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Abstract 

Most descriptions of the scatter and attenuation of acoustic waves in water by gas 

bubbles refer to the steady state bubble pulsation, in particular when the concept of 

the acoustic cross-section of the bubble is applied. However, it is becoming 

increasingly common for the bubble to be driven by pulses so short that the 

oscillation may not reach steady state (for example, short pulses are used to overcome 

reverberation and multipath complications and to obtain range resolution). Hence the 

option for describing the acoustic effect of the bubbles during the transient period 

needs to be considered. The specific applications considered in this theory are in the 

inversion of acoustic attenuation to measure bubble populations, and in exploring the 

possibility of enhancing sonar performance in bubbly waters. 

Consider the concepts of a resonant bubble taking a finite time to reach steady state 

oscillation and the time-dependent cross-section of a bubble. The potential for using 

these characteristics for the enhancement of sonar detection in bubbly environments 

is discussed, and previous studies are reviewed. Previously Akulichev has observed 

an effect on bubble scatter when the duration of the driving pulse was varied. The 

theory presented by Akulichev to model this incorporated only the contribution of 

bubbles at resonance, which is a severe limitation. Attempts to find a pulse length 

dependence in test tanks in the United States and United Kingdom were subsequently 

unable to find any, and the attempt to extrapolate Akulichev's theory to incorporate 

off-resonance effects was flawed. Hence a major goal of this thesis is to explain these 

apparently conflicting observations and in so doing improve upon the theory. 

In order to investigate the potential for sonar enhancement, a theory for the time-

dependent cross-section of a bubble using a non-linear bubble model has been 

developed. The model has then been extended to allow the estimation of the acoustic 

cross-sections of a 1 m^ cloud, neglecting propagation effects. A further cloud model, 

which takes into account propagation effects, has been developed to calculate the 

attenuation from a finite bubble cloud. The model has also been adapted to allow the 

input of experimentally measured waveforms. 

A laboratory experiment to measure the attenuation is described, and the results 

(using both pulses and chirped signals) are compared with theory. The experiments 



were conducted i n a n S m x S m x S m deep fresh water tank. The bubble cloud was 

generated by electrolysis. The attenuation from a series of pulse lengths and chirps, 

with a fixed bandwidth but variable duration, was measured. Good agreement 

between theory and experiment is shown but no sonar enhancement was achieved 

using the current experimental arrangement. Use of the model allowed confirmation 

that the type of bubble populations that are usually generated in test tanks would not 

be expected to show such enhancements, but that enhancements might be seen in 

population distributions found in the ocean environment. This is proposed and tested. 

It is also an explanation for the conflicting observations in the previous studies 

mentioned above. 

A further series of trials were conducted at a beach on the south coast of the United 

Kingdom. An air filled buoy was mounted in the surf-zone and a Furgo-UDI Ltd. 

transmit/receive array was used to test a variety of waveforms. Short pulses were 

shown to improve target detection at some frequencies. However a combination of 

short pulses and optimisation of the transmit frequency gave the best results. 

Although for decades the emphasis has been on the effects of resonant bubbles, this 

thesis uses these experimental results to underline the importance of the contribution 

made by bubbles close to (but not at) resonance when considering short pulse lengths. 

The response of these bubbles can easily mask the ring-up of resonant bubbles. 

Furthermore this critical near-resonant bubble response is not included in the simple 

linear models used in previous studies mentioned above, and is the cause of the 

discrepancy between the experimental and theoretical results of these previous 

studies. 

Ill 
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kĵ p stiffness in the radius-pressure frame 

kyp stiffness in the velocity-pressure frame 

x" poly tropic index 

Z, length 

Lq width of thermal boundary layer 

A wavelength 

M number of moles of gas 

m mass 

iiipp radiation mass in the radius-pressure frame 

NL background acoustic noise level 

n number of bubbles per m^ per jim increment in radius 

He number of electrons liberated to produce a gas molecule in electrolysis 

P acoustic pressure 

acoustic pressure amplitude 

Pf̂ i acoustic pressure radiated by a bubble 

Pj incident driving pressure amplitude 

ix 



Pg hydrostatic hqiiid pressure outside of the bubble 

pressure within the bubble at equilibrium 

pressure in the liquid far from the bubble 

Pg pressure immediately outside the bubble wall 

p density (generally of the fluid surrounding a bubble) 

Q the quality factor 

gc electrical charge 

a surface tension of a liquid 

R range from the transmit/receive array to centre of bubble cloud in the range 

dependent cloud model 

Rx distance in x-plane of a bubble from the receive array in the range dependent 

cloud model 

Ry distance in y-plane of a bubble from the receive array in the range dependent 

cloud model 

distance in z-plane of a bubble from the receive array in the range dependent 

cloud model 

bubble equilibrium radius 

R^ displacement of bubble radius from equilibrium 

R^ radial displacement amplitude of the wall of a spherical bubble 

R velocity of the bubble wall 

R acceleration of the bubble wall 

r range 

S cross-section of a bubble cloud 

extinction cross-section of a bubble cloud 

Sa surface area 



Sn time dependent scattering cross-section defined by V A Akulichev 

SL acoustic source level 

t time 

T sonar equation processing time 

2^ penod 

Tgo reverberation time 

TL acoustic transmission loss 

TS target strength 

Tq characteristic relaxation time to steady state of an oscillator. The time taken 

for an oscillator to reach (l - g"') or 63% of its maximum amplitude. 

T acoustic pulse duration 

0 energy loss 

(p phase constant determined by initial conditions 

y volume 

X a distance 

scattering cross-section of a bubble 

extinction cross-section of a bubble 

Rayleigh scattering cross-section 

gGometric Scattering cross-section 

resonant cross-section 

non resonant cross-section 

(u angular frequency (= 2?^ 

(Uo resonant angular frequency (= 2;^) 
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CHAPTER 1 

INTRODUCTION 

1 Introduction 

Historically the application of active sonar for target detection has been limited in 

bubbly environments such as the surf-zone, or the subsurface ocean layer^ when wind 

speeds exceed 7 m/s. This is a direct consequence of the excess attenuation from the 

oscillation of bubbles in a sound field, through scattering and absorption losses. 

These losses^ can be as great^ as 30 dB/m between 50 and 100 kHz, significantly 

reducing the operational range of sonar. If a means could be developed to reduce 

these losses, it may facilitate target detection and underwater communication in 

bubbly environments. 

One possibility of enhancing sonar performance in bubbly waters is through the use 

of very short duration or broadband signals. However, most descriptions of the scatter 

and attenuation of acoustic waves in water by gas bubbles refer to the steady state 

bubble pulsation, in particular when the concept of the acoustic cross-section of the 

bubble is applied. When a bubble is driven by very short duration signals the bubble 

response may not reach steady state, hence the option for describing the acoustic 

effect of the bubbles during the transient period needs to be considered. 

This thesis presents theoretical and experimental work exploring the potential for 

short duration and broadband signals to investigate their potential for sonar 

enhancement in bubbly environments. It has been divided into six chapters. In 

addition, an important collaborative study that arose from the measurements taken to 

design the tank experiment is bound at the back of the thesis as Appendix G (because 

the investigation grew beyond the main topic of the thesis). 

The first chapter introduces bubble dynamics in an acoustic field by reviewing linear 

models for the bubble damping terms and for calculating the response of bubble wall 

to an acoustic field. The concept of bubble acoustic cross-sections is also introduced 

1 



and the implications of the presence of bubbles for sonar detection are discussed. 

Previous work on sonar enhancement is reviewed, and a hypothesis for progressing 

this work is proposed. Chapter 2 develops new bubble models that can be used to 

explore sonar enhancement, including novel time-dependent models for calculating 

scattering and attenuation of single bubbles and bubble clouds. Time-dependency is 

vital if the propagation of short pulses through bubble clouds of finite size is to be 

modelled, if reverberation is ever to be incorporated into such models, and if the 

effect of bubble 'ring-up' is to be included. Chapter 3 describes the experimental 

arrangement, and analysis techniques developed for investigating sonar enhancement 

experimentally in the tank including the development of a bubble cloud generator 

using electrolysis. Such a generator was required because the models described in 

Chapter 2 indicated that the large proportion of big bubbles generated by the method 

of producing bubbles in one of the two laboratory studies conducted prior to this 

thesis, may be responsible for their failure to observe a 'ring-up' effect 

experimentally. The new electrolysis method was an attempt to generate a bubble 

cloud with proportionally few large bubbles, i.e. a population more representative of 

oceanic populations in which Akulichev has observed ring-up. 

The results of both the theoretical modelling of the tank experiments, and the tank 

experimental work itself, are described in chapter 4. The techniques and models 

investigated in the tank (chapters 3 and 4) were then tested in the surf-zone during a 

beach-based trial at Milford on Sea, Hampshire, England. Surf-zone bubble 

populations were measured acoustically. Various methods of sonar enhancement 

were tested experimentally and the results compared with the theoretical models. The 

details of the surf-zone trial and the results of both the experiment and theoretical 

modelling are presented in chapter 5. In the last chapter conclusions and a summary 

of this work are presented. 

1.1 The acoustics of gas bubbles in liquids 

In order to understand why air bubbles are an important consideration for target 

detection using active sonar in the sea, it is necessary to investigate the nature of air 

bubbles in liquids and then explain how they interact with a sound field. 



Section 1.1.1 explains how air bubbles are formed in the ocean, and gives examples 

from the ranges of populations of bubbles that are likely to be encountered. The 

interactions between bubbles and a sound field are then introduced in the following 

two sections, by modelling a bubble as a linear oscillator and introducing a forcing 

term. Such linear models have been shown to be good first order approximations of 

bubble response. The exposition starts with Minnaert's"^ calculation of the resonance 

frequency of a spherical gas bubble, and concludes with Devin's^ and Eller's® 

calculations of damping terms for spherical oscillations of air bubbles. 

The concept of acoustic cross-sections of bubbles is then covered, as this is a 

common method of characterising the impact of single and multiple bubbles on a 

sound field. Finally the concept of a bubble as a non-linear oscillator, and the 

limitations of linear bubble theory, are discussed. 

1.1.1 Introduction to air bubbles in the oceanic environment 

A wide variety of near-surface air bubble populations have been measured in the 

ocean under a range of conditions.''^'® The bubbles can be generated by many 

physical, biological and chemical actions. Measurements to date have demonstrated a 

dependence of bubble population on water depth, bubble depth, time of day or night, 

wind speed, rainfall, cloud cover, season of year and presence of sea slicks^. 

Geography can also significantly impact bubble populations. Some results obtained in 

coastal w a t e r s ® ' f o r instance, show a) increased bubbles caused by increased 

breaking waves at higher wind speeds; b) seasonal dependence of increased 

biological activity in coastal waters; c) increased numbers of smaller bubbles in 

daylight due to photosynthesis; d) increased numbers of larger bubbles at night, 

possibly due to offshore winds ('sea breeze') dropping continental aerosols, which 

trap bubbles when they fall into the sea, or biological activity on the sea floor^. 

Additional factors affecting bubble populations are dissolution, hydrostatic and 

buoyancy forces acting on the bubbles once they have been formed. The higher 

buoyancy forces acting on large bubbles, and the removal of small bubbles by 

dissolution, results in a characteristic peak in the bubble population". This is so 

particularly in deep water at high wind speeds, where entrainment due to breaking 

waves generates a persistent bubble layer just below the ocean surface 12 



These processes lead to the formation of bubble layers and clouds with measured 

bubble radii of just a few microns up to several hundred micrometers or more." Void 

fractions (or percentage of gas per unit volume) have been estimated'^ at between 

0.01-0.02% 0.1-0.2%. This decreases^^ to 10"̂ % to 10'̂ % under more stable 

conditions where the bubbles penetrate to a greater depth. 

1.1.2 The bubble as a linear oscillator 

When a gas bubble in a liquid experiences a change in pressure over its whole surface 

(i.e. the acoustic wavelength is much greater then the bubble radius) it will compress 

or expand to a new equilibrium radius. If such pressure changes were a low frequency 

oscillation, as is often the case with acoustic signals, the bubble will attempt to 

expand and contract in sympathy with that signal and will itself oscillate about its 

equilibrium radius. 

Consider further the scenario of a bubble encountering, or being insonified by, a 

pressure fluctuation. The gas inside the bubble will act as a restoring force owing to 

pressure fluctuations as the gas expands and contracts. The system also has inertia 

dominated by the mass of the surrounding liquid. Damping results from the acoustic 

emission by the bubble, and thermal and viscous losses associated with the motion of 

the bubble wall. 

For small amplitudes of oscillation, the system that has just been described is 

analogous to a bob on a spring. Both have mass, a restoring force and damping and, 

when driven harmonically, will respond with simple harmonic motion. This analogy 

leads to a simple equation of motion for the bubble [1-1]. This equation of motion is a 

first order approximation of the bubble response only. The limitations of the model 

will be highlighted in a later section. 

me + b£ + ke = 0 [1-1] 

Here f is a displacement, k is the stiffness, m is the mass, b is the dissipation 

constant and e and e are the velocity and acceleration respectively. 

The damping term represented by b, the dissipation constant, requires further 

explanation. To conform with the standard papers on bubble damping by Devin^ and 

Eller®, the damping term will be considered in the volume-pressure frame (denoted by 



the subscript VP)'^. From this dissipation constant the dimensionless damping 

constant d, which is applicable to all frames of reference, can be determined. 

d [1-2] 
kyp 

where (Uis the pulsation frequency in radians per second. 

Energy losses from a bubble can occur through three distinct mechanisms'^: 

® Energy is radiated away from the bubble as acoustic waves (radiation 

® Energy is lost through thermal conduction between the gas and the 

surrounding liquid (thermal damping). 

® Work is done against viscous forces at the bubble wall (viscous damping). 

A damping constant can be associated with each of these three mechanisms with the 

total damping equalling their sum. The total damping can also be related to the bubble 

quality factor, Q, at the resonance frequency by the well-known equation: 

2 = (when [1-3] 
Og Ip 

where ^^is the total dimensionless damping at resonance, is the resonance 

frequency of the bubble in radians, and is the resistive constant leading to 

damping. 

The radiation damping in the radius-force frame can be determined by considering the 

radiation impedance. This is defined as the ratio of the applied force to the particle 

velocity. Since it is defined in the radius-force frame, it is numerically equal to the 

product of the specific acoustic impedance and the surface area. The specific acoustic 

impedance can in turn be defined as the ratio of driving pressure to particle velocity. 

It is this impedance that characterises the coupling between the acoustic source, in 

this case the bubble, and the radiated waves. The real and imaginary parts of this 

impedance give rise to the resistive and inertial properties of the source. 



Under the condition of KR^ « 1 (K is the wavenumber and/(g is the equilibrium 

bubble radius) the radiation damping term is: 

[L4] 
4m: 

where p is the density of water and c is the speed of sound in water. 

In the same limit the stiffness of the bubble, kyp, is given by" : 

where is the dimensionless multiplicative factor, which corrects for the effects of 

heat flow in the stiffness and resonance frequency of a bubble. 

Thus the dimensionless radiation damping constant is: 

n -6 , 
kyp 

where p^is the hydrostatic pressure outside of the bubble and K is the polytropic 

index {\<K<y, K is equal to unity in isothermal conditions, and y in adiabatic 

conditions, where y is the ratio of specific heat of a gas at constant pressure to that at 

constant volume). For a real gas bubble the value of AT normally takes some 

intermediate value between y and unity, and can be calculated analytically®. The use 

of K is not fundamental but is a useful approximation^®. 

It can be shown, by application of the Stokes assumption to the Navier-Stokes 

equation for fluid of a constant viscosity'®, that there are no net forces acting in the 

body of an incompressible viscous liquid around a pulsating bubble'^. However, net 

viscous forces can occur at the liquid surface of the bubble wall, where they result in 

excess pressure. Mallock'^ described how these viscous forces could cause the 

distortion of the spherical shell volume elements concentric with a bubble, resulting 



in a net energy loss in compression in an incompressible liquid. Eller® derived the 

viscous damping term to be: 

and its dimensionless equivalent to be: 

= ^ [1-8] 
kyp 

where T] is the shear viscosity of the liquid. 

The thermal damping term is the most complicated to formulate. The damping 

mechanism occurs as a result of a hysteresis effect^'^^. The driving pressure does 

more work compressing the bubble than the gas inside the bubble does in moving the 

liquid on expansion. The reason for this is that, in an air bubble in water, the gas in 

contact with the liquid can be considered isothermal, (where heat conducts freely) 

owing to the liquid's large specific heat and thermal conductivity. Conversely, the gas 

in the centre of the bubble is insulated from any substance having a high specific heat 

and thus behaves almost adiabatically (where conduction is inhibited). Therefore the 

heat transfer through the bubble wall into the liquid during compression is more than 

the heat flow from the liquid into the bubble during expansion. This gives rise to the 

hysteresis effect described above, with a net heat flow from the bubble into the liquid. 

Thus a net loss of energy from the bubble. Eller® derived the thermal damping in the 

volume-pressure frame in terms of , the width of the thermal boundary layer, to 

4;zR̂  
(/(o/̂ DXsinh(̂ /Lg)+sin(7(o/Lg)}-2{cosh(/̂ /Ln)-cos(;(;,/Z,c)} 
)" {cosh(/̂ //,̂ ) - cosK/lg)}+ 3(y- ) - sinK/l^)} 

[1-9] 

Hence from [1-8] 

^ _ t»by,, _ 3(7-lX^o/-^flXs'"h(i?o/Lo)+sin(;?o/Lo)}-2{cosh(/;o/Lo)-cos(/;o/La)} ^ 
)'{:osh(/?o/I.D )-cos(;;o/Z.n )̂ inh(Ro/̂ D )-sin(;?(,/lQ 



The total dimensionless damping constant is given by the summation of the damping 

mechanisms: - d^^j + d̂ ^ + d^^. Figure 1-1 shows the various damping terms for 

a bubble of equilibrium radius 100 |im plotted against the frequency of the driving 

sound field. 

A freely oscillating bubble has therefore been described in terms of a linear equation 

of motion and the damping mechanisms defined. In the next section a harmonic 

forcing term will be applied and the equation solved. 

Total Damping (dtot) 
Radiation Damping (drad) 
Thermal Damping (dth) 
Viscous Damping (dvis) 

10 
Frequency (kHz) 

10 

Figure 1-1 Dimensionless damping constant (d) of a 100 jum radius air bubble in 
water, plotted as a function of driving frequency under 1 atm. static pressure. The 
solid line indicates the total dimensionless damping coefficient whilst the dashed lines 
show the contributions of the different damping mechanisms as indicated by the 
legend. 



1.1.3 The bubble as a harmonically forced oscillator 

As has already been mentioned, the response of a spherical gas bubble in a low 

amplitude sound field can be modelled as a bob on a spring driven harmonically. The 

equation of motion is given in [1-1]. The system has an associated mass m, stiffness 

k, and damping b and when driven harmonically by a force of angular frequency m, 

has the equation of motion^®; 

me+ b£+ k£ = F^smlox) [1-11] 

The solution of this non-homogeneous differential equation can be found by adding 

the general solution of the homogeneous to the particular solution of [1-11]. The 

homogenous equation is: 

m£ + be + k£ -0 [1-12] 

This is the equation for damped free vibration and has the solution: 

where i = , the damped frequency cOj = -yjci)^ - [5^ and Aj and A2 are constants 

determined by the initial conditions. Equation [1-13] can be written in the more 

recognisable form: 

g = [1-14] 

Here the initial amplitude A and the phase are constants determined by the initial 

conditions. 

The particular solution can be found by writing [1-11] in complex form; 

= [1-15] 

and assuming a solution of the form: 

g = [1-16] 



Differentiating and substituting into [1-15] gives: 

Hence 

^ LFpSiirifa*) 

•mO) +icob + k ~mco +iai> + k -mco +iQi) + k 

Taking the real part of [1-18]; 

_ sin(6^)2*6)} 

+ ( - 4-

which again can be rewritten in a similar form to [1-14]: 

c — I 
+(-

Here (p̂  is a constant determined by the initial conditions. 

The total solution to [1-11] can be found by adding [1-14] to [1-20]: 

g - cos(6;j f 

[1-19] 

[1-20] 

[1-21] 

Physically this represents the summation of a damped free vibration with a forced 

vibration. 

This formulation can be applied to a bubble by rewriting [1-11] in terms of a bubble 

in the radius-pressure frame. This frame of reference is chosen to be consistent with 

other models used in this work and because it is the most useful for real-world 

applications. 

The radiation mass of a bubble in the radius-pressure frame m^p is given by^': 

10 



^Rp ~ P^o [1-22] 

The stiffness, k, or spring constant (which is the ratio of the force a spring exerts to 

the extension which produces that force) when written in the radius-pressure frame is 

given 

, 3%" 
^RP^^^Pi,e [1-23] 

where p. ^ is the pressure within the bubble at equilibrium: 

2(7 

Here is the pressure in the liquid far from the bubble and a is the surface tension 

of the liquid. 

The dissipation term can be written in terms of a bubble dimensionless damping 

constant by rearranging [1-2] and utilising the relationship"': 

byp 

to give 

ba, [1-26] 

Finally [1-11] can be written in the radius-pressure frame to give: 

+ [1-27] 

Here PA is the amplitude of the driving pressure field, and is the bubble wall 

displacement from the equilibrium bubble radius Rg, R and R are the velocity and 

acceleration terms respectively and a sine term is used for the driving field for 

simplicity in determining the constants. 
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Thus [1-21] can also be rewritten to given the bubble wall response to a driving sound 

pressure field: 

(f) = Ae ^ cos(a)jr + (^1)+ ^ sin(6Z ) 

V̂ 7;? + (" ) 
[1-28] 

The first part of [1-28], representing a damped free vibration, can be further 

simplified for calculation purposes by noting that the Quality factor ( 0 of a bubble 

can be related to (5 using [1-3]. Furthermore under conditions of very light damping 

when / ? « a ) g t h e resonance frequency of oscillation, then and [1-28] 

becomes: 

^RP ^ ^ ^RP) 

[1-29] 

The constants A, and (j)^ can now be determined using the initial conditions of a 

bubble of equilibrium radius R^. =0 at rest, at time t=0 and differentiating with 

respect to time. The resulting simultaneous equation can then be solved to give: 

tan" 
V ^0 i^^RP ^RP 

•\Jbup Q)^ + (- aP'irif.p + 

tan" 

[1-30] 

As will be shown in the next section, this linear model can be applied to determine 

the time dependent bubble response to a driving sound field. 

1.1.4 Linear bubble response 

In this section the response of a 100 jiim radius bubble to various driving sound fields 

is calculated using the linear model developed in the preceding section. The results 

and the limitations of the model are discussed, including the special case where 

C0 = CON 
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The linear model shown in [1-29] consists of two parts. The first is damped free 

onH & rlo/->OT7 1rm /? vibration at the resonance frequency of the bubble cOg and a decay term e ^ that 

results in the oscillation reducing from its initial amplitude (determined by the 

constant A) as time t increases. The rate of decay is dependent on the Q and resonance 

frequency of the bubble. The second part of [1-29] is also an oscillation but at the 

frequency of the driving sound field. It has amplitude proportional to that of the 

driving sound field and a starting phase determined from the driving source. As t 

becomes large, the solution is dominated by the second term and is said to be in 

steady state (although strictly this is only attained as f —> oo). In steady state the 

response is become periodic for as long as the driving sound field remains 

unchanged. Hereafter the first part of the solution is termed the transient and the 

second part the steady-state. 

The summation of these two oscillations will thus give the complete bubble response. 

Consider a bubble at rest at its equilibrium radius and insonified by a continuous 

driving sound field of frequency (O and amplitude PA. In this case it is the difference 

between the driving and resonance frequencies that will determine the form of the 

bubble response and the magnitude of the damping that will determine the time to 

reach steady state. The effect of the difference between the resonance and driving 

frequencies will be considered first. 

The resonance frequency is^^: 

[1-31] 

For a 100 |im radius air bubble in water under one atmosphere of pressure, the 

resonance frequency is ~ 33 kHz. 

First consider the response of the 100 jim air bubble when driven by a 100 kHz sound 

field (of zero amplitude for f < 0 ; and 100 Pa amplitude for t >0). The bubble is at 
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rest at f < 0 . The results of the model' are shown in Figure 1-2. It can be seen that a 

steady-state response is reached within -0.5 ms of the onset of insonification, with a 

tiny displacement of -0.003 |jm, but that the bubble wall displacement is initially 

transient and that the amplitude of oscillation can exceed the amplitude at steady 

state. This is as a result of the constructive and destructive interference when the 

different frequency oscillations of the transient and steady state parts of the solution 

are summed. 
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• 
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(0 
3 

a 
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3 
CG 

99.996 
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Time (ms) 

0.4 0.5 

Steady state solution 
- - Transient solution 
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Figure 1-2 The solution of the linear model for a 100 jum radius air bubble in water 
driven by a 100 kHz, 100 Pa amplitude sound field, sampled at 10 MHz. The top plot 
shows the response of the bubble wall relative to the equilibrium radius and the 
bottom plot shows the transient part of the solution in black and steady state part in 

' In Figure 1-2 through Figure 1-5 the bubble motion is calculated from equation [1-27] and [1-28]. 

The damping bj^p is calculated from Eller®. Since this formulation requires a single frequency input 

the driving frequency is used in each case. However, it is recognised that this is an approximation since 

in the period prior to steady state the pulsation motion of the bubble contains other frequencies. 
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Next consider the same bubble driven from rest ai t = 0 closer to its resonance 

frequency by a 40 kHz, 100 Pa amplitude sound field. The results are shown in Figure 

1-3. The smaller difference between the frequencies of the transient and steady state 

oscillations produces a very different response when summed. The response is again 

steady state after -0.5 ms of insonification, but this time has a larger amplitude of 

-0.04 |im. Again the amplitude of oscillation during the transient phase can exceed 

that of the steady state. 
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- - Transient solution 

_ 100.04 
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Figure 1-3 The solution of the linear model for a 100 /Jm radius air bubble in water 
driven by a 40 kHz, 100 Pa amplitude sound field, sampled at 10 MHz. The top plot 
shows the response of the bubble wall relative to the equilibrium radius and the 
bottom plot shows the transient part of the solution in black and steady state part in 
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Finally consider the special case where (0 = 0)^. Since the bubble is being driven at 

resonance, the frequency of the transient and steady state solutions are equal but the 

oscillations are in anti-phase, resulting in destructive interference. The bubble 

response is thus a steady rise or 'ring-up' to steady state and, unlike the previous 

examples, at no point does the transient response exceed the steady state response. In 

addition the amplitude of the response has increased by an order of magnitude over 

the previous examples to -0.3 |im. The results of this case are shown in Figure 1-4. 

|100.2 
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^ 99.9 

0.3 0.4 0.5 
Time (ms) 
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Transient solution 

10 1 0 0 

^ 99.9 

3 99.8 II II 

0.3 0.4 0.5 
Time (ms) 

Figure 1-4 The solution of the linear model for a resonant 100 jjm radius air bubble 
in water driven by a 33 kHz, 100 Pa amplitude sound field, sampled at 10 MHz. The 
top plot shows the response of the bubble wall relative to the equilibrium radius and 
the bottom plot shows the transient part of the solution in black and steady state part 
in grey. 
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In all the above examples, including the resonance case, the time to reach steady state 

is determined by the rate of decay of the transient part of [1-29]. This in turn is a 

function of the exponential term g ^ ^ . This expression can be rewritten in terms 

of the bubble Q and resonance frequency/o: 

— - f r [1-32] 
= e ^ 

Thus the time taken to reach steady state is a function of the bubble Q and the 

resonance frequency fo. Since the decay is exponential it will never reach zero but 

instead will become infinitesimally small. One method of quantifying the time to 

reach steady state is termed the characteristic relaxation time to steady state""^ Tg or the 

time to reach (l /e) of the steady state value. It can be calculated from the bubble 

quality factor and resonance frequency; 

' ^ 0 = ^ [1-33] 

Whilst at resonance this can be related to the time taken for the amplitude to grow to 

( l -e~ ' ) or 63% of the steady state amplitude. Off resonance we do not see the 

monatomic 'ring-up' to steady state illustrated in Figure 1-4 and hence such a simple 

criterion cannot be applied. This issue is further discussed in section 1.3.1. 

A final facet of the linear model, and its biggest limitation, is the scaling of the 

response in proportion to the amplitude of the driving signal. It is apparent from the 

steady state solution that, as the driving amplitude doubles, so does the amplitude of 

the response (equation [1-29]). Eventually this will exceed the equilibrium radius of 

the bubble were this model to hold true at such high amplitudes. This is obviously 

impossible and occurs because the linear model does not take into account the 

amplitude-dependence of the stiffness of the gas inside the bubble when it is 

compressed. This leads to increasing inaccuracies in the linear model as the driving 

sound pressure level grows. Non-linear models have been formulated to include this 

factor. Figure 1-5 compares results from one such model, the Rayleigh-Plesset^^, with 

the linear model at different driving amplitude for a resonant 100 |_tm radius bubble. 

17 



The bubble resonance frequency is 33 kHz for the linear model and 32 kHz for the 

non-linear model owing to the different damping models used'. The non-linear model 

is discussed further in section 1.1.6, although the cost has been that not all damping 

mechanisms are included. The figure clearly shows that for very small amplitude, the 

models are in close agreement, but as the sound pressure increases the linear model 

overestimates the wall response. Furthermore, the Rayleigh-Plesset model predicts a 

deviation from the ring-up to steady state indicated by the linear model in this plot 

and by both models for lower driving sound field. 

The linear model derived in the preceding sections is a useful tool in predicting the 

response of air bubbles in water to a sound field, but is limited by increasing 

inaccuracies as the driving sound pressure rises. Non-linear models that overcome 

this problem are discussed in section 1.1.6. In the next section a further facet of the 

linear bubble model is discussed. Specifically, it discusses acoustic cross-sections that 

can be derived from the linear model. These cross-sections are widely used in 

acoustics to predict the effect of both single bubbles and clouds of bubbles on 

acoustic signals. 

' The Rayleigh Plesset model incorporates neither radiation nor thermal damping, but does describe 

nonlinearities in, for example, the gas stiffness. Therefore even at low amplitudes its results will not 

agree exactly with those of the linear model (which includes thermal, viscous and radiation damping). 

However the differences seen in Figure ]-5a result from nonlinearities, as could be demonstrated 

through the presence of harmonies (see the power spectral density plots in Figure l-5b) of the driving 

signal in the steady-state response 
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(dashed line) and the Rayleigh-Plesset non-linear bubble model (solid line) driven by 
a 1 kPa amplitude sound field in top plot and a 10 kPa amplitude sound field in the 
bottom plot. 
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Figure l-5b The power spectral density of the time series shown in Figure l-5a i.e. a 
100 /Jm radius resonant bubble using the linear model (dashed line) and the 
Rayleigh-Plesset non-linear bubble model (solid line) driven by a 1 kPa amplitude 
sound field in top plot and a 10 kPa amplitude soundfield in the bottom plot 
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1.1.5 Acoustic cross-section of a bubble 

The acoustic cross-section is a method of characterising the steady state scattering or 

attenuation of a bubble in terms of an effective target strength with dimension m^. 

This is very useful since it can be applied quickly and easily to clouds of bubbles to 

give the steady state cloud target strength in both m^ and decibels for use in sonar 

equations. The basic extinction and scattering cross-sections are derived here and 

applied to bubble clouds in section 1.2.1. As will be shown, prior to this thesis cross-

sections have been derived from the steady-state solution of the linear mode [1-29] 

and are thus subject to the limitations of that model. 

The linear scattering cross-section, , is defined by the ratio of the time averaged 

energy loss to incident energy 

|& r A 
,2 _ Time Averaged Energy Loss _ ',^1' [1-34] 

Incident Energy /2pc 

where is the amplitude of the bubble wall response. Using [1-29] and the 

relationships in [1-6] and [1-26], the scattering cross-section becomes: 

o _ 47ik^P{a) RQI?>KPQ) 

The expression can be further simplified by using [1-3] and [1-23] and noting that 

= 1 and : 
Po 

+ S': 
I (wy 

[1-36] 

The scattering cross-section is the ratio of the intensity of the scattered acoustic field 

to the intensity of the incident acoustic field, and hence is a measure of the energy 

dissipated by re-radiation having units of area. Similarly the extinction cross-section. 
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represents the energy dissipated by all mechanisms and thus is related to the 

scattering cross-section bŷ :̂ 

[1-37] 

The model described by [1-36] and [1-37] is here after referred to as the Medwin 

modef to differentiate it from time-dependent cross-section models described in later 

sections. 

The scattering cross-section of bubbles with radii from 1 |im to 1500 |im in a 30 kHz 

sound field and one atmosphere static pressure is shown in Figure 1-6 and Figure 1-7. 

The resonant bubble radius is -110 |im, indicated by the local maxima in the 

scattering cross-section. For radii much less than the resonant bubble radius co {{ COQ 

and the scattering cross-section simplifies to give the Rayleigh law of scattering'®: 

CO [1-38] 

Conversely, as the bubble radii becomes much greater than the resonant radius 

and the scattering cross-section simplifies to give the geometric scattering 

law whilst « 1 : 

[1-39] 

The geometric scattering law is plotted in Figure 1-6 and Figure 1-7 for comparison. 

It is clear that, in the limit « 1 , large off-resonant bubbles follow the geometric 

scattering regime and thus, for a given insonification frequency, there is always in 

principle a critical bubble size, such that all single bubbles larger than this size scatter 

more than the single resonant bubble. Thus, resonant scattering is only a local 

maxima when the cross-section is plotted as a function of radius for a given driving 

frequency; and despite having a scattering cross-section orders of magnitude larger 

than geometric scattering from a bubble of a similar radius, the scattering from a 

resonant bubble can be exceeded and thus masked by large off-resonant bubbles. 
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Figure 1-6 Scattering cross-section as a function of bubble radius in a 30 kHz sound 
field under 1 atmosphere static pressure. Note the local maxima corresponding to 
resonance at 110 jum. The data has been resolved down to 0.01 /Jm to reduce aliasing 
around the 110 jJm radius local maxima. The brackets at the top of the graph indicate 
the approximate scattering regime. The geometric scattering is only valid when 
KRQ «1. For 800 /Mn radius at 30 kHz KRo = 0.1. 
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Figure 1-7. A plot of the difference between the scattering cross-section and non-
resonant scattering laws. The orange line represents the quantity calculated by the 
acoustic scattering cross-section minus the geometric scattering law. The green line 
represents the quantity calculated by the acoustic scattering cross-section minus the 
Rayleigh scattering law. 
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The next section discusses modelling a bubble as a non-linear oscillator to overcome 

the amplitude constraints of the linear models, as illustrated in Figure 1-5. 

1.1.6 The bubble as a non-linear oscillator 

In the preceding sections the bubble is considered to be analogous to a mass-on-a-

spring linear system, where the response of the system is directly proportional to the 

driving force^"*. In reality, however, a bubble can be expected to oscillate non-linearly 

at finite amplitudes, since expansion and compression are not symmetrical. Whilst the 

bubble could, in theory, expand without limit, upon compression, the radial 

displacement cannot exceed the value of the equilibrium radius^^. Thus it is apparent 

that when the motion of the bubble wall becomes large (as occurs when the bubble is 

driven at high amplitudes), the bubble will no longer be accurately modelled as a 

simple linear system (see Figure 1-5). 

There are three families of equations modelling bubbles as non-linear oscillators^®. 

The simplest of these groups is the Rayleigh-Plesset equation. It is described here in 

order to illustrate the form and assumptions that govern existing non-linear bubble 

models. It also illustrates whether important aspects of the linear theory (such as the 

damping mechanisms) are incorporated; and if so, how this is done. More advanced 

models are considered in chapter 2, such as the Keller-Miksis equation^^, which is a 

member of the second (i.e. Keller-Miksis) family of bubble models. 

The Rayleigh-Plesset equation is of the form: 

^ W + = — (Pa W - Po - f W) [1-40] 
z p 

Here i?(f)is the bubble radius, p^it) represents the pressure immediately outside the 

bubble wall, at some time t and P{t) is the driving pressure field at time t. This is the 

term that incorporates the force exerted on the liquid by the bubble, which the 

hydrostatic and acoustic pressures have to overcome. The p^ i t ) term in full is: 

2cr 

/ " " " I T , , 

R 

R{t)) R(t) R(t) 
[1 _4i] 

25 



This equation has several fundamental assumptions. These are:^^ 

® The bubble exists in an infinite medium. 

• The bubble stays spherical at all times during pulsation. 

® Spatially uniform conditions exist within the bubble. 

9 The bubble radius is much smaller than the wavelength of the driving sound 

field. 

• There are no body forces acting (e.g. gravity). 

® Bulk viscous effects can be ignored. 

» The density of the surrounding fluid is much greater than that of the internal 

ga^ 

• The gas content is constant. 

• The speed of sound in the fluid is infinite (i.e. the liquid is incompressible). 

The fundamental problem with the Rayleigh-Plesset equation is inherent in the last 

assumption. Since it assumes that the fluid is incompressible, no account is taken of 

the energy radiated into the fluid. Whilst rudimentary correction factors may be 

a p p l i e d , a s the amplitude increases proper account needs to be taken of the liquid 

compressibility. Thus in the absence of correction factors, radiation damping is 

neglected in the standard Rayleigh-Plesset formulation. Viscous damping appears 

through the R term. Net thermal losses are not taken into account through the 

use of the polytropic index K ; it merely adjusts the gas stiffness to take into account 

heat transfer across the bubble wall. Thus, in this model, as much heat flows out of 

the bubble during the compression half cycle as returns into the bubble during 

expansion. Hence the only mechanism by which there is net energy loss from the 

bubble is through viscous effects. 

26 



As introduced above, the lack of a radiation damping term in the Rayleigh-Plesset 

equation can be partially overcome by adding an approximate additional term' similar 

to the viscous damping term^®. It is of the form; 

pc dt 
[1-42] 

where cis the speed of sound in water. 

Thus the Rayleigh-Plesset equation becomes: 

_ 1 I „ „ . r / i , « ( ' ) ' 
R{t)Rit) + i Pa W- Po + - 1 - -

c y dt 
[1-43] 

This form of bubble model can in general only be solved numerically, although with 

small amplitude assumptions the Rayleigh-Plesset can be solved analytically. Since 

the Rayleigh-Plesset model is included here for illustrative purposes only, numerical 

methods for solving these non-linear models will be discussed in Section 2. 

1.2 Bubble constraints on sonar detection 

The frequencies available for sonar detection in the ocean are limited at low 

frequencies by the target dimension and, at high frequencies by attenuation of the 

medium itself. These constraints are discussed below. 

Consider the constraint of the target dimension. Assume for the moment that the 

absorption of sound by the water itself can be neglected. In order to maximise the 

return signal from a non-resonant target, the scattering must be geometric in nature 

[1-39], i.e. the wavelength of the sound must be very much less than the target 

dimension^^. Thus in order to maximise the potential for detecting a target sphere of. 

' Such a term includes no physics beyond that of the linear model, and hence to obtain a true nonlinear 

representation of radiation damping, it is necessary to employ one of the equations from the Herring-

Keller family. 
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say, 0.1 m radius, the insonifying frequency would have to be much greater than 15 

kHz. 

However the acoustic absorption of the water itself is usually too large to neglect. The 

attenuation of sound in a bubble-free ocean increases significantly with increasing 

frequency^^. At low frequencies (less than 10 kHz) typical values of absorption are 

less than 0.001 dB/m. However, at higher frequencies of 200 kHz, this increases to 

greater than 0.04 dB/m. At very high frequencies of 800 kHz, typical values (at one 

atmosphere) are in excess of 0.2 dB/m. When compared with the expected level of 

attenuation from bubbles, of order tens of dB per metre at 50 to 100 kHz, it can be 

seen that the attenuation of the medium is small but significant as the frequency 

approaches a MHz. Thus the levels of attenuation of the medium at frequencies 

greater than a few hundred kHz could pose a further constraint on the frequency range 

available for sonar detection. 

Measurements of oceanic bubble populations (see section 1.1.1) have detected 

bubbles in the size range 5 - 500 }im. This is not to say that there are no bubbles 

outside this size range. Rather that the equipment used was not capable of detecting 

them. The resonance frequency for bubbles of this radius range can be estimated 

using the Minnaert frequency*: 

(for the smallest bubbles i.e < 5jim radius, the effect of surface tension becomes 

important and equation [1-31] must be used in place of [1-44]). 

The resonance frequency of bubbles in the range of 5 - 500 |Lim radius for air bubbles 

in water at a depth of 5 m would be between 8 kHz and 800 kHz, with the smaller 

bubbles having the higher resonance frequency. For propagation through oceanic 

clouds, resonant bubbles are thus potentially present at all frequencies of interest and, 

therefore, bubble-mediated attenuation cannot be completely avoided by changing the 

frequency without a priori knowledge of the bubble population and a predictive 

capability of the type this thesis aims to provide. The bubble-mediated attenuation is, 

however, a function of frequency and the population distribution. This relationship 
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will be investigated further in later sections with respect to enhancement of target 

detection. 

When ocean bubbles are present, their contribution to the absorption of sound by 

bubbles is not easily avoided by choosing a certain frequency range. Once known, 

their contribution to attenuation can be used to quantify the effect of bubbles on a 

typical target detection scenario and the potential gains from sonar enhancement. In 

the next section the linear acoustic cross-sections previously derived will be revisited 

and applied to bubble clouds to give attenuation per unit length. In section 1.2.2 the 

sonar equation for active sonar will then be defined, and an example given to 

illustrate the impact of bubble clouds on detection ranges. 

1.2.1 Acoustic cross-sections of bubble clouds 

The extinction cross-sections of single bubbles defined in section 1.1.5 can be applied 

to clouds of many bubbles in order to formulate an attenuation rate in dB per unit 

distance^'. This is because extinction cross-sections are proportional to the power 

dissipated. Hence they are additive for all bubbles which are subjected to the same 

incident intensity if their radiation is incoherent. As has already been stated in section 

1.1.5, calculations based on linear acoustic cross-sections are steady-state time-

independent models only and are limited to low sound pressure levels. Furthermore, 

the application of scattering cross-sections below is range independent since, to add 

the cross-section all bubbles must be exposed to identical incident intensities. 

In order to apply the extinction cross-section to a bubble cloud, the population 

distribution must be known. It is convenient to define this in terms of the number of 

bubbles per unit volume (typically 1 m^) per radius increment (typically 1 |im) or 

mathematically: 

n\ 
\ number of bubbles per radius increment _ 

= ; [1^^] 
volume 

Here n represents the number of bubbles per unit radius increment (defined by the 

bubble equilibrium radius RQ) per unit volume. Hence the number of bubbles per unit 

volume with a radius between RQ and RQ +dR is n(Ro)dR. 
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The extinction cross-section, for each radius increment can then be calculated 

and scaled by the number of bubbles, effectively integrating the cross-section across 

the bubble distribution provided the restrictions described above are adhered to: 

êxt ~ [1-46] 
0 

Here Sext is the extinction cross-section of a bubble cloud. Assuming that the bubbles 

are separated enough that there are no bubble-bubble interactions (Appendix B) the 

cloud extinction cross-section can be used to calculate an attenuation rate. 

Clearly not all bubbles can be exposed to the same incident intensity. The above 

calculation can nevertheless be used by applying it in turn to volume elements in 

which the incident field has uniform intensity. For example if a plane wave 

propagates through a uniform bubble cloud, these elements are thin planes 

perpendicular to the direction of propagation. In such a case the total power (both 

absorbed and scattered) by each bubble in a given incident sound field in a given 

volume element is found by multiplying the incident plane wave intensity line by the 

bubble extinction cross-section. In this way the spatial rate of change of intensity for 

a cloud is: 

~ = [1-47] 

Integrating gives: 

/ = /mc exp(- [ 1 -48] 

After travelling a distance the change in intensity level {ML) will be: 

V ^inc J 

[1-49] 

This equates to the spatial attenuation («,,„„/) of a bubble cloud in dB per unit 

distance by dividing through by x: 
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(cLB/distance ) = [1-50] 

This equation will be applied in the following section, where the active sonar 

equation is used to investigate the impact bubbles have on target detection. 

1.2.2 Bubbles and the sonar equation 

The active (monostatic) sonar equation in a noise-limited environment (as apposed to 

reverberation limited)^^ is: 

--iZTTL-HjnS = /Vl -2)7 + Z)]" [1.5I] 

where is the source level; 7%, ± e transmission loss; 71S the target strength; A/Z, the 

noise level; DI the directivity index and DT is the detection threshold. All values are 

in dB ref. 1 |iPa @ 1 m. 

Consider an example calculation of the source level required for target detection at 

range r from the source at a driving frequency of 20 kHz. The directivity index for a 

continuous line transducer^^ of length L and wavelength X is; 

[1-52] 

Thus, 20 kHz with a transducer length of 0.1 m the directivity index is approximately 

3dB. 

Measurements of ambient noise levels in coastal waters (such as bays and harbours) 

have shown that they are subject to wide variations both temporal and spatial. 

Sources include shipping and industrial noise, wind noise and biological noise. 

Measurements of ambient noise in harbours and bays^^ during World War II indicate 

an average ambient noise level of 100 dB (ref. l|iPa @ Im) at 10 Hz decreasing to 40 

dB (ref. IfxPa @ Im) at 20 kHz. Further studies of five US portŝ '* took measurements 

at 30 kHz, 90 kHz and 150 kHz. Respective average ambient sound pressure levels of 

approximately -42 dB, -50 dB and -55 dB (ref. l |iPa @ Im) were measured. 

There is a significant discontinuity between the results of the two studies jumping 

from a noise level of 40 dB at 20 kHz in the first study to —42 dB at 30 kHz for the 
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second study. Since a driving frequency of 20 kHz is used in this example a noise 

level of -50 dB is used. 

The detection threshold is a function of the signal to noise ratio (SNR) and the 

detectability of a signal. If the detection signal is know exactly then cross-correlation 

can be used to search for the detection signal in the received signal with noise. The 

detection threshold is thus a function of the system bandwidth and processing time 

and the detectability index. This is a measure of the statistical probability of detecting 

a signal and the false alarm rate. Assuming a 50% probability of detection and a 2% 

probability of false alarm the detectivity index {d') is two^^. The detection threshold 

k^^venby: 

D 7 = 101og[((^'y /(2Wr)] [1-53] 

For a detectbility index of 2, a system bandwidth of 1 kHz and a processing time of 

0.05s the detection threshold is -14 dB. 

Assuming a target sphere of radius a the target strength is given by: 

TS = 10 log 
V 4 y 

[1-54] 

which gives an approximate target strength of -22 dB for a 0.15 m radius target 

sphere. 

The final term to be defined, the transmission loss, is also the most involved. In this 

example three mechanisms must be considered; geometric spreading, absorption loss 

of sound in bubble-free water and attenuation by gas bubbles. In shallow water or in 

the presence of a mixed bubbly layer geometric spreading is confined to a horizontal 

wave guide for most frequencies^^'^^. Assuming negligible losses at the boundaries 

the geometric loss follows a simple cylindrical spreading model: 

Cylindrical Spreading Loss = 101og,Q ( r / ) [1-55] 

32 



The absorption of sound in the sea per metre range is small but for completeness is 

included here. At the two example frequency of 20 kHz the absorption losses are 

approximately^^ 1x10"^ dB/m. 

The transmission loss owing to the attenuation and scattering of a bubble cloud, 

, is determined for this first order calculation using the method defined in the 

previous section. The model, as has already been stated, assumes linear bubble 

pulsation at steady state and is range and time independent. A population distribution 

based on oceanic measurements by Farmer and Vagle^^ is described by the following 

equation, where Ro is the bubble equilibrium radius in metres and n is the number of 

bubbles per cubic metre per p.m increment: 

= [1-56] 

The resulting attenuations for this population distribution, under one atmosphere of 

static pressure, at the example frequency is -3.0 dB/m. The source level required for 

target detection is plotted against range in Figure 1-8 for a driving frequency of 20 

kHz. 

The graph clearly shows that the presence of bubbles can significantly increase the 

source levels required to detect a target. Typical shipboard sonar systems have output 

powers ranging from a few hundred watts to tens of kilowatts. This translates to an 

effective source level of between 210 and 240 dB (ref. lp.Pa @ Im)̂ ^ effectively 

limiting target detection ranges to -50 m in the bubble case and approximately 1 km 

in the no-bubble case for the example shown in Figure 1-8. 
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1.3 A Review of sonar enhancement work 

Previous work on methods for enhancing active sonar detection in bubbly 

environments are reviewed in the following sections. This comprises of three separate 

studies. For convenience the work reviewed has been separated into those studies that 

have measured backscatter and those that have measured attenuation. The backscatter 

section reviews the results of a single sea trial undertaken by Akulichev et alf'^ and 

the attenuation section reviews two sets of data taken in test tanks made by Suiter et 

and Pace et All three sets of published data include some theoretical work 

that is also discussed. 

1.3.1 A Review of pulse dependence in acoustic backscatter from 

bubble clouds 

Prior to this thesis only a single experimental study of the pulse dependence of 

acoustic backscatter from air bubbles has been published. The work undertaken by 

Akulichev et in the early 1980's investigated the backscatter from micro-

inhomogeneities in the form of bubbles, solid particles, plankton etc. The backscatter 

at various frequencies and pulse lengths was investigated experimentally and a simple 

model was developed for the time-dependent scattering cross-section (the effective 

target strength in of the scattering bodies). 

A time-dependent cross-section can be derived in a similar fashion to the steady-state 

cross-section derived in section 1.1.5 by including the transient part of [1-29]. 

Consider a bubble that is insonified by a pulse with zero amplitude for all times 

t <0; amplitude f^ for 0 < f < f , ; and zero amplitude for f > f , . The cross-section 

can only be defined for the interval 0 < f < r,, and in this period it equals the 

following (from [1-33]): 

n-57] 
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Here the wall displacement R (t) follows some time-varying envelope, comprising 

(if the pulse is sufficiently large) transient and steady-state periods (as illustrated in 

Figure 1-2 -Figure 1-5, for example). 

If the insonification frequency equals the bubble resonance, the envelope follows a 

_ [ 

particularly simple form growing monotonically (as \-e ^°) to steady state (Figure 

1-5). This is readily shown as follows. 

Equation [1-29], after the initial conditions shown in [1-30] have been included 

becomes 

•XJBJ^O) -F- ( CO IUJ^P + KJ^P) 

^ C0s(6;Qf)4-
sin(6%-;T/2) 

+ ( - 4-

[1-58] 

By considering the resonant condition only i.e. CO — co^ and by noting that 

sin((9-;T/2) =-cos((9) equation [1-58] becomes: 

rM-

2 

•YJBIFPCO 4- ( CO FLT/^P + KPP ^ 

g ^ COs(&()f) + 

•\JBJFPCO + ( CO THJ^P + KJFP ] 

cos(A%f) 

[]-59] 

And by using [1-33] to simplify the exponential term and taking the non-oscillatory 

part of equation [1-58] the envelope of the bubble response is; 

f ^ 
1 - g " 

V y [1-60] 

V ^ -t- ( - 4-
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This assumes that [1-29] is evaluated at resonance. This limitation will be discussed 

once the derivation has been completed. 

Applying the same simplifications as in section 1.1.5 and taking the square of 

equation [1-60] becomes: 

l-e 
[1-61] 

This expression can then be substituted back into [1-57], with further simplification 

as per section 1.1.5, to give 

4 ; * RP 

V ^ ^ 0 

1 - g 

\2 

l-e 
[1-62] 

\2 

CO 

\2 

As a final check it can be shown that this is equal to the steady state scattering cross-

section ([1-36]) as time t since e —> 0. 

In his paper Akulichev defined the time dependent scattering cross-section as' 40 

1-
[1-63] 

where is Akulichev's notation for the time-dependent scattering cross-section 

and is used here for clarity. 

A comparison of [1-62] and [1-63] shows two discrepancies. The first is that the 

te in [1-62] differs from the in Akulichev's formulation. The reason for 
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this is that, in deriving [1-59] from [1-29], conditions very close to resonance have 

been assumed. If 6)= <% , then of course . Note however, that the 

same approximation cannot be applied to the [cOg /co^ - \ f term without the terra 

becoming zero. The second discrepancy is that Akulichev's formulation must be 

multiplied by a factor of 4#to agree with [1-62] and the steady state cross-section in 

[1-36] as time This is the result of a difference in the definition of cross-

section"*' (back scatter = though this is not explicit in Akulichev's paper; 

however, since the theory in Akulichev's paper is only used to predict the time taken 

to reach steady-state, it is an omission which has no bearing on their. 

Prior to discussing the experimental measurements presented in Akulichev's paper, 

the limitations of the time-dependent scattering cross-section derived above need to 

be highlighted. The model is based on linear theory and thus is subject to the 

limitations of such a theory as previously discussed, i.e. it overestimates the bubble 

response at higher driving pressures. Additionally, the formulation is valid only very 

close to resonance. Akulichev acknowledges this limitation by stating in his paper 

that the time-dependent scattering cross-section is for "near-resonant" gas bubbles 

only. By this he means bubbles which follow a \-e ring-up. Within the 

perspective of this thesis it would be better to term these "resonant", and restrict the 

term "near-resonant" to an important class of bubbles which are sufficiently close to 

resonance to pulsate at large amplitude, but not so close as to ring-up as 1 - e . 

Akulichev et al. also measured, experimentally, the instantaneous sound pressure 

scattered from an oceanic bubble cloud, after insonification by a pulse of length T 

and at several different frequencies (5 kHz, 15 kHz and 35 kHz). The experiment was 

conducted at sea and used a parametric source to produce very short pulse lengths 

without distortion. The results published in the paper are duplicated in Figure 1-9. 

Equation [1-32] suggests that the characteristic relaxation time to steady state 

oscillation, Tq , should decrease with increasing frequency since it is proportional to 

l/ /o . The value of (calculated using Equation [1-32] and Eller's damping theory) 

is plotted over a range of resonant frequencies in Figure 1-10 where decreases 

from ~6 cycles at 5 kHz to ~3 cycles at 35 kHz. There is a small reduction, of order 1-
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2 cycles, in the experimentally measured values of TQ in Figure 1-9 (indicated by the 

light circles in the plot) but it is smaller than predicted by theory. This may be due to 

the increasing numbers of large off-resonant bubbles scattering inertly as the 

insonification frequency is increased. The increase in the amplitude of the back-

scatter may also be a result of this as well as an increase in the number of resonant 

bubbles being insonified. These propositions are explored further in subsequent 

sections. 

The Akulichev et al. paper predicts theoretically the pulse length dependence in the 

back-scatter from resonant bubbles and has experimentally measured the back-scatter 

from an oceanic bubble cloud for varying pulse lengths. However, many questions 

remain unanswered. The theory presented (equation [1-32]) is linear and, as has 

already been shown, the bubble is a non-linear oscillator. Since the sound pressure 

level used is not stated, it is impossible to assess the importance of bubble non-

linearity. The contributions to the acoustic response of the population, made by off-

resonant bubbles, have also not been considered. The presence of large off-resonant 

bubbles can account for a significant portion of the sound scattering and may be 

important when considering the pulse length effects in the bubble response. These 

issues will be considered further before attempting to enhance transmission through a 

bubble cloud. 
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1.3.2 A review of pulse dependence in attenuation in bubbly water 

Two further studies of pulse length dependence have concentrated on the attenuation 

through bubble clouds for various pulse lengths. The papers were published in the 

early 1990's, one by Suiter'*^ and the other by Pace et al^^ Both studies took place in 

laboratory tanks with artificially produced bubble clouds. No pulse length 

dependence was measured. 

In both papers the following equation for the time-dependent extinction cross-section 

for a single bubble is presented. 

Where O^^is the extinction cross-section, is the off-resonant extinction-cross 

section and Q„is the resonant extinction cross-section. 
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Thus, Suiter and Pace et al. present identical theories, similar to that of Akulichev's 

but scaled to give the extinction cross-section (a measure of the total energy loss, not 

just the loss due to scattering, in m^) rather than the scattering cross section. The 

scattering cross-section can be multiplied by to give the extinction cross-

section^^. However, since the time-dependent cross-section used by Akulichev (and 

on which Suiter and Pace base their work) is only valid at resonance Suiter and Pace 

simplify this relationship using Devin's theory of damping at resonance^ to give: 

where K is the wavenumber. 

The time dependence modelled by [1-64] is very far removed from that exhibited by 

real bubbles off resonance. Figure 1-2 and Figure 1-3 suggest the off-resonance 

response can be complicated (a proposition which will be validated when accurate 

time-dependent cross-sections are calculated in, for example. Figure 2-6 and 

Appendix F), but with a cross-section which starts growing from zero at time f = 0 (a 

fact required by arguments of continuity). 

In contrast the cross-section of [1-64] is finite at f = 0, and takes the value given by 

the Rayleigh limit [1-38] if axoi^, ox by the geometrical limit [1-39] if co> co^.li 

subsequently grows in a smooth (l fashion (after the fashion of Akulichev's 

cross-section for a resonant bubble [1-62]), but with a time-dependency far removed 

from that exhibited by real off-resonant bubbles (Figure 1-2 and Figure 1-3) 

eventually to reach the steady-state value predicted by the long standing formulation 

[1-36] (corrected to give the extinction rather then scattering cross-section by 

multiplying by as described above). Hence the term O,. which Suiter and Pace 

et al. call the resonant cross-section, is a misnomer. It really is the difference 

indicated by the orange line in Figure 1-7. 

Hence there is no physical basis for the time-dependent model described by [1-64], 

and it is contradicted by time-dependent behaviour of off-resonant bubble predicted 

by even the linear models. 
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These assumptions mean that the contribution of near resonant bubbles and especially 

the time-dependency of the near resonant response is neglected. 

In addition, Suiter and Pace et al. also apply the resonant damping approximation 

stated in [1-65] above to the off-resonant contributions. This leads to significant 

inaccuracies in their estimations of the off-resonant contributions. Figure 1-11 

recalculates what their theory would have predicted had they used the off-resonant 

damping coefficients of Eller®, which would have been a more accurate 

implementation of their theory then the resonant damping of Devin' which they 

actually employed. 

Experimental measurements of attenuation were made by Suiter in a fresh water test 

tank with a 120 kHz source and an estimated sound pressure level of 190dB ref. 1 

|LtPa at the face of the bubble cloud. The cloud was generated by electrolysis. The 

electrical current used was between 0.1 A and 0.2 A. No attempt was made to remove 

the hydrogen bubbles from the water column (which this thesis found to be critical 

see section 3.1). The main consideration with this method of generating bubbles, 

which has to be taken into account when considering the results, is that the hydrogen 

gas bubbles are likely to behave differently from air bubbles. This is because 

hydrogen gas has a significantly different density, molar mass, thermal conductivity 

and specific heat (see Appendix A). If, as is indicated in the paper, similar sized 

hydrogen and oxygen bubbles exist in the population, then from Prosperetti's'^ 

damping analysis (which incorporates the thermal effects of the gas; see section 2), 

the damping of hydrogen is significantly greater. For example the total dimensionless 

damping of a 25 |im radius bubble in a 120 kHz sound field is ~ 0.07 for Oxygen and 

0.87 for Hydrogen. Since the bubble resonance frequency COQ is proportional to 

and K in the above example is 1.04 for air and 1.0005 for hydrogen, the resonance 

frequency for hydrogen bubbles will have to be lower. The presence of hydrogen 

bubbles will increase the proportion of off-resonant bubbles and thus may mask any 

pulse length dependence in the attenuation. 
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Figure 1-11A comparison of extinction cross-section calculated using the ratio of the 
total damping to the radiation damping with Devin's damping at resonance and 
Eller's damping. The top figure plots the extinction cross-section of a 100 jjm air 
bubble at various frequencies and the bottom figure plots the extinction cross-section 
of air bubbles of different equilibrium radii in a 120 kHz sound field. Both 
calculations assume a hydrostatic pressure of one atmosphere. 
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This may explain why no pulse length dependence was observed when attenuation 

spectra for short and long pulses were compared in the paper. It should be noted that 

the potential masking effect of large off-resonant bubbles applies equally to oxygen 

bubbles as hydrogen bubbles. If there were enough large off-resonance oxygen 

bubbles present their contribution, due to geometric scattering (section 1.1.1), could 

again be significant. Although this does not appear to be the case in Suiter's study, it 

is a consideration for future attempts to measure pulse length dependence. The effect 

of the contribution of large off-resonant bubbles is considered further in subsequent 

sections. 

As already mentioned, the Pace et al. paper uses the same model as Suiter used. 

Fortunately the experimental results do not rely on the model for interpretation, as is 

the case for much of the data presented in the Suiter paper discussed above. 

Experimentally the work of Pace et al. differs from Suiter's in that attenuation is 

measured at multiple frequencies between 20 kHz and 200 kHz for varying pulse 

lengths, and a compressed air system is used to generate the bubble cloud. The 

compressed air was mixed with water and then passed through an orifice. This 

method of bubble generation^^ generally leads to large numbers of bubbles with a 

radius in excess of 100 |lm. Again no pulse length dependence was detected. This 

may be due to masking by large off-resonant bubbles as previously described. 

Unfortunately attempts to measure the bubble distribution optically failed and the 

only measurement of the bubble population was by inversion of acoustic propagation 

measurements. This gives no indication of the bubble population above a maximum 

size of -120-140 |im radius. If the transient response is important when considering 

the pulse length dependence, the difference between a non-oscillating bubble and a 

bubble oscillating at its resonance frequency, even at small amplitudes, may be 

significant. 

In conclusion, there has not yet been a rigorous theoretical study of pulse length 

dependence in single bubbles and bubble clouds that satisfactorily includes bubble 

non-linearity, off-resonance contributions, pulse propagation through a cloud and the 

decay of the bubbles after insonification. Experimental measurements have been 

more extensive, but again there was, by the start of this project, no systematic 

investigation of pulse length dependence in attenuation and scattering from bubble 

clouds under suitable controlled, and monitored, conditions. 
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1.4 Hypothesis 

The following section describes the proposed methodology by which the 

enhancement of sonar detection in bubbly environments may be achieved. Previous 

methods of enhancing sonar detection are discussed and the method by which 

potential enhancement will be investigated is described. 

1.4.1 Methods of sonar enhancement in bubbly environments 

In total three separate methods of sonar enhancement have been identified. The 

following paragraphs identify each of these methods and identify potential ways of 

exploiting them. 

Previous measurements'^^^ have indicated that the use of acoustic pulses which have 

durations that are less than the time taken for a bubble to reach the characteristic 

relaxation time, (see [1-33]) may result in a reduction in the attenuation from 

resonant bubbles. This is clearly illustrated in Figure 1-4 where the amplitude of the 

bubble response increases with increasing time. However the amplitude of the driving 

sound field cannot be ignored as it can adversely effect the bubble 'ring-up' (Figure 

1-5). 

The reason for this pulse length dependence is founded in the non-zero time it takes a 

resonant bubble to reach steady-state oscillation. For this reason the potential benefits 

to sonar enhancement are dependent on the population distribution and insonifying 

frequency. This is because the contribution of the off-resonant bubbles may not 

exhibit a favourable pulse length dependence, and may swamp the contribution of the 

resonant bubbles. 

One method of exploiting this pulse length dependence for sonar enhancement is to 

use very short pulses of duration ? « . This method of sonar enhancement will be 

referred to as Type I enhancement. 

Other methods of exploiting the pulse length dependence for sonar enhancement 

include the use of novel waveforms such as a swept waveform, or chirp, and psuedo-

random signals. It is hypothesized that the rapid change in the frequency of 

insonification may have the same benefit for pulse enhancement (by significantly 

reducing scattering and attenuation) as a very short pulse, whilst retaining a 
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reasonable signal to noise ratio. This method of sonar enhancement will be referred 

to as Type II enhancement. 

The final method of sonar enhancement that will be investigated utilises the 

variability with frequency of the attenuation through a bubble cloud to determine the 

frequency of minimum attenuation. This method will be referred to as Type III 

enhancement. 

1.4.2 Proposed investigation of enhancement methods 

To determine the optimum parameters for sonar enhancement, a series of theoretical 

and experimental measurements of the response of single bubbles and bubble clouds 

(with population distributions typical of the oceanic environment) to various 

waveforms will be conducted. 

Existing models of the time-dependent bubble and bubble cloud response are limited 

in their application by the assumption listed in Table 1-1. 

The Medwin model described in section 1.1.5 is a linear steady-state model only and 

does not include the transient bubble response. It is thus of limited use in 

investigating time-dependent methods of sonar enhancement. The remaining two 

models, although time dependent, are limited by the fact that they only include the 

transient response of resonant bubbles: only the model used by Pace et al. and Suiter 

includes any off-resonant contribution, and this is for steady-state only, and that 

contribution is itself unphysical. Finally, with the exception of Akulichev's model, 

the ring-down of the bubble after the driving pressure field has ceased is not included, 

and again the Akulichev model only considers this at resonance. The effect of bubble 

ring-down will be considered further in the next chapter. 

These assumptions seriously limit the ability of existing models to investigate the 

potential of novel waveforms. To overcome this, new theoretical models for the 

response of a single bubble and for bubble clouds will be developed. 

In addition this project will seek to develop a method of producing a bubble cloud in 

a laboratory tank, with a population that more closely mimics that of clouds typically 

found in the ocean. This bubble cloud generator will then be used in tank experiments 

to measure the attenuation of a range of signals. The results will then be used to 
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validate the new theoretical models and to investigate, in conjunction with the 

models, the potential for sonar enhancement of different driving signals. 

A surf-zone based sea trial will be conducted to test methods of sonar enhancement 

and obtain information on surf-zone bubble populations for further theoretical 

modelling. These results, in conjunction with further use of the models introduced in 

this thesis, will be used to determine the relative merits of the different methods of 

sonar enhancement tested. 

Assumption 

Model Linear Time 
Indepen-

dent 

Resonance 
Only 

No Off 
Resonance 

Contribution 

Ring Down 
not 

Included 

Resonant 
Damping 

Model 
Only 

No Off-
Resonant 
Transient 
Response 

Med win V V X X V X V 
Akulichev V X V V X V V 

Pace & 
Suiter 

V X X X V V V 
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CHAPTER 2 

2 Theoretical Modelling 

This chapter discusses the development of models for predicting the time-dependent 

response of a single bubble and bubble clouds. Non-linear models will be introduced 

to overcome the limitations of the linear models discussed in the preceding chapter. 

The first limitation is the inaccuracy of the linear model at increasing driving 

pressures. This can be easily overcome by using numerical solutions to existing non-

linear bubble models, such as the Rayleigh-Plesset equation, to give a time-dependent 

bubble wall response. A more fundamental problem highlighted in the previous 

chapter is the lack of a fully developed theory to investigate the time-dependent 

acoustic cross-section of a bubble cloud, including the resonant and off-resonant 

contributions. 

A numerical solution of a non-linear bubble model will be used to determine the 

time-dependent radiated acoustic pressure. Furthermore this will be used to derive 

time-dependent scattering and extinction cross-sections. This can then be used to give 

a first order cloud response in terms of the time-dependent acoustic cross-section. 

This model of a bubble cloud using acoustic cross-sections is termed first order 

because it is range independent. Such effects as attenuation of the signal as it passes 

through the cloud, and the distribution of the bubbles within the cloud, itself are not 

accounted for. 

The first order cloud model is therefore expanded to include range effects. This is 

achieved by modelling a cylindrical bubble cloud with an arbitrary population 

distribution assuming no bubble-bubble interactions. The range-dependent model will 

be configured to output time series in terms of radiated sound pressure, and to 
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calculate the time dependent attenuation for an arbitrary driving signal. This will be 

used to investigate the potential of the different methods of sonar enhancement. 

2.1 The single bubble model 

In this section a non-linear bubble model and its numerical solution are introduced. 

The model determines the bubble wall motion as a function of time. It is exploited in 

this thesis to derive the time-dependent extinction and scattering cross-sections and 

radiated acoustic pressure. Example outputs are shown for single resonant and off-

resonant bubbles. 

2.1.1 The Keller-Miksis non-linear bubble model 

The Keller-Miksis^^ bubble model (equation 2.1) is an advanced form of the 

Rayleigh-Plesset equation already introduced. It is used here instead of the Rayleigh-

Plesset as it accounts for the finite sound speed in the liquid. This is a significant 

improvement over the Rayleigh-Plesset equation, but is no more difficult to 

implement. The correction for the finite sound speed was first introduced by 

Herring"^^ and was derived through the consideration of the effect of underwater 

explosions. The Keller-Miksis form of the model is: 

RR -f-
3^^ f 

A ' RR -f-
3^^ 

1 - A ' ] 4- — 
^ ^0 V 2 V 3^0/ V ^0/ 

PB w- t + -
R 

-0/1 
[2-1] 

PB it)- P o + 
2cr 

R, R 

2(7 47/R 

a 
[2-2] 

Comparison with the Rayleigh-Plesset model [1-43] shows that each of the terms is 

expanded to account for the finite Mach number of the bubble wall. In addition, there 

is an extra term dependent on the rate of change of the pressure at the bubble wall. 

This allows the inclusion of energy storage within the liquid medium around the 

bubble. As the speed of sound in water ^ , the Rayleigh-Plesset equation is 

recovered from [2-1]. 
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It should be recalled that, whilst the Keller-Miksis equation includes viscous damping 

(as does the Rayleigh-Plesset), and radiation damping up to first order in — , it does 

not include any net thermal losses. Hence if, for a given bubble size and driving 

frequency, Eller were to predict , then the radius-time plots predicted by 

the Keller-Miksis equation can be assumed to be accurate. But if is not much less 

then , the radius-time plots will underestimate the losses. To introduce a good 

practice, in this thesis the ratio will be quoted in figure captions. 

This second order differential equation can be solved numerically by using the 

Runge-Kutta method'*^ and rewriting [2-1] as two first order equations as follows: 

1 + - t + ' 
' 0 J 

- 1 -

3 

2 
X, 

X, 

V 
1 - ^ 

3c, 0 J [2-3] 

and 

[2-4] 

where x, = /? and x^= R. 

Thus the bubble's wall displacement R, velocity R, and acceleration R can be 

determined as a function of time. An example of the output is shown in Figure 2-1 for 

a 30.8 |J.m resonant Nitrogen bubble in a 100 kHz, 500 Pa continuous wave sound 

field for the condition at f = 0, R = RQ =30.8)im and R=0. This figure clearly 

shows the amplitude of oscillation increasing monotonically for the first 0.1 ms after 

the onset of the driving pressure (this is as expected after Figure 1-2 to Figure 1-4, as 

this bubble is being driven very close to its linear resonance). Thus during this period 

the bubble is 'ringing-up' but, as the driving force continues beyond this time, the 

amplitude of response levels off. As already discussed in reference to Figure 1 -4 this 

mode of response is termed steady-state since the amplitude of oscillation is constant 

with time. 
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For a resonant bubble the ratio is typically of order 0.78+0.02 for bubbles in 

the range 10 |im to 200 |im. Introduction of nonlinear thermal damping would be a 

very major undertaking. The decision has been made to proceed without it, and 

explore the main characteristics of the time-dependent nonlinear cross-sections that 

will be developed. Once this pioneering development has been completed in this 

thesis, incorporation of thermal damping by existing formulations'̂ '̂'*® could be 

undertaken as future work. 

In the next section the numerical solution to the Keller-Miksis equation is used in the 

derivation of a time-dependent acoustic cross-section. 
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2.1.2 Time-dependent bubble cross-section and radiated response 

In order to derive the scattering cross-section from the analytical solution of the 

Keller-Miksis, it is first necessary to calculate the radiated sound field. The pressure 

radiated from a spherically oscillating bubble can be calculated at distances far from 

the bubble using 49 

r 
[2-5] 

where r is the distance from the centre of the bubble. 

An example of the radiated acoustic pressure 1 m from the bubble centre (using the 

same parameters as for Figure 2-1) is shown in Figure 2-2. 
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Similarly the bubble cross-sections, or effective target strength of an oscillating 

bubble in m^, can also be calculated. Two cross-sections will be considered, the 

scattering cross-section, which is a measure of the energy re-radiated by the bubble; 

and the extinction cross-section, which is a measure of the total energy lost from the 

system due to scattering and absorption. 
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In both cases the cross-section can be defined as; 

_ Time Averaged Energy Loss 
= T _ [2-6] 

Incident Energy 

For spherical oscillation the power loss is given by: 

I%3wer:= [2-7] 

where 6̂ ^ is the damping in the radius-force frame'^. In the case of the extinction 

cross-section the total damping should be used, whereas the radiation damping only is 

used to determine the scattering cross-section. 

In order to investigate the effect of changing the insonifying pulse length, using 

different time-dependent driving signals, it is necessary to measure the time 

dependent scattering cross-section. Thus [2-7] can be rewritten in terms of the time 

dependent energy loss required for the acoustic cross-section by integrating over the 

time period of interest: 

$ = [2-8] 

The time dependent cross-section is given by the ratio of the energy loss to the 

incident energy over the time period of interest. Thus [2-6] becomes: 

r 

r = [2-9] 
/('«+] --fn) ^ \ 

2/%:o ^ 

where P. is the driving amplitude. 

To evaluate [2-9] it is necessary to calculate the damping coefficient b^f. The linear 

damping theory of Eller® can be used to calculate the damping coefficient in the 

volume-pressure frame (though it should be noted that these coefficients assume 

small amplitude uniform pulsations). 
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It should be noted that the above formulation for the time dependent cross-section 

combines a non-linear bubble model with a linear steady-state damping theory. There 

is an implied approximation in this technique, which will become increasingly 

inaccurate for higher sound pressure levels as bubble motion becomes increasingly 

non-linear. It is possible to develop a fully non-linear theory for the scattering cross-

section that can be used as a check on the combined formulation described above. 

The fully non-linear calculation relies, not on the linearised steady-state damping, but 

on the non-linear expression of the radiated acoustic pressure from an oscillating 

bubble given in [2-5] above. The radiated power loss becomes: 

'"I p2 
470-^ f — 

Thus the new scattering cross-section is: 

P' 
I " — 

J 9/v. 
^ '' [2-11] 

2 m 

This in turn can be used to calculate the extinction cross-section by multiplying the 

scattering cross-section by as per [1-37]. 

The major advantage of [2-11] over previous methods of calculating cross-sections is 

in its ability to show time dependence which reflects the various envelopes a bubbles 

is capable of following off resonance (as show in Figure 1-2 and Figure 1-3). It 

should be recalled that all previous time-dependent theories could only incorporate 

time-dependency of the (l - ) form shown at resonance (Akulichev'^", Suiter''^, 

Pace et al^^, see Table 1-1). Before exploiting this advance in section 2.1.3 however, 

it is prudent to compare how the cross-sections predicted by the non-linear theory as 

t —> oo compare with the values predicted by the steady-state linear model. It should 

again be recalled that the previous time-dependent models were scaled to match the 

predictions of the linear steady-state model as / as equation [1-64] showed. 
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Figure 2-3 compares the different acoustic cross-sections with the linear time 

independent cross-section derived in chapter 1. The results shown are for a 30 |im 

bubble driven by a sound field of sound pressure level 1 Pa. The time dependent 

cross-sections are calculated after two hundred cycles of the driving sound field when 

the bubble has reached steady state. 

The figures indicate a significant difference between the non-linear and linear cross-

sections particularly around resonance and must be considered carefully. The non-

linear and linear cross-sections shows completely different resonance responses (i.e. 

resonance frequency and quality factor) and thus differences in the bubble damping. 

Since as previously mention the Keller-Miksis model does not include thermal 

damping we would not expect the results of the linear and non-linear models to agree 

exactly even at this low sound pressure level. However, because of the lack of 

thermal damping the Keller-Miksis has less damping then the linear model and we 

thus expect the peak to be narrower and the resonance frequency to be higher^^. In 

Figure 2-3 the non-linear peaks do appear narrower (with a Quality Factor of 28 for 

the non-linear model as compared to 8 for the linear model) but the resonance 

frequency is less, because the nonlinearity also introduces a frequency shift. To 

confirm this trend the results are re-plotted in Figure 2-4 but with two different 

bubble radii to give coincident resonance peaks. The linear model results in Figure 

2-4 are now for a 33 |im bubble. The figure shows that the non-linear results do have 

a narrower peak with a Quality Factor of 30 for the non-linear model compared to 8 

for the linear model. 

The damping incorporated into the linear and nonlinear models has been shown to be 

intrinsically different. However, the non-linear model must be used in preference to 

the linear model owing to its ability to account for non-linear effects at increasing 

sound pressure levels and because (as has been shown in section 1.3) existing linear 

models do not accurately describe the time dependence in the bubble response at 

frequencies away from resonance. It should be noted that at even very low sound 

pressure levels used to obtain the results in Figure 2-3 (1 Pa) non-linearities are 

manifest in the results as a second harmonic. 

Given the differences between the linear and non-linear cross-sections the different 

non-linear cross-sections need to be compared. The two different methods of 

calculating the acoustic cross-sections are consistently offset by a small margin. In 

57 



the case of the extinction cross-section both derivations include a linear 

approximation. However, the comparison plot of the extinction cross-section in 

Figure 2-3 is very similar to the scattering cross-section with an almost identical 

offset between the two non-linear calculations. Furthermore, the introduction of the 

linear approximation into the extinction cross-section calculation occurs at a later 

stage in the derivation, when using the dimensionless damping ratio. In effect the 

fully non-linear scattering cross-section is being scaled by the linear approximation. 

In this way the non-linear velocity and acceleration of the bubble are still retained in 

the radiated pressure term rather than being discarded, as is the case when the 

damping coefficient b is used. It is thus reasonable to consider the formulation that 

uses the dimensionless damping ratio to be the more favourable approximation of the 

non-linear extinction cross-section. 

Although the results using the damping coefficient, b, agree better with the linear 

cross-section (as expected as this partially corrects for the differences in the damping 

models) Figure 2-3 and Figure 2-4 show that the linear and non-linear results cannot 

be compared directly. Thus it is more desirable to maintain a consistent approach 

using the radiated pressure term than to use the linear damping coefficient simply 

because it agrees slightly better with linear theory away from resonance. 

The following section discusses the implication of these findings for sonar 

enhancement. The theory is then used to calculate the non-linear cross-sections and 

the scattering and attenuation of a bubble cloud. 
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Figure 2-3 Comparison of linear and the different non-linear methods of calculating 
the acoustic cross-section at 1 Pa sound pressure level for a 30 jjm radius bubble. 
Plot a) shows the various scattering cross-sections and plot b) the extinction cross-
sections. In both plots the blue line indicates the linear cross-section whilst the red 
line uses the damping term, b, and the green line use the radiated pressure term from 
the Keller-Miksis model. In all cases the dimensionless damping ratio is used to get 
the extinction cross-section. Note the harmonic in the non-linear model at twice the 
resonance frequency. 
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Figure 2-4 Comparison of linear and the different non-linear methods of calculating 
the acoustic cross-section at 1 Pa sound pressure level for a 30 /Jm and 33 jum radius 
bubble for the linear and non-linear models respectively. Plot a) shows the various 
scattering cross-sections and plot b) the extinction cross-sections. In both plots the 
blue line indicates the linear cross-section whilst the red line uses the damping term, 
b, and the green line use the radiated pressure term from the Keller-Miksis model. In 
all cases the dimensionless damping ratio is used to get the extinction cross-section. 
Note the harmonic in the non-linear model at twice the resonance frequency. 
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2.1.3 Implications for sonar enhancement 

The time-dependent bubble wall response and the scattering cross-section [2-11] of a 

single bubble have been calculated (using the preferred formulations of the non-linear 

cross-section described in the previous section) for a sound pressure level of 1 Pa, 1 

kPa and 10 kPa. The results for a bubble near resonance are given in Figure 2-5 and 

Figure 2-6 showing respectively the time-dependencies of bubble radii and the 

scattering cross-section of the bubble in response to a semi-infinite duration pulse 

which starts at t=0. Since it is a ratio of energy loss over incident energy the 

scattering cross-section must be calculated over a finite period of time. In this case it 

is calculated for each cycle of the insonifying sound field to give the cycle-by-cycle 

variation in the cross-section. 

The results show that as the driving pressure becomes large, despite the increase in 

amplitude of bubble wall oscillation (Figure 2-5), the scattering cross-section 

decreases (Figure 2-6). This is because the definition of the scattering cross-section 

normalises the power scattered by the bubble to the intensity of the incident plane 

wave and, unlike in linear theory, the bubble response no longer scales linearly with 

driving pressure. The reduction in the time taken to reach steady-state as the driving 

amplitude increases (Figure 2-6) also indicates that the likelihood of detecting 'ring-

up' effects decreases as the driving pressure is increased. 

Note that the 'ring-up' envelope which (as Figure 1-2 to Figure 1-5 

showed) is a characteristic of the linear resonance condition, is present only at the 

lower driving amplitudes. A major strength of this approach is its ability to describe 

time-dependencies other than (l - ) which has been shown to only occur very 

close to resonance at small driving amplitudes. As will be seen, it is this behaviour 

that is key to understanding why the findings of Suiter and Pace et al. appear to 

contradict those of Akulichev, and to explain how sonar enhancement might be 

achieved. 

To illustrate the ability of this method to describe time-dependencies that depart from 

(l ) ring-up the bubble response when driven off resonance is shown in Figure 

2-7 and Figure 2-8. 
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2.2 Range independent bubble cloud models 

The formulation for the time-dependent cross-section and the radiated acoustic 

pressure of an oscillating bubble (described above), can be used as the basis for 

modelling the response of a bubble cloud. Two types of cloud model have been 

developed. The first type (called subsequently the range independent model) is a 

simple model for estimating the scattering cross-section for a given population of 

incoherently scattering bubbles. This model assumes all the bubbles are excited 

simultaneously and so ignores propagation through the cloud. 

The second model type (called subsequently the range dependent model) simulates 

the response from a cylindrical bubble cloud of finite dimension, including 

propagation through the cloud. A cylindrical cloud has been chosen as it closely 

mimics the sort of cloud that can easily be generated artificially in the laboratory. 

However, as will be shown, the model reduces the position of each bubble to a time 

delay corresponding to the onset of insonification. Thus an arbitrary cloud shape can 

be created if necessary. 

Here, however, the cloud is modelled as a number of randomly distributed bubbles 

within a cylindrical cloud. The response of the cloud is then calculated by 

incoherently summing the response of each bubble. The cloud response to an 

arbitrary incident sound field is then easily determined. In all cases the effect of 

multiple bubble interactions is assumed to be negligible. The criteria for this 

assumption to be valid are reviewed in Appendix B. 

The assumption of coherent or incoherent scattering in the cloud models also requires 

further clarification. In the case of the simple cloud model all the bubbles are 

assumed to be insonified simultaneously, and the scattering or extinction cross-

section is used to calculate the cloud response. This assumes that the bubble response 

is coherent since adding cross-sections is equivalent to a summation of the respective 

power losses from the incident wave as a result of each bubble. 

2.2.1 Simple cloud model for an infinite duration pulse 

The analysis of the acoustic cross-section of a bubble cloud in chapter 1 can be 

combined with the non-linear time-dependent acoustic cross-section derived above to 

give a first-order estimation of the time dependent cross-section of a bubble cloud 
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insonified by an infinitely long driving pulse (a journal paper by Clarke and Leighton 

investigating this is included in Appendix F). It is assumed that the bubble population 

density is sufficiently small that bubble-bubble interactions can be neglected, as is the 

reduction in intensity of the incident wave as it propagates through the cloud. By 

calculating the cross-sectional areas of single bubbles of varying radii, and 

incoherently summing the results, the cycle-by-cycle response of a bubble layer with 

a population size distribution can be calculated. The density of the population is then 

simply a scaling quantity given the limitations discussed above. Thus [1-46] 

becomes: 

= [2-12] 
0 

and the time-dependent scattering or attenuation of the cloud in dB per unit distance 

is given by (from [1-50]): 

(t) = 4.2145^) [2-13] 

Figure 2-9 and Figure 2-10 summarises the time dependent cross-section of a range of 

bubble sizes in a continuous 1 kPa and 10 kPa sound field respectively. For any given 

fixed time, the plot of cross-section as a function of radius exhibits the familiar 

characteristics of resonance scattering dividing the Rayleigh and the Geometric 

scattering regimes, (as defined in section 1.1.5 and Figure 1-6). A ring-up time is also 

evident at resonance. 

Therefore, the response of a bubble distribution can be investigated by applying 

[2-12], which scales the individual bubble response by the population distribution. 

When the population distribution is described in the conventional fashion of numbers 

of bubbles per |im increment per metre cubed the time dependent total response of a 

bubble cloud of volume 1 m^ can be ascertained using this equation. 
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Figure 2-9 Scattering (top) and extinction (bottom) cross-sectional area of a single 
air bubble in water of equilibrium radius up to 600 /Mi in a 100 kHz sound field of 
amplitude, 1 kPa under 1 atmosphere of hydrostatic pressure. 
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Figure 2-10 Scattering (top) and extinction (bottom) cross-sectional area of a single 
air bubble in water of equilibrium radius up to 600 /Jm in a 100 kHz sound field of 
amplitude, 10 kPa under 1 atmosphere of hydrostatic pressure. 
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Throughout this section the Farmer and Vagle^^ measurements of oceanic bubble 

populations are used as an example of a typical bubble distribution. For 

computational purposes a curve ([2-14]) has been fitted to the data and the population 

extrapolated over the required radius range. 

) = 69410^-°'^^^'''' [2-14] 

where RQ is in |_tm. A logarithmic plot of equation [2-14] is shown in Figure 2-11. 

gio 

I 
Q-IO'" 

10 10 
Bubble Radius ()un) 

Figure 2-11 Logarithmic plot of the Farmer and Vagle^^ population distribution 
using equation [2-14]. 

The time-dependent cross-section and attenuation for a 1 cloud using the Farmer 

and Vagle^^ bubble distribution in a 100 kHz sound field of amplitude 1 kPa and 10 

kPa, is shown in Figure 2-12 and Figure 2-13. The cross-section is calculated 

discretely for pulse lengths of 1 to 100 cycles and the bubbles are under one 

atmosphere of hydrostatic pressure. The top row of plots in Figure 2-12 and Figure 

2-13 indicate the extinction cross-section of the cloud as a function of radius and 
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time. The top plots are an intermediate step and represent the function S{t) from 

[2-12] prior to integration where each bubble size has been multiplied by the number 

of bubbles of that size in a 1 m^ cloud. 

The next step is to apply the integral from [2-12] to give the time-dependent cross-

section of the cloud S{t). The middle line of plots in Figure 2-12 and Figure 2-13 

show the cloud response as a function of time after integrating with respect to the 

bubble radius. 

Finally equation [2-13] can be applied to determine the time dependent attenuation of 

the cloud in dB per unit distance. The result of applying [2-13] is shown in the bottom 

plots of Figure 2-12 and Figure 2-13. Since the population distribution used ([2-14]) 

is for a 1 m^ cloud the attenuation calculated from [2-13] has unit dB/m. 

The plots of Figure 2-12 and Figure 2-13 reinforce the importance of using a non-

linear time-dependent bubble model in this investigation. The resonant bubble 

response for the 10 kPa sound pressure level in particular widely deviates from the 

'ring-up' predicted by the linear model. It should also be noted that the 

models of Suiter assume a time invariant off resonant contribution added to a 

(l - ) resonant contribution ([1-64]). We have already seen that the 

assumption is only valid under at low amplitudes for bubbles at resonance. Close 

examination of the results shown in Figure 2-12 and Figure 2-13 indicate that the 

bottom attenuation plots do not exactly follow the resonant response apparent in the 

top most plots. This is not unexpected as we have already seen the complex nature of 

the bubble off resonant response predicted by the non-linear model in Figure 2-7. 

However this conclusion is not immediately apparent from Figure 2-12 and Figure 

2-13. It is also impossible to ascertain the relative importance of the contribution of 

resonant bubbles, bubbles near to resonance but not at resonance, and bubbles off 

resonance. To investigate these issues further the results shown in the bottom plots of 

Figure 2-12 and Figure 2-13 are broken down into these regions and the results 

plotted in Figure 2-14. For the purposes of this plot the off-resonant bubbles are 

considered to be those bubbles that do not exhibit a ring up or transient behaviour. 

The resonant bubbles are those that exhibit a monotonic ring up. The near resonant 

bubbles are the remaining bubbles defined by the limits of the resonant and off 

resonant regions. In Figure 2-14 these regions are defined as follows. The resonant 
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contribution includes all bubbles in the 31 |im radius bin. The off-resonant 

contribution includes all bubbles in the 1 to 15 |lm and 50 to 300 |im radius bins. The 

near resonant contribution includes all bubbles in the 16 to 30 |im and 32 to 49 |im 

radius bins. 

It is clear from Figure 2-14 that for this population distribution the bubbles at, and 

near to, resonance dominate the cloud cross-section. For the first 20 cycles of the 1 

kPa plot the near-resonant bubbles are proportionally more important than the 

resonant bubble contribution. Furthermore, by increasing the amplitude, the relative 

importance of the near resonant bubbles increases for all pulse lengths. The off-

resonant bubbles contribute little to the cloud response for both the 1 kPa and 10 kPa 

sound pressure levels. 
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Figure 2-12 The attenuation of a 1 m bubble cloud using the non-linear range 
independent cloud model. The population distribution is that of Farmer and Vagle 
All plots are for a 100 kHz sound field of amplitude 1 kPa. The top plot shows the 
extinction cross-section as a function of bubble radius and cycles of the insonifying 
sound field scaled by the population distribution. The middle plot shows the 
extinction cross-section of the cloud as a function of cycles of the insonifying sound 
field. Finally the bottom plot is the attenuation of the cloud in dB/m, again as a 
function of cycles of the insonifying soundfield. 
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Figure 2-13 The attenuation of a 1 bubble cloud using the non-linear ran^e 
independent cloud model. The population distribution is that of Farmer and Vagle . 
All plots are for a 100 kHz sound field of amplitude 10 kPa. The top plot shows the 
extinction cross-section as a function of bubble radius and cycles of the insonifying 
sound field scaled by the population distribution. The middle plot shows the 
extinction cross-section of the cloud as a function of cycles of the insonifying sound 
field. Finally the bottom plot is the attenuation of the cloud in dB/m, again as a 
function of cycles of the insonifying sound field. This is a discrete calculation for the 
data points plotted. Line between data points are included to aide in interpretation. 
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Figure 2-14 The attenuation of a 1 bubble cloud using the non-linear range 
independent cloud model. The population distribution is that of Farmer and Vagle 
All plots are for a 100 kHz soundfield of amplitude 1 kPa (top) and 10 kPa (bottom). 
Each plot shows the attenuation of the entire cloud (+) the contribution of the 
resonant bubble (4), the contribution of the off-resonant bubbles (o) and the 
contribution of the near resonant bubbles (V). This is a discrete calculation for the 
data points plotted. Lines between data points are included to aide in interpretation. 
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2.2.2 Simple cloud model for a finite duration driving pulse 

Unlike the formulation used in previous studies by Pace et and Suiter"* ,̂ the 

technique used here employs a non-linear bubble model to overcome the limitations 

of the linear model (section 2.1.2). In addition, the time-dependency has a physical 

basis. In all the previous calculations of the acoustic cross-section in this chapter the 

limits of the integrations to calculate the energy loss have corresponded to the length 

of the driving pulse. This method of calculating the cross-section is suitable for 

investigating how the bubble cross-section changes as the length of the driving pulse 

increases, but it assumes the bubble is being driven by a pulse of infinite length. It 

can thus be considered to be a measure of the cycle-to-cycle variation in acoustic 

cross-section and not the cross-section of a cloud in response to an insonifying 

waveform. This is because when the driving pulse ceases the bubble will continue to 

oscillate at its resonance frequency. These oscillations will decay away as a function 

of the damping at resonance and represent additional energy loss from the insonifying 

sound field. This 'ring-down' of a bubble must be included in the non-linear 

formulation of the acoustic cross-sections or the cloud model will underestimate the 

energy loss and thus the cloud attenuation when driven by a finite length pulse. 

To investigate this problem the calculations of the extinction cross-section of a 1 m^ 

bubble cloud using the Farmer and Vagle^^ population are recalculated for pulses of 

finite length. To investigate the effect of different pulse lengths the limits of the 

integral in [2-9] now represent the full extent of the driving pulse and the bubble 

response from f = 0 to the time when the bubble returns to rest. 

Cross-sections have been calculated for a driving frequency of 100 kHz and pulse 

durations of 1 to 100 cycles in 5 cycle steps to reduce processing time. 

The results are shown in Figure 2-15 and Figure 2-16 for a 100 kHz 1 kPa and 10 kPa 

sound pressure level driving pulse respectively. The top plot shows the extinction 

cross-section of a 1 m^ cloud with the Farmer and Vagle^^ population distribution and 

the bottom plot shows the attenuation in dB/m of the same cloud. Figure 2-17 shows 

the contribution of resonant bubbles, bubbles near to resonance but not at resonance, 

and bubbles off resonance for both the 1 kPa and 10 kPa sound fields. As with Figure 

2-14, these regions are again defined as follows. The resonant contribution includes 

all bubbles in the 31 )im radius bin. The off-resonant contribution includes all bubbles 
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in the 1 to 15 |im and 50 to 300 |J,m radius bins. The near resonant contribution 

includes all bubbles in the 16 to 30 |xm and 32 to 49 |lm radius bins 

The modification of the cloud model to calculate cross-sections of pulses of finite 

duration has changed the predictions of the cloud cross-section and attenuation. The 

results of the 1 kPa amplitude sound field will be considered first. Although the shape 

of the results has remained similar (i.e. a ring-up to steady state) the attenuation at the 

shortest pulse lengths has increased and the near resonant bubbles are even more 

dominant for the shorter pulse durations. Conversely, the attenuation of the longer 

pulses as steady state is reached has changed little. The net result of this is a much 

smaller change in attenuation as the pulse length increases. The 10 kPa amplitude 

sound field results show a similar trend. The near resonant bubbles are still dominant 

and the attenuation at the shortest pulse lengths has increased. In this case any ring-up 

to steady state has been entirely masked. 
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Figure 2-15 The attenuation of a 1 m bubble cloud using the non-linear range 
independent cloud model including bubble ring-down. The population distribution is 

a. 7%g fop pZof fAowf fAg gxnncnoM cm^yf-̂ ygcfzon q / fAg a /wMcffon 
pMZ,yg m cyc/g^y. 77zg fAg affgnwafzon q/^fAg cZoW z'n agazn 
as a function of pulse duration in cycles. This is a discrete calculation for the data 
points plotted. Lines between data points are included to aide in interpretation. 
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Figure 2-17 The attenuation of a 1 bubble cloud using the non-linear range 
independent cloud model for finite pulse lengths. The population distribution is that 
of Farmer and Vagle^^. All plots are for a 100 kHz sound field of amplitude 1 kPa 
(top) and 10 kPa (bottom). Each plot shows the attenuation of the entire cloud (+) the 
contribution of the resonant bubble (4), the contribution of the off-resonant bubbles 
(o) and the contribution of the near resonant bubbles (V). 
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To investigate the effects of different pulse durations and sound pressure levels 

further the sonar equation for detection of a 0.15 m radius sphere introduced in 

chapter 1 will be applied. All values will be as indicated in chapter 1, except that the 

attenuation will be calculated using the time-dependent non-linear cross-section in a 

100 kHz sound field at 1 kPa amplitude (90 dB ref 1 jim Pa at 1 m) and 10 kPa 

amplitude (100 dB ref 1 flm Pa at 1 m) for a finite duration pulse. The noise level is 

also assumed to be -50 dB as in chapter 1. 

In order to compare the relative performance of different pulse lengths and sound 

pressure levels, the sonar equation is solved numerically to give the detection range 

as a function of pulse duration. The results are shown in Figure 2-18 along with the 

cloud attenuation also as a function of pulse length. The results predict that short 

pulse can result in a small enhancement of detection ranges in bubbly environments 

for low sound pressure levels. The increase in sound pressure levels quickly masks 

this benefit providing less enhancement than might be expected. A slight 

improvement is indicated, however, during the steady state part of the cloud response. 

Conversely the transient behaviour leads to a very slight degradation of target 

detection ranges for the 10 kPa results for pulse durations of approximately 10 cycles 

in length. Although this is not an important effect in these plots, it should not be 

neglected since transient response will be an important factor in population 

distributions, where resonant bubbles are not dominant. 

The results of the range independent cloud model for finite pulse length indicates 

significantly less potential for sonar enhancement than the previous version of the 

model for infinite driving pulses. This is because of the increase in the attenuation for 

short pulse lengths predicted by the model. This is because, as the bubble approaches 

steady state, the energy loss owing to bubble ring-down is progressively less 

important. The plots in Figure 2-19 and the accompanying Table 2-1 demonstrate 

this. The table shows the percentage energy loss of an acoustic wave owing to a 

resonant bubble for: 1) the period the bubble is being driven and 2) the period that the 

bubble is ringing down after insonification has ceased. The results show that the 

contribution of the bubble ring down is proportionally more important for short 

pulses. 
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The results of the simple cloud model for finite pulse lengths shows that short pulses 

can in fact be detrimental to sonar enhancement. When infinite pulses are used the 

opposite conclusion is erroneously indicated. Examination of the bubble response for 

each bubble radii in Figure 2-17 indicates that the resonant bubble still shows a 

reduction in the cross-section for short pulses over steady state. It is the increase in 

the scattering cross-section of the near resonant bubbles when insonified by short 

pulses that has masked the ring-up evident in the resonant bubbles. The following 

section expands the simple cloud model to incorporate range dependent effects. 

2.3 Range dependent cloud models 

In the preceding section a simple model to estimate the attenuation and cross-sections 

of a bubble cloud has been described. However this simple model does not take into 

account the geometry of the cloud. The different ranges of the bubbles from the 

source and receiver and the attenuation of acoustic signals as they pass through the 

cloud are not considered. This section expands on the simple cloud model to include 

the cloud geometry and range effect, and incorporates the attenuation of the driving 

acoustic signal. 

2.3.1 Range dependent cloud model without driving pulse attenuation 

One method of simulating the range dependent aspects of a bubble cloud is to 

distribute a representative proportion of the bubble population randomly within the 

cloud volume. The distance of each bubble from the source is then calculated and 

this can be related to a time delay of that bubbles response at the receiver. Each 

individual bubble response can then be determined using the Keller-Miksis bubble 

model, and the cloud response found by summing each response with the appropriate 

delay. 

The bubble radius response as given by the Keller-Miksis can be used to calculate the 

scattering or attenuation from each bubble. The radiated sound pressure level is 

obtained using [2-5] and the attenuation by calculating the power over the bubble 

response in the same way, as for the acoustic cross-sections discussed previously 

(section 1.1.5). The energy loss owing to attenuation or scattering from the cloud can 
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be calculated by integrating with respect to time the power loss for a given driving 

sound field. 

Dubb b Cloud 

Figure 2-20. Asymmetric view and schematic showing how the cloud is modelled by 
randomly generating the position of the bubbles (radius, angle and depth from cloud 
center) within the cloud volume and calculating the path length to the receiver. The 
shaded region indicates the cloud boundary and bubble density, a darker shade 
indicating a higher bubble density. 

In the formulation of the previous cloud model it has been shown that the time taken 

for the bubble to ring-down must be included in the limits o f integration. Also in the 

case of the range dependent model, the pulse will take a finite time to propagate 

through a cloud; thus the bubbles will not be oscillating with the same phase. 

Furthermore, the cloud has finite dimensions and will respond differently depending 

on whether the pulse train is longer or shorter than the time taken to propagate 

through the cloud. Consider when the pulse train is much shorter. Only a part of the 

cloud is insonified at a given time; thus not all the bubbles will reach steady-state 

oscillation at the same time. If the pulse train is sufficiently longer than the cloud, 

then at some point the entire cloud will be oscillating at steady state. As in the case of 
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the modified simple cloud model, this model will determine the response of a bubble 

cloud to arbitrary waveforms of finite length, including the bubble ring-down. 

The model has been implemented using Mathworks Matlab™. The methodology of 

the model is described here with the aid of an example. In this case a l n f volume 

cylindrical cloud with a population distribution taken from Farmer and Vagle'^ 

([2-14]) to allow comparison with previous model results. In this case a cylindrical 

cloud insonified mono-statically is modelled. The bubbles are uniformly distributed 

over the depth insonified by the transmit array but are distributed in the horizontal 

plane such that the density reduces towards the edges of the cloud but is radially 

uniform. 

This geometry is generated by randomly determining an angular component and 

distance, as well as the vertical distance, from the centre of the cloud for each bubble. 

The cloud is 0.5 m in radius and 1.27 m in depth (giving a cloud volume of 1 m^) 

with the centre of the cloud on axis with the transmit/receive array. A plane wave is 

assumed with the receive array 2 m from the centre of the cloud 

The distance of each bubble from the receive array is then calculated by resolving 

along the axis of the source and cloud origin and applying basic trigonometry (Figure 

2-20). It is then a simple matter to calculate the time at which the signals are received 

for each individual bubble using the distance and the speed of sound in water 

(assumed to be bubble-free to speed up the calculation). The bubble population is 

then ordered in terms of this time delay. 

The scattering or attenuation of each bubble radius increment is then calculated for 

the incident pulse using the Keller-Miksis model as described previously. The 

increment is normally one micrometre as defined by the population formula. This is 

fine enough to resolve the bubble resonance and avoids the need to integrate the 

bubble population to give the number of bubbles per radius increment. The cloud 

response is then constructed by stepping through the bubble population, in order of 

increasing delay, and adding the response for the appropriate bubble size. 

The model is able to produce a time-series response for the sound pressure scattered 

from a cloud of a given population and cylindrical radius for any incident plane wave 

signal. Furthermore, the time-dependent scattering and attenuation in decibels can be 

calculated using the energy loss owing to the bubble cloud and the calculated energy 
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of the incident pulse. A further benefit of this model is that it can use a formula or a 

driving pressure time series in Pascals to define the incident signal. The use of a time 

series requires that pressure time series be sampled at the same (or greater) frequency 

as the model output. This is normally set to 1 MHz. 

Although a cylindrical cloud has been used in this case, as it is easy to model and can 

be produced artificially in a tank, a variety of cloud shapes could be implemented by 

changing the algorithm for calculating the distance of the bubbles from the source. 

The results of the range dependent model based on the example described above are 

shown in Figure 2-21. To obtain these results the bubble population has been scaled 

down to reduce processing time. Several repeat tests were conducted to ensure that 

enough bubbles were modelled such that the standard deviation of the cloud response 

(scaled up to the desired population density) varied by less than 1% for different 

randomisations of the bubble locations. 

The results of the range dependent model shown in Figure 2-21 differ slightly from 

the cloud model results shown in Figure 2-18. The results from each of these figures 

are overlaid in Figure 2-22 for comparison. Although the peak attenuation of the 1 

kPa traces is similar the results calculated using the range independent model 

generally shows a greater attenuation than the results for the range dependent model 

as pulse length increases. Both models, however, show an increase in attenuation 

between one and fifteen cycles after which the attenuation of 1 kPa continues to 

increase slowly with increased pulse duration and the 10 kPa attenuation reduces 

rapidly with increasing pulse length. In addition the maximum target detection range 

of -5.6 m is somewhat less then the -7.5 m predicted by the range independent 

theory. It is also significantly less then the 12.8 m predicted by the steady-state linear 

theory. 
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Figure 2-22 Attenuation for a 1 cloud (Farmer and Vagle^^ distribution) under 
one atmosphere hydrostatic pressure in a 1 kPa(x) and 10 kPa (+) sound field for the 
range independnt cloud model (solid line) and the range dependent cloud model 
(dashed line). The insonijication frequency is 100 kHz. 

2.3.2 Range dependent cloud model including driving pulse 

attenuation 

One of the assumptions in the range dependent cloud model described above is that 

the sound pressure level of the signal does not change as it passes through the cloud. 

This assumption could be a significant source of error because the model assumes 

bubbles furthest from the source are being insonified by a greater sound pressure 

level than should be the case and could lead to an error in the estimation of the cloud 

attenuation. 

To overcome this problem the theoretical cloud is segmented into an arbitrary number 

of layers (determined by the number of bubbles and the level of attenuation). The 

attenuation owing to the first layer is calculated in the same way as described above 

and the reduction in the incident signal determined. The driving signal is then scaled 

by this amount. This new reduced signal is then applied to the following layer. To 

reduce processing time the response of the succeeding layers is calculated by linearly 
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scaling the individual bubble responses used to determine the first layer response, in 

line with the reduction in the incident signal. 

The effect is cumulative over the layers and the total cloud response is determined by 

adding each layer response with the appropriate delays. This is implemented by 

adding an extra function to the Matlab model that segments the population delay 

vector into uniform length 'layers'. The response from each layer, with the 

appropriate reduction in bubble response owing to the attenuation, is then calculated 

and summed in the manner described above. The attenuation in dB/m is shown in 

Figure 2-23. 

The inclusion of pulse attenuation into the range dependent model has resulted in a 

small reduction in attenuation of approximately 1-2 dB for both the 1 kPa and 10 kPa 

sound pressure levels. 
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The importance of the range independent cloud model (owing to cloud geometry) 

when trying to predict the effect of changing the pulse duration on scattering and 

attenuation of bubble clouds has thus been established. Although the range 

independent model is a useful first approximation (owing to its simplicity) care 

should be taken when interpreting the results especially when considering bubble 

clouds of finite dimension. 

A method of incorporating the attenuation of an acoustic driving pulse as it passes 

through a bubbly medium has also been introduced. In this case the results are only 

slightly changed from those that do not include the driving signal attenuation. 

However in circumstances where the bubble cloud is larger and/or the attenuation 

greater than in this example case it will be important to incorporate driving pulse 

attenuation. 

In the following section the bubble cloud models are reviewed and methods of sonar 

enhancement discussed. 

2.4 Review of cloud models and methods of sonar 

enhancement 

2.4.1 Classes of model developed 

Two distinct classes of model have been derived and discussed in this chapter. The 

first is the range independent cloud model. This model uses the time dependent 

extinction cross-section of individual bubbles, scaled by the population distribution, 

to determine the bubble cloud attenuation. The model can be used for any given 

driving signal and, once the matrix of bubble responses has been calculated over a 

suitable radius range, it can be easily applied to any bubble population. The model 

also incorporates the bubble ring down. The main advantage of this model is that 

bubble responses can be calculated and stored for typical driving signals. It is then a 

simple matter to determine the time-dependent cloud attenuation by applying [2-12]. 

The disadvantage of the model is that it fails to take into account cloud geometry and 

attenuation of a pulse propagating through a cloud potentially underestimating the 

attenuation at higher bubble void fractions. 

89 



The second type of model is the range dependent cloud model. This model includes 

the geometry of the bubble cloud and can incorporate the attenuation of the driving 

signal as it passes through a bubble cloud. The inclusion of pulse attenuation is 

expected to be very important in the surf-zone where high levels of attenuation are 

expected^' and thus high amplitude driving pulses will need to be used. This in turn 

suggests the capability of including bubble non-linearity will be important as the 

amplitude dependence shown in Figure 2-18 indicates. The main disadvantage of this 

model is the long processing time and the need to rerun the model for each new 

bubble population and driving signal. It is, however, possible to minimise the model 

processing time by calculating and storing the individual bubble response to typical 

driving waveforms for use in later iterations of the model. A facility of this model is 

that a time series of the scattering from the cloud can be calculated. 

2.4.2 Characteristics of the models developed 

A time dependent non-linear bubble cloud model has been derived. The model can be 

used to calculate the scattering and attenuation of an arbitrary driving signal through 

an arbitrary bubble cloud. The models have been expanded to include such effects as 

bubble ring-down and attenuation of the driving pulse. For each version of the model 

the attenuation of a 100 kHz pulse of varying length and amplitude 1 kPa and 10 kPa 

has been calculated for the Farmer and Vagle bubble population'^. 

The simple cloud models demonstrate how acoustic cross-sections and attenuation 

can be calculated for a bubble cloud using a non-linear time dependent single bubble 

model such as the Keller-Miksis. The importance of the bubble ring down has also 

been shown when determining the cloud response to a finite driving pulse. This is a 

consideration neglected in previous time-dependent cloud models reviewed in chapter 

1 and the Clarke and Leighton journal paper in Appendix F, all of which assume an 

infinitely long driving signal. 

The model has also shown, through the use of plots such as Figure 2-17, that although 

resonant bubbles apparently dominate and exhibit the characteristic ring up to steady 

state, the bubbles close to resonance are also important and do not ring-up in the 

manner of resonant bubbles. The transient response of the large off resonant bubbles 

can also be an important contributor to the cloud response. It is the combined effect 
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of near resonant and large off resonant bubbles that can mask the ring-up of the 

resonant bubbles. 

In section 2.3 the geometry of the cloud was modelled, thus incorporating the 

attenuation of the driving pulse as it passes through the cloud. This does however 

increase the processing time by a significant amount. The test results for the Farmer 

and Vagle bubble population show a reduction in attenuation as a pulse propagates 

through the cloud of approximately 0.5 dB when pulse attenuation is included. 

Furthermore the shape of the attenuation versus time curve has changed very little. 

Thus the full range-dependent model is likely to be a benefit over the simple non-

linear cloud model only when attenuation levels are high. This is because it is the 

relative differences in attenuation of different signals that is important for 

determining sonar enhancement. The importance of driving signal attenuation will be 

investigated further in chapter 5. 

2.4.3 Methods of sonar enhancement 

The time dependent cloud models discussed in this chapter give insights into possible 

methods of sonar enhancement. Three possible approaches have been identified and 

are described in detail below. 

The first and simplest approach relies on two characteristics of the resonant bubbles 

indicated by the time dependent models derived in this chapter. The first 

characteristic is that the resonant bubbles dominate the response of a cloud and thus 

contribute a significant proportion of the attenuation of an acoustic pulse. This can be 

expected in most natural bubble populations where, above about 30 jim radius, the 

numbers of bubbles per (im increment decrease with increasing radius^^'^^. The 

second characteristic is that resonant bubbles take time to ring-up, and the attenuation 

due to these bubbles can be reduced if the bubbles do not reach steady state 

oscillation. These characteristics can be exploited by using pulse of the order of a few 

cycles with sound pressure amplitudes typically less than 10 kPa. As introduced in 

section 1.4.1, this method of enhancement will be referred to as Type I enhancement. 

A second approach is a derivative of the first. A potential problem with using short 

low amplitude pulses is that the energy contained in the pulse is low and can result in 

a poor signal to noise ratio that prevents target detection. This could negate the 
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potential benefits of using short pulses. A possible solution is to increase the 

bandwidth of the driving pulse, whilst maintaining the low amplitude and short 

duration at the resonance frequency of any given bubble. This would allow increased 

energy in the driving signal whilst attempting to minimise the contribution of the 

resonant bubbles. The main drawback of this method is that more bubbles will be 

driven at their resonance frequencies i.e. all those bubbles with resonance frequencies 

that fall within the bandwidth of the driving signal. As introduced in section 1.4.1, 

this method of enhancement will be referred to as Type II enhancement. 

A third approach utilises a different property of bubble clouds. The cloud model 

outputs shown in this chapter have all been from a 100 kHz driving frequency. 

However if the driving frequency were changed, the numbers of resonant bubbles 

would change depending on the bubble cloud population distribution. Furthermore, 

the extinction cross-section of the resonant bubbles also changes with bubble size as 

illustrated in Figure 2-24. Thus the attenuation of a bubble cloud changes with 

frequency and is a characteristic of the population distribution. 
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A good example, for illustrative purposes, of the frequency dependence of attenuation 

is shown in Pace et af^ a study of pulse length dependence in bubble clouds that was 

reviewed in the previous chapter (section 1.3,2). In this paper several measurements 

of cloud attenuation versus frequency were made and are repeated here in Figure 

2-25. The figure shows large changes of attenuation as frequency increases. The 

levels of attenuation increase from 0 to 20 dB and returns to zero again as the 

frequency approaches 200 kHz. Although this data are not necessarily representative 

of oceanic conditions, it clearly shows that selecting the correct insonification 

frequency is an important consideration for target detection in bubbly environments. 

This last method of enhancement, which is not mentioned as a possibility in the paper 

by Pace et al. (though Figure 2-25 shows that their data points to it) will be referred 

to as Type III enhancement, following the convention of section 1.4.1. 
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The three methods of sonar enhancement are summarised in Table 2-2. 

Type Methodology Signal Types Used 
I Resonant bubble ring-up Short pulses 
II Broadband excitation Chirps and Pseudorandom 
II Attenuation minima Tuned long pulses 

2-2 f/zrgg gnAancgrngMf 

2.4.4 Initial cloud model validation 

Finally the results of the Pace et af^, paper can be used to test the simple cloud model 

described in section 2.2.1. The range dependent cloud model is not tested since the 

geometry of the cloud in the Pace et al. experiment is unclear. The population 

distribution published in the Pace et al. paper was tested with an idealised 20 cycle 

pulse. Pace et al. do not publish the amplitude of their driving signals thus a 10 kPa 

amplitude has been assumed. The results are shown in Figure 2-25. Excellent 

agreement is shown between the theoretical results and the experimental 

measurements with the theoretical data points in most cases lying within the range of 

experimental variability indicated by the three separate 20 cycle tests plotted. 

In the next section the model will be used to investigate which bubble population 

distributions are most likely to show Type I sonar enhancement. 
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Figure 2-25 Attenuation versus frequency of an artificially generated bubble cloud 
measured by Pace et al.'^^(black lines). The dashed lines represent short 6 cycle 
pulses and the thick lines long 20 cycle pulses. The dots, added here, are the results 
of the range independent non-linear cloud model (in section 2.2.2) for a 20 cycle 
pulse of amplitude 10 kPa. 

2.5 Bubble cloud population distribution and sonar 

enhancement 

The range independent cloud model (section 2.2.2) has passed a preliminary 

verification by comparing the model results with data collected by Pace et af^. Three 

types of enhancement methods have been identified from the response of the linear 

model to a monodisperse population. The verification of the range independent cloud 

model allows Type I enhancement to be tested with several types of bubble cloud 

populations to determine the conditions under which a pulse length dependence can 

occur. 

Measurements of oceanic bubble populations in the field have shown that they can be 

described in one of three distinct ways. The first is known as a 'peaked distribution' 

because of the presence of a maxima in the population. Farmer et af^ and Phelps, 

Ramble and Leighton^^ have both measured an example of this type of population. 
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The peak in the Farmer et al. population distribution occurs at 21 |im, and this 

corresponds to a resonance frequency of 145 kHz for air bubbles in water under one 

atmosphere hydrostatic pressure. The second type of population can be described by 

an exponential equation of the form: 

P-15] 

where n is the number of bubbles per jim increment per m^, A and B are constants and 

is the equilibrium bubble radius. 

An example of this population type is a second population measurement by Farmer et 

was used in section 2.2.1. 

The third and final type of population can be described by a power-law equation of 

the form; 

[2-16] 

where n is the number of bubbles per |im increment per m^, A and B are constants. An 

example of this third type is the population distribution measured by Akulichev"^". In 

both equations [2-15] and [2-16], the constant A is a simple scaling factor and the 

constant B determines the shape of the population. Thus A will scale the attenuation, 

but B determines the gradient of the population and the relative number of resonant 

and off-resonant bubbles. The constant B is thus the important factor for sonar 

enhancement. 

The three types of populations will be referred to as peaked, exponential and power-

law populations. 

The range independent cloud model (section 2.2.2) has been used to calculate the 

percentage change in attenuation between a single cycle and 20 cycle pulse with a 

driving frequency of between 50 kHz and 300 kHz and an amplitude of 600 Pa for 

each of the populations described above. In addition a measurement of a bubble 

population measured in the surf-zone made by Phelps et is also tested. This 

population is also described by [2-17] and is of the form of equation [2-16]. 
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The results are shown in Table 2-3. 

[2-17] 

Population (Type) 

% 
(dB/m) 

Farmer 1 
(Peaked) 

Farmer 2 
(Exponential 

fi=-0.04) 

Akulichev 
(Power B--

3.7) 

Phelps et 
al. (Power 

e=-3.8) 

300 -124 (-3.5) 11 (0.5) 33 (1.7) 31 (1.6) 

N 
X 

250 -61 (-2.1) 12 (0.6) 25(1.2) 23(1.1) 

5-
200 -3 (-0.1) 11 (0.5) 14(0.7) 12 (0.6) 

c 
o 
3 
O" 

150 53 (3.3) 15(0.7) -3 (-0.1) -6 (-0.3) 

£ 
u. 100 -7 (-0.3) 18(0.8) -21 (-0.8) -25 (-1.0) 

50 -105 (-3.1) 9 (0.4) -55 (-1.9) -65 (-2.2) 

Table 2-3 Percentage and dB/m change in bubble cloud attenuation (in brackets) 
between a 1 and 20 cycle pulse of 600 Pa amplitude. The population name is shown 
at the top of the plot with the type of population and the value of the constant B for 
that population shown in brackets below. The negative numbers (highlighted in red 
italics) indicate a decrease in attenuation between 1 and 20 cycles indicating Type I 
suppression. 

The results in Table 2-3 show that the Farmer 1 population would give optimum Type 

I enhancement (53%) if the driving frequency is tuned to the resonance frequency of 

bubble radius at the peak of the distribution. Away from this peak the opposite of 

Type I enhancement occurs. The power-law type distributions of Phelps et al. and 

Akulichev both show enhancement at the higher frequencies (31% and 33% 

respectively at 300 kHz). The exponential type population measured by Farmer 

shows the poorest enhancement (an average of 13%) but enhancement is effective 

over the widest frequency range. The values are however generally small (< 3dB) 

compared to the types of enhancement required for sonar operation. 

The power-law and exponential type populations can be investigated further by 

varying the B parameter to determine the effect on Type I enhancement. The results 

are shown in Table 2-4 and Table 2-5. 
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Population (Power-law) 

% S = -1 e = -2 B = -3 B= -4 B = -5 

300 11 34 37 29 -2 

250 8 28 30 20 -11 

200 3 20 21 9 -29 
c « 
3 
CT 

150 1 14 10 -12 -110 

1!! 
u_ 100 -1 8 -2 -33 -129 

50 -2 0 -20 -82 -353 

Table 2-4 Percentage change in bubble cloud attenuation between a 1 and 20 cycle 
pulse of600 Pa amplitude for a bubble population with a power-law distribution. The 
constant B from equation [2-16] is shown at the top of the table. The negative 
numbers (highlighted in italics) indicate a decrease in attenuation between 1 and 20 
cycles indicating no Type I enhancement. 

Population (Exponential) 

% 8 = 0.02 6 = 0.04 B = 0.06 B= 0.08 S = 0.1 

300 -5 10 21 28 33 

N 
I 

250 -6 10 21 27 32 

5-
200 -8 9 19 25 28 

c 
<1> 
3 
CT 

150 -2 13 21 24 26 

a 
U. 100 5 17 20 18 14 

50 13 11 -6 -37 -89 

Table 2-5 Percentage change in bubble cloud attenuation between a 1 and 20 cycle 
pulse of 600 Pa amplitude for a bubble population with an exponential distribution. 
The constant B from equation [2-15] is shown at the top of the table. The negative 
numbers (highlighted in italics) indicate a decrease in attenuation between 1 and 20 
cycles indicating no Type I enhancement. 
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The results clearly show that a power-law distribution with a value of B between 2 

and 4 is best suited to Type I enhancement, and that an exponential distribution show 

enhancement for values of B in excess of 0.02. The tables also indicate that in general 

a higher frequency is better unless the off resonant contribution is significant. 

2.6 Summary 

In this chapter non-linear models of bubble cloud attenuation for arbitrary waveforms 

and population distributions have been developed. The models have been used to 

identify three possible methods of sonar enhancement and the types of cloud where 

Type I enhancement can be expected to work for certain populations and at certain 

frequencies though enhancement of less than 3 dB are generally produced. It is now 

necessary to compare the performance of these models with experimental results and 

investigate the potential of each of the sonar enhancement techniques. To achieve this 

a series of tank tests will be conducted i n a n 8 m x 8 m x 5 m deep test tank using an 

artificially generated bubble cloud. The implementation and results of these tests are 

described in the next two chapters (chapter 3 and 4), respectively. The knowledge 

gained in the tank will then be applied to target detection trials in the surf-zone. This 

is necessary to obtain knowledge of surf-zone bubble populations and conditions. It 

also allows the models and the different methods of sonar enhancement to be tested 

under realistic conditions. These trials are discussed in chapter 5. 
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CHAPTER 3 
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TESTS 
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This chapter considers the experimental arrangements for measuring the benefits of 

different signals for sonar enhancement and validation of the theoretical models. The 

development of a bubble cloud generator, experimental arrangement, methods of 

analysing the data and the criterion for sonar enhancement are all discussed. As 

shown in the previous chapter, the ring-up and ring-down characteristics of the 

bubbles are an important consideration in this study. These depend on the bubble 

damping, and since the tank measurements described here were to be used in the 

design of an oceanic experiment, it was necessary to undertake a study of the effect of 

tank reverberation on bubble damping. 

This study expanded significantly beyond the original needs, and would not fit within 

the scope of this thesis. Hence the resulting publication is bound into the back of this 

thesis as Appendix G. 

3.1 Artificial generation of an oceanic type bubble cloud 

The development of an artificial bubble cloud generator that can produce bubble 

clouds in a test tank that mimic (as far as is reasonably achievable) those found in the 

ocean is described below. The reason for choosing electrolysis over other generating 

techniques is discussed first before a technical description of the generator and its 

operating principles is given. Finally the bubble cloud population distribution is 

characterised. 
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3.1.1 The development of an electrolysis type bubble cloud generator 

As discussed in section 1.3, out of the three studies on the pulse length dependence of 

acoustic attenuation or scatter by bubble clouds, only the oceanic studies showed a 

positive result. Clarke and Leighton^^ (Appendix F) suggested that one of the main 

reasons why the other two tank studies (by Suiter^ and Pace et al*^) failed to show 

an effect was that these authors used techniques for generating bubble populations in 

tanks which produced too many large bubbles. As section 2 showed, such large 

bubbles do not display the smooth ring-up characteristic of resonant bubbles. 

To prevent the possible masking of the pulse length dependence by large off-resonant 

bubbles, it was necessary to generate a repeatable artificial bubble cloud that 

produced predominantly small bubbles, of the order 10 - 100 pm radius, similar to 

oceanic bubble distributions^^. Experiments have shown that it is difficult to produce 

large quantities of bubbles this size by injection of compressed air through a needle^^, 

which is a common method for bubble generation^®'^^. One alternative bubble 

generation method is by electrolysis®* '̂®'. Laboratory tests using platinum and copper 

electrodes have shown that oxygen bubbles form on the surface of the anode, and will 

grow in size until there is sufficient buoyancy force to overcome surface tension and 

they detach. If a flow is induced over the anode, the bubbles detach sooner and thus 

the bubble population has, on average, a smaller radius. In addition the quantity of 

bubbles produced can be controlled by two methods: First by increasing the current; 

and second, by moving the anode closer to the cathode. This increases the proportion 

of the current utilised for electrolysis and thus bubble production. These criteria are 

not entirely compatible and thus a compromise must be sought. A further method of 

increasing the void fraction within the cloud is to reduce the size of the cathode, 

reducing the volume of the cloud. 

The volume of gas produced by electrolysis can be calculated, from the current 

passing between the two electrodes, by Faraday's Law.®^ 

(2, = [3-1] 

where Qc is the charge in coulombs, is the number of electrons liberated to produce 

a gas molecule, M is the number of moles of gas and F is Faraday's constant 9.65 

xlO^ Cmol"'. For the electrolytic generation of O2 from water, four electrons are 

liberated to produce each gas molecule and each mole of gas has a volume of 24x10'^ 
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at standard temperature and pressure. It should be noted that the actual volume of 

gas produced is dependent on the pressure and thus the depth of the cloud. 

Another design issue is the production of hydrogen gas at the anode. The potential 

problems of hydrogen bubbles contaminating the cloud, owing to their different level 

of damping, was discussed in Chapter 1, where the potential problems of not 

considering such contamination in Suiter's^ study were discussed. It would thus be 

desirable if the bubble cloud generator could be designed with a system for 

preventing this. 

With these design considerations in mind, a large scale electrolysis-type bubble cloud 

generator was developed for use in a fresh water' 8 m x 8 m x 5 m tank. A novel 

approach to the placement of the anode and cathode was taken, to ensure maximum 

bubble production as well as a reproducible small bubble population. The generator 

consists of a dexion™ lifting frame incorporating a waterproof housing containing a 

motor and electrolysis circuitry. On top of this is mounted a baseboard with four 

copper plates wired together as the anode. This is in turn covered in a fine mesh filter 

to prevent the hydrogen bubbles from contaminating the cloud. Through the middle is 

a drive shaft from the motor to a turntable on which is mounted a fifth copper plate 

acting as the cathode. The anode and the cathode are both wired into the waterproof 

housing, in the former case by slip rings. Power to drive the motor and electrolysis is 

supplied from the surface via three cables. In addition the rpm of the turntable is 

measured and monitored via a digital display on the surface control box, where the 

rpm of the motor can also be adjusted. Mounting the anode on a turntable to induce a 

flow over the generating surface has a two-fold advantage. Firstly it minimises the 

numbers of large bubbles produced and, secondly, it generates (as far as possible) a 

spatially uniform cloud with a diameter of approximately 0.5 m. A photograph of the 

completed generator is shown in Figure 3-1. 

Early experimentation used a cathode design, consisting of a wire mesh grid to 

minimise the distance between the electrodes at all points, whilst minimising the area 

of the cathode. These cathode designs were unsuccessful since the manufacturing of 

' Although one autho/^ has suggested that the damping of bubbles in salt water may differ from the 

damping in fresh water, no evidence for this has been found by others, and Appendix G shows how the 

effect observed may have been an artefact of the test tank. 
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the copper wire used in the cathode appears to have led to pitting of the wire, 

significantly increasing the surface area. The solution to the problem was to use a 

single copper plate. This both increased the density of the cloud and improved the 

efficiency allowing a higher current per unit voltage compared to the mesh electrode. 

Figure 3-1 Photograph of the electrolysis bubble cloud generator. This photographs 
shows the wire mesh cathode before it was replaced with a smaller copper plate. 
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3.2 Experimental arrangement 

The experimental arrangement, data acquisition and control systems for the 

generation of arbitrary waveforms, and the measurement of their attenuation, are 

described in section 3.2.2. In addition, schematics of the experimental arrangement 

and equipment are given, and experimental procedures described, in sections 3.2.3 

and 3.2.4. Firstly the measurement and characterisation of the artificial bubble cloud 

is discussed in section 3.2.1. 

The measurement of the bubble population via the inversion of attenuation required 

the measurement of the frequency dependent attenuation. A plot of these 

measurements is shown in Figure 3-2. The figure shows a maximum attenuation of 

approximately 5 dB/m at 20 kHz with the attenuation then decreasing with increasing 

frequency. This information is important when considering the experimental 

arrangement for several reasons. Firstly, in order to determine the relative benefits of 

different driving signals, it will be necessary to compare the attenuation levels of the 

different signals. Higher attenuation levels are desirable to improve the accuracy of 

these measurements. Secondly, the theoretical models have indicated that too high a 

sound pressure level will limit the potential for pulse enhancement. The combination 

of high attenuation and low sound pressure levels can result in poor signal to noise at 

the receiver, or failure of the driving signal to penetrate the cloud. Thirdly, it is 

necessary to time gate the received signal to negate tank wall reflections, thus 

limiting the length the pulse that can be tested. A higher frequency pulse would allow 

a greater number of cycles during the time gate. Conversely, too low a frequency 

pulse would restrict the pulse length and prevent the investigation of pulse length 

dependence in the cloud response. 

These constraints were considered along with the available sources and receivers and 

the reverberation levels of the tank (see Appendix C) when determining the 

experimental arrangement discussed below and the test signal characteristics 

described in this chapter. 
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3.2.1 Measurement of the bubble cloud population 

Preliminary characterisation of the bubble cloud was achieved by measuring the size 

of bubbles with a graduated microscope. A sampling dish was passed through the 

cloud just below the surface to collect the bubbles for examination by the microscope. 

The gas flux was also measured by collecting the gas bubbles in a reservoir at the 

surface. All measurements were made with the turntable set to 10 rpm and a current 

of 10 amps. The void fraction was measured to be approximately 

0.0067%±0.00034%, assuming an average rise speed of 1 ems '. The normalised 

optically measured bubble distribution is shown in Figure 3-3. This is a preliminary 

measure only, and does not give the exact population distribution encountered by the 

acoustic pulse. This is because larger bubbles have greater rise speed and so in a 

given time interval a glass plate samples over a greater vertical distance in the cloud 

for larger bubbles then it does for small. In addition, the reduced hydrostatic pressure 

at the glass plate compared to that at the acoustic propagation path will distort the 

population. 
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Further measurements of the bubble population have used inversion of the 

attenuation®'^ of pulses transmitted between two hydrophones within the bubble cloud 

and spaced 0.25 m apart over a frequencies range of 15 to 220 kHz. Pulse durations 

of 1ms were used in all cases corresponding to durations of between 15 and 220 

cycles as the frequency increased. The void fraction measured by this technique, 1.1 x 

10"̂  % and the resulting population distribution is shown in Figure 3-4. The 

normalised optical measurements shown in Figure 3-3 are scaled (to give a void 

fraction of 1. 1 x 10'̂  % ) and added to this plot (as triangles) for comparison. 

The grey line in the plot is an extrapolation of the inverted measurements and is 

described as follows: 

6 -̂1.44182«" ' [3-2] 

where n is the number of bubbles per m^ per jj.m increment in bubble radius in the 

usual fashion. 

The measurement of attenuation (owing to the bubbles), from which the bubble 

populations are inverted, is shown in Figure 3-2. 

0.025 
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5 0.01 
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3 8 13 18 23 28 33 38 43 48 
Bubble Radius (jum) 

Figure 3-3 Optically measured bubble size distribution from the electrolysis bubble 
cloud generator drawing a current of 10 amps and the turntable rotating at 10 rpm. 
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Figure 3-4 Bubble cloud population distribution of the electrolysis type bubble cloud 
running at 10 amps and a turntable rpm of 10. The measurements were made at a 
depth of approximately 3 m. The graph shows experimental data (black line) and a 
best-fit curve (grey line) to the population obtained by inversion of the attenuation 
through the bubble cloud. The equation of the extrapolated best fit curve is given by 
[3-2] The opticals measurement from the previous plot are also show as triangles. 

3.2.2 Tank arrangement 

The attenuation measurements were conducted i n a n 8 m x 8 m x 5 m deep fresh 

water tank. The tank is not anechoic and special care was taken when positioning the 

bubble cloud generator, the source and the receiver, to avoid spurious signals from 

bottom and wall reflections. Figure 3-5 shows the relative positions of the cloud, 

source and receiver. 

The bubble cloud generator was bottom-mounted in the centre of the tank floor. The 

generator was lowered into the water with a rope and pulley system. The rope had to 

remain attached to the rig for retrieval, but was allowed to go slack so that it ran 

along the tank bottom, before returning to the surface. This ensured it remained 

outside of the direct path between the source and the receiver. 

The acoustic source for the tank experiment consisted of a calibrated Bruel & Kjaer 

8105 hydrophone with an optimum transmit frequency of 120 kHz (Appendix D 
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Figure D-3). The source was suspended approximately 2.30 m from the cloud, at a 

depth of 2.43 m. Two Bruel & Kjaer 8103 hydrophones were used as receivers. The 

first was suspended 1 m from the source on axis with the bubble cloud as a reference 

hydrophone and the second was suspended on the far side of the bubble cloud 2.46 m 

from the source. Both hydrophones were suspended at a depth of 2.43 m in line with 

the source and bubble cloud generator. 

The theory models developed in the preceding chapters assume that the bubbles are 

insonified by a plane wave, i.e. the bubble is insonified by a uniform sound field. 

Thus, in order to make a valid comparison between theory and experiment it is 

necessary to ensure that this is also the case for the experimental bubble cloud. The 

8105 hydrophone is uniform (± IdB) source and receiver over 360° in the x-y 

horizontal plane and 270° in the x-z vertical plane with the output reducing by 

approximately 20 dB in the region of the hydrophone cable (see Appendix D Figure 

D-4) The nearest part of the cloud is approximately 2 m from the source. It is 

assumed that the cloud is insonified by the direct path from the source. This will be 

ensured by time gating the receiver, the details of which will be discussed in the data 

acquisition section below. At the test frequency of 80 kHz (see section 4.1) a 

spreading loss of was measured with the curvature in the wave front across the 

face of the cloud corresponding to approximately one wavelength. Care was taken to 

ensure that all the Bruel & Kjaer hydrophones were vertical in the water column for 

this reason (see Appendix D Figure D-4)® .̂ 

The receive frequency response of the B&K 8103 hydrophone is nominally flat below 

100 kHz (± 2 dB, see Appendix D Figure D-5). The B&K 2635 charge amplifiers 

used in conjunction with the B&K 8103, as conditioning amplifiers, also have a 

response®^ which is flat to within ±1 dB up to 100 kHz. 

108 



I m 

Source: 
B&K 
8103 

HI: 
B&K 8103 

Bubble Cloud 
Diameter -0.5 m 

H2: 

2.30 m 

3.54 m 

Figure 3-5 Schematic of the tank layout for measurements of attenuation from an 

artificially generated bubble cloud in an 8 mx 8 mx 5 m deep fresh water tank. Here 

the reference hydrophone is labelled HI and the second hydrophone is labelled H2 

for future reference. 

3.2.3 Signal generation 

The source was powered through a Bruel & Kjaer 2713 power ampHfier and the 

signals generated by a Thurlby Thandar TGI304 signal generator and an AWG2021 

Arbitrary Waveform Generator manufactured by Sony Tektronix. The former was 

used to generate pulses of varying length in cycles. The latter arbitrary waveform 

generator was used to produce linear frequency swept chirps. These were produced 

using the AWG's internal equation editor to define the signal. The following equation 

was used: 

x = sm{27tf^t + 7tt^{f2 - / i ) / 7 » [3-3] 

where Tp is the sweep period,// the starting frequency a n d ^ the ending frequency. 

In all cases the Thurlby-Thandar was used to trigger signal generation at 

predetermined intervals, normally every half-second. The repeat time was chosen to 

optimise data acquisition whilst allowing unwanted returns from the tank walls to 

decay away (see Appendix C for tank reverberation times). 
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3.2.4 Data acquisition and control 

The signals from the 8103 hydrophones were passed through a Bruel & Kjaer 2635 

charge amplifier before inputting into a LeCroy 9314 CL four-channel digital 

oscilloscope for data acquisition. Control of the signal generator and the oscilloscope 

and acquisition of data to a PC was via GPIB interface and National Instruments 

LabView software. A schematic of the apparatus arrangement and software control 

layer is shown in Figure 3-7. The LeCroy was set up to acquire the signals from both 

8103 hydrophones simultaneously. Spurious returns from the tank surfaces were time 

gated out during processing of the data. The nearest tank boundary is the water 

surface. Figure 3-6 indicates the shortest possible path length using the tank surface. 

The difference between the direct path length and the shortest indirect path length, 

assuming a speed of sound in the tank of 1480 m/s, yields a useable time window of 

approximately 1.7 ms. 

Reference 

2.43m 

Surface 

IncHiAtt r.idi 

01 m 

Direct 

m 

Source Receiver 
H2 

Im 

3.54 m 

Figure 3-6 schematic showing the length of the direct path and the shortest indirect 

path. The difference in path lengths yields the available time window between the 

arrival of the direct path signal and the first surface return. 

Control of the experiment was via the PC using a LabView virtual instrument to 

control each of these instruments shown in Figure 3-7. This allows the signal to be 

configured by the PC and the resulting signal acquired by the digital oscilloscope to 

be uploaded and stored on the PC's hard drive. The parameters (amplitude and delay) 

of the triggering pulse could also be configured via a LabView virtual instrument. An 
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integrated control program, also written in Lab View, controlled each of these virtual 

instruments. This program used a 'Make Control File', essentially a script file, to 

control the experiment. This file included the type of waveform to be generated and 

the name of the file the data would be stored to. The Make Control File was written 

automatically using the Mathworks Matlab programming language. The hardware 

acquisition was triggered by the software through the use of a common TTL trigger 

generated by the Thurlby Thandar function generator. In this way a series of 

waveforms could be generated without user intervention. For example a series of 

pulses could be generated with lengths of between 1 and 10 cycles in single cycle 

steps and each pulse type repeated numerous times. Since the script file was 

computer-generated, the order could also be randomised to eliminate any potential 

bias caused by sequentially increasing the pulse length. 

A large number of waveforms could be analysed without user intervention using this 

system. It is also possible with this system to conduct tests over a period of several 

hours requiring no user intervention. For this reason an Internet Email virtual 

instrument was created so that users could be notified of completion of an experiment 

via the Internet. The controlling computers hard drive and a DVD RAM device were 

used for storing and backing up the acquired waveforms. 
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Figure 3-7 Software/Hardware schematic for experimental measurement of 

attenuation from an artificially generated bubble cloud in an 8mx8mx5m deep 

fresh water tank. The top half of the schematic, or 'Software Layer' shows the various 

software modules written in Mathworks Matlab and LabView programming 

Languages to control the hardware signal generation and acquisition. The bottom 

half of the schematic or 'Hardware Layer' show the hardware components and their 

inter connectivity. 

3.3 Method for determining sonar enhancement 

An experimental arrangement for measuring the attenuation of sound through an 

artificially generated bubble cloud for a range of pulse lengths has been developed. In 

order to investigate the effect of sonar enhancement, attenuation through the bubble 

cloud must be measured in such a way that different waveforms can be compared. 

This will be achieved by calculating energy loss as a percentage of the incident 

energy. 
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3.3.1 Criterion for sonar enhancement 

Prior to any experimental measurements, a suitable criterion must be developed for 

determining the relative ability of signals to penetrate a bubble cloud. Three methods 

of sonar enhancement are summarised in Table 2-2 with each using a different type of 

signal. In order to be able to compare the benefits of each of these methods, the 

criterion must be independent of, but not biased by, changes in sound pressure levels, 

signal duration and frequency spectrum, as well as the characteristics of the source 

and receivers. 

In order to compare the relative benefits of different signals, the attenuation of the 

driving signals owing to the bubble cloud is calculated. This calculation is based on 

the energy transmitted and received at all frequencies (limited by the frequency 

response of the hydrophones). This is an important consideration because the 

resonant bubbles themselves will reradiate energy at harmonics of their resonance 

frequency if driven at high enough sound pressure levels, as predicted by the non-

linear model (Figure I-5b). For this reason, signals were acquired without additional 

filtering other than by the frequency response of the receiving hydrophone and an 

anti-aliasing filter. The error in the results, owing to temporal variability in the cloud, 

can be ascertained by repeating experiments in quick succession and looking at the 

ping-to-ping variability. The average attenuation for each signal type can then be 

calculated along with the experimental error. This allowed the significance in any 

trend to be ascertained. 

A method of calculating attenuation that meets these criteria, for tone-burst and 

broadband signals, is described in the following section. 

3.3.2 Signal energy and transmission efficiency 

The waveforms measured using hydrophones HI and H2 were acquired to a PC and 

analysed using the Mathworks Matlab programming language. The energy levels at 

each of the hydrophones can then be calculated by squaring and integrating the 

acquired waveform with respect to time, after converting the signal from volts to 

Pascals and correcting for any amplification in the acquisition stage. The signal at 

hydrophone H2 is time gated to ensure direct path transmission only. Then the energy 

levels with and without bubbles present are calculated. Equivalent time gating is used 

113 



on all channels to allow a comparison. The bubble-free results can then be subtracted 

from the results with bubbles present for each waveform. The resulting difference is 

the energy lost, and thus can be used to determine the attenuation owing to the cloud. 

Throughout the results from hydrophone HI are a record of the sound field incident 

on the bubble cloud and can be used to calculate the sound pressure level at the cloud. 

Thus, a direct measurement of the signal attenuation can be made on a waveform-by-

waveform basis whilst factoring out attenuation owing to spreading losses, the 

propagating medium, and the receiver characteristics, such as the frequency response. 

Although accounted for here the attenuation owing to the passage of sound in the 

water itself is insignificant over the short path length at the frequencies used, being of 

the order®® 1x10"^ dB/m at 100 kHz. 

The methodology described above will be used to test a variety of driving signals to 

establish their potential benefits to sonar enhancement. The characteristics of the 

driving signals and the results are presented in the next chapter. The results will also 

be used to compare the range dependent theoretical model from chapter 2 with the 

experimental data. 
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This chapter describes the results of theoretical and experimental tests conducted 

using the tools and methods introduced in the preceding chapters. The aim of the tests 

is to compare the range dependent cloud model with experimental data, and to 

investigate the three different mechanisms for sonar enhancement. The driving 

signals used in the tests are first introduced, and then the theoretical and experimental 

data are analysed in terms of propagation efficiency. Finally, the experimental and 

theoretical results are compared and some initial conclusions drawn. 

4.1 Signals tested for sonar enhancement 

Initial theoretical modelling described in section 2.1.2 has suggested that minimising 

the time the bubble is driven at or near resonance can reduce the acoustic cross-

section of a bubble and, thus, the attenuation of the driving signal resulting from its 

motion. Two methods of achieving this are by driving the bubbles with short pulses, 

and by chirping a signal across a range of frequencies. These signals limit the time 

during which a bubble of a given radius will be driven at resonance. If the duration of 

the period that the bubble is driven at resonance is less than its ring-up time, then a 

pulse enhancement will be observed, assuming the off-resonant contribution does not 

mask the resonant response. The models described in section 2.2 are capable of 
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testing this assumption and predicting the magnitude of the off-resonant contribution 

using the test show in Figure 2-17. The following two sections discuss the signals 

used in the experimental and theoretical tests. 

4.1.1 Pulsed signals 

The pulse signals used were of centre frequency 80 kHz and of pulse lengths between 

one and ten cycles. The sound pressure level was approximately 600 Pa at 1 m. The 

frequency of the pulse was chosen for three reasons. Firstly, in order to limit the 

contribution of off-resonant bubbles, it was important to minimise the number of 

large off-resonant bubbles. This criterion suggests a lower frequency is more 

desirable given the measured bubble population (Figure 3-4). Secondly, the Bruel & 

Kjaer 8105 hydrophone response®^ rapidly drops off below 100 kHz (when used as a 

source). Thus the centre frequency was chosen as it was the lowest frequency at 

which a good signal-to-noise ratio could be achieved. 

Theoretical and experimental tests were conducted for pulses of centre frequency 80 

kHz with a Thurlby Thandar signal generator producing pulse lengths of one to ten 

cycles in steps of one cycle. 

The actual waveforms transmitted are shown in Figure 4-1. The actual number of 

cycles transmitted varied from the number produced by the signal generator. This is 

because the damping of the source resulted in a ring-down and further acoustic 

generation after the driving voltage from the signal generator had ceased. To correct 

for this, the energy of each waveform calculated from the experimental data collected 

using the reference hydrophone HI will be used to characterise each waveform. The 

method of analysing the data is described in more detail in section 4.2.1 below. 
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In order to assist in analysing the data, a further set of control measurements were 

taken. These measurements used ten-cycle pulses, but the amplitude of the pulse was 

progressively reduced. This allowed the energy in the pulse to be reduced by a 

mechanism other than the one associated with reducing the number of cycles. If sonar 

enhancement owing to a reduction in pulse length occurs, it would be apparent from a 

divergence between the pulse length and control data sets. To differentiate between 

the different pulse signals used these data sets are referred to as "duration-varying" 

and "amplitude-varying" pulses. 

4.1.2 Chirped signals 

One feature in interpreting the pulsed signals is that the bandwidth of the signal 

increases as the pulse length decreases. This is an added complication because if the 

bandwidth of the driving signal were to change significantly, (i.e. by more than the 

bandwidth of the resonant bubbles), then a change in the number of bubbles being 

driven at resonance may result. This could affect the apparent efficiency of the signal 
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attenuation. Another drawback of pulsed signals (already discussed in section 2.4) is 

the low signal-to-noise ratio. 

An alternative method of exploiting bubble ring-up that can overcome these 

drawbacks is to use broadband signals. Here chirped signals are used, as the 

bandwidth is easy to specify and the sweep rate of the chirp can be varied. This 

changes the dwell time at any given frequency, and thus the time for which a bubble 

is driven at resonance. If the dwell time is short enough, the bubble will not attain its 

steady-state response. As a result the attenuation of the resonant bubbles is reduced. 

The chirp signals investigated are linear swept chirps between 60 and 120 kHz. The 

bandwidth was the widest that the Bruel & Kjaer 8105 hydrophone, used as the 

source, could emit whilst maintaining satisfactory signal amplitude at all frequencies. 

The sound pressure level of the chirp peaked at over 600 Pa at 1 m. The duration of 

the chirps was varied between 100 |ls and 1 ms. The chirp was generated using a 

constant voltage signal. This of course resulted in an amplitude modulation owing to 

the frequency response of the 8105 hydrophone. Note that the 8103 hydrophones 

(when used in receive mode) are nominally flat over the frequency range tested. The 

minimum length of signal that could be generated whilst maintaining the desired 

bandwidth was 100 |is. A further consideration was the time window for gathering 

data at hydrophone H2 (Figure 3-6). This was limited by the time taken for the pulse 

to travel to the hydrophone along the direct path and the arrival time of the first 

reflection (Figure 3-6). The time window was approximately 1.5 ms in length, and the 

cloud response from the chirp was received prior to the first wall return. Figure 4-2 

shows an example of the 1 ms chirp as received at hydrophone H2, without a bubble 

cloud being generated, illustrating the amplitude and time windowing constraints. 

In the following section the results of the tests are presented and discussed. 
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4.2 Results 

The theoretical and experimental results obtained using the pulses described above 

are presented and discussed in the following section. The experimental results are 

described first in section 4.2.1 and a method of interpreting the data introduced. In 

section 4.2.2 the range-dependent cloud model is applied using the pulse data and the 

results compared with the experimental pulse data. The implications of the theoretical 

and experimental investigation of the effect of pulse duration on the electrolysis 

bubble cloud are discussed in 4.2.3. The model is then applied using the chirped 

waveforms and the results compared with the experimental data. This is discussed in 

section 4.2.5. Finally the potential for Type III enhancement is discussed in section 

4.2.6. 
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4.2.1 Experimental measurement of pulsed signals 

In order to explore the effect of changing the pulse length, four separate tests were 

carried out. As described in section 4.1.1, the first two tests involved changing the 

pulse length while maintaining a constant centre frequency and amplitude with and 

without a bubble cloud present. The test data was validated by repeating the above 

two tests using the longest pulse length, but systematically reducing the amplitude as 

described above. Owing to the low sound pressure levels used, the bubble response 

will vary almost linearly with pressure. This mimics the reduction in attenuation 

without incurring any of the effects owing to ring-up. This allows the length varying 

and amplitude varying data to be overlaid when plotting the energy measured (see 

section 3.3.2 for method) at hydrophone HI versus the energy measured at 

hydrophone H2. Any divergence between the data sets can then be interpreted as a 

change in the attenuation efficiency and thus, sonar enhancement. 

Figure 4-3 shows a sketch indicating how the data will be presented to aid in 

interpretation. In order to understand this method of plotting the data consider three 

scenarios. First, if there is no bubble cloud both data sets will increase linearly with 

increasing pulse length and amplitude starting from the origin. The gradient of the 

line is a function of the spreading loss and attenuation of water at the driving 

frequency. In this case both the "amplitude-varying" and "pulse-varying" data sets 

should overlay each other. This is represented in Figure 4-3 by the dotted line. Any 

deviations will be as a result of experimental error. Second, if the bubble cloud is 

present and there is no pulse length dependence, then again both sets of data will 

increase linearly with increasing pulse length and amplitude starting from the origin. 

The gradient will have changed however, owing to the increase in attenuation, 

because of the presence of the bubble cloud. This is represented on the plots by the 

dashed line. Thus the plots of the bubble cloud and no bubble cloud data sets will 

diverge from the origin, but again the pulse varying and amplitude varying data sets 

will overlay each other. This is shown on the plot by the divergence of the dashed and 

dotted lines. Thirdly, consider the case where the bubble cloud is present and there is 

a pulse length dependence. This is the scenario that is expected. In this case the 

amplitude varying and pulse varying data sets taken when no bubble cloud is present 

will linearly increasing from the origin (dashed line) as before. The amplitude varying 

bubble cloud data with a bubble cloud present will also increase linearly with a 
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different gradient (dotted line). This is the same as scenario two. In the case of the 

pulse length varying data, however, it is expected that the gradient will change with 

changing pulse length. This will result in a divergence from the amplitude varying 

data, until steady-state is reached. Once steady-state has been reached, the data will 

again increase linearly with increasing pulse length, and should overlay the 

"amplitude-varying" data set. If this is the case, the "pulse-varying" data curves 

towards the no-bubble data sets, as shown by the solid line in Figure 4-3. This 

therefore would indicate a reduction in attenuation, and an enhancement in sonar 

detection over steady-state. Conversely, if the "pulse-varying" data curves away from 

the no-bubble data sets, then attenuation has increased compared to steady state, 

resulting in a degradation of sonar performance. In both cases, the plot will return to 

zero as the driving energy tends to zero. 

The energy levels at each of the hydrophones were calculated following the method 

described in section 3.3.2. It should also be noted that the method of calculating 

attenuation described in section 3.3.2 (by using the difference in energy at 

hydrophone H2 with and without a bubble cloud present) is implicit in this analysis. 

The magnitude of the gap between the lines labelled 'no bubbles' and 'with bubbles' 

in Figure 4-3 is the equivalent energy loss. 

121 



no bubbles 

with bubbles 

Energy at Hydiophone HI 

f zgwrg A Aow rAg (fafa wzVZ 6g m^gTprgfgf^. 7Ag ampZzfw(fg va/^'mg 
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Thirty traces were taken from the hydrophones for each of the driving signals tested 

and the results averaged and plotted in Figure 4-4. This figure follows the format 

sketched in Figure 4-3. The two uppermost lines labelled 'no bubble cloud data' 

represent the data taken in the absence of any bubble cloud. As expected, the 

"amplitude-varying" (dashed line) and "pulse-varying" (solid line) data overlay. The 

error bars indicate scatter in the data equal to one standard deviation. The fact that the 

no-bubble data sets are in close agreement suggests that the experimental technique 

and level of averaging are sufficient to be able to detect any pulse length dependence 

in the bubble cloud data. Furthermore, it confirms, up to this point, the sketch and 

analysis of the data interpretation discussed above. 

The lower pair of lines, labelled bubble cloud data, shown in Figure 4-4 are the 

measurements taken with the bubble cloud generator switched on. Again as expected 

the gradient of these lines is less than the gradient of the bubble-free data, owing to 

the increased levels of attenuation. The amplitude varying data (dashed line) is 

expected to vary linearly with increasing amplitude, and thus energy, at the reference 

hydrophone. It can be seen in Figure 4-4 that this is not quite the case. The small 
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scatter in the data that causes this is consistent with fluctuations in the bubble cloud 

over time resulting in changes in the levels of attenuation measured. 

The pulse length varying data (solid line) is plotted with error bars showing scatter in 

the data equal to one standard deviation. For almost all the tested pulse lengths the 

data is within one standard deviation of the amplitude varying data set. The 

exceptions to this are one data point at approximately 45 Pa^ measured at hydrophone 

HI and the two data points below 20 Pa^ measured at hydrophone HI. The first data 

points and last two data points where a deviation was measured will be considered 

separately. 

The deviation indicated at approximately 45 Pa^ measured at HI falls within the pulse 

lengths where the cloud is apparently at steady-state since data points with energy 

levels both above and below agree with the amplitude varying data set to within one 

standard deviation. One possible reason for this deviation lies in the fact that the 

cloud as a whole deviates from a (l ring-up. This will be tested in section 

4.2.3. The second two data points showing deviation between pulse length and 

amplitude varying data sets represent the two shortest pulse lengths tested, and 

indicate increasing deviation with decreasing pulse length. This is the type of trend 

described in scenario three of the analysis of data interpretation discussed above. 

These two data points lie between the bubble cloud and no-bubble data, and are 

indicative of a reduction in attenuation as pulse lengths become very small (of the 

order 1 to 2 cycles). 

To summarise, the experimental data, when compared with a control experiment, 

appears to indicate Type I pulse enhancement. This will now be compared with the 

quantative predictions of Type I enhancement predicted for this cloud by the range-

dependent theory described in chapter 2. 
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Figure 4-4 Experimental results showing the relationship between transmitted and 

received energy with and without a bubble cloud. Results are for pulse lengths 

between 1 and 10 cycles (x solid line) and a 10 cycle pulse at different amplitudes (x 

dashed line). The data taken with and without the bubble cloud present is labelled 

and error bars indicating one standard deviation in the results are shown for the 

variable pulse length data. 
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4.2.2 Theoretical model of pulsed signals 

In this section the experimental results of Figure 4-4 are compared to theoretical 

models. The range-dependent cloud model described in chapter two, section 2.3, was 

used to calculate the attenuation of the signal by the cloud, using pulses of the same 

time series and amplitude (at the cloud) as were employed in the experiment. This 

was calculated by determining the spreading loss between the two hydrophones and 

inferring the sound pressure level at the leading edge of the cloud from the energy 

recorded at hydrophone HI. 

The spreading loss was calculated using the following equation; 

7^ E(;72) 

r. 

y 
[4-1] 

Here P̂  and are the acoustic pressure amplitudes at hydrophones HI and H2 

respectively. The energy levels at hydrophones HI and H2 are E(H1) and E(H2) 

respectively and r, and are the ranges of the hydrophones from the source. The 

spreading loss is a function of the power For example, for spherical spreading y = 2 

and for cylindrical spreading y = 1. The spreading loss in the tank differed from the 

spherical spreading expected with the actual spreading loss exponent ( j in the above 

equation) calculated to be 1.45 from measurements made in the bubble-free-tank. 

This measured exponent was used in conjunction with [4-1] and the range of the 

bubble cloud from the source to infer the sound pressure level at the cloud. 

In order to plot theory and experiment on the same graph, it is necessary to relate the 

attenuation, as calculated by the model, with the attenuation shown in Figure 4-4. 

This is indicated by the difference in the energy levels measured at hydrophone H2 

with and without a bubble cloud present for each test waveform. Theory can thus be 

compared to the pulse length varying experiment by subtracting the theoretical energy 

loss from the experimental data taken without a bubble cloud (the uppermost data 

labelled no-bubble data in Figure 4-4). The resulting theoretical data set, plotted 

against the experimental data, is shown in Figure 4-5. This figure is identical to 

Figure 4-4 but with circles to show the discrete values of the theoretical model for 

different pulse lengths with a thick solid line interpolated through these points. 
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Figure 4-5 Comparison of theoretical and experimental results using measured 

pulses in the model. Results are for pulse lengths between 1 and 10 cycles (x solid 

line) and a 10 cycle pulse at different amplitudes (x dashed line). Theoretical data for 

varying pulse lengths is indicated by a circle (o) and thick solid line. The data taken 

with and -without the bubble cloud present is labelled and error bars indicating one 

standard deviation in the experimental results are also shown for the variable pulse 

length data. 
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The figure shows excellent agreement between theory and pulse varying experimental 

data. The theoretical data points lie within one standard deviation of the experimental 

data. The only exception is an anomalous data point at 45 Pa^ at HI. 

However to understand the implication of this figure, it is vital to appreciate that the 

driving sound field used as input to the theory came from the measured incident 

pulses, and not from idealised pulses at the frequency of the signal generator used in 

the experiment (80 kHz). This key point will now be further explored in section 4.2.3 

in order to understand precisely which mechanism is causing the enhancement seen in 

Figure 4-5. 

4.2.3 Discussion of experimental and theoretical pulse data 

Good agreement between theory and pulse varying experimental data has been shown 

when using the time series recorded by hydrophone HI as the driving signal for the 

model. The data also shows a divergence similar to that sketched in Figure 4-3 prior 

to undertaking the experiment. This is indicative of Type I enhancement. However, as 

can be seen from Figure 4-1, the transmitted pulse in the experiment is filtered by the 

characteristics of the transmitter. When a single cycle pulse is generated by the 

function generator, the source produces a time series several cycles in length. This is 

the reason for using measured time-series of the 80 kHz driving pulse when running 

the model to produced the data plotted in Figure 4-5. 

This artefact was further investigated by analysing the single cycle and ten cycle 

pulses identified in Figure 4-1 in the frequency domain. Figure 4-6 shows the 

frequency spectrum of both the pulses on a logarithmic scale. It is clear that the centre 

frequency of the pulse changes significantly. The centre frequency of the single cycle 

pulse is approximately 100 kHz, which (as expected) is closer to the resonance of the 

transducer (120 kHz) than the 80 kHz centre frequency of the longer pulse. As the 

signal generator inputs to the source a signal that more closely resembles an impulse 

excitation, so the output of the transducer will be increasingly dominated by its 

resonance frequency. 

Thus care must be taken when interpreting the results shown in Figure 4-5. As 

already mentioned the trend suggests Type I enhancement, but the introduction of a 

frequency shift could also produce this trend through Type III enhancement i.e. if the 
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attenuation reduced with increasing frequency. As the frequency increases, the 

equiHbrium bubble radius that is resonant becomes smaller. Examination of the 

population distribution of the cloud, shown at the beginning of chapter 4, will show 

that the numbers of bubbles are increasing with decreasing bubble radius. However, 

the reduction in their size results in reduced scattering and attenuation by each 

individual bubble. The range independent cloud model can be used to calculate the 

extinction cross-section for a single cycle pulse at 80 kHz and 100 kHz respectively. 

The attenuation for each of these cases, using the tank population, is 0.12 dB/m and 

0.7 dB/m respectively. Thus the attenuation outweighs the increase in the number of 

bubbles, resulting in the trend shown in Figure 4-5. 

This experiment clearly indicates that great care is required in interpreting the results 

of pulse-enhancement experiments. Although the data appeared to indicate Type I 

enhancement, and agree well with qualitative theoretical predictions that Type I 

enhancement could occur, careful analysis of the data indicated that the main source 

of enhancement was Type III. Because the measured incident pulses, and not 

idealised 80 kHz pulses, were used as input for the theoretical predictions of Figure 

4-5, the theory will include any contribution from both the Type I (if it exists) and 

type n i enhancement mechanisms. 

Hence interpretation of the experimental data confirms the presence of Type III 

enhancement but not the looked-for Type I enhancement. It is possible that the Type I 

enhancement is being masked by the frequency shift in the transmitted signals. Since 

excellent agreement between the model and experimental data has been shown the 

model can be used to estimate the Type I enhancement. The range-dependent non-

linear cloud model is again used but this time driven by idealised (without ring-up or 

ring-down) 80 kHz pulses of the same sound pressure level as the experimental data. 

The results are shown in Figure 4-7. This figure is identical to Figure 4-5 but the 

theoretical data shows the results of the model using idealised pulses instead of 

measured time series. 

The theoretical results now differ from the measured pulse length data and agree 

more closely with the amplitude varying data. This suggests no Type I enhancement 

occurred. The enhancement seen in Figure 4-5 is dominated by a Type III 

mechanism. 
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Figure 4-7 Comparison of theoretical and experimental results. Results are for pulse 

lengths between 1 and 10 cycles (x solid line) and a 10 cycle pulse at different 

amplitudes (x dashed line). Theoretical data for varying pulse lengths is indicated by 

a circle (o) and thick solid line. The data taken with and without the bubble cloud 

present is labelled and error bars indicating one standard deviation in the 

experimental results are also shown for the variable pulse length data. 
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4.2.4 Theoretical model of chirped signals 

To investigate Type II enhancement, (the use of broadband excitation, section 2.4.3) a 

series of tests were conducted using chirped signals of fixed bandwidth (60 kHz -

120 kHz). The experimental arrangement described in the previous chapter was used 

to measure the attenuation of the bubble cloud. The only change was to increase the 

delay between the generation of successive driving waveforms to 2 s to allow for the 

increased reverberation at frequencies in excess of 100 kHz (See Appendix D). Chirp 

lengths of 100 |is, 200 |is, 400 ps, 600 |is, 800 |is and 1 ms were tested. Again ±irty 

traces were taken for each waveform and the energy levels at each of the hydrophones 

calculated. In this way geometric effects are removed and only the attenuation owing 

to the cloud is measured. 

The average level of attenuation of the driving signal was again calculated in the 

fashion described in section 3.3.2. The attenuation in dB was determined by dividing 

this energy loss by the energy at hydrophone H2 when no bubble cloud was present 

for each of the driving waveforms. The results are plotted as attenuation versus chirp 

length in Figure 4-8. Error bars indicating one standard deviation of the scatter in the 

data are also shown. 

The method of determining attenuation used in Figure 4-8 normalises the results with 

respect to the energy received at hydrophone H2 allowing waveforms of different 

energy levels to be compared directly. In the following section the results of the chirp 

test are discussed and compared with results of the range dependent theoretical model 

from chapter 2 for both chirps and long pulses. 
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4.2.5 Theoretical measurement and analysis of chirped signals 

Theoretical predictions of the attenuation of the chirped signals by the bubble cloud 

were obtained using the range dependent theoretical model developed in chapter 2. 

Measured signals taken at hydrophone HI were used as the model input with 

amplitude corrections to account for spreading losses between the hydrophone and 

the cloud (as discussed in the preceding section on the experiments with pulses). The 

theoretical results were processed in the same manner as the experimental signals and 

the results plotted in Figure 4-9. The experimental results from Figure 4-8 are also 

plotted in this figure for comparison. 

The measurements of attenuation used to invert for the bubble population in section 

3.2.1 can be used to investigate whether chirped signals show any sonar enhancement 
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over pulses whose centre frequencies span the same range. The results for the 1 ms 

pulses with centre frequencies between 60 kHz and 120 kHz are plotted on the right 

hand side of Figure 4-9 as hollow circles. A further data set can be plotted using the 

80 kHz amplitude varying and pulse varying data sets from the pulse tests in section 

4.2.1. This data is plotted on the left hand side of Figure 4-9. 

The theoretical model (Figure 4-9b) again shows good agreement with the 

experimental data with all bar one data point (at 400 |is) within one standard 

deviation of the experimental results. However, the results vary about a mean 

attenuation of approximately 2.1 dB with no obvious trend relating to the chirp 

duration. Since no dependence on the chirp length is indicated by the theoretical or 

experimental the results suggest no Type 1 enhancement. 

The chirp results are also compared to 1 ms pulses of different frequencies to 

investigate Type II enhancements. The pulses between 60 and 120 kHz show a spread 

in attenuation from 3 dB to 1.5 dB as frequency increases with an average attenuation 

of 2.3 dB. This is very close to the average attenuation of the chirped data of 2.1 dB. 

Hence, given the error bars associated with the data, this comparison does not 

indicate that the attenuation by the bubble cloud is anything other than simply an 

average of the attenuation as a function of frequency over the bandwidth of the 

insonifying waveform. Hence no evidence has been found for Type II enhancement in 

these tanks tests'. This is also confirmed by the comparison with the data sets 

collected in the previous section. 

The final method of enhancement. Type III, is investigated in the following section. 

This method of enhancement seeks to take advantage of the frequency dependence in 

the attenuation of the bubble cloud as illustrated by the pulse data in Figure 4-9. 

' These findings cannot rule out the possibility that it occurred but the effect was not large enough to be 

apparent given the level of uncertainty indicated by the error bars. 
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4.2.6 An investigation of Type III enhancement 

It has long been recognised that the attenuation of a bubble population is dependent 

on frequency. Indeed attenuation information is commonly inverted to measure the 

bubble population^®. Thus there is a relationship between the levels of scattering and 

attenuation of a cloud and the driving frequency. This is a function of the non-linear 

increase in scattering and attenuation as bubbles increase in size particularly when 

driven at resonance. This trend is scaled by the cloud distribution. In naturally 

occurring clouds, generated by breaking waves in the ocean, the number of bubbles 

typically reduces with increasing bubble radius^''^^ (although there may be a global 

maxima see section 2.4). It is logical to conclude (given these trends) that for each 

population distribution, a bubble cloud will have an insonification frequency where 

the scattering and attenuation is at a minimum. If that frequency is in a useable range, 

neither too high or too low, (where the signal-to-noise ratio, ambient noise, or 

diffraction effects become problematic) then Type III enhancement could occur. 

The attenuation as a function of frequency has already been measured for the bubble 

cloud used in the tank experiments. The data was taken for the purpose of inverting 

for the bubble population distribution (section 3.2.1) and is plotted in Figure 3-2. The 

plot is referred to here for the purpose of investigating Type HI enhancement. 

The attenuation of this bubble cloud varies from less than 1 dB at 220 kHz to a peak 

of 4.9 dB at 20 kHz. The impact of this variation in attenuation on target detection 

can be determined by applying the sonar equation from section 1.2.2. In this test the 

parameters of the sonar equation are in most cases identical to those given in section 

1.2.2 i.e. a 0.1 m long array with a target strength o f - 2 2 dB and source level of 60 

dB. The differences are in the attenuation owing to bubbles, which are taken from 

Figure 3-2, the noise level which is assumed to be 0 dB at all frequencies and the 

acoustic absorption of sea water which is calculated after Fisher and Simmons^^ for 

an atmospheric pressure of 1 atm and a water temperature of 10°C (the full absorption 

calculation is used, which incorporates the effects of Boric acid and Magnesium 

sulfate). The resulting detection ranges are shown in Figure 4-10. 
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Since the attenuation owing to the bubble cloud decreases with increasing frequency 

it is to be expected that target detection ranges should increase with increasing 

frequency. In the example shown here the range of detection increase from 

approximately 7 m to 45 m as the frequency increases from 15 kHz to 190 kHz, a 

seven-fold increase. Thus, as expected, an increase in frequency results in an increase 

in detection ranges. This is in contradiction to the hypothesis that a lower frequency 

reduces off-resonant contributions that can mask Type I enhancement. These results 

clearly show that the frequency of insonification is an important consideration for 

target detection in bubbly environments. 

4.3 Conclusions 

In this chapter the three types (Table 2-2) of sonar enhancement have been 

investigated theoretically and experimentally in a test tank. The bubble cloud used in 

these experiments was artificially generated using electrolysis. Of the three types of 

enhancement tested, only Type III, which seeks to optimise the insonifying 

frequency, resulted in an apparent increase in target detection ranges. However, the 

comparison of the theoretical and experimental results has shown good agreement 
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with theoretical results, generally lying within one standard deviation of the 

experimental results. 

There are three possible reasons for the failure to measure any benefit in Type I and 

Type II enhancement. The first is that large off-resonant bubbles dominated the 

scattering and thus masked the ring-up of the resonant bubbles despite attempts to 

minimise this. The second reason is that the transient contribution of bubbles close to, 

but not at, resonance is significant for this population when compared to the 

contribution of resonant bubbles. The third and final possibility is that Type I and 

Type II enhancement is present, but too small to measure experimentally. 

To identify which if these possible explanations is valid, the non-linear bubble model 

was used to calculate the theoretical contribution of each bubble per p,m radius bin 

scaled by the tank bubble population. The results are shown in Figure 4-11. First 

interpretation of this plot suggests that the resonant bubbles dominate. Closer 

examination of the plot around resonance (the lower plot in Figure 4-11) shows that 

near resonant bubbles responses are of a similar magnitude to the resonant bubble. 

Neither of these features explains why no Type I or Type II enhancement was 

detected during the tank experiments. 

The attenuation of the bubble cloud and the relative contributions of the resonant, 

near resonant and off resonant bubbles needs to be calculated in order to investigate 

this further. For the purposes of investigating the masking of Type I and Type II 

enhancement, off-resonant bubbles are defined as those bubbles that do not exhibit a 

ring up or transient behaviour in response to an 80 kHz pulse. Resonant bubbles are 

defined as those bubbles that exhibit a smooth ring-up to resonance. The remaining 

bubbles, those that do not ring up smoothly to resonant, but do exhibit transient 

behaviour, are classed as near-resonant bubbles. Typical time series of the radiated 

sound pressure of a bubble from each of these regimes is shown in Figure 4-12 to 

illustrate this. 

The non-linear range independent finite pulse length cloud model was then used to 

calculate the attenuation in decibels for all bubbles in the cloud and for the resonant, 

off resonant and near resonant bubbles. The model was driven with an idealised 80 

kHz pulse of between 1 and 10 cycles in length with amplitude of 600 Pa. The results 

are shown in Figure 4-13. 
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The plot of attenuation versus pulse length for the entire cloud shows a small increase 

in attenuation with increasing pulse length. The change is very small, approximately 

0.2 dB. The contribution of the resonant bubble shows a smooth ring up as expected 

with the attenuation increasing five fold for between pulse lengths of 1 and 10 cycles. 

The contribution of the off-resonant bubbles is small, but of a similar magnitude to 

the response of the resonant bubble to a one or two cycle pulse. The contribution of 

the near resonant bubbles is the most significant, contributing 1.7 dB/m of the cloud 

attenuation for the one cycle pulse (where the initial transient behaviour of the bubble 

is most significant) reducing to 1.3 dB/m for a 10 cycle pulse. 

The model indicates a small amount of Type I enhancement, but it is too small to be 

detected experimentally owing to cloud variability and signal noise. The results 

indicate that the reason for this is the contribution of the near-resonant bubbles and as 

already hypothesized the contribution of the off-resonant bubbles is small. 

Thus the original methodology of using an electrolysis type bubble cloud and a pulse 

frequency of order 80 kHz to minimise the off resonant contribution has been 

confirmed. However the previously over looked near resonant contribution has 

masked the majority of the Type I and Type II enhancement. 

In conclusion, the theoretical model has been validated by the experimental data. 

Furthermore, the advantage of being able to use measured time series to drive the 

theoretical model have been proven. Results of the theoretical model using idealised 

and measured driving pulses allowed correct interpretation of the experimental results 

and identification of the correct enhancement mechanism. In addition the range 

independent cloud model has been used to help identify the presence of Type III 

enhancement and the reason why Type I and Type II enhancement was not detected. 

That is to say the relative importance of near resonant bubbles has been identified, 

and this is all the more significant in that has been overlooked in previous 

experimental studies and linear steady state models'*'̂ ''*̂ ''*̂ . 

138 



In the next chapter, a surf-zone trial of sonar enhancement is described. The aim of 

this trial is to gain increased knowledge of the surf-zone bubble population 

distribution, and to test the three types of sonar enhancement in a realistic population 

distribution and attenuation levels which cannot be generated in the laboratory. It will 

also allow the importance of including the attenuation of the driving signal into the 

range dependent model to be ascertained. The population will be measured using 

several different acoustic techniques conducted, by a fellow PhD student Steven 

Meers' with the help of Mathew Simpson' and Gun Tae Yim', two other PhD students 

and University technicians John Taylor' and Anthony Edgely'. The trials were 

undertaken under the supervision of Prof. T G Leighton'. 

' Institute of Sound and Vibration Research, University of Southampton 
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Figure 4-11 Theoretical Scattering Cross-section for different bubble radii and pulse 
lengths from one to ten cycles in an 80 kHz 600 Pa sound field scaled by the bubble 
population per /jm increment measured during the tank tests. The top plot show all 
bubble radii up to 600 [Jtm and the bottom plot is the same data but scaled so that 
only the bubble radii up to 30 jion can be seen to show the contribution of the near 
resonant bubbles 

140 



i 
g f 

^ "6: 

D cc 

s* 

3 
;L 

?x 

1 
3 
G. 
"Q % 
5 

Oo 
O Oi 

S | 

iH 
(% (y (% 
s ^ 

if 
% g Og II 
?l S Co 

CD 

O 
k) 

o 
00 

o 
4̂  

o 
bi 

o 
b) 

Radiated 
Pressure (Pa) 

a; 

Radiated 
Pressure (Pa) 

P o o O 
i\: o Li. k) 

o 
k) 

H 

I S 
3 
w 

o 
4̂  

o 
bi 

o 
b) 

CD 

3 
</) 

Radiated 
Pressure (Pa) 

o 
ho 

o 
GO 

O 

O 
cn 

o 
b) 

KO 



5 1.5 

Total Attenuation 

Near Resonant Attenuation 

Resonant Attenuation 

Off Resonant Attenuation 
X 

10 

Pulse Length (Cycles) 

- Total Attenuation • - Resonant Attenuation • - Near Resonant Attenuation • - Off Resonant Attenuation 

zn an 80 600 f a wa'ZMg fAg 6w66Zg popw/afzon dwrzMg f/zg 
ran^ fg^f& TTzg coMfrz^wnoM q/fAg rgaonaMf, ngar rgĵ onanr ancf c^rg^o/zanf 6w66Zg.y zf 
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/pozMf̂  org zncZŵ fgcf To azWg z/z ZMfg/prgfaAoM. 

142 



SURF-ZONE TRIAL 

5 Surf-zone trial 

This chapter describes a surf-zone based sea trial to investigate sonar enhancement in 

the target environment, and to develop a better understanding of the bubble 

population distributions that occur in the surf-zone. The three methods of sonar 

enhancement will be tested by comparing the levels of attenuation of the return echo 

from an air filled buoy suspended in the water column. The theoretical models 

developed in the proceeding chapters will be used to predict the attenuation levels in 

the surf-zone with emphasis on establishing the importance of incorporating the 

driving signal attenuation into the range-dependent model. As was seen in the last 

chapter, interpretation of any experimental data requires the bubble population to be 

used as input for the theoretical models (section 2.2). Whilst this information could be 

obtained for the tank experiments with relative ease (section 3.2.1), measurements of 

bubble populations in the surf-zone have rarely been accomplished successfully. On 

this sea trial, measurements of the population were attempted by two other PhD 

students, who were only successful in covering a very small range of bubble radii (by 

inversion of attenuation measurements at a range of frequencies). This provides 

fundamental limits on the input to the theoretical models and on the validity of their 

predictions and therefore on the interpretation that can be presented here. 

5.1 S ea trial arrangement 

The surf-zone sea trial was conducted on a beach at Hurst Spit, Milford-on-Sea in 

Hampshire from the 4'^ November to the 18'*̂  November 2000. The beach is southerly 

facing with a shingle and sand composition and a significant amount of sediment 

transport was observed over the two week period of the trials (around the equipment 

vertical changes in the seabed of approximately 50 cm were observed in a 20 minute 
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period). After several storm events during the trials, the depth of shingle on the beach 

changed by several feet and the beach profile changed. The beach profile was 

stepped, the position of the step changing after a storm event, resulting in a form of 

reef brake which generated plunging breakers in all but the calmest of conditions. The 

position of the wave breaking was a function of water depth, owing to the tide and the 

position of the step in the beach, and was a significant factor in the deployment of the 

equipment. 

Initial attempts to deploy the transducers and targets involved the deployment of a 

rectangular scaffold array into the surf-zone and the attaching the equipment in-situ. 

Owing to increasing surf and difficult working conditions (see Figure 5-1) this was 

not possible before the rig was destroyed during over night storms. The deployment 

method and the construction of the rig was redesigned (as described below) and then 

redeployed on the November. 

In order to provide a stable and secure platform for mounting equipment on such a 

dynamic beach, 3" diameter scaffolding poles were attached to large feet, consisting 

of a 1 m X 1 m square steel plate, using in-line scaffold clips. On these stands would 

be mounted a UDI transmitter/receiver and pre-amplifiers and a 1.27 m (50") 

circumference air-filled buoy as a target. The UDI array was selected for its 

bandwidth and ability to reach high frequencies (360 kHz) since the only previous 

measurement of surf-zone bubble populations (Phelps et al?^) indicated a higher 

frequency would improve the chance of detecting Type I enhancement (section 2.5). 

The large target was chosen for two reasons. Firstly it increased the target strength in 

an attempt to limit the potential for the high levels of attenuation expected in the surf-

zone^® to mask the target. Secondly, the large target simplified the alignment of the 

source and receiver. The system was deployed monostatically with the source and 

receiver on one stand (consisting of a scaffold pole and base plate) and the target on 

the second. Further details of the deployment and position are given below. 

The equipment was controlled from a portable cabin onshore, and communication 

with the equipment was via direct cable connection. In a similar fashion to the 

laboratory experiments previously described, signals were acquired to a PC via a 

LeCroy 9314 digital oscilloscope and GPIB software. Signals were generated using a 

Sony AWG 2020 and both the signal acquisition and generation were controlled via 

PC using National Instruments LabView software. 
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The two stands, minus the equipment, were positioned at the low-tide mark during a 

spring low tide and left to allow the feet to be buried. Once the stands were secure, 

the equipment would be deployed at the next low tide. The feet of the stands were 

quickly buried by shingle, in excess of 0.3 m, providing the stable base required. 

However, owing to a low pressure system resulting in high winds, high tides and 

large surf, a suitable low tide did not occur until the beginning of the second week. 

The equipment was attached to the stands using 3" exhaust clips. 

Care was taken to confirm the alignment of the array and the target. This was 

achieved by sighting along a straight edge to check the array was pointing at the 

centre of the sphere and running a rope temporarily between the centre of the array 

and the buoy. The buoy had a seam joining the two halves running around the 

circumference, providing an excellent marker of the centre of the buoy in the vertical 

plane. The height of the buoy was altered with the aid of the rope until the array was 

pointed at the centre of the buoy. The geometry of the apparatus was carefully 

measured. A schematic of the experimental layout is shown in Figure 5-2 and a scale 

drawing in Figure 5-3. 

The signals used and the criteria of the tests conducted using this setup are described 

in the next section. 
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Figure 5-1 Two photographs^^, taken a fraction of a second apart, showing (a) two of 
Professor Leighton's PhD students (Meers and Simpson) attempting to bolt sensors to 
a scaffolding rig the team have just deployed at sea; (b) Mr Simpson's feet (Mr Meers 
is not visible). During the subsequent trial the winds increased from the calm 
conditions shown here to speeds in excess of 50 mph. 
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Figure 5-2 Schematic of the apparatus deployed into the surf-zone at Milford-on-Sea 
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Figure 5-3 Scale drawing of the deployed rig in both plan and side views 
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5.2 Signals and test criteria 

The UDI source and receiver used in the experiment has been calibrated for used 

between 200 kHz and 360 kHz. Using the full frequency range of the transducer array 

a series of signals were chosen to test the various types of sonar enhancement. These 

included pulses of 5 and 20 cycles with centre frequencies from 200 kHz to 360 kHz 

at 20 kHz intervals. In addition a swept chirp from -200 - 360 kHz of duration 0.1 

ms and 1 ms was generated, as well as a pseudorandom signal of bandwidth -200-

400 kHz and durations of 0.1 ms and 1 ms. The actual spectra of the chirp and 

psuedo-random signal are shown in Figure 5-4. The sound pressure level varied with 

frequency (Appendix D) but was approximately 205 dB ref Ijipa @ Im. 

nU:;::::: 

Psuedo-raiSdom 
0 100 200 300 400 500 

Frequency (kHz) 
0 100 200 300 400 500 

Frequency (kHz) 

Figure 5-4 The bandwidth of the chirped signal (left hand plot) and pseudorandom 

using a 256 point FFT and the amplitudes have been normalised. 

In order to be able to compare the relative performance of the different signals, it was 

necessary to concatenate them into a single waveform because the bubble cloud 

changed on a sub-second time scale. Each component waveform was separated by 10 

ms to allow enough time to record the echo from the target buoy before the next 

waveform component was transmitted. The component waveforms were concatenated 

in this fashion in the following order: pulses, chirps (short then long) and 

pseudorandom (short then long). The pulses were concatenated in order of increasing 

frequency with interleaved 5 and 20 cycle lengths. The resulting signal was 

approximate 0.22 s in duration. 
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A further concatenated signal consisting of 20 cycle pulse with centre frequencies 

corresponding to the resonant frequencies of bubbles of equilibrium radius 9 |im to 15 

|im (-208 kHz to 340 kHz) was used for inverting for the attenuation to give the 

bubble population. 

The following experimental method and testing criteria were adopted to investigate 

the potential sonar enhancement of the signals described above. 

In a similar fashion to the laboratory experiments previously described, in order to 

investigate sonar enhancement of the different signals, it is necessary to measure the 

attenuation owing to the bubbles between the transducer and the target. The 

laboratory experiments have shown that a robust way of achieving this is by 

calculating the energy in the echo from the target buoy i.e. calibrating the return 

during a bubble-free period and comparing this with measurements made with 

bubbles present. 

The bubble-free condition was established by measuring the energy during a very 

calm period when few bubbles are present. The energy in the echo from the buoy 

during this calm period can then be compared with the energy in the echo when wave 

breaking is occurring, and thus bubbles are present. The attenuation owing to the 

bubbles can thus be calculated from the difference. 

Since the equipment was deployed at low tide in calm conditions, during the 

subsequent high tide the water around the transducer and buoy was particularly calm. 

This period of calm conditions was used to obtain a nominally 'bubble-free' data set 

which could be used to ascertain the levels of attenuation owing to bubbles alone in 

subsequent tests. Owing to the difficulties of recreating the geometry in a test tank 

and the eventual loss of the target buoy, during a storm, post trial tank calibrations of 

the buoy, although undertaken were not used in the data analysis. This was because 

the scattering from a replacement buoy during the post-trial calibrations was on 

average 30% less than that measured in the surf-zone. Since an identical target could 

only produce greater scattering than in the surf-zone (where more inhomogeneities 

could be present in the water), clearly it was not possible to reproduce the target and 

its geometry to an accuracy which improves upon the use of the calm surf zone data 

for calibration. 
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The data were collected in the following fashion. A batch of ten time series were 

generated and acquired using the 20 cycle pulses equally spaced in bubble radius for 

latter inversion to estimate the bubble population. Immediately following this the 

concatenated signal for sonar enhancement was generated and acquired. Again this 

was repeated ten times. 

A series of data sets were acquired in this fashion over a period of two days, the 14 

and is'*' November 2000. The first day's data set was taken in calm conditions as 

described above. The following days data sets were collected during 1-2 foot surf 

with wind speeds of approximately 15 mph (6.7 m/s) from the SW (onshore). No 

further data sets could be taken owing to the loss, during the night, of the buoy and 

buoy stand because of stormy conditions (wind speeds in excess of 50 mph) and the 

resulting high surf. 

Analysis and presentation of the data as well as a comparison of theoretical and 

experimental results is covered in the next section. 

5.3 Sea trial results 

5.3.1 Summary of experimental results and theoretical modelling 

In the previous section the signals to be tested for sonar enhancement are described. 

In addition a pulse train with frequencies selected to give regularly spaced resonant 

bubble radii was also generated. This was used to invert the attenuation to estimate 

the bubble population as was done for the tank tests in section 3.2.1. This allowed the 

numbers of bubbles to be estimated for an equilibrium radius of 9 - 15 jxm in 1 |J.m 

increments. In order to be able to model the cloud it was necessary to extrapolate the 

results using a power law. The measured and extrapolated populations are shown in 

Figure 5-5. 
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Figure 5-5 Population distribution determined by inversion of attenuation of the 
target sphere echo. The crosses (x) represent the measured data and the red solid line 
is an extrapolation of the population, used for modelling the cloud response. The 
equation describing the extrapolation is shown at the bottom left of the red line. The 
green line is the Farmer and Vagle^^ population from chapter 2, equation [2-14]. 

The extrapolation shown in Figure 5-5 is obviously extreme and the uncertainties in 

the numbers of bubbles become very large as the bubble radius exceeds a few tens of 

micrometers. 

However, theoretical modelling in the preceding chapters has shown that, if the 

numbers of large off resonant bubbles are small, it is the bubbles that are at or close 

to resonance which are important i.e. those bubbles that have a time dependent 

scattering cross-section. The Farmer and Vagle^^ population used in chapter 2 is an 

example of a population where the large off-resonant contribute little to the cloud 

cross-section (Figure 2-14). This population is also plotted in Figure 5-5 for 

comparison. 

In order to apply the range dependent model, the number of bubbles must be scaled to 

keep the processing time manageable. The problem with this is that the contribution 

of the larger bubbles is lost and assumes the contribution of these bubbles is 

negligible. In this case only the bubbles of radius 5 |im to 56 |_Lm will be considered. 
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To test the vaHdity of this assumption, the range independent model will be again be 

used to access the relative contributions of the bubble cloud. Figure 5-6 shows the 

contribution of the tested bubble radii (5 jim to 56 |im) and the larger bubble radii up 

to 600 |im for each of the 5 and 20 cycle pulses tested in the surf-zone. The plot 

clearly shows that the contribution of bubbles larger than 56 [Xm is insignificant and 

thus the assumption is valid. 
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Figure 5-6 Plot showing the relative contributions of the tested bubble radii (5 jilm to 
56 jjm) and the larger bubble radii up to 600 jjm for each of the 5 cycle (top plot) and 
20 cycle (bottom plot) pulses tested in the surf-zone 

The average attenuation of eacg test signals taken on the 15̂ ^ November 2000 during 

the period of most intense wave activity are in shown in Figure 5-7. Error bars 

indicate one standard deviation in the data giving an indication of the variability in 

the bubble population. Owing to their size it is not possible to interpret this data in 

terms of the three types of sonar enhancement. Individual tests will have to be 

examined to minimise the effect of temporal variability in the bubble cloud. 

However, the average data can be used to test the theory and the extrapolation of the 
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measured bubble population (since the population used to drive the model is itself an 

average). 

The range-dependent non-linear bubble cloud model (section 2.3) used for 

comparison during the tank test is again tested here. However, in these trials a much 

greater attenuation has been measured when compared to the tank tests. This is an 

opportunity to test the hypothesis, at the end of section 2.3, that the attenuation of the 

driving pulse as it passes through a cloud should be modelled. For this reason two 

sets of results are plotted against the experimental data. The first (labelled model 1 in 

the plots) uses the range dependent model but does not include any attenuation of the 

driving pulse as it passes through the cloud, whereas the second (labelled model 2 in 

the plots) uses a modified version of the range-dependent model which does included 

driving signal attenuation. The results are shown in Figure 5-8 and Figure 5-9. The 

pulse attenuation model shows the best agreement with the experimental results up to 

a frequency of 320 kHz and for the chirped and pseudo-random signals. Above this 

frequency the theoretical and experimental results diverge. The reason for this will be 

discussed further in the following section. In all cases the model that includes the 

attenuation of the pulse as it propagates through the cloud is the more accurate 

generally lying within one standard deviation of the experimental data for all data 

points but the 340 and 360 kHz pulses. 

This would seem to indicate the population measurements when extrapolated from 9 

|j.m to 56 |im are a good representation of the bubble cloud response up to 320 kHz 

and that the inclusion of the driving pulse attenuation is important. However, the 

same cannot be said for the smaller bubble radii, because the theory fails to agree 

with the experimental results for the 340 and 360 kHz pulses. 

It has already been mentioned that the extrapolation of the surf-zone population is 

extreme and the limited range of the population data gives rise to a significant 

uncertainty in the population distribution. This manifests itself in two ways. Firstly 

the gradient of the extrapolation shown Figure 5-5 can be varied slightly without 

significantly affecting the quality of the fit to the data. This is illustrated in Figure 

5-10. Secondly, there may be a peak in the population. The existence of such a peak 

is due to the sorting of the bubble population by buoyancy and dissolution' " but has 

rarely been measured^'. This may be because it occurs at such a small bubble radii it 

is out of the range of most population measurements. 
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Figure 5-7 A graph showing the average levels of attenuation, in dB, measured in the 
surf-zone for each of the test signals (denoted on the x-axis). The short duration plot 
(dashed line) refers to the 5 cycle pulses(for the frequency shown on the x-axis and 
0.1 ms chirp and pseudorandom signals and the long duration plot (solid line) refers 
to the 20 cycle pulses and 1 ms chirp and pseudorandom signals. The error bars 
represent the extent of scattering in the experimental results. 
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Figure 5-8 A graph comparing theoretical (solid lines) and experimental (dashed 
line) measurements of the average attenuation in dB for each of the short duration 
signals used in the surf-zone trial. The blue solid lines show the theoretical 
predictions of enhancement given the estimated bubble population in the surf-zone 
but assuming the attenuation of the driving signal as it propagates through the cloud 
is negligible. The solid black line includes this attenuation. The error bars represent 
the extent of scattering in the experimental results. 
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Figure 5-9 A graph comparing theoretical (solid lines) and experimental (dashed 
line) measurements of the average attenuation in dB for each of the long duration 
signals used in the surf-zone trial. The blue solid lines show the theoretical 
predictions of enhancement given the estimated bubble population in the surf-zone 
neglecting the attenuation of the driving as it propagates through the cloud. The solid 
black line includes this attenuation. The error bars represent the extent of scattering 
in the experimental results. 
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Figure 5-10 Plot showing how by changing the gradient of the extrapolated 
population (denoted by the blue green and red lines) the quality of fit with the 
experimental data is not significantly effected. 
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Figure 5-11 A plot showing the tuned population distribution (green line) compared 
with the measured population (x) and the original extrapolation (red solid line). 
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Figure 5-12 A graph comparing theoretical (solid black line) results for a tuned 
bubble population distribution against experimental (dashed red line) measurements 
of the average attenuation in dB for each of the 5 cycle pulsed signals used in the 
surf-zone trial. The error bars represent the extent of scattering in the experimental 
results. 
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Figure 5-13 A graph comparing theoretical (solid black line) results for a tuned 
bubble population distribution against experimental (dashed red line) measurements 
of the average attenuation in dB for each of the 20 cycle pulsed signals used in the 
surf-zone trial. The error bars represent the extent of scattering in the experimental 
results. 
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The results of the range dependent theoretical model can be used to tune the 

population distribution by taking into account the two issues mentioned in the 

previous paragraph and adjusting the population iteratively until a better fit is 

achieved between the theory and experimental results. The tuned population 

distribution is shown in Figure 5-11, and compared with the measured population 

distribution and the original extrapolation. The resulting theoretical cloud 

attenuations using this newly derived population distributions are shown in Figure 

5-12 for the 5 cycle pulses and Figure 5-13 for the 20 cycle pulses. The discrepancy 

between the theory and experimental results for the 340 and 360 kHz pulses shown in 

Figure 5-8 and Figure 5-9 has been resolved in Figure 5-12 and Figure 5-13. 

Thus the inclusion of signal attenuation as it passes through a cloud into the 

theoretical model has been justified. In addition the model has been used to refine the 

measurements of the population distribution and overcome the short fall in 

information regarding the population distribution during the surf-zone trial. This will 

be invaluable in interpreting the experimental results. 

5.3.2 Investigation of sonar enhancement in the experimental results 

The ten individual tests used to obtain the average attenuation shown in Figure 5-7 

are now plotted individually and analysed to investigate the three types of sonar 

enhancement that have been identified in chapter 2 (Table 2-2). The attenuation of 

each of the short and long duration signals for each of the ten tests are plotted in 

Figure 5-14 through to Figure 5-21. Two graphs representing one test each are plotted 

for each figure. No error bars are shown in these plots as the background has been 

measured to be of order -10 dB and is thus too small to be shown on these plots. 

As already mentioned, since the bubble population is changing comparisons can only 

be made between short and long duration signals in a particular test when interpreting 

the results for sonar enhancement. This is because the short and long duration pulses 

were interleaved with a 10 ms gap between each signal in an attempt to minimise the 

effect of temporal variations in the bubble cloud. However, care is still needed when 

interpreting individual data points. The duration of individual test is just 0.22 s. This 

is very much less than the typical period of breaking waves (of order a few seconds). 

Thus comparison between individual data points in a test is acceptable as the primary 

mechanism for generating and dissipating the bubbles act over a much long time 
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period. However, each test is separated by several minutes and thus a test-to-test 

comparison of individual points is not possible as the bubble population may have 

changed. For this reason the relative enhancement for each of the tests is summarised 

in Table 5-1. The table shows the difference in attenuation (dB) for each of the eleven 

signals types for each of the ten tests. The attenuation of the long duration signals is 

subtracted from the attenuation of the short duration signals. Thus, a positive number 

indicates enhancement and a negative number (shown in red italics in the table) no 

enhancement. The average of the change in attenuation over the ten tests is shown at 

the bottom of the table. 

The data shown in Table 5-1 is also shown in graphical form in Figure 5-19. In this 

figure a solid line is plotted at 0 dB indicating no change in attenuation between the 

short and long duration signals. Data points below this line indicate suppression 

whilst data points above the line indicate enhancement. The results for the 340 kHz 

and 360 kHz as well as the chirp and random signals are evenly spread above and 

below the 0 dB line suggesting no net difference in terms of sonar enhancement 

between the short and long duration pulses. Conversely the results for the 200 kHz to 

320 kHz are generally above the 0 dB line. This is most pronounced for the 280 kHz 

to 320 kHz pulses. This indicates a reduction in attenuation when using short pulses 

and thus potential sonar enhancement. 

The data has been analysed to look at the relative attenuations for the short and long 

periods of each of the signals. The results for the 200 kHz to 360 kHz pulses can be 

interpreted in terms of Type I enhancement. The plots for short and long duration 

signals are shown in Figure 5-14 through Figure 5-18 indicate a general reduction in 

attenuation when the shorter pulses are used. This is confirmed by the tabulated 

results in Table 5-1 by looking at the average attenuation as well as the number of 

occurrences of negative numbers per test. The results show that the best enhancement 

occurs for frequencies from 240 kHz to 300 kHz where only one or two negative data 

points are shown and the change in attenuation is larger then the standard deviation. 

This distribution can also be seen in Figure 5-19 where the results for the same tests 

are predominantly above the 0 dB line. Conversely the test at 200 kHz, 220 kHz, 340 

kHz and 360 kHz show the opposite trend indicating insignificant or no enhancement. 
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Type Pu se Frequency (kHz) Broad Band Type 
200 220 240 260 280 300 320 340 360 Chirp Random 

1 1.40 -14.61 3.32 0,94 4.23 0.21 2.70 6.44 -4.64 1.23 -1.15 
2 -0.18 6.11 4.11 5.78 7.50 7.83 1.60 2.38 1.78 5.47 2.39 
3 4.41 2.06 -1.21 4.53 6.83 4.15 1.07 -2.79 10.23 -4.31 1.15 
4 -1.22 0.44 3.45 10.55 12.24 2.48 1.66 5.44 2.31 4.75 4.68 
5 2.53 -6.07 -3.29 8.56 -0.31 2.90 5.54 0.99 1.42 2.64 1.77 
6 3.46 14.10 5.97 9.76 0.81 2.39 2.36 -2.83 -2.32 3.07 1.17 
7 -0.99 3.98 1.10 -5.01 0.20 8.23 2.53 -4.59 6.29 -0.36 -3.93 
8 6.35 13.82 9.37 7.24 2.35 1.20 2.15 -0.88 1.17 -2.43 -1.09 
9 -2.21 3.70 5.01 4.00 6.25 0.07 12.70 2.59 -1.78 0.66 -0.46 
10 6.35 1.39 6.69 6.29 9.26 1.42 5.54 4.26 -6.76 -0.25 -2.08 

Average 2.50 5.71 4.15 6.18 5.86 3.55 4.58 1.82 2.14 1.52 0.57 

Table 5-1 A table summarising the difference in attenuation (dB) between long and 
short duration signals for each of the ten tests. A negative number (highlighted in red 
italics) indicates no enhancement. The average difference is shown at the bottom of 
the table for each signal type. 
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Figure 5-19 Graphical representation of the data shown in Table 5-1 showing the 
relative attenuation between the short and long duration signals for each of the ten 
tests. A negative value indicates suppression. A line marking the 0 dB point is also 
shown to aid in interpretation. 
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The results for the chirp and pseudorandom signals can be interpreted in a similar 

way to the pulse data to investigate Type II enhancement. The pseudorandom signal 

shows no enhancement with the data in Figure 5-19 distributed evenly about the 0 dB 

line and a mean attenuation difference of 0.57 dB and a spread of ±4 dB indicated in 

Table 5-1. The chirp data also shows no significant enhancement with a mean 

attenuation difference of 1.52 dB and a spread of ±5 dB. 

Finally Type III enhancement must be considered. This is the most difficult type of 

enhancement to quantify from the results, owing to the variability in the data on a 

test-by-test basis. In addition the average attenuation data shown in Figure 5-7 

indicates that the lowest attenuation was for the 200 kHz pulse, with approximately 

15 dB less attenuation of the worst case 280 kHz pulse. This indicates a significant 

enhancement can be gained by using Type III enhancement. However, the plots in 

Figure 5-14 through Figure 5-18 show that although in general the long duration 200 

kHz pulse gives the minimum attenuation, the test-by-test variation is significant. 

Table 5-2 shows the summary of the difference in attenuation between the 200 kHz 

pulses and the 280 kHz pulses for both the short and long duration signals. The table 

shows that an average reduction of 15.8 dB can be expected. 

Test Long 
Pulse 

Short 
Pulse 

Difference 

1 14.09 11.27 2.82 
2 18.86 11.19 7.67 
3 16.31 13.90 2.41 
4 22.95 9.49 13.46 
5 16.50 19.34 -2.84 
6 14.76 17.42 -2.66 
7 14.63 13.44 1.19 
8 11.66 15.66 -4.00 
9 19.64 11.19 8.45 
10 18.07 15.17 2.90 

Average 17.31 14.33 2.98 

ybr f/zg antf Zo/zg (fwrafzon ^zgnaZ^ TVzg avgragg rg.ywZf;y org ^Aown of 

5.4 Surf-zone trial conclusions 

The surf-zone trial has provided additional information for the enhancement of sonar 

detection in bubbly environments and the population distribution of bubbles in the 
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surf-zone. Measurements of the bubble population have shown a significant deviation 

from published measurements in deep water of oceanic bubble clouds, and deviation 

from population measurements obtained from the artificial cloud generated for the 

tank tests in chapter 3 (Figure 5-21). 

The form of the surf-zone population plotted in Figure 5-5 is of great significance for 

sonar enhancement. There are relatively few numbers of large bubbles (as compared 

to the numbers of small bubbles) present in the model surf-zone population provided 

by extrapolating the 9 - 13 p.m data (after tuning by using the range dependent cloud 

model). The result of this is that the contribution of the large off-resonant bubbles is 

unimportant. Furthermore, the steepness of the population distribution reduces the 

contribution of the large near resonant bubbles that masked the ring-up of the 

resonant bubbles in the tank tests. It can thus be assumed that the optimum frequency 

for Type I enhancement would coincide with the resonance of bubbles at the peak in a 

distribution (as predicted in section 2.5). Tuning of the population distribution to 

optimise the fit between the theoretical and experimental results suggests that such a 

peak may exist {Figure 5-11) but it was not directly detected in the surf-zone trial. 

Suck a peak has been measured in deep water by Farmer and Vagle^^. The existence 

of this peak is due to the sorting of the bubble population by buoyancy and 

dissolution''". This peak has only been measured in mature bubble populations with 

theory predicting delays of order tens of seconds before the peak manifests itself^'. 

The use of Type III optimal frequency enhancement has been tested, and has proven 

to be a significant factor in minimising the attenuation from a bubble cloud. Over the 

frequency range tested, which covered a relatively small resonant bubble radius of 9 -

15 |Ltm, the attenuation ranged from 4 - 8 dB/m. It is clear that of all the signals tested 

that the optimal signal for target detection, for the conditions prevalent during the 

trial, would be a 200 kHz pulse and that the duration of the pulse appears to have a 

small effect on the level of attenuation measured at this frequency. 

It is also important to note that the numbers of bubbles present were linearly scaled 

for the purposes of modelling the cloud so as to keep processing time within 

reasonable limits. However, because of the steep gradient of the extrapolated 

population the large bubbles, above 56 |im in radius, are removed from the 

calculation. Thus the theory confirms the population distribution used but only up to a 
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radius of 56 fxm. Beyond this radius the model results confirm that the assumption, 

implicit in the scaling, that the contribution of bubbles greater than 56 |im is 

insignificant. This does not confirm the shape of the extrapolated population other 

than that the numbers of large bubbles must be small. The population was then tuned 

and bubbles of radius 5|Lim to 100 |lm incorporated to give a more robust population 

distribution. 

Further measurements where made during a second sea trial at the same location in 

2002 by Steven Meers' and Tim Leigh ton'. Twenty separate measurements were made 

using a 195 dB source and 500 |_ls pulses with frequencies between 30 kHz and 200 

kHz. The results were then inverted to give the bubble population. The average of the 

20 separate results is plotted in Figure 5-20. The original measurements along with 

the extrapolated and tuned populations used to run the theoretical model are shown 

next to these new measurements. The new measurements indicate a higher void 

fraction (more bubbles) than was measured during the first sea trail and are thus 

linearly scaled to allow a direct comparison between the extrapolated and measured 

populations. The plot shows excellent agreement between the gradients of the tuned 

and newly measured population, providing additional confidence in the use of this 

population in the theoretical model. 

' Institute of Sound and Vibration Research, University of Southampton 
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Figure 5-20 Comparison of the extrapolated bubble population measured at Hurst 

Spit during the sea trial (blue crosses and solid red line) with new measurements 

made at the site in 2002 (black circles). The new population measurements have been 

scaled to allow a direct comparison (green triangles). The tuned population is also 

shown (solid green line). 

It is important to stress at this stage that these result are of course valid only for the 

population distribution measured at the time, and are limited by the frequency range 

tested. The potential of the various methods of sonar enhancement are thus dependent 

on the prevalent environmental conditions. For these reasons, the important 

conclusion to be drawn from the surf-zone trial results is that both Type I short pulse 

enhancement, and Type III optimum frequency enhancement, can be used to improve 

target detection. Additionally a-priori knowledge of the bubble population is required 

to ascertain which technique, or what combination of the two techniques, will give 

the optimum enhancement. 

Finally, Type II novel waveform enhancement must be considered. Firstly, the use of 

short duration broadband signals resulted in very little change in the attenuation when 

compared to the long duration broadband signals. Secondly, the attenuation resulting 

from the chirped and, particularly, the pseudorandom signals, was less than the 

attenuation from the majority of single frequency pulses used (but greater than the 

optimum single frequency pulse). The broadband signals were thus the least 
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successful method of sonar enhancement tested. However, they should not be 

discarded. In conditions where a-priori knowledge of the bubble population is not 

available, a broadband signal could be a useful alternative to Type I and Type III 

methods. This is because it reduces the risk of choosing a particularly bad (in terms of 

attenuation) single frequency pulse. 

In the final chapter, the work discussed in this thesis is summarised and final 

conclusions drawn. 
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Figure 5-21 A comparison of several experimental measurements of bubble 

populations. Leighton et al 1998^' and Farmer and Vagle 1989^ are two 

measurements of oceanic bubble population. The tank population is the measurement, 

using inversion, of the electrolysis bubble cloud generator used in the tank 

experiments. The population measurement marked surf zone 2000 is the population 

measured during the sea trial by inversion. The crosses represent measured data 

points and the line is an extrapolation of the data. Note the relatively few numbers of 

large bubbles measured in the surf-zone and the greater numbers of large bubbles 

measured in the tank population. A final data set is plotted which a previous surf-

zone population measurement by Leighton et al 1997^ . 
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CHAPTER 6 

CONCLUSIONS 

6 Conclusions 

This final chapter discusses the findings of the thesis and presents some suggestion 

for future work. 

6.1 Summary 

The aim of this work has been to investigate the enhancement of sonar detection in 

bubbly environments such as the surf-zone. Previous work on reducing attenuation 

and scattering of sound by bubbles was reviewed. During the course of this review it 

was discovered that existing models of the time-dependent scattering and attenuation 

of bubbles were limited by assumptions such as linearity and restricting the model to 

resonance conditions only. These existing models relied on linear cross-section 

theory to calculate the effect of short pulses. They are limited to small amplitude 

driving signals and single frequency insonification, neglecting the broadening in 

bandwidth of short pulses. In addition, in these models it is assumed that the bubbles 

undergo either resonant or off-resonant scattering: the bandwidth of bubbles that are 

close to, but not at, resonance are not incorporated. These models also cannot 

calculate the ring-down and so are limited to continuous wave or semi-infinite pulse 

as driving signals. 

In these previous studies it was also hypothesized that the time taken for a bubble to 

reach steady state oscillation could be exploited to reduce scattering and attenuation. 

However, only one study by Akulichev'*° measured this phenomenon experimentally. 

In the light of the previous work on this topic three different methods of obtaining 

sonar enhancement were outlined. These methods would need to be tested both 

theoretically and experimentally under a variety of conditions likely to be 
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encountered in the oceanic environment. The theoretical study derived a series of 

bubble cloud models based on the Keller-Miksis non-linear single bubble model. 

Each model expands on the previous by taking into account the following 

assumptions: 

® Time dependence of the bubble response 

® Off-resonant bubble response 

® Non-linearity of the bubble response 

® Bubble response to an arbitrary waveform 

® Attenuation of a driving signal as it propagates through a cloud 

The models were also adapted to allow experimentally measured driving signals to be 

used to allow for distortion effects of acoustic sources. These models are a significant 

improvement over those used in previous studies'̂ '̂'*''"^^ reviewed in chapter 1. A 

summary of all the models presented in this thesis is shown in Table 6-1. 

Experimental tests in a laboratory test tank and the surf-zone trial were conducted to 

test the three types of sonar enhancement identified in this thesis. Type I 

enhancement utilises short period signals; Type II enhancement uses novel 

waveforms such as chirps and pseudo-random signals and Type III enhancement 

relies on finding a minimum in the frequency dependent attenuation of the bubble 

cloud. 
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The tests in the laboratory were undertaken in a test tank of dimensions 8 m x 8 m x 5 

m deep. An artificial bubble cloud generation system, based on electrolysis, was 

developed to represent oceanic bubble populations in the tank. Care was taken to 

minimise the amount of large bubbles (> 100 |im) that are produced by normal bubble 

generation systems such as injection. However, the number of large bubbles produced 

was still too great when compared with oceanic distributions resulting in a shallower 

gradient when plotting bubble numbers versus radius. 

The artificial bubble cloud generator was used to explore the effect of changing pulse 

length and sweep rate experimentally in a tank. The non-linear range dependent cloud 

model was also used to recreate the experimental results using measured waveforms. 

It was not necessary to account for the attenuation of the driving signal due to the 

small levels of attenuation measured. A good agreement between model and 

experiment results was shown. The model was validated by these tests. 
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No Type I or Type II enhancement was shown experimentally or theoretically with 

the bubble population distribution used in the laboratory experiments. However, the 

results would have been wrongly interpreted as showing a Type I enhancement were 

it not for the ability of the non-linear range dependent cloud model to accept 

measured time series as a driving signal. The non-linear cloud model was also used to 

help identify the reason why no Type I or Type II enhancement was detected. It is 

apparent that the contributions of the near resonant bubbles, which have no ring-up 

but do have a transient response, masked the ring-up of the resonant bubbles. The 

importance of the near resonant bubbles (i.e. those bubbles which do not exhibit a 

steady ring-up to resonance or a steady-state response) could not have been identified 

using existing linear bubbles models such as those used in previous studies by 

Akulichev'"', Suiter'*^ and Pace'*^. 

The laboratory experiments did show Type III enhancement. Measurements of the 

cloud attenuation for frequencies from 15 kHz to 220 kHz have shown that significant 

increases in target detection range can be achieved by tuning the driving frequency. 

The second phase of the experimental measurements involved deployment of a source 

receiver and target sphere from a beach into the surf-zone at Hurst Spit on the south 

coast of England in November 2000. It was necessary to move to a beach based trial 

due to the difficulties of generating realistic populations in the tank. A further goal 

was to measure the population distribution in the surf-zone. Increased knowledge of 

the distributions that can occur in this environment was fundamental to this work due 

to the lack of data on such population distributions and the sensitivity of sonar 

enhancement to the gradient in the population distribution. 

Despite some difficulties, measurements of the surf-zone bubble population were 

obtained for a narrow bubble population radius range from 9-15 p.m. This was 

extrapolated and the model used to confirm that the extrapolation was valid over a 

larger bubble population radius range of 5-56 |im. The model showed that this 

extrapolation was suitable for calculating the bubble cloud response up to 300 kHz. 

The results of the model were then used to tune the population distribution. Further 

measurements at the Hurst Spit test site in 2002 agree well with the tuned populations 

distribution giving further confidence in the results. 
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The results of the trial were then analysed for the three types of enhancement. Of the 

three methods tested, Type I and Type III enhancement both showed a reduction in 

attenuation. In this case careful selection of the frequency could reduce the 

attenuation by 16 dB and, depending on the frequency, short duration pulses reduced 

the attenuation by up to 6 dB. 

Theoretical models were again compared with experimental data. In this case the non-

linear range dependent cloud model, including the attenuation of the driving signal, 

was used owing to the high levels of attenuation measured in the surf-zone. The 

model showed close agreement with experimental data lying within the standard 

deviation of the experimental results for all but the highest frequency pulses (300 kHz 

to 360 kHz). This deviation at the higher frequencies is attributed to inaccuracies in 

the numbers of small bubbles measured by inversion. This deviation was then used to 

tune the population to give a better fit between experimental and theoretical results. 

The results have also shown the necessity of including signal attenuation into the 

range dependent model when high levels of attenuation are expected. 

In the sea trial the best method of minimising attenuation was by optimising the 

insonifying frequency. However, care needs to be taken when drawing conclusions 

from these results. The trial data is only representative of one bubble distribution and 

the frequency tested was limited by the hardware (transmit/receive array) used. It can 

be expected that the population distribution will change with environmental 

conditions such as wind speed^'^, the type of breakers^^'^^ and the position within the 

surf-zone. What has been shown is that optimum frequency techniques and short 

pulses given the right conditions can significantly reduce the attenuation owing to 

bubble clouds and thus enhance sonar detection in bubble environments. 

Both these strategies have been shown to be beneficial, however in practice, the 

optimum strategy would depend on several issues:-

® Population peaks are not always apparent 

• The propagation distance before encountering bubbles could severely limit the 

use of very high frequencies 

• The bandwidth and Q of available sources and receivers 

• The population distribution and absolute numbers of bubbles 
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The models presented in this thesis, in conjunction with suitable knowledge of the 

environmental conditions and bubble populations, can be used with the guidelines 

presented here to provide significant gains in the detection of targets using acoustics 

in bubbly environments. 

The work also has potential benefits for measuring bubble populations by inversion. 

Existing techniques use linear models restricting the driving signal to low amplitude 

pulses. The models developed in this thesis could be used to determine the 

attenuation of a bubble to an arbitrary driving signal. This data could be used to invert 

for bubble populations using broadband and high amplitude driving signals without 

compromising model assumptions. Indeed this was achieved to a limited degree by 

tuning the bubble population measured in the surf-zone to improve the agreement 

between theoretical and experimental results especially above 300 kHz. The benefits 

of this in the case of high amplitude signals, would be an increased signal to noise 

ratio and thus increased ability to measure population distributions in areas, such as 

the surf-zone, where the attenuation due to bubble clouds is large. In the case of 

broadband signals, their use could allow the numbers of a wide range of bubbles to be 

measured almost simultaneously rather than stepping through different frequency 

pulses, during which time the bubble population may have changed. 

6.2 Future work 

Two issues raised by this thesis are of particular importance for developing this work 

further. Firstly, the theoretical models presented in this thesis can be further 

developed to include a full non-linear damping model. Specifically thermal damping 

needs to be incorporated into the existing Keller-Miksis non-linear bubble model. 

Secondly, a sea trial should be conducted using a broader range of frequencies to 

invert for the bubble population to try and measure a peak in the distribution. A 

broadband source capable of generating short pulses at the resonant frequency of 

bubbles at the peak of the population distribution (of order 400 kHz) would need to 

be obtained. The hypothesis from chapter 2, that insonifying at the distribution peak 

frequency is the optimum strategy for Type I enhancement, could then be tested 

experimentally. 
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APPENDIX A 

PHYSICAL PROPERTIES OF GASSES 

AND LIQUIDS 

A Physical Properties of Gases and Liquids 

Nitrogen Gas Parameters 

=1.16 - density (kg/m^) assuming Nitrogen 

molarmass=2x 14.0067x70"^ - Molar mass (kg/mol) assumed Nitrogen 

y = 1.4 - Gas specific heat ratio (-) 

Kg - 1.6e^ - Thermal conductivity (W/mK) 

Cp = 1.04 - specific heat of Nitrogen (kJ/kgK) 

Oxygen Gas Parameters 

=1.31 - density (kg/m") assuming Oxygen 

moIarmass=2x 15.999x10"^ - Molar mass (kg/mol) assumed Oxygen 

/ = 1.4 - Gas specific heat ratio (-) 

Kg = 2.6x10'^ - Thermal conductivity (W/mK) 

Cp = 0.91 - specific heat of Oxygen (kJ/kgK) 

Environmental Parameters 

Pam - ^ .013zl0^ - atmospheric pressure (Pa) 

p = 1000 - density (kg/m^) assuming fresh water 

Po - f am, + (9.81/?A) - pressure outside of bubble where h is depth in m (Pa) 

c=1480; - speed of sound in fresh water (m/s) 
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= 293 - absolute temperature of liquid surrounding the bubble 

(K) 

H = 0.001 - shear viscosity coefficient (kg/ms) 

a = 0.0725 - surface tension (N/m) 

= 8.31441; - gas constant (J K'̂  mol"') 

D = 7—̂  - thermal diffusivity of gas (cm/^l/s) 

K| = 0.6; - Thermal conductivity (W/mK) 

Cp - A.\9\ - specific heat of water (kJ/kgK) 

Z); = 7 - 7 ^ — — - approximate thermal diffusivity of liquid 

(cm^/s) 
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APPENDIX B 
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B Multiple Bubble Interactions 

B.l Introduction 

When considering wave propagation and scattering in random media, whether it is 

acoustic or electromagnetic, it has long been recognised that the wave field from 

individual scatters could also influence other scatters in the medium. The first attempt 

to model such interference phenomena was presented by L Foldy in 1944^^ and his 

model has since been applied extensively to bubbly media by, for example, van 

Wijngaarden'^ and Catflisch et alJ^. These models have been shown to compare well 

with theory but only under limited conditions^°. The main restriction occurs near to 

bubble resonances when the scattered field from a bubble is a local maximum®'. 

Intuitively this is where bubble-bubble interactions are most likely, and it is widely 

acknowledged that the primary reason for the failure of Foldy's model is that the 

theory does not correct for multiple scattering processes between bubbles®". Several 

attempts to model multiple scattering have since been made, largely based on Foldy's 

original theory, to quantify the circumstances under which such interactions become 

important. The key papers of Feuillade, Zhen Ye and Henyey that address this 

problem are discussed here. 

B.2 Foldy's effective medium theory 

Since much of the current work on bubble interactions is an extension of the original 

work by Foldy, it is reviewed here. The 'effective' medium concept, as it became 

known, was developed by Foldy^' and Carstensen®^. In this, the bubbly water is 

represented as a homogeneous medium with uniform acoustic properties (i.e. 

attenuation and phase speed). 
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Foldy showed that the sound speed in bubbly water, Cj, is a complex quantity and is 

given by 

1 ATtrn 

+ z-
[B 1] 

ma; 

Here c is the speed of sound in water, p is the density, co is the angular frequency, n 

is the number of bubbles per unit volume and the quantities k, m , b are functions of 

the radius r. 

The real and imaginary parts of equation [B.l] represent the dispersion and 

attenuation, respectively, of the acoustic waves propagating through the medium. If 

bubbles of different sizes are present, then the number of bubbles per unit volume 

with a radius range r and r +d r h defined as np(r)d r, where p(r) is a probability 

density function and [B.l] becomes 

1 1 n 
= — + pn^ [B-2] 

Where 

3 — 

+1 -
mco 

4 [B-3] 

B.3 Feuillade correction for the sound speed in bubbly water 

Commander and Prosperetd^° compared the predictions of Foldy's theory with 

experimental data and showed that, for clouds of high void fractions, narrow size 

distribution and insonification near to resonance, the level of acoustic attenuation is 

consistently overestimated. 

Feuillade 83,84,85 tries to add terms to equations [B.l] and [B.2] to correct for this 

problem by considering an external field driving an ensemble of n interacting 
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bubbles. Thus the total field incident on any one of these bubbles, is a combination of 

the external field and an aggregate of the scattered fields from all of the other 

bubbles. A series of equations to describe this can be evolved and written in matrix 

form. The diagonal of this matrix describes the individual resonance terms, and the 

remaining elements the radiation coupling terms. Feuillade attempts to solve this 

matrix for a general case in order to determine the sound speed correction, by 

determining the eigenvector of the symmetric mode of multiple bubble scattering.®^ 

Feuillade argues that the acoustic properties of ensembles of closely spaced bubbles 

insonified at resonance are 'predominantly determined' by the action of the symmetric 

mode. The antisymmetric mode, where some or all the bubbles oscillate in antiphase, 

scatters negligible sound. It is also assumed that for a high density bubble cloud the 

spatial variation of the aggregate field is minimal. Thus the ambient scattered field 

varies minimally throughout the medium and every bubble responds in an essentially 

identical manner. Thus an approximate eigenvector generally applicable to all 

configurations can be formed. This greatly simplifies the problem and allows the 

average ensemble behaviour to be determined. 

Feuillade gives the following general equation for the speed for sound in bubbly 

liquids 

1 _ 1 /mS 

1 a ,..2 _ [B-4] 
\~3Q)^ptjre ''"'dr 

0 

To summarise Feuillade's approach the propagation characteristics of bubbly water 

have been determined by performing an ensemble average of the effects of the 

collective symmetric mode over distributions of bubble locations and bubble radii. 

The method includes all orders of multiple scattering and incorporates the field 

attenuation (or 'shielding') effect of the intervening bubbly medium as one bubble 

scatters to another. Comparison with experimental data for bubbles of uniform radius 

was consistent for higher void fractions from 0.22 - 1%. For lower void fractions 0.22 

- 0.0377% the analysis was less consistent even though Feuillade suggests 

interactions could reasonably be expected. It is also suggested that interactions should 

rapidly reduce and disappear below a void fraction of 0.377%, although there is no 

experimental data to support this. Comparison with data for non-uniform bubble sizes 
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was less successful. The void fraction was -0.02%, and a better fit to the data was 

achieved by the original Foldy model with a slightly reduced void fraction. Feuillade 

suggests that "this implies that multiple scattering plays a much smaller part in the 

propagation of sound through water containing bubbles of non uniform radius". 

However it is not clear at what stage the requirement of the assumptions described 

above (for a large number of bubbles and high uniform density) break down. Hence 

the statement must be viewed with some caution. 

B.4 Zhen Ye's many body theory for bubbly systems 

Zhen Ye®' describes how most studies of the acoustic properties of bubbly liquids 

have assumed that only the interaction of a single bubble with the medium is 

considered. For this assumption to be valid the following criteria must be satisfied 

and where the scattering cross-section of the 

bubbles^'. This is the case when the void fraction is small and the insonification 

frequency is far from resonance. To overcome this limitation, and so completely 

model bubble interactions, would require an indefinite number of interactions and 

thus an approximate representation must be obtained. Foldy's theory is an example of 

a model which includes the lowest order iteration only. In order to systematically 

consider the higher order iterations Zhen Ye utilises the perturbative Feynman-

diagram method used in many-body theory which has been used extensively in 

condensed matter physics. In his paper Zhen Ye has confined his investigation to a 

second order correction for phase speed and attenuation. 

In contrast to Feuillade, Zhen Ye uses the dispersion relation to determine the phase 

speed and attenuation. Foldy also developed a dispersion relation for a first order 

iteration 

[B-5] 

where^ is the scattering function of a bubble. This is corrected by Zhen Ye to include 

the second order iteration 

^7l 
1 H — A \ - i 

K 
[B-6] 
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Where 

A = jda [B-7] 

n{a)a 
[B-8] 

As with Feuillade's analysis, the bubble cloud is assumed to be uniformly distributed 

in three-dimensional space. Results for both single and continuous bubble size 

distributions are compared for the first and second order theory. Significant 

differences are indicated for the single bubble size distribution for void fractions as 

low as 10"̂  % increasing with decreasing bubble size (suggesting the bubble 

distribution, and not just the void fraction, is important as increased numbers of 

bubbles are required to maintain the void fraction). For the continuous distribution the 

correction is less significant. For the example void fraction of 10"^% and a power law 

distribution (-4 in this case) although they are still important near resonance. 

Since no comparison is made with experimental results, it is difficult to evaluate the 

improvement gained through the use of the second order correction. However Zhen 

Ye has shown that high order interactions do contribute significantly to the acoustic 

properties of bubbly media, particularly near resonance. It is hoped that a comparison 

with experimental results will be included when the effect of higher order interactions 

are investigated and published as promised by Zhen Ye. 

B.5 Henyey's correction to Foldy's effective medium theory 

Henyey®^ uses a similar approach to Zhen Ye in that a correction for the effective 

dispersion relation Kejf, given in equation B.5 above, is sought by consideration of a 

multiple scattering series. Henyey's paper is particularly interesting since it allows an 

algebraic comparison of the models of Foldy, Feuillade and Zhen Ye with his own 

which incorporates some second order interactions neglected by Zhen Ye. Similar 

assumptions to those of Zhen Ye are also made by Henyey, specifically that only the 
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mean acoustic field is investigated and thus a uniform density of scatterers is 

assumed. The effective wave number of a bubbly medium can be given by 

^3-9] 

where Fg is the effective scattering amplitude function which has the following form 

for Foldy's, Feuillade's, Zhen Ye's and Henyey's models (equations B.IO, B . l l , B.12 

and B.13 respectively) 

F fa 

= ) , +4/0,%^^^- 08-1:2] 
2/r 

] 

where/a is the scattering amplitude of a single scatterer and / = . 
0 

It should also be noted that, during this evaluation, Henyey discovered a "spurious 

quadratic term" and thus Feuillade's results are in error. This appears to have been 

confirmed through private communication between Henyey and Feuillade. 

Unfortunately Henyey does not provide any numerical simulations to allow further 

comparison of the models. However, it is stated that when Keffis large compared to K 

the results from the model diverge from those of Zhen Ye and are very close to 

Foldy's. 
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B.6 Conclusions 

Current theory suggests that multiple bubble interactions are important when 

considering the response of resonant bubbles. The relative importance of these 

contributions is difficult to quantify due to the scarcity of supporting experimental 

data, particularly when considering the more recent corrections to the theory. 

However, comparison of theoretical results of Zhen Ye (with and without corrections 

for multiple bubble interactions for a 10 |im resonant bubble, with a void fraction of 

10"*%) leads to an increase in attenuation of -20%. The change reduces away from 

resonance confirming that it is the void fraction of the resonant bubbles that is 

important when considering multiple bubble interactions. 
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APPENDIX C 
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Tank 
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Tank 

C.l Introduction 

An experiment has been conducted to determine the reverb time of the 8 m a* 8 j: 5 m 

deep A B Wood laboratory test tank^^. 

C.2 Theory 

The reverberation time^", Tgo, or the time taken for the sound pressure level to reduce 

by 60 dB, can be determined using equation [C.l]. 

-55.2y 
Tw= c [C.l] 

Here Vis the volume of the enclosure (m^), Sa the surface area (of walls and free 

surface of the tank), c the sound speed (m/s) and < « > is the spatially averaged 

constant of attenuation. 

C.3 Measurement of the reverberation time 

To calculate the reverberation time it is necessary to measure the constant of 

attenuation spatially averaged within the tank enclosure. A source, (B&K 8105) was 

mounted in one corner of the enclosure and a B&K 8103 hydrophone was placed in 

six different locations in the tank taking care to remain at least a metre from either the 
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walls or the source. The source was then excited in third-octave bands of noise, 

covering the range 60 kHz to 200 kHz. Transmission was stopped at a known time 

and the ring down in the hydrophone recorded. The reverberation time was then 

calculated by reverse integration^' and the results spatially averaged for each of the 

hydrophone positions. 

C.4 Results 

The results for the reverberation time obtained by reverse integration were averaged 

over the six hydrophone positions. The test was then repeated five more times and 

these data averaged to give the results shown in Figure D . l . The attenuation factors 

that give the reverberation times shown in Figure D.l are indicated in Table 1 below. 

Centre Frequency Reverberation Time Attenuation Factor 
(kHz) (s) 

80 0.029 0.7587 
100 0.134 0.2649 
125 1.315 0.0309 
160 1.144 0.0354 

w 1.2 

c 0.8 

2 0.6 

[f 0.2 

1/3 Octave Band Center Frequency (kHz) 

Fzgwrg C. 7 7?gvg7-6graf;oM fz/ng fAg A B fg.yf / o r 7/3 ocfavg Aanc! 

cgMfrgyrggwgMCfg^ q/'&O, 700, 72J 760 A7[7z. 
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D SpeciGcations of hydrophones 

This appendix lists the specifications of the sources and receivers used in the tank 

tests and sea trial discussed in this thesis. The schematics of the Bruel and Kjaer Type 

8013 and 8015 hydrophones are shown in Figure D-1 and Figure D-2; the transmit 

response of the Bruel and Kjaer Type 8105 used as a source in the tank test is plotted 

in Figure D-3; the directivity patterns of Bruel and Kjaer hydrophones Type 8103 and 

8105 are shown in Figure D-4; and a typical calibration for Bruel and Kjaer 

hydrophone Type 8103 is plotted in Figure D-5. 

The UDI wide band transmit receive array used in the sea trial was monostatically 

mounted with the receiver mounted directly below the transmitter. The transmit and 

receive elements are 0.07 m by 0.04 m. The units were mounted with the longest 

dimension horizontal. The transmit and receive calibrations are shown in Figure D-6 

and Figure D-7 respectively. The beam patterns in the horizontal plane for the 

transmit and receive are shown in Figure D-8 and Figure D-9 respectively. 
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3 mm Dia. 0,118 

to m 

J 9,5 mm 

-0 ,374" 

Double-Shielded 
Low-Noise Cable 

Compression Seal 

Mounting Seal 

7 mm Dia. ~ 0,276" 

30 CuNi Support 

Shielding Base 

Insulating Bushing 

Acoustic Centre 

Piezoelectric Ceramic 

Bonded Chloroprene 
Rubber 

Figure D-1 Dimensions and construction of the Bruel and Kjaer Type 8103 

hydrophone^^. 
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16mm 
0,63 

6 mm 

93 mm 

50 mm 

1.86'' 

_22 mm Dla_ 

9.8 mm DIa 0.386* 

Low Noise Cable 

14 mm DIa ~ 0 . 5 y 

17 mm DIa — 0.67' 

Bonded Chloropreme 

InmjlaMng Insert 

Shielding Tube 
Assembly 

Connecting Pins 

Flexible Shield 

Twisted Wires 

Piezoelectric 
Ceramic 

Acoustic Centre 

Figure D-2 Dimensions and construction of the Bruel and Kjaer Type 8105 

hydrophone^^. 
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10 20 50 100 200 50 
kHz 

Figure D-3 Typical transmitting response of Bruel and Kjaer hydrophone Types 

8103, 8104 and 8105 in dB ref 1 juPaA^ at 1 m versus frequency^^. 

Plane 

Plane Plane 
Plane 

Mane 
Plane 

Plane 
Mane 

Figure D~4 Typical directivity patterns of Bruel and Kjaer hydrophones Types 8103 

and 8105 in the vertical and horizontal planes^^. 
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Hydrophone Type 8104 

Hydrophone Type 8103 
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Figure D-5 Typical receiving frequency characteristics of Bruel and Kjaer 

hydrophones Types 8101, 8103 and 8104^^. 
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Figure D-8 Transmit beam pattern of the UDI wide band array in the horizontal 

plane at 300 kHz. 
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Figure D-9 Receive beam pattern of the UDI wide band array in the horizontal plane 

at 300 kHz. 

197 



is: 

(DrriHiLit (Dtnrĉ OMLECs 

]EG ( ) T u i t c o n i ( ; s ; 

The project has produced the following outcomes: 

® The following conference paper was presented by Mr Clarke at the Fourth 

European Conference on Underwater Acoustics (Rome, Italy; September 1998): 

Clarke J W L, Leighton T G, White P R, Heald G J and Dumbrell H A, The 

effect of water quality on the damping of bubbles. Proceedings of the 4th 

Ewmpean Con/grgnce on [/Mcfgrwofgr Acowgficg, (ed. A. Alippi, G B 

Cannelii), 1998, pp. 101-106 

* The following conference paper was presented by Mr Clarke at the joint meeting 

of the Acoustical Society of America and the EAA: Forum Acusticum (Berlin, 

Germany; March 99): 

Clarke J W L, Leighton T G, Heald G J, Dumbrell H A, Time-dependent 

scattering from bubble clouds: Implications for the use of acoustic pulses. 

Collected papers from the joint meeting "JASA/EAA Berlin 99" (Published on 

CDRom by Deutsche Gesellschaft fiir Akustik e. V. Universitdt Oldenburg, 

Physik/Akustik D-26] 11 Oldenburg) 
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® The following journal papers have been published; 

T. G. Leighton P. R. White, C. L. Morfey, J. W. L. Clarke, G. J. Heald, H. A. 

Dumbrell, K. R. Holland, The effect of reverberation on the damping of bubbles, J. 

Acoust. Soc. Am. 112 (4), p 1366-1376, October 2002 

Clarke J W L, Leighton T G, A method for estimating time-dependent acoustic cross-

sections of bubbles and bubble clouds prior to the steady state, J. Acoust. Soc. Am. 

107 (4) p 1922-1929, April 2000 

Clarke J W L, Leighton T G, Heald G J , Dumbrell H A, Time-dependent scattering 

from bubble clouds: Implications fro the use of acoustics pulses, J. Acoust. Soc. Am. 

105 (2) p 1254, 1999 

Clarke J W L, Leighton T G, Heald G J , Dumbrell H A, Time-dependent scattering 

from bubble clouds: Implications fro the use of acoustics pulses, Acta Acoustica, 85 

sup 1,S328, 1999 

Meers S D, Leighton T G, Clarke J W L, Heald G J, Dumbrell H A, White P R,The 

importance of bubble ring-up and pulse length in estimating the bubble distribution 

from acoustic propagation measurements, Proc. Institute of Acoustics Vol. 23 Part 2, 

p235- 241,2001 

Leighton T G, Meers S D, Simpson M D, Clarke J W L, Yim G T, Birkin P R, 

Watson Y E, White P R, Heald G J, Dumbrell H A, Culver R L , Richards S D, The 

Hurst Spit experiment: The characterisation of bubbles in the surf-zone using multiple 

acoustic techniques Proc. Institute of Acoustics Vol. 23 Part 2, 227-234, 2001. 

® Contract reports submitted to DERA Bincleaves (contract no. SSDWl/647): 

Clarke J W L and Leighton T G, The Enhancement of Sonar Detection in 

Bubbly Environments. Part 1. Preliminary investigation of effect of water 

quality on damping, and review of prior studies. ISVR Contract Report No. 

96/2^, 1998. 

Clarke J W L and Leighton T G, The Enhancement of Sonar Detection in 

Bubbly Environments. Part 2. Effect of salinity on damping and development 

o f m o d e l s . 1 9 9 8 . 
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# The investigations assisted in the MSc prcject of S. Ponthus who, supervised by 

Dr Leighton, undertook a study of the response of biomedical echo-contrast 

agents to ultrasound. This work has received international interest such that Dr 

Leighton presented an invited paper to the 4th Heart Centre European 

Symposium on Ultrasound Contrast Imaging (Rotterdam, The Netherlands, 

January 1999). The following technical memorandum has also been produced: 

Leighton T G, Clarke J W L, Heald G J, Dumbrell H A, Evans R C, 

Application of the nonlinear acoustic scatter cross-section to the use of 

clinical ultrasound contrast agents. ISVR Technical Memorandom No. 835, 

1999. 

o An application for funding in bubble sizing (collaborative between ISVR and ERA) 

has been submitted and funded by the EPSRC. 
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A method for estimating time-dependent acoustic cross-sections 
of bubbles and bubble clouds prior to the steady state 

J. W. L. Clarke and T. G. Leighton 

7 A / , 

(Received 16 November 1998; revised 11 August 1999; accepted 21 September 1999) 

Models for the acoustic cross-sections of gas bubbles undergoing steady-state pulsation in liquid 
have existed for some time. This article presents a theoretical scheme for estimating the 
cross-sections of single bubbles, and bubble clouds, from the start of insonation onward. In this 
period the presence of transients can significantly alter the cross-section from the steac^-state vahie. 
The model combines numerical solutions of the Herring-Keller model with appropriate damping 
values to c^culate the extinction cross-section of a bubble as a function of time in res^wnse to a 
continuous harmonic sound Held (it is also shown how the model can be adapted to estimate the 
time-dependent scatter cross-section). The model is then extended to determine the extinctim 
cross-section area of multiple bubbles of varying peculation distributions assuming no bubble-
bubble interaeticms. The results have shown that the tim e taken to reach ateac^ state is dependent on 
the clpsene^ of the bubble to r^onance, and on the driving pressure amplitude. In the response of 
the peculation as a whole, the time to reach steady state tends to decrease with increasing values of 
± e driving pressure amplitude; and with the increasirg values of the ratio of the numbers of bubbles 
having radii much larger than resonance to the number of resonant bubbles. The implications of 
these Andings for the use of acoustic pulses are explored. [30001-4966(00)01801-4] 

PACS nimbers: 43.25.Ts, 43.35.Ei, 43.30.Lz [DLB] 

INTRODUCTION 

It has long been recognized that the high impedance 
mismatch between an air-Ailed bubble and the surrounding 
water provides an excellent acoustic target owing to strong 
inert scattering It is also well und^stood that enhanced scat-
ter and dissipation result G-om the pulsatiois into which the 
bubble will be (Mven by the sound Aeld. To a first order, this 
response can be modeled as that of a single degree of free-
dom system with a resonance j&equency, which is dependent 
on bubble size, where the bubble response is a maximum. It 
has been convenient to deGne acoustic extinction and scatter 
cross-sections for single bubbles, given, respectively, by the 
ratio of the power loiA or reradiated l y the bubble to the 
intensity of an incid.ent plane wave. These have been calcu-
lated for the steac^ state^ showing that, for a given bubble 
size, they are maximal at the resonance frequency. It should 
be noted that the cross-sections are only local maxima at 
resonance if considered as a fimction of bubble size for a 
given insoniflcation frequency. This is because the contribu-
tion due to inert scattering will steadily increase with bubble 
size. 

The resonant and off-resonant scattering characteristics 
of bubbles are well deSned and are utilized in a wide number 
of applications including measurement of oceanic bubble 
popiUationŝ "^ and research into upper ocean c^amics.^ 
However, it is these same characteristics which make acous-
tic detection of nonbubble targets in areas with high bubble 
populations (such as the surf-zone) difficult. 

One possible solution to this problem utilizes the bubble 
"ring-up" time, based on the time taken for a bubble to 
reach steady-state oscillation. Themy suggests that, owing to 
inertial effects, this ring-up time will be finite and that prior 
to reaching steady-state oscillation the acoustic scattering 

will be greatly reduced. A reduction in scattering attributed 
to ' 'ring-up'' time effects was first detected 1^ Akulichev'̂  in 
1985. However two more recent studies^have failed to 
measure any reduction in scattering. 

This letter outlines a theoretical scheme which enables 
the investigation of ring-i^ W e s of gas bubbles in fresh 
water. The model has also been used to determine the extinc-
tion cross-section area of bubble clouds of varying popula-
tion distributions in a 150-kHz sound Geld assuming no 
bubble-bubble interactions. This model has been used to 
help ascertain a possible reason why Suiter' and Pace ef 
did not detect any reduction in scattering. 

I. THEORETICAL MODELING OF THE RESPONSE OF 
A BUBBLE 

As discussed in the Introduction, a gas bubble in water, 
when insoniGed by a plane wave, will pulsate. The oscilla-
tion is. at least to a first approximation, that of a single de-
gree of freedom system, assuming small amplitude oscilla-
dons. In this case the restoring 6)rce is the elasticity of the 
gas and the mass is the effective inertia of the liquid compo-
nent of the oscillating bubble. Damping, and dius energy 
loss, is introduced into the system by three distinct 
mechanisms:^ energy radiated away &om the bubble as 
acoustic waves (radiation damping); energy lost through 
thermal ccaiduction between the gas and the surrounding liq-
uid (thermal damping); and work done against viscous forces 
at the bubble wall (viscous dampii%). 

Therefore a simple equation of motion, in the radius-
force &ame. for such a system driven at a single &equency 
would be 
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FIG, 1. Simulations of a lO-jim radius 
bubble in a 150-kHz (a) 1X lO' Pa, (b) 
500 Pa sound field, (i) Bubble wall 
displacement; (ii) the instantaneous 
power loss; (iii) energy loss over each 
cycle of the insonifying sound field; 
(iv) cumulative total energy loss; (v) 
extinction cross-sectional area of tlie 
bubble over each cycle of tlie insoni-
fying sound field. For comparison the 
extinction cross-section calculated us-
ing the Gilniore model is also plotted 
in pan (v) ( " O " Gilmore, " X " 
Keller Miksis). Tlie steady-state ex-
tinction cross-sectional area for a 
20-/um bubble driven at resonance ac-
cording to linear theory (Ref. 16) is 
6 . 6 8 X 1 0 - ' 

10 20 W 40 
Cycles o f i n s o n i ^ i n g Sound Field 

(V) 

10 20 30 40 50 
Cycles oFSnsonifylng Sound Field 

10 20 30 4 0 50 
CyelM of UwonWying Ooond M#M 

+ + c o s ( w O , kRF (1) 

where is the inertia of the system, 6 ^ is the total damp-
ing in the radius-force frame, A is the stifl̂ ness, A is the radius 
of the bubble, .Rg is the cquilibhum radius, f ^ the acoustic 
pressure amplitude, and w is the angular frequency of the 
driving sound Deld.Tliis is appropriate for bubble pulsa-
tions of small amplitude. 
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The rate of loss of energy (power loss) subtracted from 
the incident wave by the bubble is: 

P o w e r = 6 S ^ ^ ^ . 

Twice during each bubble oscillation, R • 0 . Consider two 
consecutive times, + i when this occurs. The energy 
lost from an incident plane wave througli viscous, thermal 
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FIG. 2. Simulalions of a 1-mm radius 
bubble in a liO-kHz (a) IX10^ Pa, (b) 
500 Pa sound field, (i) Bubble wall 
displacement [for (b) the y-axis has 
been changed to show so 

that the axis values can be more 
clearly shown]; (il) the instantaneous 
power loss; (iii) energy loss over each 
cycle of the insonifying sound field; 
(iv) cumulative total energy loss; (v) 
extinction cross-sectional area of tlie 
bubble over each cycle of tlie insoni-
fying sound field. The steady-state ex-
tinction cross-.sectional area for a 
1-mm bubble driven at resonance ac-
cording to lineal- theory (Ref 16) is 
1.03X10-^ 

Cycles of In sonifying Sound Field Cycles of Inson l^ lng Sound Field 

and scattering losses in the interval f to f=f .+ i is: 

and the average power loss in this inter\'al is: 

tn 

(3) 

(4) 

It is t k n a simple matter to calculate tlie extinction cross-

This is given simply by the ratio of tlK average 
power loss in this period to the intensity of the incident plane 
wave: 

/ -t„) 
(5) 

H should be noted that if, instead of the total energy loss 
sectional area, appropriate to the time interval to the incident beam, it was (lie power scattered by the 
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b) 

FIG. 3. Extinction cross-sectional area of a single bubble of radius up to 600 
/iin in a ISO-kHz sound tield of amplitude (a) 500 Pa, (b) 5000 Pa. For 
clarity in plotting, the discrete function „ shown in part (v) of Figs. 1 and 
2 has been interpolated to provide line plots for tlie cross-sections shown in 
this figure and subsequent ones. 

bubble wliich was of interest, then the above formulation can 
be simply adapted by employing only that component of tlie 
damping term 6 ^ wliich relates to radiated losses ( 6 ^ ) . 
Tliis would give the acoustic scattering cross-section. How-
ever, a more exact form can be obtained by rewriting the 
scattered power in Eq. (5) in terms of the emitted pressure 
field, which can be formulated'" in terms of the bubble wall 
motion: 

II. TIME-DEPENDENT EXTINCTION CROSS-SECTION 
OF A SINGLE BUBBLE 

To calculate the time-dependent extinction cross-
sectional area from Eq. (5), it is necessary to calculate the 
velocity of the bubble wall over time as well as the total 
damping in the radius-pressure frame. Although several op-
tions are available,'' in this paper was found using the 
nonlinear bubble wall velocity determined from the Keller 
and Miksis equation'^ a form of the equations of motion first 
introduced by Herring.'^ 

The damping term is obtained using Prosperetti's 
1977 analysis,''* Tliis is a linearized theory for the small 
amplitude forced pulsation of a bubble, describing the ther-
mal effects in terms of the effective poly tropic index and 
thermal damping constant. TMs analysis assumes a linear 
regime. Therefore the only expression of the bubble nonlin-
eaiity in tliis sj^stem comes from the Keller-Miksis equation 
(or equivalent). The resultant is therefore an approximation 
only. Thus care should be taken when considering tlie abso-
lute values of especially for higher somid pressure 
levels when bubble motion is highly nonlinear, as a signifi-
cant error in the calculation is lilcely. As discussed in Sec. I, 
computation of tlie scattering cross-section need not be lim-
ited by such linearizations, since small amplitude expres-
sions for viscous and thermal losses are not required. 

Figures 1 and 2 show four illustrative cases, and each 
figure is subdivided into five subsections [(i)-(v)] showing, 
against a common time axis, the following: (i) the normal-
ized bubble radius; (ii) the instantaneous power loss deter-
mined from Eq. (2); (iii) tlie energy loss per cycle of tlie 
insoniiy'ing sound field as detemiined from Eq. (3) (plotted 
discretely for each cycle); (iv) a cumulative plot of tlie en-
ergy loss; (v) the time-dependent extinction cross-section 
area for a single bubble, f l „ , as calculated by Eq. (5). Plot 
(iv) is particularly interesting. Were a bubble to immediately 
attain steady state, tliis plot would be a straiglit line of con-
stant positive gradient However, if the energy loss is less in 
the ring-up period, the plot wUl dip below the straight line 
which would be drawn if the eventual stead)'-state beliavior 
were extrapolated to time zero. 

Figure 1 shows the time-dependent extinction cross-
sectional area of a resonant bubble in a 150 kHz sound field 
of amplitude 10' Pa [Fig, 1(a)] and 500 Pa [Fig. 1(b)]. Figure 
2 shows tlie response of a 1-mm radius, off-resonant, bubble 
in the same sound fields. Furtlier discussion of these results 
is included in Sec. IV below. 

/ 

/ p R - 7 ^ 2 

r ' 
~dt 

(6) 

where r is the distance from the bubble, po is the fluid den-
sity, and c is the speed of sound. 

Bubbles are nonlinear oscillators and as the following 
analysis shows the ring-up time is dependent on the bubble 
equilibrium radius, the driving frequency, and the sound 
pressure level. 

111. TIME-DEPENDENT EXTINCTION CROSS-
SECTIONAL AREA OF A BUBBLE CLOUD 

The above analysis can be expanded to give a first-order 
estimation of the time-dependent extinction cross-section of 
a bubble cloud. It is assmned tliat the number density' is 
sufficiently small that bubble-bubble interactions can be ne-
glected, as is the reduction in intensity of tlie incident wave 
as it propagates through the cloud (although a second-order 
calculation could incliide tliis). Tliis article is restricted to a 
first-order calculation and thus will underestimate tlie extinc-
tion cross-section near to resonance," After calculating the 
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FIG. 4. Response of (a) an example oceimic bubble population (ba.sed on tlie measurements of Plielps and Leigliton, Ref. 15); and (b) a laboratory bubble 
population (based on the measurements of Pace et al, Ref 8) in a 500-Pa, 150-kHz sound field. Plot (i) shows the bubble population distribution, (ii) is the 
extinction cro.ss-secfional area oif a 1 cloud, resolved for each radius bubble assuming, no interactions, and (iii) is the extinction cross-sectional area of the 
1 m ' cloud (i.e., summed for all radii for each cycle of the sound field). 

extinction cross-scctional area of a single bubble of vaiying 
radii and compiling the results as in Fig. 3, the effective 
response of a bubble layer with a given population distribu-
tion can be calculated. Hie densitj' of the population is used 
as a scaling quantity' given the limitations discussed above. 

Therefore the response of a nonmiifomi bubble distribu-
tion can be investigated by multiplying the response [calcu-
lated as for Fig. 1(a) and (b)] by a population distribution. In 
addition the total response of the bubble cloud can be ascer-
tained by integrating to find the area under tlie extinction 
cross-section radius curve for each cycle of the insonifying 

sound field. Figures 4 and 5 show tlie response for a bubble 
population typical of an oceanic bubble cloud^*" and an arti-
ficially produced bubble cloud (taken from the population 
measurements of Pace et al}) in sound fields of 500 Pa and 
5000 Pa ampHtudc. Since the acoustic attenuation method 
used for measuring tlie laborator>' population proved unreli-
able for larger bubble sizes in the data of Pace et al} their 
population lias been extrapolated in Fig. 6, up to a radius of 
600 yu.ni, to investigate the effect that tliis could have on tlie 
time dependent extinction cross-sectional area (tliis is for il-
lustrative purposes only and in no way suggests tluit tlus 
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FIG. 5. Response of (a) an Mamplo oceanic bubble population (based on the measuremaits of Phel;% and Leigbton, Ref 13) and (b) a laboratory bubble 
population (based on the measurements of Pace et ai, Ref. 8) in a 5000-Pa, 150-kHz sound field, (i) The extinction cross-sectional area of a i m * cloud, 
resoved for each radius bubble assuming no interactions, (ii) The extinction cross-sectional area of the 1 m'̂  cloud (i.e., summed for all radii for each cycle 
of the sound Aeld). 

extrapolation reflects the true nature of the population). 

IV. DISCUSSION 

A simple comparison of tlie bubble wall displacements 
depicted in Figs. 1 and 2 provides an intuitive guide as to the 
effect of sound pressure level and the closeness to resonance 
on ring-up time. It can clearly be seen that the time taken to 
reach steady state is by far the longest for a resonant bubble 
in a low amplitude sound field. A gentle build-up to steady 
state is observed [Fig. 1(b)]. Conversely a resonant bubble in 
a high amplitude sound field exliibits a distinctly nonlinear 
response witli significant initial transient activity before 
quickly achieving a steady-state response [Fig. 1(a)]. Exami-
nation of the off-resonant bubble wall displacement plots 
shows a reduced dependence on sound pressure level and a 
rapid rise time with subsequent reduction and oscillation 
(Fig. 2). 

In the case of the resonant bubbles, the graplis of tlie 
extinction cross-sectional area shown in Fig. 1 tend to follow 
tlie mean bubble wall response exliibiting a brief, transient, 
ring-up at liigh sound pressure levels and a gradual build-up 

for low sound pressure levels. The latter indicates potential 
for reducing losses by using short pulses of ultrasound, an 
effect confirmed by noting that in Fig. 1(b) (iv), in the first 
30 cycles the curve dips below a straight line whichmight be 
extrapolated back from the steady state (as predicted in Sec. 
11). 

A superposition of natural and driving frequencies is 
evident in the radius plots [Fig. 2(i)]. The extinction cross-
sectional area for these off-resonant bubbles [Fig. 2(y)] is 
more complicated and can be more easily understood by ex-
amining the plots of the acoustic power loss determined from 
Eq. (2)[Fig.2(ii)]. 

Altliough tiansients are more evident at Uie lower driv-
ing pressures [Fig. 2(b) (ii)], the tendency in both plots is for 
the energy loss [Fig. 2(iii)] and extinction cross-section [Fig. 
2(v)] to oscillate around the steady-state value at twice the 
bubble natural frequency, although the cross-section takes 
much higher values for the first few cycles. Clearly the pres-
ence of such bubbles would not be conducive to enliancing 
acoustic transmission using pulsed fields. Figure 3 summa-
rizes the time-dependent cross-section of single bubbles. A 
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FIG. 6. Response of the laboratory bubble population (based (xi the measurements of Pace gf oA, Ref 8) extrapolated to include potential large bubbles in a 
150-kHz, (a) 500 Pa and (b) 5000 Pa sound 6eld. Plot (i) is Ihe extinction cross-sectional area of a 1 m^ cloud, resoved for each radius buW)Ie assuming no 
interactions, and (ii) is the extinction cross-sectional area of a I cloud, summed for all radii for each cvcle of the sound Meld. 

' 'geometricar' contribution is seen from the large bubbles, 
which oscillate for a few tens of cycles following the onset 
of insonation around the eventual steady-state value. Smaller 
bubbles contribute a lesser amount except around tlie reso-
nance condition. Here there is a peak, with a ring-up time 

c 
o 

i 
U 

c3uO 

Cycles 

x i e 

Acoustic Pressure 
Amplitude (Pa) 

FIG. 7. Extinction cross-sectional area of a single bubble of radius 20 /im in 
a 150-kHz sound field of varying sound pressure level between 500 and 

which tends to decrease with increasing driving amplitude. 
Figure 7 shows how the extinction cross-section of a 20-/tm 
radius bubble changes with increasing sound pressure levels. 
The bubble response quickly deviates from an exponentiiil 
ring-up with a corresponding decrease in ring-up time. Urns 
for the simulated response of a bubble cloud, winch contain 
large numbers of small bubbles, to a 150-kHz sound field the 
response of tlie resonant bubble is dominant with a well de-
fined ring-up time for low sound pressure levels (Fig. 4). It is 
evident tliat an increase in tlie sound pressure level can sig-
nificantly reduce the ring-up time. The results shown in Fig. 
5 demonstrate this effect. In the case of the extrapolated 
bubble populations shown in Fig. 6, despite the nranbers of 
large bubbles being relatively few, their presence has a sig-
nificant effect on the response of the cloud as a whole, par-
ticularly during the first few cycles of the insonifying sound 
field. In this epocL the early motion of these large bubbles 
(characterized above as being a fall in the first few cycles 
following oscillation toward steady state) appears to domi-
nate. Thus die presence of large bubbles and/or high sound 
pressure levels can be counter-indicative for the enlianced 
efficiency of penetration of sonar tlirough bubble clouds. 
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V. CONCLUSIONS 

A thisoretical study into the time dependence of the re-
sponse of air bubbles in &esh water to a continuous wave of 
150-kHz sound field has shown that the ring-iq) time of a 
bubble is aSected by its closeness to resonant oscillation and 
the amplitude of the driving sound Geld. Expansion of this 
themy to investigate the response of a low densi^ bubble 
cloud of oceanic and laboratory origins has shown that a 
significaht ring-i^ time should be detectable if the predomi-
nant j a i l e r bubbles are insoniHed at their resonant &e-
quehcy. Furthermore, higher sound pressure levels can ob-
scure the ring-up time of the resonant bubbles, and the 
presence of large off-resonant bubbles even in relatively 
small quantities can enhance this effect significantly. 
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[Received 27 My 1998; revised 23 January 2002; accepted 26 June 2002) 
The measurement of an acoustic emission, or scatter, from a bubble is not difBcult. However, an 
accurate interpretation of that signal in terms of the bubble dynamics may require careful 
consideration The study presented here is at fiist sight relatively simple: comparison of the 
predicted andmeasuredquality factors of iigected bubbles/While themeasureineMis ncrmally done 
by monitoring the decay of passive emissions &om a bubble, Ihis technique becomes difBcult with 
smaller bubbles. Therefore an active techhique is introduced, which removes all the 
frequency-dependent effects on the measurement (such as transducer reisponse) bar one, That, 
critically, is the effect of the change in the bubble resonance (&equency and damping) which results 
&am die loading on the bubble due to the reverberant field. The vast majority of theorelical 
treatments of bubble acoustics assume &ee field conditions, yet the environmental conditions rare]̂  
if ever match these. Therefore measurements of bubble damping are compared both with the 
established &ee field theory, and with a new theory relevant to the prevailing reverberant conditions 
(whether caused by tank surfaces, monochromatic neighboring bubbles, or both). G 2002 
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I. INTRODUCTION 

It is usually supposed that one of Ihe simplest experi-
ments in bubble acoustics is Ae estimation of the equilibrium 
radius of the bubble (7() and its quality factor ( g ) &om Ihe 
e)g)onentially decaying sinusoidal pressure trace obtained 
when an air bubble is injected into water. The use of formu-
lations resembling those of Mirmaert' or Devin^ is almost 
taken for granted in many tests. For example, to the authors' 
knowledge, all sparging studies on the use of passive acous-
tic emissions to characterize the bubble population cite Minr 
naert's equation at the outset̂ "^ (with the exception of those 
which eschew equation^'""). Sparging experiments (and in-
deed almost all such lank tests involving the low kilohertz 
regime) include reverberation, yet like the vast m^ori^ of 
papers on bubble acoustics the assumption of &ee-field con-
ditions, implicit in the underlying formulations, is not ques-
tioned. This is true throughout the topic, extending to the 
a^lication of nonlinear equations of motion describir% high 
amplitude bubble oscillation. 

For the particular and common task of inferring bubble 
size &om its resonance or natural frequency, the authors '̂ 
previously showed that the presence of a reverberant field 
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could lead to significant errors if free-field formulations, 
such as that of Mirmaert, were t^ed. In the present paper, the 
rather more difHcult problem of calculating the effect of re-
verberation on bubble damping is attempted The importance 
of this work can be judged by ccaisidering the following: 
There are few end-point equations in bubble acoustics that 
do not incorporate the resonance frequency and damping, 
and there are few measurements taken in the strictly free-
field conditions tqxin which the common methods of calcu-
lating the resonance characteristics are based. Reverberation 
caii arise from the &ee surface, or 6om neighboring bubbles, 
and even 6om "anechoically lined" container walls since 
these have limitations with respect to absorption and fre-
quency range. 

The simplest way of describing bubble dampir% is 
through U3& of a dimensionless damping coeSicient,^''^"^' 

(otherwise known as a loss factor). This parameter equals 
the sum of three dimensionless damping coefficients, corre-
sponding to viscous losses thermal losses (^u,), and 
the acoustic radiation &om the bubble itself (̂ rad)- For linear 
systems at resonance. represents the reciprocal of the 
quality f^tor, g. Despite the fact that the damping coefR-
cient is very widely used, it is not always appreciated that the 
standard formulations '̂̂ '̂ ^ are valid for monochromatic 
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bubble pulsations only (which means the steady state linear 
response to a single-Srequency excitation) in the 6̂ ee Geld. 
Even the more sophisticated studieŝ ''" '̂ available, which 
would for example allow the calculation of damping dming 
the interval prior to steady state, still maintain an assumpticm 
of free-8eld conditions. 

Section n describes the general theoiy. This is followed 
by an image interpretation. The technique for measuring in 
isolation the eSect of reverberation on bubble damping is 
then described. 

II. METHOD 

Section n A gives the general theory for the effect of 
reverberation on the fluid loading impedance on a small 
bubble in a teat tank of rectangular cross section. Section 
n B describes the implications of this theoiy with respect to 
the egect of reverberation on the bubble resonance frequency 
aixi radiation damping. Section H C describes an im^e tech-
nique for calculating the effect which the tank surfaces and 
any neighboring bubbles have cm the resonance of each 
bubble in a population in monochromatic conditions. Section 
HD describes a new experimental method for taking mea-
surements in a reverberant tank, which eliminates all the ef-
fects of reverberation except for the loading on the bubble 
wall, making it possible to study this effect in isolation. 

A. Theory for the radiation loading on a small bubble 
in a tank 

The impedance presented to a qaherically pulsating 
bubble, radius is estimated from the average pressure on a 
sphere of radius .R that surrounds a point monppole having 
the same volume velocity as the bubble. Consider a liquid-
AUed rectangular tank that has rigid walls except for the ig)-
per surface, which is assumed to be pressure-release. The 
conplex eigenvalues of the tank are denoted by These 
are the forced-mode eigenvalues, and depend in principle on 
the forcing frequency. However since this paper is concerned 
only with modes which exhibit low damping and resonant 
behavior, the exact frequency dependence of is not criti-
cal provided its value can be modeled close to resonance. Let 

= be the acoustic wave number corresponding to 
acoustic ]jiase speed c and angular frequency w, and be 
the loss factor for mode (deGned as the ratio of the imagi-
nary and real parts of at resonance). Then (assuming an 
implicit time factor of 

real; Ar= 1,2,3, . . . ) . (1) 

The analysis that follows allows c/rj/ to be interpreted as the 
mode resonance frequency, provided The first stage 
of the analysis requires derivation of the acoustic impedance 
presented to a pulsating spherical surface in this environment 
[Eq. (6)]. This equation is derived in greater detail by Morse 
and Ingard^^ [their Eq. (9.4.6)], but an outline derivation is 
given here to assist understanding of the temis in Eq. (6). 

The pressure at point % in the tank, due to a point vol-
ume velocity source at point %,,, is given^^ by 

P ( ? ) 
^ ^ - 1 A j X A T j y - ^ ) 

Here is the Murce Volume velpci^; die mode shape Amc-
tions, are evaluated at the positions of the receiver 
( i ) and ^e source (%o); is a normalization constant 
deAned by 

1 (3) 

where is the volume of the tank. The average pressure on 
a small spherical surface of radius centered on the source, 
cah be evaluated explicitly in the low-&eqiKncy limit (tgT^ 
-4^0) usirig Ihe b^qaression for p(%) ingq. (2). The result iŝ ^ 

( p ( R ) ) ' 
4 ' n 'A 

U 
4ir 

(4) 

provided that the mode with 0 (for a hard-walled cavity) 
is not included. 

Equation (4) is the &ee-fleld result, as expected. It fol-
lows that if 1 (but has a Shite value), and if the tank is 
sufRciently large for Eq. (4) to be valid (i.e., ^^^>4-0-.%), 
then an improved approximation is 

( P ( ^ ) ) ' 
4ttR 

[ ; + ( p ( % ) U - 0 7 ( A ) ) | 

4 i r R 

-ki / 

(5) 

where vector :xo is (he position of the center of the sphere, 
and the diSerence between at the center and on the 
surface has bem neglected.^'' The Huid loading impedance on 
a small bubble in a tank can now be estimated by dividing 
both sides of Eq. (5) l y E/ and simphfyirg: 

O'(A)) 

V 

1 

ATTR 

(6) 

This expression is the Morse and Ingard result [Eq. (9.4.6)] 
for the acoustic impedance presented to a pulsating q)herical 
surface of radius A, which represents a single bubble in the 
tank. 

The first term in the brackets on the right-hand ade of 
Eq. (6) is purely reactive; it dominates in the limit 
However, it simply represents the iree-Aeld inertial fluid 
loading on the bubble. What is more interesting is the devia-
tion from the &ee-fle]d impedance, as given by the modal 
summation terms. In particular, the bubble radiation doping 
comes entirely &om the modal summation terms (note that 
no local viscous or thermal damping has been included at 
this stage). At low firequencies, the resistance Zj=Re(Zi) 
consists of a sequence of resonant modal peaks. At sufR-
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ciently high &equencies ihe overlap of many modal peaks 
will produce a ^oqth curve, corresponding to 

4'rr 
(7) 

which is ^uivalent to the &ee-iield radiation resistance. This 
last result is derived in the analysis that follows [see Eq. 
(30)]. 

The modal loss factors and resonance &equencies can be 
found experimentally &om transmission measurements in the 
tank. Note &om Eq. (2) diat, in the neighborhood of a reso-
nance, the pressure at i due to a point source at will vary 
as 

p ( x ) c 
1 1 1 

(8) 

where the denominator Z) describes the resonance. 
At the modal peak, . Therefore at the half-power 

points on the resonance curve, 

= (9) 

I.e., 

(10) 

It follows that Ihe quality factor for the Mh mode of the 
tank is equal to . Once this is known, the real and imagi-
nary parts of Zg can be found explicitly from Eq. (6). Pro-
vided the lo6s factors are small, and omitting terms in 
(except where they occur in |D|^, in the following) the re-
sistance can be approximated by 

z : 

where 

pc 
: Z 

D P 

(11) 

(12) 

Here |DP = (l-i^)^4-(%yjy)^ and is the 
ratio of the driving frequency to the resonance frequency of 
mode j\r. In a similar way the reactance can be approximated 
bv 

Z { = I m ( Z J ^ 
4'77-7; 

where 

^ X o ) ( l - v ^ ) c l r 

I D 

(13) 

(14) 

Note that the modal summation terms in (he resistance, 
Eq. (12), exhibit resonance, while the terms in the reac-
tance vanish at resonance [i.e., when yjy= 1; Eq. (14)]. 

Formodes of very high order, i.e., or 0̂, the 
summation terms of Eq. (11) behave like 

(15) 

and the summation terms 7̂ ,̂  of Eq. (13) behave like 
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There should therefore be no problem over convergeice. 
We can check this by using the asymptotic relations 

= M ( | / j y ) T j ^ (1%) 

The product of the modal density «(:',/) with 6"̂^ or 7,̂  re-
mains finite, in the limit yy-+0. 

Note that the sums in Eqs. (11) aind (13) extend Grom 
1 to over integer M They may be estimated be-

yond some lower limit jVg by replacing the sum over 7/with 
an integral over y that involves the modal density n(y): 

, S ' ( : / ) M ( y ) ( / i ' , (18) 

and similarly for . The lower limit y,, is given by 

^0 — ^ 0 ^ 0 » (19) 

where Z-g is the length that characterizes the tank dimensions. 
Thus i/g is a dimensionless &equehcy above which the 
modes of the tank are sufRciently close-q)aced to be re-
garded as a continuum for the purposes of Eqp. (11) and (13). 
The upper limits of the integrals are zero,̂  caregponding to 

Note that the modal density M(i/) follows from the 
asymptotic mode count Ar(A:): 

6'7r^ 
(20) 

where K is the tank volume. Thus 

' V ( W = 

and 

afi/ 

6-77^ 

' V 
(21) 

: M ( y ) , (22) 

by definition. In Eq. (22) f is regarded as a continuous v i -
able. Replacement of the sunmiation step 1) in Eqs. 
(11) and (13) by an integration increment, 
leads to Eq. (18). 

The final expression for , based on summation of Eqs. 
(11) and (13) up to mode .Z'/o, followed by the integral ap-
proximation of Eq. (14) for is as follows. The real 
component of is 

z r 
p c 

2 -

2-0 -^^0 ( l - y ^ ) ^ + ) ^ r ^ 

(23) 

and the imaginary component is 
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z 
( o p 

4'77:R 

/ 

T i ; ! ^ 

d - ' ^ ) 

2 7 7 ^ / 0 ( 1 — 
- j y 

z f 
pcItQ 

-^res f) % e s : 

OJp 

4 ^ 

(27) 

(28) 

Note that the integral contribution in Eq. (24) tends to 
cancel either side of yf^l, which is why Eq. (28) gives just 
the free Held value. In Eq. (27), represents the value of 
the integrand in Eq. (23) at the resonant peak, ie.. 

1 
( y = l ) . 

^rcs 

Thus 

Z^(high frequency): 
4^77' 

(29) 

(30) 

which is the free Geld value (as expected). 

B. Practical implications 

The practical implications of the radiation loading result 
of Eqs. (11) and (13) are interesting, in terms of estimating 
the bubble radius and doping from the measured acoustic 
emi^ions of a single bubble. We define Zg, as the acoustic 
impedance of the bubble,^ that is. the ratio of the pressure 
change to the inwards volume velocity at the bubble 
wall. If Zg is the external acoustic impedance due to Huid 
loading on the bubble, then resonance occurs when 

Z ^ + Z . = 0 . (31) 

(24) 

To obtain Eqs. (23) and (24), Eq. (22) for «(:/) has been 
substituted into Eq. (18). The expressions for 6'(y) and !r( y), 
Eqs. (12) and (14), have been approxiiilated by replacing 

with its average value of unity. 
Equations (23) and (24) are the main results of the the-

oretical analysis of this section. Two limiting cases can use-
fully be distinguished, corresponding to low and high &e-
quencies. In the low &equency limil, defined by 

ôZ,o = yo<gl, (25) 

the contribution of the integral terms is small compared with 
that of the summation terms. Note that the integrals in this 
case do not pass through any resonances. 

In the high frequency limit, defined by 

= (26) 

the co#ibution of the integral terms is dominant. Provided 
the overlap of individual-mode responses is sufGcient to jus-
t ly the continuous-distribution model, particularly in the re-
gion close to fescmance (y^^l) where the integrands are 
largest, we can estimate the resistance and reactance as fol-
lows: 

Equation (31) can be used to determine the relationship be-
tween the pulsation resonance G-equency and the equilibrium 
bubble radius. For example, since the apparent bulk moduli^ 
of the gas within the bubble (of volume when subject to 
a pressure change A;; is B = - K^A;)/Af(̂ 2,, then assuming 
single-&equency simple harmonic motion at circular &e-
quency w, the acoustic impedance of the bubble at low fre-
quencies (^oR < 1) is 

A p A ; , B 
(32) 

If the gas within the spherical bubble is assumed to be-
have polytropically (i.e., jo^''=constant), then B —/cp,,, 
where pg is the ambient static pressure on the bubble and k 
is the polytropic index. The bubble at resonance (w=o)o) is 
described by Eq. (31) (where in the reverberant conditions cf 
the tank, Z^ is de^ribed by Ẑ  from Sec. II A). If damping is 
small and hence the resistive terms are neglected, then Zg 
and Z^ are almost entirely reactive, w,, is real, and Eq. (13) 
gives 

i I 

4-0:% 

1 
(to;;<^i), (33) 

where is defined in Eq. (14). The summation term in Eq. 
(33) represents a reverberant-field correction to the &ee-6eld 
radiation reactance. Neglecting the correction leads to the 
free-Geld expression for the resonance frequency of the 
bubble:^ 

IAttR 1 / 3K;?o 

^ 0 / ' (34) 

An improved approximation is found by evaluating the 
reverberant correction term at the Minnaert frequency Woy. 
The corrected resonance frequency for bubble pul^tion in a 
tank follows &om Eq. (34), with the substitution 

1 

R' 

1 ^ 
+ - r -

R 
" 0 / 

(35) 

Here 7 ^ denotes 7;̂ ^ of Eq. (14) evaluated at WQ = woy:. The 
presence of the summation in Eq. (35) can be seen as a 
correction which modifies the "free-6eld" resonance 6-e-
quency for bubble pulsation. A similar correction factor w ^ 
used by Lei^ton o l " to modi^ &ee-field theory, and thus 
to estimate the bubble size from the resonance frequency 
measured in reverberant conditions in a pipe. 

However there is a critical difference when calculating 
how the presence of reverberation changes the bubble damp-
ing. As can be seen from Eq. (11) there is no equivalent 
free-field term: the radiation damping result is entirely made 
up of the summation terms, and hence the modal Structure of 
the field has to be veiy well characterized to evaluate this. 
This can be attempted by measuring the character of the 
sound field (removing, of course, transducer response, etc., 
see Sec. II C) and identi^ing the component modes through 
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use of Eq. (5). The data can then be converted into effective 
measurements of the radiation resistance. An alternative but 
equivalent approach to estimating the reverberation effect is 
described in Sec. 11C. Here an image model is used to cal-
culate the effect of tank surfaces on the radiation impedance 
of a single oscillating bubble. The technique can also be used 
to characterize the resonance of each bubble in a 
driven to steac^ state by :^me external source: die egect oh 
e ^ bubble of both the tank's surfaces and of the neighbor-
ing bubbles can be incorporated. 

C. Method of images 

The eSect of neighboring reflective boundaries on the 
radiation impedance of a bubble can be modeled using the 
method of images. For the speciAc case of the tank of rect-
angular cross-section discussed in Sec. II A, the location of 
the images is calculated &(xn the position of the bubble rela-
tive to each wall, the result being an infinite number of im-
ages arranged in a grid-like pattern. If the complex pressure 
reflection coefRcient of the various tank walls were of unit 
magnitude for the frequencies emitted by the bubble, then a 
continuously emitting bubble would of course generate re-
verberant acoustic intensities at the bubble surface which 
would grow with time. This produces a coherent radiation 
version of Olbers' paradox,^ by which Halley, Cheseaux, 
and Olbers realized that, if the number densi^ of stars were 
constant and the absorption of light in interstellar space were 
negligible, then unless the universe were finite, the night sky 
would generate at the observer an intensity equal to the av-
erage surface intensity of the stars. 

The pressure field radiated by the bubble ̂  consists of a 
direct field and a reverberant one p ̂ : 

(36) 

where in the condition 1 the reverberant field is Virtu-
ally constant Over the bubble surface and very similar to that 
produced at the bubble center location by a point source 
having the same volume velocity as the bubble. The total 
acoustic impedance presented to the bubble, Zg, is 

Z , = 

where is the direct field on the bubble surface: 

(37) 

(38) 

(suppressing the harmonic time dependence Aroughout). 
Consider two bubbles emitting monochromatic monopole 
(W(-^ 1) radiation, the Gist having volume veloci^ and 
the seccaid having source strength Ft/. The pressure at 
bubble 1 as a result of the radiation G-om bubble 2 is 

(39) 

where the bubble separation r introduces both a phase factor 
and an attenuation. The impedance of Eq. (38) resulting 6-om 
a population of monochromatic bubbles is therefore 

AITR Attc 4'n' a =•2 

y p w p w - p w 

4 W ( 4i!r(r 4 ' 7 r p ; - i y 
- ( s i n ( t r ; , — 

+ ; c o s ( ^ r ^ - i ^ J ) . ( 4 0 ) 

where the subscript m = 2 ,3 , . . : .MmK indicates all bubbles 
other than bubble 1. These entities may be real bubbles 
driven linearly atsteac^ st^te by an external monochromatic 
source. Equation (40) might also describe die impedance of a 
single bubble in a tank (where the bubbles fM=2,3,... .00 
are images); or indeed be used to calculate the resonance 
characteristics of each bubble in a monochromatic popula-
tion witlm a tank (in which case the population ccHiprises 
both real and image bubbles). To compare with the calcula-
tion of Sec. n A and n B, a single bubble in a rectangular 
tank would have images characterized by a range term 
(equal to twice the shortest distance between the real bubble 
and the wall); and a complex amplitude term 

I f m e which would depend on Ae complex re-
ftection coeGRcient of the boundary in question. Then if the 
small-damping polytrc^ic conditions of Sec. n B apply, the 
resonance condition occurs when 

J K p o p w * 

4 i r R 4'77-C 

pO) 

4Tr 
Y 

I F . 
- ( s i n ( A r r m - ' » m 

+ y c o s ( & ^ r m - ' ^ m ) ) ( 4 1 ) 

Equating the imaginary parts gives the resonance Grequency 

( ] / R ) V 3 A : ; , o / p 

V I - Z ) r m I C.OS( ) 

which reduces to the Minnaert equation [Eq. (34)] when, in 
the Giee Geld, the summatian term is zero. 

The effect of neighboring bubbles and boundaries on 
radiation damping can also be calculated by this method. 
Assume that the radiation damping in Gree space is to be 
characterized by the dimensionless damping coefRcient, 

which is proportional to the real part of the total 
acoustic impedance presented to the bubble in free space, 
p(w /̂4'n-c = pa)t/4'n-. The ratio of the damping in reverberant 
conditicms, to that in free space, equals the ratio of 
the real parts of the respective total acoustic impedances pre-
sented to the bubble. Taking again the case of Sec. 11A (a 
single bubble emitting into a rectangular tank) the ratio of 
the real component of Eq. (41) to the Gree-space value is 

^rad^revcfb 
1 2 

| f m | s m ( A : r ^ - ' » m ) 
(43) 

For solution of the tank case described in Sec. 11A and 
Eqs. (42) and (43), the spatial distributicm of Ae images is 
calculated geometrically; and the &equency-dependent com-
plex reGection coefficient associated with each image is sim-
ply calculated G-om the number of reGections G-om the tank 
boundaries. The predicted quality factor for a bubble in re-
verberant conditions is then 
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Q ^-^('^fadreverb"^ ^\ds) 5 (44) 

where 6̂ ,, and are found fmm the usual monochromatic 
formulatiais,^ and where is calculated by substitut-
ing into Eq. (43) the monochromatic value of again 
calculated from literature? 

With reference to the cotiiments at the s t ^ of this sec-
tion. it ^ould be noted that Eqs. (42) and (43) assume that 
the emission &om thê  images is steady. Tf fo" example the 
source bubble em its an exponentially decaying sinusoid typi-
cal of iryection, then the ncmsteac^ nature of the returns in-
troduces an error of order 

D. Experimental measurements 

The method used in thî  paper for measuring the bubble 
resonance and damping relies i ^ n estimation of the impulse 
respcmse of bubbles injected one al a time into a tank mea-
suring 0.6 mxO:2 mXO.23 m deep internally, and having 
glass walls of 6 mm thicbiess. For the "passive" technique, 
this consisted of simply measu^g (he hydrc^one signal 
detect^ fpllpwing injectim of the bubble through a needle, 
for the "active" technique, the hydrophone signal of interest 
is not that emitted by the bubble on iiyection. Rather, it is the 
signal scattered by the bubble some time later, when it is 
driven by band Altered white noise (1-25 kHz, generated 
using a Bruel and Kjaer Type 2032 dual channel signal ana-
lyzer). The kibbles examined in this paper have natural fre-
quencies in the raiige 4-11 kHz. The bubble rises after in-
jection, and is driven into oscillation by the pseudorandom 
driving field. Its buoyant passage through a 1 MHz beam 
triggers the data acquisition &om the hydrc^hone. It is im-
portant to know the location of the bubble and hydrophcme 
for comparisoa with theory: The active technique is particu-
larly useful in measuring the rescnance characteristics of the 
smaller bubbles, whose natural emissions after ir^ection are 
of insufficient amplitude above the noise to obtain suGicient 
cycles for a precise measurement of their decay. The follow-
ing describes how the scattered signal is estimated when the 
active technique is used 

The received signal at the measurement hydrophone, 
y(f), in the active configuration, can be considered as the 
superposition of two components, i.e., 

} ' ( / ) = y d ( 0 + y ^ ( ^ ) . ( 4 5 ) 

where is the signal due to the direct field (ie., the 
signal that is observed in the absence of a bubble), and}'j(^) 
is the signal arising from the acoustic Geld generated by scatr 
tering &om the bubble. In practice the magnitude of the di-
rect field component is sufficient to corrupt measurements of 
quantities, such as quality factors, based on the raw data 
y(^). If no bubble is present, tl^n evidently the measured 
signal is solely due to the direct Geld component, ^^(0-

Figure 1(a) illustrates a typical example of the spectrum 
of a signal received at a hydrophone when an active configu-
ration is employed with a Wbble being present. The spec-
trum of the electronic signal used to drive the projector (band 
limited Gaussian noise) is also shown. The resulting hydro-
phone signal contains contributicms &om the direct Held and 
the scattered signal. The "N"-shaped feature at approxi-

mately 3 kHz is a result of bubble scattering.̂ ' The problems 
of exploiting this data are evident The comparatively low 
level of the scattered signal relative to the direct Held render 
the feature difficult to discern even in this relatively small 
frequency range (its peak is of a similar magnitude to the 
nonbubble feature at around 6 kHz)̂  and estimation of the 
bubble quality factor from such a feature is prone to error 
(see the following). Our methodology aims to reduce the 
direct Held contribution and allow accurate measurements to 
be made. 

To estimate the scattered Held we first make measure^ 
ments in the of a bubble. A known band limited 
white noise signal, x(f) , is used as an input to the projector 
and the resulting hydrophone signal is measured Using stan-
dard linear systems theory^^ we can construct an estimate of 
the system impulse response, A(f(0, Hom these two measure-
ments. Assuming that the modeling is siKcessful then 

y / f ) = A ( r ) * j c ( r ) , ( 4 a 

where an asterisk is used to denote linear convolutiorL The 
accuracy of the model can be assessed as a function of fre-
quency by computing and examining ± e coherence 
function.^' 

A bubble is t]%n introduced to the system. Once again a 
band limited white noise signal, Ji:(0. is used to drive the 
projector From the driving signal an estimate of the direct 
Held component of the hydrophone signal is constructed by 
convolving it with the estimated impulse re^nse, 
leading to an estimate of the scattered signal: 

: x X ^ ) = ) ' ( 0 - A ( f ) * % ( ^ ) . (47) 

Here is an estimate of the cmtribudon of the bubble to 
the acoustic Held. The results of applying this procedure to 
the data in Fig. 1(a) are shown in Fig. 1(b). The qiectrum of 
the signal after the effect of the direct Geld has been sub-
tracted shows a distinct peak close to 3 kHz, for which the 
ratio of center Hequency to the bandwidth gives the bubble 
quality factor Figure 1(b) illustrates the error that would 
have been introduced if one had erroneously assumed that g 
could be obtained from the equivalent parameters associated 
with the 3 kHz peak in Fig. 1 (a). 

This model takes account of any shaping of the excita-
tion spectrum that may occur as a result of a modal Held 
within the tank. This having been removed, what remains is 
the effect of reverberant loading on the bubble resonance and 
damping. 

III. RESULTS 

Figure 2 shows the quality factor of the bubble as a 
function of its natural (for the "passive" measurements: 
# , # ) or resonance (for the "active" measurements: 0 , 0 , X ) 
frequency. Results from tap, distilled, and newly acquired 
seawater are shown. The soHd curve indicates the quality 
factor predicted by Devin's theory, which relates to Gee Held 
conditions. The dashed line indicates the result predicted by 
Eq. (43), with the dotted lines on either side indicating the 
maximum and minimum values found by recalculating the 
prediction repeatedly, allowing the bubble position and the 
wall reGection coefGcient to vary within the limits of uncer-
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FIG. I. (a) Spectra of driving signal 
and hydrophone signal. Tlie driving 
signal in this example case consists of 
Gaussian noise, band limited to a fre-
quency range of approximately 1 - 7 
kHz (though 1 - 2 5 kHz was required 
for the data of Fig. 2). (b) Spectra of 
the hydrophone signal before and aAer 
the effect of the direct field has been 
removed. 
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Frequency (Hz) 
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taint)' of each (the latter having a much smaller contribution 
that tlie former, the prediction being fairly robust within the 
allowed variation of reflection coefficient). For clarity, error 
bars are not shown (±75 Hz; ±1 in g f o r / < 6 kHz; ±2 in 
g for 6 < / < 9 kHz; ±4 in g lor y > 9 kHz). The lack of 
passive data above 6 kHz rejects the signal-to-noisc prob-
lem, described in Sec. 11C, which makes the technique dif-
ficult for the smaller bubbles. The active technique is not 
limited in this way. 

The discrepancy between observation and the prediction 
of Devin is less than tlie error associated with the observation 
lor 26 of the 96 data points. Tliere being negligible uncer-
tainty on Uiis scale in the uncertainty associated with tlie 

Devin curve, the conclusion is that Devin's theoiy is inap-
propriate for the reverberant conditions found in this typical 
test tank, in the frequency range most often studied in bubble 
acoustics. In contrast 76 of the 96 bubbles lie within one 
error of the theoiy presented in this paper. This comparison 
needs interpreting with some caution, as discussed in the 
foUowing. 

IV. DISCUSSION 

Although tlie disagreement between measurement and 
Devin's theoiy indicates the need for a tlBOi)' applicable to 
reverberant conditions, and while the authors have faith in 
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FIG. 2. Graph of tlie quality factor of the bubble as a function of its natural (for the "passive" measurements, H, # ) or resonance (for the "act ive" 
measurements, O O X) frequency. Results froni tap ( • , • ) , distilled ( • , O) and newly-acquired seawater (X) are shown. For clarity, error bars are not shown 
( ± 7 5 Hz; ± 1 in g for / < 6 kHz; ± 2 in Q for 6 < / < 9 kHz; ± 4 in O for / > 9 kHz). 'ITie curves indicate predictions of tlie theory of Devin (—) and of this 
paper (—), either side of which is a dotted line indicating the limits of uncertainty in the latter. 

die theories of Sec. II, implementation of that theory to cal-
culate the modification to bubble resonance imparted by re-
verberant loading is not easy. Whereas calculation of the ef-
fect on resonance frequency" is possible by using Eq. (37), 
the efFect on the damping is veiy sensitive to details of the 
reverberation. The resulting uncertainty allows a range of 
predicted values for O at each frequency in Fig. 2, while the 
standard free-Geld theory predicts a single value. The sensi-
tivity of the prediction to the reverberation parameters is of 
course greatest at the peaks and troughs in the plots, and 
hence the extreme predictions of g > 4 0 should be inter-
preled with caution. For the most part the reverberant theor}' 
suggests for this tank there will be deviations from free-field 
predictions of usually up to 0—60%, and tlicse are ob-
served. In addition the predicted sign of the deviation (which 
can be positive or negative depending on the frequency) is 
borne out in the data. 

While the magnitude of the discrepancy is difficult to 
calculate precisely, the form for the quali^ factor of bubbles 
in this reverberant environment that is predicted by the 
method of images technique described in Sec. IIC, agrees 
with the trends expected from the general theory of Sec. II A. 
Equation (7) predicts that at sufGciently high frequencies, the 
damping will tend to a smooth function following the "free-
field" solution. Tliis is a result of modal overlap. The predic-
tion in Fig. 2 bears this out, althougli in tlie range considered 

the influence of distinct modes is evident. At the lower fre-
quencies the calculation becomes difficult because of conver-
gence problems [note that |Z)|^=:(l-f^)^4-(i;^y^)^ in 
Eqs. (11) and (12) becomes very large when then 

Paradoxically this means that the effect of rsver-
beration can be easier to calculate in small tanks than in 
larger ones. This is because the bubbles most often consid-
ered in test tanks have natural frequencies of the low kilo-
hertz order (see the following). Therefore unless the tank is 
sufficiently vast and sufficiently damped that this range is 
higher than the Schroeder frequency, then to ignore rever-
beration the bubble natural frequency must be signiGcantly 
less than that of the first tank mode'^ (depending on the 
losses, which are generally lowest for these low frequencies). 
In tanks of several meters on a side this in practice would 
likely occur only for bubbles resonant at O (10 Hz). Such 
biAbles would generally be much larger than those typically 
studied in a test lank It is well-known that if t k intention is 
to iriject single bubbles into a tank for controlled tests, tliere 
is a range of bubble size outside of which this process be-
comes difBcult Bubbles of centimeter-size break up, and 
bubbles of less rkin around 200 /on tend to coalesce into 
larger bubbles at tlie nozzle.^ Even exotic methods (e.g., 
manipulation of the surface tension or pressure head, vibra-
tion of the needle, etc.) can only expand this range to a 
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limited degree. Of comse smaller bubbles can be produced 
by sparging, wave breaking,^ etc., but these bubbles almost 
always comprise a subset of a population which includes 
larger bubbles giving significant natural emissions A roughly 
1-10 kHz. 

As this paper has shown, this may well be a problematic 
range: the frequencies May byinsufRcimtly higti to generate, 
via model overly, the effective^ "Gree-field" solutioh of 
Eq. (7); yet th^ m ^ be so low that anechoic linings are 
insufRcient to remove reveibea-ation. Fo" example, even with 
the fi-ee surface replaced by lining, the "anechoically" lined 
tank of and Kjeli%aard had a pressure amphtude re-
flection coefRcient of '-O.S at 10 kHz, the lowest frequency 
they measured The actual performance of linings at the &e-
quencies of interest is not always reported in bubble tests. 

As an illustration of the problem, a preliminary attempt 
was made to use the results of Fig. 2 to confirm or counter 
the suggestim '̂̂ '̂  that bubble doping may deperid on sa-
linity. That suggestion followed &om a study of die injection 
of single bubbles into a tank having "acoustically traHq)ar-
ent" walls. This smaller tank was suspended in a larger 2.5 
X3.6X3.6 m^ wata: tank, where "the bottom and walh of 
the [larger] tank were lined with 82-cm high redwood 
wedges with 30 cmX30 cm bases; these wedges have a large 
acoustic absorption."^ Being cognizant that such statements 
depend on the frequency of interest, an investigatiai^^ was 
made to determine which modes could be excited id the larg-
est tank at &eqiienpies of less than 1 kHz, and identified ones 
at around 540 and 950 Hz. 

It is well known that dissolved salt can aEect pcyuZa-
Aow of bubbles, those formed in salt water tend to be more 
numerous, particularly regarding the smallest bubble^ and 
less prone to coalesce than bubbles in 6-esh w a t e r W h e n 
comparing wave breaking in fresh water with tlat in salt, it is 
one thing to attribute acoustic differences to charges in 
populations of bubbles which, as individuals, have un-
charged acoustic properties. That is to say that, even though 
the collective effect may be affected by differences between 
the fresh and salt water bubble populations, the single-bubble 
acoustics is the same (although modiScations may be neces-
sary to surface tension and thermal damping terms, etc., as a 
result of the "dirty" nature of sea water""). It is quite another 
to suggest that the single-bubble dynamics might be differ-
ent, which is one possible interpretation of the Gndings of Ihe 
study '̂ mentioned previously. In that, measurements were 
made of the logarithmic decrement of relatively large single 
bubbles (1.1-2.4 mm radius) injected into water having a 
salinity rar%e of 0°/».-35''/^ (obtained using commercial 
salt"'). Both the sound pressure level and the quality factor 
were observed to cWige with salinity, but no mechanism for 
such a single-bubble effect has been proposed If such a 
single-bubble effect was robust (and not, as speculated in the 
foUowing, a by-product of tlK reverberation), it would have 
major implications throughout ocean bubble acoustics, for 
example in measurements of the bubble pqpulatim"̂ ""'̂  and 
the response of bubbles to short acoustic pulses." '̂̂ " 

Pria: to the current paper, no account has been taken in 
test tanks of the effect of the reverberant field on the bubble 
damping That two distinct modes at 540 and 950 Hz could 

be identified in the tank used in the earlier study^ suggests 
that the data were taken in the firequency range (roughly 1 - 3 
kHz) at which the effect of reverberation is most problem-
atiCi as discussed previously. Taking reverberation into ac-
courit, the results of Fig. 2 are unable to confirm or deny the 
earlier proposition that salinity affects the damping of single 
bubbles: the seawater data (X) show a simitar measure of 
agreement with the prediction of reverberant theory that is 
exhibited by tap and distilled water Hence the disagreement 
which is seen in this paper between the seawater data and the 
prediction of Devin can be attributed to reverberation. That is 
not to prove that reverberation was responsible for the earher 
finding.̂ '"^ However the potential for reverberation to com-
plicate the observation is clear. As an example, even small 
changes in frequency/sound speed can tune in or out of the 
effect of a given mode, leading to signiGcant changes in g 
(Fig. 2). While varying the salini^ will change the sound 
speed in a predictable manner'̂  in single-bubble tests, when 

are entrained there is a second, and often greater 
effect. If changes in salini^ affect the population of bubbles 
entrained, for example by a breaking wave, then varying the 
salinity will indirectly affect both the amount of reverbera-
tion and (through the effect of the bubble population on the 
sound speed) change the m odal &equencies of the tank. Fig-
ure 2 suggests that mode &equency changes of O (1%) can 
cause changes in g of O (10%). Therefore it is strcmgly 
recommended that reverberaticm be considered in tank tests, 
and olher reverberant environments.̂ ^ 

The importance of reverberation on bubble resonances 
should not be underestimated, and its effect cannot be easily 
dismissed. It is not confined only to frequencies of tank 
modes: apart &om the frequency r^ion well below the first 
mode,̂ ' or well above the Schroeder Brequency, the effect is 
potentially very probleinatic for three reasons. 

(1) Calculation of its influence oi radiation damping in par-
ticular (and, to a lesser extent, on the relationship be-
tween the bubble radius and natural Brequency) requires 
detailed knowledge of the reverberation. 

(2) Small changes in damping can have m^or effects close 
to bubble resonance, and discrepancies &om the &ee 
field predictions of up to —60% are here observed. 

(3) True free-field c(mditions are rarely found in bubble 
acoustics, with even the "open" ocean containing a free-
surface, and scatterers which include other bubbles; and 
"anechoic" fittings can give signiGcant rejections at the 
resonant frequencie.s of the larger bubbles. 

Finally it should be recalled that the ubiquitous assump-
tion of G-ee-field conditions extends beyond bubble entrain-
ment emissions and linear scattering, to the nonlinear models 
of bubble motion (such as the Rayleigh-Plesset, Herring-
Keller, and Gilmore-Akulichev fmnulations). Certain sce-
narios exploit modal fields, such as in measurement of the 
bubble size distrrbution.̂ '̂̂ ^ Of particular note is the com-
mon practice of levitating bubbles in a modal sound field for 
measurements of, for example, sonolumihescence,^^ rectified 
diffiision,^' or (with the comment of this paper particularly in 
mind) resonance and damping.̂ "̂̂ ' In such circumstances the 
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effect and validity of the free-Aeld assumption must: be as-
sessed. 
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