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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE, AND MATHEMATICS
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Masters of Philosophy

by Wan Noorshahida Mohd-Isa

Work in this thesis is about analysing two types of kinematics data
representation: spatial representation and temporal representation. Spatial
representation data is proposed to be silhouette moments data and temporal
representation data is proposed to be angular displacements data. These data
are analysed through a data-driven approach, which employs Principal
Component Analysis (PCA) and Canonical Analysis (CA). PCA is a feature
representation technique, which aims at reducing input data dimensionality
without sacrificing the discriminative capability of the input data information;
while CA is a feature discrimination technique, which aims at discriminating
the input data for the best possible projection into the feature space. Before
the input data are applied to the PCA and CA algorithm, they are pre-
processed in a cycle extraction procedure, which involves interpolation and
resampling, to ensure the analysis is invariant to different start and end points
of a gait cycle. Previous approaches in gait recognition research have
depended upon heel-strike frames to determine a gait cycle. Thus, this cycle
extraction procedure can relieve this dependability. Results on using the
proposed features (angular displacements and silhouette moments) have
shown potential and performance is comparable to other literatures. Angular
displacements features achieved 98% classification and silhouette moments
features achieved 91% classification on a sample database of 10 subjects with
14 sequences each. Findings have shown that angular displacements data is a

much better data representation than silhouette’s moments.
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NOMENCLATURES

0 - hip angle
¢ - knee angle
p - ankle angle
Sy - hip point label
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Chapter 1

INTRODUCTION

“Automatic identification represents a set of technologies that (to the uninitiated) seems to
work like magic.” [Swartz 1999]

1.1 Background

Since the event of September 11, discussion on biometrics has becoming
increasingly popular among government agencies, commercial companies, not
forgetting the researchers! Biometrics is seen to (perhaps) provide solutions
for securing data and facilities that are vulnerable to tetrotists” attack, which is
believed to be the culprit behind this historical event. Its technology aims to
identify people by their physical traits, the most commonly applied being

fingerprints, faces, irises, voices, DNAs, and next is gait.

The Oxford dictionary defines gait as “manner of walking, bearing, or carriage
as one walks”. As a biometric, gait may be defined as a means of identifying
individuals by the way they walk [Nixon et al. 1999]. Itis known to be one of
the most universal and complex of all human activities, and each petson
appears to have his or her own characteristic gait pattern [Murray et al. 1964]
[Inman et al. 1981] [Eng and Winter 1995]. Medical studies including
biomechanics scientists and psychologists have involved many years in this
discipline [Murray et al. 1964] [Inman et al. 1981] [Eng and Winter 1995]
[Stevenage et al. 1999].

Fingerprint recognition requires scanners, which a person needs to touch, as
tool for its identification, which for some people may seem intrusive, then gait
is a more attractive identification system since it operates on video cameras,
thus it is non-invasive and recognisable over a distance. Therefore gait

technology is suitable for security and monitoring systems since a “bunch of
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terrotists” in action may wear masks and/or gloves to disguise face
recognition and/or fingerprint recognition system. However video cameras
in a surveillance system can almost always have their views obstructed by
decorative plants, and/or have their depictions blurred and indistinct. Gait

can also handle these occlusions and noises in the video cameras.

Additionally gait itself is self-occluded at some points while in motion.
Fortunately, it 1s difficult to conceal as it is inherent in a person’s motion and
its symmetrical and periodic structure allows for reconstruction of ‘missing’ or
‘noisy’ views. Hence, it has several advantages over other biometrics when

applied in automatic identification systems.

1.2 Automatic Gait Recognition
A study on automatic gait recognition is an applied pattern recognition

problem and can be defined to be,

a study of how machines can observe gaits, learn to distinguish its
pattetns of interest, and make sound and reasonable decisions about

the classes of these patterns.

A generic automatic gait recognition system can be viewed as in Figure 1.1

and involves the common sensor, feature extraction, and classifier elements.

E ) Past
Samples
(51 /—

Input e=——=> Featlre Clas

Sensor Feature Classifier
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|

Figure 1.1. A generic automatic recognition system.
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The sensor is notmally a video camera(s), which could come from a common
sutveillance system in a typical approach. The inputs are video clips cum
image frames of a walking person and these undergo a process of feature
extraction (or selection) for obtaining useful features, which are compressed
inputs, in a computer. At the next stage, the features are applied to a classifier
where past samples assist in disctiminating them and assign them a class label,
which then becomes the output of the recognition system. All processes are
done automatically by computers. Also it should be noted that the success of
the next stage of each process depends highly upon the petformance of the

previous process (es).

1.3 Automatic Gait Recognition Literatures
Numerous literatures on automatic gait recognition date as far back as 1994,
and can be divided mto two main approaches: the model-based approach and

the data-driven approach.

The model-based approach emphasises the representation of the
biomechanics of gait by a mathematical physical model. This approach
models motion of the limbs while a person is walking (or running) and

formulates a mathematical description of these features.

The data-driven approach emphasises the derivation of statistical
information from a set of extracted gait data. This approach extracts

data from gait’s image frames to be used as features for discrimination.

1.3.1 Model-Based Literatures

Perhaps the earliest model-based tesearch was by Cunado et al. [1999]. The
gait signature is derived from Foutier’s spectra of measurements from the
orientation of the thigh. The thighs were modelled as an interlinked
pendulum represented by Foutier Series and extracted by the Velocity Hough
Transform (VHT). The phase-weighted Foutier magnitude spectra came
from the changes on thigh angular displacements by edge detection. The
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recognition rate is 90% on a small database of 10 subjects 4 sequences each,

using £-nearest neighbour classifier.

Another development models both the upper and lower leg of walking and
running subjects as two inter-connected penduli using a bilateral symmetric
and dynamically coupled oscillator [Yam et al. 2001] [Yam 2002]. The gait
signature is the phase-weighted magnitude of the frequency components of
limbs® angular movement. The recognition rate reached 96% for walking and

92% for running for 5 subjects 5 sequences each, respectively.

A mote recent work is on a marker-less gait recognition system by combining
a statistical approach and motion tracking with topological analysis guided by
anatomical knowledge [Yoo et al. 2002] [Yoo and Nixon 2003]. The marker-
less system desctibes petiodic gait motion by its symmetry and fits a 2D stick
figure to the gait data. This system consists of three key stages: detection and
extraction of the moving body and its contour; extraction by the joint angles
and body points; and kinematics analysis and feature extraction for classifying
the gait pattern. The signatures are 20 different features based on kinematics
analysis of one gait cycle and the petformance varied from 82% for 100
subjects 3 sequences each to 93% for 100 subjects 2 sequences each.

However, performance on a small database of 10 subjects produced 100%.

1.3.2 Data-Driven Literatures

Much research is data-driven. Among eatly research in automatic gait
recognition is the work by Niyogi and Adelson [1994], in which the gait
signature is derived from the walking patterns in a spatio-temporal volume.
These patterns were used to determine the motion’s bounding contours. The
gait vectors were derived by using linear intetpolation after notmalising a
fitted five-stick model for velocity. The recognition rate varied from 60% to

just over 80% on a database of 5 subjects 26 sequences each.
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Research from Murase and Sakai [1996] used the parametric eigenspace
__approach, an approaclh well established in automatic face recognition. They
derived body sithouettes by subtracting adjacent images and projected them
into the eigenspace. Decomposition of the eigenvalues reveals the silhouettes’
frequency content, which corresponds to the order of the eigenvectors. The
recognition rate varled from 88% to 100% depending on the number of

eigenvectors used. The database had 7 subjects 10 sequences each.

Little and Boyd [1998] measured the difference in phase of optical flow
images to derive the gait signature. The optical flow produced a set of moving
points together with their flow values. A periodic structure of the sequence
was derived from the measurement of the geometry of the set of points.
Analysis on the petiodic structure produced several irregularities in the phase
differences, which includes the differences in phase between the centroid’s
vertical component and the phase of the weighted points. The recognition

rate is 95% on a limited database of 6 subjects 7 sequences each.

Further, Huang [1999] combined the Principal Component Analysis (PCA)
and Canonical Analysis (CA) for gait recognition. PCA was selected as the
first stage of feature extraction for the purpose of dimensionality reduction.
The second stage applied the projected features to CA for disctiminating
different classes further in the feature space. The recognition rate varied from
76% to 100% depending on the features used. The featutes were human
silhouettes, which are the spatial template and optical flow between two
consecutive silhouettes, which are the temporal templates. The so-called
extended features of combining both spatial and temporal template produced
the 100% recognition rate. The technique was applied to two databases:
UCSD with 6 subjects 7 sequences each and SOTON with 6 subjects 4

sequences each.

There is additional data-driven research on using moments (ot its variations)

of silhouettes as gait signatures such as the work of Shutler et al. [2000a]
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[2000b], which employed velocity moments to describe gait and its motion
theoughout the image sequences. His work achieved over 90% recognition
rate for the first four moment features on a small database. Prismall et al.
[2002] [2003] used the orthogonal Legendre and Zernike moments to
desctibe moving shapes and predict missing or intermediate frames within a
sequence for further reconstruction. His work had shown that high order
moments could accurately reconstruct binary images. Work by Lee and
Grimson [2002a] [2002b] took several simple moment-based features as
signatures to recognise subjects by gait appearance. The moments were
extracted at different regions of silhouettes. The silhouettes were divided into
seven regions and ellipses were fitted to each region. The moment centroid,
aspect ratio of the ellipse’s major and minor axis and otientation of the
ellipse’s axis were among the sets of 41 and 57 features extracted. The
performance evaluation was based on cumulative match score described by
Philips et al. [1997] and was 100% on the set of 41 featutes for the first match
and 97% on the set of 57 features for the first match and 100% for the third
match. The number of subjects is 24 with different number of sequences for

different subjects but on average has eight number of sequence.

1.3.3 Comments on Literature Review

A model-based approach is object-specific, such as the work of Cunado
[1999] and Yam [2001] [2002] that specifically model the thigh and the lower
leg as an interlinked pendulum. Their wotks have managed to formulate gait
mathematically through looking at the structure undetlying the gait pattern
but lacks the statistical and intimate nature of gait. Thus, with other gait
patterns, for example a quadruped like an animal, new models need to be
derived. A data-driven approach is more holistic and flexible, which aims at
deriving mathematics models based on the statistical nature that exists in the

data. Thus, this work employs the data-driven approach into analysing gait.

There is research in automatic gait recognition on both model-based and

data-driven approaches that are worth mentioning. The other research

6
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showed promising results aimed at analysing gait data for its potential as a
biometric. . Below is a summary on the literature review, which motivates and

relates to the work of this thesis:

= The works of Cunado [1999] and Yam [2001] [2002] have motivated
the use of angular displacement data of the thigh and lower leg. Both
are model-based approach, which obviously modelled the biomechanics
of gait as an interlinked pendulum but only limited to the orientation of
the thigh and lower leg. However, the biomechanics of gait involves
complex interaction of muscles, joints, and force acting on the body,
which includes pelvic totation, pelvic tilt, knee flexion, foot and ankle
motion, knee motion, and lateral pelvic displacements. Thus, in this
work, extended features are proposed, which is the foot flexion and the

combination of angular displacements.

= Work of Niyogi and Adelson [1994] derived the gait patterns in the
spatio-temporal volume by normalising and using linear interpolation of
the gait vectors. Normalisation and interpolation are basic
mathematical techniques for standardising sets of scattered data.
Hence, the cycle extraction is formulated so as to apply them to the gait

feature vectors for invariant analysis.

. Murase and Sakai [1996] and Huang [1999] have used the eigenvectors
projection method, which is a successful and popular method in
automatic face recognition [Swets and Weng 1996] [Belhumeur et al.
1997] [Zhao et al. 1998] [Zhao et al. 2000] [Martinez and Kak 2001]
[Beveridge et al. 2001] [Chen and Man 2003]. Likewise, their
approaches in gait research have been successful. Thus, the wotk of
this thesis employs this standard eigenvector projection method for its

descriptor analysis but applied to different feature vectots.
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- The result of phase difference in the work by Little and Boyd [1998]
has led to the investigation of the difference of the feature vectors
phase direction in the descriptor analysis. This motivated the need to

e —mﬁfoﬁrﬂy extract gait cycles with similar phase throughout the dataset.

m The analysis on silhouette moments in this work is motivated by the
work of Shutler [2000a] [2000b], Prismall et al. [2002] [2003], and Lee
and Gtrimson [2002a] [2002b]. They have successfully employed
different silhouette moments; namely velocity moments, Legendre and
Zernike moments, and Cartesian moments. In addition silhouette data
is easily gathered than manually labelled angular displacement data,

which allows for future analysis with increase sample size.

. Most research has successfully used a small number of subjects with a
small number of sequences except in the work by Yoo et al. [2002]
[2003] and Lee and Grimson [2002a] [2002b], which has at least 200
and 192 numbers of total sequences, respectively. Thus, this research
proposed to apply to a dataset with 140 total sequences containing 10

subjects with 14 sequences each.

1.4 Data-Driven Approach System

Data-driven analysis is concerned with deriving statistical information from a
set of extracted data. Statistical information may include measuring the mean,
variance, and analysing correlation from scatter of a set of readings. A data-
driven-approach system aims at producing an informed decision on class
labels of new or ‘unseen’ input data by processing it and testing it against
systematically gathered and analysed past samples. The processes involve
minimising the probability of misclassification, which fundamentally would be

to minimise the Bayes etror.

A data-driven-approach system employs the similar system as in Figure 1.1.
Figure 1.2 is a thumbnail of the data-driven-approach system, which describes
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‘the work in this thesis. Based on that figure, the problem of classification in a
data-dtiven-approach can be defined as,

the mapping of a high-dimensional gait input data x to its one-
dimensional subject label «.

The system is divided into two parts: training and testing. The training part
involves processes that obsetve gait input data and then analyse them for
distinguishing their patterns of interest. On the other hand, the testing part
uses the patterns that have been analysed by the training part to further
classify new data according to their identities. The processes involved in both

training and testing is described in the following sections.

1.4.1 Data Acquisition and Collection

As a first process, the system captures gait videos, which becomes the input
data. Most of the time, a pre-processing is done to the input data, which may
include extraction of the videos into image frames, adjustments for average
intensity levels on the image frames, adjustments for standard image frames
size, and segmentation to isolate the subjects from its background in the case
of producing sithouettes. After this process, the input data is commonly

known as raw data.

There are two types of collected data: supervised and unsupervised.
Supervised data has known target values, i.e. labelled output values, which are
provided by experts in that particular area or are generated by measurements.
Unsupervised data has no target values. For gait recognition, its data can be
both types depending on how the data is collected. In this thesis the data has
target values that 1s the class label is associated with the subject and so the

problem is one of supervised classification.

Gait data in this thesis consist of 10 walking subjects with 14 sequences for
each subject; nine male subjects and one female subject. The 14 sequences

include seven sequences of subjects walking from left to right and seven

9
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sequences of subjects walking from right to left. The gait data set is selected
randomly from a gait database developed for DARPA Human ID Projects
[Shutler et al. 2002]. Part of the database in the DARPA Project is developed
by the ISIS (Image, Speech, and Intelligent Systems) Research Group,
University of Southampton, UK.

The data set selected in this work 1s filmed indoors with controlled lighting,
fixed green background, and a defined walking track. The subjects walk
normal to the view of a stationary DV (digital video) camera with imaging
frequency of 25Hz and a resolution of 720 x 576 colour pixels. The subjects
are filmed side-viewed as video clips, which are then digitised into individual

image files. The video captures about two complete gait cycles.
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Figure 1.2: Thumbnail of system desctibing work in this thesis.
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Silhouette dataset in this thesis is generated from this orginal image. It is
used by many in gait recognition researches [Murase and Sakai 1996] [Huang
1999] [Shutler et al. 2000a] [Shutler et al. 2000b] [Abdelkader et al. 2002a]
[Abdelkader et al. 2002b] [Lee and Grimson 2002a] [Lee and Grimson 2002b]
[Mowbray and Nixon 2003] [Prismall et al. 2002] [Prismall et al. 2003] [Bhanu
and Han 2003]. Each silhouette is produced by first isolating the subject from
its background and then petforming background extraction via chroma-
keying on each image. Finally each image is threshold to produce a silhouette.

Each silhouette retains its size of 720 x 576 pixels.

In this wotk, the collected raw data are the angular displacements and
silhouette moments data. They are kinematics characteristics from gait
motion patterns. Kinematics characteristics concern the geometry of the
motion without reference to force, which produces the motion and mass of
the subject while in motion. The kinematics traits can be further categorsed
into spatial representation and temporal representation based on the content
of gaits image frames. Spatial representation includes position, silhouette
region, and boundary of a gait image. While temporal representation includes

velocity, accelerations, and angular displacements.

The angular displacements data contains angles of displacements for the
thigh, the lower leg, and the foot at each individual image frames. Based on
research by Johansson [1973], human motions of points can be distinguished
from other non-biological motions. Moreover angular displacements of the
thigh and lower leg have been used in many studies [Mutray et al. 1964]
[Grieve and Gear 1966] [Murtray 1967] [Frigo et al. 1986] [Hills and Parker
1993] [Eng and Winter 1995] [Cunado et al. 1999] [Lakany 2000] [Yam 2002].
Hence, the angles of displacements are calculated from manually labelled
points at the hip, knee, ankle, and toe for the corresponding image frames.

The silhouette moments data contains Cartesian centralised moments of

silhouette at each individual image frames. Image moment representations

11



Chaprer 1 Introduction

have been found to be useful in many pattern recognition applications. They
are popular with a statistical pattern recognition approach since a major
assumption is that there is an unoccluded view of target shape [Nixon and
Aguado 2002]. Moments, which desctibe an object layout by its pixels, are a
global desctiptor. They have invariance properties and a compact description,
which can avoid the effects of noise in description. The Cartesian centralised
moments are translation invatiant, thus by employing image moments, the
translation of silhouette image frames in time can be represented accurately

up-to a certain well-defined order.

The silhouette moments data and the angular displacements data are further
processed for extraction and selection of useful features as described in the

next section. Their mathematical formulation is desctibed in Chapter 2.

1.4.2 Feature Extraction and Feature Selection

Gait input data is high dimensional. A digital video of one gait cycle notmally
extracts into hundreds or thousands of image frames of standard dimensions.
Only specific features of gait are extracted or selected depending upon the
need of the systems whether to employ feature extraction or feature selection

techniques. Both techniques lead to dimensionality reduction of data.

Feature extraction relates to techniques that use a class separability optimality
ctiterion to generate a mapping from the input data space to the feature space
[Young and Fu 1986]. Feature extraction creates new features by
transformations or combinations of the existing input data. Feature selection
differs from feature extraction in that it chooses features but the ones more
informative from the set of the new features. It identifies the most important
and relevant input variables that are responsible for major variations of the
output. However different in names they are, the motivation behind these
techniques is to reduce or compress the amount of raw data utilised for
further processing. It is 2 known fact that the amount of data relates to the

complexity of the system, which relates to performance and cost of the

12
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system. The term ‘curse of dimensionality’ is common in pattern recognition
where an increase in the dimensionality of the features means an exponential

increase in generalisatiorrprocess [Bellman 1961].

It is important to note that depending upon the criteria measured by the
mapping function, feature extraction techniques can be further categorised
into feature extraction for representation and feature extraction for
classification. For representation purpose, the goal is to map the input data
accurately in the lower-dimensional feature space. Whilst for classification
purpose, the goal is to enhance the class-discriminatory information in the
lower-dimensional feature space. Examples of techniques are Principal
Component Analysis (PCA) and Canonical Analysis (CA), which are
techniques used in this work. The former is a feature extraction technique for

representation and the latter is a feature extraction technique for classification.

The ptincipal component analysis (PCA) is a transformation based on
statistical properties of vector representations [Gonzales and Woods 1992].
Also known as the Karhunen-Loeve transformation, PCA transforms
continuous data into a set of uncorrelated coefficients by using the
transformation mattix of eigenvectors. The covatiance matrix of the data set
generates these eigenvectors and its corresponding eigenvalues. These
elgenvectors can be ordered according to their eigenvalues, which measure
the variance of the transformed vectors along these eigenvectors. Thus, the
first transformed vector, or the principal component, shows the ditection of
maximum vatiance, which yields projection directions that maximise the total
scatter across all data. The principal components of very low variance can be
removed, as they do not contribute much to the projection of the data.

Hence, PCA has the capability for performing data compression.

Canonical analysis (CA) is an established technique, which aims to determine
whether two or more sets of objects differ from each other [Ehrenberg 1989].

The method discriminates data while keeping the intra-variance minimum and

13
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the inter-varance maximum. To do that, CA computes the ratio of the
within-class to the between-class scatter and employs a generalised linear
discriminant function to maximise this ratio simultaneously. The solution to
this analysis is an orthogonal basis, which spans the canonical space.
Projection of vectors into this canonical space can produce clusters of

disparate vectors with low intra-variance and high inter-variance.

Huang [1999] has derived a method, which combined both PCA and CA.
The combination of PCA+CA performs better discrimination of different
classes than the CA method alone. Furthermore, employing PCA first can
avoid the singularity problem in computation of the within-class scatter with
uncompressed data in CA. Therefore, PCA does data compression that
reduces the amount of the input data, which is high-dimensional by retaining
data which accounts for most variance. When CA 1s applied to such data, it
disctiminates better. In his work, the combination of PCA and CA was used
for gait recognition on silhouette data and optical flow of silhouette data.
Huang used the image itself; the silhouette, which is computed from the
subtraction of the background image from the objects in the image and
optical flow, which is computed from the displacement of each pixel between
each silhouettes. In this work, the combination of PCA and CA is used for

analysing angular displacements and silhouette moments data.

Before these raw data, namely the angular displacements and silhouette
moments data are analysed by the feature extraction techniques, they ate pre-
processed to detect and remove any potential outliers, which can affect the
mapping of the feature vectors in the feature space. Outliers are unusual data
values that are inconsistent with most observations. They can be due to gross
measurement errors, coding/encoding etrors, and abnormal cases. Also, pre-
processing involves making the feature extraction analysis invarant to
different temporal and/or spatial information contained in the raw data. With
gait data, one possible method of pre-processing before feature extraction is

to employ the cycle extraction procedure.
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1.4.3 Classifiers

Classification of the extracted or selected features is the last stage in the
system. At this stage the gait features are assigned class or subject label by the
chosen classifiers, which use certain critetia of separability measures. Gait
features with its associated class/subject label are known as patterns and these
patterns are used to design the classifier (or to set its internal parameters)
[Webb 1999]. In the future new gait data may be generalised to its class

association using the designed system.

However, the design of classifiers is not the wotk of this thesis. Therefore,
the commonly used &-nearest neighbour classifier with FEuclidean distance is

employed as its classifier due to its stmplicity.

1.5 Significance of Problem

This thesis focuses on analysing gait features using data-driven approach. It
aims at answering the question on how desctiptive is gait by studying its
features.  Gait motion pattetn can be described by its kinematics
characteristics, which concern the geometry of the motion. The kinematics
traits can be further categotised into spatial representation and temporal
representation.  Spatial representation includes silhouette region and
boundary of a gait image. While temporal representation includes velocity
and angular displacements. Gait features can be extracted or selected from
any of these representations thus an analysis on how these features
successfully discriminate gait is discussed in this thesis. A data-driven
approach is employed for investigating these gait features, namely using
Principal Component Analysis (PCA) and Canonical Analysis (CA). PCA and
CA ate both feature extraction techniques, where the former is a technique
for representation of the input data that can be used for dimensionality
reduction, while the latter is a technique for disctiminating the input data for

better classification.
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The input data in this thesis are the angular displacements and silhouette
moments. We choose the angular displacements of the thigh and knee for
they ate consistent with many studies [Murray et al. 1964] [Greve and Gear
1966] [Murray 1967] [Frgo et al. 1986] [Hills and Parker 1993] [Eng and
Winter 1995] [Cunado et al. 1999] [Lakany 2000] [Yam 2002], which show
that they ate quantifiable. The work extends into investigating the flexion of
the foot throughout a gait cycle and the combination of the three angular
displacements. We choose silhouettes for they are used in many gait
recognition literatures [Murase and Sakai 1996] [Huang 1999] [Shutler et al.
2000a] [Shutler et al. 2000b] [Lee and Grimson 2002a] [Lee and Grimson
2002a] [Ptismall et al. 2002] [Ptismall et al. 2003] [Bhanu and Han 2003]. It
also has the advantage of having large sample size because it is easily gathered
than manually labelled limb angular displacements. However, silhouette
moments are used due to constraints on processing large two-dimensional
data size. Thus, the analysis investigates and compares the performance of

differing input data.

As gait 1s petiodic, cycle extraction analysis is proposed for extracting gait
cycles from the discrete signal representing the input of gait kinematics data.
The cycle extraction procedure involves interpolation and resampling of the
discrete signal. Cubic spline interpolation in SVR (Support Vector Machines
for Regression) is proposed since it handles the start and end points for gait
cycle extraction much better than normal cubic spline intetpolation. The gait
cycle is extracted to be between two consecutive zero crossings, which
complete a gait cycle and resampling is performed for uniformity of sample
size due to differences in walking speed. This technique relieves the analysis
from dependence upon heel-strike, which was employed in previous research.
Also, in this part of the analysis, the input data is extracted to have similar
phase direction throughout the dataset since a difference in phase can affect
the distribution of the input data in the feature space, which in turn can affect

the recognition process.
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Contributions of this thesis are laid out as follows:

= The proposal of using angular displacements data for analysis on the
PCA and CA analysis by Huang [1999]. Huang’s analysis used
silhouettes and optical-flow of silhouettes data. .The angular

displacements involve are the hip, knee, and ankle.

» The proposal of using silhouette moments for compatison analysis with

the angular displacements data.

= The proposal of cycle extraction method using combination of SVR
and resampling at zero crossings. This method deals with defining
different start and end points to determine a gait cycle other than

formetly depending on heel-strike.

1.6 Thesis Preview

The outline of the thesis is as follows:

Chapter 2 describes theoretical materal on gait’s input data: angular
displacement data and silhouette moment data; what they are and how they
are collected and pre-processed for feature extraction. This chapter also

presents the theoretical methods for analysing their features, which are the
PCA and CA algorithm.

Chapter 3 formulates cycle extraction method, which involves descrption of
cubic spline interpolation in SVR and resampling at zero crossings. The

results are presented for both types of input data from Chapter 2.

Chapter 4 presents the overall results of this thesis, which includes
compattson results for each input type of gait’s data. Also discusses on

findings and comparing to other gait literatures.

Finally Chapter 5 concludes the thesis and outlined the future wotk.
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Chapter 2

MATHEMATICAL FORMULATION OF GAIT’S
DATA AND ITS DESCRIPTOR ANALYSIS

This chapter presents theoretical and mathematical formulation for both angular
displacements and silhonette moments data. Also, it describes descriptor analysis, namely
the PCA and CA, which are employed for feature extraction process in the data-driven

approach system.

2.1 Gait’s Data

Murray [1967] consideted gait to be “a total walking cycle — the action of
walking can be thought of as a periodic signal”. The period of a gait cycle
exists between successive heel-strikes. Also, the cycle has two phases: the
stance phase and the swing phase. The stance phase is the duration when the
foot is on the ground, whilst the swing phase begins with the toe-off of that

foot. This is illustrated in Figure 2.1.

AN AKPN

Right Left Right
Heel Strike Heel Strike Heel Strike
Right Stance Left Stance
Left Swing Right Swing
Right Stride Length
< g ride Leng >

< Right to Left Step Length»{Left to Right Step Lcngth>

Figure 2.1: Duration of total right walking gait cycle.
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In Figure 2.1 the gait cycle begins with the heel strike of the right leg and the
person enters the stance phase of walking. In this phase, the body weight
shifts onto the foot when the foot falls flat. Then, the left leg swings to the
front and body reflexes make the right foot flat because the body weight has
shifted to the right leg. The stance phase ends when the right foot, which
moved first lifts again; the swing phase starts when the left toes lift from the
ground. That completes one step. Then, the body weight shifts and the leg
swings to the front again. The stride ends when the heel of the right foot,
which moved first sttikes the floor again. That completes the other step and
the gait cycle.

A gait cycle can be described by its kinematics characteristics, which concern
the geometty of the motion without reference to force. The kinematics
charactetistics can be further represented spatially or temporally. Angular
displacements data is proposed as temporal representation of gait perodic
signal and silhouette moments data is proposed as spatial representation of

gait petriodic signal. Their formulation is described in the next section.

2.1.1 Angular Displacements Data

Geometrically, the maximum opening of the legs are when the leg is at heel
sttike. The minimum opening of the legs happens during the leg swing.
From this geometty, Figure 2.2 is constructed. The data is manually labelled

at each individual image frames corresponding to the leg at front (refer Figure
2.2(b)) at four points; the hip Sy, the knee Sy, the ankle S,, and the toe Sy as

in Figure 2.2(b). The hip angle 6, is the angle of inclination between the thigh
and the vertical while in motion. The knee angle ¢, is the angle at the knee
between the lower leg and the vertical. The ankle angle p, is the angle of the
foot flexion with respect to hotizontal. Then, the co-ordinates of these points
are gathered and used to calculate the angles of inclination €, ¢, and p.
These angles are llustrated in Figure 2.2(a).
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+p

SOE

a) Location b) Example
P

Figure 2.2: Labelled points on digitised image.

2) Original Image b) Silhouette
g g

Figure 2.3: Original image and its corresponding silhouette.
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The positive values for & and ¢ are defined to be whenever the displacement
angles are moving forward together with the forward movement of the

subject. The positive values for p are defined to be at the region whereby
the foot of the subject is at its natural position. Therefore negative values for

p can only occur whenever the foot flexes upwards, which is the time when

the person is at heel strike.

2.1.2 Silhouette Moments Data
Hu [1962] defined a continuous two-dimensional (p+4)th order Cattesian

moment of the image function f(x, y)on a finite region R as,

M,, = [[x? y* f(x, y)dsdy @1

where, p,4=0,1,2, ...

In a binary image form, f(x, y) = 1 teptresents a shape of the moment in the

region R. Thus, the double integral in Equation 3.1 is replaced by a

summation to produce the separable computation,
75y = %x”%f @.2)

where M and NN are the image dimensions of the object.

By setting the order (p+4) of Equation 2.2, these moments are useful in shape

analysis of our silhouette data.

The order of moments can represent vatious attributes of an object in an
image. For an N pixel shape represented by a regionR, the following

attributes are defined:
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a. Area
The 0 order moment defines the area of an object. A 0™ order moment is

optained by setting p = 0 and g = 0. Thus, Equation 2.1 becomes,

A=M = [[f(, y)dxdy 23

For a binary image of IN pixels, Equation 2.3 is just the total number of pixels,
N, for the object in the binary image.

b. Centre of Mass
The 7* order moment defines the centre of mass or means of the object of

interest. Equation 2.1 then becomes,

[ e, y)andy
([t @9

R

[, y)asdy

T e ey @

where X and y in binary form are m and # respectively,
vV X

A= 0n @7)

These ¥ and y; or 7 and 7 represent the centre of mass for the vertical

and horizontal direction of the object in an image respectively.
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From these equations of centre of mass, Equation 2.2 above can be

centralised and become the (p,4) order central moments as,

oy = 2. 2 (m=m) (n=7)’ 2.8)

(m,n) €R

Equation 2.8 is extensively used throughout the work on silhouette analysis.

c. Directional Variance
The 2* least order moment defines the spread of the shape with respect to
either the vertical or the horizontal direction, or variance. General Equation

2.1 becomes,

ol =My, = [(x=%) fx)dx (2.9)
ol =My, = [(5-3) FO)b (2.10)
The binary image form will be,
ol =my =) (m—7m) 2.11)
ol =ny =) (n—7) (2.12)

2.1.3 Justification for Using Moments of Silhouette

Angular displacements data are measured angles from each image frame. The
angles are mapped into a column vector with each item (angle) in the vector
representing its image frame. Having many image frames just increases the
length of the angle vector. That means a sequence of L image frames is an L

length vector.
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Silhouette data contains binary image representation of gait image database.
It has the advantage of having a large sample size because it is more easily
gathered than manually labelled angular displacements data. However, the
silhouette dataset in this work uses the same number of subjects and
sequences as the angular displacements data. Each original image frame of a
silhouette data is of size 720 x 576 pixels. Each of these sequences contains

between 50 to 77 image frames.

For the purpose of image analysis, normally an image of size M x N is
rearranged to map as a row-ordered vector, or often called the lexicographic
ordering’ [Jain 1989]. By scanning the pixels of an image from the first row,
and going from first column till the end, an image of size 720 x 576, will
become a long column vector of size 16560. That size is not considering the
other I -1 number of image frames, §-1 other sequences, and C-1 other
classes! Due to this, the direct computation of the silhouette data into the
descriptor analysis algorithm will be enormous. Thetefore, moment

representation is proposed for analysing silhouette data.

'Let

x £ O{x(m,n)}
be a one-to-one otdering of the elements of the atray {x(m,7)} into the vector x.
The row-ordered vector is defined as

x" = [x(1,1)x(1,2)...x(L N)x(2,1)... (2, N)...x(M,1)...x(M, N)[

20 {x(mn)}

The column-ordered vector is defined as

x" = [x(1,1)x(2,1)... (M, 1)x(1,2)...x(M,2)...x(1L, M)...x(M,N)]"

X,

X; |a
=|. [FObx(mn)}

XN
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2.2 Descriptor Analysis

Pringipal componeng enalysis (PCA) and canonical analysis (CA) are
techniques successfully employed in face tecognition and object _recognition
[Swets and Weng 199¢] {Belhumeur et al 1997] [Zhao et al 1998] [Zhao et al.
2000] Mattinez and Kak 2001] [Beveridge et al 2001] [Chen and Man 2003].
Bath techniques are ggtistical techniques that can be adopted for a data-
driven analysis in automatic gait recognition. In this work, PCA is used as a
feature extraction techgique for representation of the input data to a reduced
dimension. CA is an intuitive feature extraction technique in which
minimising the withif-¢lass scatter and maximising the between-class scatter
of the input data can discriminate the dataset better. The combination of
RPCA and CA is used for analysing angular displacements and silhouette
moments data. PCA is applied first for data truncation, and then CA is

pesfprmed before the clpssification-process as described in Section 1.4.

2.2.1 Principal Component Analysis (PCA)
Given resampled vectgrs estimate of length 7 (Equation 3.7 — Equaton 3.10,
which will be discussed in Section 3.3.1), for mattices r x S} containing

vectors of length rrepresenting .- number of total sequences,

AA A

X, =[6:6:...05, ] (2.13)

X, = (6,6, b, (2.14

X, =[p,0,--Ps, ] (2.15)
Xy = [l\/\dm‘l ﬁm?f-»-h’/\lm&] (2.16)

M i

From now on, only detivation for Equation 2.16 is shown, defivations for

Equation 2.13 - Equation 2.15 are done in a similar fashion.
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The mean of the data is,
—_— 1 A
X =_ZMM1' (2.17)
Sr 5
The centralised data is,
(qu =qu —ipq (218)

Let e; and A, be the eigenvectors and corresponding eigenvalues for the

. . T .
covatiahce mattx X g = (1)) pq(I) - And let A be a matrix whose rows are

formed from the eigenvectors, ordered so that the first row is the eigenvector
corresponding to the largest eigenvalue and the last row is the eigenvector
corresponding to the smallest eigenvalue. Therefore, the centralized vectors
x,,’s can be mapped into vectors denoted by y, by the transformation matrix

A a5 follows,

Y =A® (2.19)

The transformation matrix A is known as the eigenspace transformation

matrix (EST).

PCA has the capability of performing data compression by selecting some
#, <K, members of eigenvalues that specify some high variance principal
components in PCA. To determine the value of £, , the number of features
to use, the eigenvalues A; ate sorted in non-increasing order. The residual

mean-square error in using &, <K, features is simply the sum of the

eigenvalues not used, ZlKl A; [Swets and Weng 1996].

=k 41T
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If the percentage p, =5%, a good reduction in the number of features is
obtained while retaining a large proportion of the vatiance present in the
original feature vector [Jain and Dubes 1988] [Turk and Pentland 1991],
thereby losing very little of their original population-capturing power. Based

on this principle, a new calculation of £, is done in reverse order that is by

choosing a fixed percentage P, = 5% by Equation 2.20,

[
34,
P — =
* i% (2.20)

i=1

2.2.2. Canonical Analysis

After projection into the eigenspace, given C dlasses having § sequences for

each class, the matrix is,

Y =Y 50 Y 0¥ ] (2.21)
The vectors y, o, representing ;" sequences in class 7 are,

Y = [er, €55 0€, ]qug (2.22)

The mean vector for the entire set is,

— 1 c 5
Yo =222V, (2.23)

T i=1 j=1

The mean vector for the " class is,

1
Yu=% 2 Yo 2.24)
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The within-dlass and between class matrix are,

1 & _ _
Se=—0" 2 OV, Vg, ~F,) (2.25)
LS"I‘ i=1 quiEYP'ii
1 < _ ~r — ~r T
S, =5—ZS<yM ~Yu)F,—Yn) (2.26)
T =t

Using the generalised Fisher linear discriminant function, to maximise both S;, and S,

simultaneously, J(W) has to maximise,

WS, W

(2.27)
where, J(W) represents the ratio of within-class to between-class variances.

Let w; be the generalised eigenvectors, to maximise (W) is to differentiate it

with respect to W and represent as a generalised eigenvalue equation,

SIS, w, = A,w, (2.28)

Thus, the eigenvectors are an orthogonal basis that spans a (C-1)-dimensional
canonical space and a projection of y, into this canonical space becomes
another transformed vectors z,. The w/s are also known as the canonical

space transformation matrix (CST).

Merging both PCA and CA produce a new equation to apply to test vectors,

T T
Z,. = (Wi, Wy W, ] [€5,€5,.0, ] Xy (2.29)

2.3 Conclusions

Gait as defined by Murray [1967] is “a total walking cycle — the action of
walking can be thought of as a periodic signal”. A gait petiodic signal has
spatial and temporal charactetistics, which are its kinematics traits. In this
chapter, angular displacements data and silhouette moments data are
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proposed as temporal and spatial representation of gait’s data, respectively.
Angular displacements data are defined as angle of displacements of the
thigh’s rotation, the lower leg’s rotation, and the foot flexion. The angles are
calculated from a set of gathered points, which are manually labelled at each
image frames. Silhouette moments data are defined as the Cartesian
centralised moments of subject’s silhouette at each image frames. They are
used, instead of using silhouette itself because a direct computation of

silhouette into a descriptor analysis would be tremendous.

This work employs a data-driven approach to analysing gait’s data. PCA and
CA are statistical-based descriptor analysis suitable for feature extraction
process in a data-driven approach system. PCA is a technique of feature
extraction for data compression by transforming a dataset into a
representation in lower dimensional spaces. CA is a feature extraction
technique for data discrimination by minimising the within-scatter variance
and maximising the between-scatter variance of the data. In this chapter, the
mathematical formulation of PCA and CA are merged so that it can be

applied to test data at the classification process.
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Chapter 3

GAIT CYCLE EXTRACTION

This chapter describes the gait cycle extraction procedure, which is the pre-processing step in

the featnre exctraction process of the data-driven approach system.

3.1 Introduction

Gait cycle extraction procedure is a pre-processing step in a feature extraction
procedure. This step involves a series of two processes: intetpolation, which
utilises the Support Vector Machines for Regression (SVR) framework and
resampling, which defines complete gait cycles to be between zero crossings.
It should be noted that in this work regression via SVR is performed not for

analysing the data but merely a tool for cycle extraction.

3.2 Problem Definition

Gait data is observational, in which they are finitely sampled and thus the
representation signal of its raw data is discrete. Data interpolation is
proposed for fitting the best curve that can describe a continuous gait cycle
before extraction. Since the cycle needs well-defined start and end points
before extraction, by intetpolation, the data points within finite intervals of
the gait cycle are better estimated. This can reduce the probability of noise
effect in the data, allowing more accurate resampling at the start and end

points.

Furthermore gait data is high dimensional thus to do calculations in the input
space Is intractable. Methods based around kernels are chosen for their
rigorous formulation and good generalisation [Gunn and Kandola 2001].
Support Vector Machines for Regression (SVR) is an example method, which
is based around kernels. The idea of the kernel function is to enable
operations to be performed in the input space rather than the potentially high
dimensional feature space [Scholkopf 1998].
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The suppott vector machine (SVM) is a universal constructive learning
pracedure based on statistical learning theory introduced by Vapnik [1995].
In a support vector machine (SVM), the data is mapped into a higher
dimensional feature space via a mapping function. The mapping constructs a
separating hyperplane with maximum margin in this high dimensional space,
which yields a non-linear decision boundary in input space [Scholkopf 2000].
By the use of the kernel function, the separating hyperplane is computed
without explicitly catrying out the map in the feature space [Alon et al. 1997].

Likewise the SVMs can also be applied to regression problems by the
introduction of an alternative loss function [Smola 1996]. The loss function
must be modified to include a distance measure [Vapnik 1995]. Vapnik
proposed the & -insensitive loss function to enable a sparse set of support

vectors to be obtained.

Ideally the choice of a set of approximating functions reflects a ptioti
knowledge about the system (unknown dependency) [Scholkopf 1998].
However, in choosing a kernel that best reflects the gait recognition system
can also depend on one of these factors: similarity measure for the data, or a
(linear) representation of the data, or a hypothesis space for learning
[Scholkopf 1998]. The a priori of gait data is its petiodicity and continuity. Its
data representation is a composition of sinusoidal waves, consistent with
earlier ‘automated’ analysis [Cunado et al. 1999] [Yam et al. 2001] [Yam 2002].
Thus the commonly employed kernel functon that can be used to describe

the gait data set is the cubic-spline function.

Cubic splines are widely used to fit a smooth continuous function through
discrete data [Wolberg and Alfy 2002]. It is used in fields of computer
graphics and image processing, where smooth interpolation is essential. Cubic
splines use low-order polynomials, which are the piecewise cubic polynomials.
The low-order polynomials reduce the computatonal requirements and

numerical instabilities that arise with higher degree curves [Wolberg and Alfy
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2002]. Cubic polynomials allow for a curve to pass through two endpoints
with specified detivatives at each endpoint. This guarantees continuous first
and second detivatives across all polynomials segments, which makes it

smooth and attractive for this gait data set.

Resampling 1s proposed to align the feature vectors for uniformity and
invariance due to different start and end points of feature vectors. The
numbers of frames captured for a gait cycle are different for each person
since each person has different walking speeds. Thus, the sequence lengths
for the data (or raw data) are unequal. The sequences can vary from 50 to 77
points for the 10 subjects. Resampling is proposed to be between two
consecutive zero crossings for they are the easiest to extract and having the

simplest procedure.

Furthermore, resampling can be used to deal with the phase difference in
each feature vector. Gait data is a composition of sinusoids with peaks and
troughs, which defines the positive and negative phase. The positive and
negative phase vectors map to different regions in the feature space, which
can affect the recognition petformance. In addition, it has been shown that
there are significant variations of phase features with individual gaits [Little
and Boyd 1998].

Moreovet, previous works by other researchers based their gait cycle on heel-
strike as a basis for obtaining gait signature. By resampling, this dependency
can simultaneously be changed for added flexibility.

3.3 Cycle Extraction Procedure

Each raw data (angular displacements and silhouette moments) of image
frames in a gait sequence can be represented by a feature vector using the
lexicographic ordeting [Jain 1989]. That is each raw data item of each image

frames in a sequence is mapped as an item in a column vectot, which
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tepresents a corresponding sequence. These sequences then are examined

through the cycle extraction procedure.

The cycle extraction procedure begins with the interpolation of the feature
vector using the SVR toolbox [Gunn 1998], implemented in Matlab.
Interpolation is proposed for fitting the best cutve that can descdbe a
continuous cycle before extraction. The cycle extraction procedure ends with
the resampling of feature vectors, which is defined to be between two

consecutive zeto crossings and having similar phase throughout the dataset.

3.3.1 Data Interpolation Formulation

Given vectots of raw data for each sequence of length L. |

0=[6, 6, .. 6] , ee[0,22]" 3.1)
0=[¢ & - 6.] . de[0,22T 3.2)
p=[p p . p ], pefo,2a]" (3.3
M, =Ly By by, 1T M, e R (3.4)

whete 0, =0(z,), ¢, =¢(,), and p, = p(¢;) ate the angular displacements
of the thigh, the leg, and the foot at time £;, respectively and 4 2 = Mg ()

are the central moment of order (p+4) for each silhouette at time ¢;.

The interpolation estimate in an SVM for Equation 3.4 is of the form,
A L
ROEDICAICN) (35)
i=1

whete, ; € R are the support vectors, K(#,,#)is a kernel function and ¢, are

the training input space points.
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The prefegred kernel function is the cubic spline,
1 i 1 . 3
K(t,.,t)=1+t,.t+Et,.tmm(t,.,t)——6—(mm(t,.,t)) (3.6)

This estimate applies to angular displacements of thigh (&), leg (¢), and foot
(o) as well.

The resampled vector estimate is of length 7,

6=[6, 0, .. o] , 0e(0.2n] 67
b=[¢ 8 ... 4], del0.22] (3.8)
b=[p, p, - p]  pel02a] (3.9
M,, =y My by 1, M, €R (3.10)

3.3.2 Resampling Procedure

The resampling procedure discussion is based on the angular displacements
data specifically on the limb inclination of the thigh since the thigh angular
displacements was the first analysis attempted. There are three possible
methods to base the resampling on: between two consecutive maximum

points, minimum points, Ot zZero crossings.

Resampling between Consecutive Maximum Points. The initial plan was
to resample at the first and the third extreme maximum points since the
inclination of the thigh is maximum at these points during a gait cycle.
However there is the sudden decrease in angle value around the principal
maximum peak for the hip angle data. Referting to Figure 3.1, there are

inflexion points around the maximum peak. This decrease in angle value in
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Figure 3.1(b) might be due to the shifting of the body weight onto the front
foot. This can be seen in Figure 3.1(a) when the front leg is just about to
strike the floor. Heel strike occurs in the next frame; simultaneously the body
weight statts to shift its load onto that foot. At Figure 3.1(c), when the front
foot is already flat, the back foot still flexes at its original position but the hip
position alteady moves forward creating a larger inclination between the thigh
and the vertical. Furthermore, according to Perry [1992], the body weight
shifts from one leg to another when both feet are in contact with the ground®.
This condition occurs at maximum peaks of all sequences for the hip angle,

thus resampling cannot be based on maximum peaks.

Resampling between Consecutive Minimum Points. Since maximum
points are difficult to extract, minimum points might be a possibility.
However, there is a problem with the video itself. The image files that were
extracted start at heel strike and end at heel strike of the same leg. There are
no image files before and after that heel strike. Hence, there are some

sequences that do not have a complete cycle based on minimum points.

Resampling between Consecutive Zero Crossings. Therefore, the task is
changed to extraction of a gait cycle at zero crossing. Other than being
simpler, zero crossing extraction can be a generic cycle extraction technique
for extending to other input data types thus, making the cycle extraction

procedure more robust to other gait data types.

Also the difference in phase can affect the mapping of data in feature space.

It has been shown that the phase features of individual gaits have significant

% As the body moves forward, one limb serves as a mobile source of support while the other
limb advances itself to a new support site. Then the limbs reverse their roles. For the transfer
of body weight from one limb to the other, both feet are in contact with the ground. This
sedies of events is repeated by each limb with reciprocal timing until the person’s destination is
reached [Perry 1992).

35



Chapier 3 Gast Cycle Extraction

variation [Little and Boyd 1998)]. Cycle extraction of a sequence with positive
phase will be mapped onto a positive region of the feature space and vice
versa. This 1s shown in Figure 3.2 whereby the positive phase dataset are
mapped on the positive side of the feature vector and the negative phase
dataset are mapped on the opposite side. Thus, the extraction 1s chosen to

having similar phase direction for all sequences of gait data types.

3.4 The Implementation

The implementation of the cycle extraction algorithm is done automatically in
Matlab using a Pentium III 700MHz processor. The sampling rate is chosen

to be 30. The phase of the feature vector is set to positive.

Cycle Extraction Algorithm
1. Gather 6, ¢, p,,and u ., for each sequences.

2. Apply SVR function of Equation 3.5.

3. Equate 62, ¢?,., p,,and 1 g, 1O ZEro.

4. Compute the roots of the polynomial whose coefficients are the
elements of the vector 8, ¢, 5., and a, .

Take two consecutive zero crossings, which define complete cycle.
Evaluate the phase of the feature vector.
If phase evaluation is negative, repeat step 5. Else go to step 8.

Resample the vector estimate at sampling rate, # = 30.

v o N e b

Save the resampled vector estimate.
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(a) Frame 32, & = 21.3°  (b) Frame 34, 6 = 18.4° (c) Frame 36, 6 = 19.8°

Figure 3.1: Inflexion points on an example subject.
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Figure 3.2: Feature space mapping of feature vectors with different phase.
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Definitions of Extracted Data
Hip Angle (). Angular displacements data of the thigh extracted

between two consecutive zero crossings independently.

Knee Angle (¢.). Angular displacements data of the leg extracted

between two consecutive zero crossings independently.

Ankle Angle (p,). Angular displacements data of the foot extracted
between two consecutive zero crossings independently.

Hip+Knee+Ankle Independent (Dataset HKAI). The three angular
displacements data, each has been extracted between two consecutive
zero crossings independently and combined by stacking each angular
displacements onto a column feature vector with the uppermost body
part on top.

Hip+Knee+Ankle Hip-Dependent (Dataset HKAD). The angular
displacements of lower body parts (leg and foot) are extracted
respective to the zero crossings of angular displacements of
uppermost body part (thigh) and combined.

Hip+Knee Independent (Dataset HKI) and Knee+Ankle
Independent (Dataset KAI). The angular displacements of two
body parts data, each has been extracted between two consecutive
zero crossings independently and combined.

Hip+Knee Hip-Dependent (Dataset HKD) and Knee+Ankle Knee-
Dependent (Dataset KAD). The angular displacements of body
part (the ones lower) are extracted respective to the zero crossings of

angular displacements of its upper body part and are combined.

Silhouette Moments of Otder pt+q (u 4. )- The silhouette moments

data of different orders ranging from order 0 to 7, each has been

extracted between two consecutive zero crossings independently.

Silhouette Moments upto Otder p+g . The silhouette moments data

of different orders ranging from 0 to 7, each has been extracted
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between two consecutive zero crossings and combined according to
the defined upto-order by stacking each order (with the lowest order

on the top) onto a column feature vector.

Note that the selection of the combined independently and dependently
extracted data is formulated for analysing the affect of temporal changes.
That is whenever data are independently extracted; they have different time

frames that associate with the zero crossings.

3.5 Description of Findings

All resulting curves in the figures show: the plus (+) in the circles are the
support vectors, which correspond to the discrete raw data in the sequence.
The bold lines are the resulting interpolated curve from the SVR plotting tool.
The sampling rate is set at 30.

3.5.1 Angular Displacements Data

Angular displacements data are values of limb inclination of thigh and leg, and
values of flexion of the foot, which are manually labeled. They are displayed
in Figure 3.3, Figure 3.4, and Figure 3.5, with cotresponding frames of gait
motion at several points of interest, namely the maximum points, the
minimum points, and the zero crossings. These figures plot at least two

complete gait cycles.

Figute 3.3 shows the plot of thigh angular displacements for subject
S013s00L, which is referred throughout this thesis. There are six frames of
interest: frame 10, frame 15, frame 23, frame 34, frame 36, and frame 54.
Frame 10 is the frame where the subject is at heel-strike for the first complete
gait cycle, which started with the left leg. The angle is at its maximum,
consistent with Murray’s wotk, which has been defined in section 2.1. Frame
15 is the frame when both legs intercepts, which happen during leg swing.
Thus the angle value is almost 0 degree. The minimum point is at Frame 23,
where at this time the right leg is at its heel strike. It is a negative value

because the positive hip angle has been defined in section 2.3.1 to be the
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angle in the direction of the walking. Between frame 34 and frame 36 is the
accurtence of the inflexion points, which has been discussed in section on
resampling procedure (section 3.3.2). Frame 54 is the frame where the
subject leaves the view of the camera. It is interesting to note that at this
frame, the view of the leg slightly moves. That is the view of the leg is not
normal to the view of the camera. This phenomenon is discussed in
literatures on view-invariant gait recognition [Johnson and Bobick 2001]

[Shaknarovich 2001] [Abdelkader 2002a).

The regressed curve for knee angle is shown in Figure 3.4. Similar to hip
angle curve, the maximum point at frame 7 corresponds to the leg at heel-
strike. Frame 16 and frame 31 are frames when the leg interception occurs.
However, at frame 27, the minimum point does not refer to heel-strike, but
cotresponds to the leg movement in the swing phase; in this case the left leg
is in the swing phase because the right leg starts with the heel-strike. Thus,
the maximum opening of legs can occur duting heel strike and during the

start of the swing phase.

The ankle angle is the foot flexion during walking. Its value is positive almost
all the time during walking except at heel-strike in Figure 3.5. This can be
viewed in frame 7. All other frames of interest have positive angle values
except frame 7, whereby the foot flexes to allow for the heel to strike the
floor. Frame 26 is the peak of the feature vector, which refers to the end of

the stance phase and the start of the swing phase for the left leg.

Figure 3.6 and Figure 3.7 shows the plots of feature vectors for dependently
and independently extracted data. The choice for combining featutre vectors
by dependently extracted and independently extracted is to investigate the
affect of temporal difference in feature vectors. Figure 3.6 shows the
independently extracted combination feature vectors (dataset HKAT). Figure
3.7 shows the dependently extracted combination feature vectors (dataset

HKAD,). Feature vectors in Figure 3.6 for the hip, knee, and ankle angles are
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zero at the start and end points, which indicates they are independently
extracted.  The temporal information is different for each angular
displacement but the start and end points have similar angular values. Figure
3.7 indicates that the hip, knee, and ankle angles are dependently extracted
since the time of start and end points is zeto but the respective angular values
are not. Therefore, the affect of the difference in temporal information can

also be analysed.

It is impottant to note that the attire a person wears can affect the labeling of
the data. Some subjects wear their shirts tucked into their trousers, which
makes the determination of the hip points simpler, but some do not. The
labeling for the knee and ankle points is affected by the type of trousers the
person wears that is a person wearing a knee-length trousers versus long
trousers and tight fitting trousers versus loose fitting trousers or boot-cut
trousers. It is also difficult to determine the labeling points of the toes
especially for subjects wearing jogging shoes because the outet covering of

the shoes is thicker than those of sandals. This can be viewed in Figure 3.8.

In addition, the arm does occlude the view of the hip points for some
subjects at certain points. When such a case occurs the determination of the
labeling point at the hip is guessed but with comparison to the immediate
previous and later frames in the sequence. These uncertainties in
determination of the labeling points can be a potential noise for the featute
vectors since a change of one pixel in the x or y coordinates is a difference of
about 18° in angular values®. This value can be significant if the change of the

pixel location is mote than one.

? This is measured as below:
[1]

tan45" = -—
1]
if pixel difference increase by 1 in either x or y coordinates,
2
| 8—45" |= |tan™ [20_ tan™ 1 ’tan" (E1N tan™ 1 18°
1] 1] 12] 1]
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Hip Angle Data of S013s00L
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Figure 3.3: An example SVR curve for thigh angular displacements with
corresponding frames showing the gait motion.
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Knee Angle Data of S013s00L
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Figure 3.4: An example SVR curve for leg angular displacements with
corresponding frames showing the gait motion.
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Ankle Angle Data of S013s00L
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Figure 3.5: An example SVR curve for foot angular displacements with
corresponding frames showing the gait motion.
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Independently Extracted Angular Displacements Data of S013s00L
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Figure 3.6: An example resampled SVR curve for independently extracted
angular displacements.
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Figure 3.7: An example resampled SVR curve for hip dependence angular
displacements.
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(a) Loose fiting trousers (b) Knee-length trousers & jogging
shoes

(c) Tight fitting trousers & tucked-in (d) Boot-cut trousers & sandals
shirt

Figure 3.8: Difference in attire for different subjects.

3.5.2 Silthouette Moments Data

(a) #= 1.2 seconds : Leg interception (b) = 2.0 seconds : Heel strike

Figure 3.9: Silhouette shapes at two different times in a sequence.
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Figure 3.10 (a)-(f) show some examples of the moment vectors after
regression for one of the subject in the gait sithouette database. Note that

moments of 0™ and 7% order, (7, 7,4y, #,,) are not calculated using central

moments (Equation 2.8) since »y, = fy, and py, = 1, = 0.

Figure 3.10 (a) displays moment 7, which represents the area or the

number of pixels that an image frame has in the gait sequence. The result is
consistent with our intuition that the number of pixels changes with each
image frame. That is at different image frames there are larger areas of
sithouette shapes, which can correspond to the subject at heel strike (at
maximum angle) for example, and there are smaller areas of silhouette shapes,

which can correspond to the subject at leg interception (at minimum angle).

Figure 3.10 (b) and (c) correspond to the sequences of horizontal and vertical
centre of mass for the subject. In Figure 3.10 (b), the horizontal direction
centroid decreases in time since it represents the x-coordinates of the
silhouette shapes, which changes from coordinate 720 to 0 if the subject
walks from right to left and vice versa. In Figure 3.10 (c), the vertical
direction centroid represents changes to the y-coordinates’ centre of the
silhouette shapes for that sequence, in which it moves with the motion of a

walking person at each frame.

Figure 3.10 (d), (¢), and (f) show the sequences of second-order central
moments, L4, My, and f4y, respectively. From the definitions stated in
section 2.3.2, 4, in Figure 3.10 (€) is the horizontal direction variance, which
cortespond to the displacements of the y-coordinates for the silhouette shape
from its centre of mass at each image frames. Whilst 4, in Figure 3.10 (f)

refers to the vertical direction variance, which corresponds to the
displacements of the x-coordinates for the silhouette shape from its centre of
mass. ‘These variances are consistent with the area plot in Figure 3.10 (a),

where smaller areas, which have smaller width and/or height shapes have low
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displacement values from its centroid and vice versa. This can be seen for
example at time 7z = 1.2 seconds (Figure 3.9 (a)), for at this time the legs are
intercepting; the angle 1s minimum and the silhouette shape is small. And at
time 7z = 2.0 seconds (Figure 3.9 (b)), the subject is at heel strike and the
displacement value is high.

Figure 3.11 shows comparison plots between silhouette moments data of left
and right sequences. It can be seen that the plots of the left sequences and
the right sequences are symmetrical around the y-axis. This happens due to
the horizontal movement of the x-coordinates, which moves with the
stthouette.  Moments calculations involve the x and y coordinates of
silhouettes, thus the changes of x-coordinates either ascending or descending

affect the silhouette moments.

Moreover, the scale of the moments values, which has values as high as the
power of nine for moments order 3 and definitely it is higher for higher
moments order. This difference in the range of values can affect the mapping
into feature space, in which higher order moments will dominate the

projection. Thus, some form of normalisation is needed to overcome this.

Assuming that the data is normally distributed, the normalisation method is
proposed to be the standard g score, which is a standard measurement in
statistic. Each data is first subtracted from the mean of the dataset and then

divided by the standard deviation of the dataset.

From Figure 3.10 and 3.11, it can be seen that whenever the moments order
goes up, a gait cycle is difficult to define, which can make the determination
of the zero crossings difficult. Therefore, for a silhouette dataset, feature
vectors of moments order variations are dependently extracted based on zero
crossings of feature vectors with a comprehensible cycle. For example, in
Figure 3.11, the feature vectors for u, can be a good basis for cycle

extraction of other variations.
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Figure 3.10: Examples of low-order silhouette moments data for a
subject walking from right to left.
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3.6.Conclusions

This chapter describes the gait cycle extraction procedure, which is a pre-
processing step for invariant feature extraction in the data-driven approach
system. The procedure involves interpolation, which defines continuous
curves of the finitely sampled gait’s data by utilising the SVR algonithm and
resampling, which uniformly defines the start and end points of a gait cycle.
Additionally, the proposed method of resampling at zero crossing has added
flexibility to the process of defining a gait cycle, which previously has been

depended upon heel-strike.

The angular displacements dataset involves individual limb, any two
immediate limbs, and all three limbs angular displacements. Therefore the
cycle extraction for combined dataset is either temporally aligned by zero
crossings of limb’s individual cycle or by the zero crossings of the upper
limb’s cycle within the combination. This alignment can investigate the affect

of diftering temporal information for combined dataset.

Subject’s attire has been identified as a possible source of outliers for angular
displacements dataset. Since the dataset is manually labeled, the clothes could
affect the location of labeled points and hence affect the calculation of the
rotation angle. A difference of location of labeled point by one pixel is a

difference of 18° in angular displacements.

The cycle extraction procedute has been applied to silhouette moments
dataset for moments of zero-order until up to order seven. However, the
cycle extraction of silhouette moments dataset has not been straight forward
since the zero crossings of gait curves are difficult to determine especially for
high order moments. Therefore extraction is based upon curves of the most
comprehensible cycle within the moments order curves’ varations.
Moreover, the dataset involves data of large scale moments. Thus, a g score

normalisation is applied to the dataset before PCA and CA analysis.
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EXPERIMENTAL RESULTS

4.1 Experimental Design

For recognition purposes, the feature dataset after cycle extraction will be
divided into test set and training set. The test set will be taken from one
sequence of one subject, and the remainder will be treated as the training set.
First, the training data 1s applied to the PCA+CA algorithm. This will set the
EST and CST matrices of the PCA+CA algorithm, which will then be used
for projection of the test set into the feature space. In this feature space, the
classifier, which i1s the A-nearest neighbour, is applied to calculate the
recognition rate. The recognition rate is found at any instances that the test

set is correctly identified as belonging to the correct class.

A leave-one-out cross-validation process is applied for each sequence for all
subjects, in that each sequence will become a test set at one experimental
instance or another. There are 140 experimental instances, which correspond
to the total number of sequences the dataset has. At any experimental
instances, there will be 139 total sequences for training set and only one
sequence is selected as a test set. A counter 1s used to count at any instances
the nearest-neighbour classifier correctly identifies the test set. With this
cross-validation procedure, the recognition rate is taken as the average of all
correctly identified instances throughout all classes. The experiment is
designed this way to test the effectiveness of all those feature vectors by
directly testing the recognition rates that occurred at each experimental
instance. Also, it is hoped that the computed recognition rate will be an

unbiased estimate of the true recognition rate.

It should be noted that the work in this thesis is not on classifier design;
hence £-nearest neighbour classifier is selected for its simplicity. The distance

measure 1s the Euclidean distance.
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Figure 4.1: Legend used in feature spaces; SO013 represents subject 013.

4.2 Angular Displacements Data

Table 4.1: Average Cotrect Classification of Angular Displacements Data

How Data is Angles Used
k=1 k=3 k=5
Combined [Dataset Name]
Hip, Knee, & Ankle
95.0 % 94.3 % 91.4 %
[Dataset HKAI]
Hip & Knee
Independent 88.6 % 85.7 % 79.3 %
. [Dataset HKI]
Extraction
Knee & Ankle
79.3 % T7.9.% 68.6 %
[Dataset KAT]
Hip, Knee, & Ankle
_ 97.9 % 97.9 % 95.0 %
Extraction [Dataset HKAD]
based on Hip Hip & Knee
2.1 % 91.4 % 84.3 %
[Dataset HKD]
Extraction Knee & Ankle
84.3 % 7T % 68.6 %
based on Knee [Dataset KAD]
e Hlp 79.3 % 76.4% 65.0 %
Individual
: Knee 70.7 % 66.4 % 65.7 Yo
Extraction
Ankle 62.9 % 63.6 % 45.7 %
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Experiments on angular displacements data include the expemments of
individual hip angle, knee angle, ankle angle, and combination of these angles.
The combination angles data are either independently or dependently
extracted. In this section, the figures will be limited to the three basic angular
displacements, which are hip angle (Figure 4.3, Figure 4.4), knee angle (Figure
4.5, Figure 4.6), and ankle angle (Figure 4.7, Figure 4.8). The information on
the basic angular displacements would be used for estimating the

petformance of the combined angular displacements.

Figure 4.3, Figure 4.5, and Figure 4.7 shows the  pareto® plots of the
eigenvalues, which explain the percentage variability in the distribution of the
eigenvalues. These eigenvalues are from the covariance matrix of the hip,
knee, and ankle angle calculated using PCA. Based on Equation 2.20, the
transformed features data are truncated to retain 95% of its total maximum
varance. In Figure 4.3, 10 eigenvalues account for 95% of the variance in the
hip angle data. In fact the first four of these eigenvalues explain roughly
three-quarters of the total vanability of the hip angle data. Thus, when
performing discrimination analysis on the data set, accordingly they cluster
quite well. This can be seen in Figure 4.4, where there are few overlaps in the

data. The average recognition rate is found to be about 79%.

For the knee angle data set, only six eigenvalues explain the 95% of the total
data set variability, which has been based on Equation 2.20. The first three
eigenvalues dominate the total variance accountability in the data set. This
can be seen in Figure 4.5. The resultant canonical space is in Figure 4.6.

However, the classes of each subject in the knee angle data have more

* Pareto chart shows the most frequently occurring factors. It is named after Vilfredo
Pareto (1848-1923) in Italy. His observations on wealth distribution on the Italian
population were further strengthened by Juran in 1960, which formulated the Pareto
Principle, which states that, “Not all of the causes of a particular phenomenon occur with
the same frequency or with the same impact” [Tham 1997). Pareto plot is well suited to
highlight the percentage of vanability contribution of each eigenvalue. The bar-plots show
the percentage contribution of each eigenvalue to total number of eigenvalues. The line
plotis a cumulative line when each of these eigenvalues is sequentially summed.
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ovetlaps in comparison to the data of thigh displacements. This explains the

lower recognition rate on knee angle data, which is about 70%.

Figure 4.7 is the pareto plot of the eigenvalues in the ankle angle. About two-
thirds of the total variability in the data set is explained by the first three
eigenvalues. Its feature space in Figure 4.8 shows clusters of overlaps in the

middle of the feature space, thus the average recognition rate is about 63%.

From here, it is apparent that the upper leg data set produces higher average
recognition rate than the lower leg data set. This may indicate that the upper
leg, which is the hip angle, accounts for the most variations in walking
patterns. However, to recognise a person better, a combined angle data set
may be used. They can be independently extracted and dependently extracted
but both give a higher recognition rate than using the angular data sets
independently. All recognition rates for combined angles dataset are higher

than the individual angular dataset. This can be seen in Table 4.1.

Percentage Comparison between Independent and Dependent Extracted Data
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Figure 4.2: Percentage comparison between combined angular displacement
datasets.
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Percent Variability of Each Eigenvalue for Hip Angle
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Figure 4.3: Percent variability of each eigenvalue of hip angle.

Feature Space of Hip Angle

Figure 4.4: Feature space of hip angle after PCA & CA.
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Percent Variability of Each Eigenwvalue for Knee Angle
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Figure 4.5: Percent variability of each eigenvalue of knee angle.
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Figure 4.6: Feature space of knee angle after PCA & CA.
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Percent Variability of Each Eigenwalue for Ankle Angle
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Figure 4.7: Percent variability of each eigenvalue of ankle angle.
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In Section 2.1, gait is considered by Murray [1967] to be a total walking cycle.
Walking being the body’s natural means of locomotion, involves the complex
interaction of muscle forces on bones, rotations through multiple joints and
physical forces acting on the body [Chambers and Sutherland 2002].
Saunders et al. [1953] have identified six determinants® that affect the energy
expenditure when a person walks through space. Variations in pelvic
rotation, pelvic tilt, knee flexion, foot and ankle motion, knee motion, and
lateral pelvic displacements all affect the energy expenditure as well as the
mechanical efficiency of walking [Ayyappa 1997]. Moreover, work on
biomechanical research including Murray et al. [1964], Grieve and Gear
[1966], Frigo et al. [1989], Hills and Parker [1993], Eng and Winter [1995],
and Lakany [2000] have frequently used parameters of joint rotations of the
hip, knee, and ankle.  Therefore, when investigating gait’s angular
displacements, it is natural to consider all possible angular displacements.
Thus, the choice for analysis of combined angular displacements, which is

investigated in this work.

This is further supported by this work, in which the combined angles dataset
achieves the highest average classification rate of 97.9%, for dependently
extracted dataset HKAD. This can be seen clearly in Figure 4.2, whereby for
all combination angles dataset: dataset HKAD and HKAI, which achieves
97.9% and 95.0%, respectively in comparison to the combination of only two

angular displacements (Hip-Knee and Knee-Ankle).

In addition, Figure 4.2 shows that the combination of hip and knee angles
dataset:  dataset HKD and HKI, which achieves 92.1% and 88.6%,
respectively is superior to dataset combination of knee and ankle angles:

dataset KAD and KAI, which achieves only 84.3% and 79.3%, respectively.

% The authors began by assuming that a gait pattern is most efficient when it minimises
vertical and lateral excursions in the body's centre of gravity (COG). They identified those
features of the movement pattern that minimise these COG excursions. They suggested
that these features determine whether a movement pattern is normal or pathological

[Thomson 1998].
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In fact, the average recognition rate is higher when the hip angle is involved in
the combination datasets. This proves that the hip angle does account for the
most variation and thus contributes to the increase of correct classification

rate in the dataset

Furthermore Cutting and Profitt [1981] suggested that gender may be
identified indirectly through the determination of the ‘centre of moment’ of a
walker. The centre of moment is ‘the point about which all movement, in all
body parts, has regular geometric relations’ [Cutting and Profitt 1981]. The
study measures the differences in shoulder and hip widths to recognise
between men and women. The hip, which is the body patt nearest to this
centre of moment, has the regular geometric pattern and thus, this knowledge

strengthens the results from this work.

Moreover, Barclay et al. [1978] and later Mather and Murdock [1994] has
suggested that men have more shoulder swing and women have more hip
swing if anatomical differences is to be used for recognition between men and

women, suggesting the hip to be an important body part in gait recognition.

Results in this work also shows that whenever the combined data set is
dependently extracted, which is extracted based on the most upper limb in the
combination, the recognition rate is the highest among its data sets variations.
Combined dataset dependently extracted means the knee and/or ankle
angular displacements are extracted based on the hip or knee angle temporal
information. They use similar temporal information, which makes it invariant
to difference in time of start and end points leading to better recognition
performance in comparison to independently extracted data.  The
independently extracted dataset has each angular displacement to have similar
start and end points values, which are at the zero crossings. Hence, this work
has been able to show that a difference in temporal information for different

angular displacements does affect the recognition performance.
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The result is not that surprising since work on model-based gait recognition
such as the work of Yam [2002] and Yoo et al. [2003] have always used
similar temporal information to reconstruct their gait model since the lower
leg rotation parameters are formulated relative to the thigh rotation
parameters at similar time instance. Wang et al. [2003] applies Dynamic Time
Warping (DTW) to temporally align the signals of hip and lower leg rotation
to a fixed reference phase for gait recognition. As is the work by Lakany
[2000] on differentiating kinematics pattern of normal men to pathological
men, similar temporal dynamics of the biomedical non-stationaty signals of
hip, knee, and ankle are used for generating the kinematics pattern.  Also,
research on modelling gait kinematics in the field of robotics employs similar

method to formulate the gait kinematics model [Carlos et al. 2001].

Also, it is interesting to note that the recognition rate i1s highest when the
number of nearest neighbours to the test data is 1. By analysing the feature
spaces in Figure 4.4, Figure 4.6, and Figure 4.8, it is quite clear that each class
has a large spread in its data distribution. Thus, neighbours of the same class

are quite far away from each other.

4.3 Silhouette Moments Data

Silhouette moments data are calculated from silhouette images of size 720 x
576. These moment vectors, which represent sequences of image frames, are
interpolated and resampled at sampling rate » = 30. Data sets consisting of
different order moment vectors are built up of 10 subjects and 14 sequences
for each subject. Table 4.2 displays the average correct classification rate for

each simulation.

Only central moments as high as order 7 are considered in the simulations.
This is due to the recognition performance, which seems to decrease after the

experiment of dataset order up-to 5. This is clearly seen in Figure 4.9.

61



Chapter 4 Experimental Results

Table 4.2: Average Correct Classification of Silhouette Moments Data

Moments Order k=1 k=3 k=5
Order up-to 7 88.6 % 78.6 %o 57.1%
Order up-to 6 90.0 % 82.1 % 59.3 %
Otrder up-to 5 90.7 % 85.0 % 629 %
Otrder up-to 4 90.0 % 86.4 % 65.7 %
Order up-to 3 90.0 % 82.9 % 62.9 %
Order up-to 2 89.3% 82.9% 62.1%
Order up-to 1 83.6% 70.0% 60.7%

Order 7 74.3% 61.4% 37.1%
Order 6 67.1% 54.3% 40.0%
Otrder 5 75.7% 60.7% 34.3%
Order 4 75.7% 66.4% 37.9%
Order 3 75.7 % 05.7% 35.0 %
Order 2 721 % 60.7 % 43.6 %
Order 1 53.6 % 39.3 % 24.3 %
Otder 0 48.6% 46.4% 32.9%

Central moment of order 0 s just an area representation of the silhouette’s
region, which is highly dependent on the size of the silhouettes. Thus, the

recognition rate for its silhouette moments data is the lowest among all

stmulations. It 1s about 49%.

Central moment of order 1 equals to zero. Hence, simulations of order 1 use
the silhouette un-centralised moments data. However, only moment my,, the
vertical direction centrord has a periodic structure and this can be seen in
Figure 3.8(c). Moment m,, also depends on height of the subjects being
filmed. Moment m,;, the horizontal direction centroid, changes with the

silhouette’s displacement of the x-coordinates over the sequence (refer Figure

3.8(b)). This has been discussed in section 3.5.2. 'Thus, the recognition rate,

which is about 54%, is still low in comparison to others.
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From Table 4.2, the highest average classification rate is 90.7%, which comes
from the simulations of all orders of silhouette moments data up-to order 5.
Almost all combined silhouette moments data reached just above 80%
recognition rate. In general, silhouette moments data of order 4 produce
consistent high results in comparison to others. As the order of the silhouette
moments data decreases, the recognition rate slowly decreases. This can be
seen in Figure 4.9, which shows the performance change with change in

moments order for different £ numbers.

These values of recognition rate can be investigated by referring to its
eigenvalues of the covariance matrix in PCA. In Figure 4.10, eigenvalues of
silhouette data moments of order 2, order 3, order 4, and order 5 are
displayed in a pareto plot. Figure 4.10(a) and (b) shows that the eigenvalues
of the silhouette moments account for about two-thirds of the total variability
in the data set, whilst Figure 4.10(c) and (d) has its eigenvalues account for
about 90% and 80% of the total vadability in the data set. Therefore, this
high variance accountability has contributed to the higher recognition rate

especially in the 4™ order silhouette moments data.

The choice for applying simple centralised moments to a silhouette dataset
has been able to show that the silhouette moments have simple descriptive
properties in producing distinct results for different temporal information of a
silhouette dataset. Silhouette moments are simple to gather, invariant to
translation due to different temporal information. It has an in built ability to
discern, and filter, noise [Nixon and Aguado 2002]. The work by Shutler et
al. [2000a] [2000b] has successfully applied velocity moments to silhouette
data. As well as work by Lee and Grimson [2002a] [2002b]; this has applied
centralised moments to gait dataset but using as many as 41 features. Further
work on silhouettes, such as the work by Prismall et al. [2002] [2003] has
managed to applied Legendre and Zernike moments to silhouette dataset for
accurate reconstruction of moving silhouette. His work aims at predicting

missing or intermediate frames within sequence.
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Average Recognition Performance of Silhouette Moments Data
100 T T : v . . .

80t ) -

70| 1

% 50} u

30+

20} e T

10¢

0 1 1 1 i 1 o
0 1 2 3 4 5 6 7 8

Moment Up-to Order

Figure 4.9: Average recognition performance of silhouette moments data.
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4.4 Summary of Findings
Table 4.3: Comparison with Literature
R .. No. of
ecognition Gait Signature Subjects
Rate
(Sequences)
Thigh orientation model by
0
Cunado 96% VET and ES. 10 (4)
Phase-weighted magnitude of
Yam 96% frequency components of limbs 505)
angular movement.
Murase R Figenvalue decomposition of
and Sakai 100% silhouette. 7(10)
Spatial-temporal template of
Huang 100% silhouette and optical flow of 64
silhouette.
Shutler 4% Velocity moments for the first 4 (4)
four orders.
Lee and o 41 features of moments from
Grimson 100% orthogonal view. 248
Dependently extracted
98% cgmbined angular .
This Work displacements of thigh, leg, and 10 (14
foot.
91% Silhouette moments of order
up-to five.

In general, the angular displacements data gives a better performance than
that of silhouette moments data. This is especially true when the angular
displacements are combined angles, which has been dependently extracted
based on the hip angle. The thigh angular displacements data in itself
produces a good recognition rate in comparison to the leg and foot angular
displacements. Therefore, whenever the combined data is extracted based
upon the hip angle, it uses similar temporal information on the combined
angular displacements data; thus, it is invariant to start and end points of the
combined gait sequence. This gait signature performance is comparable to
other in the literature, especially to literature that uses thigh orentation data,
such as Cunado (96%), which uses 10 subjects with four sequences each and

Yam (96%), which uses five subjects with five sequences each. The samples
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used by both are small in comparison to this work; however, this work has

been able to achieve better recognition rate performance.

Performance wise, silhouette moments data of the first five orders is a little
far off in comparison to other literatures employing silhouettes, such as
Murase and Sakai (100%), which uses seven subjects with 10 sequences each,
and Huang (100%), which uses just six subjects with four sequences each, and
literature employing moments, such as Lee and Grimson (100%), which uses
24 subjects with average eight sequences each. However, the gait signatures
in the work of Murase and Sakai or Huang are applied to a smaller database
compared to this work. While the work of Lee and Grimson uses moments
extracted from seven regions of ellipses fitted to silhouettes, which differs
slightly from this work in that this work considers the silhouette region as one
whole region. Their work aims at recognising subjects by gait appearance,
which requires the silhouette to be divided into regions in order to better

describe change of appearance of subjects.

In comparing another analysis using moments, Shutler’s work also produced
94% recognition rate using the first four order velocity moments, which are
actually comparable to this work. Shutler’s work actually uses the Fisber (F)
statistic (from single factor Analysis Of Variance (ANOVA)) to identify
which moments are more useful for classification purposes [Shutler 2000b].
In this work, even though the highest recognition rate achieved is from
centralised order moments up-to order five but dataset of moments up-to
order four has consistently produced high results. This is shown in Table 4.2
and Figure 4.9. Bare in mind that the Fisker (F) statistic in Shutler’s work are
applied to only four subjects with four sequences each, while this work uses a
larger dataset. Thus, empirical result in this work has also shown that gait’s
silhouette dataset of order four and five can become a good descriptor for

gait recognition.
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SUMMARY

“Physical reality consists of space-time events; no rational division into a 3-d space and a

time continsnm; laws of nature must correspond.” [Einstein 1922]

5.1 Conclusions

Feature representation is an important element in feature extraction and thus,
a feature should be as descriptive as possible to ensure success of
classification. Within the realms of computer vision, gait 1s a new biometrics
that recognises people by the way they walk. Gait kinematics features, which
concerns its geometry, can be represented using its spatial and temporal
characteristics; namely moments of silhouette and angular displacements of
limb. Limb angular displacements data are hip angle, knee angle, and ankle
angle and sithouette moments data are centralised moments of binary image
data. In this work, the focus is on analysing gait kinematics features using

data-driven approach.

A data-drven approach involves using extracted data and derivation of
statistical information from the extracted data. In comparison to model-
based approach, which is object-specific, data-driven approach aims at
producing an mformed decision on class labels of unseen data by processing
it and testing it against systematically gathered and analysed past samples. It
emphasises the understanding of functional relation of the sample data to the
real world. Principal Component Analysis (PCA) and Canonical Analysis
(CA) are techniques in feature extraction that uses statistical information of a
dataset to produce good features for classification. To fit that purpose, PCA
and CA analyse the variability in the data set to estimate its generalisation
performance. PCA represents the dataset in a reduced dimensional space
determined by the total covariance scatter and CA further discriminate the

dataset using the within-class to between-class covariance scatters.
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Combined features of angular displacements data and silhouette moments of
a certain up-to orders have been used as signatures for analysing gait. The
highest average recognition rate achieved is 98% for combined angular
displacements data and 91% for silhouette moments data. Therefore, this
work can suggest that angular displacements data, even though labour
comprehensive, can be a better feature representation in comparnison to the

simple silhouette moments data.

5.2 Summary of Results

The research question of this work is on how descriptive is gait through
analysing its kinematics features. This work has studied the spatial and
temporal kinematics features of gait and has concluded that both features
have the potential of being signatures for gait recognition. Below are the

summarnsed results of this work and its contribution to the biometrics field:

- Temporal kinematics features of gait are the limb angular displacements
data of the hip angle, knee angle, and ankle angle, which has been
manually labeled and gathered to be feature vectors. Previous research
in automatic gait recognition has used the angular displacements of hip
and knee [Cunado et al. 1999] [Yam et al. 2002] [Yam 2002]. This work
has introduced an extended feature by analysing the ankle angle, which
is the foot flexion during a person’s locomotion, in addition to the two
commonly used features. Thus, the work has managed to show that
the incorporation of ankle angle into the feature vectors can be used as

signature in automatic gait recognition.

. Through the combination of angular features, analysis in this work has
shown that the hip angle contains much of the vanability during
locomotion, which can contributes to the uniqueness of each person’s
gait. Thus, this evidence further strengthens research on automatic gait

recognition if using angular displacements of the hip.
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Sithouette images are spatial features of gait. They are highly
dimensional thus centralised moments have been used for its
representation so as to be structurally similar with the feature vectors of
angular displacements data. There are many research employing
moments representation of silhouette but using different types of
moments [Shutler et al. 2000a] [Prismall et al. 2002] [Prismall et al
2003] and extracting moments from regions of silhouette [Lee and
Grimson 2002a]. In this work, silhouette moments data has been
analysed using the PCA and CA algorithm, which has been proposed
by Huang [1999] but the method has been applied to a different
content of the silhouette. Huang [1999] applied the algorithm to pixels
and optical-flow of silhouette. Hence, this work has provided evidence
that simple centralised moments of silhouette can become a gait feature

for use in gait recognition.

Before applying PCA and CA, the data needs to be pre-processed for
making the analysis invariant for classification. Thus, a cycle extraction
procedure, which involves intetpolation and resampling, has been
proposed in this work. This procedure has been shown to be a
potential technique for introducing flexibility in gait recognition
analyses, whereby it relieves the basis of defining complete gait cycle,
which used to be defined at heel-strike in previous approach. It also

reduces the data dimensionality hence eases the classification process.

5.3 Future Work

The work in this thesis concerns the analysis of kinematics features of gait

using standard approaches; namely PCA and CA. There is much work for

further research opportunity. Below are future works that can be suggested:

Feature Selection

Feature selection is a technique that chooses features but the ones more

informative from the set of features. It identifies the most important and
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relevant input variables that are responsible for major vanations of the
output. This technique uses search and filter strategies to gather, evaluate and
select necessary gait features for analysis. In this work alone, two different
types of gait features have been analysed. There are many other gait features
that can be used for recognition but which features contribute to the best

descriptive measure of gait recognition is still an open question.

Regression Analysis

This work has employed the SVR algorithm to interpolate the gait motion
signal in the cycle extraction procedure. The SVR 1s an established method in
machine learning, which has rigorous formulation and good generalisation
capabilities. It employs implicit mappings of input data into the feature space
via the kernel functton. Thus, through this analysis, the affect of
regularisation in the optimisation and interpolation using different kernel
function can be explored. Also, this analysis can examine the effect of noise

inclusion in the feature vectors for a more robust system.

Separability Measures Analysis

The separability measure that has been used in this work is the ratio of within-
class and between-class scatter of gait dataset. Therefore, through the
separability measures analysis, several separability measures can be used and
formulated for feature discrimination. The analysis can evaluate and decide

on the best separability measures for measuring performance of gait.

Occlusion Analysis

The manual labelling of the angular displacements data has been applied onto
the leg nearest to the camera view (i.e. outer leg). Thus, analysis on occlusion
will investigate the occluded (inner) leg of gait data. It can explore gait
symmetry by studying the effect of using either outer leg, or inner leg, or both
legs as gait descriptors. |
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