
UNIVERSITY OF SOUTHAMPTON 

Automatic Detection and Analysis 

of Internal Waves on SAR Images 

by 

David Simonin 

Submitted for the degree of Doctor of Philosophy 

Faculty of Engineering, Science and Mathematics 

School of Engineering Sciences 

Aerospace Engineering 

June 2005 



UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
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Automatic Detection and Analysis of Internal Waves on SAR Images 

by David Simonin 

Internal waves features, like all mesoscale oceanographic features, are an important 

aspect of the ocean circulation. They are responsible for an important energy transfer 

mechanism, and have many implications in oceanographic engineering developments. 

Currently the extraction of internal waves information from satellite images is usually 

done from the human interpretation of the grey tone pattern visible in the images, 

which is a subjective, labour-intensive and time consuming task. 

In this research a new method for the automatic detection of internal waves' signatures 

present in SAR images has been developed. The automatic detection technique uses 

two different approaches. One is based on wavelet transform and statistical texture 

descriptors. The classifications have been implemented using principal component ana­

lysis, the K-Nearest Neighbour technique and the multi-layer perceptron. The second 

approach is based on shape discrimination. The geometry, orientation and position 

of the different edges found within the image are used to distinguish the presence of 

internal waves. Along with a reduction in man power and analysis time, this new tech­

nique offers the means to analyse internal waves. Data sets of internal waves based on 

a number of criteria can easily be created. The users can then use the information to 

study the internal wave's dynamics or the internal wave conditions in a given place, 

which could be of value for offshore development. 

The results of the research outlined in this thesis have demonstrated that the combina­

tion of either textural analysis with classifier or edge geometry analysis can provide the 

recognition and a primary analysis of internal wave signatures. This technique would 

therefore provides an appropriate starting point for the development of an operational 

recognition too!. 
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Chapter 1 

Introduction 

Satellite technology and remote sensing technique have come a long way from the 

early launch in 1957 of Sputnik 1 and the early aerial photographs, with the first me­

teorological satellite TIROS 1 in 1960. Today they are commonplace. From the mid 

70s the investment in satellite remote sensing of the earth's environment has grown 

very rapidly to become a significant commitment in space programs. The oceanogra­

phy community had their share of this growth since 1978 when Seasat, the first satellite 

specifically designed for ocean observation, carried the first synthetic aperture radar 

(SAR). 

1.1 Motivation and objectives of this study 

Since these early days remote sensing has become a powerful tool for the oceanogra­

phy community with a wide range of sensors onboard satellites. These sensors include 

multispectral instrumentation such as Seawifs, which measure the ocean colour giving 

information about the primary production, and thermal sensors such as AVHRR which 

provide us with the sea surface temperature. Microwave imaging radar such as the 

Synthetic Aperture Radar (SAR), which can measure sea roughness. are especially at­

tractive because they operate independently of cloud cover, and solar illumination. The 

SAR measurement is predominantly due to scatter from gravity capillary and short gra­

vity waves 1. This first mission with Seasat produced surprising results. Along with 

widespread images of surface waves and swell, the SAR was able to provide the first 

remote-sensing information about oceanic internal waves. 

Internal Waves, like all mesoscale oceanographic features, have a significant influence 

I A wave distnrbaw:c ill which ]moyancy (or reduced gravity) acls as re-storillg f()n·c. 

1 



CHAPTER 1. Ij\tTRODUCTION 

on ocean circulation. They are responsible for an important energy transfer mecha­

nism. The identification and understanding of internal waves provides oceanographers 

with important information on dynamical processes occurring within the ocean. Fur­

thermore internal Waves are an important factor to consider during the development of 

oceanographic engineering design. They are responsible for the deterioration of offshore 

platforms and can have a serious impact on acoustics propagation. For everyone of 

the implications it is necessary to understand and model this phenomenon. However 

the modelling of the internal waves propagation is difficult, because of their non-linear 

nature and the large amount of information needed. 

SAR images provide one of the best sources of information to study internal waves. 

However mainly due to data policy, processing costs, and manpower restrictions, only 

about 10% of the acquired images have ever been processed. Furthermore the informa­

tion extraction from the data processed, is done by the interpretation of the grey tone 

patterns visible in the images, which is a very labour intensive and subjective task. 

To date no automatic method for the recognition of oceanic features exists, therefore, 

the major novelty and the aim of the work lies in the automatic extraction and analysis 

of internal wave signature from SAR imagery. This research will focus in the creation 

an automatic recognition framework to move from a subjective manual detection of the 

internal wave toward a computed interpretation of the grey scale level of the images. 

Such detection will ease the work load as well as decrease the cost of the processing 

by reducing the manpower. The new framework will allow a classification of very large 

numbers of SAR scenes in order to identify possible internal waves signatures along with 

a means to infer primary information from such waves (i.e. period, type of signature, 

direction of propagation). The increase in information available from this new tech­

nique will be a valuable tool to increasing our understanding of internal waves, their 

importance in the oceanic circulation and better modelling and prediction applied to 

offshore developments. 

1.2 The outline of the thesis 

This chapter continues with a brief introduction on internal waves and their signature 

on SAR images. The amount of information available within internal waves and their 

2 



CHAPTER 1. INTRODUCTION 

impact on offshore engineering will be discussed in the rest of this chapter. The se­

cond chapter will outline the difficulty, and consequently the strategy chosen, for the 

recognition task. This thesis continues with chapters three, four and five which look at 

the segmentation methods that were introduced in the second chapter as part of the 

strategy used. Chapter three describes the multi-resolution analysis designed to extract 

the internal wave signature. Then chapters four and five , look at the possibility of using 

the information inferred from the previous step in order to characterize the presence 

of the signature. Chapter six presents two classifications techniques . Finally chapter 

seven presents a discussion on the strategy and t he accuracy of the detection tool is 

quantified. 

depth 

approx~ 

mite~ 

100m 

Figure 1.1: 3-D presentation of an internal wave [64] 

1.3 Internal waves 

Internal waves are progressive oscillations of constant density surface within a body of a 

stratified fluid (figure 1.1) with periods ranging from sub-inertial (i.e. less t han t he local 

Coriolis period) to the local buoyancy frequency (N). In the marine environment , they 

traditionally occur during the summer when the warm atmospheric conditions lead to 

a rise in the thermocline (figure 1.2). Many works discuss the generation of the internal 

waves , but it is commonly assumed that the internal waves present at the shelf sea are 

generated by baroclinic flow on the shelf break at each tidal cycle (eg: Fu 1984 [26] and 

Apel 1976 [3]) see Figure 1.3. Then the internal waves propagate mainly inshore as a 

group of rank order solitons and in some images with an inter-packet interval of 12.5h, 

3 



CHAPTER 1. INTROD UCTION 

implying t heir tidal origin [4], [6]. 

Absolute and relative number of internal waves (iw) 
35r---~----~----~--~----~----~, 
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Figure 1.2: Absolute and relative (in respect to the acquired images) temporal distri­

but ion of internal waves. The annual variation of internal waves is exemplified for the 

two time periods of 1991-1995 and 1996-2000 [23]. 

The principal features of those internal waves can be summarized as [54]: 

• The waves are found in groups or packets with 4 to 10 crests per group. 

• The crests are often parallel to the bottom topography or radiate out as if they 

were coming from a point . 

• One crest only may look like a shear in a SAR image; t herefore an internal wave 

train is defined as several solitons moving in the same direction . 

• The wavelength between crests is between several hundred metres and several 

kilometres, and usually decrease from the leading wave in a packet to the trailing 

edge. 

• The crests are usually tens to hundred of kilometres long and decrease in length 

towards t he rear of the wave group. 

• These waves appear either as dark in a light background, as light in a dark back­

ground or as dark and light bands in t he intermediate case. Dokken [23] found in 

his survey along t he coast of Norway, t hat 60% of the signatures were bright in a 

dark background and 40% of the signature were dark in a bright background. 

4 



CHAPTER 1. INTR.OD UCTION 

j 

f 

\ 

~ 

4--:"---- - - j' -

~(aJ '.-.rr .. 

Figure 1.3: baroclinic dispersion [3] 

1.3.1 Internal wave dynamics 

Internal waves have frequencies that span the range from the maximum Brunt-Vi:iisi:ili:i 

(buoyancy frequency) to the local Coriolis frequency of t he water column. Internal 

waves arise as possible modes of oscillation in the presence of stratification, where the 

restoring force for the oscillation is provided by vertical density stratification. The mo­

tions of these waves can be derived from t he momentum equation [2]. 

Ou l Op' 
- -jv = ---ot Po Ox 

Ov lOp' 
- + j v = ---
M Po oy 

Ow l Op' P' 
---- -

ot Po Oz Po 
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From equations 1.3.1 1.3.2 and 1.3.3 we can obtain a simple description of the motion 

of a stratified fluid [2]. 

(1.3.4) 

where w is the vertical velocity, g is the gravity acceleration p is constant density, and 

N(z) the Brunt-Vaisala frequency that represents the stratification in the ocean. The 

Brunt-Vaisala frequency is usually maximum for maximum mean density (p) gradient 

of the thermocline and decreases both above and below this level as the water becomes 

more homogeneous. If N 2 is assumed to be constant with a negligible earth rotation 

effect (f = 0) one can obtains an expression with w alone. 

(1.3.5) 

where w is the amplitude of the vertical velocity and the subscript h indicates a gradient 

in the horizontal direction. The elementary modes of motion for small disturbances can 

be sought in the following form 

w (x, z, t) = w(z) expi(kx-CT(k)t) (1.3.6) 

Where k is the horizontal wavenumber vector and n the frequency. w( z) describes the 

mode structure and is subject to the boundary conditions at the surface (z = 0) and 

bottom (z = h). By substituting Eq.1.3.6 into Eq.1.3.5 one obtains the fundamental 

equation obeyed by w(z) [51] 

c5
2
w(z) + [N2

(z) _ 1] k2w(z) = 0 
c5 Z2 (J2 

(1.3.7) 

with N 2 = _.!L dpo 
pO dz 

(J = the internal wave frequency 

In the simple case of N(z) is constant, Eq.1.3.7 represents the classic oscillator equation 

and its solution, satisfying the boundary conditions can be easily found to be 

n7f 
w(z) = Asin TZ n=l,2,3, ... (1.3.8) 

where n is the mode order, A the amplitude and h the depth. From the above. the 

vertical velocities and displacements for the basic IW mode (n= 1) has a maximum in 

the middle of the water column while for higher modes there will be several maxima 
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Figure 1.4: Distribut ion of vertical velocity w in the lower three internal wave modes 

for a constant N buoyancy profile 

at different depths (see figure 1.4) . In t he general case N = N(z), the mode structure 

is similar to that illustrated previously. Namely the maximum of the basic mode will 

correspond to the maximum of N (z) and for higher order modes (n > 1) the number 

of maxima is equal to n (number of modes) with these being outside the t hermocline. 

Non-linear IWs can propagate in the form of solitary waves, which can be described by 

the KdV2 equation ([2] [48] [61]) . The solution of the KdV equation [47] has the form of 

a pulse that results from the balance between non-linearity and dispersion. The vert ical 

mot ion of tides forced by barotropic t idal flow over topography (e.g. a shelf break) leads 

to the displacement of the thermocline and consequently generates internal tidal waves 

(ITWs). These waves propagate away from the generation point along the thermocline 

and can be described by the KdV equation. Wavelengths are typically of 20-30km and 

the propagation is with tidal periodicity. It has been shown that short period internal 

solitary waves (ISWs) appear on profiles of ITWs with wavelengths O.5-1Km. 

2Kroteweg-de Vries 
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1.3.2 The importance of internal waves 

Oceanography: The importance of internal waves is now being recognized a major 

phenomenon in a number of fields of oceanographic sciences and monitoring. The Me­

ridional overturning circulation (MOC) is a vital element of the ocean circulation and a 

key indicator of climate change in models [42]. Theory and model of ocean circulation 

suggest that the MOC requires of the order of 2 x 1012W [44] [27] of power to intensely 

warm the abyss. Without this deep mixing, the ocean would turn in few a thousand 

years, into a basin of cold salty water. The water sinking at high latitude would cover 

the entire abysses without any mean to rise (via advection) again at low latitude. The 

mixing cannot really be the result of solar radiation as the ocean is an inefficient heat 

engine. Instead Monk and Wunsch [44] suggest that the mixing has to be the result of 

mechanical forces such as the tide and wind. The tidal energy is commonly assumed to 

mix the shallow ocean shelf, but part of this energy is dissipated in the form of internal 

tidal waves (1 TW). The mixing induced by the internal waves occurs in the form of 

turbulence away from the sea floor and in most cases as turbulence patches through 

scattering by topography. The vertical mixing induced by internal waves in regions 

of large topographic variation is believed to be an essential aspect in maintaining the 

ocean circulation [44]. However there is a lot of topography in the ocean (over half a 

million seamounts in the pacific alone) and very few measurements exist that can to 

explain the mechanisms involves and the real importance of internal wave in stirring 

the deep ocean. 

In the upper layer, internal waves and the vertical mixing that they induce, when they 

propagate onto the continental shelf are vital for marine life. Large vertical displa­

cements induces by such waves modulate the light available. The localised mixing of 

surface and subsurface masses can result in an intense shear with important conse­

quences for the transport and dispersion of various ecosystem constituents within the 

water column (i.e. nutrient and heat) [33]. 

Offshore engineering: A large part of offshore oil and gas fields are in deep water. 

which involve cables, long and fragile structures such as the riser pipes and drill columns. 

They are therefore vulnerable to internal waves in many ways. Internal waves usually 

concentrate their energy into packet which arrive roughly twice a day (tide generated). 

The danger of such bursts of energy is that they can create horizontal motions near the 
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surface applying load directly to the platform itself. The safety and the structural inte­

grity of the structure can be compromised if the design did not account for such forces. 

The vertical motions induced by the internal waves could create additional problems: 

the different risers and cable which connect the sea bed to the platform are subject 

to the bending moments induced by the wave. It has been reported that an internal 

wave packet was responsible for displacing oil platforms as much as 200 metres in the 

horizontal direction and 10 metres in the vertical direction. It therefore not surprising· 

to learn that internal waves are cited in the design guidelines of the Department of 

Energy (1990) as a potential source of difficulty for deep-water operations. 

The implications extend as far as the submarine community. Internal waves have se­

rious impact on acoustics propagation. Just as the atmosphere turbulence can make 

stars to twinkle, so variation in the ocean structure cause fluctuations in sound propa­

gation. The main causes of these fluctuations are internal waves when operating with 

typical sonar frequency. The internal waves can in extreme events even prevent a signal 

from being detected. Clearly this is of a great interest for the naval and submarine 

communities. Speculations on the loss of the USS thresher in 1969 have suggested that 

the prime suspect was an internal wave that carried the submarine rapidly deeper than 

its crush depth. 

1.3.3 Measuring the internal waves 

Conventional methods (ships) to detect and measure internal wave properties are ex­

pensive and limited to the collection of data over a fairly localised region. However, 

many applications such as the modelling on which forecasts and now casts are based 

are not sufficiently precise without incorporating ocean data. The use of remote sen­

sing data when combined with additional knowledge such as the tidal properties and 

a limited number of in-situ observations improves the accuracy of internal wave mo­

dels. Without the wide area data provided by the space borne sensors, forecasts are 

not accurate enough for offshore operations management. The availability of satellite 

instruments also reduces the requirements for in-situ instrumentation. Space borne sen­

sors data potentially represent a very large cost savings over conventional techniques. 

Indeed, an effective and reliable forecasting service could not be envisaged without such 

data. 

Because internal waves interact with the sea surface and modulate the surface \vind 
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waves, they modify the surface roughness pattern. These changes in surface roughness 

enable the Synthetic Aperture Radar (SAR), which is a roughness sensor to image the 

presence of an internal wave [1][3]. 

1.4 Synthetic Aperture Radar 

The term 'radar' was coined in the 1930s and is an abbreviation for Radio Detection 

And Ranging. Radar is an instrument that transmits pulses of radio waves and detects 

the echo. The information received depends on the viewing angle, the polarization and 

the properties of the return signal from the scattering target. Due to the relatively long 

wavelength in microwave, the signal is able to penetrate undisturbed through clouds. 

The signal is also independent of sunlight since it is an active instrument; it both 

transmits and receives its own signal. 

With real aperture radar the beamwidth and angular resolution of radar's antenna is 

determined by its dimensions, expressed in relation to the wavelength used. Synthetic 

Aperture Radars (SAR) overcome this limitation. They manage to achieve considerably 

better angular resolution by exploiting the movement of the platform and therefore 

synthesizing a large antenna. 

1.4.1 Imaging process 

The rectangular antenna of the radar is aligned with respect to the platform line of 

flight in such way as to direct a narrow beam side ways and downward onto the target 

(Earth's surface) see figure 1.5. Imagery is built up from the time delay and strength 

of the backscatter signal. 

As the incidence angle of a SAR is oblique to the local mean of the sea surface, there is 

no specular reflection except when very high sea states occur. It is therefore assumed 

that Bragg reflection is the primary mechanism for backscattering radar pulses [68]. 

For a radar emitting radio waves of a wavelength AR, the sea surface waves which will 

contribute to the scattering are those with a wavelength close to As where: 

A=~ 
s 2 sin e (1.4.1) 

and e being the incidence angle of the sensor. 
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Figure 1.5: SAR ground pattern 

B ackscatter 

The geometry and electrical features of a target, e.g. t he dielectric constant, are the 

main characteristics that effect backscattering [9]. The geometry is defined by parame­

ters such as slope and roughness, see figure 1.6. The dielectric constant of a material 

depends , among other variables, on its water content, temperature and salinity. The 

constant contains a real part, the permit tivity, and an imaginary part, which is a loss 

term. The permittivity is a measure of how easily the energy of a radar signal passes 

across a dielectric interface . The imaginary part describes how much energy is absor­

bed in the volume once it passes across the interface. Major contrast in permittivity 

between two media leads to large surface scattering. If the contrast is low, the energy 

is t ransmitted across the interface and will be available for scattering and absorption in 

t he volume. Radar cross section 3 besides the medium characteristics, (To depends on 

wavelength, polarisation and the incident angle of the radar signal [39]. The longer the 

wavelength of a signal, the deeper t he signal penetrates t he material . T he microwave 

wavelengths are in the range of 0.001 - 1 m which correspond to the frequencies between 

0.3 - 300 GHz. 

The incidence angle plays a crucial role in backscattering. The impact of the incidence 

:lRadar cross section is the meas ure of a target 's abi lity to refl ect radar signal::; in t.he direc tion of 
the radar receiver , i.e. it is a measure of the ratio of backscatter power per st.eradian (lInit solid angle) 
in t.h e direction of the radar (fro lJl the t.arget) to the power density that is ilJtercepted by t ile target . 
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angle in combination with roughness can be seen in figure 1.6. For small incidence 

angles, less than 20°, specular reflections from facets dominate the returned signal. In 

the case of incidence angles between 20° and 70°, the dominating mechanism of the 

reflected signal is the Bragg scattering. Bragg scattering is a mechanism in which the 

reflected signal is in resonance with the incident wave. 

o 

Specular rC!..Ulllc .....-- ~ 

Bragg scattcrmg n:gllnc 

.r. -
'J) 

2 
:J 

.. 

Rough surface 

Less rough surface 

Smooth surfa~ 
~----~-----+----------+-------~~o 

30 6{) 

Incidence angk 
90 

Figure 1.G: Backscatter as a function of the incidence angle amI fOnglm<:)c;c; [G4] 

Range resolution 

The range resolution depends on how short the pulse length is. If all energy is sent at 

the same time in a very short pulse, it is obvious which part of the signal that was sent 

first. The problem is that a single pulse, short enough to give accurate range resolution 

and strong enough to be measurable after scattering at the surface, would require too 

much power and too large a bandwidth for the radar. However, if the pulse is long, there 

must be an ability to distinguish the first part of the pulse from the last part, in order 

to get satisfactory resolution. The solution is to use a longer, frequency modulated 

pulse, known as a chirped pulse. Using a chirped pulse, the instantaneously emitted 

power can be low, although the total emitted energy is high. A frequency delay filter 

demodulates the received pulse to a short spike, which gives a high range resolution. 
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Azimuth resolution 

SAR uses the forward motion of the satellite to synthesise a longer antenna that en­

hances the azimuthal resolution. The resolution is achieved by recording the phase as 

well as the amplitude of the echoes along the flight path. To identify where the each 

returning pulses comes from in the illuminated area, doppler shift is used. To achieve 

this return pulse must be recorded in great detail together with the elapsed time. 

The azimuth resolution is proportional to the real aperture length and this is inde­

pendent of the range and the platform altitude. 

Speckle 

The scattering wave is made up from several elements on the surface. Because the path 

length from the radar antenna to the surface can vary from a few wavelengths with the 

resolution cell, which is made up of the individual return pulse with different phase, the 

amplitude of the signal is variable. 

The coherent nature of SAR images produces a noise-like characteristic known as spe­

ckle. Speckle is a universal property of coherent imagery and arises because each reso­

lution cell can be thought of as being made up of many individual point scatterers. In 

some case these individual return pulse will be add up constructively, in other they will 

be add up deconstructively. This phenomena results in a random speckle being added 

to the image. The speckle will decrease the clarity of the image and may be responsible 

for the large variability in the backscatter. 

Because the speckle phenomena are purely random, it can be reduced by averagmg 

several independent looks. This processing when possible is known as a multi-look and 

is well documented in the literature (e.g [45]). 

1.5 Imaging internal waves 

The internal waves interact with the surface waves and modulate the surface wind 

waves. This modulation can either be achieved by surface film (slicks) that accumulate 

in flow convergence zones and dampen the short surface waves there or by hydrodynamic 

interaction of these waves with the horizontal surface current associated with internal 

wave motion (see figure 1. 7). 
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Figure 1.7: A sketch of an int ernal wave showing t he fl uid-part icle velocity and the 

surface convergence zone; p is the density, where pI < p2 and hI t he mixed layer depth. 

the vector arrmvs indicate direct ion and particle velocity. 

The radar is a surface roughness sensor: t he higher the roughness , t he higher is the 

radar return and the brighter is the image intensity. IW forms are associated wit h rough 

and smooth bands and usually appears as bright and dark bands in the gradient of the 

surface velocity (u) that is the surface convergence: t heory [1], the relat ive variation of 

the normalized radar cross section (NRCS) associated with internal waves , (6.0") \ (0") , is 

linearly relat ed to the gradient of the surface velocity (u) t hat is the surface convergence: 

0"6. = -A x c5u 
0"0 c5x 

(1.5.1) 

Where A denotes a positive coefficient t hat depends, among others, on radar wavelength, 

incidence angle, and surface wind velocity. For a linear SAR system (6.0") \ (0") is equal 

to the relative variation of t he SAR image intensity, 6.1/10 . Thus the variat ion of the 

image intensity is proportional to the gradient of t he surface velocity (=-c5u/ c5x ). 

Hydrodynamic modulation fails to predict the dark slick bands that somet imes oc­

cur in an image. These have been connected to films, which would transform t he 

dark/ bright signature into only dark bands. The surface film , which is believed to be 

primarily made up of naturally occurring surface-active organic materials and which is 

concentrated at t he surface of the ocean, is oft en active in coastal water. T hese fi lms 

dampen short surface waves very strongly, reducing the radar ret urn pulse. The radar 
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Figure 1.8: Example of internal waves imaging by the SAR 

images then consist of dark streaks on a uniform bright background. However in most 

cases, the radar signature of the internal waves has a double signature, which means 

that the corresponding radar image consists of bright and dark streaks associated with 

the internal waves, indicative of hydrodynamics modulation. The cellular currents that 

accompany them are of the same order of magnitude as the wave phase speeds (50-

75cm/s) and produced convergence and divergence near the surface strong enough to 

alter the short-length surface gravity and capillary wave by means of a periodic modu­

lation that result in a surface signature characteristic of the underlying internal wave 

field. Figure 1.7 shows how the backscatter is influenced by t he internal Waves. 

As the signature of the internal waves is a modulation of the surface wind waves, 

the strength of the wind is an important factor. It was established that no internal 

waves are present on a SAR image for a wind equal or greater to 11 m/ s and that the 

slicks are only visible with a wind less than 6 m/s [3]. 

Types of signatures and Transition mode 

Analyses of the radar intensity modulations produced by the short-period IW signatures 

are in the form of bright/dark , dark and bright bands. They correspond respectively 

to positive/negative, negative or positive variations of radar backscatter from the mean 

background clutter (undisturbed by IWs). Based on these different types of signatures 

Da Silva et al [19] define a classification scheme. They identify a double-sign signature 
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Figure 1.9: Transect on an internal wave SAR signature 

when +/- variations are identified, single-negative when a predominant negative va­

riation occurs, and single-posit ive when a positive intensity variation is detected. The 

observations show that at very low wind velocit ies (less than 2m/s) IWs show up as 

single positive sign. When the wind is higher than 2 mis , and for IWs propagating in 

the radar range direction (across track direction) , both double and single negative si­

gnatures are commonly observed. For azimuth propagating IWs (along track direction) 

negative signatures prevail. 

Figure 1.9(a) presents a close look at short-period internal waves . Figure 1.9(b) pre­

sents the backscatter depression of the transect of the internal wave. The leading waves 

display a double sign signature while the rear waves in the packet can be classified 

as single negative. This change from double to single signature is a transition mode. 

Figure 1.10 shows the typical transition mode. The factors that determine which, if 

either, of t hese mode transit ions will occur under a given set of wind speed and sur­

face film condit ions seem to be rather subtle. According to [20] , t he two controlling 

variables appear to be wind speed and surface film pressure. Figure 1.11 , shows the 

transit ion line on a film-pressure/wind-speed diagram, corresponding to the conditions 

for all mode transit ions. 
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Chapter 2 

Methodology 

2.1 Strategy 

The aim of this research is to successfully detect internal wave signatures in SAR images 

automatically. This task needs an elaborate analysis strategy in order to characterize 

the internal waves signature (IWS). A general description of the characteristic feature 

of the IWS was presented in chapter one. IWS can be considered as pseudo-invariant 

features. They have common features but also variable features such as the orienta­

tion, the curvature and the length of the waves. Furthermore, the SAR scene can be 

very complex showing land, interactions between internal waves and other mesoscale 

features. Everyone of the above phenomena can interact in a constructive or in a 

destructive way on the IWS, and so modify its appearance. The variable features of 

the IWS and the possibility of a crowded SAR scene prevent the creation of a general 

blueprint to recognize efficiently IWS. As a consequence a segmented and independent 

analysis of the presence of certain IWS feature has to be considered. A SAR image is 

a three dimensional signal, which is composed of a frequency signature, textures, and 

geometry shape associated to each of the different features present within the signal. 

The proposed strategy is based on these primary characteristics of an image. It is pos­

sible to detect the presence of IWS within a SAR images by studying independently the 

frequency component, the texture and the geometric shape present in the image. Then 

each result can be linked with the others and a final test can be performed to evaluate 

the probability of IWS presence. 

Before going through the detail of the different technique and the strategy used, it 

is necessary to understand how the choices have been made. An internal wave signa­

ture is a very complex feature and this can reduce the clarity of the signature wanted. 
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Previous studies on features extraction from satellite images such as T.Rachin [53] or 

Kiran [60] and Liu[38] have proven that wavelet transform based processing can be a po­

werful tool. These studies have been done for general purposes or more specifically with 

an oceanographic point of view. However they show that whatever the goal, a wavelet 

transform approach is very successful in edge extraction and multi-resolution analysis. 

Rodenas and Garelo [55] [56] even investigate a multi-resolution wavelet approach to 

detect the presence of internal waves on SAR images. A multi-resolution wavelet based 

approach has the advantage to make a frequency's discrimination at different levels, 

offering the possibility to extract any signature wanted at a given level. This technique 

is an appropriate solution for the SAR images and offers the possibility of analysing the 

remaining signature in term of texture or edge. However this discrimination does not 

give us any detail on the composition and the composition of the image. To establish 

the presence of IWS more processing are needed. A first approach is to consider the 

texture of the images. An image is composed of different range of tone and texture 

organization. Julesz [34] was the first to use gray tones spatial dependence occurrence 

statistics in texture discrimination. The idea was quickly developed by Haralick [28] 

[29], who suggested that the use of a two-dimensional spatial dependence of gray tone 

in a co-occurrence matrix. This texture discrimination is still found in numerous clas­

sification application such as remotely sensed imagery applied to sea-ice or medicine 

[24] [59] [66]. The method has the advantage of offering a simple quantificatioll of the 

different texture present in the images, which can then be easily used by a classifier. 

To perform the classification a large number of techniques exist from the statistical to 

the neural network approach. Due to the large choice, the variation in performance 

and the different requirements, it has been difficult to find an ideal classifier. However 

three techniques, for their different requirements, have been retained: A neural network 

multi layer perceptron, a K nearest neighbours and a PCA technique. The K nearest 

neighbours is the simplest of the three, and identifies the k nearest neighbours of an 

unidentified test pattern within a hyper-sphere of predefined radius in order to deter­

mine its true class [11]. The PCA on other hand involves a mathematical procedure 

that transforms a number of correlated variables into a smaller number of uncorrelated 

variables called principal components. These principal components can then be used 

to determine the membership to a class. The last of the three is the neural lletwork 

multi layer perceptron, which perform a generalization of the process by training. The 

three classifiers will be used in parallel to establish their individual performance, and 
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different combinations with the input data and the training set will be made in order 

to optimize their performance. 

Another approach that can be used to understand the image composition and to loca­

lize sharp variations in the signal is to extract the dominant edges resent in the images, 

and analysis their orientation and geometry. This can be done with various methods. 

However, because the previous processing was made using wavelet transform, one can 

use this information to calculate the modulus of the wavelet coefficient and obtain the 

dominant edge for a given resolution. One can then apply an edge tracing technique and 

then find the relationship between edges (i.e. are they pseudo-parallel to one another?). 

Because one of the internal wave characteristic is that there are at least 3 parallel crests 

within a packet, one can use the above proposed processing to recognize possible link 

between different edges and the presence of internal wave. This second approach has the 

advantage to pinpoint the exact position of every edge that composes any give internal 

wave signature. Therefore after a positive identification, the signature can easily be 

analyse to extract primary information such as the orientation, the type of modulation 

that occurred, and when possible the speed of the wave. 

2.1.1 Detection System 

From the above descriptions, the detection system will use two different and independent 

strategies: In the first approach, the system will be design using textural information, 

and in the second method the detection will be made using edge geometry information. 

The figure 2.1 show the distinct elements of the system for the two approaches. Every 

element is dependent of the previous one and their descriptions are as follow: 

• Image (Pre-processing): Preparation of the raw data. 

Speckle is an important part of SAR image, and it needs to be reduced. Because 

the multi-look technique is not an option for dynamic features a simple pixel 

average is performed. It is also necessary to select part of the image that is land 

free, as no land mask technique has been incorporated in the processing yet . 

• Segmentation, Wavelet transform: Multiscale analysis. 

The aim of the processing is to make scale discrimination. In the case of crowded 

SAR images composed of various mesoscale features, the possible internal \vaves 

signature can be weakened by other more powerful signatures. Therefore the use 

of multiscale wavelet analysis offers the possibility of processing each signature 
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Figure 2.1: Diagram illustrating the layout of the processing 

for a given scale . 

• Edges: Study of the parallelism of the edges. 

Another approach to understanding the image composition and to localize sharp 

variation in the signal is to extract t he dominant edges within the images. This 

can be done with various methods. However , because the previous processing 

was made using wavelet t ransform, t his information can be used to calculate 

the modulus of t he wavelet coefficient and obtain the dominant edge for a given 
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resolution. An edge tracing technique can be applied and then the relationship 

between edges can be found (i.e. are pseudo-parallel to one another?). Because 

one of the internal wave characteristic is to have a least 3 parallel crests within 

a packet, one can use the above proposed processing to recognize a possible link 

between different edges and the presence of internal wave. 

• Texture: Texture analysis using GLCM. 

At this stage of the processing the analysis focuses on the texture organization and 

Grey Level Co-occurrence Matrix (G LCM), which addresses the average spatial 

relationships between pixels of a small region or window, to characterize usmg 

statistical indexes the sharp gray scale variation when an IWS is present. 

• Classifiers: Classification using a KNN or an MLP or a PCA . 

The above processing characterizes the different signatures within the signal, but 

does not make any decision about the presence of IWS. To perform this task 

three classifiers will be used. The first one, which does not require any training 

but only a query set is the K nearest neighbours (KNN). The second classifier, 

which requires a training section is the multi layer perceptron (MLP). The last 

one which uses the principal components of two different classes, uses the GLCM 

as input directly. 

• Analysis: The last part of the processing is the analysis of the detected 1\VS. 

This analysis will extract the orientation, the types of signature (i.e. type of 

modulation), and infer the possible direction and wavelength of the wave. 

Each step of the processing will be described in a separate chapter along with the 

mathematical background necessary to describe the process as well as the appropriate 

result and a discussion. In each chapter it will be shown how the presented processing is 

implemented and where its contribution take place within the general layout of strategy 

for the recognition of IWS on SAR images, shown in figure 2.1. 

2.2 Data set 

The data set is made up of 120 SAR images acquired from the two European satel­

lites ERS-1 and ERS-2. The Southampton Oceanography Centre (SOC) provided the 

images. Each original PRI SAR images contain 8000 x 8000 pixels, with a pixel spacing 
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Figure 2.2: Range backscatter degradation. (a)Origina.l image.(b)A 3D representation 

of the original image.(c) Same as (a)but with the correction .(d)Same as (b) but wit h 

the correct ion 

of 12.5 m x 12.5 m, covering an area of 100 x 100 km. The motivation behind the 

creation of the data set was to obtain as many as possible images of internal waves 

observed by the SAR, and as a consequence the data do not concentrate on a particular 

region but it is composed of SAR images taken all around the world . 

There is a reduction in the intensity of the backscatter as the range increase (see figure 

2.2(a) and (b)) and there is more atmospheric attenuation. It is therefore necessary to 

apply a correction to compensate for this change in mean intensity in order to obtain a 

well-distributed mean background level and to have a stationary signal for the wavelet 

t ransform. The result can be seen in figure 2. 2(c) and (d). 

Because of the coherent nature of the illumination, SAR images contain mult iplicat ive 

speckle noise. Therefore t he first step is to apply an 8 x 8 pixel averaging technique to 

t he original images. This procedure reduces the size of the image to 1/ 64, which offer a 

substantial reduction of t he speckle as well as a reduction of t he processing time. The 

pixels spacing is now equal to 100 m. 
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Figure 2.3: Original selected 512x512 SAR image containing an internal waves signa.ture 

The data set were made up of windows of 512 x 512 pixels, which were selected manually 

inside the processed original PRI Images. This selection provides t he opportuni ty to 

create a succession of different data sets as well as the opportunity to select every scene 

land free. An example of a selected image can be seen in figure 2.3. 

The different steps of the processing and the discussion of t heir performance will 

be illustrated by fo cusing on two images before giving a general overview of the result. 

These images are called imageO and image25 (figure 2.4(a) and 2.4(b)) and present very 

different internal waves signatures; one is very strong and projected in the diagonal of 

the image, the other is weak and projected in the vertical of the image. The difference 

in intensity and orientation of the signature, influence the results and the accuracy. 
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Further detail will be given for each different step. 

2.2.1 The making of the training set 

Three classifiers will be tried out. These classifiers need to be able to create a relation­

ship between the classes. To do so, it is necessary to use a training set, where every 

class will be represented. The training set was made by manually selecting zones of the 

image containing some internal waves signature and zones without. In this selection one 

tried to give a fair representation of the internal wave signature as well as every other 

possibility that can represent a non-event zone. This gave approximatively 600 samples 

representing the two classes with an equal proportion and taken from several images. 
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Figure 2.4: The two images which will be specifically disc lls 'ed during Lhe processing 
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Figure 3. 1: Diagram illustrating t he layout of the processing 

This chapter will describe t he first step of the automatic detection of internal waves 

in SAR images. After a short background on wavelet transforms and a more detail 

explanation of the technique used, results of the transform will be presented. The 

chapter will end with a detailed explanation on how the different resul ts from this 

multiscale decomposition will be used. 
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3.1 Background 

Mathematical transforms are applied to a signal to obtain further information from that 

signal that is not readily available in the raw signal. 

In practice most of the signals are Time-Domain in their raw format. The representation 

of the signal as a function of the time is not often the best solution. In many cases 

the most important information is hidden in the frequency content of the signal. The 

frequency spectrum of a signal is the frequency components of that signal. To derive this 

information a number of transformations can be applied to the signal. The most popular 

is the Fourier transform. The Fourier transform provides the connection between time 

and frequency in terms of the decomposition of harmonic waves, which the resulting 

frequency composition gives an average over the whole length of the signal. However 

if a signal changes at a specific time, its transform changes everywhere and a simple 

inspection of a transformed signal does not reveal the position of the alteration. It 

can therefore be assumed that a non-stationary signal is a sum of very small stationary 

signals, which will result in a sum of local decomposition. This approach gives the Short 

time Fourier Transform (STFT). In the STFT the size of the window is however fixed, 

which limits the flexibility. A fixed window cannot offer a good resolution in time and 

frequency at the same time. 

One and a half decades ago an alternative to Fourier Transform and to STFT waCi 

found: The Wavelet Transform. The Wavelet Transform has a lot of similarity with 

the Fourier Transform. Both transforms are linear operations that generate a data 

structure that contains segment of various lengths. The mathematical properties of the 

matrix involved in the transform are similar as well. The inverse transform matrix is 

the transpose of the original. Both transforms can be viewed as a rotation in fUllction 

space to a different domain. Another similarity is that the basis functionCi are localized 

in frequency. The main interests in the Wavelet Transform are its differences from the 

Fourier Transform. The individual wavelet functions are localized in Cipac:e, which is 

not the case for the Fourier sine and cosine function. The Wavelet Transform UCies a 

variable window. In order to isolate signal discontinuities, a very short window will be 

necessary. At the same time, in order to obtain detailed frequency analysiCi, one would 

like to have some very long base functions. For this to be achieved it is necessary to 

have short high frequency and long low frequency basis functions. This is exactly what 

can be achieved with a Wavelet Transform. 
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3.1.1 Multiscale edge detection 

The edges of structure in an image are often the most important features for pattern 

recognition. One may consider an edge to be a sharp variation in the image (i.e. a strong 

intensity variation). On the contrary an edge can be considered to be a transition 

between two different textures (smooth intensity variation). The difference between 

these two definitions is the scale at which the image is observed. This discrimination 

of the edge definition motivates an edge analysis at different scales. 

Many edge detection techniques exist, such as the Canny Edge Detector [13]. which 

detect the sharp variation in an image by calculating the modulus of its gradient vector. 

A multiscale version of this edge detector can be implemented by smoothing the surface 

with a convolution kernel e [40]. This is computed with two wavelets that are the partial 

derivatives of e: 
1 Oe 

1jJ (X,y) = Ox and 
2 Oe 

1jJ (x, y) = ~ 
uy 

(3.1.1) 

The associated 2-D Wavelet Transform of the image f at scale 2) and orientation k is 

defined as: 

k = 1,2 (3.1.2) 

The Wavelet transform with respect 1jJ1(X, y) and 1jJ2(X, y) in ( 3.1.2) has two compo-

nents: 

W1f( ) = 2) (o(f * e2j )(x, y)) 
v x,y Ox 

(3.1.3) 
. ----+ 

= 2) 'V (f * e2J (x, y) ) 

W2f( ) = 2) (o(f * e2 j )(x, y)) 
2J x, Y oy 

(3.1.4) 
. ----+ 

= 2) 'V (f * e2 j (x, y) ) 

The modulus of this gradient vectors is proportional to the wavelet transform modulus: 

(3.1.5) 

And its angle is equal to the angle A2d(x, y) of the wavelet transform vector (3.1.4),( 3.1.5) 

in the plane (x, y). 

t -1 (Wij. f (x, y) ) a = an 
WiJf(x, y) 

(3.1.6) 

then A2j f ( x, y) = {a 
'if-a if Wijf(x,y) <0 

if Wijf(x, y) ~ 0 
(3.1.7) 
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Multiscale edges are points (x,y) where M 2j f(x, y) is locally a maximum in the one­

dimensional neighbourhood of (x,y) along the angle A 2j f( x, y). These points are called 

wavelet t ransform modulus maxima. 

3.2 Processing 

Each individual image is decomposed into a representation of the energy coefficients at 

different scales, then for each individual level of decomposition the modulus is calcula­

ted. The procedure to perform the decomposition is as follow: 

Suppose that the scaling function and the wavelet r/J, '1/;, ¢ and ;j; are designed with the 

filter h, g , hand 9 (see Appendix A for more detail). A fast dyadic wavelet transform 

is calculated with a filter bank called in French the Algorithme a Trous (" holes algo­

rit hm"). It is similar to a fast biort hogonal wavelet transform, without subsampling. 

It is computed from ao (initial image) by a cascading convolut ion. An example of this 

decomposition is shown in figure 3.2. 

Figure 3.2: Cascading convolutions. 

3.2.1 Results from the wavelet decomposition: 

The wavelet t ransform provide an energy representation of t he image at different scales. 

For each individual scale the decomposition in the x-direction, in the y-decomposition, 

the modulus and the gradient orientation are calculated (see figure 3.3). 

Already some differences appear between the directions of decomposition used. If the 

signature of the internal wave propagates mainly horizontally or vertically, the detection 
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will be strongest in the x-decomposition and y-decomposition respectively. An example 

is shown in figure 3.5(a) and 3.5(b). However if the internal wave is orientated dia­

gonally, this dissimilarity disappears (see figure 3.5(c) and 3.5(d)). These results 

although expected, have a direct influence on the calculation of the modulus. To reduce 

the internal wave direction influence on the classification, different wavelet representa­

tion will be used (i.e. difference on how the X-decomposition or V-decomposition will 

be used). More details about the different wavelet representation used are given at the 

end of this chapter. 

By definition the wavelet coefficient mean is null. Every time we have a positive struc­

ture at a scale, we have negative values surrounding it. These negative values complicate 

the analysis and create an artefact, so the positive or negative values are chosen sepa­

rately for the rest of the processes. This choice is purely dependent on the use of an 

automatic threshold on the histogram. Once the modulus has been processed to opti­

mize the edge and to reduce the unwanted features a non-maxima operation is applied 

on the modulus in order to refine the result and be able to process the next steps. 

Level 1 I' 
~Il --------------

Modulus 

Gradient - X decomposition 'I 
(_. __ •• ~ ..•• _00°\ 

Level 2 ['~-' 1 ·1 Wavelet I 
~~ge ,Transform il-, -+---,...: 

~, ------,I 
Gradient - Y decomposition 

Gradient - Direction 

'----Le_ve_13--:

l 
[~~-~------. 

Figure 3.3: Output from the wavelet trallsform 

Non-maxima suppression [46]: To thin the response of the wavelet transform and 

give edge points which are at the right place, a non-maxima suppression is applied to 

the modulus. Non-maxima suppression essentially locates the highest point in the edge 

magnitude data. This is performed by using edge direction information, to check that 

points are at the peak of a ridge. Given a 3 x 3 region, a point is at a maximum if the 

gradient at either side of it is less than the gradient at the point. This implies that we 

need values of gradient along a line which is normal to the edge at a point. 
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This is illustrated in figure 3.4. The point Px,y is to be marked as a maximum if its 

gradient, M (x, y) exceed the gradient at the neighbouring points AIl and A12 which 

need to be interpolated. The first-order interpolation using M x and AI y at Px,y gives: 

Ai[ Mx - M 
Ail = A/ M(x + 1,y -1) + Ai[ Y M(x,y -1) 

x x 
(3.2.1) 

M M-M 
M2 = M:M(x-1,y+l)+ xMx YM(x,y+1) (3.2.2) 

The point Px,y is then marked as a maximum if M(x, y) exceeds both All and AI2 , 

otherwise it is zero. In this manner the peaks of the edge magnitude data are retained. 

At which point hysteresis thresholding can be used. 

• px.-1Y-1 

• 
• 
P x,-1y+1 

• PX.Y-1 

:' . 
~X'Y+1 

Normal to edge 
direction 

• P X.+1Y-1 

• Edge direction at 
P7 PX'Y 

• P X,+1Y+1 

Figure 3.4: .:\on-maxi representation 

At this stage of the process it will be interesting to recall that the modulus from the 

wavelet analysis will be use as a starting point for two different recognition techniques: 

the Edge analysis and the textural analysis. 
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50 100 150 200 250 300 350 400 <ISO 500 50 100 150 200 250 300 350 400 450 500 

(a) (b) 

(c) (d) 

Figure 3.5: Wavelet coefficients at level 2 of the Image25 for (a) and (b) and ImageO 

for (c) and (d). (a)and (c) X decomposition. (b) and (d)Y decomposition. 
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(a) (b) 

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 

(c) (d) 

Figure 3.6: Wavelet modulus at level 2 of the Image25 for (a) and (b) a.nd lmageO for 

(c) and (d). (a) a.nd (c) without non maxima reduction. (b) and (d) with non ma..-xima 

reduction. 
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3.2.2 Wavelets and their use 

The last section of this chapter describes the use and the preprocessing of the wavelet 

output for the rest of the processing. 

Wavelet for the textural analysis 

The textural analysis has a straight forward approach to it. Three wavelet representa­

tions will be used, they are: 

• The modulus: 

Two level of decomposition will be used: The second level and the third. The 

modulus at different level will be referred to as M2 and M3, modulus level 2 and 

modulus level 3 respectively. Before analysing the modulus, a threshold is applied 

automatically, and the modulus is coded over n number of colour (gray tones) to 

enable the calculation of the GLCM. 

• The mean between X- and V-decomposition: The orientation of the wave 

has an effect on the wavelet decomposition. Therefore one attempt to reduce 

this effect is to take the mean between the two decompositions. This wavelet 

representation will be called mXY and will only be made for the level 2.The 

mXY is coded over n number of colour. 

• X- and V-decomposition independently: In this case the X- and Y-Decompositioll 

will be processed independently and the result will be used at the end of the pro-

cess. This wavelet representation will be referred to as XY and will only exist 

for the level 2. In this case the colour coding is performed to the two compo­

nents using the same scale. In this procedure, the relative importance of the two 

decompositions with each other is retained. 

These representations were chosen in order to perform a good classification and they 

represent different ways in which the image can be analyzed. 

Wavelet for the edge analysis 

}or this analysis, it has been shown [55] [56] that the best wavelet representation is the 

modulus of the second level of decomposition. The same method is used as the one 

used in the lVI2, Jv13 threshold calculation but this time the threshold is not applied to 

the modulus but is used in the edge tracing technique as a hysteresis threshold [62]. 
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Chapter 4 

Expression of the Texture 
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Figure 4. 1: Diagram illustrating t he layout of t he processing 

4.1 Texture 

In a search of meaningful features for describing information within an image, it is 

natural to t ake into consideration t he texture representation of the different features 

present . The t exture represents the spatial distribut ion of the gray tone whereas t he 

tone is based on the varying shades of gray. These two concepts are dependent and both 

cont ribute to an the understanding of an image. Texture can be evaluated as being fine , 
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smooth, irregular, rippled, etc. It contains important information about the structural 

arrangement of the surface and their environment. 

The perspective of tone and texture is based on the concept that texture and tone bear 

an inextricable relationship to one another. This relationship is highly influenced by the 

variation of features and the size of the small-patch area. Haralick [29] suggested that 

in order to obtain the textural feature of an image, one can assume that the texture 

information is contained in the overall spatial relationship which the gray tones in the 

image have to one another. This texture information is specified by a set of gray-tone 

spatial-dependence matrices. 

4.1.1 Grey Level Co-occurrence Matrix 

The Grey Level Co-occurrence Matrix (GLCM) addresses the average spatial relation­

ships between pixels of a small region or window. The texture information is described 

by a set of matrices P(x, y). Figure 4.2 shows the nearest-neighbour resolution cell and 

Figure 4.3 show the matrices P(x, y). Each element P(x, y) expresses the frequency of 

90 degrees 

~.-----,-~+--,-----~~ 
/ 

'. 
6 7 8 

" /' 

'" I 
~ .. - 5--)('.-' _. 1- .~ 

/ . ". 0 degrees 
/ 

" 
3 2 

/ 
~L-----~--r--4----~~ 

45 degrees Y 135 degrees 

Figure 4.2: Resolution cell 1 and 5 are GO nearest neighbours to resolutioll cell e: 

resolution cells 2 and G are 13.So nearest neighbour;resolutioll cells :3 awl 7 arc gO" 

nearest neighbour and resolution cells 4 and 8 are 45° nearest ncighbour t () e [29]. 

occurrence of two points, with respective grey-levels x and y, at a distance D(d, e) from 

one another. If an image is quantified by N grey-level, the GLCMs will be NxN arrays. 

In a homogeneous region, differences between grey levels will be low, and the element 

close to the diagonal of the GLCM will therefore have high values. Less homogeneous 

regions will result in GLCMs with high values further away from the diagonal. One 

important point to note is the sensitivity of GLCMs to linear combinatioIls. If an offset 
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Grey tone 
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2 4 0 0 0 4 2 0 
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(c) (d) 

135 0 

2 3 0 45" 4 0 0 

2 0 2 2 0 
P = PRD= 

LD 3 0 2 0 2 4 

0 0 2 0 0 0 0 

(e) (f) 

Figure 4.:3: (a)4x4 image with gray-tone values 0-:3. (b) General form for any gray- tOllC 

matrix for an image with gray tone value 0-3. (c)-(f) Calculation of all four distmlcc' 1 

gray-tone co-occurrence matrices (PH stand [or the horizontal co-occurrellce lllel trices. 

J\ [or the vertical. FLD for the left diagonal and Prw for right diagollal). [29]. 

is added to all grey levels, the entries in the GLCM will be displace along the diagonal, 

however if all grey level are multiplied by a constant value, the entries in the GLCM 

will move away from the diagonal, resulting in a difficult interpretation. 

The GLCM is very sensitive to the orientation e [12]. Therefore to ensure that the 

textural indices of any texture are not significantly influenced by the angle, an average 

of the GLCM for four different directions is necessary. 

4.1.2 Textural indices 

A lot of textural indices are available from the current literature [12], [29]. Only five 

indices will be defined and presented here. The Entropy (Equation 4.1.1) measures the 

lack of spatial organization inside the computation window. The entropy is high when 
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all the P( x, y) are equal, this corresponds to a rough texture and vice versa. 

N N 

ENT = - L L P(x, y) x lOglO(P(X, y)) (4.1.1) 
x=l y=l 

The correlation (Equation 4.1.2) quantifies the dependence of grey levels from one 

another for pixels separated by the distance D. A low correlation means that the 

grey levels are generally independent from one another (No regular structure in the 

image). If the correlation is high, one or several structures will repeat themselves in the 

lmage. 

1 (N N ) 
CORR = O"xO"y ~ ~ 7 x P(x, y) - /.Lx/.Ly 

with L = L:~=l L:~=l xy X P(x, y) 

L:~=l L:~=l P(x, y) 

N 

Px(x) = L P(x, y) 
y=l 
N 

Py(x) = L P(x, y) 
x=l 

( 4.1.2) 

(4.1.3) 

/.Lx, /.Ly, o"x and O"y are the mean values and the standard deviations associated for each 

distribution and Px and Py are defined by the equation 4.1.3. 

The Local Homogeneity (Equation 4.1.4) quantifies the amount of local similarities 

inside the computation window. Local homogeneity is larger for GLc:rvls with elements 

concentrated near the diagonal, because it is a function of (x - y)2. These GLCMs 

correspond to textures of organized and poorly contrasted features. 

(4.1.4) 

Inertia, also called second-difference moment (Equation 4.1.5) is indicative of the contrast 

of the GLCM. Because of the (x - y)2 term, inertia is very sensitive to large differences 

inside the co-occurrence matrix. High contrast regions will have a high inertia, whereas 

more homogeneous regions will have a low inertia. 

N N ( )2 
~~ x-y 

IN R = L L f{2 X P( x, y) (4.1.5) 
x=l y=l 

39 



CHAPTER 4. EXPRESSION OF THE TEXTURE 

Uniformity (Equation 4.1.6) is sometime referred to the second-angular moment . The 

lowest values of uniformity are attained when all the P(x , y) are equal, and there are 

no dominant grey levels. In this case all grey levels , are equally probable. This is 

characteristic of a rough texture. 

N N 

UN F = 2:: 2:: P(x , y)2 (4. 1.6) 
x =l y=l 

4.2 Co-occurrence matrix 

Once the decomposition of the image into the energy coefficients is done, the result 

is coded over n colour codes (n=64) and it will be considered as an image with its 

variation of texture and tone. Each image is now subdivided, which give us 169 images 

of 64X64 pixels (called" subimages") . On these subimages, the grey level co-occurrence 

matrix is calculated in the four directions (0, 45 , 90, 135 degrees) with a step of d pixels. 

Results are then averaged to obtain one grey level co-occurrence matrix per subimage. 

The CLeM at a given scale is calculated for the two decompositions (x and y) and the 

modulus . An example of a CLeM can be seen in figure 4.4. Both CLeM are orientated 

along the diagonal and the one with the wider distribution is the one representing part 
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Figure 4.4: grey level co-occurrence matrix d = 1 
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of an internal wave signature. 

Influence of the distance D(d,8) The GLCM are influenced by the distance 

D(d,8). The case of 8 has been discussed earlier (see section 2.2.1) . d, the inter­

pixel displacement, is a variable t hat can contribute to a good or a bad representation 

of texture. The texture representation of the internal waves through the wavelet trans­

form is composed of small curves with a width of 2 to 4 pixels. In t his circumstance 

the values of d has to represent best as possible the strong variation in colour as well as 

the finest of the texture. In order to optimize the texture representation a few values 

of d were tried out. Figure 4.5 shows statistical indices plotted for different values of 

d. It can be seen t hat the value of d does not have a real influence on the statistical 

distribution of the GLCM. However a small d seem to produce the greater difference 

between internal waves and non-internal wave events. This conclusion can be related 

to t he thickness of the wanted signature. 
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Figure 4.5: Statistical indices for modulus of the image25 leve12 for different. values of 

d 

Influence of the IWS on the statistical indices: The top right panel of the 

figure 4.6(a) shows t he statistical distribution of t he GLCM for the image 25 modulus 

at level 2. The dots represent the IWS. The characteristics of t he GLCM representing 

41 



CHAPTER 4. EXPRESSI ON OF THE TEXTURE 

IWS can be described by big contrasts, small entropy, and large correlation values. On 

the other hand the GLCM representing NIWS can be described by a small contrast , 

large entropy and small correlation values. 

Influence of the internal wave orientation: The internal wave signatures of 

the image25 are oriented vertically in the image. It is therefore expected t hat there 

will be a good representation of the IWS with t he x-decomposit ion and a very weak 

or no representation at all for the y-decomposit ion at any scale. Figure 4.6 show the 

image25 GLCM statistical representation for the x, y-decomposition and the modulus 

restively. The x-decomposition and the modulus statistical distribution of the GLCM 

show a large difference between IWS and NIWS. However the y-decomposit ion statis­

tical distributions do not match t he previous results. There is almost no difference in 

the distribution between the IWS and t he NIWS. This result suggests t hat the wave 

orientation can have an impact on the accuracy of t he detection. 
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Chapter 5 

The classification 
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Figure 5. 1: Diagram illustrating the layout of the processing 

To succeed with the aIm of this work, it is necessary to be able to distinguish 

between the internal wave signature and the background of the SAR images . So far it 

have been shown that the GLCM and the statistical indexes derived from it, offer the 

opportunity to present two classes of scatter points: one representing an internal wave 

signature and the other class the non internal wave signature. In order to automatically 

separate the two classes the use of a classifier is needed. For this study, init ially three 

types of classifiers were chosen. The first of the three is based on Principal component 
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analysis (PCA), the second is a K-nearest neighbour (KNN), and the last is a Multi­

layer percept ron (MLP). The three classifiers used different properties to classify the 

data sets. 

5.1 Principal Component analysis 

To perform a recognition of possible internal wave signatures, eigenvalues were calcula­

ted from two different training sets representing" event" and "non-event" (the presence 

of internal wave, and non presence of internal wave) respectively. As the general data 

set is small both training sets do not exceed 20 examples of subimages. The Principal 

component analysis was used on two different set of input data. Figure 5.2 and 5.3 

show two examples of GLCM of both classes. 

Class Event 

Original- A Original - B 

50 50 

40 
40 

30 
30 

20 
20 

10 
10 

20 40 60 20 40 60 

GLCM - A GLCM - B 

250 

10 
200 

10 120 

20 20 
100 

150 80 
30 30 

100 
60 

40 40 
40 

50 50 50 
20 

60 60 
0 0 

20 40 60 20 40 60 

Figure 5.2: Event class : Original image and GLCM (el = 3) 

5.1.1 Selection technique for the eigenvalue: 

Once the eigenvalues from both training sets have been calculated , the same eigenvalues 

are used to perform a first approximation in the classification of an unknown GLCM. 

The procedure used is as follow (see figure 5.4 for the schematic representation of the 

different steps and appendix B for more detail): 
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Class None Event 
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50 
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20 60 
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Figure 5 .3: Class Non-event: Original image and GLClVI (d = 3) 

• The idea is to calculate t he errors between the reconstructed G LCM and the 

original G LCM using both eigenvalues ( 5 .1.1 ) . 

• The first step is to decompose the original unknown GLCM. The decomposition 

is done for both eigenvalues (event and non-event) ( 5 .1.2) . 

• The second step is to reconstruct t he GLCM. As above the operation IS done 

twice. 

• The last step is to calculate t he difference between t he reconst ructed GLCM and 

its original ( 5 . 1.3) . 

Wk(test ing set , event) uI(training set , event ) X ( f (testing set) - \Ii (t ra ining set , event)) (5 .1. 1) 

Wk(testing set ,N-event ) uI(tra ining set ,N-event ) X ( f (t esting set ) - \Ii (t ra ining set, N-event)) 

f (reconstructed testing set ,event) Uk (tra ining set , event) X W k(test ing set, event) + \Ii (traini ng set, even~5 . 1. 2 ) 

f (reconstructed t esting set , N-event) Uk(tra ining set , N-event) X W k( testing set, N-event) + \Ii (trai ning set, N-event) 

Di f f (reconstructed testing set , event) f (reconstructed testing set , event) - f (test ing set)(5. 1. 3) 

Di f f'rreconstructed t esting set ,N-event ) f (reconstructed testing set,N-event) - f (testi ng set) 
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Where r is the GLCM, u the eigenvector, k the number of eigenvalues, W the mean, and 

VV projection of the GLCM into the eigenspace. A result of this operation is shown in 

Unknown GLCM 

I 

Decompose and Decompose and 
reconstruct it using reconstruct it using non-
event Eigenvalues event Eigenvalues 

Compare with Compare with 
the original the original 

GLCM GLCM 

1 t 
Error for event Error for non-event 

~ 
Difference of 

the errors 

Positive Yes 

difference 
Event class 

No 

None Event class 

Figure 0.4: PCA classification: the different steps 

figure 5.5. To make the result obvious the unknown GLCMs used are the same of those 

used in the training sets. However in many cases the total error found is a lot smaller 

and a threshold needs to be used to infer the classification. The use of this threshold 

creates a problem: each individual classification of a whole image (512x512) requires 

a different threshold. Furthermore the determination of the threshold is empirical. 

However the total error value can be used as one more parameter describing the" link" 

between the GLCM and the different classes. 
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Figure 5.5: Result of discrimination between IW and non-IVv' event . 

Classification using Principal Component analysis 

40 

Using the methods described previously a classification of the CLCM can be made. 

Figure 5.6 is an example of discrimination produced by the P CA technique. To make 

a distinction between t he two classes a threshold has to be applied on the lower plot 

presented on figure 5.6. The obvious threshold (7) has to be 7 = 0, but in many cases 

it is not t he most effective 

To opt imize the classification and reduce the influence of the wave orientation dif­

ferent classification combinations are t ried out . The combinations are made by using 

different wavelet representation to improve the IWS / background ratio. Another ob­

jective of t he optimization is to find a consistent threshold able to classify different SAR 

scenes. As before t he results will be presented for t he imageO and the image25. 

Results: In order to t ry to quant ify the result , confusion matrices were calculated 

(see figure 5.11 ). Three indices are used to quant ify t he results: 

• The total accuracy, which is the ratio between the number of correctly classified 
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Figure 5.6: Discrimination between IvV and non-IVY part of the image25 

and t he total number classified . 

• The error on negative detection is the ratio between t hose negative events wron­

gly classified and the total number of negative events. This index shows the 

proport ion of negative events misclassified . classified . 

• T he error on posit ive detection is t he ratio between t hose posit ive events wrongly 

classified and t he number of posit ive events . This index shows the proportion of 

posit ive events misclassified. 

Figure 5.7 show the accuracy and error of t he peA classification for the images 0 and 

25 for different configurations. Of all t he possibilities t ried, one wavelet representation 

(level2 mXY for d = 3,5, Figure 5.7(c)) illustrates the difficulty of this approach very 

well. At first the general classificat ion seems better for t he imageO than for image25. 

In t he case of image25 there is large sensit ivity to the value of d. For d = 5 the total 

accuracy decreases but the error of missclassificat ion of t he two classes is a lot more 

acceptable than when d = 3. The result of the classificat ion of this image for a value 

of d equal to 5 is shown in figure 5.8. In the case of imageO there is no error in 

the classificat ion of the internal wave class for both value of d. T his has the effect 

of increasing the total accuracy of the classification. However t he problem with this 
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classification is shown in figure 5.9. The zone of influence of t he internal wave in t his 

classification is too large and has produced a very important error in the classification of 

t he non-internal wave class. This error is due to the choice of the threshold. To perform 

comparative results in this analysis both thresholds have been set to zero. However a 

better value of the threshold exists for the classification of imageO (threshold= 0.15), 

which gives t he result shown in figure 5.10. In this corrected case the total accuracy is 

above 85% with an error for t he miss-classification of both classes below 10%. 

peA d assitication PCA d assificallon 
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D 0 OJ 10 o~ . iLl 
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0 n !n L 0 - . - - -Image 2S, d-3 lmage2S, d-5 ImageO, d-3 ImageO, 0-5 Image25. d-3 Image2S. d-5 ImageO, d-3 ImageO, o-5 

(a) configuration: AI2 d = 3, 5 (b) configuration: Xl' d = 3, 5 
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0 

0 
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(c) configuration: mXY d = 3, 5 

Figure 5.7: Accuracy results of t he PCA classification for leve12 and a threshold equal 

to zero 
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400 
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Figure 5.8: Illustration of the PCA classification for image 25 level2 with the configu­

ration mXY, d = 2 and a threshold equal to zero (figure 5.7(c)) 

50 

100 

150 

200 

250 

300 

350 

400 

50 100 150 200 250 300 350 

Figure 5.9: Illustration of the PCA classification for image 0 level2 wi th t he confi.gura­

tion rnXY, d = 2 and a threshold equal to zero (figure 5.7 ( c)) 
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Figure 5.10: Illustration of the PCA classification for image 0 level2 with the configu­

ration rnXY , d = 2 and a threshold equal to 0. 15 

Summary For a correct threshold values t he PCA classifications performs a good 

recognition of the internal wave signature. However an accurate classification is highly 

dependent on the determination of the threshold values. Furthermore a small variation 

of the threshold gives a large difference in classification accuracy. The need to set a 

threshold value is a very important drawback of this approach As a method of auto­

matic threshold determination could not be found, this results in a method that is too 

unreliable to enable a systematic classification method to be adopted. 
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5.2 K-nearest neighbour 

Nearest neighbour methods have been used as an important pattern recognition tool. In 

such methods, the aim is to find the nearest neighbours of an unidentified test pattern 

within a hyper-sphere of predefined radius in order to determine its true class [11]. The 

traditional nearest neighbours rule is shows in table 5.1 [63]. 

Nearest neighbour methods can detect a single or multiple number of nearest neigh-

• Out of the N training vectors, identify the k nearest neighbours. irrespecl ive 

of class label. k is chosen to be odd. 

• Out of these k scunple, identify the nmnber of vectors, ki' that belong to class 

Wi' Obviollsly I:i k i = k. 

• Assign x to the class Wi with the maximuIll number k i of samples. 

• If two or morE' classes Wi, have an equal llUmber E of maximuIll llearest 

neighbours. then we have a conflict. 

• for each classes involve in the confiict, we determine t.he dist.ance rl i bct\\'('C'n 

query set :c = {;1:1 .... ,:en } and class Wi based on the E nearest neighbuurs 

found. If the rnth training pattern of class Wi involved in t he conflict is 

represent.ed asyi.m = {:y~,m, ... , y~;m} then the distance between tcst pattern 

:r and class Wi is: 
N 

d 1 """ I ( ;.m) I 'i = E L :rJ - Y,i 
j=1 

• Assign ;T to class C: if its eli is the smallest. 

Table 5.1: K-N::'\ rules 

bours. However the value of k is implicitly dictated by the different classes distribution; 

if the different classes overlap, more than one nearest neighbours is necessary to produce 

a classification (k > 1). 

In order to obtain a representative classification, it is necessary to ensure that the va­

rious vectors are statistically different across classes, and the features are statistically 

independent. If the above condition is not satisfied pre-processing is necessary using 

techniques such as PCA, which remove the feature dependencies. 

The classification of GLCM to enable the positive selection of the presence of int.ernal 

waves signature over image background and other mesoscale oceanographic features, is 
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also conducted using a K-nearest neighbour classification technique. 

Two different kNNs are used for this classification. The first is a classic kNN as presen­

ted in the second chapter. The second method is a variation on the importance of the 

k nearest vectors. Instead of using the mean between the k chosen vectors to determine 

the class of the unknown vector; a weight is introduced to favour the nearest vectors 

from the furthest one. Classifications were carried out using different values for k and 

d. 

A training set and the query set are composed from the statistical indices from the 

GLCMs. These statistics are normalized in an attempt to reduce the effect of relative 

difference from cases to cases. The vectors used to make up the training set are from a 

study showing the presence of internal waves, and manually classified. 

The results will be represented as a probability of occurrences of internal waves within 

a cell of 32x32 pixels (resulting in the overlap of the 64x64 windows) and confusion ma­

trices will be used to derive the accuracy of the classification. The confusion matrices 

will be constructed by applying a threshold (50% ) over the probabilistic answer for 

both kNN (see figure 5.11). 

Note that in the previous section as in this one, two practical cases are shown. These 

cases are two extremes of the representation of an internal wave on SAR images. The 

strong differences in the orientation and strength of the signature in the two cases will 

show up strongly the strength and weakness of the method used. 

5.2.1 Results 

In order to obtain the best performance from the KNN, it is necessary to have a good 

tuning: i.e. the correct number of values for each vector, the correct value for K, and 

an appropriate training set. To obtain the best optimization the following section will 

present some results as a function of the three parameters describe above. Note that 

the statistical indices are ordered in the following manner: Entropy, local homogeneity, 

Correlation, Contrast, Energy, Correlation,and angular moment. 

Training set A The training set A consists of the most basic approach. Two case 

studies (namely imageO and image25) were used. So in this configuration one image is 

used as training set to classify the other image and vice versa. 

The result of the accuracy of this classification is presented in figure 5.12 and figure 
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5.13 for the image25 and imageO respectively. Like the previous classification the overall 

result is better for the imageO than for the image25. Another straight forward conclusion 

is that there no real difference between the result of both kNN used. The results 

obtained with d = 3 and k = 3 are in general the best result for a given config·uration. 

The classification for the image25 still contains a very critical miss-classification of the 

positive part. 

One of the internal waves presents in this image has a weak and vertical signature. 

This internal wave signature is not very well extracted by the wavelet analysis and as a 

consequence the statistical indices derived from this section are similar to those derived 

from the section representing the background in the image. This particular internal 

wave signature can then explain the poor accuracy of the classification in this part of 

the image. 

An examples of the classification of the image25 is presented in figure 5.14(b). 

Non-Evt Event 

Non-Evt 77 I 18 80% of total accuracy 

J 
18"l() of error on non-event class 

Event 15 60 20% of error on event class 

Figure 5.11: Example of a confusion matrix and the derived accurac.v. Tlle value' arC' 

from the classification of image25 with step=2 k = 2 for a traditional KN:\ (figure 5.12) 
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Figure 5.12: Image25 leve12 modulus classification: 50% confidence 
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Figure 5.13: ImageD leve12 modulus classification: 50% confidence 
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Figure 5. 14: Image25 leve12 modulus classificat ion 

Training set B In this case, t he training set is made up to 600 vectors represent ing 

the two classes with a proportion of around 50% each was used. Each of the vectors 

was made up from t he statistical indexes derived from the GLCM. The results of the 

classifications are presented for the two case studies wit h different values of k and 

d. The first conclusion from the results (table 5.2, 5.3) is that they are worse than 

for the previous training set. This degradation is especially evident for the image25 . 

However this degradation does not compromise the quality of the data sets, it is a 

better representation of the different internal waves signature. This t raining set is more 

representative of the internal waves signature than the previous training set which was 

very simplistic. However, a few configurations still give some good results. For example 

the configuration using the wavelet representation mXY for k = 3, 5 and d = 3 offers a 

correct classification for both cases. 

It is important to investigate the wavelet representation XY and the influence of k. 
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Figure 5.15(a) and 5.15(b) show the probability of internal waves presence for the X­

and V-decomposition for image 25 respectively for k = 3 and d = 3 (namely case 1 ). 

The results of the classification are shown in figure 5.16. Figure 5.17(a) and 5.17(b) show 

the probability of internal waves presence for the X- and V-decomposition respectively 

for k = 7 and d = 3 (namely case 2). The results of the classification are shown in 

figure 5.18. For both cases the configuration is the same, except that the value of k goes 

from 3 to 7. For both cases the probability of occurrence of internal wave signature 

is higher for the X-decomposition than the V-decomposition. This result underlines 

again the influence of the internal wave orientation. The value of k become important 

in the middle left part of the image for the V-decomposition. At this place the Y­

decomposition shown a rough zone. In this region the interpretation depends on the 

value of k that is used. As this zone is complex, the KNN need a large value of k to be 

able to give a good classification. 

The tables 5.2, 5.3 present the overall results for different number of the input vectors 

used to classify each sub-images: 2 - 4 - 6: Two input values represent the entropy and 

the local homogeneity, four input input values represent the first two plus the contrast 

and the energy and six input values represent the previous four plus the correlation and 

the angular moment. The result show that the set with up to four input values is the 

best, which mean that the statistical indexes used in this configuration are the best to 

represent the two classes. 

The best configuration, i.e. the correct parameterisations of the k, d, and the wavelet 

representation, is the wavelet representation mXY for k = 3,5 and d = 3. This setup 

works for both images and therefore will be the one to be retained in the application 

chapter. Figure 5.19( a), 5.19(b) and 5.20( a), 5.20(b) show the classification using this 

setup for both case studies. 

Summary In general the KNN offers a better classification than the previous tech­

nique used. The improvement is based on the fact that the configuration can be fixed 

and therefore the classification is independent of any further adjustment. To conclude 

the retained setup is as follow: 

• Choice of the training set: 

- Training B. It is a broader representation of the signature in the SAR images 

• Choice of the KNN (Normal or weighted): 
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- weighted 

• Choice of the k: 

-k=3 

• Choice of the input vector: 

- input vector length is equal to 2 and 4 
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81J 80 .0 68.8 73.7 81.3 66.6 75.5 80A E 77.3 72.8 62.2 66 .6 1 72.9 61.7 7 1.1 I 728 65.5 

accuracy I 

Event 
35 .7 1 

1 

I 

39.2 23 .2 8.9 33 .9 16.0 5.3 32. 1 19.6 57 .1 37 .5 32. 1 12.5 28.5 8.9 39.2 i 26.7 8.9 
error 

N-Event 
11.8 18 .9 38.4 23.6 19.5 42.6 21.8 19.5 43.2 17.7 25A 46. 1 32.5 1 27.2 47.9 25.4 I 27. 1 43.2 

enor 

K=5 - Step=3 K=5 - S.ep=5 

To.a l 
81.3 84 .8 ~ r":'- --""--~I '"' 80.8 66.6 73 .3 76 .4 62.61 66.6 r-:;;;-~2 1 73.3 1 74.6 ~ accuracy 

Event 
39.2 28 .5 

8.9 " " 'L9 " ~ 2 1.4 10.7 33.0 33.9 12.5 32. 1 I 28.5 10.7 33.9 : 23.2 12.5 
en1)r 

N-Event 
11.8 10.6 36.6 20.7 13 .6 4 1.4 18.9 18 .3 40 .8 18.0 20 . 1 45.5 33.7 1 27.0 46.7 ~l 26.0 40.8 error 

~---~. -~~--- ----
K=7 - Step=3 K=7 - S.cp=5 

To.a l i I 

accuracy 
83. 1 84 .4 88.4 76.0 82.6 83.5 74.2 76.0 77.3 78 .6 76 .4 64 .8 68 .4 ! 71.1 65.3 74.6 I 72.0 66.6 

Event 
28.5 28.5 14.2 32. 1 21.4 '~"J 2 1.4 14 .2 31. 1 33.9 12.5 32.1 i 30.3 I 10.7 32. 1 25.0 12.5 , 

cnur ! 

1 42.6 
N-Event I 

I 13.0 10.6 10.7 21.3 15.9 17.1 24.8 24.8 25.4 17.0 20. 1 42.6 31.3 I 28.4 23. 1 28.9 40. 2 
en'or I 

Table 5. 2: Result of the classification performed by the KNN of the Image25 for a 

variety of different values of cl and k . 

K=3 - Step=3 K= 3 - S.ep=5 

Inpu.= 2 Inpu t=4 Inpu .=6 Inp" .=2 Inp".=4 Inp,, '=6 

~ mXY I XY M2 mXY XY 1\1 2 mXY XY M2 
1 

mXY 
1 

XY M2 i mXY M2 mXY I XV 

To.al 
74.2 83. 1 62 .2 73.7 82.6 62.3 76.4 79.9 59. 1 n2 84.4 68.4 77.7 1 8404 63 .4 75.5 ~ 2 . 6 1 65 .3 

accuracy 
Evenl 

29.8 10.3 3.5 15.7 8.7 0.0 15. 8 14.3 1.7 28.0 14.2 3.5 15.7 1 12.28 3.5 2 1.0 14 () 
1 

1.7 
error 

N-Event 
24.4 1804 49.4 29.7 20.3 50.9 26. 1 23.4 

error 
54.1 14. 6 16.0 41.0 24.4 I 16.0 48.0 25.5 I ~ 4 I 45.8 

K=5 - Step=3 K=) - S'''p=5 

TOtal 7~ accuracy 
82.2 1 60 .4 76.0 82 .6 63 .1 78 .2 1 75 .5 1 62 .2 ~ 8~ 65.7 78.6 ! 84.0 66.6 78.2 1 X4.0 1 67 .5 

Evenl 
21. 10 .5 1.7 14.0 10.5 1.7 15.7 12.2 1.7 22.8 15.7 1.8 14. 1 12.2 1.8 17.5 12 .X 

I 
1.8 

error 

N-Event 
22.2 2003 48.8 14.28 44.0 

I 
17 .2 45.2 2J.2 17.2 I 42.8 52.3 27.8 19.6 2H 23.2 50.0 19.0 ?' _ J 

error 

K=7 - Slep=3 K=7 - S.ep=5 

Total 
8 1.7 83.1 77.3 8004 82.2 76.8 79. 1 79.5 74.8 79 .5 85.8 66.6 ~r 84 .X 67.5 79. 1 ~35 I 68.4 

accuracy 
Event 

35.0 10 .5 1.75 15.8 10.5 3.5 14.0 10 .5 24 .5 19.2 14.0 1.75 ~-8 ;--+--~7 --~~ ~2 1 1.7 
elTor 

N-Event I 

12.5 19.0 29.7 20.8 29 .7 29.7 23.2 23.8 33.3 20.8 14.8 44.4 E6 i 17.2 42.8 22.0 17.M I 42.7 
error 

Table 5.3: Result of the classiii.cation performed by the KN N of t he ImageO for a va.riety 

of different values of cl and k. 
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50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 -1 00 450 500 

(a) Classification for X-decomposition (b) Classification for Y-decomposi tion 

Figure 5.1 5: KNN output for k=3 using the X and Y configuration of the image25 
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(c) Classification at 50% confidence (d) Classification al 70% confidence 

Figure 5. 16: KNN output for k=3 using the XY configuration of the image25 
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(a) Classificat ion for X-decomposition (b) Classification for Y-decornpositioll 

Figure 5.17: KNN output for k=7 using t he X and Y configuration of t he image25 
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(c) Classification at 50% confidence (d) Classifi catio l1 a t 70% confidence 

Figure 5. 18: KNN output for k= 7 using the XY configurat ion of t he image25 

61 



CHAPTER 5. THE CLASSIFICATION 

I 
(a) Classification at 50% confidence (b) Classification at 70% confidence 

Figure 5. 19: Result of the KNN classification of the image 25 for k=3 using the wavelet 

representation mXY. 

500 50 100 150 200 2~ 300 350 400 450 ~OO 

(a) Classification at 50% cOllfidellce (b) Classifi catioll at 70% confidence 

Figure 5.20: Result of the E NN classification of the image 0 for k=3 using the waveleL 

representation mXY. 
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5.3 Multi-Layer Perceptrons 

Artificial Neural Network models have been studied for many years in the hope of achie­

ving human like performance in the field of speech and image recognition. The different 

abilities of neural network have attracted many people to use it for remote sensing ap­

plications [17]) [18]. 

The traditional parametric statistical approaches to supervised classification such as 

maximum likelihood use the assumption of a multivariate Gaussian distribution. Each 

class in feature space is assumed to have an n-dimensional multivariate Gaussian dis­

tribution. With these methods a problem appears when the data in the features do not 

follow the assumed model. 

In the Neural Network approach the problem with the assumptions do not exist and 

they potentially have the ability to classify data with a better efficiency [37]. Neural 

Networks applied for supervised classification are similar to the K-nearest neighbour 

algorithm. The main advantage with the use of the Neural Network approach is there 

is no model or distribution assumed at the start. 

Many types and architectures of Neural Networks have been developed [22]. The most 

popular architecture for pattern classification and recognition is the multi-layer per­

ceptron (MLP). The developments of the neural network techniques were specially due 

to the increasing in computing power in the 1980's. New types of architecture and 

technique were developed such as the back-propagation MLP algorithm described by 

Rumelhart [57]. 

5.3.1 MLP Structure 

A neural network consists of a number of interconnected nodes. Each node is a simple 

processing element that responds to the weighted input it receives from other modes. 

The arrangement of the nodes is referred to as the networks architecture (see figure 

5.21). 

The resolution of a non-linear problem asks for a multi-layer structure such as the 

MLP. The multi-layer structure is composed of 3 layers at least (see figure 5.21). 

The design procedure for neural network pattern classifiers involves the following step: 

• Define correctly the input and output of the network as well as a suitable structure 

for the particular problem involve. 
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Hidden layer 

liP layer OIP layer 

Input Output 

Figure 5.21: ]'vILP layout 

• Choose a good training method for the structure of the network. It is important 

Select carefully the training set as well as the training time. 

• Find a good compromise between the training set the training time and the num­

ber of nodes, in order to provide high accuracy and good generalization. 

These choices are very important for the performance of the network, but the determi­

nation of a good general structure is difficult. 

The feed-forward network is composed of a hierarchy of processing unit, organized in 

a series of two or more mutually exclusive sets of layers. The layer serves as a holding 

site for the values applied to the network; the nodes are the element of a feature vector, 

such as the texture of an image or the wavebands of a data set, etc [14]. The last layer 

is the point of final state of the network is reading. Between these two layers lies zero 

or more layers of hidden unit (hidden layer). Weights connect each unit in one layer to 

those in the next layer (there is no feedback). 

The role of the input layer is somewhat fictitious, the input layer is used only to feed 

the network and distribute a separate mapping or conversion of the input data (their 

weights are insignificant). 

The MLP has a feed forward propagation; the information is passed through the network 

via the input layer and it is modified by the weights associated with the connection. 

The receiving node sums the weighted signals from all nodes to which it is connected 

in the preceding layer as follows: 

(5.3.1) 
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Where ~Vi,j represents the weights between node i and node j, and 0i is the output from 

node i. The output from a given node j is: 

0.5 

o 

---------------------------r----------------------- ---
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 5.22: Example of a sigmoid fUIlction 

(5.3.2) 

The function f is a non-linear sigmoid function (see figure 5.22). The sigmoid func­

tion is applied to the weighted sum of input before the signal is passed to the next layer. 

When the signal reaches the output layer it forms the network output. The output of 

one node is set to one, while all other nodes in the output layer are equal to zero. 

The MLP is trained to recognize particular patterns. During this training the network 

builds a model to generalize and predict the output from a given input. The back­

propagation is a method widely used. During the training period the output signal is 

compared to the output desired then an error is deduced. The error is reinjected in the 

network, and the weights of the connection are modified according to the generalized 

delta rule. This process is repeated until the error reaches an acceptable value. 

(5.3.3) 

r; is the learning rate of the network, 5j is an index of the rate of change of the error, 

and a is the momentum parameter. 

The capabilities of the neural network to be accurate, to generalize and to interpolate, 

are affected by many factors. The first factor and maybe the most important and most 

difficult to determine is the number of layers and nodes in the network. In general 

the number of nodes in the hidden layer increases the abilities of the network to solve 

complex situation but its abilities to generalize decrease. The size and the type of the 
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training set is also very important. The training set has to be representative of the 

entire distribution of each class. To obtain an overview of the class, a large training set 

is required, and then the training time is increased. A few methods have been developed 

to compress the training time such as the delta-bar-delta rule or optimization procedure 

[10],[50]. Increasing the training set increases the training time. The longer the network 

is trained the more accurate it becomes but its ability to generalize decreases. There is 

then a compromise to find between the training set, the architecture and the training 

time required to optimize the network. 

Training is accomplished by presenting the pattern to the network and determining the 

output. The actual output of the network is compared to the target and an error is 

derived. The error calculated is propagated backward through the network and used 

to change the weight within the net. This process is repeated until the error reaches 

an acceptable value. This training method is known as the back-propagation training 

method. The number of hidden layers needed and the number of nodes in a hidden 

layer is possibly one of the most difficult questions related to multi-layer networks. No 

methodology have been found yet in order to determine these variables [30]. However 

Foody [25] shows that the complexity of a given problem has to be the main driven 

factor into the chose of the MLP's architecture. 

5.3.2 MLP Training and Back-propagation 

Once the appropriate neural network structure has been chosen, the training strategy 

has to be selected. Often during a training period the error does not converge, becomes 

unstable or oscillates between two minima. This situation necessities some adjustment 

in considering the following training parameters: 

• Training using pattern or epoch; 

• Use of momentum and corresponding weight 

• Learning weight and weight changes over time 

• Sequential vs. random ordering of training vector 

• Determining whether the training algorithm is stuck at a local energy minimum 

In many applications, it is advantageous to consider modifying the neural node 

characteristic to include a bias. For example with the sigmoid fUllction which give 
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f(O) = 0.5 for net i = O. We may wish to bias this node such as 1(0) is another value. 

This bias may also be part of the training. A simple model for the unit with bias is to 

modify net i such as: 

(5.3.4) 

The Generalized Delta Rule is a product-learning rule for a feedforward, multiple-layer 

structured neural network that uses gradient descent to achieve training or learning by 

error correction. The network weights are adjusted to minimize the error based on the 

difference between the actual output and the desired output. The basic operations of 

the GDR are: 

• Apply input vector to the network 

• Propagate the input pattern in the network to determine the node output 

• Compute and propagate error measure backward through the network 

• Minimize the error at each stage through the node weight adjustment 

Each element of the network has its own terminology: 

• i: the input pattern 

• 0: corresponding output pattern or response (vector) 

• w: network weight associated to the node-node connection 

• t: desired system output 

Note that weight Wji denote the strength of connection from node i to unit j. 

Back-propagation 

For this presentation of the different steps, a 3 layer MLP s assumed. 

• Present iP from output 0i of all units in network. 

• Use the expression .0.PWij = E (tj - oj) 1j (netj) OJ to update Wij for the output 

layer. 

• Use the expression .0.PWij = 15f oj E 
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(Pattern) Error Mea,snre 

(Pattern) Weight correction 

Output unit 

Internal units 

Output derivative (Assume sigmoidal characteristics) 

5j = (tj - oj) fJ (net~j) 

~P - t'. (. J P) '\"' -pTI­
L j -.} nctj LII.{)n ll ".1 

j . (netl') = d' (1 - r/')" 
p'~ ] J 

Table 5.4: Summary of the CDR equations for the training using the BackpropagaLioll 

t.echnique 

The method above suggests that a care must be taken in choosing the learning rate, 

which is, in a gradient approaches, define as:c(n) = coin. To add momentum at each 

iteration, we can modify the correction parameter as follow: 

(5.3.5) 

The expression corrects the correction term (n + 1) using a product of a factor a and 

the correction term (n). This method can prevent oscillation in the system. 

5.3.3 Results 

The MLP needs like the KNN, a training set. To offer a valid comparison, the same 

training set is used here. The construction of the training set for an MLP has to follow 

a few rules. For example Pankiewizc [49] stipulates that two thirds of the data set 

has to be used for training purpose and the rest for validation. A recommendation by 

Tovinkere [65] stipulates that the number of training per classes should be up to 20 

times the number of classes. The list of recommendation is large see [37] aud [8] for 

more detail. To be able to follow these rules and to simplify the processus, the data set 

was created using 10 different images representing around 600 sample with a repartition 

of 50% between classes. The validation is provided using the two case studies: imageO 

and image25. 

There are two steps in the construction of an MLP. The first is to determine how IIlauy 

hidden layers will be used and the number of nodes. The second step is the number 

of inputs that will offer the best configuration. To perform this construction the result 

will be given using the average between the validation using imageO and image25. 
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Number of hidden layer and their sizes: For this purpose a series of MLPs were 

built using different numbers of hidden layers and numbers of nodes. Each MLP was 

trained for 600 iterations and validated using the two case studies. It became obvious 

that the case with one hidden layer was desirable for the small training time and the 

accuracy of the classification. Figure 5.23 show the result for an MLP with two input 

nodes, one output and different number of nodes in the hidden layer , expressed as t he 

mean square error calculated at each iteration. The graph show a minimization of the 

error for 12 nodes in the hidden layer. 

0.2 

0.18 

~ 0.16 
2 
W 
(j) 

ro 
:J 

& 0.14 
c 
co 
(j) 

:2! 
c 
o 
~ 0.12 
ro 
> 

0.1 

0.08 

o 100 200 300 
Iterations 

400 

- 10 hidden nodes 
- 12 hidden nodes 
- 20 hidden nodes 
- 6 hidden nodes 

500 600 

Figure 5.23: I'v1ean Square error for number of node in the hidden layer. 

Number of input: For this purpose, the previous result with a MLP with one hidden 

layer of 12 nodes and one output is used. Three new MLPs were constructed using this 

parameterisation with 2-4-6 input node respectively. They were trained independently 

for 600 iterations and validated using the two case studies. The result can be seen in 

figure 5.24, with the mean square error calculated at each iteration. The graph show a 

minimization of the error with a value of 0.08 for 6 input nodes between 250 and 300 

iterations . 
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Figure .5.24: :tvIean Square error for different number of inpu t nodes 

Validation results: The MLP used has 6 input nodes where the statistical index are 

introduced into the network, one hidden layer with 12 nodes and one output node. The 

results are presented for the two case studies and for different values of d (see table 

5.5).The overall results have a better accuracy than for the two previous classifier used , 

even for t he case of image25 which exhibits a good classification. The improvement is 

significant for every values of d and for every wavelet representation. 

As in the previous classification it is important to look at what is happening for the 

wavelet representation XY , for two reasons: because highest accuracy is reached for 

the wavelet configuration with a value of d equal to 3, which was not the case in the 

classification using as KNN; and to see if the problems occurring for the KNN clas­

sification still exist. Figure .5.25( a) and 5.25(b) show the probability of occurrence of 

internal wave for the X- and Y-decomposition respectively. As before, t he classification 

of the X-decomposition offers a good identification of the classes. In the classification 

of the Y-decomposition , the left middle part of the image shows the highest values 

of probability. However , the probabilities shown in figure 5. 25(b) are small (less than 

50%), which do not compromise the result of the X-decomposition and therefore give a 
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II 
Image 0 Image 25 

Step=3 Step=3 

II M2 
I 

mXY I XY I M2 
I 

mXY 
I 

XY 

Total accuracy 83 .3 84.8 84 83.1 87.1 92 

Event error 1.7 7.0 5 .2 10.7 25.0 5.3 

N-Event error 22 17.8 19.0 18.9 8 .8 8.9 

Step=5 Step=5 

Total accuracy 87.1 85.7 
I 

83.1 77.3 78. 1 ?l5.7 

Event error 8.7 5.26 1.75 35.7 28.1 3.5 

N-Event error 14.2 17.2 22 18.3 18.3 17.7 

Table 5.5: :MLP classification results 

correct overall classificat ion (Figure 5.26). Figure 5.27(a), 5.27(b) show the probability 

of occurrence of internal wave for the X- and Y-decomposition respectively, for image 

O. In this case t he two signatures are mainly orientated diagonally in respect to the 

image coordinate with one extremity of the smaller wave orientated horizontally. These 

differences are well observable in the repart ition of the probability of occurrence in the 

figure 5.27(a), 5.27(b), which as for the image 25 give an overall better classification. 

Now a comparison can be made with the best wavelet configuration for t he KNN clas­

sification , which is the wavelet representation mXY. Figure 5.29 and 5.30 show the 

result of the classification for the imageO and image25 respectively. The results for the 

first case study (imageO) are good and give a good representation of the signature of the 

internal wave within the image for both thresholds: 50% and 70%. In the case of the 

image25 t he story is a bit different. The signature of the right hand side of the image is 

completely miss-classified. This missclassification comes from the fact that this wavelet 

representation is the mean between t he x- and y-decomposition. As this signature is 

horizontally oriented, it is not detected in t he y-decomposition, therefore it is weakly 

represented in the mean between the two decomposit ions and therefore the MLP does 

not succeed in classifying this zone properly. 

Summary In general the MLP offers an overall better classification than the previous 

t echniques described . The setup of the MLP was chosen for a good compromise between 
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the accuracy of the classification and a quick training time. To conclude the preferred 

configuration is as follow: 

• Choice of the training set: 

- Training B. It is a broader representation of the signature in the SAR images 

• Choice of the number of hidden layer and their number of nodes: 

- One hidden layer with 12 nodes 

• Choice of the number of input: 

- number of input = 6 

• Best wavelet representation: 

- Xy 

5.4 Conclusion 

This chapter presented three classifiers to tackle the problem of the classification of the 

internal wave signature in SAR images. The information contained in the GLCM and 

statistical indices are used to discriminate between two classes (event and non-event), 

using a PCA technique, two different KNN classifiers, and a MLP classifiers. The PCA 

classification technique used the GLCM directly, while input to the KNN and the MLP 

are statistical indices. 

The recognition technique was applied to two SAR images (the imageO and image25). 

The imageO shows a strong well defined internal waves signature, with orientation along 

the diagonal of the scene. The image25 is the opposite, the signature of the 2 major 

internal waves present are weaker, and vertical with respect to the scene orientation. 

These two cases were chosen, because they represent the two extreme cases of the in­

ternal waves signature present in SAR image and provide a good test for the method 

proposed. 

peA technique: The discrimination between classes was done using the idea that it 

is necessary to have as much diflerence as possible between the presence of internal waves 

(event) and the non-presence of internal waves (non-event). The results presented for 

each individual study show, the total accuracy, the percentage of the misclassification 

72 



CHAPTER 5. THE CLASSIFlCATI01V 

of the non-event and the misclassification event. The accuracy offered by this classifi­

cation is reasonable, but dependent on a particular threshold. The threshold needed to 

optimize the classification is very variable, which makes generalization of the technique 

difficult. In the presented results, the threshold was set at zero to offer comparative 

results, but in many cases this was not the best solution to perform the most accurate 

classification. 

KNN technique: Two KNN techniques were used, a traditional KNN and a weigh­

ted KNN, using a range of values of k (k = :3, 5, 7). The results presented for each 

individual cases show, the total accuracy, the percentage of the misclassification of the 

non-event and the misclassification event. The accuracy offered by this classification is 

slightly better in terms of accuracy, but definitely more reliable, as this method does 

not need any threshold, so it offers the chance to perform a generalization of the result. 

The best configuration found was with k = :3 and with the input vector having a length 

of 2 - 4 . 

MLP technique: The MLP use was made up with 6 input nodes, one hidden layer 

containing 12 node, and one output node. This classifier offer the best classification of 

the three, with a best configuration for the wavelet representation mXY and a value of 

d= 3. 
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50 100 150 200 250 300 350 400 450 500 

(a) Classification for X~decomposition (b) Classification for Y~cleco[J1pos ition 

Figure 5.25: IvILP output for k=3 using t he X and Y wavelet representation of the 

image25 
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Figure 5.26: lVILP output for k=3 using the XY wavelet representation of the image25 

74 



CHAPTER 5. THE CLASSIFICATION 

(a) Classification for X-decomposition (b) Classification for Y-decomposit ioll 

Figure 5.27: IvILP output for k=3 using the X and Y wavelet representation of the 

imageO 
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Figure 5.28: MLP output for k=3 using the XY wavelet representation of the irnage25 
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(c) Classification at 50% confidence (d) Classification at 70% confidence 

Figure 5.29: MLP Classification of the image 0 for different cutoff valuE's, for k=3 using 

mXY wavelet representation 
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(c) Classification at 50% confidence (d) Classification at 70% confidence 

Figure 5.30: MLP Classification of the image 25 for different cutoff values, for k=3 

using TnXY wavelet represen tation 
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Figure 6. 1: Diagram illustrating the layout of the processing 

6 .1 Introduction 

The aims of this chapter are to investigate whether it will be possible to extract t he in­

ternal wave signatures within the SAR images by considering the edges of these features 

and their geometry. Feature extraction generally seeks invariance properties so that the 

extraction process does not vary according to chosen condit ions. Extraction implies 

that a description of a shape, such as its position and size is available. There are many 

techniques for features extraction, such as t he hough t ransform [31], generalised hough 

transform [21] and active contour techniques [15] [69] . The edges which characterize t he 
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internal waves take in general the form of train lines, or/and arc with different radius. 

Therefore it is difficult to assign a general template for the shape of the edges. Their 

direction, size and their number are very variants. The variant characteristics of the 

signature are a major problem to overcome. The solution is found by partitioning the 

problem with a very simple approach. The template is defined as follows: find three 

edges with a distance of d with dmin > d > dmax between each other and presenting 

pseudo-parallelism. Any predispositions of shape, orientation or size are used in the 

template. However before applying the template to the edges list, pre-processing is 

needed to make sure that the edge of a single potential internal wave is represented by 

one and only one edge. Therefore a test of edge continuity and cooperation between 

edges has to be made. 

6.2 Edge tracing, Continuity and cooperation bet­

ween edges 

6.2.1 Edge tracing 

Edge analysis is understood to be the study of the geometry of the edge obtained from 

the internal wave signatures. To allow this study to take place, the edge of the internal 

wave has to be represented by one continuous line. This is where the edge tracing, 

approximation to a continuous curve becomes useful. 

Edge Tracing Method and Curvature Edge tracing is one of the most fundamen­

tal subjects of image analysis. An edge can be traced by simply following the line of 

high pixel values (above a given threshold). For this, any edge line of the object is 

accepted as the starting point and the edge is traced. 

In order to follow the edge of an object in lines there are methods like Hough and Rota­

tion Transformations [35], but because the internal wave edges do not have a classical 

geometric shape such as a line or circle, these techniques have proven to be difficult 

to control and tune. In this work, a simpler algorithm is presented using a hysteresis 

threshold technique (figure 6.2) instead [62]. 

1. Step 1: A first pixel point of a given edge is found by a primary scanning of 

the image (modulus wavelet representation) and identifying a point above a given 
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upper threshold (figure 6.2 and 6.3). 

2. Step 2: The subsequent points are traced if the points are above a given lower 

threshold 

3. Step 3: The coordinates of the edge point found in step 2 are used to determine 

the direction for the next search, by taking the last 10 last points found and 

determining e from a simple linear regression. 

4. Step 4: Repeat step 2 and 3 until no edge point is found. 

The mathematical expressions to determine the advancing direction are as follows: 

x = x + j(cos(e)) 

y = y + j(sin(e)) 
7f 7f 

where e = -7f -- - or 7f 
, 2' 2' 

(6.2.1) 

The value of x and yare rounded to the closed integer. Small segments are generally 

r 111'1'~r Ihr~,hpld 

,-- r- lu\\crllm:,II~dd 

:f 

Figure 6.2: Hysteresis thresholding 

defined by cubic polynomial functions. The fitting can be achieved by considering 

a parametric form. In a parametric representation, the contour v(t) (i.e. v(t) = 

(x(t),y(t))) can be approximated by two polynomials given by: 

(6.2.2) 

(6.2.3) 
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A definition of the curvature (k) at v(O) can be obtained by considering the derivation 

of the equation 6.2.2 and 6.2.3 using the form of the equation 6.2.4(see table 6.1). 

Accordingly, the value of the curvature for the pixel v(O) is given by equation 6.2.5 [46]. 

k x(t)jj - y(t)x 
(t) = [x2(t) + y2(t)]~ 
k(O) = 2cy bx - CX~y 

[b~+b~]2 

(6.2.4) 

(6.2.5) 

The knowledge of the curvature can by used to disregard edges that have a curvature 

greater than a given threshold, because they do not represent an internal waves signa­

ture and are either an artifact or another unwanted feature. 

Ifu(L.) is a curve, then it. can be express ill a parametric form such as: 

--+ , -----+ 
1'(1) = .:r(t) i + y(t;) j 

where 
----:-1 -7 
z and .J are the vector unit. At any point within this curve u( t) the 

tangent can be describe by its modulus l'I>(t)1 = J:i:: 2 (t) + f;2(t) in the direction 

lP(t) = tan-1(:Ij(t)/:i:(t)). The curvature at this point describe the changes ill the' 

direction lP( t) with respect to changes in arc length: 

ellP(t) 
k(t) =-

els 
(6.2.6) 

where s is arc length, along the curve itself. One call rewrite equation G.2.6 as: 

k(t) = dy(t) elt 
eli els 

The term ~,~ describe the change in the arc length with respect to t. If Olle considers 

the curve as the motion of a point, then this differential defines instant allCOUS 

change in distance \vith respect to time (the speed): 

and 
di 
elf; 

1 

(G.2.8) 

(G.2.9) 

By considerillg that y(L) = tan lCIj(t)/:i:(i)), thell t.he curvature at a point dt) in 

equation 6.2.9 is given by the expressioll 6.2.5 

Table 6.1: Descript.ion of curvature [46] 

81 



(a) Result form Edge Tracing 
Method 

(b) Result after Curvature and 
Edge linking Method 

/ 

.... -4~~E-dg-e-l-~--m-g-a-n-d------I~ 
curvature discrimination 

I 

\ 

I 

\ 

Figure 6.3: Examples from t he Edge training and curvature discrimination. (a )Edge 

tracing method apply the modulus from the wavelet transform. (b ) The curvature 

discrimination as well as edge linking technique. One can see that from (a ) to (b) some 

edge have been disregarded using the curvature criterium. 
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6.2.2 Continuity and cooperation between edges 

The purpose of continuity and cooperation between edges is to identify significant struc­

tural relationships. The operation is done by successive refinement [43] following a 

bottom-up strategy. Figure 6.4 show the application of this process where the length 

of the accepted gaps is proportional to the length of the two segments. Furthermore 

the grouped segments from one level are considered as individual for the next level. 

This strategy permits local information to be integrated into a global context. In order 

to recover curvilinear segments, it is useful to identify which segments are potentially 

neighbours. It then necessary that potential neighbours segment must satisfy in gene­

ral, two geometric constraints: proximity and continuity. The continuity and proximity 

criteria are presented in figure 6.5. More precisely, the candidate must verify the fol­

lowing relation where E = 0.1 and a = 1 and b = 0.1 [43] are two constants which 

account for the proximity. The measure of E (called measure of bending [43]) allowed is 

a function of the parameter a, which controls the departure from the collinearity of the 

joined curves, of b which controls the sensitivity to the length of the gaps being filled 

and t which is the length of the gap. 

(6.2.10) 

where ex and (3 are expressed in radius. 

~ t ____ !-~/U"el, 
~----------~,---r, ------~ 

, ' , ' , ' , ' , ' 
, ' , ' 

~ 
Level I 

~ . ' : , ' , 
, ' I , I 
I I 

Level 0 
I I 
, I 

: .J--
.Y 

Figure 6.4: Succe~~ive refinemellt~ 

8:3 



CHAPTER 6. EDGE EXTRACTION 

Figure 6 .. 5: Continuity criteria 

6.2.3 Implementation 

The edge detection was made using the wavelet multi-resolution technique, and linked 

into chain points. Figure 6.6 show a result of this process. Some edge are dropped out 

due to the poor contrast or/and broken due to poor linking. The grouping process start 

by identifying for each free segment (chain points) a set of free neighbouring segments. 

These selected segment satisfy constraints on measures of proximity and continuity. If 

more than one segment is found to match the criteria, the one selected is the one that 

minimizes the expression 6.2.10. The gap between two segments is filled using a linear 

regression. This grouping process is repeated iteratively until no more grouping are 

found. 

84 



, ___ __ __ ______ ___ _____ .. Elimin ation using size 
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Figure 6.6: Examples from the Continuity and cooperation between edges . (A) show 

the edges detection scheme using the wavelet multi-resolution technique using an au­

tomatic threshold. (B)and( C) are the result from the continui ty a.nd coop rative edge 

technique.(D) show t he cubic fit of the selected edges 
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6.3 Parallelism of the edges 

The concept of parallelism for straight lines is clear but there is a lack of an established 

model for describing parallelism among curves. The following section will describe a 

model for describing parallelism among curves and extract common properties among 

them to serve as a measuring rod for parallelism detection [32]. 

This model uses the properties of the tangent of a given point part of a curve, so we 

will start by introducing a new tangent representation called Direction-dependent tan­

gent (DDT), which incorporates concavity information into the tangent representation 

and prohibits false matching. Based on a theorem and the tangent representation an 

algorithm for parallelism detection will be presented using driving forces. 

6.3.1 Direction-Dependent Tangent (DDT) Representation: 

The tangent at a point on a given curve is defined as the slope at this point. The curve 

(C) can be represented in a parametric way, such that the position of a point (C (k)) 

can by expressed by C(k) = (x(k), y(k)). Therefore the tangent vector at this point can 

be defined by (jJ(k) = (x(k),Y(k)). In this definition x(k) represent the differentiation 

of x with respect of t at the point k. (jJ is a vector, but only the direction component 

is of any interest. Therefore (jJ represent the orientation of the vector tangent with a 

range of [-'if, 'if]. 

When a curve is represented in a parametric manner, the sense in which the sequence of 

the points are defined, has an influence on the sense of the tangent. If the sequence of 

the points is defined form the right to the left, the tangent orientation will be different 

from a sequence of the points is defined form the left to the right. In other words (jJ is 

sensitive to the coding direction of the curve C. The impact is that two tangent from 

two different curve can be only be compared correctly if and only if the coding direction 

of the two curves is done using the same direction. In order to resolve this problem IP 

and Wong [32] create an extension to tangent definition called: Direction-Dependent 

Tangent (DDT). 

Figure 6.7 show the same curve with two different coding directions. By working in 

either curve the tangents point toward the direction of movement and are called forward 

tangents. i.pq(s) represents the forward tangent at Cq(s) and is defined by ipq(s) = 

atan2(xq(s), yq(s)) with range [-If, If] (atan2 is the standard C function that return 

arc tangent according to the signs of x and y argument). However for implementation. 
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a 
b b 

A B 

Figure 6.7: (A) Clockwise direction while (B) show a anticlockwise coding direction. 

the tangents are set to a positive value ([0 27r]) and are defined by 

In addition to the tangent orientation, t he sense of rotation of t he tangent is important. 

In other words one can record if the tangent appears to the left or the right-hand side 

with respect to the sense of coding of the curve. They are called left tangent and right 

tangent respectively. Figure 6.7 (A) show left tangents and figure 6.7 (B) show right 

tangents. 

To determine whether a tangent is left- or right-tangent is an easy task. Anti-clockwise 

turning tangent orientations implies right-tangents. These tangent vectors are positi­

vely oriented. Denote t he relation r('l/q(a) , 'l/q(b)) between two vectors a and b with 

orientation 'l/q(a) and 'l/q(b) that are positively oriented, 

(6.3. 1) 

if f ('l/q(s), 'l/q(s+c)) 2: 0 is satisfied, where c is small positive number , then the forward 

tangent at point S is a right-tangent. Ot herwise, it is a left-tangent. To incorporate 

this information into the tangent representation, DDT is defined as: 

(6.3.2) 

Two DDTs 'l/Jl and 'l/J2 are equivalent if either one is true: Same orientation and both 

left-tangent or both right-tangent ('l/J l = 'l/J2 )' Or/ and opposite orientation with one 

left- and one right-tangent (I'l/Jl - 'l/J2 1 = 7r or 37r). Therefore the operator Left(.) (i. e. 

ensure that t he angle is between 0 and 27r) is defined for DDTs as: 

Left( 'l/J) = { 'l/J 
('l/J - 7r)mod 27r 

(6.3.3) 
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The equivalency between two DDTs, can be described by 'l/J2 ¢:} 'l/Jl £ 'l/J2 

(6.3.4) 

6.3.2 Types of Parallelism and perceptual parallelism problems: 

Parallelism of a curve is a more general term than for the straight line case. In fact 

one can identify three types of parallelism (figure 6.8). As their properties are used 

to construct the model, it is important to give a definition: a sleeper refers to a line 

joining two segments (i.e. rail track) on each of the curves that are being compared. 

(The procedure to select two segments to be joined is detailed is section 6.3.3.) 

1. Let Cx and Cy denote two simple segments, if all sleepers within the segment are 

of the same slope, this is sufficient condition to say that the two segment are in 

translation parallelism (case 1). 

2. Let Cx and Cy denote two simple segments, if all sleepers established are perpen­

dicular to their DDTs, this is sufficient conditions to say that the two segment 

are in railroad parallelism (case 2). 

~). Let Cx and Cy denote two simple segments, if all sleepers are concurrent on elon­

gation, this is the sufficient condition to say this is of central similarity transform 

parallelism (case 3). 

Parallelism due to 
transform 

Railroad parallelism Centr,lI similarity 
transform parallelism 

Figure 6.8: Parallelism definitions 

Using these strict definitions of parallel curves a set of criteria can be built. Hmvever 

these definitions can only be used as a guideline. It is clear that one does not have 

enough information to distinguish between railroad parallelism and central similarity 
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transformation without producing further information. This suggests that the algo­

rithm should be able to detect perceptual parallel curves. Therefore Ip and Wong [32] 

formulated an inspection procedure for perceptual characteristic of parallel curves. 

Four perceptual characteristics have been identified, they are: Sleeper Criterion, Tan­

gent Alignment Criterion, Similarity Criterion and Elasticity Criterion. These charac­

teristics are used in terms of a minimization problem: if the curves obey enough of these 

criteria them they are perceptually parallel. 

The formulation of these criteria is expressed using driving forces. It was not very 

practical to apply these forces to every point of each curve, because they can for instance, 

be composed of infinite number of points. Instead one wants to create a list of important 

salient points that exists on both sleepers. Another consideration is that every tangent 

of both curves needs to have the same orientation; therefore the curves are divided into 

simple segments. The point of separation of one curve to two simple segments is the 

point where the curvature is null. If a curve with a form like an S is taken and the 

curvature separation test applied , two simple segments are obtained, one having its 

tangent in the opposite sense to the other. 

Driving forces Given two simple segments, one from each curve, one is chosen as 

the active segment and is approximated it by its salient points. These salient points are 

then coupled to the other segment by linear interpolation. This initial match does not 

have to meet all the criteria it is just a starting point. The goal was to show that the 

two simple segments are perceptually parallel or not, it is necessary to find the match 

for every salient points of the active segment onto the passive segment. The task of 

best matching will be performed using these forces. For every pair (a salient point from 

the active segment and an associate point from the passive segment), a measurement of 

necessary displacement to obtain the perfect match is calculated using the four forces. 

These can reinforce each other if they are in the same direction or balance each other 

if they are in opposite direction. During each iteration, the resulting force is computed 

and adjustment of the point associate to the salient points is made accordingly. The 

process stops when no more adjustment can be made and a convergence is reached and 

the test for parallelism can be applied to the two segments using C1. calculation of the 

error with respect to a perfect case. If the error is below a given threshold: the two 

simple segments are considered parallel. The four forces used for the convergence are 
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as follows (figure 6.9 gives a schematic representation of these forces) [32]: 

• Force one: Deflection force: 

A defection force is defined as a force that acts to minimize the deviation in 

coupling orientation. For a pair of parallel simple segment, salient point on C; 

should be coupled to points on Cj such that the sleepers joining them are either 

parallel to those at the endpoint or concurrent (see figure 6.9-a). In other words, 

is the vector (P5 , P6 ) parallel to the vector (H, P2 )? This force and its direction 

can be express as followed (see table 6.2 for reference): (where Q1(Sp) represent 

the strength (modulus) of the force and gl(Sp) its orientation.) 

otherwise 

(6.3.5) 

otherwise 

Where" eq" is the equality operator and I sLeft identify if the given DDT is 

a left-tangent. Note that the expression on both side of the equality operator 

are boolean expression (0 or 1). 

((Po - H)) x ((Pr - Pd )) = (:r" - .tb)(Yc - /jd) - (Yo - Yb)(:I: r - .r,d 

((Pc, - Pb)) . ((Pc - Pd)) = (:I:a - :r:1;)(:Cc - :rd) + (:tjo - Yb)(:Yc - Ydl 

(I/);(Sp)) = (C08(1,~)i(Sp),8in(Vi(Sp)) with lJ'i(Sp) E [0,27f] 

\0'; (S1')) x (1i)) (I( Sp))) = COS(ljJ; (Sp)) x sin( 'If') (f( S1'))) -sin(IJ"i (Sp)) x (:()s( I.'j (I (81'))) 

Table 6.2: Expression definitions 

• Tangent alignment force: For parallelism to exist, the tangents of conjugate 

pairs must agree. However under perspective parallelism it is not possible to have 

a perfect agreement, but one can look for a deflection small enough that the two 

curve look parallel when observed by human eyes (see figure 6.9-b ). i.e. is the 
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tangent 1jJj(J(Sp)) approximately parallel to the tangent 1jJJSp). The magnitude 

of this force and its direction can be express as followed: 

(6.3.7) 

otherwise 

Where" eq" is the equality operator and I sLeft identify if the given DDT is a 

left-tangent. Note that the expression on both side of the equality operator are 

boolean expression (0 or 1) . 

• Approximation error force: As described above, the curve Ci is approximated 

using a set of salient points Ci(Sp). This implies that the corresponding point 

Cj(Sp) is an approximation of the curve Cj. If the two curves are parallel (see 

figure 6.9-c ) the magnitude of this force and its direction can be expressed as 

followed: 

(6.3.9) 

Where dj (J (Sp)) denote the perpendicular distance measured to the farthest dis­

tance on Cj from the chord curve defined by Cj(Sp) and Cj(Sp+d (figure 6.10 

(c)) 

otherwise 

(6.3.10) 

Where" eq" is the equality operator and I sLeft identify if the given DDT is a 

left-tangent. Note that the expression on both side of the equality operator are 

boolean expression (0 or 1) . 

• Elasticity force: For the pair of simple segments to being coupled, distance 

between successive coupled points Cj (J (Sp)) are lengthened or shortened more or 

less uniformly during the coupling process(see figure 6.9-d ). This force and its 

direction can be express as followed: 
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Q4(Sp) = arcLengthj(j(Sp), j(Sp+d) _ arcLengthj(j(Sp-d, j(Sp)) 
arcLengthj (Sp, Sp+ 1) arcLengthj (Sp-l , Sp) 

(6.3.11) 

otherwise 

(6.3.12) 

Where" eq" is the equality operator and I sLejt identify if the given DDT is a 

left-tangent. Note that the expression on both side of the equality operator are 

boolean expression (0 or 1). 

These forces are calculated for each salient points Ci(Sp) and its the conjugate Cj(f(Sp)) 

at each iteration. Then a resultant of the four forces is simply calculated and the 

conjugate point Cj(f(Sp)) are moved following the direction of the resultant forces 

until a steady state is reach. The minimization procedure uses a greedy algorithm [67], 

[46], which will find the best solution by an iterative process(figure 6.10). There is no 

need to use a best tool for the minimization as the greedy algorithm rarely needy more 

then 10 iterations to find the minima. 
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(a). Force one: Deflection force 

P4 

Deviation between the coupled result and the 
expected orientation generates a deflection 
force at P6 which is shown as a dotted aITOW. 

(c). Force three: Approximation error force 

Large approximation error generate will 
approximation error force to pull the coupled 
points. TIlese are shown as dotted arrows. 

(b). Force two: Tangent alignment force 

The angle 8T defines the difference between the 
DDT's of the coupled points. This will generate 
the tangent alignment force at C/HSp»' 

(d). Force four: Elasticity force 

Stretching (compression) of acti ve segment 
when coupled to passive segment creates 
elasticity forces to bring thc coupled results 
closer to (further apart from) each other. 

Figure 6.9: Forces-Driven correspondence matching 
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Figure 6.10: Example of search for perspective parallelism. (a)show the initial mapping 

of the salient point from t he active curve (bold) and t he passive curve. (b) show t.he 

mapping after 3 iterations; red sleepers indicate change during the iterations. ((: )show 

the mapping after 6 iterat ions (d)show the mapping after 9 iterations (e) detection result 

with parallel section mark as green. 

6.3.3 The algorithm 

This section summarizes the algorithm. 

l. Decomposition into simple segments:Measure the DDTs along t he two curves and 

break the curves into simple segments 

2. Pre-scanning for possible coupling between simple segments: Two simple segments 

(one from each curve) may be coupled if and only if their DDTs are equivalent at 

end points. In fact this process filters out a lot of combinations which otherwise 

would need to be tested. However , a one to one mapping is not guaranteed. 

Sometimes one simple segment can be coupled to more than one simple segment to 

94 



CHArTER 6. EDGE EXTRACTION 

the other curve. Hence, in this step, candidate simple segment pairs for parallelism 

verification can be identified. 

:3. Detail coupling and parallelism verification: For each possible combination of 

simple segments coupled at step 2, identify the segment pairs that are parallel; 

two segments (one from each curve) are parallel if the coupling result along them 

satisfies one of the schemes described in the parallelism test. 

4. Reporting: Keep the combination that gives the longest continuous parallel sec­

tion. Report parallelism if the parallel section is longer than a certain threshold 

(in this study, 55% of the curve length). 

Pres canning step 

In order to achieve a successful prescanning, one must relax the DDT equivalent defi­

nition given by the equation 6.3.4 by allowing some deviation. 

(6.3.13) 

The threshold EDDT defines how much disruption is allowed. In this study EDDT has 

been set to 35°. Experiences have shown that this value offers a disruption big enough 

not to miss some potential coupling but at the same time, small enough in order to 

eliminated every unrealistic combinations. 

Location of the salient points 

A large number of publications and techniques exist on polygonal approximation. A 

simple technique was used as the accuracy of the approximation is not crucial [16]. 

Parallelism report 

The step four of the algorithm reports any parallelism, however, two verifications need 

to be done before any positive report can be allowed. After the force coupling phase, 

C; and Cj has to pass the following test in order to be considered as parallel. 

• For all P, the orientation from C;(Sp) to C;(Sp+d has to be similar to the orien­

tation from Cj(f(Sp)) to Cj(f(Sp+d). 

To make sure that the orientation described in this first property fall within the 

allowed limit, the definition in the prescanning (Equation 6.3.13) Wel.''; llsed with 

the same threshold. 
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• Curve Cj has to be approximated by lines joining successive Cj(J(Sp)) with the 

same degree of accuracy as curve Ci is approximated by successive Ci(Sp). 

In this second property, t he error , of the approximated segment between Cj (J (Sp) ) 

and Cj(J(Sp+d) by a straight line, is measured. For all points in between Cj(J(Sp)) 

and Cj(J(Sp+l)) ' the maximum distance from t he chord allowed is: 

d(f(S )) - Th h ld chordLengthj(J(Sp) , f(Sp+d) 
p max - error res 0 x h dL h (S S ) c or engt i p, p+l 

(6 .3. 14) 

The value of d(J(Sp)) is then compared to d(J(Sp))max (see figure 6. 11 ) to make 

sure that the condition is satisfied. The values of the errorThreshold is identical 

to the tolerance of approximation used in the polygonal approximation used to 

derived the salient point (In t his study errorThreshold = 0.4). 
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Figure 6.11: Illustration for the approximation role. 
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6.4 Results 

Figure 6.13 shows the overall procedure applied to the image in order to achieve our 

goal: finding the edge from an internal wave signature. Results from this method can be 

seen in figure 6.14 for the image25 and figure 6.15 for the imageO. In these two figures, 

the decomposition into simple segments is also presented, this is the initial step of the 

parallelism detection. The detection of the internal wave edge in the two images is 

good. Once again the detection is better for the imageO than for the other study case. 

This difference of detection can be explained simply by the fact that the signatures 

present in imageO are very strong and produce nice and clear edges. However when 

the edges can be traced in image25 the result is correct and gives a good appreciation 

of the extend of the wave. For very weak signatures however such as the ones in the 

right top corner, it has been impossible to find three edges parallel. The experience has 

shown that two parallels edges have been found but following our model criteria this is 

not enough to classify them as part of an internal wave signature. 

Table 6.3 show the result of the classification. As before the total accuracy, the error of 

misclassification of both classes is calculated. The classification accuracy was calculated 

using the following simple approach: 

• Around every pixels part of a selected edge, a window of 10 x 10 pixels is set to 

100%,the rest to 0% (see figure 6.12). 

• The image is then divided into sub-image as before and their respective probability 

calculated as follows: 

100% if the mean of this zone is superior to 50% 

0% otherwise. 

• Then the confusion matrix can be calculated. 

This translation from the edge extraction and classification to a sub-image represen­

tation offers a direct comparison with previous results. Looking at the result shows that 

the error for the miss-classification of the event zone is relatively high. This problem 

arises from the fact that the edge recognition technique is a lot stricter in the identi­

fication of a boundary of the internal wave than the human eye. But the results offer 

otherwise a very good classification: every zone classified as an internal wave really is 

an internal wave signature. So one can be very confident in the interpretation of the 
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Figure 6. 12: Example of t he pixels selection. In black are the edges identified as part 

of an internals waves. In gray are the pixels selected using a 10 x 10 windo'vvs around 

each point of t he edges. 

result. This confidence is a lot higher than for the previous classificat ion made during 

Image 0 

Non-Evt Event 

Non-Evt~ 
Event ~ 

Image 25 

Non-Evt Event 

Non-Evt~ 
Event ~ 

96 .0% of total accuracy 
12.9% of error on event class 
2.5% of error on non-event class 

93.6% of total accuracy 
16.0% of error on event class 
3.0% of error on non-event class 

Table 6.3: Confusion matrL,{ and accuracy of the classificat ion in percent. 
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Wavelet decomposition 

Modulus 

Edge Tracing 

Edge Discrimination 

Using the curvature 

Edge Linking & Continuity 

I I 
Segments ·1 Linking I approximation 

Perceptive parallelism 

Simple segment 1 Salient points 
1 .... 1 

J .. 
Application of J Greedy algorithm .1 the forces .... 1 

1 
Output of the parallels edges 

1 

Figure 6.1:3: Overall procedure for the edge analysis 
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6.4.1 Analysis of the signature 

Once there is confidence in the correct classification of an event class, the information 

given by the edge can be used to extract some primary characteristic of the internal 

wave itself. 

Because every internal wave signature that been identified is made up of at least three 

edges it is very easy to calculate the mean curvature of the triplet and from it the wave 

direction of propagation. The propagation is oriented away from the centre of curva­

ture. The curvature is calculated using the salient point of the edges and from it, the 

mean centre of curvature is derived by the projection of the vectors in image space and 

finding their intersection. This point and the set of points which represent the middle 

of each edge a line is interpolated. From this line and the horizontal (image axes) the 

angle of propagation can be inferred. Figure 6.16 shows the two case studies images 

with arrows representing the approximate sense of propagation. 

From the same selected edge it is possible to find the wavelength of the solitons that 

compose the wave. By taking a transect along the line of propagation interpolated ear­

lier on the original image, it is possible to extract the backscatter of the images across 

the internal wave [36]. The backscatter is then normalized by the mean backscatter 

of the image. From it a frequency representation of the transect is calculated using a 

wavelet decomposition. Figure 6.17 and 6.18 give two example of the profile with the 

wavelength of the internal wave for image25. The same can be see in figure 6.19 for the 

imageO. The position of the transect can be see in figure 6.16. From these transect it 

is possible to comment on the type of signature. Here the signature is a + / - signature 

as detailed in the first chapter and is the result of an hydrostatic interaction. 

From the knowledge of the position of the internal wave's solitons it would be possible 

to make a deeper analysis of the wave if one had the tide time table, the mixed layer 

depth, or/and the bathymetri, etc ... For example with more knowledge of the area it 

is possible to use the free homogeneous KdV equation, which describe the evolution of 

the wave profile to model the wave. 
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Figure 6.16: Position of the t ransect used and direction of propagation of t.he waves. 

(A)Image25. (B) ImageO 
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Figure 6.17: Spectrum using wavelet decomposition for the profile 1 of the image25. 

The dotted line represent the 95% level. Here t he period is equal t.o 19.8 pixels which 

correspond a wavelength of 1. 980K m 
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Figure 6.18: Spectrum using wavelet decomposition for the profile 2 of the image25 . 

The dotted line represent the 95% level. Here the period is equal to 22.5 pixels which 

correspond a wavelength of 2.250Km 
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Figure 6.19: Spectrum using wavelet decomposition for the profile 1 of the imageO. 

The dotted line represent the 95% level. Here the period is equal to 39.4 pL'Cels 'vvhi ch 

correspond a wavelength of 3.940Km 
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6.5 Conclusion 

We have shown using a totally different approach that the internal wave signature can 

be recognizable by studying the geometry of the edges present in the image. This 

approach provides good confidence level for the detection of internal wave, as it has 

a strong dependency on the number of edges needed and their position. From this 

technique we have shown that the knowledge of the position of the edge can be used 

to determine primary information about the wave, such as its wavelength and sense of 

propagation. Using the transect across the wave it is possible to comment on the type 

of signature as well. 
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Chapter 7 

Applications of the Internal Wave 
recognition schemes 

Image 
Pre-llrOcessin 
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Figure 7.1: Diagram illustrating the layout of the proces~ing 

7.1 Introduction 

The aim of this research was to move from a subjective manual detection of internal 

waves toward a computed interpretation of the grey scale level of the images. Such 

detection will ease the workload as well as decrease the cost of the processing by reducing 

the manpower. Furthermore the scheme presented in this work offers a first step towards 

providing an objective rather than a human interpretation of the SAR images. It does 

provide the possibility to characterise the different type of signatures. To do this, a 
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series of processing and classification systems have been developed. 

The processing can be divided into two categories: the use of texture to make the 

discrimination and the analysis of the geometry of the edge found in the image (see 

table 7.1). Both categories use the output of the wavelet multi-resolution analysis 

technique to filter out the possible internal wave signature. 

1. Text ural allalysis of the image. 

• Gray Level co-occurrence ma.trix 

Representation of the textures 

• Cla.ssifications: 

PCA: Use the GLCM as input. 

KN::\: Use the statistical indexes as input. 

Do not need of any training. 

lVILP Lse the statistical indexes as input. 

Need of any Training. 

2. Geometric analysis of the edge found within the image. 

• Edge tracing technique: 

Lsillg an hysteresis threshold. 

• Discriminatioll using the edge curvature and size 

• Parallelism technique 

Table 7.1: Overvic\v of the techniques used. 

The optimization and parameterisation of the different step of each processes used 

have been explained in the previous chapters. It is however necessary to note that in 

the application of the scheme, the PCA classification will not be used. The reason is 

that this approach cannot be made fully automatic. The threshold required for the 

classification cannot be adjusted automatically. As one of the objectives of this work is 

to create an automatic recognition technique, this technique was not retained. 

7.1.1 Characterization of the signature using texture 

Before any classification scheme can be used, it is necessary to characterize the object 

to be classified in the simplest manner possible. In this work it has been proposed to 

do this using the Grey Level Co-occurrence matrix representation. From the GLC11. 
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statistical indexes can be derived, which represent the organization of the grey level in 

these regions. Using these indexes, six values can be used to characteristic an event i.e 

the presence of an internal wave signature or a non-event. This discrimination approach 

needed three values to be set, they are: the size of the studied zone, the number of grey 

levels, and the displacement used in the make up of the GLCM. This technique was 

presented in chapter 4 and the values retained were: 

• The size of the studied zone: 64 x 64 pixels 

• The number of colours: 32 

• The displacement: 3 - 5 pixels 

7.1.2 The classifiers 

Now that the Event, Non-event zone can be represented by six parameters, the need 

for a decision making tool is necessary. In chapter 5 three classifiers technique were 

presented: The PCA, the KNN and the MLP. It has been stated that the first of these 

three techniques will not be applied here, because of its incapacity to be automated. 

KNN: The objective of the KNN is to find the k nearest neighbours of an unidentified 

test pattern within a hyper-sphere of predefined radius in order to determine its true 

class. The classification from a KNN is dependent on two things, excepting the set of 

known vectors: the length of the input vector and the number of neighbours used. To 

determine these parameters a series of tests for accuracy have been carried out using 

the two case studies (imageO and image25), for different setups. Along with the setup 

of the KNN different wavelet representations have also been tested. 

• Length of the input vector: 3 

• Number of neighbours used: 3 

• Best wavelet representation: mXY 

MLP: The MLP classifier uses a training set where all the classes are correctly re­

presented to determine and learn the relationship between classes. The MLP, in this 

study uses the same training set as the KNN and as for the KNN some parameters 

in its construction need to be set. The first parameter is the architecture: i.e. the 

number of input nodes, layers and output nodes. The second important aspect of the 
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construction is the training. The MLP needs to determine a generalization rule to dis­

criminate between classes. The training needs to be long enough to enable the learning 

process but not too long; otherwise the generalization is not sufficient. To perform the 

optimized construction a series of tests using different configurations and looking at 

the mean square error was made. It was necessary to perform the test to see which 

wavelet representations were producing the best classification. I was found that the 

best configuration was: 

• Number of input nodes: 6 

• Number hidden layer and nodes: 1 - 12 

• Number of output node: 1 

• Best wavelet representation: XY 

7.1.3 Geometric analysis approach 

The geometrical analysis uses a totally different concept. Here, the edges present in 

the image, rather than the texture representation are investigated. The goal is to 

identify which edges are parts of an internal wave signature and which are not. The 

starting point was to apply an edge tracing technique using a hysteresis threshold on 

the second level modulus. Then a series of tests on the curvature and direction of the 

edge were performed to eliminate some and join others. When only significant edges 

were remaining a procedure to determine their mutual parallelism was applied. The last 

step was to retain only edges, which were parallel with at least two other edges. From 

here it was then possible to extract information from the edge such as the direction and 

wavelength of the internal wave signature. 

7.2 Results of the application 

In this part of the work, the above techniques are applied to several unseen images and 

the accuracy and the robustness of the classification are measured. The results from six 

images, enables the successes and the problems of the approaches in classifying internal 

wave signatures on SAR images to be illustrated. 
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The images: The images used here are named as images A to E. They like the two 

cases study, are made from a zone of 512 x 512 pixels selected from an original SAR 

image. Table 7.2 details the information of the original image from which the six image 

are coming from and figure 7.2 show their location on a bathymetric plot. Figure 7.3, 

7.4, 7.5, 7.6, 7.7, 7.8 show the different images and their masks. 
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Figure 7.2: Bathymetry plot and location of the images 
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II Image A l Image B I Image C I Image D [ Image E l Image F II 
W Orbit I 16594 [ 27596 ~12194 [~ 
• [ [ [ •• 

I Frame 2853 0945 0945 I 2637 0819 0819 II 
1 

[ [ [ 
. 1 

I Lat 37.4 47.4 47.7 I 48 41.21 41.25 II 
I 

[ [ [ 
I 

I Long 351.1 353.3 353 .6 I 353 -8.8 -9.56 II 
1 

17-09-94 [ 30-07-00 [ 2-08-00 [ [ 
.1 

I Date I 18 -08-00 19-8-97 3-08 -97 II 

~ Time 11 : 18 [ 22:34 I 11 :20 I 11 : 16 [ 22:49 [~I -

Table 7.2: Information of t he original images 

7.2.1 The classifications using the KNN and MLP: 

The classification uses the optimimum setup for the MLP and the KNN . The resul t can 

be seen in table 7.3. It is clear that the results are mixed. 

Image A Image B Image C Image D Image E I mage F 

MLP KNN MLP KNN MLP KNN MLP KNN MLP KNN MLP KNN 

Total 
81.7 80. 8 75.6 76 .8 81.3 80.4 76.0 72.4 86.2 85. 3 82.2 82. 2 

accuracy 

Event 
13.5 2 1. 6 19.5 3 1.7 0.0 0.0 20.9 25 .5 0.0 4.3 14. 6 19.5 

en·or 

N-Event 
19. I 18.6 25. 5 2 1. 1 20.6 2 1. 6 24.7 28 .0 15 .3 15 .8 18.4 17 .4 

en·or 

Table 7.3: Accuracy of the KNN and MLP classification for t he six images. T he red 

value represent a good classification. The red values represent classifi cation with a 

total accuracy above 80%, whereas the green for a total accuracy below 80lb . See the 

corresponding confusion matrix in appendix C , figure C.1 

Image A: This image come from an original SAR scene taken in late summer 1994, 

with a central coordinate equal to 37.4 degree north by 351.1 degree west. This places 
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the image in the Liberian region (offshore of Portugal). The time of the acquisition 

and the presence of internal wave coincide with the statistical study of Dokken [23]. 

The image can be seen in figure 7.3(b), and its mask1 (figure 7.3(a)) show clearly t he 

presence of the internal signature . Except for the internal wave signature t he zone of 

study is quite featureless with a background of the backscatter almost uniform. The 

internal wave signature is orientated vertically with respect to t he image axis. 

The classification shows an accuracy of above 80% for both classifiers with a better 

performance of the MLP than the KNN . The difference of the two classification come 

from the missclassification of the events class , which is larger in t he KNN result (21.6% 

compare to 13.5% for the MLP). This difference in accuracy comes from the defini­

tion of the internal waves representation used. In the case where t he internal waves 

signatures are mainly oriented along one axes of the image, the XY representation and 

subsequently classification has a better accuracy on event class (see chapter 5) , as each 

orientation are classified independently, and combined toget her to give an total clas­

sification. Because the KNN uses the mXY wavelet representation and the MLP the 

XY representation, it will be fair to say that t he internal wave orientation is better 

understood by the second configuration . The classification can be seen in figure 7.4(b) , 

7.4(c) and 7.4(d) 

, f 
I 

(a) Mask (b) Image 

Figure 7.3: Image A 

lThe mask of a given scene shows a keLcl! of t he internals waves signatures present in the sceue. 
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Figure 7.4: Image A classification using t he MLP classifier. (a) Mask of t.he internal 

wave present (visual interpretation). (b) l'vlap of percentage probability of internal wave 

presence in t he image. (c)-(d) classification using two different threshold. 

Image B: This image come from an original SAR scene taken in summer 2000, with 

a central coordinate equal to 47.4 degree north by 353.6 degree west . This places the 

image in the Bay of Biscay (offshore of France) . The t ime of t he acquisition and the 

presence of internal wave coincide with the statistical study of Dokken [23]. The image 

can be seen in figure 7.5(b) , and its mask (figure 7.5(a)) show clearly the presence of 

the internal signature. In this case the internal wave signatures are complex and both 

vertically and horizontally oriented respect to the image axis. Some zone of interaction 

between t he internal wave can be seen in the middle part of the image. In addi t ion to 

the internal wave signature t he backscatter from other region is complex as well. Large 

regions of rough surface can be seen. The cause of this roughness is not very clear. 

It can be linked to a high sea state, but there is no presence of swell. It may be the 

presence of a very strong dynamical process that occurs at a small scale, along wi th 
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attenuated internal wave signature. In such a case it is difficult to clearly define the 

boundary of the internal signature on part of t he image. 

The classification shows an accuracy of above 80% for both classifiers with a better 

performance of the KNN on none-event classes (25.54.6% compare to 21.19% for the 

KNN) whereas the MLP show a better accuracy for the event classes (21.6% compare to 

13.5% for the MLP). The difference in accuracy for both event and none-event classes 

come from the complexity of t he internal waves signatures in the images as well as the 

different configuration used. In the case of the XY representation, the classificat ion 

is more sensitive to the variation of gray tone, but miss-classified to much zone with 

strong roughness , which are not due to internal wave signature, whereas in the case of 

the mXY classification, the sensibility over the gray tone is too much reduce, which 

decrease the accuracy for the event classes. In such image, the choice of t he configuration 

and classifier used is totally dependant of the type of accuracy wanted. Depending on 

the type of application, one would prefer having a better accuracy for t he event or t he 

none-event. 

j) 

(a) lvlask (b) Image 

Figure 7.5: Image B 

Image C: This image come from an original SAR scene taken in late summer 2000, 

with a cent ral coordinate equal to 47.7 degree nort h by 353.6 degree west. This places 

the image in the Liberian region (offshore of Port ugal). The time of the acquisition 

and the presence of internal wave coincide with the statistical study of Dokken [23]. 

The image can be seen in figure 7.6(a), and its mask (figure 7.6 (b) ) show dearly the 
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presence of the internal signature. Expect for the internal wave signature t he zone of 

study is quite feature less with a background of the backscatter almost uniform. The 

internal wave signature is orientated diagonally respect to the image axis . 

The classification shows an accuracy of above 80% for both classifiers with a marginally 

better performance of the KNN than the MLP. The difference of the two classification 

come from t he miss-classification of the non-events class , which is larger in t he MLP 

result (20.5% compare to 19.5% for t he KNN). As before the XY representation, offer 

the best representation of t he various internal wave orientations. In a case where the 

internal wave is diagonally oriented, both wavelet X- and Y-decomposit ion will have 

some of its representation. Taking the mean of these decompositions seems to reinforce 

the signal. It should be note t hat in t his case the error for miss-classification of t he event 

class is null. This result can be explained by the well defined boundary of the internal 

waves present in the images, a homogeneous background and a good representation in 

the training set. 

! 

J 

(a) fI!Iask (b) Image 

Figure 7.6: Image C 

Image D: This image come from an original SAR scene taken in late summer 2000, 

with a central coordinate equal to 48 degree north by 353.3 degree west. This places 

the image in the north of Bay of Biscay (offshore of France). The image can be seen 

in figure 7.7(b), and its mask (figure 7.7(a)) show clearly t he presence of t he internal 

signature. In this case t he internal wave signatures are complex and vertically oriented 

with respect to the image axis. Some zone of interaction between the internal waves 
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can be seen in the middle part of the image. Four internal waves signatures can be 

ident ified , three of them going from t he left to the right, and the last one going from 

the right to the left which interacts with the first signature. In general the backscatter 

is complex as well. A large region of shadow wind can be seen in the bottom of the 

image. Again in such a case it is difficult on some part of the image to clearly define 

the boundary of the internal signature. 

The classification shows an accuracy of below 80% for both classifiers wit h a better 

performance of the MLP t han the KNN. In this case the large difference in accuracy 

of the classifications come from the miss-classification of the events and the non-event 

class, which is larger in t he KNN result (25 .5% compare to 20.9% for the MLP for t he 

event class and 28% compare to 24.7% for the MLP for the non-event class). Both 

wavelet representat ions give a bad result. 

(a) Mask (b) Image 

Figure 7.7: Image D 

Image E: This image come from an original SAR scene taken in August 1997, with a 

central coordinate equal to 41.2 degree north by -8.8 degree west. This places the image 

in the Liberian region (offshore of Port ugal). The image can be seen in figure7.8(a) , 

and its mask (figure 7.8(b)) show clearly the presence of one internal signature which 

is vert ical oriented respect to the image axis. Expect from the internal wave signature 

the zone of study is quit feature less, dominated by shadow wind, wit h a background 

of the backscatter almost uniform. 

The classification show an accuracy of above 80% for both classifie r wit h a better 
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performance of the MLP than the KNN. The large difference of t he two classification 

come from the miss-classification of t he non-events class , which is larger in the KN 

result (20.1% compare to 15% for the MLP). The error of miss-classification equal to not 

for the event class and the uniform background and the strong presence of the signature 

can explain t he good classification. It is in this case easy to determine t he boundary of 

the wave. The orientation of t he wave is better suited to the XY wavelet configuration 

rather than the mXY. The wave being vert ically oriented does not present any signal 

for the V-decomposition and therefore alter negatively it presence when the mean of 

the two decompositions are made. The classificat ion can be seen in figure 7.9(b), 7.9(c) 

and 7.9(d) 

(a) Mask (b) Irnage 

Figure 7.8: Image E 
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Figure 7.9: Image E classification using t he MLP classifier. (a) Mask of the inLernal 

wave present (visual interpretation). (b) Map of percentage probabili ty of internal way 

presence in the image. (c)-(d) classificat ion using two different threshold. 
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(a) Mask (b) Image 

Figure 7.10: Image F 

Image F: This image come from an original SAR scene taken in August 1997, with 

a central coordinate equal to 41.2 degree nort h by -9.5 degree west . This places the 

image in the Liberian region (offshore of Portugal). This image is very close to the 

previous case. The image can be seen in figure 7.10(a) , and its mask (figure 7.10(b)) 

show clearly the presence of two internal signatures which are vert ical oriented respect 

to the image axis. Expect from the internal wave signature t he zone of study is quit 

feature less, with a background of t he backscatter almost uniform. This image is also 

very similar for the study case image25. 

The classification show an accuracy of above 80% for both classifier with a better 

performance of the MLP than t he KNN. The large difference of t he two classification 

come from the miss-classification of the events class , which is larger in the KNN result 

(24.4% compare to 15.2% for the MLP). It is in this case easy to determine the boundary 

of the wave. The orientation of the wave is better suited to the XY wavelet configuration 

rather t han the mXY. The wave being vertically oriented does not present any signal 

for the Y-decomposition and therefore alter negatively it presence when the mean of 

the two decompositions are made. 

Conclusion 

In this section two different classifiers with their own configurations have been applied 

to different SAR images to illustrate their potential to generate accurate recognit ion. 

The classifications produce by the MLP are in general more accurate than the ones from 
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the KNN. But the MLP like the KNN fails to give correct classification when complex 

features and/or busy background are present in the image. This failure could be partly 

overcome by using a larger training set. 

7.2.2 Edge detections and parallelism study 

In this part of the application chapter, a totally different approach has been taken, by 

looking at the edge present in the images. The method is detailed in chapter 6 and 

an overview of the processing can be seen in table 6.13. The probability of occurrence 

of internal wave signature are calculated using the same simple approach as described 

earlier, and can be seen in table 7.4. A visualization of the selected edges can be seen 

for the image A - B - C - D - E - F in figures 7.11(b), 7.12(b ),7.13(b), 7.14(b), 7.15(b) 

and 7.16(b) respectively. 

The total accuracy (table 7.4) show a net improvement compared to the previous clas­

sification shown in table 7.3. This difference can be attributed to the low error on the 

miss-classification of the non-events. However, despite these good results the error on 

miss-classification of the event class is higher that previously. This error is the result of 

very strict roles in the determination of the internal wave's signature. The edge detec­

tion technique produces much narrower boundary than the other classification, which 

increase the confidence level on event classification. 

As before the complexity of the classified image is an important factor. The simpler the 

feature within the image, the more the classification gives a good result. The strength 

of the signature is important as well. The more the internal wave is strongly represented 

in the image the more chance there is of detecting it. These problem can be identified 

by comparing the result of the image E or F (figure 7.15(b) and 7.16(b)) to the other 

image (figure 7.11(b),7.12(b),7.13(b),7.14(b) ). 
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Table 7.4: Accuracy of t he edge det ection 
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Figure 7.11 : edge selection for image A 
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Figure 7.12: Edge selection for image B 
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Figure 7.13: Edge selection for image C 
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(a) Mask (b ) Edges 

Figure 7.14: Edge selection for image D 
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Figure 7.15: Edge selection for image E 
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Figure 7.16: Edge select. ion for image F 
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Determination of the direction and the wavelength 

The edge detection technique allows a more detailed recognition of possible internal 

wave signatures. This method detects the presence of the internal wave by looking at 

the possible edges produced by the waves. Therefore it is possible, using the location 

and characteristics of this edge to derive primary information about the detected wave. 

The approach to this analysis was detailed in chapter 6. Two examples of the internal 

wave detected signature are shown. 

Figure 7.17 and 7.19, show the position of the transect used for the determination of 

the wavelength of the wave packet for image A and E respectively. The wavelet power 

spectrum of these transect are illustrated in figure 7.18 and 7.20. The wave packet 

have respectively a wavelength of 2.49K m and 2.26K m. But the study normalizes 

backscatter, so it is possible to identify type of processes responsible for the signature. 

In these two examples the mechanism is identical and identified as the hydrostatic 

interaction between the internal wave and the surface wave. The backscatter transect 

offers the possibility to measure the extent of the wave packet, which is the length of 

the section of the transect where the significant wavelength is represented in the wavelet 

spectrum. It is for these cases approximately equal to 16Km and 15Km. 

The knowledge of the edges that make up the internal wave signature can be used to 

determine the direction of the wave. This can be seen from figure 7.17 and 7.19 where 

an arrow represent the approximate direction of the wave calculated using the curvature 

of the edge. 
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Figure 7 .17: Profile and direction for image A 

Transect 
3.------.-------.-------.-------.-------" 

(j) 1 

" ~ 0 a. 
E 
« -1 

-2 

-3~----~------~------~------~------~ 

en 
0; 
x 

2 

4 

Eo 8 

" o 
.~ 

0.. 1 

50 

50 

100 150 
length (pixels) 

WAVELET SPECTRUM 

100 150 
length (pixels) 

200 250 

., 

200 250 

c) Global Wave let Spectrum 

o 

Period=29.4 pixels 

5 
Power 

~ 
10 

Figure 7. 18: Spectrum using wavelet decomposition for the profile 1 of the imageA. 

The dotted line represent the 95% level. Her the period is equal to 24.9 pixels which 

correspond a wavelength of 2.490Km.The angle of propagation is equal t.o 178 .6° and 

181.1 ° 
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Figure 7.19: Profile and direction for image E 
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Figure 7.20: Spectrum using wavelet decomposition for the profile 1 of the imageE. 

The clotted line represent the 95% level. Here th . period is equal to 22.6 pixels which 

correspond a wavelength of 2.260Km. The angle of propagation is equal to 321. 3° 
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7.3 Conclusion 

In this chapter, six practical applications of the different classifications used have been 

described. The overall result offers a good representation of the success and failure of 

the different classification. 

The classifications produce by the MLP are in general more accurate than the ones from 

the KNN. But the failure of the correct classification of image Band D have the same 

cause for both classifiers. These two images have complex features. These complex 

feature create two problems: it is difficult to produce a fair manual classification with 

a correct delimitation of the internal waves signature boundaries. The second problem 

is that both classifiers use a textural representation of the zone, and it is possible that 

this representation does not discriminate enough between event and non-event zone for 

such images. 

The classification using the edge geometry produced the best results. This recognition 

scheme give a very high confidence level about the detect signature but the contrast 

between the internal signature and the background should be high enough to be able 

to trace the edges. This approach enables a mapping of the edge which allows an 

analysis of the wave packet. An analysis of the coherent length, wavelength, direction 

of propagation and type of signature inferred using the position of the edges has been 

made. 
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Chapter 8 

Summary 

8.1 Introduction 

The importance of understanding and predicting internal waves for both the offshore 

engineering and the oceanographic sciences is not matched by our ability to correctly 

model such phenomena, primary because of a lack of information. The low number of 

processed satellite scenes does not offer enough information to improve dramatically 

our understanding and forecasting abilities. In response to these limitations, this re­

search has focused on the development of an automatic detection and analysis scheme 

for internal wave signatures in SAR images. No automatic method for the recognition 

of oceanic features exists, therefore, the major novelty of the research lies in the auto­

matic extraction and analysis of internal wave signature from SAR imagery. This new 

detection technique has the potential to reduce the cost and manpower required for 

the processing of satellite images for oceanographic purposes and provides an objective 

technique that will assist analysis and understanding of internal waves 

The development of automatic methods to classify features within satellite Imagery 

and to quantify their characteristics has relied on pattern recognition techniques. The 

difficulties in this problem were linked to the variant nature of the parameters of the 

signature produced by the wave in SAR imagery e.g. their length, orientation, strength, 

and local shape variation.To tackle these difficulties, two main approaches have been 

studied. A recognition technique based on texture has been developed in three parts: 

the segmentation, the characterization and the classification. The segmentation is pro­

duced using a multiscale edge detection, with a wavelet transform implemented filter. 

Statistical indices, derived from the GLCMs of the energy coefficient, offer a characte­

rization relatively independent of target variation. The information contained in the 

GLCM and statistical indices are used to discriminate between two classes (event and 

no 
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non-event), using a PCA technique, two different KNN classifiers and a MLP. The PCA 

classification technique used the GLCM directly, while the KNN and MLP classifiers are 

fed with statistical indices. The second approach is based on the edge geometry found 

in the images using a multiscale edge detection. This approach searches for internal 

wave signatures represented by at least three edges parallel to each other. Figure 8.1 

shows the overall steps presented in this thesis. 

The recognition techniques were applied to two SAR images (the imageO and image25). 

The imageO shows a strong well defined internal waves signature, with orientation along 

the diagonal of the scene. The image25 is the opposite, the signature of the 2 major 

internal waves present are weaker, and vertical with respect to the scene orientation. 

These two cases were chosen because they represent the two limits in the internal wave's 

signature range and provide a good test for the method proposed. Once each technique 

has been tuned, a series of unseen images are classified to offer quantitative accuracy 

of the different setups. 

8.2 The Results 

In the pre-processing section the issue about the strength and the orientation of the 

wave has been raised. A weak vertically or horizontally oriented wave is not detected 

with the same strength by the x and y decomposition. This discrimination shows up 

in the expression of the modulus event when corrections are applied. The left side 

internal wave signature present in image25 is a good example of such problem. As its 

detection is weak, its GLCM and the derived indices do not really show the signature. 

This cascading problem reduces the chance of a good classification. 

The GLCM derived from the energy coefficient were calculated using different distances 

d. The statistical indices derived from these GLCM show that small values of d offer a 

better representation of the texture, independent of the decomposition scale and gray 

scale used. 

In this work different recognition tools have been used. General trends in the classifi­

cation for all the classification tools show that the shape and strength of the internal 

wave's signature is important. A strong and diagonally oriented signature is easily re­

cognized over the background. However for vertically or horizontally orientated wave. 

which are weakly characterized by the GLCM and consequently by the statistical in­

dices, the classification produced poor results. 

131 



CHAPTER 8. 8UI\IA1ARY 

Choice of the configuration and tuning: 

peA technique: The discrimination between classes was done by maximising the diffe­

rence between the presence of internal waves (event) and the non-presence of internal 

waves (non-event). The results presented for each individual study show, the total 

accuracy in percent, the percentage of the misclassification of the non-event and the 

misclassification event. The accuracy offered by this classification is reasonable, but de­

pendent on a particular threshold. The threshold needed to optimize the classification 

is very variable, which makes generalization of the technique difficult. In the presented 

results, the threshold was set at zero to offer comparative results, but in many cases 

this was not the best solution to perform the most accurate classification. 

KNN technique: Two KNN techniques were first evaluated, a traditional KNN and a 

weighted KNN, using a range of values of k (k = 2, 5, 7, 9 and 11). The results presented 

for each individual cases show, the total accuracy, the percentage of the misclassification 

of the non-event and the misclassification event. The accuracy of the method is more 

reliable, as this method does not need any threshold, so it offers the chance to perform 

a generalization of the result. The weighted KNN has been chosen for its better perfor­

mance than the normal KNN. After this initial choice the KNN was tuned to improve 

the configuration using a larger training set. The best configuration found was: 

• Length of the input vector: 3 

• Number of neighbours used: 3 

• Best wavelet representation: mXY 

MLP technique: The MLP in the study uses the same training set as the KNN. Evalua­

tion procedures were designed to determine the different parameters, and the optimum 

architecture of the MLP, i.e. input node, layers and output node, as well as length 

of the training. The second important aspect of the construction of the MLP is the 

training. The best parameterisation found for the MLP is: 

• Number of input nodes: 6 

• Number hidden layer and nodes : 1 - 12 

• Number of output node: 1 
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• Best wavelet representation: XY 

Edge analysis technique: The geometrical analysis uses a totally different concept. The 

goal is to identify which edges are parts of an internal wave signature and which are not. 

The starting point was to apply an edge tracing technique using a hysteresis threshold 

to the second level modulus of the wavelet decomposition. Then a series of tests on the 

curvature and direction of the edge were performed to eliminate some and join others. 

When only significant edges were remaining a procedure to determine their mutual pa­

rallelism was applied. The last step was to retain only edges, which were parallel with 

at least two other edges. From here it was then possible to extract information from 

the edge such as the direction and wavelength of the internal wave signature. 

Application of the different techniques: 

These approaches have been applied to different SAR images to illustrate its potential 

to generate accurate recognition. The classifications produce by the MLP are in general 

more accurate than the ones from the KNN. But the MLP like the KNN fails to give 

correct classification when complex features and/or busy background are present in the 

Image. 

The classification using the edge geometry produced the best results. This recognition 

scheme gives a very high confidence level about the detected signature but it requires 

the ratio between the internal signature and the background to be high enough to be 

able to trace the edges. This approach produced a mapping of the edge which allows 

an analysis of the wave packet. The demonstration of the wavelength, direction of 

propagation and type of signature inferred using the position of the edges have been 

made. 
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8.3 Future works 

Results presented in this work have demonstrated that the combination of either tex­

tural analysis with classifier or edge geometry analysis can provide the recognition of 

internal wave signatures with a satisfactory accuracy. However a lot of ground needs to 

be covered before any operational recognition tool can be produced. 

This work has laid the foundation towards a more accurate and operational system. 

One of the most obvious improvements will be to use both main approaches and com­

bine them into a single system. Such a system will not be very different from the one 

proposed in this work. Instead of having an independent decision made from each of 

the approaches, a single test could be made incorporating the information from both 

approaches (Edge analysis and Texture classification). Another easy improvement can 

be made by having a larger and more representative training set. The extension of the 

training set could be made manually by adding other scenes. Information from the time 

of the year and the location of the scene to be classified can be used in order to select 

the relevant training set. One can construct a series of training sets with respect to 

period of the year or/and place. These different training set will be more representative 

of the internal waves present in the area as the similarity between internal waves from 

the same place is important. Another improvement would be to add further external 

information to the system such as wind, bathymetry, sea state, etc when available. In 

adding this information the system could recognize for example that in summer or late 

summer the likelihood of the formation of internal waves is much greater than in winter. 

For example the effect of the wind direction on the internal wave signature [7] can be 

introduced and hence improved the classification. In additional information could also 

increase the number of parameters inferred from the internal wave. By knowing the 

bathymetry it is possible to obtain an approximation of the mixed-layer depth [52]. 

Improvement can be made in a more fundamental manner, by a modifying of the ap­

proach. It has been shown that the edge analysis technique was a lot more reliable 

than the textural approach; therefore it seems logical to concentrate more effort on 

that technique. The approach used to find and infer the information of edges within 

the images is very simple (It was part of the attraction of the method), hmvever in a 

very clustered image it has some limitations. A better system to trace and link edges 

could be developed in order to distinguish between real feature edges and artifacts due 

to a high sea state. Then each edge found could be used in an algorithm which will 
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calculate the wave propagation and therefore find the other edge. Such an approach 

could be implemented using either an active contour technique or an hop field neural 

network. The active contour technique needs boundary conditions to be specified (zone 

of research, initial state) which could not be successfully stated. However this approach 

could be pursued by using an hopfield neural network as it shows potential in reco­

gnizing changes in features with time ([17] and [IS]). This work begins the process 

of analysing the classified signature by demonstrating the retrieval of the orientation, 

wavelength, etc ... It will be possible to used this information in an internal wave model 

using for example the KDV theory (Kroteweg-de Vries equation) [4S] [5] [6] [61]. 

8.4 Conclusion 

The importance and need for information about internal waves has been discussed in 

the introduction as well as at the start of this chapter. Despite its importance for 

both the oceanographic and engineering world, very few direct measurements are avai­

lable and our understanding about their implications in the general ocean circulation 

is poor. This work was motivated by the requirement to offer an answer to the lack 

of information available about internal waves observed by satellite. It presents a new 

framework to classify very large numbers of SAR images in order to identify possible in­

ternal wave signatures and a means to infer primary information about the waves. The 

frame work is based on two approaches: a textural and edge parallelism analysis. It has 

been shown that both techniques can identify successfully the internal wave signature in 

SAR image. A greater success has been achieved using the edge parallelism technique. 

The determination of the type of signature and the wavelength of the internal wave h01,s 

been demonstrated. Such a framework or an improved version could be used to create a 

global map of internal waves using archives from ERS 1-2 RadarSat and Envisat. Such 

a data set could be very useful for oceanographer and modellers alike in order to better 

understand and quantify the importance of the internal wave in the mixing needed to 

warm up and advect deep sea water to the surface. This database could also be of great 

use for the engineering community, for example in the design of offshore platforms and 

in the submarine communication. 

The demand for internal wave information is so great that the European Space Agency 

(ESA) has recently renewed its interest about it (personal discussion \vith Gordon 

Campbell from ESA-ESRIN) and future projects are planned like a global internal 

13G 
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waves climatology for 2005 with the Office of Naval Research (ONR). This work will be 

a suitable candidate for such a project as part of a fully automatic system for internal 

wave analysis using remote sensing technology. 

The major point of this research is that whilst there is plenty of imagery available, 

there are very few techniques that can automatically identify and categorise the inter­

nal waves. A unique combination of techniques described in this thesis including neural 

network, texture discrimination and the analysis of edges' geometry have been shown 

to have great potential to successfully identify and categorize internal waves. 
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Dyadic wavelet transform 

The dyadic wavelet transform of fEL2(?R) is defined by equation(A.O.l) [41]. 

1+= 1 (t -u) w f(u, 2]) = _= f(t) J2J x 'ljJ ~ dt (A.O.l) 

A discrete diadic wavelet transform can be computed with a filter bank algorithm if 

the wavelet is approximately designed. The synthesis of these dyadic wavelets is similar 

to the construction of orthogonal wavelet bases. 

Let hand g be a pair of finite impulse response filters. Set h as a low-pass filter with 

transfer function satisfying h(O) = V2. A scaling function is construct with its Fourier 

transform describe in equation A.O.2 

~ += h(2-Pw) 
¢(w) = II V2 

p=l (A.O.2) 
_ 1 ~ (w) ~ (w) - -h - ¢ -

V2 2 2 

The corresponding wavelet 'ljJ has a fourier transform defined by: 

(A.O.3) 

As hand g have a finite number of non-zero coefficient, both ¢ and 'ljJ have a compact 

support [41]. The number of vanishing moments of 'ljJ is equal to the number of zeros 

of ~(w) at w = O. Since ¢(O) = I, (A.O.3) implies that is is also equal to the number of 

zeros of fj(w) at w = O. 
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A.I Reconstruction Wavelets 

Reconstruction wavelet are calculated with a pair of finite impulse response dual filter 

hand 9. 
+00 ::: 

¢(w) = II h(2-
P
w) 

p=l yI2 (A.I.l) 

_ 1 ::: (W) ::: (W) - -h - ¢ -
yI2 2 2 

::: 1 A (W) ::: (W) 
1jJ(w) = yl29 "2 ¢ "2 (A.I.2) 

A.2 Spline Dyadic Wavelet 

A box spline of degree m is a translation of m + 1 convolution of 1[0,1] with itself. It is 

centered at t = ~ if m is even and at t = 0 if m is odd. Its Fourier transform is: 

¢(w)=e- i €;(Si:
2

%)m+l with E={1 ifmiseven (A.2.1) 

o if m is odd 

So 

h(w) = V2¢(:w) = V2e- i €; (cos w)m+l 
¢(w) 2 

(A.2.2) 

One construct a wavelet that has one vanishing moment by choosing g( w) = O( w) inthe 

neighborhood of w = 0: 
fr. 0!C:11J W 

g(w) = -iv2e-'T sin-
2 

The Fourier transform of the resulting wavelet is: 

A 1 (W) A (W) ljJ(w) = yl2g "2 ¢ "2 

-iw -iw-€ (Sin ~) m+2 
=--e 4 --

4 :!!l. 
4 

(A.2.3) 

(A.2.4) 

Figure A.l, shows the resulting quadratic splines ¢ and 1jJ. To design dual scaling 

function ¢ and wavelet ;j;, one choose h = h. Consequently ¢ = ¢ and the reconstruction 

condition implies that: 

.w 10 m W 2n 

= -iV2e-'"2 sin 2 L (cos "2) 
(A.2.5) 

n=O 

Figure A.2 gives the corresponding filter for m=2. 
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Figure A.l : Quadratic spline wavelet and scaling function 

n h[n] / .j2 h [n]/ .j2 g[n ] /.j2 g(n ]/..J2 

-2 -003125 

-1 0 125 0.125 -0.6875 

0 0.375 0.375 -0.5 -0 .6875 

1 0.375 0.375 0.5 0.6875 

2 0.125 0.125 0.6875 

3 0.03125 

Figure A.2 : Coeffic ients of the fi lter computed from their t ransform fUllction (see Ap-

pendix A. l for detail) 

Figure A.3: Cascading convolution 

A.3 "Algorithme a trollS" 

- -
Suppose that t he scaling function and t he wavelets ¢, 'lj.;, ¢ and 'lj.; are designed with 

the filter h, g , h and g . A fast dyadic wavelet t ransform is calculated with a fi lter 

bank called in French the algorithm e a tmus. It is similar to a fast biorthogonal wavelet 

t ransform , without subsampling. It is computed from ao (init ial image) by a cascading 

convolut ion for 0 ::; j < J , as illustrated in figure A.3 . It is similar to a fast biorthogonal 

wavelet transform, without subsampling [58]. 
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APPENDIX A. Dr~4.DIC WAVELET TRANSFORM 

Sample values of the original discrete image ao[n, m] are written as weighted averages 

of a function f with the kernel ¢(x)¢(y): 

ao[n, m] = (f(x, y), ¢(x - n)¢(y - m)) 

For any j ~ 0, one denote: 

The discret wavelet coefficients are: 

A separable filter is written: 

xy[n,m] = x[n]y[m] 

o[n] denote the Dirac. A filter k[n] is dilated to make the filter kj [n], by inserting 2j - 1 

zeros (trous) between each sample. One can then prove that for any j ~ 0: 

d}+l[n, m] = aj * gjo[n, m], 

d;+l[n, m] = aj * ogj[n, m]. 
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Appendix B 

EigenGLCMs 

Let the training set of G LCMs be r 1, r 2, r 3, ... , CVI. The average matrix of the set is 

defined by ( B.O.I). Each GLCM differ from the average by the vector ¢i = C + ?jJ. 

This set of very large vectors is then subject to PCA, which seek a set of M orthogonal 

vectors (un), which best describes the distribution of the data. 

(B.O.I) 

The Kth vector Uk is chosen in the way describe by ( B.O.2) reach a maximum, subject 

to ( B.O.3). 
1 M 

Ar = M L (uk x ¢n) 2 (B.O.2) 
n=l 

T {I 
Uz Uk = 0 

if l = k 
(B.O.3) 

if otherwise 

The vector Uk and the scalar Ak are eigenvectors and eigenvalues of the covanance 

matrix defined by ( B.O.4). Where the matrix A = [¢l, ¢2, .. , ¢M]. The matrix C is very 

large (NxN). To determine its eigenvectors and eigenvalues is an intractable task; We 

need dimensionality simplification. 

(B.O.4) 

=AAT 

If the number of data points in the matrix space is less than the dimension of space 

(ie: AI < N 2
), there will be only !vI - 1 meaningful eigenvectors, rather than N 2

. 

The N 2 is solved by first solving the eigenvectors of an A1xA1 matrix, and then taking 



APPENDiX B. EIGENGLC1\JS 

approximate linear combination of the matrix (Pi. Consider the eigenvectors V; of AAT 

( E.0.5). From which we see that AV; are the eigenvectors of AT A = C. 

(B.0.5) 

Multiplying both side by A: 

We construct the MxM matrix L = AT A, where Lm,n = ¢n¢~' and find M eigenvectors, 

V; and L. These vectors determine a linear combination of the M training set GLCMs 

to form the eigenGLCMs Ui (B.0.6). 

M 

Ui = LVi,k¢k l = 1,2, ... ,M (B.0.6) 
n=l 



Appendix C 

Confusion matrix 

Image A Image B Image C 

MLP KNN MLP KNN M LP KNN 

152 36 153 35 137 47 145 39 162 42 160 44 

5 32 8 29 8 33 13 28 0 21 0 21 

Image D Image E Image F 

MLP KNN MLP MLP KNN MLP 

137 46 131 137 46 131 137 46 131 137 46 131 

9 34 11 9 34 11 9 34 11 9 34 11 

The colour code of the confusion matrix corresponds is as follow: 

None-event correctly classified 
None-event misclassified 
Event correctly classified 
Evenr misclassifi ed 

Figure C. l: Confusion matrix used to derived the values in table 7 .. 3 
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