_IB]) :

mem(A, B).

LISTING 9.24: Prolog version of general subset program Figure 9.2

133

A safe computation rule for negation as failure can be implemented by delaying selected

negative literals until they have become ground. This delay can be achieved by using

coroutines. Specifying a guard condition on the negation that all variables must be

ground will ensure a safe computation. Listing 9.24 is converted to use when/2 (List

ing 9.25), the call to subset/2 can now be safely made and will delay until both input

arguments are ground.

subset (X, Y) :-

when (ground ([Y, X]) ,\+p (Y, X».

p(X,Y)

when (ground ([A, X]) ,\+mem (A, X» ,

mem(A,Y).

mem(A, [AI_]).

mem(A, LIB]) :-

mem(A, B).

LISTING 9.25: Prolog version of general subset program Figure 9.2 using coroutining
to delay the negation.

I ?- subset([a,b,c], S), S

no

I ?- subset([a,b,c], S), S

S = [d,e,f,a,b,c] ?

yes

[d,e,f].

[d,e,f ,a,b,c].

The vanilla interpreter is extended to handle a more natural form of input programs.

Instead of using list skeletons as in the previous examples, it supports standard conjunc

tions (C, _)) of literals. The predicate sol vel 1 is extended to decompose conjunctions,

recursively calling solve/ion each part. The second clause matches the actual calls in

clause body and calls sol ve_li teral/ 1.

solve(','(A,T» :- solve(A), solve(T).

solve(A) :- nonvar(A) , A\= ','C,_), solve_literal(A).

New operators are defined for implication and negation in the interpreter. The functions

forall/2 and exists/2 are reserved for V and 3.

Chapter 9 Specialising Interpreters 134

op(950,yfx, '=>'). Y. implies right

op(950,yfx, '<='). Y. imp lies left

op (850 ,yfx , ' or') . y. or

op (800 ,yfx , '&') . y. and

op(750,fy, '-'). Y. not

Two new predicate are created for handling body literals, a positive (sol ve_li teral/l)

and a negative one (noLsolve_literal/l). The definition for solve~iteral/l con

tains the basic clauses for dealing with true and false, if a not operator is encountered

control is passed to nOLsolve_literal/1. The & operator performs a conjunction of

the two arguments and the or operator performs a disjunction.

solve_literal(true).

solve_literal(false) :- fail.

solve_literal('-'(L» :- not_solve_literal(L). y.y. CaLL negative version of solve_Literal

solve_literal('&'(A,B» :- solve_literal(A) , solve_literal(B).

solve_literal(or(A,_» :- solve_literal(A).

solve_literal(or(_,B» :- solve_literal(B).

solve_literal(A) is_user_pred(A),solve_atom(A).

solve_literal(A) :- is_built_in(A),call(A).

solve_atom(A) :- my_clause(A,B), solve(B).

The clauses for noLsol ve~i teral/l are similar, but define the negated counterparts

of solve_literal/1. Notice the handling of & and or, DeMorgan's laws (...,(A V B) ==
(...,A 1\ ...,B) and ...,(A 1\ B) == (...,A V ...,B)) are applied and solve_literal/l is called. If

a Prolog negation is required then coroutining is used to delay the negation until it is

safe.

not_solve_literal(true) :- solve_literal(false).

not_solve_literal(false) :- solve_literal(true).

not_solve_literal('-'(L» :- solve_literal(L).

not_solve_literal(or(A,B» :- solve_literal('&'('-'(A), '-'(B»).

not_solve_literal('&'(A,B» :- solve_literal(or('-'(A), '-'(B»).

not_solve_literal(A) :- is_user_pred(A) , not_solve_atom(A).

not_solve_literal(A) :- is_built_in(A),A \= =(_,_), A \= \=(_,_),

term_variables(A,Vars),

when(ground(Vars), \+(call(A»).

not_solve_atom(A) :

term_variables(A,Vars),

when(ground(Vars), \+(solve_atom(A»).

Implication is handled by transforming it into a disjunction (using A -t B == (...,A V B)

and A ~ B == (A V ...,B)) , which will in turn be handled by the previous clauses.

solve_literal('=>'(A,B»

solve_literal('<='(A,B» :- solve_literal(or(A, '-'(B»).

not_solve_literal('=>'(A,B»

not_solve_literal('<='(A,B»

sol ve _1 i t e r al (, - , (or (, - , (A) , B))) .

solve_literal('-'(or(A, ,-, (B»».

The exists ex, A) operator is implemented by making a copy of the atom, A, and re

naming all occurrences of x. This is done to avoid name clashes and solve~i teral/l is

Chapter 9 Specialising Interpreters 135

called on the copy. The forall(X,A) is transformed into a exists(X, A) and the neg

ative version of forall(X,A) is transformed into a positive exists using standard logic

laws. The negative version of exists/2 must be handled directly, a when/2 declaration

is added to ensure the negation is only selected when the arguments are instantiated.

solve_literal(exists(X,A)) rename(X,A,CopyA),solve_literal(CopyA).

solve_literal(forall(X,A)) :- not_solve_literal(exists(X, '-'(A))).

not_solve_literal(forall(X,A))

not_solve_literal(exists(X,A))

solve_literal(exists(X, '-'(A))).

force_not_solve_literal(exists(X,A)).

force_not_solve_literal(Formula) :-

get_free_ variables (Formula, [] , [] ,Vars),

when(ground(Vars), \+(solve_literal(Formula))).

Specialising the interpreter for the subset extended program in Listing 9.26 produces

the residual program Listing 9.27.

subset(A,B) :
forall(C,member(C,B)<=member(C,A)).

LISTING 9.26: Subset extended program in interpreter form

The specialised program is almost identical to the hand crafted program in Listing 9.25.

All negations have been enclosed by when/2, this will ensure the negation will only be

performed when the goal is properly ground. This transformation was performed by

specialising an interpreter. Importantly the interpreter was not simply an encoding of

the transformation rules from Lloyd and Topor (1984) but an intuitive interpreter for

Prolog handling the extended program syntax.

sol ve_atom (subset (A, B)) :

solve_atom __ O(A, B).
solve_atom __ O(A, B) :-

when(ground([A,B]), \+solve_literal __ l(A,B,_)).

solve_literal __ l(A, B, _) :-

when(ground([B,C]), \+member(C,B)),

member(C, A).

LISTING 9.27: Specialising the interpreter for the subset extended program (List
ing 9.26)

Specialisation Original Specialised Relative
Benchmark Iterations Time Runtime Runtime Runtime
Lloyd Topor 100000 60ms 8580ms 2370ms 0.28

TABLE 9.9: Benchmark figures for the Lloyd Topor interpreter

Chapter 9 Specialising Interpreters 136

Original Specialised Relative
Benchmark Program Size Program Size Program Size
Lloyd Topor 19877 bytes 1685 bytes 0.08

TABLE 9.10: Program size comparison for the Lloyd Topor interpreter

9.7 Summary

This chapter focused on the specialisation of interpreters. A series of different inter

preters were presented and specialised with good results. The interpreters in this chap

ter are all extensions of the basic vanilla interpreter for Prolog. It was shown that in

addition to extending the base language (e.g. adding caching), specialised interpreters

can also be used for program analysis (e.g. in the case of the binary clause interpreter).

All the examples given in this chapter were interpreters for logic languages. Chapter 3

presented an interpreter for a functional language.

When specialising interpreters, the interpreter is partially evaluated with respect to

the source program, the hope is to specialise away the overhead of interpretation and

produce a "compiled" object program. These specialised object programs combine the

features and style of the interpreter with the algorithm of the source program.

Jones optimality (called the "optimality criterion" in Jones et al. (1993)) was demon

strated for the vanilla self-interpreter. A self-interpreter was chosen as it is easy to judge

to what extent the interpretive overhead has been removed, as both the object and spe

cialised program are in the same language. It is easy to see that the specialisation in

Section 9.1 is Jones optimal as the object and specialised programs are identical up to

predicate and variable naming. The derived extensions to the vanilla interpreter were

also Jones optimal, e.g. when specialising the debugging interpreter for program P with

none of its predicates being spied on we will always get a program equivalent to P (with

no overhead from interpretation). In the functional community there has been a lot of

recent interest in Jones Optimality. In particular GlUck (2002) shows the theoretical

interest of having Jones optimal specialiser and the results should also be relevant for

logic programming.

Perhaps the most complicated interpreter specialised in this thesis is LIX itself. The

partial evaluator, LIX, can be viewed as an interpreter for annotated source programs.

Chapter 3 discussed the extensions required for self-application and many of these same

extensions are used in specialising the interpreters in this chapter. Using the Futamura

projections (Futamura, 1971) it is possible to build compilers for a particular interpreter

by self-application (as demonstrated in Chapter 3). These compilers can be reused on

any object program for a given interpreter and provide a convenient means to make

efficient program transformers.

Chapter 9 Specialising Interpreters 137

The interpreters in this chapter are written in a "natural" way and produce good spe

cialised programs. However, it is possible to write programs in a "natural" manner

that do not specialise well. Jones (2004, 1996) presents an interesting discussion about

writing interpreters for specialisation. One must be careful to write the program with

specialisation in mind, and ensure a clean separation of binding times so as much as

possible can be done at specialisation time.

The experimental results highlight the speedups that can be obtained through the spe

cialisation of interpreters and show that the system can be a useful basis for generating

compilers for high-level languages. The speedup is often a result of removing the parsing

overhead of the interpreter, on the more complicated examples an additional speedup is

obtained by removing the associated checks for the language extensions.

Specialisation Original Specialised Relative
Benchmark Iterations Time Runtime Runtime Runtime
Vanilla 3000000 20ms 26280ms 4940ms 0.19
Debug (No debug) 3000000 30ms 42180ms 5090ms 0.12
Debug (trace rev /2) 30000 30ms 13470ms 12350ms 0.92
Profile (no Profile) 3000000 30ms 91280ms 5280ms 0.06
Profile (rev /2,append/3) 30000 30ms 31630ms 20920ms 0.66
Cache (no Cache) 100 20ms 76950ms 4780ms 0.06
Cache (fib/2) 100000 20ms 42880ms 23320ms 0.54

TABLE 9.ll: Benchmark figures for the interpreters

The relative code sizes of the specialised and original (combined interpreter and source

program) program can be seen in Table 9.12. When no special features are used the

specialised code size is generally smaller. For example, in the debugging interpreter

specialising P with no debugging information produces a program equivalent to P. The

code size of the original program will always have the additional size of the interpreter.

In the examples where extra code is added to the specialised program, for example

when tracing predicates in the debugging interpreter, the relationship varies depending

on how many predicates are traced. In comparison the original program only grows by

the constant size of the interpreter.

Original Specialised Relative
Benchmark Program Size Program Size Program Size
Vanilla 2082 bytes 1462 bytes 0.70
Debug (No debug) 6237 bytes 1625 bytes 0.26
Debug (trace rev/2) 6356 bytes 5032 bytes 0.79
Profile (no Profile) 9594 bytes 1799 bytes 0.19
Profile (rev /2,append/3) 9594 bytes 7222 bytes 0.75
Cache (no Cache) 5810 bytes 1485 bytes 0.26
Cache (fib/2) 5810 bytes 2512 bytes 0.43

TABLE 9.12: Program size comparison for interpreters

Chapter 10

Conclusion and Future Work

The main stated aim of this thesis is to make Prolog partial evaluation practicable. In

itself this represents many different and worthwhile challenges. Partial evaluation is a

complex process, unlike standard evaluation control decisions are based on partial sec

tions of the full input data. For a partial evaluation system to be usable by a wider

audience it must be powerful enough to specialise real life programs, including the exten

sions found in modern Prolog implementations. It should also be simple to use but still

provide the user with enough control to get the most out of the specialisation process.

The overall aim was to develop an accessible framework for partial evaluation of Prolog

programs.

To make the system simple to use it should be as automated as possible, but should

not compromise the ability of experienced users to control the specialisation process.

Online partial evaluators are in general more automatic than offline systems as they do

not require an annotated source program. Online systems make all of their decisions

during the specialisation process and therefore are potentially more precise as, in contrast

to offline techniques, the decision can be based on actual static data values. However,

specialising the same program for slightly different static data may have a dramatic effect

on the control decisions and cause unpredictable behaviour. While source programs do

not have to be annotated, online systems generally offer a large selection of different

control strategies. Choosing the correct strategy for the problem at hand can require as

much intimate knowledge of the specialiser as hand annotating in an offline setting.

This thesis concentrated on offline partial evaluation techniques. An offline partial eval

uator was developed, combined with an automatic binding-time analysis to annotate

source programs and a self-tuning algorithm to optimise these annotations. This not

only provides a high degree of automation but also allows the user to manually modify

the annotations and steer the specialisation process. This steering is of particular impor

tance in the specialisation of interpreters, since previous research using automated online

138

Chapter 10 Conclusion and Future Work 139

techniques has shown that it is difficult to achieve consistent results when specialising

interpreters (in general and especially trying to achieve Jones optimality).

As already discussed, offline partial evaluators require a binding-time analysis phase.

The role of binding-time analysis is shown in Figure 10.1, given a source program and a

description of the entry points it produces an annotated program.

Annotated
Program

FIGURE 10.1: The role of the binding-time analysis

This annotated program guides the specialisation process and should guarantee the

partial evaluation terminates with a correct residual program. Classically the binding

time analysis was performed manually, requiring considerable expertise. The static data

must be propagated from the entry query throughout the program, and then based on

this information each call should be correctly annotated. The decision of how to annotate

a call is usually based on how much information will be available at specialisation time.

The binding-time analysis algorithm developed in Chapter 5 is fully automatic and allows

for the rapid annotation of source programs. It combines state of the art termination

analysis techniques with a type-based abstract interpretation for propagating binding

types. The algorithm supports built-ins as well as user defined predicates. Unlike

many previous algorithms, the one presented in Chapter 5 is fully implemented and

integrated into the PYLOGEN interface. The algorithm was tested on a series of examples

(Section 5.7) with promising results, it correctly produced valid annotated programs in

a reasonable amount of time.

Binding-Time
Analysis

Self Tuning
System

Sample
Queries

FIGURE 10.2: The role of the self-tuning algorithm

The binding-time analysis guarantees a safe set of annotations, performing as many op

erations at specialisation time as possible. However, the most aggressive annotations do

not always create the best quality specialised code. Chapter 6 presented a self-tuning sys

tem, which derived its own specialisation control for the particular Prolog compiler and

underlying architecture by trial and error. The algorithm takes an annotated program

and produces an annotated program (Figure 10.2). Using a set of representative sam

ple queries it refines the annotations, controlling the trade-off between code explosion,

speedup gained and the actual specialisation time. The user can specify the importance

of each of the factors in determining the quality of the produced code, tailoring the

Chapter 10 Conclusion and Future Work 140

specialisation to the particular problem at hand. The main insight of the technique was

that the annotations can be used as a basis of a genetic algorithm.

The separation of the binding-time analysis and self-tuning proves to be useful. The role

of the binding-time analysis can be clearly define to simply "do as much as possible"

while ensuring termination of the specialisation. There is no need to include heuristics

for quality of code. The optimisation and performance of the annotations is left to the

self-tuning algorithm which in turn makes use of the binding-time analysis to ensure the

final annotations are correct. The empirical evaluation of the self-tuning algorithm has

been very encouraging, it successfully avoided many of the pitfalls of partial evaluation.

For a partial evaluation system to be useful it must support the specialisation of real

life languages. This includes the extensions used in modern Prolog systems. This thesis

introduced extensions for coroutining and constraint logic programming.

Coroutining allows the delayed execution of Prolog goals using guards. The goal will not

be executed until the guard condition has been satisfied. This gives the programming

control over the Prolog selection rule in a declarative fashion. Chapter 7 discussed

the partial evaluation of coroutines, in particular the Prolog when/2 predicate. New

annotations were introduced to the system to handle when/2 calls. These annotations

were used in the specialisation of the Lloyd-Topor interpreter in Chapter 9.

Based on the idea of delayed execution a new annotation was introduced using guard

conditions. The online annotation delays unfolding until a guard criteria is satisfied

during specialisation, if the guard is not satisfied during specialisation the goal is resid

ualised and added to the specialised program. The benefit of this annotation is that it

provides an online control to the offline algorithm, the guard condition is evaluated at

specialisation time so can makes decisions based on the actual values of the static data.

The constraint logic programming (CLP) extensions demonstrate that the system is

extensible and provides support for an important paradigm in logic programming. CLP

allows the user to model a problem using a set of constraints in a particular domain.

The system is capable of non-trivial offline specialisation of non-declarative programs

containing CLP expressions, to the best of our knowledge the first of its kind.

Chapter 9 presented a series of increasingly complicated interpreters, all of which were

specialised with good results. The chapter demonstrated that specialising interpreters

can be used to extend languages with new features, for example the caching interpreter.

Specialising interpreters can also be used for program analysis. The binary clause se

mantics is used to verify termination properties of programs during the binding-time

analysis, in the algorithm a program is transformed into binary clauses by partially

evaluating an interpreter. Writing interpreters to manipulate programs can be a high

level and natural method for program transformation, and when combined with partial

evaluation it can produce efficient program transformers. The interpreters specialised

Chapter 10 Conclusion and Future Work 141

demonstrate the expressive power of the developed system. Jones Optimality was shown,

removing all of the overhead of interpretation through specialisation.

Self-application can be used to improve the efficiency of the specialisation process, es

pecially when the same program is to be specialised for different sets of static input.

The separation of the different phases in omine partial evaluation is favourable when

self-applying as only the final simplified specialisation phase has to be self-applied. The

LIX system proves to be an effective and surprisingly simple self-applicable partial eval

uator system for Prolog. Chapter 3 demonstrated that contrary to popular belief the

ground representation is not required for self-application. The LIX system can produce

specialised specialisers which are highly optimised through self-application and can han

dle non-declarative and higher order predicates. Using the 2nd Futamura projection the

LIX system can produce compilers for a given interpreter and a compiler generator via

the 3rd projection.

The PYLOGEN graphical interface combines the techniques developed in this thesis into

an integrated environment for writing and specialising Prolog programs. Prolog source

programs can be loaded into the interface and annotated without needing to modify the

underlying source code, all the annotations are stored separately. The annotating itself

can either be done by hand or using the automatic binding-time analysis. Annotating by

hand is performed using the colour coded interface, where each annotation is represented

by a colour overlay on the original source program and can be modified using point and

click. The automatic binding-time analysis and self-tuning algorithm can be invoked

directly from PYLOGEN, the results can then be modified by hand if needed. As is often

the case a combination of automatic analysis and the ability to modify the annotations

by hand can prove to be the most powerful technique.

The interface provides a quick and easy way to specialise programs. Once the entry goal

has been entered, a click of a button specialises the program and displays the results

back to the user. The specialised code can be compared against the original using the

built-in benchmarking suite. The ability to quickly specialise programs and see the

results of the specialisation in the interface allows users to quickly pick up the effects

of the different annotations on the specialisation process. A built-in Prolog shell can be

used to execute the specialised programs and inspect their behaviour.

10.1 Future Work

The graphical interface is still being developed and improvements are ongoing to make

the system more usable and to add new features. The handling of error conditions is an

area for improvement. When specialisation fails to terminate due to either local or global

termination issues few specialisation systems provide any useful feedback. Providing

Chapter 10 Conclusion and Future Work 142

understandable error messages that pinpoint possible causes would help to improve the

difficult learning curve associated with partial evaluation.

Another aim is to make the system as accessible as possible. Termin Web l provides a

webpage interface to a powerful termination analyser, it is hoped to develop a similar

system for PYLOGEN. This would provide new users with a simple way to experiment

with the specialiser.

The self-tuning algorithm and the binding-time analysis are both iterative algorithms.

There is room for optimisation by improving caching between iterations so previous

answers can be reused. This should prove especially useful in the convex hull analyser

used in the binding-time analysis. The self-tuning technique lends itself well to paral

lelisation, and initial tests look promising. The system can be extended to work over a

cluster of computers, another level of normalisation would be needed to compensate for

the different machines.

Currently the implementation of the binding-time analysis guarantees correctness and

termination at the local level, and correctness but not yet termination at the global level.

However the framework can be extended to ensure global termination as well. Indeed,

the binary clause interpreter used for local termination can also compute memoisation

loops, and so it can apply exactly the same procedure. Then, if a memoised call is

detected to be unsafe the non-decreasing arguments must be marked as dynamic (or

weakened to a more general filter).

The implemented BTA algorithm supports multiple norms by combining the results from

two separate executions, the technique could be adapted to use the combined norms from

Bruynooghe et al. (2003), allowing the detection of more complex termination conditions

based on the relationship between different norms. The BTA should also be extended

to include more complex binding types and the more advanced annotations. This would

allow it to handle complex interpreters, an ideal application for specialisation.

The examples in this thesis concentrated on the specialisation of interpreters, which is

often cited as an ideal application for partial evaluation. We hope to develop the system

to provide more features specially designed for the development and partial evaluation

of interpreters. Such features may include templates for common base languages (for

example the vanilla interpreter) and better support for debugging interpreters used in

specialisation.

To identify the problems associated with the specialisation of larger industrial style

applications we hope to successfully apply our techniques to more complex examples.

Notably the B interpreter from ProB (Leuschel and Butler, 2003), a model checker for

the B formal specification language. The interpreter is used to interpret B specifications

Ihttp://www.cs.bgu.ac.il/~mcodish/TerminWeb/

Chapter 10 Conclusion and Future Work 143

during model checking and we expect to able to achieve considerable speedups through

partial evaluation.

There is still scope to improve the code generated during CLP specialisation. Using so

phisticated constraint reordering techniques or converting CLP operations into standard

Prolog arithmetic (e.g., using is/2) when it is safe.

An offline partial evaluator was discussed in this thesis and we hope to develop the

system to include online techniques. This hybrid approach could include features from

the ECCE (Leuschel et al., 1998) online partial evaluation system, to act as a watchdog

monitoring the offline system. This could be developed into a more integrated algorithm

allowing the specialiser to cope with a mixture of annotated and un annotated code.

Chapter 7 introduced the online annotation, using coroutining to delay unfolding. It is

possible that this technique could be developed further and used as a basis for a partial

evaluation system. Each atom in the body could be given a guard condition to prevent

unfolding until the correct criteria has been met. During partial evaluation an atom

is only selected if the guard condition is satisfied, any atoms that remain unselected

are reconstructed into the final residual code (with the correct answer substitutions

calculated during partial evaluation). More research needs to be done to see if this is a

viable method.

Appendix A

Py Logen Tutorial

The PYLOGEN system is an implemented tool for specialising Prolog programs. The

specialisation engine is written in SICStus Prolog and the interface is a mixture of

Python and Tk. This section will explain the basic functionality through a simple

tutorial.

A.I Starting PYLOGEN

Follow the online instructions for installing PYLOGEN . To start PYLOGEN :

• OS X:

[-] pythonw logen.py

• Windows and Linux:

[-] python logen.py

Regular Expression Example

For this tutorial we use a simple regular expression parser (Listing A.l). The interpreter

takes a basic regular expression and a string (represented by a list of atoms) and succeeds

if the string matches the regular expression (Listing A.2). The empty pattern, E, is

represented by the special constant eps.

match(Regexp,String) regexp (Regexp ,String, []) .

regexp (eps, T, T).

regexp (X, [X I T] ,T) : - atomic (X).

regexp (+ (A, _B) ,Str ,DStr) : - regexp (A, Str ,DStr) .

regexp (+ (_A, B) ,Str ,DStr) : - regexp (B, Str , DStr) .

regexp(.(A,B),Str,DStr) :- regexp(A,Str,I), regexp(B,I,DStr).

144

Appendix A PyLogen Tutorial

regexp(*(A),S,DS) : - regexp(.(A,*(A» , S,DS).

regexp(*(A),S,S) .

LISTING A.I: An interpreter for regular expressions

I ?- match(. (*(a),b), [a , a,a,b]).

yes

Yo source_info

I ?- match(.(*(a),b), [a,a,a,b,c]) .

no

LISTING A.2: Using the regular expression interpreter

A.2 Specialising the Regular Expression Interpreter

Create a new file

145

Click on the new icon or select new from from the File menu. In the dialog box select

a location for the new file and call it regexp.pl.

New File Name

Qirectory: . 1h0me/sjcOZrlcvs _rooticOgenZ/examples -:-" .1 ~

[J backup
[J basic

. . [J exlendin9...;Vanilla [J . maHab

[J bin_solve
[J Bta
[J bta_benchmarks
[J CVS
[J db_access

. [J global
[J go pal
[J interpreters
[J lix
[J .logimix
eJ lopstr

File !fame: Iregexp.pl

Files of !ype: Prolog files (* ~pl) ..

Edit the new file

[J ·modular
[J modules

. [JPIC
[J Pro8
[J selftune

. [J slice

~ave , .

The default mode in PYLOGEN edits the annotations associated with the current source

code. The top left pane contains the sourcecode, the top right pane contains the filter

declarations and the lower pane displays the different output modes. To actually edit

the sourcecode we must first enter sourcecode mode. Click on the edit icon or select

sourcecode mode from the Edit menu.

Once in sourcecode mode add the sourcecode from Listing A.l into the top left pane.

When you have finished typing entering the sourcecode click the save icon or select

Appendix A PyLogen Tutorial 146

annotation mode from the Edit menu. If there is a parse error you will be notified by

an error message, if everything is correct the source code we be reloaded and annotated

using the unknown annotation.

Sou~e~,--------------~~------~----------------,

/ * Cre,=:ted b,:, F' ~:iLjgen "- ,/
lTIatch {Regexp,String) :- IIlIIZI{Regexp,String,[]).

regexp {eps,T,T).
r egexp{X,[XIT],T) :- ~(X)
regexp {+{A,_B},Str,DStr)
regexp (+ CA,B) ,Str , DStr)
regexp{.{A,B),Str,DStr)
regexp{*{A),S,DS) .
regexp{*{A),S,S).

Annotate the new file

{A,Str,DStr}.
{B,Str,DStr} •

Str,I), ~(B,I,DStr).
,*(A»,S,DS).

The unknown annotation is used to identify unannotated calls is the program. To

specialise the regular expression interpreter we must first properly annotate the program.

We assume that the regular expression will be known at specialisation time, static, but

the string to match against will be dynamic.

The predicate match/2 is an entry point into the regular expression interpreter, it simply

calls regexp/3 with an empty list as the third argument. The third argument contains

the "left over" part of the string, so match/2 only succeeds on an exact match. We

choose to unfold the call to regexp/3, clicking on the call will display the annotation

menu. Select unfold from the menu to annotate this call.

,

Sou~

/ * Cre.9ted bH Fqlo~en * /
l1latch(Regexp:St~ing} :- rm-;.f~'d -I"ring,[]} • ,
regexp (eps, T, T) • memo
regexp{X,[XIT],T> :-II.mII '
regexp{+{A,_B),Str,DStr) :- ~a11 r,DStr) •
regexp(+(_A,B},Str,DStr) :- ' ~ean ,DStr) •

, regeXp(.(A,B),Str,DSt~ ,!) , ~(B,I,DStr).
, regexp (* (A) ,S,DS) : - seRJica/1 ,DS) •

regexp <*<A},S,S). -
meall
yean ",

ynknown
Rnline

Now we move onto annotate the regexp/3 predicate. The first call is to the built-in

predicate atomic/1. If we have an atomic item in our pattern then we simply look for

that item in the input string. As the first argument is static (it was passed directly

from match/2) , we can safely make this call at specialisation time. Mark the call to

atomic/l as call, again by clicking on the call and selecting call.

Appendix A PyLogen Tutorial 147

The remaining calls are all recursive calls to the regexp/3 predicate. The annotations in

a program ensure it will terminate at specialisation time. When annotating a program

by hand it is important to keep in mind which calls are safe to unfold and which

must be marked memo. In the case of the regular expression interpreter we know

the pattern is static, so as long as we are decreasing the pattern each call we are

going to eventually terminate. Inspecting the clauses shows that the only unsafe call is

in handling of the * (Pattern), this allows an unbounded number of matches against

Pattern. As we do not have the string to match against we must mark the recursive call

to regexp (. (A, * (A)) ,S, DS) as memo. The rest of the calls can be marked unfold.

Sou~------~-----------· · --~~--~----------~--~
/ ... [,-eated bIoi P!j b gen * /
match (Regexp,String) :- regexp(Regexp,String,[]).

regexp(eps, T, T>.
regexp(X,[XIT],T) :- atomic(X).
regexp (+ (A,_B) ,Str ,DStr) : - regexp (A,Str , DStr').
regexp(+(_A,B),Str,DStr) :- regexp(B,Str,DStr).
regexp<'(A,B),Str,DStr) :- regexp(A,Str ,!), regexp(B,I,DStr).
regexp(*(A),S,DS) :- regexp(.(A,*(A»,S,DS).
regexp(+.(A),S,S).

Add an entry point

We have now annotated all of the clauses in the regular expression program. Now we

must tell the specialiser something about the entry point of the program. We intend to

call match/2 with a static first argument and a dynamic second argument. Click the

insert filter icon or select insert filter from the Edit menu.

regexpl3
matchlZ ,

Add Filter
: - filter match(static, dynamic) .

Ok ···:·· /Cancel
r

The left hand side contains a list of predicates appearing in the source program. Double

click on match/2 to create an empty filter declaration . Change the declaration to make

the first argument static.

filter match(static. dynamic).

Appendix A PyLogen Tutorial 148

Filter Propagation

As a call to regexp/3 is marked as memo we will also need to provide a filter dec

laration for regexp/3. This can be done manually, inferring that regexp/3 is static,

dynamic, dynamic from the initial call in match/2. We can also use the filter prop

agation discussed in Chapter 5. Save the file and select propagate filters from the

BTA menu.

Dedarations
J* Filter Decl.:.rations .:;-/ .- filter .

lIlatch(s tat.ic .. d!:inalllic) • .- filter .
regexp (st.:ltic .. d!:inalllic .. d!:inalllic) •

Specialising the regular expression interpreter

Now we have annotated the interpreter we can can specialise it for different regular

expressions. Save the file and enter a specialisation query in the Goal entry box.

match(.(b,*(a», X)

This will specialise the interpreter for matching a string beginning with a b followed by

zero or more a 's. Click Specialise or press return to specialise the program.

:- ~odule(·regexp.spec·,[]).
match([bl*(a)], A) :-

match __ O(A) .
match __ O(A) :-

regexp __ l(A, []).
l' egexp __ 1<[bIA], B) :

regexp __ 2(A, B).
regexp __ l([bIA], A).
regexp __ 2([aIA], B) :

regexp __ 2(A, B).
regexp __ 2([aIA], A).

Generating ExtensiOn
~ ."- .. ". - ..

The specialise code contains an entry point match ([b I * (a)]) A) which will call the

corresponding specialised predicate. The overhead of interpreting the regular expression

has been removed and only the string matcher remains.

The memo table maintains the list of specialised predicates and their original call pat

terns. It is used internally during specialisation and is saved to a file when specialisation

is complete. Selecting the Memo Table tab displays the table.

Appendix A PyLogen Tutorial

Specialised File I MemoTabI~ J Generating Extension J Output I
gens!:I m(3) •
table(match([bl*(a»),A), match __ O(A), [crossmodule]).
table(regexp([bl*(a»),A,B), regexp __ 1<A,B), C)~.
table(regexp([al*(a)],A,B), regexp __ 2(A,B), []).

149

The two entries for regexp/3 correspond to the two specialised versions of regexp/3 gen

erated during specialisation, called regexp_l and regexp_2. regexp_l is specialised

for a b followed by some a's , and regexp_2 is specialised for an a follow by some more

a 's. Hovering over a call in the specialised file displays the original mapping from the

memo table in a balloon window.

Sta regexp ([al* (a)] ,A, B) --> regexp_2 (A, B) t

A cogen specialiser first creates a generating extension, a specialised specialiser, which is

then used to specialise a file for a particular query. Clicking on the generating exten

sion tab will display this file . The generating extension only needs to be regenerated if

the annotations change, it can be reused for different specialisation queries.

A.3

, "" '" ,:: $ ~ -fl " ';'~ '" ,

Specialised Ale I ~ Table 1:. Generating Ex~on
match_u(A, B, C) :-

regexp_request(A, B, [], internal, C).
regexp_u(eps, A, A, true).

: regexp_u(A, [AlB], B, true) :
atomic(A).

regexp_u(A+_, B, C, D) :
regexp_u(A, B, C, D).

regexp_u(_+A, B, C, D) :
regexp_u(A, B, C, D).

regexp_u([AIB]. C. D. (E.F» :
regexp_u(A. C, G. E).
regexp_u(B. G. D. F).

regexp_u(*(A). B. C. D) :-

Status:]. ' . "

output ,1 .. ,

Using the Automatic Binding-time Analysis

In the last section we annotated the file by hand, manually checking each annotation.

Chapter 5 introduces the automatic binding-time analysis (bta). The bta automatically

annotates a file with a correct set of annotations. From the BTA menu select unfold

all, this will reset the file, annotating it to perform all of the operations at specialisation

time. Now add an entry point for the bta, this is done using a filter declaration.

Appendix A PyLogen Thtorial 150

filter match(static, dynamic).

The regular expression interpreter manipulates terms as it parses the regular expression.

Select List Norm from the BTA menu. Save the file and then select Auto bta from

the BTA menu.

The bta should provide the same annotations we selected manually. Only the recursive

call to regexp/3 handling the * will be marked as memo .

. sourCe
/ ., ere-OI led b!J P\:i logen ., /
match (Regexp,String> :- regexp(Regexp,String,[]>.

regexp(eps,T,T>.
regexp(X,[XIT],T> : - ato 111 iC< X >.
regexp(+(A,_B>,Str,DStr> : - rege:><p (A,Str ,DStr).
regexp(+(_A,B>,Str,DStr> :- regexp(B,Str,DStr>.
regexp(.(A,B>,Str,DStr> :- regexp(A,Str,I>, regexp(B,I,DStr>.
regexp(*(A>,S,DS> :- regexp(.(A,*(A»,S,DS).
regexp(*(A),S,S).

The filter declarations should be correctly propagated throughout the program.

', ~~peclarations . ,

.l* Filter Dec lar atJ ions *l"

+- filter +
, rrratch(static, d~narrric) +

+- filter +

, regexp(static, d~narrlic, d'dna rrl ic) +

;

Appendix B

Annotated Lix

(: -module (lix, [])).

(:-op(1150,fx,type)).

dynamic

memo_ table /2.

dynamic

flag/2.

(:-use_module(library(terms))).

logen(print_memo_table, print_memo_table)

logen(rescall, memo_table (A,B)),

logen(rescall, portray_clause (memo_table (A,B))),

logen(rescall, fail).

logen(print_memo_table, print_memo_table).

logen(lix_load, lix_load(A,B,C))

logen(rescall, print('%loading file ')),

logen(rescall, print(A)),

logen (rescall, nl),

logen(unfold, lix(B,C)).

logen(lix, lix(A,B)) :-

logen(rescall, retract all (memo_table (_,_))),

logen (rescall, print (, /* Generated by Lix */\n')) ,

logen(rescall, print(':- dynamic flag/2, memo_table/2.\n')),

logen(rescall, print(':- use_module(library(lists)).\n')),

logen (rescall, print (': - use_module (library (terms)) . \n')),

logen(rescall, print(':- op(1150, fx, type).\n')),

logen(rescall, print(':- op(1150, fx, filter).\n')),

logen(rescall, print(':- dynamic ann_clause/3, filter/2.\n')),

logen(memo, memo(A,B)).

logen (memo, memo (A, B)) :-

resif (logen (rescall ,memo_table (A, B)) ,

logen(rescall ,true),

logen(unfold,generalise_and_filter(A,C,D)) ,

logen (res call , assert (memo_table (C ,D))) ,

resfindall «D:-E),

logen(memo,unfold(C,E)),F),

logen (rescall ,format (' /*-k=-k*/-n' ,[D, C))) ,

logen(memo,pretty_print_clauses(F)) ,

logen (rescall , memo_table (A, B))

)) .
logen(unfold, unfold(ann_clause(A,B,C),true))

logen(call, i),

logen(rescall, ann_clause (A,B,C)).

151

Appendix B Annotated Lix

logen(unfold, unfold(filter(A,B),true»

logen(call, !),

logen(reseall, filter(A,B».

logen(unfold, unfold(A,B» :

logen(unfold, ann_clause (_,A,C»,

logen(unfold, body(C,B».

logen(body, body(true,true».

logen(body, body«A,B),(C,D»)

logen(unfold, body(A,C»,

logen(unfold, body(B,D».

logen(body, body(logen(call,A),true»

logen (reseall, call (A» .

logen(body, body(logen(rescall ,A) ,A».

logen(body, body(logen(memo,A),B» :

logen(memo, memo(A,B».

logen(body, body(logen(unfold,A),B»

logen(memo, unfold(A,B».

logen(body, body(resif(A,B,C),(D->E;F»)

logen(unfold, body(A,D»,

logen(unfold, body(B,E»,

logen(unfold, body(C,F».

logen(body, body(if(A,B,C),D» :

resif(logen(unfold,body(A,_»,

(logen(unfold,body(B,E»,

logen(reseall,E=D)

) , (logen (unfold, body (C, F» , logen (rescall ,F=D)

)) .
logen(body, body(resfindall(A,B,C),findall(A,D,C»)

logen(unfold, body(B,D».

logen(body, body(hide_nf (A) ,B» :-

logen(rescall, term_variables(A,C»,

resfindall «D,C), logen(unfold ,body(A,D», E),

re s if (logen (reseall ,E= []) ,

logen(reseall ,B=fail),

(logen (memo, make_disj (E, C, F» ,

logen(memo,flatten(F,B»

)) .
logen(make_disj, make_disj ([(A,B)] ,C,D»

logen(memo, simplify_eq(B,C,E»,

logen(reseall, D=(E,A».

1 0 g en (m ak e _ dis j, m ak e _ dis j ([(A , B) Ie] ,D , (E ; F)))

logen(memo, make_disj (C,D,F»,

logen(memo, simplify_eq(B,D,G»,

logen(reseall, E=(G,A».

logen(simplify_eq, simplify_eq(A,B,fail»

logen(rescall, A\=B).

logen(simplify_eq, simplify_eq(A,B,true»

logen(reseall, A==B).

logen(simplify_eq, simplify_eq(A,B,A=B»

logen(rescall, var(A»,

logen (reseall, !).

logen(simplify_eq, simplify_eq(A,B,A=B»

logen(rescall, var(B»,

logen (rescall, !).

logen(simplify_eq, simplify_eq(A,B,C»

logen(rescall, nonvar(A»,

logen(rescall, nonvar(B»,

logen(reseall, functor(A,D,E»,

logen(reseall, funetor(B,D,E»,

152

Appendix B Annotated Lix

logen(rescall, A= .. [DIF]),

logen (rescall, B= .. [D I G]),

logen(memo, simplify_eqL(F,G,C)).

logen(simplify_eqL, simplify_eqL([A], [B] ,C))

logen(memo, simplify_eq(A,B,C)).

logen (simplify _eqL, simplify _eqL ([A I B] , [C I D] ,(E, F)))

logen(memo, simplify_eq(A,C,E)),

logen(memo, simplify_eqL(B,D,F)).

logen(generalise_and_filter, generalise_and_filter(A,B,C))

logen(call, functor(A,D,E)),

logen(call, functor(B,D,E)),

logen(unfold, filter(A,F)),

logen(call, A= .. [GIH]),

logen(unfold, gen_filter(F,H,I,J)),

logen(call, B= .. [GII]),

logen(memo, gensym(G,K)),

logen(rescall, C= .. [KIJ]).

153

logen(typedef, typedef(list(A),(struct([],[]);struct('.',[A,(type list(A))])))).

logen(gen_filter, gen_filter([],[],[],[])).

logen(gen_filter, gen_filter([(A;_)IB],C,D,E)) :-

logen(unfold, gen_filter([AIB],C,D,E)).

logen (gen_filter, gen_filter ([C; A) I B] ,C ,D ,E)) :

logen(unfold, gen_filter([AIB],C,D,E)).

logen(gen_filter, gen_filter ([static IA], [BIC], [BID] ,E))

logen(unfold, gen_filter(A,C,D,E)).

logen(gen_filter, gen_filter([static_nf IA] ,[BIC] ,[BID] ,[BIE]))

logen(unfold, gen_filter(A,C,D,E)).

logen(gen_filter, gen_filter([dynamicIA],LIB],[CID],[CIE]))

logen(unfold, gen_filter(A,B,D,E)).

logen(gen_filter, gen_filter ([nonvarIA], [BIC], [DIE] ,F))

logen(rescall, B= .. [GIH]),

logen(rescall, length(H,I)),

logen(rescall, length(J,I)),

logen (rescall, D= .. [G I J]) ,

logen(unfold, gen_filter(A,C,E,K)),

logen(rescall, append(J,K,F)).

logen(gen_filter, gen_filter([(type A)IB],C,D,E))

logen(unfold, typedef(A,F)),

logen(memo, gen_filter([FIB] ,C,D,E»).

logen(gen_filter, gen_filter ([struct(A,B) IC], [DIE], [FIG] ,H))

logen(rescall, D= .. [AI I]),

logen(unfold, gen_filter(B,I,J,K»,

logen (rescall, F= .. [A I J]) ,

logen(unfold, gen_filter(C,E,G,L)),

logen(rescall, append(K,L,H»).

logen(pretty_print_clauses, pretty_print_clauses([]).

logen(pretty_print_clauses, pretty_print_clauses([AIB])

logen(memo, flatten(A,C»),

logen(rescall, portray_clause(C»,

logen(memo, pretty_print_clauses(B»).

logen(flatten, flatten«A:-B),(A:-C»)

logen (rescall, !),

logen(memo, flatten(B,C)).

logen(flatten, flatten«A,B),C) :

logen (rescall, !),

logen(memo, flatten(A,D)),

logen(memo, flatten(B,E)),

resif (logen(rescall ,D=true),

logen (rescall ,C=E) ,

Appendix B Annotated Lix

resif (logen(reseall ,E=true),

logen (reseall ,C=D),

logen(reseall,C=(D,E))
)

) .
logen(flatten, flatten«A;B),C))

logen(reseall, !),

logen(memo, flatten(A,D)),

logen(memo, flatten(B,E)),

resif (logen (reseall , D=true) ,

logen (reseall , C=E),

resif (logen (reseall ,E=true),

logen(reseall ,C=D),

logen(reseall,C=(D;E))
)

) .
logen(flatten, flatten«A->B;C) ,(D->E;F)))

logen (reseall, !),

logen(memo, flatten(A,D)),

logen(memo, flatten(B,E)),

logen(memo, flatten(C,F)).

logen(flatten, flatten(eall(A),A))

logen(reseall, nonvar(A)),

logen (reseall, !).

logen(flatten, flatten(A,A)).

logen(gensym, gensym(A,B)) :

logen(reseall, var(B)),

logen(eall, atom(A)),

logen(memo, oldvalue(A,C)),

logen(reseall, D is C+1),

logen(memo, set_flag(gensym(A),D)),

logen (call, name (E, [95,95])) ,

logen(unfold, string_eoneat(A,E,F)),

logen(unfold, string_eoneat(F,D,B)).

logen(oldvalue, oldvalue(A,B)) :

logen(reseall, flag(gensym(A),B)),

logen (reseall, !).

logen(oldvalue, oldvalue(_,O)).

logen(set_flag, set_flag(A,B)) :

logen(eall, nonvar(A)),

logen(reseall, retraet(flag(A,_))),

logen (reseall, !),

logen(reseall, asserta(flag(A,B))).

logen(set_flag, set_flag(A,B)) :

logen(eall, nonvar(A)),

logen(rescall, asserta(flag(A,B))).

logen (append, append ([] , A, A)).

logen(append, append([AIB],C,[AID])) :

logen(unfold, append(B,C,D)).

logen(string_concat, string_concat(A,B,C))

logen(eall, name(A,D)),

154

if (logen (call, var (B)), logen (reseall , name (B , E)), logen (call, name (B, E))) ,

logen(unfold, append(D,E,F)),

if(logen(eall,var(B)), logen(rescall ,name(C,F)), logen(call ,name(C,F))).

logen (filter, f il ter (app <-, _, _) , [dynamic, static, dynamic])) .

logen (ann_clause, ann_clause (1, app ([] , A, A) , true)) .

logen(ann_clause, ann_clause (2,app([AIB] ,C, [AID]),logen(memo,app(B,C,D)))).

logen(filter, filter(test(_),[dynamic])).

logen(ann_elause, ann_clause (5,test(A),hide_nf(logen(unfold ,peA))))).

Appendix B Annotated Lix

logen(ann_clause, ann_clause (3,p(a),true)).

logen(ann_clause, ann_clause (4,p(b),true)).

logen (ann_clause, ann_clause (0, l_eval ([] ,_, []) ,true)).

logen (ann_clause, ann_clause (1,

l_eval ([AlB] ,C, [DIE]),

(logen(unfold,eval(A,C,D)),logen(unfold ,1_eval(B,C,E))))).

logen (ann_clause, ann_clause (2, eval (cst (A), _, constr (A, [])) ,true)).

logen(ann_clause, ann_clause (3,

eval(constr(A,B),C,constr(A,D)),

logen(unfold,l_eval(B,C,D)))).

logen(ann_clause, ann_clause (4,eval(var(A),B,C),logen(unfold,lookup(A,B,C)))).

logen (ann_clause, ann_clause (5,

eval(plus(A,B),C,constr(D,[])) ,

Clogen (unfold, eval (A, C, constr (E, []))) ,

logen (unfold, eval (B, C, constr (F, []))) ,

logen(rescall,D is E+F)))).

logen(ann_clause, ann_clause (6,

eval (minus (A, B), C, constr (D, [])) ,

Clogen (unfold, eval (A, C, constr (E, []))) ,

logen (unfold, eval (B, C, constr (F, []))) ,

logen(rescall ,D is E-F)))).

logen (ann_clause, ann_clause (7,

eval (times (A, B) ,C, constr (D, [])) ,

Clogen (unfold, eval (A, C, constr (E, []))) ,

logen (unfold, eval (B, C, constr (F, []))) ,

logen(rescall,D is E*F)))).

logen(ann_clause, ann_clause (8,

eval(eq(A,B),C,constr(D,[])),

(logen(unfold,eval(A,C,E)) ,

logen(unfold,eval(B,C,F)),

resif (logen (rescall ,E=F),

logen (rescall ,D=true),

logen (rescall ,D=f alse))

))) .
logen(ann_clause, ann_clause (9,

eval Clet (A, B ,C) ,D, E) ,

(logen(unfold,eval(B,D,F)),

logen(unfold,store(D,A,F,G)),

logen(unfold,eval(C,G,E))))).

logen (ann_clause, ann_clause (10,

eval(if(A,B,C),D,E),

logen(unfold,eval_if(A,B,C,D,E)))).

logen (ann_clause, ann_clause (11,

eval(if2(A,B,C) ,D,E),

(logen(unfold,eval(A,D,F)) ,

res if Oogen (rescall ,F= constr (true, [])) ,

hide_nf(logen(unfold,eval(B,D,E))) ,

hide_nf(logen(unfold,eval(C,D,E))))))).

logen(ann_clause, ann_clause (12,eval(lambda(A,B),_,lambda(A,B)) ,true)).

logen(ann_clause, ann_clause (13,

eval(apply(A,B),C,D),

(logen(unfold,eval(B,C,E)) ,

logen(unfold,rename(E,C,lambda(F,G))) ,

logen(unfold,eval(A,C,H)),

logen(unfold,store(C,F,H,I)),

logen(memo,eval(G,I,D))))).

logen(ann_clause, ann_clause (14,

eval(fun(A),_,B),

logen (unfold, function (A, B)))).

155

Appendix B Annotated Lix

logen (ann_clause. ann_clause 05.

eval(print(A)._.constr(true.[])) •

Clogen(rescall .print (A)).

logen(rescall .nl)))).

logen (ann_clause. ann_clause 06.

eval_if (A.B._.C.D).

(logen(unfold.test(A.C)) •

logen (rescall • !) •

logen(unfold.eval(B.C.D))))).

logen(ann_clause. ann_clause (17.eval_if(_._.A.B.C).logen(unfold.eval(A.B.C)))).

logen (ann_clause. ann_clause (18.

test (eq(A.B) .C).

(logen(unfold.eval(A.C.D)).

logen(unfold.eval(B.C.D))))).

logen(ann_clause. ann_clause (19.rename(A._.B).logen(call .B=A))).

logen(ann_clause. ann_clause (20.

function (fib.

lambda(x.

if (eq (var (x). cst (0)) • cst (1) •

if(eq(var(x).cstO)) .cst(1).

plus (apply (minus (var (x) • cst (1)) • fun Cf i b)) •

apply (minus (var (x) • cst (2)) • fun (f i b))))))) •

true)).

logen (ann_clause. ann_clause (21. store ([] • A. B. [A/B]) • true)) .

logen(ann_clause. ann_clause (22.store([A/_IB] .A.C.[A/CIB]) .true)).

logen (ann_clause. ann_clause (23.

store ([A/B I C] .D.E. [A/B I F]).

(logen(call.D\==A).

logen(unfold.store(C.D.E.F))))).

logen(ann_clause. ann_clause (24.lookup(A.[A/BI_] ,B).true)).

logen(ann_clause, ann_clause (25.

lookup(A.[B/_IC] ,D).

Clogen(rescall .A\==B),

logen(unfold,lookup(A,C.D))))).

logen (ann_clause. ann_clause (26,

fib(A.B).

156

(log e n (unf old • s tor e ([] , x • A • C)) ,

logen(unfold,eval(apply(cst(A).fun(fib)),C.constr(B,_)))))).

logen(ann_clause. ann_clause (27.

bench(A.B).

Clogen(rescall ,A>B).

logen (rescall • print ('Done')) •

logen (rescall • nl)))) .

logen (ann_clause. ann_clause (28,

bench(A,B),

Clogen(rescall .A=<B).

logen(unfold,fib(A.C)),

logen (rescall .!) •

logen (rescall , print Cfib (A))).

logen (rescall , print (' == ')),
logen(rescall ,print (C)).

logen(rescall ,nl).

logen(rescall.D is A+1).

logen(memo.bench(D,B))))).

logen(filter. filter(

l_eval(_._,_),

[static,(type list(structC!,[static,dynamic]))),dynamic])).

logen(filter, filter(

eval(_,_,_) •

Appendix B Annotated Lix 157

[static,(type list(structC/,[static,dynamic]»),dynamic)).

logen (f il ter, f il ter (rename C, _, _) , [dynamic, dynamic, dynamic) » .
logenCfilter, filter(function(_,_),[dynamic,dynamic)).

1 ogen (f i 1 t er, f i 1 t er (store (_ , _ , _ , _) , [dynami c , st at i c , st at i c , dynami c))) .

logen (f il t er, f il t er (lookup C, _, _) , [struct (stat ic , [)) , dynamic, dynami c) » .
logen(filter, filterCfibC,_), [dynamic ,dynamic))).

logenCfilter, filter(benchC,_), [dynamic ,dynamic))).

logen(filter, filter(bench2C,_), [dynamic ,dynamic]».

logen (filter, filter (

eval_if(_,_,_,_,_),

[st at i c , stat i c , st at i c , (t ype 1 i s t (s truc t C/ , [s t at i c , dynami c)))) , dynami c))) .

filter

lix_load(static, nonvar, dynamic).

filter

lix (nonvar, dynamic).

filter

memo (nonvar , dynamic).

filter

unfold(nonvar, dynamic).

filter

generalise_and_filter(nonvar, dynamic, dynamic).

filter

pretty_print_clauses(dynamic).

filter

flatten (dynamic, dynamic).

filter

gensym (static, dynamic).

filter

oldvalue (dynamic, dynamic).

filter

set_flag (nonvar, dynamic).

filter

make_disj (dynamic, dynamic, dynamic).

filter

simplify_eq(dynamic, dynamic, dynamic).

filter

simplify_eqL(dynamic, dynamic, dynamic).

filter

gen_filter (static, dynamic, dynamic, dynamic).

Appendix C

Lix Cogen

dynamic flag/2, memo_table/2.

use_module(library(lists)).

use_module (library(terms)).

op(1150, fx, type).

dynamic filter/2.

dynamic ann_clause/3.

lix(Call, Rl,R2) lix __ 2(Call,Rl,R2).

l*oLdvaLue __ 2(_6626,_6627)=oLdvaLue(_6626,_6627)*1

oldvalue __ 2 (A, B) :-

flag(gensym(A), B), !.

oldvalue __ 2(, 0).

l*set_fLag __ 2(_8423,_8313)=set_fLag(gensym(_8423),_8313)*1

set_flag __ 2 (A, B) :-

retract (flag(gensym (A), _)), !,

asserta(flag(gensym(A),B)).

set_flag __ 2 (A, B) :

asserta(flag(gensym(A),B)).

l*gensym __ 13(_5350)=gensym(Lix,_5350)*1

gensym __ 13 (A) :-

var(A),

oldvalue __ 2(lix, B),

C is B+l,
set_flag __ 2(lix, C),

name(C, D),

name(A, [108,105,120,95,95ID]).

l*gensym __ 14(_13281)=gensym(memo,_13281)*1

gensym __ 14 (A) :-

var(A),

oldvalue __ 2(memo, B),

C is B+l,

set_flag __ 2(memo, C),

name(C, D),

n am e (A , [109, 101 , 109 , 111 , 95 , 95 I D]) .

l*un!oLd __ 23(_19939,_19941,_19827)=un!oLd(!iLter(_19939,_19941),_19827)*1

158

Appendix C Lix-Cogen

unfold __ 23 (A, B, true)

filter(A, B).

unfold __ 23 (app L, _, _), [dynamic, static, dynamic], true).

unfold __ 23(test(_), [dynamic], true).

159

unf old __ 23 (l_eval L, _, _), [static, (type list (struct C/ , [static, dynamic]») ,dynamic], true).

unfold __ 23 (eval L, _, _), [static, (type list (struct C/ , [static, dynamic]») , dynamic], true).

unfold __ 23 (rename(_,_,_), [dynamic ,dynamic ,dynamic], true).

unfold __ 23 (function L, _), [dynamic, dynamic], true).

unfold __ 23 (store(_,_,_,_), [dynamic ,static ,static ,dynamic], true).

unf old __ 23 (lookup L, _, _), [struct (static, []) , dynamic, dynamic], true).

unfold __ 23 (fib L, _), [dynamic, dynamic], true).

unfold __ 23 (bench L, _), [dynamic, dynamic], true).

unfold __ 23(bench2L,_), [dynamic ,dynamic], true).

unfold __ 23(eval_if(_,_,_,_,_),

[static, static, static, (type list (struct (/, [static, dynamic]») ,dynamic], true).

unfold __ 23 (lix_Ioad(,_,_), [static ,nonvar,dynamic] , true).

unf old __ 23 (lix L, _), [nonvar, dynamic], true).

unfold __ 23 (memo (_, _), [nonvar, dynamic], true).

unf old __ 23 (unf old (_ ,_), [nonvar, dynami c], true).

unfold __ 23 (generalise_and_filter(_,_,_), [nonvar ,dynamic, dynamic], true).

unfold __ 23 (pretty _print_clauses L), [dynamic], true).

unfold __ 23(flattenL,_), [dynamic ,dynamic], true).

unfold __ 23(gensym(_,_), [static ,dynamic] , true).

unfold __ 23 (oldvalue L, _), [dynamic, dynamic], true).

unfold __ 23 (set_flag L, _), [nonvar, dynamic], true).

unfold __ 23(make_disjL,_,), [dynamic,dynamic,dynamic], true).

unfold __ 23(simplify_eqL,_,_), [dynamic ,dynamic ,dynamic], true).

unfold __ 23 (simplify_eqLL,_,_), [dynamic ,dynamic ,dynamic], true).

unfold __ 23 (gen_fil ter (_, _, _, _), [static, dynamic, dynamic, dynamic], true).

l*unfoLd __ 2S(_28360,_28362,_28248)=unfoLd(typedef(_28360,_28362),_28248)*1

unfold __ 25(list(A), (struct([] ,[]);struct('.',[A,(type list(A»]», true).

l*gensym __ 1S(_32177)=gensym(gen_fiLter,_32177)*1

gensym __ 15 (A) :-

var(A),

oldvalue __ 2(gen_filter, B),

C is B+1,

set_flag __ 2(gen_filter, C),

name(C, D),

name(A, [103,101,110,95,102,105,108,116,101,114,95,95ID]).

1* fL at t en __ 2 L36773, 36774)= fL at ten (_36773, _36774) *1

flatten __ 2 «A: -B), (A: -C» ! ,

flatten __ 2 (B, C).

flatten __ 2«A,B), C) :- !,

flatten __ 2(A, D),

flatten __ 2 (B, E),

) .

D=true ->

C=E

E=true ->

C=D

C=(D,E)

flatten __ 2«A;B), C) :- !,

flatten __ 2(A, D),

flatten __ 2 (B, E),

D=true ->

C=E

E=true ->

C=D

C=(D;E)

Appendix C Lix-Cogen

) .
flatten __ 2 «A->B;C), (D->E;F» !,

flatten __ 2(A, D),

flatten __ 2(B, E),

flatten __ 2 (C, F).

flatten __ 2(A, A).

l*pretty_print_cZauses __ 2(_35068)=pretty_print_cZauses(_35068)*1

pretty_print_clauses __ 2([]).

pretty_print_clauses __ 2([AIB])

flatten __ 2(A, C),

portray_clause(C),

pretty_print_clauses __ 2(B).

l*memo __ 15(_30031,_30033,_30035,_30037,_29915)=

memo(gen_fiZter(_30031,_30033,_30035,_30037),_29915)*1

memo __ 15(A, B, C, D, E) :

memo_table(gen_filter(A,B,C,D), E) ->

) .

true

gensym __ 15 (F) ,

G= .. [F,H,I,JJ,

assert(memo_table(gen_filter(A,H,I,J),G»,

findall«G:-K), unfold __ 24(A,H,I,J,K), L),

format('/",-k=-k*/-n', [G,gen_filter(A,H,I,J)]),

pretty_print_clauses __ 2CL),

memo_table(gen_filter(A,B,C,D), E)

l*unfoZd __ 24 (_26796,_26798,_26800,_26802,_26680)=

unfoZd(gen_fiZter(_26796,_26798,_26800,_26802),_26680) */

unf old __ 24 ([], [], [J, [J, true).

unfold __ 24([(A;_)IB], C, D, E, F) :-

unfold __ 24 ([AIBJ , C, D, E, F).

unfold __ 24([C;A)IB], C, D, E, F) :-

unfold __ 24([AIBJ, C, D, E, F).

unfold __ 24([staticIA], [BIC], [BID], E, F) :

unfold __ 24 (A, C, D, E, F).

unfold __ 24 ([dynamic I AJ, [_I BJ, [C I DJ, [C I EJ, F)

unfold __ 24 (A, B, D, E, F).

unfold __ 24 ([nonvar I AJ, [B I CJ, [D I EJ, F,

(B= .. [G I HJ, length(H, I) ,length (J, I) ,D= .. [G I JJ ,K, append (J ,L, F»)

unfold __ 24 (A, C, E, L, K).

unfold __ 24 ([(type A)IB], C, D, E, (F,G»

unfold __ 25 (A, H, F),

memo __ 15([HIB], C, D, E, G).

160

unfold __ 24([struct(A,B)IC], [DIE], [FIG], H, (D= .. [AII],J,F= .. [AIK],L,append(M,N,H»)

unfold __ 24(B, I, K, M, J),

unfold __ 24(C, E, G, N, L).

l*gensym __ 16(_33084)=gensym(gensym,_33084)*1

gensym __ 16 (A) :-

var(A),

oldvalue __ 2 (gensym, B),

C is B+l,

set_flag __ 2(gensym, C),

name(C, D),

name(A, [103,101,110,l15,121,109,95,95IDJ).

l*gensym __ 17(_39756)=gensym(oZdvaZue,_39756)*1

gensym __ 17 (A) :-

var(A),

oldvalue __ 2(oldvalue, B),

C is B+l,

set_flag __ 2(oldvalue, C),

Appendix C Lix-Cogen

name(C, D),

name(A, [111,10S,100,11S,97,10S,117,101,95,95ID]).

l*unfoLd __ 27(_42554,_42556,_42442)=unfoLd(oLdvalue(_42554,_42556),_42442)*1
unfold __ 27 (A, B, (flag (gensym(A) ,B) ,!)).

unfold __ 27(_, 0, true).

l*memo __ 17(_37834,_37836,_37722)=memo(oLdvaLue(_37834,_37836),_37722)*1

memo __ 17(A, B, C) :-

) .

memo_table (oldvalue(A,B), C) ->

true
gensym __ 17(D),

E= .. [D,F,G],

assert (memo_table (oldvalue(F,G),E)) ,

findall«E:-H), unfold __ 27(F,G,H), I),

format (' I*-k=-k*rn', [E, oldvalue (F ,G)]),

pretty_print_clauses __ 2(I) ,

memo_table (oldvalue(A,B), C)

l*gensym __ 18(_43026)=gensym(set_flag,_43026)*1
gensym __ 1S(A) :-

var(A),
oldvalue __ 2(set_flag, B),

C is B+l,
set_flag __ 2(set_flag, C),

name(C, D),

name(A, [115,101,116,95,102,10S,97,103,95,95ID]).

l*unfoLd __ 28(_45824,_45826,_45712)=unfoLd(set_fLag(_45824,_45826),_4 5712)*1

unfold __ 2S (A, B, (true ,retract (flag(A,_)),!, asserta(flag(A,B)))

call(nonvar(A».

unfold __ 2S(A, B, (true,asserta(flag(A,B»)) :

call(nonvar(A).

l*memo __ 18(_40836,_40838,_40724)=memo(set_flag(_40836,_4°838),_4°724)*1

memo __ 1S(A, B, C) :-

) .

memo_table(set_flag(A,B), C) ->

true

A= .. [DIE],

length(E, F),

length(G, F),

H= .. [DIG],

append(G, [I], J),

gensym __ 1S (K) ,

L= .. [KIJ],

assert(memo_table(set_flag(H,I),L»,

findall«L:-M), unfold __ 2S(H,I,M), N),

format('I*-k=-k*rn', [L,set_flag(H,I)]),

pretty_print_clauses __ 2(N),

memo_table(set_flag(A,B), C)

l*unfold __ 30(_46692,_46694,_46696,_46578)=

unfoLd (append (_46692,_46694,_46696),_46578)*1
unf old __ 30 ([], A, A, true).

unfold __ 30([AIB], C, [AID], E) :-

unfold __ 30(B, C, D, E).

l*unfold __ 29(_44314,_44316,_44318,_44200)=

unfoLd(string_concat(_44314,_44316,_44318),_44200)*1
unfold __ 29(A, B, C, (true,D,E,F»

call(name(A,G»,

(call(var(B»->

true,

name(B,H)=D

161

Appendix C Lix-Cogen

) ,

call (name (B, H» ,

true=D

unfold __ 30(G, H, I, E),

call(var(B» ->

) .

true,

name(C,I)=F

call(name(C,I» ,

true=F

l*un!oLd __ 26(_35878,_35880,_35766)=un!oLd(gensym(_35878,_35880),_35766)*1

unfold __ 26 (A, B, (var(B),true,C,D is E+l,F,true,G,H» :-

call (atom(A»,

memo __ 17(A, E, C),

memo __ 18(gensym(A), D, F),

call(name (I , [95,95]» ,

unfold __ 29 (A, I, J, G),

unfold __ 29(J, D, B, H).

l*memo __ 16(_31164,_31166,_31052)=memo(gensym(_31164,_31166),_31052)*1
memo __ 16(A, B, C) :-

) .

memo_table (gensym(A,B), C) ->

true

gensym __ 16 (D),

E= .. [D, F] ,

assert (memo_table (gensym(A,F) ,E»,

findall«E:-G), unfold __ 26(A,F,G), H),

format (' I*-k=-k*rn', [E, gensym (A, F)]) ,

pretty_print_clauses __ 2(H) ,

memo_table (gensym(A,B), C)

l*un!oLd __ 22(_17946,_17948,_17950,_17832)=

un!oLd(generaLise_and_!iLter(_17946,_17948,_17950),_17832)*1

unfold __ 22 (A, B, C, (true,true,D,true,E,true,F,C= .. [GIH]))

call(functor(A,I,J»,

call(functor(B,I,J»,

unfold __ 23 (A, K, D),

call (A= .. [L I MJ) ,

unfold __ 24 (K, M, N, H, E),

call(B= .. [LIN]),

memo __ 16(L, G, F).

I*gensym_ 19(_22885)=gensym(un!oLd,_22885)*1

gensym __ 19 (A) :-

var(A),

oldvalue __ 2(unfold, B),

C is B+l,

set_flag __ 2 (unfold , C),

name(C, D),

name(A, [117,110,102,111,108,100,95,95ID]).

l*un!oLd __ 32(_27188,_27190,_27192,_27074)=

un!oLd(ann_cLause(_27188,_27190,_27192),_27074)*1

unfold __ 32 (A, B, C, true) :

ann_clause (A, B, C).

unfold __ 32 (1, app ([J, A, A), true, true).

unfold __ 32 (2, app([AIB],C,[AID]), logen(memo,app(B,C,D»), true).

unfold __ 32 (5, test(A), hide_nf(logen(unfold,p(A»), true).

unf old __ 32 (3, P (a), true, true).

unfold __ 32 (4, p(b), true, true).

unf old __ 32 (0, l_eval ([] ,_, []), true, true).

unf old __ 32 (1, l_eval ([A I B] ,C, [D I E]) ,

162

Appendix C Lix-Cogen

(logen(unfold,eval(A,C,D»,logen(unfold,l_eval(B,C,E»), true).

unfold __ 32 (2, eval(cst(A),_,constr(A,[]», true, true).

163

unfold __ 32 (3, eval(constr(A,B),C,constr(A,D», logen(unfold,l_eval(B,C,D», true).

unfold __ 32 (4, eval(var(A),B,C), logen(unfold,lookup(A,B,C», true).

unfold __ 32 (5, eval(plus(A,B) ,C,constr(D, []),

(logen (unfold, eval (A, C, constr (E, []») ,

logen (unfold, eval (B, C, constr (F, []») ,

logen(rescall,D is E+F», true).

unfold __ 32 (6, eval (minus (A, B) ,C, constr (D, []» ,

(logen (unfold, eval (A, C, constr (E, []») ,

logen (unfold, eval (B, C, constr (F, []») ,

logen (rescall ,D is E-F», true).

unfold __ 32 (7, eval (times (A, B) ,C, constr (D, []» ,

(logen (unfold, eval (A, C, constr (E, []») ,

logen (unfold, eval (B, C, constr (F , []») ,

logen(rescall,D is E*F», true).

unfold __ 32 (8, eval (eq (A ,B), C, constr (D, []» ,

(logen(unfold,eval(A,C,E»,

logen(unfold,eval(B,C,F»,

resif (logen(rescall ,E=F),

logen(rescall ,D=true),

logen (rescall ,D=f alse»), true).

unfold __ 32 (9, eval(let(A,B,C),D,E),

(logen(unfold,eval(B,D,F»,

logen(unfold,store(D,A,F,G»,

logen(unfold ,eval(C,G,E»), true).

unfold __ 32 (10, eval(if(A,B,C),D,E),

logen(unfold,eval_if(A,B,C,D,E», true).

unfold __ 32 (11, eval(if2(A,B,C),D,E),

(logen(unfold,eval(A,D,F»,

resif (logen(rescall ,F=constr(true, []»,

hide_nf(logen(unfold,eval(B,D,E»),

hide_nf(logen(unfold,eval(C,D,E»»), true).

unfold __ 32 (12, eval(lambda(A,B),_,lambda(A,B», true, true).

unfold __ 32 (13, eval(apply(A,B),C,D),

(logen(unfold,eval(B,C,E» ,

logen(unfold,rename(E,C,lambda(F,G») ,

logen(unfold,eval(A,C,H»,

logen(unfold,store(C,F,H,I»,logen(memo,eval(G,I,D»), true).

unfold __ 32 (14, eval(fun(A),_,B), logen(unfold,function(A,B», true).

unfold __ 32 (15, eval (print (A), _, constr (true, []» ,

(logen (rescall ,print (A», logen(rescall ,nl», true).

unfold __ 32 (16, eval_if(A,B,_,C,D),

(logen(unfold,test(A,C»,

logen (rescall ,!) ,

logen(unfold,eval(B,C,D»), true).

unfold __ 32 (17, eval_if (_, _, A, B, C), logen (unfold, eval (A, B, C», true).

unfold __ 32 (18, test(eq(A,B),C),

(logen(unfold,eval(A,C,D»,logen(unfold,eval(B,C,D»), true).

unfold __ 32 (19, rename(A,_,B), logen(call,B=A), true).

unfold __ 32 (20, function (fib,

lambda(x,

if (eq (var (x), cst (0» ,cst (1) ,

if (e q (v ar (x) , cst (1» , cst (1) ,

plus(apply(minus(var(x),cst(l»,fun(fib»,

apply (minus (var (x), cst (2» ,fun (fib»»») ,

true, true).

unfold __ 32 (21, store ([], A ,B, [AlB]), true, true).

unfold __ 32 (22, store ([AI _I B] ,A, C, [A/C 1 B]), true, true).

Appendix C Lix-Cogen

unfold __ 32 (23, store ([AlB 1 CJ ,0 ,E, [AlB 1 FJ),

(logen(call,O\==A),logen(unfold,store(C,O,E,F))), true).

unfold __ 32 (24, lookup (A, [AlB I_J ,B), true, true).

unfold __ 32 (25, lookup (A, [BI _I CJ ,0),

(logen (rescall ,A \==B) , logen (unfold, lookup (A, C, 0))), true).

unfold __ 32 (26, fib(A,B),

Clogen (unfold, store ([] ,x, A, C)) ,

164

I ogen (unf old, eval (apply (cst (A) , fun (f i b)) , C , cons t r (B , _)))), true).

unfold __ 32 (27, bench(A,B),

(logen (res call, A> B) , I ogen (re scalI, print (, Done')) , I ogen (res call, nl)), true).

unfold __ 32 (28, bench(A,B),

(logen (rescall ,A=<B) ,

logen(unfold,fib(A,C)),

logen (rescall ,!) ,

logen(rescall ,print(fib(A))),

logen(rescall,print(' == ')),

logen (rescall ,print (C)) ,

logen (rescall ,nl) ,

logen(rescall,D is A+1),

logen(memo,bench(O,B))), true).

/*gensym __ 20(_40266)=gensym(make_disj,_40266)*/

gensym __ 20 (A) :-

var(A),

oldvalue __ 2 (make_disj, B),

C is B+1,

set_flag __ 2 (make_disj, C),

name(C, D),

name(A, [109,97,107,101,95,100,105,115,106,95,95IDJ).

/*gensym __ 21 (_46645)=gensym(simpLi!y_eq,_46645)*/

gensym __ 21 (A) :-

var (A) ,

oldvalue __ 2(simplify_eq, B),

C is B+1,

set_flag __ 2(simplify_eq, C),

name(C, D),

name(A, [115,105,109,112,108,105,102,121,95,101,113,95,95IDJ).

/*gensym __ 22(_54 085)=gensym(simpLi!y_eqL,_54085)*/

gensym __ 22 (A) :-

var(A),

oldvalue __ 2(simplify_eqL, B),

C is B+1,

set_flag __ 2(simplify_eqL, C),

name(C, D),

name(A, [115,105,109,112,108,105,102,121,95,101,113,76,95,95ID]).

/*un!oLd __ 36(_56893,_56895,_56897,_56779)=

un!oLd(simpLi!y_eqL(_56893,_56895,_56897),_56779)*/

unfold __ 36 ([A], [B], C, D) :-

memo __ 21 (A, B, C, 0).

unfold __ 36([AIB]' [CID], (E,F), (G,H))

memo __ 21 (A, C, E, G),

memo __ 22(B, D, F, H).

/*memo __ 22(_52050,_52052,_52054,_51936)=

memo(simpLi!y_eqL(_52050,_52052,_52054),_51936)*/

memo __ 22(A, B, C, D) :-

memo_table (simplify_eqL(A,B,C), D) ->

true

gensym __ 22(E),

F= .. [E,G,H,I],

assert (memo_table (simplify_eqL(G,H,I) ,F)) ,

Appendix C Lix-Cogen

) .

findall«F:-J), unfold __ 36(G,H,I,J), K),

format('/*-k=-k*/-n', [F,simplify_eqL(G,H,I)]),

pretty_print_clauses __ 2(K),

memo_table(simplify_eqL(A,B,C), D)

l*unfoLd __ 35(_49451 ,_49453,_49455,_49337)=

unfoLd(simpLify_eq(_49451,_49453,_49455),_49337)*1

unfold __ 35 (A, B, fail, A\=B).

unfold __ 35 (A, B, true, A==B).

unfold __ 35 (A, B, A=B, (var (A) , !)).

un f old __ 3 5 (A, B, A = B, (var (B) , !)) .

unfold __ 35(A, B, C,
(nonvar(A),nonvar(B),functor(A,D,E),functor(B,D,E),

A= .. [DIF] ,B= .. [DIG] ,H)) :-

memo __ 22(F, G, C, H).

l*memo __ 21 (_44610,_44612,_44614,_44496)=

memo(simpLify_eq(_44610,_44612,_44614),_44496)*1
memo __ 21 (A, B, C, D) :-

) .

memo_table (simplify_eq(A,B,C), D) ->

true
gensym __ 21 (E),

F= .. [E,G,H,I],

assert(memo_table(simplify_eq(G,H,I),F)),

findall((F:-J), unfold __ 35(G,H,I,J), K),

format('/*-k=-k*rn', [F,simplify_eq(G,H,I)]),

pretty_print_clauses __ 2(K),

memo_table (simplify_eq(A,B,C), D)

l*unfoLd __ 34(_43068,_43070,_43072,_42954)=

unfoLd (make_disj(_43068,_43070,_43072),_42954)*1

unfold __ 34([(A,B)], C, D, (E,D=(F,A))) :-

memo __ 21(B, C, F, E).

unfold __ 34([(A,B)IC], D, (E;F), (G,H,E=(I,A)))

memo __ 20(C, D, F, G),

memo __ 21(B, D, I, H).

l*memo __ 20(_38231,_38233,_38235,_38117)=

memo(make_disj(_38231,_38233,_38235),_38117)*1

memo __ 20(A, B, C, D) :-

) .

memo_table (make_disj (A,B,C), D) ->

true
gensym __ 20(E),

F= .. [E,G,H,I],

assert (memo_table (make_disj (G,H,I) ,F)),

findall((F:-J), unfold __ 34(G,H,I,J), K),

format('/*-k=-k*/-n', [F,make_disj (G,H,I)]),

pretty_print_clauses __ 2(K),

memo_table (make_disj (A,B,C), D)

l*gensym __ 23(_42889)=gensym(fLatten,_42889)*1

gensym __ 23 (A) :-

var(A),
oldvalue __ 2(flatten, B),

C is B+1,
set_flag __ 2 (flatten, C),

name(C, D),
name(A, [102,108,97,116,116,101,110,95,95ID]).

l*unfoLd __ 37(_45685,_45687,_45573)=unfoLd(fLatten(_45685,_45687),-4 5573)*1

unfold __ 37((A:-B), (A:-C), (!,D)) :-

memo __ 23(B, C, D).

165

Appendix C Lix-Cagen

unfold __ 37 «A,B), C, (',D,E,(F=true->C=G;G=true->C=F;C=(F,G»»
memo __ 23(A, F, D),

memo __ 23(B, G, E).

unfold __ 37 «A;B), C, (! ,D,E,(F=true->C=G;G=true->C=F;C=(F;G»»
memo __ 23 (A, F, D),

memo __ 23(B, G, E).

unfold __ 37 «A->B;C), (D->E;F), (! ,G,H,I»

memo __ 23(A, D, G),

memo __ 23(B, E, H),

memo __ 23(C, F, I).

unfold __ 37 (A, A, true).

/*memo __ 23(_40967,_40969,_40855)=memo(!Latten(_40967,_40969),_40855)*/

memo __ 23(A, B, C) :-

memo_table (flatten(A,B), C) ->

true
gensym __ 23 (D),

E= .. [D,F,G],

assert(memo_table(flatten(F,G),E»,
findall«E:-H), unfold __ 37(F,G,H), I),

format('/*-k=-k*/-n', [E,flatten(F,G)]),

pretty_print_clauses __ 2(I) ,

memo_table(flatten(A,B), C)

) .
/*un!oLd __ 33(_35799,_35801 ,_35687)=un!oLd (body (_35799, _35801),_35687)*/

unfold __ 33 (true , true, true).

unfold __ 33«A,B), (C,D), (E,F»

unfold __ 33 (A, C, E),
unfold __ 33(B, D, F).

unfold __ 33 (logen(call ,A), true, call(A».

unf old __ 33 (logen (rescall ,A), A, true).

unfold __ 33 (logen(memo,A), B, C)

memo __ 14(A, B, C).

unfold __ 33(logen(unfold,A), B, C) :

memo __ 19(A, B, C).

unfold __ 33(resif(A,B,C), (D->E;F), (G,H,I»

unfold __ 33 (A, D, G),
unfold __ 33(B, E, H) ,
unf old __ 33 (C, F, I) .

unfold __ 33(if(A,B,C), D, (E->F,G=D;H,I=D»
unfold __ 33 (A, E) ,
unfold __ 33 (B, G, F) ,

unfold __ 33(C, I, H) .

unfold __ 33(resfindall(A,B,C), findall(A,D,C), E)

unfold __ 33(B, D, E).

unfold __ 33 (hide_nf(A) , B,

(term_variables(A,C),findall«D,C),E,F),(F=[]->B=fail;G,H»)

unfold __ 33 (A, D, E),

memo __ 20(F, C, I, G),

memo __ 23(I, B, H).

/*un!oLd __ 31 (_25679,_25681 ,_25567)=un!oLd(un!oLd(_2567 9,_25681),_25567)*/

unfold __ 31 (ann_clause (A, B, C), true, (true, ann_clause (A, B ,C»)

call(!).

unfold __ 31 (filter(A,B), true, (true,filter(A,B»)

call (!) .

unfold __ 31 (A, B, (C ,D» :
unfold __ 32(_, A, E, C),

unfold __ 33(E, B, D).

/*memo __ 19(_20695,_20697,_20583)=memo(un!oLd(_20695,_20697),_20583)*/

memo __ 19(A, B, C) :-

166

Appendix C Lix-Cogen

) .

memo_table (unfold(A.B). C) ->

true

A= .. [DIE].

length(E. F).

length(G. F).

H= .. [DIG].

append (G. [I]. J).

gensym __ 19(K).

L= .. [K I J] •

assert(memo_table(unfold(H.I).L».

findall«L:-M). unfold __ 31(H.I.M). N).

format (' /*-k=-k*rn'. [L. unfold (H, I)]) .
pretty_print_clauses __ 2(N),

memo_table (unfold(A,B), C)

l*gensym __ 24(_25967)=gensym(pretty_print_cLauses,_25967)*/

gensym __ 24 (A) :-

var(A),

oldvalue __ 2 (pretty_print_clauses, B).

C is B+l,

set_flag __ 2 (pretty_print_clauses, C),

name(C, D).

name(A, [112,114,101,116,116,121,95,112,114,105,

110 , 116 ,95 ,99 , 108 ,97 , 117 , 115 , 101 ,115 ,95 ,95 I D]) .

l*un!oLd __ 38(_28787,_28677)=un!oLd(pretty_print_cLauses(_28787),_28677)*1

unf old __ 38 ([], true).

unfold __ 38 ([AlB], (C,portray_clause(D),E»

memo __ 23 (A, D, C),

memo __ 24 (B, E).

l*memo __ 24(_24158,_24048)=memo(pretty_print_cLauses(_24158),_24048)*1

memo __ 24 (A, B) :-

) .

memo_table (pretty_print_clauses(A), B) ->

true

gensym __ 24 (C) ,

D= .. [C,E],

assert(memo_table(pretty_print_clauses(E),D» ,

findall«D:-F), unfold __ 38(E,F), G).

format (, /*-k=-k*/-n', [D ,pretty_print_clauses (E)]),

pretty_print_clauses __ 2(G).

memo_table (pretty_print_clauses(A), B)

l*un!oLd __ 21 (_16071,_16073,_15959)=un!oLd (memo (_16071, _16073),_15959)*1

unfold __ 21 (A, B,

(memo_table (A,B)->true

C,assert(memo_table(D,E»,

findall«E:-F),G,H),

format('/*-k=-k*/-n' ,[E,D]),I.memo_table(A,B»)

unfold __ 22 (A, D, E, C),

memo __ 19(D, F, G),

memo __ 24 (H, I).

l*memo __ 14(_11091,_11093,_10979)=memo(memo(_11091,_11093),_10979)*1

memo __ 14(A, B, C) :-

memo_table(memo(A,B). C) ->

true

A= .. [DIE],

length (E, F),

length(G, F),

H= .. [DIG],

167

Appendix C Lix-Cogen 168

) .

append(G, [1], J),

gensym __ 14(K),

L= .. [KIJ],

assert(memo_table(memo(H,I),L»,

findall«L:-M), unfold __ 21(H,1,M), N),

forma t (, / * - k = - k * / - n', [L, memo (H , I)]) ,

pretty_print_clauses __ 2(N),

memo_table (memo(A,B), C)

l*unfoLd __ 20(_8135,_8137,_8023)=unfoLd(Lix(_8135,_8137),_8023)*1

unfold __ 20(A, B,

(retractall(memo_table(_,_»,

print('/*Generated by Lix*/\n'),

print(':- dynamic flag/2, memo_table/2.\n'),

print (, : - use_module (li brary (lists» . \n') ,

print(':- use_module (library(terms».\n'),

print(':- op(1150, fx, type).\n'),

print(':- dynamic filter/2.\n'),print(':- dynamic ann_clause/3. \n'),C»

memo __ 14(A, B, C).

l*memo __ 13(_3160, 3162,_3048)=memo(Lix(_3160,_3162),_3048)*1

memo __ 13(A, B, C) :-

) .

memo_table(lix(A,B), C) ->

true

A= .. [DIE],

length (E, F),

length(G, F),

H= .. [DIG],

append(G, [I], J),

gensym __ 13 (K),

L= .. [K I J] ,

assert(memo_table(lix(H,I),L»,

findall«L:-M), unfold __ 20(H,1,M), N),

format('/*-k=-k*rn', [L,lix(H,1)]),

pretty_print_clauses __ 2(N),

memo_table(lix(A,B), C)

I*Lix __ 2(_1675,_1677,_1563)=Zix(Zix(_1675,_1677),_1563)*/

lix __ 2(A, B, C) :

retractall (memo_table (_,_»,

print('/*Generated by Lix*/\n'),

print(':- dynamic flag/2, memo_table/2.\n'),

print(':- use_module(library(lists».\n'),

print(':- use_module(library(terms».\n'),

print(':- op(i150, fx, type).\n'),

print(':- dynamic filter/2.\n'),

print(':- dynamic ann_clause/3. \n'),

memo __ 13(A, B, C).

Bibliography

Sergei M. Abramov and Robert Gluck. From standard to non-standard semantics by

semantics modifiers. International Journal of Foundations of Computer Science, 12

(2):171-211, 2001.

Elvira Albert, Sergio Antoy, and German Vidal. Measuring the Effectiveness of Par

tial Evaluation in Functional Logic Languages. In Proc. of 10th Int'l Workshop on

Logic-based Program Synthesis and Transformation (LOPSTR '2000), pages 103-124.

Springer LNCS 2042, 2001.

Elvira Albert and German Vidal. Symbolic profiling for multi-paradigm declarative

languages. In Logic-Based Program Synthesis and Transformation (Proc. of LOP

STR '01), pages 148-167. Springer LNCS 2372, 2002.

Lars Ole Andersen. Program Analysis and Specialization for the C Programming Lan

guage. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report

94/19).

Krzysztof R. Apt. Introduction to logic programming. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, chapter 10, pages 495-574. North-Holland

Amsterdam, 1990.

F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.

Theory and Practice of Logic Programming, January 2004.

Anders Bondorf, Frank Frauendorf, and Michael Richter. An experiment in automatic

self-applicable partial evaluation of Prolog. Technical Report 335, Lehrstuhl Infor

matik V, University of Dortmund, 1990.

D. Boulanger and M. Bruynooghe. A systematic construction of abstract domains. In

B. Le Charlier, editor, Proc. First International Static Analysis Symposium, SAS'94,

volume 864 of Lecture Notes in Computer Science, pages 61-77, 1994.

D. Boulanger, M. Bruynooghe, and M. Denecker. Abstracting s-semantics using a model

theoretic approach. In M. Hermenegildo and J. Penjam, editors, Proc. ~h Interna

tional Symposium on Programming Language Implementation and Logic Program

ming, P LILP '94, volume 844 of Lecture Notes in Computer Science, pages 432-446,

1994.

169

BIBLIOGRAPHY 170

Antony F. Bowers and Corin A. Gurr. Towards fast and declarative meta-programming.

In K. R Apt and F. Turini, editors, Meta-logics and Logic Programming, pages 137-

166. MIT Press, 1995.

B. Brassel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Runtime Profiling of Functional

Logic Programs. In Proc. of the 14th Int'l Symp. on Logic-based Program Synthesis

and Transformation (LOPSTR '04), pages 178-189, 2004.

M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite

unfolding during partial deduction. New Generation Computing, 11(1):47-79, 1992.

M. Bruynooghe and G. Janssens. An instance of abstract interpretation integrating

type and mode inferencing. In RA. Kowalski and K.A. Bowen, editors, Proceedings

of ICLP jSLP, pages 669-683. MIT Press, 1988.

Maurice Bruynooghe, Michael Codish, John Gallagher, Samir Genaim, and Wim Van

hoof. Termination analysis through combination of type based norms. Technical

report, Department of Computer Science; Ben-Gurion University, May 2003.

Maurice Bruynooghe, Michael Leuschel, and Kostis Sagonas. A polyvariant binding-time

analysis for off-line partial deduction. In Chris Hankin, editor, Proceedings of the Eu

ropean Symposium on Programming (ESOP'98), LNCS 1381, pages 27-41. Springer

Verlag, April 1998.

M. Codish and B. Demoen. Analysing logic programs using "Prop"-ositionallogic pro

grams and a magic wand. In D. Miller, editor, Proceedings of the 1993 International

Symposium on Logic Programming, Vancouver. MIT Press, 1993.

M. Codish and B. Demoen. Deriving type dependencies for logic programs using mul

tiple incarnations of Prop. In B. Le Charlier, editor, Proceedings of SAS'94, Namur,

Belgium, 1994.

M. Codish and V. Lagoon. Type dependencies for logic programs using ACI-unification.

Theoretical Computer Science, 238(1-2):131-159, 2000.

Michael Codish and Cohavit Taboch. A semantic basis for the termination analysis of

logic programs. The Journal of Logic Programming, 41(1):103-123, 1999.

H. Comon, M. Dauchet, R Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications. Available on:

http://wwTil.grappa.univ-lille3.fr/tata. 1997. Release October 2002.

Stephen-John Craig and Michael Leuschel. A compiler generator for constraint logic

programs. In M Broy and A Zamulin, editors, Perspectives of System Informatics,

volume 2890 of LNCS, pages 148-161. Springer, 2003.

BIBLIOGRAPHY 171

Stephen-John Craig and Michael Leuschel. Lix: an effective self-applicable partial eval

uator for Prolog. In Yukiyoshi Kameyama and Peter J. Stuckey, editors, Functional

and Logic Programming, 7th International Symposium, FLOPS 2004, Nara, Japan,

April 7-9, 2004, Proceedings, pages 85-99, 2004.

Stephen-John Craig, Michael Leuschel, John Gallagher, and Kim Henriksen. Fully au

tomatic Binding Time Analysis for Prolog. In Sandro Etalle, editor, Logic Based

Program Synthesis and Transformation, 14th International Workshop, pages 61-70,

2004.

Danny De Schreye, Robert Gluck, Jesper J0rgensen, Michael Leuschel, Bern Martens,

and Morten Heine S0rensen. Conjunctive partial deduction: Foundations, control,

algorithms and experiments. The Journal of Logic Programming, 41(2 & 3):231-277,

November 1999.

Stefaan Decorte, Danny De Schreye, Michael Leuschel, Bern Martens, and Konstantinos

Sagonas. Termination analysis for tabled logic programming. In Norbert Fuchs,

editor, Proceedings of the International Workshop on Logic Program Synthesis and

Transformation (LOPSTR '97), LNCS 1463, pages 111-127, Leuven, Belgium, July

1998. ISBN 3-540-65074-1.

Stefaan Decorte, Danny De Schreye, and Massimo Fabris. Automatic inference of norms:

A missing link in automatic termination analysis. In ILPS, pages 420-436, 1993.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, Vol. B, pages 243-320. Elsevier, MIT

Press, 1990.

A.E. Eiben and J .E. Smith. Introduction to Evolutionary Computing. Springer-Verlag,

2003.

Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Automated strategies for

specializing constraint logic programs. In Logic Based Program Synthesis and Trans

formation. Proceedings of Lopstr'2000, LNCS 1207, pages 125-146, 2000.

Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Verifying ctl properties

of infinite-state systems by specializing constraint logic programs. In Proceedings of

VCL '2001, Florence, Italy, September 2001.

H. Fujita and K. Furukawa. A self-applicable partial evaluator and its use in incremental

compilation. New Generation Computing, 6(2 & 3):91-118, 1988.

Y Futamura. Partial evaluation of computation process- an approach to a compiler

compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

J. Gallagher, D. Boulanger, and H. Saglam. Practical model-based static analysis for def

inite logic programs. In J. W. Lloyd, editor, Proc. of International Logic Programming

Symposium, pages 351-365, 1995.

BIBLIOGRAPHY 172

J. P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of the

1993 ACM SIGPLAN symposium on Partial evaluation and semantics-based program

manipulation, pages 88-98. ACM Press, 1993. ISBN 0-89791-594-1.

John Gallagher. A system for specialising logic programs. Technical Report TR-91-32,

University of Bristol, November 1991.

John Gallagher and Maurice Bruynooghe. Some low-level transformations for logic

programs. In M Bruynooghe, editor, Proceedings of Meta90 Workshop on Meta Pro

gramming in Logic, pages 229-244, 1990.

John Gallagher and Maurice Bruynooghe. The derivation of an algorithm for program

specialisation. New Generation Computing, 9(3 & 4):305-333, 1991.

John Gallagher and Kim Henriksen. Abstract domains based on regular types. In

V Lifschitz and Bart Demoen, editors, Proceedings of the International Conference on

Logic Programming (ICLP'2004), LNCS, page to appear. Springer Verlag, 2004.

Samir Genaim and Michael Codish. Inferring termination conditions for logic programs

using backwards analysis. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of

the Eighth International Conference on Logic for Programming, Artificial Intelligence

and Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence, pages 681-690.

Springer-Verlag, December 2001.

Robert Gluck. On the generation of specialisers. Journal of Functional Programming, 4

(4):499-514, 1994.

Robert Gluck. Jones optimality, binding-time improvements, and the strength of pro

gram specializers. In Proceedings of the ASIAN symposium on Partial evaluation and

semantics-based program manipulation, pages 9-19. ACM Press, 2002. ISBN 1-58113-

458-4.

Robert Gluck and Jesper Jorgensen. An automatic program generator for multi-level

specialization. Lisp and Symbolic Computation, 10(2):113-158, 1997.

Robert Gluck and Morten Heine Sorensen. A roadmap to metacomputation by super

compilation. In Selected Papers from the Internaltional Seminar on Partial Evalua

tion, pages 137-160. Springer-Verlag, 1996. ISBN 3-540-61580-6.

C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language

Godet. PhD thesis, Department of Computer Science, University of Bristol, January

1994a.

C. A. Gurr. Specialising the ground representation in the logic programming language

Godel. In Y. Deville, editor, Logic Program Synthesis and Transformation. Proceed

ings of LOPSTR '93, Workshops in Computing, pages 124-140, Louvain-La-Neuve,

Belgium, 1994b. Springer-Verlag.

BIBLIOGRAPHY 173

Patricia Hill and John Gallagher. Meta-programming in logic programming. In D. M.

Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial

Intelligence and Logic Programming, volume 5, pages 421-497. Oxford Science Publi

cations, Oxford University Press, 1998.

Carsten Kehler Holst. Syntactic currying: yet another approach to partial evaluation.

Technical report, DIKU, Department of Computer Science, University of Copenhagen,

1989.

K. Horiuchi and T. Kanamori. Polymorphic type inference in prolog by abstract in

terpretation. In Proc. 6th Conference on Logic Programming, volume 315 of Lecture

Notes in Computer Science, pages 195-214, 1987.

Joxan Jaffar, Spiro Michaylov, and Roland H. C. Yap. A methodology for managing hard

constraints in CLP systems. In Proceedings of the ACM SIGPLAN 1991 conference

on Programming language design and implementation, pages 306-316. ACM Press,

1991. ISBN 0-89791-428-7.

N.D. Jones. Transformation by interpreter specialisation. Science of Computer Pro

gramming, 52:307-339, 2004.

Neil D. Jones. What not to do when writing an interpreter for specialisation. In Olivier

Danvy, Robert GlUck, and Peter Thiemann, editors, Partial Evaluation, volume 1110

of Lecture Notes in Computer Science, pages 216-237. Springer-Verlag, 1996.

Neil D. Jones, Carsten K. Gomard, Anders Bondorf, Olivier Danvy, and Torben lEo

Mogensen. A self-applicable partial evaluator for the lambda calculus. In 1990 Inter

national Conference on Computer Languages, New Orleans, Louisiana, March 1990,

pages 49-58. IEEE Computer Society, March 1990.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic

program generation. Prentice-Hall, Inc., 1993. ISBN 0-13-020249-5.

Neil D. Jones, Peter Sestoft, and Harald Sondergaard. An experiment in partial eval

uation: the generation of a compiler generator. SIGPLAN Not., 20(8):82-87, 1985.

ISSN 0362-1340.

Neil D. Jones, Peter Sestoft, and Harald Sondergaard. Mix: a self-applicable partial

evaluator for experiments in compiler. List and Symbolic Computation, 2(1):9-50,

1989.

J. Jorgensen and M. Leuschel. Efficiently generating efficient generating extensions in

Prolog. In Olivier Danvy, Robert Gliick, and Peter Thiemann, editors, Partial Eval

uation, International Seminar, LNCS 1110, pages 238-262, SchloE Dagstuhl, 1996.

Springer-Verlag.

BIBLIOGRAPHY 174

Jesper J0rgensen, Michael Leuschel, and Bern Martens. Conjunctive partial deduction

in practice. In John Gallagher, editor, Logic Program Synthesis and Transformation.

Proceedings of LOPSTR '96, LNCS 1207, pages 59-82, Stockholm, Sweden, August

1996. Springer-Verlag.

S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.

Jan Komorowski. An introduction to partial deduction. In A. Pettorossi, editor, Pro

ceedings Meta'92, LNCS 649, pages 49-69. Springer-Verlag, 1992.

Michael Leuschel. Partial evaluation of the "real thing" . In Laurent Fribourg and Franco

Turini, editors, Logic Program Synthesis and Transformation - Meta-Programming

in Logic. Proceedings of LOPSTR'94 and META '94, LNCS 883, pages 122-137, Pisa,

Italy, June 1994. Springer-Verlag.

Michael Leuschel. The ECCE partial deduction system and the DPPD library of bench

marks. Obtainable via http://TilWVl . ecs. soton. ac. ukrmal, 1996-2004.

Michael Leuschel. Logic program specialisation. In John Hatcliff, Torben lE. Mogensen,

and Peter Thiemann, editors, Partial Evaluation: Practice and Theory, LNCS 1706,

pages 155-188 and 271-292, Copenhagen, Denmark, 1999. Springer-Verlag. ISBN

3-540-66710-5.

Michael Leuschel. Homeomorphic embedding for online termination of symbolic meth

ods. In Torben lE. Mogensen, D. Schmidt, and 1. H. Sudborough, editors, The Essence

of Computation - Essays dedicated to Neil Jones, LNCS 2566, pages 379-403. Springer

Verlag, 2002. ISBN 3-540-00326-6.

Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through partial

deduction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461-

515, July & September 2002.

Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro Araki,

Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805,

pages 855-874. Springer-Verlag, 2003. ISBN 3-540-40828-2.

Michael Leuschel, Stephen-John Craig, Maurice Bruynooghe, and Wim Vanhoof. Spe

cializing interpreters using offline partial deduction. In Maurice Bruynooghe and

Kung-Kiu Lau, editors, Program Development in Computational Logic, LNCS 3049.

Springer-Verlag, 2004a.

Michael Leuschel and Danny De Schreye. Towards creating specialised integrity checks

through partial evaluation of meta-interpreters. In Proceedin9s of PEPM'95, the ACM

Sigplan Symposium on Partial Evaluation and Semantics-Based Pro9ram Manipula

tion, pages 253-263, La Jolla, California, June 1995. ACM Press.

BIBLIOGRAPHY 175

Michael Leuschel and Danny De Schreye. Logic program specialisation: How to be more

specific. In H. Kuchen and S.D. Swierstra, editors, Proceedings of PLILP'96, LNCS

1140, pages 137-151, Aachen, Germany, September 1996. Springer-Verlag.

Michael Leuschel, Jesper J0rgensen, Wim Vanhoof, and Maurice Bruynooghe. Offline

specialisation in Prolog using a hand-written compiler generator. Theory and Practice

of Logic Programming, 4(1):139-191, 2004b.

Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation and

polyvariance in partial deduction of normal logic programs. A CM Transactions on

Programming Languages and Systems, 20(1):208-258, January 1998.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

J. W. Lloyd and R. W. Topor. Making Prolog more expressive. Journal of Logic

Programming, 1(3):225-240, 1984.

Henning Makholm. On Jones-optimal specialization for strongly typed languages. In

Walid Taha, editor, Semantics, Applications and Implementation of Program Gener

ation, volume 1924 of Lecture Notes In Computer Science, pages 129-148, Montreal,

Canada, 20 September 2000. Springer-Verlag.

K Marriott and P. Stuckey. The 3 R's of optimizing constraint logic programs: Re

finement, removal, and reordering. In Proceedings of POPL'93, pages 334-344. ACM

Press, 1993.

Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction.

MIT Press, 1998. ISBN 0-262-13341-5.

B. Martens and D. De Schreye. Two semantics for definite meta-programs, using the

non-ground representation. In K R. Apt and F. Turini, editors, Meta-logics and Logic

Programming, pages 57-82. MIT Press, 1995a.

B. Martens and D. De Schreye. Why untyped non-ground meta-programming is not

(much of) a problem. The Journal of Logic Programming, 22(1):47-99, 1995b.

Bern Martens. On the Semantics of Meta-Programming and the Control of Partial

Deduction in Logic Programming. PhD thesis, KU. Leuven, February 1994.

Bern Martens and John Gallagher. Ensuring global termination of partial deduction

while allowing flexible polyvariance. In L Sterling, editor, Proceedings ICLP'95, pages

597-613. MIT Press, June 1995.

T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog.

In Kung-Kiu Lau and Tim Clement, editors, Logic Program Synthesis and Transfor

mation. Proceedings of LOPSTR'92, pages 214-227. Springer-Verlag, 1992.

BIBLIOGRAPHY 176

Julio C. Peralta. Analysis and Specialisation of Imperative Programs: An approach using

CLP. PhD thesis, Department of Computer Science, University of Bristol, July 2000.

Julio C. Peralta and John P. Gallagher. Towards semantics-based partial evaluation

of imperative programs. Technical Report CSTR-97-003, Department of Computer

Science, University of Bristol, April 1997.

Julio C. Peralta and John P. Gallagher. Convex hull abstractions in specialization of CLP

programs. In Michael Leuschel, editor, Logic-based Program Synthesis and Transfor

mation (LOPSTR '2002), LNCS 2664, pages 90-108, Madrid, Spain, September 2002.

Springer-Verlag.

Alberto Pettorossi and Maurizio Proietti. Transformation of logic programs: Founda

tions and techniques. The Journal of Logic Programming, 19& 20:261-320, May 1994.

Steven Prestwich. The PADDY partial deduction system. Technical Report ECRC-92-6,

ECRC, Munich, Germany, 1992.

D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation

Computing, 12(1):7-51, 1993.

Donald A. Smith. Partial evaluation of pattern matching in constraint logic program

ming languages. In N. D. Jones and P. Hudak, editors, ACM Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, pages 62-71. ACM Press

Sigplan Notices 26(9), 1991.

Donald A. Smith and Timothy Hickey. Partial evaluation of a CLP language. In S.K.

Debray and M. Hermenegildo, editors, Proceedings of the North American Conference

on Logic Programming, pages 119-138. MIT Press, 1990.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of

Mercury: An efficient purely declarative logic programming language. The Journal of

Logic Programming, 29(1-3):17-64, 1996.

Morten Heine SOrensen and Robert Gluck. An algorithm of generalization in positive

supercompilation. In John W. Lloyd, editor, Proceedings of ILPS'9S, the International

Logic Programming Symposium, pages 465-479, Portland, USA, December 1995. MIT

Press.

Michael Sperber, Peter Thiemann, and Hervert Klaeren. Distributed partial evaluation.

In Proceedings of the second international symposium on Parallel symbolic computa

tion, pages 80-87. ACM Press, 1997. ISBN 0-89791-951-3.

Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.): advanced programming

techniques. MIT Press, 1994. ISBN 0-262-19338-8.

Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit

annotations. Theoretical Computer Science, 248:211-242, 2000.

BIBLIOGRAPHY 177

Yi Tao, William 1. Grosky, and Chunnian Liu. An automatic partial deduction system

for constraint logic programs. In ICTAl, pages 149-156, 1997.

W. Vanhoof and B. Martens. To parse or not to parse. In Norbert Fuchs, editor,

Logic Program Synthesis and Transformation. Proceedings of LOPSTR '97, LNCS

1463, pages 322-342, Leuven, Belgium, July 1997. ISBN 3-540-65074-1.

Wim Vanhoof. Binding-time analysis by constraint solving: a modular and higher-order

approach for mercury. In M. Parigot and Andrei Voronkov, editors, Proceedings of

LPAR'2000, LNAI 1955, pages 399-416. Springer-Verlag, 2000.

Wim Vanhoof and Maurice Bruynooghe. Binding-time analysis for mercury. In Danny

De Schreye, editor, Proceedings of the International Conference on Logic Programming

ICLP'99, pages 500-514. MIT Press, 1999.

Wim Vanhoof and Maurice Bruynooghe. Binding-time annotations without binding-time

analysis. In R. Nieuwenhuis and A Voronkov, editors, Logic for Programming, Ar

tificial Intelligence, and Reasoning, 8th International Conference, LNCS 2250, pages

707-722. Springer-Verlag, 200la.

Wim Vanhoof and Maurice Bruynooghe. When size does matter. In LOPSTR '01: Se

lected papers from the 11th International Workshop on Logic Based Program Synthesis

and Transformation, pages 129-147. Springer-Verlag, 2001 b. ISBN 3-540-43915-3.

Wim Vanhoof, Maurice Bruynooghe, and Michael Leuschel. Binding-time analysis for

Mercury. In Maurice Bruynooghe and Kung-Kiu Lau, editors, Program Development

in Computational Logic, LNCS 3049. Springer-Verlag, 2004.

Raf Venken and Bart Demoen. A partial evaluation system for Prolog: Theoretical and

practical considerations. New Generation Computing, 6(2 & 3):279-290, 1988.

G. Vidal. Cost-Augmented Partial Evaluation of Functional Logic Programs. Higher

Order and Symbolic Computation, 17(1-2):7-46, 2004.

R. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of software

and the atlas project. Parallel Computing, 27(1-2):3-35, 2001.

Index

Annotation

call, 23, 50, 55, 77

findall, 34, 50

hideJlf, 50

if, 35, 50

memo, 22, 50, 55, 77

online, 50, 96

rescall, 23, 50, 55, 77

resfindall, 50

resif, 35, 50

reswhen, 50, 93

semiwhen, 50, 94

unfold, 22, 50, 55, 77

when, 50, 93

annotation configurations, 78

atom, 15

beam search, 83

binary clause semantics, 63, 128

binding-time analysis, 53, 54, 72

built-ins, 23, 61

characteristic tree, 5

clause, 15

clause indexing, 75

cogen, 8, 28, 39

computed answer, 16

configurations, 78

constraint logic programming, 9, 100

algorithm, 103

memoisation, 102

non-linear constraints, 105

rounding errors, 109

unfolding, 106

convex hull, 64, 107

coroutines, 10, 91

cut, 35

disjoint regular types, 59

ECCE, 74

example

append, 3, 17, 24

append gx, 37

clp, 101

clp loan, 110, 111

coroutine, 92

inboth,73

index_test, 75

lambda interpreter, 42

match, 77, 85

online, 97

power, 2

transpose, 66

Filter

bindings, 55

dynamic, 51, 54, 77

list environment, 55

nonvar, 33, 51

semi, 51

static, 51, 54, 77

filtering, 20

findall/3, 34

fitness function, 81

Futamura projections, 8, 27, 28, 37, 39

generalisation, 20

generating extensions, 37

global control, 18, 25, 62, 73

if-then-else, 35

interpreter, 6, 113

178

INDEX

binary clause semantics, 128

lambda, 42

Lloyd Topor transformation, 131

self-interpreter, 6, 113

vanilla, 7, 113

vanilla caching, 125

vanilla debugging, 117

vanilla profiling, 121

Jones optimality, 6, 115

Kleene's-m-n theorem, 2

literal, 15

LIX , 23

Lloyd Topor transformation, 131

local control, 18, 25, 62, 73

LOGEN , 19, 40

LOGIMIX,41

memo/2, 22

mgu, 15

MIXTUS,74

mutations, 78

norm, 64

omine techniques, 5

algorithm, 20

online techniques, 3

characteristic Tree, 5

PADDY, 74

parallelisation, 89

partial deduction

algorithm, 20

program, 15

PYLOGEN ,47

regular types, 58

disjoint types, 59

resultant, 18

rigidity, 64

SAGE, 41, 74

self-application, 8, 27, 36

SLD-derivation, 16

SLD-derivation step, 16

SLD-refutation, 16

SLD-tree, 16

complete, 17

incomplete, 17

sP,74

substitution, 15

term, 14

termination checking, 62, 65

types, 55

when/2, 10, 91

179

