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Abstract

Most descriptions of the scatter and attenuation of acoustic waves in water by gas
bubbles refer to the steady state bubble pulsation, in particular when the concept of
the acoustic cross-section of the bubble is applied. However, it is becoming
increasingly common for the bubble to be driven by pulses so short that the
oscillation may not reach steady state (for example, short pulses are used to overcome
reverberation and multipath complications and to obtain range resolution). Hence the
option for describing the acoustic effect of the bubbles during the transient period
needs to be considered. The specific applications considered in this theory are in the
inversion of acoustic attenuation to measure bubble populations, and in exploring the

possibility of enhancing sonar performance in bubbly waters.

Consider the concepts of a resonant bubble taking a finite time to reach steady state
oscillation and the time-dependent cross-section of a bubble. The potential for using
these characteristics for the enhancement of sonar detection in bubbly environments
is discussed, and previous studies are reviewed. Previously Akulichev has observed
an effect on bubble scatter when the duration of the driving pulse was varied. The
theory presented by Akulichev to model this incorporated only the contribution of
bubbles at resonance, which is a severe limitation. Attempts to find a pulse length
dependence in test tanks in the United States and United Kingdom were subsequently
unable to find any, and the attempt to extrapolate Akulichev’s theory to incorporate
off-resonance effects was flawed. Hence a major goal of this thesis is to explain these

apparently conflicting observations and in so doing improve upon the theory.

In order to investigate the potential for sonar enhancement, a theory for the time-
dependent cross-section of a bubble using a non-linear bubble model has been
developed. The model has then been extended to allow the estimation of the acoustic
cross-sections of a 1 m® cloud, neglecting propagation effects. A further cloud model,
which takes into account propagation effects, has been developed to calculate the
attenuation from a finite bubble cloud. The model has also been adapted to allow the

input of experimentally measured waveforms.

A laboratory experiment to measure the attenuation is described, and the results

(using both pulses and chirped signals) are compared with theory. The experiments
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were conducted in an 8 m x 8 m x 5 m deep fresh water tank. The bubble cloud was
generated by electrolysis. The attenuation from a series of pulse lengths and chirps,
with a fixed bandwidth but variable duration, was measured. Good agreement
between theory and experiment is shown but no sonar enhancement was achieved
using the current experimental arrangement. Use of the model allowed confirmation
that the type of bubble populations that are usually generated in test tanks would not
be expected to show such enhancements, but that enhancements might be seen in
population distributions found in the ocean environment. This is proposed and tested.
It is also an explanation for the conflicting observations in the previous studies

mentioned above.

A further series of trials were conducted at a beach on the south coast of the United
Kingdom. An air filled buoy was mounted in the surf-zone and a Furgo-UDI Ltd.
transmit/receive array was used to test a variety of waveforms. Short pulses were
shown to improve target detection at some frequencies. However a combination of

short pulses and optimisation of the transmit frequency gave the best results.

Although for decades the emphasis has been on the effects of resonant bubbles, this
thesis uses these experimental results to underline the importance of the contribution
made by bubbles close to (but not at) resonance when considering short pulse lengths.
The response of these bubbles can easily mask the ring-up of resonant bubbles.
Furthermore this critical near-resonant bubble response is not included in the simple
linear models used in previous studies mentioned above, and is the cause of the

discrepancy between the experimental and theoretical results of these previous

studies.
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CHAPTER 1

INTRODUCTION

1 Introduction

Historically the application of active sonar for target detection has been limited in
bubbly environments such as the surf-zone, or the subsurface ocean layer' when wind
speeds exceed 7 m/s. This is a direct consequence of the excess attenuation from the
oscillation of bubbles in a sound field, through scattering and absorption losses.
These losses® can be as great3 as 30 dB/m between 50 and 100 kHz, significantly
reducing the operational range of sonar. If a means could be developed to reduce
these losses, it may facilitate target detection and underwater communication in

bubbly environments.

One possibility of enhancing sonar performance in bubbly waters is through the use
of very short duration or broadband signals. However, most descriptions of the scatter
and attenuation of acoustic waves in water by gas bubbles refer to the steady state
bubble pulsation, in particular when the concept of the acoustic cross-section of the
bubble is applied. When a bubble is driven by very short duration signals the bubble
response may not reach steady state, hence the option for describing the acoustic

effect of the bubbles during the transient period needs to be considered.

This thesis presents theoretical and experimental work exploring the potential for
short duration and broadband signals to investigate their potential for sonar
enhancement in bubbly environments. It has been divided into six chapters. In
addition, an important collaborative study that arose from the measurements taken to
design the tank experiment is bound at the back of the thesis as Appendix G (because

the investigation grew beyond the main topic of the thesis).

The first chapter introduces bubble dynamics in an acoustic field by reviewing linear
models for the bubble damping terms and for calculating the response of bubble wall

to an acoustic field. The concept of bubble acoustic cross-sections is also introduced
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and the implications of the presence of bubbles for sonar detection are discussed.
Previous work on sonar enhancement is reviewed, and a hypothesis for progressing
this work is proposed. Chapter 2 develops new bubble models that can be used to
explore sonar enhancement, including novel time-dependent models for calculating
scattering and attenuation of single bubbles and bubble clouds. Time-dependency is
vital if the propagation of short pulses through bubble clouds of finite size is to be
modelled, if reverberation is ever to be incorporated into such models, and if the
effect of bubble ‘ring-up’ is to be included. Chapter 3 describes the experimental
arrangement, and analysis techniques developed for investigating sonar enhancement
experimentally in the tank including the development of a bubble cloud generator
using electrolysis. Such a generator was required because the models described in
Chapter 2 indicated that the large proportion of big bubbles generated by the method
of producing bubbles in one of the two laboratory studies conducted prior to this
thesis, may be responsible for their failure to observe a ‘ring-up’ effect
experimentally. The new electrolysis method was an attempt to generate a bubble
cloud with proportionally few large bubbles, i.e. a population more representative of

oceanic populations in which Akulichev has observed ring-up.

The results of both the theoretical modelling of the tank experiments, and the tank
experimental work itself, are described in chapter 4. The techniques and models
investigated in the tank (chapters 3 and 4) were then tested in the surf-zone during a
beach-based trial at Milford on Sea, Hampshire, England. Surf-zone bubble
populations were measured acoustically. Various methods of sonar enhancement
were tested experimentally and the results compared with the theoretical models. The
details of the surf-zone trial and the results of both the experiment and theoretical
modelling are presented in chapter 5. In the last chapter conclusions and a summary

of this work are presented.

1.1 The acoustics of gas bubbles in liquids

In order to understand why air bubbles are an important consideration for target
detection using active sonar in the sea, it is necessary to investigate the nature of air

bubbles in liquids and then explain how they interact with a sound field.



Section 1.1.1 explains how air bubbles are formed in the ocean, and gives examples
from the ranges of populations of bubbles that are likely to be encountered. The
interactions between bubbles and a sound field are then introduced in the following
two sections, by modelling a bubble as a linear oscillator and introducing a forcing
term. Such linear models have been shown to be good first order approximations of
bubble response. The exposition starts with Minnaert's* calculation of the resonance
frequency of a spherical gas bubble, and concludes with Devin's’ and Eller's®

calculations of damping terms for spherical oscillations of air bubbles.

The concept of acoustic cross-sections of bubbles is then covered, as this is a
common method of characterising the impact of single and multiple bubbles on a
sound field. Finally the concept of a bubble as a non-linear oscillator, and the

limitations of linear bubble theory, are discussed.

1.1.1 Introduction to air bubbles in the oceanic environment

A wide variety of near-surface air bubble populations have been measured in the
ocean under. a range of conditions."” The bubbles can be generated by many
physical, biological and chemical actions. Measurements to date have demonstrated a
dependence of bubble population on water depth, bubble depth, time of day or night,
wind speed, rainfall, cloud cover, season of year and presence of sea slicks®.
Geography can also significantly impact bubble populations. Some results obtained in
coastal watersg’m, for instance, show a) increased bubbles caused by increased
breaking waves at higher wind speeds; b) seasonal dependence of increased
biological activity in coastal waters; ¢) increased numbers of smaller bubbles in
daylight due to photosynthesis; d) increased numbers of larger bubbles at night,
possibly due to offshore winds ('sea breeze') dropping continental aerosols, which

trap bubbles when they fall into the sea, or biological activity on the sea floor”.

Additional factors affecting bubble populations are dissolution, hydrostatic and
buoyancy forces acting on the bubbles once they have been formed. The higher
buoyancy forces acting on large bubbles, and the removal of small bubbles by
dissolution, results in a characteristic peak in the bubble population“. This is so
particularly in deep water at high wind speeds, where entrainment due to breaking

waves generates a persistent bubble layer just below the ocean surface'?,



These processes lead to the formation of bubble layers and clouds with measured
bubble radii of just a few microns up to several hundred micrometers or more.'! Void
fractions (or percentage of gas per unit volume) have been estimated’” at between
0.01-0.02% and'* 0.1-0.2%. This decreases” to 10*% to 10°% under more stable

conditions where the bubbles penetrate to a greater depth.

1.1.2 The bubble as a linear oscillator

When a gas bubble in a liquid experiences a change in pressure over its whole surface
(i.e. the acoustic wavelength is much greater then the bubble radius) it will compress
or expand to a new equilibrium radius. If such pressure changes were a low frequency
oscillation, as is often the case with acoustic signals, the bubble will attempt to
expand and contract in sympathy with that signal and will itself oscillate about its

equilibrium radius.

Consider further the scenario of a bubble encountering, or being insonified by, a
pressure fluctuation. The gas inside the bubble will act as a restoring force owing to
pressure fluctuations as the gas expands and contracts. The system also has inertia
dominated by the mass of the surrounding liquid. Damping results from the acoustic

emission by the bubble, and thermal and viscous losses associated with the motion of

the bubble wall.

For small amplitudes of oscillation, the system that has just been described is
analogous to a bob on a spring. Both have mass, a restoring force and damping and,
when driven harmonically, will respond with simple harmonic motion. This analogy
leads to a simple equation of motion for the bubble [1-1]. This equation of motion is a
first order approximation of the bubble response only. The limitations of the model

will be highlighted in a later section.

méE+beé+ke=0 [1-1]

Here &£ is a displacement, k is the stiffness, m is the mass, b is the dissipation

constant and £ and &€ are the velocity and acceleration respectively.

The damping term represented by b, the dissipation constant, requires further
explanation. To conform with the standard papers on bubble damping by Devin® and

Eller®, the damping term will be considered in the volume-pressure frame (denoted by
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the subscript VP)IS. From this dissipation constant the dimensionless damping

constant 4, which is applicable to all frames of reference, can be determined.

[1-2]

where @is the pulsation frequency in radians per second.

Energy losses from a bubble can occur through three distinct mechanisms'®:

® Energy is radiated away from the bubble as acoustic waves (radiation

damping).

® Energy is lost through thermal conduction between the gas and the

surrounding liquid (thermal damping).

® Work is done against viscous forces at the bubble wall (viscous damping).

A damping constant can be associated with each of these three mechanisms with the
total damping equalling their sum. The total damping can also be related to the bubble

quality factor, O, at the resonance frequency by the well-known equation:

_ 1 _w i
Q_§O 25 (when (@, ) [1-3]

where ¢,is the total dimensionless damping at resonance, @,is the resonance
frequency of the bubble in radians, and /A is the resistive constant leading to
damping.

The radiation damping in the radius-force frame can be determined by considering the
radiation impedance. This is defined as the ratio of the applied force to the particle
velocity. Since it is defined in the radius-force frame, it is numerically equal to the
product of the specific acoustic impedance and the surface area. The specific acoustic
impedance can in turn be defined as the ratio of driving pressure to particle velocity.
It is this impedance that characterises the coupling between the acoustic source, in
this case the bubble, and the radiated waves. The real and imaginary parts of this

impedance give rise to the resistive and inertial properties of the source.



Under the condition of KR, <<1 (K is the wavenumber and R, is the equilibrium

bubble radius) the radiation damping term is:

2
bt = Z“’ [1-4]
JC

where p is the density of water and cis the speed of sound in water.

In the same limit the stiffness of the bubble, %, , is given by'’:

vp \Y%

4]

k=2 P [1-5]
ath

where ¢, is the dimensionless multiplicative factor, which corrects for the effects of

heat flow in the stiffness and resonance frequency of a bubble.

Thus the dimensionless radiation damping constant is:

rad 3.3
_ whyp _ PRy @

1-6
rad kvp 37@706' [ ]

where p,is the hydrostatic pressure outside of the bubble and x is the polytropic
index (1< x<y; x is equal to unity in isothermal conditions, and ¥ in adiabatic
conditions, where  is the ratio of specific heat of a gas at constant pressure to that at
constant volume). For a real gas bubble the value of xnormally takes some
intermediate value between ¥ and unity, and can be calculated analytically6. The use

of x is not fundamental but is a useful approximation®.

It can be shown, by application of the Stokes assumption to the Navier-Stokes
equation for fluid of a constant viscositym, that there are no net forces acting in the
body of an incompressible viscous liquid around a pulsating bubble'?. However, net
viscous forces can occur at the liquid surface of the bubble wall, where they result in
excess pressure. Mallock'® described how these viscous forces could cause the

distortion of the spherical shell volume elements concentric with a bubble, resulting



in a net energy loss in compression in an incompressible liquid. Eller® derived the
viscous damping term to be:

vis 77
b e _
VP 7ZR3 [l 7]

and its dimensionless equivalent to be:

_ by 4don

vis [1'8]
kVP 3Kp()

where 77 is the shear viscosity of the liquid.

The thermal damping term is the most complicated to formulate. The damping
mechanism occurs as a result of a hysteresis effect™'®. The driving pressure does
more work compressing the bubble than the gas inside the bubble does in moving the
liquid on expansion. The reason for this is that, in an air bubble in water, the gas in
contact with the liquid can be considered isothermal, (where heat conducts freely)
owing to the liquid’s large specific heat and thermal conductivity. Conversely, the gas
in the centre of the bubble is insulated from any substance having a high specific heat
and thus behaves almost adiabatically (where conduction is inhibited). Therefore the
heat transfer through the bubble wall into the liquid during compression is more than
the heat flow from the liquid into the bubble during expansion. This gives rise to the
hysteresis effect described above, with a net heat flow from the bubble into the liquid.
Thus a net loss of energy from the bubble. Eller® derived the thermal damping in the

volume-pressure frame in terms of L,, the width of the thermal boundary layer, to

give:

P o= 9y -y, (Ry/Ly fsinh(R,/L,,)+sin(R, /L, )} = 2{cosh(R, /L, ) — cos(R, /L, }} :} [1-9]
" 47R; (Ro/Ly ) {cosh (RO/LD)" cos(R, /L, )+ 3(7’1)(R0/LD ){Sinh(Ro/LD)— sin(R, /L, )

Hence from [1-8]

4 @ 30 =R/ Ly Yinh(Ro/Ly )t sin(Ry /Ly )}=2eosh (R /Ly )= cos(Ro/Ly )} [1-10]
B ko (Ro/Ly Y Losh(R, /Ly )~ cos(Ry /Ly Y+ 3(y —1XR, /L, ¥sinh (R, /Ly, )—sin(R, /L, )}



The total dimensionless damping constant is given by the summation of the damping

mechanisms: d,, =d

- +d, +d,, . Figure 1-1 shows the various damping terms for

rad
a bubble of equilibrium radius 100 um plotted against the frequency of the driving
sound field.

A freely oscillating bubble has therefore been described in terms of a linear equation
of motion and the damping mechanisms defined. In the next section a harmonic

forcing term will be applied and the equation solved.

100 3

107k

-
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™
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2 —— Radiation Damping (drad)

| —— Thermal Damping (dth)
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10 . . et '1
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Figure 1-1 Dimensionless damping constant (d) of a 100 pum radius air bubble in
water, plotted as a function of driving frequency under 1 atm. static pressure. The
solid line indicates the total dimensionless damping coefficient whilst the dashed lines
show the contributions of the different damping mechanisms as indicated by the
legend.



1.1.3 The bubble as a harmonically forced oscillator

As has already been mentioned, the response of a spherical gas bubble in a low
amplitude sound field can be modelled as a bob on a spring driven harmonically. The
equation of motion is given in [1-1]. The system has an associated mass m, stiffness

k, and damping b and when driven harmonically by a force of angular frequency @,

has the equation of motion:

mé +bé + ke = F, sin(ax) [1-11]

The solution of this non-homogeneous differential equation can be found by adding
the general solution of the homogeneous to the particular solution of [1-11]. The

homogenous equation is:

mé+be+ke=0 [1-12]

This is the equation for damped free vibration and has the solution:

e=eP(A e + Aye™ ) [1-13]

where i=+/—1, the damped frequency @, =+/@; — 3> and A; and A, are constants

determined by the initial conditions. Equation [1-13] can be written in the more

recognisable form:

£=Ae™" cos(w,r +¢,) [1-14]

Here the initial amplitude A and the phase ¢ are constants determined by the initial

conditions.

The particular solution can be found by writing [1-11] in complex form:

mé +bé + ke = Fye'™ [1-15]

and assuming a solution of the form:

e=¢g,e'” [1-16]



Differentiating and substituting into [1-15] gives:

(—ma)2 +iob+ k)goe’m =F,e'”

Hence

Fe'™ F, cos(ax) N iF, sin(cr)

E = fued
—mo? +iob+k —-ma’ +iob+k -mot+iob+k

Taking the real part of [1-18]:

_K {cos(a)t).(k - a)zm)+ sin (a)t)bco}
b’ + (— @ m+ k)z

which again can be rewritten in a similar form to [1-14]:

Fy cos(a)t -, )

E=
\/ljzco2 +(~wm+ k)

Here ¢, is a constant determined by the initial conditions.
The total solution to [1-11] can be found by adding [1-14] to [1-20]:

Fy cos(ar - ¢, )
\/bza)2 + (— w'm+ k)2

£=Ae™ cos(w,t +¢,)+

[1-17]

[1-18]

[1-19]

[1-20]

[1-21]

Physically this represents the summation of a damped free vibration with a forced

vibration.

This formulation can be applied to a bubble by rewriting [1-11] in terms of a bubble

in the radius-pressure frame. This frame of reference is chosen to be consistent with

other models used in this work and because it is the most useful for real-world

applications.

The radiation mass of a bubble in the radius-pressure frame m,, is given by*":

10



Mpp = PR, [1-22]

The stiffness, k, or spring constant (which is the ratio of the force a spring exerts to

the extension which produces that force) when written in the radius-pressure frame is

given by”":

Kpp =—Di, [1-23]

where p,, is the pressure within the bubble at equilibrium:

=Pt 29 1-24]
pi,e pw RO [ -
Here p_ is the pressure in the liquid far from the bubble and o is the surface tension
of the liquid.

The dissipation term can be written in terms of a bubble dimensionless damping

constant by rearranging [1-2] and utilising the relationshipZI:

b
“BE = 47R ? [1-25]
bVP
to give
by = éﬂgﬁ&(m&z) [1-26)

Finally [1-11] can be written in the radius-pressure frame to give:

Mpp R+ bR+ kopR, = P, sin(ar) [1-27]

Here P, is the amplitude of the driving pressure field, and R,is the bubble wall

displacement from the equilibrium bubble radius Ry, R and R are the velocity and
acceleration terms respectively and a sine term is used for the driving field for

simplicity in determining the constants.

11



Thus [1-21] can also be rewritten to given the bubble wall response to a driving sound
pressure field:
- P, sin(a)t -, )

2
\/bRP2w2 + (— O’ My + kg )

R, (t) =Ae” cos(a)dt + ¢, )+

[1-28]

The first part of [1-28], representing a damped free vibration, can be further
simplified for calculation purposes by noting that the Quality factor (Q) of a bubble
can be related to £ using [1-3]. Furthermore under conditions of very light damping
when [ << @, the resonance frequency of oscillation, then @, =, and [1-28]

becomes:

Srorh

R (t)= Ae_( ) cos(@yt + ¢, )+ — Py sinfex —¢,)

2
\/bRPza)2 + (—— &’ my, +kRP)

[1-29]

The constants A, ¢, and ¢, can now be determined using the initial conditions of a
bubble of equilibrium radius R, =0 at rest, at time =0 and differentiating with

respect to time. The resulting simultaneous equation can then be solved to give:

o, = tan_l( K gp J o, = tan—l[mnRP _kRP/a)j
2 = » P =

0, (amy, ~ kpp | @) brp
A= - P, sin(@)

- 2
\/blwzw2 + (_ a)szP + kRP)

[1-30]

As will be shown in the next section, this linear model can be applied to determine

the time dependent bubble response to a driving sound field.

1.14 Linear bubble response

In this section the response of a 100 pm radius bubble to various driving sound fields
is calculated using the linear model developed in the preceding section. The results

and the limitations of the model are discussed, including the special case where

0= w,

12



The linear model shown in [1-29] consists of two parts. The first is damped free
Birtdo r
( : J that

results in the oscillation reducing from its initial amplitude (determined by the

vibration at the resonance frequency of the bubble @, and a decay term e

constant A) as time ¢ increases. The rate of decay is dependent on the Q and resonance
frequency of the bubble. The second part of [1-29] is also an oscillation but at the
frequency of the driving sound field. It has amplitude proportional to that of the
driving sound field and a starting phase determined from the driving source. As ¢
becomes large, the solution is dominated by the second term and is said to be in
steady state (although strictly this is only attained as t — o). In steady state the
response is become periodic for as long as the driving sound field remains
unchanged. Hereafter the first part of the solution is termed the transient and the

second part the steady-state.

The summation of these two oscillations will thus give the complete bubble response.
Consider a bubble at rest at its equilibrium radius and insonified by a continuous
driving sound field of frequency ® and amplitude Py4. In this case it is the difference
between the driving and resonance frequencies that will determine the form of the
bubble response and the magnitude of the damping that will determine the time to
reach steady state. The effect of the difference between the resonance and driving

frequencies will be considered first.

The resonance frequency is**:

0 = 3"”0[1+ 20 ]— 20 [1-31]
RO p p()Ro pRo

For a 100 um radius air bubble in water under one atmosphere of pressure, the

resonance frequency is ~ 33 kHz.

First consider the response of the 100 wm air bubble when driven by a 100 kHz sound

field (of zero amplitude for < 0; and 100 Pa amplitude for 7 > 0). The bubble is at

13



rest at ¢ < 0. The results of the model’ are shown in Figure 1-2. It can be seen that a
steady-state response is reached within ~0.5 ms of the onset of insonification, with a
tiny displacement of ~0.003 um, but that the bubble wall displacement is initially
transient and that the amplitude of oscillation can exceed the amplitude at steady
state. This is as a result of the constructive and destructive interference when the
different frequency oscillations of the transient and steady state parts of the solution

are summed.
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Figure 1-2 The solution of the linear model for a 100 yum radius air bubble in water
driven by a 100 kHz, 100 Pa amplitude sound field, sampled at 10 MHz. The top plot
shows the response of the bubble wall relative to the equilibrium radius and the
bottom plot shows the transient part of the solution in black and steady state part in

grey.

" In Figure 1-2 through Figure 1-5 the bubble motion is calculated from equation [1-27] and [1-28].
The damping b, is calculated from Eller®. Since this formulation requires a single frequency input

the driving frequency is used in each case. However, it is recognised that this is an approximation since

in the period prior to steady state the pulsation motion of the bubble contains other frequencies.
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Next consider the same bubble driven from rest at # = O closer to its resonance
frequency by a 40 kHz, 100 Pa amplitude sound field. The results are shown in Figure
1-3. The smaller difference between the frequencies of the transient and steady state
oscillations produces a very different response when summed. The response is again
steady state after ~0.5 ms of insonification, but this time has a larger amplitude of

~0.04 um. Again the amplitude of oscillation during the transient phase can exceed

that of the steady state.
‘£100.05}
=
(2]
=
g 100
o
Q
a
@ 99.95F
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (ms)
100_04\“‘\1“']\1' P R O R, (S PR S I I S, W S
= i e i i Steady state solution |
= Transient solution !
=100.02 e e
% H"'"\:I'Illll:l
S IS T N N
g 100 [lﬁ,“;i;N:l;H’
o RIRTRIRERTRII,
2 99.98p, "l"l"l'i li‘llllll
E R ”|,r" ”' |:1:|'|Ii""'
@ g9.96L AEERERNERS TR TERNEEAS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (ms)

Figure 1-3 The solution of the linear model for a 100 um radius air bubble in water
driven by a 40 kHz, 100 Pa amplitude sound field, sampled at 10 MHz. The top plot
shows the response of the bubble wall relative to the equilibrium radius and the
bottom plot shows the transient part of the solution in black and steady state part in

grey.
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Finally consider the special case where @ = @, . Since the bubble is being driven at

resonance, the frequency of the transient and steady state solutions are equal but the
oscillations are in anti-phase, resulting in destructive interference. The bubble
response is thus a steady rise or ‘ring-up’ to steady state and, unlike the previous
examples, at no point does the transient response exceed the steady state response. In
addition the amplitude of the response has increased by an order of magnitude over

the previous examples to ~0.3 um. The results of this case are shown in Figure 1-4.
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Figure 1-4 The solution of the linear model for a resonant 100 ym radius air bubble
in water driven by a 33 kHz, 100 Pa amplitude sound field, sampled at 10 MHz. The
top plot shows the response of the bubble wall relative to the equilibrium radius and
the bottom plot shows the transient part of the solution in black and steady state part

in grey.
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In all the above examples, including the resonance case, the time to reach steady state

is determined by the rate of decay of the transient part of [1-29]. This in turn is a

_(51010}0)
function of the exponential term e * > /. This expression can be rewritten in terms
of the bubble @ and resonance frequency fj:

] 5101 @Dy t
2

—[ﬁfj]f [1-32]

e =€

Thus the time taken to reach steady state is a function of the bubble Q and the
resonance frequency f;. Since the decay is exponential it will never reach zero but
instead will become infinitesimally small. One method of quantifying the time to

reach steady state is termed the characteristic relaxation time to steady state™ 7, or the
time to reach (1/e) of the steady state value. It can be calculated from the bubble

quality factor and resonance frequency:

9
o T 1-33
) 133

Whilst at resonance this can be related to the time taken for the amplitude to grow to
(l—e") or 63% of the steady state amplitude. Off resonance we do not see the

monatomic ‘ring-up’ to steady state illustrated in Figure 1-4 and hence such a simple

criterion cannot be applied. This issue is further discussed in section 1.3.1.

A final facet of the linear model, and its biggest limitation, is the scaling of the
response in proportion to the amplitude of the driving signal. It is apparent from the
steady state solution that, as the driving amplitude doubles, so does the amplitude of
the response (equation [1-29]). Eventually this will exceed the equilibrium radius of
the bubble were this model to hold true at such high amplitudes. This is obviously
impossible and occurs because the linear model does not take into account the
amplitude-dependence of the stiffness of the gas inside the bubble when it is
compressed. This leads to increasing inaccuracies in the linear model as the driving
sound pressure level grows. Non-linear models have been formulated to include this
factor. Figure 1-5 compares results from one such model, the Rayleigh-Plesset®, with

the linear model at different driving amplitude for a resonant 100 um radius bubble.
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The bubble resonance frequency is 33 kHz for the linear model and 32 kHz for the
non-linear model owing to the different damping models used’. The non-linear model
is discussed further in section 1.1.6, although the cost has been that not all damping
mechanisms are included. The figure clearly shows that for very small amplitude, the
models are in close agreement, but as the sound pressure increases the linear model
overestimates the wall response. Furthermore, the Rayleigh-Plesset model predicts a
deviation from the ring-up to steady state indicated by the linear model in this plot

and by both models for lower driving sound field.

The linear model derived in the preceding sections is a useful tool in predicting the
response of air bubbles in water to a sound field, but is limited by increasing
inaccuracies as the driving sound pressure rises. Non-linear models that overcome
this problem are discussed in section 1.1.6. In the next section a further facet of the
linear bubble model is discussed. Specifically, it discusses acoustic cross-sections that
can be derived from the linear model. These cross-sections are widely used in
acoustics to predict the effect of both single bubbles and clouds of bubbles on

acoustic signals.

" The Rayleigh Plesset model incorporates neither radiation nor thermal damping, but does describe
nonlinearities in, for example, the gas stiffness. Therefore even at low amplitudes its results will not
agree exactly with those of the linear model (which includes thermal, viscous and radiation damping).
However the differences seen in Figure 1-5a result from nonlinearities, as could be demonstrated
through the presence of harmonies (see the power spectral density plots in Figure 1-5b) of the driving

signal in the steady-state response
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Figure 1-5a The response of a 100 um radius resonant bubble using the linear model
(dashed line) and the Rayleigh-Plesset non-linear bubble model (solid line) driven by
a 1 kPa amplitude sound field in top plot and a 10 kPa amplitude sound field in the

bottom plot.
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Figure 1-5b The power spectral density of the time series shown in Figure 1-5a i.e. a
100 pm radius resonant bubble using the linear model (dashed line) and the
Rayleigh-Plesset non-linear bubble model (solid line) driven by a 1 kPa amplitude
sound field in top plot and a 10 kPa amplitude sound field in the bottom plot
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1.1.5 Acoustic cross-section of a bubble

The acoustic cross-section is a method of characterising the steady state scattering or
attenuation of a bubble in terms of an effective target strength with dimension m’.
This is very useful since it can be applied quickly and easily to clouds of bubbles to
give the steady state cloud target strength in both m* and decibels for use in sonar
equations. The basic extinction and scattering cross-sections are derived here and
applied to bubble clouds in section 1.2.1. As will be shown, prior to this thesis cross-
sections have been derived from the steady-state solution of the linear mode [1-29]

and are thus subject to the limitations of that model.

The linear scattering cross-section, Q__, is defined by the ratio of the time averaged

energy loss to incident energy™:

_ R, | @by )2
o = Time Averaged Energy Loss ', [1-34]
et Incident Energy P2 /2pc

where R, is the amplitude of the bubble wall response. Using [1-29] and the

relationships in [1-6] and [1-26], the scattering cross-section becomes:

_ A7y (a)4R§/3Kpo) [1-35]

(0? - 0? )2 +(2pw)

scat

The expression can be further simplified by using [1-3] and [1-23] and noting that

pi,e

Po

~1 and S{w,:
A7R;

Q=
“ (wg jz ) (a)o jz [1-36]
2 + é‘mt
@ ®

The scattering cross-section is the ratio of the intensity of the scattered acoustic field

to the intensity of the incident acoustic field, and hence is a measure of the energy

dissipated by re-radiation having units of area. Similarly the extinction cross-section,
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Q  represents the energy dissipated by all mechanisms and thus is related to the

ext

scattering cross-section by>:

Q =—wQ [1-37]

ext scat
rad

The model described by [1-36] and [1-37] is here after referred to as the Medwin

model” to differentiate it from time-dependent cross-section models described in later

sections.

The scattering cross-section of bubbles with radii from 1 pm to 1500 um in a 30 kHz
sound field and one atmosphere static pressure is shown in Figure 1-6 and Figure 1-7.
The resonant bubble radius is ~110 um, indicated by the local maxima in the

scattering cross-section. For radii much less than the resonant bubble radius @ ({ @,

and the scattering cross-section simplifies to give the Rayleigh law of scatteringm:

4
QRa_\‘Ieigh = 47Z'R(? [;}a)—] [1—38]
0

Conversely, as the bubble radii becomes much greater than the resonant radius

w)) @, and the scattering cross-section simplifies to give the geometric scattering

law whilst KR, <<1:

Q = 47R? [1-39]

Geometric

The geometric scattering law is plotted in Figure 1-6 and Figure 1-7 for comparison.

It is clear that, in the limit KR <<1, large off-resonant bubbles follow the geometric

scattering regime and thus, for a given insonification frequency, there is always in
principle a critical bubble size, such that all single bubbles larger than this size scatter
more than the single resonant bubble. Thus, resonant scattering is only a local
maxima when the cross-section is plotted as a function of radius for a given driving
frequency; and despite having a scattering cross-section orders of magnitude larger
than geometric scattering from a bubble of a similar radius, the scattering from a

resonant bubble can be exceeded and thus masked by large off-resonant bubbles.
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Figure 1-6 Scattering cross-section as a function of bubble radius in a 30 kHz sound

field under 1 atmosphere static pressure. Note the local maxima corresponding to
resonance at 110 um. The data has been resolved down to 0.01 pm to reduce aliasing
around the 110 ym radius local maxima. The brackets at the top of the graph indicate
the approximate scattering regime. The geometric scattering is only valid when
KR, << 1. For 800 um radius at 30 kHz KRy = 0.1.
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Figure 1-7. A plot of the difference between the scattering cross-section and non-
resonant scattering laws. The orange line represents the quantity calculated by the
acoustic scattering cross-section minus the geometric scattering law. The green line
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The next section discusses modelling a bubble as a non-linear oscillator to overcome

the amplitude constraints of the linear models, as illustrated in Figure 1-5.

1.1.6 The bubble as a non-linear oscillator

In the preceding sections the bubble is considered to be analogous to a mass-on-a-
spring linear system, where the response of the system is directly proportional to the
driving force®®. In reality, however, a bubble can be expected to oscillate non-linearly
at finite amplitudes, since expansion and compression are not symmetrical. Whilst the
bubble could, in theory, expand without limit, upon compression, the radial
displacement cannot exceed the value of the equilibrium radius®. Thus it is apparent
that when the motion of the bubble wall becomes large (as occurs when the bubble is
driven at high amplitudes), the bubble will no longer be accurately modelled as a

simple linear system (see Figure 1-5).

There are three families of equations modelling bubbles as non-linear oscillators™.
The simplest of these groups is the Rayleigh-Plesset equation. It is described here in
order to illustrate the form and assumptions that govern existing non-linear bubble
models. It also illustrates whether important aspects of the linear theory (such as the
damping mechanisms) are incorporated; and if so, how this is done. More advanced
models are considered in chapter 2, such as the Keller-Miksis equation”, which is a

member of the second (i.e. Keller-Miksis) family of bubble models.

The Rayleigh-Plesset equation is of the form:

ROk~ (5, 0, - 0 (140

Here R(t)is the bubble radius, p,(t) represents the pressure immediately outside the
bubble wall, at some time ¢ and P(¢) is the driving pressure field at time ¢. This is the
term that incorporates the force exerted on the liquid by the bubble, which the

hydrostatic and acoustic pressures have to overcome. The p,(z) term in full is:

”3(’):[”0 +%‘f)(§‘;>}“~§2?>—2’2§ 1]
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This equation has several fundamental assumptions. These are:>
e The bubble exists in an infinite medium.
e The bubble stays spherical at all times during pulsation.
e Spatially uniform conditions exist within the bubble.

e The bubble radius is much smaller than the wavelength of the driving sound

field.
e There are no body forces acting (e.g. gravity).
e Bulk viscous effects can be ignored.

e The density of the surrounding fluid is much greater than that of the internal

gas.
e The gas content is constant.
e The speed of sound in the fluid is infinite (i.e. the liquid is incompressible).

The fundamental problem with the Rayleigh-Plesset equation is inherent in the last
assumption. Since it assumes that the fluid is incompressible, no account is taken of
the energy radiated into the fluid. Whilst rudimentary correction factors may be
applied,28 as the amplitude increases proper account needs to be taken of the liquid
compressibility. Thus in the absence of correction factors, radiation damping is
neglected in the standard Rayleigh-Plesset formulation. Viscous damping appears
through the 477R/R term. Net thermal losses are not taken into account through the
use of the polytropic index x ; it merely adjusts the gas stiffness to take into account
heat transfer across the bubble wall. Thus, in this model, as much heat flows out of
the bubble during the compression half cycle as returns into the bubble during
expansion. Hence the only mechanism by which there is net energy loss from the

bubble is through viscous effects.
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As introduced above, the lack of a radiation damping term in the Rayleigh-Plesset
equation can be partially overcome by adding an approximate additional term' similar
to the viscous damping term®. It is of the form:

R(t>[l_R(l)] de [1_42]
pc c ) dt

where cis the speed of sound in water.

Thus the Rayleigh-Plesset equation becomes:

R+ 2K _;_{,,B (1) py — Ple)+ RO [1 - R(’)] v } [1-43]

2

This form of bubble model can in general only be solved numerically, although with
small amplitude assumptions the Rayleigh-Plesset can be solved analytically. Since
the Rayleigh-Plesset model is included here for illustrative purposes only, numerical

methods for solving these non-linear models will be discussed in Section 2.

1.2 Bubble constraints on sonar detection

The frequencies available for sonar detection in the ocean are limited at low
frequencies by the target dimension and, at high frequencies by attenuation of the

medium itself. These constraints are discussed below.

Consider the constraint of the target dimension. Assume for the moment that the
absorption of sound by the water itself can be neglected. In order to maximise the
return signal from a non-resonant target, the scattering must be geometric in nature
[1-39], i.e. the wavelength of the sound must be very much less than the target

dimension®®. Thus in order to maximise the potential for detecting a target sphere of,

" Such a term includes no physics beyond that of the linear model, and hence to obtain a true nonlinear
representation of radiation damping, it is necessary to employ one of the equations from the Herring-

Keller family.
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say, 0.1 m radius, the insonifying frequency would have to be much greater than 15

kHz.

However the acoustic absorption of the water itself is usually too large to neglect. The
attenuation of sound in a bubble-free ocean increases significantly with increasing
frequency™". At low frequencies (less than 10 kHz) typical values of absorption are
less than 0.001 dB/m. However, at higher frequencies of 200 kHz, this increases to
greater than 0.04 dB/m. At very high frequencies of 800 kHz, typical values (at one
atmosphere) are in excess of 0.2 dB/m. When compared with the expected level of
attenuation from bubbles, of order tens of dB per metre at 50 to 100 kHz, it can be
seen that the attenuation of the medium is small but significant as the frequency
approaches a MHz. Thus the levels of attenuation of the medium at frequencies
greater than a few hundred kHz could pose a further constraint on the frequency range

available for sonar detection.

Measurements of oceanic bubble populations (see section 1.1.1) have detected
bubbles in the size range 5 — 500 um. This is not to say that there are no bubbles
outside this size range. Rather that the equipment used was not capable of detecting
them. The resonance frequency for bubbles of this radius range can be estimated

using the Minnaert frequency®:

w0, = [P [1-44]

(for the smallest bubbles i.e < 5um radius, the effect of surface tension becomes

important and equation [1-31] must be used in place of [1-44]).

The resonance frequency of bubbles in the range of 5 — 500 pm radius for air bubbles
in water at a depth of 5 m would be between 8 kHz and 800 kHz, with the smaller
bubbles having the higher resonance frequency. For propagation through oceanic
clouds, resonant bubbles are thus potentially present at all frequencies of interest and,
therefore, bubble-mediated attenuation cannot be completely avoided by changing the
frequency without a priori knowledge of the bubble population and a predictive
capability of the type this thesis aims to provide. The bubble-mediated attenuation is,

however, a function of frequency and the population distribution. This relationship
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will be investigated further in later sections with respect to enhancement of target

detection.

When ocean bubbles are present, their contribution to the absorption of sound by
bubbles is not easily avoided by choosing a certain frequency range. Once known,
their contribution to attenuation can be used to quantify the effect of bubbles on a
typical target detection scenario and the potential gains from sonar enhancement. In
the next section the linear acoustic cross-sections previously derived will be revisited
and applied to bubble clouds to give attenuation per unit length. In section 1.2.2 the
sonar equation for active sonar will then be defined, and an example given to

illustrate the impact of bubble clouds on detection ranges.

1.2.1 Acoustic cross-sections of bubble clouds

The extinction cross-sections of single bubbles defined in section 1.1.5 can be applied
to clouds of many bubbles in order to formulate an attenuation rate in dB per unit
distance®’. This is because extinction cross-sections are proportional to the power
dissipated. Hence they are additive for all bubbles which are subjected to the same
incident intensity if their radiation is incoherent. As has already been stated in section
1.1.5, calculations based on linear acoustic cross-sections are steady-state time-
independent models only and are limited to low sound pressure levels. Furthermore,
the application of scattering cross-sections below is range independent since, to add

the cross-section all bubbles must be exposed to identical incident intensities.

In order to apply the extinction cross-section to a bubble cloud, the population

distribution must be known. It is convenient to define this in terms of the number of
bubbles per unit volume (typically 1 m?) per radius increment (typically 1 pm) or

mathematically:

_ number of bubbles per radius increment [1-45]
volume

n(R0 )

Here n represents the number of bubbles per unit radius increment (defined by the
bubble equilibrium radius Rp) per unit volume. Hence the number of bubbles per unit

volume with a radius between Ry and Ry +dR is n(Ry)dR.
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The extinction cross-section, €, for each radius increment can then be calculated

and scaled by the number of bubbles, effectively integrating the cross-section across

the bubble distribution provided the restrictions described above are adhered to:

oo

Se.x‘t = J‘Qe,\'ln(RO MRO [1 '46]

0

Here S, is the extinction cross-section of a bubble cloud. Assuming that the bubbles
are separated enough that there are no bubble-bubble interactions (Appendix B) the

cloud extinction cross-section can be used to calculate an attenuation rate.

Clearly not all bubbles can be exposed to the same incident intensity. The above
calculation can nevertheless be used by applying it in turn to volume elements in
which the incident field has uniform intensity. For example if a plane wave
propagates through a uniform bubble cloud, these elements are thin planes
perpendicular to the direction of propagation. In such a case the total power (both
absorbed and scattered) by each bubble in a given incident sound field in a given
volume element is found by multiplying the incident plane wave intensity I;,. by the

bubble extinction cross-section. In this way the spatial rate of change of intensity for

a cloud is:
dl.
L— A 1-47]
dx mc ext [
Integrating gives:
I(x) = Iinc exp(_ Sext x) [1'48]

After travelling a distance x, the change in intensity level (AZL ) will be:

AIL(dB) = 1Ologm(17(x—)] =-10S,,xlog,, e [1-49]

inc

This equates to the spatial attenuation («,,,) of a bubble cloud in dB per unit

distance by dividing through by x:
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o, (dB/distance ) = AL _ 434S, [1-50]
X

This equation will be applied in the following section, where the active sonar

equation is used to investigate the impact bubbles have on target detection.

1.2.2 Bubbles and the sonar equation

The active (monostatic) sonar equation in a noise-limited environment (as apposed to

. .. 32 .
reverberation limited)™ is:

SL-2TL+TS = NL—-DI + DT [1-51]

where SL is the source level; TL the transmission loss; 7S the target strength; NL the

noise level; DI the directivity index and DT is the detection threshold. All values are

indB ref. 1 yPa @ 1 m.

Consider an example calculation of the source level required for target detection at
range r from the source at a driving frequency of 20 kHz. The directivity index for a

continuous line transducer’” of length L and wavelength Ais:

2L
DI = (7) [1-52]

Thus, 20 kHz with a transducer length of 0.1 m the directivity index is approximately

3 dB.

Measurements of ambient noise levels in coastal waters (such as bays and harbours)
have shown that they are subject to wide variations both temporal and spatial.
Sources include shipping and industrial noise, wind noise and biological noise.
Measurements of ambient noise in harbours and bays®® during World War II indicate
an average ambient noise level of 100 dB (ref. 1uPa @ 1m) at 10 Hz decreasing to 40
dB (ref. 1uPa @ 1m) at 20 kHz. Further studies of five US ports3 * took measurements
at 30 kHz, 90 kHz and 150 kHz. Respective average ambient sound pressure levels of

approximately -42 dB, -50 dB and -55 dB (ref. luPa @ 1m) were measured.

There is a significant discontinuity between the results of the two studies jumping

from a noise level of 40 dB at 20 kHz in the first study to —42 dB at 30 kHz for the
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second study. Since a driving frequency of 20 kHz is used in this example a noise

level of -50 dB is used.

The detection threshold is a function of the signal to noise ratio (SNR) and the
detectability of a signal. If the detection signal is know exactly then cross-correlation
can be used to search for the detection signal in the received signal with noise. The
detection threshold is thus a function of the system bandwidth and processing time
and the detectability index. This is a measure of the statistical probability of detecting
a signal and the false alarm rate. Assuming a 50% probability of detection and a 2%
probability of false alarm the detectivity index (d”) is two™>. The detection threshold

is given by:

DT =10log[(d’)* /(2WT)] [1-53]

For a detectbility index of 2, a system bandwidth of 1 kHz and a processing time of

0.05s the detection threshold is —14 dB.

Assuming a target sphere of radius a the target strength is given by:

2
TS = lOlogm(%j [1-54]

which gives an approximate target strength of -22 dB for a 0.15 m radius target

sphere.

The final term to be defined, the transmission loss, is also the most involved. In this
example three mechanisms must be considered; geometric spreading, absorption loss
of sound in bubble-free water and attenuation by gas bubbles. In shallow water or in
the presence of a mixed bubbly layer geometric spreading is confined to a horizontal
wave guide for most frequencies36’37. Assuming negligible losses at the boundaries

the geometric loss follows a simple cylindrical spreading model:

Cylindrical Spreading Loss = 10log,,(r/r,) [1-55]
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The absorption of sound in the sea per metre range is small but for completeness is
included here. At the two example frequency of 20 kHz the absorption losses are

approximately®® 1x10™ dB/m.

The transmission loss owing to the attenuation and scattering of a bubble cloud,

a is determined for this first order calculation using the method defined in the

cloud *

previous section. The model, as has already been stated, assumes linear bubble
pulsation at steady state and is range and time independent. A population distribution
based on oceanic measurements by Farmer and Vagle’ is described by the following

equation, where Ry is the bubble equilibrium radius in metres and n is the number of

bubbles per cubic metre per {lm increment:

}’l(RO )= 694106»0.0426(R0x106) [1-56]

The resulting attenuations for this population distribution, under one atmosphere of
static pressure, at the example frequency is ~3.0 dB/m. The source level required for
target detection is plotted against range in Figure 1-8 for a driving frequency of 20

kHz.

The graph clearly shows that the presence of bubbles can significantly increase the
source levels required to detect a target. Typical shipboard sonar systems have output
powers ranging from a few hundred watts to tens of kilowatts. This translates to an
effective source level of between 210 and 240 dB (ref. 1pPa @ 1m)’ ? effectively
limiting target detection ranges to ~50 m in the bubble case and approximately 1 km

in the no-bubble case for the example shown in Figure 1-8.
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Figure 1-8 The required source level for target detection in coastal waters is plotted
versus range at 20 kHz. Source levels as high 1000 dB re 1yPa @ Im are plotted
merely to allow the required source levels with and with out bubbles present to be
compared on the same axis; it is of course recognised that such a source level is in
practice impossible to generate. The solid line is the source level required with
bubbles present and the dashed line indicates the required source level without any
bubbles present for comparison.
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1.3 A Review of sonar enhancement work

Previous work on methods for enhancing active sonar detection in bubbly
environments are reviewed in the following sections. This comprises of three separate
studies. For convenience the work reviewed has been separated into those studies that
have measured backscatter and those that have measured attenuation. The backscatter
section reviews the results of a single sea trial undertaken by Akulichev er al.* and
the attenuation section reviews two sets of data taken in test tanks made by Suiter et
al.** and Pace et al.*’. All three sets of published data include some theoretical work

that is also discussed.

1.3.1 A Review of pulse dependence in acoustic backscatter from

bubble clouds

Prior to this thesis only a single experimental study of the pulse dependence of
acoustic backscatter from air bubbles has been published. The work undertaken by
Akulichev er al.*® in the early 1980's investigated the backscatter from micro-
inhomogeneities in the form of bubbles, solid particles, plankton etc. The backscatter
at various frequencies and pulse lengths was investigated experimentally and a simple
model was developed for the time-dependent scattering cross-section (the effective

target strength in m? of the scattering bodies).

A time-dependent cross-section can be derived in a similar fashion to the steady-state

cross-section derived in section 1.1.5 by including the transient part of [1-29].
Consider a bubble that is insonified by a pulse with zero amplitude for all times
t <0; amplitude P, for 0<t <1, ; and zero amplitude for ¢ >¢,. The cross-section
can only be defined for the interval 0<¢ <t , and in this period it equals the
following (from [1-33]):

2 a)2brad/2
- IR RP -
. (0) P e [1-57]
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Here the wall displacement R () follows some time-varying envelope, comprising

(if the pulse is sufficiently large) transient and steady-state periods (as illustrated in
Figure 1-2 -Figure 1-5, for example).
If the insonification frequency equals the bubble resonance, the envelope follows a

I

particularly simple form growing monotonically (as 1—e_g) to steady state (Figure

1-5). This is readily shown as follows.

Equation [1-29], after the initial conditions shown in [1-30] have been included

becomes

[ B ),
R (t)= 5 e( 2 ] cos(w,t)

N — P, sin(ex — 7/2)
bl%}’a)2 +(— wszP +kRP)2 \/bRP2w2 +(_ a)szP +kRP)2

[1-58]

By considering the resonant condition only ie. @=a®,and by noting that
sin(@— 7z/2) = —cos(@) equation [1-58] becomes:

_[ 6’01 @y n

2 ] cos(ayt)+ P, cos(w,t)

= ~ b,
\/b,?},a)2 + (— @'my, + ke,

R, (¢) b )2 {1 - e{‘%“’ﬂ] t Jcos(a)ot)

\/bﬁpa)2 + (_ a)szP +kgp

e

R.(1)
\/bRP2w2 + (— W'y, + kg

[1-59]

And by using [1-33] to simplify the exponential term and taking the non-oscillatory

part of equation [1-58] the envelope of the bubble response is:

PA[I —e_ﬁ] o
%) '

\/b,ipa)?‘ + (—— O My + Ky

36



This assumes that [1-29] is evaluated at resonance. This limitation will be discussed

once the derivation has been completed.

Applying the same simplifications as in section 1.1.5 and taking the square of ]Rg (z‘] ,

equation [1-60] becomes:

(r
sz(( )2 ror )

This expression can then be substituted back into [1-57], with further simplification

413 b 2
348
(- @) + (28, 0f

¥ [1-62]
A7R} | 1—e ™

as per section 1.1.5, to give

As a final check it can be shown that this is equal to the steady state scattering cross-

t

section ([1-36]) as time t —> o since e © — 0.

In his paper Akulichev defined the time dependent scattering cross-section as™

R? [1 e jz
(e fer -1 +2,)

[1-63]

5.6} =

where ]S ; (t)i2 is Akulichev’s notation for the time-dependent scattering cross-section
and is used here for clarity.
A comparison of [1-62] and [1-63] shows two discrepancies. The first is that the

( o,/ a)) in [1-62] differs from the &, in Akulichev’s formulation. The reason for

ot
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this is that, in deriving [1-59] from [1-29], conditions very close to resonance have

been assumed. If =@, , then of course (52, , /) = 52, . Note however, that the

for

same approximation cannot be applied to the (a)o2 / @ —1)2 term without the term

becoming zero. The second discrepancy is that Akulichev’s formulation must be
multiplied by a factor of 4z to agree with [1-62] and the steady state cross-section in
[1-36] as time ¢t —>oo. This is the result of a difference in the definition of cross-
section®! (back scatter = Q /4 ), though this is not explicit in Akulichev’s paper;

scat

however, since the theory in Akulichev’s paper is only used to predict the time taken

to reach steady-state, it is an omission which has no bearing on their.

Prior to discussing the experimental measurements presented in Akulichev’s paper,
the limitations of the time-dependent scattering cross-section derived above need to
be highlighted. The model is based on linear theory and thus is subject to the
limitations of such a theory as previously discussed, i.e. it overestimates the bubble
response at higher driving pressures. Additionally, the formulation is valid only very
close to resonance. Akulichev acknowledges this limitation by stating in his paper

that the time-dependent scattering cross-section is for “near-resonant” gas bubbles

t

only. By this he means bubbles which follow a 1—e ™ ring-up. Within the
perspective of this thesis it would be better to term these “resonant”, and restrict the

term “near-resonant” to an important class of bubbles which are sufficiently close to

!

resonance to pulsate at large amplitude, but not so close as to ring-up as 1—e ™.

Akulichev et al. also measured, experimentally, the instantaneous sound pressure
scattered from an oceanic bubble cloud, after insonification by a pulse of length 7
and at several different frequencies (5 kHz, 15 kHz and 35 kHz). The experiment was
conducted at sea and used a parametric source to produce very short pulse lengths
without distortion. The results published in the paper are duplicated in Figure 1-9.
Equation [1-32] suggests that the characteristic relaxation time to steady state

oscillation, 7,, should decrease with increasing frequency since it is proportional to
1/ f, - The value of 7, (calculated using Equation [1-32] and Eller's damping theory)
is plotted over a range of resonant frequencies in Figure 1-10 where 7, decreases

from ~6 cycles at 5 kHz to ~3 cycles at 35 kHz. There is a small reduction, of order 1-
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2 cycles, in the experimentally measured values of 7, in Figure 1-9 (indicated by the

light circles in the plot) but it is smaller than predicted by theory. This may be due to
the increasing numbers of large off-resonant bubbles scattering inertly as the
insonification frequency is increased. The increase in the amplitude of the back-
scatter may also be a result of this as well as an increase in the number of resonant
bubbles being insonified. These propositions are explored further in subsequent

sections.

The Akulichev et al. paper predicts theoretically the pulse length dependence in the
back-scatter from resonant bubbles and has experimentally measured the back-scatter
from an oceanic bubble cloud for varying pulse lengths. However, many questions
remain unanswered. The theory presented (equation [1-32]) is linear and, as has
already been shown, the bubble is a non-linear oscillator. Since the sound pressure
level used is not stated, it is impossible to assess the importance of bubble non-
linearity. The contributions to the acoustic response of the population, made by off-
resonant bubbles, have also not been considered. The presence of large off-resonant
bubbles can account for a significant portion of the sound scattering and may be
important when considering the puise length effects in the bubble response. These
issues will be considered further before attempting to enhance transmission through a

bubble cloud.
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Figure 1-9 Ratio P, / Jr (where P is the amplitude of the scattered sound) vs.

acoustic pulse duration T at various carrier frequencies f. 1) f = 5 kHz; 2) 15kHz; 3)
35 kHz. The dark circles represent the results of experimental measurements (the

data scatter is also indicated), and the light circles represent the values of P, / Jr at
T=1,. The parametertf is the length in cycles of the insonifying pulse. After
Akulichev et al.”’
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Figure 1-10 Theoretical values of the characteristic relaxation time to steady state
oscillation, 7,, in cycles for a range of bubble resonance frequencies. T, Is

calculated using equation [1-32].

1.3.2 A review of pulse dependence in attenuation in bubbly water
Two further studies of pulse length dependence have concentrated on the attenuation
through bubble clouds for various pulse lengths. The papers were published in the
early 1990's, one by Suiter” and the other by Pace et al.** Both studies took place in
laboratory tanks with artificially produced bubble clouds. No pulse length

dependence was measured.

In both papers the following equation for the time-dependent extinction cross-section

for a single bubble is presented.

Q,.0=0, +[1-e"0, [1-64]

Where Q, is the extinction cross-section, € is the off-resonant extinction-cross

section and € is the resonant extinction cross-section.
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Thus, Suiter and Pace et al. present identical theories, similar to that of Akulichev's
but scaled to give the extinction cross-section (a measure of the total energy loss, not

just the loss due to scattering, in m°) rather than the scattering cross section. The

scattering cross-section can be multiplied by —£- to give the extinction cross-

rad
section”. However, since the time-dependent cross-section used by Akulichev (and
on which Suiter and Pace base their work) is only valid at resonance Suiter and Pace
simplify this relationship using Devin’s theory of damping at resonance’ to give:

1) / w,R, 0
21— 5 070 _ tot _
o “I ¢ R,K [1-63]

rad

where K is the wavenumber.

The time dependence modelled by [1-64] is very far removed from that exhibited by
real bubbles off resonance. Figure 1-2 and Figure 1-3 suggest the off-resonance
response can be complicated (a proposition which will be validated when accurate
time-dependent cross-sections are calculated in, for example, Figure 2-6 and
Appendix F), but with a cross-section which starts growing from zero at time ¢ = 0 (a

fact required by arguments of continuity).

In contrast the cross-section of [1-64] is finite at ¢+ = 0, and takes the value given by

the Rayleigh limit [1-38] if w< @, , or by the geometrical limit [1-39] if w> @, . It
subsequently grows in a smooth (1 —e T“) fashion (after the fashion of Akulichev’s
cross-section for a resonant bubble [1-62]), but with a time-dependency far removed
from that exhibited by real off-resonant bubbles (Figure 1-2 and Figure 1-3)
eventually to reach the steady-state value predicted by the long standing formulation
[1-36] (corrected to give the extinction rather then scattering cross-section by

multiplying by —d—"i as described above). Hence the term €2, which Suiter and Pace

rad

et al. call the resonant cross-section, is a misnomer. It really is the difference

indicated by the orange line in Figure 1-7.

Hence there is no physical basis for the time-dependent model described by [1-64],
and it is contradicted by time-dependent behaviour of off-resonant bubble predicted

by even the linear models.
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These assumptions mean that the contribution of near resonant bubbles and especially

the time-dependency of the near resonant response is neglected.

In addition, Suiter and Pace et al. also apply the resonant damping approximation
stated in [1-65] above to the off-resonant contributions. This leads to significant
inaccuracies in their estimations of the off-resonant contributions. Figure 1-11
recalculates what their theory would have predicted had they used the off-resonant
damping coefficients of Eller®, which would have been a more accurate
implementation of their theory then the resonant damping of Devin’ which they

actually employed.

Experimental measurements of attenuation were made by Suiter in a fresh water test
tank with a 120 kHz source and an estimated sound pressure level of 190dB ref. 1
uPa at the face of the bubble cloud. The cloud was generated by electrolysis. The
electrical current used was between 0.1 A and 0.2 A. No attempt was made to remove
the hydrogen bubbles from the water column (which this thesis found to be critical
see section 3.1). The main consideration with this method of generating bubbles,
which has to be taken into account when considering the results, is that the hydrogen
gas bubbles are likely to behave differently from air bubbles. This is because
hydrogen gas has a significantly different density, molar mass, thermal conductivity
and specific heat (see Appendix A). If, as is indicated in the paper, similar sized
hydrogen and oxygen bubbles exist in the population, then from Prosperetti's44
damping analysis (which incorporates the thermal effects of the gas; see section 2),
the damping of hydrogen is significantly greater. For example the total dimensionless

damping of a 25 pm radius bubble in a 120 kHz sound field is ~ 0.07 for Oxygen and
0.87 for Hydrogen. Since the bubble resonance frequency @, is proportional to Jr

and x in the above example is 1.04 for air and 1.0005 for hydrogen, the resonance
frequency for hydrogen bubbles will have to be lower. The presence of hydrogen
bubbles will increase the proportion of off-resonant bubbles and thus may mask any

pulse length dependence in the attenuation.
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Figure 1-11 A comparison of extinction cross-section calculated using the ratio of the
total damping to the radiation damping with Devin’s damping at resonance and
Eller’s damping. The top figure plots the extinction cross-section of a 100 yum air
bubble at various frequencies and the bottom figure plots the extinction cross-section
of air bubbles of different equilibrium radii in a 120 kHz sound field. Both
calculations assume a hydrostatic pressure of one atmosphere.
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This may explain why no pulse length dependence was observed when attenuation
spectra for short and long pulses were compared in the paper. It should be noted that
the potential masking effect of large off-resonant bubbles applies equally to oxygen
bubbles as hydrogen bubbles. If there were enough large off-resonance oxygen
bubbles present their contribution, due to geometric scattering (section 1.1.1), could
again be significant. Although this does not appear to be the case in Suiter's study, it
is a consideration for future attempts to measure pulse length dependence. The effect

of the contribution of large off-resonant bubbles is considered further in subsequent

sections.

As already mentioned, the Pace et al. paper uses the same model as Suiter used.
Fortunately the experimental results do not rely on the model for interpretation, as is

the case for much of the data presented in the Suiter paper discussed above.

Experimentally the work of Pace et al. differs from Suiter's in that attenuation is
measured at multiple frequencies between 20 kHz and 200 kHz for varying pulse
lengths, and a compressed air system is used to generate the bubble cloud. The
compressed air was mixed with water and then passed through an orifice. This
method of bubble generation®® generally leads to large numbers of bubbles with a
radius in excess of 100 um. Again no pulse length dependence was detected. This
may be due to masking by large off-resonant bubbles as previously described.
Unfortunately attempts to measure the bubble distribution optically failed and the
only measurement of the bubble population was by inversion of acoustic propagation
measurements. This gives no indication of the bubble population above a maximum
size of ~120-140 um radius. If the transient response is important when considering
the pulse length dependence, the difference between a non-oscillating bubble and a
bubble oscillating at its resonance frequency, even at small amplitudes, may be

significant.

In conclusion, there has not yet been a rigorous theoretical study of pulse length
dependence in single bubbles and bubble clouds that satisfactorily includes bubble
non-linearity, off-resonance contributions, pulse propagation through a cloud and the
decay of the bubbles after insonification. Experimental measurements have been
more extensive, but again there was, by the start of this project, no systematic
investigation of pulse length dependence in attenuation and scattering from bubble

clouds under suitable controlled, and monitored, conditions.
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1.4 Hypothesis

The following section describes the proposed methodology by which the
enhancement of sonar detection in bubbly environments may be achieved. Previous
methods of enhancing sonar detection are discussed and the method by which

potential enhancement will be investigated is described.

1.4.1 Methods of sonar enhancement in bubbly environments

In total three separate methods of sonar enhancement have been identified. The
following paragraphs identify each of these methods and identify potential ways of

exploiting them.

Previous measurements*>** have indicated that the use of acoustic pulses which have
durations that are less than the time taken for a bubble to reach the characteristic

relaxation time, 7, (see [1-33]) may result in a reduction in the attenuation from

resonant bubbles. This is clearly illustrated in Figure 1-4 where the amplitude of the
bubble response increases with increasing time. However the amplitude of the driving
sound field cannot be ignored as it can adversely effect the bubble ‘ring-up’ (Figure
1-5).

The reason for this pulse length dependence is founded in the non-zero time it takes a
resonant bubble to reach steady-state oscillation. For this reason the potential benefits
to sonar enhancement are dependent on the population distribution and insonifying
frequency. This is because the contribution of the off-resonant bubbles may not
exhibit a favourable pulse length dependence, and may swamp the contribution of the

resonant bubbles.

One method of exploiting this pulse length dependence for sonar enhancement is to

use very short pulses of duration ¢ << 7, . This method of sonar enhancement will be
referred to as Type I enhancement.

Other methods of exploiting the pulse length dependence for sonar enhancement
include the use of novel waveforms such as a swept waveform, or chirp, and psuedo-
random signals. It is hypothesized that the rapid change in the frequency of
insonification may have the same benefit for pulse enhancement (by significantly

reducing scattering and attenuation) as a very short pulse, whilst retaining a
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reasonable signal to noise ratio. This method of sonar enhancement will be referred

to as Type II enhancement.

The final method of sonar enhancement that will be investigated utilises the
variability with frequency of the attenuation through a bubble cloud to determine the
frequency of minimum attenuation. This method will be referred to as Type III

enhancement.

1.4.2 Proposed investigation of enhancement methods

To determine the optimum parameters for sonar enhancement, a series of theoretical
and experimental measurements of the response of single bubbles and bubble clouds
(with population distributions typical of the oceanic environment) to various

waveforms will be conducted.

Existing models of the time-dependent bubble and bubble cloud response are limited

in their application by the assumption listed in Table 1-1.

The Medwin model described in section 1.1.5 is a linear steady-state model only and
does not include the transient bubble response. It is thus of limited use in
investigating time-dependent methods of sonar enhancement. The remaining two
models, although time dependent, are limited by the fact that they only include the
transient response of resonant bubbles: only the model used by Pace et al. and Suiter
includes any off-resonant contribution, and this is for steady-state only, and that
contribution is itself unphysical. Finally, with the exception of Akulichev’s model,
the ring-down of the bubble after the driving pressure field has ceased is not included,
and again the Akulichev model only considers this at resonance. The effect of bubble

ring-down will be considered further in the next chapter.

These assumptions seriously limit the ability of existing models to investigate the
potential of novel waveforms. To overcome this, new theoretical models for the

response of a single bubble and for bubble clouds will be developed.

In addition this project will seek to develop a method of producing a bubble cloud in
a laboratory tank, with a population that more closely mimics that of clouds typically
found in the ocean. This bubble cloud generator will then be used in tank experiments

to measure the attenuation of a range of signals. The results will then be used to
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validate the new theoretical models and to investigate, in conjunction with the

models, the potential for sonar enhancement of different driving signals.

A surf-zone based sea trial will be conducted to test methods of sonar enhancement
and obtain information on surf-zone bubble populations for further theoretical
modelling. These results, in conjunction with further use of the models introduced in
this thesis, will be used to determine the relative merits of the different methods of

sonar enhancement tested.

Assumption

Model Linear Time Resonance No Off Ring Down | Resonant | No Off-

Indepen- Only Resonance not Damping | Resonant

dent Contribution Included Modet Transient

Only Response
Medwin ~ N X X N} X J
Akulichev ~ X N N X N N
Pace & N X X X N} N J

Suiter

Table 1-1 List of assumption made by the acoustic cross-section models reviewed in
this chapter
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CHAPTER 2

THEORETICAL MODELLING

2 Theoretical Modelling

This chapter discusses the development of models for predicting the time-dependent
response of a single bubble and bubble clouds. Non-linear models will be introduced
to overcome the limitations of the linear models discussed in the preceding chapter.
The first limitation is the inaccuracy of the linear model at increasing driving
pressures. This can be easily overcome by using numerical solutions to existing non-
linear bubble models, such as the Rayleigh-Plesset equation, to give a time-dependent
bubble wall response. A more fundamental problem highlighted in the previous
chapter is the lack of a fully developed theory to investigate the time-dependent
acoustic cross-section of a bubble cloud, including the resonant and off-resonant

contributions.

A numerical solution of a non-linear bubble model will be used to determine the
time-dependent radiated acoustic pressure. Furthermore this will be used to derive
time-dependent scattering and extinction cross-sections. This can then be used to give

a first order cloud response in terms of the time-dependent acoustic cross-section.

This model of a bubble cloud using acoustic cross-sections is termed first order
because it is range independent. Such effects as attenuation of the signal as it passes
through the cloud, and the distribution of the bubbles within the cloud, itself are not
accounted for.

The first order cloud model is therefore expanded to include range effects. This is
achieved by modelling a cylindrical bubble cloud with an arbitrary population

distribution assuming no bubble-bubble interactions. The range-dependent model will

be configured to output time series in terms of radiated sound pressure, and to
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calculate the time dependent attenuation for an arbitrary driving signal. This will be

used to investigate the potential of the different methods of sonar enhancement.

2.1 The single bubble model

In this section a non-linear bubble model and its numerical solution are introduced.
The model determines the bubble wall motion as a function of time. It is exploited in
this thesis to derive the time-dependent extinction and scattering cross-sections and
radiated acoustic pressure. Example outputs are shown for single resonant and off-

resonant bubbles.

2.1.1 The Keller-Miksis non-linear bubble model

The Keller-Miksis®’ bubble model (equation 2.1) is an advanced form of the
Rayleigh-Plesset equation already introduced. It is used here instead of the Rayleigh-
Plesset as it accounts for the finite sound speed in the liquid. This is a significant
improvement over the Rayleigh-Plesset equation, but is no more difficult to
implement. The correction for the finite sound speed was first introduced by
Herring45 and was derived through the consideration of the effect of underwater

explosions. The Keller-Miksis form of the model is:

(1-£eie 2 [1_.5;}[1+_fi)1{,,3(z>_,%_p(ﬁﬁ)}&__dm) 2
o 2 3¢, C )P [N pe, dt

Py ()= (po +—25J(52) _2o0 4R 2]

Comparison with the Rayleigh-Plesset model [1-43] shows that each of the terms is
expanded to account for the finite Mach number of the bubble wall. In addition, there
is an extra term dependent on the rate of change of the pressure at the bubble wall.

This allows the inclusion of energy storage within the liquid medium around the

bubble. As the speed of sound in water ¢, — oo, the Rayleigh-Plesset equation is

recovered from [2-1].
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It should be recalled that, whilst the Keller-Miksis equation includes viscous damping

(as does the Rayleigh-Plesset), and radiation damping up to first order in _1_2_ , it does
Cy

not include any net thermal losses. Hence if, for a given bubble size and driving
frequency, Eller were to predict d, <<d,,, then the radius-time plots predicted by
the Keller-Miksis equation can be assumed to be accurate. But if d, is not much less

then d, ., the radius-time plots will underestimate the losses. To introduce a good

tot ?

practice, in this thesis the ratio d,, /d,,, will be quoted in figure captions.

This second order differential equation can be solved numerically by using the

Runge-Kutta method*® and rewriting [2-1] as two first order equations as follows:

{(Hﬁjl{pg@_po _p(ﬁzz_j}x_z@i@_gx;[l_.gx_j}
% = S )P o Peq Co [2-3]
{-2)
Co

and

i, =X [2-4]

where x, =R and x, = R.

Thus the bubble's wall displacement R, velocity R, and acceleration R can be
determined as a function of time. An example of the output is shown in Figure 2-1 for

a 30.8 um resonant Nitrogen bubble in a 100 kHz, 500 Pa continuous wave sound
field for the condition at + = 0, R=R, =30.8um and R =0. This figure clearly

shows the amplitude of oscillation increasing monotonically for the first 0.1 ms after
the onset of the driving pressure (this is as expected after Figure 1-2 to Figure 1-4, as
this bubble is being driven very close to its linear resonance). Thus during this period
the bubble is ‘ringing-up’ but, as the driving force continues beyond this time, the
amplitude of response levels off. As already discussed in reference to Figure 1-4 this
mode of response is termed steady-state since the amplitude of oscillation is constant

with time.
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For a resonant bubble the d,, /d,, ratio is typically of order 0.78+0.02 for bubbles in

the range 10 wm to 200 pm. Introduction of nonlinear thermal damping would be a
very major undertaking. The decision has been made to proceed without it, and
explore the main characteristics of the time-dependent nonlinear cross-sections that
will be developed. Once this pioneering development has been completed in this
thesis, incorporation of thermal damping by existing formulations*”*® could be

undertaken as future work.

In the next section the numerical solution to the Keller-Miksis equation is used in the

derivation of a time-dependent acoustic cross-section.
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Figure 2-1 Time series showing the response of a 30.8 um resonant bubble in a 100
kHz, 500 Pa amplitude sound field. Calculated numerically from the Keller-Miksis
equation. Plots from left to right: bubble wall radius, wall velocity and wall

acceleration plots. The d, /d,,, ratio for this plot is 0.80
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21.2 Time-dependent bubble cross-section and radiated response

In order to derive the scattering cross-section from the analytical solution of the
Keller-Miksis, it is first necessary to calculate the radiated sound field. The pressure

radiated from a spherically oscillating bubble can be calculated at distances far from

the bubble using49

P, () =R (kR +2R?) [2-5]
v

where ris the distance from the centre of the bubble.

An example of the radiated acoustic pressure 1 m from the bubble centre (using the

same parameters as for Figure 2-1) is shown in Figure 2-2.

0.8

e
)

0.4

0.2}

Radiated Acoustic Pressure (Pa)
[~

_1 ] ] 1 1 1 1 ] i 1 }
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Time (ms)

Figure 2-2 Radiated acoustic pressure Im from a 30.8 pm radius bubble in a 100
kHz, 500 Pa amplitude sound field. The d , /d,, ratio for this plot is 0.80

Similarly the bubble cross-sections, or effective target strength of an oscillating
bubble in mz, can also be calculated. Two cross-sections will be considered, the
scattering cross-section, which is a measure of the energy re-radiated by the bubble;
and the extinction cross-section, which is a measure of the total energy lost from the

system due to scattering and absorption.
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In both cases the cross-section can be defined as:

_ Time Averaged Energy Loss

Q - [2-6]
Incident Energy
For spherical oscillation the power loss is given by:
Power = b, R’ [2-7]

where b, is the damping in the radius-force frame". In the case of the extinction

cross-section the total damping should be used, whereas the radiation damping only is

used to determine the scattering cross-section.

In order to investigate the effect of changing the insonifying pulse length, using
different time-dependent driving signals, it is necessary to measure the time
dependent scattering cross-section. Thus [2-7] can be rewritten in terms of the time
dependent energy loss required for the acoustic cross-section by integrating over the

time period of interest:

® = [b,Rdt [2-8]

The time dependent cross-section is given by the ratio of the energy loss to the

incident energy over the time period of interest. Thus [2-6] becomes:

"]bRFRde
(o}
Q= = n [2-9]
I(Zn+1 - tn) Pi2 (t _ )
2pCO nt+l n

where P is the driving amplitude.

To evaluate [2-9] it is necessary to calculate the damping coefficient bgr. The linear
damping theory of Eller® can be used to calculate the damping coefficient in the
volume-pressure frame (though it should be noted that these coefficients assume

small amplitude uniform pulsations).
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It should be noted that the above formulation for the time dependent cross-section
combines a non-linear bubble model with a linear steady-state damping theory. There
is an implied approximation in this technique, which will become increasingly
inaccurate for higher sound pressure levels as bubble motion becomes increasingly
non-linear. It is possible to develop a fully non-linear theory for the scattering cross-
section that can be used as a check on the combined formulation described above.
The fully non-linear calculation relies, not on the linearised steady-state damping, but
on the non-linear expression of the radiated acoustic pressure from an oscillating

bubble given in [2-5] above. The radiated power loss becomes:

2’n+! P[j
47r J. —2—dt
7 2pc, [2-10]

([)H»] - tn )

®md =

Thus the new scattering cross-section is:

2r"“ })lj
C
Q= P Plo [2-11]
1(tn+1 - tn) Pz ( _ )
2/0(30 n+l n

This in turn can be used to calculate the extinction cross-section by multiplying the

scattering cross-section by d,, /d,, as per [1-37].

The major advantage of [2-11] over previous methods of calculating cross-sections is
in its ability to show time dependence which reflects the various envelopes a bubbles
is capable of following off resonance (as show in Figure 1-2 and Figure 1-3). It
should be recalled that all previous time-dependent theories could only incorporate
time-dependency of the (1 —e"/f") form shown at resonance (Aku]ichevm, Suiter*,
Pace et al.43, see Table 1-1). Before exploiting this advance in section 2.1.3 however,
it is prudent to compare how the cross-sections predicted by the non-linear theory as
t — cocompare with the values predicted by the steady-state linear model. It should
again be recalled that the previous time-dependent models were scaled to match the

predictions of the linear steady-state model as r — o, as equation [1-64] showed.
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Figure 2-3 compares the different acoustic cross-sections with the linear time
independent cross-section derived in chapter 1. The results shown are for a 30 um
bubble driven by a sound field of sound pressure level 1 Pa. The time dependent
cross-sections are calculated after two hundred cycles of the driving sound field when

the bubble has reached steady state.

The figures indicate a significant difference between the non-linear and linear cross-
sections particularly around resonance and must be considered carefully. The non-
linear and linear cross-sections shows completely different resonance responses (i.e.
resonance frequency and quality factor) and thus differences in the bubble damping.
Since as previously mention the Keller-Miksis model does not include thermal
damping we would not expect the results of the linear and non-linear models to agree
exactly even at this low sound pressure level. However, because of the lack of
thermal damping the Keller-Miksis has less damping then the linear model and we
thus expect the peak to be narrower and the resonance frequency to be higher’’. In
Figure 2-3 the non-linear peaks do appear narrower (with a Quality Factor of 28 for
the non-linear model as compared to 8 for the linear model) but the resonance
frequency is less, because the nonlinearity also introduces a frequency shift. To
confirm this trend the results are re-plotted in Figure 2-4 but with two different
bubble radii to give coincident resonance peaks. The linear model results in Figure
2-4 are now for a 33 wm bubble. The figure shows that the non-linear results do have
a narrower peak with a Quality Factor of 30 for the non-linear model compared to 8

for the linear model.

The damping incorporated into the linear and nonlinear models has been shown to be
intrinsically different. However, the non-linear model must be used in preference to
the linear model owing to its ability to account for non-linear effects at increasing
sound pressure levels and because (as has been shown in section 1.3) existing linear
models do not accurately describe the time dependence in the bubble response at
frequencies away from resonance. It should be noted that at even very low sound
pressure levels used to obtain the results in Figure 2-3 (1 Pa) non-linearities are

manifest in the results as a second harmonic.

Given the differences between the linear and non-linear cross-sections the different
non-linear cross-sections need to be compared. The two different methods of

calculating the acoustic cross-sections are consistently offset by a small margin. In
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the case of the extinction cross-section both derivations include a linear
approximation. However, the comparison plot of the extinction cross-section in
Figure 2-3 is very similar to the scattering cross-section with an almost identical
offset between the two non-linear calculations. Furthermore, the introduction of the
linear approximation into the extinction cross-section calculation occurs at a later
stage in the derivation, when using the dimensionless damping ratio. In effect the
fully non-linear scattering cross-section is being scaled by the linear approximation.
In this way the non-linear velocity and acceleration of the bubble are still retained in
the radiated pressure term rather than being discarded, as is the case when the
damping coefficient b is used. It is thus reasonable to consider the formulation that
uses the dimensionless damping ratio to be the more favourable approximation of the

non-linear extinction cross-section.

Although the results using the damping coefficient, b, agree better with the linear
cross-section (as expected as this partially corrects for the differences in the damping
models) Figure 2-3 and Figure 2-4 show that the linear and non-linear results cannot
be compared directly. Thus it is more desirable to maintain a consistent approach
using the radiated pressure term than to use the linear damping coefficient simply

because it agrees slightly better with linear theory away from resonance.

The following section discusses the implication of these findings for sonar
enhancement. The theory is then used to calculate the non-linear cross-sections and

the scattering and attenuation of a bubble cloud.
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Figure 2-3 Comparison of linear and the different non-linear methods of calculating
the acoustic cross-section at 1 Pa sound pressure level for a 30 um radius bubble.
Plot a) shows the various scattering cross-sections and plot b) the extinction cross-
sections. In both plots the blue line indicates the linear cross-section whilst the red
line uses the damping term, b, and the green line use the radiated pressure term from
the Keller-Miksis model. In all cases the dimensionless damping ratio is used to get
the extinction cross-section. Note the harmonic in the non-linear model at twice the
resonance frequency.
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Figure 2-4 Comparison of linear and the different non-linear methods of calculating
the acoustic cross-section at 1 Pa sound pressure level for a 30 yum and 33 um radius
bubble for the linear and non-linear models respectively. Plot a) shows the various
scattering cross-sections and plot b) the extinction cross-sections. In both plots the
blue line indicates the linear cross-section whilst the red line uses the damping term,
b, and the green line use the radiated pressure term from the Keller-Miksis model. In
all cases the dimensionless damping ratio is used to get the extinction cross-section.
Note the harmonic in the non-linear model at twice the resonance frequency.
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2.1.3 Implications for sonar enhancement

The time-dependent bubble wall response and the scattering cross-section [2-11] of a
single bubble have been calculated (using the preferred formulations of the non-linear
cross-section described in the previous section) for a sound pressure level of 1 Pa, 1
kPa and 10 kPa. The results for a bubble near resonance are given in Figure 2-5 and
Figure 2-6 showing respectively the time-dependencies of bubble radii and the
scattering cross-section of the bubble in response to a semi-infinite duration pulse
which starts at #=0. Since it is a ratio of energy loss over incident energy the
scattering cross-section must be calculated over a finite period of time. In this case it
is calculated for each cycle of the insonifying sound field to give the cycle-by-cycle

variation in the cross-section.

The results show that as the driving pressure becomes large, despite the increase in
amplitude of bubble wall oscillation (Figure 2-5), the scattering cross-section
decreases (Figure 2-6). This is because the definition of the scattering cross-section
normalises the power scattered by the bubble to the intensity of the incident plane
wave and, unlike in linear theory, the bubble response no longer scales linearly with
driving pressure. The reduction in the time taken to reach steady-state as the driving
amplitude increases (Figure 2-6) also indicates that the likelihood of detecting 'ring-

up' effects decreases as the driving pressure is increased.

Note that the (l—e"/T‘J) ‘ring-up’ envelope which (as Figure 1-2 to Figure 1-5
showed) is a characteristic of the linear resonance condition, is present only at the

lower driving amplitudes. A major strength of this approach is its ability to describe
time-dependencies other than (l—e"/ To) which has been shown to only occur very

close to resonance at small driving amplitudes. As will be seen, it is this behaviour
that is key to understanding why the findings of Suiter and Pace et al. appear to

contradict those of Akulichev, and to explain how sonar enhancement might be
achieved.

To illustrate the ability of this method to describe time-dependencies that depart from
(1 —e T‘“) ring-up the bubble response when driven off resonance is shown in Figure

2-7 and Figure 2-8.
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Figure 2-5 Bubble wall radius time series for a resonant bubble (Ry=30.8 ym) in a
100 kHz sound field of sound pressure amplitude a) 1 Pa, b) 1 kPa and c) 10 kPa.
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Figure 2-7 Bubble wall radius time series for an off-resonant bubble (Ry=30.8 pim) in
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2.2 Range independent bubble cloud models

The formulation for the time-dependent cross-section and the radiated acoustic
pressure of an oscillating bubble (described above), can be used as the basis for
modelling the response of a bubble cloud. Two types of cloud model have been
developed. The first type (called subsequently the range independent model) is a
simple model for estimating the scattering cross-section for a given population of
incoherently scattering bubbles. This model assumes all the bubbles are excited

simultaneously and so ignores propagation through the cloud.

The second model type (called subsequently the range dependent model) simulates
the response from a cylindrical bubble cloud of finite dimension, including
propagation through the cloud. A cylindrical cloud has been chosen as it closely
mimics the sort of cloud that can easily be generated artificially in the laboratory.
However, as will be shown, the model reduces the position of each bubble to a time
delay corresponding to the onset of insonification. Thus an arbitrary cloud shape can

be created if necessary.

Here, however, the cloud is modelled as a number of randomly distributed bubbles
within a cylindrical cloud. The response of the cloud is then calculated by
incoherently summing the response of each bubble. The cloud response to an
arbitrary incident sound field is then easily determined. In all cases the effect of
multiple bubble interactions is assumed to be negligible. The criteria for this

assumption to be valid are reviewed in Appendix B.

The assumption of coherent or incoherent scattering in the cloud models also requires
further clarification. In the case of the simple cloud model all the bubbles are
assumed to be insonified simultaneously, and the scattering or extinction cross-
section is used to calculate the cloud response. This assumes that the bubble response
is coherent since adding cross-sections is equivalent to a summation of the respective

power losses from the incident wave as a result of each bubble.

2.2.1 Simple cloud model for an infinite duration pulse

The analysis of the acoustic cross-section of a bubble cloud in chapter 1 can be
combined with the non-linear time-dependent acoustic cross-section derived above to

give a first-order estimation of the time dependent cross-section of a bubble cloud
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insonified by an infinitely long driving pulse (a journal paper by Clarke and Leighton
investigating this is included in Appendix F). It is assumed that the bubble population
density is sufficiently small that bubble-bubble interactions can be neglected, as is the
reduction in intensity of the incident wave as it propagates through the cloud. By
calculating the cross-sectional areas of single bubbles of varying radii, and
incoherently summing the results, the cycle-by-cycle response of a bubble layer with
a population size distribution can be calculated. The density of the population is then
simply a scaling quantity given the limitations discussed above. Thus [1-46]

becomes:

oo

S(e)= [Qle)n(R, R, [2-12]

0

and the time-dependent scattering or attenuation of the cloud in dB per unit distance

is given by (from [1-50]):

ac/oud (t) = 4348 ([) [2-13]

Figure 2-9 and Figure 2-10 summarises the time dependent cross-section of a range of
bubble sizes in a continuous 1 kPa and 10 kPa sound field respectively. For any given
fixed time, the plot of cross-section as a function of radius exhibits the familiar
characteristics of resonance scattering dividing the Rayleigh and the Geometric
scattering regimes, (as defined in section 1.1.5 and Figure 1-6). A ring-up time is also

evident at resonance.

Therefore, the response of a bubble distribution can be investigated by applying
[2-12], which scales the individual bubble response by the population distribution.
When the population distribution is described in the conventional fashion of numbers
of bubbles per m increment per metre cubed the time dependent total response of a

bubble cloud of volume 1 m” can be ascertained using this equation.
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Figure 2-9 Scattering (top) and extinction (bottom) cross-sectional area of a single
air bubble in water of equilibrium radius up to 600 pum in a 100 kHz sound field of
amplitude, 1 kPa under 1 atmosphere of hydrostatic pressure.
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Figure 2-10 Scattering (top) and extinction (bottom) cross-sectional area of a single
air bubble in water of equilibrium radius up to 600 um in a 100 kHz sound field of
amplitude, 10 kPa under 1 atmosphere of hydrostatic pressure.
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Throughout this section the Farmer and Vagle” measurements of oceanic bubble
populations are used as an example of a typical bubble distribution. For
computational purposes a curve ([2-141]) has been fitted to the data and the population

extrapolated over the required radius range.

n(R,) = 6941070 [2-14]

where R, is in um. A logarithmic plot of equation [2-14] is shown in Figure 2-11.

Bubbles per m? per um increment
S
T

Bubble Radius {(um)

Figure 2-11 Logarithmic plot of the Farmer and Vagle”> population distribution
using equation [2-14].

The time-dependent cross-section and attenuation for a 1 m” cloud using the Farmer
and Vagle’* bubble distribution in a 100 kHz sound field of amplitude 1 kPa and 10
kPa, is shown in Figure 2-12 and Figure 2-13. The cross-section is calculated
discretely for pulse lengths of 1 to 100 cycles and the bubbles are under one
atmosphere of hydrostatic pressure. The top row of plots in Figure 2-12 and Figure

2-13 indicate the extinction cross-section of the cloud as a function of radius and
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time. The top plots are an intermediate step and represent the function S (t) from
[2-12] prior to integration where each bubble size has been multiplied by the number

of bubbles of that size ina 1 m® cloud.

The next step is to apply the integral from [2-12] to give the time-dependent cross-
section of the cloud S(¢). The middle line of plots in Figure 2-12 and Figure 2-13
show the cloud response as a function of time after integrating with respect to the

bubble radius.

Finally equation [2-13] can be applied to determine the time dependent attenuation of
the cloud in dB per unit distance. The result of applying [2-13] is shown in the bottom
plots of Figure 2-12 and Figure 2-13. Since the population distribution used ([2-14])

is fora 1 m’ cloud the attenuation calculated from [2-131 has unit dB/m.

The plots of Figure 2-12 and Figure 2-13 reinforce the importance of using a non-
linear time-dependent bubble model in this investigation. The resonant bubble

response for the 10 kPa sound pressure level in particular widely deviates from the
(l—e"’/f'“) ‘ring-up’ predicted by the linear model. It should also be noted that the
models of Suiter assume a time invariant off resonant contribution added to a

(l—e"/ r“) resonant contribution ([1-64]). We have already seen that the (] —e T”)
assumption is only valid under at low amplitudes for bubbles at resonance. Close
examination of the results shown in Figure 2-12 and Figure 2-13 indicate that the
bottom attenuation plots do not exactly follow the resonant response apparent in the
top most plots. This is not unexpected as we have already seen the complex nature of
the bubble off resonant response predicted by the non-linear model in Figure 2-7.
However this conclusion is not immediately apparent from Figure 2-12 and Figure
2-13. It is also impossible to ascertain the relative importance of the contribution of
resonant bubbles, bubbles near to resonance but not at resonance, and bubbles off
resonance. To investigate these issues further the results shown in the bottom plots of
Figure 2-12 and Figure 2-13 are broken down into these regions and the results
plotted in Figure 2-14. For the purposes of this plot the off-resonant bubbles are
considered to be those bubbles that do not exhibit a ring up or transient behaviour.
The resonant bubbles are those that exhibit a monotonic ring up. The near resonant
bubbles are the remaining bubbles defined by the limits of the resonant and off

resonant regions. In Figure 2-14 these regions are defined as follows. The resonant
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contribution includes all bubbles in the 31 pm radius bin. The off-resonant
contribution includes all bubbles in the 1 to 15 pm and 50 to 300 pum radius bins. The
near resonant contribution includes all bubbles in the 16 to 30 pm and 32 to 49 pum

radius bins.

It is clear from Figure 2-14 that for this population distribution the bubbles at, and
near to, resonance dominate the cloud cross-section. For the first 20 cycles of the 1
kPa plot the near-resonant bubbles are proportionally more important than the
resonant bubble contribution. Furthermore, by increasing the amplitude, the relative
importance of the near resonant bubbles increases for all pulse lengths. The off-
resonant bubbles contribute little to the cloud response for both the 1 kPa and 10 kPa

sound pressure levels.
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Figure 2-12 The attenuation of a 1 m’> bubble cloud using the non-linear range
independent cloud model. The population distribution is that of Farmer and Vagle’”.
All plots are for a 100 kHz sound field of amplitude 1 kPa. The top plot shows the
extinction cross-section as a function of bubble radius and cycles of the insonifying
sound field scaled by the population distribution. The middle plot shows the
extinction cross-section of the cloud as a function of cycles of the insonifying sound
field. Finally the bottom plot is the attenuation of the cloud in dB/m, again as a
function of cycles of the insonifying sound field.
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Figure 2-13 The attenuation of a 1 m® bubble cloud using the non-linear range
independent cloud model. The population distribution is that of Farmer and Vagle ‘.
All plots are for a 100 kHz sound field of amplitude 10 kPa. The top plot shows the
extinction cross-section as a function of bubble radius and cycles of the insonifying
sound field scaled by the population distribution. The middle plot shows the
extinction cross-section of the cloud as a function of cycles of the insonifying sound
field. Finally the bottom plot is the attenuation of the cloud in dB/m, again as a
Junction of cycles of the insonifying sound field. This is a discrete calculation for the
data points plotted. Line between data points are included to aide in interpretation.
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Figure 2-14 The attenuation of a 1 m’® bubble cloud using the non-linear range
independent cloud model. The population distribution is that of Farmer and Vagle’”.
All plots are for a 100 kHz sound field of amplitude 1 kPa (top) and 10 kPa (bottom).
Each plot shows the attenuation of the entire cloud (+) the contribution of the
resonant bubble (¢), the contribution of the off-resonant bubbles (o) and the
contribution of the near resonant bubbles (V). This is a discrete calculation for the
data points plotted. Lines between data points are included to aide in interpretation.
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222 Simple cloud model for a finite duration driving pulse

Unlike the formulation used in previous studies by Pace et al.* and Suiter?, the
technique used here employs a non-linear bubble model to overcome the limitations
of the linear model (section 2.1.2). In addition, the time-dependency has a physical
basis. In all the previous calculations of the acoustic cross-section in this chapter the
limits of the integrations to calculate the energy loss have corresponded to the length
of the driving pulse. This method of calculating the cross-section is suitable for
investigating how the bubble cross-section changes as the length of the driving pulse
increases, but it assumes the bubble is being driven by a pulse of infinite length. It
can thus be considered to be a measure of the cycle-to-cycle variation in acoustic
cross-section and not the cross-section of a cloud in response to an insonifying
waveform. This is because when the driving pulse ceases the bubble will continue to
oscillate at its resonance frequency. These oscillations will decay away as a function
of the damping at resonance and represent additional energy loss from the insonifying
sound field. This ‘ring-down’ of a bubble must be included in the non-linear
formulation of the acoustic cross-sections or the cloud model will underestimate the

energy loss and thus the cloud attenuation when driven by a finite length pulse.

To investigate this problem the calculations of the extinction cross-section of a 1 m’
bubble cloud using the Farmer and Vagle’* population are recalculated for pulses of
finite length. To investigate the effect of different pulse lengths the limits of the
integral in [2-9] now represent the full extent of the driving pulse and the bubble

response from ¢ = 0 to the time when the bubble returns to rest.

Cross-sections have been calculated for a driving frequency of 100 kHz and pulse

durations of 1 to 100 cycles in 5 cycle steps to reduce processing time.

The results are shown in Figure 2-15 and Figure 2-16 for a 100 kHz 1 kPa and 10 kPa
sound pressure level driving pulse respectively. The top plot shows the extinction
cross-section of a 1 m> cloud with the Farmer and Vagle™ population distribution and
the bottom plot shows the attenuation in dB/m of the same cloud. Figure 2-17 shows
the contribution of resonant bubbles, bubbles near to resonance but not at resonance,
and bubbles off resonance for both the 1 kPa and 10 kPa sound fields. As with Figure
2-14, these regions are again defined as follows. The resonant contribution includes

all bubbles in the 31 um radius bin. The off-resonant contribution includes all bubbles
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in the 1 to 15 um and 50 to 300 pwm radius bins. The near resonant contribution

includes all bubbles in the 16 to 30 pm and 32 to 49 um radius bins

The modification of the cloud model to calculate cross-sections of pulses of finite
duration has changed the predictions of the cloud cross-section and attenuation. The
results of the 1 kPa amplitude sound field will be considered first. Although the shape
of the results has remained similar (i.e. a ring-up to steady state) the attenuation at the
shortest pulse lengths has increased and the near resonant bubbles are even more
dominant for the shorter pulse durations. Conversely, the attenuation of the longer
pulses as steady state is reached has changed little. The net result of this is a much
smaller change in attenuation as the pulse length increases. The 10 kPa amplitude
sound field results show a similar trend. The near resonant bubbles are still dominant
and the attenuation at the shortest pulse lengths has increased. In this case any ring-up

to steady state has been entirely masked.
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Figure 2-15 The attenuation of a 1 m’ bubble cloud using the non-linear range
independent cloud model including bubble ring-down. The population distribution is
that of Farmer and Vagle72. All plots are for a 100 kHz sound field of amplitude 1
kPa. The top plot shows the extinction cross-section of the cloud as a function of
pulse duration in cycles. The bottom plot is the attenuation of the cloud in dB/m again
as a function of pulse duration in cycles. This is a discrete calculation for the data
points plotted. Lines between data points are included to aide in interpretation.
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Figure 2-16 The attenuation of al m’ bubble cloud using the non-linear range
independent cloud model including bubble ring-down. The population distribution is
that of Farmer and Vagle72. All plots are for a 100 kHz sound field of amplitude 10
kPa. The top plot shows the extinction cross-section of the cloud as a function of
pulse duration in cycles. The bottom plot is the attenuation of the cloud in dB/m again
as a function of pulse duration in cycles. This is a discrete calculation for the data
points plotted. Lines between data points are included to aide in interpretation.
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Figure 2-17 The attenuation of a 1 m’® bubble cloud using the non-linear range
independent cloud model for finite pulse lengths. The population distribution is that
of Farmer and Vagle”. All plots are for a 100 kHz sound field of amplitude 1 kPa
(top) and 10 kPa (bottom). Each plot shows the attenuation of the entire cloud (+) the
contribution of the resonant bubble (¢), the contribution of the off-resonant bubbles
(o) and the contribution of the near resonant bubbles (V).
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To investigate the effects of different pulse durations and sound pressure levels
further the sonar equation for detection of a 0.15 m radius sphere introduced in
chapter 1 will be applied. All values will be as indicated in chapter 1, except that the
attenuation will be calculated using the time-dependent non-linear cross-section in a
100 kHz sound field at 1 kPa amplitude (90 dB ref 1 pum Pa at 1 m) and 10 kPa
amplitude (100 dB ref 1 um Pa at 1 m) for a finite duration pulse. The noise level is

also assumed to be —50 dB as in chapter 1.

In order to compare the relative performance of different pulse lengths and sound
pressure levels, the sonar equation is solved numerically to give the detection range
as a function of pulse duration. The results are shown in Figure 2-18 along with the
cloud attenuation also as a function of pulse length. The results predict that short
pulse can result in a small enhancement of detection ranges in bubbly environments
for low sound pressure levels. The increase in sound pressure levels quickly masks
this benefit providing less enhancement than might be expected. A slight
improvement is indicated, however, during the steady state part of the cloud response.
Conversely the transient behaviour leads to a very slight degradation of target
detection ranges for the 10 kPa results for pulse durations of approximately 10 cycles
in length. Although this is not an important effect in these plots, it should not be
neglected since transient response will be an important factor in population

distributions, where resonant bubbles are not dominant.

The results of the range independent cloud model for finite pulse length indicates
significantly less potential for sonar enhancement than the previous version of the
model for infinite driving pulses. This is because of the increase in the attenuation for
short pulse lengths predicted by the model. This is because, as the bubble approaches
steady state, the energy loss owing to bubble ring-down is progressively less
important. The plots in Figure 2-19 and the accompanying Table 2-1 demonstrate
this. The table shows the percentage energy loss of an acoustic wave owing to a
resonant bubble for: 1) the period the bubble is being driven and 2) the period that the
bubble is ringing down after insonification has ceased. The results show that the
contribution of the bubble ring down is proportionally more important for short

pulses.
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Figure 2-18 Attenuation (top) and target detection ranges (bottom) using the sonar
equation and the time dependent extinction cross-section, including bubble ring-
down, for a 1 m° cloud under one atmosphere hydrostatic pressure in a 1 kPa (solid
line) and 10 kPa (dashed line) sound field. Note the linear theory indicates a
detection range of ~14 m.
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Figure 2-19 Four plots of the radiated pressure time series for a 30.8 pom bubble in a
resonant 100 kHz sound field a) 5 cycle pulse of amplitude 1 Pa b) 50 cycle pulse of
amplitude 1 Pa c) 5 cycle pulse of amplitude 10 kPa d) 50 cycle pulse of amplitude 10

kPa.

Energy Percentage | Driven [l)qomw%
5 cycles 1 kPa 17.8 82.2
© 50cycles1kPa | 79.8 20.2
§ 5c¢ycles 10kPa | 18.2 81.8
50 cycles 10 87.7 12.3

kPa

Table 2-1 Percentage of energy radiated for the bubble responses shown in Figure
2-19 when the bubble is being driven and during the ring down of the bubble after

insonification has ceased.
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The results of the simple cloud model for finite pulse lengths shows that short pulses
can in fact be detrimental to sonar enhancement. When infinite pulses are used the
opposite conclusion is erroneously indicated. Examination of the bubble response for
each bubble radii in Figure 2-17 indicates that the resonant bubble still shows a
reduction in the cross-section for short pulses over steady state. It is the increase in
the scattering cross-section of the near resonant bubbles when insonified by short
pulses that has masked the ring-up evident in the resonant bubbles. The following

section expands the simple cloud model to incorporate range dependent effects.

2.3 Range dependent cloud models

In the preceding section a simple model to estimate the attenuation and cross-sections
of a bubble cloud has been described. However this simple model does not take into
account the geometry of the cloud. The different ranges of the bubbles from the
source and receiver and the attenuation of acoustic signals as they pass through the
cloud are not considered. This section expands on the simple cloud model to include
the cloud geometry and range effect, and incorporates the attenuation of the driving

acoustic signal.

2.3.1 Range dependent cloud model without driving pulse attenuation

One method of simulating the range dependent aspects of a bubble cloud is to
distribute a representative proportion of the bubble population randomly within the
cloud volume. The distance of each bubble from the source is then calculated and
this can be related to a time delay of that bubbles response at the receiver. Each
individual bubble response can then be determined using the Keller-Miksis bubble
model, and the cloud response found by summing each response with the appropriate

delay.

The bubble radius response as given by the Keller-Miksis can be used to calculate the
scattering or attenuation from each bubble. The radiated sound pressure level is
obtained using [2-5] and the attenuation by calculating the power over the bubble
response in the same way, as for the acoustic cross-sections discussed previously

(section 1.1.5). The energy loss owing to attenuation or scattering from the cloud can
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be calculated by integrating with respect to time the power loss for a given driving

sound field.

Figure 2-20. Asymmetric view and schematic showing how the cloud is modelled by
randomly generating the position of the bubbles (radius, angle and depth from cloud
center) within the cloud volume and calculating the path length to the receiver. The
shaded region indicates the cloud boundary and bubble density, a darker shade
indicating a higher bubble density.

In the formulation of the previous cloud model it has been shown that the time taken
for the bubble to ring-down must be included in the limits of integration. Also in the
case of the range dependent model, the pulse will take a finite time to propagate
through a cloud; thus the bubbles will not be oscillating with the same phase.
Furthermore, the cloud has finite dimensions and will respond differently depending
on whether the pulse train is longer or shorter than the time taken to propagate
through the cloud. Consider when the pulse train is much shorter. Only a part of the
cloud is insonified at a given time; thus not all the bubbles will reach steady-state
oscillation at the same time. If the pulse train is sufficiently longer than the cloud,

then at some point the entire cloud will be oscillating at steady state. As in the case of
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the modified simple cloud model, this model will determine the response of a bubble

cloud to arbitrary waveforms of finite length, including the bubble ring-down.

The model has been implemented using Mathworks Matlab™. The methodology of
the model is described here with the aid of an example. In this case a 1 m’ volume
cylindrical cloud with a population distribution taken from Farmer and Vagle72
([2-14]) to allow comparison with previous model results. In this case a cylindrical
cloud insonified mono-statically is modelled. The bubbles are uniformly distributed
over the depth insonified by the transmit array but are distributed in the horizontal
plane such that the density reduces towards the edges of the cloud but is radially

uniform.

This geometry is generated by randomly determining an angular component and
distance, as well as the vertical distance, from the centre of the cloud for each bubble.
The cloud is 0.5 m in radius and 1.27 m in depth (giving a cloud volume of 1 m’)
with the centre of the cloud on axis with the transmit/receive array. A plane wave is

assumed with the receive array 2 m from the centre of the cloud

The distance of each bubble from the receive array is then calculated by resolving
along the axis of the source and cloud origin and applying basic trigonometry (Figure
2-20). It is then a simple matter to calculate the time at which the signals are received
for each individual bubble using the distance and the speed of sound in water
(assumed to be bubble-free to speed up the calculation). The bubble population is

then ordered in terms of this time delay.

The scattering or attenuation of each bubble radius increment is then calculated for
the incident pulse using the Keller-Miksis model as described previously. The
increment is normally one micrometre as defined by the population formula. This is
fine enough to resolve the bubble resonance and avoids the need to integrate the
bubble population to give the number of bubbles per radius increment. The cloud
response is then constructed by stepping through the bubble population, in order of

increasing delay, and adding the response for the appropriate bubble size.

The model is able to produce a time-series response for the sound pressure scattered
from a cloud of a given population and cylindrical radius for any incident plane wave
signal. Furthermore, the time-dependent scattering and attenuation in decibels can be

calculated using the energy loss owing to the bubble cloud and the calculated energy
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of the incident pulse. A further benefit of this model is that it can use a formula or a
driving pressure time series in Pascals to define the incident signal. The use of a time
series requires that pressure time series be sampled at the same (or greater) frequency

as the model output. This is normally set to 1 MHz.

Although a cylindrical cloud has been used in this case, as it is easy to model and can
be produced artificially in a tank, a variety of cloud shapes could be implemented by

changing the algorithm for calculating the distance of the bubbles from the source.

The results of the range dependent model based on the example described above are
shown in Figure 2-21. To obtain these results the bubble population has been scaled
down to reduce processing time. Several repeat tests were conducted to ensure that
enough bubbles were modelled such that the standard deviation of the cloud response
(scaled up to the desired population density) varied by less than 1% for different

randomisations of the bubble locations.

The results of the range dependent model shown in Figure 2-21 differ slightly from
the cloud model results shown in Figure 2-18. The results from each of these figures
are overlaid in Figure 2-22 for comparison. Although the peak attenuation of the 1
kPa traces is similar the results calculated using the range independent model
generally shows a greater attenuation than the results for the range dependent model
as pulse length increases. Both models, however, show an increase in attenuation
between one and fifteen cycles after which the attenuation of 1 kPa continues to
increase slowly with increased pulse duration and the 10 kPa attenuation reduces
rapidly with increasing pulse length. In addition the maximum target detection range
of ~5.6 m is somewhat less then the ~7.5 m predicted by the range independent
theory. It is also significantly less then the 12.8 m predicted by the steady-state linear

theory.
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Figure 2-21 Attenuation (top) and target detection ranges (bottom) using the sonar
equation and the range dependent bubble model for a 1 m’ cloud (Farmer and
Vagle” distribution) under one atmosphere hydrostatic pressure in a 1 kPa (x) and
10 kPa (+) sound field. The insonification frequency is 100 kHz. Note the linear
theory indicates a detection range of ~14 m. This is a discrete calculation for the data
points plotted. Lines between data points are included to aide in interpretation.
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Figure 2-22 Attenuation for a 1 m’ cloud (Farmer and Vagle” distribution) under
one atmosphere hydrostatic pressure in a 1 kPa(x) and 10 kPa (+) sound field for the
range independnt cloud model (solid line) and the range dependent cloud model
(dashed line). The insonification frequency is 100 kHz.

232 Range dependent cloud model including driving pulse

attenuation

One of the assumptions in the range dependent cloud model described above is that
the sound pressure level of the signal does not change as it passes through the cloud.
This assumption could be a significant source of error because the model assumes
bubbles furthest from the source are being insonified by a greater sound pressure
level than should be the case and could lead to an error in the estimation of the cloud

attenuation.

To overcome this problem the theoretical cloud is segmented into an arbitrary number
of layers (determined by the number of bubbles and the level of attenuation). The
attenuation owing to the first layer is calculated in the same way as described above
and the reduction in the incident signal determined. The driving signal is then scaled
by this amount. This new reduced signal is then applied to the following layer. To

reduce processing time the response of the succeeding layers is calculated by linearly
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scaling the individual bubble responses used to determine the first layer response, in

line with the reduction in the incident signal.

The effect is cumulative over the layers and the total cloud response is determined by
adding each layer response with the appropriate delays. This is implemented by
adding an extra function to the Matlab model that segments the population delay
vector into uniform length ‘layers’. The response from each layer, with the
appropriate reduction in bubble response owing to the attenuation, is then calculated
and summed in the manner described above. The attenuation in dB/m is shown in

Figure 2-23.

The inclusion of pulse attenuation into the range dependent model has resulted in a
small reduction in attenuation of approximately 1-2 dB for both the 1 kPa and 10 kPa

sound pressure levels.
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Figure 2-23 Attenuation from the range dependent bubble model including pulse
attenuation for a 1 m’ cloud (Farmer and Vagle72 distribution) under one atmosphere
hydrostatic pressure in a 1 kPa (x) and 10 kPa (+) sound field. This is a discrete
calculation for the data points plotted. Lines between data points are included to aide
in interpretation.

88



The importance of the range independent cloud model (owing to cloud geometry)
when trying to predict the effect of changing the pulse duration on scattering and
attenuation of bubble clouds has thus been established. Although the range
independent model is a useful first approximation (owing to its simplicity) care
should be taken when interpreting the results especially when considering bubble

clouds of finite dimension.

A method of incorporating the attenuation of an acoustic driving pulse as it passes
through a bubbly medium has also been introduced. In this case the results are only
slightly changed from those that do not include the driving signal attenuation.
However in circumstances where the bubble cloud is larger and/or the attenuation
greater than in this example case it will be important to incorporate driving pulse

attenuation.

In the following section the bubble cloud models are reviewed and methods of sonar

enhancement discussed.

2.4 Review of cloud models and methods of sonar

enhancement

2.4.1 Classes of model developed

Two distinct classes of model have been derived and discussed in this chapter. The
first is the range independent cloud model. This model uses the time dependent
extinction cross-section of individual bubbles, scaled by the population distribution,
to determine the bubble cloud attenuation. The model can be used for any given
driving signal and, once the matrix of bubble responses has been calculated over a
suitable radius range, it can be easily applied to any bubble population. The model
also incorporates the bubble ring down. The main advantage of this model is that
bubble responses can be calculated and stored for typical driving signals. It is then a
simple matter to determine the time-dependent cloud attenuation by applying [2-12].
The disadvantage of the model is that it fails to take into account cloud geometry and
attenuation of a pulse propagating through a cloud potentially underestimating the

attenuation at higher bubble void fractions.
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The second type of model is the range dependent cloud model. This model includes
the geometry of the bubble cloud and can incorporate the attenuation of the driving
signal as it passes through a bubble cloud. The inclusion of pulse attenuation is
expected to be very important in the surf-zone where high levels of attenuation are
expected”’ and thus high amplitude driving pulses will need to be used. This in turn
suggests the capability of including bubble non-linearity will be important as the
amplitude dependence shown in Figure 2-18 indicates. The main disadvantage of this
model is the long processing time and the need to rerun the model for each new
bubble population and driving signal. It is, however, possible to minimise the model
processing time by calculating and storing the individual bubble response to typical
driving waveforms for use in later iterations of the model. A facility of this model is

that a time series of the scattering from the cloud can be calculated.

242 Characteristics of the models developed

A time dependent non-linear bubble cloud model has been derived. The model can be
used to calculate the scattering and attenuation of an arbitrary driving signal through
an arbitrary bubble cloud. The models have been expanded to include such effects as
bubble ring-down and attenuation of the driving pulse. For each version of the model
the attenuation of a 100 kHz pulse of varying length and amplitude 1 kPa and 10 kPa

has been calculated for the Farmer and Vagle bubble poptllation72.

The simple cloud models demonstrate how acoustic cross-sections and attenuation
can be calculated for a bubble cloud using a non-linear time dependent single bubble
model such as the Keller-Miksis. The importance of the bubble ring down has also
been shown when determining the cloud response to a finite driving pulse. This is a
consideration neglected in previous time-dependent cloud models reviewed in chapter
1 and the Clarke and Leighton journal paper in Appendix F, all of which assume an

infinitely long driving signal.

The model has also shown, through the use of plots such as Figure 2-17, that although
resonant bubbles apparently dominate and exhibit the characteristic ring up to steady
state, the bubbles close to resonance are also important and do not ring-up in the
manner of resonant bubbles. The transient response of the large off resonant bubbles

can also be an important contributor to the cloud response. It is the combined effect
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of near resonant and large off resonant bubbles that can mask the ring-up of the

resonant bubbles.

In section 2.3 the geometry of the cloud was modelled, thus incorporating the
attenuation of the driving pulse as it passes through the cloud. This does however
increase the processing time by a significant amount. The test results for the Farmer
and Vagle bubble population show a reduction in attenuation as a pulse propagates
through the cloud of approximately 0.5 dB when pulse attenuation is included.
Furthermore the shape of the attenuation versus time curve has changed very little.
Thus the full range-dependent model is likely to be a benefit over the simple non-
linear cloud model only when attenuation levels are high. This is because it is the
relative differences in attenuation of different signals that is important for
determining sonar enhancement. The importance of driving signal attenuation will be

investigated further in chapter 5.

243 Methods of sonar enhancement

The time dependent cloud models discussed in this chapter give insights into possible
methods of sonar enhancement. Three possible approaches have been identified and

are described in detail below.

The first and simplest approach relies on two characteristics of the resonant bubbles
indicated by the time dependent models derived in this chapter. The first
characteristic is that the resonant bubbles dominate the response of a cloud and thus
contribute a significant proportion of the attenuation of an acoustic pulse. This can be
expected in most natural bubble populations where, above about 30 um radius, the
numbers of bubbles per um increment decrease with increasing radius®*>. The
second characteristic is that resonant bubbles take time to ring-up, and the attenuation
due to these bubbles can be reduced if the bubbles do not reach steady state
oscillation. These characteristics can be exploited by using pulse of the order of a few
cycles with sound pressure amplitudes typically less than 10 kPa. As introduced in

section 1.4.1, this method of enhancement will be referred to as Type I enhancement.

A second approach is a derivative of the first. A potential problem with using short
low amplitude pulses is that the energy contained in the pulse is low and can result in

a poor signal to noise ratio that prevents target detection. This could negate the
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potential benefits of using short pulses. A possible solution is to increase the
bandwidth of the driving pulse, whilst maintaining the low amplitude and short
duration at the resonance frequency of any given bubble. This would allow increased
energy in the driving signal whilst attempting to minimise the contribution of the
resonant bubbles. The main drawback of this method is that more bubbles will be
driven at their resonance frequencies i.e. all those bubbles with resonance frequencies
that fall within the bandwidth of the driving signal. As introduced in section 1.4.1,

this method of enhancement will be referred to as Type II enhancement.

A third approach utilises a different property of bubble clouds. The cloud model
outputs shown in this chapter have all been from a 100 kHz driving frequency.
However if the driving frequency were changed, the numbers of resonant bubbles
would change depending on the bubble cloud population distribution. Furthermore,
the extinction cross-section of the resonant bubbles also changes with bubble size as
illustrated in Figure 2-24. Thus the attenuation of a bubble cloud changes with

frequency and is a characteristic of the population distribution.
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Figure 2-24 Extinction Cross-section of resonant bubbles versus equilibrium radius
under one atmosphere of hydrostatic pressure.

A good example, for illustrative purposes, of the frequency dependence of attenuation
is shown in Pace et al** a study of pulse length dependence in bubble clouds that was
reviewed in the previous chapter (section 1.3.2). In this paper several measurements
of cloud attenuation versus frequency were made and are repeated here in Figure
2-25. The figure shows large changes of attenuation as frequency increases. The
levels of attenuation increase from O to 20 dB and returns to zero again as the
frequency approaches 200 kHz. Although this data are not necessarily representative
of oceanic conditions, it clearly shows that selecting the correct insonification
frequency is an important consideration for target detection in bubbly environments.
This last method of enhancement, which is not mentioned as a possibility in the paper
by Pace et al. (though Figure 2-25 shows that their data points to it) will be referred

to as Type Il enhancement, following the convention of section 1.4.1.
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The three methods of sonar enhancement are summarised in Table 2-2.

Type Methodology Signal Types Used
I Resonant bubble ring-up Short pulses
11 Broadband excitation Chirps and Pseudorandom
11 Attenuation minima Tuned long pulses

Table 2-2 Summary of the three proposed methods of sonar enhancement

244 Initial cloud model validation

Finally the results of the Pace et al**, paper can be used to test the simple cloud model
described in section 2.2.1. The range dependent cloud model is not tested since the
geometry of the cloud in the Pace et al. experiment is unclear. The population
distribution published in the Pace er al. paper was tested with an idealised 20 cycle
pulse. Pace et al. do not publish the amplitude of their driving signals thus a 10 kPa
amplitude has been assumed. The results are shown in Figure 2-25. Excellent
agreement is shown between the theoretical results and the experimental
measurements with the theoretical data points in most cases lying within the range of

experimental variability indicated by the three separate 20 cycle tests plotted.

In the next section the model will be used to investigate which bubble population

distributions are most likely to show Type I sonar enhancement.
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Figure 2-25 Attenuation versus frequency of an artificially generated bubble cloud
measured by Pace et al. ¥ (black lines). The dashed lines represent short 6 cycle
pulses and the thick lines long 20 cycle pulses. The dots, added here, are the results
of the range independent non-linear cloud model (in section 2.2.2) for a 20 cycle
pulse of amplitude 10 kPa.

2.5 Bubble cloud population distribution and sonar
enhancement

The range independent cloud model (section 2.2.2) has passed a preliminary
verification by comparing the model results with data collected by Pace et al®. Three
types of enhancement methods have been identified from the response of the linear
model to a monodisperse population. The verification of the range independent cloud
model allows Type I enhancement to be tested with several types of bubble cloud
populations to determine the conditions under which a pulse length dependence can
occur.

Measurements of oceanic bubble populations in the field have shown that they can be
described in one of three distinct ways. The first is known as a ‘peaked distribution’
because of the presence of a maxima in the population. Farmer ez al’* and Phelps,

Ramble and Leighton®® have both measured an example of this type of population.
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The peak in the Farmer et al. population distribution occurs at 21 pm, and this
corresponds to a resonance frequency of 145 kHz for air bubbles in water under one
atmosphere hydrostatic pressure. The second type of population can be described by

an exponential equation of the form:

n(R, )= Ae" [2-15]

where n is the number of bubbles per tm increment per m*, A and B are constants and

R, is the equilibrium bubble radius.

An example of this population type is a second population measurement by Farmer et

al™ was used in section 2.2.1.

The third and final type of population can be described by a power-law equation of

the form:

n(Ro ) = AR? [2-16]

where 7 is the number of bubbles per im increment per m”, A and B are constants. An
example of this third type is the population distribution measured by Akulichev®. In
both equations [2-15] and [2-16], the constant A is a simple scaling factor and the
constant B determines the shape of the population. Thus A will scale the attenuation,
but B determines the gradient of the population and the relative number of resonant
and off-resonant bubbles. The constant B is thus the important factor for sonar

enhancement.

The three types of populations will be referred to as peaked, exponential and power-

law populations.

The range independent cloud model (section 2.2.2) has been used to calculate the
percentage change in attenuation between a single cycle and 20 cycle pulse with a
driving frequency of between 50 kHz and 300 kHz and an amplitude of 600 Pa for
each of the populations described above. In addition a measurement of a bubble
population measured in the surf-zone made by Phelps et al*® is also tested. This

population is also described by [2-17] and is of the form of equation [2-16].
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The results are shown in Table 2-3.

Population (Type)
% Farmer 1 Farmer 2 Akulichev Phelps et
(dB/m) (Peaked) (Exponential | (Power B=- | al. (Power
B=-0.04) 3.7) B=-3.8)
300 -124 (-3.5) 11 (0.5) 33(1.7) 31 (1.6)
E 250 -61 (-2.1) 12 (0.6) 25(1.2) 23 (1.1)
:-;’ 200 -3 (-0.1) 11 (0.5) 14 (0.7) 12 (0.6)
g’_ 150 53 (3.3) 15 (0.7) -3 (-0.1) -6 (-0.3)
E 100 -7 (-0.3) 18 (0.8) -21(-0.8) -25 (-1.0)
50 -105 (-3.1) 9(0.4) -55(-1.9) -65 (-2.2)

Table 2-3 Percentage and dB/m change in bubble cloud attenuation (in brackets)
between a 1 and 20 cycle pulse of 600 Pa amplitude. The population name is shown
at the top of the plot with the type of population and the value of the constant B for
that population shown in brackets below. The negative numbers (highlighted in red
italics) indicate a decrease in attenuation between 1 and 20 cycles indicating Type 1
Suppression.

The results in Table 2-3 show that the Farmer 1 population would give optimum Type
I enhancement (53%) if the driving frequency is tuned to the resonance frequency of
bubble radius at the peak of the distribution. Away from this peak the opposite of
Type I enhancement occurs. The power-law type distributions of Phelps et al. and
Akulichev both show enhancement at the higher frequencies (31% and 33%
respectively at 300 kHz). The exponential type population measured by Farmer
shows the poorest enhancement (an average of 13%) but enhancement is effective
over the widest frequency range. The values are however generally small (< 3dB)

compared to the types of enhancement required for sonar operation.

The power-law and exponential type populations can be investigated further by
varying the B parameter to determine the effect on Type I enhancement. The results

are shown in Table 2-4 and Table 2-5.
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Population (Power-law)
% | B=-1 B=-2 B=-3 B=-4 B=-5
300 11 34 37 29 -2
;:,,7 250 8 28 30 20 -11
=
> 200 3 20 21 9 -29
g_ 150 1 14 10 -12 -110
E 100 -1 8 -2 -33 -129
50 2 0 -20 -82 -353

Table 2-4 Percentage change in bubble cloud attenuation between a 1 and 20 cycle
pulse of 600 Pa amplitude for a bubble population with a power-law distribution. The
constant B from equation [2-16] is shown at the top of the table. The negative
numbers (highlighted in italics) indicate a decrease in attenuation between 1 and 20
cycles indicating no Type I enhancement.

Population (Exponential)
% B=0.02 | B=0.04 | B=0.06 | B=0.08 | B=0.1
300 -5 10 21 28 33
g 250 -6 10 21 27 32
‘:; 200 -8 9 19 25 28
g_ 150 -2 13 21 24 26
E 100 5 17 20 18 14
50 13 11 -6 -37 -89

Table 2-5 Percentage change in bubble cloud attenuation between a 1 and 20 cycle
pulse of 600 Pa amplitude for a bubble population with an exponential distribution.
The constant B from equation [2-15] is shown at the top of the table. The negative
numbers (highlighted in italics) indicate a decrease in attenuation between 1 and 20
cycles indicating no Type I enhancement.
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The results clearly show that a power-law distribution with a value of B between 2
and 4 is best suited to Type I enhancement, and that an exponential distribution show
enhancement for values of B in excess of 0.02. The tables also indicate that in general

a higher frequency is better unless the off resonant contribution is significant.

2.6  Summary

In this chapter non-linear models of bubble cloud attenuation for arbitrary waveforms
and population distributions have been developed. The models have been used to
identify three possible methods of sonar enhancement and the types of cloud where
Type I enhancement can be expected to work for certain populations and at certain
frequencies though enhancement of less than 3 dB are generally produced. It is now
necessary to compare the performance of these models with experimental results and
investigate the potential of each of the sonar enhancement techniques. To achieve this
a series of tank tests will be conducted in an 8 m x 8 m x 5 m deep test tank using an
artificially generated bubble cloud. The implementation and results of these tests are
described in the next two chapters (chapter 3 and 4), respectively. The knowledge
gained in the tank will then be applied to target detection trials in the surf-zone. This
is necessary to obtain knowledge of surf-zone bubble populations and conditions. It
also allows the models and the different methods of sonar enhancement to be tested

under realistic conditions. These trials are discussed in chapter 5.
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CHAPTER 3

EXPERIMENTAL METHODS FOR TANK
TESTS

3 Experimental Methods for Tank Tests

This chapter considers the experimental arrangements for measuring the benefits of
different signals for sonar enhancement and validation of the theoretical models. The
development of a bubble cloud generator, experimental arrangement, methods of
analysing the data and the criterion for sonar enhancement are all discussed. As
shown in the previous chapter, the ring-up and ring-down characteristics of the
bubbles are an important consideration in this study. These depend on the bubble
damping, and since the tank measurements described here were to be used in the
design of an oceanic experiment, it was necessary to undertake a study of the effect of
tank reverberation on bubble damping.

This study expanded significantly beyond the original needs, and would not fit within
the scope of this thesis. Hence the resulting publication is bound into the back of this

thesis as Appendix G.

3.1 Artificial generation of an oceanic type bubble cloud

The development of an artificial bubble cloud generator that can produce bubble
clouds in a test tank that mimic (as far as is reasonably achievable) those found in the
ocean is described below. The reason for choosing electrolysis over other generating
techniques is discussed first before a technical description of the generator and its
operating principles is given. Finally the bubble cloud population distribution is

characterised.
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3.1.1 The development of an electrolysis type bubble cloud generator

As discussed in section 1.3, out of the three studies on the pulse length dependence of
acoustic attenuation or scatter by bubble clouds, only the oceanic studies showed a
positive result. Clarke and Leighton56 (Appendix F) suggested that one of the main
reasons why the other two tank studies (by Suiter® and Pace et al.®) failed to show
an effect was that these authors used techniques for generating bubble populations in
tanks which produced too many large bubbles. As section 2 showed, such large

bubbles do not display the smooth ring-up characteristic of resonant bubbles.

To prevent the possible masking of the pulse length dependence by large off-resonant
bubbles, it was necessary to generate a repeatable artificial bubble cloud that
produced predominantly small bubbles, of the order 10 — 100 pm radius, similar to
oceanic bubble distributions™. Experiments have shown that it is difficult to produce

large quantities of bubbles this size by injection of compressed air through a needle’’,

58,59

which is a common method for bubble generation™””. One alternative bubble

generation method is by electrolysis®®®!. Laboratory tests using platinum and copper
electrodes have shown that oxygen bubbles form on the surface of the anode, and will
grow in size until there is sufficient buoyancy force to overcome surface tension and
they detach. If a flow is induced over the anode, the bubbles detach sooner and thus
the bubble population has, on average, a smaller radius. In addition the quantity of
bubbles produced can be controlled by two methods: First by increasing the current;
and second, by moving the anode closer to the cathode. This increases the proportion
of the current utilised for electrolysis and thus bubble production. These criteria are
not entirely compatible and thus a compromise must be sought. A further method of
increasing the void fraction within the cloud is to reduce the size of the cathode,

reducing the volume of the cloud.

The volume of gas produced by electrolysis can be calculated, from the current

passing between the two electrodes, by Faraday's Law.*
Q. =nMF [3-11

where Q. is the charge in coulombs, n, is the number of electrons liberated to produce
a gas molecule, M is the number of moles of gas and F' is Faraday's constant 9.65
x10* Cmol. For the electrolytic generation of O, from water, four electrons are

liberated to produce each gas molecule and each mole of gas has a volume of 24x107
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m’, at standard temperature and pressure. It should be noted that the actnal volume of

gas produced is dependent on the pressure and thus the depth of the cloud.

Another design issue is the production of hydrogen gas at the anode. The potential
problems of hydrogen bubbles contaminating the cloud, owing to their different level
of damping, was discussed in Chapter 1, where the potential problems of not
considering such contamination in Suiter's® study were discussed. It would thus be

desirable if the bubble cloud generator could be designed with a system for

preventing this.

With these design considerations in mind, a large scale electrolysis-type bubble cloud
generator was developed for use in a fresh water' 8 m x 8 m x 5 m tank. A novel
approach to the placement of the anode and cathode was taken, to ensure maximum
bubble production as well as a reproducible small bubble population. The generator
consists of a dexion™ lifting frame incorporating a waterproof housing containing a
motor and electrolysis circunitry. On top of this is mounted a baseboard with four
copper plates wired together as the anode. This is in turn covered in a fine mesh filter
to prevent the hydrogen bubbles from contaminating the cloud. Through the middle is
a drive shaft from the motor to a turntable on which is mounted a fifth copper plate
acting as the cathode. The anode and the cathode are both wired into the waterproof
housing, in the former case by slip rings. Power to drive the motor and electrolysis is
supplied from the surface via three cables. In addition the rpm of the turntable is
measured and monitored via a digital display on the surface control box, where the
rpm of the motor can also be adjusted. Mounting the anode on a turntable to induce a
flow over the generating surface has a two-fold advantage. Firstly it minimises the
numbers of large bubbles produced and, secondly, it generates (as far as possible) a
spatially uniform cloud with a diameter of approximately 0.5 m. A photograph of the

completed generator is shown in Figure 3-1.

Early experimentation used a cathode design, consisting of a wire mesh grid to
minimise the distance between the electrodes at all points, whilst minimising the area

of the cathode. These cathode designs were unsuccessful since the manufacturing of

i Although one author™ has suggested that the damping of bubbles in salt water may differ from the
damping in fresh water, no evidence for this has been found by others, and Appendix G shows how the

effect observed may have been an artefact of the test tank.
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the copper wire used in the cathode appears to have led to pitting of the wire,
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3.2 Experimental arrangement

The experimental arrangement, data acquisition and control systems for the
generation of arbitrary waveforms, and the measurement of their attenuation, are
described in section 3.2.2. In addition, schematics of the experimental arrangement
and equipment are given, and experimental procedures described, in sections 3.2.3
and 3.2.4. Firstly the measurement and characterisation of the artificial bubble cloud

is discussed in section 3.2.1.

The measurement of the bubble population via the inversion of attenuation required
the measurement of the frequency dependent attenuation. A plot of these
measurements is shown in Figure 3-2. The figure shows a maximum attenuation of
approximately 5 dB/m at 20 kHz with the attenuation then decreasing with increasing
frequency. This information is important when considering the experimental
arrangement for several reasons. Firstly, in order to determine the relative benefits of
different driving signals, it will be necessary to compare the attenuation levels of the
different signals. Higher attenuation levels are desirable to improve the accuracy of
these measurements. Secondly, the theoretical models have indicated that too high a
sound pressure level will limit the potential for pulse enhancement. The combination
of high attenuation and low sound pressure levels can result in poor signal to noise at
the receiver, or failure of the driving signal to penetrate the cloud. Thirdly, it is
necessary to time gate the received signal to negate tank wall reflections, thus
limiting the length the pulse that can be tested. A higher frequency pulse would allow
a greater number of cycles during the time gate. Conversely, too low a frequency
pulse would restrict the pulse length and prevent the investigation of pulse length

dependence in the cloud response.

These constraints were considered along with the available sources and receivers and
the reverberation levels of the tank (see Appendix C) when determining the
experimental arrangement discussed below and the test signal characteristics

described in this chapter.
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Figure 3-2 Plot of attenuation versus frequency for the bubble cloud generated by
electrolysis using pulses of 1 ms duration. The crosses represent data points and the
line is an interpolation of the data. This data was used to invert for the bubble
population distribution shown in Figure 3-4.

3.2.1 Measurement of the bubble cloud population

Preliminary characterisation of the bubble cloud was achieved by measuring the size
of bubbles with a graduated microscope. A sampling dish was passed through the
cloud just below the surface to collect the bubbles for examination by the microscope.
The gas flux was also measured by collecting the gas bubbles in a reservoir at the
surface. All measurements were made with the turntable set to 10 rpm and a current
of 10 amps. The void fraction was measured to be approximately
0.0067%+0.00034%, assuming an average rise speed of 1 cms’. The normalised
optically measured bubble distribution is shown in Figure 3-3. This is a preliminary
measure only, and does not give the exact population distribution encountered by the
acoustic pulse. This is because larger bubbles have greater rise speed and so in a
given time interval a glass plate samples over a greater vertical distance in the cloud
for larger bubbles then it does for small. In addition, the reduced hydrostatic pressure
at the glass plate compared to that at the acoustic propagation path will distort the

population.
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Further measurements of the bubble population have used inversion of the
attenuation® of pulses transmitted between two hydrophones within the bubble cloud
and spaced 0.25 m apart over a frequencies range of 15 to 220 kHz. Pulse durations
of 1ms were used in all cases corresponding to durations of between 15 and 220
cycles as the frequency increased. The void fraction measured by this technique, 1.1 x
10° % and the resulting population distribution is shown in Figure 3-4. The
normalised optical measurements shown in Figure 3-3 are scaled (to give a void

fraction of 1. 1 x 10® % ) and added to this plot (as triangles) for comparison.
The grey line in the plot is an extrapolation of the inverted measurements and is

described as follows:

rl(Rg ) =1 84x1 06 e~1.44132R”0.3 [3-2]

where n is the number of bubbles per m® per um increment in bubble radius in the

usual fashion.

The measurement of attenuation (owing to the bubbles), from which the bubble

populations are inverted, is shown in Figure 3-2.
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Figure 3-3 Optically measured bubble size distribution from the electrolysis bubble
cloud generator drawing a current of 10 amps and the turntable rotating at 10 rpm.
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Figure 3-4 Bubble cloud population distribution of the electrolysis type bubble cloud
running at 10 amps and a turntable yrpm of 10. The measurements were made at a
depth of approximately 3 m. The graph shows experimental data (black line) and a
best-fit curve (grey line) to the population obtained by inversion of the attenuation
through the bubble cloud. The equation of the extrapolated best fit curve is given by
[3-2] The opticals measurement from the previous plot are also show as triangles.

322 Tank arrangement

The attenuation measurements were conducted in an 8 m x 8 m x 5 m deep fresh
water tank. The tank is not anechoic and special care was taken when positioning the
bubble cloud generator, the source and the receiver, to avoid spurious signals from
bottom and wall reflections. Figure 3-5 shows the relative positions of the cloud,

source and receiver.

The bubble cloud generator was bottom-mounted in the centre of the tank floor. The
generator was lowered into the water with a rope and pulley system. The rope had to
remain attached to the rig for retrieval, but was allowed to go slack so that it ran
along the tank bottom, before returning to the surface. This ensured it remained

outside of the direct path between the source and the receiver.

The acoustic source for the tank experiment consisted of a calibrated Bruel & Kjaer

8105 hydrophone with an optimum transmit frequency of 120 kHz (Appendix D
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Figure D-3). The source was suspended approximately 2.30 m from the cloud, at a
depth of 2.43 m. Two Bruel & Kjaer 8103 hydrophones were used as receivers. The
first was suspended 1 m from the source on axis with the bubble cloud as a reference
hydrophone and the second was suspended on the far side of the bubble cloud 2.46 m
from the source. Both hydrophones were suspended at a depth of 2.43 m in line with

the source and bubble cloud generator.

The theory models developed in the preceding chapters assume that the bubbles are
insonified by a plane wave, i.e. the bubble is insonified by a uniform sound field.
Thus, in order to make a valid comparison between theory and experiment it is
necessary to ensure that this is also the case for the experimental bubble cloud. The
8105 hydrophone is uniform (£ 1dB) source and receiver over 360° in the x-y
horizontal plane and 270° in the x-z vertical plane with the output reducing by
approximately 20 dB in the region of the hydrophone cable (see Appendix D Figure
D-4) ®. The nearest part of the cloud is approximately 2 m from the source. It is
assumed that the cloud is insonified by the direct path from the source. This will be
ensured by time gating the receiver, the details of which will be discussed in the data
acquisition section below. At the test frequency of 80 kHz (see section 4.1) a
spreading loss of #* was measured with the curvature in the wave front across the
face of the cloud corresponding to approximately one wavelength. Care was taken to
ensure that all the Bruel & Kjaer hydrophones were vertical in the water column for

this reason (see Appendix D Figure D-4)%.

The receive frequency response of the B&K 8103 hydrophone is nominally flat below
100 kHz (£ 2 dB, see Appendix D Figure D-5). The B&K 2635 charge amplifiers
used in conjunction with the B&K 8103, as conditioning amplifiers, also have a

response® which is flat to within +1 dB up to 100 kHz.
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Figure 3-5 Schematic of the tank layout for measurements of attenuation from an
artificially generated bubble cloud in an 8 m x 8 m x 5 m deep fresh water tank. Here
the reference hydrophone is labelled H1 and the second hydrophone is labelled H2

for future reference.

323 Signal generation

The source was powered through a Bruel & Kjaer 2713 power amplifier and the
signals generated by a Thurlby Thandar TG1304 signal generator and an AWG2021
Arbitrary Waveform Generator manufactured by Sony Tektronix. The former was
used to generate pulses of varying length in cycles. The latter arbitrary waveform
generator was used to produce linear frequency swept chirps. These were produced
using the AWG's internal equation editor to define the signal. The following equation

was used:

x =sinQaf,t + m*(f, — £,)/Tp) [3-3]

where T, is the sweep period, f; the starting frequency and f> the ending frequency.

In all cases the Thurlby-Thandar was used to trigger signal generation at
predetermined intervals, normally every half-second. The repeat time was chosen to
optimise data acquisition whilst allowing unwanted returns from the tank walls to

decay away (see Appendix C for tank reverberation times).
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324 Data acquisition and control

The signals from the 8103 hydrophones were passed through a Bruel & Kjaer 2635
charge amplifier before inputting into a LeCroy 9314 CL four-channel digital
oscilloscope for data acquisition. Control of the signal generator and the oscilloscope
and acquisition of data to a PC was via GPIB interface and National Instruments
LabView software. A schematic of the apparatus arrangement and software control
layer is shown in Figure 3-7. The LeCroy was set up to acquire the signals from both
8103 hydrophones simultaneously. Spurious returns from the tank surfaces were time
gated out during processing of the data. The nearest tank boundary is the water
surface. Figure 3-6 indicates the shortest possible path length using the tank surface.
The difference between the direct path length and the shortest indirect path length,
assuming a speed of sound in the tank of 1480 m/s, yields a useable time window of

approximately 1.7 ms.
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Figure 3-6 schematic showing the length of the direct path and the shortest indirect
path. The difference in path lengths yields the available time window between the
arrival of the direct path signal and the first surface return.

Control of the experiment was via the PC using a LabView virtual instrument to
control each of these instruments shown in Figure 3-7. This allows the signal to be
configured by the PC and the resulting signal acquired by the digital oscilloscope to
be uploaded and stored on the PC's hard drive. The parameters (amplitude and delay)

of the triggering pulse could also be configured via a LabView virtual instrument. An
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integrated control program, also written in LabView, controlled each of these virtual
instruments. This program used a ‘Make Control File’, essentially a script file, to
control the experiment. This file included the type of waveform to be generated and
the name of the file the data would be stored to. The Make Control File was written
automatically using the Mathworks Matlab programming language. The hardware
acquisition was triggered by the software through the use of a common TTL trigger
generated by the Thurlby Thandar function generator. In this way a series of
waveforms could be generated without user intervention. For example a series of
pulses could be generated with lengths of between 1 and 10 cycles in single cycle
steps and each pulse type repeated numerous times. Since the script file was
computer-generated, the order could also be randomised to eliminate any potential

bias caused by sequentially increasing the pulse length.

A large number of waveforms could be analysed without user intervention using this
system. It is also possible with this system to conduct tests over a period of several
hours requiring no user intervention. For this reason an Internet Email virtual
instrument was created so that users could be notified of completion of an experiment
via the Internet. The controlling computers hard drive and a DVD RAM device were

used for storing and backing up the acquired waveforms.
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Figure 3-7 Software/Hardware schematic for experimental measurement of
attenuation from an artificially generated bubble cloud in an 8 m x 8 m x 5 m deep
fresh water tank. The top half of the schematic, or ‘Software Layer’ shows the various
software modules written in Mathworks Matlab and LabView programming
Languages to control the hardware signal generation and acquisition. The bottom
half of the schematic or ‘Hardware Layer’ show the hardware components and their
interconnectivity.

3.3 Method for determining sonar enhancement

An experimental arrangement for measuring the attenuation of sound through an
artificially generated bubble cloud for a range of pulse lengths has been developed. In
order to investigate the effect of sonar enhancement, attenuation through the bubble
cloud must be measured in such a way that different waveforms can be compared.
This will be achieved by calculating energy loss as a percentage of the incident

energy.
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3.3.1 Criterion for sonar enhancement

Prior to any experimental measurements, a suitable criterion must be developed for
determining the relative ability of signals to penetrate a bubble cloud. Three methods
of sonar enhancement are summarised in Table 2-2 with each using a different type of
signal. In order to be able to compare the benefits of each of these methods, the
criterion must be independent of, but not biased by, changes in sound pressure levels,
signal duration and frequency spectrum, as well as the characteristics of the source

and receivers.

In order to compare the relative benefits of different signals, the attenuation of the
driving signals owing to the bubble cloud is calculated. This calculation is based on
the energy transmitted and received at all frequencies (limited by the frequency
response of the hydrophones). This is an important consideration because the
resonant bubbles themselves will reradiate energy at harmonics of their resonance
frequency if driven at high enough sound pressure levels, as predicted by the non-
linear model (Figure 1-5b). For this reason, signals were acquired without additional
filtering other than by the frequency response of the receiving hydrophone and an
anti-aliasing filter. The error in the results, owing to temporal variability in the cloud,
can be ascertained by repeating experiments in quick succession and looking at the
ping-to-ping variability. The average attenuation for each signal type can then be
calculated along with the experimental error. This allowed the significance in any

trend to be ascertained.

A method of calculating attenuation that meets these criteria, for tone-burst and

broadband signals, is described in the following section.

332 Signal energy and transmission efficiency

The waveforms measured using hydrophones H1 and H2 were acquired to a PC and
analysed using the Mathworks Matlab programming language. The energy levels at
each of the hydrophones can then be calculated by squaring and integrating the
acquired waveform with respect to time, after converting the signal from volts to
Pascals and correcting for any amplification in the acquisition stage. The signal at
hydrophone H2 is time gated to ensure direct path transmission only. Then the energy

levels with and without bubbles present are calculated. Equivalent time gating is used
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on all channels to allow a comparison. The bubble-free results can then be subtracted
from the results with bubbles present for each waveform. The resulting difference is
the energy lost, and thus can be used to determine the attenuation owing to the cloud.
Throughout the results from hydrophone H1 are a record of the sound field incident

on the bubble cloud and can be used to calculate the sound pressure level at the cloud.

Thus, a direct measurement of the signal attenuation can be made on a waveform-by-
waveform basis whilst factoring out attenuation owing to spreading losses, the
propagating medium, and the receiver characteristics, such as the frequency response.
Although accounted for here the attenuation owing to the passage of sound in the
water itself is insignificant over the short path length at the frequencies used, being of

the order® 1x10 dB/m at 100 kHz.

The methodology described above will be used to test a variety of driving signals to
establish their potential benefits to sonar enhancement. The characteristics of the
driving signals and the results are presented in the next chapter. The results will also
be used to compare the range dependent theoretical model from chapter 2 with the

experimental data.
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CHAPTER 4

RESULTS OF THE EXPERIMENTAL AND
THEORETICAL INVESTIGATION INTO
PULSE LENGTH DEPENDENCE

4 Results of the Experimental and Theoretical

Investigation into Sonar Enhancement

This chapter describes the results of theoretical and experimental tests conducted
using the tools and methods introduced in the preceding chapters. The aim of the tests
is to compare the range dependent cloud model with experimental data, and to
investigate the three different mechanisms for sonar enhancement. The driving
signals used in the tests are first introduced, and then the theoretical and experimental
data are analysed in terms of propagation efficiency. Finally, the experimental and

theoretical results are compared and some initial conclusions drawn.

4.1 Signals tested for sonar enhancement

Initial theoretical modelling described in section 2.1.2 has suggested that minimising
the time the bubble is driven at or near resonance can reduce the acoustic cross-
section of a bubble and, thus, the attenuation of the driving signal resulting from its
motion. Two methods of achieving this are by driving the bubbles with short pulses,
and by chirping a signal across a range of frequencies. These signals limit the time
during which a bubble of a given radius will be driven at resonance. If the duration of
the period that the bubble is driven at resonance is less than its ring-up time, then a
pulse enhancement will be observed, assuming the off-resonant contribution does not

mask the resonant response. The models described in section 2.2 are capable of
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testing this assumption and predicting the magnitude of the off-resonant contribution
using the test show in Figure 2-17. The following two sections discuss the signals

used in the experimental and theoretical tests.

4.1.1 Pulsed signals

The pulse signals used were of centre frequency 80 kHz and of pulse lengths between
one and ten cycles. The sound pressure level was approximately 600 Pa at 1 m. The
frequency of the pulse was chosen for three reasons. Firstly, in order to limit the
contribution of off-resonant bubbles, it was important to minimise the number of
large off-resonant bubbles. This criterion suggests a lower frequency is more
desirable given the measured bubble population (Figure 3-4). Secondly, the Bruel &
Kjaer 8105 hydrophone response69 rapidly drops off below 100 kHz (when used as a
source). Thus the centre frequency was chosen as it was the lowest frequency at

which a good signal-to-noise ratio could be achieved.

Theoretical and experimental tests were conducted for pulses of centre frequency 80
kHz with a Thurlby Thandar signal generator producing pulse lengths of one to ten

cycles in steps of one cycle.

The actual waveforms transmitted are shown in Figure 4-1. The actual number of
cycles transmitted varied from the number produced by the signal generator. This is
because the damping of the source resulted in a ring-down and further acoustic
generation after the driving voltage from the signal generator had ceased. To correct
for this, the energy of each waveform calculated from the experimental data collected
using the reference hydrophone H1 will be used to characterise each waveform. The

method of analysing the data is described in more detail in section 4.2.1 below.
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Figure 4-1 A concatenated plot of the driving pressure time series used in the tank
test. The traces are from hydrophone HI 1 m from the source (Figure 3-5) and are
sampled at 25 MHz. The number of 1V cycles that the source is driven by is indicated
by the text at the top of the plot.

In order to assist in analysing the data, a further set of control measurements were
taken. These measurements used ten-cycle pulses, but the amplitude of the pulse was
progressively reduced. This allowed the energy in the pulse to be reduced by a
mechanism other than the one associated with reducing the number of cycles. If sonar
enhancement owing to a reduction in pulse length occurs, it would be apparent from a
divergence between the pulse length and control data sets. To differentiate between

the different pulse signals used these data sets are referred to as “duration-varying”

and “amplitude-varying” pulses.

4.1.2 Chirped signals

One feature in interpreting the pulsed signals is that the bandwidth of the signal
increases as the pulse length decreases. This is an added complication because if the
bandwidth of the driving signal were to change significantly, (i.e. by more than the
bandwidth of the resonant bubbles), then a change in the number of bubbles being

driven at resonance may result. This could affect the apparent efficiency of the signal
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attenuation. Another drawback of pulsed signals (already discussed in section 2.4) is

the low signal-to-noise ratio.

An alternative method of exploiting bubble ring-up that can overcome these
drawbacks is to use broadband signals. Here chirped signals are used, as the
bandwidth is easy to specify and the sweep rate of the chirp can be varied. This
changes the dwell time at any given frequency, and thus the time for which a bubble
is driven at resonance. If the dwell time is short enough, the bubble will not attain its

steady-state response. As a result the attenuation of the resonant bubbles is reduced.

The chirp signals investigated are linear swept chirps between 60 and 120 kHz. The
bandwidth was the widest that the Bruel & Kjaer 8105 hydrophone, used as the
source, could emit whilst maintaining satisfactory signal amplitude at all frequencies.
The sound pressure level of the chirp peaked at over 600 Pa at 1 m. The duration of
the chirps was varied between 100 us and 1 ms. The chirp was generated using a
constant voltage signal. This of course resulted in an amplitude modulation owing to
the frequency response of the 8105 hydrophone. Note that the 8103 hydrophones
(when used in receive mode) are nominally flat over the frequency range tested. The
minimum length of signal that could be generated whilst maintaining the desired
bandwidth was 100 ps. A further consideration was the time window for gathering
data at hydrophone H2 (Figure 3-6). This was limited by the time taken for the pulse
to travel to the hydrophone along the direct path and the arrival time of the first
reflection (Figure 3-6). The time window was approximately 1.5 ms in length, and the
cloud response from the chirp was received prior to the first wall return. Figure 4-2
shows an example of the 1 ms chirp as received at hydrophone H2, without a bubble

cloud being generated, illustrating the amplitude and time windowing constraints.

In the following section the results of the tests are presented and discussed.
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Figure 4-2 1 ms linearly swept chirp signal of bandwidth 60 - 120 kHz as received by
Hydrophone H2 with no intervening bubble cloud. The amplitude modulation and
first wall return can be clearly seen. The y-axis indicates time in seconds after the
signal was generated.

4.2 Results

The theoretical and experimental results obtained using the pulses described above
are presented and discussed in the following section. The experimental results are
described first in section 4.2.1 and a method of interpreting the data introduced. In
section 4.2.2 the range-dependent cloud model is applied using the pulse data and the
results compared with the experimental pulse data. The implications of the theoretical
and experimental investigation of the effect of pulse duration on the electrolysis
bubble cloud are discussed in 4.2.3. The model is then applied using the chirped
waveforms and the results compared with the experimental data. This is discussed in
section 4.2.5. Finally the potential for Type III enhancement is discussed in section

4.2.6.
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4.2.1 Experimental measurement of pulsed signals

In order to explore the effect of changing the pulse length, four separate tests were
carried out. As described in section 4.1.1, the first two tests involved changing the
pulse length while maintaining a constant centre frequency and amplitude with and
without a bubble cloud present. The test data was validated by repeating the above
two tests using the longest pulse length, but systematically reducing the amplitude as
described above. Owing to the low sound pressure levels used, the bubble response
will vary almost linearly with pressure. This mimics the reduction in attenuation
without incurring any of the effects owing to ring-up. This allows the length varying
and amplitude varying data to be overlaid when plotting the energy measured (see
section 3.3.2 for method) at hydrophone HI1 versus the energy measured at
hydrophone H2. Any divergence between the data sets can then be interpreted as a

change in the attenuation efficiency and thus, sonar enhancement.

Figure 4-3 shows a sketch indicating how the data will be presented to aid in
interpretation. In order to understand this method of plotting the data consider three
scenarios. First, if there is no bubble cloud both data sets will increase linearly with
increasing pulse length and amplitude starting from the origin. The gradient of the
line is a function of the spreading loss and attenuation of water at the driving
frequency. In this case both the “amplitude-varying” and “pulse-varying” data sets
should overlay each other. This is represented in Figure 4-3 by the dotted line. Any
deviations will be as a result of experimental error. Second, if the bubble cloud is
present and there is no pulse length dependence, then again both sets of data will
increase linearly with increasing pulse length and amplitude starting from the origin.
The gradient will have changed however, owing to the increase in attenuation,
because of the presence of the bubble cloud. This is represented on the plots by the
dashed line. Thus the plots of the bubble cloud and no bubble cloud data sets will
diverge from the origin, but again the pulse varying and amplitude varying data sets
will overlay each other. This is shown on the plot by the divergence of the dashed and
dotted lines. Thirdly, consider the case where the bubble cloud is present and there is
a pulse length dependence. This is the scenario that is expected. In this case the
amplitude varying and pulse varying data sets taken when no bubble cloud is present
will linearly increasing from the origin (dashed line) as before. The amplitude varying

bubble cloud data with a bubble cloud present will also increase linearly with a
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different gradient (dotted line). This is the same as scenario two. In the case of the
pulse length varying data, however, it is expected that the gradient will change with
changing pulse length. This will result in a divergence from the amplitude varying
data, until steady-state is reached. Once steady-state has been reached, the data will
again increase linearly with increasing pulse length, and should overlay the
“amplitude-varying” data set. If this is the case, the “pulse-varying” data curves
towards the no-bubble data sets, as shown by the solid line in Figure 4-3. This
therefore would indicate a reduction in attenuation, and an enhancement in sonar
detection over steady-state. Conversely, if the “pulse-varying” data curves away from
the no-bubble data sets, then attenuation has increased compared to steady state,
resulting in a degradation of sonar performance. In both cases, the plot will return to

zero as the driving energy tends to zero.

The energy levels at each of the hydrophones were calculated following the method
described in section 3.3.2. It should also be noted that the method of calculating
attenuation described in section 3.3.2 (by using the difference in energy at
hydrophone H2 with and without a bubble cloud present) is implicit in this analysis.
The magnitude of the gap between the lines labelled ‘no bubbles’ and ‘with bubbles’

in Figure 4-3 is the equivalent energy loss.
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Figure 4-3 A sketch showing how the data will be interpreted. The amplitude varying
and pulse length tests are expected to vary linearly and should overly (dotted line).
The tests with the bubble cloud present are expected to show a reduction in the
energy measured at H2 owing to the cloud attenuation. The amplitude varying tests
should still vary linearly with the energy at HI (dashed line). However if using short
pulses reduces the attenuation the resulting plot will shift from the dashed line to the
dotted line (indicated by the thick black line).

Thirty traces were taken from the hydrophones for each of the driving signals tested
and the results averaged and plotted in Figure 4-4. This figure follows the format
sketched in Figure 4-3. The two uppermost lines labelled ‘no bubble cloud data’
represent the data taken in the absence of any bubble cloud. As expected, the
“amplitude-varying” (dashed line) and “pulse-varying” (solid line) data overlay. The
error bars indicate scatter in the data equal to one standard deviation. The fact that the
no-bubble data sets are in close agreement suggests that the experimental technique
and level of averaging are sufficient to be able to detect any pulse length dependence
in the bubble cloud data. Furthermore, it confirms, up to this point, the sketch and

analysis of the data interpretation discussed above.

The lower pair of lines, labelled bubble cloud data, shown in Figure 4-4 are the
measurements taken with the bubble cloud generator switched on. Again as expected
the gradient of these lines is less than the gradient of the bubble-free data, owing to
the increased levels of attenuation. The amplitude varying data (dashed line) is
expected to vary linearly with increasing amplitude, and thus energy, at the reference

hydrophone. It can be seen in Figure 4-4 that this is not quite the case. The small
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scatter in the data that causes this is consistent with fluctuations in the bubble cloud

over time resulting in changes in the levels of attenuation measured.

The pulse length varying data (solid line) is plotted with error bars showing scatter in
the data equal to one standard deviation. For almost all the tested pulse lengths the
data is within one standard deviation of the amplitude varying data set. The
exceptions to this are one data point at approximately 45 Pa* measured at hydrophone
HI and the two data points below 20 Pa® measured at hydrophone H1. The first data

points and last two data points where a deviation was measured will be considered

separately.

The deviation indicated at approximately 45 Pa> measured at H1 falls within the pulse
lengths where the cloud is apparently at steady-state since data points with energy
Ievels both above and below agree with the amplitude varying data set to within one
standard deviation. One possible reason for this deviation lies in the fact that the
cloud as a whole deviates from a (1—@"/’) ring-up. This will be tested in section
4.2.3. The second two data points showing deviation between pulse length and
amplitude varying data sets represent the two shortest pulse lengths tested, and
indicate increasing deviation with decreasing pulse length. This is the type of trend
described in scenario three of the analysis of data interpretation discussed above.
These two data points lie between the bubble cloud and no-bubble data, and are
indicative of a reduction in attenuation as pulse lengths become very small (of the

order 1 to 2 cycles).

To summarise, the experimental data, when compared with a control experiment,
appears to indicate Type I pulse enhancement. This will now be compared with the
quantative predictions of Type I enhancement predicted for this cloud by the range-

dependent theory described in chapter 2.
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Figure 4-4 Experimental results showing the relationship between transmitted and
received energy with and without a bubble cloud. Results are for pulse lengths
between 1 and 10 cycles (x solid line) and a 10 cycle pulse at different amplitudes (x
dashed line). The data taken with and without the bubble cloud present is labelled
and error bars indicating one standard deviation in the results are shown for the
variable pulse length data.
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422 Theoretical model of pulsed signals

In this section the experimental results of Figure 4-4 are compared to theoretical
models. The range-dependent cloud model described in chapter two, section 2.3, was
used to calculate the attenuation of the signal by the cloud, using pulses of the same
time series and amplitude (at the cloud) as were employed in the experiment. This
was calculated by determining the spreading loss between the two hydrophones and
inferring the sound pressure level at the leading edge of the cloud from the energy

recorded at hydrophone H1.

The spreading loss was calculated using the following equation:
A _EHY) (n [4-1]
P, E(H2) \»n

Here P, and P, are the acoustic pressure amplitudes at hydrophones H1 and H2

respectively. The energy levels at hydrophones H1 and H2 are E(HI) and E(H2)
respectively and r, and r, are the ranges of the hydrophones from the source. The
spreading loss is a function of the power y. For example, for spherical spreading y =2
and for cylindrical spreading y = 1. The spreading loss in the tank differed from the
spherical spreading expected with the actual spreading loss exponent (y in the above
equation) calculated to be 1.45 from measurements made in the bubble-free-tank.
This measured exponent was used in conjunction with [4-1] and the range of the

bubble cloud from the source to infer the sound pressure level at the cloud.

In order to plot theory and experiment on the same graph, it is necessary to relate the
attenuation, as calculated by the model, with the attenuation shown in Figure 4-4.
This is indicated by the difference in the energy levels measured at hydrophone H2
with and without a bubble cloud present for each test waveform. Theory can thus be
compared to the pulse length varying experiment by subtracting the theoretical energy
loss from the experimental data taken without a bubble cloud (the uppermost data
labelled no-bubble data in Figure 4-4). The resulting theoretical data set, plotted
against the experimental data, is shown in Figure 4-5. This figure is identical to
Figure 4-4 but with circles to show the discrete values of the theoretical model for

different pulse lengths with a thick solid line interpolated through these points.
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Figure 4-5 Comparison of theoretical and experimental results using measured
pulses in the model. Results are for pulse lengths between 1 and 10 cycles (x solid
line) and a 10 cycle pulse at different amplitudes (x dashed line). Theoretical data for
varying pulse lengths is indicated by a circle (o) and thick solid line. The data taken
with and without the bubble cloud present is labelled and error bars indicating one
standard deviation in the experimental results are also shown for the variable pulse
length data.
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The figure shows excellent agreement between theory and pulse varying experimental
data. The theoretical data points lie within one standard deviation of the experimental

data. The only exception is an anomalous data point at 45 Pa® at H1.

However to understand the implication of this figure, it is vital to appreciate that the
driving sound field used as input to the theory came from the measured incident
pulses, and not from idealised pulses at the frequency of the signal generator used in
the experiment (80 kHz). This key point will now be further explored in section 4.2.3

in order to understand precisely which mechanism is causing the enhancement seen in

Figure 4-5.

4.2.3 Discussion of experimental and theoretical pulse data

Good agreement between theory and pulse varying experimental data has been shown
when using the time series recorded by hydrophone H1 as the driving signal for the
model. The data also shows a divergence similar to that sketched in Figure 4-3 prior
to undertaking the experiment. This is indicative of Type I enhancement. However, as
can be seen from Figure 4-1, the transmitted pulse in the experiment is filtered by the
characteristics of the transmitter. When a single cycle pulse is generated by the
function generator, the source produces a time series several cycles in length. This is
the reason for using measured time-series of the 80 kHz driving pulse when running

the model to produced the data plotted in Figure 4-5.

This artefact was further investigated by analysing the single cycle and ten cycle
pulses identified in Figure 4-1 in the frequency domain. Figure 4-6 shows the
frequency spectrum of both the pulses on a logarithmic scale. It is clear that the centre
frequency of the pulse changes significantly. The centre frequency of the single cycle
pulse is approximately 100 kHz, which (as expected) is closer to the resonance of the
transducer (120 kHz) than the 80 kHz centre frequency of the longer pulse. As the
signal generator inputs to the source a signal that more closely resembles an impulse
excitation, so the output of the transducer will be increasingly dominated by its

resonance frequency.

Thus care must be taken when interpreting the results shown in Figure 4-5. As
already mentioned the trend suggests Type I enhancement, but the introduction of a

frequency shift could also produce this trend through Type III enhancement i.e. if the
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attenuation reduced with increasing frequency. As the frequency increases, the
equilibrium bubble radius that is resonant becomes smaller. Examination of the
population distribution of the cloud, shown at the beginning of chapter 4, will show
that the numbers of bubbles are increasing with decreasing bubble radius. However,
the reduction in their size results in reduced scattering and attenuation by each
individual bubble. The range independent cloud model can be used to calculate the
extinction cross-section for a single cycle pulse at 80 kHz and 100 kHz respectively.
The attenuation for each of these cases, using the tank population, is 0.12 dB/m and
0.7 dB/m respectively. Thus the attenuation outweighs the increase in the number of

bubbles, resulting in the trend shown in Figure 4-5.

This experiment clearly indicates that great care is required in interpreting the results
of pulse-enhancement experiments. Although the data appeared to indicate Type 1
enhancement, and agree well with qualitative theoretical predictions that Type I
enhancement could occur, careful analysis of the data indicated that the main source
of enhancement was Type III. Because the measured incident pulses, and not
idealised 80 kHz pulses, were used as input for the theoretical predictions of Figure
4-5, the theory will include any contribution from both the Type I (if it exists) and

type III enhancement mechanisms.

Hence interpretation of the experimental data confirms the presence of Type III
enhancement but not the looked-for Type I enhancement. It is possible that the Type I
enhancement is being masked by the frequency shift in the transmitted signals. Since
excellent agreement between the model and experimental data has been shown the
model can be used to estimate the Type I enhancement. The range-dependent non-
linear cloud model is again used but this time driven by idealised (without ring-up or
ring-down) 80 kHz pulses of the same sound pressure level as the experimental data.
The results are shown in Figure 4-7. This figure is identical to Figure 4-5 but the
theoretical data shows the results of the model using idealised pulses instead of

measured time series.

The theoretical results now differ from the measured pulse length data and agree
more closely with the amplitude varying data. This suggests no Type 1 enhancement
occurred. The enhancement seen in Figure 4-5 is dominated by a Type III

mechanism.
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Figure 4-6 Frequency response of the single cycle pulse (solid blue line) and the 10
cycle pulse (dashed red line) generated with a centre frequency of 80 kHz. The effect
of the transmitter on the shorter pulse is clearly shown by the shift in the peak in the
frequency response to approximately 100 kHz.
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Figure 4-7 Comparison of theoretical and experimental results. Results are for pulse
lengths between 1 and 10 cycles (x solid line) and a 10 cycle pulse at different
amplitudes (x dashed line). Theoretical data for varying pulse lengths is indicated by
a circle (o) and thick solid line. The data taken with and without the bubble cloud
present is labelled and error bars indicating one standard deviation in the
experimental results are also shown for the variable pulse length data.
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424 Theoretical model of chirped signals

To investigate Type Il enhancement, (the use of broadband excitation, section 2.4.3) a
series of tests were conducted using chirped signals of fixed bandwidth (60 kHz —
120 kHz). The experimental arrangement described in the previous chapter was used
to measure the attenuation of the bubble cloud. The only change was to increase the
delay between the generation of successive driving waveforms to 2 s to allow for the
increased reverberation at frequencies in excess of 100 kHz (See Appendix D). Chirp
lengths of 100 ps, 200 ps, 400 ps, 600 ps, 800 pus and 1 ms were tested. Again thirty
traces were taken for each waveform and the energy levels at each of the hydrophones
calculated. In this way geometric effects are removed and only the attenuation owing

to the cloud is measured.

The average level of attenuation of the driving signal was again calculated in the
fashion described in section 3.3.2. The attenuation in dB was determined by dividing
this energy loss by the energy at hydrophone H2 when no bubble cloud was present
for each of the driving waveforms. The results are plotted as attenuation versus chirp
length in Figure 4-8. Error bars indicating one standard deviation of the scatter in the

data are also shown.

The method of determining attenuation used in Figure 4-8 normalises the results with
respect to the energy received at hydrophone H2 allowing waveforms of different
energy levels to be compared directly. In the following section the results of the chirp
test are discussed and compared with results of the range dependent theoretical model

from chapter 2 for both chirps and long pulses.
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Figure 4-8 Experimental measurements of attenuation of the signal received at
hydrophone H2 versus the chirp length. Error bars indicate the extent of the scatter
in the results.

4.2.5 Theoretical measurement and analysis of chirped signals

Theoretical predictions of the attenuation of the chirped signals by the bubble cloud
were obtained using the range dependent theoretical model developed in chapter 2.
Measured signals taken at hydrophone H1 were used as the model input with
amplitude corrections to account for spreading losses between the hydrophone and
the cloud (as discussed in the preceding section on the experiments with pulses). The
theoretical results were processed in the same manner as the experimental signals and
the results plotted in Figure 4-9. The experimental results from Figure 4-8 are also

plotted in this figure for comparison.

The measurements of attenuation used to invert for the bubble population in section

3.2.1 can be used to investigate whether chirped signals show any sonar enhancement
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over pulses whose centre frequencies span the same range. The results for the 1 ms
pulses with centre frequencies between 60 kHz and 120 kHz are plotted on the right
hand side of Figure 4-9 as hollow circles. A further data set can be plotted using the
80 kHz amplitude varying and pulse varying data sets from the pulse tests in section

4.2.1. This data is plotted on the left hand side of Figure 4-9.

The theoretical model (Figure 4-9b) again shows good agreement with the
experimental data with all bar one data point (at 400 ps) within one standard
deviation of the experimental results. However, the results vary about a mean
attenuation of approximately 2.1 dB with no obvious trend relating to the chirp
duration. Since no dependence on the chirp length is indicated by the theoretical or

experimental the results suggest no Type 1 enhancement.

The chirp results are also compared to 1 ms pulses of different frequencies to
investigate Type II enhancements. The pulses between 60 and 120 kHz show a spread
in attenuation from 3 dB to 1.5 dB as frequency increases with an average attenuation
of 2.3 dB. This is very close to the average attenuation of the chirped data of 2.1 dB.
Hence, given the error bars associated with the data, this comparison does not
indicate that the attenuation by the bubble cloud is anything other than simply an
average of the attenuation as a function of frequency over the bandwidth of the
insonifying waveform. Hence no evidence has been found for Type Il enhancement in
these tanks tests. This is also confirmed by the comparison with the data sets

collected in the previous section.
The final method of enhancement, Type IIL, is investigated in the following section.

This method of enhancement seeks to take advantage of the frequency dependence in

the attenuation of the bubble cloud as illustrated by the pulse data in Figure 4-9.

" These findings cannot rule out the possibility that it occurred but the effect was not large enough to be

apparent given the level of uncertainty indicated by the error bars.
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Figure 4-9 Comparison of experimental and theoretical measurements of attenuation
of the signal received signal for pulses and chirps. Plot a) is the attenuation of the
pulse varying and amplitude varying data (hollow and filled circles respectively)
versus pulse length from the previous section (this is the same experimental data as
shown in Figure 4-4). The nominal acoustic frequency was 80 kHz though, as
discussed in section 4.2.2, for the shorter pulses this tended towards 100 kHz. Plot b)
shows the theoretical and experimental attenuation of the chirp data versus the
chirp length. Plot c) is the attenuation versus frequency measured to obtain the
bubble population by inversion using 1 ms pulses (section 3.2.1). Error bars indicate
the extent of the scatter in the experimental results. All plots share a common y-axis.
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4.2.6 An investigation of Type III enhancement

It has long been recognised that the attenuation of a bubble population is dependent
on frequency. Indeed attenuation information is commonly inverted to measure the
bubble population™. Thus there is a relationship between the levels of scattering and
attenuation of a cloud and the driving frequency. This is a function of the non-linear
increase in scattering and attenuation as bubbles increase in size particularly when
driven at resonance. This trend is scaled by the cloud distribution. In naturally
occurring clouds, generated by breaking waves in the ocean, the number of bubbles

172 (although there may be a global

typically reduces with increasing bubble radius
maxima see section 2.4). It is logical to conclude (given these trends) that for each
population distribution, a bubble cloud will have an insonification frequency where
the scattering and attenuation is at a minimum. If that frequency is in a useable range,
neither too high or too low, (where the signal-to-noise ratio, ambient noise, or

diffraction effects become problematic) then Type III enhancement could occur.

The attenuation as a function of frequency has already been measured for the bubble
cloud used in the tank experiments. The data was taken for the purpose of inverting
for the bubble population distribution (section 3.2.1) and is plotted in Figure 3-2. The

plot is referred to here for the purpose of investigating Type III enhancement.

The attenuation of this bubble cloud varies from less than 1 dB at 220 kHz to a peak
of 4.9 dB at 20 kHz. The impact of this variation in attenuation on target detection
can be determined by applying the sonar equation from section 1.2.2. In this test the
parameters of the sonar equation are in most cases identical to those given in section
1.2.2 i.e. a 0.1 m long array with a target strength of —22 dB and source level of 60
dB. The differences are in the attenuation owing to bubbles, which are taken from
Figure 3-2, the noise level which is assumed to be 0 dB at all frequencies and the
acoustic absorption of sea water which is calculated after Fisher and Simmons™ for
an atmospheric pressure of 1 atm and a water temperature of 10°C (the full absorption
calculation is used, which incorporates the effects of Boric acid and Magnesium

sulfate). The resulting detection ranges are shown in Figure 4-10.

135



a o =~
o O o
! I J

Detection Range (m)
8

- N W
o O o o
{ I |

T i T T 1

50 100 150 200 250
Frequency (kHz)

o

Figure 4-10 Target detection range as a function of frequency for the bubble cloud
population used in the tank experiments (the bubble cloud, for this calculation, is
assumed to be isotropic, homogenous, and to extend to infinity in all directions).

Since the attenuation owing to the bubble cloud decreases with increasing frequency
it is to be expected that target detection ranges should increase with increasing
frequency. In the example shown here the range of detection increase from
approximately 7 m to 45 m as the frequency increases from 15 kHz to 190 kHz, a
seven-fold increase. Thus, as expected, an increase in frequency results in an increase
in detection ranges. This is in contradiction to the hypothesis that a lower frequency
reduces off-resonant contributions that can mask Type I enhancement. These results
clearly show that the frequency of insonification is an important consideration for

target detection in bubbly environments.

4.3 Conclusions

In this chapter the three types (Table 2-2) of sonar enhancement have been
investigated theoretically and experimentally in a test tank. The bubble cloud used in
these experiments was artificially generated using electrolysis. Of the three types of
enhancement tested, only Type III, which seeks to optimise the insonifying
frequency, resulted in an apparent increase in target detection ranges. However, the

comparison of the theoretical and experimental results has shown good agreement
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with theoretical results, generally lying within one standard deviation of the

experimental results.

There are three possible reasons for the failure to measure any benefit in Type I and
Type II enhancement. The first is that large off-resonant bubbles dominated the
scattering and thus masked the ring-up of the resonant bubbles despite attempts to
minimise this. The second reason is that the transient contribution of bubbles close to,
but not at, resonance is significant for this population when compared to the
contribution of resonant bubbles. The third and final possibility is that Type I and

Type Il enhancement is present, but too small to measure experimentally.

To identify which if these possible explanations is valid, the non-linear bubble model
was used to calculate the theoretical contribution of each bubble per pm radius bin
scaled by the tank bubbie population. The resuits are shown in Figure 4-11. First
interpretation of this plot suggests that the resonant bubbles dominate. Closer
examination of the plot around resonance (the lower plot in Figure 4-11) shows that
near resonant bubbles responses are of a similar magnitude to the resonant bubble.
Neither of these features explains why no Type I or Type II enhancement was

detected during the tank experiments.

The attenuation of the bubble cloud and the relative contributions of the resonant,
near resonant and off resonant bubbles needs to be calculated in order to investigate
this further. For the purposes of investigating the masking of Type I and Type II
enhancement, off-resonant bubbles are defined as those bubbles that do not exhibit a
ring up or transient behaviour in response to an 80 kHz pulse. Resonant bubbles are
defined as those bubbles that exhibit a smooth ring-up to resonance. The remaining
bubbles, those that do not ring up smoothly to resonant, but do exhibit transient
behaviour, are classed as near-resonant bubbles. Typical time series of the radiated
sound pressure of a bubble from each of these regimes is shown in Figure 4-12 to
illustrate this.

The non-linear range independent finite pulse length cloud model was then used to
calculate the attenuation in decibels for all bubbles in the cloud and for the resonant,
off resonant and near resonant bubbles. The model was driven with an idealised 80
kHz pulse of between 1 and 10 cycles in length with amplitude of 600 Pa. The results

are shown in Figure 4-13.
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The plot of attenuation versus pulse length for the entire cloud shows a small increase
in attenuation with increasing pulse length. The change is very small, approximately
0.2 dB. The contribution of the resonant bubble shows a smooth ring up as expected
with the attenuation increasing five fold for between pulse lengths of 1 and 10 cycles.
The contribution of the off-resonant bubbles is small, but of a similar magnitude to
the response of the resonant bubble to a one or two cycle pulse. The contribution of
the near resonant bubbles is the most significant, contributing 1.7 dB/m of the cloud
attenuation for the one cycle pulse (where the initial transient behaviour of the bubble

is most significant) reducing to 1.3 dB/m for a 10 cycle pulse.

The model indicates a small amount of Type I enhancement, but it is too small to be
detected experimentally owing to cloud variability and signal noise. The results
indicate that the reason for this is the contribution of the near-resonant bubbles and as

already hypothesized the contribution of the off-resonant bubbles is small.

Thus the original methodology of using an electrolysis type bubble cloud and a pulse
frequency of order 80 kHz to minimise the off resonant contribution has been
confirmed. However the previously over looked near resonant contribution has

masked the majority of the Type I and Type 1I enhancement.

In conclusion, the theoretical model has been validated by the experimental data.
Furthermore, the advantage of being able to use measured time series to drive the
theoretical model have been proven. Results of the theoretical model using idealised
and measured driving pulses allowed correct interpretation of the experimental results
and identification of the correct enhancement mechanism. In addition the range
independent cloud model has been used to help identify the presence of Type Il
enhancement and the reason why Type I and Type II enhancement was not detected.
That is to say the relative importance of near resonant bubbles has been identified,
and this is all the more significant in that has been overlooked in previous

experimental studies and linear steady state models*®**,
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In the next chapter, a surf-zone trial of sonar enhancement is described. The aim of
this trial is to gain increased knowledge of the surf-zone bubble population
distribution, and to test the three types of sonar enhancement in a realistic population
distribution and attenuation levels which cannot be generated in the laboratory. It will
also allow the importance of including the attenuation of the driving signal into the
range dependent model to be ascertained. The population will be measured using
several different acoustic techniques conducted, by a fellow PhD student Steven
Meers' with the help of Mathew Simpson' and Gun Tae Yim', two other PhD students
and University technicians John Taylor' and Anthony Edgely'. The trials were

undertaken under the supervision of Prof. T G Leightoni.

"nstitute of Sound and Vibration Research, University of Southampton
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Figure 4-11 Theoretical Scattering Cross-section for different bubble radii and pulse
lengths from one to ten cycles in an 80 kHz 600 Pa sound field scaled by the bubble
population per um increment measured during the tank tests. The top plot show all
bubble radii up to 600 um and the bottom plot is the same data but scaled so that
only the bubble radii up to 30 um can be seen to show the contribution of the near

resonant bubbles
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Figure 4-12 Time series of the radiated sound pressure level from a single resonant
40.5 pm radius bubble (a) a near resonant 55 um radius bubble b) a 600 ym radius
off resonant bubble (c) all in a continuous 80 kHz sound field of amplitude 600 Pa.
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CHAPTER 5

SURF-ZONE TRIAL

5 Surf-zone trial

This chapter describes a surf-zone based sea trial to investigate sonar enhancement in
the target environment, and to develop a better understanding of the bubble
population distributions that occur in the surf-zone. The three methods of sonar
enhancement will be tested by comparing the levels of attenuation of the return echo
from an air filled buoy suspended in the water column. The theoretical models
developed in the proceeding chapters will be used to predict the attenuation levels in
the surf-zone with emphasis on establishing the importance of incorporating the
driving signal attenuation into the range-dependent model. As was seen in the last
chapter, interpretation of any experimental data requires the bubble population to be
used as input for the theoretical models (section 2.2). Whilst this information could be
obtained for the tank experiments with relative ease (section 3.2.1), measurements of
bubble populations in the surf-zone have rarely been accomplished successfully. On
this sea trial, measurements of the population were attempted by two other PhD
students, who were only successful in covering a very small range of bubble radii (by
inversion of attenuation measurements at a range of frequencies). This provides
fundamental limits on the input to the theoretical models and on the validity of their

predictions and therefore on the interpretation that can be presented here.

5.1 Sea trial arrangement

The surf-zone sea trial was conducted on a beach at Hurst Spit, Milford-on-Sea in
Hampshire from the 4™ November to the 18" November 2000. The beach is southerly
facing with a shingle and sand composition and a significant amount of sediment
transport was observed over the two week period of the trials (around the equipment

vertical changes in the seabed of approximately 50 cm were observed in a 20 minute
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period). After several storm events during the trials, the depth of shingle on the beach
changed by several feet and the beach profile changed. The beach profile was
stepped, the position of the step changing after a storm event, resulting in a form of
reef brake which generated plunging breakers in all but the calmest of conditions. The
position of the wave breaking was a function of water depth, owing to the tide and the

position of the step in the beach, and was a significant factor in the deployment of the

equipment.

Initial attempts to deploy the transducers and targets involved the deployment of a
rectangular scaffold array into the surf-zone and the attaching the equipment in-situ.
Owing to increasing surf and difficult working conditions (see Figure 5-1) this was
not possible before the rig was destroyed during over night storms. The deployment
method and the construction of the rig was redesigned (as described below) and then

redeployed on the 13™ November.

In order to provide a stable and secure platform for mounting equipment on such a
dynamic beach, 3” diameter scaffolding poles were attached to large feet, consisting
of a 1 m x 1 m square steel plate, using in-line scaffold clips. On these stands would
be mounted a UDI transmitter/receiver and pre-amplifiers and a 1.27 m (507)
circumference air-filled buoy as a target. The UDI array was selected for its
bandwidth and ability to reach high frequencies (360 kHz) since the only previous
measurement of surf-zone bubble populations (Phelps er al.”®) indicated a higher
frequency would improve the chance of detecting Type I enhancement (section 2.5).
The large target was chosen for two reasons. Firstly it increased the target strength in
an attempt to limit the potential for the high levels of attenuation expected in the surf-
zone™ to mask the target. Secondly, the large target simplified the alignment of the
source and receiver. The system was deployed monostatically with the source and
receiver on one stand (consisting of a scaffold pole and base plate) and the target on

the second. Further details of the deployment and position are given below.

The equipment was controlled from a portable cabin onshore, and communication
with the equipment was via direct cable connection. In a similar fashion to the
laboratory experiments previously described, signals were acquired to a PC via a
LeCroy 9314 digital oscilloscope and GPIB software. Signals were generated using a
Sony AWG 2020 and both the signal acquisition and generation were controlled via

PC using National Instruments LabView software.
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The two stands, minus the equipment, were positioned at the low-tide mark during a
spring low tide and left to allow the feet to be buried. Once the stands were secure,
the equipment would be deployed at the next low tide. The feet of the stands were
quickly buried by shingle, in excess of 0.3 m, providing the stable base required.
However, owing to a low pressure system resulting in high winds, high tides and
large surf, a suitable low tide did not occur until the beginning of the second week.

The equipment was attached to the stands using 3 exhaust clips.

Care was taken to confirm the alignment of the array and the target. This was
achieved by sighting along a straight edge to check the array was pointing at the
centre of the sphere and running a rope temporarily between the centre of the array
and the buoy. The buoy had a seam joining the two halves running around the
circumference, providing an excellent marker of the centre of the buoy in the vertical
plane. The height of the buoy was altered with the aid of the rope until the array was
pointed at the centre of the buoy. The geometry of the apparatus was carefully
measured. A schematic of the experimental layout is shown in Figure 5-2 and a scale

drawing in Figure 5-3.

The signals used and the criteria of the tests conducted using this setup are described

in the next section.
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(b)

Figure 5-1 Two photographs73, taken a fraction of a second apart, showing (a) two of
Professor Leighton’s PhD students (Meers and Simpson) attempting to bolt sensors to
a scaffolding rig the team have just deployed at sea; (b) Mr Simpson’s feet (Mr Meers
is not visible). During the subsequent trial the winds increased from the calm

conditions shown here to speeds in excess of 50 mph.
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Figure 5-3 Scale drawing of the deployed rig in both plan and side views
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5.2 Signals and test criteria

The UDI source and receiver used in the experiment has been calibrated for used
between 200 kHz and 360 kHz. Using the full frequency range of the transducer array
a series of signals were chosen to test the various types of sonar enhancement. These
included pulses of 5 and 20 cycles with centre frequencies from 200 kHz to 360 kHz
at 20 kHz intervals. In addition a swept chirp from ~200 — 360 kHz of duration 0.1
ms and 1 ms was generated, as well as a psendorandom signal of bandwidth ~200-
400 kHz and durations of 0.1 ms and 1 ms. The actual spectra of the chirp and

psuedo-random signal are shown in Figure 5-4. The sound pressure level varied with

frequency (Appendix D) but was approximately 205 dB ref 1pupa @ Im.

Normalised Amplitude {per Hz)

0 100 200 300 400 0 100 200 300 400 500
Frequency {kHz} Frequency (kHz)

Figure 5-4 The bandwidth of the chirped signal (left hand plot) and pseudorandom
signal (right-hand plot) used in the sea trial. The frequency spectrum was calculated
using a 256 point FFT and the amplitudes have been normalised.

In order to be able to compare the relative performance of the different signals, it was
necessary to concatenate them into a single waveform because the bubble cloud
changed on a sub-second time scale. Each component waveform was separated by 10
ms to allow enough time to record the echo from the target buoy before the next
waveform component was transmitted. The component waveforms were concatenated
in this fashion in the following order: pulses, chirps (short then long) and
pseudorandom (short then long). The pulses were concatenated in order of increasing
frequency with interleaved 5 and 20 cycle lengths. The resulting signal was

approximate 0.22 s in duration.
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A further concatenated signal consisting of 20 cycle pulse with centre frequencies
corresponding to the resonant frequencies of bubbles of equilibrium radius 9 um to 15
pm (~208 kHz to 340 kHz) was used for inverting for the attenuation to give the

bubble population.

The following experimental method and testing criteria were adopted to investigate

the potential sonar enhancement of the signals described above.

In a similar fashion to the laboratory experiments previously described, in order to
investigate sonar enhancement of the different signals, it is necessary to measure the
attenuation owing to the bubbles between the transducer and the target. The
laboratory experiments have shown that a robust way of achieving this is by
calculating the energy in the echo from the target buoy i.e. calibrating the return
during a bubble-free period and comparing this with measurements made with

bubbles present.

The bubble-free condition was established by measuring the energy during a very
calm period when few bubbles are present. The energy in the echo from the buoy
during this calm period can then be compared with the energy in the echo when wave
breaking is occurring, and thus bubbles are present. The attenuation owing to the

bubbles can thus be calculated from the difference.

Since the equipment was deployed at low tide in calm conditions, during the
subsequent high tide the water around the transducer and buoy was particularly calm.
This period of calm conditions was used to obtain a nominally ‘bubble-free’ data set
which could be used to ascertain the levels of attenuation owing to bubbles alone in
subsequent tests. Owing to the difficulties of recreating the geometry in a test tank
and the eventual loss of the target buoy, during a storm, post trial tank calibrations of
the buoy, although undertaken were not used in the data analysis. This was because
the scattering from a replacement buoy during the post-trial calibrations was on
average 30% less than that measured in the surf-zone. Since an identical target could
only produce greater scattering than in the surf-zone (where more inhomogeneities
could be present in the water), clearly it was not possible to reproduce the target and
its geometry to an accuracy which improves upon the use of the calm surf zone data

for calibration.
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The data were collected in the following fashion. A batch of ten time series were
generated and acquired using the 20 cycle pulses equally spaced in bubble radius for
latter inversion to estimate the bubble population. Immediately following this the
concatenated signal for sonar enhancement was generated and acquired. Again this

was repeated ten times.

A series of data sets were acquired in this fashion over a period of two days, the 14
and 15" November 2000. The first day’s data set was taken in calm conditions as
described above. The following days data sets were collected during 1-2 foot surf
with wind speeds of approximately 15 mph (6.7 m/s) from the SW (onshore). No
further data sets could be taken owing to the loss, during the night, of the buoy and
buoy stand because of stormy conditions (wind speeds in excess of 50 mph) and the

resulting high surf.

Analysis and presentation of the data as well as a comparison of theoretical and

experimental results is covered in the next section.
5.3 Sea trial results

5.3.1 Summary of experimental results and theoretical modelling

In the previous section the signals to be tested for sonar enhancement are described.
In addition a pulse train with frequencies selected to give regularly spaced resonant
bubble radii was also generated. This was used to invert the attenuation to estimate
the bubble population as was done for the tank tests in section 3.2.1. This allowed the
numbers of bubbles to be estimated for an equilibrium radius of 9 — 15 pm in 1 um
increments. In order to be able to model the cloud it was necessary to extrapolate the
results using a power law. The measured and extrapolated populations are shown in

Figure 5-5.
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Figure 5-5 Population distribution determined by inversion of attenuation of the
target sphere echo. The crosses (x) represent the measured data and the red solid line
is an extrapolation of the population, used for modelling the cloud response. The
equation describing the extrapolation is shown at the bottom left of the red line. The
green line is the Farmer and Vagle” population from chapter 2, equation [2-14].

The extrapolation shown in Figure 5-5 is obviously extreme and the uncertainties in
the numbers of bubbles become very large as the bubble radius exceeds a few tens of

micrometers.

However, theoretical modelling in the preceding chapters has shown that, if the
numbers of large off resonant bubbles are small, it is the bubbles that are at or close
to resonance which are important i.e. those bubbles that have a time dependent
scattering cross-section. The Farmer and Vagle”* population used in chapter 2 is an
example of a population where the large off-resonant contribute little to the cloud
cross-section (Figure 2-14). This population is also plotted in Figure 5-5 for

comparison.

In order to apply the range dependent model, the number of bubbles must be scaled to
keep the processing time manageable. The problem with this is that the contribution
of the larger bubbles is lost and assumes the contribution of these bubbles is

negligible. In this case only the bubbles of radius 5 um to 56 pm will be considered.
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To test the validity of this assumption, the range independent model will be again be
used to access the relative contributions of the bubble cloud. Figure 5-6 shows the
contribution of the tested bubble radii (5 um to 56 um) and the larger bubble radii up
to 600 um for each of the 5 and 20 cycle pulses tested in the surf-zone. The plot
clearly shows that the contribution of bubbles larger than 56 um is insignificant and

thus the assumption is valid.
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Figure 5-6 Plot showing the relative contributions of the tested bubble radii (5 ym to
56 um) and the larger bubble radii up to 600 um for each of the 5 cycle (top plot) and
20 cycle (bottom plot) pulses tested in the surf-zone

The average attenuation of eacg test signals taken on the 15™ November 2000 during
the period of most intense wave activity are in shown in Figure 5-7. Error bars
indicate one standard deviation in the data giving an indication of the variability in
the bubble population. Owing to their size it is not possible to interpret this data in
terms of the three types of sonar enhancement. Individual tests will have to be
examined to minimise the effect of temporal variability in the bubble cloud.

However, the average data can be used to test the theory and the extrapolation of the
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measured bubble population (since the population used to drive the model is itself an

average).

The range-dependent non-linear bubble cloud model (section 2.3) used for
comparison during the tank test is again tested here. However, in these trials a much
greater attenuation has been measured when compared to the tank tests. This is an
opportunity to test the hypothesis, at the end of section 2.3, that the attenuation of the
driving pulse as it passes through a cloud should be modelled. For this reason two
sets of results are plotted against the experimental data. The first (labelled model 1 in
the plots) uses the range dependent model but does not include any attenuation of the
driving pulse as it passes through the cloud, whereas the second (labelled model 2 in
the plots) uses a modified version of the range-dependent model which does included
driving signal attenuation. The results are shown in Figure 5-8 and Figure 5-9. The
pulse attenuation model shows the best agreement with the experimental results up to
a frequency of 320 kHz and for the chirped and pseudo-random signals. Above this
frequency the theoretical and experimental results diverge. The reason for this will be
discussed further in the following section. In all cases the model that includes the
attenuation of the pulse as it propagates through the cloud is the more accurate
generally lying within one standard deviation of the experimental data for all data

points but the 340 and 360 kHz pulses.

This would seem to indicate the population measurements when extrapolated from 9
pum to 56 pm are a good representation of the bubble cloud response up to 320 kHz
and that the inclusion of the driving pulse attenuation is important. However, the
same cannot be said for the smaller bubble radii, because the theory fails to agree

with the experimental results for the 340 and 360 kHz pulses.

It has already been mentioned that the extrapolation of the surf-zone population is
extreme and the limited range of the population data gives rise to a significant
uncertainty in the population distribution. This manifests itself in two ways. Firstly
the gradient of the extrapolation shown Figure 5-5 can be varied slightly without
significantly affecting the quality of the fit to the data. This is illustrated in Figure
5-10. Secondly, there may be a peak in the population. The existence of such a peak
is due to the sorting of the bubble population by buoyancy and dissolution™'" but has
rarely been measured’’. This may be because it occurs at such a small bubble radii it

is out of the range of most population measurements.
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Figure 5-7 A graph showing the average levels of attenuation, in dB, measured in the
surf-zone for each of the test signals (denoted on the x-axis). The short duration plot
(dashed line) refers to the 5 cycle pulses(for the frequency shown on the x-axis and
0.1 ms chirp and pseudorandom signals and the long duration plot (solid line) refers
to the 20 cycle pulses and 1 ms chirp and pseudorandom signals. The error bars
represent the extent of scattering in the experimental results.
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Figure 5-8 A graph comparing theoretical (solid lines) and experimental (dashed
line) measurements of the average attenuation in dB for each of the short duration
signals used in the surfzone trial. The blue solid lines show the theoretical
predictions of enhancement given the estimated bubble population in the surf-zone
but assuming the attenuation of the driving signal as it propagates through the cloud
is negligible. The solid black line includes this attenuation. The error bars represent
the extent of scattering in the experimental results.
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Figure 5-9 A graph comparing theoretical (solid lines) and experimental (dashed
line) measurements of the average attenuation in dB for each of the long duration
signals used in the surf-zone trial. The blue solid lines show the theoretical
predictions of enhancement given the estimated bubble population in the surf-zone
neglecting the attenuation of the driving as it propagates through the cloud. The solid
black line includes this attenuation. The ervor bars represent the extent of scattering
in the experimental results.
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Figure 5-10 Plot showing how by changing the gradient of the extrapolated
population (denoted by the blue green and red lines) the quality of fit with the
experimental data is not significantly effected.
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Figure 5-11 A plot showing the tuned population distribution (green line) compared
with the measured population (x) and the original extrapolation (red solid line).
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Figure 5-12 A graph comparing theoretical (solid black line) results for a tuned
bubble population distribution against experimental (dashed red line) measurements
of the average attenuation in dB for each of the 5 cycle pulsed signals used in the
surf-zone trial. The error bars represent the extent of scattering in the experimental
results.
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Figure 5-13 A graph comparing theoretical (solid black line) results for a tuned
bubble population distribution against experimental (dashed red line) measurements
of the average attenuation in dB for each of the 20 cycle pulsed signals used in the
surf-zone trial. The error bars represent the extent of scattering in the experimental
results.
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The results of the range dependent theoretical model can be used to tune the
population distribution by taking into account the two issues mentioned in the
previous paragraph and adjusting the population iteratively until a better fit is
achieved between the theory and experimental results. The tuned population
distribution is shown in Figure 5-11, and compared with the measured population
distribution and the original extrapolation. The resulting theoretical cloud
attenuations using this newly derived population distributions are shown in Figure
5-12 for the 5 cycle pulses and Figure 5-13 for the 20 cycle pulses. The discrepancy
between the theory and experimental results for the 340 and 360 kHz pulses shown in

Figure 5-8 and Figure 5-9 has been resolved in Figure 5-12 and Figure 5-13.

Thus the inclusion of signal attenuation as it passes through a cloud into the
theoretical model has been justified. In addition the model has been used to refine the
measurements of the population distribution and overcome the short fall in
information regarding the population distribution during the surf-zone trial. This will

be invaluable in interpreting the experimental results.

5.3.2 Investigation of sonar enhancement in the experimental results

The ten individual tests used to obtain the average attenuation shown in Figure 5-7
are now plotted individually and analysed to investigate the three types of sonar
enhancement that have been identified in chapter 2 (Table 2-2). The attenuation of
each of the short and long duration signals for each of the ten tests are plotted in
Figure 5-14 through to Figure 5-21. Two graphs representing one test each are plotted
for each figure. No error bars are shown in these plots as the background has been

measured to be of order —10 dB and is thus too small to be shown on these plots.

As already mentioned, since the bubble population is changing comparisons can only
be made between short and long duration signals in a particular test when interpreting
the results for sonar enhancement. This is because the short and long duration pulses
were interleaved with a 10 ms gap between each signal in an attempt to minimise the
effect of temporal variations in the bubble cloud. However, care is still needed when
interpreting individual data points. The duration of individual test is just 0.22 s. This
is very much less than the typical period of breaking waves (of order a few seconds).
Thus comparison between individual data points in a test is acceptable as the primary

mechanism for generating and dissipating the bubbles act over a much long time
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period. However, each test is separated by several minutes and thus a test-to-test
comparison of individual points is not possible as the bubble population may have
changed. For this reason the relative enhancement for each of the tests is summarised
in Table 5-1. The table shows the difference in attenuation (dB) for each of the eleven
signals types for each of the ten tests. The attenuation of the long duration signals is
subtracted from the attenuation of the short duration signals. Thus, a positive number
indicates enhancement and a negative number (shown in red italics in the table) no

enhancement. The average of the change in attenuation over the ten tests is shown at

the bottom of the table.

The data shown in Table 5-1 is also shown in graphical form in Figure 5-19. In this
figure a solid line is plotted at O dB indicating no change in attenuation between the
short and long duration signals. Data points below this line indicate suppression
whilst data points above the line indicate enhancement. The results for the 340 kHz
and 360 kHz as well as the chirp and random signals are evenly spread above and
below the O dB line suggesting no net difference in terms of sonar enhancement
between the short and long duration pulses. Conversely the results for the 200 kHz to
320 kHz are generally above the 0 dB line. This is most pronounced for the 280 kHz
to 320 kHz pulses. This indicates a reduction in attenuation when using short pulses

and thus potential sonar enhancement.

The data has been analysed to look at the relative attenuations for the short and long
periods of each of the signals. The results for the 200 kHz to 360 kHz pulses can be
interpreted in terms of Type I enhancement. The plots for short and long duration
signals are shown in Figure 5-14 through Figure 5-18 indicate a general reduction in
attenuation when the shorter pulses are used. This is confirmed by the tabulated
results in Table 5-1 by looking at the average attenuation as well as the number of
occurrences of negative numbers per test. The results show that the best enhancement
occurs for frequencies from 240 kHz to 300 kHz where only one or two negative data
points are shown and the change in attenuation is larger then the standard deviation.
This distribution can also be seen in Figure 5-19 where the results for the same tests
are predominantly above the O dB line. Conversely the test at 200 kHz, 220 kHz, 340

kHz and 360 kHz show the opposite trend indicating insignificant or no enhancement.
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Figure 5-14 Graphs showing the attenuation, in dB, for tests 1 and 2. The short
duration plot (dashed line) refers to the 5 cycle pulses and 0.1 ms signals and the
long duration plot (solid line) refers to the 20 cycle pulses and 1 ms signals. The test
signals are denoted on the x-axis.
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Figure 5-15 Graphs showing the attenuation, in dB, for tests 3 and 4. The short
duration plot (dashed line) refers to the 5 cycle pulses and 0.1 ms signals and the
long duration plot (solid line) refers to the 20 cycle pulses and 1 ms signals. The test
signals are denoted on the x-axis.
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Figure 5-16 Graphs showing the attenuation, in dB, for tests 5 and 6. The short
duration plot (dashed line) refers to the 5 cycle pulses and 0.1 ms signals and the
long duration plot (solid line) refers to the 20 cycle pulses and 1 ms signals. The test
signals are denoted on the x-axis.
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Figure 5-17 Graphs showing the attenuation, in dB, for tests 7 and 8. The short
duration plot (dashed line) refers to the 5 cycle pulses and 0.1 ms signals and the
long duration plot (solid line) refers to the 20 cycle pulses and 1 ms signals. The test
signals are denoted on the x-axis.
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Figure 5-18 Graphs showing the attenuation, in dB, for tests 9 and 10. The short
duration plot (dashed line) refers to the 5 cycle pulses and 0.1 ms signals and the
long duration plot (solid line) refers to the 20 cycle pulses and 1 ms signals. The test
signals are denoted on the x-axis.
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Type Pulse Frequency (kHz) Broad Band
200 | 220 | 240 | 260 | 280 |300| 320 | 340 | 360 | Chirp [Random
1.40]-14.61{3.32|0.94 | 4.23 [0.21| 2.70 [6.44 |-4.64| 1.23 | -1.15
-0.18 6.11 |4.11]5.787.50|7.83/1.60 [2.38|1.78 | 5.47 | 2.39
4.41| 2.06 |-1.21{4.53 | 6.83 |14.15/1.07 |-2.79|10.23| -4.31 | 1.15
-1.22| 0.44 |3.45|10.55|12.24|2.48/| 1.66 |5.44|2.31| 4.75 | 4.68
2.53|-6.07|-3.29/ 8.56 |-0.37|2.90| 5.5410.99|1.42| 2.64 | 1.77
3.46/14.10(5.97(9.76 | 0.81|2.39| 2.36 |-2.83|-2.32| 3.07 | 1.17
-0.99] 3.98 [1.10|-5.07]|0.20 [8.23| 2.53 |-4.59| 6.29 | -0.36 | -3.93
6.35|13.82|9.37|7.24 | 2.35(1.20{2.15 |-0.88{ 1.17 | -2.43| -1.09
-2.21/ 3.70 [5.0114.00 ] 6.25|0.07({12.70{2.59 [-1.78| 0.66 | -0.46
6.35| 1.39 |16.69[6.29 [ 9.26 |1.42| 5.54 |14.26|-6.76| -0.25| -2.08
Average|2.50| 5.71 |4.15/6.18 | 5.86 |3.55/4.58 |1.82|2.14| 1.52 | 0.57

olo|x|N|lo|o| | whd|—

Table 5-1 A table summarising the difference in attenuation (dB) between long and
short duration signals for each of the ten tests. A negative number (highlighted in red
italics) indicates no enhancement. The average difference is shown at the bottom of
the table for each signal type.
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Figure 5-19 Graphical representation of the data shown in Table 5-1 showing the
relative attenuation between the short and long duration signals for each of the ten
tests. A negative value indicates suppression. A line marking the 0 dB point is also
shown to aid in interpretation.
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The results for the chirp and pseudorandom signals can be interpreted in a similar
way to the pulse data to investigate Type II enhancement. The pseudorandom signal
shows no enhancement with the data in Figure 5-19 distributed evenly about the O dB
line and a mean attenuation difference of 0.57 dB and a spread of +4 dB indicated in
Table 5-1. The chirp data also shows no significant enhancement with a mean

attenuation difference of 1.52 dB and a spread of =5 dB.

Finally Type III enhancement must be considered. This is the most difficult type of
enhancement to quantify from the results, owing to the variability in the data on a
test-by-test basis. In addition the average attenuation data shown in Figure 5-7
indicates that the lowest attenuation was for the 200 kHz pulse, with approximately
15 dB less attenuation of the worst case 280 kHz pulse. This indicates a significant
enhancement can be gained by using Type III enhancement. However, the plots in
Figure 5-14 through Figure 5-18 show that although in general the long duration 200
kHz pulse gives the minimum attenuation, the test-by-test variation is significant.
Table 5-2 shows the summary of the difference in attenuation between the 200 kHz
pulses and the 280 kHz pulses for both the short and long duration signals. The table

shows that an average reduction of 15.8 dB can be expected.

Test Long Short Difference
Pulse Pulse
1 14.09 11.27 2.82
2 18.86 11.19 7.67
3 16.31 13.90 2.41
4 22.95 9.49 13.46
5 16.50 19.34 -2.84
6 14.76 17.42 -2.66
7 14.63 13.44 1.19
8 11.66 15.66 -4.00
9 19.64 11.19 8.45
10 18.07 15.17 2.90
Average 17.31 14.33 2.98

Table 5-2 The difference in attenuation (dB) between the 200 kHz pulse and the 280
kHz pulse for the short and long duration signals. The average results are shown at
the bottom of the table.

5.4  Surf-zone trial conclusions

The surf-zone trial has provided additional information for the enhancement of sonar

detection in bubbly environments and the population distribution of bubbles in the
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surf-zone. Measurements of the bubble population have shown a significant deviation
from published measurements in deep water of oceanic bubble clouds, and deviation
from population measurements obtained from the artificial cloud generated for the

tank tests in chapter 3 (Figure 5-21).

The form of the surf-zone population plotted in Figure 5-5 is of great significance for
sonar enhancement. There are relatively few numbers of large bubbles (as compared
to the numbers of small bubbles) present in the model surf-zone population provided
by extrapolating the 9 — 13 um data (after tuning by using the range dependent cloud
model). The result of this is that the contribution of the large off-resonant bubbles is
unimportant. Furthermore, the steepness of the population distribution reduces the

contribution of the large near resonant bubbles that masked the ring-up of the

for Type I enhancement would coincide with the resonance of bubbles at the peak in a
distribution (as predicted in section 2.5). Tuning of the population distribution to
optimise the fit between the theoretical and experimental results suggests that such a
peak may exist (Figure 5-11) but it was not directly detected in the surf-zone trial.
Suck a peak has been measured in deep water by Farmer and Vagle’®. The existence
of this peak is due to the sorting of the bubble population by buoyancy and
dissolution™"". This peak has only been measured in mature bubble populations with

theory predicting delays of order tens of seconds before the peak manifests itself>!,

The use of Type III optimal frequency enhancement has been tested, and has proven
to be a significant factor in minimising the attenuation from a bubble cloud. Over the
frequency range tested, which covered a relatively small resonant bubble radius of 9 -
15 pm, the attenuation ranged from 4 — 8 dB/m. It is clear that of all the signals tested
that the optimal signal for target detection, for the conditions prevalent during the
trial, would be a 200 kHz pulse and that the duration of the pulse appears to have a

small effect on the level of attenuation measured at this frequency.

It is also important to note that the numbers of bubbles present were linearly scaled
for the purposes of modelling the cloud so as to keep processing time within
reasonable limits. However, because of the steep gradient of the extrapolated
population the large bubbles, above 56 pm in radius, are removed from the

calculation. Thus the theory confirms the population distribution used but only up to a
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radius of 56 um. Beyond this radius the model results confirm that the assumption,
implicit in the scaling, that the contribution of bubbles greater than 56 pm is
insignificant. This does not confirm the shape of the extrapolated population other
than that the numbers of large bubbles must be small. The population was then tuned
and bubbles of radius 5um to 100 pm incorporated to give a more robust population

distribution.

Further measurements where made during a second sea trial at the same location in
2002 by Steven Meers' and Tim Leightoni. Twenty separate measurements were made
using a 195 dB source and 500 ps pulses with frequencies between 30 kHz and 200
kHz. The results were then inverted to give the bubble population. The average of the
20 separate results is plotted in Figure 5-20. The original measurements along with
the extrapolated and tuned populations used to run the theoretical model are shown
next to these new measurements. The new measurements indicate a higher void
fraction (more bubbles) than was measured during the first sea trail and are thus
linearly scaled to allow a direct comparison between the extrapolated and measured
populations. The plot shows excellent agreement between the gradients of the tuned
and newly measured population, providing additional confidence in the use of this

population in the theoretical model.

!nstitute of Sound and Vibration Research, University of Southampton
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Figure 5-20 Comparison of the extrapolated bubble population measured at Hurst
Spit during the sea trial (blue crosses and solid red line) with new measurements
made at the site in 2002 (black circles). The new population measurements have been
scaled to allow a direct comparison (green triangles). The tuned population is also
shown (solid green line).

It is important to stress at this stage that these result are of course valid only for the
population distribution measured at the time, and are limited by the frequency range
tested. The potential of the various methods of sonar enhancement are thus dependent
on the prevalent environmental conditions. For these reasons, the important
conclusion to be drawn from the surf-zone trial results is that both Type I short pulse
enhancement, and Type III optimum frequency enhancement, can be used to improve
target detection. Additionally a-priori knowledge of the bubble population is required
to ascertain which technique, or what combination of the two techniques, will give

the optimum enhancement.

Finally, Type II novel waveform enhancement must be considered. Firstly, the use of
short duration broadband signals resulted in very little change in the attenuation when
compared to the long duration broadband signals. Secondly, the attenuation resulting
from the chirped and, particularly, the pseudorandom signals, was less than the
attenuation from the majority of single frequency pulses used (but greater than the

optimum single frequency pulse). The broadband signals were thus the least
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successful method of sonar enhancement tested. However, they should not be
discarded. In conditions where a-priori knowledge of the bubble population is not
available, a broadband signal could be a useful alternative to Type I and Type III
methods. This is because it reduces the risk of choosing a particularly bad (in terms of

attenuation) single frequency pulse.

In the final chapter, the work discussed in this thesis is summarised and final

conclusions drawn.
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Figure 5-21 A comparison of several experimental measurements of bubble
populations. Leighton et al 1998 and Farmer and Vagle 1989are two
measurements of oceanic bubble population. The tank population is the measurement,
using inversion, of the electrolysis bubble cloud generator used in the tank
experiments. The population measurement marked surf-zone 2000 is the population
measured during the sea trial by inversion. The crosses represent measured data
points and the line is an extrapolation of the data. Note the relatively few numbers of
large bubbles measured in the surf-zone and the greater numbers of large bubbles
measured in the tank population. A final data set is 4plotted which a previous surf-
zone population measurement by Leighton et al 1997,
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CHAPTER 6

CONCLUSIONS

6 Conclusions

This final chapter discusses the findings of the thesis and presents some suggestion

for future work.

6.1 Summary

The aim of this work has been to investigate the enhancement of sonar detection in
bubbly environments such as the surf-zone. Previous work on reducing attenuation
and scattering of sound by bubbles was reviewed. During the course of this review it
was discovered that existing models of the time-dependent scattering and attenuation
of bubbles were limited by assumptions such as linearity and restricting the model to
resonance conditions only. These existing models relied on linear cross-section
theory to calculate the effect of short pulses. They are limited to small amplitude
driving signals and single frequency insonification, neglecting the broadening in
bandwidth of short pulses. In addition, in these models it is assumed that the bubbles
undergo either resonant or off-resonant scattering: the bandwidth of bubbles that are
close to, but not at, resonance are not incorporated. These models also cannot
calculate the ring-down and so are limited to continuous wave or semi-infinite pulse
as driving signals.

In these previous studies it was also hypothesized that the time taken for a bubble to

reach steady state oscillation could be exploited to reduce scattering and attenuation.

However, only one study by Akulichev*® measured this phenomenon experimentally.

In the light of the previous work on this topic three different methods of obtaining
sonar enhancement were outlined. These methods would need to be tested both

theoretically and experimentally under a variety of conditions likely to be
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encountered in the oceanic environment. The theoretical study derived a series of
bubble cloud models based on the Keller-Miksis non-linear single bubble model.
Each model expands on the previous by taking into account the following

assumptions:
e Time dependence of the bubble response
e Off-resonant bubble response
e Non-linearity of the bubble response
e Bubble response to an arbitrary waveform
e Attenuation of a driving signal as it propagates through a cloud

The models were also adapted to allow experimentally measured driving signals to be
used to allow for distortion effects of acoustic sources. These models are a significant

40,42,43

improvement over those used in previous studies reviewed in chapter 1. A

summary of all the models presented in this thesis is shown in Table 6-1.

Experimental tests in a laboratory test tank and the surf-zone trial were conducted to
test the three types of sonar enhancement identified in this thesis. Type I
enhancement utilises short period signals; Type II enhancement uses novel
waveforms such as chirps and pseudo-random signals and Type III enhancement
relies on finding a minimum in the frequency dependent attenuation of the bubble

cloud.
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Table 6-1 A table summarising the characteristics of the bubble models used in this
thesis. A V indicates the assumption is valid for this model and a X indicates that the
assumption is not valid

The tests in the laboratory were undertaken in a test tank of dimensions 8 mx 8 m x 5
m deep. An artificial bubble cloud generation system, based on electrolysis, was
developed to represent oceanic bubble populations in the tank. Care was taken to
minimise the amount of large bubbles (> 100 um) that are produced by normal bubble
generation systems such as injection. However, the number of large bubbles produced
was still too great when compared with oceanic distributions resulting in a shallower

gradient when plotting bubble numbers versus radius.

The artificial bubble cloud generator was used to explore the effect of changing pulse
length and sweep rate experimentally in a tank. The non-linear range dependent cloud
model was also used to recreate the experimental results using measured waveforms.
It was not necessary to account for the attenuation of the driving signal due to the
small levels of attenuation measured. A good agreement between model and

experiment results was shown. The model was validated by these tests.
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No Type I or Type Il enhancement was shown experimentally or theoretically with
the bubble population distribution used in the laboratory experiments. However, the
results would have been wrongly interpreted as showing a Type I enhancement were
it not for the ability of the non-linear range dependent cloud model to accept
measured time series as a driving signal. The non-linear cloud model was also used to
help identify the reason why no Type I or Type II enhancement was detected. It is
apparent that the contributions of the near resonant bubbles, which have no ring-up
but do have a transient response, masked the ring-up of the resonant bubbles. The
importance of the near resonant bubbles (i.e. those bubbles which do not exhibit a
steady ring-up to resonance or a steady-state response) could not have been identified
using existing linear bubbles models such as those used in previous studies by

AkllliChCV4O, Suiter*? and Pace®.

The laboratory experiments did show Type HI enhancement. Measurements of the
cloud attenuation for frequencies from 15 kHz to 220 kHz have shown that significant

increases in target detection range can be achieved by tuning the driving frequency.

The second phase of the experimental measurements involved deployment of a source
receiver and target sphere from a beach into the surf-zone at Hurst Spit on the south
coast of England in November 2000. It was necessary to move to a beach based trial
due to the difficulties of generating realistic populations in the tank. A further goal
was to measure the population distribution in the surf-zone. Increased knowledge of
the distributions that can occur in this environment was fundamental to this work due
to the lack of data on such population distributions and the sensitivity of sonar

enhancement to the gradient in the population distribution.

Despite some difficulties, measurements of the surf-zone bubble population were
obtained for a narrow bubble population radius range from 9-15 pum. This was
extrapolated and the model used to confirm that the extrapolation was valid over a
larger bubble population radius range of 5-56 wm. The model showed that this
extrapolation was suitable for calculating the bubble cloud response up to 300 kHz.
The results of the model were then used to tune the population distribution. Further
measurements at the Hurst Spit test site in 2002 agree well with the tuned populations

distribution giving further confidence in the results.
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The results of the trial were then analysed for the three types of enhancement. Of the
three methods tested, Type I and Type III enhancement both showed a reduction in
attenuation. In this case careful selection of the frequency could reduce the
attenuation by 16 dB and, depending on the frequency, short duration pulses reduced

the attenuation by up to 6 dB.

Theoretical models were again compared with experimental data. In this case the non-
linear range dependent cloud model, including the attenuation of the driving signal,
was used owing to the high levels of attenuation measured in the surf-zone. The
model showed close agreement with experimental data lying within the standard
deviation of the experimental results for all but the highest frequency pulses (300 kHz
to 360 kHz). This deviation at the higher frequencies is attributed to inaccuracies in
the numbers of small bubbles measured by inversion. This deviation was then used to
tune the population to give a better fit between experimental and theoretical results.
The results have also shown the necessity of including signal attenuation into the

range dependent model when high levels of attenuation are expected.

In the sea trial the best method of minimising attenuation was by optimising the
insonifying frequency. However, care needs to be taken when drawing conclusions
from these results. The trial data is only representative of one bubble distribution and
the frequency tested was limited by the hardware (transmit/receive array) used. It can
be expected that the population distribution will change with environmental

75-76

conditions such as wind speed’, the type of breakers and the position within the

surf-zone. What has been shown is that optimum frequency techniques and short
pulses given the right conditions can significantly reduce the attenuation owing to

bubble clouds and thus enhance sonar detection in bubble environments.

Both these strategies have been shown to be beneficial, however in practice, the

optimum strategy would depend on several issues:-
e Population peaks are not always apparent

e The propagation distance before encountering bubbles could severely limit the

use of very high frequencies
e The bandwidth and Q of available sources and receivers

e The population distribution and absolute numbers of bubbles
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The models presented in this thesis, in conjunction with suitable knowledge of the
environmental conditions and bubble populations, can be used with the guidelines
presented here to provide significant gains in the detection of targets using acoustics

in bubbly environments.

The work also has potential benefits for measuring bubble populations by inversion.
Existing techniques use linear models restricting the driving signal to low amplitude
pulses. The models developed in this thesis could be used to determine the
attenuation of a bubble to an arbitrary driving signal. This data could be used to invert
for bubble populations using broadband and high amplitude driving signals without
compromising model assumptions. Indeed this was achieved to a limited degree by
tuning the bubble population measured in the surf-zone to improve the agreement
between theoretical and experimental results especially above 300 kHz. The benefits
of this in the case of high amplitude signals, would be an increased signal to noise
ratio and thus increased ability to measure population distributions in areas, such as
the surf-zone, where the attenuation due to bubble clouds is large. In the case of
broadband signals, their use could allow the numbers of a wide range of bubbles to be
measured almost simultaneously rather than stepping through different frequency

pulses, during which time the bubble population may have changed.

6.2 Future work

Two issues raised by this thesis are of particular importance for developing this work
further. Firstly, the theoretical models presented in this thesis can be further
developed to include a full non-linear damping model. Specifically thermal damping

needs to be incorporated into the existing Keller-Miksis non-linear bubble model.

Secondly, a sea trial should be conducted using a broader range of frequencies to
invert for the bubble population to try and measure a peak in the distribution. A
broadband source capable of generating short pulses at the resonant frequency of
bubbles at the peak of the population distribution (of order 400 kHz) would need to
be obtained. The hypothesis from chapter 2, that insonifying at the distribution peak
frequency is the optimum strategy for Type I enhancement, could then be tested

experimentally.

178



APPENDIX A

PHYSICAL PROPERTIES OF GASSES
AND LIQUIDS

A Physical Properties of Gases and Liquids

Nitrogen Gas Parameters
Pous =1.16 - density (kg/m’) assuming Nitrogen

molarmass=2x14.0067x10" - Molar mass (kg/mol) assumed Nitrogen

y=14 - Gas specific heat ratio (-)
Kg = 2.6¢” - Thermal conductivity (W/mK)
Cp=1.04 - specific heat of Nitrogen (kJ/kgK)

Oxygen Gas Parameters
P =1.31 - density (kg/m’) assuming Oxygen

molarmass=2x15.999x10” - Molar mass (kg/mol) assumed Oxygen

y=14 - Gas specific heat ratio (-)
Kg = 2.6x107 - Thermal conductivity (W/mK)
Cp =091 - specific heat of Oxygen (kJ/kgK)

Environmental Parameters

P =1.013x10° - atmospheric pressure (Pa)

p =1000 - density (kg/ms) assuming fresh water

Po = Do +(9.81ph) - pressure outside of bubble where h is depth in m (Pa)
c=1480; - speed of sound in fresh water (m/s)
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T, =293 - absolute temperature of liquid surrounding the bubble

X)
1 =0.001 - shear viscosity coefficient (kg/ms)
o =0.0725 - surface tension (N/m)
Rg = 8.31441; - gas constant (J K™ mol™)
K .
D =—3 — - thermal diffusivity of gas (cm”2/s)
£ Ix10° PesC,
K;=0.6; - Thermal conductivity (W/mK)
Cp=4.19; - specific heat of water (kJ/kgK)

K
Dyj=—s— =
1x10° pC,

(cmz/s)
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APPENDIX B
MULTIPLE BUBBLE INTERACTIONS

B Multiple Bubble Interactions

B.1 Introduction

When considering wave propagation and scattering in random media, whether it is
acoustic or electromagnetic, it has long been recognised that the wave field from
individual scatters could also influence other scatters in the medium. The first attempt
to model such interference phenomena was presented by L Foldy in 1944"" and his
model has since been applied extensively to bubbly media by, for example, van
V\/ijngaarden78 and Catflisch er al.”®. These models have been shown to compare well
with theory but only under limited conditions®®. The main restriction occurs near to
bubble resonances when the scattered field from a bubble is a local maximum®,
Intuitively this is where bubble-bubble interactions are most likely, and it is widely
acknowledged that the primary reason for the failure of Foldy's model is that the
theory does not correct for multiple scattering processes between bubbles™. Several
attempts to model multiple scattering have since been made, largely based on Foldy's
original theory, to quantify the circumstances under which such interactions become

important. The key papers of Feuillade, Zhen Ye and Henyey that address this

problem are discussed here.

B.2 Foldy's effective medium theory

Since much of the current work on bubble interactions is an extension of the original
work by Foldy, it is reviewed here. The 'effective’ medium concept, as it became
known, was developed by Foldy’’ and Carstensen®”. In this, the bubbly water is
represented as a homogeneous medium with uniform acoustic properties (i.e.

attenuation and phase speed).
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Foldy showed that the sound speed in bubbly water, Cr, is a complex quantity and is
given by

1 1 d7rn

c? 2 .
e .
ma

Here c is the speed of sound in water, p is the density, @ is the angular frequency, n
is the number of bubbles per unit volume and the quantities k, m , b are functions of

the radius r.

The real and imaginary parts of equation [B.1] represent the dispersion and
attenuation, respectively, of the acoustic waves propagating through the medium. If
bubbles of different sizes are present, then the number of bubbles per unit volume
with a radius range r and r +d r is defined as np(r)d r, where p(r) is a probability

density function and {B.1] becomes

11
et pnS [B-2]

Where

K—o'm+iob [B-3]

B.3 Feuillade correction for the sound speed in bubbly water

Commander and Prosperetti®® compared the predictions of Foldy's theory with
experimental data and showed that, for clouds of high void fractions, narrow size
distribution and insonification near to resonance, the level of acoustic attenuation is

consistently overestimated.

Feuillade®*** tries to add terms to equations [B.1] and [B.2] to correct for this

problem by considering an external field driving an ensemble of n interacting
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bubbles. Thus the total field incident on any one of these bubbles, is a combination of
the external field and an aggregate of the scattered fields from all of the other
bubbles. A series of equations to describe this can be evolved and written in matrix
form. The diagonal of this matrix describes the individual resonance terms, and the
remaining elements the radiation coupling terms. Feuillade attempts to solve this
matrix for a general case in order to determine the sound speed correction, by
determining the eigenvector of the symmetric mode of multiple bubble scatte:ring.86
Feuillade argues that the acoustic properties of ensembles of closely spaced bubbles
insonified at resonance are 'predominantly determined’ by the action of the symmetric
mode. The antisymmetric mode, where some or all the bubbles oscillate in antiphase,
scatters negligible sound. It is also assumed that for a high density bubble cloud the
spatial variation of the aggregate field is minimal. Thus the ambient scattered field
varies minimally throughout the medium and every bubble responds in an essentially
identical manner. Thus an approximate eigenvector generally applicable to all
configurations can be formed. This greatly simplifies the problem and allows the

average ensemble behaviour to be determined.

Feuillade gives the following general equation for the speed for sound in bubbly

liquids
-
roc 1-Sw’pn Ii‘e_ik'dr [B-4]

0

To summarise Feuillade's approach the propagation characteristics of bubbly water
have been determined by performing an ensemble average of the effects of the
collective symmetric mode over distributions of bubble locations and bubble radii.
The method includes all orders of multiple scattering and incorporates the field
attenuation (or 'shielding’) effect of the intervening bubbly medium as one bubble
scatters to another. Comparison with experimental data for bubbles of uniform radius
was consistent for higher void fractions from 0.22 - 1%. For lower void fractions 0.22
- 0.0377% the analysis was less consistent even though Feuillade suggests
interactions could reasonably be expected. It is also suggested that interactions should
rapidly reduce and disappear below a void fraction of 0.377%, although there is no

experimental data to support this. Comparison with data for non-uniform bubble sizes
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was less successful. The void fraction was ~0.02%, and a better fit to the data was
achieved by the original Foldy model with a slightly reduced void fraction. Feuillade
suggests that "this implies that multiple scattering plays a much smaller part in the
propagation of sound through water containing bubbles of non uniform radius".
However it is not clear at what stage the requirement of the assumptions described
above (for a large number of bubbles and high uniform density) break down. Hence

the statement must be viewed with some caution.

B.4 Zhen Ye's many body theory for bubbly systems

Zhen Ye® describes how most studies of the acoustic properties of bubbly liquids
have assumed that only the interaction of a single bubble with the medium is
considered. For this assumption to be valid the following criteria must be satisfied

is the scattering cross-section of the

nPQ (1 and nQ, [kl where Q

scat scat

bubbles®!. This is the case when the void fraction is small and the insonification
frequency is far from resonance. To overcome this limitation, and so completely
model bubble interactions, would require an indefinite number of interactions and
thus an approximate representation must be obtained. Foldy's theory is an example of
a model which includes the lowest order iteration only. In order to systematically
consider the higher order iterations Zhen Ye utilises the perturbative Feynman-
diagram method used in many-body theory which has been used extensively in
condensed matter physics. In his paper Zhen Ye has confined his investigation to a

second order correction for phase speed and attenuation.

In contrast to Feuillade, Zhen Ye uses the dispersion relation to determine the phase
speed and attenuation. Foldy also developed a dispersion relation for a first order

1teration

K2 =K* +4myf, [B-5]

where f; is the scattering function of a bubble. This is corrected by Zhen Ye to include

the second order iteration

Arx 27B
K2 =K 1+—A| 1-i "= B-6
eff [ KQ ( K ]} [ ]
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Where

= s >

_ n(a)a
B= J.dah(a)z/wz)—lﬂﬁ]z} (-5]

0

As with Feuillade's analysis, the bubble cloud is assumed to be uniformly distributed
in three-dimensional space. Results for both single and continuous bubble size
distributions are compared for the first and second order theory. Significant
differences are indicated for the single bubble size distribution for void fractions as
low as 10* % increasing with decreasing bubble size (suggesting the bubble
distribution, and not just the void fraction, is important as increased numbers of
bubbles are required to maintain the void fraction). For the continuous distribution the
correction is less significant. For the example void fraction of 10°% and a power law

distribution (-4 in this case) although they are still important near resonance.

Since no comparison is made with experimental results, it is difficult to evaluate the
improvement gained through the use of the second order correction. However Zhen
Ye has shown that high order interactions do contribute significantly to the acoustic
properties of bubbly media, particularly near resonance. It is hoped that a comparison
with experimental results will be included when the effect of higher order interactions

are investigated and published as promised by Zhen Ye.

B.5 Henyey's correction to Foldy's effective medium theory

Henyey88 uses a similar approach to Zhen Ye in that a correction for the effective
dispersion relation K,y given in equation B.5 above, is sought by consideration of a
multiple scattering series. Henyey's paper is particularly interesting since it allows an
algebraic comparison of the models of Foldy, Feuillade and Zhen Ye with his own
which incorporates some second order interactions neglected by Zhen Ye. Similar

assumptions to those of Zhen Ye are also made by Henyey, specifically that only the
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mean acoustic field is investigated and thus a uniform density of scatterers is

assumed. The effective wave number of a bubbly medium can be given by

K’ =K® +4mF, [B-9]

where Fj is the effective scattering amplitude function which has the following form
for Foldy's, Feuillade's, Zhen Ye's and Henyey's models (equations B.10, B.11, B.12
and B.13 respectively)

Fo=g [B-10]
Foo—ds
Y (1-4mf, 1) [B-11]
f 3
F =1, +47a'nﬁ [B-12]
4 fnF*
F=f+—" [B-13
K+Keﬁ‘ ]

=3

where f, is the scattering amplitude of a single scatterer and [ = J re™ dr.
0

It should also be noted that, during this evaluation, Henyey discovered a "spurious
quadratic term" and thus Feuillade's results are in error. This appears to have been
confirmed through private communication between Henyey and Feuillade.
Unfortunately Henyey does not provide any numerical simulations to allow further
comparison of the models. However, it is stated that when K, is large compared to K
the results from the model diverge from those of Zhen Ye and are very close to

Foldy's.
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B.6 Conclusions

Current theory suggests that multiple bubble interactions are important when
considering the response of resonant bubbles. The relative importance of these
contributions is difficult to quantify due to the scarcity of supporting experimental
data, particularly when considering the more recent corrections to the theory.
However, comparison of theoretical results of Zhen Ye (with and without corrections
for multiple bubble interactions for a 10 um resonant bubble, with a void fraction of
10%%) leads to an increase in attenuation of ~20%. The change reduces away from
resonance confirming that it is the void fraction of the resonant bubbles that is

important when considering multiple bubble interactions.
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APPENDIX C

Reverberation Time of the AB Wood Test
Tank

C Reverberation Time of the AB Wood Test
Tank

C.1 Introduction

An experiment has been conducted to determine the reverb time of the S mx 8 x S m

deep A B Wood laboratory test tank™.

C.2 Theory

The reverberation timego, Tgo, or the time taken for the sound pressure level to reduce

by 60 dB, can be determined using equation [C.1].

_ —-55.2V
S.cln(l-<a>)

T« [C.1]

Here V is the volume of the enclosure (m’), S, the surface area (of walls and free
surface of the tank), ¢ the sound speed (m/s) and <« > is the spatially averaged

constant of attenuation.

C.3 Measurement of the reverberation time

To calculate the reverberation time it is necessary to measure the constant of
attenuation spatially averaged within the tank enclosure. A source, (B&K 8105) was
mounted in one corner of the enclosure and a B&K 8103 hydrophone was placed in

six different locations in the tank taking care to remain at least a metre from either the
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walls or the source. The source was then excited in third-octave bands of noise,
covering the range 60 kHz to 200 kHz. Transmission was stopped at a known time
and the ring down in the hydrophone recorded. The reverberation time was then
calculated by reverse integration91 and the results spatially averaged for each of the

hydrophone positions.

C.4 Results

The results for the reverberation time obtained by reverse integration were averaged
over the six hydrophone positions. The test was then repeated five more times and
these data averaged to give the results shown in Figure D.1. The attenuation factors

that give the reverberation times shown in Figure D.I are indicated in Table 1 below.

Centre Frequency | Reverberation Time | Attenuation Factor
(kHz) (s)
80 0.029 0.7587
100 0.134 0.2649
125 1.315 0.0309
160 1.144 0.0354

Table C.1 Reverberation time and attenuation factor for the frequency bands tested

1.4
w12+
Q
g 11
=
.s 0.8 +
8 06
8
5 0.4
o
c 0.2 4
O T H 1 T T
60 80 100 120 140 160 180
1/3 Octave Band Center Frequency (kHz)

Figure C.1 Reverberation time for the A B Wood test facility for 1/3 octave band
centre frequencies of 80, 100, 125 and 160 kHz.

189



APPENDIX D

SPECIFICATIONS OF HYDROPHONES

D Specifications of hydrophones

This appendix lists the specifications of the sources and receivers used in the tank
tests and sea trial discussed in this thesis. The schematics of the Bruel and Kjaer Type
8013 and 8015 hydrophones are shown in Figure D-1 and Figure D-2; the transmit
response of the Bruel and Kjaer Type 8105 used as a source in the tank test is plotted
in Figure D-3; the directivity patterns of Bruel and Kjaer hydrophones Type 8103 and
8105 are shown in Figure D-4; and a typical calibration for Bruel and Kjaer

hydrophone Type 8103 is plotted in Figure D-5.

The UDI wide band transmit receive array used in the sea trial was monostatically
mounted with the receiver mounted directly below the transmitter. The transmit and
receive elements are 0.07 m by 0.04 m. The units were mounted with the longest
dimension horizontal. The transmit and receive calibrations are shown in Figure D-6
and Figure D-7 respectively. The beam patterns in the horizontal plane for the

transmit and receive are shown in Figure D-8 and Figure D-9 respectively.
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Figure D-1 Dimensions and construction of the Bruel and Kjaer Type 8103
hydrophone®.
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Figure D-2 Dimensions and construction of the Bruel

hydrophonegz.
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Figure D-3 Typical transmitting response of Bruel and Kjaer hydrophone Types
8103, 8104 and 8105 in dB ref 1 yPa/V at 1 m versus frequency™.
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Figure D-4 Typical directivity patterns of Bruel and  Kjaer hydrophones Types 8103
and 8105 in the vertical and horizontal planesg2
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Figure D-5 Typical receiving frequency characteristics of Bruel and Kjaer
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APPENDIX E

OTHER OUTCOMES

E Other outcomes

The project has produced the following outcomes:

e The following conference paper was presented by Mr Clarke at the Fourth

European Conference on Underwater Acoustics (Rome, Italy; September 1998):

Clarke T W L, Leighton T G, White P R, Heald G J and Dumbrell H A, The
effect of water quality on the damping of bubbles. Proceedings of the 4th
European Conference on Underwater Acoustics, Rome (ed. A. Alippi, G B

Cannelii), 1998, pp. 101-106

e The following conference paper was presented by Mr Clarke at the joint meeting
of the Acoustical Society of America and the EAA: Forum Acusticum (Berlin,

Germany; March 99):

Clarke J W L, Leighton T G, Heald G J, Dumbrell H A, Time-dependent
scattering from bubble clouds: Implications for the use of acoustic pulses.
Collected papers from the joint meeting "JASA/EAA Berlin 99" (Published on
CDRom by Deutsche Gesellschaft fiir Akustik e.V. Universitit Oldenburg,
Physik/Akustik D-26111 Oldenburg)
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e The following journal papers have been published:

T. G. Leighton P. R. White, C. L. Morfey, J. W. L. Clarke, G. J. Heald, H. A.
Dumbrell, K. R. Holland, The effect of reverberation on the damping of bubbles, J.
Acoust. Soc. Am. 112 (4), p 1366-1376, October 2002

Clarke J W L, Leighton T G, A method for estimating time-dependent acoustic cross-
sections of bubbles and bubble clouds prior to the steady state, J. Acoust. Soc. Am.

107 (4) p 1922-1929, April 2000

Clarke J W L, Leighton T G, Heald GJ , Dumbrell H A, Time-dependent scattering
from bubble clouds: Implications fro the use of acoustics pulses, J. Acoust. Soc. Am.

105 (2) p 1254, 1999

Clarke J W L, Leighton T G, Heald GJ , Dumbrell H A, Time-dependent scattering

from bubble clouds: Implications fro the use of acoustics pulses, Acta Acoustica, 85

sup 1, S328, 1999

Meers S D, Leighton T G, Clarke ] W L, Heald G J, Dumbrell H A, White P R, The
importance of bubble ring-up and pulse length in estimating the bubble distribution
from acoustic propagation measurements, Proc. Institute of Acoustics Vol. 23 Part 2,

p 235- 241, 2001

Leighton T G, Meers S D, Simpson M D, Clarke J W L, Yim G T, Birkin P R,
Watson Y E, White P R, Heald G J, Dumbrell H A, Culver R L , Richards S D, The
Hurst Spit experiment: The characterisation of bubbles in the surf-zone using multiple

acoustic techniques Proc. Institute of Acoustics Vol. 23 Part 2, 227-234, 2001.

e Contract reports submitted to DERA Bincleaves (contract no. SSDW1/647):

Clarke J W L and Leighton T G, The Enhancement of Sonar Detection in
Bubbly Environments. Part 1. Preliminary investigation of effect of water
quality on damping, and review of prior studies. ISVR Contract Report No.

98/24, University of Southampton, 1998.

Clarke J W L and Leighton T G, The Enhancement of Sonar Detection in
Bubbly Environments. Part 2. Effect of salinity on damping and development

of models. ISVR Contract Report No. 98/31, University of Southampton, 1998.
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e The investigations assisted in the MSc project of S. Ponthus who, supervised by
Dr Leighton, undertook a study of the response of biomedical echo-contrast
agents to ultrasound. This work has received international interest such that Dr
Leighton presented an invited paper to the 4th Heart Centre European
Symposium on Ultrasound Contrast Imaging (Rotterdam, The Netherlands,

January 1999). The following technical memorandum has also been produced:

Leighton T G, Clarke J W L, Heald G J, Dumbrell H A, Evans R C,
Application of the nonlinear acoustic scatter cross-section to the use of

clinical ultrasound contrast agents. ISVR Technical Memorandom No. 835,

University of Southampton, 1999.

e An application for funding in bubble sizing (collaborative between ISVR and ERA)
has been submitted and funded by the EPSRC.
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APPENDIX F

A METHOD FOR ESTIMATING TIME-
DEPENDENT ACOUSTIC CROSS-
SECTIONS OF BUBBLES AND BUBBLE
CLOUDS PRIOR TO THE STEADY STATE
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A method for estimating time-dependent acoustic cross-sections

of bubbles and bubble clouds prior to the steady state

J. W L Clarke and T. G. Leighton
Institute of Sound and Vibration Research, University of Southampton, Highfield,
Southamptort SO17 1BJ, United Kingdom

(Received 16 November 1998; revised 11 August 1999; accepted 21 September 1999)

Models for the acoustic -cross-sections of gas bubbles undergoing steady-state pulsation in liquid
have existed for some tune. This article presents a theoretical scheme for estimating the
cross-sections of single bubbles, and bubble clouds, from the start of insonation onward. Tn this
period the preserice of transients can sigmficantly alter the cross-section from the steady-state value.
The model combines numerical solutions of the Hemring—Keller model with appropriate damping
values to calculate the extinction cross-section of a bubble as a function of time in response to 4
continuous harmonic sound field (it is also shown how the model can be adapted to estimate the
time-dependent scatter cross-section). The model is then extended to determine the extinction
cross-section area of multiple bubbles of varying population distributions assuming ne bubble—
bubble interactions. The results have shown that the time taken to reach steady state is dependent on
the closeness of the bubble to resonance, and on the driving pressure amplitude, In the response of
the population as a whole, the time to reach steady state tends to decrease with increasing values of
the driving pressure amplitude; and with the increasing values of the ratio of the numbers of bubbles
having radii much larger than resonance to the number of resonant bubbles. The implications of
these findings for the use of acoustic pulses are explored. [S0001-4966{00)01801-4]

PACS numbers; 43.25.Ts, 43.35.E1, 43.30.Lz [DLB]

INTRODUCTION

It has long been recognized that the high impedance
mismatch between an air-filled bubble and the surrounding
water provides an excellent acoustic target owing to strong
inert scattering. It is also well understood that enhanced scat-
ter and dissipation result from the pulsations mto which the
bubble will be driven by the sound field. To a first order, this
response can be modeled as that of a single degree of free-
dom system with a resonance frequency, which is dependent
on bubble size, where the bubble response is a maximum. It
has been convenient to define acoustic extinction and scatter
cross-sections for single bubbles, given, respectively, by the
ratio of the power lost or reradiated by the bubble to the
intensity of an incident plane wave. These have been calcu-
lated for the steady state! showing that, for a given bubble
size, they are maximal at the resonance frequency. It should
be noted that the cross-sections are only local maxima at
resonance if considered as a function of bubble size for a
given insonification frequency. This 15 because the contribu-
tion due to nert scattering will steadily increase with bubble
size.

The resonant and off-resonant scattering characteristics
of bubbles are well defined and are utilized in a wide number
of applications including measurement of oceanic bubble
populations! ™ and research ‘into upper ocean dynamics.’®
However, it 1s these same characteristics which make acous-
tic detection of nonbubble targets in areas with high bubble
populations {such as the surf-zone) difficult.

One possible solution to this problem utilizes the bubble
“fing-up™’ time, based on the time taken for a bubble to
reach steady-state oscillation. Theory suggests that, owing to
mertial effects, this ring-up time will be finite and that prior
to reaching steady-state oscillation the acoustic scattering

1922 J. Acoust. Soc. Am. 107 (4), April 2000
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will be greatly reduced. A reduction in seattering aftributed
to “‘ring-up’’ time effects was first detected by Akulichev® in
1985. However two more recent studies’® have failed to
measure any reduction in scattering.

This letter outlines a theoretical scheme which enables
the investigation of ring-up times of gas bubbles in fresh
water. The model has also been used to determine the extine-
tion cross-section area of bubble clouds of varymg popula-
tion distributions in a 150-kHz sound field assuming no
bubble—bubble interactions. This model has been used. to
help ascertain a possible reason why Suiter’ and Pace ef al.?
did not detect any reduction n scattering.

. THEORETICAL MODELING OF THE RESPONSE OF
A BUBBLE

As discussed in the Introduction, a gas bubble in water,
when insonified by a plane wave, will pulsate. The oscilla-
tion is, at least to a first approximation, that of a single de-
gree of freedom system, assuming small amplitude oscilla-
tions. In this case the restoring force is the elasticity of the
gas and the mass is the effective inertia of the liquid compo-
nent of the oscillating bubble. Damping, and thus energy
loss, is introduced into the system by three distinct
mechanisms?® energy radiated away from the bubble as
acoustic waves (radiation damping); energy lost through
thermal conduction between the gas and the surrounding lig-
uid (thermal damping); and work done against viscous forces
at the bubble wall {viscous damping).

Therefore a simple equation of motion, in the radius-
force frame, for such a system driven at a single frequency
would be

0001-4966/2000/107(4)/1922/8/$17.00 1922
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where 2% is the inertia of the system, hE! is the total damp-

ing in the radius-force frame, % is the stiffness, R is the radius
of the bubble, R is the cquilibrium radius, £, the acoustic
pressure amplitude, and w is the angular frequency of the
driving sound field.'" This is appropriate for bubble pulsa-
tions of small amplifude.
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The rate of loss of energy (power loss) subtracted from
the incident wave by the bubble is:

Power=bR?, 2)

tot

Twice during each bubble oscillation, R+ 0. Consider two
consecutive times, 7, and 7,,., when this occurs. The energy
lost from an incident plane wave through viscous, thermal
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a)

Acoustic Power Loss (W)

iy o= o

(iv)

)

and the average power loss in this interval is:

It is then a simple matter to calculate the extinction cross-
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FIG. 2. Simulations of a 1-mm radius
bubble in a 150-kHz (a) 1X10° Pa, (b)
500 Pa sound field. (i) Bubble wall
displacement [for (b) the y-axis has
been changed to show (R/Ry—1) so
that the axis values can be more
clearly shown]; (i) the instantaneous
power loss; (iii) energy loss over each
cycle of the insonifying sound field;
(iv) cumulative total epergy loss; (v)
extinction cross-sectional area of the
bubble over each cycle of the insoni-
fying sound field. The steady-state ex-
tinction cross-sectional area for a
1-mm bubble driven at resonance ac-
cording to linear theory (Ref. 16) is
1.03%X107° m?

t=t,,;. This is given simply by the ratio of the average

power loss in this period to the intensity of the incident plane

3) wave:

(4)
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N ]([p7+1wtn) 4 (5)

It should be noted that if, instead of the total energy loss
from the incident beam, it was the power scattered by the
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clarity in plotting, the discrete function {2, shown in part (v) of Figs. 1 and
2 has been interpolated to provide line plots for the cross-sections shown in
this figure and subsequent ones.

bubble which was of interest, then the above formulation can
be simply adapted by employing only that component of the
damping term bﬁf which relates to radiated losses (bX5).
This would give the acoustic scattering cross-section. How-
ever, a more exact form can be obtained by rewriting the
scattered power in Eq. (5) in terms of the emitted pressure
field, which can be formulated'® in terms of the bubble wall
motion:

5

!pR . e
| pT(RR +2R?)
& a1
; 4771‘“] - —dt
(W,,) tsty PocC
Q,= = . (6
1 I(ty i1 1)

where 7 is the distance from the bubble, p, is the fluid den-
sity, and c is the speed of sound.

Bubbles are nonlinear oscillators and as the following
analysis shows the ring-up time is dependent on the bubble
equilibrium radius, the driving frequency, and the sound
pressure level.
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Il. TIME-DEPENDENT EXTINCTION CROSS-SECTION
OF A SINGLE BUBBLE

To calculate the time-dependent extinction cross-
sectional area from Eq. (5), it is necessary to calculate the
velocity of the bubble wall over time as well as the total
damping in the radius-pressure frame. Although several op-
tions arc available,"’ in this paper R was found using the
nonlinear bubble wall velocity determined from the Keller
and Miksis equation'? a form of the equations of motion first
introduced by Herring.'?

The damping term 55 is obtained using Prosperetti’s
1977 analysis.'"* This is a lincarized theory for the small
amplitude forced pulsation of a bubble, describing the ther-
mal effects in terms of the effective polytropic index and
thermal damping constant, This analysis assumes a linear
regime. Therefore the only expression of the bubble nonlin-
carity in this system comes from the Keller—Miksis equation
(or equivalent). The resultant is therefore an approximation
only. Thus care should be taken when considering the abso-
lute values of b&fRz, especially for higher sound pressure
levels when bubble motion is highly nonlinear, as a signifi-
cant error in the calculation is likely. As discussed in Sec. 1,
computation of the scattering cross-section need not be lim-
ited by such linearizations, since small amplitude expres-
sions for viscous and thermal losses are not required.

Figures 1 and 2 show four illustrative cases, and each
figure is subdivided into five subsections [(i)—(v)] showing,
against a common time axis, the following: (i) the normal-
ized bubble radius; (ii) the instantaneous power loss deter-
mined from Eq. (2); (iii) the energy loss per cycle of the
insonifying sound field as determined from Eq. (3) (plotted
discretely for each cycle); (iv) a cumulative plot of the en-
ergy loss; (v) the time-dependent extinction cross-section
area for a single bubble, (),. as calculated by Eq. (5). Plot
(iv) is particularly interesting. Were a bubble to immediately
attain steady state, this plot would be a straight line of con-
stant positive gradient. However, if the energy loss is less in
the ring-up period, the plot will dip below the straight line
which would be drawn if the eventual steady-state behavior
were extrapolated to time zero.

Figure 1 shows the time-dependent extinction Cross-
sectional area of a resonant bubble in a 150 kHz sound field
of amplitude 10° Pa [Fig. 1(a)] and 500 Pa [Fig. 1(b)]. Figure
2 shows the response of a 1-mm radius. off-resonant, bubble
in the same sound fields. Further discussion of these results
is included in Sec. IV below.

Ill. TIME-DEPENDENT EXTINCTION CROSS-
SECTIONAL AREA OF A BUBBLE CLOUD

The above analysis can be expanded to give a first-order
estimation of the time-dependent extinction cross-section of
a bubble cloud. It is assumed that thc number density is
sufficiently small that bubble—bubble interactions can be ne-
glected, as is the reduction in intensity of the incident wave
as it propagates through the cloud (although a second-order
calculation could include this). This article is restricted to a
first-order calculation and thus will underestimate the extinc-
fion cross-section near to resonance.'> After calculating the
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FIG. 4. Response of (a) an example oceanic bubble population (based on the measurements of Phelps and Leighton, Ref. 15); and (b) a laboratory bubble
population (based on the measurements of Pace et al., Ref. 8) in a 500-Pa, 150-kHz sound field. Plot (i) shows the bubble population distribution, (ii) is the
extinction cross-sectional area oif a 1 m? cloud, resolved for each radius bubble assuming no interactions, and (iii) is the extinction cross-sectional area of the

1 m? cloud (i.e., summed for all radii for each cycle of the sound field).

extinction cross-scctional arca of a single bubble of varying
radii and compiling the results as in Fig. 3, the effective
response of a bubble layer with a given population distribu-
tion can be calculated. The density of the population is used
as a scaling quantity given the limitations discussed above.
Therefore the responsc of a nonuniform bubble distribu-
tion can be investigated by multiplying the responsc [calcu-
lated as for Fig. 1(a) and (b)] by a population distribution. In
addition the total response of the bubble cloud can be ascer-
tained by integrating to find the area under the extinction
cross-section radius curve for each cycle of the insonifying
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sound ficld. Figurcs 4 and 5 show the response for a bubble
population typical of an oceanic bubble cloud'® and an arti-
ficially produced bubble cloud (taken from the population
measurements of Pace ef al.®) in sound fields of 500 Pa and
5000 Pa amplitude. Since the acoustic attenuation method
used for measuring the laboratory population proved unreli-
able for larger bubble sizes in the data of Pace ef al..t their
population has been extrapolated in Fig. 6, up to a radius of
600 pm, to investigate the effect that this could have on the
time dependent extinction cross-sectional area (this is for il-
lustrative purposes only and in no way suggests that this
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resoved for each radius bubble assuming no interactions. (ii) The extinction cross-sectional area of the 1 m® cloud (i.e., summed for all radii for each cycle

of the sound field).
extrapolation reflects the true nature of the population).

IV, DISCUSSION

A simple comparison of the bubble wall displacements
depicted in Figs. 1 and 2 provides an intuitive guide as to the
effect of sound pressure level and the closeness to resonance
on ring-up time. It can clearly be seen that the time taken to
reach steady state is by far the longest for a resonant bubble
in a low amplitude sound ficld. A gentle build-up to steady
state is observed [Fig. 1(b)]. Converscly a resonant bubble in
a high amplitude sound field exhibits a distinctly nonlinear
response with significant initial transient activity before
quickly achicving a steady-state responsc [Fig. 1(a)]. Exami-
nation of the off-resonant bubble wall displacement plots
shows a reduced dependence on sound pressure level and a
rapid rise time with subscquent reduction and oscillation
(Fig. 2).

In the case of the resonant bubbles, the graphs of the
extinction cross-sectional area shown in Fig. 1 tend to follow
the mean bubble wall response exhibiting a brief, {ransient,
ring-up at high sound pressure levels and a gradual build-up
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for low sound pressure levels. The latter indicates potential
for reducing losses by using short pulses of ultrasound, an
effect confirmed by noting that in Fig. 1(b) (iv), in the first
30 cycles the curve dips below a straight line which might be
extrapolated back from the steady state (as predicted in Sec.
1).

A superposition of natural and driving frequencies is
evident in the radius plots [Fig. 2(i)]. The extinction cross-
sectional area for these off-resonant bubbles [Fig. 2(v)] is
more complicated and can be more easily understood by ex-
amining the plots of the acoustic power loss determined from
Eq. (2) [Fig. 23]

Although transients are more evident at the lower driv-
ing pressures [Fig. 2(b) (ii)], the tendency in both plots is for
the energy loss [Fig. 2(iii)] and extinction cross-section [Fig.
2(v)] to oscillate around the steady-state value at twice the
bubble natural frequency, although the cross-section takes
much higher values for the first few cycles. Clearly the pres-
ence of such bubbles would not be conducive to enhancing
acoustic transmission using pulsed fields. Figure 3 summa-
rizes the time-dependent cross-section of single bubbles. A
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‘“‘geometrical’’ contribution is seen from the large bubbles,
which oscillate for a few tens of cycles following the onset
of insonation around the eventual steady-state value. Smaller
bubbles contribute a lesser amount except around the reso-
nance condition. Here there is a peak, with a ring-up time
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FIG. 7. Extinction cross-sectional area of a single bubble of radius 20 um in
a 150-kHz sound field of varying sound pressure level between 500 and
25000 Pa.
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which tends to decrease with increasing driving amplitude.
Figure 7 shows how the extinction cross-section of a 20-um
radius bubble changes with increasing sound pressure levels.
The bubble response quickly deviates from an exponential
ring-up with a corresponding dectease in ring-up time. Thus
for the simulated response of a bubble cloud, which contain
large numbers of small bubbles, to a 150-kHz sound ficld the
response of the resonant bubble is dominant with a well de-
fined ring-up time for low sound pressure levels (Fig. 4). Tt is
evident (hat an increase in the sound pressure level can sig-
nificantly reduce the ring-up time. The results shown in Fig.
5 demonstrate this cffect. In the case of the extrapolated
bubble populations shown in Fig. 6, despite the numbers of
large bubbles being relatively few, their presence has a sig-
nificant effect on the response of the cloud as a whole, par-
ticularly during the first few cvcles of the insonifying sound
field. In this epoch, the early motion of these large bubbles
(characterized above as being a fall in the first few cycles
following oscillation toward steady state) appears to domi-
nate. Thus the presence of large bubbles and/or high sound
pressure levels can be counter-indicative for the enhanced
efficiency of peunetration of sonar through bubble clouds.
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Y. CONCLUSIONS

A theoretical study into the time dependence of the re-
sponse of air bubbles in fresh water to a continuous wave of
150-kHz sound field has shown that the ring-up time of a
bubble is affected by its closeness to resonant oscillation and
the amplitude of the driving sound field. Expansion of this
theory to investigate the response of a low density bubble
cloud of oceanic and laboratory origins has shown that a
significant ring-up time should be detectable 1if the predomi-
nant smaller bubbles are insonified at their resonant fre-
quency. Furthermore, higher sound pressure levels can ob-
scure the ring-up time of the resonant bubbles, and the
presence of large off-resonant bubbles even in relatively
small quantities can enhance this effect significantly.
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The measurement of an acoustic emission, or scatter, from a bubble is not difficult, However, an
accurate interpretation of that signal in terms of the bubble dynamics may require careful
consideration. The study presented here is at first sight relatively simple: comparison of the
predicted and measured quality factors of injected bubbles. While the measurement is normally done
by monitoring the decay of passive emissions from a bubble, this technique becomes difficult with
smaller bubbles. Therefore an active technique {is introduced, which removes all the
frequency-dependent effects on the measurement (such as transducer response} bar one. That,
critically, is the effect of the change in the bubble resonance (frequency and damping) which results
from the loading on the bubble due to the reverberant field. The vast majority of theoretical
treatments of bubble acoustics assume free field conditions, et the environmental conditions rarely
if ever match these. Therefore measurements of bubble damping are compared both with the
established free field theory, and with a new theory relevant to the prevailing reverberant conditions

(whether caused by tank surfaces, monochromatic: neighboring bubbles, or beth).

© 2002

Acoustical Society of America. [DOI: 10.1121/1.1501895]

PACS numbers: 43.30.Jx, 43.30.Ft [DLB]

I. INTRODUCTION

It 15 usually supposed that one of the simplest experi-
ments in bubble acoustics is the estimation of the equilibrium
radius of the bubble (R} and its quality factor () from the
exponentially decaying sinusoidal pressure trace obtained
when an air bubble is injected into water. The use of formu-
lations resembling those of Minnaert' or Devin® is almost
taken for granted in many tests. For example, to the authers’
knowledge, all sparging studies on the use of passive acous-
tic emissions to characterize the bubble population cite Min-
naert’s equation at the outset’™® (with the exception of those
which éschew equations™®). Sparging experiments (and in-
deed almost all such tank tests involving the low kilohertz
regime} include reverberation, yet like the vast majority of
papers on. bubble acoustics the assumption of free-field con-
ditions, implicit in the underlying formulations, is not ques-
tioned. This is true throughout the topic, extending to the
application of nonlinear equations of motion describing high
amplitude bubble oscillation.

For the particular and common task of inferring bubble
size From its resonance or natural frequency, the authors
previously showed that the presence of a reverberant field

“Electronic mail: tgl@soton.acuk
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could lead to significant emors if free-field formulations,
such as that of Minnaert, were used. In the present paper, the
rather more difficult problem of calculating the effect of re-
verberation on bubble damping 15 attempted. The importance
of this work can be judged by considering the following:
There are few end-point equations in bubble acoustics that
do not incorporate the resonance frequency and damping;
and there are few meastrements taken in the strictly free-
field conditions upon which the common methods of calcu-
lating the resonance characteristics are based. Reverberation
can arise from the free surface, or from neighboring bubbles,
and even from “anechoically lined” container walls since
these have limitations with respect to absorption and fre-
quency range.

The simplest way of describing bubble damping is
through use of a dimensionless damping coefficient, "1
Syor (Otherwise known as'a loss factor). This parameter equals
the sum of three dimensionless damping coefficients, corre-
sponding to viscous losses (8, thermal losses (&), and
the acoustic radiation from the bubble itself { 8,.4). For linear
systems at resonance, &, represents the reciprocal of the
quality factor, Q. Despite the fact that the damping coeffi-
cient.is very widely used, it is not always appreciated that the
115 are valid for monochromatic

@ 2002 Acoustical Society of America
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bubble pulsations only (which means the steady state linear
response to a single-frequency excitation) in the free field.
Even the more sophisticated studies'®™ available, which
would for example allow the calculation of damping during
the interval prior to steady state, still mamntain an assumption
of free-field conditions.

Section II describes the general theory. This is followed
by an image interpretation. The technique for measuring in
1solation the effect of reverberation on bubble damping is

then described.

Il METHOD

Section IT A gives the general theory for the effect of
reverberation on the Hwd loading impedance on a small
bubble in a test tank of rectangular cross section. Section
11 B describes the implications of this theory with respect to
the effect of reverberation on the bubble resonance frequency
and radiation damping. Section II C describes an image tech-
nique for caleulating the effect which the tank surfaces and
any neighboring bubbles have on the resonance of each
bubble 1n a pupulation in monochromatic conditions. Section
II D deseribes a new experimental method for taking mea-
surements in a reverberant tank, which eliminates all the ef-
fects of reverberation except for the loading on the bubble
wall, making it possible to study this effect in isolation.

A. Theory for the radiation loading on a small bubble
in a tank

The impedance presented to a spherically pulsating
bubble, radius R, is estimated from the average pressure ona
sphere of radius R that surrounds a point monppele having
the same volume velocity as the bubble. Consider a liquid-
filled rectangular tank that has rigid walls except for the up-
per surface, which is assumed to be pressure-release. The
complex eigenvalues of the tank are denoted by K3, These
are the forced-mode eigenvalues, and depend in principle on
the forcing frequency. However since this paper is concerned
only with modes which extubit low damping and resonant
behavior, the exact frequency dependence of X7, is not criti-
cal provided its value can be modeled close to resonance. Let
ky=w/c be the acoustic wave nmumber corresponding to
acoustic phase speed ¢ and angular frequency w, and 7, be
the loss factor for mode N (defined as the ratio of the imagi-
nary and real parts of K%, at resonance). Then (assuming an

Jwt

inplicit time factor of /%)

K=kt jhokymy  (ky real;, N=123,...). (1)
The analysis that follows allows ¢k to be interpreted as the
mode resonance frequency, provided 7,1, The first stage
of the analysis requires derivation of the acoustic impedance
presented to a pulsating spherical surface in this environment
[Eq. {6)]. This equation i$ derived in greater detail by Morse
and Ingard®® [their Eq. (9.4.6)], but an outline derivation is
given here to assist understanding of the terms in Eq. (6).

The pressure at point x in the tank, due to a pomt vol-
ume velocity source at point x;, is given™ by
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p(x):j‘”py - P X) i %)
A W

@)

Here U is the source volume velocity: the mode shape func-
tons, (X)), are evaluated at the positions of the receiver
(x) and the source (Xg); and A, is a nornalization constarit
defined by

j PRy AV =AY, 3
where V' is the volume-of the tank. The average pressure ‘on
a small spherical surface of radius R, centered on the source,
can be evaluated explicitly in the low-frequency limit (kR
—0) using the expression for p(x) in Eq. (2). The result is*
kv
4ar ’
provided that the mode with k=0 (for a hard-walled cavity)
is not-included.®

Equation (4) is the free-fleld result, as expected. It fol-
lows that it k;R<¢1 (but has a finite value), and 1f the tank is

sufficiently large for Eq. (4) to be valid (ie, kﬁf”?ﬂwR},
then an improved approximation is

@

, . Juwp
Yy ] koR—0; =
<P(R)> ppes U ( 0 y R

jop .
(PR))~ T U {pR) = (PR

N R T
:J(L’plj(m+?12=1;g, N(XO)

\

x| (5)

[ 1 1 \ )
’\Kif“ kg Ki’/ / '
where vector X, is the position of the center of the sphere,
and the différence between o, at the center and ¢ on the
surface has been neglected.*® The fluid loading impedance on
a small bubble in a tank can now be estimated by dividing

both sides of Eq. (5) by U/ and simplifying:

(PR)) L ke %)
Zs: 7 = J +‘-: -““——*"‘—2 2 e )
Y ATR 0= AR (K k) ]

(kR=1). (6)

This expression is the Morse and Ingard result [Eq. (9.4.6)]
for the acoustic impedance presented to a pulsating spherical
surface of radius R, which represents a single bubble in the
tank.

The first term in the brackets on the right-hand side of
BEq. (6) is purely reactive; it dominates in the limit £,R—0.
However, it simply represents the free-field ineriial fluid
loading on the bubble. What is more interesting is the devia-
tion from the free-field impedance, as given by the modal
summation terms. In particular, the bubble radiation damping
comes entirely from the modal summation terms (note that
no local viscous or thermal damping has been included at
this stage}. At low frequencies, the resistance Z8=Re(Zs)
consists of a sequence of resonant modal peaks. At suffi-
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ciently high frequencies the overlap of many modal peaks
will produce a smooth curve, corresponeing to

D

which is equivalent to the free-field radiation resistance. This
last result is derived in the analysis that follows [see Eq.
(30)]

The modal loss factors and resonance frequencies can be
found experimentally from transmission measurements in the
tank. Note from Eq. (2) that, in the neighborhood of a reso-
nance, the pressure at x due to a point source at x; will vary
as

1 1 1
Kfv”'k?) (%f—k'§)+f-ﬁzﬁ_ﬁo D

where the denominator D describes the resonance.
At the modal peak, ky=ky. Therefore at the half-power
points on the resonance curve,

plx)e ®)

fka\i“kél = P pdg ©)
1e.,
Vey—kol=gmyky  (y<1). {10)

It follows that the quality factor for the Mth mode of the
tank is equal to 77, . Once this is known, the real and imagi-
nary parts of Z; can be found explicitly from Eq (6). Pro-
vided the loss factors 7, are small, and omitting terms in 73,
{except where they oceur in |D %, in the following) the re-
sistance can be approximated by

PC o ,
VAL Y (1)
T kY 21 ’ o
where
§o= ‘ﬁv[(xo) (2- Vf\f) 7?&73’:?( (12)
T > . P
Ay \D?
Here |D*=(1~13)2+ (pyvy)? and vy=k,/ky, is the

ratio of the driving frequency to the resonance frequency of
mode N. In a similar way the reactance can be approximated
by

iz PP PO
™ A 2 T (13)

where

dndxg) (1)),
AN ‘D : '

Note that the modal summation terms S, in the resistance,
Eq. (12), exhibit resonance, while the Ty, terms in the reac-
tance vanish at resonance [ie, when vy=1; Eq (14)]

For modes of very high order, i.e., kyy— or vy—0, the
summation terms §,, of Bq. (11) behave like

(14

N

Sy~ ’{SN (15)

and the summation terms 7', of Eq. (13) behave like
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{16

There should therefore be no problem over convergence.
We can check this by using the asymptotic. relations

e 3
T oy vy

daN 4
—— = uy) vy,
Yy

T3 3
Ne~dey= vy,

(17

The product of the modal density #(v,) with §, or Ty re-
mains finite, in the limit »,—0.

Note that the sums in Bgs. (11) and (13) extend from
N=1 to N=c over integer N. They may be estimated be-
vond some lower limit ¥, by replacing the sum over N with
an integral over v that involves the modal density n{¥):

- 0
> Sy~ f S(n(v)dy, (18)
¥

N=Ny g
and similarly for £, w,Tar. The lower limit v, is given by
U

v =koLy, (19
where L, 1s the length that characterizes the tank dimensions.
Thus vy is a dimensionless frequency above which the
modes of the tank are sufficiently close-spaced to be re-
garded as a continaum for the purposes of Egs. (11) and (13).
The upper limits of the integrals are zero, corresponding to

Ir
Koy O

Note that the modal density n{v) follows from the
asymptotic mode count N{(k):

il 4 ]
Nik)=—7, 20)
6
where I is the tank volume. Thus
By g\t v
Niky) = ;L:(i ’ 21
6’7)’2 L YN 6 ’éTz
and
N RV B
‘ :——0—;1’"":;:(1;), (22

dv

27"

by definition. In Eq. (22} » is regarded as a continuous vari-
able. Replacement of the summation step (ANV=1) in Hgs.
{(11) and {13) by an integration increment, dN=n{r}dv,
leads to Eq. (18).

The final expression for Z , based on summation of Egs.
(11) and (13) up to mode N,, followed by the integral ap-
proximation of Bg. (14) for N>N,, is as follows. The real
component of Z, is

KV (v (2-v)gv
2,9_2 0 ‘\} . L,.«.)Z & 9721,2

[ Mg
¢ o
Z‘f:ip (E Syt
Tk =t

and the imaginary component is
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To obtain Egs. (23) and (24), Eq. (22) for n(v) has been
substituted into Eq. (18). The expressions for S(») and T(#),
Egs. (12) and (14). have been approximated by replacing
(%) Ay with its average value of unity.

Equations (23) and (24) are the main results of the the-
oretical analysis of this section. Two limiting cases can use-
fully be distinguished, corresponding to low and high fre-
quencies. In the low frequency limit, defined by

koLl =vy<€l,
the contribution of the integral terms is small compared with
that of the summation terms. Note that the integrals in this

case do not pass through any resonances.
In the high frequency limit, defined by

koLo=

the conmbutwn of the integral terms is dominant. Provided
the overlap of individual-mode responses is sufficient to jus-
tify the continuous-distribution model, particularly in the re-
gion close to resonance (w=1) where the integrands are
largest, we can estimate the resistance and reactance as fol-
lows:

1

(1-+%)

e . 24
(A= egir? ey

(25)

. pcky T ,
L ’::—;]resé‘ Tres» (27)
&
i wp 3]
IR (28)

Note that the integral contribution in Eq. (24) tends to
cance1 either side of v~ 1, which is why Eq. (28) gives just
the free field value. In Eq. (27), I, represents the value of
the integrand in Eq. (23) at the resonant peak, ie.,

ITCS:—: (: v 1 ) (39>
7]1’63
Thus
. peky \
Z(high frequency)= . (30
47

which is the free field value (as expected).

B. Practical implications

The practical implications of the radiation loading result
of Egs. (11) and (13) are interesting, in terms of estimating
the bubble radius and damping from the medsured acoustic
emissions of a single bubble. We define 7, as the acoustic
impedance of the bubble,” that is, the ratio of the pressure
change Ap to the inwards volume velocity at the bubble
wall. If Z_ 1s the external acoustic impedance due to fluid
loading on the bubble, then resonance occurs when
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Z+ Zy=0. (3D

Equation {31) can be used to determine the relationship be-
tween the pulsation resonance frequency and the equilibrium
bubble radius. For example, since the apparent bulk modulus
of the gas within the bubble {of volume V) when subject to
a pressure change Ap is B= ~V,Ap/A¥,; , then assuming
single-frequency simple harmonic motion at circular fre-
quency w, the acoustic impedance of the bubble at low fre-
quencies (kgR<€1) is

Ap B
-ijVb

. (32
j. [ih) Vb

If the gas within the spherical bubble is assumed to be-
have polytropically (i.e., p¥*=constant), then B=kp,,
where p, 1s the ambient static pressure on the bubble and «
is the polytropic index: The bubble at resonance (w=uwiy) is
described by Eq. (31) (where in the reverberant conditions of
the tank, Z, is described by Z, from Sec. 1T A). If damping is
small and hence the resistive terms are neglected, then Z,
and Z, are almost entirely reactive, w, 15 real, and Eq. {13)
gives

J&Pg { 1
b, P\ amR iy

V n=1

Z TN) (kR<1), (33)

where 7T, is defined in Eq. (14). The summation term in Eq.
(33) represents a reverberant-fleld correction to the free-field
radiation reactance. Neglecting the correction leads to the
free-field expression for the resonance frequency of the
bubble:!

[4nRrp, 1

_ (34
oV, R )

g =

An improved approximation is found by evaluating the
reverberant correction term at the Minnaert frequency g,
The corrected resonance frequency for bubble pulsation in a
tank follows from Eq. (34), with the substitution

R? >Z Ty

darc? o 1 4wpc?

o +

T}Jf - §

11
RTR

2 o
oV V=1 3Kpg V

35
Here Ty, denotes Ty, of Eq. (14) evaluated at wg = wq,. The
presence of the summation in Eq. (35) can be seen as a
correction which modifies the “free-field” resonance fre-
guency for bubble pulsation. A similar correction factor was
used by Leighton et oL to modify free-field theory, and thus
to estimate the bubble size from the resonance frequency
measured In reverberant conditions in a pipe.

However there is a critical difference when caleulating
how the presence of reverberation changes the bubble damp-
ing. As can be seen from Eq. (11) there is no equivalent
free-field term: the radiation damping result is entirely made
up of the summation terms, and hence the modal structure of
the field has to be very well characterized to evaluate this.
This can be attempted by measuring the character of the
sound field {removing, of course, transducer response, etc.,
see Sec. II C) and identifying the component modes through
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use of Eq. (5). The data can then be converted into effective
measurements of the radiation resistance. An alternative but
equivalent approach to estimating the reverberation effect is
described in Sec. 11 C. Here an image model is used to cal-
culate the effect of tank surfaces on the radiation impedance
of a single oscillating bubble. The technique can also be used
to characterize the resonance of each bubble in a population
driven to steady state by some external source: the effect on
each bubble of both the tank’s surfaces and of the neighbor-
ing bubbles can be incorporated.

C. Method of images

The effect of neighboring reflective boundaries on the
radiation impedance of a bubble can be modeled using the
method of images. For the specific case of the tank of rect-
angular cross-section discussed in Sec. 11 A, the location of
the images is calculated from the position of the bubble rela-
tive to each wall, the result being an infinite number of im-
ages arranged in a grid-like pattern. If the complex pressure
reflection coefficient of the various tank walls were of unit
magnitude for the frequencies emitted by the bubble, then a
continuously emitting bubble would of course generate re-
verberant acoustic intensities at the bubble surface which
would grow with time. This produces a coherent tadiation
version of Olbers’ paradox,”® by which Halley, Cheseaux,
and Olbers realized that, if the number density of stars were
constant and the absorption of light in interstellar space were
négligible, then unless the universe were finite, the night sky
would generate at the observer an intensitv equal to the av-
erage surface intensity of the stars.

The pressure field radiated by the bubble p consists of a
direct field p, and a reverberant one p -

P=DpatDo, (36)
where in the condition kR 1 the reverberant field is virtu-
ally constant over the bubble surface and very similar to that
produced at the bubble center location by a point source
having the same volume velocity as the bubble. The total
acoustic umpedance presented to the bubble, Z,, is

p pd Pv

Zg T s 37\
Uty v 37
where p, is the direct field on the bubble surface:
. 2
_Jpa  pw IR .

{(suppressing the harmonic time dependence throughout).
Consider two bubbles emitting monochromatic monopole
{kR~€ 1) radiation, the first having volume velocity U and
the second having source strength FU. The pressure at
bubble 1 as a result of the radiation from bubble 2 is

/ L%
~ jier'§
L

>='w),FU{
P12=Jof \ dr

(39)

where the bubble separation » introduces both a phase factor
and an attenuation. The impedance of Eq. (38) resulting from
a population of monochromatic bubbles is therefore
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where the subseript m=2,3, ... . ,my, indicates all bubbles
other than bubble 1. These entities may be real bubbles
drivén linearly at steady state by an external monochromatic
source: Equation {40) might also describe the impedance of a
single bubble in a tank (where the bubbles m=2.3, ... o
are images); or indeed be-used to calculate the resonance
characteristics of each bubble in a monochromatic popula-
tiort within a tahk (ih which case the populaticn comprises
both real and image bubbles). To compare with the calcula-
tion of Sec. II A and II B, a single bubble in a rectangular
tank- would have images characterized by a range term #,
(equal to twice the shortest distance between the real bubble
and the wa 1) and a complex amplitude term F,

F,.|e ™/ ®n’m =% which would depend on the complex re-
‘ﬂectlon coefficient of the boundary in question. Then if the
small-damping polytropic conditions of Sec. II B apply, the
resonance condition occurs when

sm(kry, —n)

+J cos(kr, — {40}

K w 0 - F
JKpo _JP NN ) (sin(kr, —9.)
(’JQV 4’TR dre 4”Tm:2 Vi
*‘/ COS(k}"m - ﬁm).) . (41 )
Equating the imaginary paits gives the resonance frequency
R 3apylp .
™ 42)

\/1 +2 (Rir;, {Fm IC,OS(/CI',‘,,I — ) |
m=2 ?

which reduces to the Minnaert equation [Eq. (34)] when, in
the free field, the summation term is zero.

The effect of neighboring bubbles and boundaries on
radiation damping can also be calculated by this method.
Assume that the radiation damping in free space is to be
characterized by the dimensionless damping coefficient,
8raafee. Which is proportional to the real part of the total
acoustic impedance presented to the bubble in free space,
pot/dme= pwk/4w. The ratio of the damping in reverberant
conditions, S,qevern - 1o that in free space, equals the ratio of
the real parts of the respective total acoustic impedances pre-
sented to the bubble. Taking again the case of Sec. I A (a
single bubble emitting into. a rectangular tank} the ratio of

the real component of Eq. (41) to the free-space value is
Ilebll’l(ki‘m - (8572)

kr,,

7

‘Srad,revexb

—_—]J,.V

m=2

o

43)
5rad,ﬁ'ee
For solution of the tank case described in Sec. IT A and
Egs. (42) and (43), the spatial digtribution of the images is
calculated geometrically, and the frequency-dependent com-
plex reflection coefficient associated with each image is sim-
ply calculated from the number of reflections from the tank
boundaries. The predicted quality factor for a bubble m re-
verberant conditions is then

Leighton et al.: Effect of reverberation on the damping of bubbles



Q‘: 1/§tot: 1f( ‘si‘ad,rev'erb_" 5ﬂ;+ é‘vis) > (44)

where: &y, and S, are found from the usual monochromatic
formulations,? and where 8,4 even 1s calculated by substitut-
ing into Eq. (43) the monochromatic value of &§,4see, again
calculated from literature.”

With reference to the commerits at the start of this sec-
tion, it should be noted that Eqgs. {42) and (43) assume that
the emission from the- images is steady. If for example the
source bubble.emits an exponentially decaying sinusoid typi-
cal of injection, then the nonsteady nature of the returns in-
troduces an error of order &7,

D. Experimental measurements

The method used 1n this paper for measuring the bubble
resonance and damping relies tpon estimation of the mpulse
response of bubbles injected one at a time into a tank mea-
suring 0.6 m>0.2 m*0.23 m deep internally, and having
glass walls of 6 mm thickness. For the “passive” technique,
this consisted of simply measuring the hydrophone signal
detected following injection of the bubble through a needle.
Forthe “active” technique, the hydrophone signal of interest
1s not that emitted by the bubble on injection. Rather; it 1s the
signal scattered by the bubble some time later, when it is
driven by band filtered white noise (1-25 kHz, generated
using a Bruel and Kjaer Type 2032 dual channel signal ana-
lyzer). The bubbles examined in this paper have natural fre-
quencies in the tange 4-11 kHz. The bubble rises after in-
jection, and is driven into oscillation by the pseudorandom
driving field. Its buoyant passage through a 1 MHz beam
triggers the data acquisition from the hydrophone. It 15 im-
portant to know the location of the bubble and hydrophone
for comparison with theory: The active technique 15 particu-
larly useful in measuring the resonance characteristics of the
smaller bubbles, whose natural emissions after injection are
of insufficient amplitude above the noise to obtain sufficient
cycles fora precise measurement of their decay. The follow-
ing describes how the scattered signal is estimated when the
active technique is used

The received signal at the measurement hydrophone,
¥{(1), in the active configuration, can be considered as the
superposition of two components, 1.e.,

(O =y, (1) +y(1). (45)
where y,(t) is the signal due to the direct field (ie., the
signal that is observed in the absence of a bubble), and v, (#)
is the signal arising from the acoustic field generated by scat-
tering from the bubble. In practice the magnitude of the di-
rect fleld component 1s sufficient to corrupt measurements of
quantities, such as quality factors, based on the raw data
y{#). If no bubble is present, then evidently the measured
signal 1s solely due to the direct fleld component, y,(f).

Figure 1(a) illustrates a typical example of the spectrum
of a signal received at a hydrophone when an active configu-
ration is employed with a bubble being present. The spec-
trum of the electronic signal used to drive the projector {(band
limited Gaussian noise} is also shown. The resulting hydro-
phone signal contains contributions from the direct field and
the scattered signal. The “N”-shaped feature at approxi-
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mately 3 kHz is a result of bubble scattering.?” The problems
of exploiting this data are evident. The comparatively low
level of the scattered signal relative to the direot field render
the feature difficult to discern even in this relatively small
frequency range (its peak is of a similar magnitude to the
nonbubble feature at around 6 kHz); and estimation of the
bubble quality factor from such a feature is prone to error
{see the following). Our methodology aims to reduce the
direct fleld contribution and allow aceurate measurements to
be made.

To estimate the scattered field we first make measure-
ments in the absence of a bubble. A known band limited
white noise signal, x(1), 1s used as an input to the projector
and the resulting hydrophone signal i1s measured. Using stan-
dard linear systems theory*® we can construct an estimate of
the systein impulse response, 4,(f), from these two measure-
ments. Assuming that the modeling is successful then

Y1) =h()*x(1), (46)

where an asterisk is used to denote linear convolution. The
accuracy of the model can be assessed as a function of fre-
quency by computing and examiung the coherence
function **

A bubble is then introduced to the system. Once again a
band limited white noise signal, x(£}, is used to drive the
projector. From the driving signal an estimate of the direct
field component of the hydrophone signal is constructed by
convolving it with the estimated mnpulse response, h(Z),
leading to an estimate of the scattered signal:

V(D) =y () —h(D* (D). {47)
Here y.(1) is an estimate of the contribution of the bubble to
the acoustic fleld. The resulis of applying this procedure to
the data in Fig. 1(a) are shown in Fig. 1{b). The spectrum of
the signal after the effect of the direct field has been sub-
tracted shows a distinct peak close to 3 kHz, for which the
ratio of center frequency to the bandwidth gives the bubble
quality factor. Figure 1{b) illustrates the error that would
have been introduced if one had erroneously assumed that O
could be obtained from the equivalent parameters associated
with the 3 kHz peak in Fig. 1(a).

This model takes account of any shaping of the excita-
tion spectrum that may occur as a result of a modal field
within the tank. This having been removed, what remamns is
the effect of reverberant loading on the bubble resonance and
damping.

. RESULTS

Figure 2 shows the quality factor of the bubble as a
function of its natural (for the “‘passive’ measurements:
B.@) or resonance (for the “active” measurements: [1,0,X)
frequency. Results from tap, distilled, and newly acquired
seawater are shown. The solid curve indicates the quality
factor predicted by Devin’s theory, which relates to free field
conditions. The dashed line indicates the result predicted by
Hq. {43), with the dotted lines on either side indicating the
maximum and minimum velues found by recalculating the
prediction repeatedly, allowing the bubble position and the
wall reflection coefficient to vary within the limits of uncer-
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tainty of each (the latter having a much smaller contribution
that the former, the prediction being fairly robust within the
allowed variation of reflection cocfficient). For clarity, crror
bars are not shown (75 Hz; =1 in QO for /<6 kHz, =2 in
Q for 6<f<9 kHz +4 in Q for />9 kHz). The lack of
passive data above 6 kHz reflects the signal-to-noise prob-
lem, described in Scc. I C. which makes the technique dif-
ficult for the smaller bubbles. The active technique is not
limited in this way.

The discrepancy between observation and the prediction
of Devin is less than the error associated with the observation
for 26 of the 96 data points. There being negligible uncer-
tainty on this scale in (he uncertainty associated with the
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Devin curve, the conclusion is that Devin’s theory is inap-
propriate for the reverberant conditions found in this typical
test tank, in the frequency range most often studied in bubblc
acoustics. In contrast 76 of the 96 bubbles liec within one
error of the theory presented in this paper. This comparison
needs interpreting with some caution, as discussed in the
following.

IV. DISCUSSION

Although the disagreement between measurement and
Devin’s theory indicates the need for a theory applicable to
reverberant conditions, and while the authors have faith in

Leighton et ai.: Effect of reverberation on the damping of bubbles
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FIG. 2. Graph of the quality factor of the bubble as a function of its natural (for the “passive” measurements, B, ®) or resonance (for the “active™
measurements, [ O X) frequency. Results froni tap (B, (1), distilled (®, O) and newly-acquired seawater (X) are shown. For clarity, error bars are not shown
{75 Hz; =1 in Q for <6 kHz, %2 in Q for 6<<f<<9 kHz; *4 in Q for £>9 kHz). The curves indicate predictions of the theory of Devin (—) and of this
paper (---), either side of which is a dotted line indicating the limits of uncertainty in.the latter.

the theories of Sec. II, implementation of that theory to cal-
culate the modification to bubble resonance imparted by re-
verberant loading is not casy. Whereas calculation of the ef-
fect on resonance frequency!! is possible by using Eq. (37),
the effect on the damping is very sensitive to details of the
reverberation. The resulting uncertainty allows a range of
predicted values for @ at each frequency in Fig. 2, while the
standard free-field theorv predicts a single value. The sensi-
tivity of the prediction to the reverberation parameters is of
course greatest at the peaks and troughs in the plots, and
hence the extreme predictions of 0>40 should be inter-
preted with caution. For the most part the reverberant theory
suggests for this tank there will be deviations from free-ficld
predictions of usually up to Q~60%, and thesc are ob-
served. In addition the predicted sign of the deviation (which
can be positive or negative depending on the fiequency) is
borne out in the data.

While the magnitude of the discrepancy is difficult to
calculate precisely, the form for the quality factor of bubbles
in this reverberant environment that is predicted by the
method of images technique described in Scc. 11 C, agrees
with the trends expected from the general theory of Sec. IT A.
Equation (7) predicts that at sufficiently high frequencies, the
damping will tend to a smooth function following the “free-
field”” solution. This is a result of modal overlap. The predic-
tion in Fig. 2 bears this out, although in the range considered
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the influence of distinct modes is evident. At the lower fre-
quencies the calculation becomes difficult because of conver-
gence problems [note that |D]*=(1—vi)?+(nyvy)? in
Eqs. (11) and (12) becomes very large when ko—k,y, then
vy—1]. Paradoxically this means that the effect of rever-
beration can be easier to calculate in small tanks than in
larger ones. This is because the bubbles most often consid-
ered in test tanks have natural frequencies of the low kilo-
hertz order (sece the following). Therefore unless the tank is
sufficiently vast and sufficiently damped that this range is
higher than the Schroeder frequency, then to ignore rever-
beration the bubble natural frequency must be significantly
less than that of the first tank mode'' (depending on the
losses, which are generally lowest for these low frequencies).
In tanks of several meters on a side this in practice would
likely occur only for bubbles resonant at O (10 Hz). Such
bubbles would generally be much larger than those typically
studied in a test tank. It is well-known that if the intention is
to inject single bubbles into a tank for controlled tests, there
is a range of bubble size outside of which this process be-
comes difficult. Bubbles of centimeter-size break up, and
bubbles of less than around 200 ram tend to coalesce into
larger bubbles at the nozzle.® Even exotic methods (e.g.,
manipulation of the surface tension or pressure head, vibra-
tion of the needle, etc) can only expand this range to a
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limited degree. Of course smaller bubbles can be produced
by sparging, wave breaking>® etc., but these bubbles almost
always comprise a subset of ‘a population which includes
larger bubbles giving significant natural emissions atroughly
1-10 kHz.

As this paper has shown, this may well be a problematic
range: the frequencies may be insufficiently high to generate,
via model overlap, the effectively “free-field” solution of
Eq. (7); yet they may be so low that anechoic linings are
insufficient to remove reverberation. For example, even with
the free surface replaced by lining, the “anechoically” lined
tank of Bjome and Kjeldgaard had a pressure amplitude re-
flection coefficient of ~0.3 at 10 kHz, the lowest frequency
they measured. The actual performance of linings at the fre-
quencies of interest is not-always reported in bubble tests.

As an 1illustration of the problem, a prelimindry attempt
was made to use the results of Fig. 2 to confinm or counter
the suggestion®’** that bubble damping may depend on sa-
linity. That suggestion followed from a study of the injection
of single bubbles into a tank having “acoustically transpar-
ent” walls. This smaller tank was suspended in a larger 2.5
X3.6%3.6 m> water tank, where “the bottom and walls of
the [larger] tank were lined with 82-cm high redwood
wedges with 30 em>30 cm bases; these wedges have a large
acoustic absorption.”* Being cognizant that such statements
depend on the frequency of interest, an investigation®™ was
made to determine which modes could be excited in the larg-
est tank at frequencies of less than 1 kHz, and identified ones
at around 540 and 950 Hz,

It is well known that dissolved salt can atfect popula-
tions of bubbles, those formed in salt water tend to be more
numerous, particularly regarding the smallest bubbles, and
less prone to coalesce than bubbles in fresh water®? ~>® When
comparing wave breaking in fresh water with that in salt, it is
one thing to attribute acoustic differences to changes in
populations of bubbles which, as individuals, have un-
changed acoustic properties. That is to say that, even though
the collective effect may be affected by differences between
the fresh and salt water bubble populations, the single-bubble
acoustics is the same (although modifications may be neces-
sary to surface tension and thermal damping terms, etc., as a
result of the “dirty” nature of sea water™®). It is quite another
to suggest that the single-bubble dynamics might be differ-
ent, which is onie possible interpretation of the findings of the
study” mentioned previously. In that, measurements were
made of the logarithmic decrement of relatively large single
bubbles (1.1-2.4 mm radius) injected into water having a
salinity range of 0°/.,—35/,, (obtained using commercial
salt'!). Both the sound pressure level and the quality factor
were observed to change with salinity, but no mechanism for
such a single-bubble effect has been proposed. If such a
single-bubble effect was robust (and not, as speculated in the
following, a by-product of the reverberation), it would have
major implications throughout ocean bubble acoustics, for

example in measurements of the bubble population®* ¢ and

the response of bubbles to short acoustic pulses.*’~°
Prior to the current paper, no account has been taken in
test tanks of the effect of the reverberant field on the bubble

damping, That two distinct modes at 540 and 950 Hz could
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be identified in the tank used in the earlier study™ suggests
that the data were taken in the frequency tange (roughly 1--3
kHz} at which the effect of reverberation is most problem-
atic, as discussed previously. Taking reverberation into ac-
count, the results of Fig. 2 are unable to confimm or deny the
earlier proposition that sdlinity affects the damping of single
bubbles: the seawater data (X) show a similar measure of
agreement with the prediction of reverberant theory that is
exhibited by tap and distilled 'water. Hence the disagreement
which is seen in this' paper between the seawater data and the
prediction of Devin can be attributed to reverberation. That is
not to prove that reverberation was responsible for the earlier
finding *** However the potential for reverberation to com-
plicate the observation is clear. As-an example, even small
changes in frequency/sound speed can tune. m or out of the
effect of a given mode, leading to significant changes in @
(Fig. 2). While varying the salinity will change the sound
speed in a predictable manner® in single-bubble tests, when
populations are entrained there Is a second, and often greater
effect. If changes in salinity. affect the population of bubbles
entrained, for example by a breaking wave, then varying the
salimty will mdirectly affect both the amount of reverbera-
tion and (through the: effect of the bubble population on the
sound speed) change the modal frequencies of the tank. Fig-
ure 2 suggests that mode frequency changes of O (1%) can
cause changes in Q@ of O (10%). Therefore it is strongly
recommended that reverberation be considered in tank tests,
and other reverberant environments.*

The importance of reverberation on bubble resonances
should not be underestimated, and its effect cannot be easily
dismissed. It is not confined only to frequencies of tank
modes: apart from the frequency region well below the first
mode, ™ or well above the Schroeder frequency, the effect is
potentially very problematic for three reasons.

{1} Calculation of its influence on radiation damping in par-
ticular (and, to a lesser extent, on the relationship be-
tween the bubble radius and natural frequency) requires
detailed knowledge of the reverberation.

Small changes in damping can have major effects close
to bubble resonance, and discrepancies from the free
field predictions of up to ~60% are here observed.
True free-field conditions are rarely found in bubble
acoustics, with even the “opén” ocean containing a free-
surface, and scatterers which include other bubbles; and
“anechoic”™ fittings can give significant reflections at the
resonant frequencies of the larger bubbles.

2

o
(%)
N

Finally it should be recalled that the ubiquitous assump-
tion of free-field conditions extends beyond bubble entram-
ment emissions and linear scattering, to the nonlinear models
of bubble motion (such as the Rayleigh-Plesset, Herring—
Keller, and Gilmore-Akulichev formulations). Certain sce-
narios exploit modal fields, such as in measuwrement of the
bubble size distribution.”® ** Of particular note is the com-
mon practice of levitating bubbles in a modal sound field for
measurements of, for example, sonoluminescence,’® rectified
diffusion,”” or (with the comment of this paper particularly in
mind) resonance and damping.*®*® In such circumstances the
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effect and validity of the free-field assumption must. be as-
sessed.
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