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ABSTRACT 
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Work in this thesis is about analysing two types of kinematics data 

representation: spatial representation and temporal representation. Spatial 

representation data is proposed to be silhouette moments data and temporal 

representation data is proposed to be angular displacements data. These data 

are analysed through a data-driven approach, which employs Principal 

Component Analysis (PCA) and Canonical Analysis (CA). PCA is a feature 

representation technique, which aims at reducing input data dimensionality 

without sacrificing the discriminative capability of the input data information; 

while CA is a feature discrimination technique, which aims at discriminating 

the input data for the best possible projection into the feature space. Before 

the input data are applied to the PCA and CA algorithm, they are pre­

processed in a cycle extraction procedure, which involves interpolation and 

resampling, to ensure the analysis is invariant to different start and end points 

of a gait cycle. Previous approaches in gait recognition research have 

depended upon heel-strike frames to determine a gait cycle. Thus, this cycle 

extraction procedure can relieve this dependability. Results on using the 

proposed features (angular displacements and silhouette moments) have 

shown potential and performance is comparable to other literatures. Angular 

displacements features achieved 98% classification and silhouette moments 

features achieved 91 % classification on a sample database of 10 subjects with 

14 sequences each. Findings have shown that angular displacements data is a 

much better data representation than silhouette's moments. 
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Chapter 1 

INTRODUCTION 

''Automatic identijication represents a set 0/ technologies that (to the uninitiated) seems to 

work like magic." [Swartz 1999] 

1.1 Background 

Since the event of September 11, discussion on biometrics has becoming 

increasingly popular among government agencies, commercial companies, not 

forgetting the researchers! Biometrics is seen to (perhaps) provide solutions 

for securing data and facilities that are vulnerable to terrorists' attack, which is 

believed to be the culprit behind this historical event. Its technology aims to 

identify people by their physical traits, the most commonly applied being 

fingerprints, faces, irises, voices, DNAs, and next is gait. 

The Oxford dictionary defines gait as "manner of walking, bearing, or carriage 

as one walks". As a biometric, gait may be defined as a means of identifying 

individuals by the way they walk [Nixon et al. 1999]. It is known to be one of 

the most universal and complex of all human activities, and each person 

appears to have his or her own characteristic gait pattern [Murray et al. 1964] 

[Inman et al. 1981] IEng and Winter 1995]. Medical studies including 

biomechanics scientists and psychologists have involved many years in this 

discipline [Murray et al. 1964] [Inman et al. 1981] IEng and Winter 1995] 

[Stevenage et al. 1999]. 

Fingerprint recognition requires scanners, which a person needs to touch, as 

tool for its identification, which for some people may seem intrusive, then gait 

is a more attractive identification system since it operates on video cameras, 

thus it is non-invasive and recognisable over a distance. Therefore gait 

technology is suitable for security and monitoring systems since a "bunch of 
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terrorists" in action may wear masks and/or gloves to disguise face 

recognition and/or fingerprint recognition system. However video cameras 

in a surveillance system can almost always have their views obstructed by 

decorative plants, and/or have their depictions blurred and indistinct. Gait 

can also handle these occlusions and noises in the video cameras. 

Additionally gait itself is self-occluded at some points while in motion. 

Fortunately, it is difficult to conceal as it is inherent in a person's motion and 

its symmetrical and periodic structure allows for reconstruction of 'missing' or 

'noisy' views. Hence, it has several advantages over other biometrics when 

applied in automatic identification systems. 

1.2 Automatic Gait Recognition 

A study on automatic gait recognition IS an applied pattern recognition 

problem and can be defined to be, 

a study of how machines can observe gaits, learn to distinguish its 

patterns of interest, and make sound and reasonable decisions about 

the classes of these patterns. 

A generic automatic gait recognition system can be viewed as in Figure 1.1 

and involves the common sensor, feature extraction, and classifier elements. 

~O ,., 
~ amples 

[Q] ~ OI~~I'"fte OI!~I,"~ 0 
Sensor Feature Classifier Info Output 

Extraction 

Figure 1.1. A generic automatic recognition system. 
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Chapter 1 Introduction 

The sensor is nonnally a video camera(s), which could come from a common 

smvcillance system in a typical approach. The inputs are video clips cum 

image frames of a walking person and these undergo a process of feature 

extraction (or selection) for obtaining useful features, which are compressed 

inputs, in a computer. At the next stage, the features are applied to a classifier 

where past samples assist in discriminating them and assign them a class label, 

which then becomes the output of the recognition system. All processes are 

done automatically by computers. Also it should be noted that the success of 

the next stage of each process depends highly upon the performance of the 

previous process (es). 

1.3 Automatic Gait Recognition Literatures 

Numerous literatures on automatic gait recognition date as far back as 1994, 

and can be divided into two main approaches: the model-based approach and 

the data-driven approach. 

The model-based approach emphasises the representation of the 

biomechanics of gait by a mathematical physical model. This approach 

models motion of the limbs while a person is walking (or running) and 

formulates a mathematical description of these features. 

The data-driven approach emphasises the derivation of statistical 

information from a set of extracted gait data. This approach extracts 

data from gait's image frames to be used as features for discrimination. 

1.3.1 Model .. Based Literatures 

Perhaps the earliest model-based research was by Cunado et al. [1999]. The 

gait signature is derived from Fourier's spectra of measurements from the 

orientation of the thigh. The thighs were modelled as an interlinked 

pendulum represented by Fourier Series and extracted by the Velocity Hough 

Transform (VHT). The phase-weighted Fourier magnitude spectra came 

from the changes on thigh angular displacements by edge detection. The 
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Chapter 1 Introduction 

recognition rate is 90% on a small database of 10 subjects 4 sequences each, 

using k-nearest neighbour classifier. 

Another development models both the upper and lower leg of walking and 

running subjects as two inter-connected penduli using a bilateral symmetric 

and dynamically coupled oscillator [Yam et al. 2001 ] [Yam 2002]. The gait 

signature is the phase-weighted magnitude of the frequency components of 

limbs' angular movement. The recognition rate reached 96% for walking and 

92% for running for 5 subjects 5 sequences each, respectively. 

A more recent work is on a marker-less gait recognition system by combining 

a statistical approach and motion tracking with topological analysis guided by 

anatomical knowledge [Y 00 et al. 2002] [Y 00 and Nixon 2003]. The marker­

less system describes periodic gait motion by its symmetry and fits a 2D stick 

figure to the gait data. This system consists of three key stages: detection and 

extraction of the moving body and its contour; extraction by the joint angles 

and body points; and kinematics analysis and feature extraction for classifying 

the gait pattern. The signatures are 20 different features based on kinematics 

analysis of one gait cycle and the performance varied from 82% for 100 

subjects 3 sequences each to 93% for 100 subjects 2 sequences each. 

However, performance on a small database of 10 subjects produced 100%. 

1.3.2 Data-Driven Literatures 

Much research is data-driven. Among early research in automatic gait 

recognition is the work by Niyogi and Adelson [1994], in which the gait 

signature is derived from the walking patterns in a spatio-temporal volume. 

These patterns were used to determine the motion's bounding contours. The 

gait vectors were derived by using linear interpolation after normalising a 

fitted five-stick model for velocity. The recognition rate varied from 60% to 

just over 80% on a database of 5 subjects 26 sequences each. 
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Research from Murase and Sakai [1996] used the parametric eigenspace 

;approach, ~ approach well established in automatic face recognition. They 

derived body silhouettes by subtracting adjacent images and projected them 

into the eigenspace. Decomposition of the eigenvalues reveals the silhouettes' 

frequency content, which corresponds to the order of the eigenvectors. The 

recognition rate varied from 88% to 100% depending on the number of 

eigenvectors used The database had 7 subjects 10 sequences each. 

little and Boyd [1998] measured the difference in phase of optical flow 

images to derive the gait signature. The optical flow produced a set of moving 

points together with their flow values. A periodic structure of the sequence 

was derived from the measurement of the geometry of the set of points. 

Analysis on the periodic structure produced several irregularities in the phase 

differences, which includes the differences in phase between the centroid's 

vertical component and the phase of the weighted points. The recognition 

rate is 95% on a limited database of 6 subjects 7 sequences each. 

Further, Huang [1999] combined the Principal Component Analysis (PCA) 

and Canonical Analysis (CA) for gait recognition. PCA was selected as the 

first stage of feature extraction for the purpose of dimensionality reduction. 

The second stage applied the projected features to CA for discriminating 

different classes further in the feature space. The recognition rate varied from 

76% to 100% depending on the features used. The features were human 

silhouettes, which are the spatial template and optical flow between two 

consecutive silhouettes, which are the temporal templates. The so-called 

extended features of combining both spatial and temporal template produced 

the 100% recognition rate. The technique was applied to two databases: 

UCSD with 6 subjects 7 sequences each and SOTON with 6 subjects 4 

sequences each. 

There is additional data-driven research on using moments (or its variations) 

of silhouettes as gait signatures such as the work of Shuder et al. [2000a] 
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[2000b], which employed velocity moments to describe gait and its motion 

thtoughout the image :ii~quences. His work achieved over 90% recognition 

rate for the first four moment features on a small database. Prismall et al. 

[2002] [2003] used the orthogonal Legendre and Zernike moments to 

describe moving shapes and predict missing or intermediate frames within a 

sequence for further reconstruction. His work had shown that high order 

moments could accurately reconstruct binary images. Work by Lee and 

G:t:imson [2002a] [2002b] took several simple moment-based features as 

signatures to recognise subjects by gait appearance. The moments were 

extracted at different regions of silhouettes. The silhouettes were divided into 

seven regions and ellipses were fitted to each region. The moment centroid, 

aspect ratio of the ellipse's major and minor axis and orientation of the 

ellipse's axis were among the sets of 41 and 57 features extracted. The 

performance evaluation was based on cumulative match score described by 

Philips et al. [1997] and was 100% on the set of 41 features for the first match 

and 97% on the set of 57 features for the first match and 100% for the third 

match. The number of subjects is 24 with different number of sequences for 

different subjects but on average has eight number of sequence. 

1.3.3 Comments on Literature Review 

A model-based approach is object-specific, such as the work of Cunado 

[1999] and Yam [2001] [2002] that specifically model the thigh and the lower 

leg as an interlinked pendulum. Their works have managed to formulate gait 

mathematically through looking at the structure underlying the gait pattern 

but lacks the statistical and intimate nature of gait. Thus, with other gait 

patterns, for example a quadruped like an animal, new models need to be 

derived. A data-driven approach is more holistic and flexible, which aims at 

deriving mathematics models based on the statistical nature that exists in the 

data. Thus, this work employs the data-driven approach into analysing gait. 

There is research in automatic gait recognition on both model-based and 

data-driven approaches that are worth mentioning. The other research 
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showed promising results aimed at analysing gait data for its potential as a 

biometric.., "Below is a summary on the literature review, which motivates and 

:rd:ateSto the work of this thesis: 

• The works of Cunado [1999] and Yam [2001] [2002] have motivated 

the use of angular displacement data of the thigh and lower leg. Both 

are model-based approach, which obviously modelled the biomechanics 

of gait as an interlinked pendulum but only limited to the orientation of 

the thigh and lower leg. However, the biomechanics of gait involves 

complex interaction of muscles, joints, and force acting on the body, 

which includes pelvic rotation, pelvic tilt, knee flexion, foot and ankle 

motion, knee motion, and lateral pelvic displacements. Thus, in this 

work, extended features are proposed, which is the foot flexion and the 

combination of angular displacements. 

• Work of Niyogi and Adelson [1994] derived the gait patterns in the 

spatio-temporal volume by normalising and using linear interpolation of 

• 

the gait vectors. Normalisation and interpolation are basic 

mathematical techniques for standardising sets of scattered data. 

Hence, the cycle extraction is formulated so as to apply them to the gait 

feature vectors for invariant analysis. 

Murase and Sakai [1996] and Huang [1999] have used the eigenvectors 

projection method, which is a successful and popular method in 

automatic face recognition [Swets and Weng 1996] [Belhumeur et al. 

1997] [Zhao et al. 1998] [Zhao et al. 2000] [.Martinez and Kak 2001] 

[Beveridge et al. 2001] [Chen and Man 2003]. likewise, their 

approaches in gait research have been successful. Thus, the work of 

this thesis employs this standard eigenvector projection method for its 

descriptor analysis but applied to different feature vectors. 

7 
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• Th~ result of phase clifference in the work by Little and Boyd [1998] 

has led to the investigation of the difference of the feature vectors 

phase direftion in the descriptor analysis. This motivated the need to 

-----uniformly extract gait cycles with similar phase throughout the dataset. 

• The analysis on silhouette moments in this work is motivated by the 

work of Shutler [2000a] [2000b], Prismall et al. [2002] [2003], and Lee 

and Grimson [2002a] [2002b]. They have successfully employed 

different silhouette moments; namely velocity moments, Legendre and 

Zernike moments, and Cartesian moments. In addition silhouette data 

is easily gathered than manually labelled angular displacement data, 

which allows for future analysis with increase sample size. 

• Most research has successfully used a small number of subjects with a 

small number of sequences except in the work by Y 00 et al. [2002] 

[2003] and Lee and Grimson [2002a] [2002b], which has at least 200 

and 192 numbers of total sequences, respectively. Thus, this research 

proposed to apply to a dataset with 140 total sequences containing 10 

subjects with 14 sequences each. 

1.4 Data-Driven Approach System 

Data-driven analysis is concerned with deriving statistical information from a 

set of extracted data. Statistical information may include measuring the mean, 

variance, and analysing correlation from scatter of a set of readings. A data­

driven-approach system aims at producing an informed decision on class 

labels of new or 'unseen' input data by processing it and testing it against 

systematically gathered and analysed past samples. The processes involve 

minimising the probability of misclassification, which fundamentally would be 

to minimise the Bayes error. 

A data-driven-approach system employs the similar system as in Figure 1.1. 

Figure 1.2 is a thumbnail of the data-driven-approach system, which describes 
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Chapter 1 Introduction 

the work in this thesis. Based on that figure, the problem of classification in a 

data-driven-approach can be defined as, 

the mapping of a high-dimensional gait input data x to its one­

dimensional subject label c. 

The system is divided into two parts: training and testing. The training part 

involves processes that observe gait input data and then analyse them for 

distinguishing their patterns of interest On the other hand, the testing part 

uses the patterns that have been analysed by the training part to further 

classify new data according to their identities. The processes involved in both 

training and testing is described in the following sections. 

1.4.1 Data Acquisition and Collection 

As a first process, the system captures gait videos, which becomes the input 

data. Most of the time, a pre-processing is done to the input data, which may 

include extraction of the videos into image frames, adjustments for average 

intensity levels on the image frames, adjustments for standard image frames 

size, and segmentation to isolate the subjects from its background in the case 

of producing silhouettes. After this process, the input data is commonly 

known as raw data. 

There are two types of collected data: supervised and unsupervised. 

Supervised data has known target values, i.e. labelled output values, which are 

provided by experts in that particular area or are generated by measurements. 

Unsupervised data has no target values. For gait recognition, its data can be 

both types depending on how the data is collected. In this thesis the data has 

target values that is the class label is associated with the subject and so the 

problem is one of supervised classification. 

Gait data in this thesis consist of 10 walking subjects with 14 sequences for 

each subject; nine male subjects and one female subject. The 14 sequences 

include seven sequences of subjects walking from left to right and seven 
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sequences of subjects walking from right to left. The gait data set is selected 

randomly from a gait database developed for DARPA Human ID Projects 

[Shuder et al. 2002]. Part of the database in the DARPA Project is developed 

py the ISIS (Image, Speech, and Intelligent Systems) Research Group, 

University of Southampton, UK. 

The data set selected in this work is filmed indoors with controlled lighting, 

fixed green background, and a defined walking track. The subjects walk 

normal to the view of a stationary DV (digital video) camera with imaging 

frequency of 25Hz and a resolution of 720 x 576 colour pixels. The subjects 

are filmed side-viewed as video clips, which are then digitised into individual 

image files. The video captures about two complete gait cycles. 

1-----------------------------1 I-----------------------------~ , , , 

, , , , , , , , 
lnput 
Data.. Data 
, ~ Collection , , , , , , , , , , , , , 
: ----.. 
: Test Images 

Pre­
processIng 

Pre­
processing 

, , 
RiwDa~ .. 

, ,'" , , , , , , , , , , , , , , , , , , , , , , , , , , , , 

Ra.'<.vData, 

;-

Cycle 
Extraction 

Cycle 
Extraction 

Feature Vectors 

Principal 
Component 

Analysis 

EST 

Canonical 
Analysis 

Feature CST 
Vectors 

, , : L-____ -' 

I ______ -----------------------~ 

DATA COLLECTION 
, , , , , , , , , 

EST+CST 
Projection 

FEATURE : Transformed 
'---------------\T,-f--- ------EXTRACTION , _____ e_c_<2~s_ ... _____ _ 

, r, 
, ' 
: k-~earest : 
: Neighbour : , ' , : 

CLASSIFICA~ioN-----·------ ' 
Identity 

Figure 1.2: Thumbnail of system describing work in this thesis. 
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Silhouette dataset in this thesis is generated from this original image. It is 

used by many in gait recognition researches [Murase and Sakai 1996] [Huang 

1999] [Shuder et al. 2000a] [Shuder et al. 2oo0b] [Abdelkader et al. 2002a] 

[Abdelkader et al. 2002b] [Lee and Grimson 2002a] [Lee and Grimson 2002b] 

[Mowbray and Nixon 2003] [prismall et al. 2002] [prismall et al. 2003] [Bhanu 

and Han 2003]. Each silhouette is produced by first isolating the subject from 

its background and then performing background extraction via chroma­

keying on each image. Finally each image is threshold to produce a silhouette. 

Each silhouette retains its size of720 x 576 pixels. 

In this work, the collected raw data are the angular displacements and 

silhouette moments data. They are kinematics characteristics from gait 

motion patterns. Kinematics characteristics concern the geometry of the 

motion without reference to force, which produces the motion and mass of 

the subject while in motion. The kinematics traits can be further categorised 

into spatial representation and temporal representation based on the content 

of gaits image frames. Spatial representation includes position, silhouette 

region, and boundary of a gait image. While temporal representation includes 

velocity, accelerations, and angular displacements. 

The angular displacements data contains angles of displacements for the 

thigh, the lower leg, and the foot at each individual image frames. Based on 

research by Johansson [1973], human motions of points can be distinguished 

from other non-biological motions. Moreover angular displacements of the 

thigh and lower leg have been used in many studies [Murray et al. 1964] 

[Grieve and Gear 1966J [Murray 1967] (Frigo et al. 1986] [Hills and Parker 

1993] [Eng and Winter 1995] [Cunado et al. 1999] [Lakany 2000] [Yam 2002]. 

Hence, the angles of displacements are calculated from manually labelled 

points at the hip, knee, ankle, and toe for the corresponding image frames. 

The silhouette moments data contains Cartesian centralised moments of 

silhouette at each individual image frames. Image moment representations 
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have been found to be useful in many pattern recognition applications. They 

are popular with a S1:a;tistical pattern recognition approach since a major 

assumption is that there is an unoccluded view of target shape [Nixon and 

Aguado 2002]. Moments, which describe an object layout by its pixels, are a 

global descriptor. They have invariance properties and a compact description, 

which can avoid the effects of noise in description. The Cartesian centralised 

moments are translation invariant, thus by employing image moments, the 

translation of silhouette image frames in time can be represented accurately 

up-to a certain well-defined order. 

The silhouette moments data and the angular displacements data are further 

processed for extraction and selection of useful features as described in the 

next section. Their mathematical formulation is described in Chapter 2. 

1.4.2 Feature Extraction and Feature Selection 

Gait input data is high dimensional. A digital video of one gait cycle normally 

extracts into hundreds or thousands of image frames of standard dimensions. 

Only specific features of gait are extracted or selected depending upon the 

need of the systems whether to employ feature extraction or feature selection 

techniques. Both techniques lead to dimensionality reduction of data. 

Feature extraction relates to techniques that use a class separability optimality 

criterion to generate a mapping from the input data space to the feature space 

[Young and Fu 1986]. Feature extraction creates new features by 

transformations or combinations of the existing input data. Feature selection 

differs from feature extraction in that it chooses features but the ones more 

informative from the set of the new features. It identifies the most important 

and relevant input variables that are responsible for major variations of the 

output However different in names they are, the motivation behind these 

techniques is to reduce or compress the amount of raw data utilised for 

further processing. It is a known fact that the amount of data relates to the 

complexity of the system, which relates to performance and cost of the 
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system. The tenn 'curse of dimensionality' is common in pattern recognition 

where an increase in the dimensionality of the features means an exponential 

increase in generalisatiorrprocess [Bellman 1961]. 

It is important to note that depending upon the criteria measured by the 

mapping function, feature extraction techniques can be further categorised 

into feature extraction for representation and feature extraction for 

classification. For representation purpose, the goal is to map the input data 

accurately in the lower-dimensional feature space. Whilst for classification 

purpose, the goal is to enhance the class-discriminatory information in the 

lower-dimensional feature space. Examples of techniques are Principal 

Component Analysis (PCA) and Canonical Analysis (CA), which are 

techniques used in this work. The former is a feature extraction technique for 

representation and the latter is a feature extraction technique for classification. 

The principal component analysis (PCA) is a transformation based on 

statistical properties of vector representations [Gonzales and Woods 1992]. 

Also known as the Karhunen-Loeve transformation, PCA transforms 

continuous data into a set of uncorrelated coefficients by using the 

transformation matrix of eigenvectors. The covariance matrix of the data set 

generates these eigenvectors and its corresponding eigenvalues. These 

eigenvectors can be ordered according to their eigenvalues, which measure 

the variance of the transformed vectors along these eigenvectors. Thus, the 

first transformed vector, or the principal component, shows the direction of 

maximum variance, which yields projection directions that maximise the total 

scatter across all data. The principal components of very low variance can be 

removed, as they do not contribute much to the projection of the data. 

Hence, PCA has the capability for performing data compression. 

Canonical analysis (CA) is an established technique, which aims to determine 

whether two or more sets of objects differ from each other /Ehrenberg 1989]. 

The method discriminates data while keeping the intra-variance minimum and 
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the inter-variance maximum. To do that, CA computes the ratio of the 

witPin-class to the between-class scatter and employs a generalised linear 

discriminant function to maximise this ratio simultaneously. The solution to 

this analysis is an orthogonal basis, which spans the canonical space. 

Projection of vectors into this canonical space can produce clusters of 

disparate vectors with low intra-variance and high inter-variance. 

Huang [1999] has derived a method, which combined both PCA and CA. 

The combination of PCA +CA performs better discrimination of different 

classes than the CA method alone. Furthermore, employing PCA first can 

avoid the singularity problem in computation of the within-class scatter with 

uncompressed data in CA. Therefore, PCA does data compression that 

reduces the amount of the input data, which is high-dimensional by retaining 

data which accounts for most variance. When CA is applied to such data, it 

discriminates better. In his work, the combination of PCA and CA was used 

for gait recognition on silhouette data and optical flow of silhouette data. 

Huang used the image itself; the silhouette, which is computed from the 

subtraction of the background image from the objects in the image and 

optical flow, which is computed from the displacement of each pixel between 

each silhouettes. In this work, the combination of PCA and CA is used for 

analysing angular displacements and silhouette moments data. 

Before these raw data, namely the angular displacements and silhouette 

moments data are analysed by the feature extraction techniques, they are pre­

processed to detect and remove any potential outliers, which can affect the 

mapping of the feature vectors in the feature space. Outliers are unusual data 

values that are inconsistent with most observations. They can be due to gross 

measurement errors, coding/encoding errors, and abnormal cases. Also, pre­

processing involves making the feature extraction analysis invariant to 

different temporal and/ or spatial information contained in the raw data. With 

gait data, one possible method of pre-processing before feature extraction is 

to employ the cycle extraction procedure. 
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1.4.3 Classifiers 

Cl~sification of the extracted or selected features is the last stage in the 

system. At this stage the gait features are assigned class or subject label by the 

chosen classifiers, which use certain criteria of separability measures. Gait 

features with its associated class/subject label are known as patterns and these 

patterns are used to design the classifier (or to set its internal parameters) 

[Webb 1999]. In the future new gait data may be generalised to its class 

association using the designed system. 

However, the design of classifiers is not the work of this thesis. Therefore, 

the commonly used k-nearest neighbour classifier with Euclidean distance is 

employed as its classifier due to its simplicity. 

1.5 Significance of Problem 

This thesis focuses on analysing gait features using data-driven approach. It 

aims at answering the question on how descriptive is gait by studying its 

features. Gait motion pattern can be described by its kinematics 

characteristics, which concern the geometry of the motion. The kinematics 

traits can be further categorised into spatial representation and temporal 

representation. Spatial representation includes silhouette region and 

boundary of a gait image. While temporal representation includes velocity 

and angular displacements. Gait features can be extracted or selected from 

any of these representations thus an analysis on how these features 

successfully discriminate gait is discussed in this thesis. A data-driven 

approach is employed for investigating these gait features, namely using 

Principal Component Analysis (PCA) and Canonical Analysis (CA). PCA and 

CA ate both feature extraction techniques, where the former is a technique 

for representation of the input data that can be used for dimensionality 

reduction, while the latter is a technique for discriminating the input data for 

better classification. 
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The input data in this thesis are the angular displacements and silhouette 

moments. We choose the angular displacements of the thigh and knee for 

they are consistent with many studies [Murray et al. 1964] [Grieve and Gear 

1966] [Murray 1967] [Frigo et al. 1986] [Hills and Parker 1993] [Eng and 

Winter 1995] [Cunado et al. 1999] [Lakany 2000] [Yam 2002], which show 

that they are quantifiable. The work extends into investigating the flexion of 

the foot throughout a gait cycle and the combination of the three angular 

displacements. We choose silhouettes for they are used in many gait 

recognition literatures [Murase and Sakai 1996] [Huang 1999] [Shutler et al. 

2000a] [Shutler et al. 2000b] [Lee and Grimson 2002a] [Lee and Grimson 

2002a] [prismall et al. 2002] [prismall et al. 2003] [Bhanu and Han 2003]. It 

also has the advantage of having large sample size because it is easily gathered 

than manually labelled limb angular displacements. However, silhouette 

moments are used due to constraints on processing large two-dimensional 

data size. Thus, the analysis investigates and compares the performance of 

differing input data. 

As gait is periodic, cycle extraction analysis is proposed for extracting gait 

cycles from the discrete signal representing the input of gait kinematics data. 

The cycle extraction procedure involves interpolation and resampling of the 

discrete signal. Cubic spline interpolation in SVR (Support Vector Machines 

for Regression) is proposed since it handles the start and end points for gait 

cycle extraction much better than normal cubic spline interpolation. The gait 

cycle is extracted to be between two consecutive zero crossings, which 

complete a gait cycle and resampling is performed for uniformity of sample 

size due to differences in walking speed. This technique relieves the analysis 

from dependence upon heel-strike, which was employed in previous research. 

Also, in this part of the analysis, the input data is extracted to have similar 

phase direction throughout the dataset since a difference in phase can affect 

the distribution of the input data in the feature space, which in tum can affect 

the recognition process. 
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Contributions of this thesis are laid out as follows: 

• The proposal of using angular displacements data for analysis on the 

PCA and CA analysis by Huang [1999]. Huang's analysis used 

silhouettes and optical-flow of silhouettes data. The angular 

displacements involve are the hip, knee, and ankle. 

• The proposal of using silhouette moments for comparison analysis with 

the angular displacements data. 

• The proposal of cycle extraction method using combination of SVR 

and resampling at zero crossings. This method deals with defining 

different start and end points to determine a gait cycle other than 

formerly depending on heel-strike. 

1.6 Thesis Preview 

The outline of the thesis is as follows: 

Chapter 2 describes theoretical material on gait's input data: angular 

displacement data and silhouette moment data; what they are and how they 

are collected and pre-processed for feature extraction. This chapter also 

presents the theoretical methods for analysing their features, which are the 

PCA and CA algorithm. 

Chapter 3 formulates cycle extraction method, which involves description of 

cubic spline interpolation in SVR and resampling at zero crossings. The 

results are presented for both types of input data from Chapter 2. 

Chapter 4 presents the overall results of this thesis, which includes 

comparison results for each input type of gait's data. Also discusses on 

findings and comparing to other gait literatures. 

Finally Chapter 5 concludes the thesis and outlined the future work. 
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Chapter 2 

¥ATHEMATICAL FORMULATION OF GAIT'S 
DATA AND ITS DESCRIPTOR ANALYSIS 

This chapter presents theoretical and mathematical formulation for both angular 

displacements and silhouette moments data. ALl-o, it describes descriptor analYsis, 11ameIY 

the PCA and CA, which are emplqyed for feature extraction process in the data-driven 

approach D'stem. 

2.1 Gait's Data 

Murray [1967) considered gait to be "a total walking cycle - the action of 

walking can be thought of as a periodic signal". The period of a gait cycle 

exists between successive heel-strikes. Also, the cycle has two phases: the 

stance phase and the swing phase. The stance phase is the duration when the 

foot is on the ground, whilst the swing phase begins with the toe-off of that 

foot. This is illustrated in Figure 2.1. 

Right 
Heel Strike 

Right Stance 
Left Swing 

Left 
Heel Strike 

Left Stance 
Right Swing 

Right Stride Length 

Right 
Heel Strike 

.. 

..... Right to Left Step Len~ ..... Left to Right Step Lengt~ 
~ ~~ ~ 

Figure 2.1 : Duration of total right walking gait cycle. 
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In Figure 2.1 the gait cycle begins with the heel strike of the right leg and the 

person enters the stance phase of walking. In this phase, the body weight 

shifts onto the foot when the foot falls flat Then, the left leg swings to the 

front and body reflexes make the right foot flat because the body weight has 

shifted to the right leg. The stance phase ends when the right foot, which 

moved first lifts again; the swing phase starts when the left toes lift from the 

ground. That completes one step. Then, the body weight shifts and the leg 

swings to the front again. The stride ends when the heel of the right foot, 

which moved first strikes the floor again. That completes the other step and 

the gait cycle. 

A gait cycle can be described by its kinematics characteristics, which concern 

the geometry of the motion without reference to force. The kinematics 

characteristics can be further represented spatially or temporally. Angular 

displacements data is proposed as temporal representation of gait periodic 

signal and silhouette moments data is proposed as spatial representation of 

gait periodic signal. Their formulation is described in the next section. 

2.1.1 Angular Displacements Data 

Geometrically, the maximum opening of the legs are when the leg is at heel 

strike. The minimum opening of the legs happens during the leg swing. 

From this geometry, Figure 2.2 is constructed. The data is manually labelled 

at each individual image frames corresponding to the leg at front (refer Figure 

2.2(b» at four points; the hip SH, the knee SK, the ankle SA' and the toe SOE as 

in Figure 2.2(b). The hip angle 8, is the angle of inclination between the thigh 

and the vertical while in motion. The knee angle ¢, is the angle at the knee 

between the lower leg and the vertical. The ankle angle p, is the angle of the 

foot flexion with respect to horizontal. Then, the co-ordinates of these points 

are gathered and used to calculate the angles of inclination 8, ¢, and p. 

These angles are illustrated in Figure 2.2(a). 
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(a) Location (b) Example 

Figure 2.2: Labelled points on digitised image. 

(a) Original Image (b) Silhouette 

Figure 2.3: Original image and its corresponding silhouette. 
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The positive values for e and ¢ are defined to be whenever the displacement 

angles are moving forward together with the forward movement of the 

subject. The positive values for p are defined to be at the region whereby 

the foot of the subject is at its natural position. Therefore negative values for 

p can only occur whenever the foot flexes upwards, which is the time when 

the person is at heel strike. 

2.1.2 Silhouette Moments Data 

Hu [1962] defined a continuous two-dimensional (p+q)th order Cartesian 

moment of the image function f (x, y) on a finite region mas, 

M pq = fIx
p 
yq f(x,y)dx4Y (2.1) 

!It 

where,p, q = 0, 1,2, ... 

In a binary image form, f (x, y) = 1 represents a shape of the moment in the 

region m. Thus, the double integral in Equation 3.1 is replaced by a 

summation to produce the separable computation, 

(2.2) 

where M and N are the image dimensions of the object. 

By setting the order (p+q) of Equation 2.2, these moments are useful in shape 

analysis of our silhouette data. 

The order of moments can represent various attributes of an object in an 

ltllage. For an N pixel shape represented by a region m, the following 

attributes are defined: 
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a.Area 

The Oth order moment defines the area of an object. A om order moment is 

optained by settin~p = 0 and q = O. Thus, Equation 2.1 becomes, 

A = Moo = Hf(x,y)dxtfy (2.3) 
91 

For a binary image of N pixels, Equation 2.3 is just the total number of pixels, 

N, for the object in the binary image. 

h. Centre of Mass 

The I't order moment defines the centre of mass or means of the object of 

interest. Equation 2.1 then becomes, 

Hxf(x,y)dxtfy 
x=...:91~ ___ _ 

Hf(x,y)dxtfy 
91 

HY.f(x,y)dxtfy 
91 

y=~;------

Hf(x,y)dxtfy 
91 

where X and y in binary form are m and n respectively, 

_ 1 m=-LLm 
M (m,n) E9l 

1 n=-LLn 
N (m,n)e91 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

These x and j; or m and n represent the centre of mass for the vertical 

and horizontal direction of the object in an image respectively. 
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From these equations of centre of mass, Equation 2.2 above can be 

centralised and become the (p,q) order central moments as, 

Ppq = LL(m-m)P(n-iif 
(m,n)E!l! 

(2.8) 

Equation 2.8 is extensively used throughout the work on silhouette analysis. 

c. Directional Variance 

The Z'd least order moment defines the spread of the shape with respect to 

either the vertical or the horizontal direction, or variance. General Equation 

2.1 becomes, 

(2.9) 

(2.10) 

The binary image form will be, 

(2.11) 

(2.12) 

2.1.3 Justification for Using Moments of Silhouette 

Angular displacements data are measured angles from each image frame. The 

angles are mapped into a column vector with each item (angle) in the vector 

representing its image frame. Having many image frames just increases the 

length of the angle vector. That means a sequence of L image frames is an L 

length vector. 
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Silhouette data contains binary image representation of gait image database. 

It has the advantage of having a large sample size because it is more easily 

gathered than manually labelled angular displacements data. However, the 

silhouette dataset in this work uses the same number of subjects and 

sequences as the angular displacements data. Each original image frame of a 

silhouette data is of size 720 x 576 pixels. Each of these sequences contains 

between 50 to 77 image frames. 

For the purpose of image analysis, normally an image of size M x N is 

rearranged to map as a row-ordered vector, or often called the lexicographic 

ordering1 [Jain 1989]. By scanning the pixels of an image from the first row, 

and going from first column till the end, an image of size 720 x 576, will 

become a long column vector of size 16560. That size is not considering the 

other L-1 number of image frames, 5-1 other sequences, and C-1 other 

classes! Due to this, the direct computation of the silhouette data into the 

descriptor analysis algorithm will be enormous. Therefore, moment 

representation is proposed for analysing silhouette data. 

1 Let 

x ~ O{x(m,n)} 

be a one-to-one ordering of the elements of the array {x(m,n)} into the vector x. 

The row-ordered vector is defined as 

xT = [x(1,1)x(1,2) ... x(1,N)x(2,1) ... x(2,N) ... x(M,1) ... x(M,N)t 

~ 0, {x(m,n)} 

The column-ordered vector is defined as 

xT = [x(1,1)x(2,1) ... x(M,1)x(1,2) ... x(M,2) ... x(1,M) ... x(M,N)t 

{l~o.{x(m'R)) 
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2.2 Descriptor Analysis 

Princit@ component f111alysis (PCA) and canonical analysis (CA) are 

techniques successfully employed in face recognition and objecu;ecognition 

[Swtltsand Weng 19QCiL[Belhumeur et al1997] [Zhaoet al1998] [Zhao et al. 

2000] [Martinez and Kak 2001] [Beveridge et al 2001] [Chen and Man 2003]. 

Both techniques are ~tatistical techniques that can be adopted for a data­

driven analysis in automatic gait recognition. In this work, PCA is used as a 

fcarure extraction technlque for representation of the input data to a reduced 

dimension. CA is an intuitive feature extraction technique in which 

minimising the withiq-ctass scatter and maximising the between-class scatter 

of the input data can discriminate the dataset better. The combination of 

RCA and CA is used. for analysing angular displacements and silhouette 

moments data. PCA is applied first for data truncation, and then CA is 

p;e,rwnned before the cla$sjfi.cati.en'process as described in Section 1.4. 
,I 

2.2.1 Principal Component Analysis (PCA) 

Givk.-n resampled vectill~_ ~stirnate of length r (Equation 3.7 - Equation 3.10, 

which will be discussed in Section 3.3.1), for matrices r x 5T containing 

vectors of length r representing 5 T number of total sequences, 

1\ 1\ 1\ 

Xo = [6162 ".651'] (2.13) 

1\ 1\ 1\ 

X¢ = [~1 ~2 ···~S1'] (2.14) 

1\ 1\ 1\ 

Xp = IplP2"'PsT ] 
(2.15) 

1\ 1\ 1\ 

Xpq =:' [M:N1Mpq20.~MpqsT] (2.16) 

From now on, only derivation for Equation 2.16 is shown, derivations for 

Equation 2.13 - Equation 2.15 are done in a similar fashion. 
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The mean of-the data is, 

- l",A 
Xpq :=-~Mpqi 

ST i 

(2.17) 

The centralised data is, 

fl) pq == Xpq - Xpq (2.18) 

Let e i and Ai be the eigenvectors and corresponding eigenvalues for the 

covariance matrix 1: pq := fl) pq fl) pq T. And let A be a matrix whose rows are 

formed from the eigenvectors, ordered so that the first row is the eigenvector 

corresponding to the largest eigenvalue and the last row is the eigenvector 

corresponding to the smallest eigenvalue. Therefore, the centralized vectors 

xpq's can be mapped into vectors denoted by Y pq by the transformation matrix 

A as follows, 

y pq := Afl) pq (2.19) 

The transformation matrix A is known as the eigenspace transformation 

matrix (EST). 

PCA has the capability of performing data compression by selecting some 

kJ... ~ KJ... members of eigenvalues that specify some high variance principal 

components in PCA. To determine the value of kJ..., the number of features 

to use, the eigenvalues Ai are sorted in non-increasing order. The residual 

mean-square error in using ~ ~ KJ... features is simply the sum of the 

eigenvalues not used, "'~' A. [Swets and Weng 1996]. ~1=k,+l I 
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If the percentage Pt.. = 5%, a good reduction in the number of features is 

obtained while retaining a large proportion of the variance present in the 

o:tiginalfeature vector [Jain and Dubes 1988] [Turk and Pentland 1991], 

thereby losing very little of their original population-capturing power. Based 

on this principle, a new calculation of ki.. is done in reverse order that is by 

choosing a fixed percentage Pi.. = 5% by Equation 2.20, 

(2.20) 

2.2.2. Canonical Analysis 

After projection into the eigenspace, given C classes having S sequences for 

each class, the matrix is, 

Y M. = [y MilY Mi2 ••• y MiS] (2.21) 

The vectors Y pq. ' representing/, sequences in class i are, 

(2.22) 

The mean vector for the entire set is, 

(2.23) 

The mean vector for the !' class is, 

(2.24) 
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The within~class and between class matrix are, 

(2.25) 

(2.26) 

Using the generalised Fisher linear discriminant junction, to maximise both Sw and ~ 

simultaneously,J(W) has to maximise, 

(2.27) 

where, J(W) represents the ratio of within-class to between-class variances. 

Let Wi be the generalised eigenvectors, to maximise J~ is to differentiate it 

with respect to W and represent as a generalised eigenvalue equation, 

(2.28) 

Thus, the eigenvectors are an orthogonal basis that spans a (C-1 )-dimensional 

canonical space and a projection of Ypq into this canonical space becomes 

another transformed vectors zpq- The w:s are also known as the canonical 

space transformation matrix (CST). 

Merging both PCA and CA produce a new equation to apply to test vectors, 

(2.29) 

2.3 Conclusions 

Gait as defined by Murray [1967] is "a total walking cycle - the action of 

walking can be thought of as a periodic signal". A gait periodic signal has 

spatial and temporal characteristics, which are its kinematics traits. In this 

chapter, angular displacements data and silhouette moments data are 
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proposed as temporal and spatial representation of gait's data, respectively. 

Angplar displacements data are defined as angle of displacements of the 

thigh's rotation, the lower leg's rotation, and the foot flexion. The angles are 

calculated from a set of gathered points, which are manually labelled at each 

image frames. Silhouette moments data are defined as the Cartesian 

centralised moments of subject's silhouette at each image frames. They are 

used, instead of using silhouette itself because a direct computation of 

silhouette into a descriptor analysis would be tremendous. 

This work employs a data-driven approach to analysing gait's data. PCA and 

CA are statistical-based descriptor analysis suitable for feature extraction 

process in a data-driven approach system. PCA is a technique of feature 

extraction for data compression by transforming a dataset into a 

representation in lower dimensional spaces. CA is a feature extraction 

technique for data discrimination by minimising the within-scatter variance 

and maximising the between-scatter variance of the data. In this chapter, the 

mathematical formulation of PCA and CA are merged so that it can be 

applied to test data at the classification process. 
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Chapter 3 

GAIT CYCLE EXTRACTION 

This chapter describes the gait ryc/e extraction procedure, which is the preprocessing step in 

the feature extraction process rif the data-driven approach [ystem. 

3.1 Introduction 

Gait cycle extraction procedure is a pre-processing step in a feature extraction 

procedure. This step involves a series of two processes: interpolation, which 

utilises the Support Vector Machines for Regression (SVR) framework and 

resampling, which defines complete gait cycles to be between zero crossings. 

It should be noted that in this work regression via SVR is performed not for 

analysing the data but merely a tool for cycle extraction. 

3.2 Problem Definition 

Gait data is observational, in which they are finitely sampled and thus the 

representation signal of its raw data is discrete. Data interpolation is 

proposed for fitting the best curve that can describe a continuous gait cycle 

before extraction. Since the cycle needs well-defined start and end points 

before extraction, by interpolation, the data points within finite intervals of 

the gait cycle are better estimated. This can reduce the probability of noise 

effect in the data, allowing more accurate resampling at the start and end 

points. 

Furthermore gait data is high dimensional thus to do calculations in the input 

space IS intractable. Methods based around kernels are chosen for their 

rigorous formulation and good generalisation [Gunn and Kandola 2001]. 

Support Vector Machines for Regression (SVR) is an example method, which 

is based around kernels. The idea of the kernel function is to enable 

operations to be performed in the input space rather than the potentially high 

dimensional feature space [Scholkopf 1998]. 
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The support vector machine (SVM) is a universal constructive learning 

ptQcedure based on statistical learning theory introduced by Vapnik [1995]. 

In a support vector machine (SVM), the data is mapped into a higher 

dimensional feature space via a mapping function. The mapping constructs a 

separating hyperplane with maximum margin in this high dimensional space, 

which yields a non-linear decision boundary in input space [Scholkopf 2000]. 

By the use of the kernel function, the separating hyperplane is computed 

without explicidy carrying out the map in the feature space [Alon et al. 1997). 

Likewise the SVMs can also be applied to regression problems by the 

introduction of an alternative loss function [Smola 1996]. The loss function 

must be modified to include a distance measure [Vapnik 1995]. Vapnik 

proposed the £ -insensitive loss function to enable a sparse set of support 

vectors to be obtained. 

Ideally the choice of a set of approximating functions reflects a pnon 

knowledge about the system (unknown dependency) [Scholkopf 1998]. 

However, in choosing a kernel that best reflects the gait recognition system 

can also depend on one of these factors: similarity measure for the data, or a 

(linear) representation of the data, or a hypothesis space for learning 

[Scholkopf 1998]. The a priori of gait data is its periodicity and continuity. Its 

data representation is a composition of sinusoidal waves, consistent with 

earlier 'automated' analysis [Cunado et al. 1999] [Yam et al. 2001] [Yam 2002]. 

Thus the commonly employed kernel function that can be used to describe 

the gait data set is the cubic-spline function. 

Cubic splines are widely used to fit a smooth continuous function through 

discrete data [Wolberg and Alfy 2002]. It is used in fields of computer 

graphics and image processing, where smooth interpolation is essential. Cubic 

splines use low-order polynomials, which are the piecewise cubic polynomials. 

The low-order polynomials reduce the computational requirements and 

numerical instabilities that arise with higher degree curves [Wolberg and Alfy 
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2002]. Cubic polynomials allow for a curve to pass through two endpoints 

with specified derivatives at each endpoint. This guarantees continuous first 

and second derivatives across all polynomials segments, which makes it 

smooth and attractive for this gait data set. 

Resampling is proposed to align the feature vectors for uniformity and 

invariance due to different start and end points of feature vectors. The 

numbers of frames captured for a gait cycle are different for each person 

since each person has different walking speeds. Thus, the sequence lengths 

for the data (or raw data) are unequal. The sequences can vary from SO to 77 

points for the 10 subjects. Resampling is proposed to be between two 

consecutive zero crossings for they are the easiest to extract and having the 

simplest procedure. 

Furthermore, resampling can be used to deal with the phase difference in 

each feature vector. Gait data is a composition of sinusoids with peaks and 

troughs, which defines the positive and negative phase. The positive and 

negative phase vectors map to different regions in the feature space, which 

can affect the recognition performance. In addition, it has been shown that 

there are significant variations of phase features with individual gaits [Little 

and Boyd 1998]. 

Moreover, previous works by other researchers based their gait cycle on heel­

strike as a basis for obtaining gait signature. By resampling, this dependency 

can simultaneously be changed for added flexibility. 

3.3 Cycle Extraction Procedure 

Each taw data (angular displacements and silhouette moments) of image 

frames in a gait sequence can be represented by a fea~e vector using the 

lexicographic ordering [Jain 1989]. That is each raw data item of each image 

frames in a sequence is mapped as an item in a column vector, which 
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represents a corresponding sequence. These sequences then are examined 

through the cycle extraction procedure. 

The cycle extraction procedure beg1ns with the interpolation of the feature 

vector using the SVR toolbox [Gunn 1998], implemented in Matlab. 

Interpolation is proposed for fitting the best curve that can describe a 

continuous cycle before extraction. The cycle extraction procedure ends with 

the resampling of feature vectors, which is defined to be between two 

consecutive zero crossings and having similar phase throughout the dataset. 

3.3.1 Data Interpolation Formulation 

Given vectors of raw data for each sequence oflength L , 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where 0; = O(tJ, fA = ¢(tJ, and p; = pet;) are the angular displacements 

of the thigh, the leg, and the foot at time t i , respectively and Ppq; = Ppq(ti) 

are the central moment of order (p+q) for each silhouette at time t
i

• 

The interpolation estimate in an SVM for Equation 3.4 is of the form, 

/\ L 

Ppq(t) = La;K(t;,t) (3.5) 
;=1 

where, a; E 9t are the support vectors, K(t;,t) is a kernel function and ti are 

the training input space points. 
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The pref~m~d kernel function is the cubic spline, 

(3.6) 

This estimate applies to angular displacements of thigh (fJ), leg (t/J), and foot 

(p)as well. 

The resampled vector estimate is of length r, 

(3.7) 

(3.8) 

(3.9) 

/\ 

Mpq = [ppq Jlpq2 ••• p pq,], Mpq E 9{' (3.10) 

3.3.2 Resampling Procedure 

The resampling procedure discussion is based on the angular displacements 

data specifically on the limb inclination of the thigh since the thigh angular 

displacements was the first analysis attempted. There are three possible 

methods to base the resampling on: between two consecutive maximum 

points, minimum points, or zero crossings. 

Resampling between Consecutive Maximum Points. The initial plan was 

to res ample at the first and the third extreme maximum points since the 

inclination of the thigh is maximum at these points during a gait cycle. 

However there is the sudden decrease in angle value around the principal 

maximum peak for the hip angle data. Referring to Figure 3.1, there are 

inflexion points around the maximum peak. This decrease in angle value in 
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Figure 3.1(b) might be due to the shifting of the body weight onto the front 

fopt. This can be se~n in Figure 3.1(a) when the front leg is just about to 

strike the floor. Heel strike occurs in the next frame; simultaneously the body 

weight starts to shift its load onto that foot. At Figure 3.1(c), when the front 

foot is already flat, the back foot still flexes at its original position but the hip 

position already moves forward creating a larger inclination between the thigh 

and the vertical. Furthermore, according to Perry [1992], the body weight 

shifts from one leg to another when both feet are in contact with the ground2
• 

This condition occurs at maximum peaks of all sequences for the hip angle, 

thus resampling cannot be based on maximum peaks. 

Resampling between Consecutive Minimum Points. Since maxunum 

points are difficult to extract, minimum points might be a possibility. 

However, there is a problem with the video itself. The image files that were 

extracted start at heel strike and end at heel strike of the same leg. There are 

no image files before and after that heel strike. Hence, there are some 

sequences that do not have a complete cycle based on minimum points. 

Resampling between Consecutive Zero Crossings. Therefore, the task is 

changed to extraction of a gait cycle at zero crossing. Other than being 

simpler, zero crossing extraction can be a generic cycle extraction technique 

for extending to other input data types thus, making the cycle extraction 

procedure more robust to other gait data types. 

Also the difference in phase can affect the mapping of data in feature space. 

It has been shown that the phase features of individual gaits have significant 

2 As the body moves forward, one limb serves as a mobile source of support while the other 

limb advances itself to a new support site. Then the limbs reverse their roles. For the transfer 

of body weight from one limb to the other, both feet are in contact with the ground. This 

series of events is repeated by each limb with reciprocal timing until the person's destination is 

reached [Perry 1992]. 
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variation [Little and Boyd 1998]. Cycle extraction of a sequence with positive 

phase will be mapped onto a positive region of the feature space and vice 

versa. This is shown in Figure 3.2 whereby the positive phase dataset are 

mapped on the positive side of the feature vector and the negative phase 

dataset are mapped on the opposite side. Thus, the extraction is chosen to 

having similar phase direction for all sequences of gait data types. 

3.4 The Implementation 

The implementation of the cycle extraction algorithm is done automatically in 

Matlab using a Pentium III 700l\11-Iz processor. The sampling rate is chosen 

to be 30. The phase of the feature vector is set to positive. 

Cycle Extraction Algorithm 

1. Gather OJ, (A, Pj, and j.t pq i for each sequences. 

2. Apply SVR function of Equation 3.5. 

3. Equate 8" ¢, p, and ,up to zero. 
t 1 qi 

4. Compute the roots of the polynomial whose coefficients are the 

elements of the vector 0i' ¢i' Pi' and ,upq; . 

5. Take two consecutive zero crossings, which define complete cycle. 

6. Evaluate the phase of the feature vector. 

7. If phase evaluation is negative, repeat step 5. Else go to step 8. 

8. Resample the vector estimate at sampling rate, n = 30. 

9. Save the resampled vector estimate. 
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(a) Frame 32, (J = 21.30 (b) Frame 34, (J = 18.40 (c) Frame 36, (J 

Figure 3.1: Inflexion points on an example subject. 
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Figure 3.2: Feature space mapping of feature vectors with different phase. 
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Detbritions of Extracted Data 

Hip Angle «(Ji). Angular displacements data of the thigh extracted 

between two consecutive zero crossings independendy. 

Knee Angle «(A). Angular displacements data of the leg extracted 

between two consecutive zero crossings independently. 

Ankle Angle (Pi). Angular displacements data of the foot extracted 

between two consecutive zero crossings independently. 

Hip+Knee+Ankle Independent (Dataset HKAI). The three angular 

displacements data, each has been extracted between two consecutive 

zero crossings independently and combined by stacking each angular 

displacements onto a column feature vector with the uppermost body 

part on top. 

Hip+Knee+Ankle Hip-Dependent (Dataset HKAD). The angular 

displacements of lower body parts ~eg and foot) are extracted 

respective to the zero crossings of angular displacements of 

uppermost body part (thigh) and combined. 

Hip+Knee Independent (Dataset HKI) and Knee+Ankle 

Independent (Dataset KAI). The angular displacements of two 

body parts data, each has been extracted between two consecutive 

zero crossings independently and combined. 

Hip+Knee Hip-Dependent (Dataset HKD) and Knee+Ankle Knee­

Dependent (Dataset KAD). The angular displacements of body 

part (the ones lower) are extracted respective to the zero crossings of 

angular displacements of its upper body part and are combined. 

Silhouette Moments of Order p+ q (fl pq i ). The silhouette moments 

data of different orders ranging from order 0 to 7, each has been 

extracted between two consecutive zero crossings independently. 

Silhouette Moments upto Order p+q. The silhouette moments data 

of different orders ranging from 0 to 7, each has been extracted 
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between two consecutive zero crossings and combined according to 

the defined uptQ-order by stacking each order (with the lowest order 

on the top) onto a column feature vector. 

Note that the selection of the combined independently and dependently 

extracted data is formulated for analysing the affect of temporal changes. 

That is whenever data are independently extracted; they have different time 

frames that associate with the zero crossings. 

3.5 Description of Findings 

All resulting curves in the figures show: the plus (+) in the circles are the 

support vectors, which correspond to the discrete raw data in the sequence. 

The bold lines are the resulting interpolated curve from the SVR plotting tool. 

The sampling rate is set at 30. 

3.5.1 Angular Displacements Data 

Angular displacements data are values of limb inclination of thigh and leg, and 

values of flexion of the foot, which are manually labeled. They are displayed 

in Figure 3.3, Figure 3.4, and Figure 3.5, with corresponding frames of gait 

motion at several points of interest, namely the maximum points, the 

minimum points, and the zero crossings. These figures plot at least two 

complete gait cycles. 

Figure 3.3 shows the plot of thigh angular displacements for subject 

S013s00L, which is referred throughout this thesis. There are six frames of 

interest: frame 10, frame 15, frame 23, frame 34, frame 36, and frame 54. 

Frame 10 is the frame where the subject is at heel-strike for the first complete 

gait cycle, which started with the left leg. The angle is at its maximum, 

consistent with Murray's work, which has been defined in section 2.1. Frame 

15 is the frame when both legs intercepts, which happen during leg swing. 

Thus the angle value is almost 0 degree. The minimum point is at Frame 23, 

where at this time the right leg is at its heel strike. It is a negative value 

because the positive hip angle has been defined in section 2.3.1 to be the 
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angle in the direction of the walking. Between frame 34 and frame 36 is the 

Qccm-rence of the infkxion points, which has been discussed in section on 

resampling procedure (section 3.3.2). Frame S4 is the frame where the 

subj(;!ct leaves the view of the camera. It is interesting to note that at this 

frame, the view of the leg slighdy moves. That is the view of the leg is not 

normal to the view of the camera. This phenomenon is discussed in 

literatures on view-invariant gait recognition Oohnson and Bobick 2001] 

[Shaknarovich 2001] [Abdelkader 2002a]. 

The regressed curve for knee angle is shown in Figure 3.4. Similar to hip 

angle curve, the maximum point at frame 7 corresponds to the leg at heel­

strike. Frame 16 and frame 31 are frames when the leg interception occurs. 

However, at frame 27, the minimum point does not refer to heel-strike, but 

corresponds to the leg movement in the swing phase; in this case the left leg 

is in the swing phase because the right leg starts with the heel-strike. Thus, 

the maximum opening of legs can occur during heel strike and during the 

start of the swing phase. 

The ankle angle is the foot flexion during walking. Its value is positive almost 

all the time during walking except at heel-strike in Figure 3.5. This can be 

viewed in frame 7. All other frames of interest have positive angle values 

except frame 7, whereby the foot flexes to allow for the heel to strike the 

floor. Frame 26 is the peak of the feature vector, which refers to the end of 

the stance phase and the start of the swing phase for the left leg. 

Figure 3.6 and Figure 3.7 shows the plots of feature vectors for dependendy 

and independendy extracted data. The choice for combining feature vectors 

by dependendy extracted and independendy extracted is to investigate the 

affect of temporal difference in feature vectors. Figure 3.6 shows the 

independendy extracted combination feature vectors (dataset HKAI). Figure 

3.7 shows the dependendy extracted combination feature vectors (dataset 

HKAD). Feature vectors in Figure 3.6 for the hip, knee, and ankle angles are 
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zero at the start and end points, which indicates they are independently 

eWflcted. The temporal information is different for each angular 

displacement but the start and end points have similar angular values. Figure 

3.7 indicates that the hip, knee, and ankle angles are dependently extracted 

since the time of start and end points is zero but the respective angular values 

are not. Therefore, the affect of the difference in temporal information can 

also be analysed. 

It is important to note that the attire a person wears can affect the labeling of 

the data. Some subjects wear their shirts tucked into their trousers, which 

makes the determination of the hip points simpler, but some do not. The 

labeling for the knee and ankle points is affected by the type of trousers the 

person wears that is a person wearing a knee-length trousers versus long 

trousers and tight fitting trousers versus loose fitting trousers or boot-cut 

trousers. It is also difficult to determine the labeling points of the toes 

especially for subjects wearing jogging shoes because the outer covering of 

the shoes is thicker than those of sandals. This can be viewed in Figure 3.8. 

In addition, the arm does occlude the view of the hip points for some 

subjects at certain points. When such a case occurs the determination of the 

labeling point at the hip is guessed but with comparison to the immediate 

previous and later frames in the sequence. These uncertainties in 

determination of the labeling points can be a potential noise for the feature 

vectors since a change of one pixel in the x or y coordinates is a difference of 

about 18° in angular values 3 . This value can be significant if the change of the 

pixel location is more than one. 

3 This is measured as below: 

tan4S' = l.U. 
111 

if pixel difference increase by 1 in either x or y coordinates, 

18-45' 1= Itan-1 ~-tan-ll.U.1 = I tan-I l!.l.-tan-1 l.U.1 = 18' 
111 111 121 111 
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Hip Angle Data of S013s00L 
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Fig~u·e 3.3: An example SVR curve for thigh angular displacements with 
corresponding frames showing the gait motion. 
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Knee Ang[e Data of S013s00L 
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Figure 3.4: An example SVR curve for Jeg anguJar displacements with 
corresponding frames showing the gait motion. 

43 



Chapter 3 Gait Qycle Extraction 

Ankle Angle Data of S013s001.. 
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Figure 3.5: An example SVR curve for foot angular displacements with 
corresponding frames showing the gait motion. 
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Independently Exlracted Angular Displacements Data of S013s00l 
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Figure 3.6: An example resampled SVR curve for independently extracted 
angular displacements. 
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(a) Loose fitting trousers (b) Knee-length trousers & jogging 
shoes 

(c) Tight fitting trousers & tucked-in (d) Boot-cut trousers & sandals 
shirt 

Figure 3.8: Difference in attire for different subjects. 

3.5.2 Silhouette Moments Data 

(a) t = 1.2 seconds: Leg interception (b) t = 2.0 seconds : Heel strike 

Figure 3.9: Silhouette shapes at two different times .in a sequence. 
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Figure 3.10 (a)-(f) show some examples of the moment vectors after 

regression for one of the subject in the gait silhouette database. Note that 

moments of (Jh and 1st order, (moo, mlO ' moJ are not calculated using central 

moments (Equation 2.8) since moo = f.ioo and f.io1 = f.i1O = o. 

Figure 3.10 (a) displays moment moo, which represents the area or the 

number of pixels that an image frame has in the gait sequence. The result is 

consistent with our intuition that the number of pixels changes with each 

image frame. That is at different image frames there are larger areas of 

silhouette shapes, which can correspond to the subject at heel strike (at 

maximum angle) for example, and there are smaller areas of silhouette shapes, 

which can correspond to the subject at leg interception (at minimum angle). 

Figure 3.10 (b) and (c) correspond to the sequences of horizontal and vertical 

centre of mass for the subject. In Figure 3.10 (b), the horizontal direction 

centroid decreases in time since it represents the x-coordinates of the 

silhouette shapes, which changes from coordinate 720 to 0 if the subject 

walks from right to left and vice versa. In Figure 3.10 (c), the vertical 

direction centroid represents changes to the y-coordinates' centre of the 

silhouette shapes for that sequence, in which it moves with the motion of a 

walking person at each frame. 

Figure 3.10 (d), (e), and (f) show the sequences of second-order central 

moments, f.i11' fl2o, and flo2 respectively. From the definitions stated in 

section 2.3.2, fl20 in Figure 3.10 (e) is the horizontal direction variance, which 

correspond to the displacements of the y-coordinates for the silhouette shape 

from its centre of mass at each image frames. Whilst f.i02 in Figure 3.10 (f) 

refers to the vertical direction variance, which corresponds to the 

displacements of the x-coordinates for the silhouette shape from its centre of 

mass. These variances are consistent with the area plot in Figure 3.10 (a), 

where smaller areas, which have smaller width and/or height shapes have low 
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displacement values from its centroid and vice versa. This can be seen for 

example at time t = 1.2 seconds (Figure 3.9 (a)), for at this time the legs are 

intercepting; the angle is minimum and the silhouette shape is small. And at 

time t = 2.0 seconds (Figure 3.9 (b)), the subject is at heel strike and the 

displacement value is high. 

Figure 3.11 shows comparison plots between silhouette moments data of left 

and right sequences. It can be seen that the plots of the left sequences and 

the right sequences are symmetrical around the y-axis. This happens due to 

the horizontal movement of the x-coordinates, which moves with the 

silhouette. Moments calculations involve the x and y coordinates of 

silhouettes, thus the changes of x-coordinates either ascending or descending 

affect the silhouette moments. 

Moreover, the scale of the moments values, which has values as high as the 

power of nine for moments order 3 and definitely it is higher for higher 

moments order. This difference in the range of values can affect the mapping 

into feature space, in which higher order moments will dominate the 

projection. Thus, some fOtm of nOtmalisation is needed to overcome this. 

Assuming that the data is nOtmally distributed, the normalisation method is 

proposed to be the standard Z score, which is a standard measurement in 

statistic. Each data is first subtracted from the mean of the dataset and then 

divided by the standard deviation of the dataset. 

From Figure 3.10 and 3.11, it can be seen that whenever the moments order 

goes up, a gait cycle is difficult to define, which can make the determination 

of the zero crossings difficult. Therefore, for a silhouette dataset, feature 

vectors of moments order variations are dependently extracted based on zero 

crossings of feature vectors with a comprehensible cycle. For example, in 

Figure 3.11, the feature vectors for 1121 can be a good basis for cycle 

extraction of other variations. 
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3.6. Conclusions 

llis chapter describes the gait cycle extraction procedure, which is a pre­

processing step for invariant feature extraction in the data-driven approach 

system. The procedure involves interpolation, which defines continuous 

curves of the tinitely sampled gait's data by utilising the SVR algorithm and 

resampling, which uniformly defines the start and end points of a gait cycle. 

Additionally, the proposed method of res amp ling at zero crossing has added 

t1exibility to the process of defining a gait cycle, which previously has been 

depended upon heel-strike. 

The angular displacements dataset involves individual limb, any two 

immediate limbs, and all three limbs angular displacements. Therefore the 

cycle extraction for combined dataset is either temporally aligned by zero 

crossings of limb's individual cycle or by the zero crossings of the upper 

limb's cycle within the combination. This alignment can investigate the affect 

of differing temporal information for combined dataset. 

Subject's attire has been identified as a possible source of outliers for angular 

displacements dataset. Since the dataset is manually labeled, the clothes could 

affect the location of labeled points and hence affect the calculation of the 

rotation angle. A difference of location of labeled point by one pixel is a 

difference of 18° in angular displacements. 

The cycle extraction procedure has been applied to silhouette moments 

dataset for moments of zero-order until up to order seven. However, the 

cycle extraction of silhouette moments dataset has not been straight forward 

since the zero crossings of gait curves are difficult to determine especially for 

high order moments. Therefore extraction is based upon curves of the most 

comprehensible cycle within the moments order curves' variations. 

Moreover, the dataset involves data of large scale moments. Thus, a Z score 

normalisation is applied to the dataset before PCA and CA analysis. 
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EXPERIMENTAL RESULTS 

4.1 Experimental Design 

For recognition purposes, the feature dataset after cycle extraction will be 

divided into test set and training set. The test set will be taken from one 

sequence of one subject, and the remainder will be treated as the training set. 

First, the training data is applied to the PCA +CA algorithm. 11us will set the 

EST and CST matrices of the PCA +CA algorithm, which will then be used 

for projection of the test set into the feature space. In this feature space, the 

classifier, which is the k-nearest neighbour, is applied to calculate the 

recognition rate. The recognition rate is found at any instances that the test 

set is correctly identified as belonging to the correct class. 

A leave-one-out cross-validation process is applied for each sequence for all 

subjects, in that each sequence will become a test set at one experimental 

instance or another. There are 140 experimental instances, which correspond 

to the total number of sequences the dataset has. At any experimental 

instances, there will be 139 total sequences for training set and only one 

sequence is selected as a test set. A counter is used to count at any instances 

the nearest-neighbour classifier correctly identifies the test set. With this 

cross-validation procedure, the recognition rate is taken as the average of all 

correctly identified instances throughout all classes. The experiment is 

designed tl1is way to test the effectiveness of all those feature vectors by 

directly testing the recognition rates that occurred at each experimental 

instance. Also, it is hoped that the computed recognition rate will be an 

unbiased estimate of the true recognition rate. 

It should be noted that the work in this thesis is not on classifier design; 

hence k-nearest neighbour classifier is selected for its simplicity. The distance 

measure is the Euclidean distance. 
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Figure 4.1: Legend used in feature spaces; SOB represents subject 013. 

4.2 Angular Displacements Data 

Table 4.1: Average Correct Classification of Angular Displacements Data 

How Data is Angles Used 
k=1 k=3 k=5 

Combined [Dataset Name] 

Hip, Knee, & Ankle 
95.0% 94.3% 91.4% 

[Dataset HKAI] 

Independent 
Hip & Knee 

88.6% 85.7% 79.3 % 

Extraction 
[Dataset HKI] 

Knee & Ankle 
79.3% 77.9% 68.6 % 

[Dataset KAI] 

Hip, Knee, & Ankle 
97.9% 97.9% 95.0% 

Extraction [Dataset HKAD] 

based on Hip Hip & Knee 
92.1 % 91.4% 84.3% 

[Dataset HKD] 

Extraction Knee & Ankle 
84.3 % 77.1 % 68.6% 

based on Knee [Dataset KAD] 

Hip 79.3% 76.4% 65.0% 
Individual 

Knee 70.7 % 66.4% 65.7 % 
Extraction 

Ankle 62.9% 63.6% 45.7% 
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Experiments on angular displacements data include the experiments of 

individual hip angle, knee angle, ankle angle, and combination of these angles. 

The combination angles data are either independently or dependently 

extracted. In this section, the figures will be limited to the three basic angular 

displacements, which are hip angle (Figure 4.3, Figure 4.4), knee angle (Figure 

4.5, Figure 4.6), and ankle angle (Figure 4.7, Figure 4.8). The information on 

the basic angular displacements would be used for estimating the 

performance of the combined angular displacements. 

Figure 4.3, Figure 4.5, and Figure 4.7 shows the pareto 4 plots of the 

eigenvalues, which explain the percentage variability in the distribution of the 

eigenvalues. These eigenvalues are from the covariance matrix of the hip, 

knee, and ankle angle calculated using PCA. Based on Equation 2.20, the 

transformed features data are truncated to retain 95% of its total maximum 

variance. In Figure 4.3, 10 eigenvalues account for 95% of the variance in the 

hip angle data. In fact the first four of these eigenvalues explain roughly 

three-quarters of the total variability of the hip angle data. Thus, when 

performing discrimination analysis on the data set, accordingly they cluster 

quite well. This can be seen in Figure 4.4, where there are few overlaps in the 

data. The average recognition rate is found to be about 79%. 

For the knee angle data set, only six eigenvalues explain the 95% of the total 

data set variability, which has been based on Equation 2.20. The first three 

eigenvalues dominate the total variance accountability in the data set. This 

can be seen in Figure 4.5. The resultant canonical space is in Figure 4.6. 

However, the classes of each subject in the knee angle data have more 

4 Pareto chart shows the most frequently occurring factors. It is named after Vilfredo 
Pareto (1848-1923) in Italy. His observations on wealth distribution on the Italian 
population were further strengthened by Juran in 1960, which formulated the Pareto 
Principle, which states that:, "Not all of the causes of a particular phenomenon occur with 
the same frequency or with the same impact" [Tham 1997]. Pareto plot is well suited to 
highlight the percentage of variability contribution of each eigenvalue. The bar-plots show 
the percentage contribution of each eigenvalue to total number of eigenvalues. The line 
plot is a cumulative line when each of these eigenvalues is sequentially summed. 
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overlaps in comparison to the data of thigh displacements. This explains the 

lower recognition rate on knee angle data, which is about 70%. 

Figure 4.7 is the pareto plot of the eigenvalues in the ankle angle. About two­

thirds of the total variability in the data set is explained by the first three 

eigenvalues. Its feature space in Figure 4.8 shows clusters of overlaps in the 

middle of the feature space, thus the average recognition rate is about 63%. 

From here, it is apparent that the upper leg data set produces higher average 

recognition rate than the lower leg data set. This may indicate that the upper 

leg, which is the hip angle, accounts for the most variations in walking 

patterns. However, to recognise a person better, a combined angle data set 

may be used. They can be independently extracted and dependently extracted 

but both give a higher recognition rate than using the angular data sets 

independently. All recognition rates for combined angles dataset are higher 

than the individual angular dataset. This can be seen in Table 4.1. 
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Figure 4.2: Percentage comparison between combined angular displacement 
datasets. 
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Percent Variability of Each Eigemalue for Hip Angle 
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Figure 4.3: Percent variability of each eigenvalue of hip angle. 
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Figure 4.4: Feature space of hip angle after PCA & CA. 
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Percent Variability of Each Eigenvalue for Knee Angle 
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Figure 4.S: Percent variability of each eigenvalue of knee angle. 
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Figure 4.6: Feature space of knee angle after PCA & CA_ 
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Percent Variability of Each Eigenlalue for Ankle Angle 
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Figure 4.7: Percent variability of each eigenvalue of ankle angle. 
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Figure 4_8: Feature space of ankle angle after PCA & CA_ 
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In Section 2.1, gait is considered by Murray [1967] to be a total walking cycle. 

Walking being the body's natural means of locomotion, involves the complex 

interaction of muscle forces on bones, rotations through multiple joints and 

physical forces acting on the body [Chambers and Sutherland 2002]. 

Saunders et al. [1953] have identified six determinants 5 that affect the energy 

expenditure when a person walks through space. Variations in pelvic 

rotation, pelvic tilt, knee flexion, foot and ankle motion, knee motion, and 

lateral pelvic displacements all affect the energy expenditure as well as the 

mechanical efficiency of walking [Ayyappa 1997]. Moreover, work on 

biomechanical research including Murray et al. [1964], Grieve and Gear 

[1966], Frigo et al. [1989], Hills and Parker [1993], Eng and Winter [1995], 

and Lakany [2000] have frequently used parameters of joint rotations of the 

hip, knee, and ankle. T11erefore, when investigating gait's angular 

displacements, it is natural to consider all possible angular displacements. 

Thus, the choice for analysis of combined angular displacements, which is 

investigated in tl1is work. 

This is £luther supported by this work, in which the combined angles dataset 

achieves the highest average classification rate of 97.9<Yo, for dependently 

extracted dataset HKAD. This can be seen clearly in Figure 4.2, whereby for 

all combination angles dataset: dataset HKAD ,md HKAl, which achieves 

97.9% and 95.0%, respectively in comparison to tl1e combination of only two 

angular displacements (Hip-Knee and Knee-Anlde). 

In addition, Figure 4.2 shows that the combination of hip and knee angles 

dataset: dataset HKD and HKI, which achieves 92.1% and 88.6%, 

respectively is superior to dataset combination of knee and ankle angles: 

dataset KAD and KAl, which achieves only 84.3% and 79.3%, respectively. 

5 The authors began by asswning that a gait pattern is most efficient when it mimmises 
vertical and lateral excursions in the body's centre of gravity (COG). They identified those 
features of the movement pattern that mimmise these COG excursions. They suggested 
that these features determine whether a movement pattern is normal or pathological 
[Thomson 1998]. 
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In fact, the average recognition rate is higher when the hip angle is involved in 

the combination datasets. This proves that the hip angle does account for the 

most variation and thus contributes to the increase of correct classification 

rate in the dataset 

Furthermore Cutting and Profitt [1981] suggested that gender may be 

identified indirectly through the determination of the 'centre of moment' of a 

walker. The centre of moment is 'the point about which all movement, in all 

body parts, has regular geometric relations' [Cutting and Profitt 1981]. The 

study measures the differences in shoulder and hip widths to recognise 

between men and women. The hip, which is the body part nearest to this 

centre of moment, has the regular geometric pattern and thus, this knowledge 

strengthens the results from this work. 

Moreover, Barclay et al. [1978] and later Mather and Murdock [1994] has 

suggested that men have more shoulder swing and women have more hip 

swing if anatomical differences is to be used for recognition between men and 

women, suggesting the hip to be an important body part in gait recognition. 

Results in this work also shows that whenever the combined data set is 

dependently extracted, which is extracted based on tile most upper limb in the 

combination, the recognition rate is the highest among its data sets variations. 

Combined dataset dependently extracted me~U1S the knee and/or ankle 

angular displacements are extracted based on the hip or knee angle temporal 

information. They use similar temporal information, which makes it invariant 

to difference in time of start and end points leading to better recognition 

performance in comparison to independently extracted data. The 

independently extracted dataset has each angular displacement to have similar 

start and end points values, which are at the zero crossings. Hence, this work 

has been able to show that a difference in temporal information for different 

angular displacements does affect the recognition performance. 
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The result is not that surprising since work on model-based gait recognition 

such as the work of Yam (2002] and Y 00 et al. (2003] have always used 

similar temporal information to reconstruct their gait model since the lower 

leg rotation parameters are formulated relative to the thigh rotation 

parameters at similar time instance. Wang et al. [2003] applies Dynamic Time 

Warping (DTW) to temporally align the signals of hip and lower leg rotation 

to a fixed reference phase for gait recognition. As is the work by Lakany 

[2000] on differentiating kinematics pattern of normal men to pathological 

men, similar temporal dynamics of the biomedical non-stationary signals of 

hip, knee, and ankle are used for generating the kinematics pattern. Also, 

research on modelling gait kinematics in the field of robotics employs similar 

method to formulate the gait kinematics model [Carlos et al. 2001]. 

Also, it is interesting to note that the recognition rate is highest when the 

number of nearest neighbours to the test data is 1. By analysing the feature 

spaces in Figure 4.4, Figure 4.6, and Figure 4.8, it is quite clear that each class 

has a large spread in its data distribution. Thus, neighbours of the same class 

are quite far away from each other. 

4.3 Silhouette Moments Data 

Silhouette moments data are calculated from silhouette images of size 720 x 

576. These moment vectors, which represent sequences of image frames, are 

interpolated and resampled at sampling rate r = 30. Data sets consisting of 

different order moment vectors are built up of 10 subjects and 14 sequences 

for each subject. Table 4.2 displays the average correct classification rate for 

each simulation. 

Only central moments as high as order 7 are considered in the simulations. 

This is due to the recognition performance, which seems to decrease after the 

experiment of dataset order up-to 5. This is clearly seen in Figure 4.9. 
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Table 4.2: Average Correct Classification of Silhouette Moments Data 

Moments Order k-1 k-3 k-5 

Order up-to 7 88.6% 78.6 % 57.1 % 

Order up-to 6 90.0% 82.1 % 59.3% 

Order up-to 5 90.7% 85.0% 62.9% 

Order up-to 4 90.0% 86.4% 65.7% 

Order up-to 3 90.0% 82.9 % 62.9% 

Order up-to 2 89.3% 82.9% 62.1% 

Order up-to 1 83.6% 70.0% 60.7% 

Order 7 74.3% 61.4% 37.1% 

Order 6 67.1% 54.3% 40.0% 

Order 5 75.7% 60.7% 34.3% 

Order 4 75.7% 66.4% 37.9% 

Order 3 75.7 % 65.7% 35.0% 

Order 2 72.1 % 60.7 % 43.6% 

Order 1 53.6 % 39.3 % 24.3% 

Order 0 48.6% 46.4% 32.9% 

Central moment of order 0 is just an area representation of the silhouette's 

region, which is highly dependent on the size of the silhouettes. Thus, the 

recognition rate for its silhouette moments data is the lowest among all 

simulations. It is about 49%. 

Central moment of order 1 equals to zero. Hence, simulations of order 1 use 

the silhouette un-centralised moments data. However, only moment mOl' the 

vertical direction centroid has a periodic sttucture and this can be seen in 

Figure 3.8(c). Moment mOl also depends on height of the subjects being 

ftimed. Moment mlO , the horizontal direction centroid, changes with the 

silhouette's displacement of the x-coordinates over the sequence (refer Figure 

3.8(b)). This has been discussed in section 3.5.2. Thus, the recognition rate, 

which is about 54%, is still low in comparison to others. 
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From Table 4.2, the highest average classification rate is 90.7%, which comes 

from the simulations of all orders of silhouette moments data up-to order S. 

Almost all combined silhouette moments data reached just above 80% 

recognition rate. In general, silhouette moments data of order 4 produce 

consistent high results in comparison to others. As the order of the silhouette 

moments data decreases, the recognition rate slowly decreases. This can be 

seen in Figure 4.9, which shows the performance change with change in 

moments order for different k numbers. 

These values of recognition rate can be investigated by referring to its 

eigenvalues of the covariance matri.." in PCA. In Figure 4.10, eigenvalues of 

silhouette data moments of order 2, order 3, order 4, and order 5 are 

displayed in a pareto plot. Figure 4.1O(a) and (b) shows that the eigenvalues 

of the silhouette moments account for about two-thirds of the total variability 

in the data set, whilst Figure 4.10(c) and (d) has its eigenvalues account for 

about 90% and 80% of the total variability in the data set. Therefore, this 

high variance accountability has contributed to the higher recognition rate 

especially in the 4th order silhouette moments data. 

The choice for applying simple centralised moments to a silhouette dataset 

has been able to show that the silhouette moments have simple descriptive 

properties in producing distinct results for different temporal information of a 

silhouette dataset. Silhouette moments are simple to gather, invariant to 

translation due to different temporal information. It has an in built ability to 

discern, and filter, noise [Nixon and Aguado 2002]. The work by Shutler et 

al. [2000a] [2000b] has successfully applied velocity moments to silhouette 

data. As well as work by Lee and Grimson f2002a] [2002b]; this has applied 

centralised moments to gait dataset but using as many as 41 features. Further 

work on silhouettes, such as the work by Prismall et al. [2002] [2003] has 

managed to applied Legendre and Zernike moments to silhouette dataset for 

accurate reconstruction of moving silhouette. His work aims at predicting 

missing or intermediate frames within sequence. 
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Average Recognition Performance of Silhouette Moments Data 
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Figure 4.9: Average recognition performance of silhouette moments data. 
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4...4 Summary of Findings 

Table 4.3: Comparison with Literature 

Recognition 
No. of 

Gait Signature Subjects 
Rate 

(Sequence~ 

Cunado 96% 
Thigh orientation model by 

10 (4) 
VHT and FS. 
Phase-weighted magnitude of 

Yam 96% frequency components of limbs 5 (5) 
angular movement. 

Murase 
100% 

Eigenvalue decomposition of 
7 (10) 

and Sakai silhouette. 
Spatial-temporal template of 

Huang 100% silhouette and optical flow of 6 (4) 
silhouette. 

Shutler 94% 
Velocity moments for the first 

4 (4) 
four orders. 

Lee and 
100% 

41 features of moments from 
24 (8) 

Grimson orthogonal view. 
Dependently extracted 

98% 
combined angular 

This Work 
displacements of thigh, leg, and 

10 (14) 
foot. 

91% Silhouette moments of order 
~-to five. 

In general, the angular displacements data gives a better perfotmance than 

that of silhouette moments data. This is especially true when the angular 

displacements are combined angles, which has been dependently extracted 

based on the hip angle. The thigh angular displacements data in itself 

produces a good recognition rate in comparison to the leg and foot angular 

displacements. Therefore, whenever the combined data is extracted based 

upon the hip angie, it uses similar temporal information on the combined 

angular displacements data; thus, it is invariant to start and end points of the 

combined gait sequence. This gait signature performance is comparable to 

other in the literature, especially to literature that uses thigh orientation data, 

such as Cunado (96%), which uses 10 subjects with four sequences each and 

Yam (96%), which uses five subjects with five sequences each. The samples 
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used by both are small in comparison to this work; however, this work has 

been able to achieve better recognition rate performance. 

Performance wise, silhouette moments data of the first five orders is a little 

far off in comparison to other literatures employing silhouettes, such as 

Murase and Sakai (100%), which uses seven subjects with 10 sequences each, 

and Huang (100%), which uses just six subjects with four sequences each, and 

literature employing moments, such as Lee and Grimson (100%), which uses 

24 subjects with average eight sequences each. However, the gait signatures 

in the work of Murase and Sakai or Huang are applied to a smaller database 

compared to this work. While the work of Lee and Grimson uses moments 

extracted from seven regions of ellipses fitted to silhouettes, which differs 

slightly from this work in that this work considers the silhouette region as one 

whole region. Their work aims at recognising subjects by gait appearance, 

which requires the silhouette to be divided into regions in order to better 

describe change of appearance of subjects. 

In comparing another analysis using moments, Shutler's work also produced 

94% recognition rate using the first four order velocity moments, which are 

actually comparable to this work. Shutler's work actually uses the Fisher (F) 

statistic (from single factor Analysis Of Variance (ANOVA)) to identify 

which moments are more useful for classification purposes [Shutler 2000b]. 

In this work, even though the highest recognition rate achieved is from 

centralised order moments up-to order five but dataset of moments up-to 

order four has consistently produced high results. This is shown in Table 4.2 

and Figure 4.9. Bare in mind that the Fisher (F) statistic in Shutler's work are 

applied to only four subjects with four sequences each, while this work uses a 

larger dataset. Thus, empirical result in this work has also shown that gait's 

silhouette dataset of order four and five can become a good descriptor for 

gait recognition. 
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Chapter 5 

SUMMARY 

"Pl[ysical reality consists if space-time eve1tts; no rational division into a 3-d .pace attd a 

time continuum; laws if nature must correspond." [Einstein 1922] 

5.1 Conclusions 

Feature representation is an important element in feature extraction and thus, 

a feature should be as descriptive as possible to ensure success of 

classification. Within the realms of computer vision, gait is a new biometrics 

that recognises people by the way they walk Gait kinematics features, which 

concerns its geometry, can be represented using its spatial and temporal 

characteristics; namely moments of silhouette and angular displacements of 

limb. Limb angular displacements data are hip angle, knee angle, and ankle 

angle and silhouette moments data are centralised moments of binary image 

data. In this work, the focus is on analysing gait kinematics features using 

data-driven approach. 

A data-driven approach involves usmg extracted data and derivation of 

statistical information from the extracted data. In comparison to model­

based approach, which is object-specific, data-driven approach aims at 

producing an informed decision on class labels of unseen data by processing 

it and testing it against systematically gathered and analysed past samples. It 

emphasises the understanding of functional relation of the sample data to the 

real world. Principal Component Analysis (PCA) and Canonical Analysis 

(CA) are techniques in feature extraction that uses statistical information of a 

dataset to produce good features for classification. To fit that purpose, PCA 

and CA analyse the variability in the data set to estimate its generalisation 

performance. PCA represents the dataset in a reduced dimensional space 

determined by the total covariance scatter and CA further discriminate the 

dataset using the within-class to between-class covariance scatters. 
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Combined features of angular displacements data and silhouette moments of 

a certain up-to orders have been used as signatures for analysing gait The 

highest average recognition rate achieved is 98% for combined angular 

displacements data and 91% for silhouette moments data. Therefore, this 

work can suggest that angular displacements data, even though labour 

comprehensive, can be a better feature representation in comparison to the 

simple silhouette moments data. 

5.2 Summary of Results 

The research question of this work is on how descriptive is gait through 

analysing its kinematics features. This work has studied the spatial and 

temporal kinematics features of gait and has concluded that both features 

have the potential of being signatures for gait recognition. Below are the 

summarised results of this work and its contribution to the biometrics field: 

• Temporal kinematics features of gait are the limb angular displacements 

data of the hip angle, knee angle, and ankle ;mgle, which has been 

manually labeled and gathered to be feature vectors. Previous research 

in automatic gait recognition has used the angular displacements of hip 

and knee [Cunado et al. 1999] [Yam et al. 2002] [Yan1 2002]. This work 

has introduced an extended feature by analysing the ankle angle, which 

is the foot flexion during a person's locomotion, in addition to the two 

commonly used features. Thus, the work has managed to show that 

the incorporation of ankle angle into the feature vectors can be used as 

signature in automatic gait recognition. 

• Through the combination of angular features, analysis in this work has 

shown that the hip angle contains much of the variability during 

locomotion, which can contributes to the uniqueness of each person's 

gait Thus, this evidence further strengthens research on automatic gait 

recognition if using angular displacements of the hip. 
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, Silhouette images are spatial features of gait. They are highly 

dimensional thus centralised moments have been used for its 

representation so as to be structurally similar with the feature vectors of 

angular displacements data. There are many research employing 

moments representation of silhouette but using different types of 

moments [Shutler et al. 2000a] [prismall et al. 2002] [prismall et al. 

2003] and extracting moments from regions of silhouette [Lee and 

Grimson 2002a]. In this work, silhouette moments data has been 

analysed using the PCA and CA algorithm, which has been proposed 

by Huang [1999] but the method has been applied to a different 

content of the silhouette. Huang [1999] applied the algorithm to pixels 

and optical-flow of silhouette. Hence, this work has provided evidence 

tl"lat simple centralised moments of silhouette can become a gait feature 

for use in gait recognition. 

• Before applying PCA and CA, the data needs to be pre-processed for 

making the analysis invariant for classification. Thus, a cycle extraction 

procedure, which involves intetpolation and resampling, has been 

proposed in this work. This procedure has been shown to be a 

potential technique for introducing flexibility in gait recognition 

analyses, whereby it relieves the basis of deftning complete gait cycle, 

which used to be deftned at heel-strike in previous approach. It also 

reduces the data dimensionality hence eases the classification process. 

5.3 Future Work 

The work in this thesis concerns the analysis of kinematics features of gait 

using standard approaches; namely PCA and CA. There is much work for 

further research opportunity. Below are future works that can be suggested: 

Feature Selection 

Feature selection is a technique that chooses features but the ones more 

informative from the set of features. It identifies the most important and 
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relevant input variables that are responsible for malor variations of the 

output. This technique uses search and fIlter strategies to gather, evaluate and 

select necessary gait features for analysis. In this work alone, two different 

types of gait features have been analysed. There are many other gait features 

that can be used for recognition but which features contribute to the best 

descriptive measure of gait recognition is still an open question. 

Regression Analysis 

This work has employed the SVR algorithm to interpolate the gait motion 

signal in the cycle extraction procedure. The SVR is an established method in 

machine learning, which has rigorous formulation and good generalisation 

capabilities. It employs implicit mappings of input data into the feature space 

via the kernel function. Thus, through this analysis, the affect of 

regularisation in the optimisation and interpolation using different kernel 

function can be explored. Also, this analysis can examine the effect of noise 

inclusion in the feature vectors for a more robust system. 

Separability Measures Analysis 

The separability measure that has been used in this work is the ratio of within­

class and between-class scatter of gait dataset. 111erefore, through the 

separability measures analysis, several separability measures can be used and 

fOlmulated for feature discrimination. The analysis can evaluate and decide 

on the best separability measures for measuring performance of gait. 

Occlusion Analysis 

The manual labelling of the angular displacements data has been applied onto 

the leg nearest to the camera view (t.e. outer leg). Thus, analysis on occlusion 

will investigate the occluded (inner) leg of gait data. It can explore gait 

symmetry by studying the effect of using either outer leg, or inner leg, or both 

legs as gait descriptors. 
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