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Internal waves features, like all mesoscale oceanographic features, are an important
aspect of the ocean circulation. They are responsible for an important energy transfer
mechanism, and have many implications in oceanographic engineering developments.

Jurrently the extraction of internal waves information from satellite images is usually
done from the human interpretation of the grey tone pattern visible in the images,
which is a subjective, labour-intensive and time consuming task.

In this research a new method for the automatic detection of internal waves’ signatures
present in SAR images has been developed. The automatic detection technique uses
two different approaches. One is based on wavelet transform and statistical texture
descriptors. The classifications have been implemented using principal component ana-
lysis, the K-Nearest Neighbour technique and the multi-layer perceptron. The second
approach is based on shape discrimination. The geometry, orientation and position
of the different edges found within the image are used to distinguish the presence of
internal waves. Along with a reduction in man power and analysis time, this new tech-
nique offers the means to analyse internal waves. Data sets of internal waves based on
a number of criteria can easily be created. The users can then use the information to
study the internal wave’s dynamics or the internal wave conditions in a given place,
which could be of value for offshore development.

The results of the research outlined in this thesis have demonstrated that the combina-
tion of either textural analysis with classifier or edge geometry analysis can provide the
recognition and a primary analysis of internal wave signatures. This technique would
therefore provides an appropriate starting point for the development of an operational

recognition tool.
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Chapter 1

Introduction

Satellite technology and remote sensing technique have come a long way from the
early launch in 1957 of Sputnik 1 and the early aerial photographs, with the first me-
teorological satellite TIROS 1 in 1960. Today they are commonplace. From the mid
70s the investment in satellite remote sensing of the earth’s environment has grown
very rapidly to become a significant commitment in space programs. The oceanogra-
phy community had their share of this growth since 1978 when Seasat, the first satellite
specifically designed for ocean observation, carried the first synthetic aperture radar

(SAR).

1.1 Motivation and objectives of this study

Since these early days remote sensing has become a powerful tool for the oceanogra-
phy community with a wide range of sensors onboard satellites. These sensors include
multispectral instrumentation such as Seawifs, which measure the ocean colour giving
information about the primary production, and thermal sensors such as AVHRR which
provide us with the sea surface temperature. Microwave imaging radar such as the
Synthetic Aperture Radar (SAR), which can measure sea roughness, are especially at-
tractive because they operate independently of cloud cover, and solar illumination. The
SAR measurement is predominantly due to scatter from gravity capillary and short gra-
vity waves '. This first mission with Seasat produced surprising results. Along with
widespread images of surface waves and swell, the SAR was able to provide the first

remote-sensing information about oceanic internal waves.

Internal Waves, like all mesoscale oceanographic features, have a significant influence

YA wave disturbance in which buovancy (or reduced gravity) acts as restoring foree.
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on ocean circulation. They are responsible for an important energy transfer mecha-
nism. The identification and understanding of internal waves provides oceanographers
with important information on dynamical processes occurring within the ocean. Fur-
thermore internal Waves are an important factor to consider during the development of
oceanographic engineering design. They are responsible for the deterioration of offshore
platforms and can have a serious impact on acoustics propagation. For every one of
the implications it is necessary to understand and model this phenomenon. However
the modelling of the internal waves propagation is difficult, because of their non-linear
nature and the large amount of information needed.

SAR images provide one of the hest sources of information to study internal waves.
However mainly due to data policy, processing costs, and manpower restrictions, only
about 10% of the acquired images have ever been processed. Furthermore the informa-
tion extraction from the data processed, is done by the interpretation of the grey tone
patterns visible in the images, which is a very labour intensive and subjective task.

To date no automatic method for the recognition of oceanic features exists, therefore,
the major novelty and the aim of the work lies in the automatic extraction and analysis
of internal wave signature from SAR imagery. This research will focus in the creation
an automatic recognition framework to move from a subjective manual detection of the
internal wave toward a computed interpretation of the grey scale level of the images.
Such detection will ease the work load as well as decrease the cost of the processing
by reducing the manpower. The new framework will allow a classification of very large
numbers of SAR scenes in order to identify possible internal waves signatures along with
a means to infer primary information from such waves (i.e. period, type of signature,
direction of propagation). The increase in information available from this new tech-
nique will be a valuable tool to increasing our understanding of internal waves, their
importance in the oceanic circulation and better modelling and prediction applied to

offshore developments.

1.2 The outline of the thesis

This chapter continues with a brief introduction on internal waves and their signature

on SAR images. The amount of information available within internal waves and their
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impact on offshore engineering will be discussed in the rest of this chapter. The se-
cond chapter will outline the difficulty, and consequently the strategy chosen, for the
recognition task. This thesis continues with chapters three, four and five which look at
the segmentation methods that were introduced in the second chapter as part of the
strategy used. Chapter three describes the multi-resolution analysis designed to extract
the internal wave signature. Then chapters four and five, look at the possibility of using
the information inferred from the previous step in order to characterize the presence
of the signature. Chapter six presents two classifications techniques. Finally chapter
seven presents a discussion on the strategy and the accuracy of the detection tool is

quantified.

thermo-
cline

Figure 1.1: 3-D presentation ol an internal wave [64]

1.3 Internal waves

Internal waves are progressive oscillations of constant density surface within a body of a
stratified fluid (figure 1.1) with periods ranging from sub-inertial (i.e. less than the local
Coriolis period) to the local buoyaney frequency (/N). In the marine environment, they
traditionally occur during the summer when the warm atmospheric conditions lead to
a rise in the thermocline (figure 1.2). Many works discuss the generation of the internal
waves, but it is commonly assumed that the internal waves present at the shelf sea are
generated by baroclinic flow on the shelf break at each tidal cycle (eg: Fu 1984 [26] and
Apel 1976 [3]) see Figure 1.3. Then the internal waves propagate mainly inshore as a

group of rank order solitons and in some images with an inter-packet interval of 12.5h.

‘2
)
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implying their tidal origin [4], [6].

Absolute and relative number of internal waves (iw)

35 . . . ;

30 Relative no. of iw 1996-2000 03 1
n - - Relative no. of iw 1991-1995 / @
¢ | El Absolute no. of iw1996-2000 /R 2
2 25| ] Absolute no. of iw1991-1995 | | | / |'ik 025 1
S c
3 8
£ 20} =
5 ez
8 3
) o
= 2
S 10F ]
2 &

5k

Months of year

Figure 1.2: Absolute and relative (in respect to the acquired immages) temporal distri-
bution of internal waves. The annual variation of internal waves is exemplified for the

two time periods of 1991-1995 and 1996-2000 [23].

The principal features of those internal waves can be summarized as [54]:
e The waves are found in groups or packets with 4 to 10 crests per group.

e The crests are often parallel to the bottom topography or radiate out as if they

were coming from a point.

e One crest only may look like a shear in a SAR image; therefore an internal wave

train is defined as several solitons moving in the same direction.

e The wavelength between crests is between several hundred metres and several
kilometres, and usually decrease from the leading wave in a packet to the trailing

edge.

e The crests are usually tens to hundred of kilometres long and decrease in length

towards the rear of the wave group.

e These waves appear either as dark in a light background, as light in a dark back-
ground or as dark and light bands in the intermediate case. Dokken [23] found in
his survey along the coast of Norway, that 60% of the signatures were bright in a

dark background and 40% of the signature were dark in a bright background.
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Figure 1.3: baroclinic dispersion [3]

1.3.1 Internal wave dynamics

Internal waves have frequencies that span the range from the maximun Brunt-Vaisala
(buoyancy frequency) to the local Coriolis frequency of the water column. Internal
waves arise as possible modes of oscillation in the presence of stratification. where the
restoring force for the oscillation is provided by vertical density stratification. The mo-

tions of these waves can be derived from the momentum equation [2].

ou 16y _
v 1 6p'

— = 1.3.2
5 / P ( )
ow_ Lo/ (1.3.3)
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From equations 1.3.1 1.3.2 and 1.3.3 we can obtain a simple description of the motion

of a stratified fluid [2].

52w 1 6%

— + N2y =—— 1.3.4
6%t AT po 0201 (134)
, s gdp

where w is the vertical velocity, g is the gravity acceleration p is constant density, and
N(z) the Brunt-Vaisala frequency that represents the stratification in the ocean. The
Brunt-Vaisala frequency is usually maximum for maximum mean density (p) gradient
of the thermocline and decreases both above and below this level as the water becomes
more homogeneous. If N? is assumed to be constant with a negligible earth rotation

effect (f = 0) one can obtains an expression with w alone.

2

% (Vi) + N*Viw =0 (1.3.5)

where w is the amplitude of the vertical velocity and the subscript A indicates a gradient

in the horizontal direction. The elementary modes of motion for small disturbances can

be sought in the following form
w(z,z,t) = w(z)exp koD (1.3.6)

Where k is the horizontal wavenumber vector and n the frequency. w(z) describes the
mode structure and is subject to the boundary conditions at the surface (z = 0) and
bottom (2 = h). By substituting Eq.1.3.6 into Eq.1.3.5 one obtains the fundamental

equation obeyed by w(z) [51]

52 N?(z
5“;(;) + [ 0(2 ) _ 1] K2w(z) = 0 (1.3.7)
: 2_ _ 9 dp
with N = 5 dz

o = the internal wave frequency

In the simple case of N(z) is constant, Eq.1.3.7 represents the classic oscillator equation

and its solution, satisfying the boundary conditions can be easily found to be

w(z) = Asin n%z n=123,.. (1.3.8)
where n is the mode order, A the amplitude and i the depth. From the above, the
vertical velocities and displacements for the basic IW mode (n=1) has a maximum in

the middle of the water column while for higher modes there will be several maxima
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Figure 1.4: Distribution of vertical velocity w in the lower three internal wave modes

for a constant N buoyancy profile

at different depths (see figure 1.4). In the general case N = N(z), the mode structure
is similar to that illustrated previously . Namely the maximum of the basic mode will
correspond to the maximum of N(z) and for higher order modes (n > 1) the number
of maxima is equal to n (number of modes) with these being outside the thermocline.

Non-linear IWs can propagate in the form of solitary waves, which can be described by
the KdV? equation ([2] [48] [61]). The solution of the KdV equation [47] has the form of
a pulse that results from the balance between non-linearity and dispersion. The vertical
motion of tides forced by barotropic tidal flow over topography (e.g. a shelf break) leads
to the displacement of the thermocline and consequently generates internal tidal waves
(ITWs). These waves propagate away from the generation point along the thermocline
and can be described by the KdV equation. Wavelengths are typically of 20-30km and
the propagation is with tidal periodicity. It has been shown that short period internal

solitary waves (ISWs) appear on profiles of [ITWs with wavelengths 0.5-1Km.

Kroteweg-de Vries
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1.3.2 The importance of internal waves

Oceanography: The importance of internal waves is now being recognized a major
phenomenon in a number of fields of oceanographic sciences and monitoring. The Me-
ridional overturning circulation (MOC) is a vital element of the ocean circulation and a
key indicator of climate change in models [42]. Theory and model of ocean circulation
suggest that the MOC requires of the order of 2 x 1012 [44] [27] of power to intensely
warm the abyss. Without this deep mixing, the ocean would turn in few a thousand
years, into a basin of cold salty water. The water sinking at high latitude would cover
the entire abysses without any mean to rise (via advection) again at low latitude. The
mixing cannot really be the result of solar radiation as the ocean is an inefficient heat
engine. Instead Monk and Wunsch [44] suggest that the mixing has to be the result of
mechanical forces such as the tide and wind. The tidal energy is commonly assumed to
mix the shallow ocean shelf, but part of this energy is dissipated in the form of internal
tidal waves (1 TW). The mixing induced by the internal waves occurs in the form of
turbulence away from the sea floor and in most cases as turbulence patches through
scattering by topography. The vertical mixing induced by internal waves in regions
of large topographic variation is believed to be an essential aspect in maintaining the
ocean circulation [44]. However there is a lot of topography in the ocean (over half a
million seamounts in the pacific alone) and very few measurements exist that can to
explain the mechanisms involves and the real importance of internal wave in stirring
the deep ocean.

In the upper layer, internal waves and the vertical mixing that they induce, when they
propagate onto the continental shelf are vital for marine life. Large vertical displa-
cements induces by such waves modulate the light available. The localised mixing of
surface and subsurface masses can result in an intense shear with important conse-
quences for the transport and dispersion of various ecosystem constituents within the

water column (i.e. nutrient and heat) [33].

Offshore engineering: A large part of offshore oil and gas fields are in deep water,
which involve cables, long and fragile structures such as the riser pipes and drill columns.
They are therefore vulnerable to internal waves in many ways. Internal waves usually
concentrate their energy into packet which arrive roughly twice a day (tide generated).

The danger of such bursts of energy is that they can create horizontal motions near the
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surface applying load directly to the platform itself. The safety and the structural inte-
grity of the structure can be compromised if the design did not account for such forces.
The vertical motions induced by the internal waves could create additional problems:
the different risers and cable which connect the sea bed to the platform are subject
to the bending moments induced by the wave. It has been reported that an internal
wave packet was responsible for displacing oil platforms as much as 200 metres in the
horizontal direction and 10 metres in the vertical direction. It therefore not surprising
to learn that internal waves are cited in the design guidelines of the Department of
Energy (1990) as a potential source of difficulty for deep-water operations.

The implications extend as far as the submarine community. Internal waves have se-
rious impact on acoustics propagation. Just as the atmosphere turbulence can make
stars to twinkle, so variation in the ocean structure cause fluctuations in sound propa-
gation. The main causes of these fluctuations are internal waves when operating with
typical sonar frequency. The internal waves can in extreme events even prevent a signal
from being detected. Clearly this is of a great interest for the naval and submarine
communities. Speculations on the loss of the USS thresher in 1969 have suggested that
the prime suspect was an internal wave that carried the submarine rapidly deeper than

its crush depth.

1.3.3 Measuring the internal waves

Conventional methods (ships) to detect and measure internal wave properties are ex-
pensive and limited to the collection of data over a fairly localised region. However,
many applications such as the modelling on which forecasts and now casts are based
are not sufficiently precise without incorporating ocean data. The use of remote sen-
sing data when combined with additional knowledge such as the tidal properties and
a limited number of in-situ observations improves the accuracy of internal wave mo-
dels. Without the wide area data provided by the spaceborne sensors, forecasts are
not accurate enough for offshore operations management. The availability of satellite
instruments also reduces the requirements for in-situ instrumentation. Spaceborne sen-
sors data potentially represent a very large cost savings over conventional techniques.
Indeed, an effective and reliable forecasting service could not be envisaged without such
data.

Because internal waves interact with the sea surface and modulate the surface wind

9
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waves, they modify the surface roughness pattern. These changes in surface roughness
enable the Synthetic Aperture Radar (SAR), which is a roughness sensor to image the

presence of an internal wave [1][3].

1.4 Synthetic Aperture Radar

The term 'radar’ was coined in the 1930s and is an abbreviation for Radio Detection
And Ranging. Radar is an instrument that transmits pulses of radio waves and detects
the echo. The information received depends on the viewing angle, the polarization and
the properties of the return signal from the scattering target. Due to the relatively long
wavelength in microwave, the signal is able to penetrate undisturbed through clouds.
The signal is also independent of sunlight since it is an active instrument; it both
transmits and receives its own signal.

With real aperture radar the beamwidth and angular resolution of radar’s antenna is
determined by its dimensions, expressed in relation to the wavelength used. Synthetic
Aperture Radars (SAR) overcome this limitation. They manage to achieve considerably
better angular resolution by exploiting the movement of the platform and therefore

synthesizing a large antenna.

1.4.1 Imaging process

The rectangular antenna of the radar is aligned with respect to the platform line of
flight in such way as to direct a narrow beam side ways and downward onto the target
(Earth’s surface) see figure 1.5. Imagery is built up from the time delay and strength
of the backscatter signal.

As the incidence angle of a SAR is oblique to the local mean of the sea surface, there is
no specular reflection except when very high sea states occur. It is therefore assumed
that Bragg reflection is the primary mechanism for backscattering radar pulses [68].
For a radar emitting radio waves of a wavelength Ag, the sea surface waves which will

contribute to the scattering are those with a wavelength close to A, where:

AR

= 1.4.1
®  2sinf ( )

and € being the incidence angle of the sensor.

10
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Figure 1.5: SAR ground pattern

Backscatter

The geometry and electrical features of a target, e.g. the dielectric constant, are the
main characteristics that effect backscattering [9]. The geometry is defined by parame-
ters such as slope and roughness, see figure 1.6. The dielectric constant of a material
depends, among other variables, on its water content, temperature and salinity. The
constant contains a real part, the permittivity, and an imaginary part, which is a loss
term. The permittivity is a measure of how easily the energy of a radar signal passes
across a dielectric interface. The imaginary part describes how much energy is absor-
bed in the volume once it passes across the interface. Major contrast in permittivity
between two media leads to large surface scattering. If the contrast is low, the energy
is transmitted across the interface and will be available for scattering and absorption in

 depends on

the volume. Radar cross section ® besides the medium characteristics, o
wavelength, polarisation and the incident angle of the radar signal [39]. The longer the
wavelength of a signal, the deeper the signal penetrates the material. The microwave
wavelengths are in the range of 0.001 - 1 m which correspond to the frequencies between
0.3 - 300 GHz.

The incidence angle plays a crucial role in backscattering. The impact of the incidence

3Radar cross section is the measure of a target’s ability to reflect radar signals in the direction of
the radar receiver, i.e. it is a measure of the ratio of backscatter power per steradian (unit solid angle)
in the direction of the radar (from the target) to the power density thai is intercepted by the target.

il
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angle in combination with roughness can be seen in figure 1.6. For small incidence
angles, less than 20°, specular reflections from facets dominate the returned signal. In
the case of incidence angles between 20° and 70°, the dominating mechanism of the
reflected signal is the Bragg scattering. Bragg scattering is a mechanism in which the
reflected signal is in resonance with the incident wave.

O
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Figure 1.6: Backscatter as a function of the incidence angle and roughness [54]

Range resolution

The range resolution depends on how short the pulse length is. If all energy is sent at
the same time in a very short pulse, it is obvious which part of the signal that was sent
first. The problem is that a single pulse, short enough to give accurate range resolution
and strong enough to be measurable after scattering at the surface, would require too
much power and too large a bandwidth for the radar. However, if the pulse is long, there
must be an ability to distinguish the first part of the pulse from the last part, in order
to get satisfactory resolution. The solution is to use a longer, frequency modulated
pulse, known as a chirped pulse. Using a chirped pulse, the instantaneously emitted
power can be low, although the total emitted energy is high. A frequency delay filter

demodulates the received pulse to a short spike, which gives a high range resolution.
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Azimuth resolution

SAR uses the forward motion of the satellite to synthesise a longer antenna that en-
hances the azimuthal resolution. The resolution is achieved by recording the phase as
well as the amplitude of the echoes along the flight path. To identify where the each
returning pulses comes from in the illuminated area, doppler shift is used. To achieve
this return pulse must be recorded in great detail together with the elapsed time.

The azimuth resolution is proportional to the real aperture length and this is inde-

pendent of the range and the platform altitude.

Speckle

The scattering wave is made up from several elements on the surface. Because the path
length from the radar antenna to the surface can vary from a few wavelengths with the
resolution cell, which is made up of the individual return pulse with different phase, the
amplitude of the signal is variable.

The coherent nature of SAR images produces a noise-like characteristic known as spe-
ckle. Speckle is a universal property of coherent imagery and arises because each reso-
lution cell can be thought of as being made up of many individual point scatterers. In
some case these individual return pulse will be add up constructively, in other they will
be add up deconstructively. This phenomena results in a random speckle being added
to the image. The speckle will decrease the clarity of the image and may be responsible
for the large variability in the backscatter.

Because the speckle phenomena are purely random, it can be reduced by averaging
several independent looks. This processing when possible is known as a multi-look and

is well documented in the literature (e.g [45]).

1.5 Imaging internal waves

The internal waves interact with the surface waves and modulate the surface wind
waves. This modulation can either be achieved by surface film (slicks) that accumulate
in flow convergence zones and dampen the short surface waves there or by hydrodynamic
interaction of these waves with the horizontal surface current associated with internal

wave motion (see figure 1.7).
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Figure 1.7: A sketch of an internal wave showing the fluid-particle velocity and the
surface convergence zone; p is the density, where pl < p2 and hl the mixed layer depth.

the vector arrows indicate direction and particle velocity.

The radar is a surface roughness sensor: the higher the roughness, the higher is the
radar return and the brighter is the image intensity. IW forms are associated with rough
and smooth bands and usually appears as bright and dark bands in the gradient of the
surface velocity (u) that is the surface convergence: theory [1], the relative variation of
the normalized radar cross section (NRCS) associated with internal waves, (Ac)\ (o), is

linearly related to the gradient of the surface velocity (u) that is the surface convergence:

e (1.5.1)
oo oz

Where A denotes a positive coefficient that depends, among others, on radar wavelength,
incidence angle, and surface wind velocity. For a linear SAR system (Ao) \ (o) is equal
to the relative variation of the SAR image intensity, AI/Iy . Thus the variation of the
image intensity is proportional to the gradient of the surface velocity (=-du/dz ).
Hydrodynamic modulation fails to predict the dark slick bands that sometimes oc-
cur in an image. These have been connected to films, which would transform the
dark /bright signature into only dark bands. The surface film, which is believed to be
primarily made up of naturally occurring surface-active organic materials and which is
concentrated at the surface of the ocean, is often active in coastal water. These filins

dampen short surface waves very strongly, reducing the radar return pulse. The radar
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Figure 1.8: Example of internal waves imaging by the SAR

images then consist of dark streaks on a uniform bright background. However in most
cases, the radar signature of the internal waves has a double signature, which means
that the corresponding radar image consists of bright and dark streaks associated with
the internal waves, indicative of hydrodynamics modulation. The cellular currents that
accompany them are of the same order of magnitude as the wave phase speeds (50-
75cm/s) and produced convergence and divergence near the surface strong enough to
alter the short-length surface gravity and capillary wave by means of a periodic modu-
lation that result in a surface signature characteristic of the underlying internal wave
field. Figure 1.7 shows how the backscatter is influenced by the internal Waves.

As the signature of the internal waves is a modulation of the surface wind waves,
the strength of the wind is an important factor. It was established that no internal
waves are present on a SAR image for a wind equal or greater to 11 m/s and that the

slicks are only visible with a wind less than 6 m/s [3].

Types of signatures and Transition mode

Analyses of the radar intensity modulations produced by the short-period IW signatures
are in the form of bright/dark, dark and bright bands. They correspond respectively
to positive/negative, negative or positive variations of radar backscatter from the mean
background clutter (undisturbed by IWs). Based on these different types of signatures

Da Silva et al [19] define a classification scheme. They identify a double-sign signature
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Figure 1.9: Transect on an internal wave SAR signature

when +/- variations are identified, single-negative when a predominant negative va-
riation occurs, and single-positive when a positive intensity variation is detected. The
observations show that at very low wind velocities (less than 2m/s) IWs show up as
single positive sign. When the wind is higher than 2 m/s, and for IWs propagating in
the radar range direction (across track direction), both double and single negative si-
gnatures are commonly observed. For azimuth propagating IWs (along track direction)
negative signatures prevail.

Figure 1.9(a) presents a close look at short-period internal waves. Figure 1.9(b) pre-
sents the backscatter depression of the transect of the internal wave. The leading waves
display a double sign signature while the rear waves in the packet can be classified
as single negative. This change from double to single signature is a transition mode.
Figure 1.10 shows the typical transition mode. The factors that determine which, if
either, of these mode transitions will occur under a given set of wind speed and sur-
face film conditions seem to be rather subtle. According to [20], the two controlling
variables appear to be wind speed and surface film pressure. Figure 1.11, shows the
transition line on a film-pressure/wind-speed diagram, corresponding to the conditions

for all mode transitions.

16



CHAPTER 1. INTRODUCTION

moderale -'Ji\—: _ =
VY
F SAR signatures
a
1
= J.\“ + AN
Ry Ioew
increasing Film pressure "
\ “‘,; - _ _ _ _ Large-perod ITW
1 'F; /""“’“’\‘
\ ! kkf. I% { Short-period s
f I
vouoL

Propagatiun direclson

Figure 1.10: Two types of signature mode transition

Film Pressure
71‘
' ]

Wind speed SAR Signature

Figure 1.11: Signature mode transition diagram [20]




CHAPTER 2. METHODOLOGY

Chapter 2

Methodology

2.1 Strategy

The aim of this research is to successfully detect internal wave signatures in SAR images
automatically. This task needs an elaborate analysis strategy in order to characterize
the internal waves signature (IWS). A general description of the characteristic feature
of the IWS was presented in chapter one. IWS can be considered as pseudo-invariant
features. They have common features but also variable features such as the orienta-
tion, the curvature and the length of the waves. Furthermore, the SAR scene can be
very complex showing land, interactions between internal waves and other mesoscale
features. Every one of the above phenomena can interact in a constructive or in a
destructive way on the IWS, and so modify its appearance. The variable features of
the IWS and the possibility of a crowded SAR scene prevent the creation of a general
blueprint to recognize efficiently IWS. As a consequence a segmented and independent
analysis of the presence of certain IWS feature has to be considered. A SAR image is
a three dimensional signal, which is composed of a frequency signature, textures, and
geometry shape associated to each of the different features present within the signal.
The proposed strategy is based on these primary characteristics of an image. It is pos-
sible to detect the presence of IWS within a SAR images by studying independently the
frequency component, the texture and the geometric shape present in the image. Then
each result can be linked with the others and a final test can be performed to evaluate

the probability of IWS presence.

Before going through the detail of the different technique and the strategy used, it
is necessary to understand how the choices have been made. An internal wave signa-

ture is a very complex feature and this can reduce the clarity of the signature wanted.
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Previous studies on features extraction from satellite images such as T.Rachin [53] or

Kiran [60] and Liu[38] have proven that wavelet transform based processing can be a po-
werful tool. These studies have been done for general purposes or more specifically with
an oceanographic point of view. However they show that whatever the goal, a wavelet
transform approach is very successful in edge extraction and multi-resolution analysis.
Rodenas and Garelo [55] [56] even investigate a multi-resolution wavelet approach to
detect the presence of internal waves on SAR images. A multi-resolution wavelet based
approach has the advantage to make a frequency’s discrimination at different levels,
offering the possibility to extract any signature wanted at a given level. This technique
is an appropriate solution for the SAR images and offers the possibility of analysing the
remaining signature in term of texture or edge. However this discrimination does not
give us any detail on the composition and the composition of the image. To establish
the presence of IWS more processing are needed. A first approach is to consider the
texture of the images. An image is composed of different range of tone and texture
organization. Julesz [34] was the first to use gray tones spatial dependence occurrence
statistics in texture discrimination. The idea was quickly developed by Haralick [28]
[29], who suggested that the use of a two-dimensional spatial dependence of gray tone
in a co-occurrence matrix. This texture discrimination is still found in numerous clas-
sification application such as remotely sensed imagery applied to sea-ice or medicine
124] [59][66]. The method has the advantage of offering a simple quantification of the
different texture present in the images, which can then be easily used by a classifier.
To perform the classification a large number of techniques exist from the statistical to
the neural network approach. Due to the large choice, the variation in performance
and the different requirements, it has been difficult to find an ideal classifier. However
three techniques, for their different requirements, have been retained: A neural network
multi layer perceptron, a K nearest neighbours and a PCA technique. The K nearest
neighbours is the simplest of the three, and identifies the k nearest neighbours of an
unidentified test pattern within a hyper-sphere of predefined radius in order to deter-
mine its true class [11]. The PCA on other hand involves a mathematical procedure
that transforms a number of correlated variables into a smaller number of uncorrelated
variables called principal components. These principal components can then be used
to determine the membership to a class. The last of the three is the neural network
multi layer perceptron, which perform a generalization of the process by training. The

three classifiers will be used in parallel to establish their individual performance, and
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different combinations with the input data and the training set will be made in order
to optimize their performance.

Another approach that can be used to understand the image composition and to loca-
lize sharp variations in the signal is to extract the dominant edges resent in the images,
and analysis their orientation and geometry. This can be done with various methods.
However, because the previous processing was made using wavelet transform, one can
use this information to calculate the modulus of the wavelet coefficient and obtain the
dominant edge for a given resolution. One can then apply an edge tracing technique and
then find the relationship between edges (i.e. are they pseudo-parallel to one another?).
Because one of the internal wave characteristic is that there are at least 3 parallel crests
within a packet, one can use the above proposed processing to recognize possible link
between different edges and the presence of internal wave. This second approach has the
advantage to pinpoint the exact position of every edge that composes any give internal
wave signature. Therefore after a positive identification, the signature can easily be
analyse to extract primary information such as the orientation, the type of modulation

that occurred, and when possible the speed of the wave.

2.1.1 Detection System

From the above descriptions, the detection system will use two different and independent
strategies: In the first approach, the system will be design using textural information,
and in the second method the detection will be made using edge geometry information.
The figure 2.1 show the distinct elements of the system for the two approaches. Every

element is dependent of the previous one and their descriptions are as follow:

e Image (Pre-processing): Preparation of the raw data.
Speckle is an important part of SAR image, and it needs to be reduced. Because
the multi-look technique is not an option for dynamic features a simple pixel
average is performed. It is also necessary to select part of the image that is land

free, as no land mask technique has been incorporated in the processing yet.

e Segmentation, Wavelet transform: Multiscale analysis.
The aim of the processing is to make scale discrimination. In the case of crowded
SAR images composed of various mesoscale features, the possible internal waves
signature can be weakened by other more powerful signatures. Therefore the use

of multiscale wavelet analysis offers the possibility of processing each signature
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Figure 2.1: Diagram illustrating the layout of the processing

for a given scale.

o Edges: Study of the parallelism of the edges.
Another approach to understanding the image composition and to localize sharp
variation in the signal is to extract the dominant edges within the images. This
can be done with various methods. However, because the previous processing
was made using wavelet transform, this information can be used to calculate

the modulus of the wavelet coefficient and obtain the dominant edge for a given
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resolution. An edge tracing technique can be applied and then the relationship
between edges can be found (i.e. are pseudo-parallel to one another?). Because
one of the internal wave characteristic is to have a least 3 parallel crests within
a packet, one can use the above proposed processing to recognize a possible link

between different edges and the presence of internal wave.

e Texture: Texture analysis using GLCM.
At this stage of the processing the analysis focuses on the texture organization and
Grey Level Co-occurrence Matrix (GLCM), which addresses the average spatial
relationships between pixels of a small region or window, to characterize using

statistical indexes the sharp gray scale variation when an ITWS is present.

e Classifiers: Classification using a KNN or an MLP or a PCA .
The above processing characterizes the different signatures within the signal, but
does not make any decision about the presence of TWS. To perform this task
three classifiers will be used. The first one, which does not require any training
but only a query set is the K nearest neighbours (KNN). The second classifier,
which requires a training section is the multi layer perceptron (MLP). The last
one which uses the principal components of two different classes, uses the GLCM

as input directly.

e Analysis: The last part of the processing is the analysis of the detected TWS.
This analysis will extract the orientation, the types of signature (i.e. type of

modulation), and infer the possible direction and wavelength of the wave.

Each step of the processing will be described in a separate chapter along with the
mathematical background necessary to describe the process as well as the appropriate
result and a discussion. In each chapter it will be shown how the presented processing is
implemented and where its contribution take place within the general layout of strategy

for the recognition of IWS on SAR images, shown in figure 2.1.

2.2 Data set

The data set is made up of 120 SAR images acquired from the two European satel-
lites ERS-1 and ERS-2. The Southampton Oceanography Centre (SOC) provided the
images. Each original PRI SAR images contain 8000 x 8000 pixels, with a pixel spacing
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the correction

of 12.5 m x 12.5 m, covering an area of 100 x 100 km. The motivation behind the
creation of the data set was to obtain as many as possible images of internal waves
observed by the SAR, and as a consequence the data do not concentrate on a particular
region but it is composed of SAR images taken all around the world.

There is a reduction in the intensity of the backscatter as the range increase (see figure
2.2(a) and (b)) and there is more atmospheric attenuation. It is therefore necessary to
apply a correction to compensate for this change in mean intensity in order to obtain a
well-distributed mean background level and to have a stationary signal for the wavelet
transform. The result can be seen in figure 2.2(c) and (d).

Because of the coherent nature of the illumination, SAR images contain multiplicative

the original images. This procedure reduces the size of the image to 1/64, which offer a
substantial reduction of the speckle as well as a reduction of the processing time. The

pixels spacing is now equal to 100 m.
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Figure 2.3: Original selected 512x512 SAR image containing an internal waves signature

The data set were made up of windows of 512 x 512 pixels, which were selected manually
inside the processed original PRI Images. This selection provides the opportunity to
create a succession of different data sets as well as the opportunity to select every scene

land free. An example of a selected image can be seen in figure 2.3.

The different steps of the processing and the discussion of their performance will
be illustrated by focusing on two images before giving a general overview of the result.
These images are called image0 and image25 (figure 2.4(a) and 2.4(b)) and present. very
different internal waves signatures; one is very strong and projected in the diagonal of
the image, the other is weak and projected in the vertical of the image. The diflerence

in intensity and orientation of the signature, influence the results and the accuracy.
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Further detail will be given for each different step.

2.2.1 The making of the training set

Three classifiers will be tried out. These classifiers need to be able to create a relation-
ship between the classes. To do so, it is necessary to use a training set, where every
class will be represented. The training set was made by manually selecting zones of the
image containing some internal waves signature and zones without. In this selection one
tried to give a fair representation of the internal wave signature as well as every other
possibility that can represent a non-event zone.This gave approximatively 600 samples

representing the two classes with an equal proportion and taken from several images.
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Figure 2.4: The two images which will be specifically discussed during the processing
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Figure 3.1: Diagraimn illustrating the layont of the processing

This chapter will describe the first step of the automatic detection of internal waves
in SAR images. After a short background on wavelet transforms and a more detail
explanation of the technique used, results of the transform will be presented. The
chapter will end with a detailed explanation on how the different results from this

multiscale decomposition will be used.
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3.1 Background

Mathematical transforms are applied to a signal to obtain further information from that
signal that is not readily available in the raw signal.

In practice most of the signals are Time-Domain in their raw format. The representation
of the signal as a function of the time is not often the best solution. In many cases
the most important information is hidden in the frequency content of the signal. The
[requency spectrum of a signal is the frequency components of that signal. To derive this
information a number of transformations can be applied to the signal. The most popular
is the Fourier transform. The Fourier transform provides the connection between time
and frequency in terms of the decomposition of harmonic waves, which the resulting
frequency composition gives an average over the whole length of the signal. However
if a signal changes at a specific time, its transform changes everywhere and a simple
inspection of a transformed signal does not reveal the position of the alteration. It
can therefore be assumed that a non-stationary signal is a sum of very small stationary
signals, which will result in a sum of local decomposition. This approach gives the Short
time Fourier Transform (STEFT). In the STET the size of the window is however fixed,
which limits the flexibility. A fixed window cannot offer a good resolution in time and
frequency at the same time.

One and a half decades ago an alternative to Fourier Transform and to STFT was
found: The Wavelet Transform. The Wavelet Transform has a lot of similarity with
the Fourier Transform. Both transforms are linear operations that generate a data
structure that contains segment of various lengths. The mathematical properties of the
matrix involved in the transform are similar as well. The inverse transform matrix is
the transpose of the original. Both transforms can be viewed as a rotation in function
space to a different domain. Another similarity is that the basis [unctions are localized
in frequency. The main interests in the Wavelet Transform are its differences from the
Fourier Transform. The individual wavelet [unctions are localized in space, which is
not the case for the Fourier sine and cosine function. The Wavelet Transform uses a
variable window. In order to isolate signal discontinuities, a very short window will be
necessary. At the same time, in order to obtain detailed frequency analysis, one would
like to have some very long base functions. For this to be achieved it is necessary to
have short high frequency and long low frequency basis functions. This is exactly what

can be achieved with a Wavelet Transform.
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3.1.1 Multiscale edge detection

The edges of structure in an image are often the most important features for pattern
recognition. One may consider an edge to be a sharp variation in the image (i.e. a strong
intensity variation). On the contrary an edge can be considered to be a transition
between two different textures (smooth intensity variation). The difference between
these two definitions is the scale at which the image is observed. This discrimination
of the edge definition motivates an edge analysis at different scales.

Many edge detection techniques exist, such as the Canny Edge Detector [13], which
detect the sharp variation in an image by calculating the modulus of its gradient vector.
A multiscale version of this edge detector can be implemented by smoothing the surface
with a convolution kernel 6 [40]. This is computed with two wavelets that are the partial
derivatives of 6:

00 00

Vi(zy) =5 and W (z,y) = 5 (3.1.1)

The associated 2-D Wavelet Transform of the image f at scale 2/ and orientation k is

defined as:

W flz,y) = f*df(zy) k=12 (3.1.2)
with Y =2 Yy 7z, 277y)

The Wavelet transform with respect 9!(z,y) and ¥?(z,y) in ( 3.1.2) has two compo-

WL o) =2 <5<f . 92j><x,y>>

nents:

0T (3.1.3)
=XV (f * 0 (z,y))
2 £ip Y 6(f * 05)(z,y)

—
=2V ([ *0x(z,y))
The modulus of this gradient vectors is proportional to the wavelet transform modulus:

My (2, 3) = \/IWh F( 92 + W2 (2, 0)? (3.1.5)

And its angle is equal to the angle Ay; f(xz,y) of the wavelet transform vector ( 3.1.4),( 3.1.

in the plane (z,y).

a = tan™? (%%) (3.1.6)
/ if Wl f(x
then Ay f(z,y) = “ »f(T.9) 20 (3.1.7)

T—a M W),f(z,y) <0
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Multiscale edges are points (x,y) where Ms; f(x,y) is locally a maximum in the one-
dimensional neighbourhood of (x,y) along the angle A,; f(x,y). These points are called

wavelet transform modulus maxima.

3.2 Processing

Each individual image is decomposed into a representation of the energy coefficients at
different scales, then for each individual level of decomposition the modulus is calcula-
ted. The procedure to perform the decomposition is as follow:

Suppose that the scaling function and the wavelet ¢, 1, ¢ and 1 are designed with the
filter h, g, h and § (see Appendix A for more detail). A fast dyadic wavelet transform
is calculated with a filter bank called in French the Algorithme a Trous (”holes algo-
rithm”). It is similar to a fast biorthogonal wavelet transform, without subsampling.
It is computed from a, (initial image) by a cascading convolution. An example of this

decomposition is shown in figure 3.2.

Figure 3.2: Cascading convolutions.
S

3.2.1 Results from the wavelet decomposition:

The wavelet transform provide an energy representation of the image at different scales.
For each individual scale the decomposition in the x-direction, in the y-decomposition,
the modulus and the gradient orientation are calculated (see figure 3.3).

Already some differences appear between the directions of decomposition used. If the
signature of the internal wave propagates mainly horizontally or vertically, the detection
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will be strongest in the x-decomposition and y-decomposition respectively. An example
is shown in figure 3.5(a) and 3.5(b). However if the internal wave is orientated dia-
gonally, this dissimilarity disappears (see figure 3.5(c) and 3.5(d)). These results
although expected, have a direct influence on the calculation of the modulus. To reduce
the internal wave direction influence on the classification, different wavelet representa-
tion will be used (i.e. difference on how the X-decomposition or Y-decomposition will
be used). More details about the different wavelet representation used are given at the
end of this chapter.

By definition the wavelet coeflicient mean is null. Every time we have a positive struc-
ture at a scale, we have negative values surrounding it. These negative values complicate
the analysis and create an artefact, so the positive or negative values are chosen sepa-
rately for the rest of the processes. This choice is purely dependent on the use of an
automatic threshold on the histogram. Once the modulus has been processed to opti-
mize the edge and to reduce the unwanted features a non-maxima operation is applied

on the modulus in order to refine the result and be able to process the next steps.

Level 1 [ ‘
1l
: Modulus
y
(-,—— ——————— e l ] N
e, Gradient — X decomposition
Wavelet Level2
Image T ; EE—— \
- | ranstorm }' ‘ Gradient — Y decomposltion
l Gradient — Direction

Level 3 l [i‘

Figure 3.3: Output from the wavelet transform

Non-maxima suppression [46]: To thin the response of the wavelet transform and
give edge points which are at the right place, a non-maxima suppression is applied to
the modulus. Non-maxima suppression essentially locates the highest point in the edge
magnitude data. This is performed by using edge direction information, to check that
points are at the peak of a ridge. Given a 3 x 3 region, a point is at a maximumn if the
gradient at either side of it is less than the gradient at the point. This implies that we
need values of gradient along a line which is normal to the edge at a point.
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This is illustrated in figure 3.4. The point P, , is to be marked as a maximum if its
gradient, M (z,y) exceed the gradient at the neighbouring points M1 and M2 which

need to be interpolated. The first-order interpolation using Mz and My at P, , gives:

M, — M,

M,
My ="M - : - 2.
1 72 (z+1,y—1)+ VA M(z,y—1) (3.2.1)
M, M, — M
My = —MZM (x—-1ly+1)+ leM(xay +1) (32.2)

The point P, is then marked as a maximum if M(z,y) exceeds both M; and My,
otherwise it is zero. In this manner the peaks of the edge magnitude data are retained.

At which point hysteresis thresholding can be used.

. . ! '
‘

P P - ,,' PX,+1y—1

o Edge direction at

PV px,y

:
.
;
.
1
0
‘
’
‘

I:>x,-1y+1 ,'\Px,yﬂ Px,+1y+1

Normal to edge
direction

Figure 3.4: Non-maxi representation

At this stage of the process it will be interesting to recall that the modulus from the
wavelet analysis will be use as a starting point for two different recognition techniques:

the Edge analysis and the textural analysis.
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(a) (b)

W00 150 200 250 00 350 400 450 500

(c) (d)

Figure 3.5: Wavelet coefficients at level 2 of the Image25 for (a) and (b) and Image0
for (¢) and (d). (a)and(c) X decomposition. (b) and (d)Y decomposition.
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Figure 3.6: Wavelet modulus at level 2 of the Image25 for (a) and (b) and Image0 for
(¢) and (d). (a) and (¢) without non maxima reduction. (b) and (d) with non maxima

reduction.
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3.2.2 Wavelets and their use

The last section of this chapter describes the use and the preprocessing of the wavelet

output for the rest of the processing.

Wavelet for the textural analysis

The textural analysis has a straight forward approach to it. Three wavelet representa-

tions will be used, they are:

e The modulus:
Two level of decomposition will be used: The second level and the third. The
modulus at different level will be referred to as M2 and M3, modulus level 2 and
modulus level 3 respectively. Before analysing the modulus, a threshold is applied
automatically, and the modulus is coded over n number of colour (gray tones) to

enable the calculation of the GLCM.

e The mean between X- and Y-decomposition: The orientation of the wave
has an effect on the wavelet decomposition. Therefore one attempt to reduce
this effect is to take the mean between the two decompositions. This wavelet
representation will be called mXY and will only be made for the level 2. The

mXY is coded over n number of colour.

¢ X- and Y-decomposition independently: In this case the X- and Y-Decomposition
will be processed independently and the result will be used at the end of the pro-
cess. This wavelet representation will be referred to as XY and will only exist
for the level 2. In this case the colour coding is performed to the two compo-
nents using the same scale. In this procedure, the relative importance of the two

decompositions with each other is retained.

These representations were chosen in order to perform a good classification and they

represent, different ways in which the image can be analyzed.

Wavelet for the edge analysis

For this analysis, it has been shown [55] [56] that the best wavelet representation is the
modulus of the second level of decomposition. The same method is used as the one
used in the M2, M3 threshold calculation but this time the threshold is not applied to

the modulus but is used in the edge tracing technique as a hysteresis threshold [62].
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Figure 4.1: Diagram illustrating the layvout of the processing

4.1 Texture

In a search of meaningful features for describing information within an image, it is
natural to take into consideration the texture representation of the different features
present. The texture represents the spatial distribution of the gray tone whereas the
tone is based on the varying shades of gray. These two concepts are dependent and both

contribute to an the understanding of an image. Texture can be evaluated as being fine,
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smooth, irregular, rippled, etc. It contains important information about the structural
arrangement of the surface and their environment.

The perspective of tone and texture is based on the concept that texture and tone bear
an inextricable relationship to one another. This relationship is highly influenced by the
variation of features and the size of the small-patch area. Haralick [29] suggested that
in order to obtain the textural feature of an image, one can assume that the texture
information is contained in the overall spatial relationship which the gray tones in the
image have to one another. This texture information is specified by a set of gray-tone

spatial-dependence matrices.

4.1.1 Grey Level Co-occurrence Matrix

The Grey Level Co-occurrence Matrix (GLCM) addresses the average spatial relation-
ships between pixels of a small region or window. The texture information is described
by a set of matrices P(z,y). Figure 4.2 shows the nearest-neighbour resolution cell and
Figure 4.3 show the matrices P(x,y). Each element P(z,y) expresses the frequency of

90 degrees
r + A

i
6 | 7 | .8

'\. I L
NI
R R Sl e
: . 0 degrees

7

i
i
4 3 2

o i )

45 degrees 135 degrees
Figure 4.2: Resolution cell 1 and 5 are 0 nearest neighbours to resolution cell e:
resolution cells 2 and 6 are 135° nearest neighbour;resolution cells 3 and 7 are 90

nearest neighbour and resolution cells 4 and 8 are 45° nearest neighbour to e [29].

occurrence of two points, with respective grey-levels x and y, at a distance D(d, ¢) from
one another. If an image is quantified by N grey-level, the GLCMs will be NxN arrays.
In a homogeneous region, differences between grey levels will be low, and the element
close to the diagonal of the GLCM will therefore have high values. Less homogeneous
regions will result in GLCMs with high values further away from the diagonal. One

important point to note is the sensitivity of GLCMs to linear combinations. 1f an offset
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Figure 4.3: (a)4x4 image with gray-tone values 0-3. (b) General form for any grav-tone
matrix for an image with gray tone value 0-3. (¢)-(f) Calculation of all four distance |
gray-tone co-occurrence matrices (Py stand [or the horizontal co-occurrence matrices,

Py for the vertical. Ppp for the left diagonal and Pgp for right diagonal). [29].

is added to all grey levels, the entries in the GLCM will be displace along the diagonal,
however if all grey level are multiplied by a constant value, the entries in the GLCM
will move away from the diagonal, resulting in a difficult interpretation.

The GLCM is very sensitive to the orientation ¢ [12]. Therefore to ensure that the
textural indices of any texture are not significantly influenced by the angle, an average

of the GLCM for four different directions is necessary.

4.1.2 Textural indices

A lot of textural indices are available from the current literature [12],[29]. Only five
indices will be defined and presented here. The Entropy (Equation 4.1.1) measures the

lack of spatial organization inside the computation window. The entropy is high when
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all the P(z,y) are equal, this corresponds to a rough texture and vice versa.

ENT ==Y "> P(z,y) x logyy(P(z,y)) (4.1.1)

z=1 y=1
The correlation (Equation 4.1.2) quantifies the dependence of grey levels from one
another for pixels separated by the distance D. A low correlation means that the
grey levels are generally independent from one another (No regular structure in the
image). If the correlation is high, one or several structures will repeat themselves in the

image.

N N
_ 1 *y _
CORR = oo (ZZ % P(z,y) urﬂy) (4.1.2)

Yy
N:1 Z;V:1 Ty X P($7 y)

N
Pi(z) =) Plx,y) (4.1.3)
y=1
N
Py(z) = P(z,y)
z=1
Uz, [y, Oz and o, are the mean values and the standard deviations associated for each
distribution and P, and P, are defined by the equation 4.1.3.
The Local Homogeneity (Equation 4.1.4) quantifies the amount of local similarities
inside the computation window. Local homogeneity is larger for GLCMs with elements
concentrated near the diagonal, because it is a function of (z — y)?. These GLCMs
correspond to textures of organized and poorly contrasted features.
N N
HOMOG =) "> (%) (4.1.4)
z=1 y=1 K
_ et 25:1 |z —y| x P(z,y)
LN L Py

Inertia, also called second-difference moment (Equation 4.1.5) is indicative of the contrast

with K

of the GLCM. Because of the (z — y)? term, inertia is very sensitive to large differences
inside the co-occurrence matrix. High contrast regions will have a high inertia, whereas

more homogeneous regions will have a low inertia.

INR=>"%" -y P(z,y) (4.1.5)
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Uniformity (Equation 4.1.6) is sometime referred to the second-angular moment. The
lowest values of uniformity are attained when all the P(x,y) are equal, and there are
no dominant grey levels. In this case all grey levels, are equally probable. This is

characteristic of a rough texture.

N N
UNF=Y > P(z,y)’ (4.1.6)

g=lig=1

4.2 Co-occurrence matrix

Once the decomposition of the image into the energy coefficients is done, the result
is coded over n colour codes (n=64) and it will be considered as an image with its
variation of texture and tone. Each image is now subdivided, which give us 169 images
of 64X64 pixels (called ”subimages”) . On these subimages, the grey level co-occurrence
matrix is calculated in the four directions (0, 45, 90, 135 degrees) with a step of d pixels.
Results are then averaged to obtain one grey level co-occurrence matrix per subimage.
The GLCM at a given scale is calculated for the two decompositions (x and y) and the
modulus. An example of a GLCM can be seen in figure 4.4. Both GLCM are orientated

along the diagonal and the one with the wider distribution is the one representing part

Grey level co—occurrence matrix

(GLCM)
Sub-image A Sub-image B
- part of an internal wave signature - -not a part of an internal wave signature ~
- T e e 250 250

L : i 200 200
20 =" S
10 " i 150 . 150
40 [P e 100 100
50 R e : 54 o5
s e o
10 20 30 40 50 60
Grey level co-occurrence Grey level co-occurrence
matrix from A - step =1. matrix from B - step =1.

{150

° =
[l
& 100 3
o >
> g
50 @

0

0 20 40 60 0 20 40 60

gray level gray level

Figure 4.4: grey level co-occurrence matrix o = 1
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of an internal wave signature.

Influence of the distance D(d,0) The GLCM are influenced by the distance
D(d,#). The case of 8 has been discussed earlier (see section 2.2.1). d, the inter-
pixel displacement, is a variable that can contribute to a good or a bad representation
of texture. The texture representation of the internal waves through the wavelet trans-
form is composed of small curves with a width of 2 to 4 pixels. In this circumstance
the values of d has to represent best as possible the strong variation in colour as well as
the finest of the texture. In order to optimize the texture representation a few values
of d were tried out. Figure 4.5 shows statistical indices plotted for different values of
d. Tt can be seen that the value of d does not have a real influence on the statistical
distribution of the GLCM. However a small d seem to produce the greater difference
between internal waves and non-internal wave events. This conclusion can be related

to the thickness of the wanted signature.

Image25 - level2 - modulus
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5 5
x 10 x 10
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Figure 4.5: Statistical indices for modulus of the image25 level2 for different values of

d

Influence of the IWS on the statistical indices: The top right panel of the
figure 4.6(a) shows the statistical distribution of the GLCM for the image 25 modulus

at level 2. The dots represent the IWS. The characteristics of the GLCM representing
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IWS can be described by big contrasts, small entropy, and large correlation values. On
the other hand the GLCM representing NIWS can be described by a small contrast,

large entropy and small correlation values.

Influence of the internal wave orientation: The internal wave signatures of
the image25 are oriented vertically in the image. It is therefore expected that there
will be a good representation of the IWS with the x-decomposition and a very weak
or no representation at all for the y-decomposition at any scale. Figure 4.6 show the
image25 GLCM statistical representation for the x, y-decomposition and the modulus
restively. The x-decomposition and the modulus statistical distribution of the GLCM
show a large difference between IWS and NIWS. However the y-decomposition statis-
tical distributions do not match the previous results. There is almost no difference in
the distribution between the IWS and the NIWS. This result suggests that the wave

orientation can have an impact on the accuracy of the detection.
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Figure 4.6: Statistical indices for image25 level2 d = 2
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Figure 5.1: Diagram illustrating the layout of the processing

To succeed with the aim of this work, it is necessary to be able to distinguish
between the internal wave signature and the background of the SAR images. So far it
have been shown that the GLCM and the statistical indexes derived from it, offer the
opportunity to present two classes of scatter points: one representing an internal wave
signature and the other class the non internal wave signature. In order to automatically
separate the two classes the use of a classifier is needed. For this study, initially three

types of classifiers were chosen. The first of the three is based on Principal component
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analysis (PCA), the second is a K-nearest neighbour (KNN), and the last is a Multi-
layer perceptron (MLP). The three classifiers used different properties to classify the

data sets.

5.1 Principal Component analysis

To perform a recognition of possible internal wave signatures, eigenvalues were calcula-
ted from two different training sets representing "event” and "non-event” (the presence
of internal wave, and non presence of internal wave) respectively. As the general data
set is small both training sets do not exceed 20 examples of subimages. The Principal
component analysis was used on two different set of input data. Figure 5.2 and 5.3

show two examples of GLCM of both classes.

Class Event

Original - A Original - B

GLCM - A
. 250

Figure 5.2: Event class: Original iinage and GLCM (d = 3)

5.1.1 Selection technique for the eigenvalue:

Once the eigenvalues from both training sets have been calculated, the same eigenvalues
are used to perform a first approximation in the classification of an unknown GLCM.
The procedure used is as follow (see figure 5.4 for the schematic representation of the
different steps and appendix B for more detail):
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Figure 5.3: Class Non-event: Original image and GLCM (d = 3)

original GLCM using both eigenvalues ( 5.1.1).

The idea is to calculate the errors between the reconstructed GLCM and the

The first step is to decompose the original unknown GLCM. The decomposition

is done for both eigenvalues (event and non-event){ 5.1.2).

twice.

its original ( 5.1.3).

I/Vlc(tcsting set, event)

I/Vlc(t.c\\‘t.ing set,N-event)

F(rcconstru(‘tcd testing set,event)

F(reconstructcd testing set, N-cvent)

D7’./ ./(rccon:structcd testing set, event)

DZ.]‘ j(rcconstructcd testing set,N-event)

o
U’k(training set, event) x

(r(tcsting set) —

iy
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.
1 (reconstructed testing set,N-cvent)

The second step is to reconstruct the GLCM. As above the operation is done

The last step is to calculate the difference between the reconstructed GLCM and

ql(training set, uvunt,)) {a.1.1)

- \Ij(t,raining set, N-(‘\’L‘HT))

= / £ 19
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- F(t('st,ing set)
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Where I' is the GLCM, u the eigenvector, k the number of eigenvalues, ¥ the mean, and

W projection of the GLCM into the eigenspace. A result of this operation is shown in

Unknown GLCM

l

Decompose and Decompose and
reconstruct it using reconstruct it using non-
event Eigenvalues event Eigenvalues

Compare with
the original

GLCM

Compare with
the original
GLCM

Error for event

Error for non-event

Difference of
the errors

Positive
difference

Event class

None Event class

Figure 5.4: PCA classification: the different steps

figure 5.5. To make the result obvious the unknown GLCMs used are the same of those
used in the training sets. However in many cases the total error found is a lot smaller
and a threshold needs to be used to infer the classification. The use of this threshold
creates a problem: each individual classification of a whole image (512x512) requires
a different threshold. Furthermore the determination of the threshold is empirical.
However the total error value can be used as one more parameter describing the "link”

between the GLCM and the different classes.
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Figure 5.5: Result of discrimination between IW and non-IW event.

5.1.2 Classification using Principal Component analysis

Using the methods described previously a classification of the GLCM can be made.
Figure 5.6 is an example of discrimination produced by the PCA technique. To make
a distinction between the two classes a threshold has to be applied on the lower plot
presented on figure 5.6. The obvious threshold (7) has to be 7 = 0, but in many cases
it is not the most effective

To optimize the classification and reduce the influence of the wave orientation dif-
ferent classification combinations are tried out. The combinations are made by using
different wavelet representation to improve the IWS / background ratio. Another ob-
jective of the optimization is to find a consistent threshold able to classify different SAR

scenes. As before the results will be presented for the image0 and the image25.

Results: In order to try to quantify the result, confusion matrices were calculated

(see figure 5.11). Three indices are used to quantify the results:

e The total accuracy, which is the ratio between the number of correctly classified
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Figure 5.6: Discrimination between IW and non-1W part of the image2)

and the total number classified.

e The error on negative detection is the ratio between those negative events wron-
gly classified and the total number of negative events. This index shows the

proportion of negative events misclassified. classified.

e The error on positive detection is the ratio between those positive events wrougly
classified and the number of positive events. This index shows the proportion of

positive events misclassified.

Figure 5.7 show the accuracy and error of the PCA classification for the images 0 and
25 for different configurations. Of all the possibilities tried, one wavelet representation
(level2 mXY for d = 3,5, Figure 5.7(c)) illustrates the difficulty of this approach very
well. At first the general classification seems better for the image0 than for 1mage25.
In the case of image25 there is large sensitivity to the value of d. For d = 5 the total
accuracy decreases but the error of missclassification of the two classes is a lot more
acceptable than when d = 3. The result of the classification of this image for a value
of d equal to 5 is shown in figure 5.8. In the case of image0 there is no error in
the classification of the internal wave class for both value of d. This has the effect
of increasing the total accuracy of the classification. However the problem with this
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classification is shown in figure 5.9. The zone of influence of the internal wave in this
classification is too large and has produced a very important error in the classification of
the non-internal wave class. This error is due to the choice of the threshold. To perform
comparative results in this analysis both thresholds have been set to zero. However a
better value of the threshold exists for the classification of image0 (threshold= 0.15),
which gives the result shown in figure 5.10. In this corrected case the total accuracy is

above 85% with an error for the miss-classification of both classes below 10%.

[ Total nccuracy
| B Esror on nagative datact
| | Error on itive delect.

W Total accuracy
(I Error on negative cetect

PCA dassificaunn Ervor on positive defect

PCA dassification L

IS S 1

image25, d=3 image25, d=5 image0, d=3 image0, a=5 g image25, ¢=3 image25, ¢=5 image0. d=3
(a) configuration: A2 d = 3,5 (b) configuration: XY d = 3.5

Bl Toul accuracy
{00 Error on negative detect.
PCA ciassification Error on positive datect.

100 T T T T

image25, d=1 image25, d=5 image0, 8=1 image0, d=5

(¢) configiration: mXY d = 3.5

Figure 5.7: Accuracy results of the PCA classification for level2 and a threshold equal

to zero
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Figure 5.8: Illustration of the PCA classification for image 25 level2 with the configu-

ration mXY, d = 2 and a threshold equal to zero (figure 5.7(c))
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Figure 5.9: Hlustration of the PCA classification for image 0 level2 with the configura-

tion mXY, d = 2 and a threshold equal to zero (figure 5.7(c))
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Figure 5.10: Ilustration of the PCA classification for image 0 level2 with the configu-

ration m.XY, d = 2 and a threshold equal to 0.15

Summary For a correct threshold values the PCA classifications performs a good
recognition of the internal wave signature. However an accurate classification is highly
dependent on the determination of the threshold values. Furthermore a small variation
of the threshold gives a large difference in classification accuracy. The need to set a
threshold value is a very important drawback of this approach As a method of auto-
matic threshold determination could not be found, this results in a method that is too

unreliable to enable a systematic classification method to be adopted.
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5.2 K-nearest neighbour

Nearest neighbour methods have been used as an important pattern recognition tool. In
such methods, the aim is to find the nearest neighbours of an unidentified test pattern
within a hyper-sphere of predefined radius in order to determine its true class [11]. The
traditional nearest neighbours rule is shows in table 5.1 [63].

Nearest neighbour methods can detect a single or multiple number of nearest neigh-

e Out of the N training vectors, identify the k nearest neighbours. irrespective

of class label. k is chosen to be odd.

e Out of these k sample, identify the number of vectors, k;, that helong to class

w;. Obviously >, k; = k.
e Assign x to the class w; with the maximum number k; of samples.

e I[ two or more classes w;, have an equal number F of maximum nearest

neighbours, then we have a conflict.

o [or each classes involve in the conflict, we determine the distance d; between
query set © = {xy,....x,} and class w; based on the E nearest neighbours
found. Il the m™ training pattern of class w; involved in the conflict is
represented as y*™ = {y?™, ..., y.™} then the distance belween test patlern
r aund class wy is:

1 l m
= L3 )

J=1

o Assign o to class C'if its d; is the smallest.

Table 5.1: K-NN rules

bours. However the value of & is implicitly dictated by the different classes distribution;
if the different classes overlap, more than one nearest neighbours is necessary to produce
a classification (k > 1).

In order to obtain a representative classification, it is necessary to ensure that the va-
rious vectors are statistically different across classes, and the features are statistically
independent. If the above condition is not satisfied pre-processing is necessary using
techniques such as PCA, which remove the feature dependencies.

The classification of GLCM to enable the positive selection of the presence of internal

waves signature over image background and other mesoscale oceanographic features, is

52



CHAPTER 5. THE CLASSIFICATION

also conducted using a K-nearest neighbour classification technique.

Two different kNNs are used for this classification. The first is a classic kNN as presen-
ted in the second chapter. The second method is a variation on the importance of the
k nearest vectors. Instead of using the mean between the k chosen vectors to determine
the class of the unknown vector; a weight is introduced to favour the nearest vectors
from the furthest one. Classifications were carried out using different values for & and
d.

A training set and the query set are composed from the statistical indices from the
GLCMs. These statistics are normalized in an attempt to reduce the effect of relative
difference from cases to cases. The vectors used to make up the training set are from a
study showing the presence of internal waves, and manually classified.

The results will be represented as a probability of occurrences of internal waves within
a cell of 32x32 pixels (resulting in the overlap of the 64x64 windows) and confusion ma-
trices will be used to derive the accuracy of the classification. The confusion matrices
will be constructed by applying a threshold (50% ) over the probabilistic answer for
both kNN (see figure 5.11).

Note that in the previous section as in this one, two practical cases are shown. These
cases are two extremes of the representation of an internal wave on SAR images. The
strong differences in the orientation and strength of the signature in the two cases will

show up strongly the strength and weakness of the method used.

5.2.1 Results

In order to obtain the best performance from the KNN, it is necessary to have a good
tuning: i.e. the correct number of values for each vector, the correct value for A, and
an appropriate training set. To obtain the best optimization the following section will
present some results as a function of the three parameters describe above. Note that
the statistical indices are ordered in the following manner: Entropy, local homogeneity;,

Correlation, Contrast, Energy, Correlation,and angular moment.

Training set A  The training set A consists of the most basic approach. Two case
studies (namely image0 and image25) were used. So in this configuration one image is
used as training set to classify the other image and vice versa.

The result of the accuracy of this classification is presented in figure 5.12 and figure

-
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5.13 for the image25 and image0 respectively. Like the previous classification the overall
result is better for the image0 than for the image25. Another straight forward conclusion
is that there no real difference between the result of both kNN used. The results
obtained with d = 3 and k£ = 3 are in general the best result for a given configuration.
The classification for the image25 still contains a very critical miss-classification of the
positive part.

One of the internal waves presents in this image has a weak and vertical signature.
This internal wave signature is not very well extracted by the wavelet analysis and as a
consequence the statistical indices derived from this section are similar to those derived
from the section representing the background in the image. This particular internal
wave signature can then explain the poor accuracy of the classification in this part of
the image.

An examples of the classification of the image25 is presented in figure 5.14(b).

Non-Evt Event

Non-Evt 77 18 80% of total accuracy
18% of error on non-event class
Event 15 60 20% of ertor on event class

Figure 5.11: Example of a confusion matrix and the derived accuracy. The value are
! )

from the classification of image25 with step=2 k = 2 for a traditional KNN (figure 5.12)
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Figure 5.12: Image25 level2 modulus classification:
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Figure 5.13: Image0 level2 modulus classification: 50% confidence
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Figure 5.14: Image25 level2 modulus classification

Training set B In this case, the training set is made up to 600 vectors representing
the two classes with a proportion of around 50% each was used. Each of the vectors
was made up from the statistical indexes derived from the GLCM. The results of the
classifications are presented for the two case studies with different values of & and
d. The first conclusion from the results (table 5.2, 5.3) is that they are worse than
for the previous training set. This degradation is especially evident for the image25.
However this degradation does not compromise the quality of the data sets, it is a
better representation of the different internal waves signature. This training set is more
representative of the internal waves signature than the previous training set which was
very simplistic. However, a few configurations still give some good results. For example
the configuration using the wavelet representation mXY for k = 3,5 and d = 3 offers a
correct classification for both cases.

It is important to investigate the wavelet representation XY and the influence of k.
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Figure 5.15(a) and 5.15(b) show the probability of internal waves presence for the X-
and Y-decomposition for image 25 respectively for £ = 3 and d = 3 (namely case 1 ).
The results of the classification are shown in figure 5.16. Figure 5.17(a) and 5.17(b) show
the probability of internal waves presence for the X- and Y-decomposition respectively
for k =7 and d = 3 (namely case 2 ). The results of the classification are shown in
figure 5.18. For both cases the configuration is the same, except that the value of & goes
from 3 to 7. For both cases the probability of occurrence of internal wave signature
is higher for the X-decomposition than the Y-decomposition. This result underlines
again the influence of the internal wave orientation. The value of & become important
in the middle left part of the image for the Y-decomposition. At this place the Y-
decomposition shown a rough zone. In this region the interpretation depends on the
value of k that is used. As this zone is complex, the KNN need a large value of £ to be
able to give a good classification.

The tables 5.2, 5.3 present the overall results for different number of the input vectors
used to classify each sub-images: 2—4 —6: Two input values represent the entropy and
the local homogeneity, four input input values represent the first two plus the contrast
and the energy and six input values represent the previous four plus the correlation and
the angular moment. The result show that the set with up to four input values is the
best, which mean that the statistical indexes used in this configuration are the best to
represent the two classes.

The best configuration, i.e. the correct parameterisations of the &, d, and the wavelet
representation, is the wavelet representation mXY for £ = 3,5 and d = 3. This setup
works for both images and therefore will be the one to be retained in the application
chapter. Figure 5.19(a), 5.19(b) and 5.20(a), 5.20(b) show the classification using this

setup for both case studies.

Summary In general the KNN offers a better classification than the previous tech-
nique used. The improvement is based on the fact that the configuration can be fixed
and therefore the classification is independent of any further adjustment. To conclude

the retained setup is as follow:
e Choice of the training set:
— Training B. It is a broader representation of the signature in the SAR images

o Choice of the KNN (Normal or weighted):

or
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— weighted
e Choice of the k:
- k=3
e Choice of the input vector:

— input vector length is equal to 2 and 4

j oy
o0
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K=3 - Step=3

K=3 - Step=5

Input=2 Inpur=4 Input=6 Inpur=2 Input=4 Input=6
M2 | mxY | xy | m2 \ mXY | XY [ M2 mXY | XY || M2 mXY | XY | M2 [ mXY XY | M2 omXY | XY
| |
Towl o3| g00 | 688 737 ’ 813 |6646 755 | 804 | 79.5 77.3| 728 | 622666 729 | 617|710 728 | 65s
accurucy | i n Al - ot ] N
Iu‘rf:‘ 1392 | 232 | 89 | 339 ‘ 16.0 ‘ 5.3 32<1| 196 570|375 320 | 125357 285 0 89 | 392 267 | 89
N-Event | o = = | 7 i I " i I 5 I | e | P ) =
emor | 118 189 384 236 | 195 426|218 | 195 |432[[17.7| 254 |46 |325] 272 479 ] 254 | 270 (432
K=5 - Step=3 K=5 - Step=5
WY ——:— T
o 1813 | sa8 | 702 | 764 | 84s ‘67‘1 7x.z| 808 | 6661733 764 | 626666 720 | 622733 746 | 662
accuracy
l;]‘i:‘ 1392 | 285 | 89 | 3204 | 214 | 70 |302| 214 | 107[|330 | 339 ‘ 125|320 285 107339 232 12s
< |
N-F v T I I Tl ] — | L =
'\;‘;‘r‘” ‘ 1.8 | 106 | 366|207 | 136 | 414 ] 189] 133 | 40s|[180| 200 [as5]337 270 467|242 200 |40
Einhd a8 L 1 — A = i | ! . =
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Table 5.2: Result of the classification performed by the KNN of the Image25 for a
variety of different values of d and k.
K=3 - Swep=3 K=3 - Step=5
Input=2 Input=4 [nput=6 Input=2 fnput=4 [nput=6
M2 | mXY | XY [ M2 mXY XY | M2 XY XY (M2 XY | XY | M2 XY M2 | mXY NY
.
— ; ‘ ; T T .
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L b 1] | B 1 [ | I
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Table 5.3: Result of the classification perforined by the KNN of the limage() for

of different values of d and k.
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(a) Classification for X-decomposition (b) Classification for Y-decomposition

Figure 5.15: KNN output for k=3 using the X and Y configuration of the image25
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(¢) Classification at 50% confidence (d) Classification at 70% conlidence

Figure 5.16: KNN output for k=3 using the XY configuration of the image2b
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(a) Classification for X-decomposition (b) Classification for Y-decomposition

Figure 5.17: KNN output for k=7 using the X and Y configuration of the image25
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(¢) Classification at 50% confidence (d) Classification at 70% confidence

Figure 5.18: KNN output for k=7 using the XY configuration of the image25
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Figure 5.19: Result of the KNN classification of the image 25 [or k=3 using the wavelet

representation mXY.
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Figure 5.20: Result of the KNN classification ol the image 0 lor k=3 using the wavelel

representation mXY.
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5.3 Multi-Layer Perceptrons

Artificial Neural Network models have been studied for many years in the hope of achie-
ving human like performance in the field of speech and image recognition. The different
abilities of neural network have attracted many people to use it for remote sensing ap-
plications [17], [18].

The traditional parametric statistical approaches to supervised classification such as
maximum likelihood use the assumption of a multivariate Gaussian distribution. Each
class in feature space is assumed to have an n-dimensional multivariate Gaussian dis-
tribution. With these methods a problem appears when the data in the features do not
follow the assumed model.

In the Neural Network approach the problem with the assumptions do not exist and
they potentially have the ability to classify data with a better efficiency [37]. Neural
Networks applied for supervised classification are similar to the K-nearest neighbour
algorithm. The main advantage with the use of the Neural Network approach is there
is no model or distribution assumed at the start.

Many types and architectures of Neural Networks have been developed [22]. The most
popular architecture for pattern classification and recognition is the multi-layer per-
ceptron (MLP). The developments of the neural network techniques were specially due
to the increasing in computing power in the 1980’s. New types of architecture and
technique were developed such as the back-propagation MLP algorithm described by
Rumelhart [57].

5.3.1 MLP Structure

A neural network consists of a number of interconnected nodes. Each node is a simple
processing element that responds to the weighted input it receives from other modes.
The arrangement of the nodes is referred to as the networks architecture (see figure
5.21).

The resolution of a non-linear problem asks for a multi-layer structure such as the
MLP. The multi-layer structure is composed of 3 layers at least (see figure 5.21).

The design procedure for neural network pattern classifiers involves the following step:

e Define correctly the input and output of the network as well as a suitable structure

for the particular problem involve.
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Hidden layer

I/P layer O/P layer

Input Output

Figure 5.21: MLP layout

e Choose a good training method for the structure of the network. It is important

Select carefully the training set as well as the training time.

e Hind a good compromise between the training set the training time and the num-

ber of nodes, in order to provide high accuracy and good generalization.

These choices are very important for the performance of the network, but the determi-
nation of a good general structure is difficult.

The feed-forward network is composed of a hierarchy of processing unit, organized in
a series of two or more mutually exclusive sets of layers. The layer serves as a holding
site for the values applied to the network; the nodes are the element of a feature vector,
such as the texture of an image or the wavebands of a data set, etc [14]. The last layer
is the point of final state of the network is reading. Between these two layers lies zero
or more layers of hidden unit (hidden layer). Weights connect each unit in one layer to
those in the next layer (there is no feedback).

The role of the input layer is somewhat fictitious, the input layer is used only to feed
the network and distribute a separate mapping or conversion of the input data (their

weights are insignificant).

The MLP has a feed forward propagation; the information is passed through the network
via the input layer and it is modified by the weights associated with the connection.
The receiving node sums the weighted signals from all nodes to which it is connected

in the preceding layer as follows:

N@tj = ZWi’jOj (531)
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Where W ; represents the weights between node 7 and node j, and o; is the output from

node 7. The output from a given node 7 is:

0; = f(netj) (532)

Figure 5.22: Example of a sigmoid function

The function f is a non-linear sigmoid function (see figure 5.22). The sigmoid func-
tion is applied to the weighted sum of input before the signal is passed to the next layer.
When the signal reaches the output layer it forms the network output. The output of
one node is set to one, while all other nodes in the output layer are equal to zero.

The MLP is trained to recognize particular patterns. During this training the network
builds a model to generalize and predict the output from a given input. The back-
propagation is a method widely used. During the training period the output signal is
compared to the output desired then an error is deduced. The error is reinjected in the
network, and the weights of the connection are modified according to the generalized

delta rule. This process is repeated until the error reaches an acceptable value.

7 is the learning rate of the network, ¢; is an index of the rate of change of the error,
and « is the momentum parameter.

The capabilities of the neural network to be accurate, to generalize and to interpolate,
are affected by many factors. The first factor and maybe the most important and most
difficult to determine is the number of layers and nodes in the network. In general
the number of nodes in the hidden layer increases the abilities of the network to solve

complex situation but its abilities to generalize decrease. The size and the type of the
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training set is also very important. The training set has to be representative of the
entire distribution of each class. To obtain an overview of the class, a large training set
1s required, and then the training time is increased. A few methods have been developed
to compress the training time such as the delta-bar-delta rule or optimization procedure
[10],[50]. Increasing the training set increases the training time. The longer the network
is trained the more accurate it becomes but its ability to generalize decreases. There is
then a compromise to find between the training set, the architecture and the training
time required to optimize the network.

Training is accomplished by presenting the pattern to the network and determining the
output. The actual output of the network is compared to the target and an error is
derived. The error calculated is propagated backward through the network and used
to change the weight within the net. This process is repeated until the error reaches
an acceptable value. This training method is known as the back-propagation training
method. The number of hidden layers needed and the number of nodes in a hidden
layer is possibly one of the most difficult questions related to multi-layer networks. No
methodology have been found yet in order to determine these variables [30]. However
Foody [25] shows that the complexity of a given problem has to be the main driven

factor into the chose of the MLP’s architecture.

5.3.2 MLP Training and Back-propagation

Once the appropriate neural network structure has been chosen, the training strategy
has to be selected. Often during a training period the error does not converge, becomes
unstable or oscillates between two minima. This situation necessities some adjustment

in considering the following training parameters:
e ‘Training using pattern or epoch;
e Use of momentum and corresponding weight
e Learning weight and weight changes over time
e Sequential vs. random ordering of training vector
e Determining whether the training algorithm is stuck at a local energy minimuni

In many applications, it is advantageous to consider modifying the neural node

characteristic to include a bias. For example with the sigmoid function which give
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f(0) = 0.5 for net; = 0. We may wish to bias this node such as f(0) is another value.
This bias may also be part of the training. A simple model for the unit with bias is to

modify net; such as:

net; = Z Wi;0; + bias; (5.3.4)

The Generalized Delta Rule is a product-learning rule for a feedforward, multiple-layer
structured neural network that uses gradient descent to achieve training or learning by
error correction. The network weights are adjusted to minimize the error based on the
difference between the actual output and the desired output. The basic operations of

the GDR are:

¢ Apply input vector to the network

Propagate the input pattern in the network to determine the node output

Compute and propagate error measure backward through the network

e Minimize the error at each stage through the node weight adjustment

Each element of the network has its own terminology:

i: the input pattern

e 0: corresponding output pattern or response (vector)

w: network weight associated to the node-node connection

t: desired system output

Note that weight w;; denote the strength of connection from node i to unit j.

Back-propagation
For this presentation of the different steps, a 3 layer MLP s assumed.
e Present 7 from output o; of all units in network.

e Use the expression APW;; = ¢ (t? — 0?) f (neté’) 67 to update W;; for the output

layer.

e Use the expression APW;; = 5P5§6
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(Pattern) Error Measure Ep = %Z} (1) — 02’)2
(Pattern) Weight correction AWy = 070 e
Output unit oF = (" — o) [ (net?)
Internal units o = f; (nct?) >, 0P,
Output derivative (Assume sigmoidal characteristics) | f, (net]) = of (1 — o)

Table 5.4: Summary of the GDR equations for the training using the Backpropagation

technique

The method above suggests that a care must be taken in choosing the learning rate,
which is, in a gradient approaches, define as:e(n) = gg/n . To add momentum at each

iteration, we can modify the correction parameter as follow:
APW;(n+1) = 8568 + aAPWi;(n) (5.3.5)

The expression corrects the correction term (n+1) using a product of a factor « and

the correction term (n). This method can prevent oscillation in the system.

5.3.3 Results

The MLP needs like the KNN, a training set. To offer a valid comparison, the same
training set is used here. The construction of the training set for an MLP has to follow
a few rules. For example Pankiewizc [49] stipulates that two thirds of the data set
has to be used for training purpose and the rest for validation. A recommendation by
Tovinkere [65] stipulates that the number of training per classes should be up to 20
times the number of classes. The list of recommendation is large see [37] and [8] [or
more detail. To be able to follow these rules and to simplify the processus, the data set
was created using 10 different images representing around 600 sample with a repartition
of 50% between classes. The validation is provided using the two case studies: inmage0
and image25.

There are two steps in the construction of an MLP. The first is to determine how many
hidden layers will be used and the number of nodes. The second step is the number
of inputs that will offer the best configuration. To perform this construction the result
will be given using the average between the validation using image0 and image25.
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Number of hidden layer and their sizes: For this purpose a series of MLPs were
built using different numbers of hidden layers and numbers of nodes. Each MLP was
trained for 600 iterations and validated using the two case studies. It became obvious
that the case with one hidden layer was desirable for the small training time and the
accuracy of the classification. Figure 5.23 show the result for an MLP with two input
nodes, one output and different number of nodes in the hidden layer, expressed as the
mean square error calculated at each iteration . The graph show a minimization of the

error for 12 nodes in the hidden layer.
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Figure 5.23: Mean Square error for number of node in the hidden layer.

Number of input: For this purpose, the previous result with a MLP with one hidden
layer of 12 nodes and one output is used. Three new MLPs were constructed using this
parameterisation with 2—4—6 input node respectively. They were trained independently
for 600 iterations and validated using the two case studies. The result can be seen in
figure 5.24, with the mean square error calculated at each iteration. The graph show a
minimization of the error with a value of 0.08 for 6 input nodes between 250 and 300

1terations.
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Figure 5.24: Mean Square error for different number of input nodes

Validation results: The MLP used has 6 input nodes where the statistical index are
introduced into the network, one hidden layer with 12 nodes and one output node. The
results are presented for the two case studies and [or different values of d (see table
5.5).The overall results have a better accuracy than for the two previous classifier used.
even for the case of image25 which exhibits a good classification. The improvement is
significant for every values of d and for every wavelet representation.

As in the previous classification it is important to look at what is happening for the
wavelet representation XY, for two reasons: because highest accuracy is reached for
the wavelet configuration with a value of d equal to 3, which was not the case in the
classification using as KNN; and to see if the problems occurring for the KNN clas-
sification still exist. Figure 5.25(a) and 5.25(b) show the probability of occurrence of
internal wave for the X- and Y-decomposition respectively. As before, the classification
of the X-decomposition offers a good identification of the classes. In the classification
of the Y-decomposition, the left middle part of the image shows the highest values
of probability. However, the probabilities shown in figure 5.25(b) are small (less than

50%), which do not compromise the result of the X-decomposition and therefore give a
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Image 0 Image 25
Step=3 N Step=3 —
M2 m_XY :XY I\-_/l2 mXxXY XY
Total accuracy 83.3 34.8 84 83.1 87 92
Event error 1.7 7.0 8 10.7 25.0 B
N-Event error 22 7.8 19.0 18.9 8.8 8.9
Step=5 Step=5
Total accuracy 87.1 33.7 83 773 78.1 7
Event error 8.7 5.26 71 357 28.1
N-Event error 14.2 e Fi7 18.3 18.3 7

Table 5.5: MLP classification results

correct overall classification (Figure 5.26). Figure 5.27(a), 5.27(b) show the probability
of occurrence of internal wave for the X- and Y-decomposition respectively, for image
0. In this case the two signatures are mainly orientated diagonally in respect to the
image coordinate with one extremity of the smaller wave orientated horizontally. These
differences are well observable in the repartition of the probability of occurrence in the
figure 5.27(a), 5.27(b), which as for the image 25 give an overall better classification.

Now a comparison can be made with the best wavelet configuration for the KNN clas-
sification, which is the wavelet representation mXY. Figure 5.29 and 5.30 show the
result of the classification for the image0 and image25 respectively. The results for the
first case study (image0Q) are good and give a good representation of the signature of the
internal wave within the image for both thresholds: 50% and 70%. In the case of the
image25 the story is a bit different. The signature of the right hand side of the image is
completely miss-classified. This missclassification comes from the fact that this wavelet
representation is the mean between the x- and y-decomposition. As this signature is
horizontally oriented, it is not detected in the y-decomposition, therefore it is weakly
represented in the mean between the two decompositions and therefore the MLP does

not succeed in classifying this zone properly.

Summary In general the MLP offers an overall better classification than the previous

techniques described. The setup of the MLP was chosen for a good compromise between
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the accuracy of the classification and a quick training time. To conclude the preferred

configuration is as follow:
e Choice of the training set:
— Training B. It is a broader representation of the signature in the SAR images
e Choice of the number of hidden layer and their number of nodes:
— One hidden layer with 12 nodes
e Choice of the number of input:
— number of input = 6
e Best wavelet representation:

- XY

5.4 Conclusion

This chapter presented three classifiers to tackle the problem of the classification of the
internal wave signature in SAR images. The information contained in the GLCM and
statistical indices are used to discriminate between two classes (event and non-event),
using a PCA technique, two different KNN classifiers, and a MLP classifiers. The PCA
classification technique used the GLCM directly, while input to the KNN and the MLP
are statistical indices.

The recognition technique was applied to two SAR images (the image0 and image25).
The image0 shows a strong well defined internal waves signature, with orientation along
the diagonal of the scene. The image25 is the opposite, the signature of the 2 major
internal waves present are weaker, and vertical with respect to the scene orientation.
These two cases were chosen, because they represent the two extreme cases of the in-
ternal waves signature present in SAR image and provide a good test for the method

proposed.

PCA technigque: The discrimination between classes was done using the idea that it
is necessary to have as much difference as possible between the presence of internal waves
(event) and the non-presence of internal waves (non-event). The results presented for

each individual study show, the total accuracy, the percentage of the misclassification
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of the non-event and the misclassification event. The accuracy offered by this classifi-
cation is reasonable, but dependent on a particular threshold. The threshold needed to
optimize the classification is very variable, which makes generalization of the technique
difficult. In the presented results, the threshold was set at zero to offer comparative
results, but in many cases this was not the best solution to perform the most accurate

classification.

KNN technique: Two KNN techniques were used, a traditional KNN and a weigh-
ted KNN, using a range of values of k£ (k = 3, 5, 7). The results presented for each
individual cases show, the total accuracy, the percentage of the misclassification of the
non-event and the misclassification event. The accuracy offered by this classification is
slightly better in terms of accuracy, but definitely more reliable, as this method does
not need any threshold, so it offers the chance to perform a generalization of the result.
The best configuration found was with £ = 3 and with the input vector having a length

of 2 —-4.

MLP technique: The MLP use was made up with 6 input nodes, one hidden layer
containing 12 node, and one output node. This classifier offer the best classification of
the three, with a best configuration for the wavelet representation mXY and a value of

d=3.
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(a) Classification for X-decomposition (b) Classification for Y-decomposition

Figure 5.25: MLP output for k=3 using the X and Y wavelet representation of the

unage25
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Figure 5.26: MLP output for k=3 using the XY wavelet representation of the image25
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(a) Classification for X-decomposition (b) Classification for Y-decomposition

Figure 5.27: MLP output for k=3 using the X and Y wavelet representation of the

image()
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Figure 5.28: MLP output for k=3 using the XY wavelet representation of the image25
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Figure 5.29: MLP Classification of the image 0 for different cutofl values, for k=3 using
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Chapter 6

Edge extraction
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Figure 6.1: Diagram illustrating the layout of the processing

6.1 Introduction

The aims of this chapter are to investigate whether it will be possible to extract the in-
ternal wave signatures within the SAR images by considering the edges of these features
and their geometry. Feature extraction generally seeks invariance properties so that the
extraction process does not vary according to chosen conditions. Extraction iniplies
that a description of a shape, such as its position and size is available. There are many
techniques for features extraction, such as the hough transform [31], generalised hough

transform [21] and active contour techniques [15] [69]. The edges which characterize the
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internal waves take in general the form of train lines, or/and arc with different radius.
Therefore it is difficult to assign a general template for the shape of the edges. Their
direction, size and their number are very variants. The variant characteristics of the
signature are a major problem to overcome. The solution is found by partitioning the
problem with a very simple approach. The template is defined as follows: find three
edges with a distance of d with d,;, > d > d,.. between each other and presenting
pseudo-parallelism. Any predispositions of shape, orientation or size are used in the
template. However before applying the template to the edges list, pre-processing is
needed to make sure that the edge of a single potential internal wave is represented by
one and only one edge. Therefore a test of edge continuity and cooperation between

edges has to be made.

6.2 Edge tracing, Continuity and cooperation bet-

ween edges

6.2.1 Edge tracing

Edge analysis is understood to be the study of the geometry of the edge obtained from
the internal wave signatures. To allow this study to take place, the edge of the internal
wave has to be represented by one continuous line. This is where the edge tracing,

approximation to a continuous curve becomes useful.

Edge Tracing Method and Curvature Fdge tracing is one of the most fundamen-
tal subjects of image analysis. An edge can be traced by simply following the line of
high pixel values (above a given threshold). For this, any edge line of the object is
accepted as the starting point and the edge is traced.

In order to follow the edge of an object in lines there are methods like Hough and Rota-
tion Transformations [35], but because the internal wave edges do not have a classical
geometric shape such as a line or circle, these techniques have proven to be difficult
to control and tune. In this work, a simpler algorithm is presented using a hvsteresis

threshold technique (figure 6.2) instead [62].

1. Step 1: A first pixel point of a given edge is found by a primary scanning of

the image (modulus wavelet representation) and identifying a point above a given
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upper threshold (figure 6.2 and 6.3).

o

Step 2: The subsequent points are traced if the points are above a given lower

threshold

3. Step 3: The coordinates of the edge point found in step 2 are used to determine
the direction for the next search, by taking the last 10 last points found and

determining 6 from a simple linear regression.
4. Step 4: Repeat step 2 and 3 until no edge point is found.

The mathematical expressions to determine the advancing direction are as follows:

z =1z + f(cos(f)) (6.2.1)
=y + f(sin(6))
where 0 = —, —g, g, or m

The value of  and y are rounded to the closed integer. Small segments are generally

1y steresis thresholded edge

Upper threshold

T == Lower threshold

S

Figure 6.2: Hysteresis thresholding

defined by cubic polynomial functions. The fitting can be achieved by considering
a parametric form. In a parametric representation, the contour v(t) ( ie. v(t) =

(x(t),y(t))) can be approximated by two polynomials given by:

2(t) = g + bat + cot” (6.2.2)

y(t) = ay, + byt + ¢ t* (6.2.3)
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A definition of the curvature (k) at ©(0) can be obtained by considering the derivation
of the equation 6.2.2 and 6.2.3 using the form of the equation 6.2.4(see table 6.1).
Accordingly, the value of the curvature for the pixel v(0) is given by equation 6.2.5 [46].
(Vi — ()
g = 207 =l )$ (6.2.4)
[2(t) + g2 (t)]2
by — czb
k(0) = 292~ oy (6.2.5)
[ + b7)2

The knowledge of the curvature can by used to disregard edges that have a curvature

greater than a given threshold, because they do not represent an internal waves signa-

ture and are either an artifact or another unwanted feature.

If v() is a curve, then it can be express in a parametric form such as:
— L
o(t) = a(t) i +y(t)
where ¢ and j are the vector unit. At any point within this curve o(¢) the
tangent can be describe by its modulus [0(¢)] = /&2(t) + y2(¢) in the direction
o(t) = tan"(g(t)/2(t)). The curvature at this point describe the changes in the

direction p(t) with respect to changes in arc length:

k(l) = —— (6.2.6)
where s is arc length, along the curve itself. One can rewrite equation 6.2.6 as:

_ dip(t) dt

— 6.2.7
dt ds ( 7)

k(t)

The term % describe the change in the arc length with respect to ¢. If one considers
the curve as the motion of a point, then this differential defines instantaneous
change in distance with respect to time (the speed):

o = |'[,>(/:)| = ;I'TQ(/,) -+ ]]2([) (6.2.8)

and
dt 1

ds /720 + 2 (1)

By considering that o(t) = tan *(g(t)/4()). then the curvature at a point ¢(/) in

(6.2.9)

equation 6.2.9 is given by the expression 6.2.5

Table 6.1: Description of curvature [46]
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Figure 6.3: Examples from the Edge training and curvature discrimination. (a)kdge
tracing method apply the modulus from the wavelet transform. (b) The curvature
discrimination as well as edge linking technique. One can see that from (a) to (b) some

edge have been disregarded using the curvature criterium.
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6.2.2 Continuity and cooperation between edges

The purpose of continuity and cooperation between edges is to identify significant struc-
tural relationships. The operation is done by successive refinement [43] following a
hottom-up strategy. Figure 6.4 show the application of this process where the length
of the accepted gaps is proportional to the length of the two segments. Furthermore
the grouped segments from one level are considered as individual for the next level.
This strategy permits local information to be integrated into a global context. In order
to recover curvilinear segments, it is useful to identify which segments are potentially
neighbours. It then necessary that potential neighbours segment must satisfy in gene-
ral, two geometric constraints: proximity and continuity. The continuity and proximity
criteria are presented in figure 6.5. More precisely, the candidate must verify the fol-
lowing relation where ¢ = 0.1 and @ = 1 and b = 0.1 [43] are two constants which
account for the proximity. The measure of € (called measure of bending [43]) allowed is
a function of the parameter a, which controls the departure from the collinearity of the

joined curves, of b which controls the sensitivity to the length of the gaps being filled

and ¢ which is the length of the gap.

e < (a® + F*(a+ bt)) (6.2.10)

where a and [ are expressed in radius.
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Figure 6.4: Successive refinements
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To

Figure 6.5: Continuity criteria

6.2.3 Implementation

The edge detection was made using the wavelet multi-resolution technique, and linked
into chain points. Figure 6.6 show a result of this process. Some edge are dropped out
due to the poor contrast or/and broken due to poor linking. The grouping process start
by identifying for each free segment (chain points) a set of free neighbouring segments.
These selected segment satisfy constraints on measures of proximity and continuity. If
more than one segment is found to match the criteria, the one selected is the one that
minimizes the expression 6.2.10. The gap between two segments is filled using a linear

regression. This grouping process is repeated iteratively until no more grouping are

found.
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Figure 6.6: Examples from the Continuity and cooperation between edges. (A) show
the edges detection scheme using the wavelet multi-resolution technique using an au-
tomatic threshold. (B)and(C) are the result from the continuity and cooperative edge

technique.(D) show the cubic fit of the selected edges
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6.3 Parallelism of the edges

The concept of parallelism for straight lines is clear but there is a lack of an established
model for describing parallelism among curves. The following section will describe a
model for describing parallelism among curves and extract common properties among
them to serve as a measuring rod for parallelism detection [32].

This model uses the properties of the tangent of a given point part of a curve, so we
will start by introducing a new tangent representation called Direction-dependent tan-
gent (DDT), which incorporates concavity information into the tangent representation
and prohibits false matching. Based on a theorem and the tangent representation an

algorithm for parallelism detection will be presented using driving forces.

6.3.1 Direction-Dependent Tangent (DDT) Representation:

The tangent at a point on a given curve is defined as the slope at this point. The curve
(C') can be represented in a parametric way, such that the position of a point (C(k))
can by expressed by C(k) = (z(k),y(k)). Therefore the tangent vector at this point can
be defined by @ (k) = (&(k),y(k)). In this definition (k) represent the differentiation
of T with respect of t at the point k. & is a vector, but only the direction component
is of any interest. Therefore ¢ represent the orientation of the vector tangent with a
range of [—, 7.

When a curve is represented in a parametric manner, the sense in which the sequence of
the points are defined, has an influence on the sense of the tangent. If the sequence of
the points is defined form the right to the left, the tangent orientation will be different
from a sequence of the points is defined form the left to the right. In other words ¥ is
sensitive to the coding direction of the curve C. The impact is that two tangent from
two different curve can be only be compared correctly if and only if the coding direction
of the two curves is done using the same direction. In order to resolve this problem 1P
and Wong [32] create an extension to tangent definition called: Direction-Dependent
Tangent (DDT).

Figure 6.7 show the same curve with two different coding directions. By working in
either curve the tangents point toward the direction of movement and are called forward
tangents. 4(s) represents the forward tangent at Cy(s) and is defined by p,(s) =
atan2(t,(s), Y,(s)) with range [—m, 7| (atan2 is the standard C function that return

arc tangent according to the signs of x and y argument). However for implementation.
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Figure 6.7: (A) Clockwise direction while (B) show a anticlockwise coding direction.

the tangents are set to a positive value ([0 27]) and are defined by
pals) = (atan2(aq(s), §o(s)))mod 2

In addition to the tangent orientation, the sense of rotation of the tangent is important.
In other words one can record if the tangent appears to the left or the right-hand side
with respect to the sense of coding of the curve. They are called left tangent and right
tangent respectively. Figure 6.7 (A) show left tangents and figure 6.7 (B) show right
tangents.

To determine whether a tangent is left- or right-tangent is an easy task. Anti-clockwise
turning tangent orientations implies right-tangents. These tangent vectors are positi-
vely oriented. Denote the relation I'(¢4(a),¢,(b)) between two vectors a and b with

orientation ¢4(a) and @, (b) that are positively oriented,

cos(ipq(a) cos(p (b))

>0 (6.3.1)
sin(ypq(a))  sin(w,(b))

I'(ipg(a), (b)) <

if I'(pq4(8), pg(s+¢)) > 0 is satisfied, where ¢ is small positive number, then the forward
tangent at point s is a right-tangent. Otherwise, it is a left-tangent. To incorporate

this information into the tangent representation, DDT is defined as:

, pq(8) +2m il I'(ipg(5), g(s +€))= 0 .
bo(5) = (6.3.2)
©q(s) otherwise
Two DDTs %, and v, are equivalent if either one is true: Same orientation and both
left-tangent or both right-tangent (i; = ). Or/and opposite orientation with one
left- and one right-tangent (|1 — 9| = 7 or 37). Therefore the operator Left(.) (i.c.
ensure that the angle is between 0 and 27) is defined for DDTs as:
P if ¥ < 27

Left(s) = (6.3.3)
(¥ — m)mod 2m  if ¢ > 27
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The equivalency between two DDTs, can be described by 1y < 91 = 1

Left(yn) = Left(wq) & ¥y £ 1y (6.3.4)

6.3.2 Types of Parallelism and perceptual parallelism problems:

Parallelism of a curve is a more general term than for the straight line case. In fact
one can identify three types of parallelism (figure 6.8). As their properties are used
to construct the model, it is important to give a definition: a sleeper refers to a line
joining two segments (i.e. rail track) on each of the curves that are being compared.

(The procedure to select two segments to be joined is detailed is section 6.3.3.)

1. Let C, and C, denote two simple segments, if all sleepers within the segment are
of the same slope, this is sufficient condition to say that the two segment are in

translation parallelism (case 1).

2. Let C, and Cy denote two simple segments, if all sleepers established are perpen-
dicular to their DDTs, this is sufficient conditions to say that the two segment

are in railroad parallelism (case 2).

3. Let C; and C, denote two simple segments, if all sleepers are concurrent on elon-
gation, this is the sufficient condition to say this is of central similarity transform

parallelism (case 3).

Cx Cy
Gy
Cx
Parallelism due to Railroad parallelism Centrdl similarity
transform transform parallelism

Figure 6.8: Parallelism definitions

Using these strict definitions of parallel curves a set of criteria can be built. However
these definitions can only be used as a guideline. It is clear that one does not have
enough information to distinguish between railroad parallelism and central similarity
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transformation without producing further information. This suggests that the algo-
rithm should be able to detect perceptual parallel curves. Therefore Ip and Wong [32]
formulated an inspection procedure for perceptual characteristic of parallel curves.

Four perceptual characteristics have been identified, they are: Sleeper Criterion, Tan-
gent Alignment Criterion, Similarity Criterion and Elasticity Criterion. These charac-
teristics are used in terms of a minimization problem: if the curves obey enough of these

criteria them they are perceptually parallel.

The formulation of these criteria is expressed using driving forces. It was not very
practical to apply these forces to every point of each curve, because they can for instance,
be composed of infinite number of points. Instead one wants to create a list of important
salient points that exists on both sleepers. Another consideration is that every tangent
of both curves needs to have the same orientation; therefore the curves are divided into
simple segments. The point of separation of one curve to two simple segments is the
point where the curvature is null. If a curve with a form like an S is taken and the
curvature separation test applied , two simple segments are obtained, one having its

tangent in the opposite sense to the other.

Driving forces Given two simple segments, one from each curve, one is chosen as
the active segment and is approximated it by its salient points. These salient points are
then coupled to the other segment by linear interpolation. This initial match does not
have to meet all the criteria it is just a starting point. The goal was to show that the
two simple segments are perceptually parallel or not, it is necessary to find the match
for every salient points of the active segment onto the passive segment. The task of
best matching will be performed using these forces. For every pair (a salient point from
the active segment and an associate point from the passive segment), a measurement of
necessary displacement to obtain the perfect match is calculated using the four forces.
These can reinforce each other if they are in the same direction or balance each other
if they are in opposite direction. During each iteration, the resulting force is computed
and adjustment of the point associate to the salient points is made accordingly. The
process stops when no more adjustment can be made and a convergence is reached and
the test for parallelism can be applied to the two segments using a calculation of the
error with respect to a perfect case. If the error is below a given threshold: the two

simple segments are considered parallel. The four forces used for the convergence are
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as follows (figure 6.9 gives a schematic representation of these forces) [32]:

e Force one: Deflection force:
A defection force is defined as a force that acts to minimize the deviation in
coupling orientation. For a pair of parallel simple segment, salient point on C;
should be coupled to points on C; such that the sleepers joining them are either
parallel to those at the endpoint or concurrent (see figure 6.9-a ). In other words,
is the vector (Ps, F) parallel to the vector (P, P,)? This force and its direction
can be express as followed (see table 6.2 for reference): (where ¢;(S,) represent

the strength (modulus) of the force and g;(S,) its orientation.)

if (Py—Py)) - (Pa— F3)) #1

otherwise

((Ps — Fy)) x ((Ps — P5))
((Ps — 1)) x {(FPs — Ps5))

71(5p)

(6.3.5)

if [q1(Sp) > 0] - eq - IsLeft(¢;(f(Sy)))

wj(f(sp)) (6.3.6)

wj(f(sp)) + 7 otherwise

—g1 (Sp) =

Where "eq” is the equality operator and IsLeft identify if the given DDT is
a left-tangent. Note that the expression on both side of the equality operator

are boolean expression (0 or 1).

<(Pa - Pb)> X <(Pr‘ - P(1)> = (T,

<(])a - Pb)> ’ <(P(‘ - Pd)> = (:I:a

]Du, =

(;I)'(l i !/(1)

= 26)(Ye = Yd) = (Ya — yo)(¥r — 2a)

- -/I/.b)(-r'(: - IL'd) + (ya - :l/b)(yc - Ll/(i)

(Wi(Sp)) = (cos(wi(S,), sin(w4(Sy)) with vy(S)) € [0, 27]

(Wi(Sp)) x (W5 ( [(Sp))) = cos(ui(Sy))xsin(w;(f(S,)))—sin(wi(Sy)) xcos(vi( [(Sy))

Table 6.2: Expression definitions

e Tangent alignment force: For parallelism to exist, the tangents of conjugate
pairs must agree. However under perspective parallelism it is not possible to have
a perfect agreement, but one can look for a deflection small enough that the two

curve look parallel when observed by human eyes (see figure 6.9-b ). i.e. is the
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tangent 1;(f(S,)) approximately parallel to the tangent v;(Sp). The magnitude

of this force and its direction can be express as followed:

02(5p) = (Left(¥i(5p))) x (Left(;(f(Sp))) (6.3.7)

Vi (f(S if [q2(S,) > 0] - eq- IsLeft(y;(f(S.

(s, = 4 VY5 0(5,) > 0] eq- IsLeftlbs (S, oo
Y;(f(Sp)) +m otherwise

Where "eq” is the equality operator and IsLe ft identify if the given DDT is a

left-tangent. Note that the expression on both side of the equality operator are

boolean expression (0 or 1).

e Approximation error force: As described above, the curve C; is approximated
using a set of salient points C;(S,). This implies that the corresponding point
C;(Sp) is an approximation of the curve C;. If the two curves are parallel (see
figure 6.9-c ) the magnitude of this force and its direction can be expressed as

followed:
ga(Sp) = d;(f(Sp)) — d;i (£ (Sp11)) (6.3.9)

Where d;(f(Sp)) denote the perpendicular distance measured to the farthest dis-
tance on C; from the chord curve defined by C;(S,) and C;(S,4+1) (figure 6.10

()

Gilf(S)  las(S,) > 0] - eq- [TsLeft(us(S,)) - eq - IsLeft(us(f(5,))]
Y;(f(Sp)) +m otherwise

_93(5p> =
(6.3.10)

Where "eq” is the equality operator and IsLeft identify if the given DDT is a
left-tangent. Note that the expression on both side of the equality operator are

boolean expression (0 or 1).

e Elasticity force: For the pair of simple segments to being coupled, distance
between successive coupled points C;(f(S,)) are lengthened or shortened more or
less uniformly during the coupling process(see figure 6.9-d ). This force and its
direction can be express as followed:
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arcLength;(£(S,), f(Sp11)) _ arcLengthy(f(Sy-1), £(S,))

Q4(Sp) = arcLengthj(Sp, Serl) arcLengthj(5p~1, Sp)

(6.3.11)

wj(f(sp)) if [q4(5p) > D] eq - [ISLeft(wj(Sp)) ceq - ISLeft(wj(f(Sp)))}
Y;i(f(S,)) + 7 otherwise

_94(513) =
(6.3.12)

Where "eq” is the equality operator and IsLeft identify if the given DDT is a
left-tangent. Note that the expression on both side of the equality operator are

boolean expression (0 or 1).

These forces are calculated for each salient points C;(S),) and its the conjugate C;(f(S,))
at each iteration. Then a resultant of the four forces is simply calculated and the
conjugate point C;(f(S,)) are moved following the direction of the resultant forces
until a steady state is reach. The minimization procedure uses a greedy algorithm [67],
[46], which will find the best solution by an iterative process(figure 6.10). There is no
need to use a best tool for the minimization as the greedy algorithm rarely needy more

then 10 iterations to find the minima.
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(a). Force one: Deflection force

Deviation between the coupled result and the
expected orientation generates a deflection
force at P6 which 1s shown as a dotted arrow.

C‘(f S )) C‘](f(sp+1))

(c). Force three: Approximation error force

Large approximation error generate will
approximation error force to pull the coupled
points. Tliese are shown as dotted arrows.

0,

\Uj(f(sp))

(b). Force two: Tangent alignment force

The angle 0. defines the difference between the
DDT’s of the coupled points. This will generate
the tangent alignment force at C(f(S)).

Cj(f(Sp‘ )

(d). Force four: Elasticity force

Stretching (compression) of active segment
when coupled to passive segment creates
elasticity forces to bring the coupled results
closer to (further apart from) each other.

Figure 6.9: Forces-Driven correspondence matching
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Figure 6.10: Example of search for perspective parallelism. (a)show the initial mapping
of the salient pomnt from the active curve (bold) and the passive curve. (b) show the
mapping after 3 iterations; red sleepers indicate change during the iterations. (c¢)show
the mapping after G iterations (d)show the mapping alter 9 iterations (e)detection result

with parallel section mark as green.

6.3.3 The algorithm
This section summarizes the algorithm.

1. Decomposition into simple segments:Measure the DDT's along the two curves and

break the curves into simple segments

o

Pre-scanning for possible coupling between simple segments: Two simple segments
(one from each curve) may be coupled if and only if their DDTs are equivalent at
end points. In fact this process filters out a lot of combinations which otherwise
would need to be tested. However, a one to one mapping is not guaranteed.

Sometimes one simple segment can be coupled to more than one simple segment to
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the other curve. Hence, in this step, candidate simple segment pairs for parallelism

verification can be identified.

3. Detail coupling and parallelism verification: For each possible combination of
simple segments coupled at step 2, identify the segment pairs that are parallel;
two segments (one from each curve) are parallel if the coupling result along them

satisfies one of the schemes described in the parallelism test.

4. Reporting: Keep the combination that gives the longest continuous parallel sec-
tion. Report parallelism if the parallel section is longer than a certain threshold

(in this study, 55% of the curve length).

Prescanning step

In order to achieve a successful prescanning, one must relax the DDT equivalent defi-

nition given by the equation 6.3.4 by allowing some deviation.

(Left(yn)).(Left(is)) > cosleppr) & ¥ = s (6.3.13)

The threshold eppr defines how much disruption is allowed. In this study eppr has
been set to 35°. Experiences have shown that this value offers a disruption big enough
not to miss some potential coupling but at the same time, small enough in order to

eliminated every unrealistic combinations.

Location of the salient points

A large number of publications and techniques exist on polygonal approximation. A

simple technique was used as the accuracy of the approximation is not crucial [16].

Parallelism report

The step four of the algorithm reports any parallelism, however, two verifications need
to be done before any positive report can be allowed. After the force coupling phase,

C; and C; has to pass the following test in order to be considered as parallel.

e For all P, the orientation from C;(S,) to C;(Sp41) has to be similar to the orien-
tation from C;(f(Sp)) to C;(f(Sp+1))-
To make sure that the orientation described in this first property fall within the
allowed limit, the definition in the prescanning (Equation 6.3.13) was used with

the same threshold.
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e Curve C; has to be approximated by lines joining successive C;(f(S,)) with the
same degree of accuracy as curve C; is approximated by successive C;(S,).
In this second property, the error, of the approximated segment between C;(f(Sy))
and C;( f(Sp41)) by a straight line, is measured. For all points in between C;( f(S,))

and C;(f(Sp+1)), the maximum distance from the chord allowed is:

chordLength;(f(Sy), f(Sp+1))

d(f(Sp))maz = errorThreshold
(f(Sp))maz = errorThreshold x chordLength;(Sp, Sp+1)

(6.3.14)

The value of d(f(S,)) is then compared to d(f(S,))mas (see figure 6.11) to make
sure that the condition is satisfied. The values of the errorThreshold is identical
to the tolerance of approximation used in the polygonal approximation used to

derived the salient point (In this study errorThreshold = 0.4).

F(Sp) S_cl: Chord length
.‘\\ F_cl: Chord length
\‘\\ d(F(S,)): Maximum distance from
T N the Arc to the chord

F(Sy0)

Figure 6.11: Hlustration for the approximation role.
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6.4 Results

Figure 6.13 shows the overall procedure applied to the image in order to achieve our
goal: finding the edge from an internal wave signature. Results from this method can be
seen in figure 6.14 for the image25 and figure 6.15 for the image0. In these two figures,
the decomposition into simple segments is also presented, this is the initial step of the
parallelism detection. The detection of the internal wave edge in the two images is
good. Once again the detection is better for the image0 than for the other study case.
This difference of detection can be explained simply by the fact that the signatures
present in image( are very strong and produce nice and clear edges. However when
the edges can be traced in image25 the result is correct and gives a good appreciation
of the extend of the wave. For very weak signatures however such as the ones in the
right top corner, it has been impossible to find three edges parallel. The experience has
shown that two parallels edges have been found but following our model criteria this is
not enough to classify them as part of an internal wave signature.

Table 6.3 show the result of the classification. As before the total accuracy, the error of
misclassification of both classes is calculated. The classification accuracy was calculated

using the following simple approach:

e Around every pixels part of a selected edge, a window of 10 x 10 pixels is set to

100%,the rest to 0% (see figure 6.12).

e Theimage is then divided into sub-image as before and their respective probability

calculated as follows:

— 100% if the mean of this zone is superior to 50%

— 0% otherwise.
e Then the confusion matrix can be calculated.

This translation from the edge extraction and classification to a sub-image represen-
tation offers a direct comparison with previous results. Looking at the result shows that
the error for the miss-classification of the event zone is relatively high. This problem
arises from the fact that the edge recognition technique is a lot stricter in the identi-
fication of a boundary of the internal wave than the human eye. But the results offer
otherwise a very good classification: every zone classified as an internal wave really is

an internal wave signature. So one can be very confident in the interpretation of the
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Figure 6.12: Example of the pixels selection. In black are the edges identified as part
of an internals waves. In gray are the pixels selected using a 10 x 10 windows arouncd

each point of the edges.

result. This confidence is a lot higher than for the previous classification made during

Image 0

Non-Evt Event

Non-Evt | 189 5 96.0% of total accuracy
12.9% of error on event class
Event 4 27 2.5% of error on non-event class
Image 25

Non-Evt Event

93.6% of total accuracy
< 161 5
Non-Evt 16.0% of error on event class
B 9 47 3.0% of error on non-event class

Table 6.3: Confusion matrix and accuracy ol the classification in percent
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Wavelet decomposition

Modulus

'

Edge Tracing

l

Edge Discrimination

Using the curvature

'

Edge Linking & Continuity

Segments

o Linking
approximation

i

Perceptive parallelism

Simple segment —»  Salient points

|
v
Application of
the forces

Greedy algorithm

i

Output of the parallels edges

Figure 6.13: Overall procedure for the edege analysis
(=} o .
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(a) Simple segments

Figure 6.14: An example of applying the algorithin to the image 25.

(b) Triplet of parallel edges

(a) show the

totality of the simple segments. (b)Show the simple segment that are a least parallel
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(a) Simple segments

(b) Triplet of parallel edges

Figure 6.15: An example of applying the algorithm to the image 0. (a) show the totality

of the simple segments. (b)Show the simple segment that are a least parallel to two

other simple segiment.
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6.4.1 Analysis of the signature

Once there is confidence in the correct classification of an event class, the information
given by the edge can be used to extract some primary characteristic of the internal
wave itself.

Because every internal wave signature that been identified is made up of at least three
edges it is very easy to calculate the mean curvature of the triplet and from it the wave
direction of propagation. The propagation is oriented away from the centre of curva-
ture. The curvature is calculated using the salient point of the edges and from it, the
mean centre of curvature is derived by the projection of the vectors in image space and
finding their intersection. This point and the set of points which represent the middle
of each edge a line is interpolated. From this line and the horizontal (image axes) the
angle of propagation can be inferred. Figure 6.16 shows the two case studies images

with arrows representing the approximate sense of propagation.

From the same selected edge it is possible to find the wavelength of the solitons that
compose the wave. By taking a transect along the line of propagation interpolated ear-
lier on the original image, it is possible to extract the backscatter of the images across
the internal wave [36]. The backscatter is then normalized by the mean backscatter
of the image. From it a frequency representation of the transect is calculated using a
wavelet decomposition. Figure 6.17 and 6.18 give two example of the profile with the
wavelength of the internal wave for image25. The same can be see in figure 6.19 for the
image0. The position of the transect can be see in figure 6.16. From these transect it
is possible to comment on the type of signature. Here the signature is a +/— signature

as detailed in the first chapter and is the result of an hydrostatic interaction.

From the knowledge of the position of the internal wave's solitons it would be possible
to make a deeper analysis of the wave if one had the tide time table, the mixed layer
depth, or/and the bathymetri, etc... For example with more knowledge of the area it
Is possible to use the free homogeneous KdV equation, which describe the evolution of

the wave profile to model the wave.
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Profie 1

—

[FEizise=]

Profile 2

Frofile

Figure 6.16: Position of the transect used and direction of propagation ol the waves.

(A)lmage25. (B)Image()
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Transect

Amplitude

-4 1 1 1 1
20 40 60 80 100 120 140
length (pixels)

WAVELET SPECTRUM c) Global Wavelet Spectrum

| Period=19.8 pixels

Period (pixels)

15

20 40 60 80 100 120 140
length (pixels) Power

Figure 6.17: Spectrum using wavelet decomposition for the profile 1 of the image25.
The dotted line represent the 95% level. Here the period is equal to 19.8 pixels which

correspond a wavelength of 1.980K'm
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Figure 6.18: Spectrum using wavelet decomposition for the profile 2 of the image25.
The dotted line represent the 95% level. Here the period is equal to 22.5 pixels which

correspond a wavelength of 2.250Km
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Transect

Amplitude

=

_3 i 1 1 1
50 100 150 200
length (pixels)
WAVELET SPECTRUM c) Global Wavelet Spectrum

Period=39.4 pixel

et
50 100 150 200 0 5
length (pixels) Power

Period (pixels)

10

Figure 6.19: Spectrum using wavelet decomposition for the profile 1 of the image0.
The dotted line represent the 95% level. Here the period is equal to 39.4 pixels which

correspond a wavelength of 3.940Km
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6.5 Conclusion

We have shown using a totally different approach that the internal wave signature can
be recognizable by studying the geometry of the edges present in the image. This
approach provides good confidence level for the detection of internal wave, as it has
a strong dependency on the number of edges needed and their position. From this
technique we have shown that the knowledge of the position of the edge can be used
to determine primary information about the wave, such as its wavelength and sense of
propagation. Using the transect across the wave it is possible to comment on the type

of signature as well.




CHAPTER 7. APPLICATIONS OF THE INTERNAL WAVE RECOGNITION
SCHEMES

Chapter 7

Applications of the Internal Wave
recognition schemes

Analysis

Internal
NO Wave ?

Figure 7.1: Diagram illustrating the layout of the processing

7.1 Introduction

The aim of this research was to move from a subjective manual detection of internal
waves toward a computed interpretation of the grey scale level of the images. Such
detection will ease the workload as well as decrease the cost of the processing by reducing
the manpower. Furthermore the scheme presented in this work offers a first step towards
providing an objective rather than a human interpretation of the SAR images. It does

provide the possibility to characterise the different type of signatures. To do this, a
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series of processing and classification systems have been developed.

The processing can be divided into two categories: the use of texture to make the
discrimination and the analysis of the geometry of the edge found in the image (see
table 7.1). Both categories use the output of the wavelet multi-resolution analysis

technique to filter out the possible internal wave signature.

1. Textural analysis of the iinage.
e Gray Level co-occurrence matrix
Representation of the textures
e (Classifications:
— PCA: Use the GLCM as input.
— KNN: Use the statistical indexes as input.
Do not need of any training.
— MLP Use the statistical indexes as input.
Need of any Training.
2. Geometric analysis of the edge found within the image.
e Edge tracing technique:
Using an hysteresis threshold.

e Discrimination using the edge curvature and size

e Parallelism technique

Table 7.1: Overview of the techniques used.

The optimization and parameterisation of the different step of each processes used
have been explained in the previous chapters. It is however necessary to note that in
the application of the scheme, the PCA classification will not be used. The reason is
that this approach cannot be made fully automatic. The threshold required for the
classification cannot be adjusted automatically. As one of the objectives of this work is

to create an automatic recognition technique, this technique was not retained.

7.1.1 Characterization of the signature using texture

Before any classification scheme can be used, it is necessary to characterize the object
to be classified in the simplest manner possible. In this work it has been proposed to
do this using the Grey Level Co-occurrence matrix representation. From the GLCM,
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statistical indexes can be derived, which represent the organization of the grey level in
these regions. Using these indexes, six values can be used to characteristic an event i.e
the presence of an internal wave signature or a non-event. This discrimination approach
needed three values to be set, they are: the size of the studied zone, the number of grey
levels, and the displacement used in the make up of the GLCM. This technique was

presented in chapter 4 and the values retained were:
e The size of the studied zone: 64 x 64 pixels
e The number of colours: 32

e The displacement: 3 — 5 pixels

7.1.2 The classifiers

Now that the Event, Non-event zone can be represented by six parameters, the need
for a decision making tool is necessary. In chapter 5 three classifiers technique were
presented: The PCA, the KNN and the MLP. It has been stated that the first of these

three techniques will not be applied here, because of its incapacity to be automated.

KNN: The objective of the KNN is to find the k nearest neighbours of an unidentified
test pattern within a hyper-sphere of predefined radius in order to determine its true
class. The classification from a KNN is dependent on two things, excepting the set of
known vectors: the length of the input vector and the number of neighbours used. To
determine these parameters a series of tests for accuracy have been carried out using
the two case studies (imageQ and image25), for different setups. Along with the setup

of the KNN different wavelet representations have also been tested.
e Length of the input vector: 3
e Number of neighbours used: 3

o Best wavelet representation: mXY

MLP: The MLP classifier uses a training set where all the classes are correctly re-
presented to determine and learn the relationship between classes. The MLP, in this
study uses the same training set as the KNN and as for the KNN some paranieters
in its construction need to be set. The first parameter is the architecture: i.e. the
number of input nodes, layers and output nodes. The second important aspect of the
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construction is the training. The MLP needs to determine a generalization rule to dis-
criminate between classes. The training needs to be long enough to enable the learning
process but not too long; otherwise the generalization is not sufficient. To perform the
optimized construction a series of tests using different configurations and looking at
the mean square error was made. It was necessary to perform the test to see which
wavelet representations were producing the best classification. [ was found that the

best configuration was:

Number of input nodes: 6

Number hidden layer and nodes : 1 — 12

Number of output node: 1

Best wavelet representation: XY

7.1.3 Geometric analysis approach

The geometrical analysis uses a totally different concept. Here, the edges present in
the image, rather than the texture representation are investigated. The goal is to
identify which edges are parts of an internal wave signature and which are not. The
starting point was to apply an edge tracing technique using a hysteresis threshold on
the second level modulus. Then a series of tests on the curvature and direction of the
edge were performed to eliminate some and join others. When only significant edges
were remaining a procedure to determine their mutual parallelism was applied. The last
step was to retain only edges, which were parallel with at least two other edges. From
here it was then possible to extract information from the edge such as the direction and

wavelength of the internal wave signature.

7.2 Results of the application

In this part of the work, the above techniques are applied to several unseen images and
the accuracy and the robustness of the classification are measured. The results from six
images, enables the successes and the problems of the approaches in classifying internal

wave signatures on SAR images to be illustrated.
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The images: The images used here are named as images A to E. They like the two
cases study, are made from a zone of 512 x 512 pixels selected from an original SAR
image. Table 7.2 details the information of the original image from which the six image
are coming from and figure 7.2 show their location on a bathymetric plot. Figure 7.3,

74,75, 7.6, 7.7, 7.8 show the different images and their masks.
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Figure 7.2: Bathymetry plot and location of the images

L1z



CHAPTER 7. APPLICATIONS OF THE INTERNAL WAVE RECOGNITION

SCHEMES

Image A | Image B Image C | Image D | ImageE Image F
Orbit 16594 27596 27596 2781 12194 11965
Frame 2853 0945 0945 2637 0819 0819

Lat 374 47.4 47.7 48 41.21 41.25

Long 351.1 3533 353.6 353 -8.8 -9.56
Date 17-09-94 | 30-07-00 | 2-08-00 | 18-08-00 | 19-8-97 3-08-97
Time 11:18 22:34 11:20 11:16 22:49 22 :52

Table 7.2: Information of the original images

7.2.1 The classifications using the KNN and MLP:

The classification uses the optimimum setup for the MLP and the KNN. The result can

be seen in table 7.3. It is clear that the results are mixed.

Image A [mage B Image C Image D Image E Image F
|
MLP | KNN | MLP | KNN | MLP | KNN | MLP | KNN [ MLP | KNN | MLP | KNN
I
Total ¢ 51 808|756 | 768 | 813 | 804 | 76.0 | 72.4 | 862 | 853 | 82 )
accuracy
Geeh! s|21t60195]317]) 00| 00 209|255 00| 43 |146]| 195
eiTor
N-Event | |4 18.6 1255 | 21.1 ] 206 | 21.6 | 247 | 280 | 153 | 158 | 184 | 174
error

Table 7.3: Accuracy of the KNN and MLP classification for the six images. The red

value represent a good classification.
total accuracy above 80%. whereas the green for a total accuracy below 80%

corresponding confusion matrix in appendix C, figure C'.1

The red values represent classilication with a

Image A: This image come from an original SAR scene taken in late sunmimer 1994,

with a central coordinate equal to 37.4 degree north by 351.1 degree west. This places
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the image in the Liberian region (offshore of Portugal). The time of the acquisition
and the presence of internal wave coincide with the statistical study of Dokken [23].
The image can be seen in figure 7.3(b), and its mask! (figure 7.3(a)) show clearly the
presence of the internal signature . Except for the internal wave signature the zone of
study is quite featureless with a background of the backscatter almost uniform. The
internal wave signature is orientated vertically with respect to the image axis.

The classification shows an accuracy of above 80% for both classifiers with a better
performance of the MLP than the KNN. The difference of the two classification come
from the missclassification of the events class, which is larger in the KNN result (21.6%
compare to 13.5% for the MLP). This difference in accuracy comes from the defini-
tion of the internal waves representation used. In the case where the internal waves
signatures are mainly oriented along one axes of the image, the XY representation and
subsequently classification has a better accuracy on event class (see chapter 5), as each
orientation are classified independently, and combined together to give an total clas-
sification. Because the KNN uses the mXY wavelet representation and the MLP the
XY representation, it will be fair to say that the internal wave orientation is better
understood by the second configuration. The classification can be seen in figure 7.4(b),

7.4(c) and 7.4(d)

f
/

(a) Mask (l)) Il‘llilg(‘

Figure 7.3: lmage A

"The mask of a given scene shows a sketch of the internals waves signatures present in the scene.
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Figure 7.4: Image A classification using the MLP classifier. (a) Mask of the internal
wave present (visual interpretation). (b) Map of percentage probability of internal wave

presence in the image. {c¢)-(d) classification using two different threshold.

Image B: This image come from an original SAR scene taken in summer 2000, with
a central coordinate equal to 47.4 degree north by 353.6 degree west. This places the
image in the Bay of Biscay (offshore of France). The time of the acquisition and the
presence of internal wave coincide with the statistical study of Dokken [23]. The image
can be seen in figure 7.5(b), and its mask (figure 7.5(a)) show clearly the presence of
the internal signature. In this case the internal wave signatures are complex and both
vertically and horizontally oriented respect to the image axis. Some zone of interaction
between the internal wave can be seen in the middle part of the image. In addition to
the internal wave signature the backscatter from other region is complex as well. Large
regions of rough surface can be seen. The cause of this roughness is not very clear.
It can be linked to a high sea state, but there is no presence of swell. It may be the

presence of a very strong dynamical process that occurs at a small scale, along with
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attenuated internal wave signature. In such a case it is difficult to clearly define the
boundary of the internal signature on part of the image.

The classification shows an accuracy of above 80% for both classifiers with a better
performance of the KNN on none-event classes (25.54.6% compare to 21.19% for the
KNN) whereas the MLP show a better accuracy for the event classes (21.6% compare to
13.5% for the MLP). The difference in accuracy for both event and none-event classes
come from the complexity of the internal waves signatures in the images as well as the
different configuration used. In the case of the XY representation, the classification
i1s more sensitive to the variation of gray tone, but miss-classified to much zone with
strong roughness, which are not due to internal wave signature, whereas in the case of
the mXY classification, the sensibility over the gray tone is too much reduce, which
decrease the accuracy for the event classes. In such image, the choice of the configuration
and classifier used is totally dependant of the type of accuracy wanted. Depending on
the type of application, one would prefer having a better accuracy for the event or the

none-event.

(a) Mask (b) Image

Figure 7.5: lmage B

Image C: This image come from an original SAR scene taken in late summer 2000,
with a central coordinate equal to 47.7 degree north by 353.6 degree west. This places
the image in the Liberian region (offshore of Portugal). The time of the acquisition
and the presence of internal wave coincide with the statistical study of Dokken [23].

The image can be seen in figure 7.6(a), and its mask (figure 7.6(b)) show clearly the
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presence of the internal signature. Expect for the internal wave signature the zone of
study is quite feature less with a background of the backscatter almost uniform. The
internal wave signature is orientated diagonally respect to the image axis.

The classification shows an accuracy of above 80% for both classifiers with a marginally
better performance of the KNN than the MLP. The difference of the two classification
come from the miss-classification of the non-events class, which is larger in the MLP
result (20.5% compare to 19.5% for the KNN). As before the XY representation, offer
the best representation of the various internal wave orientations. In a case where the
internal wave is diagonally oriented, both wavelet X- and Y-decomposition will have
some of its representation. Taking the mean of these decompositions seems to reinforce
the signal. It should be note that in this case the error for miss-classification of the event
class is null. This result can be explained by the well defined boundary of the internal
waves present in the images, a homogeneous background and a good representation in

the training set.

l

(a) Mask (b) Image

Figure 7.6: Image C

Image D: This image come from an original SAR scene taken in late summer 2000,
with a central coordinate equal to 48 degree north by 353.3 degree west. This places
the image in the north of Bay of Biscay (offshore of France). The image can be seen
in figure 7.7(b), and its mask (figure 7.7(a)) show clearly the presence of the internal
signature. In this case the internal wave signatures are complex and vertically oriented

with respect to the image axis. Some zone of interaction between the internal waves
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can be seen in the middle part of the image. Four internal waves signatures can be
identified, three of them going from the left to the right, and the last one going from
the right to the left which interacts with the first signature. In general the backscatter
1s complex as well. A large region of shadow wind can be seen in the bottom of the
image. Again in such a case it is difficult on some part of the image to clearly define
the boundary of the internal signature.

The classification shows an accuracy of below 80% for both classifiers with a better
performance of the MLP than the KNN. In this case the large difference in accuracy
of the classifications come from the miss-classification of the events and the non-event
class, which is larger in the KNN result (25.5% compare to 20.9% for the MLP for the
event class and 28% compare to 24.7% for the MLP for the non-event class). Both

wavelet representations give a bad result.

QK\k//

(a) Mask (b) Image

Figure 7.7: Image D

Image E: This image come from an original SAR scene taken in August 1997, with a
central coordinaté equal to 41.2 degree north by —8.8 degree west. This places the image
in the Liberian region (offshore of Portugal). The image can be seen in figure7.8(a),
and its mask (figure 7.8(b)) show clearly the presence of one internal signature which
is vertical oriented respect to the image axis. Expect from the internal wave signature
the zone of study is quit feature less, dominated by shadow wind, with a background
of the backscatter almost uniform.

The classification show an accuracy of above 80% for both classifier with a better
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performance of the MLP than the KNN. The large difference of the two classification
come from the miss-classification of the non-events class, which is larger in the KNN
result (20.1% compare to 15% for the MLP). The error of miss-classification equal to not
for the event class and the uniform background and the strong presence of the signature
can explain the good classification. It is in this case easy to determine the boundary of
the wave. The orientation of the wave is better suited to the XY wavelet configuration
rather than the mXY . The wave being vertically oriented does not present any signal
for the Y-decomposition and therefore alter negatively it presence when the mean of
the two decompositions are made. The classification can be seen in figure 7.9(b), 7.9(c)

and 7.9(d)

(a) Mask (b) Image

Figure 7.8: Image E
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Figure 7.9: Image I classification using the MLP classifier. (a) Mask ol the internal
wave present (visual interpretation). (b) Map of percentage probability of internal wave

presence in the image. (¢)-(d) classification using two different threshold.
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(a) Mask (h) Iimage

Figure 7.10: Image F

Image F: This image come from an original SAR scene taken in August 1997, with
a central coordinate equal to 41.2 degree north by —9.5 degree west. This places the
image in the Liberian region (offshore of Portugal). This image is very close to the
previous case. The image can be seen in figure 7.10(a), and its mask (figure 7.10(b))
show clearly the presence of two internal signatures which are vertical oriented respect
to the image axis. Expect from the internal wave signature the zone of study is quit
feature less, with a background of the backscatter almost uniform. This image is also
very similar for the study case image25.

The classification show an accuracy of above 80% for both classifier with a better
performance of the MLP than the KNN. The large difference of the two classification
come from the miss-classification of the events class, which is larger in the KNN result
(24.4% compare to 15.2% for the MLP). It is in this case easy to determine the boundary
of the wave. The orientation of the wave is better suited to the XY wavelet configuration
rather than the mXY. The wave being vertically oriented does not present any signal
for the Y-decomposition and therefore alter negatively it presence when the mean of

the two decompositions are made.

Conclusion

In this section two different classifiers with their own configurations have been applied
to different SAR images to illustrate their potential to generate accurate recognition.

The classifications produce by the MLP are in general more accurate than the ones from
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the KNN. But the MLP like the KNN fails to give correct classification when complex
features and/or busy background are present in the image. This failure could be partly

overcome by using a larger training set.

7.2.2 Edge detections and parallelism study

In this part of the application chapter, a totally different approach has been taken, by
looking at the edge present in the images. The method is detailed in chapter 6 and
an overview of the processing can be seen in table 6.13. The probability of occurrence
of internal wave signature are calculated using the same simple approach as described
earlier, and can be seen in table 7.4. A visualization of the selected edges can be seen
for the image A— B—C — D — FE — F in figures 7.11(b),7.12(b),7.13(b), 7.14(b), 7.15(b)
and 7.16(b) respectively.

The total accuracy (table 7.4) show a net improvement compared to the previous clas-
sification shown in table 7.3. This difference can be attributed to the low error on the
miss-classification of the non-events. However, despite these good results the error on
miss-classification of the event class is higher that previously. This error is the result of
very strict roles in the determination of the internal wave’s signature. The edge detec-
tion technique produces much narrower boundary than the other classification, which
increase the confidence level on event classification.

As before the complexity of the classified image is an important factor. The simpler the
feature within the image, the more the classification gives a good result. The strength
of the signature is important as well. The more the internal wave is strongly represented
in the image the more chance there is of detecting it. These problem can be identified
by comparing the result of the image E or £ (figure 7.15(b) and 7.16(b)) to the other
image (figure 7.11(b),7.12(b),7.13(b),7.14(b) ).
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Image | Image | Image | Image | Image | Image
A B C D E F
Totl | g5 | g3 | 95 79 97 | 933
accuracy L
Event 40 | 578 | 30 | 691 | 252 | 25.1
error g
NEvEE ) » gl 3z | el o 1.8
eIrror

Table 7.4: Accuracy of the edge detection

 f
/

(a) Mask (b) Edges

Figure 7.11: edge selection for image A

=== P

(a) Mask (h) Edges

Figure 7.12: Ldge selection for image B

123



CHAPTER 7. APPLICATIONS OF THIZ INTERNAL WAVE RECOGNITION
SCHEMES

(a) Mask (b) Edges

Figure 7.13: Edge sclection for image C

Vo

(a) Mask (h) Edges

Figure 7.14: Edge selection for image D
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.

(a) Mask (b) Edges

Figure 7.15: Edge selection for image E

N

(a) Mask (h) Edges

Figure 7.16: Edge selection for image F
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Determination of the direction and the wavelength

The edge detection technique allows a more detailed recognition of possible internal
wave signatures. This method detects the presence of the internal wave by looking at
the possible edges produced by the waves. Therefore it is possible, using the location
and characteristics of this edge to derive primary information about the detected wave.
The approach to this analysis was detailed in chapter 6. Two examples of the internal
wave detected signature are shown.

Figure 7.17 and 7.19, show the position of the transect used for the determination of
the wavelength of the wave packet for image A and E respectively. The wavelet power
spectrum of these transect are illustrated in figure 7.18 and 7.20. The wave packet
have respectively a wavelength of 2.49Km and 2.26 Km. But the study normalizes
backscatter, so it is possible to identify type of processes responsible for the signature.
In these two examples the mechanism is identical and identified as the hydrostatic
interaction between the internal wave and the surface wave. The backscatter transect
offers the possibility to measure the extent of the wave packet, which is the length of
the section of the transect where the significant wavelength is represented in the wavelet
spectrum. It is for these cases approximately equal to 16 K'm and 15K m.

The kl;owledge of the edges that make up the internal wave signature can be used to
determine the direction of the wave. This can be seen from figure 7.17 and 7.19 where
an arrow represent the approximate direction of the wave calculated using the curvature

of the edge.
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Figure 7.17: Profile and direction for image A
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Figure 7.19: Profile and direction for image I
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Figure 7.20: Spectrum using wavelet decomposition for the profile 1 ol the imagel’.
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7.3 Conclusion

In this chapter, six practical applications of the different classifications used have been
described. The overall result offers a good representation of the success and failure of
the different classification.

The classifications produce by the MLP are in general more accurate than the ones from
the KNN. But the failure of the correct classification of image B and D have the same
cause for both classifiers. These two images have complex features. These complex
feature create two problems: it is difficult to produce a fair manual classification with
a correct delimitation of the internal waves signature boundaries. The second problem
is that both classifiers use a textural representation of the zone, and it is possible that
this representation does not discriminate enough between event and non-event zone for
such images.

The classification using the edge geometry produced the best results. This recognition
scheme give a very high confidence level about the detect signature but the contrast
between the internal signature and the background should be high enough to be able
to trace the edges. This approach enables a mapping of the edge which allows an
analysis of the wave packet. An analysis of the coherent length, wavelength, direction
of propagation and type of signature inferred using the position of the edges has been

made.
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Chapter 8

Summary

8.1 Introduction

The importance of understanding and predicting internal waves for both the offshore
engineering and the oceanographic sciences is not matched by our ability to correctly
model such phenomena, primary because of a lack of information. The low number of
processed satellite scenes does not offer enough information to improve dramatically
our understanding and forecasting abilities. In response to these limitations, this re-
search has focused on the development of an automatic detection and analysis scheme
for internal wave signatures in SAR images. No automatic method for the recognition
of oceanic features exists, therefore, the major novelty of the research lies in the auto-
matic extraction and analysis of internal wave signature from SAR imagery. This new
detection technique has the potential to reduce the cost and manpower required for
the processing of satellite images for oceanographic purposes and provides an objective
technique that will assist analysis and understanding of internal waves

The development of automatic methods to classify features within satellite imagery
and to quantify their characteristics has relied on pattern recognition techniques. The
difficulties in this problem were linked to the variant nature of the parameters of the
signature produced by the wave in SAR imagery e.g. their length, orientation, strength,
and local shape variation.To tackle these difficulties, two main approaches have been
studied. A recognition technique based on texture has been developed in three parts:
the segmentation, the characterization and the classification. The segmentation is pro-
duced using a multiscale edge detection, with a wavelet transform implemented filter.
Statistical indices, derived from the GLCMs of the energy coeflicient, offer a characte-
rization relatively independent of target variation. The information contained in the

GLCM and statistical indices are used to discriminate between two classes (event and

130



CHAPTER 8. SUMMARY

non-event), using a PCA technique, two different KNN classifiers and a MLP. The PCA
classification technique used the GLCM directly, while the KNN and MLP classifiers are
fed with statistical indices. The second approach is based on the edge geometry found
in the images using a multiscale edge detection. This approach searches for internal
wave signatures represented by at least three edges parallel to each other. Figure 8.1
shows the overall steps presented in this thesis.

The recognition techniques were applied to two SAR images (the image0 and image25).
The image0 shows a strong well defined internal waves signature, with orientation along
the diagonal of the scene. The image25 is the opposite, the signature of the 2 major
internal waves present are weaker, and vertical with respect to the scene orientation.
These two cases were chosen because they represent the two limits in the internal wave’s
signature range and provide a good test for the method proposed. Once each technique
has been tuned, a series of unseen images are classified to offer quantitative accuracy

of the different setups.

8.2 The Results

In the pre-processing section the issue about the strength and the orientation of the
wave has been raised. A weak vertically or horizontally oriented wave is not detected
with the same strength by the x and y decomposition. This discrimination shows up
in the expression of the modulus event when corrections are applied. The left side
internal wave signature present in image25 is a good example of such problem. As its
detection is weak, its GLCM and the derived indices do not really show the signature.
This cascading problem reduces the chance of a good classification.

The GLCM derived from the energy coeflicient were calculated using different distances
d. The statistical indices derived from these GLCM show that small values of d offer a
better representation of the texture, independent of the decomposition scale and gray
scale used.

In this work different recognition tools have been used. General trends in the classifi-
cation for all the classification tools show that the shape and strength of the internal
wave's signature is important. A strong and diagonally oriented signature is easily re-
cognized over the background. However for vertically or horizontally orientated wave,
which are weakly characterized by the GLCM and consequently by the statistical in-

dices, the classification produced poor results.
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Choice of the configuration and tuning:

PCA technique: The discrimination between classes was done by maximising the diffe-
rence between the presence of internal waves (event) and the non-presence of internal
waves (non-event). The results presented for each individual study show, the total
accuracy in percent, the percentage of the misclassification of the non-event and the
misclassification event. The accuracy offered by this classification is reasonable, but de-
pendent on a particular threshold. The threshold needed to optimize the classification
is very variable, which makes generalization of the technique difficult. In the presented
results, the threshold was set at zero to offer comparative results, but in many cases
this was not the best solution to perform the most accurate classification.

KNN technique: Two KNN techniques were first evaluated, a traditional KNN and a
weighted KNN, using a range of values of k (k =2, 5,7, 9and 11). The results presented
for each individual cases show, the total accuracy, the percentage of the misclassification
of the non-event and the misclassification event. The accuracy of the method is more
reliable, as this method does not need any threshold, so it offers the chance to perform
a generalization of the result. The weighted KNN has been chosen for its better perfor-
mance than the normal KNN. After this initial choice the KNN was tuned to improve

the configuration using a larger training set. The best configuration found was:
e Length of the input vector: 3
e Number of neighbours used: 3
e Best wavelet representation: mXY

MLP technique: The MLP in the study uses the same training set as the KNN. Evalua-
tion procedures were designed to determine the different parameters, and the optimum
architecture of the MLP, i.e. input node, layers and output node, as well as length
of the training. The second important aspect of the construction of the MLP is the

training. The best parameterisation found for the MLP is:
e Number of input nodes: 6
e Number hidden layer and nodes : 1 — 12

e Number of output node: 1
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e Best wavelet representation: XY

FEdge analysis technique: The geometrical analysis uses a totally different concept. The
goal is to identify which edges are parts of an internal wave signature and which are not.
The starting point was to apply an edge tracing technique using a hysteresis threshold
to the second level modulus of the wavelet decomposition. Then a series of tests on the
curvature and direction of the edge were performed to eliminate some and join others.
When only significant edges were remaining a procedure to determine their mutual pa-
rallelism was applied. The last step was to retain only edges, which were parallel with
at least two other edges. From here it was then possible to extract information from

the edge such as the direction and wavelength of the internal wave signature.

Application of the different techniques:

These approaches have been applied to different SAR images to illustrate its potential
to generate accurate recognition. The classifications produce by the MLP are in general
more accurate than the ones from the KNN. But the MLP like the KNN fails to give
correct classification when complex features and/or busy background are present in the
image.

The classification using the edge geometry produced the best results. This recognition
scheme gives a very high confidence level about the detected signature but it requires
the ratio between the internal signature and the background to be high enough to be
able to trace the edges. This approach produced a mapping of the edge which allows
an analysis of the wave packet. The demonstration of the wavelength, direction of
propagation and type of signature inferred using the position of the edges have been

made.
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CHAPTER 8. SUMMARY

8.3 Future works

Results presented in this work have demonstrated that the combination of either tex-
tural analysis with classifier or edge geometry analysis can provide the recognition of
internal wave signatures with a satisfactory accuracy. However a lot of ground needs to
be covered before any operational recognition tool can be produced.

This work has laid the foundation towards a more accurate and operational system.
One of the most obvious improvements will be to use both main approaches and com-
bine them into a single system. Such a system will not be very different from the one
proposed in this work. Instead of having an independent decision made from each of
the approaches, a single test could be made incorporating the information from both
approaches (Edge analysis and Texture classification). Another easy improvement can
be made by having a larger and more representative training set. The extension of the
training set could be made manually by adding other scenes. Information from the time
of the year and the location of the scene to be classified can be used in order to select
the relevant training set. One can construct a series of training sets with respect to
period of the year or/and place. These different training set will be more representative
of the internal waves present in the area as the similarity between internal waves from
the same place is important. Another improvement would be to add further external
information to the system such as wind, bathymetry, sea state, etc when available. In
adding this information the system could recognize for example that in summer or late
summer the likelihood of the formation of internal waves is much greater than in winter.
For example the effect of the wind direction on the internal wave signature [7] can be
introduced and hence improved the classification. In additional information could also
increase the number of parameters inferred from the internal wave. By knowing the
bathymetry it is possible to obtain an approximation of the mixed-layer depth [52].
Improvement can be made in a more fundamental manner, by a modifying of the ap-
proach. It has been shown that the edge analysis technique was a lot more reliable
than the textural approach; therefore it seems logical to concentrate more effort on
that technique. The approach used to find and infer the information of edges within
the images is very simple (It was part of the attraction of the method), however in a
very clustered image it has sonie limitations. A better system to trace and link edges
could be developed in order to distinguish between real feature edges and artifacts due

to a high sea state. Then each edge found could be used in an algorithm which will
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calculate the wave propagation and therefore find the other edge. Such an approach
could be implemented using either an active contour technique or an hopfield neural
network. The active contour technique needs boundary conditions to be specified (zone
of research, initial state) which could not be successfully stated. However this approach
could be pursued by using an hopfield neural network as it shows potential in reco-
gnizing changes in features with time ([17] and [18]). This work begins the process
of analysing the classified signature by demonstrating the retrieval of the orientation,
wavelength, etc... It will be possible to used this information in an internal wave model

using for example the KDV theory (Kroteweg-de Vries equation) [48] [5] [6] [61].

8.4 Conclusion

The importance and need for information about internal waves has been discussed in
the introduction as well as at the start of this chapter. Despite its importance for
both the oceanographic and engineering world, very few direct measurements are avai-
lable and our understanding about their implications in the general ocean circulation
is poor. This work was motivated by the requirement to offer an answer to the lack
of information available about internal waves observed by satellite. It presents a new
framework to classify very large numbers of SAR images in order to identify possible in-
ternal wave signatures and a means to infer primary information about the waves. The
frame work is based on two approaches: a textural and edge parallelism analysis. It has
been shown that both techniques can identify successfully the internal wave signature in
SAR image. A greater success has been achieved using the edge parallelism technique.
The determination of the type of signature and the wavelength of the internal wave has
been demonstrated. Such a framework or an improved version could be used to create a
global map of internal waves using archives from ERS 1-2 RadarSat and Envisat. Such
a data set could be very useful for oceanographer and modellers alike in order to better
understand and quantify the importance of the internal wave in the mixing needed to
warm up and advect deep sea water to the surface. This database could also be of great
use for the engineering community, for example in the design of offshore platforms and
in the submarine communication.

The demand for internal wave information is so great that the European Space Ageucy
(ESA) has recently renewed its interest about it (personal discussion with Gordon

Campbell from ESA-ESRIN) and future projects are planned like a global internal
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waves climatology for 2005 with the Office of Naval Research (ONR). This work will be
a suitable candidate for such a project as part of a fully automatic system for internal
wave analysis using remote sensing technology.

The major point of this research is that whilst there is plenty of imagery available,
there are very few techniques that can automatically identify and categorise the inter-
nal waves. A unique combination of techniques described in this thesis including neural
network, texture discrimination and the analysis of edges’ geometry have been shown

to have great potential to successfully identify and categorize internal waves.
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Appendix A

Dyadic wavelet transform

The dyadic wavelet transform of feL?*(R) is defined by equation(A.0.1) [41].

Wf(u,2) = : f(t)\/% X 1 (t '2”]“) dt (A.0.1)

A discrete diadic wavelet transform can be computed with a filter bank algorithm if
the wavelet is approximately designed. The synthesis of these dyadic wavelets is similar
to the construction of orthogonal wavelet bases.

Let h and g be a pair of finite impulse response filters. Set h as a low-pass filter with
transfer function satisfying fL(O) = /2. A scaling function is construct with its Fourier

transform describe in equation A.0.2

V2 (A.0.2)

The corresponding wavelet ¥ has a fourier transform defined by:

- 1 /7wy ~ /7w

V() =0 (5)¢(5) (A.0.3)
As h and g have a finite number of non-zero coefficient, both ¢ and ¢ have a compact
support [41]. The number of vanishing moments of 1 is equal to the number of zeros
of ¢(w) at w = 0. Since ¢(0) = 1, (A.0.3) implies that is is also equal to the number of

zeros of g(w) at w = 0.

138



APPENDIX A. DYADIC WAVELET TRANSFORM

A.1 Reconstruction Wavelets

Reconstruction wavelet are calculated with a pair of finite impulse response dual filter

h and §.
o = 71(2_1’11))
o= p=1 V2 (A.1.1)
12wy 37w
= 5" (3)2(3)
o) =i ()0 (5) (A12)

A.2 Spline Dyadic Wavelet

A box spline of degree m is a translation of m + 1 convolution of 1jy with itself. It is

centered at t = 5 if m is even and at ¢ = 0 if m is odd. Its Fourier transform is
. w [sin¥\ ™t 1 if m is even
d(w) =e ( = ) with €= (A.2.1)
2 0 if mis odd
So
- é ew m+1
h(w) = \/§¢(Aw) =V2e71% (cos E) (A.2.2)
b (w) 2
One construct a wavelet that has one vanishing moment by choosing ¢(w) = O(w) inthe
neighborhood of w = 0O:
G(w) = —iv2e % sin§ (A.2.3)
The Fourier transform of the resulting wavelet is
~ 1 . rwy\ -~ rw
viw) =0 (5)(3)
. sow o\ mA2 (A24)
—W  —iw=e (sm Z)
= —e w
4

Figure A.1, shows the resulting quadratic splines ¢ and 1. To design dual scaling

function ¢ and wavelet 1, one choose i = h. Consequently ¢ = ¢ and the reconstruction

condition implies that:
. 2
- h(w)‘
(A.2.5)

é(w) = Tw) i
w> n

—l\/>€ 2 SIHEZ (COS§

n=0

Figure A.2 gives the corresponding filter for m=2
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Figure A.1: Quadratic spline wavelet and scaling function

a An)I 2 Aln)i 2 gln)/ 2 2ln)/ 2
-2 -0.03125
-1 0.125 0.125 -0.6875
0 0.375 0.375 0.5 -0.6875
1 0.375 0.375 0.5 0.6875
2 0.125 0.125 0.6875
3 0.03125

Figure A.2: Coefficients of the filter computed from their transform function (see Ap-

pendix A.1 for detail)

h 4
e
&

> & g djﬂ p| i+l

Figure A.3: Cascading convolution

A.3 77 Algorithme a trous”

Suppose that the scaling function and the wavelets ¢, ¥, ¢ and v are designed with
the filter A, g, h and g . A fast dyadic wavelet transform is calculated with a filter
bank called in French the algorithme a trous. 1t is similar to a fast biorthogonal wavelet
transform, without subsampling. It is computed from a, (initial image) by a cascading
convolution for 0 < j < J, as illustrated in figure A.3. It is similar to a fast biorthogonal

wavelet transform, without subsampling [58].
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Sample values of the original discrete image ag|n, m| are written as weighted averages

of a function f with the kernel ¢(z)o(y):
ag[n, m] = (f(z,y), o(z — n)e(y —m))
For any j > 0, one denote:
a;ln,m] = (f(z,v), ¢2i (T — 1)dos (y — m))
The discret wavelet coefficients are:
d;:Wlf(n,m,Qj) , dE:WQf(n,m,Qj)

A separable filter is written:

zy[n, m] = z[n]y[m]
6[n] denote the Dirac. A filter k[n] is dilated to make the filter k;[n], by inserting 27 — 1
zeros (trous) between each sample. One can then prove that for any 7 > 0:

aj+1[’f% m] = a; * Bjﬁj [n,m],

d;-i—l[nv m] = ay *gj(s[nv m]’

d_?-i—l[n’ m] =a; % 5§j [n’ m]
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Appendix B

EigenGLCMs

Let the training set of GLCMs be '}, 15,3, ...,I"p;. The average matrix of the set is
defined by ( B.0.1). Each GLCM differ from the average by the vector ¢; = I'; + 9.
This set of very large vectors is then subject to PCA, which seek a set of M orthogonal

vectors (u,), which best describes the distribution of the data.

1 M
V= ;rm (B.0.1)

The Ky, vector uy is chosen in the way describe by ( B.0.2) reach a maximum, subject

to ( B.0.3).

1 M
A= 2r> (uf X n)° (B.0.2)
n=1

. 1 fl=k
U Up = (B.0.3)
0 if otherwise

The vector u; and the scalar ), are eigenvectors and eigenvalues of the covariance
matrix defined by ( B.0.4). Where the matrix A = [¢1, ¢, .., pas]. The matrix C is very
large (NxN). To determine its eigenvectors and eigenvalues is an intractable task; We

need dimensionality simplification.

1 M
C=— and)z;
M ,; (B.0.4)
= AAT

If the number of data points in the matrix space is less than the dimension of space
(ie: M < N?), there will be only M — 1 meaningful eigenvectors, rather than N2

The N2 is solved by first solving the eigenvectors of an A/xM matrix, and then taking
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approximate linear combination of the matrix ¢;. Consider the eigenvectors V; of AAT

( B.0.5). From which we see that AV are the eigenvectors of ATA = C.
AT AV; = uV, (B.0.5)
Multiplying both side by A:

AAT AV, = AV,

We construct the MxM matrix L = AT A, where Linn = ¢ndl, and find M eigenvectors,
Vi and L. These vectors determine a linear combination of the M training set GLCMs

to form the eigenGLCMs u; (B.0.6).

M
ui=Y Vigtp 1=12,.,M (B.0.6)
n=1
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Appendix C

Confusion matrix

Image A Image B Image C
MLP KNN MLP KNN MLP KNN
152 | 36 J 153 | 35 ||137 | 47 | 145 | 39 |J162 | 42 J 160 | 44
5 132 8 [ 29 8 | 3313280 |21 0 | 21
Image D Image E Image F
MLP KNN MLP MLP KNN MLP
137 | 46 | 131 | 137|] 46 | 131 137 | 46 }J131 | 137 ] 46 | 131
9 34 | 11 9 34 [ 9 34 Il 9 34 L1

The colour code of the confusion matrix corresponds is as follow:

None-event correctly classified

None-event misclassified
Event correctly classified

Event misclassified

Figure C.1: Confusion matrix used to derived the values in table 7
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