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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

Minimum Bit Error Ratio Beamforming 

by N urul Nadia Ahmad 

The main objective of employing smart antennas is that of combating the effects of multipath fading 
on the desired signal and suppressing interfering signals, thereby potentially increasing both the bit 
error ratio performance and the capacity of wireless systems. Specifically, in smart antenna aided 

systems multiple antennas may be invoked at the transmitter and/or the receiver, where the antennas 
may be arranged for achieving spatial diversity, directional beamforming or for attaining both. In 

smart antenna assisted systems the achievable performance improvements are usually a function of 
the antenna spacing and that of the algorithms invoked for processing the signals received by the 

antenna elements. This treatise is focused on adaptive beamforming employing the temporal reference 
technique (TRT). We explore a range of efficient adaptive algorithms designed for the sake of optimising 

the achievable beamforming performance. 

Based on the traditional Minimum Mean Square Error (MMSE) criterion we commence our study 
by investigating three classic algorithms, namely the Recursive Least Square (RLS), the Direct Matrix 
Inversion (DMI) and the Recursive Sample Matrix Inversion (RSMI) algorithms in order to determine 

the optimal array weight values. We evaluate and compare their performance in terms of the attainable 
Signal-to-Interference Ratio (SIR), as a function of the received signal power and that of the reference 

sequence length used for Binary Phase Shift Keying (BPSK) transmissions over an Additive White 
Gaussian Noise (AWGN) channel. A three-element uniform linear array was then employed to observe 

the array's angular response at the defined angles, as the number of interfering signals is increased. 

The RLS algorithm was used for conducting these simulations over both AWGN and flat Rayleigh 
fading channels. For the adaptive algorithms discussed, we evaluate the associated complexity as a 
function of the number of antenna elements invoked. 

Our further investigations were motivated by the rationale that the ultimate performance measure 

is the achievable bit error ratio. Therefore, instead of the MMSE criterion we continue our investi

gations by invoking the novel approach of Minimum Bit Error Ratio (MBER) beamforming, which is 
based on directly minimising the system's Bit Error Ratio (BER). We employed a simplified conjugate 

gradient algorithm for determining the array weights of this MBER beamforming solution. Several 
adaptive versions of the MBER algorithm were presented, which were categorised into two classes, 

namely the family of block-data based and the set of sample-by-sample adaptive stochastic gradient 
based algorithms. 

In the block-data based adaptive algorithm category we studied the Block Adaptive Conjugate 

Gradient (BACG) algorithm, while in the stochastic gradient category we investigated both the Least 
Bit Error Rate (LBER) and the Approximate LBER (ALBER) algorithms. The ALBER algorithm 

consistently outperformed the LBER algorithm, despite having as Iowa complexity as the well-known 
LMS algorithm, provided that the related algorithmic parameters were appropriately chosen. 

To circumvent the drawbacks of the gradient based adaptive MBER algorithms, namely those of 
the BACG, LBER and ALBER algorithms we invoked Genetic Algorithms (GAs) in conjunction with 
the MBER beamforming scheme. The convergence behaviour of the G A was studied by evaluating the 
probability density function (PDF) of the BER at the beamformer's output. It was shown that GA 
is capable of circumventing many of the problems encountered by the MBER beamforming scheme. 



Acknowledgements 

I would like to thank all of those people who helped me to complete this thesis. 

First, I wish to thank both my supervisors, Prof. Lajos Hanzo and Dr. Sheng Chen for their 

willingness to share with me their wealth of intuition, patience and support as they guided me in this 

work. Prof. Hanzo has been an invaluable guide throughout this entire process. He has dedicated his 

time to helping me with every aspect of this work. I am truly grateful for his kindness and his generous 

financial assistance. Dr. Chen's enthusiasm and determination has always inspired me. Advice and 

words of encouragement from both of them kept me motivated. My gratitude for their assistance is 

simply immeasurable. Many thanks also to Dr. Lie-Liang Yang and to Dr. Tim O'Farrell for their 

suggestions on the improvement of the report. 

I would also like to thank the Multimedia University for approving my study leave in pursuing this 

degree and Majlis Amanah Rakyat (MARA) for their financial support. 

Many thanks to Dr. Soon Xin Ng and Dr. Bee Leong Yap for their assistance with the computer 

system as well as with their help in programming and in using the Linux operating system. My thanks 

also go to Dr. Byoung Jo Choi for his Latex tutorial, to Dr. Jin Yee Chung, Dr. Hafizal Mohamad and 

Noor Shamsiah Othman for support, helps and discussions in C programming, GLE and Latex, to 

Dr. Matthias Munster for his assistance in understanding the beamforming concept, to Dr. Jason Wong 

Pee Ng for introducing me to Genetic Algorithms (GAs), to Chandy Vitale and Gianluca Vesentini 

for their help and insightful discussions on GAs while doing their project in our group. I would like to 

continue by thanking Dr. Ahmad Kamsani Samingan for his tutorial, to Dr. Mohamad Yusoff Alias 

and Andreas Wolfgang for their generous help and discussions on several related topic. My thanks are 

also due to everyone in the Communications Research Group, both in the past and presently, thank 

you for the friendship, knowledge, discussions, advice and help throughout this project. A special 

thank you goes to Denise Harvey and Rebecca Earl for their help with administrative matters. 

Outside the research group, I have also cherished the company of several friends throughout my 

stay at Southampton. Thanks also due to every single friend, both in the UK and Malaysia - too 

numerous to be mentioned here, for their wonderful friendship and for their support over the years. 

To my family in Malaysia, thank you for their love, continual support and prayer. Especially to 

my parents, Ahmad Abdollah and Aminah Abdullah, I cannot thank them enough for the sacrifices 

they made in raising me. I am very grateful to have them as my parents. 

Finally, I extend my greatest gratitude to Allah for giving me the opportunity to meet the wonderful 

people mentioned above and for the strength to complete my studies. 



List of Publications 

1. S. Chen, L. Hanzo, N. N. Ahmad and A. Wolfgang, "Adaptive Minimum Bit Error Rate 

Beamforming Assisted Receiver for QPSK Wireless Communications", accepted in Digital Signal 

Processing, Elsevier, 2005. 

2. S. Chen, N. N. Ahmad and L. Hanzo, "Adaptive Minimum Bit Error Rate Beamforming", 

to appear in IEEE 'fransactions on Wireless Communications, March 2005. 

3. S. Chen, L. Hanzo, N. N. Ahmad and A. Wolfgang, "Adaptive Minimum Bit Error Rate 

Beamforming Assisted QPSK Receiver", International Conference on Communications (ICC) 

2004 - Wireless Communications Symposium, Paris, France, June 20-24, 2004, Vol. 6, pp. 3389-

3393. 

4. A. Wolfgang, N. N. Ahmad, S. Chen and L. Hanzo, "Genetic Algorithm Assisted Mini

mum Bit Error Rate Beamforming" , IEEE Vehicular Technology Conference (VTC) 2004 Spring, 

Milan, Italy, May 17-19, 2004, Vol. 1, pp. 142-146. 

5. A. Wolfgang, N. N. Ahmad, S. Chen and L. Hanzo, "Genetic Algorithm Assisted Error 

Probability Optimisation for Beamforming", IEE Electronics Letters, 4th of March, 2004, Vol. 

40, No.5, pp. 320-322. 

6. S. Chen, L. Hanzo and N. N. Ahmad, "Adaptive Minimum Bit Error Rate Beamforming 

Assisted Receiver for Wireless Communications" , in Proceedings of International Conference on 

Acoustics, Speech and Signal Processing (ICASSP) 2003, Hong Kong, China, April 6-10, 2003, 

Vol. IV, pp. 640-643. 

7. S. Chen, N. N. Ahmad and L. Hanzo, "Smart Beamforming for Wireless Communica

tions; A Novel Minimum Bit Error Rate Approach", in Proceedings of 2nd. IMA International 

Conference on Mathematics in Communications, Lancaster, UK, December 16-18, 2002, 4 pages. 

8. M. Vitale, G. Vesentini, N. N. Ahmad and L. Hanzo, "Genetic Algorithm Assisted 

Adaptive Beamforming", in Proceedings of VTC 2002 Fall, Vancouver, Canada, 2002, Vol. 1, 

pp. 601-605. 

VI 



Contents 

Abstract 

Acknowledgements 

List of Publications 

1 Introduction 

1.1 Organisation of the Thesis . 

1.2 Motivation of the Thesis . . 

1.2.1 Sources of Impairments in Wireless Communications 

1.2.2 Smart Antennas ............. . 

1.2.2.1 Advantages of Smart Antennas. 

1.2.2.2 Classification of Smart Antennas 

1. 3 Summary . . 

2 Adaptive Beamforming 

2.1 Introduction. . . . . . 

2.1.1 Historic Background of Beamforming . 

2.1.2 Classification of Adaptive Beamforming 

2.2 Basic Concepts of Beamforming . 

2.2.1 Signal Model ...... . 

2.2.2 Beamforming Processing Scheme 

2.2.2.1 Element-Space Beamforming and Beam-Space Beamforming 

2.2.2.2 Narrowband Beamforming and Wideband Beamforming ... 

vii 

iii 

v 

VI 

1 

1 

2 

2 

3 

4 

6 

8 

10 

10 

10 

21 

24 

24 

30 

30 

32 



2.2.3 Beamforming Example ................ . 

2.3 Criteria for Determining the Optimal Beamforming Weights 

2.3.1 Minimum Mean Square Error Criterion ..... 

2.3.2 Maximum Signal-to-Interference Ratio Criterion 

2.3.3 Minimum Variance Criterion .......... . 

2.3.4 Comparison Between Beamforming Optimisation Criteria 

2.4 Adaptive Beamforming Algorithms .. 

2.4.1 Temporal Reference Technique 

2.4.1.1 Least Mean Square Beamforming Algorithm 

2.4.1.2 Recursive Least Square Beamforming Algorithm 

2.4.1.3 Sample Matrix Inversion Beamforming Algorithm 

2.4.2 Spatial Reference Technique ....... . 

2.4.3 Blind Adaptive Beamforming Algorithms 

2.5 Uplink versus Downlink Beamforming 

2.6 Beamforming Simulation Results ... 

2.6.1 Performance of a Two-Element Uniform Linear Array System. 

2.6.1.1 AWGN Channel ....... . 

2.6.1.2 Flat Rayleigh Fading Channel 

2.6.1.3 Complexity Analysis. . . . . . 

2.6.2 Performance of a Three-Element Uniform Linear Array System 

2.6.2.1 Spatial Selectivity over an AWGN Channel ..... . 

2.6.2.2 Spatial Selectivity over a Flat Rayleigh Fading Channel 

2.7 Conclusions. 

3 Minimum Bit Error Ratio Beamforming 

3.1 Introduction. 

3.2 Signal Model 

3.2.1 MMSE Beamforming Solution. 

3.3 MBER Beamforming Solution ..... 

viii 

33 

36 

37 

38 

39 

41 

43 

43 

44 

47 

50 

54 

57 

58 

61 

61 

63 

65 

71 

74 

74 

76 

80 

86 

86 

87 

90 

91 



3.4 Adaptive Minimum Bit Error Ratio Beamforming . 

3.4.1 Kernel Density Estimation ........ . 

3.4.2 Block-Data Based Gradient Adaptive MBER Algorithm 

3.4.3 Stochastic Gradient Based Adaptive MBER Algorithms 

3.4.3.1 Least Bit Error Rate Algorithm ....... . 

3.4.3.2 Approximate Least Bit Error Rate Algorithm. 

3.5 Simulation Results for Exact MBER Beamforming . . . . . . . 

102 

103 

106 

108 

108 

110 

111 

3.5.1 Supporting Two Users Employing a Two-Element Uniform Linear Array. 112 

3.5.2 Supporting Five Users Employing a Two-Element Uniform Linear Array. 127 

3.5.3 Supporting Several Users by a Four-Element Uniform Linear Array. 

3.6 Simulation Results for Adaptive MBER Beamforming 

3.6.1 Block Adaptive Conjugate Gradient Algorithm 

3.6.2 Stochastic Gradient Based Adaptive MBER Algorithms 

3.7 Conclusions ............................ . 

4 Genetic Algorithm-Assisted MBER Beamforming 

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 

4.2 Fundamental Concepts and Basic Procedures of Genetic Algorithms 

4.2.1 Selection 

4.2.2 Crossover 

4.2.3 Mutation 

4.2.4 Evaluation: Encoding of Individuals 

4.2.5 Termination Criterion ....... . 

144 

149 

149 

157 

167 

170 

170 

172 

174 

177 

179 

180 

181 

4.3 Genetic Algorithm-Asisted MBER Beamforming and Array Weight Quantisation 182 

4.3.1 Representation ..... 

4.3.2 Encoding of Individuals 

4.3.3 Fitness Evaluation 

4.3.4 Elitism .... 

4.3.5 Fitness Scaling 

IX 

182 

184 

185 

186 

187 



4.3.5.1 Sigma Scaling 

4.3.5.2 Span Scaling . 

4.3.6 Convergence and Complexity 

4.4 Simulation Results . . . . . . . . . . 

187 

188 

189 

190 

4.4.1 GA-Assisted MBER Beamforming Upper-Bound Performance. 191 

4.4.2 GA-Assisted MBER Beamforming Performance Using Kernel Estimates 204 

4.5 Conclusions...................................... 209 

5 Conclusions and Future Research 

5.1 Summary and Conclusions .... 

5.2 Suggestions for Future Research. 

List of Symbols 

Glossary 

Bibliography 

Subject Index 

Author Index 

x 

212 

212 

217 

219 

224 

227 

247 

250 



Chapter 1 

Introduction 

We commence our discourse by outlining the organisation and the novel contributions of the thesis in 

Section 1.1. This will be followed by a brief overview of the various sources of impairments in wireless 

communications and by an introduction to smart antennas as a means of mitigating these impairments 

in Sections 1.2.1 and 1.2.2, respectively. Finally, a summary of the chapter is provided in Section 1.3. 

1.1 Organisation of the Thesis 

The thesis is organised as follows: 

Chapter 2: An overview of adaptive beamforming schemes will be presented, beginning with a 

brief historical perspective on its evolution. A rudimentary classification of various adaptive beamform

ing schemes will also be provided. We will mainly concentrate on adaptive beamforming techniques 

based on the temporal reference technique (TRT). Several classic algorithms, such as the Least Mean 

Square (LMS) algorithm, the Recursive Least Square (RLS) algorithm and the Sample Matrix Inver

sion (SMI) algorithm, which were all based on the Minimum Mean Square Error (MMSE) criterion 

will be outlined and compared in terms of their operating principle and computational complexity. 

We will also characterise both the RLS and SMI algorithms' performance in terms of the achievable 

Signal-to-Interference Ratio (SIR) as a function of the Signal-to-Noise Ratio (SNR) and also as a 

function of the reference sequence length used, when the users' signal power is fixed. 

Chapter 3: This chapter introduces the novel concept of Minimum Bit Error Ratio (MBER) 

criterion based adaptive beamforming. We will use the simplified conjugate gradient method for 

directly minimising the Bit Error Ratio (BER). We will demonstrate the superiority of the MBER 

solution in comparison to the array weight solution offered by the closed-form MMSE equation in 

almost all scenarios investigated. The robustness of the MBER solution against array-overloading, 

i.e. against a scenario when the number of users is higher than the number of array elements will also 

be shown. In the context of adaptive MBER beamforming, we will characterise the performance of 

1 



1.2. Motivation of the Thesis 2 

several adaptive MBER beamforming algorithms, namely that of the block-data based Block Adaptive 

Conjugate Gradient (BACG) algorithm as well as that of two stochastic gradient based algorithms, 

namely the Least Bit Error Rate (LBER) and the approximate LBER (ALBER) algorithms. 

Chapter 4: This chapter aims to overcome the limitations of the simplified conjugate gradient 

method used in Chapter 3 by employing a random guided search method based on Genetic Algo

rithms (GAs). We will demonstrate with the aid of BER histograms that the GA is capable of 

arriving at the exact MBER solution. The required complexity will be quantified in terms of the 

number of objective function evaluations, as the number of the antenna array elements L increases. 

We will also compare the BER performance attained by using the GA to that of the block-data based 

BACG algorithm. 

Chapter 5: Finally, in this chapter we will summarise the findings of the thesis and offer our 

conclusions. Suggestions for future research will also be provided. 

1.2 Motivation of the Thesis 

1.2.1 Sources of Impairments in Wireless Communications 

A radio signal transmitted in cellular systems is attenuated by three main factors, namely path-loss, 

fast- and slow fading [1-4J. Path-loss describes how the attenuation varies with distance between the 

transmitter and the receiver. Fast fading, which is sometimes referred to as short-term fading, is caused 

by the multipath effects and scattering, where the superposition of multiple paths generates a rapidly 

fluctuating fading envelope. If there is a dominant path or line of sight (LOS) path between the 

transmitter and the receiver, the fading channel is referred to as a Rician channel, while if there is no 

dominant LOS path, it is referred to as a Rayleigh channel. On the other hand, slow fading is caused 

by shadowing of the radio signal, owing mainly to building and terrain features, such as mountains 

and hills. It is also referred to as long-term fading. Fading however may also boost a signal instead 

of attenuating it, since it involves the combination of energy arriving from several signal paths. In 

general, the main scattering sources that affect the propagation environment are scatterers local to the 

mobile, scatterers local to the base station and remote scatterers, as briefly portrayed in Figure 1.1. A 

commonly used technique of combating signal fading in mobile radio system is constituted by transmit 

and receive diversity assisted by various diversity combining methods [3,5J, which exploit the fact that 

the signals arriving from different locations fade at different rates. 

Co-channel interference (CCI) is one of the primary channel impairments associated with digital 

radio communications. In radio applications, where the signals are assigned to different frequency 

bands, appropriate filter masks are imposed on the transmitted spectrum for the sake of limiting 

the adjacent channel interference. This interference is generated by transmitters assigned to adjacent 
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Figure 1.1: Main scattering sources that affect the propagation environment resulting in a 'multipath' 

propagation scenario. 

frequency bands. In addition to this adjacent channel interference, co-channel interference (eel) may 

be generated by other transmitters assigned to the same frequency band as the desired signal. The 

amount of eel caused is dependent on numerous parameters, such as the geographical position of the 

users, the associated channel fading and the transmission power [4]. Since the primary objective of 

the mobile radio system is to conserve the available spectrum by reusing allocated frequency channels 

in areas that are geographically located as close to each other as possible, CCI imposes a limitation on 

the frequency reuse distance. On the other hand, the adjacent channel interference limits the spectral 

separation between adjacent channels and the assignment of frequency channels within a particular 

area. 

Linear distortions imposed by dispersive multi path propagation result in intersymbol interfer

ence (lSI), which may inflict high error rates. In mobile cellular communications the multipath propa

gation of the transmitted signals may result in severe lSI. The solution to the lSI problem is to invoke 

a channel equaliser [2,3,6,7]. 

1.2.2 Smart Antennas 

The increasing demand for mobile communication services supported in a limited radio-frequency (RF) 

bandwidth motivates the design of novel communications techniques. There are numerous ways of 
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increasing the achievable capacity of cellular radio systems. Acquiring new frequency spectra is perhaps 

the easiest but not the most cost effective approach. Classic techniques that allow multiple users to 

share the available bandwidth include techniques, such as frequency, time, polarisation, code and 

spatial division multiple access [3]. A particular approach, which is receiving increasing attention 

and shows real promise of substantial capacity enhancement that would lead to a better quality of 

service (QoS) is constituted by spatial processing employing adaptive antenna arrays [4,5,8-11]. 

1.2.2.1 Advantages of Smart Antennas 

Multiple antennas are capable of combating the effects of multipath fading with the aid of diversity 

combining techniques. For example, selection diversity selects the signal received from that partic

ular antenna for processing, which has the highest probability of error-free detection. Equal gain 

combining (EGC) adjusts the phase of the desired signals and phase-coherently combines them af

ter equal weighting. By contrast, maximal ratio combining (MRC) weights the contributions of the 

individual antennas in proportion to their Signal-to-Noise Ratio (SNR) and coherently combines the 

weighted signals in-phase. The employment of these classic techniques is common in communications 

systems [2-5,7,8,12]. Apart from fading, the capacity of wireless communication systems, is however, 

gravely affected by another major impairment known as co-channel interference (CCI). Especially in 

Code Division Multiple Access (CDMA) systems, interference is imposed not only by the adjacent 

cells, but also by users communicating within the cell considered. An efficient way of overcoming this 

limitation is constituted by the employment of beamforming based smart antennas, provided that the 

desired and interfering signals originate from different spatial locations associated with different angles 

of arrival. By exploiting the spatial selectivity of an antenna array, CCI experienced in the uplink 

(i.e. mobile to base station link) and in the downlink (i.e. base station to mobile link) of wireless 

systems may be cancelled or mitigated, depending on the propagation environment. The reduced 

CCI can be traded for an increased system capacity. Apart from the increased system capacity, other 

operational advantages offered by deploying smart antennas in a mobile communication network in

clude achieving an extended coverage, more efficient power control, reduction of the required transmit 

power, the support of smart handovers etc. [13]. These benefits are summarised in Figure l.2. For 

detailed discussions on these and on several other advantages, readers are referred to [5,8-10,13,14]. 

These benefits are basically due to the ability of smart antennas to form focused transmit and/or 

receive beams in certain directions and nulls in others. It is worth noting that the beam's limited 

angle of arrival results in a reduction of the number of multipath components, which leads to a 

reduced delay spread. Observed that this reduced delay spread may in fact become an impediment in 

conjunction with MRC, for example, since the reduced number of multipath components reduces the 

achievable receiver diversity gain, even if the MRC scheme has the ability to combine a high number of 

received signal components [15]. Nonetheless, beamforming schemes are capable of reducing the CCI, 
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smart link budget balancing 

smart planning smart handover 
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Figure 1.2: Operational benefits achieved with the aid of smart antennas [13]. 

which then may contribute towards the reduction in outage probability or decreases the Bit Error 

Ratio (BER) at a given SNR or vice versa, thus improving the achievable spectral efficiency. Smart 

antennas are also capable of achieving transmit diversity gain [16], which reduces fading of the radio 

signal and therefore ease the power control requirements. The required transmission power levels may 

also be reduced, which then relaxes the requirements on the batteries. The knowledge of the location 

and speed of a mobile user assists in smoothing the handover process. It also contributes to several 

value added services, as pointed out for example by Tsoulous in [13], some of which are listed as 

follows: 

1. On-demand location specific services: Such services may include roadside assistance, real

time traffic updates, tourist information and electronic yellow pages, complemented by nearby 

petrol station, local entertainment and dining information. 

2. Ability to support user location for emergency calls: Adaptive antennas are also ca

pable of providing user location information in conjunction with direction finding in case of 

emergencies, such as accidents or abduction. 

3. Location of fraud perpetrators: Since adaptive antennas are capable of providing user 

location information, they may be used for locating fraud perpetrators. 

4. Location sensitive billing: Instead of the currently predominantly used billing principle of 

charging as a function of the time of day, the inclusion of location as the second measure may 

provide an operator with the ability to control its network by encouraging (or discouraging) any 

type of service access. The objective here is not so much that of simply reducing the cost of the 

calls, which would increase the network traffic, while producing the same revenue, but that of 
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Beamforming [4] 

Spatial Diversity [16] 

and Space-Time 
Spreading 

Space Division Multiple 

Access [12] 

Multiple Input Multiple 

Output Systems [17] 

Typically Aj2-spaced antenna elements are used for the sake 

of creating a spatially selective transmitter/receiver beam. 
Smart antennas using beamforming have been employed for 
mitigating the effects of co-channel interfering signals and 

for providing beamforming gain. 

In contrast to the A/2-spaced phased array elements, in spa
tial diversity schemes, such as space-time block or trellis 
codes [16] the multiple antennas are positioned as far apart 

as possible, so that the transmitted signals of the differ
ent antennas experience independent fading, resulting in the 

maximum achievable diversity gain. 

SDMA exploits the unique, user-specific 'spatial signature' 
of the individual users for differentiating amongst them. 

This allows the system to support multiple users within the 

same frequency band and/or time slot. 

MIMO systems also employ multiple antennas, but in con

trast to SDMA arrangements, not for the sake of supporting 
multiple users. Instead, they aim for increasing the through
put of a wireless system in terms of the number of bits per 

symbol that can be transmitted by a given user in a given 

bandwidth at a given integrity. 

Table 1.1: Applications of smart antennas in wireless communications [12]. 

6 

improving the capacity of the system in the most efficient manner. This technique may enable 

tariff plans to be tailored to individual user needs, for example by providing low-cost zones when 

the user is in his preferred zone. 

1.2.2.2 Classification of Smart Antennas [15] 

In smart antenna assisted systems multiple antennas may be invoked at the transmitter and/or the 

receiver, where the antennas may be arranged for achieving spatial diversity, directional beamforming 

or for attaining both diversity and beamforming. In smart antenna systems the achievable performance 

improvements are usually a function of the antenna spacing and that of the algorithms invoked for 

processing the signals received by the antenna elements [15]. 

Terms commonly used today that embrace various aspects of smart antenna systems include in

telligent antennas [18], adaptive antennas [5], [18], phased arrays [12,15], Spatial Division Multiple 

Access (SDMA) [12,15,19,20], spatial processing, digital beamforming (DBF) [8,19,21] and others [18]. 

Smart antennas however, are mainly categorised based on their specific application in improving the 

wireless communications quality of service, as summarised in Table 1.1 [12,15]. 

In beamforming arrangements [4] typically A/2-spaced antenna elements are used for the sake of cre-
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ating a spatially selective transmitter/receiver beam. Smart antennas using beamforming have widely 

been employed for mitigating the effects of various interfering signals and for providing beamforming 

gain. Furthermore, the beamforming arrangement is capable of suppressing co-channel interference, 

which allows the system to support multiple users within the same bandwidth and/or same time-slot 

by separating them spatially. This spatial separation, however, becomes only feasible, if the corre

sponding users are separable in terms of the angle of arrival of their beams. An illustration of a system 

that supports multiple users within the same bandwidth is provided in Figure 1.3 a). Observed that 

all the co-channel users' main beam is in the direction of nulls of the central user. These beamforming 

schemes, which employ appropriately phased antenna array elements that are spaced at distances of 

>../2 typically result in an improved Signal-to-Interference-plus-Noise Ratio (SINR) distribution and 

enhanced network capacity [4]. 

In contrast to the >../2-spaced phased array elements, in spatial diversity schemes the multiple 

antennas are positioned as far apart as possible, using a typical spacing of 10>" [22], so that the trans

mitted signals of the different antennas experience independent fading, when they reach the receiver. 

This is because the maximum diversity gain can be achieved, when the signal replicas experience 

independent fading. Although spatial diversity can be achieved by employing multiple antennas at 

either the base station, mobile station, or both, it is more cost effective and practical to employ mul

tiple antennas at the base station. A system having multiple receiver antennas has the potential of 

achieving receiver diversity, while that employing multiple transmit antennas exhibits transmit di

versity. Recently, the family of transmit diversity schemes based on space-time coding [16], either 

space-time block codes or space-time trellis codes, has received wide attention and has been invoked 

in the third-generation systems [23]. The aim of using spatial diversity is to provide both transmit 

as well as receive diversity and hence enhance the system's integrity jrobustness. This typically re

sults in a better physical-layer performance and hence a better network-layer performance. Therefore, 

space-time codes are capable of indirectly increasing not only the transmission integrity, but also the 

achievable spectral efficiency [16]. 

A third application of smart antennas is often referred to as Space Division Multiple Access 

(SDMA) [12, 15], a technique which exploits the unique, user-specific 'spatial signature' of the in

dividual users for differentiating amongst them. In simple conceptual terms one could argue that both 

a conventional CDMA spreading code and the Channel Impulse Response (CIR) affect the transmitted 

signal similarly - they are namely convolved with it. Hence, provided that the CIR is accurately esti

mated, it becomes known and certainly unique, although - as opposed to orthogonal Walsh-Hadamard 

spreading codes, for example - not orthogonal to the other CIRs. Nonetheless, it may be used for 

uniquely identifying users after channel estimation and hence for supporting several users within the 

same bandwidth. Provided that a powerful multiuser detector is available, one can support even more 

users than the number of antennas [15]. Hence this method enhances the achievable spectral efficiency 

directly. As seen in Figure 1.3 b), the spatially dispersed SDMA users have their own beam sector in 



1.3. Summary 

1 st. first tier cell 2 nd. first tier cell 

li!\ 
~. 

~ 
... 

~ 
-' .... - .. -.---

first tier cell 4 til. first tier cell 

a) b) 

.. .. .. ...... ··user 2 
~ ,tk 

8 

Figure 1.3: Concept of a) beamforming (Spatial Filtering for Interference Reduction (SFIR) [13]) and 

b) Spatial Division Multiple Access (SDMA) [13]. 

a shared cell. The shape of each beam sector is dynamically updated according to the specific prop

agation and interference environment encountered by a particular mobile user. The above-mentioned 

beamforming concept that aims for reducing the frequency reuse distance, while maintaining a low 

co-channel interference has also been referred to as Spatial Filtering for Interference Reduction (SFIR) 

by Tsoulous in [13], as justified by Figure 1.3 a). By contrast, the SDMA principle characterised in 

Figure 1.3 b) allows several users to communicate at the same time instant, tk and frequency !k 
within a given cell, again, as mentioned above [12], using the unique users-specific CIRs of the indi

vidual mobile users. This principle has the potential of substantially increasing the number of users 

supported. 

Finally, Multiple Input Multiple Output (MIMO) systems [17] also employ multiple antennas, but 

in contrast to SDMA arrangements, not for the sake of supporting multiple users. Instead, they aim 

for increasing the throughput of a wireless system in terms of the number of bits per symbol that can 

be transmitted by a given user in a given bandwidth at a given integrity [15]. 

1.3 Summary 

In this chapter, the organisation of the thesis was outlined. We then briefly characterised several 

sources of impairments encountered in wireless communications systems. The increasing number of 

communication services that have to be supported in a limited frequency spectrum requires efficient 
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techniques for the sake of exploiting the resources available. Smart antennas [4, 8~ 12] constitute 

an efficient technique of achieving these objectives. Their benefits were summarised in Figure 1.2, 

while their categorisation based on their specific application in improving the wireless communications 

quality of service (QoS) was summarised in Table 1.1. Spatial diversity and space-time spreading [24~ 

33], SDMA [34~37] as well as MIMO schemes for achieving multiplexing gain [25, 38~47] are also 

timely research topics. In the next chapter we will discuss adaptive beamforming, i.e. the formation 

of angularly selective beams using multiple antennas separated by a distance of >../2. 



Chapter 2 

Adaptive Beamforming 

2.1 Introduction 

Adaptive beamforming constitutes a process, which is capable of separating signals collocated in the 

frequency domain, but separated in the angular spatial domain [8]. It combines the signal received by 

a number of antenna elements with the aid of baseband signal processing for the sake of optimising 

its radiation or receiver beam pattern automatically in response to the interfering and desired signal 

environment. In other words, this smart antenna system has the capability of controlling the antenna 

beam patterns, in which the main lobe having an enhanced gain will be directed to the desired signal 

of a particular user and at the same time, a null or side lobes with minimal gain will be formed towards 

the interferers constituted by other nearby users. 

In this chapter, we commence our discourse by providing a glimpse of the historical background 

of beamforming. We will then outline the basic concepts of beamforming in Section 2.2 and introduce 

the signal model that is used throughout this report. A detailed example is provided for the sake of 

illustrating the basic beamforming process. In Section 2.3 we will discuss and compare several design 

criteria that can be used in determining the optimal array weights. We will then focus our attention 

on the adaptive beamformer's operation portrayed in Figure 2.11 and in Section 2.4 we proceed with 

the portrayal of some of the commonly used adaptive array-weight update algorithms. Various issues 

of beamforming invoked in both the uplink (i.e. mobile to base station link) and the downlink (i.e. base 

station to mobile link) are highlighted in Section 2.5 and finally, some performance results are provided 

in Section 2.6. 

2.1.1 Historic Background of Beamforming 

Adaptive beamforming was conceived for employment in military sonar and radar systems [8]. It 

was primarily invoked for direction finding and for nulling enemy interferers. Generally, techniques 

10 
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developed for counteracting intentional jamming have also proved suitable for communication through 

dispersive channels in cellular applications. Here, we highlight several milestones during the evolution 

of beamforming, commencing with the invention of the intermediate frequency (IF) sidelobe can

celler (SLC) originally devised by Howells [48] in the late 1950s [6,49]. This first bona-fide adaptive 

antenna system that incorporated the key capability of automatic interference nulling, however, was 

only partially adaptive. More specifically, the main beam antenna has a fixed pattern and the auxiliary 

array contains only a few controlled elements. Subsequent developments of this simple adaptive an

tenna lead to the emergence of the first fully adaptive array in 1965 [8]. In contrast to Howells' original 

SLC, a fully adaptive array exhibits a higher grade of flexibility in terms of its adaptive performance 

characteristics [49], albeit this is achieved at a significantly increased implementation cost. 

In terms of publications, the first special issue on adaptive antennas [50] was published in March 

1964, which was edited by Hansen. The collection of papers mainly concentrated on the family of 

retrodirective systems and self-steering or self-focusing arrays. These were essentially based upon 

phase-locked loop (PLL) and phase-conjugate schemes often invoked for employment in diversity 

combining [2,8]. The term 'adaptive antenna' was used for describing the self-phasing antenna system, 

which reradiates a signal in the direction from which it was received. This type of system is referred to 

as adaptive, since it operates without any prior knowledge of the direction in which it has to transmit. 

For clarity, such a system has been referred to as an adaptive transmitting array by Widrow et 

at. [51], while describing their proposed system as an adaptive receiving array in [51]. In Howells' 

special issue [50] however, there is no publication on adaptive interference nulling, although it had 

actually been under development for some years prior to that [52]. 

It was only in 1966, that Howells' coworker, Applebaum [53] published the first contribution con

cerning adaptive interference nulling, in which he derived the algorithm governing the operation of 

an adaptive array antenna, invoking a control loop for each element of the array. Applebaum [53] 

shows that the adaptive array processing technique is a generalisation of the SLC procedure of [48]. 

The algorithm, now commonly known as the Howells-Applebaum algorithm is based on the general 

problem of maximising the Signal-to-Noise Ratio (SNR) at the array output and thus it is sometimes 

referred to as the Maximum Signal-to-Noise ratio (MSN) algorithm [53,54]. The noise term includes 

both the receiver noise and all other external noise components, which implies that essentially this 

algorithm is based on the maximum Signal-to-Interference-plus-Noise-Ratio (SINR). The MSN algo

rithm is typically used for signal detection by determining the array weight vector, which yields the 

maximum probability of error-free detection. Further seminal contributions are due to another inde

pendent research group lead by Wid row [51], who co-developed the well known Widrow-Hoff Least 

Mean Square (LMS) algorithm invoking the Minimum Mean Square Error (MMSE) criterion for au

tomatic adjustment of the array weights. This algorithm overcomes the main difficulty encountered 

in applying the steepest descent algorithm for array weight adjustment, since the correlation matrix 

is not required for the weight calculation. The Widrow-Hoff LMS algorithm was first applied to adap-
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tive RF antenna arrays in the open literature in 1967 [51J. Both the MSN and LMS techniques were 

invoked for iteratively cancelling the interferers in the presence of the signal of interest, both of which 

were analogue signals [55J. With the advent of digital signal processing, these techniques were then 

employed also to time- as well as amplitude-discretised signals. It was found later [54J that if an actual 

target signal is used in the Widrow-Hoff method [51], it leads to a biased solution, i.e. it does not 

converge to the MMSE filter. The proof of this is provided in the Appendix of [54J. Elimination of 

this problem has been proposed by Griffith in [54J for large antenna arrays, where all terms used by 

the algorithm are either known a priori or are extracted directly from the received signal. 

In 1969, Capon [56J introduced a different beamforming technique, using a desired direction of 

arrival (DOA) constraint, which leads to an adaptive beamformer referred as the Minimum Variance 

Distortionless Response (MVDR) beamformer. He applied the theory of signal estimation in the 

context of seismometer arrays using a maximum likelihood criterion. His work was motivated by 

realising that the poor performance of the conventional (sometimes known as the delay-and-sum) 

beamformer is due to the fact that its response along the direction of interest depends not only on 

the power of the incoming target signal, but also on that of the undesirable contributions arriving 

from other sources of interference [6J. He then attempted to minimise the power contributed by both 

the noise and the interfering signals arriving from other directions, while maintaining a fixed gain in 

the direction of interest. Capon's technique is one of the earliest adaptive beamforming techniques 

that offers the ability to resolve signals that are separated by a fraction of an antenna beamwidth [8J. 

In the context of angle of arrival estimation, this algorithm is termed as the Maximum Likelihood 

Method (MLM) [57J, since it also maximises the likelihood function of the input signal vector. 

Despite the completely independent discovery and development of the MSN and LMS algorithms, 

they are fairly similar in that they are both based on the steepest descent gradient search technique. 

Furthermore, for stationary received signals, the algorithms converged to the optimum Wiener so

lution [8J. The popularity of the algorithms is due to their simplicity and robustness, as well as a 

consequence of requiring no data storage and their flexibility of implementation in either analogue or 

digital form. However, achieving a satisfactory performance can only be guaranteed under specific 

operational conditions. The LMS algorithm was then further developed following the introduction of 

various constraints by Frost [58J and Griffiths [59J. When these constraints are applied, the desired 

signal is never filtered out along with the unwanted signals. The optimisation process is still the same 

as before, but now the required antenna gain could be maintained in the desired direction. Frost's 

algorithm [58J has a unique advantage over other constrained optimisation algorithms in that the 

algorithm has a self-correcting feature, which makes it numerically stable despite the round-off and 

truncation errors of the array weights. The algorithm can be operated for an arbitrarily long time, 

i.e. large number of iterations, because error accumulation has been eliminated. 

The MSN algorithm was further developed during the 1970s for example by Brennan and Reed [60~ 
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62]. Their research team has made several significant contributions to the theory of adaptive radar sys

tems, involving simultaneous adaptivity in both spatial and temporal domains [52]. In [61], Brennan, 

Pugh and Reed developed a theory of control-loop noise for adaptive arrays, which maximise the SNR. 

Their analysis shows that both the array weight noise and the array convergence rate are determined 

by the eigenvalues of the noise covariance matrix. In other words, the selection of optimum parameters 

requires striking a compromise between the achievable convergence rate and the array weight noise. 

This compromise-solution was improved later with the introduction of envelope limiting [60]. Gener

ally, the Maximum Signal-to-Noise criterion constitutes an optimisation principle in the sense that the 

maximisation of the SNR is equivalent to the maximisation of the probability of error-free detection, 

provided that the noise and interference may be approximated by a Gaussian process. In 1974, Reed et 

at. [63] presented a technique referred to as the Sample Matrix Inversion (SMI) procedure, which ex

hibits a rapid convergence (that depends only on the number of adaptive array elements) owing to the 

direct computation of the adaptive weights. In addition to achieving a higher convergence rate, the 

performance of the SMI technique is almost independent of the eigenvalue spread encountered, which 

is a limitation in the context of the LMS and MSN algorithms. These advantages are achieved, how

ever at the cost of an increased complexity. Further beamforming investigations were then focused on 

identifying appropriate search techniques combined with simple array performance monitoring [64], in 

an effort to contrive implementations, which are less complex or costly [52]. Widrow and McCool [64] 

compared three array weight adjustment algorithms using either the method of steepest descent or the 

method of random search. Their indepth discussions provide performance comparisons in terms of the 

achievable convergence rate, gradient estimation methods and array weight vectors quantisation noise 

effects. Furthermore, the term misadjustment was introduced, which is defined as the average excess 

Mean Square Error (MSE) divided by the Minimum Mean Square Error (MMSE) [64]. In other words, 

it can be referred as the interference rejection performance penalty arising from the imperfect statis

tical estimation process. It was shown that the LMS algorithm outperforms the Differential Steepest 

Descent (DSD) and the Linear Random Search (LRS) algorithms and therefore its employment is 

highly recommended, whenever circumstances permit. Note furthermore that the Linear Random 

Search (LRS) algorithm originates from the concept of random search by natural selection [65]. 

As for the SMI algorithm, the major drawback is the requirement of performing a matrix inversion 

every time, when a new set of array weight has to be determined. The matrix inversion complexity 

would increase proportionally to the cube of the number of array elements. This problem can be 

mitigated by using the recursive method introduced by Brennan et at. [66], in which the array weights 

can be computed without matrix inversion by directly updating the inverse of the received samples' 

covariance matrix. The performance of this recursive method was compared to that of the direct 

method and Applebaum's adaptive loops. The inverse update and the direct matrix inversion method 

showed a rapid convergence compared to that of the adaptive loop based method of [53]. Apart from 

the maximum SNR criterion [53], the LMS error criterion [51] and the maximum likehood criterion [56], 
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the constrained optimisation procedure of [58,59] was also analysed, amongst other authors also by 

Applebaum and Chapman [67] as well as by Takao et al. [68]. The capabilities of adaptive arrays in 

practical communication systems were also studied by a research team at the Ohio State University, 

where Compton et al. [69] presented an overview of the work conducted, providing also a bibliography 

of the papers, reports and other documents published. Apart from discussions on several adaptive 

systems that were built and tested, this team also contributed several studies [69] that covered topics 

such as the choice of the reference signal, the improvement of the LMS algorithm [70] for the sake 

of obtaining fixed nulls at certain angular positions with the aid of an adaptive array, the effects of 

multipath propagation on the performance of an adaptive array applied in the context of a spread 

spectrum system [7l] and on the stochastic properties of the array weights [72]. Partial adaptivity 

has also been introduced by Chapman [73] as a way of balancing the implementation cost imposed 

versus the achievable complexity, which becomes an important consideration in the context of large 

arrays. For further material focusing on the issues of adaptive interference nulling, motivated readers 

are referred to a journal special issue on adaptive antennas, which was published in 1976 [52]. 

Based on further substantial developments in the field of adaptive antennas a third special issue 

was published in 1986 [74]. The primary difference with respect to the previous special issue is the 

inclusion of 'super-resolution' spatial spectrum estimation, whose resolution is higher than the tradi

tional estimation approaches. The word 'resolution' generally refers to the ability of the algorithm 

to distinguish closely spaced signal sources. The broad and diverse topics of the special issue were 

divided into several classes, namely, spatial spectrum estimation, adaptive look-direction constraints, 

adaptive algorithms or techniques and application oriented contributions. In the adaptive algorithms 

category, a novel algorithm and architecture designed for adaptive digital beamforming was con

tributed by Ward, Hargrave and McWhirter [75]. A parallel spatial processing structure proposed by 

Su et al. [76] was aimed at combating signal cancellation effects in a correlated jamming environment. 

Their approach results in a spatially smoothened maximum likelihood estimate, while maintaining 

the maximum achievable array gain in the direction of the desired signal. Godara and Cantioni [77] 

extended their seminal work on gradient estimation, in which they considered both the scenario, when 

all of the array element signals were accessible as well as when they are inaccessible. In the context 

of spectral estimation, two established algorithms are the MUltiple SIgnal Classification (MUSIC) 

algorithm and the Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) 

algorithm. MUSIC [78] was first proposed in 1979 by Schmidt and independently by Bienvenu and 

Kopp [79], while ESPRIT was proposed by Paulraj, Roy and Kailath [80]. Several refinements of 

the MUSIC and ESPRIT algorithms [81] include the min-norm MUSIC, the smoothed MUSIC, the 

root-MUSIC [82], the beam-space MUSIC, the total least-squares ESPRIT [83], the multi-invariance 

ESPRIT [1] and the higher order ESPRIT techniques. 

As mentioned before, the early use of adaptive antennas in telecommunications was found in the 

context of military applications. It was during the 1990s that the interest in using antenna arrays 
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I Year Author Contribution 

'59 Howells [48] Invented the IF sidelobe canceller (SLC). This first bona-fide 
adaptive antenna system that incorporated the capability of au
tomatic interference nulling was partially adaptive. 

'64 

'65-'66 

'67 

'69 

'69 

'72 

'74 

'76 

Special Issue on Active 
and Adaptive Anten

nas (I) [50] edited by 
Hansen 

Applebaum [53] 

Widrow, Mantey, Grif
fiths and Goode [51] 

Capon [56] 

Griffiths [54] 

Frost [58] 

A collection of papers mainly concentrating on the family of self
steering or self-focusing arrays. The term 'adaptive antenna' 

was used for describing the self-phasing antenna system, which 
reradiates a signal in the direction from which it was received. 

The emergence of the first fully adaptive array [8]. Applebaum 
showed that the adaptive array processing technique is a gen

eralisation of the SLC procedure. In comparison to the SLC, 
a fully adaptive array exhibits a higher grade of flexibility in 
terms of its adaptive performance characteristics [49], albeit this 
is achieved at a significantly increased implementation cost. Ap

plebaum also derived the Howells-Applebaum algorithm, which 
is based on maximising the SNR at the array's output. 

Developed the well-known Widrow-Hoff LMS algorithm based 
on the MMSE criterion. This simple LMS algorithm overcomes 
the main difficulty encountered in applying the steepest descent 

algorithm for array weight adjustment, since the calculation of 
the correlation matrix is not required for the weight calculation. 

Introduced a beamforming technique using a desired DOA con
straint referred to as the Minimum Variance Distortionless Re
sponse (MVDR) beamformer. Capon's technique belongs to the 
family of adaptive beamforming techniques that offers the ability 

to resolve signals that are separated by a fraction of an antenna 

beamwidth [8]. 

Introduced an algorithm for real-time processing in large an

tenna arrays. 

Developed the constrained LMS algorithm, which has a self
correcting feature allowing it to operate for an arbitrarily long 

time, i.e. for a large number of iterations, because error accumu

lation has been eliminated. 

Reed, Mallet 

Brennan [63,66] 

and Presented a technique referred to as the Sample Matrix Inver
sion (SMI) procedure, which exhibits a rapid convergence (that 

depends only on the number of adaptive array elements) owing 
to the direct computation of the adaptive weights. Later the au

thors have overcome the major drawback of the SMI technique, 
namely its increased complexity due to performing matrix inver

sion, by introducing the recursive 8MI algorithm [66]. 

Special Issue on Adap
tive Antennas (II) [52] 
edited by Gabriel 

A collection of papers mainly concentrating on the issues of 
adaptive interference nulling. The antenna system is capable 
of responding to an unknown interference environment by au

tomatically steering the nulls or reducing the sidelobes in the 
direction of the interferers, while maintaining the desired sig-

nal's beam. 

Table 2.1: A summary of selected contributions on adaptive beamforming. 
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I Year I Author Contribution 

'76 Compton, Huff, Assessing the capabilities of adaptive arrays in realistic wire-

Swarner and Ksien- less environments. The authors succesfully incorporated adap-

ski [69] tive arrays in a single-channel spread spectrum communication 
system, in a TDMA satellite communication system and in a 

remote sensor communication system. 

'76 Chapman [73] Introduced partial adaptivity as a way of balancing the imple-

mentation cost imposed versus the achievable performance. 

'78 Morgan [84] Studied the selection of auxiliary elements in partially adap-
tive antenna arrays for the sake of optimising the performance 

in a multiple narrowband jammer environment. Morgan also 

derived an explicit solution for a two-jammer problem. Apart 

from the ULA configuration, a planar array has also been con-

sidered. 

'79 Schmidt [78] Introduced the MUSIC algorithm, which is based on spectral 

estimation. 

'80 Gabriel [85] Studied various nonlinear spectral analysis techniques in the 

context of RF adaptive antenna array systems. 

'81 Mayhan, Simmons and Developed quantative estimates of how the performance of an-

Cummings [86] tenna arrays varies with the antenna and delay-line parameters 

and also developed some tools for the performance evaluation 
of frequency-dependent weighting, i.e. for wide band beamform-

ing. 

'84 Mucci [87] Presented various concepts, which aid the efficient implemen-

tation of discrete-time beamformers, including discussions on 
the associated hardware considerations, particularly in terms of 

analog-to-digital conversion, input data storage and the beam-

former's computational complexity. 

'86 Paulraj, Roy and Proposed the ESPRIT algorithm for DOA estimation. 

Kailath [80] 

'88 Veen and Buckley [88] Provides an overview of beamforming from a signal processing 

perspective. The authors also discussed the concepts of data in-

dependent, statistically optimum, adaptive and partially adap-

tive beamforming. 

'90 Anderson, Mill- Suggested a scheme for combatting CCI in a mobile communi-

nert, Viberg and cation system by means of adaptive antenna techniques. 

Wahlberg [89] 

'92 Chang, Yang and Proposed a neural network approach to the MVDR beamform-

Chan [90] ing problem. 

'92 Kim, Cha and Youn [91] Derived an expression for the output power of the GSC in the 

presence of correlated interference. 

'92 Li [92] Described the combined approach of beamforming and DOA-

estimation using the ESPRIT algorithm for two widely spaced 
(25°) incident signals and two closely spaced (4°) incident sig-
nals for improving the performance of the ESPRIT algorithm. 

Table 2.2: A summary of selected contributions on adaptive beamforming. 
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I Year I Author Contri bu tion 

'94 Woerner, Reed and Presented an overview of the key simulation issues in the con-

Rappaport [93] text of evaluating the performance of wireless systems that em-
ploy adaptive antenna arrays and DSP-based interference rejec-

tion techniques. 

'94 Barrett and Arnott [94] Presented the findings of the Smart Communication Antenna 
Research Programme (SCARP), describing the application of 
adaptive arrays or smart antennas in commercial communica-

tions applications. 

'96 Klouche-Djedid and Fu- Analysed DOA estimation using high-resolution algorithms fol-

jita [95] lowed by a signal estimation procedure using several beamform-
ing methods for the enhancement of the channel capacity in 

cellular systems. 

'96 Litva and Lo [8] Introduced digital beamforming and its applications in both 

wireless and satellite communications. 

'97 Paulraj and Papa- Focused mainly on high-mobility TDMA networks, developing 

dias [1] a signal model incorporating a range of channel effects and 
discussing the relationship between the forward-link (transmit) 

and reverse-link (receive) channels. Single- and multiuser mod-
els are proposed for space-time processing problems and the un-

derlying spatial and temporal structures are discussed. Several 
algorithmic approaches to reverse-link space-time processing 
using both blind and trained methods for single- and multiple 

user scenarios are covered. Applications of space-time process-
ing techniques in the context of both CDMA and other current 

cellular systems were also brought to the reader's attention. 

'97 Godara [9,81] Provided a comprehensive and detailed treatment of beamform-

ing schemes and their adaptive algorithms designed for both 

weight adjustment and DOA estimation along with their per-
formance comparisons. A rich list of references covering most 

aspects of array signal processing was also provided. 

'98 Rappaport [96] A compilation of several smart antenna-related papers, cat-
egorised into five sections, namely introductory reading, the 

algorithms, the architechure, hardware and applications, the 
channel models as well as the corresponding performance eval-

uations. 

'98 Winters [22] Discussed current and future antenna technology and the per-
formance improvement that adaptive antenna arrays can pro-
vide. A range of further issues involved in incorporating these 
antennas in CDMA, GSM and IS-36 wireless systems operating 

in different environments were also described. 

Table 2.3: A summary of selected contributions on adaptive beamforming. 
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I Year I Author I Contribution 

'99 

'00 

Sheikh, Gesbert, Gore 
and Paulraj [97] 

Dietrich, Stutzman, 

Kim and Dietze [5] 

Provided an overview of smart antenna applications in fixed 
broadband wireless access (BWA) networks. Different smart 
antenna techniques were described, including recent advances 
such as spatial multiplexing that is capable of dramatically in
creasing the performance of BWA networks. The impact of 

smart antenna techniques on the capacity and throughput of 

BWA networks was also discussed. 

Provided a review of smart antenna research applied to both 
base stations and handsets, with particular attention dedicated 

to the research conducted by the Smart Antenna Group at Vir

ginia Tech. 

'00 Bhobe and Perini [21] Discussed both current and future smart antenna technology, 
focusing on the aspects of interference reduction and on increas

ing the attainable capacity. Different types of smart antenna 
systems using both switched beam and adaptive antenna ar
ray techniques were discussed along with their application in 

different multiple access schemes, such as FDMA, TDMA and 

CDMA. 

'00 Boukalov 

Haggman [98] 

and Discussed several issues that are important in future radio net
work design in conjunction with smart antennas. Three main 

system aspects of smart antenna technology were considered, 
namely smart antenna aided receivers and their related algo
rithms, wireless network control and smart antenna assisted 

cellular planning. The existing experimental and commercially 
available smart antennas and their performance were also sur

veyed. 

'02 Blogh and Hanzo [4] The authors studied the network capacity gains that can be 
achieved with the advent of adaptive antenna arrays and adap

tive modulation techniques in both FDMA/TDMA and CDMA 
based mobile cellular networks. The performance of various 

UTRA soft-handover techniques was compared and the net
work capacity performance attained with the aid of adaptive 

antenna arrays was evaluated. 

'02 Bellofiore, 
anis, Foutz 

Spanias [99,100] 

Bal- Part 1 of the paper provided an overview of smart antenna 

and aided systems and presented a planar array as a design exam
ple. The potential of smart antennas with regard to providing 

increased capacity in wireless communication networks was also 
discussed. As a continuation of Part 1, Part 2 introduced the 

signal processing aspects of antenna arrays. Specifically, both 
DOA- and adaptive beamforming algorithms were described. 
A study of the achievable network throughput, of the antenna 
radiation patterns and the required length of the training se

quence used by the beamforming algorithm was also provided. 

Table 2.4: A summary of selected contributions on adaptive beamforming. 

18 
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1959 Howells: Intermediate Frequency Sidelobe Canceller [48J 

1960 

Hansen: Special Issue on Active and Adaptive Antennas (I) [50J 
1965 Applebaum: Adaptive Arrays [53J 

1970 

1975 

1980 

1985 

1990 

Widrow et al.: Adaptive Antenna Systems [51J 

Griffiths: A Simple Adaptive Algorithm for Real-time Processing 
in Antenna Arrays [54J 

Frost: An Algorithm for Linearly Constrained Adaptive Array Processing [58J 

Reed et al.: Rapid Convergence Rate in Adaptive Arrays [63J 
Ma: Theory and Application of Antenna Arrays [101 J 
Gabriel: Special Issue on Adaptive Antennas (II) [52J 
Steinberg: Principles of Aperture and Array System Design [102J 

Monzingo and Miller: Introduction to Adaptive Arrays [103J 
Hudson: Adaptive Array Principles [104J 

Marr: A Selected Bibliography on Adaptive Antenna Arrays [105J 
Haykin: Array Signal Processing [1061 
Widrow and Stearns: Adaptive Signal Processing [1071 
Gabriel: Special Issue on Adaptive Antennas (III) [74T 
Sibul: Adaptive Signal Processing [108J 
Veen and Buckley: Beamforming: A Versatile Approach to Spatial Filtering [88] 
Compton: Adaptive Antennas: Concepts and Performance [109] 

Haykin et al.: Adaptive Radar Detection and Estimation [110] 
Johnson and Dudgeon: Array Signal Processing: Concepts and Techniques [111] 
Solo and Kong: Adaptive Signal Processing Algorithms: Stability 

and Performance [112] 
1995 Litva and Lo: Digital Beamforming in Wireless Communications [8] 

Krim and Viberg: Two Decades of Array Signal Processing Research [113] 

19 

Godara: Apm.ications of Antenna Arrays to Mobile Communications, Part I & II [9,81] 
Paulraj and -Papadias: Space Time Processing for Wireless CommunIcations [1] 
Rappaport: Smart Antennas: Adaptive Arrays, Algorithms and ... r96] 
Kohno: SRatial and Temporal Communication Theory Using ... r114] 
Bhobe ana Perini: An Overview of Smart Antenna Technology' (or ... [21] 

2000 Dietrich et al.: Smart Antennas in Wireless Communications l5] 
Pattan: Robust Modulation Methods and Smart Antennas 

in Wireless Communications [116] 
Blogh and Hanzo: Third-Generation Systems and Intelligent Wireless Networking [4J 
Bellofiore et al.: Smart-Antenna Systems for Mobile Communication Networks [99,100] 

2002 Trees: Optimum Array Processing [117] 

Figure 2.1: The evolution of research topics in adaptive beamforming. 
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Algori thms /Techniques 

1959 

1960 

MSN/Howells-Applebaum [53,54] 

LMS/Widrow-Hoff [51] 
Capon - MLM [56,57] 
Griffith - steepest descent [54] 

+ Widrow-Hoff [51] 

1965 

Griffith - LMS with constraint [59]1970 
MSN with simultaneous adaptivity [61] 
Frost - LMS with constraint [58] 

Reed et al. - SMI [63] 
Widrow and McCool - LRS [64] 1975 

Brennan et al. - Recursive SMI [66] 
Constrained optimisation [67,68,137] 
Partial adaptivity [73,84,120,121] 
Schmidt - MUSIC [78] 
Godard - Constant modulus [138] 1980 
Bienvenu and Kopp - MUSIC [79] 
Winters - spread spectrum for 

adaptive antennas [139] 
Perturbation sequences to 

adaptive beamforming [77
j 
140] 

Cioffi et al. - FTF-RLS l141 
fuJatial Spectrum Estimation [74] J2,~5 
Godara et al. - gradient estimation [77J 
Paulraj et al. - ESPRIT [80,83] 
Gupta - modified SMI [142] 
Instrumental variable approach [143] 
Friedlander - signal subspace method for 

interference cancellation [144] 
Agee et al. - SCORE [145] 1990 

Li - ESPRIT + beamforming [92] 
Treichler and Agee - CMA r146] 
CGM weight adjustment [147] 
Ohnishi - extended constrained LMS [148 

1995 
Chiba et al. - Beam space CMA [132] 
Haupt - GA for phase adaptive nulling [149 
Rasliid-Farrokhi et al. - jomt 

power control and beamforming [150] 
Ratnar'iiah and Manikas Improvement 

on MUSIC algorithm [151] 
Karaminas and Manikas - Broad nlLlJ

OO beamforming [152] 70 
GA-based array weight quantisation [153] 
Chen et al. - MBER beamforming [154] 
Adaptive MBER beamforming [155,156] 
GA-aided MBER beamforming [157,158] 
QPSK MBER beamforming [159] 2004 

Designs! Architectures 

SLC by Howells [48] 
(partial adaptive array) 

Self-steering or self-focusing arrays [50] 

GSC by Howells and Applebaum [8,49,53] 
(fully adaptive array) 

MVDR/LCMV beamformer by Capon [56,67] 
Iterative least squares array processing [54] 

Frost's constrained MV beamformer [58] 

Tap delay line structure [86,118,119] 
Null-constrained adaptive beamformer [69,70] 
Beam space approach [120,121] 
Partially adaptive arrays [73,84] 
Linear antenna arrays with broad nulls 

by Prasad [122] 

Digital beamforming [8, 104] 

Systolic arrays [75,123,124] 

Adaptive dig;ital beamforming by Ward et al. [75] 
Parallel spatial processing by Su et al. [76] 
Null control methods [125] 
Systolic arrays for MVDR beamforming [126] 
Regenerative hybrid arrays [127] 
Modified SLC [128] 
New adaptive broadband structure [129] 
Neural MVDR-based beamforming [90] 

Time dependent adaptive arrays 
by Petrus et al. [130] 

New FIR pole-zero structure by Adkins et al. [131] 
D)gital beamforming by Chiba et al. [132] 
S VD-partial adaptive arrays [133] 

Subband adaptive beamformer by Weiss et al. [134] 

Hybrid adaptive array and equalizer [135] 
Subband-selective GSC for partially adaptive 

broadband beamforming by Liu et al. [136] 

Figure 2.2: Evolution of adaptive beamforming algorithms and beamformer designs. 
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in the context of civilian cellular communications began to grow rapidly. This trend was also moti

vated by the advances in processor cost and speed. A large variety of new algorithms was derived as 

refinements of previously proposed algorithms, which were designed for different environments using 

Frequency Divison Multiple Access (FDMA), Time Divison Multiple Access (TDMA), Code Divison 

Multiple Access (CDMA) or Spatial Divison Multiple Access (SDMA) schemes. A summary of the 

above-mentioned contributions, including several selected publications on the evolution of adaptive 

beamforming was given in Tables 2.1, 2.2, 2.3 and 2.4. Specifically, Figure 2.1 summarised several im

portant milestones in the context of monographs, collections of papers and text books, while Figure 2.2 

outlined the evolutionary path of algorithms and array designs that emerged following the seminal 

contribution of Howells in 1959. Having reviewed the history and evolution of adaptive beamforming, 

we will now proceed by classifying the adaptive beamforming schemes known at the time of writing. 

2.1.2 Classification of Adaptive Beamforming 

The adaptive beamformer may be viewed as a learning and self-optimising system. It can be cate

gorised either on the basis of the optimisation criterion employed or with respect to the algorithm 

used for adjusting the array weights [100]. Thirdly, there are several processing schemes available for 

beamforming, which include digital beamforming (DBF) [8], analogue beamforming [8], element-space 

beamforming [8,81] and beam-space beamforming [8,81]. Beamforming may also be categorised as 

narrowband [81,88] or wideband beamforming [51,54,58,81,88,97]. The breakdown of these cate

gories is provided in Figure 2.3. In the first category, optimisation is governed by the performance 

criterion used. For example, when using the Mean Square Error (MSE) criterion, the output of the 

beamformer is optimised such that the MSE between the beamformer's output y(n) and some desired 

response r(n) is minimised. When using the Signal-to-Interference Ratio (SIR) criterion, the output 

is optimised such that the SIR is maximised, while in the case of the minimum variance beamformer 

the variance between the desired and actual output is minimised. In the context of the Minimum Bit 

Error Ratio (MBER) criterion the output of the beamformer is optimised such that the BER between 

the transmitted and the received bits is minimised. 

As seen in Figure 2.3, several adaptive algorithms are available for adjusting the array weights, 

such as the steepest descent method, least squares method, conjugate gradient method and random 

search method. The choice of the adaptive algorithm to be used is perhaps the most important 

design decision to be made, since it determines for example the speed of convergence and also the 

hardware complexity required for implementing the algorithm, which will then contribute to the overall 

performance of the system. Haykin [6] and Rappaport [7] listed several factors that may affect the 

preferences of one algorithm over another in the context of adaptive filters, which can also be applied 

to adaptive beamforming. 

1. Rate of convergence: This is defined as the number of array weight adjustment iterations 
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Figure 2.3: Classification of adaptive beamforming based on a) optimisation criteria, b) weight adap

tation algorithm and c) processing scheme employed. 
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required for the algorithm, in response to stationary inputs, to converge sufficiently close to 

the optimum Wiener solution in the sense of a defined criterion, such as the MSE. A fast rate 

of convergence allows the algorithm to adapt rapidly to a stationary environment of unknown 

statistics. 

2. Misadjustment: For an algorithm of interest, this parameter provides a quantitative measure 

of the amount by which the final value of the MSE, averaged over an ensemble of adaptive filters, 

deviates from the optimal MMSE solution that is produced by the Wiener filter. 

3. Tracking: In a non-stationary environment, the algorithm is required to track statistical varia

tions in the environment. The tracking performance of an algorithm, however, is influenced by 

two contradictory features, namely by the rate of convergence and by the steady state fluctuation 

due to the array weights' quantisation noise. 

4. Robustness: This measure characterises the ability of an algorithm to operate satisfactorily 

with ill-conditioned input data, which shows the stability of the algorithm. The data sequence 

is said to be ill-conditioned when producing large error on the solutions while having a small 

error. Robustness may also be used in the context of the algorithm's numerical behaviour (see 

item 6). 

5. Computational complexity: This can be quantified in terms of the number of arithmetic 

operations required for a complete iteration of the algorithm and/or the size of the memory 

required to store both the data and the program. 

6. Numerical properties: When an algorithm is implemented, inaccuracies are produced due to 

round-off noise and finite-precision errors. These errors influence the stability of an algorithm. 

The factors listed above are also summarised in Figure 2.4. The choice of an algorithm and its 

corresponding convergence speed would also depend on the radio channel characteristics encountered. 

Note that an algorithm may have a very high rate of convergence, but may be suffering from a high 

computational complexity. In other words, there is always a trade-off between these two features. 

Another significant parameter influencing the performance of an adaptive beamforming scheme 

is the choice of the reference signal transmitted in order to differentiate the desired signal from the 

interferers; if an explicit reference signal is not used or unavailable, the adaptive beamforming scheme 

is termed as a blind adaptive beamforming regime. Adaptive beamforming can be further divided into 

adaptive beamforming schemes using temporal reference or that involving spatial reference techniques. 

Further comments on these categories will be provided in the subsequent sections. In the next section, 

we will elaborate on our signal model that will be used throughout this chapter. 
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rate of convergence computational complexity 

Performance measures 

of an algorithm 

tmeking I / L-------.Jr misadjustment 

robustness and numerical properties 

Figure 2.4: Several contradictory design factors that contribute to the overall performance of a beam

forming algorithm. 

2.2 Basic Concepts of Beamforming 

2.2.1 Signal Model 

The employment of antenna arrays in mobile radio systems for combating the effects of co-channel 

interference was first discussed in 1980 by Yeh and Reudink [160], demonstrating that with the aid of a 

moderate number of antenna elements, it was possible to substantially increase the achievable spectral 

efficiency [8]. The advantages of antenna arrays have been lavishly documented in the literature [4, 

8-10, 13, 14, 22]. The antenna elements can be arranged according to different geometries, with the 

uniform linear [8,113,161]' circular [8,113,161] and planar [8,100,161] arrays being the most popular 

design options. Here, we continue our discourse by presenting our signal model, which is based on the 

uniform linear array (ULA) configuration. 

Consider an array of L omni-directional antenna elements separated by a distance d in the far-field 

of M uncorrelated point sources, as shown in Figure 2.5 a). In general, the M point sources represent 

M mobile stations, where one of them is the desired user, while (M -1) users impose interference. Let 

us first concentrate on the scenario of having a single source, say source 1. If the far-field wavefront 

of source 1 impinges upon the array at an angle 81 with respect to the array normal, as shown in 

Figure 2.5 b), the wavefront will reach element l, before arriving at element l - 1, for example it will 

reach element 2 before arriving at element 1. The extra distance the wave has to travel for reaching 

element 1 after arriving at element 2 is dsin81. As seen in Figure 2.5, the extra distance the wave has 

to travel from the lth element to element 1 is given by: 

(2.1 ) 
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Figure 2.5: L-element linear antenna array in the far-field of a) M point sources of direction el, e2, 
... , eM, respectively b) a single point source of direction e1 . 
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Hence, for an arbitrary source direction 8m , m = 1 ... M, this relationship can be expressed as: 

Equivalently, in terms of time the delay measured from element l to element 1 is given by: 

d(l - 1) . 8 
---'-----'- SIn m, 

C 

26 

(2.2) 

(2.3) 

where c is the speed of light, which is related to the frequency f and the wavelength A by c = fA. 

These equations are based on the assumption that the elements are located along the x-axis of the 

Cartesian plane with the reference element positioned at (0,0). For the general case of an arbitrary 

array on the x-y Cartesian plane, the time delay encountered by an element at position (p, q) with 

respect to the origin is given by: 

Ipi sin 8m + Iql cos 8m 

c 
(2.4) 

The signal induced in the lth array element due to the mth signal source, where m = 1,2, . " ,M is 

normally expressed in complex form as: 

(2.5) 

where we use a bar, ,-, over x (i.e. x) to denote a pure noise-free signal and mm(n) denotes the 

complex-valued modulating signal of user m. The structure of the modulating signal reflects the 

particular modulation scheme used in the communication system considered [81]. In our case, we 

assume a simple Binary Phase Shift Keying (BPSK) modulated signal in a non-dispersive narrowband 

channel, thus the modulating signal of user m can be expressed as: 

(2.6) 

where the complex-valued coefficient am(n) models the multiplication of the channel coefficient of 

user m with the transmitted signal power of user m and therefore lam (n)12 denotes the received signal 

power for user m, while bm(n) E {±1}, for m = 1,2, ... ,M. 

In vectorial representation, the total output signal of the array is given by: 

+ TnM(n)eJ27rjtl(OM) I 
+ TnM(n)e.7 27r jtL (OM) , 

x(n) = 
+ 

(2.7) 

where the so-called steering vector Sm associated with the mth signal source, m = 1, ... , M, namely 

with the signal arriving from direction 8m , can be represented by an L-row complex vector: 

ej27f}tl(Om) 

ej27fjt2(Om) 

(2.8) 
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For an element spacing d of d = A/2 the steering vector can be simplified to: 

1 

(2.9) 

ej'rr(L-l) sin em 

Since in the context of BPSK we have a constant modulating signal magnitude, the symbol index n 

constitutes the only parameter that influences the modulating signal of mm(n) = ±1 in Equation (2.7). 

We could therefore express the total noise-free output signal of the antenna array in terms of an 

(L x M)-dimensional matrix G acting as the system matrix of the beamformer, such that: 

x(n) 

SAb(n) 

Gb(n), 

where S is the (L x M)-dimensional steering matrix given by: 

S 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

and A is a diagonal matrix that contains the binary modulating signals am of the M point sources or 

users. Note that we use boldface lowercase characters to denote the vectors and boldface uppercase 

characters for matrices. In a more compact form, the total noise-contaminated array output vector 

x(n) can be expressed as: 

x(n) x(n) + n(n) 

Gb(n) + n(n) 

[L:~=l mm(n)Sm(n)] + n(n), 

(2.15) 

(2.16) 

which consists of the superposition of the desired and interfering signals and random noise. The vector 

n(n) denotes the complex array noise vector of n(n) = [nl(n), n2(n), ... , nL(n)V, where nl(n) is the 

complex random noise component imposed on the lth array element and T represents the transpose 

of a vector or a matrix. The noise is assumed to be temporally white with zero-mean and variance of 

E[lnl(n)12j = 2(}~. Therefore, the desired user's Signal-to-Noise Ratio is defined as SNR = lall 2 /2a~, 

assuming that user 1 is the desired user. Similarly, the Interference-to-Noise Ratio of user m is given 

by INRm = lam l2 12(}~ and the desired Signal-to-Interference Ratio with respect to user m is defined 

as SIRm = lall 2/lam l2, where m = 2, ... , M. 
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y xl (n) 
* WI 

Y xl (n) * W z 
.. y(n) 

Figure 2.6: A narrowband beamformer structure. 

Figure 2.6 shows the simple structure of a narrowband beamformer. It can be directly observed 

that the output y(n) of the beamformer is constituted by the sum of L appropriately weighted array 

element signals. More explicitly, the signal received by each element, namely xl(n) is multiplied by a 

complex array weight wi and summed, yielding the output y(n) as: 

L 

y(n) = L wi(n)Xl(n), (2.17) 
1=1 

where '*' in wi(n) denotes the complex conjugate value of the weights wl(n). It is convenient to 

multiply the data by the conjugates of the weights for the sake of later notation simplification. In 

vectorial notation the weights of the beamformer are represented as: 

w(n) (2.18) 

and taking into account the signals induced in all elements as formulated in Equation (2J7), the output 

of the beamformer can be expressed as: 

y(n) = w H (n)x(n), (2.19) 

where the superscript H denotes the complex conjugate transpose of a vector or a matrix. Assuming 

that the components of the array output x(n) can be modeled as zero-mean stationary complex 

processes, the mean output power of the beamformer is given by: 

P(w) E [y(n)y*(n)J 

(2.20) 

where E [.J denotes the expectation operator and R is the (L x L )-dimensional auto-correlation matrix 
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of the received signal samples at the array output, defined as: 

R = E [x(n)xH(n)] = E XL (n) ] (2.21) 

Expanding Equation (2.21) and using the condition of wide sense stationarity, we obtain: 

r(O) r(l) r(L - 1) 

R 
r( -1) r(O) r(L - 2) 

r(-L+l) r(-L+2) r(O) 

r(O) r(l) r(L - 1) 

r*(I) r(O) r(L - 2) 
(2.22) 

r*(L - 1) r*(L - 2) r(O) 

Elements of the auto-correlation matrix are the correlation coefficients between the signals received 

by the various elements. For example, Rij denotes the correlation between the received signals of 

the ith and the jth element of the array. Observe furthermore that the structure of R is Hermitian, 

i.e. we have RH = R. More explicitly, this correlation matrix has a Toeplitz structure, i.e. r(O) is real 

and the off-diagonal values parallel to the main diagonal elements are all equal. Hence the correlation 

matrix of the received signal samples of the various array elements can be expressed in a compact 

form as: 

R = (2.23) 

where O"~ is the variance, which is also equal to the power of the associated zero-mean incoming signal 

of user m and h is an (L x L )-dimensional identity matrix. Using matrix notation, Equation (2.23) 

can be expressed as: 

R (2.24) 

or as: 

(2.25) 

where G is the system matrix as defined in Equation (2.13), while S is the (L x M)-dimensional 

matrix of Equation (2.14) comprised of the steering elements defined in Equation (2.8) and P is given 

by P = AAH = AA* = diag[lam I
2],m = 1,2, ... ,M, with A defined in Equation (2.12). The 

elements of the (M x M)-dimensional diagonal matrix P are given by the variance or power of the 
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incoming signals Jam J2, m = 1,2, ... , M. It should also be noted that if the signals arriving from the 

M point sources are uncorrelated, we have E[mi'ITIj] = 0 for i i= j, hence the total correlation matrix 

R can be expressed as the superposition of the correlation matrices of the individual sources and noise, 

yielding R = Rmi + Rmj + 2(}~h. 

For a linear antenna array constituted by L omni-directional elements and placed along the x-axis, 

i.e. based on Equation (2.4), as in Figure 2.5 the beam pattern is given by [8]: 

L 

F(em ) = I:: wle- j27r !tt(Bm ), (2.26) 
l=l 

which describes the response of the beamformer to the source signal arriving at an angle of em. 
If we closely observe Equation (2.26), it is readily seen that it has a similar structure to that of 

the beamformer's output defined in Equation (2.17). More explicitly, while in Equation (2.17) the 

time-domain array output is formulated as the sum of the weighted array element output signals, in 

Equation (2.26) the response of the beamformer to the source signal arriving at an angle of em is 

formulated as the sum of the kernel functions e-j27r !tt(Bm ), weighted by the array weights. 

Having introduced the signal model and some elementary equations associated with beamforming, 

let us now take a closer look at two specific categories of beamforming, namely at element-space [8,81] 

and beam-space [8,81] processing schemes as well as at both narrowband and wideband beamform

ing [81,88], which will be defined in Sections 2.2.2.1 and 2.2.2.2, respectively. 

2.2.2 Beamforming Processing Scheme 

The process of beamforming may broadly be classified as either analogue or digital. It can also be 

divided into two significant categories known as element-space beamforming [8,81] and beam-space 

beamforming [8,81], as well as into narrowband- [81,88] and wideband beamforming [51,54,58,81,88]. 

2.2.2.1 Element-Space Beamforming and Beam-Space Bearnforming 

In element-space beamforming, as discussed so far, the received signals ofthe array elements (Xl, X2, ... , XL) 

are directly multiplied by a set of array weights (WI, W2, ... , WL) to form a transmit or receive beam in 

the desired direction e, where L indicates the number of elements in the antenna array. The number of 

beams to be formed is however, not limited to one. For the sake of forming multiple beams receiving 

from I number of desired directions, the received signals (Xl, X2, ... , X d are multiplied by I number of 

different sets of weights, namely by (wi,w§, ... ,wi),(wr,w§, ... ,w'i), ... , (wi,w§, ... ,wi). Each set of 

weights yields a different output, representing a different array pattern or beam. Hence we have: 

L 
~ i* L..t wl Xl 

l=l 

i=I,2, ... ,I, (2.27) 
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where y(ei ) denotes the output of the beamformer, Xl is the lth array element's output signal and wl* 
is the corresponding weight assisting in forming a beam at the desired angle ei , i = 1,2, ... ,I. 

Xl 

(l) (i) 

~i ~ XL 
'" Y (8 1 ) 

r-0 
I wi 

Figure 2.7: Element-space beamformer designed for simultaneously generating I number of receiver 

beams [8J. 

In contrast to the method of element-space beamforming, in which the output y(ei ) of the beam

former is produced by summation of the multiplication between the array received signals Xl and array 

weights WI, the beam-space beamforming approach first forms a number of fixed beams. This multiple 

fixed beams may be produced using a fixed beamforming network, in which commonly the weights 

used are fixed [8,11 J and spatially orthogonal, i.e. the weight vectors' dot product is equal to zero [81 J. 

The outputs of these beams are then adaptively weighted and combined in order to form the desired 

outputs. The simplified schematic of the element-space and beam-space processing arrangements 

designed for generating multiple receiver beams is provided in Figure 2.7 and 2.8, respectively. 

With reference to the beam-space beamforming scheme of Figure 2.8, the Fast Fourier Trans

form (FFT) block in the diagram generates L orthogonal beams VI. The 'beam select' block of 

Figure 2.8 will then choose a number of these orthogonal beams that are to be weighted for the sake 

of forming the desired output. For example, assume that the desired output Yi requires the weighted 
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Figure 2.8: Beam-space beamformer designed for simultaneously generating I number of receiver 

beams [8]. 

sum of the lth and (l + 2)nd beams, yielding: 

Yi (2.28) 

Mi 

(2.29) 

where im is the selected beam's index (e.g. il = land i2 = l + 2) and Mi is the number of orthogonal 

beams that are required for forming the ith desired beam. In this case we have Mi = 2. 

Beam-space processors have been studied under numerous different names, including the termi

nology of Howells-Applebaum array [53,67], Generalised Sidelobe Canceller (GSC) [49,88]' adaptive

adaptive array [81,162] and multiple-beam antennas [11,81,163]. Reference [81] provides a good source 

of further reading on beam-space processing. 

2.2.2.2 Narrowband Beamforming and Wideband Beamforming 

Beamforming may also be grouped into either narrowband [81,88] or wideband beamforming [51,54,58, 

81,88,97]' depending on the bandwidth of the signal environment. Narrowband beamforming assumed 

that the signal bandwidth is sufficiently narrow to be considered as a single frequency. Generally, if 

the signal bandwidth is a small fraction (say less than 1 %) of the carrier frequency, this scenario may 
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be classified as narrowband, otherwise the signal is deemed to exhibit wideband characteristics [164]. 

However, the presence of wideband beamforming conditions also depends on the time interval over 

which the signal is observed [88]. Based on statistical arguments, it turns out that the observation 

time interval and bandwidth product is the fundamental parameter that determines, whether a signal 

can be considered as narrowband [88]. 

Therefore a signal may be considered to exhibit wideband characteristics, when the signal's band

width is wider than the channel's frequency response. Viewing matters in the time domain, since 

the eIR exhibits several delayed tap, the received signal includes multiple versions of the transmit

ted waveform, which are attenuated and delayed in time, thus linearly distorting the received signal. 

This results in intersymbol interference (lSI). In our investigations we will be concentrating on the 

non-dispersive AWGN channel, thus we will invoke spatial processing but no time-domain process

ing. The use of narrowband beamformers for detecting wide band signals will degrade the attainable 

performance of the beamformer. When receiving wideband signals, the received signal of each array 

element has to be fed into a time-domain equaliser, which combines the signal components having 

different delays, leading to the concept of temporal processing [1,114], [165]. The combination of both 

spatial and temporal processing involves simultaneous filtering in both the space- and time-domain 

and therefore it is referred to as space-time processing [1,114], [165]. Narrowband beamforming is 

conceptually simpler than wideband beamforming, since we can ignore the temporal domain. 

Having provided the necessary rudimentary foundations on beamforming, in the next section we 

will consider a simple worked example. 

2.2.3 Beamforming Example 

In reference to our signal model outlined in Section 2.2.1, let us consider having only two antenna 

elements separated by a distance d which equals to ),,/2 (half a wavelength), as shown in Figure 2.9. 

We assume that there are only two signals transmitted at the same frequency f, one arriving from 

e1 = 0° as the desired signal m1 (n) and another one from e2 = 30° (equivalent to ~ radians) as the 

interferer m2 (n). 

The signals received by the elements are given by: 

m1(n)ej21r!tdOl) + m2(n)ej21r!t1 (02) 

m1 (n)e j21r!t2 (Ol) + m2 (n)e j21r !t2(02) , 

(2.30) 

(2.31) 

respectively, where tt (em) is the time delay defined in Equation (2.3). This is equivalent to applying 

Equation (2.16) apart from the absence of the noise vector term. In vectorial representation, the array 

output is given by: 

x(n) (2.32) 
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yen) 

Figure 2.9: Beamforming receiver example with a wanted signal at 0° and an interfering signal at 30° 

for an array having an element spacing of }../2. 

where for the signals arriving from 0 radian and ~ radians, we have the steering vectors of: 

(2.33) 

for the desired signal and the interferer, respectively. 

As illustrated in Figure 2.6, the signal emerging from each of the two elements is multiplied 

by a complex-valued array weight, and the weighted signals are then summed in order to form the 

beamformer's output. Therefore, the noise-free output of the beamformer is given by: 

2 

y(n) L wl(n)Xl(n) 
l=l 

wi[m1(n) + m2(n)] + w2[m1(n) + j m2(n)] 

m1(n)(wi + w2) + m2(n)(wi + j W 2)' (2.34) 

When steering the array's beam pattern in the direction of the desired signal, while simultaneously 

suppressing the interfering signals, the array's output due to the desired signal Yd(n) becomes: 

(2.35) 

and the array output owing to the interfering signal YI(n) becomes zero, yielding: 

(2.36) 

Equations (2.35) and (2.36) lead to two sets of complex weight values: 

o (2.37) 
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angk angle angle 

8 a = 180 8 a = 180 8 a= 180 
(a) L = 2 elements (b) L = 3 elements (c) L = 4 elements 

Figure 2.10: Polar beam pattern for the beamforming receiver example of Figure 2.9 employing a 
(a) two-element, (b) three-element and (c) four-element antenna array with a wanted signal at 00 and 
an interfering signal at 300

• 

and 

0, (2.38) 

where ~ and 8' denote taking the real and imaginary values, respectively. Solving Equations (2.37) 

and (2.38) simultaneously yields: 

wi 0.5 - jO.5 

0.5 + jO.5. (2.39) 

The set of values in Equation (2.39) are the weighting coefficients to be used by a two-element 

antenna array for acquiring the desired signal inl (n) arriving from e = 00
, while eliminating the 

interfering signal in2(n) impinging from e = 300
• Figure 2.10 (a) shows the beam pattern in polar 

form for this specific example. Observe that the interfering signal from the direction of e = 300 

is perfectly nulled. The effects of adding more array elements can be seen from Figures 2.10 (b) 

and 2.10 (c). Apart from placing a null in the direction of the interfering user at e = 300
, the extra 

degrees of freedom (DOF), i.e. DOF= L -1 has been used to increase/improve the antenna gain in the 

direction of the desired user's signal arriving from e = 00
, while simultaneously reducing the sidelobes 

formed in other angular directions. Note that the gain of the maximum sidelobe and the width of the 

main beam jointly determine the effective interference rejection capability. Note also that all beam 

patterns of Figure 2.10 are symmetrical with respect to the vertical line extending from 900 to 2700
, 

i.e. from the line where the antenna elements are placed. However, we normally consider only half of 

the plane, i.e. from ea = 00 to ea = 1800 [117], where (Ja denotes the angle measured from the line 

connecting the antenna array elements, which is given by (J = 900 
- ea. Furthermore, the symmetry 
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of the radiation characteristic follows from Equation (2.26), which produces identical responses for 

angles of ±Ba for 00 
::; B~ ::; 1800

• 

Naturally, in practical situations we have no prior knowledge concerning the direction of arrival 

and many other factors should be taken into consideration such as the contaminating effects of noise, 

the characteristics of the received signals and the nature of the propagation environment. Next, we 

elaborate on some of the criteria often used for calculating the optimal weights. 

2.3 Criteria for Determining the Optimal Beamforming Weights 

An antenna array's output is constituted by the weighted combination of signals induced in the array 

elements. The set of array weights used, when the best performance resulting in a beam having a 

sharp directivity in the desired direction and a null in the direction of the interferers is achieved is 

referred to as the optimal weights. Several performance measures, such as the maximum desired signal 

power, maximum SNR, maximum SIR and minimum interference power may be used, but essentially 

the objective is to optimise the beamformer's response with respect to a prescribed optimisation 

criterion, such as the Minimum Mean Square Error (MMSE) between the array's actual and desired 

output so that the output of the beamformer contains the lowest possible contribution from noise and 

interference. 

x/n) 

xJn) 

weight 

adjustment 

e(n) 

yen) 

+ 

1'(n) 

Figure 2.11: Structure of a beamformer using the reference signal r(n). 

The general optimisation problem to be solved here is centred around the schematic of Figure 2.11, 

where the array weights are optimised for the sake of minimising for example the variance of the error 

signal e(n) between the array output y(n) and the reference signal r(n). The reference signal r(n) is 
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typically a unique sequence, which unambiguously identifies the desired user and may be considered 

equivalent to the known channel sounding sequence used in the context of channel equalisation for 

optimising the equaliser coefficients, in order to minimise the effects of intersymbol interference [2]. 

In order to simplify our notations, in this section we denote the desired signal vector by d (assuming 

that the first signal m1(n) of Equation (2.7) having a steering vector 81 described by Equation (2.8) 

is the desired user), the noise vector by n and the sum of all interfering signal vectors by u (assuming 

the presence of M 1 interfering signals mm (n) formulated in Equation (2.7) with the corresponding 

steering vector 8 m given by Equation (2.8), where we have m = 2,3, ... , M). 

2.3.1 Minimum Mean Square Error Criterion 

As in Equation (2.16), the array output x(n) can be expressed as: 

M 

x(n) m1(n)81 + L mi(n)8i + n(n) = d(n) + u(n) + n(n). (2.40) 
i=2 

As seen in Figure 2.11, the Minimum Mean Square Error (MMSE) criterion aims for minimising the 

Mean Square Error (MSE) between the beamformer's output y(n) and the desired response r(n). 

Ideally, the reference signal, which is also referred to as the desired response r(n) is assumed to be 

highly correlated with the desired signal m1 (n) and uncorrelated with all unwanted interfering signals 

mm(n), resulting in E[r(n)mm(n)] = 0, where m = 2,3, ... ,M is the index of an unwanted signal. 

Since the array output consists of the superposition of all incoming signals and random noise, the 

difference between the beamformer's output and the reference signal will create an error signal e(n) 

expressed as: 

e(n) = r(n) - y(n) = r(n) - wHx(n), (2.41) 

which is used for adjusting the weights w, such that the MSE between the array output y(n) and the 

reference signal r(n) is minimised. The MSE is obtained by squaring and expanding Equation (2.41) 

and then taking the ensemble average, resulting in: 

MSE E [le(n)1 2
] 

E [lr(n)1 2
] - 2wHz + wHRw, (2.42) 

where z = E[r*(n)x(n)] is the cross-correlation between the array output and the complex conjugate 

of the reference signal, while R = E[x(n)xH(n)] is the auto-correlation of the array output. 

Observe in Equation (2.42) that the MSE expression defined is a quadratic function of wand hence 

it may be minimised by taking its derivative with respect to the array weights wand then setting it 

to zero, as follows: 

(2.43) 
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yielding the Wiener-Hopf or optimum Wiener solution of: 

R - 1 
Wopt = z. (2.44) 

Under ideal conditions, when the reference signal is equal to the desired signal, i.e. when we have 

m1 (n) = r(n), we may define the cross-correlation vector of z = E[lr(n) 12]Sl and the auto-correlation 

matrix of R = E[lr(n)12]sls{l + Ru + 20"~I, where Ru = E[uuH ] and I denotes an identity matrix. 

According to Equation (2.44) it is necessary to invert the matrix R every time, when the set of 

optimum array weights has to be updated, which is associated with a complexity proportional to the 

cube of the number of array weights. Fortunately, however, it is possible to directly update R- 1 

without performing matrix inversion, by applying the Matrix Inversion Lemma [107,166]: 

(A + BCD)-l = A-I _ A -lB (C- 1 + DA -1 B) -1 DA- 1 (2.45) 

to R, where A = Ru+n = Ru + 20"~I, B = Sl, C = E[lr(n)12] and D = s{i. It follows that the inverse 

of R can be regularly updated according to: 

[ 1 + E[lr(n)I;lsjlR;;~nsl1 R;;~n' (2.46) 

which leads to the generalised optimum Wiener solution expressed as [8]: 

(2.4 7) 

where the scalar coefficient (3 is defined as [8]: 

(3 = 
1 + E[lr(n)12]s{lR~-!nSl 

(2.48) 

Note that the Matrix Inversian Lemma is also referred to in the literature as Woodbury's Identity [6,8]. 

Following the above brief discourse on the MMSE array weight optimisation criterion, let us now 

consider the maximisation of the SIR in the next section. 

2.3.2 Maximum Signal-to-Interference Ratio Criterion 

The array weights can also be chosen to directly maximise the Signal-to-Interference Ratio (SIR) 

at the beamformer's output. Assuming that the M arriving signals; ml (n), m2(n), m3(n), ... , mlvdn) 

are uncorrelated and the correlation matrices of the desired signal Rd = E[ddH ] as well as that 

of the undesired signals Ru = E[uuH] are known, we may choose to maximise the ratio of the 

desired signal power O"J and the total interfering signal power O"~. With the mean output power 

given by 0"2 = E[y(n)y*(n)] and the array output formulated by y(n) = wHx(n), where we have 

x(n) = d(n) + u(n) + n(n), the desired signal power may be written as: 

(2.49 ) 
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and the interfering signals power as: 

Therefore, the SIR is given by: 

SIR 
(J"2 

--.!i 
(J"~ 

wHRdW 

wHRuw 

Upon setting the derivative of Equation (2.51) with respect to w to zero, one arrives at: 
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(2.50) 

(2.51) 

(2.52) 

which has to be solved for the weights w. Having defined the desired signal vector d(n) as d(n) 

m1(n)sl in Equation (2.40), we have Rd = E[lr(n)12]slSf, thus we obtain: 

(2.53) 

where in this case, the scalar coefficient (3 is expressed as [8]: 

(3 = 
E[lr(n)12] H 

SIR Sl Wapt· 
(2.54) 

In order to directly maximise the SINR, rather than the SIR, we must include the noise power in the 

SINR calculation such that the expression of: 

SINR = (2.55) 

replaces the SIR calculation of Equation (2.51). Having described the maximum SIRjSINR array 

weight optimisation criterion, we now proceed to another common criterion referred to as the minimum 

variance optimisation criterion. 

2.3.3 Minimum Variance Criterion 

The utilisation of the reference signal based approach to the optimisation of the array weights is 

prevented, when too little statistical knowledge is available concerning the desired signal m1 (n) [88]. 

The desired signal maybe of unknown power and may not always be present, thus preventing the 

estimation of the signal and correlation matrices required by the maximum SNR beamformer. An 

attractive way of ensuring a good signal reception may be arrived at by the application of linear 

constraints to the array weight vector and then minimising the output noise variance (i.e. average 

power). Recall that the beamformer's output in Figure 2.11 is given by: 

y(n) wHx(n) 

wHd(n) + wHu(n) + wHn(n). (2.56) 
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In order to ensure that the desired signal is received with a specific gain and phase, a constraint 

may be used so that the response of the beamformer to the desired signal becomes [8]: 

(2.57) 

where Sl is the desired user's steering vector and g is a complex constant. The employment of this 

linear constraint constitutes a general approach that facilitates maintaining an extensive control over 

the response of the beamformer [88]. Multiple linear constraints may also be imposed for the sake of 

maintaining more control over the beam pattern. For example, if there is a fixed interference source 

at a known direction eu , then it is possible to enforce maintaining a zero gain in that direction in 

addition to maintaining the response g towards the desired signal arriving from direction ed. This is 

expressed as: 

(2.58) 

In other words, multiple linear constraints can be imposed for the sake of handling any uncertainty 

concerning the desired signal's direction of arrival and to provide a degree of robustness to signal 

cancellation due to signal direction mismatch. In [68], multiple constraints were used for ensuring that 

the beamformer response complies with given specifications at certain spatial or temporal frequencies. 

The number of points at which the beamformer's response can be constrained is however limited to the 

number of array elements L, since each constraint exhausts one degree of freedom (DOF) in the weight 

vector [88]. Therefore, given N constraints such that N < L, there are only (L - N) DOF left for 

minimising the error signal's variance. If L constraints are used, then there are no DOF available for 

power minimisation and therefore the beamformer's response will be fixed, i.e. remains independent 

of the array's received signal for all signal and interference scenario. This particular case is analogous 

to that of the data-independent beamformer [88] or switched beam approach [13,20,21]. 

Minimisation of the contributions of the interferers to the array output is achieved by choosing the 

array weights to minimise the output variance or power, which is formulated as: 

Var[y] 

(2.59) 

subject to the constraint defined in Equation (2.57). This is equivalent to minimising the quantity 

wHRu+nw, where Ru+n = E[uuH] + 2a~I. Using the method of Lagrange, we have [8,56,88]: 

(2.60) 

and upon setting this expression to zero, we arrive at: 

(2.61) 
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where the scalar coefficient (3 represents [8]: 

(3 = 9 (2.62) 

The beamformer employing this particular optimisation criterion is referred to as the Linearly Con

strained Minimum Variance (LCMV) [58] scheme. For the specific case, when the complex constant in 

Equation (2.57) is set to 9 = 1, the response of the beamformer is often termed the Minimum Variance 

Distortionless Response (MVDR) [67], a beamforming scheme, which was pioneered by Capon [56]. 

Having discussed the three classic array weight optimisation criteria, in the next section we will com

pare and summarise them. 

2.3.4 Comparison Between Beamforming Optimisation Criteria 

When invoking the MMSE criterion, the direction of the desired signal does not have to be known. 

However, this technique requires the transmission of a known reference signal that is highly correlated 

with the desired signal and therefore the statistics of the desired signal are required for the design of 

the reference signal. This also applies to the maximum SIR criterion, where the correlation matrices 

of the desired and undesired signals, namely Rd and Ru have to be known for the sake of determining 

the array weights w. As for the LCMV criterion of Section 2.3.3, it guarantees that the desired signal 

will not be cancelled with the advent of applying linear constraints to the array weight vector and 

therefore it requires the knowledge of the steering vector Sl. Satisfying the above requirements will 

lead to optimum beamforming in the sense of the specific optimisation criterion concerned, provided 

that the required knowledge is accurate and that the signals impinging on the array are uncorrelated. 

Having determined the optimum array weights from Equation (2.52) with Ru+n = Ru + 2(T~I 
replacing the correlation matrix of the interfering signals R u , the SINR can also be determined from 

Equation (2.55), yielding: 

SINR 
W~tRdWOPt 
w~tRu+n Wopt 

(32 E[lr(n)12]sfR;:-~nS1SfR;:-~nS1 
(3 2 HR-1 

sl u+nS1 

E[lr(n) 12]sfR;:-~nS1' (2.63) 

which is independent of (3 [8,88]. It is interesting to note from Equations (2.47), (2.53) and (2.61), 

that the above three criteria used for calculating the optimal array weights resulted in an optimum 

weight expression of the same form [8]. Below we contrast the corresponding expressions of the scalar 

coefficient (3 in terms of the SINR for the above three optimisation criteria introduced, which are 
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derived from Equations (2.48), (2.54) and (2.62): 

i3MSE 

i3SINR 

E[lr(n)1 2J 
1 + SINR 

E[lr(n)1 2J H 
SINR Sl Wapt 

E[lr(n)1 2J 
9 SINR 

E[lr(n)1 2J H 
SINR W aptS

1· 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

Note that, i3MV is identical to i3SINR' while for the MSE criterion, we infer from Equation (2.67) 

that the constant gain i3MSE can be expressed in terms of i3MV as: 

13 E[lr(n)1
2
Ji3MV 

MSE = gE[lr(n)12J + i3MV 
(2.68) 

The optimum array weights of the three different optimisation criteria described are all given by the 

Wiener solution of Equation (2.44), showing the importance of the Wiener-Hopf equation in estab

lishing the theoretical adaptive beamforming steady-state performance limits [8J. This also implies 

that the choice of the optimisation criterion is not as critical as that of an appropriate adaptive array 

weight update algorithm, which will be discussed in the following section. As a summary, Table 2.5 

compares the three criteria discussed. 

Criterion Minimum MSE Maximum SIR Minimum Variance 

(Section 2.3.1) (Section 2.3.2) (Section 2.3.3) 

Parameters x=d+u+n x=d+u+n x=d+u+n 
x: array output x: array output x: array output 
r: reference signal d: signal component 81: constraint vector 

z = E[r*xJ u: interference component g: response constant 

R = E[xxHJ (2.21) Rd = E[ddHJ (2.49) R = E[xxHJ (2.21) 
output: y = w H x (2.41) Ru = E[uuHJ (2.50) output: y = wH x (2.56) 

output: y = w H x 

Method minw E llr - Yl2 J (2.42) wHRd W (251) minw wHRw (2.59) maxw HR . w uW 

subject to w H 
81 = 9 (2.57) 

Optimum w = R- 1z (2.44) R w = wliRclWR w (2.52) 
S wHRuw u R- 1 [HR-1 t1 w = u+nS1 Sl u+nS1 9 

Weights (2.61) 

Advantages Direction of desired 'Ifue maximisation Flexible and 

signals not required ofSNR general constraints 

Dis- Requires Requires the knowledge of Computation of 

advantages a reference signal Rd and Ru constrained weight vector 

is required 

Table 2.5: Summary of the array weight optimisation criteria; MMSE, maximum SIR and minimum 
variance. 

All the three criteria require a reference signal in their adaptive optimisation process. The choice 
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of a reference signal usually requires explicit a priori knowledge about the statistics of the signal 

of interest. The reference signal can be classified into two distinct categories, namely spatial and 

temporal reference classes [8]. The design option of using a spatial reference is often referred to as 

the employment of direction of arrival (DOA) information concerning the desired signal. By contrast, 

a temporal reference signal may be a pilot signal transmitted for example in each transmission burst 

that is correlated with the desired signal, a specific bit sequence embedded in a data packet or a 

known pseudo-noise (PN) code in a CDMA system. The form of reference signal used depends on 

the particular system, in which adaptive beamforming is to be implemented. If an explicit reference 

signal is available in a system, it should be used as efficiently as possible for the sake of achieving the 

lowest possible complexity, high accuracy and fast convergence. 

In applications involving multipath propagation, it is not uncommon to experience multipath inter

ference that is coherent with the signal of interest. The utilisation of an LCMV adaptive beamformer 

in conjunction with one or several constraints will not only suppress the interferers but also the desired 

signal. An example of preventing the cancellation of the desired signal in the presence of coherent in

terference has been proposed by Sivaradje et al. [167] using three methods known as spatial smoothing, 

parallel spatial processing and the so-called split-polarity transformation technique. 

Having characterised three different array-weight optimisation criteria of beamforming, namely 

the MMSE, the maximum SIR and the minimum variance criteria, let us now move on to considering 

the most important aspects of adaptive beamforming, namely the choice of the adaptive array-weight 

update algorithms, which playa major role in determining the behaviour of the antenna array. 

2.4 Adaptive Beamforming Algorithms 

The array weight optimisation criteria described in the previous section fall into the statistically 

optimum beamforming category, where the weights are chosen based on the statistics of the signal 

received by the array. However, the signal statistics are often unknown and they may change over 

time, for example, as a consequence of the time-variant interferers [88]. Therefore, typically adaptive 

algorithms are used for obtaining a number of weights that will converge to the statistically optimum 

solution. 

2.4.1 Temporal Reference Technique 

Recall from our earlier discourse that Figure 2.11 shows an adaptive beamformer employing the tem

poral reference based array weight optimisation technique. The aim of the weight adjustment process 

is to find a set of weights that will allow the output y(n) of the array at each time instant to be equal to 

or as close as possible to the desired response r(n), i.e. the error signal should be rendered statistically 

as small as possible. The reference signal r(n) is generated based on the available information related 
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to the statistical characteristics of the desired signal ml(n). For example, in a CDMA system r(n) 

may simply be the PN sequence of the intended user. 

In adapting the weighting coefficients, this temporal reference technique may apply the MMSE 

criterion, which was derived in Section 2.3.1. Minimisation of the corresponding MSE has resulted in 

the well-known Wiener-Hopf equation, restated here for convenience as: 

R - I 
Wapt = Z. (2.69) 

The resultant MMSE of the beamformer constituted by the classic Wiener filter, using the optimum 

weights may be derived from Equation (2.42), which is given by: 

(2.70) 

The temporal reference model may invoke a variety of adaptive array weight update algorithms, such 

as the Least Mean Square (LMS), the Recursive Least Square (RLS) and the Sample Matrix Inversion 

(SMI) algorithms to be outlined in Sections 2.4.1.1, 2.4.1.2 and 2.4.1.3, respectively. 

2.4.1.1 Least Mean Square Beamforming Algorithm 

W2 

MSE 
initial weights 

(WI> W2) 

~----~~------------~ WI 

optimum weights 

( wopt w opt ) I , 2 

Figure 2.12: An example of the MSE surface and the weights following the negative direction of the 

gradient to minimise the MSE. 
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The well-known LMS algorithm falls into the family of stochastic gradient-based techniques, since 

it is based on the steepest descent method that operates by iteratively computing and updating the 

weight vector. The updated value of the weight vector at time instant n + 1 based on the steepest 

descent method is computed using the relation of [4,6,8,166]: 

w(n + 1) = w(n) + JL [-V'wMSE(n)] , (2.71) 

where n indicates the discrete time index, JL is a positive real-valued constant referred to as the step 

size and w(n) is the current weight vector at time index n. The simple and plausible philosophy of 

Equation (2.71) is that the array weights are regularly updated according to the step size f-L in the 

direction of the negative gradient of the cost function V'wMSE(n), as defined in Equation (2.43), in 

order to yield an updated coefficient vector w( n+ 1). In other words, the algorithm follows the negative 

gradient of the MSE cost function step by step and this process will eventually lead to a unique global 

minimum, namely to a point where the weight vector assumes its optimum value [166], as shown in 

Figure 2.12. The initial weight values of w(O) is typically, arbitrarily chosen, but commonly it is set 

to be a null vector. Equation (2.71) thus describes the formulation of the steepest descent algorithm. 

Practically, an exact measurement of the gradient vector is not possible [6,54,64]' since no prior 

knowledge is available concerning the auto-correlation matrix R and the cross-correlation vector z 

before the commencement of communications. Therefore, the true gradient is replaced by a short

term estimate based on the previous samples of the input signal x(n) and the reference signal r(n). 

The estimated auto-correlation R and cross-correlation vector z based on a single sample are defined, 

respectively, as: 

R(n) 

z(n) 

x(n)xH (n) 

r*(n)x(n). 

(2.72) 

(2.73) 

Note that we used a hat, ,A, over the variables to indicate an estimated value, in order to distinguish 

them from their exact value. The estimated gradient is obtained by inserting these estimated statistics 

into Equation (2.43), which is then substituted into Equation (2.71) in order to yield the LMS array 

weight update equation in the form of: 

w(n + 1) w(n) + JL[z - Rw(n)] 

w(n) + JLx(n)[r*(n) - xH(n)w(n)] 

w(n) + JLx(n)e*(n), (2.74) 

where, as noted previously, the constant f-L is the step size that controls the convergence characteristics 

of the weight vector update algorithm. The procedure of updating the array weights with the aid of 

the LMS algorithm is summarised in Table 2.6. The LMS algorithm requires only 2L + 1 complex 

multiplications and 2L complex additions per array weight update iteration, where L is the number 

of elements in the antenna array. 
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1: y(n) = w H (n)x(n) 
2: e(n) = r(n) - y(n) 
3: w(n + 1) = w(n) + f-Lx(n)e*(n) 

Table 2.6: Updating the array weight vector of the LMS algorithm [166]. 
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In order for the estimated array weights to approach the optimal weights, the step size f-L should be 

sufficiently small. However, this renders the convergence rate slow, which is the major disadvantage of 

the LMS algorithm. Increasing f-L will facilitate a faster convergence, however, it will result in a higher 

residual MSE due to using non-optimal weights. For the sake of maintaining algorithmic stability, the 

step size f-L must satisfy the following condition [6,7,168]: 

2 
0< f-L < -\- , 

"'max 
(2.75) 

where Amax is the largest eigenvalue of the correlation matrix R. This constraint can be simplified by 

using the trace of R, which is easier to determine than the value of Amax, as the array's dimension 

becomes larger, resulting in [4,6,8]: 

(2.76) 

where trace of R, tr[R] is given by the sum of the diagonal elements of the correlation matrix R 

expressed as tr[R] = Lf=l Ai for L antenna elements. Physically this quantity represents the sum of 

the input powers of the array elements. 

The convergence rate of the algorithm is also controlled by the eigenvalue spread [6,169,170]: 

X(R) (2.77) 

where X(R) 2: 1. Rapid convergence will be attained only, when 11 - f-LAil is small (<< 1), which 

is achieved, when either f-L or Ai, i = 1,2, ... ,L or both are relatively high [6,64,168]. However, 

this desirable condition cannot be readily achieved, when the step size is close to the stability upper 

bound of c:::: A~ax' which is likely to occur, when X(R) = ~:~~ » 1. In other words, the convergence 

will now depend on the smallest eigenvalue Amin. Therefore, the fastest convergence is achieved, 

when Amax = Amin and as the eigenvalue spread increases, the convergence rate becomes slower. 

Experiments conducted by Haykin [6] have demonstrated that the LMS algorithm is highly sensitive 

to variations of the step size f-L and to the eigenvalue spread X(R) of the correlation matrix of the 

array output vectors. Briefly, the value of Amax will determine the excess MSE, while that of Amin is 

expected to limit the convergence of the algorithm, as the eigenvalue spread increases. 

Blogh et at. [4] and Hanzo et at. [12] showed the performance dependence of the LMS algorithm 

upon the desired signal's power, when aiming for an adequate level of interference rejection. In 

conjunction with a step size f-L as small as 0.0000005, the convergence rate remained low even with a 
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reference length of 1024 bits [4]. A faster convergence was observed, when the step size was increased 

to /1 = 0.0005 [4] although a sudden decrease of the achievable SIR level was observed, when the signal 

power exceeded 20dB. This phenomenon is likely to be related to the fact that the adaptation of the 

array weight vector according to the factor of /1x(n)e*(n) in Equation (2.74) is directly proportional to 

the array output vector x(n). Explicitly, if x(n) is large, the LMS algorithm is expected to experience 

a noise amplification problem, since e*(n) is multiplied by x(n), which prevents the array weight vector 

from reaching the vicinity of its optimum value. This observation motivated the design of one of the 

variants of the LMS algorithm, which is known as the Normalised LMS (NLMS) algorithm. 

The NLMS algorithm uses a signal-dependent step size in each iteration [81], since it normalises 

the correction vector of /1x(n)e*(n) in Equation (2.74) with respect to the squared magnitude of the 

array output vector x(n), resulting in a step size expressed in the form of [4,8]: 

/1(n) = /10 
a + xH(n)x(n) a + Ilx(n) 112 ' 

(2.78) 

where both /10 and a is a positive constant. The algorithm converges in the mean squared sense, if we 

have 0 < /10 < 2 [6,168]. The parameter a is chosen to be higher than zero [4,6,168] for low values of 

the array output vector x(n) in order to avoid division by a small number. The NLMS algorithm is 

therefore less sensitive to the power fluctuations of the input signals. Hence the algorithm's stability 

is improved and its performance in terms of the achievable convergence rate is far better than that of 

the LMS algorithm, as shown in [4] and [12]. In terms of complexity, the NLMS algorithm requires a 

slightly higher number of complex-valued mathematical operations, than the LMS technique, namely 

3L + 2 complex multiplications and 3L complex additions. 

Next, we will elaborate on another classic adaptive algorithm known as the Recursive Least Square 

(RLS) algorithm. 

2.4.1.2 Recursive Least Square Beamforming Algorithm 

The philosophy of the Recursive Least Square (RLS) algorithm is based on the least squares principle, 

directly optimising the weight vector by minimising the sum of squared errors of all previous samples 

up to that of the current time index n. Mathematically, the Least Squares Error (LSE) cost function 

is written as [166]: 

N 

LSE = L ane(N - n)e*(N - n) , (2.79) 
n=O 

where the error e is the difference between the actual array output y and the desired response r, as 

defined in Equation (2.41), while a represents a weighting factor having a value spanning the range 

of 0 < a ~ 1. The weighting factor a is often referred to as the forgetting factor due to its function 

of de-emphasising past error contributions, because it determines how rapidly the previous data bits 

are 'forgotten'. Furthermore, the term (1 - a) is an approximate measure of the algorithm's memory, 
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thus the special case of a = 1 corresponds to having an infinite memory. The choice of the forgetting 

factor a is strongly dependent upon the fading rate in the channel [7]. Commonly its value is chosen 

to be higher than 0.8 [7]. For a rapidly fading channel, a should be slightly less than unity, and 

the choice of a = 0.95 was reported in [171] to be a reasonable value. For a stationary propagation 

environment the forgetting factor a is set to unity, implying that all previous data are taken into 

account for determining the beamforming algorithm's updated parameters. 

Similar to the case of employing the LMS algorithm for minimising the MSE, the minimisation of 

the LSE criterion is also achieved by taking its derivative with respect to the array weights wand 

then setting it to zero, yielding the Wiener-Hopf solution of Equation (2.69). Based on the weighted 

sum, the estimated auto-correlation matrix R and the estimated cross-correlation vector z are defined, 

respectively, as: 

N 

R(n) I: anx(N - n)xH (N - n) (2.80) 
n=O 

and 

N 

z(n) = I: anr*(N - n)x(N - n) , (2.81) 
n=O 

where r is the reference signal and x is the array output. 

The RLS algorithm aims for updating the weight vector w(n + 1) based on the knowledge of the 

previous variables, namely on w(n), R(n - 1) and z(n - 1). This is based on recursively updating the 

estimates of R(n) and z(n) in Equations (2.80) and (2.81), respectively, by applying: 

R(n) aR(n - 1) + x(n)xH (n) (2.82) 

z(n) = az(n - 1) + r*(n)x(n) (2.83) 

and solving R(n)w(n) = z(n) for each time index n. For the optimal Wiener-Hopf solution of Equa

tion (2.69), we have to compute R -1 (n). The inverse of R(n) can be determined iteratively by apply

ing the Matrix Inversion Lemma [166] of Equation (2.45) to Equation (2.82) using A = aR(n - 1), 

B = x(n), C = 1 and D = xH (n), yielding: 

A-1() _ 1 [A-1( ) R-
1
(n-l)X(n)XH(n)R-

1
(n-l)] 

R n - - R n - 1 - A-I ' 
a a + xH(n)R (n - l)x(n) 

(2.84) 

with the initial inverse auto-correlation matrix given by: 

eo> 0, (2.85 ) 

where h is the (L x L )-dimensional identity matrix and eo is the initial error. Upon defining a gain 

vector g(n) as [4,8]: 

g(n) 

A-I 
R (n - l)x(n) 

(2.86) 
A-I ' 

a + xH (n)R (n - l)x(n) 
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the RLS minimisation process results in the following weight update equation: 

1: 

2: 

3: 
4: 

5: 
6: 

7: 

w(n + 1) = w(n) + g(n)e*(n). 

y(n) = w H (n)x(n) 
e(n) = r(n) - y(n) 

r = x H (n)R-
1
(n -1) 

fl,=a+rx(n) 
A-I 

g(n) = R (n - l)x(n)j fl, 

w(n + 1) = w(n) + g(n)e*(n) 

R-1
(n) = ~ (R- 1

(n-l) -g(n)r) 

Table 2.7: Updating the array weight vector of the RLS algorithm [166]. 
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(2.87) 

Observe that in Equation (2.86) the inversion of the auto-correlation matrix R is replaced at 

each iteration by a simple scalar division. This reduces the implementational complexity imposed 

by an order L from that, when the matrix inversion is computed directly. The array weight update 

procedure of the RLS algorithm is summarised in Table 2.7. The value of the forgetting factor a has 

no influence on the rate of convergence, but does determine the channel variation tracking capability 

of the beamforming process [7]. The smaller the value of a, the better the tracking capability of 

the algorithm. Therefore, if the channel estimate is varying significantly, as a function of time, it is 

better to use a small forgetting factor in order to 'forget' the past channel estimate. However, if a is 

significantly less than unity, the algorithm may become unstable [7]. 

In general, the RLS algorithm converges faster than the LMS algorithm [6,7,81,168]. It is also 

robust, since its rate of convergence is essentially insensitive to the eigenvalue spread problem. It 

has however some limitations, especially in terms of its increased computational complexity, since 

the number of complex multiplications and complex additions per iteration is 4L2 + 4L and 3L2 + L, 

respectively, which is an order of magnitude higher than that of the LMS algorithm. Similar to the LMS 

technique, there is also a number of variants of the RLS algorithm that may be invoked for adapting 

the weighting coefficients, such as the square-root RLS (SQ-RLS) [6] and the fast RLS algorithms [6]. 

These algorithms have their own advantages and disadvantages in comparison to one another. The 

best design option depends on the communications environment considered and on the statistical 

knowledge available concerning the received signals. A more recent variant of the RLS algorithm is 

referred to as the variable forgetting factor nonlinear RLS (VFF-NRLS) adaptive algorithm, which 

was introduced by Leung and So in [172]. In the context of this algorithm, the auto-correlation of the 

error is modified and used for controlling the forgetting factor of the nonlinear RLS algorithm. This 

scheme equips the algorithm with a fast tracking capability and results in a small misadjustment MSE 

in case of a sub-optimum choice of the array weights, thus this technique outperforms other variable 

forgetting factor aided RLS algorithms. 
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Having discussed the RLS algorithm, in the following section we introduce the concept of Sample 

Matrix Inversion (SMI). 

2.4.1.3 Sample Matrix Inversion Beamforming Algorithm 

The Sample Matrix Inversion (SMI) algorithm is another technique, which is used to approximate 

the solution to the MMSE problem. It offers a faster convergence than the LMS method, since it 

performs direct inversion of the auto-correlation matrix R, thus sometimes it is also referred to as the 

Direct Sample Covariance Matrix Inversion or Direct Matrix Inversion (DMI) procedure of solving 

the Wiener-Hopf equation. Unlike in the context of the LMS algorithm, its rate of convergence is 

independent of the eigenvalues of R, i.e. from the power level of the array elements. Due to requiring 

no priori information concerning the desired and interfering signals, the DMI algorithm updates the 

array weight vector by replacing R with its estimate based on a finite number of signal samples [66]. 

Hence, this method is termed as block-adaptive. When using N samples of the array element signals 

x(n), where n = 0,1,2, ... , N -1, the estimate of R may be obtained using a simple averaging scheme, 

resulting in: 

R(n) 
1 N-1 

N L x(n)xH (n) 
n=O 

(2.88) 

and similarly, the sample cross-correlation vector z is evaluated as: 

z(n) 
1 N-1 

N L r*(n)x(n). 
n=O 

(2.89) 

The number of samples N may be referred to as the size of the observation interval or the window 

width of the block of samples used. This block-adaptive approach can also be used in a time-varying 

environment, provided that the array weights are recomputed periodically [8]. The estimated array 

weight vector is given by: 

w(n) 
A-I 

= R z (2.90) 

and the error associated with the estimation of the cross-correlation vector on the basis of N samples 

may be evaluated as: 

e RWoPt - z. (2.91) 

The solution given by Equation (2.90) may be viewed as the least squares formulation of the 

problem, since the error e of Equation (2.91) is defined to be the difference of the estimated sample 

cross-correlation vector z and the actual vector z, in which the weight vector is directly optimised based 

on minimising the sum of the squared errors of all N samples. In other words, the cross-correlation and 

auto-correlation matrices of Equations (2.88) and (2.89), respectively, are estimated using the (N -1) 
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previous samples up to the current time index n. Thus the weight vector generated is a least squares 

solution [8]. It has been shown in [63] that the adaptive system achieves an SIR performance, which 

is roughly 3dB worse than that of the optimum solution constituted by the true cross-correlation z 

and auto-correlation R matrices, when the number of samples N is twice the number of total degrees 

of freedom (DOF). Explicitly, since we have DOF = L -1, therefore approximately, N = 2L are used. 

The estimated value of R may be updated, when the set of N new samples arrives using [81]: 

nR(n) + x(n + l)xH (n + 1) 
R(n + 1) 

n+l 

aR(n) + (1- a)x(n + l)xH (n + 1); 0< a < 1, (2.92) 

where a is a real scalar forgetting factor that is smaller than but close to unity, which is used for 

exponentially weighting the past data. 

The philosophy of the DMI method is quite straightforward, but as in Equation (2.90), the ex

pression used for calculating the array weights requires R -1, and the inversion of R for each new 

block of received array signal samples is computationally expensive, particularly if there are many 

elements in the antenna array. According to Equation (2.88), this algorithm requires an averaging for 

the computation of R. Explicitly, for each element of the matrix Il, N complex multiplications and 

N -1 complex additions are needed. Due to the Hermitian nature of Il, it is sufficient to execute these 

instructions L(L+l)/2 times, rather than L2 times, ifR were non-Hermitian. This totals NL(L+l)/2 

complex multiplications and (N -1)L(L + 1)/2 complex additions, when forming the estimated auto

correlation matrix R. However, when using Multiply-and-ACcumulate (MAC) instructions, which 

are readily available in state-of-the-art processors, the number of mathematical operations imposed 

reduces to NL(L + 1). For the inversion of R, another L 3 /2 + L2 complex operations are required, 

when taking the Hermitian nature of the matrix R into account. Otherwise this step requires L3 

operations [4]. To elaborate further, the computation of the cross-correlation vector z would require 

N(L+ 1) complex multiplications and N(L-l) complex additions or, equivalently, N(L+ 1) operations 

if the availability of the MAC instruction is assumed. Finally, according to Equation (2.90), the array 

weight vector is obtained with the aid of L2 complex multiplications and L(L - 1) complex additions, 

or using L2 complex operations, provided that the MAC instruction is available. When using N = 2L 

samples, the complexity of the algorithm, again provided that the MAC instruction is available and 

that the Hermitian property of the matrix R is taken into account, is at least 2.5L3 + 5L2 + L, which 

is proportional to the order of L3. This is clearly a major drawback of the DMI algorithm. In order 

to overcome this problem, again, we apply the Matrix Inversion Lemma of Equation (2.45) to it as 

formulated in Equation (2.92). Then, it follows that [4,12]: 

R
' -l(n) -lR~ -1( ) (1- a)a-2R-

1
(n -1)x(n)xH(n)R-

1
(n -1) 

a n - 1 - ~ -1 
1 + (1 - a)a- 1xH(n)R (n - l)x(n) 

1 [~-1( ) R-
1
(n-l)X(n)XH(n)Il-

1
(n-l)] 

- R n -1 - ~ -1 ' 
a (l-='a) + xH(n)R (n - l)x(n) 

(2.93) 
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using the initialisation of: 

1 I . 
eo L, ea > 0, (2.94) 

where IL is the (L x L )-dimensional identity matrix and again L is the number of array elements. We 

refer this technique as the Recursive SMI (R8MI) algorithm, in order to differentiate it from the DMI 

technique, which is taking the inverse of R of Equation (2.88) for each array weight update. 

1: 

2: 
3: 

4: 

5: 

6: 

z(n) = ~[(n - l)z(n - 1) + r*(n)x(n)] 
r = xH (n) R -1 (n - 1) 
K, = ~ + rx(n) I-ex 

, -1 
g(n) = R (n - l)x(n)/ K, 

R-1
(n) = i (R- 1

(n -1) - g(n)r) 
, -1 

w(n) = R (n)z(n) 

Table 2.8: Updating the array weight vector of the R8MI algorithm. 

Table 2.8 summarises the array weight update procedure of the RSMI technique. For stationary 

signals, the ratio (l~ex) in step 3 of Table 2.8 or in Equation (2.93) is replaced by the value of unity. 

This step is different from the LMS and RL8 algorithms, which are based on continuous adaptation, 

where the array weights are adjusted on a sample-by-sample basis as the data is sampled. The RSMI 

array weight updating procedure is an open loop technique, since it uses a block-adaptive approach in 

that the statistics are estimated from a temporal block of array data and then used in the optimum 

weight update procedure outlined in Table 2.8. Following our updating steps summarised in Table 2.8, 

the procedure requires 5L2 + 3L + 1 complex multiplications and 4L2 - L - 1 complex additions per 

iteration. Therefore, by using the recursive formula of Equation (2.93), the complexity is reduced 

to an order of L2, while the achievable performance remains similar to that of the DMI algorithm. 

It should be noted that as the number of samples increases (n ---+ (0), the matrix update procedure 

approaches the true value, i.e. we have R( n) ---+ R and thus, the estimated array weights approach the 

optimal weights, corresponding to w(n) ---+ Wapt. For further understanding on the SMI algorithm, we 

provide an example employing the DMI approach as follows. 

An example: Using the same interference environment as in Section 2.2.3, here we provide an 

example of calculating the array weights optimised for acquiring the desired signal arriving from an 

angle of e = ° radian, while eliminating the signal arriving from an angle of e = ~ radians using 

the 8MI algorithm in the form of the DMI. We use two four-bit orthogonal reference sequences, one 

for each signal source and maintain a correlation of zero between them. Specifically, the reference 

sequence chosen for the desired signal ml (n) is rl (n) [1, 1, 1, 1] and that for the interferer m2 (n) is 

r2(n) = [1, -1, 1, -1]. Observe that rl(n) and r2(n) are orthogonal. 
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For an observation interval of N = 4, the sample correlation matrix R(n) is calculated based on 

Equation (2.88) as follows: 

1 3 

R(4) = 4 L x(n)xH (n) 
n=O 

1 

[[ m(::j)] [2m m(1 - j) 1 + [ _ 0 . ] [ 0 ]+ - m(l + j) 
4 m(l - J) 

[ 2m ] 
m(l + j) [2m ",(I - j) 1 + [ _ 0 . ] [ 0 

m(l - J) 
m(l + j) l] 

1 [[ 4 -, 2m2(1 - j) 

] + [~ 2~"] -
2m2 (7 + j) 

+ 4 2m2 

[ 4ih' 2m2(1 - j) 

] + [~ 2;,2 ]] 2m2(1 + j) 2m2 

[ 2m.' m'(1 - j) ] 
m2(1 + j) 2m2 ' 

(2.95) 

where we assumed that both signals have the same power of m2 , since we have Im1(n)1 = Im2(n)1 = m. 

Note that the structure of the correlation matrix is indeed Hermitian, having real values along its main 

diagonal. For the sample cross-correlation matrix of Equation (2.89), we have: 

1 3 

z(4) = 4 L x(n)r*(n) 
n=O 

- m+ m+ m+ m 1 [[ 2m] [ 0 ] [2m] [ 0 ]] 
4 m(l + j) m(l - j) m(l + j) m(l - j) 

1 [[ 2m
2 

] [ 0 ] [ 2m
2 

] [ 0 ]] 4 m2(1 + j) + m2(1 _ j) + m2(1 + j) + m2(1 - j) 

[ :: ] , (2.96) 

where ideally, r*(n) = mi(n) = m*(n) and for the real-valued case we have m*(n) = m(n). The 

weights of the beamformer are then calculated using the average values of R(4) and z(4) according to 

the optimum Wiener-Hopf equation of: 

A-I 
W = R z. (2.97) 

Since we have a correlation matrix of (2 x 2)-dimension, it is straightforward to compute the inverse 

of R. However, when a larger correlation matrix is required, the computations will become more 

elaborate and the recursive formula of Equation (2.93) should be used. For a (2 x 2)-dimensional 

matrix, let us fUlsume an example of matcix A = [: :], whe,e the inve'sc A .. ) can be calculated 

by the following procedure [169,170]: 
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1. Interchange the diagonal elements a and d. 

2. Change the sign of the other two elements, i.e. e and b. 

3. Divide the resultant new matrix by the determinant of A, i.e. IAI = ad - be. Note that, for a 

matrix to have an inverse the determinant IAI must not be zero, i.e. IAI = ad - be i= O. 

This gives the inverse of matrix A, such that: 

A-I = 

and therefore the inverse of the correlation matrix, namely R -1 is expressed as: 

R- 1 (4) 1 [ 2m' 
2m4 -m2 (1 + j) 

-'1,,'(1 - j) 1 
2m2 

1 

[ -o.5il + j) 
-0.5(1 - j) 

1 ' m2 1 

leading to the following array weights: 

W = R(4)z(4) 

~, [[ -O.5(~ + j) 
-0.5(1 - j) 

1 1 [ :: II 
[ 

0.5 + ~0.5l. 
0.5 - JO.5 

(2.98) 

(2.99) 

(2.100) 

In the context of the temporal reference technique of Figure 2.11, we have to take the conjugate of 

the array weights w in Equation (2.100) for the sake of obtaining the correct weight values, yielding 

w1 = 0.5 - jO.5 and w2 = 0.5 + jO.5. This is equivalent to the values calculated earlier in Section 2.2.3, 

namely in Equation (2.39). Note that in case of a single interfering user and a single desired user under 

perfect channel conditions, when the received signal is uncontaminated by channel effects and hence 

there is a perfect match between the reference and the desired signal, we are able to obtain the correct 

array weight values after receiving the corresponding two reference sequences. 

Having discussed the algorithms employing the temporal reference technique, we shall next briefly 

introduce some algorithms using the spatial reference technique. 

2.4.2 Spatial Reference Technique 

Apart from the family of temporal reference techniques, there is also a large body of research based on 

direction of arrival (DOA) estimation [1,81,113]' approaching the problem of desired and interfering 

users identification from the viewpoint of spectral analysis [173], [85, 174] in the space domain. The 
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information on the DOA is usually obtained by applying a particular DOA estimation technique for 

processing the received array signals [8]. 

At this stage it is necessary to physically interpret the philosophical differences between the tempo

ral and spatial reference techniques. The temporal reference approach is conceptually similar to using 

a channel sounding or equaliser training pattern. More explicitly, in the latter case often a dirac-delta

like impulse is transmitted in each transmission burst for the sake of estimating the Channel's Impulse 

Response (CIR) and adjusting the equaliser's weights, in order to minimise the multipath interference 

imposed by the dispersive CIR's paths. By contrast, in the context of the temporal reference approach 

the reference signal is used for differentiating the interfering users, rather than the interfering paths. 

The interfering users' signals arrive from specific angles, and are associated with specific delays and 

similarly, the interfering paths of the CIR are also associated with specific delays. The corresponding 

training or reference signals are used for adjusting the equaliser or beamformer weights, respectively. 

Viewing the same processes in the frequency domain now, the well-understood channel equaliser 

may use a 'spectrally white' signal for estimating the channel's frequency domain transfer function, 

instead of the CIR. Hence the dirac-delta-like channel sounding sequence could be transformed to 

its 'spectrally white' frequency-domain representation with the aid of the DFT and the effects of 

multipath interference induced spectral-domain linear distortions could be compensated with the aid 

of frequency-domain division of the received signal by the channel's transfer function. 

In the spectral estimation special issue [175] published in 1982, the family of spectral estimation 

techniques has been grouped into two broad categories, namely the parametric and non-parametric 

classes. In the class of parametric spectral analysis methods a model is assumed in the formulation 

of the problem, and the requirement is to estimate the parameters of the model from observations 

of a given process encompassing a limited duration of time. The family of algorithms employing 

this approach include the Maximum Entropy Method (MEM) [81] and the Maximum Likelihood 

Estimation (MLE) technique [8,113]. The parametric methods however, typically impose a high 

degree of computational complexity. On the other hand, in the class of non-parametric spectral 

analysis methods no specific model is assumed in formulating the estimation problem as seen, for 

example in the spectral-based approach of [113]. Using the spectral-based approach, some spectrum

like function of the parameters of interest, such as the DOA is formulated. Examples of algorithms 

using this approach include the MUSIC algorithm [78,79,81,82,113] and the approach ofthe Estimation 

of Signal Parameters by Rotational Invariance Techniques (ESPRIT) [80,81,83,113]. 

The MUSIC algorithm is a technique devised for estimating the DOA that is based on decompos

ing the auto-correlation matrix R of the received array signal into diagonal signal eigenvalues Ad and 

diagonal noise eigenvalues An, as well as into the corresponding signal eigenvectors Ed and noise eigen

vectors En. Thus the auto-correlation matrix R of Equation (2.25) discussed earlier in Section 2.2.1 
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can be expressed as: 

R SPSH + 2(T~IL' 
Ed Ad Ed 

------signal subspace 

+ EnAnEn 
'---v--" 

noise subspace 
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(2.101) 

(2.102) 

where S is the (LxM)-dimensional steering matrix defined in Equation (2.14), P = diagfpllP2,'" ,PM] 

is the (M x M)-dimensional diagonal matrix, whose elements are constituted by the power of the in

coming signals Pm = lam l2 , m = 1,2, ... ,M, given the modulating signal as defined in Equation (2.6), 

while 2(T~ is the complex-valued noise variance and h is an (L x L)-dimensional identity matrix. The 

eigenvectors corresponding to the principal eigenvalues represent the signal subspace. The smallest 

eigenvalues and the corresponding eigenvectors represent the noise subspace, which is the basis of 

the MUSIC algorithm. This implies that the MUSIC algorithm requires an antenna array having L 

number of elements, where L is higher than the number of users M [113]. For a wave impinging on 

the antenna array at an angle em, the pseudo-spectrum is given by [78,81,170]: 

1 
PMUSlc(em) = sH(em)EnEf[s(em) , (2.103) 

where s(em) is the steering vector of the L antenna elements corresponding to direction em, defined 

as in Equation (2.8), restated here as: 

(2.104) 

where 2n}tl(em) relates the phase of the received signal at each element to the angle of arrival (AOA) 

em and the delay tl(em) is defined in Equation (2.3). The peaks obtained in the MUSIC spectrum 

defined in Equation (2.103) correspond to the M estimated DOA. 

Beamforming is ineffective, if an interfering user is located close to the desired user, such that 

the angular separation becomes lower than the beamwidth, since it becomes difficult to reproduce 

the desired user's signal at the receiver accurately. In fact, it was pointed out in [176] in a wireless 

multipath environment that pathological geometrics corresponding to any particular location of the 

users may be encountered, for which sufficiently accurate signal detection becomes impossible. 

DOA estimation techniques are best combined with a beamforming technique, rather than oper

ated consecutively, since the DOA of mobile users is very important in order to form an optimum 

radiation pattern for the antenna array. More explicitly, once the DOA of the various sources becomes 

available, the beamforming algorithms can be used for tracking the sources of interest as they roam 

and null the interfering sources by controlling the beam pattern of the antenna array in an adaptive 

manner. A design example that incorporates both DOA estimation and beamforming was contributed 

by Margarita et al. [177]. They used the MUSIC algorithm [78,81,113] for the DOA estimation and the 

General Data Independent Response Design (GDIRD) [88] beamforming technique for determining 

the weights of the array elements for application in the GSM and DECT systems. The GDIRD tech

nique falls into the data independent, rather than in the statistically optimum beamformer category of 
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Section 2.4, where the weights do not depend on the array's received signal or on its statistics and are 

optimised for achieving a specified response for a selected number of desired signal and interference 

scenarios. Although the algorithm was unable to find the DOA, when the interferer was located at 

an angular separation of ±5° from the desired user, but nonetheless, generally speaking, satisfactory 

results have been obtained, demonstrating that the employment of SDMA techniques was capable of 

usefully increasing the system capacity of both GSM and DECT type systems. 

The popularity of the MUSIC and ESPRIT algorithms is due to their high angular resolution. 

However, when compared to DFT-based spectral-domain arrays, their implementation complexity is 

higher owing to the need of calculating the eigenvalues of the correlation matrix. A lower-complexity 

method than the MUSIC and ESPRIT algorithms, that combines the spatial and temporal reference 

approaches has been proposed by Watanabe et at. [178]. The authors proposed and investigated an 

adaptive antenna array using a DFT-based LMS algorithm, aiming for maintaining the achievable 

advantages, while reducing the associated weaknesses, when using each algorithm separately. The 

authors also showed that the combined algorithm is capable of improving the attainable convergence 

speed in comparison to a system using temporal reference based techniques, such as for example the 

LMS algorithm alone, while also improving the accuracy of array weight values in comparison to using 

the DFT-based arrays of [178]. In short, the proposed algorithm compensated for the weaknesses of 

each individual algorithm achieving a rapid adaptation, accurate estimation and a low implementation 

complexity. 

In conclusion, the family of spatial spectral estimation algorithms can be invoked for obtaining 

optimum or sub-optimum array weights by using spatial received signal samples at a given time instant 

and therefore, if the processing speed is sufficiently high for the sake of tracking the time variations of 

the channels encountered, these algorithms may become more attractive, than the class of temporal 

reference based array weight updating algorithms of Section 2.4.1 [11,114]. 

2.4.3 Blind Adaptive Beamforming Algorithms 

The family of blind adaptive algorithms does not require a training sequence and hence its repre

sentatives utilise the available bandwidth efficiently. More explicitly, the transmission of training 

sequences wastes valuable bandwidth and the associated overhead increases, if frequent re-training 

is required for avoiding their deficient convergence in high-Doppler time-varying propagation chan

nels [179]. Hence, in the scenario, where an explicit reference signal is unavailable, blind adaptive 

beamforming is used. In this scenario the system will generate its own reference signal by exploiting 

the characteristics of the transmitted signal and therefore it may be able to dispense with training 

sequences. This class of beamforming techniques includes algorithms such as the Constant Modu

lus Algorithm (CMA) [8,81,146]' the Spectral COherence REstoral algorithm (SCORE) [8,145] and 

Decision Directed Algorithms (DDA) [8]. 
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Important performance metrics characterising blind algorithms are the speed of convergence, the 

ability to reach the global optimum and their capability of tracking time-varying mobile channels [1]. 

The success of blind detection algorithms depends on their ability to exploit input signal features 

such as their spectral whiteness, or lack of it, the size of the received signal alphabet, their constant 

modulus and cyclostationarity or the shape of the probability density function (PDF) [1,8,179]. From 

the family of blind algorithms, the CMA is probably the most widely investigated blind algorithm and 

it is also most widely used in practice [6,81]. This is owing to the fact that this family of algorithms 

has also been recognised to exhibit robustness against beamforming array deficiencies and multipath 

environments, which preclude the employment of super-resolution beamforming techniques for DOA 

estimation in a multiuser communications context. 

2.5 Uplink versus Downlink Beamforming 

For years, significant research efforts have been devoted to the study of adaptive beamforming designed 

for the uplink (i.e. mobile to base station). This due to the fact that adaptive beamforming has been 

traditionally used for reception in remote sensing [180], radar [180, 181] and sonar systems [182]. 

The techniques and algorithms that have been developed for reception readily lend themselves to 

employment in wireless communications systems. Furthermore, the spatial channel information is 

more readily available on the uplink, where the base station (BS) may be conveniently fitted with 

multiple antenna elements, when invoking beamforming techniques and algorithms for mitigating the 

effects of multipath fading and co-channel interference [8]. As discussed before, the main objective of 

uplink receiver beamforming is to receive as much power as possible from the desired user and as little 

power as possible from any undesired interfering user. 

In contrast to the uplink, research aimed at designing beamforming algorithms for the downlink 

or forward link (i.e. base station to mobile) has only been receiving research attention during the last 

few years. Similarly to the previously discussed uplink scenario, the aim of adaptive beamforming 

designed for the downlink is also to transmit as much power as possible to the desired mobile and as 

little power as possible to any mobile where this signal would inflict interference. In other words, this 

scenario is similar to that of the uplink case in terms of maximising the SINR for the desired user. The 

only difference is that we intend to maximise the received signal strength at the desired mobile, while 

minimising the interference inflicted upon other mobiles as well as upon the adjacent base stations, 

thus maximising the achievable downlink SINR. 

One of the main issues associated with downlink beamforming using smart antennas is the impact 

of the desired user's signal on other subscribers [183], since beamforming conveying energy to a desired 

user affects the interference imposed on others. Therefore, downlink beamforming must be performed 

by jointly considering the entire mobile population roaming within the entire cell. Shim and Alam [183] 
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proposed a novel algorithm employing the Conjugate Gradient Method (CGM) for mitigating the 

effects of the interference. Their algorithm, explicitly referred to as Adaptive Interference Mitigation 

using the CGM (AIM-CGM) was evaluated using the signal format of FDD/WCDMA (frequency 

division duplex/wideband CDMA). It was shown that the achievable gain of the beamforming process 

depends on the power distribution of the users as determined by their power control and also on the 

DOA of the interferers. A typically better performance is achieved for scenarios having higher-power 

interferers, which are located closer to the desired user in terms of their angle of arrival separation, but 

the number of users that may be supported by the proposed algorithm is limited, since it cannot be 

higher than the number of antennas. However, in WCDMA systems [15] the number of users cannot 

be high, if the users require high-rate services and hence for this particular scenario the algorithm is 

capable of offering an improved performance. 

In time division duplex (TDD) systems similar channel conditions prevail in the uplink and down

link, provided that the transmission frame duration is short compared to the reciprocal of the maxi

mum Doppler frequency [8,183,184]. In other words, the assumption of having similar uplink/ dow link 

scenarios is valid, if the carrier frequency of the uplink and downlink is the same and when both 

the interference and the propagation environment remains similar during the time interval between 

reception and transmission. In this case the same beamforming weights may be used for both the 

uplink and downlink. 

Unlike TDD systems, FDD arrangements encounter more complex beamforming problems as a 

consequence of the difference between the interference scenarios of the uplink and downlink [183]. 

Standard systems, such as IS-54 [185], IS-95 [7] and GSM [185-187] cannot readily apply the array 

weight reuse concept as a consequence of the separation between the downlink and uplink frequencies, 

since the corresponding channel transfer function as well as interference scenario is expected to be 

different to a large extent [8]. For example, the downlink bandwidth may be outside the coherence 

bandwidth of the uplink channel, hence the instantaneous fading on the two radio links may be 

uncorrelated. 

One of the techniques that may be used for mitigating this challenging problem is the application 

of fixed- beam techniques both in the uplink and downlink directions at the base station [188,189]. The 

strongest beam identified in the uplink will be used for transmission in the downlink. This concept can 

be extended to the employment of steerable multiple beams [190]. For the uplink reception process, 

the base station determines the direction of the path in which the strongest component of the desired 

signal arrives at the base station, while for downlink transmission, the base station points a beam 

in the corresponding direction. Although this approach is not optimal, the achievable SINR level 

experienced at the mobile can be improved. Furthermore, at the base station power is not a critical 

resource and a relatively high-power beam can be used for boosting the SINR level, if necessary. This 

is in contrast to the uplink case, where a mobile typically transmits using an omni-directional antenna 
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at a limited power and therefore the desired signal components arrive at the base station via multiple 

paths. 

The attainable performance of fixed-beam downlink beamforming applied to a WCDMA system 

was evaluated in [189]. More specifically, the performance of a fixed-beam antenna array having two 

beams was compared to that of a single-antenna aided base station. Simulations were performed over a 

single-path Rayleigh-fading channel and two dispersive channels similar to the Modified Pedestrian A 

channel and Modified Vehicular A channel of the ITU [191]. These investigations indicate that the 

fixed-beam approach may be expected to offer a substantial coverage and capacity extension, espe

cially in macro cells having a relatively narrow angular spread encountered owing to the typically high 

base station-mobile station distance. However, having only two beams per sector is insufficient for 

obtaining an adequate performance in scenarios, when the desired user is between two adjacent beams. 

Furthermore, in environments having a large angular spread, the fixed-beam approach fails to provide 

a substantial performance improvement in comparison to that of the single antenna transmission. 

However, if the frequency separation between the uplink and downlink bands is not too high, they 

are likely to be affected by the propagation environment in a similar fashion, although their SINR 

may be rather different. Nonetheless, downlink beamforming may be able to use the uplink weight 

vector. 

Czylwik and Matsumoto [192] discussed the optimisation of downlink beamforming schemes de

signed for FDD systems. More specifically, they presented a novel approach, which exploits the 

knowledge of the propagation channel's statistics, which was evaluated amongst each base station and 

each mobile in order to estimate the achievable diversity gain of receivers, which combine the signals 

arriving over different paths. This approach can be applied in conjunction with RAKE receivers in 

the context of CDMA systems, as well as for TDMA receivers invoking adaptive channel equalisers. 

The simulation results provided show that when the transmitted power is essentially conveyed in the 

direction of the path having the minimum average attenuation or when the power is distributed over 

several propagation paths, yield a rather similar response. The advantage of concentrating the power 

to the main path is that the interference power imposed on other mobiles may be reduced, while in 

the case of distributing the transmit power to several paths has the advantage of achieving a higher 

path diversity. An SIR gain of about 8dB was obtained at low SIRs using smart antennas when com

pared to omni-directional antennas [192]. At low SIRs, the attainable performance was poor, when 

no diversity was invoked. More recent papers that address the issue of joint downlink beamforming 

and power control include [193,194]. 

Another source of co-channel interference in the downlink is constituted by the adjacent base 

stations. Until recently, most research on the application of adaptive antenna arrays in mobile com

munications networks was focused on the base station site. This may be attributed to the associated 

hardware complexity requirements [195]. However, owing to the increasing demand for higher trans-
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mission rates and with the advent of rapid developments in electronics, employing adaptive arrays at 

the mobile may become both necessary and feasible, provided that the achievable performance gain 

becomes sufficiently high to offset the additional cost and power consumption. In comparison to the 

base station, the mobile typically encounters a less complex co-channel interference pattern, where 

the number of interfering sources (i.e. the corresponding adjacent base stations) is comparatively low. 

Therefore, using adaptive arrays at the mobile has the potential of suppressing the co-channel interfer

ence, which in turn results in an increased SINR, thus increasing the interference-limited capacity of 

a CDMA system. Gao and Sousa [195] studied the efficiency of this approach and concluded that by 

using a three- or four-element antenna array the interference is indeed substantially reduced. However, 

owing to the limited physical size of the mobile station, the number of antenna elements used should 

be kept as low as possible. Furthermore, the number of interfering signals that may be cancelled 

cannot be more than three owing to the associated high computational power requirement. 

2.6 Beamforming Simulation Results 

2.6.1 Performance of a Two-Element Uniform Linear Array System 

Against this background, in the next section we characterise the achievable performance of a range of 

beamforming arrangements. The aim of our simulations is to investigate the attainable performance 

of a range of adaptive algorithms using the temporal reference technique [8,114] of Section 2.4.1 

for narrowband beamforming, in terms of their interference rejection gain or equivalently, Signal-to

Interference Ratio (SIR) gain for transmission over both AWGN and flat Rayleigh fading channels. 

The fading channel considered assumes a carrier frequency fe of 1.9GHz and a transmission rate Rb of 

2.6 x 106 symbolsjs (Baud) at a vehicular speed of v = 30mph. The corresponding Doppler frequency 

fD is calculated to be about 85Hz. 

The parameters used in the simulations are as follows. Two antenna elements having a spacing of 

half a wavelength were used, the desired signal of the wanted user arrived from a direction of 0 radian, 

while the interferer from ~ radians. The reference signal was generated employing an orthogonal Walsh 

sequence and Binary Phase Shift Keying (BPSK) modulation was used. A total of 10000 iterations are 

used for the AWGN channel, but this number varies for the Rayleigh channel. For the fading channel, 

we ensure that all simulations experienced at least 200 fades or in other words, we used a minimum 

of 3 x 106 transmitted symbols. Due to the instability and poor convergence rate of the LMS channel 

estimation algorithm [4,12]' here we concentrates on the DMI and RSMI algorithms of Section 2.4.1.3 

and RLS algorithm of Section 2.4.1.2. 
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Figure 2.13: The Signal-to-Interference Ratio (dB) achieved with respect to equal desired and in

terfering signal power (i.e. for SNR=INR) using a) the DMI and b) the RSMI algorithms of 
Section 2.4.1.3 and c) the RLS algorithm of Section 2.4.1.2 employing reference signals of different 

length over the AWGN channel. The initial error e was set to 0.01 and the forgetting factor 
a was unity. 
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2.6.1.1 AWGN Channel 

Figure 2.13 shows the performance of the DMI and RSMI algorithms of Section 2.4.1.3 and RLS 

algorithm of Section 2.4.1.2 as the power of the incoming signals is increased. The initial estimate of 

the inverse correlation matrix it-I (0) of Equations (2.85) and (2.94) in the RLS and RSMI algorithms, 

respectively, is biased with an error value of 0.01. When the forgetting factor was set to unity, the 

DMI, RSMI and RLS algorithms exhibited an identical performance. This is expected since both 

techniques are similar in that the weight vectors are based on the least squares solution and in the 

context of the RLS and RSMI algorithms, their difference essentially lies in the formula used for 

calculating the correlation vector z. Recall from Equations (2.81) and (2.89) that as the number of 

samples is increased, the estimated array weight coefficients approach the optimum value and hence 

for a given signal power, a longer reference signal is required for achieving a better performance. For 

SNR and INR values of at least 15dB, a satisfactory performance of more than 25dB beamforming 

gain was achieved using a reference sequence length as low as 16 bits. 

The plots seen in Figure 2.14 demonstrate the achievable interference rejection of the DMI and 

RSMI algorithms of Section 2.4.1.3 and RLS algorithm of Section 2.4.1.2 as a function of the reference 

signal length for an equal desired and interfering signal power (SNR = INR) of 6,12,18 and 33dB. 

Higher received signal powers result in a reduced interference level, but actually only the power of the 

interference signal (INR) affects the associated performance curves [4,12]. For a fixed INR, varying the 

SNR values resulted in a similar performance curve. Observe that there is a slight difference between 

the RLS and SMI algorithm's performance at the initial point of the curve. This is likely to be due 

to the difference in the calculation of the cross-correlation matrix z of Equations (2.83) and (2.89) for 

the RLS and RSMI algorithms, respectively. However, the associated difference is not critical, since 

the reference signal length is commonly higher than eight bits. 

Variation of the value of the initial error eo in Equations (2.85) and (2.94) does not result in a 

significant SIR difference for the RLS and RSMI schemes of Sections 2.4.1.2 and 2.4.1.3, respectively. 

Increasing the initial error from 0.01 to 0.9 resulted in a difference of about O.OldB for the RSMI 

algorithm of Section 2.4.1.3 and even less for the RLS algorithm of Section 2.4.1.2. In terms of the 

forgetting factor CY, the performance of the algorithm is optimum, when it is set to unity, where 

CY = 1.0 is the desired value for the AWGN channel. The effect of varying the forgetting factor a in 

conjunction with a fixed reference sequence length of 256 bits and assuming different signal powers is 

shown in Figure 2.15. For both algorithms, the performance is improved as the forgetting factor is 

increased towards unity, where the RSMI algorithm has a higher rate of improvement as opposed to 

the shallower slope of the RLS algorithm. In terms of the achievable interference rejection, the RLS 

algorithm performs better, which is evidenced by the observation that the final SIR value is always 

higher than that of the RSMI algorithm, except when the forgetting factor CY equals to unity, where 

both algorithms have an equivalent performance. This may be due to the difference of the recursive 
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Figure 2.14: The Signal-to-Interference Ratio (dB) achieved with respect to reference signal length 
using a) the DMI and b) the RSMI algorithms of Section 2.4.1.3 and c) the RLS algorithm of 
Section 2.4.1.2 in conjunction with different sets of equal desired and interfering signal power (i.e. for 
SNR=INR) over the AWGN channel. The initial error e was set to 0.01 and the forgetting 

factor Ct was unity. 
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Figure 2.15: The Signal-to-Interference Ratio (dB) as a function of the forgetting factor a using 
a) the RSMI algorithm of Section 2.4.1.3 and b) the RLS algorithm of Section 2.4.1.2 in conjunction 

with different sets of equal desired and interfering signal powers (i.e. for SNR=INR) and a reference 

length of 256 bits over the AWGN channel. 

formulation of the inverse auto-correlation matrix R -1 of Equations (2.84) and (2.93) for the RLS 

and RSMI algorithms, respectively, for a < 1. We, however, only considered the scenario of having a 

unity forgetting factor in the context of our simulations conducted over the AWGN channel. 

2.6.1.2 Flat Rayleigh Fading Channel 

Figures 2.16 and 2.17 show the performance of the adaptive beamforming algorithms of Sections 2.4.1.2 

and 2.4.1.3 over fiat fading channels, when using a forgetting factor a fixed to unity. Similar to the 

AWGN scenario, the DMI, RSMI and RLS algorithms exhibits a similar response, although they 

experience a significant degradation in terms of the achievable interference rejection, when compared 

to the results of Figures 2.13 and 2.14 as a function of the signal power variation and reference sequence 

length, respectively. 

As the forgetting factor a of Equations (2.84) and (2.93) is reduced, the attainable performance of 

the RLS and RSMI algorithms, respectively, is degraded. The SIR versus SNR and INR characteristic 
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Figure 2.16: The Signal-to-Interference Ratio (dB) achieved with respect to equal desired and in
terfering signal power (i.e. for SNR=INR) using a) the DMI and b) the RSMI algorithms of 
Section 2.4.1.3 and c) the RLS algorithm of Section 2.4.1.2 employing reference signals of different 
length over the flat Rayleigh fading channel. The initial error e was set to 0.01 and the 

forgetting factor a was unity. 
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Figure 2.17: The Signal-to-Interference Ratio (dB) achieved with respect to reference signal length 

using a) the DMI and b) the RSMI algorithms of Section 2.4.1.3 and c) the RLS algorithm of 

Section 2.4.1.2 in conjunction with different sets of equal desired and interfering signal power (i.e. for 
SNR=INR) over the flat Rayleigh fading channel. The initial error e was set to 0.01 and 

the forgetting factor ex was unity. 
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Figure 2.18: The Signal-to-Interference Ratio (dB) achieved with respect to equal desired and inter
fering signal power (i.e. for SNR=INR) using the RSMI algorithm of Section 2.4.1.3 for a) a = 0.98 

and c) a = 0.5 and the RLS algorithm of Section 2.4.1.2 for b) a = 0.98 and d) a = 0.5 employing 

reference signals of different length over the flat Rayleigh fading channel. 
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of the algorithms expressed as a function of the incoming signals' power is portrayed in Figure 2.18. 

In conjunction with a = 0.98, the highest SIR improvement was found for the RSMI algorithm of 

Section 2.4.1.3, which is about 25dB while for the RLS algorithm of Section 2.4.1.2 this was 30dB, 

across the 40dB range of the incoming signal power. The level of interference rejection found for the 

RLS algorithm in Figure 2.18 b) was proportional to the length of the reference sequence used, but 

for the RSMI algorithm of Section 2.4.1.3, the achievable SIR does not necessarily improve, when a 

longer reference sequence is used as seen in Figure 2.18 a). Instead, it is obvious that the attainable 

rejection of the RSMI algorithm of Section 2.4.1.3 is degraded, when a longer reference sequence is 

used, in particular for the 512-bit and 1024-bit sequences. It is also observed in Figures 2.18 a) 

and 2.18 b) that the SIR versus SNR and INR characteristic are similar, regardless of the reference 

length for signal powers up to 20dB, except for the 512-bit and 1D24-bit reference sequence length 

based RSMI scenario. As the forgetting factor is further reduced to a = 0.5 for example, the level of 

interference rejection was similar, regardless of the length of the reference sequence at low signal power 

levels, namely for SNR or INR values below 20dB. The achievable SIR performance of the algorithms 

fluctuates at higher signal powers, especially for the reference sequence lengths of 256-bit, 512-bit and 

1024-bit, as seen in Figures 2.18 c) and 2.18 d). 

In Figure 2.19, we plot the SIR versus reference sequence length characteristics of both the RSMI 

and RLS algorithms for forgetting factors of a = 0.98, a = 0.95 and a = 0.5. Observe that the SIR 

curve of the RLS algorithm exhibits undulations for an INR value of 33dB. More explicitly, the range 

of fluctuation is about 3dB for a = 0.95 and increases to about 5dB for the case of a = 0.5, tending 

to increase as we decrease the forgetting factor further. Moreover, for lower signals powers, i.e. for 

low INR values the range of fluctuations and the associated reduced interference rejection capability is 

not as pronounced as in the INR = 33dB scenario. Comparing the two algorithms, the RSMI regime 

exhibits worse performance, where the range of SIR fluctuations is about 3dB for a = 0.98. The 

SIR performance fluctuates even more dramatically, namely up to lDdB, for the case of a = 0.95 and 

a = 0.5 as seen in Figures 2.19 c) and 2.19 e), respectively. Although the associated SIR fluctuation of 

the RSMI algorithm seen in Figure 2.19 c) is in a similar range to that of Figure 2.19 e), it is observed 

that the SIR undulations are more rapid for lower values of a, such as for a = 0.5. For the RSMI 

algorithm of Figure 2.19 e), we observed that the achievable SIR decreases as the reference length is 

increased. However, for signal power of 6, 12 and 18dB, decreasing the forgetting factor from a = 1.0 

to a = 0.5 does not affect the convergence rate of the algorithms, as seen by comparing Figures 2.17 

and 2.19. 

Figure 2.20 characterises the achievable performance of the RSMI and RLS algorithms of Sec

tions 2.4.1.3 and 2.4.1.2, respectively, with respect to the variation of the forgetting factor ranging 

from a = 0.9 to a = 1.0 for a reference sequence length of 256 bits. Similar to our observations in 

the AWGN scenario, the slope of the RLS scheme's response is less steep and at each corresponding 

a value, the level of interference rejection achieved by the RLS algorithm is higher or at least identical 
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Figure 2.19: The Signal-to-Interference Ratio (dB) achieved with respect to reference signal length 

using the RSMI algorithm of Section 2.4.1.3 for a) 0: = 0.98, c) 0: = 0.95 and e) 0: = 0.5 and the RLS 
algorithm of Section 2.4.1.2 for b) 0: = 0.98, d) 0: = 0.95 and f) 0: 0.5 in conjunction with different 
sets of equal desired and interfering signal power (i.e. for SNR=INR) over the flat Rayleigh fading 
channel. 
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Figure 2.20: The Signal-to-Interference Ratio (dB) as a function of the forgetting factor 0: using 

a) the RSMI algorithm of Section 2.4.1.3 and b) the RLS algorithm of Section 2.4.1.2 in conjunction 

with different sets of equal desired and interfering signal powers (i.e. for SNR=INR) and a reference 
length of 256 bits over the flat Rayleigh fading channel. 

to that of the RSMI algorithm. Based on our earlier observations of Figures 2.18 and 2.19, we may 

conclude that the RSMI algorithm is more sensitive to the choice of the forgetting factor a, partic

ularly when a longer reference sequence is used at a high signal power. This may be related to the 

recursive calculation of the estimated inverse auto-correlation matrix it-I defined in Equation (2.93), 

where we have the variable scalar expression of l':::a in the denominator. 

2.6.1.3 Complexity Analysis 

Apart from the achievable level of interference rejection (SIR), we also compare the performance of 

the algorithms in terms of their computational complexity. Figures 2.21 a) and 2.21 b) show the 

relative complexity of the LMS, NLMS, RLS and RSMI algorithms for multiple antenna aided systems 

having up to 16 elements in terms of the number of complex additions per iteration and complex 

multiplications per iteration, respectively. The total number of complex-valued operations required is 

compared in Figure 2.22 a) and also in Figure 2.22 b) based on the assumption that the Multiply-and

ACcumulate (MAC) instruction is available in the system, also assuming that the Hermitian property 
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Figure 2.21: Estimated complexity of the LMS, NLMS, RLS and RSMI beamforming algorithms in 

terms of a) the number of complex additions per iteration and b) the number of complex multiplications 

per iteration. 

of the auto-correlation matrix R is exploited. The total number of mathematical operations plotted in 

Figure 2.22 is based on the assumption that a reference length of 8-bit was used for the LMS, NLMS 

algorithms of Section 2.4.1.1 and for the RLS and RSMI algorithms of Sections 2.4.1.2 and 2.4.1.3, 

respectively. A window length of 2L was employed for the DMI algorithm of Section 2.4.1.3. 

From Figures 2.21 a) and 2.21 b) we conclude that the RSMI algorithm is the most complex 

in the set of algorithms investigated, since it requires the highest number of complex additions and 

complex multiplications per iteration, while the RLS technique is the second most complex, followed 

by the NLMS and finally the LMS method. In general, the RLS and RSMI algorithms typically 

converge faster than the LMS and NLMS algorithms of Section 2.4.1.1, since they are based on the 

least-squares principle, where the error estimate was based on the sequence of data observed at the 

time of the estimate. On the other hand, the LMS and NLMS algorithms of Section 2.4.1.1 were based 

on the mean-square approach, which require a statistical model for determining the auto-correlation 

R and cross-correlation z defined in Equations (2.72) and (2.73), respectively. This implies that 
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Figure 2.22: Estimated complexity of the various beamforming algorithms in terms of a) the total 

number of complex operations and b) the total number of complex operations assuming the availability 

of the MAC operation and the Hermitian property of the auto-correlation matrix R. We used 8-bit 

reference sequence for the LMS, NLMS, RLS and RSMI algorithms, and employed a window length 

of N = 2L for the DMI algorithm. 

the assignment of a similar length of eight bits to the reference sequence was slightly unfair, but 

the complexity curves seen in Figures 2.22 a) and 2.22 b) were simply used for the sake of general 

comparisons. 

The plots seen in Figures 2.21 and 2.22 are based on the calculated complexity per iteration tab

ulated in Table 2.9, except for the DMI algorithm of Section 2.4.1.3, where the calculated complexity 

was based on assuming N = 2L iterations. However, a reference sequence length of eight bits has been 

employed for the LMS, NLMS, RLS and RSMI algorithms of Figure 2.22 a) and 2.22 b). According 

to the plots seen in Figures 2.22 a) and 2.22 b), the complexity of the RSMI algorithm is always 

higher than that of the RLS algorithm. The RSMI and RLS algorithms' complexity was significantly 

reduced, when assuming the availability of the MAC instruction and upon exploiting that the auto

correlation matrix R is Hermitian. This can be observed by comparing the plots associated with the 
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RSMI and RLS algorithms seen in Figure 2.22 a) and Figure 2.22 b), or simply by comparing at the 

calculated complexity equations shown in Table 2.9. From Figure 2.22 b), we observed that for a low 

number of antenna elements, i.e. for L < 8 the DMI algorithm of Section 2.4.1.3 is less complex, than 

the RLS algorithm of Section 2.4.1.2, while the complexity is similar when both the RLS and DMI 

algorithms employed eight antenna elements. The RSMI algorithm of Section 2.4.1.3 however, has a 

higher complexity than the DMI algorithm, when the number of antenna elements is less than 10. 

I Complexity ILMS NLMS RLS RSMI DMI 

No. of complex additions 2L 3L 3L2 +L 4L2 - L-1 

No. of complex 
multiplications 2L + 1 3L +2 4L2 + 4L 5L2 + 3L + 1 

Total complex operations 4L + 1 6L + 2 7L2 + 5L 9L2 + 2L 

Total complex operations 
with Hermitian matrix 

and MAC assumptions 3L+2 4L+4 2.5L2 + 7.5L + 2 3L2 + 6L + 2 2.5L3 + 5L2 + 2L 

Table 2.9: Summary of the various algorithms' complexity in terms of the different mathematical 
operations involved per iteration (except for the DMI, in which case the complexity quoted is valid 

for 2L iterations). 

2.6.2 Performance of a Three-Element Uniform Linear Array System 

An L-element antenna array is said to have degrees of freedom (DOF) given by L - 1, where the 

DOF refers to the number of unconstrained or free weights that can be used to form a beam. This 

means that the antenna system is capable of forming a beam directed at the signal of interest (SOl) 

and simultaneously form a null in the direction of L - 1 interferers [10]. This section will investigate 

the interference rejection capabilities of three uniformly spaced antenna elements as the number of 

interfering sources is increased even beyond the number of elements, in other word beyond the DOF of 

the system. Our investigations are conducted over both the AWGN and fiat Rayleigh fading channels. 

In our simulations, the signal of interest (SOl) is assumed to arrive from the direction of 15°, while 

the interferers from -30°, 60°,80° and -70° viewed from the array normal with reference to the centre 

element, as shown in Figure 2.23. The simulation parameters include a 256-bit orthogonal reference 

signal invoked by the RLS algorithm and BPSK modulation. 

2.6.2.1 Spatial Selectivity over an AWGN Channel 

Figure 2.24 shows several beam patterns of the system receiving two signals, namely the SOl and 

a single interfering signal. It can be observed that the interferer at any of the four angles is nulled 

successfully with an attenuation of 38dB, even when the lnterference-to-Noise Ratio (INR) is as low 



2.6.2. Performance of a Three-Element Uniform Linear Array System 75 

array normal 

signal of interest 
interferer 1 (SOl) 

interferer 2 

interferer 4 

intelferer 3 

Figure 2.23: Three A/2-spaced antenna elements, where the signal of interest arrives from 150
, while 

the interfering sources from -300 ,600 ,800 and -700
• 

as 9dB. As mentioned in the previous section, the Signal-to-Noise Ratio (SNR) essentially does not 

affect the achievable performance curve, while the INR slightly does, since as its value becomes higher, 

the achievable interference rejection is increased. 

When the number of signals impinging on the antenna is equal to the number of array elements, 

the associated degrees of freedom are exhausted. When we have SNR = INR = 21dB, the achievable 

interference rejection is in excess of 45dB in the worst-case scenario of having an interferer at 600 and 

800
, as shown in Figure 2.25 (b), which is only 7 to 8dB lower than the best attenuation response of 

53dB obtained in Figure 2.24. It is observed in the figure that as expected, the separation between 

the desired and interfering signals does affect the associated response. For a pair of interferers that 

are closely located, as for example in the case of the interferers arriving from 600 and 800 seen in the 

right-hand figure, a strong rejection in excess of 45dB is observed at 60° and 800
, but this is achieved 

at the cost of a slightly degraded response at the desired signal's angle. This phenomenon is also 

visible, when the interfering sources are better separated, as seen for example for the angles of 800 

and -700
. 

The array response obtained in Figure 2.25 assumes that the interferers are of equal power. For 

unequal INRs different attenuations are observed. The interferer associated with a higher INR will be 

better attenuated than a weaker one. This is explicitly shown in Figure 2.26. 

Figure 2.27 shows the achievable performance, as four incoming signals impinge upon the 3-element 

antenna array. Except for the second scenario of Figure 2.27 (b), the attainable performance of the 

system is substantially reduced, exhibiting the lowest interference rejection of 17dB in the context of 

the second scenario of Figure 2.27 (a). Note that the DOF of the system in this scenario has been 

exceeded by one. In Figure 2.28 the same SNR was maintained as in Figure 2.27, while the INR of 

the interfering signals was reduced from 21dB to 9dB. As expected, some of the nulls recorded at the 
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Figure 2.24: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the SOl 
from a direction of 15° and a single interfering signal from different directions over the AWG N 
channel. The RLS algorithm was employed in conjunction with a reference sequence length of 256 

bits. 

corresponding angles are not as deep, as those in Figure 2.27. 

When the signals shown in Figure 2.23 are all simultaneously impinging upon the antenna array, 

the resultant beam pattern is shown in Figure 2.29. It is observed from Figure 2.29 (a) that the 

interfering signals are rejected by at least 17dB for both INR = 21dB and 9dB. If the INR of the 

interfering signal arriving at 80° is reduced to 9dB, while maintaining it at 21dB for the rest of the 

interfering signals, the null at 80° will become less deep, as shown in Figure 2.29 (b). 

2.6.2.2 Spatial Selectivity over a Flat Rayleigh Fading Channel 

In our investigations conducted in the context of a flat Rayleigh fading channel, we opted for a = 0.95 

as the forgetting factor. We aim for observing the array response and compare the corresponding 
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Figure 2.25: Beam patterns for a three-element ULA system of Aj2 element-spacing receiving the SOl 
from a direction of 15° and two interfering signals from different directions over the AWGN 

channel. The RLS algorithm was employed in conjunction with a reference sequence length of 256 

bits. The SNR and INRs were 21dB. 

performance to that recorded over the AWG N channel. All the beam patterns plotted in this section 

are the equivalents of the scenarios described in the AWGN propagation scenario of Section 2.6.2.1. 

The array's response recorded for a single interferer is portrayed in Figure 2.30. The rejection 

of the interferers is substantial, although not quite as high as in the corresponding AWGN scenario 

of Figure 2.24. Specifically, the lowest interference rejection value was 32dB for an INR as low as 

9dB. In comparison to the responses seen in Figure 2.24, a few minor differences occur at some angles 

other than the interferer's angles. For example, in Figure 2.30 (a) the sidelobe level achieved at 

eo = 90° is approximately -20dB, which is 5dB lower than that of the corresponding AWGN scenario 

of Figure 2.24 (a). 

Figure 2.31 and 2.32 portray the responses in conjunction with three signals impinging on the 

3-element array. When we have SNR= 21dB, the rejection level is at least 38dB as demonstrated 

by Figure 2.31 (b). Although this is about 7dB lower than that of the AWGN scenario seen in 

Figure 2.25 (b), we may consider a rejection higher than 30dB as adequate. Observe that the beam 

patterns of Figure 2.31 are similar to those of Figure 2.25, except for the scenario when the interferers 

are arriving from 60° and 80°. However, the associated difference is not so dramatic and we are 

more interested in the achievable performance at the defined angles. For the SNR values portrayed in 

Figure 2.32, the interferers are nulled successfully. 
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Figure 2.26: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the SOl 

from a direction of 15° and two interfering signals from -30° (interferer 1) and 60° (interferer 2) 
over the AWGN channel. The RLS algorithm was employed in conjunction with a reference sequence 

length of 256 bits and unequal desired and interfering signal power. 

As stated before, when the number of signals to be separated exceeded the number of elements 

III the array, the DOF is also exceeded. Therefore, the depth of the nulls will be reduced. As 

seen in Figures 2.33 and 2.34 in conjunction with SNRs of 21dB and 9dB, respectively, the lowest 

rejection was a modest 17dB. This rejection is similar to that achieved over the AWGN channel. 

Apart from attaining less deep nulls, the beam patterns of Figures 2.33 and 2.34 are similar to the 

corresponding scenarios in Figures 2.27 and 2.28. The most obvious difference is observed perhaps 

between Figure 2.28 (b) and Figure 2.34 (b) in conjunction with interferers arriving from 60°,80° and 

-70°. 

The array response in conjunction with five incoming signals is shown in Figure 2.35. Observe 

that the lowest rejection is 17dB and all other nulls seen at the defined angles are below -30dB. 

The beamforming patterns obtained in all scenarios are fairly similar to those obtained for transmis

sion over the AWGN channel and reduced differences are observed, as the corresponding number of 

signals impinging on the antenna array becomes higher than the number of elements, i.e. when the 

corresponding DOF is exceeded. 
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Figure 2.27: Beam patterns for a three-element ULA system of >../2 element-spacing receiving the SOl 
from a direction of 15° and three interfering signals from different directions over the AWG N 

channel. The RLS algorithm was employed in conjunction with a reference sequence length of 256 

bits. The SNR and INRs were 21dB. 
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Figure 2.28: Beam patterns for a three-element ULA system of >../2 element-spacing receiving the SOl 
from a direction of 15° and three interfering signals from different directions over the AWGN 
channel. The RLS algorithm was employed in conjunction with a reference sequence length of 256 

bits. The SNR was 21dB while the INRs were 9dB. 
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Figure 2.29; Beam patterns for a three-element ULA system of Aj2 element-spacing receiving the SOl 
from a direction of 150 and four interfering signals from direction -300 ,600 ,800 and -700 over 
the AWGN channel. The RLS algorithm was employed in conjunction with a reference sequence 

length of 256 bits. 

2.7 Conclusions 

In Section 2.1.1, we presented the historic background of beamforming. A few preliminary concepts 

were also introduced, which include our signal model and a simple demonstrative example. For the 

family of statistically optimum beamforming techniques, it has been shown that regardless of the 

criterion chosen for optimising the array weights, we will arrive at the same array weight expression, 

namely the Wiener solution of Wopt = R-1z. Often the statistics of the array output signal are 

not completely known and vary over time, thus in Sections 2.4.1.1, 2.4.1.2 and 2.4.1.3 we introduced 

several algorithms that may result in a set of weights that will converge to the statistically optimum 

solution. In Section 2.4.1 we used the temporal reference technique, which minimises the error based 

on the MMSE criterion of Equation (2.70) and in Figures 2.13 to 2.20 we characterised the achievable 

interference rejection level expressed in terms of the SIR. 

When communicating over the AWGN channel, it was observed that the DMI and RSMI algorithms 

of Section 2.4.1.3 and RLS algorithm of Section 2.4.1.2 give a similar performance. However, they 

differ in terms of their computational complexity. Specifically, the DMI algorithm imposes the highest 

order of complexity, i.e. O(L3 ), while the RLS and RSMI algorithms exhibit a complexity on the order 

of O(L2). This complexity is an order lower than that of the DMI algorithm, but an order higher than 

that of the LMS and NLMS algorithms of Section 2.4.1.1. For the flat fading channel, as expected, the 

achievable interference rejection level was significantly lower than that of the corresponding AWGN 
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Figure 2.30: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the 

SOl from a direction of 15° and a single interfering signal from different directions over the 

flat Rayleigh fading channel. The RLS algorithm was employed in conjunction with a reference 
sequence length of 256 bits. 

channel. Focusing on the attainable performance of the RLS and RSMI algorithms, it is observed 

that the performance of the RLS technique of Section 2.4.1.2 is always similar or better than that 

of the RSMI algorithm of Section 2.4.1.3 for any arbitrary value of the forgetting factor a, i.e. the 

RSMI algorithm is more sensitive to the value of a. This may be due to the variable scalar l~a 

in Equation (2.93), which is derived as a result of the estimated auto-correlation matrix defined in 

Equation (2.92). 

The beam pattern of the three-element array having 2, 3,4 and 5 arriving beams investigated, when 

communicating over the AWGN and the fiat Rayleigh fading channel is generally adequate. When the 

interferers are located at similar angles, typically, a stronger rejection is observed. Interferers exhibiting 

higher INRs will be nulled more effectively than those arriving at lower INRs. The interference rejection 

of the system communicating over the AWG N channel is superior in comparison to that over the fading 
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Figure 2.31: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the 
SOl from a direction of 15° and two interfering signals from different directions over the 

fiat Rayleigh fading channel. The RLS algorithm was employed in conjunction with a reference 

sequence length of 256 bits. The SNR and lNRs were 21dB. 

channel, although the associated difference is reduced as the array's DOF is exceeded. For the 5-user 

scenario of Figures 2.29 and 2.35, where the DOF has been exceeded by two, a minimum of 17dB 

rejection is observed for both the AWGN and flat fading scenarios. 

In this chapter, we mainly focused our attention on beamforming schemes based on the MMSE 

criterion. In the following chapter, we will investigate a novel family of beamforming schemes based 

on the minimum bit error ratio criterion. 
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Figure 2.32: Beam patterns for a three-element ULA system of >";2 element-spacing receiving the SOl 
from a direction of 15° and two interfering signals from -30° (interferer 1) and 60° (interferer 2) 
over the flat Rayleigh fading channel. The RLS algorithm was employed in conjunction with a 

reference sequence length of 256 bits and unequal incoming power levels. 
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Figure 2.33: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the 

SOl from a direction of 15° and three interfering signals from different directions over the 
flat Rayleigh fading channel. The RLS algorithm was employed in conjunction with a reference 

sequence length of 256 bits. The SNR and INRs were 21dB. 
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Figure 2.34: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the 

SOl from a direction of 15° and three interfering signals from different directions over the 
flat Rayleigh fading channel. The RLS algorithm was employed in conjunction with a reference 

sequence length of 256 bits. The SNR was 21dB while the INRs were 9dB. 
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Figure 2.35: Beam patterns for a three-element ULA system of ),,/2 element-spacing receiving the 

SOl from a direction of 150 and four interfering signals from direction -300 ,600 ,800 and -700 

over the flat Rayleigh fading channel. The RLS algorithm was employed in conjunction with a 

reference sequence length of 256 bits. 



Chapter 3 

Minimum Bit Error Ratio 

Beamforming 

3.1 Introduction 

Adaptive beamforming is capable of separating signals transmitted on the same carrier frequency pro

vided that they originate from different angular directions. In Chapter 2 we have briefly described 

several classic algorithms, amongst others those applying the Minimum Mean Square Error (MMSE) 

criterion for deriving the optimal array weights leading to the Wiener-Hopf solution for the beam

former. Specifically, in Section 2.4.1.3 we focused our attention on the Sample Matrix Inversion (SMI) 

algorithm that adjusts the array weights on a block-by-block adaptation basis, while in Sections 2.4.1.1 

and 2.4.1.2 the sample-by-sample adaptation approach of the Least Mean Square (LMS) and Recursive 

Least Square (RLS) algorithms, respectively, was invoked. Apart from the MMSE criterion, we also 

outlined in Section 2.3, the maximum Signal-to-Interference Ratio (SIR) and the minimum variance 

criteria. However, for a communication system, it is the achievable Bit Error Ratio (BER) that really 

matters. Ideally, the system design should be based on minimising the BER, rather than the Mean 

Square Error (MSE) [155], although in certain situations the MMSE solution produces a relatively 

good BER performance. 

When applying the MMSE criterion, the achievable performance will be highly dependent on 

whether the beamformer's output y(n) is exactly identical to the desired response r(n) as seen in 

the schematic of Figure 2.11. The performance comparison of the MMSE and Minimum Bit Error 

Ratio (MBER) approaches has been carried out in the context of single-user channel equalisation [196, 

197] and also in multiuser detection (MUD) [198,199]. It was found that in certain situations the 

MMSE solution is distinctly inferior to the MBER solution. Motivated by these findings, in this 

chapter we focus our attention on adaptive beamforming techniques based on directly minimising the 

system's BER. Hence we refer to this approach as adaptive MBER beamforming. Several adaptive 
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implementations of the theoretical MBER solution have been studied in the literature [196-201]. 

Table 3.1 summarises the range of past contributions on the design of various MBER detectors [202]. 

To begin our investigation on MBER beamforming, we will first obtain the BER expression at 

the beamformer's output in Section 3.3 as a comparison to the MMSE beamforming solution derived 

in Section 3.2.1. A suitable algorithm in minimising the BER will also be introduced in Section 3.3. 

Having a theoretical solution, we then proceed with adaptive implementation of MBER beamforming 

in Section 3.4 using the block-based and sample-by-sample approaches. Finally, in Sections 3.5 and 3.6 

we will provide simulation results for characterising the corresponding MBER algorithms. We will 

commence our discourse by briefly reviewing our signal model in the following section, noting the 

differences in comparison to the classic beamformer's model outlined in Section 2.2.1. 

3.2 Signal Model 

In this chapter we will be using the same signal model as in Chapter 2, but for the sake of convenience 

we revisit some of the equations. As before, the modulation scheme is assumed to be Binary Phase 

Shift Keying (BPSK), and the channel is assumed to be non-dispersive, which does not induce any 

intersymbol interference (lSI). We use the narrowband beamforming structure of Figure 2.11. 

Let us consider a system, which supports M users, each transmitting on the same carrier fre

quency.f. The baseband signal of user m is formulated as in Equation (2.6): 

(3.1) 

where the modulating signal is given by bm(n) E {±1}, the complex-valued channel coefficient am(n) 

models the multiplicative effect of the channel of user m, where the transmitted signal power of user 

m is unity and therefore Jam(nW denotes the received signal power of user m, m = 1,2, ... , M, at 

instant n. The signals received by the lth element of the L-element uniformly spaced linear antenna 

array of Figure 2.5 are given by: 

M 

Xl(n) I: mm(n)ej27r!tz(Om) + nl(n) (3.2) 
m=l 
Xl(n) + nl(n), (3.3) 

where l = 1,2, ... , L, tl(em) is the relative time delay at array element l for a source direction of em, and 

nl(n) is the complex-valued white Gaussian noise having a zero-mean and a variance of E[Jnl(n)J2] = 
2(T~. Therefore, the desired user's signal to noise ratio is defined as SNR = JalJ2 12(T~, assuming user 

1 is the desired user. The interference to noise ratio of user m is given by INRm = JamJ2 12(T~ and 

the desired signal to interference ratio with respect to user m is defined as SIRm = JalJ2/JamJ2, for 

m = 2, ... , M. Note that we use a bar' -, for indicating a noise-free signal component. In vectorial 
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I Year I Author Contribution 

'66 Aaron and Tufts [203] Establishing the interrelationship of intersymbol interference 
and error probability. 

'74 Shamash and Yao [204] Outlining the structure and characterising the performance of a 
linear decision feedback equaliser (DFE) based on the minimum 

error probability criterion. 

'96 Chen, Chng, Mulgrew Deriving an MBER solution for the DFE that employs a linear 
and Gibson [205] combination of the channel outputs and the past decisions. 

'97 Yeh and Barry [206] Proposing algorithms approaching the performance of the lin-
ear and decision-feedback MBER equalisers for binary sig-

nalling. 

'97 Mandayam and A non-adaptive linear MBER multiuser detector based on gra-
Aazhang [207] dient optimisation for CDMA systems communicating over nar-

rowband Gaussian channels which do not introduce lSI. 

'98 Yeh and Barry [208] Approximate MBER equalisation for both pulse-amplitude and 
quadrature amplitude modulation (QAM). 

'98 Yeh, Lopes and Approximate MBER multiuser detection (MUD). 

Barry [209] 

'98 Chen, Mulgrew, Chng Space translation properties and the MBER linear combiner 

and Gibson [200] DFE. 

'99 Chen and Mul- The minimum-SER linear-combiner decision feedback 

grew [210] equaliser. 

'99 Psaromiligkos, Bata- Adaptive MBER receivers using linear filters in the context of 
lama and Pados [211] DS-CDMA. 

'00 Yeh and Barry [196] Adaptive MBER equalisation for binary signalling. 

'00 Mulgrew and Stochastic gradient MBER DFEs. 
Chen [212] 

'00 Wang, Lu and Anto- Design of a constrained MBER MUD. 
niou [213] 

'01 Chen, Samingan, Mul- Adaptive MBER linear MUD for DS-CDMA signals transmit-
grew and Ranzo [198, ted over multipath fading channels. 
214] 

'01 Mulgrew and Adaptive MBER DFEs designed for binary signalling. 
Chen [197] 

'01 Samingan, Chen and Adaptive MBER linear MUD for CDMA signals transmitted 
Ranzo [215] over multipath channels using 4-QAM. 

'03 Chen, Mulgrew and Least bit-error rate adaptive nonlinear equalisers for binary sig-
Ranzo [216] nalling. 

'03 de Lamare and Adaptive MBER decision feedback multiuser receivers for fre-
Sampaio-Neto [217] quency selective fading channels. 

'03 Chen, Ranzo and Ah- Adaptive MBER beamforming assisted receiver for wireless 
mad [156] communications. 

'03 Gesbert [218] A minimum error-rate approach for robust linear MIMO re-

ceivers. 

'03 Alias, Samingan, Chen SDMA OFDM employing MBER MUD. 
and Ranzo [219] 

Table 3.1: Contributions on MBER receivers [202]. 
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form, the array input or the received signal vector x(n) can be expressed as: 

x(n) [Xl (n) X2(n) ... xL(n)f 

x(n) + n(n) 

SAb(n) + n(n) 

Gb(n) + n(n), 
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(3.4) 

(3.5) 

(3.6) 

(3.7) 

where n(n) = [nl(n) n2(n)··· nL(n)]T has a covariance matrix of E[n(n)nH(n)] = 2(T~h with h 

representing the (L x L )-dimensional identity matrix. Furthermore, G is the (L x M)-dimensional 

system matrix given by the product of the users' (L x M)-dimensional steering matrix Sand (M x M)

dimensional diagonal amplitude matrix A, as we have seen in Equation (2.13): 

(3.8) 

which consists of steering vectors for M sources, each represented as in Equation (2.8), namely as: 

(3.9) 

where m = 1,2, ... ,M and b(n) is the transmitted bit vector expressed as b(n) = [b l (n) b2 (n) .. , bM(n)V· 

The beamformer's output is given by: 

y(n) wHx(n) 

wHx(n) + wHn(n) 

wH Gb(n) + wHn(n) 

y(n) + e(n), 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where w = [WI W2'" WLV is the complex-valued beamformer weight vector and e(n) is Gaussian 

distributed having zero-mean and a variance of E[le(nW] = 2(T~WHw. When dealing with complex

valued variables, such as the weight Wl, received signal Xl and noise samples nl, the resultant output 

y(n) will be also complex-valued. In other words, the output of the beamformer can be expanded as: 

y(n) wHx(n) 

w H x(n) + w H n(n) 

(wR(n) - jWJ(n)f(xR(n) + jXJ(n)) + (wR(n) - jWJ(n)f(nR(n) + jnJ(n)) (3.14) 

wkxR(n) - jwTxR(n) + jWkxJ(n) + wTxJ(n) + 

wknR(n) - jwT nR(n) + jWknJ(n) + wT nJ(n) 

wkxR(n) + wTxJ(n) + wknR(n) + wT nJ(n) + 

j(wkxJ(n) - wTxR(n) + wknJ(n) - wT nR(n)) 

yR(n) + eR(n) + j(YJ(n) + eJ(n)) 

YR(n) + jYJ(n), 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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where we have YR(n) = ~[y(n)J, YI(n) = S<[y(n)J, eR(n) = ~[e(n)] and eI(n) = s<[e(n)]. The subscripts 

R and I denote the real and imaginary parts, respectively. We estimate the desired user's transmitted 

bit bd(n) as follows: 

{ 

+1, YR(n) > 0, 

-1, YR(n):S 0, 
(3.19) 

where we only take the real part of the beamformer's output as the decision variable. We are basically 

interested in the sign of the decision variable in order to decide, whether the estimated bit is + 1 or 

-1, such that: 

(3.20) 

where sgn(.) is the signum function and bd(n) is the estimated bit at signalling instant n. 

3.2.1 MMSE Beamforming Solution 

Previously, we determined the beamforming weight vector by minimising the MSE term of E[lr(n) -

y(n)12] between the desired response and the beamformer's output as seen in Equation (2.42). In the 

context of the MBER technique, we focused our attention on the transmitted bits b( n) and the system 

matrix G, which we introduced in Equations (2.13) and (2.15). Commencing with Equation (2.42) 

employing the subscript d for the desired user and replacing the desired response r(n) with the desired 

user's transmitted bit bd(n), we derived the MMSE solution for uncorrelated transmitted bits and 

noise samples as follows: 

MSE E[lbd(n) - y(nW] 

CJ~ - 2wH E[Gb + n]bd + w H E[(Gb + n)(Gb + n)H]w 

CJ~ - 2wH gd + w H (CJ~GGH + 2CJ~h)w. 

(3.21 ) 

(3.22) 

(3.23) 

This MSE expression was then minimised by taking its derivative with respect to the conjugate of the 

array weight vector element w* [166] and setting it to zero: 

[) 
VwMSE = ~MSE = -2gd + 2(CJ~GGH + 2CJ;h)w = 0, 

uw* 
(3.24) 

yielding a closed-form solution for the array weight vector was: 

(3.25) 

where the vector gd is the desired user's column in the system matrix G, and where we may have 

1 :S d:S M. Since we deal with BPSK and always assume that the transmitted bit obeys bd(n) E {±1}, 

the signal variance will always be equal to unity, i.e. we have CJ~ = 1 and therefore we can simplify 

Equation (3.25) to [155]: 

(3.26) 
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Alternatively, the derivation of the MMSE solution could also commence by directly differentiate 

the Mean Square Error (MSE) expression of Equation (3.21) and equating it to zero, such that we 

have: 

'VwMSE 0 

'VwE[Jbd(n) - y(n)J2] 0 (3.27) 

2E[(bd(n) - w H (Gb + n))(Gb + n)] 0 (3.28) 

2E[(Gb + n)bd(n)]- 2E[(Gb + n)(Gb + n)Hw] 0 (3.29) 

2gd - 2(0"~GGH + 20"~IL)w 0 (3.30) 

WMMSE (2 H 2 r 1 
O"d GG + 20"nh gd· (3.31) 

In general, the system matrix G is unknown [155]. However, the MMSE solution can be readily 

realised for example, by using either the block-data based adaptive Sample Matrix Inversion (SMI) 

algorithm or the sal11ple-by-sal11ple adaptation based LMS algorithm, which is a derivative of the 

stochastic gradient approach, as explained in Chapter 2. Theoretically, the array weight solution of 

Equation (3.25) or (3.31) is the optimum array weight based on the MMSE criterion. This set of 

weight values will be used as our benchmarker, characterising the MMSE solution. 

The array factor, which describes the response of the beamformer to the source arriving at angle 

em is given by: 

L 

F(em ) = L Wle-jwtz(Om) , (3.32) 

1=1 

where w = 21f f. This is similar to taking the Discrete Fourier Transform (DFT) of the beamformer 

weights. Previously in Chapter 2 we were concerned only with the magnitude of F(em ) in character

ising the performance of a beamformer. However, it is desirable to characterise both the magnitude 

and phase of F(em ). When determining the probability of error, the ultimate factor is the probability 

density function (PDF) of the beamformer's output, which fully characterises the BER performance 

of the beamformer [154-156]. 

Having determined the closed-form expression of the MMSE beamforming solution, let us next 

concentrate our attention on the derivation of the MBER beamforming solution. 

3.3 MBER Beamforming Solution 

As opposed to the MMSE solution, we now focus our attention on the Minimum BER (MBER) cri

terion invoked for finding the optimum beamforming weight solution. The MBER criterion involves 

calculating the probability that the decision function considered is in error. In reference to Equa

tion (3.19), we will register a transmission error every time we received a logical zero or a negative 



3.3. MBER Beamforming Solution 92 

real component of the output, i.e. when we encounter YR(n) ::; 0 having transmitted a logical one bit 

(bd(n) = +1) or simply when we have hd(n) =I bd(n). The BER, which is interchangeably referred to 

as the probability of error of the signed decision function of: 

(3.33) 

according to the decision regime defined in Equation (3.20) as a function of the weight vector w can 

be represented as: 

(3.34) 

Before proceeding further we note that in conjunction with M incoming signals and applying 

the BPSK modulation scheme, there will be Nb = 2M number of possible transmitted bit sequences 

of b(n), which we represent as bq , where 1 ::; q ::; Nb. Assuming that we are interested in the first 

signal inl the desired user's transmitted bit will always be the first bit in the sequence, hence we will 

refer to it as bq,l. Distinct values of the array input signal x( n) will be the signals defined by: 

(3.35) 

where again, we have 1 ::; q ::; N b. Having only two possible values of bq,d(n), the received signals can 

be separated into two categories, depending on the desired user's transmitted bit bq,d(n) such that: 

x~+) for bq,d(n) 

x~-) for bq,d(n) 

+1 and 

-1. 

(3.36) 

(3.37) 

When using a notation customary in conjunction with mathematical sets, these can be expressed 

as [155]: 

(3.38) 

where we have ;t' ~ {Xq Gbq, 1 ::; q ::; Nb}. In a similar fashion, the noiseless output of the 

beamformer y(n) will be one of the Nb signals defined by: 

- H-Yq = W x q, (3.39) 

whose real part we denote as YR,q, such that we have: 

(3.40) 

that may belong to one of the two categories with reference to the desired user's transmitted bit bq,d(n) 

i.e. Yk~~ for bq,d(n) = +1 and Yt~ for bq,d(n) = -1. Alternatively, the corresponding signals are those 

in the set defined by [155]: 

(±) b. {-(±) b () } Y R = YR,q E YR: q,d n = ±1 , (3.41 ) 
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Figure 3.1: Composition of the noiseless beamformer output Y defined in Equation (3.39) for both the 
MMSE and MBER beamformers at SNR = INR = lOdB. Both the noiseless input Xl and the sub

output Yl observed at the corresponding antenna element l are defined in Equations (2.7) and (2.17), 

respectively. The AOA of the desired and interfering user was 0° and 30°, respectively. 

where YR ~ {YR,q = ~[yq], 1 :::; q :::; Nb}' Note that our definition of beamforming here refers to linear 

beamforming [155]. We assume that X( +) and X( -) are linearly separable, such that there exists an 

array weight vector w, such that the two real output sets yit) and y1-) are completely separable by 

a linear decision boundary, in our BPSK scenario we have YR = O. 

Figure 3.1 shows the procedure of composing the noiseless beamformer output Yq of Equation (3.39). 

In the figure Yq is simply written as 'total y'. For M = 2 BPSK users and an L = 2-element antenna 

array, the total number of possible transmitted bit sequences b q is given by Nb = 2M , which results 

in Nb = 4, i.e. we have 1 :::; q :::; Nb = 4 possible 2-bit combinations. For example, for the specific 

scenario, when the desired user always transmits a logical one, i.e. for b1 = + 1 assuming that user 1 

is the desired user, the corresponding noiseless beamformer output y~ +) was denoted by the markers 

cross and dot in the final MMSE and MBER phasor plots, respectively, seen at the right of Figure 3.1. 

By contrast, for b1 = -1, the corresponding noiseless beamformer output y~ -) was denoted by the 

markers square and heart, respectively. In Figure 3.1 both the MMSE and MBER beamformers' 

noiseless outputs were succesfully separated by the vertical division boundary at YR = O. However, it 

is observed from Figure 3.1 that the MMSE beamformer minimises the distance between the desired 

user's transmitted bit h = ±1 and the received noiseless output y, hence the corresponding markers 

are close to ±1. By contrast, the MBER beamformer searches for the specific weights W that will 
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produce the received noiseless outputs y, that are as far as possible from the decision boundary at 

YR = 0, rather than being as close to bl = ±1 as possible. More explicitly, the MBER beamformer 

attempts to keep all the four legitimate constellation points as far from YR = 0, as possible. In other 

words, the MBER beamformer concentrates on reducing the BER of the received noiseless output, and 

the appropriate weights derived for the sake of achieving this are typically different from the MMSE 

weight solution, as will be shown in the context of our simulation results in Sections 3.5 and 3.6. 

The probability of error PE in a single user scenario of M = 1, in conjunction with BPSK modu

lation is given by [220]: 

(3.42) 

where Xl is one of the two legitimate transmitted waveforms in the set of X = {Xl, X2}, as plotted 

in Figure 5.1 (a) in [220]. Considering that the conditional probability of receiving any particular 

analogue sample Y given that Xl or X2 was transmitted is quantified by the Gaussian PDFs seen in 

Figure 5.1 (a), which can be described by [220]: 

p(yIX) 1 (_(Y-X)2) 
V'iifa

n 
exp 2a~ , (3.43) 

where X = Xl or X2 is the mean and a~ is the variance, Equation (3.42) corresponds to the Gaussian 

Q-function of Q(XI), which may be interpreted as the probability of a Gaussian noise sample exceeding 

the value Xl. In other words, it represents the complementary cumulative density function (CDF) of 

the Gaussian distribution [220]. Assuming that Xl = -X2, the probability that the noise can carry Xl 

across a threshold of X = ° is equal to that of X2 being corrupted in the negative direction. Hence, 

assuming that we have p(XI) = p(X2) = 0.5, the overall error probability is given by [220]: 

p(xI)Q(xd + p(X2)Q(X2) 
1 1 
2"Q(Xl) + 2"Q(XI) 

Q(XI). 

(3.44) 

(3.45) 

(3.46) 

Let us now proceed by considering a scenario, when there are several users, i.e. when we have 

M > 1. For simplicity, we assume that there are M = 2 equal-power users transmitting over an 

AWGN channel to a single-antenna receiver. Then, there will be 2M = 4 possible transmitted BPSK 

sequences, which can be written in the following set: 

(3.4 7) 

which results in the noiseless transmitted waveforms of X in the set of x = {-2, 0, 0, 2}, when assuming 

a unity channel gain and noiseless transmitted waveforms. Similar to the previous single user case, 

the resultant PDF is the superposition of the appropriately positioned Gaussian PDFs, as portrayed 

in Figure 3.2 (a). The resultant mathematical expression is similar to that of Equation (3.42), except 
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Figure 3.2: PDF of the receiver output; the dotted and dashed lines represent the PDF ofthe individual 
noisy samples, while the solid line represents the resultant PDF constituted of all the legitimate points. 

that Xl now represents a condition associated with bq,d = + 1 and X2 is associated with bq,d = -1, 

where the subscript d denotes one of the users, i.e. we may have 1 < d < M. 

In the case of beamforming we use a multi-element antenna, i.e. L > 1. The simplest case is that of 

considering L = 2. As described previously in Section 3.2, the beamformer's output due to the noise

contaminated array input signals x is given by Equation (3.10), while the real part YR,q of the noiseless 

output of the beamformer belongs to the set described by Equation (3.41). In a similar fashion to 

the single-element antenna case, the conditional probability of receiving any particular beamformer 

output y associated with our decision variable Ys, based on Equation (3.33), given that one of the bit 

sequences b q was transmitted is quantified by one of the Gaussian PDFs seen in Figure 3.2 (b), which 

can be described by: 

1 ( (sgn(bd(n))YR - sgn(bq d)YR q)2) ------ exp , , 
V27iO"n JwH w 20"~ w H w ' 

(3.48) 

where sgn(bq,d)YR,q is the mean and O";wH w is the variance, which follows the variance of the real 

part of the error e R, based on the following calculation: 

E[I~[wHnW] 

E[lw'knR(n) + wy nI(n)12] 

E[(w'knR(n) + wy nI(n)f(w'knR(n) + wy nI(n))] 

E[(n'kwR(n) + ny wI(n))(w'knR(n) + wy nI(n))] 

E[n'kwRw'knR(n) + ny wIw'knR(n) + n'kwRwy nI(n) + ny WIWY nI(n)] 

E[n'knRw'kwR(n) + ny nIwy wI(n)] 

2 T 2 T O"n WRWR + O"n WI WI 

0"2wHw n , 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55 ) 

(3.56) 

where the real and imaginary components are assumed to be uncorrelated, i.e. we have ny nR(n) = 

n'knI(n) = 0 and are of equal variance expressed as n'knR(n) = nT nI(n) = 0";. Based on the 
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assumption that the Nb number of vectors bare equiprobable, the overall probability of sgn(bd(n) )YR 

is given by [198]: 

(3.57) 

1 f exp (_ (sgn(bd(n))YR - Sgn(bq,dHJR,q)2). (3.58) 
N bV2irCJnVwHw q=l 2CJ~wHw 

Assuming that both logical values of the transmitted bits are equally likely, the conditional PDF 

of YR(n) associated with bd(n) = +1 is given by: 

(3.59) 

where Yk~j E yk+) and Nsb is the number of distinct sets of bits transmitted with bq,d fixed to a specific 

value (in this case bq,d +1), which should be half of Nb, i.e. we have Nsb = Nb/2 = 2M -I, where 

M is the number of users, since bq,d is either + 1 or -1. 

The probability of error PE(w) of our decision function defined in Equation (3.33) can be repre

sented by the area under the PDF within the interval of (-00,0), which is given by [169]: 

(3.60) 

Substituting Equation (3.59) into Equation (3.60), we arrive at: 

(3.61) 

(3.62) 

Upon exploiting that the Gaussian Q-function is given by [7,221]: 

Q(z) = vk 100 

exp ( - v22) dv, (3.63) 

we can simplify the above expression of PE(w) in terms of the standard Q-function Q(z), having 

a zero-mean and a standard deviation of unity, which quantifies the probability of v > z. Upon 

representing vas: 

and its derivative as: 

(b ) -(+) 
YR - sgn q,d YR,q 

v = ---===---'-'--
CJnvwHw ' 

dv = dYR 
CJnvwHw' 

(3.64) 

(3.65) 
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Equation (3.61) may be expressed as: 

PE(W) 

Cb ) -c+) 
Nsb _ sgn q,d Y R,q 

L r crnVwHw _l--=exp (_ V2) dv 
q=lJ-oo N sbV21i 2 

(3.66) 

Nl I: ~2 (:Cb
q 

d)fik+) exp (- V22) dv. 
sb VL.7rJ: ' ,q 

q=l crnVwHw 

(3.67) 

Thus, taking into account Equations (3.63) and (3.64) the BER of the beamformer associated with 

the weight vector w is given by: 

1 Nsb 

FE(w) = N L Q (cq,+(w)) , 
sb q=l 

where we used the shorthand of: 

sgn(b )y-(+) 
( ) 

_ q,d R,q 
cq,+ W - ;-r:;--

CTnVWHW 

sgn(bq ,d)1R[wH x~+)] 
CTnVWHW 

(3.68) 

(3.69) 

Note that the BER is invariant to a positive scaling of w, which implies that if we scale the array 

weight vector by a positive integer Ct, Equation (3.69) will result in the same value of cq,+(w), which 

is expressed as: 

(3.70) 

This indicates that the BER expression in Equation (3.68) is independent of the positive scaling of the 

array weight vector w, which results in an infinite number of optimum solutions for WMBER. Following 

a similar approach, the BER can also be calculated using y1-). 

The MBER beamforming solution is therefore defined as: 

WMBER = argminFE(w), (3.71) 
w 

Unlike for the MMSE approach of Equation (3.25), due to the complex nature of the BER cost 

function [199], no closed-form solution is available for the MBER approach. In [199], it was pointed 

out that an attractive practical approach is to solve the MBER solution by employing an iterative 

strategy based on the steepest descent gradient method [6]. The algorithm, referred to as the steepest 

descent gradient algorithm operates by updating the array weight vector W iteratively in the direction 

opposite to the gradient of the BER cost function. Mathematically, this is formulated as follows: 

where d(n) 

w(n + 1) w(n) + fLd(n) 

w(n) fL\1wPE(w(n)), 

(3.72) 

(3.73) 

- \1 wFE (w( n)) represents the negative direction of the gradient vector PE (w( n)) 

weighted by the step size fL. We calculate the gradient of PE(W) using the following identity [169]: 

~ l C

(t) f(y)dy = f(c(t)) 8c(t) _ f(a(t)) 8a(t). 
at a(t) at at (3.74) 
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It can be shown that the gradient of PE(W) of YR with respect to w may be expressed as: 

o 
\7wPE(W) = owPE(w) 

~ (_1 I: _1 100 

exp (_ v2) dV) 
ow Nsb q=l V21f cq,+(w) 2 

~ (_1 I: _1 r-Cq,+(w) exp (_ v2) dV) 
ow Nsb q=l V21f J -00 2 

1 L exp _ R,q ~ _ sgn q,d YR,q Nsb ((y_(+))2 ) ( (b )-(+)) 
NsbV21f q=l 2a~wHw ow an.JwHw 

1 Nsb ((Yk~Jr ) 0 ( Yk~~ ) 
= - N

S
bV21fa

n 
~ exp - 2a~wH w sgn(bq,d) ow yf;;iT; , 
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(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

where we have yk+) = ~[wH x~ +)] and w is a complex-valued vector. Differentiation with respect to ,q 

a complex-valued variable of w = WR + jw[ is somewhat more involved than that with respect to a 

real-valued one. More specifically, the corresponding derivatives are given by Wirtinger calculus [166] 

as follows: 

where we have 

of(w) 

ow 

of(w) 

ow* 

(3.80) 

(3.81) 

ow ow* 
ow = 1 and ow = O. (3.82) 

Applying the Wirtinger derivative with respect to the conjugate of the array weight element w* 

obeying the definition in Equation (2.17) and by using the product rule expressed as %tc(t)a(t) = 

ac(t)a(t) + aa(t)c(t) in the context of Yk~~ - ~[wHx(+)](wHw)-~ results in' at at vwH w - q , . 

O 
( 

-(+) ) YR,q 

ow JwHw 
(3.83) 

~X~+)(WHW)-~ - ~ (wHwr~ w (Yk~n (3.86) 

~ (~- (~)3) (3.87) 
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Therefore the gradient of PE(w) in Equation (3.68) may be expressed as: 

o 

-1 

-2 

-5 

-6 

-7 JL:::'-~~~7~7--:==~; 
o 

0.5 1 
!Jr[ 1.5 2 

Weight[2}J 

a= 1.0 

Figure 3.3: Error surface of the normalised MBER solution for a = 1 and SNR = 10dB as well 
as IN~ = 10dB for i = 2,3,4,5, when communicating over an AWGN channel. The associated 

interference scenario was plotted in Figure 3.18. The thick line on the horizontal plane is where 
the MBER solutions reside, corresponding to BER = 10-6.14 ~ 7.24 . 10-7 . The MMSE solution is 

denoted by a cross, which should be located at (0.42,0.40) having a BER of 10-5
.
89 ~ 1.29.10-6

• The 

corresponding array weight's imaginary part was fixed at (0.55,1.01 . 10-25 ) for the MBER solution 

and at (0.39,0.17) for the MMSE solution. The BER was evaluated based on Equation (3.68). 

Unlike the paraboloid-shaped quadratic MSE cost function shown in Figure 2.12 of Section 2.4.1.1, 

the MBER cost function is not well-behaved. Using the MMSE approach, there is a unique global 

minimum, while for the MBER approach it is clear from Equation (3.70) that there is an infinite 

number of possible MBER solutions, since the equation is invariant to a positive scaling of w. This is 

indicated by a straight line seen on the horizontal plane of Figure 3.3, an issue, which will be revisited 

in more depth in Section 3.5. Nonetheless, we may arrive at a single global minimum by normalising 

the array weight vector w to a unit length after every iteration, such that the normalised weight 
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denoted as w is given by: 

.. w w 
w- --- - ~==== - [[w[[ - JwHw . (3.90) 

Hence the gradient of PE(W) expressed in Equation (3.89) can be simplified to: 

(3.91) 

Apart from giving a single optimum solution, Equation (3.91) also offers a reduction in terms of the 

computational complexity imposed. An example of the BER surface using the normalised MBER 

beamforming weight vector w, associated with a = 1.0 in Equation (3.70) is shown in Figure 3.3. 

Note that the MMSE solution, which is also plotted in Figure 3.3 gives a BER performance of BER = 
10-5.89 ~ 1.29 . 10-6 , i.e. a higher BER. It is a coincidence that the MMSE solution lies on the 

MBER solution's line. We will explain this coincidence in more depth in Section 3.5.2. In the 

context of multiuser detection (MUD), a BER surface showing an infinite number of solutions has 

been graphically portrayed by Samingan in [199J. 

However, the convergence of the steepest descent algorithm is relatively slow [199J. In order to 

overcome this impediment, the Gauss-Newton algorithm [222J based on the nonlinear least square 

optimisation criterion can be applied. The algorithm updates the weight vector w in the direction 

given by [222J: 

(3.92) 

where V~PE(w(n)) is the second order derivative of PE(w(n)) with respect to w at the nth iteration. 

Owing to the employment of the second derivative, the algorithm becomes computationally more 

complex than the previously mentioned steepest descent algorithm of Equation (3.73). 

Method/ steepest descent Gauss-Newton conjugate gradient simplified 
Parameter conjugate gradient 

d(n) - \1wPE(w(n)) -[\1~PE(w(n) )t1 \1 wPE(w(n)) <Pn-ld(n - 1) - \1wPE(w(n)), 
h <P - 1I\7~PE(w(n))1I2 

were n-l - 11\7~PE(w(n-l )112 

f.L constant constant variable constant 
Remarks simple but slow high computational complexity requires optimal step uses a fixed 

convergence size in each update step size 

Table 3.2: Comparison of the steepest descent, Gauss-Newton, conjugate gradient and simplified 

conjugate gradient methods in terms of the array weight vector direction d( n) and step size f.L of array 

weight vector update of w(n + 1) = w(n) + ILd(n). 

As a compromise between the speed of convergence and complexity imposed, we solve the opti

misation problem of Equation (3.71) by using the conjugate gradient approach [223J. The conjugate 
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gradient method updates its current array weight vector direction by using the conjugate of the previ

ous one. This approach is expected to be efficient, as it avoids using the same update direction twice. 

The algorithm is completed after L (the dimension of the array weight vector w) iterative update steps 

using the optimal step size in each iteration. Comparison of the array weight vector direction d(n) 

update of w(n + 1) = w(n) + p,d(n) for the above-mentioned steepest-descent, Gauss-Newton and 

conjugate gradient methods is summarised in Table 3.2. For the sake of finding the MBER solution, 

we adopt a simplified version of the conjugate gradient approach [155,198] that uses a constant step 

size for all iterations. The algorithm operates as follows [155,198]: 

Initialisation: Choose a step size of p, > 0 and a termination scalar of /3 > O. 

Given w(l) and d(l) = -'VwFE(W(I)); set the iteration index to n = 1. 

Loop: If II'VwFE(w(n))11 = V('VwFE(w(n)))H'VwFE(w(n)) < /3: goto Stop. Else, 

n = n + 1, goto Loop. 

Stop: w( n) is the solution. 

w(n + 1) 

w(n + 1) 

¢n 

d(n + 1) 

w(n) + p,d(n) 
w(n + 1) 

Ilw(n + 1)11 

II'VwFE(w(n + 1))11 2 

II'V wFE(w(n)) 112 
¢nd(n) - 'V wFE(w(n + 1)) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

The optimum MBER solution is arrived at, when the gradient is zero, i.e. when we have 'VwFE(w(n)) = 

O. However, arriving at this condition would require numerous iterative loops. We used a small value 

of 10-15 for the scalar /3 as the termination constant in the above algorithm, so that a near-MBER 

solution can be found using a lower number of iterations. Note that we normalise the array weight 

vector in Equation (3.94), for the sake of arriving at a single optimum array weight solution. The 

vectorial search direction of the algorithm d(n) is updated by taking into account some contributions 

of the previous search direction d(n - 1), where the value of this previous search direction is weighted 

by ¢n, i.e. by the square of the magnitude ratio of the current to the previous gradient of FE. This 

results in introducing some randomness in the process converging towards the solution, which is typi

cally beneficial in the context of nonlinear optimisation problems. As the BER surface is claimed to 

be highly irregular [198], as also evidenced by Figure 3.3, it is advisable to periodically reset the search 

direction to the negative gradient, according to d(n + 1) = -'VwFE(w(n + 1)), especially when we 

have ¢n 2: 1, which indicates that the magnitude of the current BER gradient is higher than or equal 

to the previous one. This is similar to the philosophy of the steepest descent algorithm, where we have 

¢n = 0 in Equation (3.96). Due to the irregular shape of the BER surface FE(W) shown in Figure 3.3, 

we should be aware that the convergence of this algorithm is not always guaranteed. Furthermore, it 
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is not obvious, how to adjust the initial array weight values of the algorithm. This may result in slow 

convergence, if the initial array weight vector is in the region of small gradient values. 

In this section we have formulated the basic MBER beamforming approach. However, according to 

our previous approach the knowledge of the parameters involved, including the system matrix defined 

in Equation (3.8) is assumed. Therefore, the expressions derived in this section can only be used 

as a benchmarker or theoretical upper bound of the achievable MBER beamforming performance, 

which can readily be compared to the MMSE beamforming solution of Equation (3.25). Let us now 

consider a variety of algorithms, which allow us to approximate the MBER theoretical solution, while 

dispensing with the knowledge of unavailable system parameters. 

3.4 Adaptive Minimum Bit Error Ratio Beamforming 

The direct application of the algorithms mentioned in the previous section is unrealistic, since we 

assumed that all parameters required for the computation of the gradient of PE(W) expressed in 

Equation (3.68) are perfectly known. Owing to the time-variant nature of the mobile radio environ

ment, an adaptive implementation should be considered and this would require the approximation of 

some of the parameters involved in Equation (3.68), including the PDF p(YR) of the decision variable 

YR. In supporting the adaptive implementation of the MBER beamforming algorithm, we will adopt 

the temporal reference technique described in Chapter 2. We are interested in constructing the array 

weight adaptation procedure using both the block-data based SMI algorithm of Section 2.4.1.3 and 

the sample-by-sample adaptation aided LMS algorithm of Section 2.4.1.1. 

Having Nb = 2M possible combinations of the M simultaneous users' transmitted bits b q , where 

we have 1 ::; q ::; Nb = 2M and assuming that all Nb = 2M vectors are equiprobable, the true PDF 

p(Ys) of Ys(n) defined in Equation (3.33) can be shown to be given by [169,170]: 

(3.97) 

and as in Equation (3.68) of Section 3.3, the BER can alternatively be expressed as: 

(3.98) 

where 

(3.99) 

and YR,q E YR. In reality, the true PDF p(Ys) of ys(n) is unknown and its approximation is commonly 

based on the so-called kernel density or Parzen window based estimate [224]. We will provide a 

rudimentary introduction to this kernel density estimation procedure in the context of our MBER 
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beamforming scheme in Section 3.4.1. In Sections 3.4.2, 3.4.3.1 and 3.4.3.2 we present three algorithms, 

namely the Block Adaptive Conjugate Gradient (BACG) algorithm, the Least Bit Error Rate (LBER) 

algorithm and the Approximate LBER (ALBER) algorithm, respectively, that will adopt this density 

estimation approach. Simulation results characterising the BER performance of both the theoretical 

and adaptive MBER beamforming schemes will be provided in Sections 3.5 and 3.6, respectively. 

3.4.1 Kernel Density Estimation 

The kernel density estimator [224,225] was developed by Parzen [224] in 1962, which is defined by [225]: 

1 ~ (x-x.) 
p(x) = Ih f;;{K hZ, (3.100) 

where h is the window width that is sometimes referred as the smoothening parameter or bandwidth. 

The kernel density estimator of Equation (3.100) may be viewed as the superposition of I number 

kernel functions K ( X-hXj ), each positioned at the observed data Xi, where the shape of the kernels 

is determined by the specific choice of the kernel function K(x), while their widths is determined by 

the window width h. In our case, we consider the employment of the Gaussian kernel function, which 

is expressed as: 

1 (x2) 
KGaussian (x) = V2if exp - :2 . (3.101) 

The Gaussian kernel function KGaussian(X) given in Equation (3.101) satisfies both properties to 

be fulfilled by the PDF p(x) of a random variable x, such that we have [221]: 

1. p(x) ~ 0, implying that p(x) is a non-negative function of x; and that 

2. J~oop(x) dx = 1, i.e. the area under the PDF curve p(x) is unity. 

Therefore the Gaussian kernel function is itself a PDF and this property is required in order for the 

estimated PDF produced by the kernel density estimator defined in Equation (3.100) to be a valid 

PDF. An example of the PDF estimates of variable x generated with the aid of 1= 10 observed data 

values is shown in Figure 3.4 (a). The respective kernel function positioned at the observed data x 

in the set Xi = {-3.5, -2.0, -1.5, -1.3,0,0.3,0.7,1.0,3.0, 6.0} for i = 1, ... , 10, is represented by the 

dashed lines, while the resultant unnormalised PDF estimate is shown by the solid line. A window 

width of h = 1.6 was assumed for Figure 3.4 (a). 

Let us now vary the window width h to study its effect on the kernel density. The resultant PDF 

estimate generated in conjunction with a window width smaller than h = 1.6, i.e. for example for 

h = 0.5 and a window width larger than 1.6, such as for example h = 3.0 can be observed from 

Figure 3.4 (b) and Figure 3.4 (c), respectively. All PDF estimate curves in Figure 3.4 are constructed 

using the same data samples of Xi = {-3.5, -2.0, -1.5, -1.3, 0, 0.3, 0.7,1.0,3.0, 6.0}, for i = 1, ... , 10, 
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which is marked by the dots on the x-axis. It can be observed from the plots that the window width 

h determines the width of the kernel function JC(x) positioned at each data sample Xi. A small value 

of h results in a thin kernel, which smoothens the data very little and this may produce estimates 

that are irregular or under-smoothed, hence exhibiting spurious peaks in the estimates. By contrast, 

a large window width h widens the kernel, which may excessively smoothen the data, thus eliminating 

some of the details in the kernel estimates. This smoothening role played by the window width h may 

be the particular reason why it is often referred to as the smoothening parameter. 

Having seen the effect of varying the window width or the smoothening parameter h, the issue now 

is how to determine the optimum window width hopt in order to strike a good balance, i.e. to avoid 

under- and over-smoothening the kernel. Several techniques were proposed in [199] for obtaining the 

optimal window width for a particular problem. One of them is Silverman's rule of thumb [225], which 

states that the optimal window width for the Gaussian kernel can be calculated from the following 

expression [225]: 

_ CJ "-' A -1/5 
(

4 A 5)1/5 
hopt - 31 "-' 1.06CJ 1 , (3.102) 

where a is the standard deviation of the 1 number of data samples in the set Xi, i = 1, ... ,1. The 

standard deviation a may be calculated as [225J: 

a= (3.103) 

where fl represents the mean of the observed data Xi. For the 1 = 10 data samples we used in our 

example of Figure 3.4, whose average was a = 0.27, the optimal width hopt calculated according to 

Equation (3.102) can be shown to be hopt ~ 1.6. 

In our specific case of MBER beamforming, the PDF p(Ys) of the signed decision function Ys 

defined in Equation (3.33) has been given in Equations (3.58) and (3.97). For convenience, again we 

repeat the PDF expression p(Ys) here: 

(3.104) 

where Nb = 2M is the number of possible combinations of the M simultaneous user's transmitted bit 

b q, where we have 1 ~ q ~ Nb = 2M , while bq,d = ±1 is the desired user's transmitted bit within one 

of the Nb = 2M number of possible M-bit combinations. In order to arrive at Equation (3.104) we 

assumed that all of the Nb = 2M number of vectors are equiprobable, as discussed in the context of 

Equation (3.57). The parameter YR,q is the real part of the noiseless desired output Yq, as defined in 

Equations (3.40) and (3.39), respectively. The kernel density estimate of the corresponding formula in 

Equation (3.104) may be obtained by using the Gaussian kernel function defined in Equation (3.101) 

and substituting the expression sgn(bq,d)YR,q of Equation (3.104) into the parameter Xi of the kernel 
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Figure 3.4: PDF estimate of variable x with the aid of 10 observed data at Xi 
{-3.5, -2.0, -l.5, -l.3, 0, 0.3, 0.7, l.0, 3.0, 6.0}, i = 1, ... , 10. Window width of (a) h = l.6, (b) h = 0.5, 
(c) h = 3.0 and the Gaussian kernel function of Equation (3.101) were used for the estimation. 
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density estimator of Equation (3.100), such that we arrive at: 

I 

1"" (Ys-Xi ) 
I h ~ lCGaussian h (3.105) 

1 I [-(~r] 
Ihvl21f ~ exp 2 (3.106) 

(3.107) 

(3.108) 

where we assumed that I Nb number of samples are used in the PDF estimation. The signed 

decision function Ys was defined in Equation (3.33). 

Having defined the estimated PDF for the signed decision function Ys for our BPSK based MBER 

beamforming scheme, we now present the three previously mentioned adaptive algorithms, namely the 

Block Adaptive Conjugate Gradient (BACG) algorithm, the Least Bit Error Rate (LBER) algorithm 

and the Approximate LBER (ALBER) algorithm, respectively, each of which will employ this esti

mated PDF operating on the basis of either block-data based or sample-by-sample based array-weight 

adaptation. 

3.4.2 Block-Data Based Gradient Adaptive MBER Algorithm 

Given Nb = 2M number of samples, a kernel density estimate of the true PDF of Equation (3.97) is 

readily derived with the aid of Equation (3.105). Similarly, for a block ofT training samples constituted 

by the desired user's transmitted bits bd(t), 1 < t < T, the estimated PDF of Equation (3.97) at time 

instant n can be expressed as [169,170,224,225]: 

(3.109) 

where Pn is weighted by the magnitude of the array weights Jw(n)Hw(n), i.e. PnJw(n)Hw(n) is 

the window width h represented in the kernel density estimator of Equation (3.100). The window 

width PnJw(n)Hw(n) is preferably referred here as the kernel width, in which Pn is a radius related 

to the standard deviation (In of the noise. The weighting of the kernel width PnJw(n)Hw(n) by the 

weight-vector related factor VwH w was due to the (In VwH w expression in the true PDF p(Ys) of 

Equation (3.97). Note that a different notation, namely YR(t) is used for representing the real part 

of the noise-contaminated array output associated with the tth transmitted bit bd(t) of the desired 

user's within the set of T bits in a training block. Similar to the derivation seen in the context of 

Equation (3.59) of Section 3.3, the estimated conditional PDF of the signed decision function Ys(n) 
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at time instant n defined in Equation (3.33), given that we have bd(t) = +1, for 1 < t < T of a block 

of T training samples can be expressed as: 

p(Ys(n)lbd(t) = +1) = p(YR(n)) = 1 t exp (_ (YR(n) - S
gn(bd(t))YR(t))2) . 

TV'ErPn Jw(n)Hw(n) t=l 2p~w(n)Hw(n) 

(3.110) 

Taking into account that the transmitted bit of the desired user is bd(t) = +1, according to 

Equation (3.19) the probability of error FE(w) can be represented by the area under the estimated 

conditional PDF of Equation (3.110) within the interval of (-00,0). The specified area under the 

estimated PDF can be evaluated following the procedure outlined in the context of Equations (3.61) 

to (3.67), which can be expressed as [169]: 

FE(w(n)) (3.111) 

(3.112) 

where the standard Q-function Q(z) is defined in Equation (3.63) and Ct(w(n)) is given by: 

Ct(w(n)) = sgn(bd(t))YR(t) . 
PnJw(n)Hw(n) 

(3.113) 

The expression given in Equation (3.112) is referred to as block-based estimate of the BER since a 

training block of T samples is used for the BER's estimation. According to Equation (3.71), we have 

to evaluate the gradient of this block-estimated BER of Equation (3.112) for the sake of obtaining a 

solution close to the MBER solution. 

Using the identity of Equation (3.74), the gradient of the estimated BER FE(w(n)) can be cal

culated following a similar procedure to that outlined in the context of Equations (3.75) to (3.89), 

resulting in: 

(3.114) 

2TV'ErPn 

~ ( Yk(t) ) (b ( )) (X(t) w(n)H x(t)w(n) ) L....t exp - sgn d t - 3 
t=l 2p~w(n)Hw(n) Jw(n)Hw(n) (vw(n)Hw(n)) 

(3.115) 

1 

2TV'ErPn Jw(n)Hw(n) 

~ ( Yk(t)) ( YR(t)w(n) ) 
~exp -2p~w(n)Hw(n) sgn(bd(t)) w(n)Hw(n) -x(t) . (3.116) 

Since we are dealing with complex weight values, for a two-element array there are a total of four array 

weights, that have to be considered in producing the BER surface. However, for reasons of practical 
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data visualisation we were limited to portraying the 3-dimensional BER surface seen in Figure 3.3 

by fixing the imaginary parts of both array weights WI and W2. For the sake of showing the infinite 

number of optimum array weight values' location, we drew a straight line on the horizontal plane 

of Figure 3.3 as a result of varying the values of cx. However, it is desirable to arrive at a single 

optimum array weight solution, and hence we normalised the weight vector to unit magnitude, as in 

Equation (3.90). Since the array weight normalisation ensures that we have w(n)Hw(n) = 1, the 

expression of Equation (3.116) may be simplified to: 

(3.117) 

Upon substituting \1 wPE (w( n)) by \1 wFE (w( n)) in the simplified conjugate gradient algorithm 

of Equation (3.96), a block-data based adaptive algorithm is obtained, which we refer to as the Block 

Adaptive Conjugate Gradient (BACG) algorithm. Using this BACG algorithm the array weight vector 

is basically updated based on the block of T training samples in each subsequent iteration. As seen 

in Equation (3.93), apart from the step size /--l, the kernel width radius Pn is another parameter 

for this algorithm, which is used in determining \1w FE(w(n)) of Equation (3.117). The achievable 

performance of this technique will be characterised in Section 3.6. 

Having introduced the BACG algorithm, which is a block-data based updating algorithm relying 

on T training samples, in the next section we will describe two different Adaptive MBER algorithms, 

which operate on a sample-by-sample basis, namely the Least BER (LBER) and the Approximate 

LBER (ALBER) algorithms. 

3.4.3 Stochastic Gradient Based Adaptive MBER Algorithms 

In the context of the stochastic approach the adaptive MBER algorithm updates the array weight 

vector w instantaneously, such that a different training sample is used in each array weight vector 

update iteration. Unlike the block adaptive approach of Section 3.4.2, which uses a block of T training 

samples, in the stochastic approach we use only a single training sample. 

3.4.3.1 Least Bit Error Rate Algorithm 

With regards to the estimated PDF given in Equation (3.109) associated with a block of T training 

samples, the estimated PDF used in the context of the sample-by-sample stochastic adaptive algorithm 

may be evaluated via the same procedure, with the exception of using an arbitrary single sample in each 

array weight update iteration. When utilising Parzen's kernel density estimator of Equation (3.100) 

for algorithms based on the stochastic adaptive approach the corresponding estimated PDF based on 
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the Gaussian kernel function of Equation (3.lO1) can be expressed as [197]: 

(3.118) 

where PnVw(n)Hw(n) is the kernel width having a radius of Pn weighted by Vw(n)Hw(n). Note 

that a different notation of Y R (n) is used for representing the real part of the noise-contaminated 

array output associated with the transmitted desired user's bit bd (n) at time instant n. Similar to 

the approach derived for the BACG algorithm of Section 3.4.2, which is based on the derivation seen 

in Equation (3.59) of Section 3.3, the estimated conditional PDF of the signed decision function Ys 

defined in Equation (3.33) can be expressed as: 

A( Ib ( ) _ +1) _ A( ) _ 1 (_ (YR - Sgn(bd (n))YR(n))2) 
P Ys d n - - P Y R - exp 2 H ' 

J2:;iPn vw(n)H w(n) 2Pn w(n) w(n) 
(3.119) 

given that the transmitted desired user's bit was bd(n) = +1 at time instant n. The probability of 

error PE(w(n)), which may be associated with the area under the estimated PDF can be evaluated 

similar to the BACG algorithm of Section 3.4.2 following the procedure of Equations (3.61) to (3.67), 

such that it can be expressed as [169]: 

PE(w(n)) [~P(YR) dYR 

Q (Ct(w(n))) , 

where the standard Q-function Q(z) is defined in Equation (3.63) and Ct(w(n)) is given by: 

(3.120) 

(3.121) 

(3.122) 

The instantaneous gradient estimate \1 wPE (w( n)) based on a single training sample may be ex

pressed with the aid of Equation (3.74), yielding: 

which gives rise to a stochastic gradient adaptive algorithm, which we referred to as the Least Bit 

Error Rate (LBER) algorithm, whose array weights are updated based on the following expression [6]: 

w(n + 1) = w(n) - P,\1wPE(w(n)). (3.124) 

This formula represents the well-known steepest descent gradient algorithm, where the array weight 

vector is updated in a direction opposite to the BER-gradient \1 wFE' weighted by the step size p,. 
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Using Equation (3.123), this expression may be formulated more explicitly as follows: 

w(n + 1) = w(n)-

f.-L sgn(bd(n)) exp (- y'Jt(n) ) (YR(n)W(n) - x(n)) (3.125) 
2.j2iiPn Jw(n)Hw(n) 2p;w(n)Hw(n) w(n)Hw(n) 

w(n) + 
sgn(bd(n)) (Y'Jt(n)) ( YR(n)w(n) ) 

f.-L exp - x ( n) - -"----'-----'0-::---'----'-
2.j2iiPn Jw(n)Hw(n) 2p;w(n)Hw (n) w(n)Hw(n) , 

(3.126) 

where the step size f.-L and the kernel width Pn are the two algorithmic parameters that have to be 

set appropriately for the sake of ensuring convergence towards the true MBER solution. Again, the 

weight vector is normalised to a unit length after each update for the sake of simplifying the LBER 

algorithm's expression seen in Equation (3.126) to the form: 

w(n + 1) = w(n) + f.-L sg~n)) exp (- Y'Jt(~)) (x(n) - YR(n)w(n)) . 
2 21fPn 2Pn 

(3.127) 

Note in Equation (3.127) that the array weight vector is denoted as w(n), which implies that this 

LBER algorithm requires the array weight w(n) to be normalised after each updating instant n. 

3.4.3.2 Approximate Least Bit Error Rate Algorithm 

In the kernel density estimate of the sample PDF seen in Equation (3.119), a variable kernel width of 

Pn Jw(n)H w(n) is used. This is because the true standard deviation of YR(n) is given by an Jw(n)H w(n), 

which is related to the magnitude of the beamformer's weight vector w(n). If this kernel-width ex

pression is approximated by a constant width of Pn, the associated computational complexity can be 

considerably reduced [155], since the computation of w(n)Hw(n) or the normalisation of the weight 

vector w( n) is no longer necessary. 

Formally, this leads to using the kernel density estimate of: 

_( ) _ 1 (_ (YR - Sgn(bd(n))YR(n))2) 
P Y R - f2= exp 2 2 ' 

V L.1fPn Pn 
(3.128) 

as an approximation of the true kernel density given by Equation (3.97) following the kernel density 

estimator of Equation (3.100). By the same procedure of Equations (3.119) and (3.120) for the LBER 

algorithm, we may arrive at: 

(3.129) 

in conjunction with 

(3.130) 
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as the BER estimate. This approximation does not result in any dramatic performance degradation, 

provided that the constant width Pn is chosen appropriately [155] as it will be shown in Section 3.6. 

Therefore, the gradient of FE (w( n)) has a simpler form expressed as: 

(3.131) 

(3.132) 

Note that no weight normalisation is necessary for simplifying the gradient expression seen in Equa

tion (3.132). Adopting this approach leads to the definition at another stochastic gradient algorithm 

referred to here as the Approximate LBER (ALBER) technique, which is formulated as: 

w(n + 1) w(n) - p,\lwFE(w(n)) (3.133) 

() sgn(bd(n)) (Yk(n)) () w n + p, r;::L exp ---2- x n . 
2y27fPn 2Pn 

(3.134) 

Apart from its similar philosophy, the ALBER algorithm has a similar computational complexity 

order O(L) to that of the low-complexity LMS algorithm [6,166]. Specifically, the LMS algorithm 

discussed in Section 2.4.1.1 requires 2L + 1 complex multiplications and 2L complex additions per 

array weight update iteration, while the ALBER algorithm requires 2L + 7 complex multiplications 

and 2L - 1 complex additions per array weight update iteration, where L is the number of elements 

in the antenna array. 

Having outlined three different adaptive MBER algorithms, in Section 3.6 we will characterise their 

performance relative to the theoretical MBER performance. Prior to that, however, it is beneficial for 

us to first compare the theoretical performance of MBER beamforming to that of MMSE beamforming 

in Section 3.5. 

3.5 Simulation Results for Exact MBER Beamforming 

The performance of the beamformer based on the MBER weight optimisation criterion is studied with 

the aid of computer simulations, where the BER is calculated based on Equation (3.68) assuming the 

employment of BPSK modulation, where the Gaussian Q-function is approximated using the formula 

given by Ziemer and Tranter [221,226]: 

x2::0 (3.135) 
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where we have t = (H~px)' P = 0.2316419, and 

h 0.31981530 (3.136) 

b2 -0.356563782 (3.137) 

b3 1.781477937 (3.138) 

b4 -1.821255978 (3.139) 

b5 1.330274429. (3.140) 

x Q(x) x Q(x) x Q(x) x Q(x) 
0.0 0.50000 
0.1 0.46017 1.1 0.13567 2.1 0.01786 3.1 0.00097 
0.2 0.42074 1.2 0.11507 2.2 0.01390 3.2 0.00069 
0.3 0.38209 1.3 0.09680 2.3 0.01072 3.3 0.00048 
0.4 0.34458 1.4 0.08076 2.4 0.00820 3.4 0.00034 
0.5 0.30854 1.5 0.06681 2.5 0.00621 3.5 0.00023 
0.6 0.27425 1.6 0.05480 2.6 0.00466 3.6 0.00016 
0.7 0.24196 1.7 0.04457 2.7 0.00347 3.7 0.00011 
0.8 0.21186 1.8 0.03593 2.8 0.00256 3.8 0.00007 

0.9 0.18406 1.9 0.02872 2.9 0.00187 3.9 0.00005 
1.0 0.15866 2.0 0.02275 3.0 0.00135 4.0 0.00003 

Table 3.3: Q-function values Q(x) for the independent variable values x ranging from x = 0 to x = 4, 
calculated according to Equation (3.135) [221]. 

A plot of the Q-function seen in Equation (3.135) and evaluated for the abscissa values of Ta

ble 3.3 [221] is shown in Figure 3.5. 

The simulations carried out considered several scenarios when communicating over a non-dispersive 

Additive White Gaussian Noise (AWGN) channel that differ in terms of both the number of users 

supported and the angle of arrivals (AOAs) encountered. 

3.5.1 Supporting Two Users Employing a Two-Element Uniform Linear Array 

We commence our simulation experiments with the example of a two-user scenario, where the signal 

of the desired user arrives from 0°, while that of the interfering user from 30°. 

Figure 3.6 shows the attainable BER performance as a function of the users' signal power, m 

conjunction with two-, four- and eight-element uniform linear arrays. Let us first concentrate our 

attention on the two-element array, whose MMSE and MBER design based BER curves are represented 

by the continuous line marked by circles and the dotted line associated with stars, respectively. In 

this scenario it is observed that the MBER solution performs consistently better, exhibiting an SNR 

advantage of about 2dB and requiring about 1dB higher SNR than the upper-bound performance 
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Figure 3.5: (a) The Gaussian Q-function Q(x) based on the approximation seen in Equation (3.135) 
as proposed by Ziemer and Tranter [226] for the abscissa values shown in Table 3.3. Subfigure (b) 

shows lOglOQ (x) for 0 ::; x < 10. 

of the single-user, two-element array scenario. By contrast, the MMSE solution performed similarly 

to the single-user, single-element case. For the sake of interpreting these performance trends let us 

consider the achievable BER at SNR = 10dB. Specifically, the calculation of the probability of error 

PE(W) for the MBER beamforming is using the formulation given by Equation (3.68), while for the 

single-user, single-element antenna scenario PE,BPSK can be expressed as [168,221]: 

(3.141) 

where a2 is the received signal power and CT~ = N o/2, where No is the white Gaussian noise power. 

For a two-user scenario, Equation (3.68) may be simplified to: 

(3.142) 

where YR,q is the real part of the noiseless desired output Yq, as defined in Equations (3.40) and (3.39), 

respectively. The values of the parameter YR,q were plotted in the top right-most subfigure of Fig

ure 3.1 for the MMSE beamformer and also in Figure 3.13 a) for SNR = INR = 10dB. Note 

that the beamformer's output values in Figure 3.13 a) were YR,q 0.87 and YR,q = 0.95 in con

junction with VW~MSEWMMSE = 0.872357, which results in abscissa values of x = 0.997 and 

x = 1.089, respectively, for the Q-function of Equation (3.142). Assuming a unity amplitude of 
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Figure 3.6: Comparison of the BER performance of the MMSE and the MBER beamformers, based 

on Equation (3.68), for two different conditions; (a) SNR = INR, and (b) INR = SNR +6dB, in 

conjunction with two-, four- and eight-element uniform linear array system in an AWGN channell. 

The AOA of the desired and interfering user was 0° and 30°, respectively. 

a = 1 in Equation (3.141), the BER calculation using Equations (3.141) and (3.142) results in 

PE(WMMSE) = ~(Q(4.46) + Q(4.87)) = 2.33 . lO-6 at SNR =10dB, i.e. for (In = .)0.05, while the 

corresponding simulated value was PE,BPSK = Q(4.47) = 3.88· lO-6. As the SNR is increased, the 

associated variance of (J~ becomes lower. However, the calculation of the MMSE weights according to 

Equation (3.26) also involves the variance (J~, thus balancing the numerator and denominator of the 

Q-function's abscissa value in Equation (3.142). 

It is also observed from Figures 3.6 (a) and 3.6 (b) that the performance of both the MMSE and 

MBER solutions recorded for the various number of array elements is fairly independent of the SIR 

in the investigated scenario. The BER curve of the three-element array is not plotted in Figure 3.6. 

For this specific two-user scenario, associated with the AOA of 0° and 30°, adding further antenna 

elements will produce no significant performance difference between the MMSE and MBER solutions. 

Furthermore, for a minimum of four array elements the BER performance of both the MMSE and 

MBER solutions achieved the optimum single-user performance associated with the same number of 

antenna elements. Let us now move the interfering user closer to the desired user by reducing their 

angle of arrival difference. As shown in Figures 3.7 (a), 3.7 (b), 3.7 (c) and 3.7 (d), we halved the 

lThe single-user, multi-element upper-bound curves were plotted based on the single-user, single-element curve, with 
a 3dB shift to the left for each doubling on the number of antenna elements. 
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Figure 3.7: Comparison of the BER performance of the MMSE and the MBER beamformers, based 

on Equation (3.68), for two equal-power users, i.e. for SNR = INR, in conjunction with two-, four- and 
eight-element uniform linear arrays communicating over an AWGN channel. The AOA of the desired 

and interfering user was 0° and (a) 15°, (b) 7.5°, (c) 3.75°, (d) 1.875°, respectively. 
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angular distance between the two users repeteadly, i.e. the interfering user's signal is now assumed to 

arrive from 150 ,7.50 ,3.750 and 1.8750
, respectively, with respect to the desired user's signal arriving 

from 00
• Most plots in Figure 3.7 show a degraded BER performance when compared to the plots 

seen in Figure 3.6, with a few exceptions noted for the MBER curves. Explicitly, the respective 

MBER curves of the eight-element array seen in Figures 3.7 (a) and 3.7 (b) and in the four-element 

scenario of Figure 3.7 (a) are not degraded, despite the reduced AOA difference. By contrast, the 

MMSE beamformer was capable of maintaining a similar BER performance to that of Figure 3.6 for 

the eight-element array of Figure 3.7 (a), when the AOA difference was reduced from 300 to 150
• 

However, the BER performance of the two-user scenario was significantly degraded, where even the 

originally superior MBER curve of Figure 3.7 (a) is facing an SNR degradation of approximately 2.5dB 

in comparison to the single-user, single-element BER curve. 

For a more clear visualisation, Figures 3.8 and 3.9 show the performance of both the MMSE and 

MBER beamformers as the interfering user's AOA e is varied from -900 to 900
, i.e. for -900 

::; e i-
00 

::; 900
. Note that the interfering user's signal cannot arrive from 00

, since this is assumed to be 

the AOA for the desired user, thus having an interfering user in the same direction would render their 

separation infeasible. In Figure 3.8 it is shown that the signal power required for the users in order to 

achieve a specific BER performance increases, as the interfering user moves closer in angular terms to 

the desired user located at 00
• When aiming for BER = 10-2 in the context of the two-element array, it 

is clear from Figure 3.8 (a) that the MBER beamformer would require a lower desired user signal power 

than that required by the MMSE beamformer. The difference in terms of the required signal power 

becomes, however, negligible, when the interfering user's AOA is higher than 60 0
, i.e. it is lei 2: 60 0 

away from the desired user. This is also true, when the number of array elements is increased. Note 

also the reduced angular difference requirement between the two users for the four- and eight-element 

case, respectively, which were found to be lei 2: 250 and lei 2: 100 in the corresponding Figures 3.8 (b) 

and 3.8 (c). Upon comparing Figures 3.8 (a), 3.8 (b) and 3.8 (c), it may be observed that as the 

number of antenna array elements is doubled, the signal power required by the two users is reduced 

by 3dB. This observation is only valid, however, in the angular interval of lei 2: 60 0
• It is noted 

from Figure 3.8 that the best performance the beamformer was capable of achieving as the interfering 

user was angularly further separated from the SOl, was the optimum single-user performance of the 

corresponding number of antenna elements. Figure 3.8 also shows that even for an extremely small 

angular separation of 1.8750 between the desired and interfering user the MBER beamformer remains 

capable of attaining a BER of 10-5 , provided that the desired user's signal power is in excess of 29dB, 

17.5dB and 7.5dB for the two-, four- and eight-element antenna arrays, respectively. In other words, 

doubling the number of antenna elements to four or eight allows us to decrease the reference user's 

signal power by 11.5dB and 10dB, respectively. By contrast, the MMSE beamformer would require a 

desired user signal power of 32.5dB, 22.5dB and 13dB for the two-, four- and eight-element antenna 

array, respectively, for the sake of maintaining a BER of 10-5 , resulting in a signal power reduction of 
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Figure 3.8: Comparison of the signal power required for a BER of 10-2 , 10-3 , 10-4 ,10-5 , evaluated 

based on Equation (3.68), when using the MMSE and the MBER beamformers for two equal-power 
users, i.e. at SNR = INR, for (a) two-, (b) four- and (c) eight-element uniform linear arrays in an 
AWGN channel. 
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Figure 3.9: Comparison of the achievable BER of the MMSE and the MBER beamformers, based on 
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lOdB and 9.5dB, for the four- and eight-element arrays. This indicates that the MBER beamformer 

was capable of acquiring a substantially higher gain than the MMSE beamformer, as the number of 

array elements was doubled. 

Figure 3.9 shows the achievable BER performance of both the MMSE and MBER beamformers 

from a different perspective, for a fixed desired user signal power, as the interfering signal's AOA is 

varied from -900 to 900
, i.e. for -900 ~ e =1= 00 ~ 900

• For the two-element array of Figure 3.9 (a), 

only 10dB signal power is required by the MBER solution for achieving a BER performance of 10-5 , 

when the interfering user's signal is arriving from an angle of lei;:::: 200
• By contrast, the MMSE 

solution requires an extra 2 - 3dB higher signal power for achieving a BER of 10-5 . When the number 

of antenna array elements is increased, a lower signal power will be required for achieving a similar 

BER performance, as shown in Figures 3.9 (b) and 3.9 (c) for the four- and eight-element array, 

respectively. The signal power and BER differences between the MMSE and MBER solutions and the 

optimum single-user performance of the two-, four- and eight-element arrays are shown in Figures 3.10 

and 3.11, respectively. We note that in Figures 3.8 to 3.11, the desired and interfering user had the 

same power, i.e. we assumed SNR = INR. 
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Figure 3.10: The SNR difference between the MMSE and MBER beamformers and the optimum 

single user performance, i.e. SNRw - SNRsingle-user,L as a function of the interfering user's AOA of 
00 < e ~ 600 for BER of 10-2 ,10-3 ,10-4 ,10-5 , evaluated based on Equation (3.68), for (a) two-, 

(b) four- and (c) eight-element antenna arrays in an AWG N channel. The desired user's signal is 
arriving from 00 with respect to the normal of the antenna array. 

Figure 3.12 portrays the near-far performance of both the MMSE and MBER solutions for a desired 
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Figure 3.11: The BER difference of the MMSE and MBER beamformers from the optimum single user 

performance, i.e. loglO(BER)single-user,L- loglO(BER)w, based on Equation (3.68), as a function of the 
interfering user's AOA 00 < e ::; 80 0 or 400 for SNR of 5dB and 10dB for (a) two- and (b) four-element 

antenna arrays as well as for SNR = 5dB for (c) eight-element antenna array in an AWGN channel. 

The desired user's signal is arriving from 00 with respect to the normal of the antenna array. 

signal power of 10dB and for a variable interferer power spanning the range of 36dB to -18dB. The 

initial array weight of the MBER solution at SNR = OdB was using the MMSE solution, while at 

the subsequent SNRs the MBER solution's array weights derived for the previous SNR were used for 

initialisation. Figure 3.12 shows that the MBER solution is more near-far resistant than the MMSE 

solution, since the probability of error dependence of the former is about half of that recorded for the 

MMSE solution. 

As seen in Equation (3.60) the probability density function (PDF) P(YR) of the decision variable YR 

plays an important role in calculating the probability of error PE, therefore let us now compare the 

PDF of both solutions. The PDF p(YR) conditioned on b1(n) = +1 when the incoming signals are 

of equal power is shown in Figure 3.13, while that associated with INR = SNR +6dB is shown in 

Figure 3.14. It is observed that the shape of the PDF of both the MMSE and MBER beamformers 

is similar to each other and the respective PDF shape is Gaussian-like. The legends 'circle' and 'star' 

correspond to the real part of the noiseless output YR,q of the beamformer in the set y1+) , given 

bd(n) = +1, as defined in Equation (3.41). In our simulations we always assume that the first user 

associated with d = 1 is the desired user. In both Figures 3.13 and 3.14, the noiseless state represented 

by the circles at positions YR 0.87 and YR = 0.95 of Figure 3.13 a) and at positions YR = 1.92 and 

YR = 1.95 of Figure 3.14 a) correspond to the MMSE solution's real part of the noiseless output YR,q, 
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Figure 3.12: Influence of the near-far effect on the BER performance of the MMSE and MBER 

beamformers, evaluated based on Equation (3.68), for SNR = 10dB and SIR2 in the range of -18 S 
SIR2 S 36, where the desired user's signal is arriving from 0° and that of the interferer from 30° in an 

AWGN channel. 

while the noiseless states represented by stars at positions YR = 1.21 and YR = 1.28 of Figure 3.13 b) 

and at positions YR = 2.43 and YR = 2.49 of Figure 3.14 b) denote the MBER solution's real part 

of the noiseless output YR,q. In Figure 3.13 we used the original data values, while in Figure 3.14 

we have normalised the values by a factor of 2 for the sake of plotting the conditional PDF on the 

same Cartesian grid. Note that the respective MMSE and MBER noiseless states of Figures 3.13 a) 

and 3.13 b) are constituted by the real part of the noiseless beamformer output represented by the 

cross and the dot legends of the 'total y' plot seen at the right of Figure 3.1. 

For an M-user BPSK-modulated beamforming scenario, there will be Nb = 2M number of possible 

transmitted bit sequences b, which can be divided into two categories according to the desired user's 

transmitted bit bd, where we have Nsb = 2M -1 number of possible bit sequences, given bd = + 1, and 

another Nsb = 2M - 1 number of possible bit sequences, given bd = -1. Specifically, for the two-user 

scenario we will have Nb = 4 and Nsb = 2 possible bit sequences corresponding to the two noiseless 

states YR,q in all plots of Figures 3.13 and 3.14. The corresponding states of the MMSE and MBER 

solutions are different due to the different array weight values w of the MMSE and MBER solutions 

substituted into Equation (3.39). Having normalised the MBER array weight vector w to a unit-length, 

the BER or synonymously the probability of error PE(W) expressed in Equation (3.68) associated with 
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Figure 3.13: Conditional PDF of a) the MMSE and b) the MBER beamformers, given b1(n) = +1 
and the subset y1+) defined in Equation (3.41) of Section 3.3 for SNR = 10dB and INR = 10dB in an 

AWGN channel. The AOA of the desired and interfering user was 0° and 30°, respectively. 
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Figure 3.14: Conditional PDF of a) the MMSE and b) the MBER beamformers, given b1(n) = +1 
and the subset y1+) defined in Equation (3.41) of Section 3.3 for SNR = 15dB and INR = SNR +6dB 
in an AWGN channel. The AOA of the desired and interfering user was 0° and 30°, respectively. 



3.5.1. Supporting Two Users Employing a Two-Element Uniform Linear Array 124 

---

o 

-1 

-2 

~ -3 
~ 

~ -4 
o ,..., 
gf -5 -

-6 

-7 

o 1 

ar[ Weight[2~ 3 

a= 1.0 

Figure 3.15: Error surface of the normalised MBER solution for a = 1 and SNR = lOdB as well as 

INR 10dB in an AWGN channel, where the AOA of the desired and interfering user was 0° and 30°, 
respectively. The thick line on the horizontal plane is where the MBER solutions reside, corresponding 

to BER = 10-7.72 ;:::::; 1.91.10-8 . The MMSE solution is denoted by a cross, which should be located at 

(1.48,0.53) having a BER of 10-7.02 ;:::::; 9.55 . 10-8 . The corresponding array weight's imaginary part 

is plotted in Figure 3.17 (b), such that it was located at (-0.39,3.01 . 10-23 ) for the MBER solution 

and at (-0.48,0.48) for the MMSE solution. The BER was calculated based on Equation (3.68). 

Equation (3.69) is predominantly determined by the minimum distance of the subset y;tl from the 

decision threshold of YR = 0, namely by the smallest value of the noiseless beamformer output YR,q' 

Again, these noiseless beamformer outputs correspond to the left hand-side states denoted by the 

legends circle or star in Figures 3.13 and 3.14. In our case, although it was observed in Figures 3.13 

and 3.14 that for each scenario the plots show only a slight difference between the states corresponding 

to the MMSE and the MBER solutions, the error probability determined by the Q-function [7,221] 

Q(z) of Equation (3.63) obeys a negative exponential function, which is a strongly non-linear function 

and hence may result in a significant BER difference at low values of z. As can be seen in Figures 3.13 a) 

and 3.13 b), the left circle in Figure 3.13 a) is at position YR = 0.87, while in Figure 3.13 b) the left 

star is at position YR = 1.21. Explicitly, YR = 0.87 is closer to the decision boundary of YR = 0, 

therefore it will result in a higher bit error probability calculated with the aid of Equation (3.68) as 

compared to that of the MBER solution having YR = 1.21. This observation explains, why the MBER 

beamformer has a slightly lower BER than that of the MMSE beamformer. 
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Figure 3.16: Error surfaces of the MMSE and MBER solutions plotted for different values of a; 

a) MMSE b) a = 2.0 c) a = 2.8 d) a = 4.0 e) a = 0.5 f) a = -2.0 for SNR = 10dB and INR = 10dB 
in an AWG N channel, where the AOA of the desired and interfering user was 0° and 30°, respectively. 
The plot was varying the array weight's real part and the corresponding fixed array weight's imaginary 
part associated with the a value was shown in Figure 3.17 (b). The arrow in subfigure (a) points to 

the MBER solution associated with the a = 1. The BER was evaluated based on Equation (3.68). 
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Let us now consider the BER surface of both the MMSE and MBER solutions. In a two-element 

system, each weight vector solution will consists of two complex weight values formulated as w = 

[wl.r + jWl.i W2.r + jW2.ijT. Hence, there will be four parameters, the real and imaginary parts 

of each weight. Since we will be plotting the BER surface in a 3-dimensional space, we have to fix 

two of the variables, while varying the other two. We opted for fixing the imaginary values of both 

weights of both solutions to their optimum value for the sake of illustration. Figure 3.15 shows the 

BER surface of the normalised MBER solution, i.e. when we have a = 1 in Equation (3.70), where 

the probability of error is 10-7.72 ~ 1.91 . 10-8 . On the other hand, the BER surface of the MMSE 

solution characterised in Figure 3.16 a) resulted in a BER of 10-7.02 
;::::j 9.55.10-8 , which is higher than 

that of the MBER solution. Although it was stated before in the context of Equation (3.70) that the 

BER surface exhibits an infinite number of MBER solutions, the plots portrayed in Figures 3.15 and 

3.16 exhibit a single solution as a result of fixing the imaginary parts of both weights. For the sake 

of demonstrating that multiple solutions do exist in the context of the MBER optimisation criterion 

according to Equation (3.70), which implies that we have cq,+(aw) = cq,+(w), we will multiply the 

MBER solution of WMBER derived for a = 1 by various positive values of a and verify that the resultant 

minimum BER value is the same as before, i.e. BER ~ 1.91 . 10-8 . The BER surfaces associated with 

different values of a as well as different real parts of the weights and for fixed imaginary parts of aWl 

and aW2 are plotted in Figures 3.16 b) to 3.16 f). Observe that all error surfaces of Figure 3.16, except 

for the MMSE solution of Figure 3.16 a) and the MBER solution of Figure 3.16 f) associated with 

a = -2 (where a is negative) give the same minimum probability of error value as the one seen in 

Figure 3.15. For positive values of a, the value of the real and imaginary parts at the minimum BER 

point is exactly a factor a times higher than the normalised weight WMBER, which is the weight in 

the case of a = 1. 

The real part ~[w] of the array weights of all solutions is plotted in Figure 3.17 (a), where we 

observe that all the optimum MBER solutions are on a straight line. This line is where the infinite 

number of MBER solutions associated with the scenario considered resides, i.e. for any point on the line 

we arrive at the minimum BER, where we have BER ~ 1.91.10-8 , provided that the imaginary parts of 

the weights 8<[w] are scaled accordingly, i.e. with respect to that shown in Figure 3.17 (b). A complete 

set of weight values is determined by referring to the associated a value in Figures 3.17 (a) and 3.17 (b), 

for the real and imaginary parts, respectively. For example, when a = 1, the associated weight 

locations, arranged in the form of (weight [1], weight [2]) , are at (0.42,0.81) and (3.00.10-23
, -0.39) in 

Figures 3.17 (a) and 3.17 (b), respectively, resulting to beamforming weight vector of WMBER,a=l = 
[0.42 + jO 0.81 - jO.39jT. In a similar way, the MMSE beamforming weight vector will be WMMSE = 

[0.53 + j0.48 1.48 - j0.48jT. The MBER solutions associated with the line seen in Figure 3.17 (a) 

were also shown in Figure 3.15. Apart from varying the real part of the weights, it is also possible to 

accordingly vary their imaginary part as shown in Figure 3.17 (b) or both parts of one of the weights, 

but all these scenarios will yield the same weight values and thus the same minimum BER value. 
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Figure 3.17: Linear relationship of (a) the two MBER array weights' real part and (b) the two MBER 
array weights' imaginary part for SNR = 10dB and INR = 10dB in an AWGN channel. The AOA of 
the desired and interfering user was 0° and 30°, respectively. 

3.5.2 Supporting Five Users Employing a Two-Element Uniform Linear Array 

To elaborate a little further a system employing a two-element antenna array for supporting five users 

can be viewed in Figure 3.18, where the signal of interest (SOl) of the desired user arrives from a 

direction of 15° while the interfering signals arrive from -30°,60°,80° , -70° relative to the normal of 

the array. 

Similar to the example of Section 3.5.1, the BER performance of the MBER solution is compared 

to that of the MMSE solution under four different conditions; (a) the desired user and all the four 

interfering sources have an equal power; (b) all the interfering sources have 6dB higher power than 

the desired user; (c) the desired user and the interfering sources 3,4,5 have an equal power, while 

the interfering source 2 has 6dB higher power than the desired user; and (d) the desired user and the 

interfering sources 2,3,4 have an equal power, but the interfering source 5 has 6dB higher power than 

the desired user. 

The results shown in Figure 3.19, in particular, the system employing a two-element antenna 

array, demonstrate the superior performance of the MBER beamforming technique in comparison to 

the classic MMSE approach. The results also show that the MBER solution is more robust to the 
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Figure 3.18: Two-element antenna array having an element spacing of ),,/2 and receiving signals from 

150 (SOl), -300 ,600 ,800 and -700 (the interfering signals). 

near-far effect, i.e. the same BER performance is maintained, regardless of the fact that the users' 

transmit powers are different, even if the desired user's signal arrives from an angle close to that of 

the interfering users. This is clearly demonstrated, if we compare the results seen in Figures 3.19 (a) 

and Figure 3.19 (c), where the AOAs are 15°, -30°, 60°,80° and -70° and when the user whose signal 

is arriving from an angle of -30° has 6dB higher power than the desired user's signal arriving from 

a direction of 15°. From Figures 3.19 (c) and 3.19 (d), we also observe that the BER performance 

of the MBER solution improves, when the stronger interfering signal arrives from an angle closer to 

the desired signal. Figure 3.19 (b) shows that the achievable BER performance is degraded, when the 

power of all the interferers is higher than that of the desired user, but the degradation suffered by the 

MBER solution is not dramatic, when compared to that of the MMSE beamformer, which exhibits 

a high BER floor. We will return to this phenomenon at a later stage in the context of Figures 3.25 

and 3.26. 

AOA Figure 3.18 Figure 3.20 (a) Figure 3.20 (b) Figure 3.20 (c) Figure 3.20 (d) 

Bl 15° 15° 15° 15° 15° 

B2 - 30° - 7.5° 3.75° 9.375° 12.1875° 

B3 60° 37.5° 26.25° 20.625° 17.8125° 

B4 80° 80° 80° 80° 80° 

B5 - 70° - 70° - 70° - 70° - 70° 

Table 3.4: AOA of the users for the beamforming simulation of Figures 3.18 and 3.20. Note that the 
AOAs of user 2 and 3, i.e. B2 and B3, respectively, were varied by repeatedly halving their angular 

separation with respect to the desired user located at Bl = 15°. 

Let us investigate the BER performance of both the MMSE and MBER solution as the interfering 

sources 2 and 3 portrayed in Figure 3.18 are gradually moved towards the SOl located at 15° with 
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Figure 3.19: Comparison of the BER performance of the MMSE and the MBER beamformers, based 

on Equation (3.68), under four different conditions; (a) SNR = INRi for i = 2,3,4,5, (b) INRi = 
SNR +6dB for i = 2,3,4,5, (c) SNR = INRi for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR = 
INRi for i = 2,3,4 and INR5 = SNR +6dB for two-, four- and eight-element uniform linear arrays. 
The associated interference scenario was plotted in Figure 3.18. These results were recorded when 

communicating over an AWG N channel. 
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Figure 3.20: Comparison of the BER performance of the MMSE and the MBER beamformers, based 

on Equation (3.68), for five equal-power users, i.e. SNR = INR, in conjunction with two-, four- and 
eight-element uniform linear arrays in an AWGN channel. The AOA of the desired and interfering 
users was plotted in Figure 3.18, but those AOA of the interfering source 2 and 3 were varied according 

to Table 3.4. 
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respect to the array normal. As observed in Figure 3.20 (a), the BER performance of both the MMSE 

and MBER solution is severely degraded in the context of a two-element array, when the angular 

separation of the two nearest interfering sources with respect to the SOl, i.e. source 2 and 3 was 

halved in comparison to their original location, i.e. they are now at -7.5° and 37.5°, respectively. 

Despite increasing the dimensionality of the antenna array to four elements, the BER versus SNR 

performance of the MMSE solution was degraded by about 4dB, when compared to that observed in 

Figure 3.19 (a), while the MBER solution managed to maintain a similar performance to the scenario 

having twice the angular separation for the interfering sources 2 and 3 with the advent of doubling the 

number of array elements to four. For example, the MBER solution still achieves a BER of 10-5 for a 

desired user signal power of 4dB, while the MMSE solution would require a desired user signal power 

of about 8dB for achieving the same BER performance. Observe also in Figure 3.20 (d) that for the 

eight-element antenna array operating at SNR = 9dB the MBER solution maintains a BER of 10-5
, 

but the MMSE solution would require more than 20dB desired user signal power to achieve a BER of 

10-5 . More BER performance characteristics generated by repeteadly halving the angular separation 

between the interfering sources 2 and 3 in the context of two-, four- and eight-element antenna arrays 

can be seen in Figure 3.20 (a), 3.20 (b), 3.20 (c) and 3.20 (d) with the angular separation between 

user 2 and 3 set to 45°, 22.5°, 11.25° and 5.625°, respectively. Note that the angular separation is 

halved under the condition that the SOl is always at the centre between user 2 and 3. Explicitly, 

recall that the angular positions of the five-user scenario were shown in Table 3.4. 

Returning to the user scenario of Figure 3.18, Figure 3.21 (a) shows the performance of both 

the MMSE and MBER beamformers as the AOA of the interfering source 2 is varied from -90° 

to 90°, i.e. for -90° :s; B2 i- 15°,60°,80°, -70° :s; 90°. Note that the interfering signals must not 

arrive from 15°,60°,80° and -70°, since these are the arriving angles of the other four remaining 

users, i.e. those of the SOl and the other three interfering signals, otherwise the corresponding sig

nals could not be separated. Therefore we indicate these AOA values by thick vertical dashed lines 

in Figure 3.21 (a), implying that the corresponding SNR values do not exist. It is observed from 

Figure 3.21 (a) that the signal power required for the five users in order to achieve a specific BER per

formance of 10-2 , 10-3 , 10-4 , 10-5 increases as the interfering user 2 moves closer to the desired user 

located at 15°. It is also clear from Figure 3.21 (a) that the MBER solution always requires a lower 

desired user signal power than that required by the MMSE solution. The range of the requirement of 

different signal powers for the MMSE and MBER beamformers reduces, when the interfering user 2 

arrives from an angular direction that obeys -40 2: B2 2: 50° with respect to the array normal. It is 

also observed that the two-element system is particularly more robust in the context of the MBER 

solution, since it is capable of separating interfering user 2 whose angular separation is as low as 10° 

or 15°, requiring a desired user signal power of less than 27dB. By contrast, for the MMSE solution, 

the 'just-tolerable' AOA of user 2 is 30° or -20°, which results in a minimum AOA separation of 15° 

or 35° with respect to the desired user located at 15°. 
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Figure 3.21: Comparison of the SNR required for achieving a BER of 10-2 ,10-3 ,10-4 ,10-5 , evaluated 

based on Equation (3.68), between the MMSE and the MBER beamformers for two equal-power 
users, i.e. for SNR = INR, as a function of (a) the AOA of interferer 2 and (b) the AOA difference of 
interferer 2 and 3, i.e. le2 - e3 1. The thick vertical dashed lines in subfigure (a) mark the corresponding 

AOA of the remaining four users. The associated interference scenario was plotted in Figure 3.18. 
These results were recorded when communicating over an AWGN channel. 
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In Figure 3.21 (b), we also consider a scenario of simultaneously moving both the interfering 

sources 2 and 3 in equal angular separations from the SOl located at 15°. For simplicity, we plot the 

desired user's signal power as a function of the angular separation between the interfering sources 2 

and 3, i.e. versus 182 - 831, in conjunction with target BERs of 10-2,10-3,10-4 ,10-5 . It can be 

seen from Figure 3.21 (b) that the MMSE solution would require a minimum angular separation of 

70° between users 2 and 3 at a target BER performance of 10-2 as well as 10-3 , since otherwise an 

excessive SNR would be required for meeting these target BERs. This is indicated in Figure 3.21 (b) 

by the fact that the corresponding approximately 18dB and 25dB points are the lowest-SNR points 

for the target BERs of 10-2 and 10-3, respectively. On the other hand, the MBER solution managed 

to achieve the BERs of 10-2 and 10-3 for signal powers of 7dB and 10dB, respectively, at the same 

angular separation of 70°. It may also be observed in Figure 3.21 (b) that the associated signal power 

requirement is reduced, as users 2 and 3 are further separated, and it becomes approximately constant 

in the angular separation region of 120° ::::: 182 - 831 ::::: 200°. For angular differences higher than 

200°, the associated signal power requirement increases again. This is a consequence of the circular 

symmetry with respect to 360°, since the maximum angular separation from a location is limited 

to 180°. Therefore, any angular separation 8i greater than 180° will produce the same effect, as if 

the separation was 360 - 8i . For equal angular separations with respect to the SOl, the variation of 

the angular position of users 2 and 3 in the range of -150° ::::: 82 :::; 10° and 20° ::::: 83 ::::: 180° with 

respect to the array normal, respectively, results in angular differences of 10° ::::: 182 - 831 ::::: 330°. For 

desired user signal powers spanning the range of -5dB to 25dB, the acceptable angular separation of 

interfering users 2 and 3 for the MMSE and MBER beamformers in conjunction with the user scenario 

of Figure 3.18 are 70° ::::: 182 - 831 ::::: 270° and 60° ::::: 182 - 831 ::::: 270°, respectively. Again, it becomes 

explicit also from Figure 3.21 (b) that the MBER solution performed better than the MMSE solution, 

i.e. it required a lower signal power, particularly when the angular separation was in the ranges of 

60° ::::: 182 - 831 ::::: 100° and 250° ::::: 182 - 831 ::::: 270°. Note that in all cases studied in this section we 

assumed that all five users are of equal signal power. 

The system's robustness to the near-far effect is further confirmed by Figure 3.22, where the 

performance of a system is characterised in conjunction with variable values of SIR2, spanning the 

range of -18dB to 36dB. The SNR was fixed to lOdB and we had SIRi = 24 dB for i = 3,4,5. The 

initial array weight of the MBER beamformer used for each SNR was the MBER solution generated 

at the previous SNR except at OdB, where the MMSE solution was used as the initial weight value. 

A comparison of the beam-patterns of the MBER and MMSE beamformer was provided in Fig

ure 3.23. Having equal-power users of each transmitting at SNR = lOdB, at first sight it may appear 

that the MMSE beamformer exhibits a better amplitude response than the MBER beamformer. More 

explicitly, the MMSE beamformer exhibits more attenuated magnitude responses at the angles of three 

of the four interfering sources, namely for the users transmitting from directions of -700 ,600 ,800
• By 

contrast, the MBER beamformer appears to have a better amplitude response for the interfering user 
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Figure 3.22: Influence of the near-far effect on the BER performance of the MMSE and MBER 

beamformers, evaluated based on Equation (3.68), for SNR = 10dB and SIRi = 24dB for i = 3,4,5, 
when communicating over an AWGN channel. The associated interference scenario was plotted in 

Figure 3.18. 

at an angle of -30°, i.e. for the user at the lowest angular separation. Therefore, if the BER perfor

mance was determined on the basis of the amplitude response alone, it would be more beneficial to 

use the MMSE beamformer. However, considering the magnitude response alone and neglecting the 

phase response is misleading, since both the magnitude and phase of F(e) should be used together for 

characterising the beamformer. 

The absolute value of the real and imaginary parts of [F(e)], i.e. 1~[F(e)ll and 18'[F(e)ll, respec

tively, corresponding to the scenario of Figures 3.23 a) and 3.23 b) can be viewed in Figures 3.23 c) 

and 3.23 d). In our case, we are only interested in the real response of 1~[F(e)ll due to our decision 

function defined in Equation (3.19), which is valid for BPSK transmissions. In terms of the response 

18'[F(e)ll, the MMSE solution appears to perform better, particularly at the 15°_ angle of the desired 

user's signal, where it exhibits a deep null. This is crucial for the sake of minimising the function 

MSE E[lbd(n) - y(nWl, since bd(n) is real-valued, although this function is irrelevant as regards to 

the system's BER performance. By contrast, the MBER beamformer exploits the systems' 'resources' 

more intelligently. This may be visualised from the total beamformer output y plot of Figure 3.34. 

As mentioned earlier, the best indicator of the expected BER performance is constituted by the 

PDF of the decision variable, as given in Equation (3.59). Figure 3.24 b) depicts the PDF of the 
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Figure 3.23: Comparison of the beam-patterns of both the MMSE and MBER beamformers for SNR = 
10dB and INRi 10dB for i = 2,3,4,5, when communicating over an AWGN channel. The 
associated interference scenario was plotted in Figure 3.18. 

MBER solution conditioned on b1(n) = +1, while that of the MMSE is shown in Figure 3.24 a), 

both using the interference scenario of Figure 3.18, as in Figure 3.23. Having normalised the MBER 

beamformer's weight vector, the associated BER expression of Equations (3.61) and (3.69), which 

is based on the Q-function defined in Equation (3.63) is dominated by the specific decision variable 

value in the subset y1+) , which is closest to the decision boundary YR = 0, namely by the circle and 

square at the left-most positions in Figures 3.24 a) and 3.24 b) for the MMSE and MBER solutions, 

respectively. For the M = 5-user scenario, there are 2M - 1 16 points in both the MMSE and 

MBER subset associated with h(n) = +1, as seen in Figures 3.24 a) and 3.24 b). For the sake of 

showing all the states, i.e. the real part of the noiseless output YR,q of the beamformer as defined in 

Equation (3.40), which are sometimes quite similar hence may overlap each other, we employ circles 

and crosses as markers for the real part of the MMSE beamformer's noiseless output states, while star 

and square markers for the real part of the MBER beamformer's noiseless output states. Table 3.5 

lists the 16 possible values of the noiseless output YR,q for the real component of both the MMSE 

and MBER beamforming solutions. Observe that the nearest point of the MBER solution to the 

decision boundary YR = 0 is at YR = 1.08, which corresponds to nearly twice the distance from the 

decision boundary in comparison to the nearest MMSE decision variable at YR = 0.68. The Q-function 

90 
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Figure 3.24: Conditional PDF of a) the MMSE and b) the MBER beamformers given b1(n) = +1 
and the subset y1+) defined in Equation (3.41) of Section 3.3 for SNR = 10dB and INRi = 10dB for 
i = 2,3,4,5, when communicating over an AWGN channel. The associated interference scenario was 

plotted in Figure 3.18. 
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State q MMSE MBER 

1: 0.68 1.37 
2: 1.34 1.43 

3: 1.35 1.90 

4: 2.00 1.96 
5: 0.93 1.36 

6: 1.59 1.42 

7: 1.60 1.89 

8: 2.26 1.95 

9: 0.75 1.09 

10: 1.42 1.16 
11: 1.42 1.63 

12: 2.08 1.69 

13: 1.00 1.08 
14: 1.66 1.14 

15: 1.67 1.62 

16: 2.33 1.67 

Table 3.5: The real part of the noiseless output YR,q of the beamformer of Equation (3.41) for the 
MMSE and MBER solution given that bd(n) = +1, as inferred from Figures 3.24 a) and 3.24 b), 

res p ect i vel y. 

Q(YR,q) results in a high probability of error PE(w) according to Equation (3.68) when the noiseless 

beamformer's ouput value is nearer to the decision boundary of YR = 0. This explains, why the MBER 

beamformer has a lower BER compared to that of the MMSE beamformer. 

Returning to Figure 3.19 (b) for a moment, it is intriguing to speculate why the MMSE beamformer 

is overwhelmed by interference, thus exhibiting a high BER floor. To investigate this phenomenon, 

let us first consider its beam pattern. Given an SNR of 15dB and INRi = SNR +6dB for i = 2,3,4,5, 

the corresponding beam patterns are presented in Figure 3.25. Generally, the beam patterns have 

not changed dramatically in comparison to Figure 3.23 for the equal-power users experiencing SNR = 

10dB. Since no explicit conclusion could be drawn from these patterns, we proceed to plotting the 

PDFs of the decision variables, which are shown in Figure 3.26 for the unequal desired and interfering 

user power scenario. From the location of the states, i.e. from the real component of the noiseless 

beamformer's output YR,q located on the YWaxis it becomes more obvious, why the MMSE beamformer 

has a high BER floor. Explicitly, it was found for the MMSE solution that y1-) and y1+) are linearly 

nonseparable, i.e. given a transmitted bit of bd(n) = +1, the resultant noiseless beamformer output 

YR,q should be in the positive subset of y1+) as defined in Equation (3.41), but one of the total of 

16 possible states has violated this rule. In other words, the corresponding state falls in the wrong 

subset y1-). As seen in Figure 3.26 a) as well as listed in the second column of Table 3.6, from the 

16 points in the subset y1+) , one is at the wrong side of the decision boundary of YR = 0, yielding 

YR = -0.11 and another one is nearly on the decision boundary of YR = 0, namely at YR = 0.01. As 
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Figure 3.25: Comparison of the beam-patterns of both the MMSE and MBER beamformers for SNR = 
15dB and INRi = SNR +6dB for i = 2,3,4,5, when communicating over an AWGN channel. The 

associated interference scenario was plotted in Figure 3.18. 

opposed to the MMSE beamformer, the MBER solution characterised in Figure 3.26 b) successfully 

separates y1-) and y1+) . 

For a more clear explanation, let us return to some of the basic formulae of Equations (3.36) 

to (3.39) in Section 3.3. Specifically, Figure 3.27 shows the procedure of composing the noiseless 

beamformer output Yq of Equation (3.39), given that the desired user's transmitted bit h is always 

+ 1. For an M = 5-user scenario supported by an L = 2-element antenna array, the total number 

of possible transmitted bit sequences b q is given by Nb = 2M = 32, i.e. 1 ::; q ::; Nb = 32. For the 

condition that the desired user always transmits b1 = + 1, the number of possible bit sequences now 

reduces to Nsb = 2M - 1 = 16. For the sake of showing all the unnormalised noiseless output states 

y, we use different ranges on the Cartesian axes. There should be Nsb = 16 dots in each input and 

output plots, but some states especially those for antenna element 1 were having similar values that 

they overlaps each other. Similar to the noiseless output states previously shown in Figure 3.26 a), one 

of the noiseless output states of the MMSE beamformer was in the wrong decision region, i.e. at the 

negative side of the decision boundary of YR = 0, corresponding to a negative noiseless output value 

YR, despite the fact that the desired user's transmitted bit was always b1 = +1. This implies that 

90 

90 
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Figure 3.26: Conditional PDF of a) the MMSE and b) the MBER beamformers, given b1 (n) = +1 and 
the subset y1+) defined in Equation (3.41) of Section 3.3 for SNR = 15dB and INRi = SNR +6dB for 
i 2,3,4,5, when communicating over an AWGN channel. The associated interference scenario was 

plotted in Figure 3.18. 



3.5.2. Supporting Five Users Employing a Two-Element Uniform Linear Array 140 

State q MMSE-normalised MMSE MBER 
(Figure 3.26 a)) (Figure 3.27) (Figures 3.26 b) and 3.27) 

1: -0.11 -0.026 1.12 
2: 1.03 0.250 1.16 
3: 1.02 0.248 2.13 
4: 2.16 0.525 2.16 
5: 0.31 0.075 1.11 
6: 1.45 0.352 1.15 
7: 1.44 0.350 2.12 
8: 2.58 0.627 2.15 
9: 0.01 0.002 0.63 
10: 1.15 0.279 0.66 
11: 1.14 0.276 1.63 
12: 2.28 0.554 1.67 
13: 0.43 0.103 0.62 
14: 1.57 0.381 0.65 
15: 1.56 0.378 1.62 
16: 2.70 0.655 1.65 

Table 3.6: The real part of the noiseless output YR,q of the beamformer of Equation (3.41) for the 

MMSE and MBER solution given that bd(n) = +1, as inferred from Figures 3.26 a), 3.27, and 

Figures 3.26 b) and 3.27, respectively. 

the noiseless output states Y for the MMSE beamformer are linearly nonseparable, which results in 

the high BER floor seen in Figure 3.19 (b). Note that the corresponding noiseless MMSE and MBER 

beamformer outputs YR shown in Figure 3.26 are identical to the real part of the respective noiseless 

outputs Y shown in Figure 3.27, except that the values of the MMSE beamformer in Figure 3.26 a) 

were normalised approximately by a factor of 4.12, for the sake of portraying the associated conditional 

PDF within the same ranges as the MBER beamforming of Figure 3.26 b). The imaginary-part of the 

noiseless beamformer output was ignored in Figure 3.26, since in the case of BPSK transmissions we 

are only interested in the real-part of the output YR. 

In the context of the shape of the PDF curve it is transparent that both the shape of the MMSE 

and MBER PDF curves is non-Gaussian. In addition to our observation drawn from Figures 3.13 and 

3.14 of Section 3.5.1, we may conclude that the MMSE beamforming solution performs best, when its 

PDF shape is more-Gaussian, while for the MBER its performance is significantly better than that 

of the MMSE, when having a non-Gaussian PDF. Therefore the performance difference between the 

MMSE and MBER solutions would be minimal if both have similar Gaussian-like PDF, with the latter 

always perform better, as shown in Figures 3.13 and 3.14. 

Let us now plot the BER surface of both the MMSE and MBER solutions for this five-user 

scenario. Similar to the two-user case, we fixed the imaginary part of the weights, while varying 
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Figure 3.27: Composition of the noiseless beamformer output y defined in Equation (3.39) for both 

the MMSE and MBER beamformers at SNR = 15dB and INRi = SNR +6dB for i = 2,3,4,5. 

Both noiseless input Xl and sub-output Yl at the corresponding antenna l is defined in Equation (2.7) 
and (2.17), respectively. The associated interference scenario was plotted in Figure 3.18. Recall that 
a simpler two-user scenario was plotted in Figure 3.1. Whilst the MMSE solution attempts to adjust 

the weights for positioning the output phasors as close to ±1 as possible, the MBER beamformer 

maximises their joint distance from YR = O. 

the real part. Figure 3.3 shows the corresponding BER surface of the normalised MBER solution 

WMBER, where the probability of error is BER = 10-6.14 ~ 7.24 . 10-7 . In contrast to the MBER 

beamformer, the error surface of the MMSE solution was shown in Figure 3.28 a) which resulted in 

BER = 10-5.89 ~ 1.29 . 10-6 , corresponding to a higher BER. Several error surfaces associated with 

various positive values of 0, which were used for multiplying the fixed imaginary parts of the MBER 

solution of Figure 3.3 can be observed in Figures 3.28 b) to 3.28 f). As expected, all solutions give 

the same minimum BER value, except for the one seen in Figure 3.28 f) in conjunction with 0 = 0.1, 

which produces a BER of 10-6.03 ~ 9.33 . 10-7 , thus exhibits a small BER difference of 2.09 . 10-7 . 

This is likely to be a consequence of round-off errors, when multiplying a small value of 0 « 1, such as 

o = 0.1 by WMBER. But again, in general the value of the real and imaginary parts at the minimum 

corresponds to OWMBER. 

The relationship of the real parts ofthe MBER beamformer weights is plotted in Figure 3.29 (a) and 

as expected, all the optimum solutions including the one due to the MMSE solution are on a straight 

line. This line is, where the infinite number of MBER solutions for this specific five-user scenario 

resides. Hence, for any position on the line, we will attain the minimum BER of 10-6.14 ~ 7.24.10-7
. 
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Figure 3.28: Error surfaces of the MMSE and MBER solutions plotted for different values of 0:; 

a) MMSE b) 0: = 2.0 c) 0: = 2.8 d) 0: = 4.0 e) 0: = 0.5 f) 0: = 0.1 at SNR = lOdB and IN~ = lOdB for 
i = 2,3,4,5, when communicating over an AWGN channel. The plot was varying the array weight's 

real part and the corresponding fixed array weight's imaginary part associated with the 0: value was 
shown in Figure 3.29 (b). The arrow points to the MBER solution associated with the specific 0: values 
considered. The associated interference scenario was plotted in Figure 3.18. The BER was evaluated 

based on Equation (3.68). 
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Figure 3.29: Linear relationship of (a) the two MBER array weights' real part and (b) the two MBER 
array weights' imaginary part for SNR = 10dB and INRi = 10dB for i = 2,3,4,5, when communicating 

over the AWGN channel. The associated interference scenario was plotted in Figure 3.18. 

We also plotted this MBER solution line in Figure 3.3. Let us next consider, why the MMSE solution 

also lies on the optimum line of Figure 3.29 (a), yet failing to achieve the same optimum value of BER 

~ 7.24.10-7. The MBER weight solution extracted from our simulations was: 

WMBER = 

while the MMSE weights were: 

[ 

0.57 

0.60 

+ j1.00608. 10-25 

+ jO.552012 

[ 

0.40 + jo.166005] 
WMMSE = , 

0.42 + jO.385217 

(3.143) 

(3.144) 

where the real components were varied using a step-size of 0.01. It can be shown that the real part 

values of the MMSE solution are given by 0.7 times the MBER solution, i.e. we have 0: = 0.7. However, 

the imaginary parts of the MMSE solution do not satisfy this condition, as seen in Figure 3.29 (b). 

More explicitly, we have 0.7·0.552012 = 0.3864084, which is not dramatically different from 0.385217. 

However, 0.7·1.00608 . 10-25 = 0.704256 . 10-25 ~ 0 is significantly smaller than 0.166005 and the 

point does not lie on the MBER solution line of Figure 3.29 (b). This is the reason, why the BER 

of the MMSE solution is not as low as that of the MBER solution, although the real parts lie on the 

MBER solution line of Figure 3.29 (a). 
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3.5.3 Supporting Several Users by a Four-Element Uniform Linear Array 

Our previous examples provided in Sections 3.5.1 and 3.5.2 investigated user scenarios supported 

by a two-element uniform linear array (ULA). In this section, we will provide performance results 

considering a four-element ULA supporting three to nine users, which may be viewed in Figure 3.30. 

Explicitly, the SOl of the desired user arrives from a direction of 15°, while the interfering signals may 

arrive from -300
, 60°, -10°,40°,0°, 30°, -50°,80° relative to the array normal. 

interferer 
source 8 

interferer 
source 5 

interferer 
source 3 

interferer 
source 9 
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1-- Je12---1 

Figure 3.30: Four-element antenna array having an element spacing of ),,/2 and receiving signals from 

150 (SOl), -300 ,600
, -100 ,400 ,00 ,300

, -500 and 800 (the interfering signals). 

Figure 3.31 shows the attainable BER performance as a function of the users' signal power, in 

conjunction with three to nine supported users employing a four-element uniform linear array. To 

avoid severe overlapping of the curves, we separate the plots into two subfigures. Figure 3.31 (a) 

portrays the BER curves of both the MMSE and MBER solutions, denoted by the continuous line 

and the dotted line, respectively, supporting three, five, six and seven users, while Figure 3.31 (b) 

shows the BER curves supporting four, eight and nine users. In all the seven different user-scenarios, 

it is observed that the MBER solution performs progressively better than the MMSE solution, as 

the number of user is increased. It is also observed from Figures 3.31 (a) and 3.31 (b) that when 

the number of users supported in the four-element system increases to seven, eight and nine, the 

achievable BER performance of the MMSE beamformer is severely degraded and hence it exhibits a 

high BER floor. Although the MBER beamformer also suffered from a significant BER performance 

degradation, when the system supported in excess of seven users, it remained capable of maintaining 

a good BER performance, even when supporting all the nine users portrayed in Figure 3.30, as 

evidenced by Figure 3.31 (b). Explicitly, a BER of 10-5 was attainable, when all the nine users had 

an SNR of 20dB. In addition to the BER performance results of Figure 3.19 discussed in Section 3.5.2, 
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Figure 3.31: Comparison of the BER performance ofthe MMSE and the MBER beamformers, based on 

Equation (3.68), for equal-power users, i.e. for SNR = INR, in conjunction with a four-element uniform 
linear array in an AWGN channel. The associated interference scenario was plotted in Figure 3.30. 

Figure 3.31 further confirms that MBER beamforming tolerates 'user-overloading', i.e. a scenario when 

the number of users is higher than the number of antenna elements, especially in comparison to the 

MMSE beamformer. The BER differences of the multi-user scenario with respect to the optimum 

performance achieved by the single-user system supported by a four-element antenna array is shown 

in Figure 3.32 as a function of the number of users supported for the AOAs plotted in Figure 3.30. 

Figures 3.33 (a) and 3.33 (b) show the performance of both the MMSE and MBER solutions as 

the AOA of the interfering sources 6 and 7 of Figure 3.30 is varied from -90° to 90°, more specifically 

for -90° ~ 86 i= 15°, -30°,60°, -10°, 40° ~ 90° and -90° ~ 87 i= 15°, -30°,60°, -10°,40°, 0° ~ 90°, 

respectively. As mentioned earlier in the context of Figure 3.21 (a), the varied interfering source 6 

must not arrive from the same direction as the other five users, since this would render their separation 

infeasible. Therefore we drew thick vertical dashed lines in Figures 3.33 (a) and 3.33 (b), for the sake 

of marking the corresponding AOA of other users in the system, where no legitimate SNR value may 

be inferred. Similar to our findings shown in Figure 3.21 (a), the signal power required for all users in 

order to achieve a specific BER increases, as the interfering users 6 and 7 moved closer to the desired 

user located at 15°. It is also clear from Figure 3.33 that the MBER solution always requires a lower 

desired user signal power than that required by the MMSE solution. More importantly, Figure 3.33 (a) 

shows that the interfering user 6 may get as close as 10° or 20°, maintaining a mere 5° separation 
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Figure 3.32: The BER difference of the MMSE and MBER beamformers from the optimum single user 

performance, i.e. loglO(BER)single-user,four-element- loglO(BER)w, where BER was evaluated based on 
Equation (3.68), as a function of the number of users supported for 3 ~ M ~ 9 for SNR of 5dB and 
10dB for a four-element antenna array in an AWGN channel. The associated interference scenario was 

plotted in Figure 3.30. 

from the SOl for the MBER solution. For the MMSE solution, the closest AOA user 6 may arrive 

is 0° or 30°, that is 15° away from the SOL Relative to the SNR versus AOA plot of Figure 3.21 (a) 

the performance of the six-user scenario of Figure 3.33 (a) is considerably better, since the minimum 

required angular separation between user 6 and the SOl is smaller, namely 5°, even when all the other 

interfering signals are much closer to the SOl than in the scenario of Figure 3.18. Furthermore, for 

the MBER beamformer of Figure 3.33 (a), the desired user's signal power is always required to be 

significantly lower than that in Figure 3.21 (a). This consistent trend, is however, not observed for the 

MMSE beamformer. Figure 3.33 (b) shows that upon adding the extra interfering user at an angle 

of 0°, a substantially increased SNR was required not only for the MMSE beamformer, but even for 

the MBER beamformer at angles of e = 10°,25°,30°. By contrast, at higher angular separations the 

required SNR was near-constant for the MBER beamformer, as evidenced by Figure 3.33 (a). 

Figure 3.34 shows the procedure of composing the noiseless beamformer output f}q of Equa

tion (3.39). For an L = 4-element antenna array supporting M = 7 users, the total number of 

possible transmitted bit sequences is Nsb = 2M - 1 = 64, given that the desired user's transmitted 

bit is always br = +1. As explicitly seen for the beamformer's output f} in Figure 3.34, some of the 

noiseless output phasors y of the MMSE beamformer were in the negative half-plane, i.e. on the left 

side of the vertical decision boundary at YR = 0, while some phasors lie directly on the origin itself. 

Hence transmission errors would always occur, even in the absence of noise, which is the reason for 
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Figure 3.33: Comparison of the SNR required for maintaining a BER of 10-2 ,10-3 ,10-4 ,10-5 , evalu

ated based on Equation (3.68), by both the MMSE and the MBER beamformers for (a) six equal-power 
users, i.e. for SNR = INR, as a function of the AOA of interferer 6 and (b) seven equal-power users, 

as a function of the AOA of interferer 7. The thick vertical lines in the subfigures (a) and (b) mark 
the corresponding AOA of the remaining users. The associated interference scenario was plotted in 

Figure 3.30. An AWGN channel was used. 
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Figure 3.34: Composition of the noiseless beamformer output y defined in Equation (3.39) for both 

the MMSE and MBER beamformers supporting seven equal-power users at SNR = INR = 10dB for 
= 2,3, ... , 7. Both the noiseless input Xl and the sub-output Yl recorded at the corresponding antenna 

l were defined in Equations (2.7) and (2.17), respectively. The associated interference scenario was 

plotted in Figure 3.30. Recall that a simpler two-user scenario was portrayed in Figure 3.1. Whilst 
the MMSE solution attempts to adjust the weights for the sake of positioning the output phasors as 

close to ±1 as possible, the MBER beamformer maximises their joint distance from YR = O. 
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the irreducible BER observed in Figure 3.31 (a). Since not all of the noiseless total output phasors 

y of the MBER beamformer are associated with real and/or imaginary values confined within the 

interval [2[, we extend the plotted range of the Cartesian axes to [4[ for the sake of showing all the 64 

noiseless output phasors y. However, it is also possible to have several noiseless outputs y associated 

with similar values, which result in overlapping points in Figure 3.34. The noiseless output y plotted 

in Figure 3.34 also shows the difference between the optimisation philosophy of the MMSE and MBER 

beamformers. Explicitly, Figure 3.34 demonstrates that the MBER beamformer constructs the system 

more intelligently, in that it arranges the real part of the beamformer output YR to be as far as possible 

from the decision boundary at YR = 0 for the sake of minimising the BER. 

3.6 Simulation Results for Adaptive MBER Beamforming 

Let us now consider the performance of the adaptive MBER beamforming solution. First, we focus 

our attention on the block-data based gradient adaptive MBER algorithm of Section 3.4.2, which we 

refer to as the Block Adaptive Conjugate Gradient (BACG) algorithm. We will then investigate the 

attainable performance of two different sample-by-sample based adaptive MBER algorithms, namely 

that of the Least BER (LBER) and the Approximate LBER (ALBER) algorithms of Section 3.4.3.1 

and 3.4.3.2, respectively. 

3.6.1 Block Adaptive Conjugate Gradient Algorithm 

Figure 3.35 illustrates the rapid convergence of the BACG algorithm employing a block of T = 200 

training samples, under two different conditions, namely when (a) all users have an equal SNR of 10dB 

and (b) when all interfering users benefit from a 6dB higher SNR than the desired user having an 

SNR of 13dB. More explicitly, Figure 3.35 demonstrates that six to eight iterations are sufficient for 

the algorithm's convergence to a BER near the MBER solution. The initial array weights have been 

set to the MMSE solution of WMMSE in both scenarios of Figure 3.35, but our experiments suggest 

that this is not necessarily the best option for weight-initialisation. More specifically, as observed in 

Figures 3.36 (a) and 3.36 (b), we may attain more rapid convergence and possibly a better steady 

state BER performance than that seen in Figure 3.35 (a), when the array weights of the algorithms 

were initialised to WI = [0.2+jO.05 0.05+jO.2jT and W2 = [0.2+jO.05 0.15+jO.15jT, respectively, 

i.e. when the weights are different from the MMSE solution of WMMSE = [0.31 + jO.08 0.27 + jO.18jT 

determined for this specific scenario. It was also shown in [199] that the algorithm may become 

trapped in a local minimum, when it is initialised to the MMSE solution. The issue of initialisation 

hence has to be given special attention, but for simplicity's sake we will initialise the beamformer 

weights to the MMSE solution, WMMSE, in all our simulations. 

Figures 3.37 (a) and 3.37 (b) show the effects of using different training block sizes on the achievable 
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Figure 3.35: Convergence behaviour of the block-data based BACG MBER algorithm, based on 
Equation (3.112), for a block size ofT = 200 samples under two different conditions; (a) SNR = 10dB 

and INRi = 10dB for users i = 2,3,4,5, when employing a step size of /-l = 1.0 and a kernel width Pn of 

P~ = 60"; = 0.3, where 0"; = 0.05 and (b) SNR = 13dB and INRi = SNR +6dB for users i = 2,3,4,5, 
involving a step size of p, = 0.5 and a kernel width Pn of P; = 60"; = 0.15, where 0"; = 0.025. The 
related AOA scenarios were depicted in Figure 3.18 and BPSK transmissions were used over an AWGN 
channel. 
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Figure 3.36: Convergence behaviour of the block-data based BACG MBER algorithm, based on 
Equation (3.112), in conjunction with the SNR = 10dB equal-power user scenario, employing a train

ing block size of T = 200 samples under two different non-MMSE weight initialisation conditions; 

(a) weight vector initialised to WI = [0.2 + jO.05 0.05 + jO.2V for step sizes of f-l = l.0 and f-l = 0.7 

and a kernel width Pn of P~ = 6CT~ = 0.3 and (b) weight initialised to W2 = [0.2 + jO.05 0.15 + jO.15V 

for step sizes of f-l = l.0 and f-l = 0.6 and a kernel width Pn of P~ = 15CT~ = 0.75 and P~ = 30CT~ = l.5, 
respectively. The corresponding AOA scenarios were depicted in Figure 3.18 and BPSK transmissions 

were used over an AWG N channel. 

convergence rate of the BACG algorithm, when the adaptive parameters fJ and Pn are fixed, employing 

values similar to those of Figures 3.35 (a) and 3.35 (b), respectively. Specifically, the step size was set to 

f-l = l.0 and the kernel width to Pn = J6CTn = 0.5477 in Figure 3.37 (a), when considering equal-power 

users having an SNR of 10dB, while Figure 3.37 (b) employs f-l = 0.5 and Pn = J6CTn = 0.3878 for the 

unequal-power user scenario of SNR = 13dB and INRi = SNR +6dB for i = 2,3,4,5. It was observed in 

both scenarios that the BACG algorithm is not overly sensitive to the specific training block size used. 

The steady state BER performance seen from both plots of Figure 3.37 are BER = 10-6.04 ~ 9.12.10-7 

and BER = 10-4.42 ~ 3.8 . 10-5 , respectively. The fluctuation of the BER values observed for the 

equal-power user scenario of Figure 3.37 (a) is not as significant as that observed in Figure 3.37 (b). It 

is readily seen from Figure 3.37 (a) that for a training block size higher than 50 bits, the BER values' 

average deviation from the mean is approximately BER ~ ±0.3·1O-6 , while in Figure 3.37 (b), the BER 

values' average deviation from the mean for training block sizes in excess of 200 bits is approximately 

BER ~ 2.37 . 10-5 . The maximum deviation from the respective steady state BER value for both 

scenario is approximately BER ~ l. 76 . 10-6 and BER ~ 8.57 . 10-5 , respectively. Furthermore, 

the BACG algorithm operating under the equal-power user scenario shows a near-constant BER 

performance for training block sizes higher than 400 bits, while for the unequal-power user scenario 

of Figure 3.37 (b) this trend prevails, when the training block size employed is in excess of 700 bits. 

Using a short training block length of 100 bits may also achieve a similar steady state BER value to 

that of the longer block size scenarios. As the specific choice of training block size is not critical, we 

will consider a block size of T = 256 in our forthcoming BACG algorithmic simulations. 

Figures 3.36 (a) and 3.36 (b) also show that the BER performance of the BACG algorithm is 
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Figure 3.37: Effect of training block size on the achievable performance of the block-data based BACG 

MBER algorithm, based on Equation (3.112), under two different conditions; (a) SNR = lOdB and 
INRi = 10dB for users i = 2,3,4,5, employing a step size of f.L = 1.0 and a kernel width Pn of 

P~ = 60"~ = 0.3 and (b) SNR = 13dB and IN~ = SNR +6dB for users i = 2,3,4,5, invoking a step 
size of f.L = 0.5 and a kernel width Pn of P; = 60"~ = 0.15. The related AOA scenarios were depicted 
in Figure 3.18 and BPSK transmissions were used over an AWGN channel. 

affected, when the step size f.L and the kernel width Pn, obeying p~ = P;CJ~ is varied. It has been stated 

in Section 3.4.2 that the appropriate values of the step size f.L and kernel width Pn should be used for 

the sake of arriving at the optimum performance of the adaptive algorithm. Therefore it is beneficial to 

observe the effect of varying these parameters on the performance of the BACG algorithm. Figure 3.38 

shows the effect of varying the kernel width values Pn in conjunction with several step sizes, namely 

f.L = 0.1,0.5 and 0.9 in a scenario experiencing an identical SNR of lOdB and also for SNR = 13dB, 

INRi = SNR +6dB for i = 2,3,4,5. For a particular step size, it is observed that as Pn is increased 

to Pn = 3CJn , the achievable convergence rate also increases. Its further increase to the values of 

Pn > 7CJn and Pn > 3CJn selected for the equal-power and unequal-power user scenarios, respectively, 

will result in a reduced convergence rate for the BACG algorithm as evidenced by Figure 3.38. For the 

equal-power user scenario of Figure 3.38 (a), 3.38 (c) and 3.38 (e), it is observed that a simultaneous 

improvement of both the convergence rate and the steady state BER performance may only be achieved 

for O"n < Pn :s; 4CJn. Finally, as suggested by Figures 3.38 (c) and 3.38 (e), when the kernel width Pn 

increases, such that we have 4CJn < Pn :s; 7CJn , the convergence rate maintains or continues to improve, 

although this is achieved at the expense of a higher steady state BER. 

For the sake of a more explicit visualisation, in Figure 3.39 we also characterise the effect of the 

step size f.L for several kernel width values Pn. It is observed from Figure 3.39 (b) in conjunction with 

the kernel width of Pn = 20"n invoked for the unequal-power user scenario that more iterations may 

be required for achieving the steady state BER, when employing a large step size of f.L > 0.7. This 

phenomenon may be avoided, provided that a suitable kernel width is used and a higher number of 

iterations is affordable in complexity terms. Based on the plots of both Figures 3.38 and 3.39, we 

may conclude that the convergence rate and steady-state BER performance of the BACG algorithm 
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Figure 3.38: Convergence behaviour of the BACG algorithm, based on Equation (3.112), for kernel 

width values of Pn = CJn , 2CJn , 2.4CJn , 3CJn , 3.5CJn , 4CJn , 11CJn , 15CJn , 20CJn and for the step sizes of J..L = 
0.1,0.5,0.9 in conjunction with a training block size of T = 256 under two different conditions; 

(i) SNR = lOdB and INRi = lOdB for i = 2,3,4,5 and CJn = )0.05 = 0.2236 in subfigures (a), (c) 
and (e), and (ii) SNR = 13dB and INRi = SNR +6dB for i = 2,3,4,5 and CJn = )0.025 = 0.1583 
in subfigures (b), (d) and (f). The corresponding AOA scenario was depicted in Figure 3.18 and an 

AWGN channel was used. 
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Figure 3.39: Convergence behaviour of the BACG algorithm, based on Equation (3.112), for step sizes 

of p, = 0.05,0.1,0.3,0.5,0.9,1.0 and for the kernel width values of (a) Pn = O'n, (c) Pn = 40'n, (e) Pn = 
70'n under the condition (i) SNR = 10dB and INRi = 10dB for i = 2,3,4,5 and O'n = JO.05 = 0.2236, 

and kernel width values of (b) Pn = 20'n, (d) Pn = 30'n, (f) Pn = 15an under the condition (ii) SNR 
= 13dB and INRi = SNR +6dB for i = 2,3,4,5 and O'n JO.025 = 0.1583, in conjunction with a 
training block size of T = 256. The corresponding AOA scenario was depicted in Figure 3.18 and an 

AWGN channel was used. 



3.6.1. Block Adaptive Conjugate Gradient Algorithm 155 

is affected by both the step size fL and the kernel width Pn. An appropriate balance of these two 

parameters has to be maintained for the sake of achieving the lowest steady state BER, while attaining 

a rapid convergence. Using a small step size will reduce the rate of convergence and although this 

may be partially compensated for by having a better steady state BER value, it will be at the cost of 

a high complexity, expressed in terms of the number of operations invoked during the iterations. It is 

therefore advisable to use a sufficiently high step size of fL ~ 0.5 in conjunction with a moderate value 

of the kernel width, which is within the range of 2an < Pn < tan and 2.5an :::; Pn :::; 3.5an for an equal

power and unequal-power user scenario, respectively. This however is solely based on the observation 

of Figure 3.40, where we plotted the achievable steady state BER of the BACG algorithm versus the 

kernel width ratio of Pr = Pn/an at iteration index 20, as the kernel width Pn was varied, along with 

several step size values of fL = 0.1,0.3,0.5,0.7,0.9. Figure 3.40 also suggests that the specific choice 

of the kernel width Pn is more crucial than that of the step size fL. For a particular scenario, it is 

beneficial to know the range of the acceptable kernel width values for the sake of attaining a rapid 

convergence and a near-optimum BER performance. 
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Figure 3.40: The achievable steady state BER performance of the BACG algorithm, based on Equa

tion (3.112), at iteration index 20, when the kernel width ratio of Pr = Pn/CTn is varied for step sizes 
of fL = 0.1,0.3,0.5,0.7,0.9 using a training block size of T = 256 in conjunction with two different 

user power scenarios of (a) SNR = 10dB and INRi = 10dB for i = 2,3,4,5 and (b) SNR = 13dB and 
INRi = SNR +6dB for i = 2,3,4,5. The corresponding AOA scenario was plotted in Figure 3.18 and 

an AWGN channel was used. 

As a comparison to the performance of the exact MBER for a system employing the two-element 

antenna array portrayed in Figure 3.19, we plotted the BACG BER performance in Figures 3.41 

and 3.42 under the same conditions; (a) the desired user and all the four interfering sources have 

an equal power; (b) all the interfering sources have 6dB higher power than the desired user; (c) the 

desired user and the interfering sources 3,4,5 have an equal power, while the interfering source 2 has 

6dB higher power than the desired user; and (d) the desired user and the interfering sources 2,3,4 

have an equal power, but the interfering source 5 has 6dB higher power than the desired user. In 
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Figure 3.41: BER performance of the BACG algorithm, based on Equation (3.112), under four different 

conditions; (a) SNR = INRi for i = 2,3,4,5, (b) IN~ = SNR +6dB for i = 2,3,4,5, (c) SNR = INRi 
for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR = INRi for i = 2,3,4 and 1NRs = SNR +6dB for 
two-element uniform linear array. The BACG algorithm was using training samples of length T = 256, 
kernel width values of Pn = 0.01,0.1,1, 417n and a step size of j1 = 0.9. These results were recorded for 
transmission over the AWGN channel for five users and the corresponding AOA scenario was plotted 
in Figure 3.18. 
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Figure 3.41 we used a step size of f-L = 0.9 and kernel width of Pn = 0.01,0.1,1, 40"n. It is observed 

in Figure 3.41 that the BACG algorithm is unable to tolerate an inappropriate choice of the kernel 

width value, particularly a value of Pn = 0.01. By contrast, a near-optimum BER performance may be 

observed in Figure 3.41, when using the kernel width values of Pn = 1 and Pn = 40"n. However, for a 

particular scenario of having all the interfering sources' power at a level of 6dB higher than the desired 

user, a significant BER performance degradation has been observed in Figure 3.41 (b). It is seen in 

Figure 3.41 (b) that the BACG algorithm becomes deficient, when using small constant kernel width 

values of Pn = 0.01,0.1. For a variable kernel width value of Pn = 40"n, i.e. for 5.0297 < Pn < 0.2828 

and for SNR values spanning the range of -5 < SNR( dB) < 20, the BER performance of the BACG 

significantly deviates from the exact MBER performance, as the users signal power is increased. Since 

the kernel width value plays an important role in attaining a BER performance that is near to the 

exact MBER solution, we opt for employing the optimal kernel width radius suggested by Silverman's 

rule of thumb, which was given in Equation (3.102). The corresponding BER performance is shown in 

Figure 3.42 in conjunction with training block of lengths of T = 64,128,256. The BER performance 

shown in Figure 3.42 is in good agreement with the exact MBER solution. It is observed that the 

BER performance of the BACG algorithm is nearly identical to that of the exact MBER solution for 

all scenarios considered, except for the particular case of Figure 3.42 (b). It is also seen in Figure 3.42 

that the BER performance improves, as a longer training block is used, especially for SNRs higher 

than 10dB. 

Having characterised the achievable BER performance of the block-data based BACG algorithm, 

let us next study the attainable performance of the stochastic gradient based adaptive MBER algo

rithms of Section 3.4.3, namely that of the Least Bit Error Rate (LBER) and Approximate (ALBER) 

algorithms. 

3.6.2 Stochastic Gradient Based Adaptive MBER Algorithms 

Conditioned on whether the kernel width Pn chosen for the kernel density estimation process is depen

dent or independent of the magnitude of the beamformer's weight vector, we may define two different 

types of sample-by-sample adaptive MBER algorithms, which we referred to as the LBER algorithm 

and ALBER algorithm, respectively. Figures 3.43 and 3.44 present the associated learning curves 

of the sample-by-sample adaptive algorithms of Sections 3.4.3.1 and 3.4.3.2, i.e. those of the LBER 

algorithm and the ALBER algorithm, respectively, under two different conditions. In the first scenario 

all users experience an equal SNR of 10dB, while in the second the SNR of all the interfering users is 

increased by another 6dB with respect to the previously employed SNR = 13dB of the desired user. 

As previously, the initial array weight vector was set to the MMSE solution of WMMSE· 

For the equal-SNR scenario characterised in Figure 3.43 (a), it is observed that the ALBER 

solution has a better convergence rate and settles at a lower steady-state BER value than the LBER 
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Figure 3.42: BER performance of the BACG algorithm, based on Equation (3.112), under four different 

conditions; (a) SNR = INRi for i = 2,3,4,5, (b) INRi = SNR +6dB for i = 2,3,4,5, (c) SNR = 

INRi for i = 3,4,5 and INR2 SNR +6dB and (d) SNR = INRi for i = 2,3,4 and INRs = SNR 
+6dB for two-element uniform linear array. The BACG algorithm was using training samples of 
length T = 64,128,256, optimum kernel width radius Pn according to Silverman's rule of thumb of 
Equation (3.102) and a step size of J..l 0.9. These results were recorded for transmission over the 
AWGN channel for five users and the corresponding AOA scenario was plotted in Figure 3.18. 
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Figure 3.44: Convergence behaviour of two stochastic gradient adaptive MBER algorithms averaged 

over 100 independent simulation runs having SNR = 13dB and INRi = SNR +6dB for i = 2,3,4, 5 
and an initial weight vector of w(O) = WMMSE. For both the LBER and ALBER algorithms we used 

a step size J1 = 0.01 and a kernel width of (a) Pn = 4an = 0.6332 and (b) Pn = 8an = l.2664, where 
a~ 0.025. The BER of the LBER and ALBER algorithms was evaluated based on Equations (3.121) 
and (3.129), respectively. The corresponding AOA scenario was plotted in Figure 3.18 and an AWGN 

channel was used. 
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algorithm, despite the fact that the former has a lower computational complexity. As the kernel width 

is increased to Pn = 6an , as seen in Figure 3.43 (b), the convergence rate of both algorithms becomes 

slower, especially for the ALBER algorithm. It is observed in Figure 3.43 (b) that the LBER algorithm 

converges faster than the ALBER algorithm, but it settles at a higher steady-state BER value. The 

BER versus iteration index curves of the algorithms cross each other around the iteration index of 

400. Note that both the LBER and ALBER curves of Figure 3.43 (b) fluctuate somewhat more widely 

than the corresponding curves of Figure 3.43 (a). The BER fluctuations of the ALBER algorithm 

are more visible during the transient period, while for the LBER algorithm the BER versus iteration 

index curve slightly fluctuates across the entire observation interval, although upon approaching the 

steady state BER the fluctuations become more moderate. This phenomenon is more obvious for the 

unequal-power user scenario of Figure 3.44, where it may be observed that the BER of the ALBER 

algorithm continues to slightly undulate after approaching the steady state BER. It is observed from 

Figure 3.44 (b) that although the ALBER algorithm converges earlier, namely after approximately 

300 iterations, it finally settles at a similar BER value of BER = 10-4.2 ~ 6.31 . 10-5 to that of 

the LBER algorithm. The performance of both the LBER and ALBER algorithms characterised in 

Figure 3.44 is less impressive than one might expect, since in Figure 3.44 (a) both curves exhibit a 

slow convergence, while in Figure 3.44 (b) the algorithm's achievable BER is still substantially higher 

than that of the exact MBER solution. 

As in the context of the BACG algorithm of Section 3.4.2, the specific choice of the parameters f.-L 

and Pn is also important in the context of the LBER and ALBER algorithms of Sections 3.4.3.1 and 

3.4.3.2, respectively. Figures 3.45, 3.46, 3.47 and 3.48 demonstrate the effects of varying these two 

parameters. 

For the LBER algorithm of Section 3.4.3.1 invoked in an equal-power user scenario, it can be seen 

from Figures 3.45 (a) and 3.45 (b) that using a small step size of 0.05 < f.-L < 0.1 is necessary for the 

sake of attaining a rapid convergence, provided that the associated kernel width Pn is not too small, 

i.e. when we have 2crn < Pn < 4an. A smaller step size of f.-L :::; 0.01 results in a slow convergence, 

although a good steady state BER value may be achieved, when using a kernel width of 4crn , as shown 

in Figure 3.45 (b). Figure 3.46 (a) portrays the convergence behaviour of the LBER algorithm for a step 

size of f.-L = 0.05, employing kernel widths of Pn = 0.7an , 2crn , 4an . Note in Figure 3.45 (b) that when 

using a kernel width of Pn = 4crn and a step size of f.-L = 0.05, the LBER algorithm converges after about 

400 iterations, but it exhibits BER fluctuations. This may be engendered by the fact that the LBER 

algorithm fails to approach the exact minimum BER value and also a consequence of its sensitivity 

to the choice of the algorithmic parameters f.-L and Pn. Observe in Figures 3.45 (a) and 3.45 (b) that 

for step size values of f.-L = 0.05 and f.-L = 0.1, the fluctuations of the LBER algorithm's BER curve 

become more substantial as the kernel width Pn is increased from Pn = 2crn to Pn = 4an. Increasing 

the step size beyond f.-L = 0.1 will produce more dramatic fluctuations, as shown in Figure 3.45 (b). 

For a smaller step size of f.-L = 0.01 it is observed in Figure 3.46 (b) that the range of kernel width 



3.6.2. Stochastic Gradient Based Adaptive MBER Algorithms 161 

-3,---------------------~--~ -3,---------------------,-----

MMSE 
--< /FD.OOl 
-FO.O! 

fIr=-=-::,-------------------- IF 0.05 

- _. IF 0.001 
-FO.OJ 

k---------------------i /FO.OS 
MMSE 

-4 
-FO.I - FO.I 

MBER 

_7L-------------------------~ _7L---------~----------~--~ 
o 200 400 600 800 1000 o 200 400 600 800 1000 

Iteration index Iteration index 
(a) pn = 2un = O.4472(LBER) (b) pn = 40'n = O.S944(LBER) 

-3 

i,~V~ il __ 0 }-t=O.OOI 

II MMSE FO.D! 

ljiI I II pOos 

1" ' II 
- p=os 

rr-
II -- p= 1 0 

A ,Y~r~l I 

I -"",,- ~ 
i~"-~" ""'-~ I '-, ~ , ,-\ t ....... ~ ... '"~ ... _ L""",-J'""',,,J l. __ ,......,..-:'I...' __ J'L 

.y,," --1---h: 
~~~r..w~v~~~ 

-3~--------------------r_--__, 

-4 -4 

-6 

MBER MBER 

-7 
o 200 400 600 800 1000 

_7L---------------~--------~ 
a 200 400 600 800 1000 

Iteration index Iteration index 
(c) pn = 20'n = 0.4472(ALBER) (d) pn = 40'n = O.S944(ALBER) 

Figure 3.45: Convergence behaviour of two stochastic gradient adaptive MBER algorithms averaged 

over 100 independent simulation runs having SNR = lOdB and IN~ = 10dB for i = 2,3,4,5 and 

an initial weight vector of w(O) = WMMSE. For the LBER algorithm we used step sizes of f-L = 

0.001, 0.01, 0.05, 0.1 and a kernel width of (a) Pn = 20'n = 0.4472 and (b) Pn = 40'n = 0.8944. 
For the ALBER algorithm we used step sizes of f-L = 0.001, 0.01, 0.05, 0.5,1.0 and a kernel width of 

(c) Pn = 20'n = 0.4472 and (d) Pn = 40'n = 0.8944. The BER of the LBER and ALBER algorithms 
was evaluated based on Equations (3.121) and (3.129), respectively. The associated AOA scenario was 

plotted in Figure 3.18 and an AWGN channel was used. 

values Pn has now been changed to 40'n < Pn < 60'n. This new kernel width range however imposed a 

slower convergence rate on the LBER algorithm's BER curve, which is associated with a slightly higher 

steady-state BER value, than that associated with the parameters' optimum range of 0.05 < f-L < 0.1 

and 20'n < Pn < 40'n. 

On the other hand, Figures 3.47 (a), 3.47 (b), 3.48 (a) and 3.48 (b) show the convergence behaviour 

of the LBER algorithm for the unequal signal power scenario, where we have SNR = 13dB and all four 

interfering users have a 6dB higher signal power, i.e. we have INRi = SNR + 6dB for i = 2,3,4,5. In 

comparison to the equal-power user scenario of Figure 3.45, the BER curves of Figure 3.47 fluctuate 

more dramatically. It is explicit in both Figures 3.47 (a) and 3.47 (b) that the LBER algorithm 

requires a step size of f-L = 0.01 for the sake of attaining both a rapid convergence and a less erratically 

fluctuating BER curve. It is also observed from Figure 3.48 (a) that for this particular step size of 

f-L = 0.01, the LBER algorithm's sensitivity to the specific choice of the kernel width Pn has been 

reduced, i.e. we have 20'n < Pn < 100'n. More smooth BER curves may be obtained by using a step 
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Figure 3.46: Convergence behaviour of two stochastic gradient adaptive MBER algorithms aver

aged over 100 independent simulation runs having SNR = 10dB and INRi = 10dB for i = 2,3,4,5 
and an initial weight vector of w(O) = WMMSE. For the LBER algorithm we used kernel widths 

of Pn = 0.7(Tn, 2 (Tn , 4(Tn with a step size of f-l = 0.05 in subfigure (a) and kernel widths of 

Pn 0.7(Tn, 2 (Tn , 4(Tn, 6 (Tn , 8(Tn with a step size of f-l = 0.01 in subfigure (b). For the ALBER algorithm 

we used kernel widths of Pn = 0.7 (Tn, 2 (Tn , 4(Tn, 6 (Tn , 8(Tn for a step size of (c) f-l = 0.05 and (d) f-l = 0.01. 
The BER of the LBER and ALBER algorithms was evaluated based on Equations (3.121) and (3.129), 

respectively. The associated AOA scenario was plotted in Figure 3.18 and an AWGN channel was 
used. 

size of f-l = 0.001, although the attainable BER performance verges on the unacceptable, since the 

associated convergence rate is too slow. 

Let us now focus our attention on the Approximate LBER (ALBER) algorithm characterised in 

Figures 3.45 and 3.46, as well as in Figures 3.47 and 3.48 for equal-power users and unequal-power 

users, respectively. We observe in Figures 3.46 (c) and 3.46 (d) that the BER curve of the ALBER 

algorithm generated for the equal-power users tends to fluctuate during the transient period. After 

approaching the steady state BER value, we observe that the BER fluctuations had disappeared, 

resulting in a fairly smooth BER curve. Observe in Figures 3.46 (c) and 3.46 (d) that for scenarios 

having a kernel width of Pn = 2 (Tn , 4(Tn, 6(Tn as well as Pn = 2 (Tn , 4an and for the particular step 

sizes of f-l = 0.05 as well as f-l = 0.01, respectively, the achievable BER is lower than that of the 

corresponding LBER algorithm, in addition to the benefit of attaining a convergence at approximately 

200 and 400 iterations. More explicitly, these convergence periods are shorter than those needed by 
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Figure 3.47: Convergence behaviour of two stochastic gradient adaptive MBER algorithms averaged 

over 100 independent simulation runs having SNR = 13dB and INRi = SNR +6dB for i = 2,3,4,5 
and an initial weight vector of w(O) = WMMSE. For the LBER algorithm we used step sizes of 

f-L = 0.001,0.01,0.05 and a kernel width of (a) Pn = 4(}n = 0.6332 and (b) Pn = 10(}n = 1.583. For the 
ALBER algorithm we used step sizes of f-L = 0.001,0.01,0.1 and a kernel width of (c) Pn = 4(}n = 0.6332 
and (d) Pn = 10(}n = 1.583. The BER of the LBER and ALBER algorithms was evaluated based 

on Equations (3.121) and (3.129), respectively. The corresponding AOA scenario was plotted in 

Figure 3.18 and an AWGN channel was used. 

the corresponding LBER algorithm, as shown in Figures 3.46 (a) and 3.46 (b), respectively. For the 

particular kernel width of Pn 4(}n invoked in Figure 3.45 (d) the ALBER algorithm was found to 

be less sensitive to the variation of the step size f-L, provided that the step size is in the range of 

0.01 < f-L < 1.0. However, for the sake of achieving a rapid convergence within less than 200 iterations, 

the employment of a step size range of 0.01 « f-L < 1.0 is recommended. Having too large a step size 

for the ALBER algorithm may result in the algorithm settling at a higher steady state BER value, 

as suggested by the curves of Figure 3.45 (c) associated with f-L = 0.5 and f-L = 1.0, especially if small 

kernel width, such as Pn ~ 2(}n is used. 

Figures 3.47 and 3.48 also show the achievable performance of the ALBER algorithm for the 

unequal-power user scenario, i.e. when all interfering users' signals arrive at 6dB higher power than 

that of the desired user, who has an SNR of 13dB. We observed in Figure 3.47 (c) that the ALBER 

algorithm is becoming more sensitive to the choice of the step size f-L. Too small a step size, such as 

f-L = 0.001 results in a slow convergence, while a larger step size of f-L = 0.1 may result in instability 
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Figure 3.48: Convergence behaviour of two stochastic gradient adaptive MBER algorithms averaged 
over 100 independent simulation runs having SNR = 13dB and INRi = SNR +6dB for i = 2,3,4, 5 

and an initial weight vector of w(O) = WMMSE. For the LBER algorithm we used kernel widths 

of Pn = 0.7iTn , 2iTn , 4iTn , 6iTn, 8iTn , 10iTn and a step size of (a) /-l = 0.01 and (b) /-l = 0.001. For 
the ALBER algorithm we used kernel widths of Pn = 0.5iTn , iTn , 20'n, 4iTn , 6iTn and a step size of 

(c) /-l = 0.01 and (d) /-l = 0.001. The BER of the LBER and ALBER algorithms was evaluated 
based on Equations (3.121) and (3.129), respectively. The corresponding AOA scenario was plotted 

in Figure 3.18 and an AWGN channel was used. 

of the ALBER algorithm, potentially perturbing its ability to converge to a steady state BER value. 

The best option is to use the step size of /-l = 0.01, since it allows its convergence towards a lower 

BER value, but it may require an excessive number of iterations to arrive at a steady state. For 

larger kernel width values, such as Pn = 10iTn, a slightly larger step size than /-l = 0.01 is required for 

achieving a better steady state BER value, as exemplified by Figure 3.47 (d). These observations are 

further evidenced by the corresponding BER curves of the ALBER algorithm portrayed in Figure 3.48. 

Figure 3.48 (d) shows that for a step size of /-l = 0.001 the kernel width value range of iTn :::; Pn < 4iTn 

is acceptable, while for the step size of /-l = 0.01 used in Figure 3.48 (c) the acceptable range was 

4iTn < Pn < 6iTn . 

We observe in all scenarios investigated in conjunction with the equal-power users of Figures 3.43, 

3.45 and 3.46, that the ALBER algorithm generally performs better or at least as well as the LBER 

algorithm in terms of both the attainable convergence rate and the achievable steady state BER 

value, despite its low complexity. We infer based on all plots seen in Figures 3.45, 3.46, 3.47 and 
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Condition SNR = lOdB and INRi = 10dB SNR = 13dB and IN~ = SNR +6dB 
(un = VO.05) (un = VO.025) 

Adaptive algorithm step size p, kernel width Pn step size p, kernel width Pn 

LBER 0.05 < p, < 0.1 2un < Pn < 4un p, = 0.01 2un < Pn < lOan 
ALBER 0.01 « p, < 1.0 2un < Pn < 6un 0.001 < p, « 0.01 Un ::; Pn < 4an 
BACG p, 2: 0.5 2un < Pn ::; 7un p, 2: 0.5 2.5un ::; Pn ::; 3.5un 

Table 3.7: Acceptable range of values for step size p, and kernel width radius Pn of LBER, ALBER and 

BACG algorithms of Sections 3.4.3.1, 3.4.3.2 and 3.4.2, respectively, for equal-power users of SNR = 

lOdB (i.e. Un = VO.05) and INRi = 10dB and unequal-power users of SNR = 13dB (i.e. Un = JO.025) 

and INRi = SNR +6dB for i = 2,3,4,5. The corresponding AOA scenario was plotted in Figure 3.18 
and an AWGN channel was used. 

3.48 that regardless of the steady state BER value the choice of a particular step size mainly affects 

the convergence rate of the algorithms. The LBER algorithm appears to perform best, when using a 

step size from the range of 0.05 < p, < 0.1 and p, = 0.01 for the equal-power and unequal-power user 

scenarios, respectively, provided that it is accompanied by a suitable kernel width, perhaps values of 

2un < Pn < 4un for the equal-power user scenario and 2un < Pn < lOan for the unequal-power user 

scenario. By contrast, for the ALBER algorithm employed for detecting equal-power users, a pair 

of the adaptive parameters p, and Pn residing in the range of 0.01 « p, < 1.0 and 2un < Pn < 6un 

is recommended. For the associated unequal-power users, we suggest to use a small step size of 

0.001 < p, « 0.01 and a kernel width value within the range of Un :::; Pn < 4un , for the sake of 

attaining the best possible performance, both in terms of the achievable convergence rate and the 

steady state BER value. Table 3.7 summarises the acceptable ranges of the adaptive parameters p, 

and Pn of the LBER and ALBER algorithms, including also the block-data based BACG algorithm. 

For the sake of comparing the BER performance of the stochastic gradient based adaptive MBER 

algorithms to that of the block-data based BACG algorithm, we plotted the ALBER algorithm's 

BER performance in Figure 3.49 as a function of the users' signal power spanning the range of -5 ::; 

SNR( dB) ::; 20, under the same conditions as those used for Figure 3.41. However, for the ALBER 

algorithm of Figure 3.49 we use a step size of p, = 0.05 instead. Similar to the BACG algorithm's 

performance portrayed in Figure 3.41, it is observed in Figures 3.49 (b) and 3.49 (d) that the ALBER 

algorithm is also deficient in conjunction with a small kernel width value of Pn = 0.01. However, 

for the other conditions considered, the ALBER algorithm generally performs better than the BACG 

algorithm of Figure 3.41. Note that increasing the kernel width values does not necessarily increase the 

associated BER performance of the ALBER algorithm. Specifically, kernel width values of Pn = 1,4un 

perform best for equal-power users and for the INR2 = SNR +6dB conditions of Figures 3.49 (a) and 

3.49 (c), respectively. By contrast, the kernel width value of Pn = 0.1 performs best for unequal-power 

users associated with INRi = SNR +6dB for i = 2,3,4,5 as well as INR5 = SNR +6dB, as seen in 

Figures 3.49 (b) and 3.49 (d), respectively. 
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Figure 3.49: BER performance of the ALBER algorithm, based on Equation (3.129), under four 

different conditions; (a) SNR = INRi for i = 2,3,4,5, (b) INRi = SNR +6dB for i = 2,3,4,5, (c) SNR 

IN~ for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR = IN~ for i = 2,3,4 and INR5 = SNR 
+6dB for two-element uniform linear array. The ALBER algorithm was using kernel width values of 

Pn = 0.01,0.1,1, 4iTn and a step size of fL = 0.05. These results were recorded for transmission over 
the AWGN channel for five users and the corresponding AOA scenario was plotted in Figure 3.18. 
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3.7 Conclusions 

An adaptive MBER beamforming technique has been developed. As opposed to the closed-form solu

tion of the MMSE approach characterised in Equation (3.25), the beamformer's weight values based 

on the MBER criterion may be obtained using the simplified conjugate gradient algorithm, as out

lined in Equations (3.93) to (3.96) in conjunction with the BER gradient of 'VwPE(W) expressed in 

Equation (3.89). Assuming a perfect knowledge of all system parameters for the sake of obtaining this 

optimum solution is impractical in realistic situations. Therefore a number of adaptive MBER beam

forming algorithms were introduced. In obtaining the adaptive MBER algorithms, a PDF estimate 

using Parzen's [224J kernel density estimator of Equation (3.100), which was outlined in Section 3.4.1 

was derived. 

In addition to the theoretical MBER beamforming solution, the performance of the various adaptive 

versions of the MBER-based beamforming algorithms was characterised. Specifically, the block-data 

based adaptive algorithm known as the Block Adaptive Conjugate Gradient (BACG) algorithm of 

Section 3.4.2 and the stochastic gradient based adaptive algorithms, which include the Least Bit 

Error Rate (LBER) and the Approximate LBER (ALBER) algorithms of Sections 3.4.3.1 and 3.4.3.2, 

respectively, were characterised in Section 3.6, in terms of their achievable convergence rate, while also 

quantifying their ability to converge to a BER close to that of the ideal MBER solution. 

It has been shown in Figures 3.7 to 3.11 that the MBER beamforming solution has an advantage 

over the MMSE beamforming solution. It was observed in Figures 3.19 and 3.20 that the MBER op

timisation criterion is superior to the more commonly used MMSE optimisation criterion. Figure 3.21 

has shown that the MBER solution always requires a lower desired user signal power than that neces

sitated by the MMSE solution for the sake of achieving a particular BER, especially when the angular 

separation between the desired user and the nearest interfering source is small. Explicitly, as shown 

in Figure 3.21 (b), this happens when the angular separation is in the ranges of 60° :S /82 - 83 / :S 100° 

and 250° :S /82 - 83 / :S 270°. A low angular separation of 5° between the desired user and the closest 

interfering user may be observed in Figure 3.33 (a), when six users are supported by a four-element an

tenna array. Furthermore, Figure 3.22 shows that the MBER solution has a better near-far resistance 

than the MMSE solution. We also observed in Figures 3.31 (a) and 3.31 (b) that the MBER solution 

is more robust to 'array-overloading', when the number of users supported is higher than the number 

of array elements. The MMSE beamformer exhibited a high BER fioor, when more than six users 

were supported. On the other hand, the MBER beamformer was capable of maintaining a BER as low 

as 10-5 , even when supporting nine users, each having a SNR of 20dB. The philosophical differences 

between the MMSE and MBER approach in optimising the beamformer's weights may be visualised 

with the aid of Figures 3.1, 3.27 and 3.34. Given that the desired user always transmits b1 = +1, 

it becomes explicit from Figure 3.34 that whilst the MMSE solution attempts to adjust the weights 

for the sake of positioning the output phasors as close to ±1 as possible, the MBER beamformer 
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maximises the distance of all phasor points from YR = 0, concentrating on minimising the BER. 

The conditional probability density function (PDF) p(YR) of Equation (3.59) plays an important 

role in analysing the performance of the MBER algorithm, since the probability of error FE(w(n)) 

expressed in Equation (3.61) is associated with the specified area under the PDF curve. Furthermore, 

the shape of the PDF provides an indication of the expected BER performance gap between the 

MMSE and MBER beamforming solutions. Explicitly, the MMSE solution would perform best, when 

the PDF of the beamformer's output is Gaussian-like. By contrast, the MBER algorithm performs 

best, when the PDF of the beamformer's output is non-Gaussian. For the Gaussian-like PDF shown 

for the two-user scenario of Figures 3.13 and 3.14, the associated BER performance difference would 

be minimal, but nonetheless the MBER beamformer always outperform the MMSE scheme. 

In the context of the MBER beamformer's adaptive implementations, the BACG algorithm of 

Section 3.4.2 has been shown to converge rapidly, while requiring a reasonably small training block size 

for accurately approximating the theoretical MBER solution. An appropriate choice of the adaptive 

parameters is necessary, especially for the kernel width values, which has a significant effect on the 

attainable performance of the BACG algorithm. The appropriate kernel width however lies within a 

particular range of values, whose impact on the BACG algorithm's performance would be minimal. 

Observations inferred from Figures 3.38, 3.39 and 3.40 suggest that a sufficiently larger step size of 

f-l ~ 0.5 invoked in conjunction with a moderate kernel width value spanning the range of 20"n < Pn < 
70"n and 2.50"n :::; Pn :::; 3.50"n for the equal-power and unequal-power user scenario, respectively, for the 

sake of obtaining a near-optimum steady state BER value results in rapid convergence. In comparison 

to the exact MBER performance of Figure 3.19 for a two-element antenna array, Figure 3.41 shows 

further that the BACG algorithm's performance is dependent on the kernel width values. For the 

sake of improving the BACG performance, the Silverman's rule of thumb given in Equation (3.102) 

may be employed for estimating an optimal kernel width value, provided that a suitable step size is 

used. The corresponding BER performance of BACG algorithm portrayed in Figure 3.42 shows a 

nearly identical BER performance to that of the exact MBER solution for all scenarios, except for the 

most difficult situation of receiving all interfering users at a level of 6dB higher signal power than the 

desired user. As the training block length is increased, small improvement on the BER performance 

has been observed. 

The convergence behaviour of the sample-by-sample based LBER and ALBER algorithms was 

portrayed in Figures 3.43 to 3.48. From our observations based on the equal-power user scenario of 

the LBER algorithm characterised in Figures 3.43, 3.45 and 3.46, we would suggest that a good choice 

of the adaptive parameters f-l and Pn resides within the range of 0.05 < f-l < 0.1 and 20"n < Pn < 40"n, 

respectively. On the other hand, the ALBER algorithm requires a different range, where the step size 

f-l is within the range of 0.01 « f-l < 1.0, while it tolerates a wider span of kernel width values chosen 

from the range of 20"n < Pn < 60"n. Comparing Figure 3.45 (d) characterising the ALBER algorithm 
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to Figure 3.45 (b) related to the LBER algorithm, it is seen that the ALBER algorithm is generally 

insensitive to the specific choice of the step size J1, while for the LBER algorithm it is not possible to 

tolerate a larger step size of J1 2:: 0.1, as this will produce more frequent and larger BER spikes than 

those shown in Figure 3.45 (b). For the unequal-power user scenario the achievable performance shown 

in Figures 3.44, 3.47 and 3.48, both the LBER and ALBER algorithms were found to be sensitive 

to the choice of the step size J1, especially when its value was high. Although the LBER algorithm 

may tolerate a wider range of kernel width values of 2an < Pn < lOan, a good balance between the 

attainable convergence rate and the steady state BER value is only achievable, when the step size 

of J1 = 0.01 is used. It was also observed in Figure 3.47 (c) that the ALBER algorithm requires a 

much smaller step size of 0.001 < J1 < 0.01 in the unequal-power scenario, which is in contrast to 

the equal-power user scenario of Figure 3.45 (d) that requires step size of J1 »0.01. In a number 

of scenarios, the steady state BER value of the ALBER algorithm was found to be better than that 

of the LBER scheme, as suggested by Figures 3.43, 3.44 (a), 3.45 and 3.46. We may conclude from 

our observations that the ALBER algorithm of Section 3.4.3.2, whose complexity is of similar order 

to that of the simple LMS algorithm of Section 2.4.1.1 is capable of performing well in approximating 

the ideal MBER solution in conjunction with appropriate values of the step size J1 and kernel width 

Pn, may perform better than the LBER algorithm. Table 3.7 summarised the acceptable range of the 

step size J1 and kernel width Pn values for the equal-power users as well as for the unequal-power users 

scenario. Similar to Figure 3.41 of the BACG algorithm the ALBER algorithm also shows that its 

performance depends on the kernel width value used, as observed from Figure 3.49. However, both 

BACG and ALBER algorithms have their own acceptable range of kernel width values Pn and their 

performance is always worst for condition (b) of Figures 3.41 and 3.49, respectively. 

In addition to finding the suitable range of the adaptive parameters J1 and Pn, we are also concerned 

with expediting the convergence of this stochastic gradient algorithm, while achieving a BER as near 

the exact MBER solution as possible. An attractive approach is to employ a genetic algorithm in 

assisting our search for a good balance between the step size J1 and kernel width Pn and also for good 

initial weights for the weight adaptation, as it will be presented in Chapter 4. 



Chapter 4 

Genetic Algorithm-Assisted MBER 

Beamforming2 

4.1 Introduction 

In contrast to the multi-dimensional paraboloid-shaped error surface of the Minimum Mean Square Er

ror (MMSE) beamformer, the function describing the Bit Error Ratio (BER) surface of a beamformer 

as a function of the array-weights is highly nonlinear and has numerous local minima, as shown earlier 

in Figure 3.3. More explicitly, the BER surface is unlikely to be that of a unimodal function, where 

we will have only a single minimum point, instead it contains an unknown number of local minima. In 

Chapter 3 we solved this complex optimisation problem by employing the stochastic gradient based 

algorithm [155]. This algorithm however requires an appropriate set of initial array weight values 

and the adjustment of several adaptation parameters, which have to be carefully chosen in order to 

approach the optimum performance instead of a sub-optimum performance due to getting trapped in 

a local minimum. 

In order to counteract the problems imposed by both the irregular BER surface and the initialisation

dependent final solution when using the conjugate gradient algorithm, in this chapter we invoke Genetic 

Algorithms (GAs) as a means of obtaining the array weights. The family of GAs has also been shown 

to be successful in the context of multiuser detection (MUD) in [227-229]. As pointed out in [230-232]' 

GAs are capable of circumventing the above-mentioned potential local minima problems and can be 

randomly initialised. Thus here we embark on investigating, whether they are capable of overcoming 

the above-mentioned weaknesses of the gradient based algorithms. Since GAs were detailed in [15,230]' 

in this chapter we will directly invoke them for finding the array weight values that minimise the BER 

at the beamformer's output, resulting in the MBER solution. Main contributions in the field of using 

GAs for solving multiuser detection problem is summarised on Table 4.1 [202]. 

2This chapter is based on collaboration with the coauthors of [157]. 

170 



4.1. Introduction 171 

I Year I Author Contri bu tion 

'75 Holland [233] Originally proposed GAs for studying the adaptive process 
of natural evolution in an artificial system software. 

'89 Goldberg [230] Goldberg further developed GAs in the context of optimisa-
tion and machine learning. 

'96 Mitchell [232] A further advancement of GAs in machine learning. 

'97 Juntti, Schlosser and First known study of the application of GAs in MUDs. 

Lilleberg [234] 

'98 Wang, Lu and Anto- Proposed a detector for multiuser communications, which is 

niou [235] based on the maximum-likelihood decision rule and employs 

a G A for detecting the user bits sequentially. 

'00 Ergun and Ha- Suggested a hybrid approach that combines GAs with a mul-

cioglu [236] tistage multiuser detector (MSD) in the context of a CDMA 

system. 

'01 Yen and Hanzo [228] Employed a novel CDMA multiuser receiver based on GAs, 
for jointly estimating the transmitted symbols and the fad-

ing channel coefficients of all users. 

'01 Abedi and Tafa- Proposed and characterised a genetic implementation of the 

zolli [237] optimal MUD. 

'02 Ng, Yen and Advocated a turbo trellis coded modulation assisted GA-

Hanzo [238] aided reduced complexity MUD (TTCM-GA-MUD) that is 
capable of providing a considerable coding gain without any 

bandwidth expansion, while maintaining a low complexity 

compared to the optimum MUD. 

'02 Chiang and Chang [239] Improved the G A and MSD using eugenic3 population. 

'03 Shayesteh, Menhaj and Proposed a modified genetic algorithm for multiuser detec-

Nobary [240] tion in DSjCDMA systems, which attains a performance 

comparable to that of the optimum detector with a lower 
complexity. 

'03 Yen and Hanzo [241] Advocated a spatial diversity reception assisted CDMA mul-

tiuser detector based on GAs. 

'03 Du and Chan [242] Invoked a GA for sub-optimal detection in space-time block 

coding (STBC) aided multiuser detection systems. 

'04 Wolfgang, Ahmad, Introduced a novel GA assisted Minimum Bit Error Ra-
Chen and Hanzo [157] tio (MBER) beamforming technique. 

'04 Alias, Chen and Employing GA to solve for the MUD's weight of an SDMA 
Hanzo [243] OFDM system based on the MBER criterion. 

Table 4.1: Contributions towards the development of GA-aided MUDs [202]. 
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We commence in Section 4.2 by introducing the fundamental concepts of GAs and by defining 

some of the terminology or procedures involved in a typical GA cycle. In Section 4.3 we will present 

the specific GA configuration, that will be used in our investigations. This will then be followed in 

Section 4.4 by our simulation results using both the true and the estimated bit error probability of 

Equations (4.11) and (4.15), respectively. Our conclusions are provided in Section 4.5. 

4.2 Fundamental Concepts and Basic Procedures of Genetic Algo

rithms 

Genetic algorithms constitute an optimisation technique based on the 'survival of the fittest' paradigm 

found in nature [230J. They commence their search from a large population of randomly generated 

potential solutions, which are simulated and ranked based on their 'fitness', i.e. how well they perform 

a given task. It is not guaranteed that a perfect solution for the particular application concerned will 

be produced, but statistically speaking, some will perform better than others. These 'high performers' 

will have higher fitness values than their peers and will therefore have more chances of being selected 

for the production of future solutions. The main philosophy is that by exchanging information between 

two good solutions, a better solution may be produced. This evolutionary process is carried out for 

many generations, until a solution that meets the requirement of a particular application or termination 

criterion is achieved [244J. 

The flowchart of Figure 4.1 provides an overview of the sequence of operations encountered in 

a typical genetic algorithm. In order to solve a specific problem, we first have to decide on several 

parameters and variables that will control the algorithm. Firstly, in the context of our beamforming 

problem a quantised version of all possible array weight solutions must be generated. Furthermore, 

a termination criterion has to be chosen, which must be related to the accuracy of the final array 

weight vector solution. Having initialised the algorithm, the GA's search operations commence with 

the generation of an initial population of P solutions, which are referred to in GA parlance as 

individuals. Given this initial population, the generation index 9 = 1 denotes the first of the total 

of G number of generations. We refer to P as the population size. This initial population may be 

generated randomly, although if some knowledge concerning the optimum solution is known a priori, 

it can be exploited in this initial population for expediting the search. The product of P and G 

determines the complexity of the optimisation procedure and given a fixed product, different P and 

G combination may result in dramatically different solutions. 

Instead of keeping the population size to a constant P throughout the consecutive generations, it 

3Unlike the elitist selection which ensures only the fittest member of the parents population is kept in the next 
generation, the eugenic GA combines both offspring and old population into union population. Then, the fitness values 
of all the elements in the union population are evaluated and the better chromosomes are selected to produce the eugenic 
population. 
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Figure 4.1: Flowchart of a genetic algorithm cycle. 
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may be reduced to T < P, as the generation index 9 is increasing. Fundamentally, there is no particular 

reason to keep the population size constant, except for reasons of simplicity. In the GA's population, 

each individual can be regarded as a string, such as the B-bit vector portrayed in Figure 4.2, whose 

elements are the decision variables to be optimised. Commonly the vector is in the form of binary 

bits, thus if the decision variables are not binary in nature, they have to be discretised and encoded 

to a bit vector. Upon completing the search the optimum B-bit vector will be decoded to its original 

form in order to obtain the final optimised solution. However, it is also possible to directly optimised 

real-valued variables, which is more convenient in some applications. Furthermore, real-valued GAs 

exhibit an increased complexity [230]. 

One of the most important aspects in the design of GA-based optimisation is the choice of the 
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Figure 4.2: A B-bit vector representing an individual. For population of size P, there will be P 
number of this vector. 

fitness measure or the GA cost function, which we always referred to as the fitness function. The 

merits of each individual will be evaluated and a corresponding fitness value is assigned that reflects 

how meritorious this individual is in terms of the corresponding beamforming objective function value, 

such as the Minimum Bit Error Ratio (MBER) in our case. The corresponding fitness is compared 

to that of the others in the population. In each generation, a new population will be generated by 

selecting several individuals based on their merit or fitness value. It is the fitness function that will be 

optimised during the process of finding the best solution. The fitness value is evaluated by substituting 

the candidate solution represented by the individual under consideration into the objective function. 

It is a common practice to normalise the fitness value such that it assumes values spanning the range 

of zero to unity. The GA's cycle proceeds by comparing for example the fitness of all individuals to a 

defined termination criterion. If the termination condition is met, be it satisfying the fitness threshold 

or the maximum number of generations allowed, a solution is considered found and the search will be 

concluded. Otherwise, the GA-based reproduction of individuals continues using one of the GA-based 

selection methods available and this is then followed by the so-called crossover and mutation processes, 

before the fitness evaluation procedure is applied again. 

Having briefly introduced the philosophy of a genetic algorithmic cycle, in the next section we will 

further detail the basic processes involved. As shown in the GA cycle of Figure 4.1, the process of 

selection, crossover and mutation will be detailed in Sections 4.2.1, 4.2.2 and 4.2.3, respectively. 

4.2.1 Selection 

The creation of a new generation of the GA commences with the process of reproduction or selection. 

Selection constitutes a particular way of creating the next generation of the population, i.e. a new set 

of individuals. In the selection process, the fitness of each individual plays an important role, since the 

GA chooses T number of individuals having the highest fitness value for the next generation, where 

T may range from 2 to P. 

A commonly used selection method is referred to as fitness-proportionate selection [230], where 

the probability Pp of selecting the pth individual for creating the next generation is proportional to 

the ratio of its fitness value jp to the total fitness value of all the T number of selected individual, 
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Figure 4.3: An example of fitness-proportionate or roulette-wheel based selection in a GA having a 

population of P = 4 individuals. 

which is expressed as: 

Pp = (4.1 ) 

This selection approach may be implemented using the so-called roulette-wheel sampling [230], whereby 

each individual is allocated a slice of a circular roulette-wheel, proportional in area to the individual's 

probability of selection [245], i.e. its fitness. For a population size of T = P = 4 this procedure is 

exemplified in Figure 4.3, where we selected four individuals for the next generation by spinning the 

weighted roulette-wheel four times. As expected, a highly fit individual will have a higher probability 

of being selected, since it was assigned a higher fraction of the wheel. The second individual involved 

in this example has the highest fitness ratio, which covers 50% of the roulette-wheel, therefore each 

spin returns that particular individual (p = 2) with a probability of 0.5. Each time we require another 

offspring of the previous generation for creating the new generation, a simple spin of the weighted 

roulette-wheel yields the selected candidate. In this way, the more fit individuals have a higher num

ber of offspring in the succeeding generation. Once an individual was selected, a copy of its string 

represented by the B-bit vector of Figure 4.2 is entered into a so-called mating pool constituted by a 

tentative new population for further genetic operations. 

Apart from being the simplest and hence the most straightforward to implement, roulette-wheel 

based selection favours the highly fit individuals, which allows the GA to converge faster to a near

optimum solution [246]. However, a specific disadvantage offast convergence is that it might discourage 

the exploration of the entire search space. We refer to this phenomenon as 'premature convergence', 

where the highly fit individuals dominate the population. In order to prevent the predominance of 

this premature convergence, in certain applications roulette-wheel based selection is only used at a 

later stage of the optimisation process. 
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Apart from roulette-wheel based selection, there are numerous other ways of selecting individuals 

for creating a new generation. For example, the stochastic remainder sampling with replacement 

[230,232] or the tournament selection [230,232] schemes may be invoked for biasing the population 

towards the best individuals. The principle of the stochastic remainder sampling combined with 

replacement [230] is that each individual is reproduced using the integer part of the expected number 

of individuals ep , calculated according to: 

ep = ~ . T = Pp . T, 
L:p jp 

(4.2) 

where T is the total number of individuals to be selected for the next generation and Pp is the 

probability of selection, similar to that expressed in Equation (4.1). The fraction part of ep will 

be used as the weight, i.e. as the direct probability of selection of an individual p on the roulette

wheel. The number of spins made will depend on the balance of individuals needed to complete the 

T-individual population. This technique combines the deterministic and stochastic approaches, while 

the earlier fitness-proportionate selection is entirely based on using the stochastic approach. On the 

other hand, the tournament selection scheme operates by randomly choosing N individuals from the 

population and copying the best individual of the selected N -individual group into the new population. 

This process is repeated T times. An illustration of the tournament selection procedure is given in 

Figure 4.4. 

~t 
N =4 

A B C 

D E F B D 

G H I F G 

t 
f best (1) = D 

repeat T-1 times 

f best (T) 

Figure 4.4: An example oftournament selection in a GA having a tournament size of N = 4 individuals. 

All the selection schemes mentioned can be considered as methods of defining the individual's 

merit, i.e. the probability of producing offspring. The selection process however does not change any 

features of the individuals. Let us now proceed by considering the next procedure in the genetic 

algorithm's cycle seen in Figure 4.1, which is termed as 'crossover'. 



4.2.2. Crossover 177 

4.2.2 Crossover 

Reproduction or selection alone does not promote the exploration of new regions of the search space, 

since it only copies the selected individuals' structure to the so-called mating pool. This is where 

crossover between a pair of individuals takes place. 

In contrast to the selection process, crossover is a process that combines individuals of the current 

generation based on genetic operations for the sake of generating the individuals of the next genera

tion. It can also be viewed as a structured yet randomised information exchange between strings or 

individuals of the GA. In its simplest form crossover exchanges certain bits of the parent individuals 

for the sake of creating an offspring, which is performed with a probability of Pc < I, implying that 

some of the selected parents might not be swapping any bits. Those parent vectors that are not crossed 

are simply transferred to the new population unchanged. 

In this simple G A operation, the T selected parents will be randomly paired for the sake of 

exchanging genetic information, hence creating two new offspring, as shown in Figure 4.5 a). This 

process aims for combining the bit vectors of the parents for the sake of producing a higher fitness 

pair of offspring for the next generation. Some crossovers might produce less fit offspring than the 

parents, but nonetheless the average fitness of the offspring's generation is expected to be higher than 

that of their parents' generation. When considering a B-bit array weight vector as that of Figure 4.2, 

the crossover point of a single-point scheme may be chosen randomly, for example between the bth 

and the (b+ l)st bit position. Apart from the single-point crossover scheme shown in Figure 4.5 a), 

it is also possible to opt for more than one crossover points for the sake of speeding up the search

space exploration process, instead of favouring the convergence to highly fit individuals early in the 

search. Having an increased number of crossover points however renders the population more random 

and therefore may delay convergence to the optimum solution. Figure 4.5 b) shows a double-point 

crossover operation, which uses two randomly chosen crossover points. The array weight vector 

bits that fall between these crossover points are then exchanged between the parents. Another form 

of crossover can be seen in Figure 4.5 c), which is referred to as the uniform crossover, where a 

'crossover mask' is invoked instead of one or two crossover points. The crossover mask is a vector that 

consists of randomly generated binary Is and Os, having a length of B. In Figure 4.5 c), offspring 1 is 

produced by inheriting the array weight vector bit from parent 1 if the corresponding mask 1 bit is a 

binary 1 or the bit from parent 2 if the corresponding mask 1 bit is a binary O. Offspring 2 is created 

in a similar way using the inverse of mask I, mask 2. 

The GA's operations considered so far were quite simple, involving nothing more than random 

number generations and probabilistic string exchanges. However, the approach of GAs is not entirely 

random, hence we refer to it as a guided random algorithm. As shown in Figures 4.2 and 4.5, 

each individual is represented by a string of bits, in that substrings contain hints as to what is 

important, relevant or optimum to the task concerned [230]. Interpreting GAs from this perspective, 
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Before Crossover After Crossover 

Parent 1 1 : 0 1 1 , 0 o , 1 o Offspring 1 1 0:1 1 o , 1 1 : 1 

Parent 2 1 , 1 Offspring 2 1 1 : 0 : 0 : 0 , 0 1 : 0 

a) 
crossover point t 

Before Crossover After Crossover 

Parent 1 1 ' 0 o Offspring 1 1 0'0'0:0:0 1 :0 

Parent 2 1 1 o 1 Offspring 2 1 1 : 1 : 1 : 0 , 1 1 1 

t 
crossover points b) 

Before Crossover After Crossover 

Parent 1 1 , 0 1 , 1 o : 0 1 o Offspring 1 1 1 1 

Parent 2 1 , 1 o , 0 Offspring 2 1 , 0 , 0 , 0 , 0 , 0 , 1 o 

crossover mask 

mask 1 0: 0,1,1: I, 0: 1,0 

mask 2 1 1 o , 0 o : 1 o , 1 

c) 

Figure 4.5: An illustration of a) single-point crossover, b) double-point crossover and c) uniform 
crossover operations. 
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the population contains not a random set of P individuals, but rather P individuals associated with 

a fitness-based ranking, which is indicative of the probability of each of them being the optimum 

solution. Let us now consider the 'mutation' operation of Figure 4.1. 

4.2.3 Mutation 

Before Mutation After Mutation 

Individuall 1 : 0 I 1 Individual 2 1 I 0 : 1 I 1 : 0 : 0 I 0 : 0 

bit to be mutated t 

Figure 4.6: An illustration of the mutation process. 

When using crossovers, the individuals of population are altered but nonetheless the population 

may not be sufficiently diverse, converging to a fitness maximum that is not certain to be the global 

maximum [246]. In order to increase and maintain the diversity of the population and hence force the 

algorithm to extend the search to previously unexplored areas of the search space, another operation 

referred to as mutation is introduced. In other words, mutation can be viewed as an operator invoked 

for the sake of avoiding premature convergence, which might trap the GA in local minima. Similarly 

to the crossover operation, mutation also permits the creation of new individuals from the existing 

individuals, but it is performed on a bit-by-bit basis. It can be defined as the random alteration of 

the bth decision variable with a probability of Pm, where we have b = 1,2, ... , B. 

The probability of mutation Pm is typically set to a lower value than the crossover probability Pc· 

Often it is set to the reciprocal value of the population size P or chromosome length B, i.e. we set 

Pm = 1/ P or Pm = 1/ B, respectively. Alternatively, it may be expressed as a function of the crossover 

probability Pc to obey Pm = 1 - Pc, or may be fixed to a constant value, such as Pm = 10-3
. The 

probability Pm must not be set high, since it might mutate the fit individuals, decreasing the fitness 

of the individuals, which renders the convergence to the global solution slower. Assigning a mutation 

probability Pm as high as 0.5 resembles a random search, regardless of the crossover probability Pc and 

the population size P. In general, the role of mutation is to prevent premature convergence, which 

might lead to a local optimum without exploring the entire search space. 

For binary coded individuals, mutation simply implies toggling the value of '0' to '1' or vice 

versa. Assuming a mutation probability Pm of 0.05, for example, with 40 (i.e. four la-bit individuals) 

available bit positions we would expect 40 x 0.05 = 2 bits to undergo mutation in a given generation, 

i.e. two out of 40 bits will be changed from a to 1 or vice versa. For real-valued individuals the 

process of mutation is more elaborate, since each decision variable may assume an infinite number of 
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possible values. As outlined in [245], when a decision variable b is picked for mutation, the direction 

of mutation is chosen randomly with equal probability, before a real-valued random mutation size f'::::.. 

is generated. The value of f'::::.. is in the range of [0, f'::::..maxl with f'::::..max denoting the maximum range 

of change. The value of f'::::..max has to be determined in advance in order to ensure that the mutated 

decision variable b ± 6. will not exceed the minimum bmin and the maximum bmax limits specified by 

the problem, i.e. we have bmin :::; b ± 6. :::; bmax . 

Indeed, mutation is important, since it permits the incorporation of new individuals and hence 

avoids the generation of similar individuals, a condition which was referred to above as 'premature 

convergence'. An example of the binary mutation process is illustrated in Figure 4.6. Having discussed 

the three fundamental procedures, namely selection, crossover and mutation, it is now necessary to 

evaluate the fitness of the individuals. In the next section we will describe how the evaluation of the 

individuals is handled in GAs in order to find a solution to an optimisation problem. 

4.2.4 Evaluation: Encoding of Individuals 

Following reproduction or selection, crossover and mutation, the individuals of the new population are 

ready to be evaluated. This is carried out by decoding the new strings from their binary representation 

and calculating their fitness value. 

The simplest encoding method is to use binary coded strings represented by binary Os and Is. 

A binary string C can be decoded as an unsigned integer 'U. For example, the binary string C = 

CBCB-l ... C2Cl can be decoded to a parameter value of: 

B 

'U = '2: Cb . 2b-l. (4.3) 
b=l 

Unfortunately, the binary encoding of integers results into a limited range of values confined to [0, 2B_ 

1], which may not provide the required variety of values for solving a specific optimisation problem. 

In other words, this unsigned fixed-point integer encoding procedure is straightforward, however, an 

excessive number of encoding bits may be required for covering the parameter range hosting the 

optimum value. There are several options for mapping the finite-length string C to the floating point 

real-valued parameter w of a specific optimisation problem. One option is to map the decoded unsigned 

integer 'U linearly from 10, 2B -11 to a specified intervallDmin, Dmaxl of w. In this way, we can carefully 

control the range and encoding precision of the decision variables. The precision r; of this mapped 

encoding procedure may be calculated as: 

( 4.4) 

where B is the length of a chromosome or the vector representing an individual, while Dmax and Dmin 

are the maximum and minimum real values of the parameter w, respectively. 
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In order to construct a multi-parameter encoding scheme, we can simply concatenate the binary 

encoded representation of as many single parameters as we require. For example, the three parameters 

C(l), C(2) and C(3) may be concatenated, such that we have: 

C C(1)C(2)C(3) (4.5) 

In this multi-parameter encoding scheme each parameter may have its own binary length, i.e. i, k and 

t does not have to be equal, but for the sake of simplicity we may consider them to be of equal length, 

corresponding to i = k t. Furthermore, the parameters C(l), C(2) and C(3) may have their own 

Dmax and Dmin values. Having decoded the B-bit string into the desired real-valued representations 

w(l), w(2) and w(3), in which B is now the sum of the parameters' length expressed as B = i + k + t, 
we can calculate the fitness value of the string C. 

With reference to Figure 4.1, we will repeat the consecutive cycles of selection, crossover, mutation 

and evaluation, until a specific termination criterion is met. In the following section, we will briefly 

highlight the design options available as termination criterion. 

4.2.5 Termination Criterion 

Each cycle of selection, crossover, mutation and fitness calculation is deemed to be one generation 

in the execution of a GA. This cycle will continue until the defined termination condition is met, as 

shown in Figure 4.1. 

Common termination criteria are constituted by the maximum number of generations permitted or 

attaining a specific cost function value. Generally, if the GA's cycle is executed for many generations, 

the population will eventually converge to a set of individuals, in which the individual that corresponds 

to the highest fitness value is deemed to be the optimum or near-optimum solution. Therefore, the 

relevant parameters of the GA have to be carefully configured for the sake of avoiding premature 

termination or unnecessary further cycles after reaching a satisfactory solution, i.e. after attaining 

convergence. 

Having introduced the basic procedures of GAs, as outlined in Figure 4.1, in the next section we 

will focus our attention on the specific G A configuration designed for assisting the operation of MBER 

beamforming. 
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4.3 Genetic Algorithm-Asisted MBER Beamforming and Array Weight 

Quantisation 

In this section the G A configuration that will be used for calculating the MBER weights of an an

tenna array is presented. The general procedure of a GA, which involves creating an initial population, 

performing selection, crossover, mutation and the individual's evaluation process is portrayed in Fig

ure 4.1. The basic GA operations of selection, crossover and mutation are similar to those described in 

Sections 4.2.1,4.2.2 and 4.2.3, respectively. Therefore, here we only highlight the associated differences 

of the GA procedures described in Section 4.2 and introduce a few additional operations. 

4.3.1 Representation 

In the context of GAs, the first step of our optimisation process is to encode the parameter to be 

optimised as a finite-length string, which will then be decoded and evaluated in the context of the 

specific objective function used, before being assigned an appropriate fitness value f· 

Several individuals constitute a population, in which each of them represents a complete solution 

of the problem to be solved, as shown in Figure 4.7. In a simple GA, an individual typically has a 

single chromosome, which always represents a positive integer. In adaptive beamforming, we however 

deal with vectors and floating point complex-valued variables, such that the array weight vector w is 

constituted by: 

w 

[W!R 1 + jw'S 1 W!R 2 + J'w'S 2 ... W!R L + jw'S L]T , , , , , ) , 

(4.7) 

(4.8) 

where ~ and 8' denote the real and imaginary parts of the weights, respectively. We therefore have 

to find a method for converting our chromosomes into signed floating point values for both the real 

and imaginary parts of the L array weights. This implies that our chromosome is represented by a 

complex number having two real-valued parameters, i.e. the real part ~ and the imaginary part 8'. 

The entire representation now depends on the number of antenna elements L used in the antenna 

array, where we have L ~ 2, giving a chromosome length B, which is constituted by at least 2L = 4 

concatenated real values having at least 2LJ = 4J bits, where J is the length of each parameter's 

bit-based representation. In other words, we visualise a chromosome as a vector, which consists of 

several weight values corresponding to L. Due to having complex-valued array weights, we separate 

the real and imaginary parts and therefore, the total number of vector elements in a chromosome is 

twice the number of antenna elements. Using this approach, the length of the chromosome B will also 

depend on the number of bits J we used for representing a real-valued number. Hence the chromosome 

length is given by B 2LJ bits. The detailed structure of an individual is illustrated in Figure 4.7 b). 
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Figure 4.7: An illustration of a) a population of P individuals and b) an individual (or chromo

some), where 3t and 8' denote the real and imaginary parts of the corresponding array weight values 

WI, W2,··· ,WL, respectively. 
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4.3.2 Encoding of Individuals 

We used binary encoding for our GA-assisted MBER beamformer. First we perform the binary to 

unsigned integer conversion seen in Equation (4.3). We then proceed to convert the unsigned integers 

u to the signed real numbers w. There are a number of ways to perform this conversion. One method 

is to reserve a bit (usually the first bit) as the sign bit, i.e. a '1' indicates a negative and a '0' indicates 

a positive weight. Another way of quantising the array weights is by representing the entire dynamic 

range of the array weights accommodating both the positive and negative values by J bits. For 

example, having J bits we can represent 2J integers ranging from 0 to 2J - 1. The signed real value 

w is obtained by: 

~J c(1)2j - 1 

W = J=l J (D D) + D 2J max - min min, (4.9) 

where c(l)j with j = 1, ... ,J representing the bits in the substring C(l) of a string (an individual) C, 

such that we have C = C(2L)C(2L - 1) ... C(2)C(1) and C(l) = c(l)Jc(l)J-1 ... c(lhc(lh with l = 

1, ... ,2L. Assuming that all substrings C(2L), ... ,C(l) have a J-bit representation, we have j = 

1, ... ,J = B/2L. The parameters Dmax and Dmin represent the upper and lower boundary of the 

signed real-valued variable w, respectively. 

With reference to Figure 4.1, the operation of a GA commences with an initial set of potential 

array weights, which may be chosen randomly within a given search-space. The array weight values 

of the MBER beamforming scheme may be normalised to be within the search-space of [-1, 1 J, based 

on Equation (3.70), which states that the BER is invariant to a positive scaling of w. This fixed 

dynamic range results in a coefficient-resolution that depends only on the number of bits J used for 

representing a real-valued variable, w. The resolution of the GA's individuals can now be calculated 

as: 

1- (-1) = 21- J 

2J ' 
(4.10) 

where J is the number of bits representing each concatenated substring describing an individual given 

by a signed real-valued variable w, while Dmin = -1 and Dmax = + 1 are the minimum and maximum 

legitimate value of each variable w, respectively. 

Using J = 8 bits for each signed real-valued variable w, the resolution is fixed to 2-7 = 1/128 = 
0.0078125. A higher accuracy may be obtained by increasing the number of bits J used for representing 

the variable w. Having described the GA's individual encoding requirements, in the next section we 

will consider the MBER beamforming scheme's objective function, which has to be evaluated by the 

GA. 
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4.3.3 Fitness Evaluation 

It has been shown in the context of Equations (3.68) and (3.69) in Chapter 3 that the probability of 

error PE for a given beamformer weight vector w can be calculated as: 

with 

sgn(b )Y-(+ l 
( ) 

_ q,d R,q 
cq,+ w - ~ 

anvwHw 

sgn(bq,d)~[WH x~ + l] 
anvwHw 

(4.11) 

(4.12) 

where Nsb is the total number of distinct sets of bits transmitted by the M number of simultaneous 

users with bq,d fixed to a specific value (in this case, bq,d = +1), such that for BPSK modulation we 

have Nsb = 2M-I, where M is the number of users. Still considering Equation (4.12) w is the array 

weight vector, x is the received signal vector at the antenna array or equivalently the input signal 

vector of the beamformer defined in Equation (3.4) and a~ is the variance of the noise vector n. The 

probability of error PE quantified in terms of Equations (4.11) and (4.12) was arrived at by calculating 

the area under the conditional PDF of YR(n) associated with bd(n) = ±1, such that we have: 

PE(w) = [~P(YRI + 1) dYR, (4.13) 

where the conditional PDF p(YRI + 1) was given by Equation (3.59) and repeated here as: 

(4.14) 

The detailed derivation may be obtained with the aid of Equations (3.61) to (3.67). We refer to 

Equation (4.11) as the true probability of error PE, which will be used in the GA's fitness function 

expression for calculating the fitness value of the GA's individuals. For the sake of investigating also 

a more realistic receiver structure, we replaced the true probability of error PE by the estimated 

probability of error PE, which can be obtained using Parzen's kernel density estimation [224] outlined 

in Section 3.4.1 and expressed as: 

A 1 T 
PE(w(n)) = T L Q (Ct(w(n))), (4.15) 

t=1 

where the employment of T training samples has been assumed. The standard Q-function Q(z) was 

defined in Equation (3.63), while the shorthand of Ct(w(n)) is given by: 

Ct(w(n)) = sgn(bd(t))YR(t) , 
Pn Jw(n)Hw(n) 

(4.16) 

where bd(t) is the desired user's tth transmitted bit, YR(t) is the real part of the beamformer's noise

contaminated output and Pn is the radius of the kernel width or smoothening parameter [224,225] of 

the density estimation process, as discussed in Section 3.4.1. 
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Our task is now to create an expression for the GA's fitness function that will correspond to the 

specific complex-valued array weight vector w that will minimise the true error probability PE or the 

estimated probability of error PE according to Equation (4.11) or (4.15), respectively. In our initial 

investigations of the achievable BER versus the GA complexity required we simply expressed our 

fitness function as: 

(4.17) 

where ip is the fitness value of the pth individual representing the array weight vector wp. We 

observed, however that as the error probability decreases, the expression in Equation (4.17) becomes 

less efficient, because fairly similar fitness values were obtained for all the individuals resulting in 

a bit error ratio of PE 2': 10-3 . For example, two individuals PI and P2 having a probability of 

error of PE,Pl = 10-3 and PE,P2 = 10-7 , respectively, are highly likely to be of the same priority, 

since the fitness value difference between iPl = 0.999 and iP2 0.9999999 is rather small, namely 

liP2 - iPll = 0.0009999 ~ 0.001. 

Having briefly characterised the behaviour of the algorithm using the fitness function of Equa

tion (4.17), we obtained an improved fitness function, which involves taking the logarithm of the 

probability of error PE for the sake of expanding the fitness differences, as the error probability re

duces. The new fitness function ip of an individual can be expressed as [157]: 

(4.18) 

Both the fitness functions of Equations (4.17) and (4.18) approach unity as PE decreases, but using the 

fitness function expressed in Equation (4.18) produces a more distinct fitness value difference between 

the individuals PI and P2, namely iPl = 0.75 and iP2 = 0.875. Equation (4.18) also outperforms 

other linear functions quantifying the relationship between the fitness ip of an individual and the 

BER, particularly at low BERs [157]. 

In the context of vast search spaces and complex optimisation problems premature convergence 

has to be particularly avoided. In the following sections we will introduce both elitism and fitness 

scaling for the sake of avoiding this problem. 

4.3.4 Elitism 

Elitism is applied during the reproduction process. It refers to the preservation of the fittest individual 

or a group of the fittest individuals in an effort to maximise each generation's fitness. In a simple GA it 

is possible for the best individual of generation 9 to have a lower fitness value than the best individual 

of the previous generation g-1. Therefore in our case, we replace the least fit individual in a generation 

with the most fit individual of the previous generation. There are also other options of implementing 

elitism, one of which is based on replacing the fittest individual of the current generation Pbest(g) with 
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that of the previous generation Pbest(g - 1), if it was more fit, i.e. if we have fPbest(g - 1) > fPbest(g), 

where f denotes the fitness value and 9 is the generation index. These indicate that elitism can be 

used for insuring that statistically speaking there is a monotonic increase in the best fitness fbest III 

the population as a function of the generation index. 

4.3.5 Fitness Scaling 

The procedure of selecting individuals to undergo crossover for the sake of creating new individuals 

is of paramount importance. Typically, the selection procedure is probabilistically biased towards 

individuals associated with high fitness values. This simple principle may however exhibit some 

undesirable properties. For a given optimisation function that is characterised by a relatively fiat 

surface, the fitness of all individuals will be similar. However, regardless of the shape of the error 

surface, the specific choice of individuals becomes fairly random after the GA approached the optimum 

solution, i.e. at a high generation index g, when the population converged, and hence has numerous 

similar individuals. This is undesirable since many individuals associated with average fitness will 

have a similar chance to the best individuals for being selected for crossover. On the other hand, 

convergence to a local rather than global optimum may also occur, if we have a 'super-individual' 

exhibiting a very high fitness in a given population, particularly if this occurs at an early generation g. 

For the sake of overcoming these problems, several fitness scaling techniques, such as windowing

based [247], exponential [247], linear [230-232]' [247], sigma [230-232] and power scaling [230] have 

been introduced in [230-232], [247]. Generally speaking, a scaling procedure involves the alteration of 

the fitness value f p , with the aim of promoting competition among the individuals. In the GA assisted 

MBER beamforming scheme, we incorporated sigma scaling [230-232] and also a new fitness scaling 

technique referred to as span scaling [157,248]' which will be described in the following subsections. 

4.3.5.1 Sigma Scaling 

Sigma scaling uses the populations' standard deviation (J" and the populations' mean fitness f in 

modifying the individual's fitness, such that: 

(4.19) 

where f; is the modified fitness value and the coefficient c is usually chosen between 1 and 3. For 

a population having a high variance (J"2, i.e. for widely spread fitness values, the new fitness of the 

average individuals will be set to a large value for the sake of promoting their participation in the 

reproduction. On the other hand, the average individuals in a population having a low fitness variance, 

which may be encountered towards the end of a genetic run, are assigned small modified fitness values 

f; for the sake of differentiating them from the better-than-average individuals, so that the latter 

individuals may have higher chances of being selected for recombination. 
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Individual p 1 2 3 4 

Fitness fp 6.25 50 31.25 12.5 
(%) 6.25% 50% 31.25% 12.5% 

Sigma f~ (c = 2) 15.48 59.23 40.49 21.73 
(%) 11.31% 43.26% 29.57% 15.87% 

Table 4.2: Example of scaling effects using sigma scaling [230-232] technique having a coefficient of 

c = 2. 

Table 4.2 shows the effect of sigma scaling having a coefficient of c = 2. We use the same candidates 

of population size P = 4, when describing the roulette-wheel selection based method of Section 4.2.1. 

As a result of the sigma scaling applied to each fitness value according to Equation (4.19), it is observed 

in Table 4.2 that the influence of the strongest individual has been reduced. In case of encountering 

negative scaled fitness values, sigma scaling [230] will automatically assign them to zero. 

4.3.5.2 Span Scaling 

The new fitness scaling technique referred to as span scaling [157,248] is expected to perform better 

in a particular configuration than the classic sigma scaling [230] as the generation index g increases. 

More specifically, span scaling maps the raw fitness it of an individual p of generation g according 

to [248]: 

(4.20) 

where we have [157] 

1 
Cg = 1 - 10 ' 

1 + exp( -( W - 4)) 
(4.21) 

where P and ag are the average fitness and the standard deviation of the fitness of generation g, 

respectively. The function Cg in Equation (4.21) is a modified version of the one used in [248], which 

is characterised graphically in Figure 4.8. For a given generation index g the individuals having 
- , 

an average fitness value of fp = f g will be assigned a new fitness fl value equal to the value of 

C(g), according to f;g = C(g), as shown in Figure 4.8. Clearly, it is observed that during the early 

generations the average individuals are assigned relatively high fitness values, so that they have similar 

chances to the fit individuals to undergo crossover. However, as the population becomes saturated with 

similar-fitness individuals at higher generation indices, the average individuals are assigned relatively 

low new fitness values, so that they do not prevent the above-average individuals' competition for 

being selected for crossover. 

In comparison to other scaling techniques, the adaptive span scaling regime of Equation (4.20) 

has the advantage of forcing the GA to converge to a solution after a fixed number of generations by 
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Figure 4.8: The span-scaling function C(g) versus the generation index g. 
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increasing the selection 'pressure', as the generation index 9 increases. Let us next outline how we 

determine the convergence of our GA-assisted MBER beamforming scheme and its complexity. 

4.3.6 Convergence and Complexity 

We opted for using the maximum number of generations as the termination criterion of the algorithm. 

This has the advantage of maintaining a constant complexity. The statistical behaviour of the algo

rithm will be characterised in terms of the estimated probability density function (PDF) of the BER 

at the beamformer's output, rather than simply portraying the average BER. More specifically, this 

PDF is approximated with the aid of the BER histogram, which is constructed from 1000 independent 

GA runs. 

The complexity of the GA is characterised by the number of objective function evaluations en

countered, which is proportional to the product of the population size P and the maximum number 

of generations G, expressed as: 

Complexity rv p. G. (4.22) 

For algorithms having the same total complexity, generally the one having a higher population size 

is preferable, since in a particular generation, the P number of objective function evaluations can be 

processed in parallel. We shall next characterise the achievable performance of the GA-assisted MBER 

beamforming scheme. 
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Population size 10 to 50 

Generation size 1 to 50 

Bits per complex array weight 16 

Selection type roulette-wheel 

Single-point crossover probability 0.7,0.9 

Bit-inversion mutation probability 0.001, 0.01, 0.1 

Additional operations sigma scaling 
span scaling 

elitism 

Fitness function jp F1: jp = I-PE(wp) ( 4.17) 

F2 : jp = 1 - 1 )g 1 ( ) (4.18) 
1- 0 ,nPE Wv 

Table 4.3: Summary of the GA configurations and the range of values considered. 

4.4 Simulation Results 

In order to generate attractive GA configurations, we varied the associated GA parameters, such as the 

crossover probability Pc, mutation probablity Pm, population size P and the number of generations G, 

according to the values given in Table 4.3. The additional operations of elitism, sigma- and span 

scaling have been described in Sections 4.3.4, 4.3.5.1 and 4.3.5.2, respectively. For the sigma scaling 

technique, which uses the populations' standard deviation (J and the populations' mean fitness J for 

modifying an individual's fitness according to j; = jp - (J - w), we fixed the coefficient c to unity. 

The search space of the GA was limited to the region of 1~{WI}1 ::;; 1 and 18'{wz}1 ::;; 1, where 1 ::;; l ::;; L 

is the number of antenna array elements, since the MBER solution found for BPSK modulated users 

is invariant to a positive linear scaling and thus can be confined to this search space. The initial 

population was randomly chosen in conjunction with a uniform probability within the given search 

space. In our simulations we limited the number of bits used for representing each signed real-valued 

array coefficient ~{Wl} and 8'{ WI} to J = 8 bits, resulting in a maximum of 2J ·2L = 216L possible 

individuals. For L = 2, there will be approximately 4.29.109 legitimate individuals, although naturally, 

only a fraction of this solution space will be searched. 

As in Chapter 3, we used the beamforming scenario of Figure 3.18, which consists of five users 

supported by a two-element antenna array having an element spacing of ),,/2. The desired user is at 

an angular direction of 15° and the four interfering users are at directions -30°,60°,80° and -70° 

with respect to the array normal, which are assumed to have an equal power of 10dB, i.e. we have 

SNR = INRi = 10dB for i = 2,3,4,5, unless otherwise stated. In some cases we varied the direction 

of the nearest interferer, namely that of user 2 and user 3 for the sake of further characterising the 

GA-assisted MBER beamforming performance, when the desired user is very close in terms of its 

angular separation to the interferers. We list the scenarios considered in Table 4.4. 

In the first stage of our simulations we used Equation (4.17) as the fitness function, which we 
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I User 1 2 3 4 5 

Scenario 1 15° -30° 60° 80° -70° 
Scenario 2 15° -7.5° 37.5° 80° -70° 

Scenario 3 15° -3.75° 26.25° 80° -70° 
Scenario 4 15° -9.375° 20.625° 800 -70° 

Scenario 5 15° -12.1875° 17.8125° 80 0 -70° 

Table 4.4: Several angular direction scenarios for the five users considered. 

refer to as fitness function F1. We characterised the attainable performance of the GA both with the 

aid of the BER histogram and the average value of the achievable BER at the beamformer's output. 

Again, the histogram was constructed from 1000 randomly initialised GA runs. The fitness function 

of Equation (4.18) is referred to as fitness function F2. The results generated will also be compared 

to the theoretical bounds of the MBER solution obtained by using the simplified conjugate gradient 

algorithm of Section 3.5.2. Instead of using the perfect MBER assumption according to Equation (4.11) 

for Section 4.4.1, in Section 4.4.2 we will proceed by determining the best achievable BER performance 

of the GA using the objective function based on the estimated BER of Equation (4.15). 

4.4.1 GA-Assisted MBER Beamforming Upper-Bound Performance 

Figure 4.9 (a) shows the average BER achieved with the aid of the GA having a population size of 

P = 30, as the generation index 9 increases from 1 to 50. As expected, it is observed that the average 

BER decreases, as we reduce the mutation size Pm from 0.1 to 0.001, but none of these scenarios was 

capable of approaching the theoretical MBER solution of BER = 10-6 .14 
;:::j 7.24.10- 7 . Let us consider 

the BER histogram associated with the mutation probabilities of Pm = 0.1 and Pm = 0.001 shown in 

Figures 4.9 (b) and 4.9 (c), respectively. For the GA configured for a mutation probability of Pm = 0.1 

in Figure 4.9 (b), most of the recorded BERs were of high values, centred approximately around BER 

10-0.8 
;:::j 1.58 . 10-1 , regardless of the number of generations. By contrast, when a significantly 

lower mutation probability of Pm = 0.001 is used, some improvement of the BER histogram may be 

observed. As seen in Figure 4.9 (c), we have a more attractive BER histogram, exhibiting a peak 

shifted towards lower BER values around BER = 10-5 at a generation index of 9 = 10 and 9 = 20, 

but nonetheless, the average BER is still relatively high, around BER = 10-2.5 
;:::j 3.16 . 10-3 . It is 

also observed that as the generation index 9 increases beyond 9 > 10, there is no further improvement 

of the BER histogram. In fact, for G = 9 = 50 number of generations, the histogram becomes 

flatter, concentrating towards higher BERs again, as shown by the plot associated with 9 = 50 in 

Figure 4.9 (c). This phenomenon shows signs of premature convergence, which may be due to having 

'super-individuals' in the population in the low generation index region of 9 :s: 10. 

The BER histogram recorded for the mutation probability of Pm = 0.01 may be observed in 

Figure 4.10 (b). As in the previous scenario of Pm = 0.001 characterised in Figure 4.9, this choice of 
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Figure 4.9: (a) The average BER of the GA-aided beamformer, based on Equation (4.11), versus the 
generation index g, for 1 ~ g < 50 and for the mutation probability values of Pm = 0.1, 0.01, 0.001, 
in conjunction with a GA using the fitness function F1 4 , roulette-wheel selection having a population 

size of P 30 and a crossover probability of Pc = 0.9. Also shown is the associated BER histogram 

of the GA used in (a) employing the mutation probabilities of (b) Pm = 0.1 and (c) Pm = 0.001. The 
BER values were averaged over 1000 randomly initialised GA runs for transmission over the AWGN 
channel, for five equal-power users, each having SNR = 10dB, and the angular directions specified by 

Scenario 1 of Table 4.4. 

Pm does not dramatically affect the shape of the BER histogram in conjunction with different number 

of generations. Increasing the population size to P = 50 does not substantially improve the average 

BER either, as seen from Figure 4.10 (a). We may surmise that the limited performance of the system 

is a consequence of the deficient choice of the fitness function F1 of Equation (4.17). As noted earlier 

in Section 4.3.3, it may be inferred that the fitness function F1 formulated as jp = 1 - PE(Wp ) 

becomes ineffective for BER values below BER = 10-3 . Before we consider the more promising fitness 

function F2, let us briefly characterise the effect of incorporating scaling or/and elitism, as shown in 

Figures 4.11 and 4.12. 

Figures 4.11 (b) and 4.11 (c) show the BER histogram of the GA-assisted MBER beamforming 

scheme using the sigma scaling algorithm of Section 4.3.5.1 in conjunction with c = 1 and elitism, 

respectively. No significant average BER improvement is observed, when employing the sigma scaling 

technique, although the associated histogram of Figure 4.11 (b) indicates some improvement in com-

4The exact BER calculated based on Equation (4.11), was used in the objective function Fl of the GA-assisted MBER 
approach described by Equation (4.17). 
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Figure 4.10: (a) The average BER of the GA-aided beamformer, based on Equation (4.11), versus the 

generation index g, for 1 :::::: 9 < 50 and for population sizes of P = 30,50, in conjunction with a GA 
using the fitness function F1, roulette-wheel selection and having a mutation probability of Pm = 0.01 
and a crossover probability of Pc = 0.9. Also shown is the associated BER histogram PDF of the GA 

used in (a) having population sizes of (b) P = 30 and (c) P = 50. The BER values were averaged 
over 1000 randomly initialised GA runs for transmission over the AWGN channel, for five equal-power 

users, each having SNR = 10dB, and the angular directions specified by Scenario 1 of Table 4.4. 

parison to the basic GA characterised in Figures 4.9 and 4.10. This may be a consequence of having a 

relatively high mutation probability of Pm = 0.01, which is capable of mutating the meritorious indi

viduals, thus preventing them from surviving to the next generation. By contrast, performing elitism 

shows more significant improvements in comparison to all earlier measures, since elitism guarantees 

that the most fit invidual of a generation survives to the next generation. In this way elitism has the 

potential of preserving the high-fitness individuals for the sake of producing even better individuals. As 

seen from Figure 4.11 (a), the average BER values become slightly less than BER = 10-5.5 ~ 3.16.10-6 , 

as we increase the number of generations to G = 9 = 50. The convergence of the GA was further 

improved, when we combined elitism with sigma scaling. The average BER is seen to approach the 

theoretical MBER solution at BER = 10-6,14 ~ 7.24.10- 7 . Explicitly, as shown in Figure 4.11 (a), we 

observed that the average BER associated with a mutation probability of Pm = 0.1 converges faster, 

namely as early as at the generation index of 9 = 10, but it settles at a higher average BER value of 

BER 10-5.5 ~ 3.16 . 10-6 than that when having a lower mutation probability of Pm = 0.01, which 

settles near BER 10-6 after 50 generations. Figures 4.12 (a), 4.12 (b) and 4.12 (c) demonstrate 

the sequence of PDF improvements, as we increase the population size from P = 20 to P = 30 and 
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Figure 4,11: (a) The average BER of the GA-aided beamformer, based on Equation (4.11), versus 

the generation index g, for 1 :::; 9 < 50 and for a mutation probability of Pm = 0.01, in conjunction 
with a GA using the fitness function F1, roulette-wheel selection as well as a population size of 

P = 30, a crossover probability of Pc = 0.9 and incorporating sigma scaling associated with c = 1 
or/and performing elitism. Also shown is the associated BER histogram of the basic GA used in (a) 

employing a mutation probability of Pm = 0.01; (b) fitness value jp scaled according to sigma scaling 
using c = 1 and (c) elitism. The BER values were averaged over 1000 randomly initialised G A runs 

for transmission over the AWGN channel, for five equal-power users, each having SNR = 10dB and 
the angular directions specified by Scenario 1 of Table 4.4, 

P = 50, respectively, Comparing Figures 4,12 (c) and 4.12 (d), it is observed that Figure 4.12 (d) has 

a spike-like PDF at a generation index of 9 = 50, but the histogram peak at lower generation indices 

of 9 = 5 and 9 = 10 remains lower than that of Figure 4,12 (c), which is likely to be the reason why 

we observed early convergence of the Pm = 0.1 curve in Figure 4,11 (a). 

Let us now consider the achievable BER performance, when employing the fitness function F2 

of Equation (4.18), The performance attained with the aid of the fitness function F2 using the GA 

configuration of Figure 4.12 is portrayed in Figure 4,13. In all plots of Figures 4.13 (a) to 4.13 (d), the 

BER histogram difference becomes explicit in comparison to the respective plots of Figures 4.12 (a) 

to 4.12 (d), in terms of both of its height and width. At a particular generation index in the range 

of 9 ~ 5, the width of the PDF is reduced to approximately half of that associated with the previous 

fitness function F1, while the histogram becomes higher, at least twice higher than in the corresponding 

plot of Figure 4.12. A significantly lower complexity is required for the sake of attaining a similar 

PDF shape, when using the fitness function F2. For example, it is seen that in Figure 4,13 (a) the 
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Figure 4.12: The BER histogram of the GA-aided beamformer, evaluated based on Equation (4.11), 

using the fitness function F1, roulette-wheel selection, elitism, sigma scaling employing c = 1, having a 

crossover probability of Pc = 0.9 and (a) a population size of P = 20 as well as a mutation probability 

of Pm = 0.1; (b) a population size of P = 30 and mutation probability of Pm = 0.1; (c) a population 

size of P = 50 and mutation probability of Pm = 0.1 as well as (d) a population size of P = 30 and a 

mutation probability of Pm = 0.01. The BER histogram for each of the G = 9 number of generations 

was constructed from 1000 randomly initialised GA runs for transmission over the AWGN channel, 

for five equal-power users, each having SNR = 10dB and the angular directions specified by Scenario 1 

of Table 4.4. 

PDF of a population size of P = 20 having G = 10 generations is similar to that of the population 

size of P = 50 having G = 20 generations in Figure 4.12 (c), despite reducing the complexity defined 

in Equation (4.22) from 1000 to 200 objective function evaluations. 

Figure 4.14 (a) portrays the gradual improvement of the average BER at the beamformer's output, 

as we incorporate several additional parameters in the GA's configuration such as sigma scaling and 

elitism, when using the fitness function F2, for a population size of P = 30 employing a mutation 

probability of Pm = 0.01 and a crossover probability Pc = 0.9. We also included the BER curve for 

the population size of P = 50 for the sake of showing the effect of using a larger population size. It is 

observed in Figure 4.14 (a) that the elitism operation has a beneficial effect on the GA's performance. 

Exploiting the configurations considered in Figure 4.14 (a), in Figure 4.14 (b) we also plotted the BER 

variance as a function of the affordable complexity, defined as the product of the population size P 

and the number of generations G given in Equation (4.22). Apart from the basic GA configuration, 

which employed neither scaling nor elitism and with the exception of the G A using sigma scaling 

associated with c = 1, all the BER variance values seen in Figure 4.14 (b) substantially decrease, 

as the complexity is increased. It is observed that the GA employing elitism and using the fitness 

function F1 is capable of converging to the MBER solution, although at a slower rate, hence requiring 

a higher complexity. For our particular case of supporting five users as specified in Scenario 1 of 
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Figure 4.13: The BER histogram of the GA-aided beamformer, evaluated based on Equation (4.11), 
using the fitness function F2, roulette-wheel selection, elitism, sigma scaling employing c = 1, having a 
crossover probability of Pc = 0.9 and (a) a population size of P = 20 as well as a mutation probability 

of Pm = 0.1; (b) a population size of P = 30 and a mutation probability of Pm = 0.1; (c) a population 
size of P = 50 and a mutation probability of Pm = 0.1 as well as (d) a population size of P = 30 and 
mutation probability of Pm = 0.01. The BER histogram for each of the G = 9 number of generations 
was constructed from 1000 randomly initialised GA runs for transmission over the AWGN channel, 

for five equal-power users, each having SNR = 10dB and the angular directions specified by Scenario 1 

of Table 4.4. 

Table 4.4 having G = 50 generations, a small population size of P ~ 30 is sufficient for achieving 

both rapid convergence and a reasonably good steady-state BER performance, when using the fitness 

function F2. Let us now consider, how we can further improve the GA for the sake of having a lower 

complexity without sacrificing the attainable BER performance. 

According to the complexity measure defined in Equation (4.22), the GA's complexity will increase 

as the number of generations G increases. In order to achieve a performance advantage as a consolation 

for the increased complexity, an attractive approach is to invoke a so-called scaling technique [230-232, 

248] in such a way that the scaling function involves the generation index g. The span scaling [157,248] 

technique introduced in Section 4.3.5.2 exhibits this desirable characteristic, which has the potential 

of forcing the GA to converge to a solution after a fixed number of generations by increasing the GA's 

selection pressure, as the generation index 9 increases. More explicitly, the selection pressure refers 

to scaling the individuals' fitness values jp according to the population's variance at a particular 

generation. As mentioned earlier in Section 4.3.5, we prefer that the average individuals compete 

with the fit individuals during the early generations, but we would like to separate them later, as the 

generation index 9 approaches the total affordable number of generations G specified. Figures 4.15 (a) 

and 4.15 (b) show the BER variance of the GA-aided beamformer configured for using the mutation 

probabilities of Pm = 0.01 and Pm = 0.1, respectively. The GA-assisted beamformer's performance 
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Figure 4.14: (a) The average BER of the GA-aided beamformer, evaluated based on Equation (4.11), 

versus the generation index g, for 1 ~ 9 < 50 and for a mutation probability of Pm = 0.01, in 
conjunction with a GA using the fitness function F1, roulette-wheel selection having a population size 

of P = 30 and a crossover probability of Pc = 0.9. Also shown in (b) is the associated BER variance 
of the respective GA used in (a), as a function of the associated complexity. The BER values were 
averaged over 1000 randomly initialised GA runs for transmission over the AWGN channel, for five 

equal-power users, each having SNR = 10dB and the angular directions specified by Scenario 1 of 
Table 4.4. 

is evaluated according to the fitness function F2, in conjunction with the population sizes of P = 

20,30,50, a crossover probability of Pc = 0.9 and employing elitism in conjunction with either sigma

[230-232] or span scaling [157,248]. Apart from the population size of P = 30 characterised in 

Figure 4.15 (a), all the other plots in Figures 4.15 (a) and 4.15 (b) show that the BER variance 

associated with the GA-aided beamformer employing span scaling is reduced faster or at least as fast 

as that of the GA employing sigma scaling. Although the span scaling based plot associated with 

the population size of P = 30 in Figure 4.15 (a) converges at a lower rate initially, the curve crosses 

the respective plot associated with sigma scaling at a complexity of approximately 450 objective 

function evaluations, beyond which it settles at a lower BER variance value of 0.01 after 800 objective 

function evaluations. Upon comparing Figures 4.15 (a) and 4.15 (b), it may be observed that the 

GA using span scaling performs best, when employing a higher mutation probability of Pm = 0.1, 

rather than Pm = 0.01, while the reverse is true for the GA using sigma scaling. Therefore, in 

Figure 4.15 (c) we plotted the average BER value for the respective G A using either span- or sigma 
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Figure 4.15: The BER variance of the GA-aided beamformer, evaluated based on Equation (4.11), 

for a mutation probability of (a) Pm = 0.01 and (b) Pm = 0.1, in conjunction with a GA using the 
fitness function F2 5

, roulette-wheel selection having a population size of P = 20,30,50, a crossover 
probability of Pc = 0.9 and employing elitism as well as either sigma- or span scaling. Also shown in 

(c) is the associated average BER of the respective G A using the sigma scaling associated with c = 1 

having Pm = 0.01 in (a) and that using the span scaling having Pm = 0.1 in (b), as a function of the 
associated complexity. The BER values were accumulated over 1000 randomly initialised GA runs for 

transmissions over the AWGN channel, for five equal-power users, each having SNR = lOdB, and the 

angular directions specified by Scenario 1 of Table 4.4. 

scaling, employing their optimum mutation probability of Pm = 0.1 and Pm = 0.01, respectively, as a 

function of the affordable complexity. It is observed that in the best-case scenario considered the GA

aided beamformer employing span scaling outperforms that using sigma scaling at a lower complexity. 

All the BER curves associated with span scaling are below the corresponding BER curves associated 

with sigma scaling beyond the complexity value of 100 objective function evaluations. Figure 4.15 (c) 

also shows that all G A configurations employing span scaling are capable of approaching the exact 

theoretical MBER bound of BER = 10-6.14 ~ 7.24.10-7 at a maximum complexity of just above 800 

objective function evaluations. Observe also in Figure 4.15 (c) that all the span scaling related curves 

produce a similar average BER performance beyond a complexity of approximately 380 objective 

function evaluations. 

5The exact BER calculated based on Equation (4.11), was used in the objective function F2 of the GA-assisted MBER 
approach described by Equation (4.18). 
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Figure 4.16: BER performance of the GA-assisted MBER beamformer, based on Equation (4.11), 

under four different conditions; (a) SNR = IN~ for i = 2,3,4,5, (b) INRi = SNR +6dB for i = 
2,3,4,5, (c) SNR = INRi for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR = INRi for i = 2,3,4 
and INR5 = SNR +6dB for two-, four- and eight-element uniform linear arrays. The GA employed was 
using the roulette-wheel selection, elitism, span scaling, the fitness function F2 and having a mutation 

as well as a crossover probability of Pm = 0.1 and Pc = 0.9, respectively. The associated two-, four
and eight-element antenna arrays were configured to have a complexity of P . G rv 400, 1500 and 5500, 
respectively. These results were recorded for transmission over the A WG N channel for five users and 

for the angular directions of 150 (SOl), -300 ,600 ,800
, -700

, as also specified according to Scenario 1 
in Table 4.4. 
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Let us next observe the BER performance of the G A-assisted MBER beamformer as the SNR of the 

users increases. Figure 4.16 shows the achievable BER performance at the beamformer's output for the 

GA-assisted MBER solution in comparison to that of the exact closed-form-solution based simplified 

conjugate gradient MBER technique of Section 3.2.1, i.e. in comparison to the MBER theoretical 

bound, under four different conditions for Scenario 1 of Table 4.4; (a) the desired user and all the 

four interfering sources have an equal power; (b) all the interfering sources have 6dB higher power 

than the desired user; (c) the desired user and the interfering sources 3,4,5 have an equal power, 

while the interfering source 2 has 6dB higher power than the desired user; and (d) the desired user 

and the interfering sources 2,3,4 have an equal power, but the interfering source 5 has 6dB higher 

power than the desired user. It can be seen in Figure 4.16 that the BER performance attained by 

the GA-assisted two-element antenna array is identical to the MBER theoretical bound for all the 

scenarios considered in Figures 4.16 (a) to 4.16 (d) for at least up to SNR = lldB. For a four-element 

antenna array, the possible number of individuals, i.e. the search space expands quadratically from 

that of the two-element array having 2J ·2L = 216L = 4.29 . 109 legitimate solutions to 1.84 . 1019
. The 

increased search space indicates that the complexity of the GA required for the sake of arriving at 

the global optimum solution will definitely be higher. It is seen for the two-element, equal-power user 

scenario of Figure 4.16 (a), that the GA having a total complexity of 400 is capable of approaching 

the theoretical MBER bound up to SNR = 13dB, achieving a low average BER of approximately 

BER = 1O-11 . Focussing our attention on the SNR range up to SNR = 10dB, it is also possible for 

the GA to approach a similar BER performance to that seen in Figure 4.16 (a), given a slightly lower 

complexity than 400 objective function evaluations. Hence, instead of imposing a GA complexity of 

4·400 = 1600 objective function evaluations for the four-element antenna array, we opt for a slightly 

lower complexity of 1500 objective function evaluations, constituted by the population size of P = 50 

and G = 30 generations. It is observed for the equal-power scenario of Figure 4.16 (a), that identical 

solutions are achievable up to a maximum of SNR = 7dB. Although for SNRs higher than 7dB the 

BER performance shows a slight degradation, it is still close to the MBER theoretical bound, where 

we have BER = 10-10 . At certain SNR values seen in Figures 4.16 (b) to 4.16 (d) there are deviations 

from the theoretical MBER bound, but this artifact may be eliminated by increasing the affordable 

complexity, i.e. the population size P and/or the number of generations G. However, bearing in mind 

that the beamformer weight values optimised by the GA are encoded or quantised values, thus they 

have a limited precision. The beamformer weights are encoded according to the specific number of bits 

used for representing an individual, where the array-weight precision was calculated in Section 4.3.2 

to be 2J - 1 = 2-7 = 1/128 = 0.0078125, since we assign J = 8 bits for each real-valued beamformer 

weight. In all plots of Figures 4.16 ( a) to 4.16 (d), we used the same population size P and the same 

number of generations G in conjunction with a given size of the antenna array for the sake of showing 

that by using the same GA complexity as in the equal-power scenario of Figure 4.16 (a) the GA is 

still capable of producing meritorious MBER solutions, regardless of the power differences of the users 
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Figure 4.17: The BER histogram of the GA-aided beamformer, evaluated based on Equation (4.11), 
using the fitness function F2, roulette-wheel selection, elitism, span scaling and having a crossover 

as well as a mutation probability of Pc = 0.9 and Pm = 0.1, respectively, for (a) a population size of 
P = 20 and G = 20 generations for a two-element antenna array; (b) a population size of P = 50 

and G 30 generations for a four-element antenna array and (c) a population size of P = 110 and 
G = 50 generations for an eight-element antenna array. The BER histogram recorded for each of the 

generations G = 9 was constructed from 1000 randomly initialised GA runs for transmission over the 
AWGN channel, for five equal-power users, each having SNR = 10dB, and for the angular directions 

specified by Scenario 1 of Table 4.4. 

supported. Apart from the single-user, single-element BER curve, the single-user curves for the two-, 

four- and eight-element antenna arrays are also shown in Figures 4.16 (a) to 4.16 (d), which represent 

the best possible BER performance. 

Figures 4.17 (a), 4.17 (b) and 4.17 (c) show the BER histogram of the G A-assisted MBER beam

former characterised in Figure 4.16 (a), when all users operate at SNR = 10dB, for two-, four- and 

eight-element antenna arrays, respectively, for the sake of characterising the convergence behaviour of 

the GA-aided solutions at generation indices of 9 = 1,5,10,20 and for the final generations at 9 = 30 

and 9 = 50, for the four- and eight-element case, respectively. Figure 4.17 demonstrated that the GA 

approaches the theoretical MBER bound, as the generation index 9 increases. For the two-element 

antenna array of Figure 4.17 (a), the BER histogram is particularly beneficial, when the generation 

index 9 reaches G = 20. Comparing the BER histogram of other antenna array configurations in Fig

ures 4.17 (b) and 4.17 (c) to their corresponding counterparts in Figure 4.16 (a), we concluded that we 

may slightly reduce the complexity imposed for this two-element array to 320 or 360 objective function 
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evaluations, i.e. we may employ G = 16 or G = 18, while still attaining a similar BER performance, 

respectively. However, this may affect the MBER performance observed at higher SNRs in the signal 

power scenarios of Figures 4.16 ( a), 4.16 (b), 4.16 (c) and 4.16 (d) . Note also for the eight-element 

antenna array that instead of using 4 . 1500 = 6000, we employed a total of 110 . 50 = 5500 objective 

function evaluations, since at this complexity no significant BER performance degradation has been 

observed. It is also seen from Figure 4.17, that the BER histogram of the four- and eight-element 

scenario is not as meritorious as that of the two-element case seen in Figure 4.17 (a). Nonetheless, the 

GA is still capable of approaching the theoretical MBER performance bound. Apart from the height 

of the BER histogram, its width also is taken into account in characterising the achievable BER. For 

the eight-element array of Figure 4.17 (c), the BER histogram is not as attractive as that of the four

or two-element array, but nonetheless, the BER may approach BER = 10-30 . Naturally, the resultant 

average BER value is higher than the MBER theoretical bound, which is approximately BER = 10-35 

at SNR = 10dB. Observation of Figure 4.16 suggests that the GA is capable of reaching a reasonable 

BER, even if it does not approach the ideal MBER solution, as shown by the BER histograms of 

Figure 4.17, especially for the four- and eight-element antenna array scenarios. We also observed 

that the complexity of the GA required for approaching the MBER solution increases approximately 

quadratically with the array size L. 

Having varied the users' signal power, next we investigate the GA-assisted MBER beamformer's 

performance having the same complexity as shown in Figure 4.16, in conjunction with varying the 

angular separation between the desired user located at 15° with respect to the array normal and 

the nearest interfering users, namely user 2 and user 3. In these investigations, user 2 and user 3 

are gradually moved towards the desired user in equal angular steps, namely by repeatedly halving 

their angular separation, as tabulated in the columns corresponding to user 2 and user 3 of Table 4.4. 

Based on the results shown in Figure 3.20 of Section 3.5.2, we leave out the scenarios, where the MBER 

beamformer was deficient, particularly the two-element array. As seen in Figures 4.18 (a) and 4.18 (b), 

the GA-assisted BER performance of the four-element array may be considered attractive, although 

it is not identical to the theoretical MBER solution using the simplified conjugate gradient algorithm 

of Chapter 3. In Figure 4.18 (a), we are able to observe identical solutions for the GA and for the 

simplified conjugate gradient algorithm up to SNR = 5dB under Scenario 2, while for Scenario 3 of 

Figure 4.18 (b) the BER gap between both approaches starts to widen, although remains relatively 

insignificant at low SNR values satisfying SNR < 8dB. On the other hand, the eight-element array 

has a significantly wider BER performance gap in comparison to the theoretical MBER bound. The 

BER performance difference also increases, as the beamforming scenario becomes more challenging, 

i.e. when the interfering user 2 and user 3 get closer in angular terms to the desired user. In particular, 

after the fourth halving, corresponding to Scenario 5 outlined in Table 4.4, the GA becomes unable to 

produce a weight-solution near the optimum MBER solution at a complexity of 5500 objective function 

evaluations. Increasing the complexity to 6500 objective function evaluations however becomes capable 
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Figure 4.18: BER performance of the GA-assisted MBER beamformer, based on Equation (4.11), un

der four different five-user scenarios; (a) Scenario 1 of 15° (SOl), -7.5°,37.5°,80°, -70° and (b) Sce
nario 2 of 15° (SOl), 3.75°,26.25°,80°, -70°, for four- and eight-element uniform linear arrays, hav

ing a population size and number of generations given by P = 50, G = 30 and P = 110, G = 50, 
respectively, and (c) Scenario 4 of 15° (SOl), 9.375°,20.625°,80°, -70° and Scenario 5 of 15° (SOl), 
12.1875°,17.8125°,80°, -70° for an eight-element uniform linear array. The GA employed was using 
the roulette-wheel selection, elitism, span scaling, the fitness function F2 having a mutation and a 

crossover probability of Pm = 0.1 and Pc = 0.9, respectively. The associated four- and eight-element 
antenna arrays had an affordable complexity of P . G tv 1500 and 5500, respectively. These results 

were recorded for transmission over the AWGN channel, for five equal-power users and for the AOAs 
specified by Scenarios 2, 3, 4 and 5 of Table 4.4. 
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of producing a similar curve. It is also plausible that as the beamforming scenario becomes more 

complex, for example due to having interfering users at extremely close angles to the desired user, 

the number of bits assigned to the quantised real-valued weight solutions must be increased. In our 

case the bit-representation should be more accurate than J = 8 bits. For a very complex BER surface 

encountered in case of interferers close to the desired user, such as that in Scenario 5 of Figure 4.18 (c), 

where two interfering users are separated by less than 3° from the desired user due to the inadequate 

resolution of the 16 different quantised weights, where the number of quantised weights is twice the 

number of array elements given by L = 8, we will have to tolerate a high BER. For a particularly 

complex BER surface increasing the number of elements may not improve the BER performance 

further, since the ultimate effects of quantisation errors will be determined by the number of array 

weights to be quantised. Apart from Scenario 5, it has been observed that the GA is capable of 

converging to the theoretical MBER solution with a high probability. 

4.4.2 GA-Assisted MBER Beamforming Performance Using Kernel Estimates 

Our motivation for the employment of a GA in the context of MBER beamforming was to circumvent 

the weaknesses of the stochastic gradient based MBER algorithms investigated in Chapter 3. More 

explicitly, the LBER algorithm [155,198] for example requires appropriate initial array weight values 

and the optimisation of several adaptation parameters, which have to be carefully chosen in order to 

attain the optimum performance, instead of a sub-optimum performance due to encountering local 

minima. In this chapter we have assumed the knowledge of the exact BER of Equation (4.11). We 

will now use the estimated BER of Equation (4.15), which is obtained using Parzen's kernel density 

estimation [224] discussed in Section 3.4.1. According to Equations (4.15) and (4.16) the estimated 

BER is based on a block of training samples of length T and on the kernel width or smoothening 

parameter Pn, respectively. 

Figure 4.19 shows the BER performance of the GA-assisted MBER beamformer for a population 

size of P = 20 and G = 20 generations, using the training segment length of T = 512 samples in 

conjunction with different smoothening parameters Pn of 0.01,0.1 and 1. Despite employing a long 

training segment, except perhaps for the smoothening parameter of Pn = 0.1, the BER performance 

observed is not very encouraging, especially for Pn = 1. The BER curve associated with the smoothen

ing parameter of Pn = 1 became erratic, frequently exhibiting a worse BER performance than that of 

the MMSE solution. The erratic behaviour of Figure 4.19 may be explained by the BER histograms 

portrayed in Figure 4.17 associated with the GA-assisted MBER solutions of Figure 4.16 (a). It is 

observed from Figure 4.17 (c) for the eight-element case that the BER histogram, which is not as 

meritorious as that of the two-element case of Figure 4.17 (a), has resulted in a gap between the 

GA-aided MBER performance and the theoretical MBER bound. Similarly, for Pn = 0.01 the BER 

performance became worse than that of the MMSE solution, especially at higher SNR values. Hence, 
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Figure 4.19: BER performance of the GA-assisted MBER beamformer, based on Equation (4.15), 

for five equal-power users and for the angular directions specified by Scenario 1 of 15° (SOl), 
-30°,60°,80°, -70° seen in Table 4.4 for a two-element uniform linear array. The GA employed 

was using roulette-wheel selection, elitism, span scaling, the fitness function F2 in conjunction with 
the estimated objective function of Equation (4.15)6, using a training segment length of T = 512 

samples and the smoothening parameters of Pn = 0.01,0.1,1. The population size and the number of 
generations was P = 20 and G = 20, respectively, while the mutation and crossover probability were 

Pm = 0.1 and Pc = 0.9, respectively. These results were recorded for transmission over the AWGN 

channel. 

we opted for increasing the complexity, while using a shorter training segment length of T = 256 

samples to compensate for the increased complexity. The results obtained using a population size 

of P 50 and G = 30 generations, while using the probability of error expression corresponding to 

Equation (4.15), where the BER was estimated using the training segment length of T = 256 samples 

is plotted in Figure 4.20 under four different conditions; (a) SNR = IN~ for i = 2,3,4,5, (b) INRi = 

SNR +6dB for i = 2,3,4,5, (c) SNR = INRi for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR 

= IN~ for i = 2,3,4 and INRs = SNR +6dB. It is observed in Figure 4.20 (a) that in comparison 

to Figure 4.19 the BER performance seen in Figure 4.20 (a) improves, especially for the case of us

ing the smoothening parameter of Pn = 1. This suggested that the G A is capable of improving the 

6The estimated BER calculated based on Equation (4.15), was used in the objective function F2 of the GA-assisted 
MBER approach described by Equation (4.18). 
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Figure 4.20: BER performance of the GA-assisted MBER beamformer, based on Equation (4.15), 

under four different conditions; (a) SNR = IN~ for i = 2,3,4,5, (b) INRi = SNR +6dB for i = 

2,3,4,5, (c) SNR = INRi for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR = INRi for i = 2,3,4 
and INR5 = SNR +6dB for a two-element uniform linear array. The G A employed was using the 
roulette-wheel selection, elitism, span scaling, the fitness function F2 in conjunction with the estimated 
objective function of Equation (4.15), using a training segment length of T = 256 samples and the 
smoothening parameter values of Pn = 0.01,0.1,1. The population size and the number of generations 
was P = 50 and G = 30, respectively, while the mutation and crossover probability were Pm = 0.1 

and Pc 0.9, respectively. These results were recorded for transmission over the AWGN channel for 
five users and the angular directions specified by Scenario 1 of Table 4.4. 
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estimated MBER beamforming performance in conjunction with a shorter training segment length, 

provided that we increase the affordable GA complexity. The remaining plots of Figures 4.20 (b), 

4.20 (c) and 4.20 (d) portray the BER performance obtained, as we vary the interfering users' power 

with respect to the desired user's signal power. Note that there is always a BER performance gap 

between the GA solution and the theoretical MBER bound, particularly for the smallest smoothening 

parameter value of Pn = 0.01. This is unavoidable, since we are using the estimated probability of 

error FE and the smoothening parameter of Pn = 0.01 which may be inadequate or inappropriate for 

this specific case, preventing the GA from converging to the MBER solution. Even for the exact error 

probability of Equation (4.11), at certain SNR values, we occasionally experienced a BER performance 

gap, although this was rarely the case. Furthermore, the kernel width has to be adjusted according to 

the variance of the training samples used and thus it is dependent on both the SNR and the INR [157]. 

One of the reasons for invoking GAs for finding the MBER solution is because they are naturally 

guided by the objective function, such as the MBER objective function of this chapter. The BER per

formance shown in Figure 4.20 was unfortunately dependent on the specific choice of the smoothening 

parameter Pn used for satisfying Equation (4.16). One option of calculating a meritorious smoothening 

parameter Pn is based on Silverman's rule of thumb [225], where Pn is automatically determined by 

the block of T training samples and its standard deviation a. The associated expression for Silver

man's smoothening parameter Pn has been expressed in Equation (3.102), which is restated here for 

convenience as: 

(
4a5 ) 1/5 

Pn = 3T ;:;:; 1.06aT-1
/

5 
. (4.23) 

Figure 4.21 shows the achievable BER performance as a function of the users' signal power under 

the same four conditions as those stipulated in Figures 4.20 (a) to 4.20 (d). In comparison to the 

plots of Figure 4.20 the curves of Figure 4.21 exhibit a better BER performance, particularly in 

the SNR region up to SNR = 15dB. All plots of Figure 4.21 illustrate the superiority of the MBER 

approach over the MMSE approach in terms of counteracting the near-far effects, while demonstrating 

that the GA is capable of automatically adapting to a new BER surface without being reconfigured, 

while imposing the same complexity of 50 . 30 = 1500 objective function evaluations. It is also 

observed in Figure 4.21 that the GA's performance is not significantly affected at higher SNR values 

by using shorter training segment lengths of T = 128 and T = 64 samples, especially for SNR s:; 

lOdB, apart from some BER curve glitches. The comparatively large BER performance gap seen in 

Figure 4.21 (b) at higher SNR values may relate to the insufficiently high complexity of the GA, given 

the more complex BER surface owing to having all interferers at a 6dB higher signal power than 

the desired user. Furthermore, Silverman's rule of thumb provides an adequate, but by no means 

optimum smoothening parameter value, therefore it does not guarantee the perfect smoothening of 

the probability of error estimates, thus it may also result in a high BER value. Another option 

for improving the attainable performance without increasing the GA's complexity is to increase the 
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Figure 4.21: BER performance of the GA-assisted MBER beamformer, based on Equation (4.15), 

under four different conditions; (a) SNR = INRi for i = 2,3,4,5, (b) INRi = SNR +6dB for i = 
2,3,4,5, (c) SNR = INRi for i = 3,4,5 and INR2 = SNR +6dB and (d) SNR = IN~ for i = 2,3,4 
and INR5 = SNR +6dB for a two-element uniform linear array. The GA employed was using the 
roulette-wheel selection, elitism, span scaling, the fitness function F2 in conjunction with the estimated 
objective function of Equation (4.15), using a training segment length of T = 64,128,256 samples and 

a smoothening parameter Pn obeying Silverman's rule of thumb outlined in Equation (4.23). The 
population size and the number of generations was P = 50 and G = 30, respectively, while the 
mutation and crossover probability was Pm = 0.1 and Pc = 0.9, respectively. These results were 
recorded for transmission over the AWGN channel for five users and the angular directions specified 
by Scenario 1 of Table 4.4. 
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number of training samples T. This statement is based on the observation of Figure 4.22, since all the 

histograms of Figures 4.22 (a), 4.22 (b), 4.22 (c) and 4.22 (d), associated with user power scenarios 

similar to those of the corresponding Figures 4.21 (a) to 4.21 (d) demonstrated that the convergence 

of the GA improves, when a longer training segment is used. The resultant BER histogram becomes 

narrower, as the training segment length T increases. 

4.5 Conclusions 

A novel GA-assisted MBER beamformer has been developed. The family of GAs operates on the basis 

of finding a solution from a rich database of candidate solutions by searching through a number of 

generations, rather than evolving from a single point to another single point. If the fitness function 

is not carefully chosen, it may lead the search to local minima. For our simulations we initially use 

the fitness function Fl of Equation (4.17), which becomes less efficient for lower BER values in the 

range of BER :s: 10-3 , since the fitness value difference between two different BERs satisfying BER 

:s: 10-3 is rather small, even though their relative BER difference may be as high as BER = 10-3 

and BER = 10-7 . For the sake of overcoming this problem, we used a more effective fitness function, 

namely that expressed in Equation (4.18), which we referred to as the fitness function F2. In addition 

to the improved average BER performance, using fitness function F2 has reduced the GA complexity 

required for attaining a BER approaching the exact MBER solution. 

Figure 4.13 demonstrated that the GA's BER performance improved drastically when using elitism 

combined with scaling and the fitness function F2. The BER performance seen in Figure 4.12, when 

using the less efficient fitness function Fl has also shown a tremendous improvement in terms of 

the attainable average BER, but nonetheless, the performance remained lower than that when using 

the fitness function F2, as demonstrated by the plots seen in Figure 4.14. This indirectly shows the 

robustness of GAs, provided that the GA has the option of offering fitness scaling combined with 

elitism, for the sake of improving the achievable BER performance. When fixing the complexity of the 

GA to the product of the population size P and the number of generations G, we have the advantage 

of knowing the GA's complexity in advanced. It is also advantageous to invoke a specific fitness scaling 

technique that increases the chances of selecting high-fitness individuals, when the generation index 9 

becomes high, as span scaling, which was introduced in Section 4.3.5.2. More explicitly, in comparison 

to the more conventional sigma scaling, span scaling has the advantage of forcing the GA to converge 

to a solution after a fixed number of generations by increasing the selection pressure, as the generation 

index 9 increases [157J. It has been shown in Figure 4.15 that span scaling performs at least similarly, 

if not better than sigma scaling associated with the coefficient c = 1. 

We used the BER histogram accumulated over 1000 randomly initialised GA runs for the sake of 

characterising the achievable performance of the MBER beamformer, as the number of generations 
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Figure 4.22: The BER histogram of the GA-aided beamformer used in Figure 4.21, evaluated based 
on Equation (4.15), in conjunction with a population size of P = 50 and G = 30 generations, at 

SNR = 10dB, under four different users signal power conditions; (a) SNR = IN~ for i = 2,3,4,5, 

(b) IN~ = SNR +6dB for i = 2,3,4,5, (c) SNR = INRi for i = 3,4,5 and INR2 = SNR +6dB and 
(d) SNR = INRi for i = 2,3,4 and INR5 = SNR +6dB for a two-element uniform linear array. The 
associated BER histogram for each block of T = 64,128,256,512 training samples was constructed 
from 1000 randomly initialised GA runs, recorded when communicating over the AWGN channel for 

five users and the angular directions specified by Scenario 1 of Table 4.4. 
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G increases, as it was shown in Figure 4.12. From a different perspective, we also characterised the 

convergence rate of the algorithm in terms of the variance of the BER as a function of the affordable 

GA complexity, as shown in Figures 4.14 (b). In terms of the required complexity, the observation 

of Figure 4.16 suggested that the complexity of the GA increases quadratically, as the number of the 

antenna array elements L increases. The GA was also shown to be near-far resistant, approaching 

the theoretical MBER bound even in a large search space associated with a high number of users and 

numerous beamformer elements. For the particular case of Scenario 5 characterised in Figure 4.18, a 

large BER performance gap has been observed with respect to the exact MBER solution. Increasing 

the GA's complexity may not improve the situation further because the achievable performance is 

likely to be limited by the number of bits used for representing the quantised beamformer weights. 

Instead of using the true BER formula of Equation (4.11) for guiding the G A's search, Figures 4.19 

to 4.22 portray the GA's performance attained using the estimated BER of Equation (4.15). A good 

BER performance was observed even in conjunction with short training segments, such as T = 64 

samples, although the spread of the BER histogram did improve, as a longer training segments were 

used, as evidenced by the BER histograms of Figure 4.22. 

Indeed, GAs are suitable for MBER beamforming. Their ability of achieving a similar BER 

performance to the theoretical MBER solution has also been demonstrated. We have observed that 

this GA-aided approach exhibits a superior performance in terms of convergence, while requiring a 

modest complexity for arriving at the global solution and in this respect the GA-assisted MBER 

beamformer outperforms the conjugate gradient algorithm based solutions, such as the LBER or the 

approximate LBER algorithms investigated in Chapter 3, which often require the reoptimisation of 

the step size fJ, and the smoothening parameter Pn. 



Chapter 5 

Conclusions and Future Research 

In this treatise we investigated the performance of several adaptive algorithms in the context of 

temporal reference based beamforming. The performance of the algorithms was analysed with the aid 

of computer simulations using BPSK modulated transmissions over an AWGN channel. The topics 

covered will be summarised in Section 5.1, while in Section 5.2 we will outline a range of possible 

further research directions. 

5.1 Summary and Conclusions 

In Chapter 2 we presented a historical perspective on the evolution of adaptive beamforming. An 

overview of various beamforming algorithms was also provided, including the classification of adaptive 

beamforming techniques. The basic concept of beamforming was exemplified in Section 2.2.3. 

For the sake of determining the optimal beamforming weights, several optimisation criteria were 

presented in Section 2.3, including the Minimum Mean Square Error (MMSE), the Maximum Signal-to

Interference Ratio (MSIR) and the Minimum Variance criterion. Table 2.5 summarised the features 

of these three criteria, along with their advantages and disadvantages. However, the beamformers 

based on these three criteria were all dependent on the time-variant statistics of the signal received by 

the antenna array of the beamformer, therefore necessitating the employment of adaptive algorithms. 

We characterised three classic algorithms, namely the Least Mean Square (LMS) algorithm of Sec

tion 2.4.1.1, the Recursive Least Square (RLS) algorithm of Section 2.4.1.2 and the Sample Matrix 

Inversion (SMI) algorithm of Section 2.4.1.3. For Binary Phase Shift Keying (BPSK) transmission 

over an Additive White Gaussian Noise (AWGN) channel the Recursive Least Square (RLS), the Di

rect Matrix Inversion (DMI), i.e. a direct form of the SMI algorithm and the recursive form of the 

SMI (RSMI) exhibit a similar performance. However, the complexity imposed by the DMI algorithm 

is of the order of O(L3 ), as opposed to the order of O(L2) of the RLS and RSMI algorithms, where 

L is the number of antenna elements in the array. A brief complexity comparison between the LMS, 
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Normalised LMS (NLMS), RLS, RSMI and DMI algorithms in the context of the number of complex 

multiplications and additions was provided in Section 2.6.1.3. In the context of flat Rayleigh fading 

channels, the performance of the DMI, RSMI and RLS algorithms was degraded and the associated 

degradation was dependent on the forgetting factor a used. The RSMI algorithm was observed to be 

more sensitive to the choice of the forgetting factor a, than the RLS algorithm. 

The beam patterns of a three-element uniform linear antenna array (ULA) system, receiving signals 

from a number of combinations of the users' angle of arrival (AOA) were portrayed in Section 2.6.2. 

Specifically, from the beam patterns shown in Section 2.6.2.1 and 2.6.2.2 for both an AWGN and 

flat Rayleigh fading channels, respectively, a maximum of 8dB difference was observed as a function 

of the AOA. The achievable performance expressed in terms of interference rejection was improved, 

whenever the interferer closest to the desired user was allocated more power. Increasing the desired 

user's power does not result in significant improvements. As the number of users was increased, thus 

decreasing the degrees of freedom (DOF) exhibited by the system, the interference rejection became 

less effective. For example, the worst-case rejection in a five-user, three-element antenna array system 

communicating over both the AWGN and flat Rayleigh fading channels considered was reduced to 

17dB as compared to 38dB and 32dB for a two-user scenario. 

All simulations performed in Chapter 2 were based on the MMSE criterion. However, for a 

communication system, it is the achievable Bit Error Ratio (BER) that really matters. Ideally, the 

system design should be based on minimising the BER, rather than the MSE [155], although in certain 

situations even the MMSE solution produces a relatively good BER performance. 

In Chapter 3 we characterised various adaptive beamforming schemes, which were based on di

rectly minimising the system's Bit Error Ratio (BER), thus we referred to these schemes MBER beam

forming arrangements. Section 3.2 revised the signal model previously used in Chapter 2, streamlining 

some of the equations used in the context of MBER beamforming. Having derived the closed-form 

MMSE solution of Equation (3.25) in Section 3.2.1, we formulated a non-adaptive algorithm that 

directly minimises the system's BER based on the conjugate gradient technique, more precisely on the 

simplified conjugate gradient algorithm. The procedure of finding the MBER beamforming solution 

based on this simplified conjugate gradient algorithm was outlined in Equations (3.93) to (3.96). 

The BER performance of the MBER beamforming scheme of Section 3.3 was analysed in Section 3.5 

in comparison to that of the MMSE beamforming arrangement of Section 3.2.1. It can be concluded 

from the simulation results derived for a two-element antenna array system, which were recorded for 

BPSK transmissions over an AWGN channel, that the performance of MBER beamforming is superior 

to that of MMSE beamforming. Furthermore, for the four-element antenna arrays of Section 3.5.3, it 

is observed in Figures 3.31 (a) and 3.31 (b) that the MBER solution is more robust to the phenomenon 

of array-overloading, when the number of users is higher than the number of array element. In all 

related plots, we also included the single-user curves for the sake of benchmarking the achievable BER 
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performance of a beamformer. The performance gap between the MMSE and MBER beamforming 

solution with respect to the upper-bound performance the optimum has been portrayed in Figures 3.10 

and 3.11 as a function of the interfering user's AOA for the two-user, multi-element scenarios with 

the SOl arriving from the direction of 0° with respect to the normal of the antenna array. On the 

other hand, Figure 3.32 shows the signal power requirement difference with respect to the single-user 

performance, when supporting multiple users employing a four-element array in the AOA scenario 

plotted in Figure 3.30. We observe from Figures 3.10, 3.11 and 3.32 that the MBER solution always 

exhibits a performance closer to the optimum single-user case than the MMSE solution. For example, 

as shown in Figure 3.10, the SNR loss of the MBER solution is about 3 to 5dB lower than that 

of the MMSE solution in comparison to the optimum single-user case. The interpretation of the 

differences between the MMSE and MBER approach in optimising the beamformer's weights may be 

visualised with the aid of Figures 3.1, 3.27 and 3.34. It was observed in Section 3.5.2 that as the 

shape of the probability density function (PDF) became increasingly non-Gaussian, the performance 

difference between the MMSE and MBER beamforming schemes became increasingly more significant. 

Furthermore, MBER beamforming is more robust to the near-far effects often encountered in wireless 

systems owing to power-control errors. 

In Section 3.4 we investigated an adaptive implementation of the MBER beamforming scheme 

advocated. Specifically, we classified these adaptive MBER beamforming algorithms into two cat

egories, namely the family of block adaptive and the class of sample-by-sample adaptive stochastic 

gradient approaches, which were outlined in Sections 3.4.2 and 3.4.3, respectively. In the block-based 

implementation context we studied the Block Adaptive Conjugate Gradient (BACG) algorithm of 

Section 3.4.2, which used a block of T training samples constituted by the desired user's bits. On the 

other hand, the stochastic approach employed a sample-by-sample adaptive procedure for determining 

the optimum array weight values. For the Least Bit Error Rate (LBER) algorithm of Section 3.4.3.1, 

the kernel width radius Pn was shown to be dependent on the magnitude of the beamformer's weight 

vector VwHw, while for the approximate LBER (ALBER) algorithm of Section 3.4.3.2 we assumed 

an independent Pn as the kernel width, for the sake of reducing the algorithm's complexity. Section 3.6 

portrayed the performance of all the three adaptive MBER beamforming algorithms. It can be seen 

from both Figures 3.35 (a) and 3.35 (b) that the BACG algorithm has converged rapidly, approaching 

the steady BER state value after eight iterations, but resulted in a slightly higher BER than the 

theoretical MBER performance of the non-adaptive MBER beamforming algorithm obtained in Sec

tion 3.5.2. When using the BACG algorithm, the parameter Pn in Equation (3.117) has to be adjusted 

according to the step size value f1 during the initialisation step of the simplified conjugate gradient 

algorithm outlined in Section 3.3, for the sake of attaining a rapid convergence towards the theoretical 

MBER performance. We then considered the option of using a single-sample based estimate of the 

PDF in the context of the LBER and ALBER algorithms of Sections 3.4.3.1 and 3.4.3.2, respectively. 

According to Equations (3.116) and (3.123) the calculations required for determining the gradient of 
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the BER for both the BACG and LBER algorithms, respectively, have to use a variable kernel width of 

Pn VwH w in the kernel density estimation process of Section 3.4.1, which is related to the beamformer's 

weight vector. The ALBER algorithm on the other hand eliminates this procedure and uses a constant 

width Pn for approximating the term PnVwHw. Therefore the calculation of the gradient \/wPE III 

the ALBER algorithm will only depend on the parameter Pn, not on PnVwHw, as can be seen III 

Equation (3.132). In Figures 3.43 (a) and 3.44 recorded for the equal- and unequal-power user scenario, 

respectively, for the specific AOA considered in Figure 3.18 both the convergence rate and the steady 

state BER value of the ALBER algorithm is better than that of the LBER algorithm. According to 

Figure 3.43 (b) characterising the equal-power user scenario, although the LBER algorithm initially 

appears to have a faster convergence, near the iteration index 400 the performance curves of the 

algorithms crossed each other and beyond this point the ALBER technique outperformed the LBER 

algorithm, arriving at a BER lower than that of the LBER approach. Despite its reduced complexity, 

the ALBER algorithm exhibited an outstanding performance, as shown in Figures 3.46 and 3.48 for 

both the equal-power and unequal-power user scenarios, respectively. 

The performance of all the adaptive MBER beamforming algorithms was however dependent on 

the step size p, and on the radius Pn related to the kernel width. Specifically, the BER performance of 

a two-element system evaluated in conjunction with the AOA scenarios represented by Figure 3.18 has 

been portrayed in Figures 3.41 and 3.42 as well as in Figure 3.49 for the BACG and ALBER algorithms, 

respectively. An appropriate choice of these parameters' value is necessary for the sake of obtaining an 

attractive adaptive MBER beamforming performance. Table 3.7 summarises the acceptable range of 

the step size p, and kernel width values Pn for our specific equal-power users and for the unequal-power 

users of the corresponding AOA scenario plotted in Figure 3.18. 

In Chapter 4 a novel GA-assisted MBER beamforming technique was introduced. We employed 

GAs for assisting the operation of the MBER beamforming scheme investigated in Chapter 3 using the 

BACG, LBER and ALBER algorithms. More specifically, GAs were invoked for overcoming certain 

drawbacks of the MBER beamforming scheme, which includes the irregular shape of the BER surface 

and also the adaptive MBER algorithms' performance dependence on the choice of the initial weights, 

on the kernel width radius Pn and on the step size p,. 

The performance of the proposed GA was characterised both by the BER histogram and by the 

achievable average BER values at the beamformer's output. Having found a good GA configuration, 

we compared the BER performance results generated as a function of the SNR to the theoretical 

MBER bound, produced by the simplified conjugate gradient algorithm of Chapter 3. Apart from 

performing elitism for the sake of preserving the meritorious genes, in Section 4.4 we also stimulated 

the level of competition between individuals in the population for the sake of avoiding premature 

convergence, by incorporating fitness scaling techniques. In addition to the more conventional sigma 

scaling, we introduced a novel scaling technique that has some relation to the generation index g, 
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referred to as span scaling. It was observed in Figure 4.15 that the GA employing the span scaling 

technique performed better or at least similarly to sigma scaling having a coefficient of c = 1. In terms 

of the required complexity, the observation of Figure 4.16 suggested that the complexity of the GA 

increased quadratically, as the number of the antenna array elements L was increased. 

It was demonstrated in Figures 4.16 to 4.22 of Section 4.4 that the GA is suitable for aiding the 

operation of MBER beamforming. In comparison to Figure 3.41 charactersing the stand-alone BACG 

algorithm, the BER performance of the GA-assisted MBER technique of Figure 4.20 was shown to be 

generally more robust to the algorithmic parameters' variations, although the best BER performance 

curve of Figure 4.20 is not as good as the best BER performance curve of Figure 3.41. Note that for the 

BACG algorithm the performance portrayed in Figure 3.41 was generated in conjunction with a step 

size of f-L = 0.9. On the other hand, Figure 4.21 shows the BER performance of the GA-aided approach 

as a result of using Silverman's rule of thumb given in Equations (3.102) or (4.23). Similar to the 

BACG algorithm's BER performance of Figure 3.42, the BER performance of the GA-aided system 

of Figure 4.21 was also improved, when a longer training block length T was used. It was observed 

in Figures 4.21 and 4.22 that as we increased the training block length T, the BER performance 

improvement attained by the GA became more significant. This may be attributed to the fact that 

the GA's approach is based on a random search method. However, owing to this particular reason, 

the employment of GAs is only beneficial, when using the block-data based approach. Based on the 

observation of Figure 4.22, using a sample-by-sample approach associated with T = 1, as used in 

the LBER and ALBER algorithms may result in a significantly higher BER than that using T = 64, 

as shown in Figure 4.21, in addition to its dependency on the specific choice of the smoothening 

parameter Pn used for satisfying Equation (4.16). 

From all the above-mentioned observations stated in Chapters 3 and 4, particularly when com

paring Figures 3.41, 3.49 and 4.20 as well as Figures 3.42 and 4.21, we concluded that the ALBER 

algorithm is capable of offering solutions nearly identical to the exact MBER performance, despite 

having the lowest computational complexity. More specifically, the complexity was similar to that of 

the LMS algorithm of Section 2.4.1.1, namely of the order of O(L), where L is the number of antenna 

elements in the array. On the other hand, the GA is capable of attaining a solution, which is in good 

agreement with the exact MBER solution at the cost of a moderate complexity, whilst remaining 

robust to the variation of the adaptive parameters, namely to the step size f-L and kernel width Pn, 

unlike the stochastic gradient based algorithms presented in Chapter 3, such as the BACG, LBER 

and ALBER algorithms. 

Having concluded our findings, we are aware that several important areas still warrant further 

research, as suggested in the next section. 
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5.2 Suggestions for Future Research 

In this section we suggest a number of further research items and open problems in the context of 

adaptive MBER beamforming. 

1. Our investigations of adaptive MBER beamforming were concentrated on the simplest possible 

BPSK modulation scheme conducted over the non-dispersive AWGN channel. Further investi

gations may incorporate higher order modulation schemes, such as 4-QAM and 16-QAM. Fur

thermore, the channel considered may include hostile fading channels and dispersive wideband 

channels that induce lSI. An extension to wide band beamforming would also be interesting and 

beneficial in terms of fulfilling the requirements of higher data rate services. 

2. It is noted from Figure 3.20 that the separation between the desired signal and the interfering 

signals expressed in terms of the AOA affect the system's BER performance. For a specific 

antenna array system, when the AOA separation is below a certain threshold, the modem's 

phasor constellation becomes linearly inseparable, which renders classic 'linear' beamforming, 

i.e. the linear combination of the received signals at the output of the antenna array, inadequate. 

This statement has been evidenced in [249-251] in the context of single-user channel equalisation. 

Therefore, it is interesting to consider nonlinear beamforming schemes, such as those referred 

to as Bayesian beamformers [252], which may still perform adequately in scenarios, when linear 

beamforming fails. Even for the linearly separable case, a nonlinear processing technique may 

be expected to provide a better performance than a linear one, although this is achieved at the 

cost of an increased complexity. 

3. It would also be beneficial to compare the BER performance gain attained by the GA-aided 

MBER beamforming scheme to that of the GA-aided MMSE beamformer, as a function of the 

number of users [253] or the number of antenna elements. However, in contrast to MBER 

scheme, whose array weight values may be within a fixed range of [Dmin, Dmax] [1, -1], 

when considering Equation (3.70), the range of the MMSE solution's array weight values would 

be dependent on the scenarios considered. Therefore, a study of the Dmin and Dmax values, 

as a function of the number of users and/or number of antenna array elements used should be 

conducted, since this would affect the precision of the quantised array weights used, as suggested 

by Equation (4.10), which in turn would limit the attainable BER performance. 

4. Simulations performed for the GA-aided MBER beamformer were based on the specific scenario 

of having the AOAs portrayed in Figure 3.18. Further research is required for generalising the 

results obtained to more complex beamformers and propagation scenarios. The GA procedures 

used, such as elitism and fitness scaling have significantly influenced the achievable BER per

formance of the investigated GA-aided MBER beamformer. More additional GA procedures, 
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such as weighted mutation, post selection and double search [153] may be included for the sake 

of improving the attainable BER performance versus the required complexity. The weighted 

mutation principle is portrayed in Figure 5.1, illustrating the mutation probability distribu

tion of the various bits of an individual containing for example three concatenated parameters, 

namely C(1)C(2)C(3). Specifically, we render the mutation probability to be dependent on the 

bit's position and on the number of bits used for a specific parameter, which may be formulated 

as: 

Pm,j = ~:m . (k - (j - 1)), 
j=lJ 

(5.1) 

where Pm,j is the weighted mutation probability for bit j, while k is the total number of bits in a 

parameter, say in C(2). This method protects the Most Significant Bits (MSBs) from mutation 

and concentrates the search within the local region, once the GA is considered reasonably close 

to convergence. 

, ... 

( 
, ... 

C(l) 

bits . ........ , 

MSB 

c(2) k : c(2) k-J : 

B=i+k+l bits 

C(2) C(3) 

, .......... 1 bits 

k bits ----------l.~~., 
LSB 

~, 

J 
.. , 

I : =k *P 
I I m 

~ 

Figure 5.1: An illustration of the weighted mutation process. 
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