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Asthma drugs are administered through the mouth and the drug particles enter the upper 
airways. Most of these particles do not go further into the central airways, because they get 
deposited in the airway walls. The aim of the project is to simulate the flow Held within a 
human airway segment and identify the proportion of particles that get deposited. A 
laminar steady flow model was used after making some relevant approximations on the 
flow behaviour due to inspiratory flow in central airways. A segment of airway in central 
region of the airway tree was chosen, since the flow simulation in whole airways 
computationally expensive and very time consuming. The geometrical parameters of a 
typical airway branch was investigated and double airway bifurcation that lie in the 5^ to 
7 generation of the Weibel model A airway model was chosen for flow simulation and 
particle tracking. 

The Computational Fluid Dynamical (CFD) model in Fluent (commercial software) was 
chosen to well represent the physical flow model, maintain high degree of numerical 
stability, and faster convergence of residuals below at least four orders of magnitude less 
than the initial residual in first couple of iterations. A structured grid generation scheme 
was chosen for its accuracy and speed of solution. A strategy for creating multi-block grid 
is explained and some two- and three-dimensional multi-block designs were created that 
gave the best possible grid quality. Due to the length of time taken for particle tracking and 
flow simulation two-dimensional simulation was conducted in detail, instead of the three-
dimensional simulation. Grid independent results were used to analyse some interesting 
flow features for various Reynolds numbers and various branch outlet static pressure 
variations. 

Particle equations of motion were chosen out of most probable forces that particle could 
encounter when it moves with the fluid in laminar flow field. Time advance of particle 
equations of motion was done by 4̂ ^ order Runge-Kutta scheme and the interpolation of 
fluid velocity using the discrete field (in CFD) at particle position was done by Shape 
Function interpolation scheme. Vortical flow Geld and potential flow were used as test 
cases and the combination of Runge-Kutta time advance with Shape Function interpolation 
gave adequate accuracy for particle tracking. 

Particle tracking program was written in C++ language, which uses the Fluent solver dump 
data in "Tecplot" format, and is also able to do multi-particle runs on a structured grid. A 
data structure was created for the particle for tracking in structured grid, which took into 
consideration the different data structures present in commercial flow solvers. The particle 
deposition sites were found and particle deposition efGciency was calculated. It was found 
that when particles were released away from the centre of the parent branch they had more 
chances of reaching the outlet. 
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1 Introduction 

The human airway is composed of large number of bifurcating (dividing into two) tubes, 

aH of which stem from the Trachea. The mouth and the nose open up the airways to 

atmospheric gases at atmospheric pressures. These gases are transported through the 

airways into the lower parts of the lung by the means of a pressure difference. Expansion of 

the lower airways is due to the expansion of the rib cage and downward movement of the 

diaphragm reduces the internal pressure of the lower airways with respect to the 

atmosphere. Air travels through the upper airways at moderate speeds (where compressible 

effects can be ignored) and is slowed down in lower airways until molecular diffusion 

becomes the means of air transport. Chemical reactions occur on the peripheral alveoli on 

the lower airway, where mostly oxygen from the gases is absorbed and carbon dioxide is 

released by the blood flowing in the capillaries. 

Studying the process of respiration has assisted the diagnosis of various lung diseases and 

airway abnormalities that restrict airflow in the airways. It is realised that the airways offer 

a unique path for the administeration of drugs into various parts of the airways and then 

straight in to the blood stream. However currently only Asthmatic drugs are widely 

administered through the airways to help asthma sufferers to breathe normally. Other 

potential inhaled medicines, that are currently administered into the body by iryections, 

include Insuhn for diabetics and Antibiotics to treat chronic infections (Finlay, Lange et al. 

2000). A study of respiration to deliver the drugs would require the knowledge of the flow 

dynamics within the airways and the dynamics of drug particles in the flow domain. 

The pressure acting on the airway tubular structure may be different from one part of the 

lung to the other. In fact due to the airway asymmetry the air supplied to each lobe in the 

lung is different. The models describing the airways are investigated in chapter 2. The 

upper and the central airways under normal breathing conditions are considered to be rigid 

compared to the lower airways. Hence the pressure difference created at the lower airways 

is transmitted to the airway opening through cross-sectional pressure differences rather 

than pressure forces acting on the surface of the airways. The mass flow rate at of the 

central airways will be a function of the airway model and the airway branch outlet 

pressures. 

In general, the airway tree is created by tubes that branch into two. The simplest model to 

study is an airway bifurcation, a single branch in the airways, where unique flow changes 
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are created. In chapter 2 the geometrical features of such a branch is investigated. The flow 

within a rigid branch is due to its local geometrical attributes, downstream flow conditions 

such as outlet pressures, and upstream flow conditions such as the velocity distribution. 

Hence a method has been developed to study the flow irregularities due to different outlet 

pressures for given inlet flow rate. The pressure acting on the flow at branch outlet is 

assiuned to be constant across the outlet cross-section. The axial velocity profile through a 

single bifurcation seems to be skewed (Zhao Yao 1997). Hence double bifurcation 

geometry is needed to investigate the cascade effect of one bifurcation on the other. A 

symmetrical double branch is chosen at S''' to 7"̂  generation of Weibel airway Model 'A', 

which lies in the central human airways. The choice of this airway branch will be made 

apparent in chapter 2, section 2.4.1. A structured multi-block grid, which is needed for 

Computational Fluid Dynamics (CFD) model used, is created on the model geometry and 

the detail grid generation process is given in chapter 3. The flow is greatly influenced by 

the exact complex shape of the model used. Hence a detail description of the airway 

models and bifurcations are given in chapter 2. 

The lower airways are located in different lung lobes, which are labelled as either lower or 

upper. The path length from Trachea to the alveoli on the upper lobes is smaller than the 

path length to alveoh on lower lobes, which is evident from the asymmetrical structure of 

the upper airway. This implies that mass flow rate to central airways, which are located on 

each lobe, will be different. The central airways contain more symmetrical bifurcations. 

For a given symmetrical inlet flow profile the outlet branch axial velocity profiles are 

skewed. It is expected, when outlet pressures are relatively the same cascade of 

symmetrical branches would not have equal mass flow rates at their outlets (Andrade, 

Alencar et al. 1998). In order to provide near-equal mass flow rates to the lower airways 

different outlet pressures may have to be applied on the symmetrical branch outlets. This 

may be justified by the fact that the pressure exerted on the lung is different in different 

regions of the lung (Cohen 1993). In the absence of the mass flow rate data in central 

airways a range of pressure differences has to be investigated for realistic flow simulation, 

as well as, how the range of pressure differences affects the velocity profile and mass flow 

rate. 

The airway flow dynamics are affected by multitude of factors including the wall friction 

from a large surface area and cartilage in upper airways, viscosity changes due to presence 

of water vapour, change in density due to local volume and pressure changes, and local 

pressure changes due to external forces acting on the airway wall. The various forces 
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applied to the airflow will invariably create unique flow patterns within the airway 

branches. In chapter 2 efforts are made to reduce the complexity of the fluid flow problem 

by creating assumptions that at the same time would retain the unique airflow patterns in 

inspiratory flow. 

The CFD can be used to solve the detailed flow field around many complex shapes such as 

aircrafts and ships. In chapter 4, the methods used to solve the flow field within airway 

branches will be explained. Fluent, a commercial CPD flow solver (Fluent 1998) will be 

used to solve the flow field. In order to model and simulate the flow the pre-processor of 

Fluent "Gambit" is used to create the geometry as well as the grid. Using Fluent a 

converged solution on three different grids, each Gner than the previous, is used to carry 

out a grid independence study. A solution is sought whose residual that does not to change 

within some tolerance limit from one grid to another. This result is used to carry out fluid 

flow analysis. The validity of the CFD results are confirmed by referring to experimental 

results given on literature of similar flow conditions and geometry, or by referring to 

results from already validated CFD results under the similar conditions. 

Assuming that aU drugs are administered in droplet or particle form the airway flow 

patterns must be known a pnon to deduce the drug particle motion, and thus to make 

inferences on the effect of flow patterns on the drug delivery. Current drug delivery 

systems such as the inhalers used by asthma patients deliver the drug into the inspiratory 

air stream as fine particle sprays that go into the airway through the mouth. Dmg studies 

have shown that significant amount of these drugs are deposited within the first few 

branches of upper airway, and not further down the airways where they are needed for 

effective treatment. Simulating particle tracks can provide general information on particle 

paths and particle deposition sites. 

The administered drug is assumed to be composed of solid particles and these solid particle 

motions will be simulated using deterministic models, i.e. individual particles will be 

tracked. In chapter 5 the fluid forces that are exerted on the particle motion are explained, 

and the largest force, the Stokes' drag term, is used in the particle equations of motion. The 

numerical scheme used to solve the particle equations of motion is described with relevant 

interpolation schemes. A particle tracking code was written in C++ programming language. 

The executable program will take the grid independent Eulerian flow field data, cell 

centred grid, and the particle initial positions. Large number of particles can be tracked in 

sequence. In chapter 6 the particle tracking process is designed. The quality of particle 

tracks depends on the detailed flow patterns and how well this information is used to solve 



14 

the particle equations of motion. When a particle enters a wall ceU (on a cell centred grid) it 

is considered to be deposited. The relevant program files are given in Appendix B (multi-

block three-dimensional structured grid) and Appendix C (two-dimensional structured 

grid). The ratio between the deposited particles and those entering the bifurcation is 

calculated, which is the drug delivery efficiency that provide some information about the 

effectiveness of the inhaled drugs in the airways. 

Considering the time limitation for designing a particle tracking routine in three-

dimensions, and the complexity of the CFD procedure in three-dimensions, a two-

dimensional CFD procedure was chosen. The complexity of the three-dimensional 

structured CFD procedure and generating particle tracking procedure on that data will be 

made evident in chapters 3 (grid generation) and chapter 6 (particle tracking). However 

most of the essential parts of the three-dimensional solution process and particle tracking 

will be highlighted without significant validation of the results. The two-dimensional CFD 

solution process and particle tracking procedure will be completely validated and tested. 

FinaUy in chapter 7 main conclusions from the project are drawn together with 

recommendations for future studies. 

1.1 Summary 

1. In an effort to simulate varying degree of asymmetrical flow, which is known to 

occur in the human airways, a double bifurcation two-dimensional model is used in 

the CFD study. The inflow boundary conditions are steady and the flow rate is 

fixed, and the outlet static pressure is varied to simulate the asymmetrical flow 

conditions. 

2. Particle equations of motion are solved numerically using designed particle tracking 

procedure implemented in C++ program. The multiple particles are tracked as a 

post process using Eulerian CFD data from Fluent CFD software. 
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2 Flow through the airways 

2.1 Introduction 

This chapter present the model flow problem. To model the airway flows, the factors 

governing the flow, the model of the airway geometry, and the equation that best describe 

the flow field are essential. There are many factors that are known to affect the flow within 

airways, including the flow through complex cross-sections, periodic volume change and 

associated pressure change, and gas mixing and gaseous exchange. The approximations 

will be made to simplify the factors affecting the airflow. In section 2.2 airway branch 

models will be presented, and the airway bifurcation geometry is described. In the section 

2.3 the general flow trends within the airway models and actual airways are presented. A 

description of the chosen flow model will be outlined in section 2.4. 

2.2 Description and models of the airways 

The complexity of the airway flow may be attributed to its complex structure of tubes that 

bifurcate out to form cascade of branches that leads to many hundreds of thousands of 

tubes. The cross-section of the airways has complex cross-sectional shapes. The 

complexity of the airway branching has been modelled by making some approximation as 

to how branching takes place in rivers and in vegetation (Horsfield 1991). Airway models 

were formed by some researchers aiming to understand the airflow distribution in lung, 

which could be used to identify diseased airways. 

2.2.1 Airway models 

The lungs are known to control various biological and chemical processes that are essential 

to the function of a healthy body. The air movement, and thus the oxygen release and 

carbon dioxide intake, is controlled. Air is moved in to the lung by the contracting of the 

diaphragm forcing it to move down and forward of the body, thereby increasing the 

thoracic volume. This is assisted by the muscles on the rib cage, which puU the ribcage up 

and forward. In general the majority of the volume change in the airways occurs in the 

lower airways and upper airways retain geometrical similarities during volume changes. 
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Figure 2-1 Main segments of the human airways (Weibel 1991) 

Figure 2-1 shows a schematic of the whole airways starting at nose and mouth and ending 

at alveoli where air interfaces with the blood through a membrane. A more detailed picture 

of the airways from a cast is shown in Figure 2-2. It shows a complex system of branches, 

which needs to be represented by a simplified branching model so it can be studied. 

Figure 2-2 Cast of the human airways showing the multitude of the branching (Web Ref: 01) 
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Figure 2-3 A peripheral segment of the lower human airway (Weibel 1991) 

The central airways ends at the terminal bronchiole and from there the lower airways 

begin, as shown in Figure 2-3. The lower airways end at the alveoli. 

The standard physiologcal model of the airways represents branching by dichotomy, with 

the parent branch dividing only into two branches, Figure 2-4. The stem of a bifurcation 

where branching takes place is called the parent and the tubes that branches out are called 

the daughters. However within the bronchial tree, as can be seen by Figure 2-4, branching 

by trichotomy is apparent where a parent branches out to produce three daughters (Weibel 

1963). Such a branch could be described as two branches of dichotomy with very small 

parent length on the second branch. When dichotomy is used to model airways all the 

airway branches are represented as some combination of a unit branch, a bifurcation, which 

has some key geometrical parameters including lengths, diameters, branch angles, and 

outside curvatures (section 2.2.3). In a dichotomous system one may compare the changes 

in branch geometry from one branch to another to understand and develop a general airway 

model. 

Airway measurements pubhshed by (Weibel 1963) and (Morsfield. Dart et al. 1971) are 

extensively used to describe airways. In both these investigations the airways have been 

separated into three parts; upper, central and lower airways. In (Horsfield. Dart et al. 1971) 

the upper airway ends at branches with 0.7mm diameters (terminal bronchioles). (Weibel 

1963) named the upper airway as the conductive zone and the lower airways as the 

transition zone, as shown in Figure 2-5, where the conducting airways end at generation 16. 

An airway system can be further analysed by a numbering system to identify a branch 

within the airways. It is here that these researchers differ, i.e. they used two different 

numbering systems to identify a branch within the airways, and also on the extent of 
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measurements they earned out. Weibel looked at the airway branches with respect to the 

Trachea. If the number of dichotomous sub-divisions or nodes, Nn are known then the total 

number of resulting branches, Ng can be given by Equation 2-1. 

Equation 2-1 

N =2N +1 

Regular 
dr'chofomY 

Irregufar 
d/'cho'omy 

Figure 2-4 Regular and irregular branching 

models 

Equation 2-2 

N(z) = 2 ' 

Figure 2-5 Weibel's symmetrical model of the 
airways 

Weibel's model "A" of the transitory zone (upper airways) constitutes a symmetrical 

regular dichotomous airway system (measurement data given in Appendix A). The trachea 

was given an order of zero and each following branch is allocated a generation number, z. 

Then the total number of branches in a given generation, z can be presented by the 

Equation 2-2. All branches of a given generation have the same dimensions and subsequent 

branches from one generation to the next, some geometrical parameters are allowed to be 

varied, like the branch angle, branch diameter and the branch length. Since the real airways 

are not symmetrical Weibel also had "Model B" with irregular dichotomy, described with 

respect to the branch angle, as opposed to diameter difference of daughter branches. In this 

model the respiratory bronchioles are within the generations 17 to 19, with generation 20 to 

23 being alveoli (belong to the transitory zone as shown in Figure 2-5). In general the 

smaller daughter tube would be at a larger angle (on average 30° to 65°) to the parent and 

the larger daughter branch at smaller angle (on average around 20°), (Weibel 1991). 
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Irregular dichotomy with equal daughter branch diameters has been noted to occur in the 

upper airways. In such a case the termination of the Weibel model would occur with 

different generation of branches. 

It has been reported that the degree of irregularity in the branching in upper airways 

(generations 1-7) is primarily caused by lengths of daughter tubes and to a lesser extent by 

the diameter or the cross-sectional area of the daughter branches. The length to diameter 

ratio has been used to determine the degree of irregularity among the airway segments 

(Weibel 1991). However it must be noted that degree of variability also arises from the 

technique of casting procedure used, mainly due to the degree to which the lung was 

"blown", usually 75% of TRC (Total Residual Capacity), and also the inter-subject 

variabihty (i.e. due to lung differences due to body height, sex, age, etc.). So a model 

usually represents some "averaged" airways. 

Weibels measurements of the upper airways were not complete. (HorsReld, Dart et al. 

1971) claims to have measured all branches up to branch of diameters of 0.7mm from one 

lung. Horsfield numbered all the branches with 0.7mm diameter as one (order one) and 

increase number to branches towards the trachea. Then the daughter branches will have an 

order less than that of the parent branch. If a parent branch is of order w then the parent 

branch number as a sum of daughter branch number is given by Equation 2-3. 

Equation 2-3 

- ^w-1 + ^w-n 

where n is the difference in numbering between the daughter branches. In a symmetrical 

model two of the same order meets to create the next highest order, i.e. . 

The greater value of n means greater asymmetry at a branch. Horsfield found n to vary 

between 1 and 5. 

Essentially describing the airways with a numbering system where branches with the same 

number share common geometrical properties, HorsGeld manages to capture the essence of 

asymmetry of the airways. Using various values of n the measured data were fitted to each 

branch of the airway model. Over the years many lung models have been developed that 

either use the generation and dichotomous modelhng of Weibel, or asymmetrical 

quantification technique of Horsfield. However the asymmetry models differ from one 

researcher to the next. Hence most fluid dynamical studies are conducted on a symmetrical 

airway model. 
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Note that bifurcation orientation within the lung, or relative to other branches, have not 

being discussed, since they are difficult to quantify using older methods of measurements. 

2.2.2 Latest Models 

Prior to 1980's researchers directly measured bifurcation geometry (length, diameter, 

branch angle and so on) and used statistical techniques to obtain the approximate 

dimensions of the airways. More recently, computer tomography, which extracts data 

based on radiopacity, have being used to obtain three-dimensional spatial data on airway 

bifurcations (Woods, Zerhouni et al. 1995). The surface of the airways and the surrounding 

spaces were identified by two colours after some manipulation of the scanned data. A 

voxel, V, (a three-dimensional pixel) was used to represent this data and the total volume 

of the data set in three dimensions may be V X x V Y x V Z , where number of voxels in 

(x,y,z) directions are (VX,VY,VZ). There is software, which could break down the three-

dimensional image file in to two-dimensional sections. Then using the voxel size of say 

x x y x z (mm) two-colour intensity two-dimensional slices can be used to obtain parameter 

estimation of airway cross-sections (this can be done in Matlab software). Then coordinates 

from all the slices are combined to produce the surface geometry of the airways. The 

surface geometry can be used immediately in a CFD pre-processor. 

However such a model, describing the upper airways and providing more quantitative 

information about the changes in upper airway cross-sections, is difficult to validate and 

the smaller airway cross-sections are difficult to capture. Therefore older models are still 

used to describe the airways. 

2.2.3 Typical airway bifurcation 

It may be assumed that an airway branch is a hollow cylinder. Then, obviously the parent 

branch will not interface perfectly with its daughter branches due to the circular cross-

sections. Therefore the parent branch has to change its cross-sectional area and split into 

two before daughter tubes are formed. The complex cross-sectional shapes of an airway 

branch, a bifurcation, have been approximated by conic sections. 

Figure 2-6 shows a geometrical model of the airway bifurcation with the geometrical 

parameters, as defined by (Horsfield, Dart et al. 1971). It can be seen that there are five 

distinct cross-sectional changes. The flow divider is formed when the top walls of the tube 

move in (section d) and ends just before daughter tubes are produced (section e). The flow 

divider may also be called the transition zone, T. The inlet cross-section of the flow divider 

is circular and it gradually changes into elliptical shape while maintaining the same cross-
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sectional area. The elliptical shape deviates after the minor curvatures of the cross-section 

equate to the circular curvature of the daughter tube cross-section. The cross-sectional 

shape becomes more flattened at the top and bottom, the smaller axis of cross-section 

becomes more equal to the diameter of the daughter tube (in a symmetrical bifurcation) and 

the cross-sectional area increases. The change in area then occurs uniformly. The length of 

flow divider is where the changes in cross-section occur. The two daughter tube cross-

sections are approximately circular. The outer curvature of the bifurcation &om section a to 

section e, and at some distance thereafter was assumed to be constant. 

^ c5 / o 
O o o 

Figure 2-6 Cross-sectional changes 'a' to 'e' as seen on the bifurcation plane and the length of the flow 

divider or the transition zone, T 

Figure 2-7 Different shapes of carina A, B and C, and D is the cross-section perpendicular to the 

bifurcation plane or the vertical plane, (Horsfield, Dart et al. 1971) 

The shape of the apex of the bifurcation depends on the curvature of the apex, r, as shown 

in Figure 2-7. In general the ratio (r/d) is approximately 0.1, showing a sharp flow divider. 

At right angles to the plane of the bifurcation in the direction of the arrow in Figure 2-6, the 

length e, in Figure 2-7 is approximately equal to or less than the diameter of the daughter 

tube (HorsReld, Dart et al. 1971). 
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2.3 Flow in the Airways 

As the air flows through the nose it gets filtered, and flow resistance increases reducing the 

air velocity. The temperature of the air increases. As the air passes through larynx it passes 

through the narrowest section of the upper airways. A jet-like flow expands in to the 

trachea, reaching the trachea diameter within a small distance. As a result, under normal 

breathing conditions, the airflow in the trachea is considered to be turbulent (Dekker 1961). 

It is apparent from breathing exercises that convective flow dominates in the upper 

airways, and that the magnitude of convection reduces down the airways. This is apparent 

when speed of gases in each airway generation is estimated, as shown in Table 2-1. The 

Womersley parameter describes if the flow changes in time are significant. A value below 

1 means most of the flow conditions can be approximated to be steady state (section 2.4.2). 

The larger branches like the trachea, primary bronchus, and lobar bronchus supply to many 

generations of branches that follow. The flow in the lower airways near gas exchange 

membranes is mostly by diffusion where the contact area for the gases is large. During 

inspiration there exists certain residual air volume inside the airways and when new air is 

taken in gas mixing is know to take place in the lower airways. 

Table 2-1 Some airflow characteristics in the Weibel airway model A under normal breathing 
conditions (Pedley and Kamm 1991). 

Normal breathing at O.Slitre.sec"', or at a 
frequency of 0.25 Hz 

Generation Diameter/ cm Length/ cm Reynolds Number, 
Re 

Womersley 
Parameter, a 

Trachea 1.8 12.0 2325 2.9 

Primary 
bronchus 

1.22 4.76 1719 2.0 

Lobar 
bronchus 

0.83 1.90 1281 1.3 

3 0.56 0.76 921 0.91 

4 0.45 1.27 594 0.73 

5 0.35 1.07 369 0.57 

10 0.13 0.46 32 0.21 

15 0.066 0.20 1.9 0.11 

20 0.045 0.083 0.09 0.07 

Figure 2-8 shows the branch names organised in the lungs. Airways seem to have static and 

dynamic quahties to hold air and distribute it in a certain way. The branches that supply the 

air to the lobes have different mass flow rates depending on the number of branches 

followed and also the distance to the alveoli sacs. For example the lower lobes are better 

ventilated than the upper lobes (Cohen 1993) since the lower lobes have greater distance to 
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reach the alveoli sacs than the upper lobes. The airway model study from section 2.2.1 

indicates that those airways that branch outwards from a branch will have shortest path to 

the alveoli. In general branches will decrease in diameter towards distal airways and the 

length of the airways decrease more on those branches that branch outwards with higher 

branch angle. 
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Figure 2-8 Identifying key branches of the upper airways, (Cohen 1993). 

The pressure drop necessary to create a certain inflow rate is expected to depend on the 

energy loss due to viscous and inertial losses within the airways (for laminar flow). Using 

boundary layer theory (Pedley, Schroter et al. 1970a) and (Pedley, Schroter et al. 1970b) 

predicted the pressure drop on a fixed angle symmetrical tree. They claimed that in airway 

branch flows never come to a fully developed pipe flow, but always remain like a 

developing pipe entrance flow whenever a new daughter tube is reached. The branch length 

is not long enough for fully developed flow to be initiated under normal breathing flow 

Reynolds numbers. They have assumed that certain entry profile exists at the beginning of 

all the daughter branches but with different flow rates. Equation 2-4 gives their pressure 

drop relationship. 
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Equation 2-4 

AP = V 

where Ap is the pressure drop across the tracheobronchial tree, V is the mean inspiratory 

flow rate, p. and p are the viscosity and the density of air, and K is a constant relating to the 

airway geometry. Pedley's equation and similar equations of others give only an 

approximate value for the pressure drop within airway branches and they assume similar 

flow features on each bifurcation of the airways. 

Airflow distribution experiments can provide general information about the mass flow rates 

into branches. However specific flow rates into specific bifurcations in the airways, and 

outlet pressures of branches are difficult to quantify (Slutsky, Berdie et al. 1980) and (Patra 

and AGfy 1983). 

Any effort to obtain detailed flow properties would involve detailed flow modelling, and 

solving a flow model within a complex geometry by numerical means, i.e. using CFD. 

However as the number of branches increases CFD become computationally expensive and 

the mesh generation is expected to increase in complexity. Another m^or difficulty in 

simulating the exact flow features is the unknown boundary conditions at the model inlets 

and outlets. Hence the boundary conditions must be varied to realise the actual flow 

conditions. 

2.4 Flow Model 

2.4.1 Airway model 

A double bifurcation model was chosen to study the flow field, with constant inflow rate 

and varying degrees of outlet pressure differences. Also, this model will be used to study 

the particle tracks and deposition. A 5^ to 7"̂  generation Weibel model 'A' airway branch 

was chosen. This airway branch lies within a lobe of the central airways, and not on the 

upper airways where m^or asymmetries lie. Hence a symmetrical geometrical model 

approximation is valid. 

2.4.2 Flow condit ions 

Flow in an airway branch is investigated to determine the type of flow change that occurs, 

which would provide valuable information about flow resistance and pressure loss. The 

m^ority of the flow resistance seems to occur in the upper and central airways where 

convective flow is high and flow surface area is beginning to increase. Also as the flow rate 

is increased in the trachea the upper lobe resistance increases more than the lower lobe 
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resistance. (Slutsky, Berdie et al. 1980) suggested that this is due to the acute branch angle 

and shorter branch length, leading to increased flow resistance. Also different pressure 

differences may be created on different lobes at corresponding same flow rates to minimise 

the flow resistance and maximise regional ventilation. The airway resistance also depends 

on same global properties of the whole airways including the state of inflation of the lungs, 

on the direction and instantaneous magnitude of flow rate, on the density and viscosity of 

the gas, and to a lesser extent on the frequency of breathing, (Jeffrin and Kesic 1974). For a 

given lung inflation and inlet flow condition the energy losses in the airways may originate 

from boundary layer development, separation, turbulence or laminar pipe friction. Older 

resistive models assume that the total flow resistance in airways is a sum of individual 

branch resistive components due to pipe entrance flow development at each branch. A CPD 

study will investigate the flow resistance by simulating the presstu-e changes within the 

bifurcation domain. 

Respiratory flow cycle is due to the periodic pressure variations within the airways. The 

flow resistance and the airway wall elasticity will respond to the pressure variations. Most 

of the upper airways do not expand as much as the lower airways, so we can assume that 

airway walls are rigid. The Womersley number, a, has been used to find when unsteady 

effects on the flow in a straight pipe are important. The Womersley number represents ratio 

of unsteady forces to viscous forces and it is given by Equation 2-5. 

Equation 2-5 

or = 0 . 5 d f - Y 

where (0=27rf is the angular frequency of oscillation (for a normal breathing of 0.5 litre.s'^ 

breathing frequency, f=0.25Hz) and is the kinematic viscosity. If the Womersley number, 

a > 1 then unsteady effects are important (Pedley and Kamm 1991). Table 2-1 provides 

some general Womersley parameters for the airways. It can be seen that from 3'̂ '̂  

generation a < 1, which signifies unsteady effects are not as important. Under steady state 

conditions the viscous forces, are larger and respond instantaneously to any pressure 

variations. Note that the above theory was defined for fully developed laminar flow on a 

straight pipe. However in the absence of a better theory it presents an adequate theory to 

suggest that most of the central airway flows under normal breathing conditions may be 

studied using a steady model. 
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During inspiration the flow rate increases rapidly from zero flow and the volume in the 

airways increases slowly. As the flow rate become constant the volume increase is also 

constant and this occur over majority of the inspiration time, as shown in Figure 2-9. Then 

as the flow rate is reduced to a minimum the air volume increases to a maximum and the 

flow rate reverses and expiration begins. In natural breathing conditions a deviation from 

steady flow is only observed near the initial and later part of the inspiration (Isabey and 

Chang 1981). So a major part of the inspiration can be considered to satisfy a steady state. 

Time/ sec 

Figure 2-9 Approximate flow rate pattern for quiet breathing. 

2.4.3 Flow equations 

It has been identified that laminar flow dominates under normal breathing conditions in the 

central airways. It is assumed that there will be no heat transfer or internal energy change 

in the fluid. The variation of viscosity may occur if there is a marked temperature 

difference within the fluid, however in this case the viscosity is constant. The fluid is 

assumed to be Newtonian. 

The flow model will be represented by the Navier-Stokes equations. Equation 2-6 and 

Equation 2-7, which describe the conservation of momentum and mass of an 

incompressible Newtonian fluid. 

Equation 2-6 

Dv 
— + v.Vvl = -VP + |i,V^v + pF 
3t J 
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Equation 2-7 

V.v = 0 

At the wall of the geometry u velocity vector in x the no-slip boundary condition is 

assumed. The outlets of the flow domain will have pressure boundary conditions while the 

inlet will have constant flow rate. Equation 2-7 basically ensures mass conservation and 

Equation 2-6 shows the balance of convective, pressure and viscous forces. The body force 

term is ignored, F=0, since buoyancy effects are ignored. It is expected that the viscous 

term in the Equation 2-6 vdll play an important role as much as the inertial terms under the 

flow conditions described above 2.4.2, i.e. under laminar low Reynolds number flows. 

2.5 Conclusion 

Airways are complex geometrical structures. It appears that the best airway models use a 

branch that divides into two (dichotomy). The branch itself is modelled using conical 

cross-sectional shapes. From airway models some geometrical similarities of the airways 

were obtained, such as how the airway diameters reduce with the airway generation 

number, and how the airway diameter length ratio change for one branch to another. These 

relationships can provide useful information about the airflow development if airflow 

within one such branch is found accurately. 

The flow is not expected to be the same fi-om one branch to the next, since each bifurcation 

receives altered flow from the upstream branch. During inspiration on central airways the 

flow behaviour can be approximated to be steady state and laminar. It is expected that in a 

single bifurcation unique changes in flow Geld occur for certain inlet-outlet driving 

pressure differences and Hxed inflow mass flow rate. Flow simulation using an outlet 

pressure difference is expected to provide useful information about typical flow changes 

within a bifurcation and the mechanism responsible for pressure loss or resistance. Since 

exact pressure differences are difficult to measure and quantify accurately in flow in model 

airways outlet pressure should be varied within some range. 
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3 Geometry and the grid 

3.1 Introduction 

A Computational Fluid Dynamic (CFD) model needs a grid on the geometry enclosing the 

flow domain in order to solve the discretised equations. This chapter discusses the 

structured grid generation for the bifurcation geometry, which was described in general in 

chapter two. More information about the rest of the CFD procedure will be provided in 

chapter four. The model geometry will be a three-dimensional single bifurcation and two-

dimensional double bifurcation whose general geometrical parameters were described in 

chapter two. In section 3.2 a description of a typical bifurcation is given, where its shape 

will be described by parametric equations. There are various issues associated with 

structured grid generation in complex geometry, which are discussed in section 3.3. In 

order to have the best structured grid, a multi-block design procedure was followed and the 

final design approach is outlined in section 3.4. The resulting grid will be used in a CFD 

solver defined in chapter four. The three-dimensional single bifurcation CPD results could 

be validated with the experimental results of (Zhao and Lieber 1994). 

3.2 Bifurcation geometries 

Throughout the literature, human airway bifurcations chosen for flow studies vary. Most 

often Weibel's (Weibel 1963) and Horsfreld's airway models (Horsfield, Dart et al. 1971) 

and their parameters describing bifurcation diameter and length are used to describe a 

typical branch for fluid dynamic investigations. (Heistracher and Hofmann 1995) 

investigated shapes of various bifurcation model geometries used in fluid flow studies. 

They described the general shape of the bifurcation geometry with some mathematical 

expressions. They have also categorised bifurcation models into symmetrical branch 

models, asymmetrical models, and branches with sharp or blunt bifurcation apexes. The 

extent of geometrical detail given in the Weibel and Horsfield on each bifurcation is 

limited, especially near the bifurcation region. Weibel and Horsfield only provide main 

branch diameter, daughter branch diameter, and angle of bifurcation. Therefore user-

approximated parts of the geometry have to be created to form the bifurcation shape to 

match the description made by them. Mathematical expressions of the geometrical shapes 

are needed to approximate the shape of the bifurcation accurately. 

Some researchers like (Zhao and Lieber 1994) chose a bifurcation geometry to make the 

flow vary slowly along the flow divider so flow parameters can be measured easily, while 

(Balashazy and Hofmann 1993) chose a "square" bifurcation, which differs considerably 

from any airway bifurcation, to make the computation and grid generation processes easier. 
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Hence in experiments and in CFD approximations to bifurcation geometry were made that 

deviate from the actual airway branch measurements. Nevertheless the CFD must be done 

on the geometry, where the flow can be validated. In order to do this, geometry that 

matches exactly with (Zhao and Lieber 1994) can be chosen, since they provide equations 

that describe the bifurcation, and also provide experimental results that can be used to 

validate, quantitatively, a CFD model. After validating the CFD model the parametric 

equations of the exact airway branch geometry described by (Heistracher and Hofmann 

1995) can be used in another CFD study (not done in this project) to calculate more 

realistic flow about the actual airway branches. Appendix E provides detail geometric 

equations used to describe the geometry used by (Zhao and Lieber 1994). 

Figure 3-1 Three-dimensional single bifurcation geometry, drawn using the parametric equations 

described in Appendix E in Matlab software. 

The mathematical equations given in Appendix E were evaluated in Matlab, and some 

coordinates of the geometry were calculated that describe the perimeter of the geometry 

and relevant centre lines, as shown in Figure 3-1. The geometrical details given are 

sufficient to realise the overall shape of the geometry. However it was realised that more 

geometrical detail, especially about the surface of the geometry, are needed to generate the 

surface grid accurately. The curves that appear to show the perimeter of the surface in 

Figure 3-1 are not sufficient to describe the exact surface of the geometry. Another set of 

curves has to be generated based on the information that the area change from parent to 

daughter branches is constant, i.e. 2d^/D^=l, where d is the daughter tube diameter and D is 

the parent tube diameter. Once an accurate surface description is available then a surface 

for the geometry can be constructed using a grid generator. 
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3.3 Grid generation 

CFD applied to complex geometry requires good solver-grid interactions to resolve the cell 

normal fluxes and interpolation of these fluxes within the stencil of control volumes. Then 

the solution produced through iteration process should be stable, and converge to an 

accurate solution. When the solver algorithms and the solver-grid interaction are fixed, it is 

the grid that needs to be altered to obtain the best solution. A grid in this case is basically a 

collection of points in space where small sets of those points can be used to form finite 

control volumes. Within each control volume the cell averaged flow quantities (such as the 

velocities and pressures) are approximated. There are a number of different grid types. The 

most effective and efficient of these are categorised into the body conforming curvilinear 

structured and unstructured categories. 

The imphcit connectivity within the grid is used to describe a structured grid. Structured 

grids have the advantage that the evaluation of the discretisation (of the flow equations) 

over the control volumes is more efficient during computation. In an unstructured grid the 

computation of each cell averaged property uses a number of adjacent cells falhng on a 

certain stencil. Within this stencil the cell connectivity is not obvious, and must be stored 

prior to the computation. Hence the solution process takes up much more time in 

computation through data management. However an unstructured grid is flexible and it 

easily represents the complex nature of the geometry. It also has the abihty to adapt to the 

solution. In this project structured grids are used for ease of computation and ease of 

particle tracking process. It will be seen that structured grids can be made to conform to the 

geometry using multi-block grid generation procedure. 

When structured grids are used the solution is highly dependent on the grid shape and size. 

The best-structured grid would be those on an orthogonal face in two-dimensions. A solver 

based on a structured grid would perform at its best if the angles between the adjacent 

vectors of a control volume connected at a grid node are orthogonal and that the length 

scales of these vectors do not change dramatically between control volumes. It seems a 

difficult task to produce a grid on the complex geometry with a structured grid, since it is 

evident that at least some cells will be skewed. 

In general the grid generation is performed over the physical domain where each grid point 

is described in terms of Cartesian coordinates (x, y, z). The CFD solver uses the map of 

this in the computational space, where the same grid point is described by curvilinear 

coordinates (^,T|,^). Figure 3-2 shows how a physical space corresponds to an annulus. 
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where point 1 and 2 is the inner wall and 3 and 4 is the outer wall been transformed to the 

rectangular shape in computational space (Thompson, Warsi et al. 1985). 

j-̂> 

iL—.— ca 

Figure 3-2 Physical and computational representation of an annulus, (Thompson, Warsi et al. 1985) 

The grid generator used during this project is called Gambit, which is the Fluent pre-

processor (Fluent 1998). The grid generation procedure places a number of grid points on 

an "edge", such as a curve describing the outer curvature of the bifurcation. Four such 

edges are joined to form a "face". Then the grid generator creates the interior grid nodes on 

the face. The grid generator may use an algebraic, elliptic or hyperbolic scheme to generate 

these interior grid nodes (more details are given in section 3.3.1). The user is allowed to 

choose the distribution and the number of cells along these edges. The grid generation 

scheme will then use this information together with the geometrical properties of the edges 

to create the face grid. The grid generator uses an interpolation scheme to interpolate the 

boundary grid nodes on to the interior domain of the face (more details are given in section 

3.3.2). After that the generator will create a grid on the volume, a "Block" surrounded by 

six faces. 

The user needs to define set of edges on a block (3D) or on a face (2D) such that the grid 

generator produces the best-shaped cells. Such a process can be executed by a multi-block 

strategy, where block edges are chosen carefully such that the surface grids on block faces 

form the best structured cells possible (more details are given in section 3.4), and in turn 

the face grids produce the best volume cells within the block. 

3.3.1 Algebraic and elliptic grid generation 

In algebraic grid generation the propagation of the grid nodes is calculated by algebraic 

means, and in elliptic grid generation the grid propagations is done through the solution of 

the partial differential equations. In the latter the generated grid is much more smooth, i.e. 

the gradient of grid lines vary smoothly. The effect of the edge distribution is felt more on 

the interior grid in the algebraic case than in the elliptic case. The curvature effects at the 

boundary edges can be taken into consideration in the elliptic case to produce quality-

structured cells. The elliptical partial differential equations are solved iteratively. Therefore 
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the user must specify tolerance limits (magnitude of change in grid point locations between 

two successive iterative steps) and maximum number of iterations for a smoother grid. The 

algebraic scheme is much faster than elliptic one. It is apparent that a higher order scheme 

is required to generate grids on the complex geometry and elliptical or hyperbolic schemes 

are better suited for the structured grid generation in complex geometry. In Gambit 

software elliptic grid generation is used to produce the multi-block structured grid. 

3.3.2 Geometrical surfaces and edges 

The grid generator must be capable of generating complex geometrical surfaces using the 

information from the edges, i.e. the grid generator must interpolate accurately the grid 

nodes from the edges to the interior domain of the face. It was found that the grid generator 

software Gambit did not successfully generate an accurate surface using the four edges 

shown in Figure 3-3 as dark blue curves, since the surface enclosing the four edges requires 

more information to constrain its variability. Many ribs had to be drawn on the surface, 

which are seen as yellow coloured curves in Figure 3-3 to reduce the degree of variability 

on the surface geometry. Then Gambit produced a good quality surface grid. 

Figure 3-3 Complex surface shape of the transition zone of a bifurcation. The surface is made more 

apparent by the yellow curves, or ribs on the surface. 

As a result a better surface grid was produced as can be seen in Figure 3-4. The detailed 

geometrical information made available through mathematical description of the 

bifurcation and the cross-sectional area changes reported by (Zhao and Lieber 1994) 
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facilitated in describing the bifurcation geometry to a good estimate of the original 

geometry. The Figure 3-5 show the error in the cross-sectional area of the geometry drawn 

compared to expected constant area of 2d^/D^, along the flow divider starting from when 

parent tube cross-section is circular up to the start of daughter tube cross-section. The 

maximum error is just below 10%, and it occurs when the parent tube start to split. The 

errors could be due to rounding off when solving the equations, or due to the equations 

themelseves. 

Figure 3-4 A good surface grid produced as a result of the ribs in Figure 3-3. 
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Figure 3-5 The percentage of cross-sectional error between calculated and exact, 2d^/D^ 
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3.4 Multi-block design 

Before attempting to the design of multi-blocks, the 'best' structured grid could be 

visualised by sketching the blocks. The logic in the design states is that for best structured 

grids the angle between two adjacent grids lines and thus between two adjacent face edges 

should be as close to 90° as possible. Also the size between cells should not vary 

significantly, and the edges describing a face must lie on a surface with minimum degree of 

spatial variation such that the grid generator is able to create a smooth surface grid 

successfully. 

For internal grids on pipes, 0-type grids seem to produce the best possible structured grids. 

This provides a basis for designing a multi-block design for the bifurcation. Some 

favourable properties of the 0-type grid include the orthogonal intercept of the wall of the 

geometry, and orthogonal grids at the centre of the tube, which can be seen from Figure 

3-6. The edge design can be thought of as a design that creates orthogonal grids at the 

centre of the tube meeting the constraint of orthogonal grids at the wall. Cells at the centre 

expand and shift in shape to produce near-orthogonal grid hnes at the wall. 

/ 

/ 

Figure 3-6 O-type edge design on a cross-section of a pipe. 

To Start off a number of rules were assembled, and these are given in Table 3-1. First, a 

face grid was produced using just four edges by considering one face at a time. A multi-

block design for a three dimensional bifurcation and two dimensional bifurcation are 

shown in Figure 3-7 and Figure 3-8 respectively. The complete block design in two 

dimensions is shown in Figure 3-9, and a sample grid at the first branch of two dimensional 

bifurcation is shown in Figure 3-10 . 
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Table 3-1 Some rules to consider in a multi-block design 

Rule No. Multi-block design rules 

1 Consider a face not a block when designing edges. 

2 The grid cells must be small perpendicular to the wall boundary. This 
suggests that the edges must be perpendicular to the surfaces of the 
geometry. 

3 Two opposing edges of a face must lie on a plane with minimum degree of 
variation. Otherwise the cell face could have two normal vectors from 
adjoining cells. Such a case could lead to flux errors in the computation. 

4 The angle between pair of ac^acent edges of a face must lie within some 
tolerance angle limit say >= 60° and <= 120° (limit set by the 0-Type grid). 

5 Inspect the mathematical description of the geometry to create more edges 
(curves) on the surface of the geometry as needed by the multi-block design 
and for better surface grid. 

6 Note that solver may only handle certain block arrangements due to the way 
it has been designed to communicate information across block boundaries. 

1 

Figure 3-7 Multi-block design of the three-dimensional bifurcation 



37 

Figure 3-8 Multi-block design of two dimensional double bifurcation facing up 

Figure 3-9 The complete two dimensional block design 
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Figure 3-10 The structured grid at the first bifurcation region of the two dimensional geometry 

3.4.1 Controlling the grid 

The structured grid will be generated in each block in isolation and connected with 

adjacent blocks. There were some difficulties experienced with Gambit due to lack of 

smoothness in the grid at block boundaries. Ideally the global grid can be smoothed rather 

than smoothing the grid on one block at a time. The need to control the grid comes with the 

requirements to produce a smoother solution. After the block design a grid may be 

manipulated by nodal distribution on the edges and using smoothing functions to smooth 

the propagation of the grid cells towards the interior of the domain, as was done in Figure 

3-10. 

3.5 Conclus ion 

It is essential that the geometrical modelling and grid generation are done by the same 

package or that the grid generator must have links to a CAD package, in which case the 

grid generator could obtain the geometrical attributes of the model. It is always useful to 

have a mathematical description of the geometry and as much detail of the geometry as 

possible, especially about the surface geometry. A grid generator must be able to generate 

grids on complex surfaces, i.e. must have an elliptic or hyperbolic generation scheme. The 

user may need to add more edges to reduce unnatural variation in the surface grid 

produced. 
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It is not always possible to produce say, cells with angle range of 60-120° between adjacent 

cell edges. Hence the solver may need to be improved to tackle very skewed cells. It is 

expected that the computational effort of the solver-grid interactions and the effort made on 

the grid quality must be in balance to create an efficient way of producing a grid on 

bifurcation geometries. In this case an unstructured grid may be the most efficient, and 

which can provide a faster turnaround time. 

Considering the time taken by the three dimensional multi-block design, using it to validate 

the simulated flow, and then designing a three dimensional particle tracking routine, a two-

dimensional grid on the to generate branch from Weibel model 'A' was chosen. It is 

expected that once two dimensional particle tracking is tested, it can be extended to track 

particles in three dimensions. It was decided to use a two-dimensional grid to compute the 

flow field variables, and validate this result using grid independence. 

If more than one bifurcation is to be used to resolve the complex flow structures, then a 

parallel CFD solver may be the most efficient way to proceed. For a parallel solver good 

interpolation routines and communication routines may have to be developed at block 

boundaries. Higher order solution technique may be essential to interpolate flow variables 

across block boundaries, since the flux vector from a cell face at a block boundary may not 

be in parallel to that of the adjacent cell face flux vector. In parallel CFD a multi-block 

design must be created using one additional constraint. Ideally the multi-blocks in parallel 

would have equal number of grid control volumes to make parallel processing efficient. 
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4 CFD results 

4.1 Introduction 

The physical laws of conservation of mass and momentum were used to define the flow 

problem in chapter two. The steady Navier Stokes equations are a coupled system of non-

Hnear elliptic equations. The details of the overall process used to solve the non-linear 

partial differential equations using the Finite Volume Method (FVM) is explained in 

section 4.2. The fluxes in the integral terms of the governing equations are discretised over 

the two-dimensional S''' to V''' generation branches of the airways, as meshed in chapter 

three. In the past the flow development within each cross-sectional change of the airways 

was investigated separately, experimentally and theoretically. However in recent years 

researchers succeeded in calculating the complex flow behaviours within single and double 

bifurcation airways using numerical techniques. Some key flow characteristics with airway 

branch geometry is described in section 4.4. The numerical accuracy of the solution is 

assessed in section 4.3. 

4.2 Numerical Solution process 

The Navier Stokes equations, Equation 2-6 and Equation 2-7, written in general form, 

appropriate for the application of the finite volume method, is given in Equation 4-1. 

Equation 4-1 

9(/ ^ 

U is the solution vector, flux vectors f and g contain column flux expressions, and q 

contains possible source terms (in this case q=0). The finite volume method takes the 

volume integral of Equation 4-1, and converts it to surface flux integral form using Gauss 

Theorem. By integrating over the cell, local conservation of the variable is maintained and 

summing each integral equation for all cells in the domain, global conservation is 

maintained. In two dimensions, the FVM produces Equation 4-2, where Ax and Ay are the 

grid spacing in x and y directions respectively in a Cartesian coordinate system. The fluxes 

are evaluated at cell surfaces located at (i +1/2,j), (i -l/2,j), (i ,j+l/2), and (i ,j-l/2), where 

(i, j) indices apply to the centroid of the cell. 
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Equation 4-2 

f 1. - f 1. S .. 1 - g . I 
— = = = = ^ + q 
9t Ax Ay 

The semi-discretised Equation 4-2 is a single equation representing semi-discrete versions 

of the continuity, x-momentum, and y-momentum equations. The right hand side fluxes are 

approximated by various schemes described in next sub-sections. In Fluent fluxes are 

evaluated to second order accuracy. 

4.2.1 Evaluating the fluxes 

FLUENT uses a co-located scheme, which stores both velocity and pressure at the cell 

centre. The cell face values of the dependent variables are used to evaluate the convective 

fluxes. The second order accurate upwind scheme called QUICK (Quadratic Upstream 

Interpolation for Convective Kinetics) (Leonard 1979) scheme is used for this purpose. In 

this scheme the variable at the desired cell face is obtained using three-point upstream-

weighted quadratic interpolation. Fluent uses a procedure similar to Rhie and Chow (Rhie 

and Chow 1983) to interpolate the cell center velocity to the cell faces. This procedure 

meant to prevent the well-known checkerboard effect of pressure when cell center velocity 

is interpolated at cell faces using linear interpolation. 

The pressure is also required at cell faces and an interpolation scheme is required to 

interpolate cell centre pressure values to cell face pressures. A scheme similar to Power 

Law (Patankar 1980) called PRESTO! (PREssure STaggering Option) is used. For 

quadrilateral meshes with curved boundaries FLUENT recommends this scheme (Fluent 

Inc. 1998). For the laminar bifurcation flow problem (flow problem in complex geometry), 

significant pressure gradients are expected, especially around the apex (stagnation region) 

of the bifurcation. Hence a high order pressure interpolation in the solution scheme is a 

necessity to minimize cell velocity overshoot and undershoot. To assist in resolving the 

pressure gradient in the apex region of the bifurcation a dense grid will be created using the 

multi-block grid generation and non-uniform grid nodal placement. 

The diffusion terms are evaluated from cell centred values using central differencing to 

second order accuracy. 

4.2.2 Solving the pressure-velocity coupling 

The segregated solution method solves the momentum and Continuity equations 

sequentially. One of the families of the SIMPLE (Semi-implicit Method for Pressure-
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Linked Equations), namely SIMPLEC (SIMPLE-Consistent) is used to evaluate the 

pressure-velocity coupling. First the momentum equation is solved using guessed value of 

pressure. Since this may not lead to correct value of flux through the cell faces to satisfy 

mass continuity a correction to the face flow rate is added. The corrected face flow rate is 

such that it forces satisfaction of the continuity equation. The corrected flow rate equation 

contains cell pressure correcting terms. SIMPLEC substitutes the flux correction equation 

in the continuity equation to obtain a discrete equation for pressure correction. 

The pressure-correction equation is solved to update the pressure and face mass flow rate. 

A convergence criterion is then tested and if not satisfied above process is repeated with 

the updated values of dependent variables. 

4.2.3 Solving the discrete system of equations 

In the segregated method the discretised equations can be linearised either implicitly or 

explicitly. The updated solution is obtained when the linear system of equations are solved. 

The segregated solution method of FLUENT uses implicit linearisation with respect to that 

equation's dependent variable. Since the solution method is segregated only one equation 

for each cell (one equation for each dependent variable for each cell) is obtained. A point 

implicit (Gauss-Seidel) method with algebraic multigrid (AMG) method is used to solve 

the linear system of equations for the dependent variable in each cell. The AMG method 

with w-cycle is used to accelerate the rate of convergence, where the solution is 

interpolated to a sequence of coarser grids in an effort to eliminate low frequency errors. 

The higher frequency errors were treated by iterating two times after each w-cycle. Hence 

the segregated approach solves for each dependent variable in turn by considering all cells 

at the same time. 

4.3 Computational runs 

The residuals of the dependent variables could oscillate during the iteration process and 

could lead to instability and slower convergence. Hence there is a need to control the 

change in the dependent variables. This is achieved by under-relaxing the change in 

dependent variable during the iteration process. Under-relaxation factors of 0.7 for 

momentum and 0.3 for pressure are used. 

Numerical schemes are tested for their usefulness by calculating some criterions for grid-

convergence on the resulting flow field, and the stability of the solution process. The 

iteration process must be stable such that after successive iterations the solution residual 
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will eventually decrease, with the oscillations in the residual minimised for faster 

convergence. The grid convergence results are explained in section 4.3.1. 

CFD results were produced for the 5"̂  to V''' generation airway bifurcation model. Three 

meshes of increasing grid density were used to carry out a grid independence study. The 

meshes each with increasing grid cells in two orders of magnitude are labelled as gl, g2, 

and g3. The number of cells on each edge of the geometry is shown in Figure 4-1, where 

the top number to bottom is for the finest to coarsest grid respectively, i.e. in the order of 

gl, g2, and g3. 

As a test case the u-velocity, v-velocity, and pressure were initialised to I, 0.5 and 1 

respectively on each grid. The discretisation schemes and the solution method used to solve 

the linear set of equations were given in section 4.2. The residual histories for gl, g2, and 

g3 are given in Figure 4-2, Figure 4-3, and Figure 4-4 respectively for up to 5000 global 

iterations. For the validation study explained in the next section more than 5000 iterations 

were used for grid labels g2 and g3. In fact the iterations were carries out until the residual 

change from one iteration to next reached a minimum and produced a "flat line" as shown 

in Figure 4-2 for coarsest grid, i.e. until the discretisation error limit is reached. The grid 

convergence occurs when the residual drops three to four order of magnitude less than the 

starting value. For a particular grid the residual magnitude at the "flat line" indicates the 

best possible numerical accuracy. It may be inferred from Figure 4-2 and Figure 4-3 that 

the discretisation error decreases as the number of cells within the domain increases, i.e. 

the flat line will occur at lower residual magnitude and at higher global iteration numbers. 

The time taken by each run span from 2 hours to up to 13 hours for the coarsest to the 

finest grid respectively on a 700MHz Pentium III PC. 
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Figure 4-1 Cell numbers per edge for three grid sizes 
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Figure 4-2 Residual plot for the finest grid, g l 
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Figure 4-4 Residual plot for the coarsest grid, g3 
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4.3.1 Validation 

In order to find an accurate numerical solution a grid independent solution is required. 

Usually a given grid size is halved and doubled to Rnd a significant variation in solution. 

Tvyo different studies were conducted, where in one case the fluid speed is calculated at a 

set of cross-sectional lines for each mesh and the other case the wall pressure is calculated 

for each mesh. The entrance velocity profile at a Reynolds number of 600 is parabolic and 

all outlet static pressures are set to 1 Pascal. 

Fluid velocity is extracted using the Fluent post-processor on twenty points along each line 

segment. The line segments used are shown in Figure 4-5. The magnitude of velocity is 

calculated on each line of different meshes and they are shown in Figure 4-7 to Figure 4-19 

(pages 48 to 54). The values for these figures were extracted from Fluent post-processor. 

Up to 20 points were allocated for each line. The end data points do not necessarily fall on 

the boundary of the domain, hence in some figures curves are incomplete. However the 

velocity profiles are clearly defined in all plots. For Figure 4-16 to Figure 4-19 perhaps 

more points should have been selected for data extraction. 

In all plots the y-axis is normalised with respect to the inlet maximum velocity of 

2.6218ms'\ which corresponds to a Reynolds number of 600 (based on maximum inlet 

velocity and inlet diameter of 0.0035m). The x-axis is normalised vyith respect to the line 

perimeter length, where apart from line number 9, 10 and 12 x-axis magnitude of 1 means 

the top end of the line, and 0 or - 1 means bottom end of the line shovm in Figure 4-5. For 

the hne numbers 9, 10, and 12 it is the other way around, where x-axis magnitude of 1 is at 

the outside wall and zero is within the geometry or at the inside wall. 

It can be seen that parabolic inflow come on to the first bifurcation, and on lines 1,2 and 3 

(Figure 4-7 to Figure 4-9), the flow does not change by a noticeable amount. In all other 

lines grid g3 shows noticeable deviation from gl and g2. However for lines 1 to 6 g2 data 

are closer to gl than to g3, and for hnes 7-12 g2 is closer to gl than to g3. This means the 

resolution at the second bifurcation needs to be increased a little so that data from g2 can 

be used as the grid independent results. Magnitude analysis of the difference in values for 

g2 and g3 were obtained by approximating each curve by a fourth order polynomial and 

calculating the mean of the difference between the two grids at some set of points. In 

general the difference is less than 2% of the entry velocity. 

The second numerical validation case is to check the wall pressure values from different 

grids. The walls are labelled as in Figure 4-6. The pressure along these walls was extracted. 
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The static wall pressures for walls 1 to 5 for different grids are shown in Figure 4-20 to 

Figure 4-24, and a close up of wall 1 at the first bifurcation is shown in Figure 4-25 (pages 

54 to 57). The red dots of g2 are in between black dots of g3 and blue dots of gl, but data 

from g3 does show the increased grid resolution on the finest grid. Hence g2 can be 

considered as a suitable grid to produce a good solution at a reasonable cost. 

• El 0 H 
S . . - ' 

Figure 4-5 Cross-sectional velocity data extraction lines for grid independence. 
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Figure 4-6 Wall labels use to extract static pressures 
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Figure 4-9 Magnitude of velocity on line-3 
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Figure 4-10 Magnitude of velocity on line-4 
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Figure 4-14 Magnitude of velocity on line-8 
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Figure 4-15 Magnitude of velocity on line-9 
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Figure 4-16 Magnitude of velocity on line-10 
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Figure 4-17 Magnitude of velocity on line-11 
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Figure 4-18 Magnitude of velocity on line-12 
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Figure 4-19 Magnitude of velocity on line-13 
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Figure 4-20 Static pressure along wall 1 
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Figure 4-22 Static pressure along wall 3 
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Figure 4-24 Static pressure along wall 5 
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Figure 4-25 Close up at wall 1, outer wall of first bifurcation 

4.4 General f low features wi th in bi furcat ions 

The data for run g2 is used for the following flow analysis (Note, since different outlet 

pressures will be selected it was thought best, at the time, to use full two-dimensional 

model without symmetry plane at the first parent branch). The bifurcation geometry was 

separated into several geometrical sections, where on each section certain flow changes 

take place (explained in section 4.4.1 to section 4.4,4). The entrance velocity profile was 

set to a parabolic profile but with undefined pressure. The outlet static pressure on the 

outermost branch is progressively reduced from 1 Pascal to 0 and the innermost branch 

outlet pressure was fixed at 1 Pascal. When the solution is converged the pressure at the 

inlet and the outlet would give the pressure drop across the system. The Reynolds number 

of the flow at the inlet was fixed to 600 based on maximum inlet velocity. The main results 

are shown in Table 4-1, and the velocity and static contour plots for different outer 

daughter outlet conditions are shown in Figure 4-29 to Figure 4-40 (pages 63 and 68). The 

details of the figures will be explained later. 

The outlet mass flow rates due to variation in pressure in the model are given in Table 4-1, 

and in Figure 4-27. It can be seen that the mass flow rate varies linearly with the outlet 

pressure changes and equal mass flows in both outlets when the outermost daughter outlet 
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pressure is set to 0.5. However the pressure difference between the inlet and the outlets 

does not vary linearly when one outlet pressure is altered linearly, which can be seen in 

Figure 4-26. In Figure 4-26 the static pressure at outermost branch and the inner branch 

was subtracted from the inlet pressure to provide the pressure loss information. Two out of 

four outlets were taken since the double bifurcation is symmetrical and, for this case, the 

pressure was varied only in one outer daughter branch with respect the corresponding inner 

daughter branch. 

1 
X Inner branch 
o Outermost branch 

1 

i i i 1 i 

•D 

0.1 0.2 0.3 0.4 0,5 0.6 0 .7 

Outermost outlet static pressure/ Pa 
0.8 0.9 

Figure 4-26 The pressure difference between each branch outlet and the inlet 

When the pressure in one branch outlet is varied the pressure drop between that branch and 

the inlet is different from the pressure drop between fixed outlet branch pressure and the 

inlet pressure. Li order to give an overall performance measure of an airway branch it may 

be better to consider the sum of the pressure differences between the inlet and all outlets. 

For a symmetrical double bifurcation it would be between the two outlets and the inlet. The 

difference in pressures between the inlet and the both outlets added together is shown in 

Figure 4-28. An additional run was done with 0.5 Pa pressure in one outlet. It can be seen 

from Figure 4-28 that sum of minimum pressure difference is when outermost daughter 

tube pressure is set to a value between 0.5 and 0.4. 
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Table 4-1 Mass flow rate and pressure changes in S"* to model 

Outlet 
pressure/Pa 

Inlet 
pressure/Pa 

Max. 
pressure/Pa 

Min. 
Pressure/Pa 

Mass outer/ 
Kgs-' 

Mass inner/ 
Kgs-' 

1.0 1.87 4.495721 0.8377708 0.001252684 0.002388619 

0.8 1.72 4.343751 0.6857026 0.001466957 0.00217443 

0.6 1.58 4.206892 0.5487187 0.0017078429 0.0019336694 

0.4 1.47 4.091633 0.4 0.0019723729 0.0016692505 

0.2 1.38 4.002254 0.2 0.0022477766 0.0013938793 

0.0 1.31 3.936529 0.0 0.0025136778 0.0011281014 

The velocity changes due to Reynolds number change of 200 to 800 is shown in Figure 

4-42 to Figure 4-45, when all outer branch relative static pressures are the same. Further 

increase in Reynolds number after 800 was difficult to simulate as the separation zone on 

the second bifurcation along the outer branch grew to such a large size that flow could not 

pass into the outermost branch. A zero or negative mass flow rate is experienced at the 

outermost branch outlet. Hence the calculation diverged. However using unequal pressure 

difference applied to the outlets, Reynolds number up to 1200 could be simulated. This 

goes to show that during heavy breathing where large mass flow rates are created the lung 

has to expand in such a way as to create small pressure difference across airway branches. 

During heavy breathing the expansion of the lung lobes could possibly be different owing 

to this flow behaviour. 
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Figure 4-27 Mass flow rate through the outlets, where massl is the mass flow rate out of the outermost 
branch, while mass2 is the mass flow rate out of the innermost branch. 
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4.4.1 Entrance flow 

Since the velocity profile was parabolic at the entrance the flow remains fully developed all 

the way to the bifurcation zone entrance. A long entrance length is used so that when 

particles released at some distance from the bifurcation entrance they will have time to 

adjust to the entrance flow conditions. It can be seen for equal outlet pressures the wall 

pressure reduces at a constant rate on the fuUy developed region as shown in Figure 4-20, 

as expected from fully developed flow. 

4.4.2 First bifurcation 

The static pressure gradually decreases before the entrance to the first bifurcation. Then it 

increases at the diffuser like entrance to the first bifurcation. In a diffuser type of flow the 

axial flow decelerates and this deceleration gradually propagates to the diffuser entrance. In 

order to maintain continuity at the diffuser entrance the flow accelerates at the diffuser wall 

region. Hence the pressure and the wall shear stress rises at the diffuser inlet wall. 

Momentum loss at the bifurcation is mainly due to wall shear stress increase, and inertial 

loss. 

Flow separation is delayed at the transition zone (flow divider) of the Arst bifurcation 

primarily due to the presence of stagnation point. The pressure reduces all around the 

stagnation region and it retards the fluid upstream of the stagnation point. The fluid is 

pushed to either side of the stagnation point. 

4.4.3 Entrance to f irst set of daughter tubes 

The maximum pressure point is at the stagnation point. Near the stagnation point the 

pressure reduces fast radially. In fact at the entrance to the first daughter tubes the pressure 

reduction is in the axial direction of the daughter tubes. The axial flow therefore accelerates 

at the daughter tube entrance and reaches a maximum axial velocity just aft of the entrance. 

The maximum velocity in the daughter branches reduces due to viscous dissipation in the 

new boundary layer on the inner wall. Due to the rapid axial flow acceleration at the 

daughter tube entrance, flow separates on the outside wall. The Reynolds number is high 

enough for the separation zones on the first and second bifurcation to combine on the 

outermost wall. However as the outermost daughter branch pressure is reduced the pressure 

close to the outer wall is reduced and the separation region is reduced, but not removed. 

The entrance length of the Hrst daughter tubes is not long enough for the velocity profile to 

become fully developed. Note that the distance and the curvature of the flow divider seem 

to be important parameters, which influence the formation of boundary layer and boundary 
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layer development on the outer walls. For example having a shorter flow divider length 

(length from the diffuser-like entrance to the apex point of a given bifurcation) means that 

the outer wall boundary layer will be developed quickly, but with a larger length the 

boundary layer development will be suppressed, since the flow will have sufficient time to 

adjust to a slowly enlarging flow divider area before the stagnation point. Larger curvature 

would mean larger separation zones and higher inertia! loss. The displacement thickness 

may be used to quantify the amount by which the streamlines are shifted owing to the 

formation of the new boundary layer on daughter branches and changes to it brought about 

by the outlet pressure changes. 

4.4.4 Second bifurcation 

The entrance velocity profile is skewed, hence allowing greater mass flow rate towards the 

inner branch. Here the stagnation pressure is not symmetrical about the second parent 

branch, and a large separation zone is developed at the second bifurcation zone. The 

stagnation point on the second bifurcation moves towards the outermost branch as the 

outlet pressure on the outermost branch is reduced, and more of the flow is directed along 

the outer branch. The separation bubble in the inner branch of the second bifurcation 

increases in width and length. When the pressure around the stagnation point becomes less 

asymmetrical the mass flow rates do not become symmetrical. In this case the approaching 

velocity profile shows that more mass is directed to the outer branch than to the inner 

branch. 

(Andrade, Alencar et al. 1998) have considered a two dimensional, symmetrical, three 

generation airway model. They have shown that at low Reynolds numbers the flow seems 

to divide equally among the distal daughter branches. This is due to flow having enough 

time to reach fully developed flow at each daughter branch. But as the Reynolds number is 

increased the axial flow becomes biased towards the innermost branches. 

One m^or piece of the flow physics that cannot be modelled by considering two-

dimensional flow is the secondary flow created by the centripetal force acting on the axial 

velocity. This issue is considered briefly in next section. 
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Figure 4-29 Velocity with outermost branch outlet pressure of IPa 
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Figure 4-30 Pressure with outermost branch outlet pressure of IPa 
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Figure 4-31 Velocity with outermost branch outlet pressure of 0.8Pa 
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Figure 4-32 Pressure with outermost branch outlet pressure of O.SPa 
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Figure 4-33 Velocity with outermost branch outlet pressure of 0.6Pa 
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Figure 4-34 with outermost branch outlet pressure of 0.6Pa 
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Figure 4-35 Velocity with outermost branch outlet pressure of 0.4Pa 
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Figure 4-36 Pressure with outermost branch outlet pressure of 0.4Pa 
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Figure 4-37 with outermost branch outlet pressure of 0.2Pa 
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Figure 4-38 Pressure with outermost branch outlet pressure of 0.2Pa 
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Figure 4-39 Velocity with outermost branch outlet pressure of O.OPa 
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Figure 4-40 Pressure with outermost branch outlet pressure of O.OPa 
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4.5 Three dimensional f low model 

The general flow patterns were observed and measured for quasi-steady cases in three-

dimensions for single bifurcations in detail by (Comer, Kleinstreuer et al. 2001a), (Zhao 

and Lieber 1994) and (Chang and Masry 1982). 

The outside curvature of the flow divider geometrically altered by the transition length 

(flow divider length) and the daughter tube curvature. The curvature present at the 

transition region creates centripetal acceleration on the axial flow, which leads to creating 

secondary vortices. The action of these vortices on the axial flow is to transfer the axial 

momentum to outer wall of the bifurcation where the centripetal acceleration is smallest. 

The secondary velocities tend to reduce the onset of separation and stabilise the flow. The 

Dean number, provides a measure of the flow development in curved tubes as a function of 

Reynolds number and the curvature ratio of the pipe. It is an important parameter that must 

be calculated to measure the magnitude of the secondary flow. 

Some preliminary three-dimensional simulations were conducted in this project, using the 

multi-block structure shown in Figure 3-6. The secondary vortices produced as expense of 

the axial velocity in three-dimensional simulation would mean that the axial velocities in 

two-dimensional simulation are greater, but in two-dimensional simulation the axial 

velocities are altered by existence of the separation zones. A vector plot of secondary flow 

on a daughter tube of a three-dimensional single bifurcation, is shown in Figure 4-41. 

Perpendicular to the bifurcation plane in the daughter branches the parabolic axial entry 

flow is transformed to a M-shape axial velocity profile downstream as a result of the action 

of secondary vortices. More cross-sectional velocity profiles in three-dimensions are shown 

in Appendix D. 

Figure 4-41 Secondary flow on a daughter tube 
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4.6 Conclusion 

The earliest flow resistance studies assumed that fully developed flow existed in all 

branches of the airways. Then later on flow resistance is attributed to developing pipe-

entrance flow (Pedley, Schroter et al. 1970b). However this study has showed that flow 

resistance is mainly due to various energy dissipating flow phenomena that occurs in the 

complex flow fields in bifurcating tubes. The formation of separation regions and 

stagnation region in each bifurcation increases momentum loss. The diffuser type entrance 

to each bifurcation induces wall shear at the diffuser-like entrance. The viscous dissipation 

significantly reduces the axial velocity at each daughter branch due to the formation of the 

new boundary layer on inner walls. The results showed that the minimum pressure loss 

occurs in the double bifurcation two-dimensional model when the pressure on the 

outermost branches is around 60% less than that of innermost branch. At this flow 

condition the magnitudes of all separation regions are small. 

When the outlet pressures are the same relative to each other the mass flow rate is biased 

towards the innermost branch. It was identified that in central airways mechanisms exists 

to create pressure changes, this was observed by noting that upper lobes are expanded to a 

lesser degree than the lower lobes. But there also could be other mechanisms that help to 

create very small pressure changes at branch outlets in such a way to maximise the flow 

rate and to minimise the pressure loss. 

Grid independence study based on velocity was obtained convincingly, but when wall 

pressure is used it was found at places higher grid density was required, especially in the 

bifurcation regions and separation regions. The pressure changes across the bifurcation 

were very small but created significant changes in mass flow rate. 

Flow behaviour under steady flow conditions has been investigated, including flow 

dynamics under variation in outlet pressure, and various Reynolds numbers with the same 

relative outlet pressures. A better understanding of the pressure losses could be made if the 

flow is studied under different outlet pressure conditions and under different inflow 

profiles. 
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5 Particle Equations of motion and Interpolation 

methods 

5.1 Introduction 

The particle tracking process, which will be explained in next chapter, requires an equation 

of particle motion, a numerical solution process to solve it and fluid velocity interpolation 

at the particle locations. The aim is to model the motion of aerosol particles coated with 

drugs, which are introduced into the airway flow. The properties of aerosol particles and 

the assumptions made in describing the particle properties are given in section 5.2. 

Preliminary considerations used to derive the particle equations of motion for a particle 

carried by the fluid and influenced by various fluid forces, wiU be clarified in section 5.3. 

The exact derivation of particle equations of motion from first principles is given by 

(Maxey and Riley 1983). From this equation of motion an assessment will be made in 

section 5.3 as to which forces that depend on the relative velocity between the particle and 

the fluid might be of importance to the aerosol particle tracking in two-dimensional 

bifurcation flow. In section 5.4 an appropriate numerical scheme to solve the particle 

equations of motion wiU be presented. Then in section 5.5 various interpolation schemes to 

calculate the fluid phase properties at particle position will be introduced. 

5.2 Characteristics of aerosol particles 

Aerosols are solid or liquid particles suspended in a gas. They are particles that can be 

dispersed in air. It is solid aerosols that are of interest since they behave distinctly to the 

surrounding forces. Their size and density, for a particular shape, dictate where they are 

most likely to be deposited. % 

Aerosol particles used in the particle deposition experiments on airway bifurcation have a 

radius range of 0.5 to lOfim. When deriving the particle equations of motion the shape of 

the aerosol particle is considered to be spherical. However aerosol particles come in 

various shapes like ovals, squares, spikes and so on, and in general they are far from 

spherical (Fuchs 1964). The density of an aerosol particle is much greater than that of air. 

It is on the surface of aerosol particles that drugs may be coated. It has been noted that 

aerosol particles could absorb water and increase their mass and change their chemical 

properties. Aerosol particles easily coagulate with each other when they are in close 

proximity to each other. Some particles are volatile and could evaporate under small 

temperature variations. Thus mass transfer is likely to take place when they are in motion. 
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However it is assumed that the aerosol particle considered here have only the density and 

size of an aerosol particle and none of the other properties. 

Other than aerosol particle depositions, small particle-fibre depositions in the airways are 

also of interest, (Zhang, Bahman et al. 1996), since some industrial Gbres are responsible 

for lung disease and decease in lung function. Knowing the fibre deposition sites would 

enable medical professionals to apply more effective treatment. Even though the Rbre 

particle equations of motion is different to that of aerosol particle the main methodology of 

the tracking process is the same. 

5.3 Particle motion 

The particle dynamics are controlled by three groups of forces. 

* Forces that act through the interface between fluid and particle 

* Forces due to the interaction between particles 

* Forces imposed by external fields 

It is assumed that the particle concentration is dilute and forces on a particle due to particle 

collision are negligible. When the particle concentration increases the fluid phase 

properties such as the effective viscosity in the vicinity of the particles may also change 

(Soo 1990). Then a more complicated multi-phase flow system results. The orientation of 

the bifurcation with respect to the gravitational force is unknown. Hence, even though the 

particle mass is larger than the fluid particle the influence of gravitational force is ignored, 

so that no external forces are assumed to act on the particle. The dominant forces that 

directly influence the motion of particle will be the forces from the fluid-particle 

interactions. 

In the literature there are many theoretical basis on which single particle motion has been 

derived. Their derivations depend on following characteristic fluid-particle interactions. 

* A particle moving with constant velocity in a uniform flow Geld 

* A particle accelerating in a uniform flow field 

* A particle moving with constant velocity in a non-uniform flow field 

* A particle rotating with constant angular velocity in a uniform flow field 

Studies have shown four types of dominant forces: the drag force. Basset force, Saffman 

force, and Magnus force. 
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5.3.1 Drag force 

When the particle velocity. Up, differs from the fluid velocity, U an unbalanced pressure 

distribution and viscous stresses are generated on the particle surface. (Note that bold face 

letters represent vector quantities). A resultant drag force per unit mass of particle (particle 

is treated as point masses since there are no coupling involved), Fn, is imposed by the fluid 

on the particle called the, vyhich is given by Equation 5-1. 

Equation 5-1 

Where Pp and dp are the particle density and particle diameter respectively. Co is the drag 

coefficient of the particle and it is a function of the particle Reynolds number Rcp. (Cliff, 

Grace et al. 1978) gave the following empirical relations for Co-

Equation 5-2 

' 24 

Co 
24 

Re 

for 0<Rep<1.0 

for 1.0 < Re^ < 400 
0.646 ^ 

The particle Reynolds number is given by Equation 5-3. 

Equation 5-3 

lu-u ' 
Rep = pdp P| 

Where p, and p are the fluid viscosity fluid density. In Stokes flow, CD=24/Rep, and it is 

assumed that particle Reynolds number. Rep « 1, so that Stokes formulae can be used. 

This implies that viscous forces dominate around the particle. 

5.3.2 Basset force 

The Basset force is important when the particle is accelerating or decelerating in a fluid. It 

a(^usts the particle acceleration by taking into account the past acceleration on the particle 

motion. The force could be in the direction of motion or added to the drag force direction. 

In a simple model with constant particle acceleration the ratio of Basset force to the Stokes 

drag, Rss (a non-dimensional quantity) is given in (Rudinger 1980) as follows. 
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Equation 5-4 

18 p T 

It is expected that time change of particle is much longer than the Stokes relaxation time, 

Tg, given in Equation 5-5 and hence the acceleration rate of the particle is expected to be 

small. 

Equation 5-5 

Ppdp 
18 î 

5.3.3 Saffman force 

When a particle moves at a constant velocity in a flow where a velocity gradient exists 

around the particle additional force a lift force, acting perpendicular to particle motion, is 

imposed on the particle called the Saffman's lift force (Saffman 1965). A hft force could 

also be produced not just by velocity gradient but also by a pressure gradient or a 

temperature gradient. The Saffman to the Stokes drag is given by Equation 5-6 (Fan and 

Zhu 1998). 

Equation 5-6 

ay 

At low Rep the Saffman's force is negligible, but near the wall this force could contribute 

significantly to the particle resistance force. In this study Staffman force is ignored. 

5.3.4 Magnus force 

A particle could rotate due to a non-uniform velocity region around the particle. In low 

Reynolds number flows particle rotation leads to fluid entrainment, resulting in an increase 

in the velocity on one side of the particle and decrease on the other side. Thus a lift force, 

acting normal to the particle motion results, which moves the particle towards the region of 

higher velocity. This phenomenon is known as the Magnus effect. In fact it was claimed by 

(Soo 1990) that the Magnus effect caused particles to move towards the centre of tubes in 

Poiseuille flow. The lift force due to the particle spin is negligibly small compared to the 

drag force when the particle size is small or the spin velocity is low. The Magnus effect to 

the Stokes drag is expressed by Equation 5-7 (Fan and Zhu 1998). 



Equation 5-7 

R 
24|i 

where O is the angular velocity of particle. In this study the Magnus effect is ignored. 

5.3.5 Particle equations of motion 

Equation 5-8 

dU.. 

dt 

The equation of particle motion is shown in Equation 5-8, where ZFp is the linear additives 

of the above-mentioned forces per unit mass. However, it was discussed that most of these 

forces in some simple flow field can be ignored with respect to most dominant particle 

force is the Stokes drag force. Then the particle equation of motion becomes Equation 5-9. 

Replacing the drag coefficient, Co, with the expression given in section 5.3.1 for particle 

Reynolds number in the range of 0 < Re^ <1.0, and substituting the expression for Stokes 

relaxation time, T, from Equation 5-5, the particle equations of motion Equation 5-9 finally 

reduces to Equation 5-10. 

Equation 5-9 

dt d'Pp ° 24 

Equation 5-10 

The particle path equation subject to the initial condition Up(x,0) = U(x) is given in 

Equation 5-11, where x is the particle position. 

Equation 5-11 

d"x ^ U - U p ^ 

dt- V ^ V 

The fluid velocity U at particle position is evaluated from the Eulerian flow field data and 

the Ordinary Differential Equation (ODE), Equation 5-11, will be integrated twice to 
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obtain the particle trajectories. These two issues will be investigated in section 5.4 and 

section 5.5 respectively. 

The particle equation of motion has been derived by (Maxey and Riley, 1983) from first 

principles. The disturbed and undisturbed flow Held due to a particle presence and without 

particle presence respectively were represented by the non-linear Navier Stokes equations 

centred on a coordinate system at the particle centre. Ignoring the inertial terms of the 

disturbed fluid due to the presence of the particle, the stress integral of the stress tensor was 

solved around the particle to obtain the particle equation of motion. The final form of the 

particle equation of motion contained the Stokes drag term, Basset term, terms due to fluid 

acceleration with the particle, and an external force term, whose effects were discussed in 

previous sesctions. Maxey and Riley showed that Stokes drag term was the biggest and all 

other forces are considerably smaller when the particle Reynolds number is less than one. 

It is assumed that the particle is large enough to ignore rarefied gas effects, and also that 

the particle travels at such velocity that Brownian effects are negligible. The equation of 

motion is centred on the particle centre and treats the particle as a point mass, which in 

effect makes the slip velocity to be |U-Up| . Also two-way coupling between particle 

forces and fluid forces is avoided. 

The Lagrangian tr^ectory approach is the best modehng approach to study the motion of 

individual particles. The stochastic type of particle tr^ectory solvers is computationally 

costly and more suited to turbulent flow fields. In either case the fluid phase dynamics has 

to be pre determined. The particle trajectories will be computed for a steady flow field and 

it will be a post-process. 

5.4 Numerical schemes to solve the second order ODE 

The equation of particle motion given by Equation 5-11 will be solved numerically. The 

second order ODE can be used to solve two first order ODEs. 

Equation 5-12 

dU, ( U - U j 

dt T 

To solve the Equation 5-12 the particle position at zero time, x(to) = X(,, and particle 

velocity at this position is needed. The velocity will be set to the fluid velocity at particle 
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position, Up(to) = x'Ctg) = U(xQ). A 4''' order Runge-Kutta method can be apphed to solve 

the equations using the given initial conditions. The algorithm used, given in Table 5-1, is 

the Runge-Kutta-Nystrom method for N time steps. 

Table 5-1 4"* order Runge-Kutta method to solve 2™' order PDE of the particle equations of motion 

For n=0 to N-1 

F . = h t ( U ( x . ) - U , ( x J ) 

F,=ht(u(x. + K,)-(u,(x.)+F,)) 

K , = | h ^ U , ( x . ) + i F l j 

F,=hT(U(x.+K,)-(u ,(xJ+R)) 
F. =hT(u(x. + K , ) - ( u (x.)+2F,)) 

= x . + h [ u , + i ( F , + F , + F j 
J 

1 
U , ( X . . . ) = U , (x J + - {F, + 2F j + 2F, + F , ) 

Forth order Runge-Kutta method have the advantage that it reproduce the terms in the 

Taylor series up to and including h'*, i.e. it has local tmncation error of 0(h^). It is efGcient 

in a sense that it only requires moderate number of operations to give high order accuracy 

levels. Nevertheless error of 0(h^) is added to the solution at each time step. 

5.5 Interpolation schemes 

The fluid velocity must be known at the particle positions to solve the particle equations of 

motion. Particles are assumed to be located within four nodes (in two-dimensions) where 

the fluid properties at these nodes are known. Let be the local coordinates of node 'i ', 

and the functional value at node 'i' is denoted by fi=f(x '̂̂ ). Let ai(x) be the interpolation 

weight at node 'i'. The interpolation function g(x) can be described in general form by the 

Equation 5-13. 

Equation 5-13 

i=l 

Various interpolation schemes have been tested by (Balachandar and Maxey 1989) and, 

(Yeung and Pope 1988) when studying particle motion with a spectral simulation of 

turbulence. Some requirements that all interpolation schemes must satisfy are given by 

Table 5-2. Their best choice was the fourth order accurate interpolation scheme called the 
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partial hermite interpolation. It requires the evaluation of second and third order 

derivatives, which does require more data storage and large computation time. The higher 

order schemes like Lagrangian interpolation, which is sixth order accurate, requires three 

nodes to be on either side of the particle. The flow calculations are only second order 

accurate, unlike the spectral methods, and hence a high order scheme, which requires 

expensive interpolation is not justified. 

Table 5-2 Some requirements of the interpolation function. 

1 The interpolation weights must equal the nodal values g(x'^'^)=f(x^'\ 

2 The sum of the interpolation weights must equal to one. 

3 It may also be desirable to have g(x) to be continuous across cell boundaries as well. 
This will ensure that calculated particle velocities change smoothly without abrupt 
jumps as the particle crosses an interface. 

Bi-linear and shape function interpolation were chosen based on the level of information 

they use. The shape function interpolation requires extra information on the derivative of 

fluid velocity at nodal positions. In both cases the molecule of interpolation is Axed to a 

single cell. It has been found that increasing the molecule size does not necessarily increase 

the order of accuracy of interpolation (Yeung and Pope 1988). 

Here bi-linear interpolation scheme is given by the Equation 5-14. 

Equation 5-14 

v(x,y) = %]%]u(X;,yj)Li(x)Lj(y) 
j i 

where the fluid velocity v(x,y) at particle position (x,y) is approximated using the fluid 

velocity u(Xi,yj) at nodes in Cartesian directions (i,j). The basis functions Li(x), and LjCy) 

are given by Equation 5-15. 

Equation 5-15 

Li(Xi) = ^ 

L2(Xi) = 1 - ^ 

LXy;) — T| 

L2(yi) = l-Ti 

where (^,r|) are the local coordinates of a cell whose values are between 0 and 1 and at the 

cell origin they are (0,0). The linear interpolation scheme is second order accurate. In this 

case interpolation error decreases asymptotically as (Ax)̂ . The linear interpolation scheme 



84 

also satisfies the requirement 1 and 2 on Table 5-2. However it completely ignores the non-

linear variations on length scales smaller than one grid spacing. 

Equation 5-16 

'(x,y) = E I 

u(X;,yj)Hi(x)Hj(y)4-

ay 
H,(x)Gj(y) 

V 

The second interpolation scheme is the shape function interpolation scheme, given by 

Equation 5-16, which is used in the Finite Element Method (Zienkiewicz 1979), where the 

basis functions Hi(x), Hj(x), Gi(x), and Gj(x), are given by Equation 5-17 and Equation 

5-18. 

Equation 5-17 

H „ ( x . ) = ( l - i ; ) = ( l + 2!;) 

Equation 5-18 

G o ( x ; ) = h ( i - ^ y ^ 

G,(x,) = h^X^- l ) 

The local coordinates (^,T|) are the same as in linear interpolation, and 'h' is the cell size in 

respective coordinate directions. The shape function interpolation scheme is 4'̂  order 

accurate. In one-dimension. Shape function interpolation provides hermite interpolation. 

Hermite interpolation satisfies the conditions given in Table 5-2 and also ensures that a 

polynomial of least degree interpolates its derivative at nodal points. Hence not only the 

velocity but also its derivatives are continuous at cell nodes. This should allow much 

smoother particle motion across cell boundaries. In shape function interpolation a cubic 

shape function is Rtted to satisfy the necessary conditions given in Table 5-2 such as that 

interpolation formula should provide the fluid velocity and its derivative at nodal locations. 

The accuracy of interpolation is expected to increase by using a dense grid. 
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5.6 Conclusion 

In this chapter reason and theory have been provided to make the particle tracking 

equations of motion appropriate for the aerosol particle tracking. The particle is assumed to 

be a spherical aerosol particle, which wiU be treated as a point mass particle in the 

computations. The Stokes darg was shown to be the dominant force on the pacticle. The 

coupling effects between the particle and the fluid is ignored. Various models for aerosol 

particle deposition are further discussed by (Hofmann 1996). 

The order of accuracy of the interpolation scheme must be similar to that of the integration 

scheme. The Shape function interpolation with 4''' order Runge-Kutta satisfies this 

condition, and such a condition is known to maximise the overall accuracy of the trajectory 

calculation (Balachandar and Maxey 1989), (Yeung and Pope 1988). 

Factors such as storage requirements, available memory and paging input/output will also 

affect the choice of the interpolation scheme, as well as the information available from the 

solver. If staggered grid velocities are available then more accurate interpolation scheme 

could be devised, for example using a node located at the centre of the interpolating cell. 
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6 Particle Tracking on a Structured Grid 

6.1 Introduction 

In order to calculate the particle deposition on the walls of a bifurcation a particle-tracking 

program was written. The particle tracking process is basically a procedure to track a 

particle within a cell centred grid. In such a process the particle is located within a cell and 

fluid properties at the particle position are interpolated from the surrounding nodes. The 

particle time advance scheme is used to solve particle equations of motion and increment 

the particle position. When the particle escapes the current control volume a search and 

locate algorithm was initiated to locate the particle containing cell. There are two means of 

locating a particle on a structured grid. One way is to carry out the search-and-Iocate 

procedure on the computational domain and the other is to carry out the procedure in the 

physical domain. Each method in turn will be investigated in section 6.2. The particle 

locating algorithm uses cell number to identity each cell and a data structure was created 

such that the cell number can be used to access all necessary information required by the 

tracking process. The data structure used in the CFD computation was consulted to create 

the new data structure for particle tracking. The data structure used by CFD, in general, are 

explained in section 6.3, and the chosen data structure used in the particle tracking wiU be 

derived from it. All requirements of the particle tracking algorithm will be explained in 6.4. 

Then in section 6.5 each part of the particle tracking process is validated and the validation 

results will be presented. A series of test cases will be run to test firstly the fluid velocity 

interpolation at particle position and integration of particle equation of motion by 

comparing the calculated trajectory with exact tr^ectory from analytical solutions. Then 

particles moving through a three-dimensional multi-block domain wiU be tested. Finally on 

section 6.6 particle tracking results on two dimensional double bifurcation will be 

presented, including particle deposition results. 

6.2 Search and locate process 

The idea of locating a particle within a Control Volume (C V) can be implemented either on 

computational space or on the physical space. In the physical space on an orthogonal 

Cartesian grid the CV containing particle may be found by comparing the particle position 

with the respective nodes of a CV's until a CV is found to contain the particle. Such a 

scheme would be inaccurate and inefficient on a non-orthogonal grid. But an efGcient 

method can be created that uses the angle between the normal vectors to cell edges and 

particle relative vector with respect to cell edge origins. Detail description of the procedure 

will be given in section 6.2.2. The search procedure to locate a particle within a CV would 
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be iterative in nature where the particle is located on either sides of an edge for all the 

edges of the two dimensional CV. However in computational space, particle tracking will 

be carried out in a transformed space where it is necessary to convert the physical space 

variables into computational space variables. Computational space tracking eliminates the 

need for a search algorithm (thus iterations), as the grid is uniform in computational space. 

The choice of the two methods will depend on the efficiency of each scheme in terms of 

computer memory usage, accuracy of locating the particle within a cell and the speed at 

which a particle is located within a CV. Particle location procedure in computational space 

is explained next. 

6.2.1 Solution procedure in Computational Domain 

hi computational space the global coordinate variables are (^,T|) in two dimensions, and the 

local coordinates are the (^,T|o) as shown in Figure 6-1. Aside from these coordinate 

variables within each CV local parametric coordinate variables (m,n) are also defined. 

Considering just one parametric variable (equally apphed to the other) it is assumed that m 

varies between - 1 and +1 and related to the global variable ^ in the computational space by 

Equation 6-1. 

Equation 6-1 

m = 2 ( ^ - ^ ) - l 

<4=4,,+1. 
ri=n'+l) 

Figure 6-1 Shows the local (%o,'no) and global (^,1]) coordinate variables in computational space 

The global coordinates (^,T|) are related to the index system (I,J) used to identify the nodes 

in domain, for example if then ^4-1=14-1. Hence there exists a convenient means of 

determining CV containing the particle. When a global coordinate ^ reach ^+1 , then 

particle is has moved to another CV. The global coordinate is calculated by solving the 

Equation 6-2. 



Equation 6-2 

2 — 2 + n̂ew ôld 
f 

X At 
y dt 

where At is the particle time step and d^dt is the contra variant velocity component of the 

particle. The transformed velocity components can be obtained by solving Equation 6-3. 

Equation 6-3 

dx _ d^ 9x dT| 

dt 9% dt 9r| dt 

dy _ 9y d^ 9y dT| 

dt 9^ dt T̂i dt 

where dx/dt and dy/dt are the velocity components of particle in physical space and 9x/8^, 

8x/9T|, 9y/9^, and 9y/9T| are the metric coefficients. 

Equation 6-4 provides a means of relating the position of particle in physical space to the 

corresponding position in terms of local CV coordinates (m,n) (such equations are used in 

Finite Element studies for interpolating fluid properties). 

Equation 6-4 

X = ^ [(l - mXl - n)x; + (l + mXl - + (l + mXl + n)*, + (l - mXl + n)x^] 

Since 'm' is related to ^ by Equation 6-1, computational space variables (^,T|) can be 

substituted for (m,n) as in Equation 6-4. Then differentiating, (x,y), with respect to each 

global coordinate, (^,T|), will give expressions for metric coefficients. To calculate the 

metric coefficients a non-linear system of equations has to be solved. The solution then can 

be substituted to Equation 6-3 together with velocity components of particle in physical 

space. A linear system of equations is formed, and by solving it, the particle contravarient 

velocity can be calculated. Finally Equation 6-2 can be solved to determine the new 

particle position. Note that once the particle position in physical space is available the local 

coordinates (m,n) with respect to each CV must be obtained by solving a set of non-linear 

equations (equations of form shown in Equation 6-4). Using the parametric coordinates the 

fluid velocity at particle positions can be interpolated. 

A set of linear equations and a set of non-linear equations are solved to compute the 

contravariant velocity components of particle. Then Equation 6-2 is evaluated to obtain the 



new position of particle in computational domain. Such a solution procedure for tracking 

particles in computational space was used by (Patankar and Karki 1999) and (Shirayama 

1993). A m^or disadvantage of this procedure is that there are too many computations in 

solving sets of equations. Also computational error could creep into the final solution. 

6.2,2 Solution procedure in Physical Domain 

Consider a two dimensional CV, as shown in Figure 6-2, where the particle is located at 

some vector P from one of the nodes of, say at point A. A normal vector N is calculated 

on each edge vectors en where n=l,2,3,4. The normal vector is chosen such that it always 

points away from the CV. 

Figure 6-2 Arbi t rary CV with nodes located at A, B, C, and D vertices. The direction of sides can be 

identified as north (n), south (s), east (e), and west (w) 

Then the dot product of the particle vector P and associated with an edge is given by 

Equation 6-5 

Equation 6-5 

P = |.|p{. cos(0) 

where 8 is the angle between vectors. The cos(8) is computed for each edge labelled w, e, 

s, and n (West, East, South, and North). A particle will be within the CV only if the angle 

between the vectors is equal to or greater than 90 degrees for all four edges (six faces in 

three dimensions). 

The algorithm that computes cos(8) to locate the particle may also needs to search for the 

particle among adjacent CV's after the particle position is incremented. If particle lies 

outside of an edge then a new CV is calculated. The property of the cos(8) can be used to 
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calculate the new CV index. The sign of the cosine angle can be set to be either +l,or -1. 

A sign can be calculated as shown in Equation 6-6. When sign is positive when the particle 

is outside of an edge and the index in the edge normal direction must be increased or 

decreased by one. 

Equation 6-6 

cos 8 

|cos 8| 

The particle displacement is made to be less than the grid spacing by adjusting the 

integration time step. Hence the particle will always move on to an adjacent CV. However 

the search and locate algorithm could iteratively find the particle containing CV eventually. 

Note that once the particle is located within a CV in physical space the local coordinates of 

the particle must be obtained ((m,n) in section 6.2.1) to interpolate the nodal velocity to 

particle position, which means solving one set of non-linear equations (similar to Equation 

6-4). A system of non-linear equations could be solved using the Newton's method, which 

hnearizes the equations to second order accuracy. The resulting system of linear equations 

could be solved using matrix solution methods such as partial pivoting and Gaussian 

elimination. 

(Chen 1997) came up with a similar search and locate algorithm where the sign of the 

normal vector was considered arbitrary (i.e. normal vector to an edge was calculated from 

arbitrary combination of edge vectors) and the decision to determine which side of the edge 

particle is located is determined by computing the sign of Equation 6-7. 

Equation 6-7 

n . =(r . -N, ) (r , .Nj 

where the To is a vector from CV origin to CV centre, and Tp is the particle relative vector 

from CV origin. It has been pointed out by (Zhou Q 1999) that Chen's scheme has too 

many computations and Zhou method only calculated one cross product and one dot 

product, as shown by Equation 6-8 

Equation 6-8 

L , = ( - r , xr ).k 



91 

where k is the unit vector pointing out of the paper. In two dimensional quadrilateral cells, 

if four positive signs of Lj, where d=w,e,n,s edges, are calculated then that means the 

particle is within the CV. To search for the particle within the four edges certain order, say 

anti-clockwise sense, was used. When one of the Ld is found to be negative the particle 

locating calculations took place on the cell adjacent to that edge. Hence further optimising 

the search and locate algorithm. 

6.3 Data structures 

The CFD software has its own data structure to represent their data. There are two main 

data groups; structured and unstructured. Ruent and CFX, two CFD software packages, 

uses unstructured and structured means of representing data respectively (determined by 

the data output files of each software). In section 6.3.1 and 6.3.2 structured single block, 

structured multi-block and unstructured data structures are looked in to in order to Gnd a 

means of calculating a cell number and how to associate cell node fluid properties to the 

cell number. The ways of determining the cell number and how data is stored and accessed 

is explained. 

When the particle reaches the boundary in two dimensions the intersection point along a 

boundary edge, must be calculated. The parametric coordinate 't' along an edge is 

calculated by the following equation. 

Equation 6-9 

t = 
Ym-yp. 

Ye, -Yc. 

where coordinate subscript 'e refer to an edge and 'p' refer to the particle. Two coordinate 

positions of the particle is required, one inside the flow domain and one outside, denoted 

by 1 and 2. The ' t ' would fall into the range of 0 < |t| < 1. 

In three dimensions the particle wall disposition point is easily calculated by calculating the 

intersection point when the particle vector intersect the plane of the wall cell face. 

6.3.1 Structured single block data structure 

Data on a single block can be represented by the way it is swept in the program in I-

direction first, J-direction second and K-direction last (in three dimensions) for a block 

with size (INxJNxKN). The structured grid nodes can be numbered by the way these loops 
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work as given by Equation 6-10. The data on single block can be placed on to an array 

accessed by 'num'. Note here that (I,J,K) start with 0 and end with (IN-1,JN-1,KN-1). 

Equation 6-10 

num = I + ( j X IN)+ (K X IN X JN) 

The cell number adjacent to each cell can then be found with ease. 

6.3.2 Structured multi-block data structure 

Particle tracking on multi-block domain adds a little complexity to particle tracking 

algorithm. The complexity is due to the means of calculating the adjacent cell number to a 

cell at a block boundary. The arrangement of data on each block could start from different 

block origin. During the block design process it may be possible on some software 

packages to arrange the block origins such that they fall on some pre-determined pattern, as 

shown in Figure 6-3, where A is a cross-section of a pipe being blocked with an 0-type 

block design, which is schematically shown in B. Notice that block origins shown by in 

a circle are arranged in a pre-determined way. The arrangement of each block interface 

with respect to adjacent face must be identified in terms of data how the data are read in 

each block. 

Figure 6-3 Pre determined multi-block arrangement 

The cells on each block is linked to the adjacent block by the way block faces are patched. 

Each block face could be numbered. If blocks are patched in some order, say blocks 1 and 

5 in Figure 6-3, then each face wiU be given a unique sweep directions copied from the 

parent block sweep directions. However when joining blocks 4 and 3 the adjacent sweep 

directions may not be so obvious. Extra information may needs to be stored about the 

origin of the face with respect to the block origin can be used to find the sweep directions 
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on adjacent edges. Then using particle's (I,J,K) index and face sweep directions the particle 

index on the adjacent block could be determined. 

Particle tracking on a cell centred grid poses problems near block boundaries, since the 

boundary is marked by grid nodes not cell centre nodes. For this reason aU blocks are 

allocated ghost cells (obtained from dump files of CFD software which often contain ghost 

cell information). Once a particle is located within a ghost cell it may be within another 

block, it may be very close to the block boundary or it may be outside of the domain. In 

fact if the wall grid is fine enough a particle located within ghost cell on a cell centred grid 

can be considered to be outside of the domain. A particle entering a ghost cell will only 

travel back to interior domain if a strong force is exerted on the particle by the boundary 

layer. Of course the boundary cell could be very large and particle could move along the 

wall to other boundary cells. However to a Grst approximation it is assumed that cells near 

the wall are small and if a particle enters a ghost cell, the particle is considered to be 

deposited (assuming that there is no adjacent block to that face). 

In multi-block domain the necessary information for particle tracking program are as 

follows. 

* Size of each block 

* Boundary conditions on each block face 

* Adjacent block to each block face 

* Orientation of the block face with respect to the block origin 

* The sweep directions of the face 

The programs that do particle tracking on multi-block domain are given in Appendix B. A 

three-dimensional test case tested is given in 6.5.3. 

6.3.3 Unstructured data structure 

The Fluent CFD software uses unstructured data. The dump file from this software writes 

data as per node and lists the node numbers separately as line format (i.e. when Tecplot 

data export option is used in Fluent). The line format basically lists two node numbers for 

all the edges found in the two-dimensional structured cell centred mesh where fluid 

property values are assigned. The idea is to re-construct the nodal arrangement into a 

structure where four nodes occupy a cell, which can be used for particle tracking on a 

structured grid. It was already discussed that particle tracking program need four vertices 
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surrounding it so that interpolation can be done and that it needs adjacent cell numbers to 

each cell edge. So the idea is to constmct a data structure that can represent these data. 

Figure 6-4 Unstructured ordering of nodes forming structured cells 

The unstructured nodal numbers on structured grid are shown in Figure 6-4, written in line 

format. Fluent writes node numbers in two-dimensions such that the first two nodes 

connect an edge. Each node number can be used to access certain properties of the fluid. 

What is required here is to calculate cell numbers and the associated four nodes (in two-

dimensions). The edge letters, shown in Figure 6-4, are in the order in which the Fluent 

dump the line format node numbers (connectivity). Using this information cell numbers 

can be calculated for a set of edges forming a closed control volume. 

Each edge can be allocated a number (a letter in Figure 6-4) and the edge node numbers 

can be identified. Choose an edge, say 'D', and find all the edges that share one of its 

nodes, say node 2. Three edges are found, C, A and E. Place then into a group, Gl. Choose 

the other node of edge 'D' i.e. node 200 and find the other three connecting edges, H, I and 

J. These go on group, G2. Now there will only be one edge that shares one node from the 

edges of Gl and the other node from edges of G2. This edge could easily be found from the 

edge database. Hence four edges enclosing a cell can be found and a cell number can be 

allocated to it. Note there will be some control volumes on the boundary of the domain 

where this algorithm to calculate cell number does not work. The CVs that cannot be 

formed on the boundary are the ghost CVs. It is assumed that particles entering such a 

control volume will deposit on the boundary. 

The relevant programs to pre-compute cell number, adjacent cell number and multi-particle 

tracking are given in Appendix C. 
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6.4 Tracking process 

The physical space tracking was chosen, because it is easier to implement. Only one set of 

non-linear equations has to be solved to obtain the local position of particle when global 

Cartesian location is given. The optimal scheme given by (Zhou Q 1999) was not used, 

instead the simple form of the tracking explained in section 6.2.2 was coded. Particle 

tracking in computational space could introduce additional errors in evaluating particle 

position since numerous transformations are used to transfer data back and forth and also in 

general it is more complex than physical space tracking. 

The particle tracking on a single structured block is very convenient and it requires the 

least amount of pre-processing. However when the particle arrives at block boundaries in 

multi-block structured domain particle tracking process is slowed, since various decision 

loops are necessary to evaluate the particle containing cell. The code for particle tracking in 

single and multi-block was tested in three-dimensions and the results are shown in section 

6.5.3. The particle tracking in two dimensional double bifurcation using post-processed 

Fluent data is given in section 6.6. Before giving the particle tr^ectories, it is important to 

validate the time Runge-Kutta time advance scheme used to solve the particle equations of 

motion and the Shape function interpolation scheme. In summary the particle search and 

locate scheme is conducted according to following steps given in Table 6-1. 

Table 6-1 Summary of the particle tracking process 

1 Particle is placed at some cell with known index (I,J) on a cell centred grid. 
Newly created data structure is used to access fluid properties and adjacnt cell 
number for a given particle containing cell number. 

2 Starting with the edge Cw the cos(6) is calculated, between edge normal and 
particle relative vector with respect to a given edge. In three dimension it would 
be the face normal and relative particle position vector with respect to the face 
origin that needs to be calculated. 

3 The sign is calculated using Equation 6-6 

4 If the sign is negative then step 1 and 2 is repeated until four negative signs are 
obtained, i.e. particle is located within a cell. 

5 If the sign is positive the Index in the direction normal to the edge, is 
incremented. The adjacent CV is found and step 1 to 4 is repeated. 

6 Initial velocity of particle is the interpolated fluid velocity from the surrounding 
known nodal data. 

7 Time step is taken for each particle in turn and the time advance is done by forth 
order Runge-Kutta. 

8 The tracking stops when the particle enters a ghost cell. 
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6.5 Validation process 

The validation of the particle tracking process is actually to validate the interpolation and 

integration schemes. Two types of flow fields were taken to validate the particle tracks: a 

flow that spiral inwards (vortical flow) of (Murman and Powell 1989) and potential flow 

around a cylinder (Shirayama 1993). The size of the time step and the grid spacing could 

affect the local interpolation error, and this will be studied. The particle time steps were 

calculated using the cell size such that particle will land on a cell at least two times and do 

not jump over ceUs. 

6.5.1 Fluid particle tracks in Vortical flow 

The two-dimensional flow field is given by Equation 6-11, where a=-0.5 and b=3.0. 

Equation 6-11 

u(x,y) = a x - b y 

v(x,y) = ay+bx 

A discrete flow field is computed by evaluating Equation 6-11 at each grid node whose size 

is 5 2 x 5 2 . The domain dimensions are 1x1. 

If the time step was fixed such that the magnitude of the particle trajectory vector will 

always be less than the magnitude of cell size, the particle tracking process would have 

higher efficiency. However it was found that in this test case as the particle tr^ectory 

vector is fixed the trajectory never seems to reach the centre, since along the trajectory the 

velocity reaches zero hence fixed particle trajectory will produce limit cycles around the 

centre of domain. The limit cycle size around the centre seems to be comparable to the size 

of the time step selected in terms of the cell size. 

Using a smaU constant time step the error from the integration can be reduced. The 

accuracy of the Shape function interpolation and bi linear interpolation could then be 

assessed. In fact when constant time step was used the tr^ectories seems to converge 

around the centre of the domain. The exact particle tracks were computed at each time step 

using Equation 6-11. The computed and the exact tr^ectories are plotted in Figure 6-5 and 

Figure 6-6 for bi-linear and shape function interpolations respectively. 
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Figure 6-5 Computed particle tracks using bi linear interpolation and exact tracks with constant 
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When bi-linear interpolation was used the maximum difference in calculated particle 

position and the exact particle position was 0.0367units and the maximum difference in 

velocity was 0.2579units, while for shape function interpolation it was 0.0290units and 

0.0951 units respectively. A central differencing scheme was used to calculate the velocity 

derivatives at nodal points, which is necessary for the shape function interpolation. Figure 

6-7 shows that even though the overall trajectories seem quite similar, when shape function 

interpolation is used the trajectory become much smoother. This is made even more 

evident from Figure 6-7, where displacement error verses time step is shown for two 

interpolation schemes (i.e. the difference is particle position between computed and the 

exact at each time step). The time stepping error here is expected to be much smaller than 

the interpolation error. 
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Figure 6-7 Absolute error between the exact and the computed resultant displacement at each time step 

The Figure 6-7 shows that bi-linear interpolation has very oscillatory displacement errors, 

while for Shape function interpolation it is much smoother, which may be attributed to its 

use of velocity derivatives. Using an interpolation scheme whose interpolated velocity 

satisfies continuous condition, i.e. the velocity derivative is continuous across cell 

boundaries, allow the particle trajectory to be less oscillatory. 

6.5.2 Fluid particle tracks in potential flow 

The particle path integration scheme can be tested on a flow field that varies the curvature 

of the fluid particle trajectory. A potential flow field around a cylinder with some 
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circulation fits this criteria, hi this case shape function interpolation was used throughout. 

The grid used to evaluate the fluid velocity and its derivatives are the same as in the 

previous test case. The flow field is described by the following equation. 

u = U o + U o — 

r ( y - c j 

2n r^ 

= - 2 U o ^ ( x - c J + ( y - c )+ 
r ( y - c J 

2% r^ 

where r = M x - c ^ f + { y , Uo is the uniform flow velocity, F represents the 

circulation, a is the radius of the cylinder and (Cx,Cy) is the centre of the cylinder. The 

parameters chosen were as follows: Uo=1.0, a=0.5, Cx=Cy=0 .0 , and r=6.0. The exact and 

computed trajectories are shown in Figure 6-8. It can be seen that as the particle path is 

highly curved the particle path deviates from the exact path. Even for very small time step 

the cumulative error does not change much, however when the grid density was increased 

the error was reduced. 

approximate 
exact 

x-axis 

Figure 6-8 Computed and exact trajectories in the potential flow 
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(Shirayama 1993) used particle tracking in computational space rather than the physical 

space and the particle paths presented show similar deviation from the exact path lines. 

6.5.3 Three dimensional fluid particle tracks 

As a test case for three-dimensional particle tracking in multi-block structured data 

structure a 15 block 90° bend geometry was chosen, where the first five blocks forms an O-

type grid at the entrance, and the second set of five blocks form the curved section of the 

pipe and the last set of five blocks form the exit straight section of the pipe. The block 

arrangement is shown in Figure 6-9. The uniform inlet flow was specified at a Reynolds 

number of 400 based on inlet diameter and inlet velocity. The outlet condition at the top 

was zero relative pressure. Three-dimensional flow field was computed using CFX 

commercial software with a laminar flow model. 

Figure 6-9 Three-dimensional multi-block structure 

The four particles are introduced into the flow field and the resulting tracks are shown in 

Figure 6-10. It can be seen that the particles p4 and p3 (yellow and green) rotate with 

respect to each other as expected of the flow field in bent tube, where secondary flow field 

is generated. Note that in Figure 6-10 the inlet is at lower x-coordinate, and the black rings 

meant to show the circular cross-sections of the cylinder lying on the horizontal plane. 
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Grid and aerosol particle (density /densityj=1) tracks (fluid particle) 

y-distance 

* wall 
— p1 (45.0,0.0,0.0) 

p2(45.0,-0.5,0.0) 
p3(45.0,0.0,-0.5) 
p4(45.0,-0.5,-0.5) 

% -5 

x-distance 
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6.6 Particle deposition 

In section 6.5 the fluid particle tracks were tested for numerical integration and 

interpolation schemes. Using a smaller particle time step and shape function interpolation 

reasonably accurate particle tracks can be obtained. Now the particle equations of motion 

with Stokes' drag can be solved, and particles tracked on the two-dimensional to 7̂ "̂  

branch airway model. The Reynolds number of the flow is set to 600 and outlet pressures 

are all equal to 1 Pa. The Stokes number, Stk, given in Equation 6-12 is a non-dimensional 

quantity used to study particle deposition due to change in particle properties. 

Equat ion 6-12 

18D|i 

where Pp, dp, U, D, and )i are particle density, particle diameter, inlet fluid velocity, 

diameter of the parent tube, and fluid viscosity. Stokes number range of between 0.02 to 

0.12 was chosen, as shown in Table 6-2. The particle diameter was fixed at 3xlO'^m and 

the density of the particle was calculated for various Stokes numbers. 
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Table 6-2 Particle characteristics 

Stk 0.02 0.04 0.06 0.08 0.1 0.12 

Particle 
density 

0.97183x10^ 1.9437x10^ 2.9155x10^ 3.8873x10^ 4.8592x10^ 5.831x10^ 

A large number of particle tracks have to be simulated in order to compute the deposition 

efficiency, which is deAned as the ratio of number of particles deposited on the wall of the 

geometry to the number that escaped through the outlet. Ten particle tracks for Stokes 

number of 0.02 and 0.12 are shown in Figure 6-11 and Figure 6-12 respectively. Initially 

they were positioned non-uniformly, where more particles occupy the core region. (Soo 

1990) showed that in fully developed flow particles accumulate at the centre of the tube, 

hence the use of non-uniform distribution. 

For the particle deposition study 91 particles were distributed non-uniformly as shown in 

Figure 6-13. The initial location of particles start at y=0 and end just below the outside wall 

at y=l.75x10"^. The simulated flow field is symmetrical about y=0. The deposition 

efficiency for the first bifurcation does not change significantly for any larger number of 

particles. The Figure 6-13 also shows the starting position of particles with Stokes number 

0.12 that got deposited on the first and the second bifurcations in red colour. The particles 

deposited on the second bifurcation were originated from a position closer to the wall of 

the parent tube, while those got deposited on the first bifurcation came from the core region 

of the tube. Even with the highest Stokes number used, the area from which the released 

particles got deposited is very small. Figure 6-14 shows the deposition zones of particles in 

the first and the second bifurcation (small blue circles), which were released from the inlet 

at red locations. 

The particle deposition efficiency was computed for the Stokes numbers shown in Table 

6-2 and are graphed in Figure 6-15. The deposition efficiency for each bifurcation is 

calculated as a percentage by computing the total number of particles entering each 

bifurcation divided by the number that gets deposited in that branch. (Comer, Kleinstreuer 

et al. 2001b) used CFX, commercial CFD software, to carry out the flow simulations and 

particle tracking in a three dimensional double bifurcation model. (Comer, Kleinstreuer et 

al. 2001b) displayed results for flow Reynolds number of 500 with sharp carina. When 

comparing results the trend in deposition efficiency for the first bifurcation is quite similar 

for increasing Stokes number, and the exact values differs by about 1%. In three 

dimensional case the first bifurcation deposition values are greater, but the second 

bifurcation values are less. In three dimensional case the particle deposition seems to occur 

all around the second bifurcation apex region, while in two dimensional case the particle 
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deposition is seen only on one side of the second bifurcation Figure 6-14. In order to get a 

better deposition efficiency results for the second bifurcation in the two dimensional case 

more particles must be released, then the trend would be the similar as those given by 

(Comer, Kleinstreuer et al. 2001b). 

When the flow condition is such that the mass flow rate out of all the outlets is similar, for 

example at the flow condition when the minimum pressure loss occurs across the 

bifurcations, the particle deposition would be highest. This is because at this condition the 

flow has the greatest overall curvature change. Large number of particle paths would have 

many curvature changes. 
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Figure 6-11 Particle tracks for Stk=0.02. Only 10 particle tracks are shown. 
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Figure 6-12 Particle tracks for Stk=0.12. Only 10 particle tracks are shown. 
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Figure 6-13 Non-uniform particle distribution with starting positions of first and second bifurcation 
deposition for Stk=0.12. 
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Figure 6-14 Non-uniform particle distribution with starting positions of f irst and second bifurcation 
deposition for Stk=0.12. 
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Figure 6-15 Particle deposition efficiency for a Reynolds number of 600 

6.7 Conclusion 

A particle search and locate procedure in physical space was designed to carry out particle 

tracking. It was realised that tracking in physical domain involved less computations. 
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simpler, and has less of an error in locating the particle. Also data structure was created to 

track particles using data represented by unstructured means in Fluent. 

The tracking algorithm can easily be extended to three dimensions, which was proved by 

the three-dimensional test case. Particle tracking procedure is most efficient when its own 

data structure was used. The two dimensional test cases showed that linear interpolation 

introduced errors that included non-smooth particle tracks, and that smaller time steps with 

runge-kutta scheme was adequate for the particle tracking in laminar flow Geld. However 

higher order particle equation solvers, and finer grids may be necessary if more accurate 

pardcle paths are desired at the expense of computational cost. In all particle paths the 

relative velocity of particle with respect to the fluid velocity at particle position did not 

exceed a Reynolds number of 1, which implied that Stokes drag term was the most 

signiGcant force experienced by the particle. 

Recently there have been numerous publications on particle deposition in double- triple 

bifurcation three dimensional airway branches using commercial CFD software (Comer, 

Kleinstreuer et al. 2001b), (Zhang, Kleinstreuer et al. 2001) and (Comer, Kleinstreuer et al. 

2000). They used in-build particle tracking routines within the CFD solver. No indications 

of the accuracy of the interpolation scheme or the integration scheme used were accessed. 

This study shows that interpolation scheme and particle equation solver play an important 

role in particle tracking. 

Particle tracking in two dimensional flow field is only 1 -2% different to that of the three 

dimensional case for double bifurcation flow. However the trend in particle deposition 

efGciency with Stokes number is the same. When mass flow rate out of the outlets are 

relatively equal the m^ority of the flow will have a large change in curvature, hence the 

deposition efficiency would be the highest. 

Other application of the particle tracking could include gathering Lagangian statistics: two-

particle velocity and distance correlation, mean square separations between particles; and 

influence of mean shear upon the downstream dispersion. 
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7 Conclusions 

Drug delivery through the human airways is a novel and effective means of drug delivery. 

The airway tree forms a very complex branching pattern, which can be approximated using 

the Weibel and Horsfield models. CFD is capable of using detailed geometrical 

descriptions of the geometry to carry out accurate simulations of the flow field (Comer, 

Kleinstreuer et al. 2001a), and (Comer, Kleinstreuer et al. 2000). 

The most tedious part in the CFD process was the mesh generation on a complex geometry. 

It took a longer time than that required for the CFD solver in obtaiing a grid converged 

solution. Improving the turnaround time in mesh generation would increase the efGciency 

of the CFD process, since the solver performance was adequate. The performance of the 

solver was improved by the multi-block design technique, which improved the grid. 

However if faster turnaround time is needed then an unstructured grid must be used. A 

reliable mathematical description of the three-dimensional model is required to perform 

accurate mesh generation. 

During grid independent study it was found that to resolve the pressure to an adequate 

accuracy (to check the pressure losses within the flow domain) a very Ane grid was 

necessary. This was because the flow responded to very small pressure changes. As much 

as IPa was sufficient to alter the mass flow rate in one branch almost completely. The 

solution algorithms in most CFD software responds to large pressure changes by a 

compatible change in velocity, and in the same way for a small pressure change, the change 

in mass flow can be minute. However in the double bifurcation flow field a small change in 

pressure brought about a large change in mass flow rate. Therefore for accurate simulation 

the detailed pressure field has to be resolved using a fine grid, which in turn requires a 

large number of iterations to reach the residual limit. Multi-grid techniques in Fluent are 

useful to speed up the convergence process. 

In this project a two dimensional 5^ to generation airway branch was used to carry out 

the flow simulation. CFD results showed complex flow structure within the bifurcation. 

There was new boundary layer formation, stagnation regions, separation regions, and 

expansion flow through diffuser sections. In one case the fixed inflow rate was varied using 

the same outlet pressures. The results showed as the fluid Reynolds number was increased 

the mass flow on distal branches became more and more biased. Under the normal 

breathing conditions the Reynolds number on the 5"̂  generation airway fell under a 
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Reynolds number of 369 (chapter 2 and (Pedley and Kamm 1991)). Hence the flow is only 

slightly biased in generation airways when it is completely unbiased in 5^ generation. In 

the second case when the inflow was flx^ed and outer most branch pressure was altered it 

was found that using very small pressure difference can be used to make the flow through 

all the branches equal. So during heavy breathing the lung has to perform work to create 

these pressure differences otherwise the lungs would not be well ventilated by the 

symmetrical branches in central airways. 

There are large amount of publications on flow studies in airway bifurcations and also on 

blood flow in arterial bifurcations. At present there has beeng hmited research relating to 

studying the pressure changes within airway bifurcation due to outlet pressure variations. 

Pressure variations in the airways must be studied in more detail experimentally Grst and 

then computationally in three dimensions. It is the small cascade effects of non-uniform 

pressure changes in airway cross-sections that force the air at correct proportions to 

ventilate the lung. 

Particle tracking on a data structure of its own resolved many issues that arose due to using 

multi-block structured data structure. Search and locate algorithms in physical space was 

fast, and simpler than tracking in computational space. Multi-particle tracking in sequence, 

in general, using a small time step was slow. The particle path integration and interpolation 

of fluid velocity was thoroughly tested. The Runge-Kutta method and Shape function 

method gave good results. The deposition efficiency for the first bifurcation was only 1-2% 

off that predicted in three-dimensional simulations, which attributed to presence of 

secondary flow and lack of separation regions in three-dimensions. 

In two-dimensional flow model the axial flow proGles are qualitatively accurate compared 

to the three-dimensional axial flow profiles. Hence particle tracking in two-dimensional 

flow field provided a means of testing and simulating actual three-dimensional behaviour. 

It was reported that drug particles get deposited in upper airway branches and they have 

difficulty in reaching the lower airway branches. This has being verified by larger particle 

deposition zone in the first bifurcation than the second bifurcation shown in chapter 6. 

Those that got deposited came from certain entry zones at the parent branch. Therefore if 

particle were dispersed appropriately then there is more chances that these particles 

reaching outlets, hence enhancing the efficiency of drug delivery. The particles are less 

likely to be deposited when the flow through the branches are asymmetrical, when the 

overall flow curvature in all branches are small. Further study must now be done in three-
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dimensions since the issues relating to geometric construction of airway bifurcation and 

mesh generation, solver options, particle search and locate algorithm, fluid particle 

interpolation, and particle path integration has being tested and known to work accurately 

and efficiently. 
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8 Appendix A 

8.1 Weibels Model A 

i n 

Generation, Number Diameter, Length, Total Total Accumulative 
z perz, 

ii(z) 
d(z)/ cm l(z) cross-

section, 
S(z)/cm^ 

Volume, 
V(z)/cm^ 

Volume, /cm^ 

0 1 1.81 12.0 2.54 30.50 30.5 
1 2 L22 4.76 233 1L25 4L8 
2 4 0.83 1.9() 2.13 3.97 45^ 
3 8 0.56 0.76 2.00 1.52 472 
4 16 0.45 1.27 2.48 3.46 5^7 
5 32 035 1.07 3J^ 330 54^ 
6 64 0.28 0.90 3.96 3.53 5%5 
7 128 0.23 0 ^ 6 5 J ^ 3 j # 6L4 
8 256 0 186 0.64 6.95 4.45 65^ 
9 512 0 J ^ 4 0.54 9 J ^ 5 J J 7L0 
10 1024 0J30 0.46 13.4 6.21 772 
11 2048 0^09 039 19^ 7.56 84^ 
12 4096 0.095 033 2&8 9.82 94^ 
13 8192 0.082 027 44.5 1245 lO&O 
14 16384 0.074 0.23 69^ 1&40 1214 
15 32768 0.066 0.20 113^ 2L70 145^ 
16 65536 0.060 0 J65 18^0 29 JO 174^ 
17 131072 0.054 0JI41 3oao 4L80 21&6 
18 262144 0.050 0 J ^ 7 534^ 6110 277J 
19 524288 0.047 0.099 94^0 93.20 37^9 
20 1048576 0.045 0083 i6oao 139.50 5104 
21 2097152 0.043 0.070 3220X) 22430 734J 
22 4194304 0.041 0.059 5880X) 35^00 1084J 
23 8388608 0.041 0.050 11800X) 59L00 167^0 
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9 Appendix B 

9.1 Input parameters used in the particle tracking code 

9.1.1 Multi-Block connectivity in file "mod.txt" 

I. Global grid information 

I. Number of different grid sizes. 

If only one then use 1, do not use 0. 
H. Number of grid sizes on the block in I, J, and K directions for each different grid 

size. 

Note that grid size is cell number plus 3, i.e. ghost cells are included and one extra for 
the last grid point (as in Elmore restart ascri grid Ales). 

Also the number of points in Elmore restart-variable Gles is cell numbers plus 2 
(including ghost cells). 

Note that Elmore ghost cells are just an algebraic displacement of the face cells, NOT 
therefore the adjacent cells. Hence it is assumed that the ghost cells in Elmore are 
close enough for the adjacent cells of the adjacent face to the current face. 

For each block following information is necessary. 

III. Boundary condition on each face 

Boundary Condition ID 
Interface 0 
Wall 1 
Inlet 2 
Outlet 3 

IV. For each face interface 
a. Adjacent block to each face 

i. First block is 0. 
ii. If no block in adjacent side then put -1. 

Sweep direction of the face i j k ID 
0 No sweep 
1 First direction 
2 Second direction 

If the face is not an interface then use a value of 6. 
Sweep directions ID 
lo l 0 
hi I 1 
loi 2 
h i j 3 
lo k 4 
hik 5 
Non 6 
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9.2 Programs for three-dimensional particle tracking 

9.2.1 Introduction 
Following program were compiled in Visual C++ V6. The main program is track.cpp, it 
then calls the necessary functions. All the functions are separated out to files. The program 
produces output file, part_proper.txt. 

9.2.2 bgather.cpp 
// Getdng the block information-
// Last updated 16/09/00 

#include "topheadh" 

extern int gridnumtBN+lj[NVAR+l j; 
extan int change[BN+l |; 
extern int adj_block['l'F]; 
extern iot bound[TF]; 
extern int orien_plane['lTj; 

void block_iafo() 

char variabler5|=:"xyzu": 
int a,i,j,k,x; 
int dil:fblock; 
ifstream omod; 

omod.openC'mod.txt"); 
c o u t « "\n\t\tReading mod.txt for; 
omod » diffblock; 
/ / c o u t « diffblock « endl; 
far(i=0; i<diffblock; i-H-)( 
for(j=0; j<3; j++){ 
omod » x; 
gridnum[i]|j]=xi 

lobal grid properties. An" 

fm:(i=0: i<BN: i-H-)[ 
omod » x: 
change[ij=x; 

/ / c o u t « x « " " ; } 
// collect the adjacent block to each face 
for(i=0; i<TF; i-H-)( 
omod » x; 
adi_block[i1=x: 
} ' 
// collect the boundary condition on each face 
for(i=0; i<TF; i++){ ' 

omod » x; 
bound[i|=x; 

} 
// collect ij,k lo,hi ry non values of each global face number 
for(i=0; i<TF; i-H-)( 

o m ( x l » x; 
orien_plane[il=x; 

} 
omod.close(); 

/ * 

c o u t « "\nBoundary conditions are\n"; 
a=:I; 
for(i=0; i<BN; i-H-)( 

for(i=0; j<6; j44-){ 
c o u t « "Blocks" « i « " face num=" « j « " and b o u n d [ " « 
a « "|=" « botind[al « endl; 

9.2.3 calc gridnum.cpp 
// 
// Calculating the particlc grid number 
#include "tophead.h" 
extern double part_positiunlNVAR|: 
//extern float * xerid; 

//extern float * ygrid; 
//extern float * zgrid; 
extern double xgrid[TEMP+l]; 
extern double ygnd[TEMP+l j; 
extern double zgrid{TEM?+ II; 
extern int gridnum[BN+l][NVAR+ll; 
extem inl change[BN+l]; 
extern int grid_ijk[NVARl; 
extern int cblock_num; 

void calc_!mdnum() 
{ 

inl i ,j,k,x; 
int 

start_i=l,status_l=0,count_l=0,status_2=0,count_2=0; 
//initialise all to 0 
inl collectl_i[YNUM*ZNUM1={ 0); 
int xnum,ynum^num; 
x=change[cblock^num]; 
xnunt=gridnum(x][OJ; 
ynum=gridnum[xl [11; 
znum=gridnumlxj [2]; 

// set indices to interior cells 
c o u t « "\n In calc_gridnum\n"; 
c o u t « "xnum=" « xnum « " ynum=" « ynum « ' 

/num=" « znum « endl; 
c o u t « "\ncblock_num=" « cblock_num « endl; 

ofstreamoutl; 
outl.opcn("i_input.txt"); 
// use status to find if the sweeping direction is increasing 
or decreasing 
// starl_i = grid point before the particle 
// IN = total No. i-grid points 
// JN = total No. j-grid points 
// KN = total No. k-grid points 
// grid_x[j = x-coordinates of the grid points 
// part_posin = x,y,z position of the particlc 

II-

//lindjk-plane 
/ / -

for(k=]; k<znum-l; k44-){ 
f(y(i= 1; j<ynum-1; j-H-) ( 

// bottom: when j changes need to make sure grid point is behind 
the particle position 
if(count_2=l && count_l!=l){ 

// sweeping in increasing direction 
// exit while loop if false statement 
// below start_i is the last know sub-division where particlc is in 
front of grid vertex 

while(xgridlslart_i+(j *xnum)-t-(k*xnum*ynum) | > 
part_position[0])( 

// bottom: if particle not behind last 
subdivion then reduce 

start_i=start_i-l; 

i f (count_ l= l && count_2!=l){ 
// when sweeping in decreasing direction 

whilc(xgrid[start_i+(j*xnum)+(k*xnum*ynum)| < 
part_positionlO]X 

slart_i=starl_i-l; 

f(stan_i<l)( 
c o u t « "\n\n\t\t]:xit due to failure\n\n"; 
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outl.close(); 
} 

// need to re-initialise the count and status 
status_l=0; 
count_l=0; 
status_2=0; 
count_2=0; 

for(i=start_i; i<xnum-l; i++){ 
if(xgnd[i+(i*xnum)+(k*xnum*ynum)j < part_position[Oj)( 
status_l=I; 
count_l++; 
} 
else( 
status_2=l; 
count_2-H-; 

1 
if(status_l+stattis_2 == 2){ 

// top : particle trapped 
start_i = (i-1); 
// top : particle will be aft of start_i 
collectI_i|j+(ynum*k)]=start_i; 
// top : in 3D collect the jk-plane behind the particle 

// X-, y-, z-cocrdinates and i-subdivision behind he 
particle 

outl « xgridfstart_i+(j*xmim)+(k*xnum*ynum)l « " 

outl « ygrid[start_i+(j*xnum)+(k*xaum*ynum)] « " 

outl « zgrid[start_i+(j*xnum)+(k*xnum*ynum)| « " 

out] « start_i « " " « j « " " « k; 
outl « endl; 

i = xnum; 
// top : end the current i loop. This assumes that change 

of sign 
// docs not happen again in the same loop 

! 
else( 
// carry-on the i loop 
} 
) // end of i-for loop 
} // end of j - fw loop 
} // end of k-for loop 
outl.close(); 
cout«"\n\njk-plane found\n\n"; 
// 

// Use the jk-plane computed before to narrow down the position of 
the particle. 
// At the end in 3D find a line behind the particle 
// 

//find k line 
// 

int start_j=l ,status_3=0,count_3=0,status_4=0,count_4=0; 
int ten^_collectl; 
int coIlect2_i[ZNUM]=(0}; 
int collecl2_j[ZNUM1=(0}: 
ofstream out2; 
out2.open("j_inpuLtxt"); 

k=l; 
> 

ten^_collect l=collectl _i|j4-(k*ynum)1: 
// top : temp_collect conatin the i_position of first grid 

point of the jk-plane grid points 
for(k=I; k<znum-l; k++){ 

if(count_4==l &&count_3!=I){ 
// top : sweeping in increasing direction 
// need to make sure that the i-poisiton is 

behind the particle for every change in j-position 
// bottom: so use last j-division and new k to 

sec 

temp_collcctl =collcct 1 _i[startj+(k*ynum)]; 
// bottom: exit while loop if false statement 

while(ygridf tenq)_collectl +(stan_j *xnum)+(k*xnum*y 
num)j > part_position[l |){ 

start_j=start_j-l; 
tenq)_collectl=collect]_i[startJ+(k*ynum)] 
// top : assign new i-division of the jk-plane 

i f ( counl^3=l && count^4!=l){ //sweeping in 
decreasing direction 

tenq)_collectl=collectl_i[startJ-Kk*ynum)]; 
while(ygrid(terr()_collecll+(start_j*xnum)+(k*xnum*y 

num)] < part_position[l])( 
start_j=startj-l; 
temp_collect 1=collect] _i [start_j+(k*ynum)]; 

if(start_j<l){ 
c o u t « "\n\n\t\tExit due to failureXnXn"; 
out2.closef): 
} 
status_3={); 
couat_3=0; 
status_4=0; 
count_4=0; 

for(j=start_j: j<ynum-l; j4-+){ 
// bottom: collect first i-value on the jk-plane 
ten^_collectl=collectl_i|j+(k*ynum)l; 
if(ygrid[ten:{)_collectl4-(j*xnum)-Kk*%num*ymim)] < 

part_position[lj){ 
status_3=l; 
count_3++; 

} 
else( // ygrid[temp_collect+(j*xnum)] > part_position[11 
status_4=l; 
count_4-H-; 
} 
if(status_3+status_4 == 2){ // particle trapped 

start_j = (]-!); //particle wiU be aft of start_j 
collect2J[k]=start_j;// in3D this wouldbej points o f a 

line in direction of k behind the particle 
tcmp_collectl =collectI _i[start_j+(k*ynum)]; 
collecl2_i[k]=ten:q)_collectl; 
out2 « 

xgridrte[rg)_collectl-t-(start_j*xnum)-t-{k*xnum*ynum)] « " 
out2 « 

ygrid[tenq)_collectl-t-(start_j*xnum)+(k*xnum*ynum)J « " 
out2 « 

zgrid[tcn:^_collectl+(startJ*xnum)4-(k*xnum*ynum)]« " 
out2 « temp_collectl « "" « startj « " " « k; 
out2 « endl, 
j = ynum; // end the current j loop. Assume only one 

change of sign per j-loop 
) 
else( 
//carry-on the j loop 

// end of j-for Icmp 
// end of k-for loop 

out2.close(); 
c o u t « "End of jk-plane\n\n"; // 

// find grid vertex point f the cv that particle reside on 
// Z 
int start_k=l ,statu^_5=0,count_5=0,status_6=0,count_6=0; 
int collect3_k=0,temp_collect2, collect_z; 
ofstream out3; 
ouG.open("k_inpuLLxt"); 

k=l ; 
for(k=start_k; k<7.nurn-l; k-H-){ 

temp_collectl=collcct2JLkj; //tenT^collectl contain 
the i_positions of the k-curve 

ten^_collect2=collcct2J[k|; // ternp_collect2 conatin 
the j_positions of the k-curve 

if(zgrid[temp_collectl+(temp_collcct2*xnum)4-(k*xnu 
m*ynum)] < part_position[2|){ 

status_5=l; 
count_5-H-, 
} 
else{ 
status_6=l; 
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counL6-H-; 
) 
if(stalus_5+status_6 == 2)( // particle trapped 
start_k = (k-1); //particle will be aft of start_k 
collect_z=start_k; // k component behind the particle 
temp_collectl =collect2_i[start_k]; 
temp_collect2=collect2 J [start_k]; 
ouG « 

xgnd[tefnp_collect]+(temp_col!cct2*%num)+fcollec[_z*xnum*ynu 
m)] « " 

out3 « 
ygrid[teag)_coUectI+(temp_coUcct2*xnum)+(collect_z*xaum*ynu 
m)] « " 

out3 « 
zgrid[temp_collectl+(temp_collect2*xnum)+(collecLz*xnum*ynu 
m ) ] « " 

out3 « ten]p_collectl « "" « tenip_collect2 « "" 
« start_k; 

out3 « endl: 
k = znum; // end the current k loop. Assume only one 

change of sign per k-loop 
} 
else( 
// carry-on the k loop 

} // end of k-for loop 
out3.close(); 
c o u t « "End of k-curve\n\n"; 
//int ghd_num=start_i+(startj*(xnum-l))-t-(start_k*(xnuni-
l)*(ynum-l)); 
grid_ijk[0]=temp_collectl, 
gnd_ijk[lj=temp_collect2; 
grid_ijkl2j=start_k; 

9.2.4 direction.cpp 
// 

// Determine which cell particle is at 

#include "tophead.h" 

extern double relalive[7][NVAR|; 

extern int grid_ijk[NVAR]; 
extern double normal[7][NVARj; 
extern int normal_num[71; 
extern int dircct_num[7J; 
extern int exit_cond[6][BN1: 
extern int cblock_num; 

int directionO 
( 

int i,j,state_one=0,access_l.acccss_2; 
int within[7]; 
double p^oduct=0.0; 
double cos_±eta,mod_normal,mod_part; 
for(j=0; j<6: // for each face 

product=0,0; 
fc«-(i=0; i<3; i++)( // for cach variable 

product=product+(rclati vc[j | [i | *normaH j 11 i |); 
} 
// calculate mcxlulus 

mod_part=:sqrt(pow(relative|jl [0] .2)+pow(relati veQ] [ 1 j,2)+pow(rcl 
ative|jJl2],2)); 
mod_normal=sqrt(pow(normal[jl [0] .2)+pow(normal[j J [1 j ,2)+pow( 
normal|jjl2J,2)); 

// calculate dot product 
cos_theta=(product/(mod_part*mod_normal)); 

// c o u c « "Xn llic cos_theta=" « cos_thcta « endl, 
if(cos_theta > 0){ 

// cos_thcta > 90 degrees, particle is out 
within[j]=0: 
} 
else ( / / cos_the[a <= 0 particle is within 

within! i 1=1; 
} 

i f ( i = 0 ) { // particle is out of face 
switch (j){ 

case 0: 
gridjjk[01=grid_ijk[0]-l; 

if(grid_ijk[0] < exit_cond[0][cblock_num]){ 
c o u t « "\n\nGone wrong West\n\n"; 

grid_ijk[0j=grid_ijk[0]+l; 
// do not break 
) 
else{ 
c o u t « "\nWest\n"; 
} 
break; 

case 1: 
grid_ijk[01=grid_ijk[0]+l; 

if(grid_ijk[0] > 
it_condll][cblock_num]){ 

cout « " \ n grid_ijk[Oj=" « grid_ijk[01; 
c o u t « "\n\nGone wrong East\n\n"; 

grid_ijk[Oj=:grid_ijk[OJ-l; 
return 7; 
// do not break 
} 
else{ 
cout«"\nEast\n"; 
} 
break; 

case 2: 
grid_ijk[lj=grid_ijk[l j-l; 

if(grid_ijkf 1] < exlt_cond[2J[cblock_num])j 
c o u t « "\n\nGone wrong South\n\n"; 

grid_ijkril=grid_ijkt 11+1; 
return 7; 
// do not break 

! 
else{ 
cout«"\nSouth\n"; 
} 

break; 
case 3: 

grid_ijk[11=gridjjkn j+I; 
if(grid_ijk[l] > exit_condl3|[cblock_numj){ 
c o u t « "\n\nGone wrong North\n\n"; 

grid_ijk[l|=grid_ijk[l|-l; 
return 7; 
// do not break 

} // end of j-loop 
for(j=0: j<6; // for each face direction 

i=within|j|; 

break; 
case 4: 

grid_ijk[21= 

clse{ 
c o u t « 

^ d j j k f 2 1 - l ; 

'\nNorth\n" 

if(grid_ijk[2j < exit_cond[4][cblock__num|)( 
c o u t « "\n\nGone wrong Bott»m\n\n"; 

grid_ijk!2J=grid_ijkf2J+l; 
return 7; 
// do not break 
} 
else{ 
cout«"\nBottom\n": 
} 

break; 
case 5: 

grid_ijk[2J=grid_ijk[2j+l; 
if(grid_ijk[2] > exil_cond[5][cblock_numj)( 
c o u t « "\n\nGone wrong 'rop\n\n"; 

grid_ijkt2|=gridjjk[2|-l; 
return 7; 
// do not break 
} 
elsef 
c o u t « "\nTop\n"; 
} 

break; 
default: 

c o u t « "Unknown operator" « i « endl; 
break; 

}// end of switch 
j=6; 



116 

sta[c_one=0; 
}// end of if loop 
else{ 

// c o u t « "\n\nParticle is within\n"; 
state_one=9: 

} 
)// end of j-loop 
fa(j=0; j<3; j++){ 
// c o u t « "erid_ijkf"« | « " ] = " « grid_iik|j] « " 
} 
return state_one: 

9.2.5 face.cpp 
// 

// Determine which cell particlc is at 

#include "tophead.h" 

extern int gridJjk[NVARj; 

extern int gfn[21; 
extern int bound[TFJ; 
extern int a(^_block|Tr]: 
extern int change[BN+l]; 
extern int gridnum[BN+]][NVAR+ll 
extern int (men_plane[TF]; 

int faceO 

int i,j,temp; 
int xnum; 
int ynum; 
intznum; 
ten:g)=gfn[Oj; // current face 

switch (bound[temp1){ 
case 0: 

// interface 
break; 

case 1: 
c o u t « "\nHit a w a l l ! " « endl: 
return 0; 

case 2: 
c o u t « "\nAt i n l e t ! " « endl; 
return 0: 

case 3: 
c o u t « "\nAt out le t !"« endl; 
return 0; 

default: 
c o u t « "Unknown operates " « i « endl; 
return 0; 

} 
// has conOrmed that the face is an interface 
// ac^acent global face number 
tcrnp=adj_block[temp |; 
temp=changc[temp|; 
xnum=gridnum( tempi [0]: 
ynun:pgridnum[tenip] [ i ]; 
znun^gridnum[temp] [2j; 
c o u t « "\n The new xnum=" « xnum « " ynum=" « ynum « 
" z n u m " « znum; 

cout « e n d l ; 
// 
temp=gfn[lj; 
/ / c o u t « temp « endl; 
/ / c o u t « orien_plane[tempJ « endl; 
cout«"\nBefore"; 
c o u t « "\ngrid_ijk[OJ=" « grid_ijk[01« " grid_ijk[l]=:" « 
grid_ijk[l] « " grid_ijk[2]=" « grid_ijk[2j « c n d l ; 
// find the hi/low of the adjaccnt facc, make sure new grid^ijk 
// points to interior cells not to ghost cells 
// Note: index start from 0 and end at *num-l 
switch(oricn_plane[temp])( 

case 0: 
grid_ijklOJ=l; 
break; 

case I: 

case 2: 

gTid_ijk[0J=%num-3; 
break; 

case 4: 

case 5: 

case 6: 

been confirmed\n\n"; 

grid_ijk[l]=l; 
break; 

gridJjk[ 1 J=ynum-3; 
break; 

grid_ijk[2j=l; 
break; 

grid_ijk[2|=znum-3; 

break; 

c o u t « "\n Previous steps interface has not 

return 0; 

default: 
c o u t « "Unknown operator"« endl; 
return 0; 

} 
cout «"\nAfter"; 
c o u t « "\ngrid_ijk[0]=' « grid_ijk{Oj« " grid_ijk[l]=' « 
grid_ijk[lj « " grid_ijk[2j=" « grid_ijk[2j « endl; 
return 1; 
} 
9.2.6 grid_vertex.cpp 
// Acquire CV vertices 

#include "tophead.h" 
extern double point_loca[9][NVART; 
extern double xgrid|l'EMP+l]; 
extern double ygridTTEMP+l]; 
extern double zgrid[n5MP+l]; 
extern int grid_ijk[NVARj; 
extern int gridnum[BN+lj[NVAR+IJ; 
extern int change[BN+l]; 
extern int cblock_num; 
extern double mag_cell_cen; 

void grid_verte%() 

int xnum,ynum,znum; 
intj,x; 
double cell_cen_x; 
double cell_cen_y; 
double celLcerLz; 
double rel_cell_x; 
double rel_cell_y; 
double rel_cell_z; 

x=change[cblock_numj; 
xnum=gridnum[x] [0]; 
ynun#:gridnum[xj [ 1 ]; 
znunt=gridnum[x][2j; 
int x_divi, y_divi, z_divi; 

x_divi=grid_ijk[0|; 
y_divi=grid_ijklll; 
%_divi=grid_ijk[2]; 

c o u t « "\ni=' « grid_ijk[0] « ""; 
c o u t « "j=" « grid_ijkllj « ""; 
c o u t « "k=" « grid_ijk[2] « endl; 
int zero, one, two, three, four, five, six, seven; 
7,cro=x_divi+(y_divi*xnum)4-(z_divi*ynum*xnum); 
one=(x_divi+l)+(y_divi*%num)+(z_divi*ynum*xnum); 

two=(x_divi+l+xnum)+(y_divi*xnum)+(z_divi*ynum*xnum); 
three=(x_divi+xnum)+(y_divi*xnum)+(z_divi*ynum*xnum); 
four=x_di vi+(y_di vi *x num)+((z_di vi+1) *ynum*xnum); 
live=(x_divi+I)+{y_divi*xnum)+((z_divi+l)*ynum*xnum); 
six=(x_divi+l+xnum)+(y_divi*xnum)+((z_divi+l)*ynum*xnum); 
seven=(x_divi+xnum)+(y_divi*xnum)-t-((z_divi+l)*ynum*xnum); 

// grid vertex information 
point_loca[0][0]=xgrid[zero]; // current 
point_loca[l][0]=xgrid[one1; //after 
point_loca[2][01=xgrid[two]: / /top after 
point_l(xa[3][0j=xgrid[threej; // top 
point_local41[0]=xgrid[four]; // current-next 
point_loca[5][01=xgrid[Gvc]: // currcnt-next after 
point_loca[6][0j=xgrid[six]; // current-ncxt top after 
point_loca[7irO]=xgrid[scven]; // current-ncxt top 
point_localOjtlj=ygrid[zero|; // current 



117 

pomLloca[I][l]=ygnd[one]; //after 
point_local2][lJ=ygridlrwoj; //topafter 
pomt_l(x:a[3][l]=ygrid[tj]ree]: / /top 
point_loca[4][l |=ygrid[four]; // current-next 
point_loca[51[l]=ygrid[fivcl; // current-next after 
point__loca[61[l]=ygrid[sixl; // current-next top after 
point_loca[7][l]=ygrid[sevenJ; // current-next top 
poinl_locarO][2]=zgrid[zero]; //current 
pointJoca[U[2J=zgrid[oneJ: //after 
poinlJoca[2][2]=zgrid[two]; //topafter 
poinl_loca[3][2]=zgrid[tbree]; / /top 
point_loca[41[21=zgrid[four]; // current-next 
point_loca[5][2]=zgnd[fiveJ; // current-next after 
point_loca[6ir21=zgrid[six]; // current-next top after 
point_loca[7]L2j=zgridlsevenj; // current-next top 

// cell centers 

cell_cen_x=(1.0/8.0)*(point_locar01[0]+point_loca[lir01+point_lo 
ca[2] [0]-t-point_loca[3 j [Oj4-point_loca[4j lOj+point_loca[5J [OJ+poin 
t_loca[6] [0]+poinl_loca[7] [0]); 
cell_cen_y=(].0/8.0)*(point_locar0|ri]+point_loca[11[]]+point_lo 
ca[2][l] 

+point_loca[3|ri1+pointJocaM[l|+point_loca[5|[ll+p 
ointJocalQ [ 1 ]+pointJoca[7j [1 j); 
cell_cerL_z=(1.0/8.0)*(point_loca[0][2j+point_loca[lj[2j+point_lo 
ca[2][2]+point_loca[31[2]+point_loca[4ir2]+point_loca[5ir21+poin 
tJoca[6] [2]+point_loca [7] [2j); 
rel_cell_x=ceU_cen_x-point_loca[0] [0]: 
rcl_cell_y=cell_cen_y-point_loca[Oj [ 11; 
rel_ceIl_z=cell_cen^z-point_loca [0] [2]; 
nmg__ccILcen=sqrt(pcw(rel_cell_x,2)+pow(reLcelLy,2)+pow(rel 
celLz,2)); 

9.2.7 makesure.cpp 
// Make sure one time which direction the particle might be and 
then 
// move the particle until it has cross the CV faces 

#include "tophead.h" 

void grid_vertex(); 
void side_vector(); 
int directionO; 

void makesureO 
{ 
int state_one=0, chcck_onc=0; 
grid_vertex(); 
side_vector(); 
check_one=0; 
do( 
state_one=direction(); 
grid_vcrtex(); 
side_vector(); 
chcck_one++; 
cout «"\nMaking sure CV number" « check_one « " timesW 
}while(state_one=0); 

9.2.8 move check.cpp 
// 

// Make sure one time which direction the particlc might be and 
then 
// move the particle until it has cross the CV faces 

#include "topheaih" 

extern int grid_ijk[NVAR]; 
extern double uVeiri'EMP|: 
extern double vVelH^'MP]; 
extern double wVel[l'EMP]; 
extern double part_vclol7j; 
extern double veLflNVAR]; 
extern double part_positionrNVAR|; 
extern int gridnum{BN+l |[NVAR+1 J; 
extern int change[B N+1]; 
extern int cblock_num; 

extern ofstream out; 
extern int st(%age[5][7]; 

voidrunge(); 
void part_rel(); 
int directionO; 

void move_check() 
{ 

int cbeck_one=0,staie_one=0, nun^cell; 
intx; 
int xnum,ynum,znum; 
x=cbange[cblock_num]; 
xnurtpgridnumExl [01; 
ynunt=gridnum[x][l]; 
znum=gridnum[x] [2j; 

do( 
if(check_one>0){ 

// move particle using 4th order Runge-Kutta time 
Steppingnum_cell=grid_ijk[0]+grid_ijk[l]*(xnum-
1 )+grid_ijk[2] *(xnuni-1) *(ynum-1); 
c o u t « "\nnun%_cell=" « n u m _ c e l l « endl; 
c o u t « "\ni=" « grid_ijk[0] « ""; 
c o u t « "j=" « grid_ijk[l] « " 
c o u t « "k=" « grid_ijk[2J « "" « endl; 

vel_lIO]=uVel[nurn_cell]; 
vel_f[l 1=vVel[num_cell]; 
vel_f[2|=wVel[num_celll; 
part_velo[0]=vel_f[Oj; 
part_velo[11=vel_f[] J: 
part_vclo[2J=vcLf[2j; 

// c o u t « "\nvel_f[0]=" « ve l_f |01« " 
vel_f[l]=" « v e l _ f [ l ] « " veLf[2j=" « veLf[2j; 
// c o u t « "\n In do loop\n\n"; 

runge(); 
part_rel(); 
o u t « "\nWriting\n"; 

« part_velo[lJ « " " « part_velo[2] 

' « part_vclo[4J « " " « part_velo[5J 

o u t « part_velo[Oj « 
« " 
o u t « part_velo[3] « 
« " 
o u t « part_positi(m[0] « " " « part_position[lj « " " « 
part_position[2| « endl: 

} 
else{} 

state_one=direction(); 
check_onc++; 
}while(state_one==9); // do 'till particle is not within CV 

9.2.9 nameblock.cpp 
// Define names of data files per block 

#include "tophead.h" 

extern char bl(x:k_namel [LKN]; 
extern char block_name2[LEN]; 
extern char block_narne3[LENJ; 
extern int cblock_num; 

void namebltxkO 

bl(x:k 
block 
block 
block 
block 
a=0 
b=l 
block 
block 

itit a=0 
_namel[0]= 
_namcl[lj= 
_namel[2]= 
.namel[3|= 
name 1 [4]= 

b=0.i=0; 
B"; 
1'; 

o'; 
C; 
k'; 

.namel[5|=48+a; 

.namel[6J=48+b; 
for(i=0; i<cbl(x:k_num; i-H-){ 

b++; 
if(b==10){ 
b=0; 
a+4-; 

block^name 1 [51=48+a; 
block_namcl [6|=48+b; 
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block 
block, 
block, 
block, 
block, 
block. 

//. 

block. 
block_ 
block, 
block, 
block. 

.namel[7j='u'; 

.namel[8]='.'; 
namel[9]='(l'; 

namel[12J='\0'; 

_name2[0]='B'; 
.name2[l]=T; 
.namG2[2]='o'; 
,name2[31='c'; 
.name2[4]='k'; 

a=0; 
b=l; 
block_name2[51=48+a; 
block_name2[6j=4&i-b; 

fa:(i=0; i<cblock_num:!++)( 
b-H-; 
i f (b=10)( 
b=0; 
a-H-; 
} 

block_name2[5j=48+a; 
block^name2[6]=48+b; 

block, 
block 
block 
block 
block 
block 

//• 
block 
block 
block 
block 
block 
a=0: 
b=l; 
blockL 
block. 

name2[7]='v'; 
_name2[8J='.'; 
_name2[9]='d'; 
_name2[10j='a'; 
_name2[ll]='t'; 
_name2LI2j='\0'; 

_naine3[01='B'; 
.narne3[lj='l'; 
.names [2]='o'; 
.name3[3J='c'; 
nameSMzzTc'; 

.name3[5j=48+a; 

.nan]e3[6]=48+b; 
for(i=0; i<cblock_num; i++)( 

b++; 
i f (b=10)( 
b=0; 
a++; 

block_name3[51=48+a; 
block_name316j=48+b; 

} 
block_name3 [71='w'; 
block_name3[8J='.'; 
block_name3[9]='d'; 
block_name3[10|='a'; 
block^name3[ll|='l'; 
block_name3[12|='\0'; 

9.2.10 namegrid.cpp 
// Define namea of data filea per block 
// Laal updated 16/09/00 

#include "tophead.b" 

extern char gnd_namcHLEN]; 
extern char gnd_name2[LEN1: 
extern char grid_nan)e3LLEN|; 
extern int cbl(x:k_num; 

void namegridO 
{ 
int a=0,b=0 j=0; 
grid_namcH0J='g'; 
gnd_namel[IJ='g'i 
grid_namel[2|='r': 
grid_nanieH3J='i'; 
ghd_namcl[4]='d'; 

a=0; 

b=]; 
grid_namel [5]=48+a; 
gnd_namel [6]=48+b; 

fm^i=0; i<cblock_num; i++)( 
bf+; 
i f (b=10){ 
b=0; 
a++; 
} 

grid_namel [5]=48+a; 
end_namel r6]=48+b; 
) 

grid_namel[7]='x'; 
gnd_namel[8|='.'; 
grid_namel[9]='d'; 
grid_namel[IO]='a'; 
gnd_namel[ll]='t'; 
grid_namel[l2j='\0'; // 

gnd_name2[0J='g'; 
grid_name2[l ]='§'; 
gnd_name2[2]='r'; 
ghd__namc2[31='i': 
grid_name2[4]='d'; 

a=0; 
b=l; 

grid_name2[5]=48+a; 
grid_name2M=48+b; 

or(i=0; i<cblock_num; i-H-){ 
b-H-; 
if (b== 10) { 
b=0; 

grid_name2[5]=48+a; 
gnd_namc2[6]=48+b; 

gnd_name2[7j='y'; 
grid_name2[8]='.'; 
grid_nanie2[91='d'; 
grid_namc2[101='a': 
grid_name2l] 1 j='t'; 
grid.nameZn 2]='\0'; // 
gnd_name3l0j='g'; 
gnd_name3[l]='g': 
grid_name3[2]='r'; 
grid_name3[31='i'; 
grid_nanie3[4]='d'; 

a=0; 
b=l; 

grid_nanie3[51=48+a; 
grid_namc3[61=48+b; 

for(i=:0; i<cblock_num; i++){ 
b++; 
i f (b=10){ 
b=0; 
a-H-; 
} 

grid_name3 [5]=48-t-a; 
grid_naine3 [6]=48-Hb; 
} 

grid_nanie3[7|='z'; 
gnd_name3[8|='.'; 
grid_nan]e3[9]='d'; 
grid_name3[10]='a'; 
md_nanie3[ll]='t'; 
;rid_namc3[12)='\0'; 

9.2.11 part_rel.cpp 
// 

// Calculating the direction vectors 

#include "tophead.h" 
//#includc "vahables.h" 

extern double point_locar91[NVAR]; 
extern double relativel7jLNVARj; 
extern double part_posilion[NVAR|; 

extern int storage[6][4J; 
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// voidstorage_num(); 

void part_rel() 
{ 

intlwo; 
int i, j; 

fcr(j=0: j<6; j-H-){ // for each face direction 
two=smrage[j][l]: 

for(i=0; i<3; i4-4-){ // for each variable 
relati velj] Lij=part_position[i]-point_loca[twoj [i]; 

9.2.12 reading.cpp 
// 
//initialise flow variables 
/L 

#include "tophead.h" 

extern int cblock_num; 
extern int change[BN+l |; 
extern int gndnutn(BN+l][NVAR+1 j; 
extem int exit_cond[61[BN]; 
extern int bound[TF]; 
extern char grid_namel[LEN]; 
extern char grid_name2[LEN1; 
extern char grid_namc3[LENJ; 
extern char block_namel [LEN]; 
extern char block_name2[LEN]; 
extern char block_namc3[LEN]; 
//extern Goat * xgrid; 
//extern float * ygrid; 
//extern float * zgrid; 
extern double xgrid[TEMP+l]; 
extern double ygrid[TEMP+l 
extern double zgrid[n:MP+l j; 
extern double uVel[TEMP]: 
extern double vVel[TEMP]; 
extern double wVel[TEMP1; 

void readin&() 
{ 

int x,i ,j jc,a: 
int xnum,ynum^um; 
ifstream inl ,in2,in3,in4,in5.in6; 
x=change[cblock_numj; 
xnunpgridnum(x][OJ; 
ynunt=gridnum[xl [ 11, 
znuin=gridnumlxj [2J; 

c o u t « "\nxnunt:" « xnum « " ynutn=" « ynum « " znum=" 
« znum « endl; 
c o u t « "\nReading the grid vertex points 
inI.open(grid_namcl); 

x=0; 
for(k=0: k<znum: k-H-) ( 

for(j=0; j<ynum; j++){ 
for(i=6; i<xnum; i-H-){ 

inl » xgrid[x|; 
X + + ; 

inl.close(); 
inl. open(grid_nanie2); 

x=0, 
for(k=0; k<7.num; k++){ 

for(j=0; j<ynum; j-H-) ( 
for(i=0: i<xnum; i++){ 

in2 » ygrid[xj; 
X + + ; 

in2.close(); 
in3.open(grid_name3); 

x=0; 
for(k=0; k<znum; 

for(j=0; j<ynuni; j++){ 

for(i=0; i<xnum; i-H-){ 
inl » xgrid[x]; 
in2 » ygrid[x]; 
in3 » zgrid[x]; 
X-H-; 

in3.close(); 
c o u t « endl « "... OK.\n"; // 

c o u t « "Reading in flow field variables 

in4.open(block_nameI): 
x=0; 

for(k=0; k<(znum-l); k++)( 
for(j=0; j<(ynum-l); j++){ 

far(i=0; i<(xnum-l); i++)( 
i n 4 » u V e l [ x ] ; 
X-H-; 

in4.close(); 
in5.open(block_name2); 

x=0; 
for(k=0; k<(znum-l); k++){ 

for(j=0; j<(ynum-1); j-H-) { 
for(i=0; i<(xnum-l); i-H-){ 
in5 » vVelFx]; 
X-H-; 

inj.closeO; 
in6. open(blocl(L_name3); 

x=0; 
for(k=0; k<(znum-l); k+-t-){ 

for(j=0; j<(ynuin-l): j-H-){ 
for(i=0; i<(xnum-l); i-t-i-)( 
in6 » wVelfx]; 
X-H-; 

in6.close(); 
c o u t « "... OK\n"; 
// defining block boundaries 
a=0; 
for(i=0; i<BN; i-H-){ 

for(i=0; j<6;j++)( 
if(bound[a]=0){ / / if the facc is interface 

if(j==0)( 
exit_cond[0]ri1=0; 
} 
if(j==l){ 
exit_condr 11 [il^xnum-2; 
} 
it(j==2){ 
exit_cond[2|[i|=0: 
} 
i f ( j = 3 ) { 
exit_condl3j[ij=ynum-2; 
} 
i f ( j = 4 ) { 
cxit_condf4T[i]=0: 
} 

exit_c(md[5||i|=znum-2: 
} 

1 
elsef// if the face is not interface 

i f | j = 0 ) { 
exit_cond|0|[il=l; 
} 
i f ( j = l ) { 
exit_condr 11 [i |=xnum-3; 
} 
if(j==2){ 
exit_cnnd[2Hi|=l; 
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exiLcond[3] ri]=ynum-3: 
} 
i f ( j = 4 ) ( 
exiLcond[4][i]=l; 
} 

exiLcond[5] [i]=znum-3; 

a=a+I; 

- //end of Hrsi for loop 

9.2.13 runge.cpp 

// Calculating the direction vectars 

#include "tophead.h" 
//^include "variables.h" 

// Attempting to solve the equation 
// dr/dt=v; 
// dv/dt=(u-v)/tau; 
// 
// with boundary condition of y(0)=l 

extern double vel_f[NVAR]; 
extern double part_velo[7]; 
extern double part_position[NVAR1; 
extern double relax_factor; 
extern double mag_cell_cen; 

void runge() 

double kl=0.0,k2=0.0,k3=0.0,k4=0.0,dep_var_dev=0.0, 
dep_var=0.0: 
double time_step=5.0/1.0,g=0.0; // time stepping and gravity 

inti; 
double delta_t; 

// for x-direction 
/ / c o u t « "\n\nParticle x-position is =" « part_position[0]« endl; 
dep_var_dev=sqrt(pow(part_vclo[0],2)+pow(part_velo[11,2)+pow( 
part_velo[2],2)); 
delta_t=( 1.0/30.0) *( mag_cell_cen/dep_var_dev); 

for(i=0; i<3; 
dep_var_dev=part_velo[i]; 
dep_var=part_positionri]; 

dep_var^dep_var+delta_t*dep_var_dcv; 
part_position[i1=dep_var; 
part_velo[ij=dcp_var_dcv; 

part_vclor3+il=(veLf[i1-dep_var_dev); // diferences in velocity 
}// end of i loop 

9.2.14 side_vector.cpp 
// 

// Calculadng the direction vectors 

#include "tophead.h" 

extern double OA[NVAR]; 
extern double OBlNVARj; 
extern double point_locar9|rNVAR]: 
extern double relative[7j[NVARj, 
extern double part_position[NVAR.j; 
extern double normal[71[NVAR]; 
extern int storage [6] [4]; 

void sidc_vect(M^f) 
{ 

intij; 
int one.two.three.four; 

// store some number to access CV points from respective arrays 

fw(j=0; j<6; j++){ // for each face direction 
one=stcrage|j][0]; 
two=storageij][l]; 
tl]ree=storage[j][2]; 
four=storage|j] [3]; // note that two and 

four are aU the same see st(Mge_num.cc 
for(i=0; i<3; i++)( // for each variable 

OA[i]=point_loca[one][i]-
point_l(x:a[two][i]; 
OB [i]=point_loca[three][il-point_loca[four] [i]; 
relative|j][i]=part_position[ij-point_loca[two][i]; 

direction 
// calculate the normal con^nents in i j Jc 

normal|j]|01=OAriJ*OB[21-OA[2J*OBLl| 
normal[j]|;n=OAf21*OB[01-OA[0]*OBr2] 
normallj] [2]=0 A M *0B [1]-0A[1 j *0B [0] 
} // end of j-loop 

9 . 2 . 1 5 t r a c k . c p p 
// Particle position deOned manually and then the CV number î  
found 
/ /Date 02/01/01 

#include "topheaib" 
#include "functions.h" 
#include "variables.h" 

int 
main() 
{ 

c o u t « "Which block does the particle occupy > "; 
cin » cblock_num; 

// collect grid domain information 
block:_info(); 

// define the name of the grid file 
namegridO; 

// deOne the name of the variable files for u and v 
namebIock(); 
c o u t « grid.natnel « endl, 
c o u t « grid_name2 « endl; 
c o u t « grid_namo3 « endl; 
c o u t « block_namel « endl; 
c o u t « block_name2 « endl; 
c o u t « block_name3 « endl; 

// initialise the grid variables 

int x,i=0.j=0j[=0; 
int xnurti,ynum,znum; 
intaccess_l; 
x=change[cblock_numj; 
xnuni=gridnum(xT [01; 
ynurr^gridnum[xj [1J; 
znum=gridnum(x1 [2]: 
// grid sub-divisions of the chosen block 
c o u t « e n d l « "xnunp" « xnum « " ynum=" « 

ynum « " znum;=" « znum « endl; 
// Read in grid data i.e. cell vertices 
// Note that Block* conatain cell vertex information 

// Reading in the grid vertices and the flow variables 
readingO; 
// 

// 
// Calculate the grid number number based on user input particle 
position 
calc_gridnum(); 
// 
c o u t « 
c o u t « 
c o u t « 
c o u t « 
// if calc 
// which CV index particle might be 
c o u t « "\nResel grid number\n"; 
grid_iik|0|=46; 
g r i d j j k n i = l l ; 
grid_ijk[2j=ll; 

"ITie particle containing CV orgin grid number is\n": 
'i=" « gnd_ijk[0] « endl; 
' j = " « g n d j j k [ l J « endl; 
'k=" « grid_ijkf2] « endl; 
_gridnum.cc has predicted incorrectly guess 
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c o u t « "The particle containing CV orgin grid number is\n 
c o u t « "i=" « grid_ijk[0] « endl; 
com « "j=" « gr id j jkm « end!; 
c o u t « "k=" « grid_ijk[2| « endl; 
/A 
int nu[q_cell=grid_ijk[0]+gnd_ijk[l |*(xnum-
1 )+grid__ijk[2J *(xnum-1) *(ynum-1); 
int 
num_grid=grid_ijklOj+gnd_ijkn j *xnunH-grid_ijk[2j *xnum*ynum 

c o u t « "The starting grid number is " « num_grid « endl; 
c o u t « "The starting CV number is ' « n u m _ c e l l « endl; 
c o u t « "TTie origin of CV x = " « xgrid[nunL_grid] « " y=" « 
ygnd[nurq_grid]« " z = " « zgndfnum_grid7 « end); // 

//determine direction of particle 
int state_one=0,state_two=0, check_one, check_three=0; 
int count_one=0, count_two=0,xn,yn,%n; 
// initialise particle velocity 
part_velo[0]=uVel[num_cell]; 
part_velo[l]=vVel[nunLcell]; 
part_velo[2]=w Vel[nunLcell]; 
c o u t « "\npart_velo[01=" « part_velo[0]« " part_velu[ll="; 
c o u t « part_velo[l]« " part_velo[2]= ' « part_velo[2j « endl; 
c o u t « "\npart_posi[0]=" « part_position[OJ; 
c o u t « " part_positionri]="« part__position[11; 
c o u t « " part_position[2]="« part_position[2j « endl; 
double density_p=l*1.19, density_f=1.19, diameter=10*le-5, 
visco=1.82e-5, kine_visco; 
double power; 

//assume that diameter of aerosol î  10 micro meters 
kine_visco=visco/density_f; 
power=po w(diameter,2); 

relax_fact(x=(2.0/9.0)*(density_p/density_f)*(power/kine_visco); 
c o u t « "\nrelax_factor=" « relax_factor « endl; 

grid_vertex(); 
sidc_vector(); 
check_one=0; 
do{ 
state_one=direction(); 
grid_vertex(); 
side_vectar(); 
chcck_on{>H-; 
cout «"\nMaking sure CV number" « check_one « " timesYn"; 
}while(state_one=0); 
num_grid=grid_ijkf 0]+grid_ijkr 1 ] »xnunH-grid_ijk[2] *xnum*ynum 

c o u t « "The particle containing CV a g i n grid number is\n"; 
c o u t « "i=" « grid_ijk[0] « ""; 
c o u l « "j=" « grid_ijk[l] « ""; 
c o u t « "k=" « grid_ijk[21 « ""; 
c o u t « "num_grid=' « num_grid « endl; 

c o u t « "\n - " 
cout « " \ n Taking time steps\n"; 

int /=0; // number of time steps 
for(z=0; z<40000; z++)( 
cout «"Step=" « z « endl; 
// do( 
// make use of the CV origin. Determine all grid vertices of the 
current cell, 
// determine the side vectws corresponding to a particular face 
side_vector(); 
// see if you can call storage from side_vcctor 
check_one=0; 
do( 

c o u t « "\n In do loop\n\n"; 
if(chcck_onc>0){ 

c o u t « '\nln IF LOOP\n"; 
// exit conditions 
c o u t « "West exit" «exit_condrO][cblock_num]« endl; 
if(grid_ijk[0]=exit_cond[0j[cblock_num| && state_one=:9)( 

c o u t « '\n\nReached a boundary x - West Face\n"; 
gfn[01=a+6*cblock_num; // current 
access_l=gfn[OJ; 
abIock_nunpadj_block[access_ 1 ]; 
gfnl 11=1+6 *ablock_num; // adjacent 

access_I=face(); 
i f (access_l=0){ 

return 0; 

cblock_nunpablock_num; 
namegridO; 
nameblockO; 
c o u t « grid_namel « endl; 
c o u t « grid_name2 « endl; 
c o u t « grid_name3 « endl; 
c o u t « block_namel « endl; 
c o u t « block_name2 « endl; 
c o u t « block_name3 « endl; 
readingO; // initilise new flow variables 

x=change[cblock_num]; 
xnuni=gridnum[x] [0]; 
ynunt=gridnuni[x][l]; 
znuin=gndnuai[x][2]; 

}// first if statement 
xn=xnum-2; // ghost cell CV origin 
/ / c o u t « "\nxn=" « x n « endl; 
c o u t « "East exit" «exit__cond[l][cblock_num]« endl; 
if(grid_ijk[0]=exit_condllj[cblock_num] && state_one=9)( 

c o u t « "\n\nReached a boundary x - East Face\n"; 
gfn[0j=l+6*cblock_num; // current 
access_l=gfnIO]; 
ablock_num=adj_block[access_l j; 
gfn[l j=0+6*ablock_num; // ac^acent 

access_l=face(); 
i f (access_l=0){ 

return 0; 
} 
cblock_num=ablock_nu m; 

c o u t « "\nCurrent block=" « cblock_num « endl; 
namegrid(); 
nameblockO; 
c o u t « grid_namel « endl; 
c o u t « grid_name2 « endl; 
c o u t « grid_name3 « endl; 
c o u t « block_namel « endl; 
c o u t « block_name2 « endl; 
c o u t « block_name3 « endl; 
readingO; // initilisc new flow variables 

x=change[cblock_num]; 
xnun$=gridnum[xj LOJ; 
ynum^gridnum[x][I1; 
znum=gridnum[x][2|; 

}// end of first if 
c o u t « "South exit" «exit_cond[21[cblock_num]« endl; 
if(grid_ijk[l]=exit_cond[2][cblock_numj && state_one==9){ 

c o u t « "\n\nReached a boundary y - South Face\n"; 
gfnlOj=2+6*cblock_num; // current 
access_I=gfn[01; 
ablock_nunt=adj_block[access_ 11; 
gfn[l]=3+6*abl(x:k_num; // adjacent 

access_l=faceO; 
i f (acccss_l=0)( 

return 0; 
} 
cblock_num=ablock_num; 
namegridO; 
nameblockO; 
c o u t « grid_namel « endl; 
c o u t « grid_name2 « endl; 
c o u t « grid_naine3 « endl; 
c o u t « block_namel « endl; 
c o u t « block_name2 « endl; 
c o u t « block_namc3 « endl; 
readingO; // initilise new flow variables 

x=changelcbl(x:k_numj; 
xnum=gridnumfx|(^01; 
ynum=gridnumf xj [ 1 j; 
y,num= gridnum[x | [21; 

// end of first if 
yn=ynum-2; // ghost cell CV origin 
c o u t « "North exit" «exit_cond[3][cblock_num|« endl: 
if(grid_ijk[l]=exit_cond[3]Lcblock_numj && state_one==9){ 

cout « "\n\nReached a boundary y - North Face\n"; 
gfn[0j=3+6*cblock_num; // current 
access_l=gfnr01; 
abl(x:k_num=adj_block[access_ 1J; 
gfn[l]=2+6*ablock_num; // adjacent 

access_l=facc(); 
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i f (access_ l=0){ 
return 0; 

} 
cblock_nun:^ablock_nurn; 
namegridO; 
nameblockO; 
c o u t « grid_namel « endl; 
c o u l « g)id_nanie2 « endl; 
c o n t « gnd_name3 « endl; 
c o u t « block^namel « endl; 
c o u t « block_name2 « endl; 

c o u t « block_name3 « endl; 
readingO; // initilise new flow variables 

x=change[cblocK_num]; 
xnutn=gridnum[xj [0]; 
ynum=gridnuintx j [ 1 j; 
znunpgridnumfx] [2]; 

} // end of first if loop 
c o u t « "Bottom exit" «exit_candr4][cblock_nuni]« endl; 
if(grid_ijk[2j=exit_cond[4][cblock_num] && state_one=9){ 

c o u t « "\n\nReached a boundary z - Bottom Face\n"; 
gfh[0]=4+6*cblocK_nuni; //current 
access_l=gfn[01; 
ablock^num=adj_block[access_lj; 
gfn[I]=5+6*ablock_num; // adjacent 

access_I=face(); 
if(access_l==0){ 

return 0; 
} 
cblock_nun^ablocK_num; 
namegridO; 
nameblockO; 
c o u t « grid_namel « endl; 
c o u t « grid_name2 « endl; 
c o u t « grid_name3 « endl; 
c o u t « block_namel « endl; 
c o u t « block_name2 « endl; 
c o u t « block_namc3 « endl; 
readingO; // initilise new flow variables 

x=change[cblock_num]; 
xnunpgridnum(xl [Oj; 
ynum=gridnum[xj U j; 
znunt=gridnum[x][21; 

} / / first if statement 
zn=znum-2; // ghost cell CV origin 
c o u t « "Top exit" «exit_cond[4][cblock^num]« endl; 
if(grid_ijk[2]=exit_cond[5][cblock_num] && state_one==:9){ 

c o u t « "\n\njReached a boundary z - Top Face\n"; 
gfnlOj=5+6*cblock_num; // current 
access_l=gfn[01; 
ablock_num=adj_block[access_ I ]; 
gfn[l]=4+6*ablock_num; // adjacent 

access_l=face(); 
if(access_l==0)( 

return 0; 
} 
cblock_num=ablock_num; 
namegridO; 
namcblockO; 
c o u t « grid_namel « endl; 
c o u t « gnd_namc2 « endl; 
c o u t « grid_name3 « endl; 
c o u t « block_namel « endl; 
c o u t « block_name2 « endl; 
c o u t « block_name3 « endl; 
readingO; // initilise new flow variables 

x=change[cblock_num]; 
xnum=gridnum[x] [0]; 
ynurn=gridnum[x] [ 1 ]; 
znunt=gridnum(x] [2]; 

}// first if loop 
// move particle using 4th order Runge-Kutta time stepping 

num_cell=grid_ijk[0]+gnd_ijk[l j *(xnum-
I )+gridJjk[2] *(xnum-1 )*(ynum-1); 
c o u t « '\nnum_cell=" « num_cell « cndl; 
c o u t « "̂ 11=" « grid_ijk[Oj « ""; 
c o u t « "j=" « grid_ijkm « ""; 
c o u t « "k=' « grid_ijkl2j « " " « cndl; 

vel_f[01=uVel[nuiq_cell]; 
vel_l%l |=vVel[num_cell|; 

vel_f[21=wVel[nuni_cell]; 
part_velo[0]=vel_f[0]; 
part_velo[l]=vel_fTlj; 
part_velo[2J=vel_f[2j; 
rungeO; 
part_rel(); 

o u t « part_velo[0] « "" « part_velo[l] « ' ' « part_velo[2j 
« ""; 

o u t « part_velo[3j « "" « part_velo[4] « " ' « part_velo[5] 
« " " ; 

o u t « part_position[OJ « ' " « part_position[l j « " " « 
part_posilion[2] « endl; 

c o u t « "\nPart_position"; 
c o u t « part_position[0] « " " « 

part_position[l] « " " « part_position[2j « endl; 
c o u l « '\nln IF LOOP\n"; 
} // end of if( particle within cell 

else(} 
// check to see if the particle is within, if not new particle CV origin 
is found 
state_one=directionO; 
/ / / * 
nunLcell=grid_ijk[0J+grid_ijk[l]*(xnum-1)+grid_ijk[2]*(xnum-
l)*(ynum-]); 
c o u t « ' \nnum_cel l="« n u m _ c e l l « endl; 
c o u t « "\ni=" « grid_ijk[OJ « " "; 
c o u t « 'j=" « grid_ijk[l] « " '; 
c o u t « "k=" « grid_ijkl2j « "" « endl; 

vel_f[0]=uVel[num_cell]; 
veLf[ I j=vVel[nunLcell]; 
veLf[2]=wVel[num_cell1; 

// c o u t « '\nvel_fIO]=' « v e l _ f [ 0 ] « ' vel_f[lj=" « 
ve l_ f [11« " vel_f[2]=" « vel_f[2J « cndl; 
/ / * / 

i f(state_one=7)( 
return 0; 

} 
// 

check_one++; 
}while(state_one=9); // exit when particle is not within CV 

c o u t « "\n Out do loop\n\n'; 
num_cell=grid_ijk[0]+grid_ijk[ I ] *(xnum-1 )+grid_ijk[2] *(xnum-
l)*(ynum-l); 
c o u t « "\nnum_cel l="« n u n L c e l i « endl; 
c o u t « "\ni=" « grid_ijk[0] « " "; 
c o u t « " j = " « grid_ijk[lj « " '; 
c o u t « "k=" « grid_ijk[21 « "" « endl; 

ouLcloseO; 
c o u t « '\n\nProgram END\n\n\n"; 
return 0; 

9.2.16 functions.h 
void bloclLinfoO; 
void namegridO; 
void mimeblockO; 
void calc_gridnumO; 
void grid_vertexO; 
void side_vector(); 
void rungeO; 
void part_relO; 
void readingO; 
void niove_check(); 

int directionO; 
int faceO; 

//void storagc_nutnO; 

9.2.17tophead.h 
// include all the header files used by all programs 

#include <iostream.h> 
#includc <rnath.h> 
#include <fstream.h> 
#include <iomanip.h> 
#dc5nc I.KN 13 
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#defmeBN 15 
Mefine NVAR 3 
#denneXNUM53 
#denne YNUM 23 
#define ZNUM 23 
#define TEMP XNUM*YNUM*ZNUM 
#deRne TF BN*6 

9.2.18 variables.h 
#iaclude "lopheaih" 

// current and adjacent block number 
inl cblock_nua#0; 
int ablock^num=0; 
int gridnum[BN+l][NVAR+I]; 
intchange[BN+l]; 
inl grid_ijk[NVARl; 
int bound['I'r]; // boundary condition type 
inl gfii[2]; // global face number current and ac^acent 
int a(^_block[TF]; 
int exi t_cond[6] [BNj; 

// collect i,j,k, lo,hi or non locations of interface planes w.r.t. block 
origin 
int orien_plane[TF]; 

char gnd_namel[LEN]; 
char grid_name2[LEN1; 
char grid_name3[LENj; 
char block_namel [LENj 
char block_name2[LEN] 
char block_namc3[LENj 

double poinLloca[9][NVARj; 
// float * xgrid = new float [TEMP+1]; 
// float * ygrid = new float [TEMP+1 J; 
// floal * zgrid= new float H'EMP+ll; 
double xgridH'EMP+lj; 
double ygridl'l-EMP+l]; 
double zgridfTEMP+l]: 
double vel_f[NVARJ; 
double relax_factor; 
double OA[NVARj; 

double OB [NVAR]; 
double relative[7][NVAR]; 
double normal[71[NVAR]; 
double uVel[TEMPJ; 
double vVel[TEMP]; 
double wVel[TEMP]; 
double mae_cell_cen: 

double part_velo[7]: 
// double part_position[NVAR]=(3.4,0.5,0.2}; 

// * double part_position[NVARJ=(40.4,4.0,0.0); 
// double part_posilion[NVAR]=(40.4,4.0,0.0); 
double part_position[NVARj={45.0,0.0,0.0); 

// double part_posilion[NVAR 
// double part_position[NVAR 
// double parLposilicm[NVAR 

={3.47,-3.0700e-06.0.7480); 
=(-0.0299,1,75e.3,0.00); 
={.0.01,9e-4,0.00); 

// double part_position[NVAR]={ -0.0299,9.1875e-4,0.00); 

// for ELMORE type coordinate system 
//int 

storage[7][51={(4.0,3,0},{2,l ,5, l) ,{l ,0,4,0),{7.3,2,3),{3,0,l ,0).{5 
4,7,4)); 
int 

siwage[6][4]={ (4,0,3,0),{2,1,5,1 ) ,(1,0,4,0),{7,3,2,3),(3,0,1,0),{5 
.4,7,4)); 

// for righl handed coordinate system 
// int 
slorage[7][51={(7,4,0.4).( l ,5.6,5),(0,4,5,4),(6,7,3,7),(3,0,l ,0),(5 
.4,7,4)); 

/* // to determine + v e or -ve normal 
intcomp_num[7][3J=(( l ,0) , (0 , l } , (3 ,0) , (0 ,3) , (4 .0) , (0 ,4) ) ; 
double compare[7]; 
V 

intnormal_num[71={0,0,l,I,2,2); 
int direct_num[7]=(-l,1,-1,1,-1,1); 

ofstream out("pan_proper.txl); 
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10 Appendix C 
10.1 Pre-processing Fluent unstructured data - I 
The first pre-processing step is to calculate the cell numbers. Following programs starting 
with flu_man.cpp as the main program output a Hie with the cell number and the 
associated vertex numbers. 

10.1.1 find_six.cpp 
// finds the six edges connected to a known edge 

#mclude "things.h" 
#include "flu.struct.h" 

extern int count[2]; 
extern int ori_edge_num, 
extern int ori_edge_vcTt{2]; 

void six_edges(int eO) 
{ 
int i=0 ,j=0; 
int v0=0,vl=0,v3=0.v2=0^=0,q=0, 
int numer[3]=(0,I,0); 

an_edge_num=eO; 
ori_edge_vert[0]=edges_all[c0j.vert_num[0]; 
ori_edge_vert[ 1 ]=edges_all[e01. vert_numl 1 ]; 

count[0]=0; 
countri]=0; 
for(i=0; i<E; i4-+) [ 

for(j=0; j<2;j++)( 
if(i==eO)( 
// do nothing 
I 
eke( 
if(edges_all[i]. vert_num[j]=ori_edgc_ven[0]) { 
/ / c o u t « i « endl, 
v2=numer[j+l], 
v3=edges_all[i]. vert_n um[ v2 j; 
edgeOHkJ.number=i; 
edgeO 1 [k]. vert_numf 01=ari_edge_vert[0], 
edgeOl [k]. vert_num[ l]=:v3; 
k+4-; 
couiitr01=count[0j+l, 
} 
if(edges_aH[i|. vert_numU |==on_edge_vert[ 11) ( 
v2=numer|j+l|, 
v3=edges_all[i1. vert_num[ v21; 
edge02[q] .nun:iber=i, 
edge02[q]. vert_num[01=:c»i_edge_vert{ 1]; 
edgc02[q].vert_num{l]=v3, 
q++; 
count[ 1 |=countf 1 ]+I; 

1 
) // end of eke 
} // end of vertices 
] // end of edges 

1 

10.1.2 Flu_man.cpp 
// Read Tecplot Gies into ijk format 

#include "tliings.h" 
#include "strucLh" 

intcount[2]=(0,0); 
int ori_edge_nuin=0; 
int ori_edge_ vcrt[21= [ 0,0), 
int last_edge_num=0; 
int last_edge_ven[2J=[0,0} 
int celLnum=0; 
void six_edges(int eO); 
void print_funO; 
void ini_read()', 
void store_cellO; 

int 
mainO 

int i=0; 
int count_cell=0; 
// read connectivity integers 
ini_readO, 
// find edges sharing chosen vertex, and their respective vertices 
six_edges(i)', 

for(i=l; i<E, i-H-){ 
cout « "Trial edge number " « i « endl; 
// Gnd six edges attached to a given edge 
if(count[01!=3 || count[ll!=:3){ 

/ / c o u t « i « endl; 
six_edges(i); 
if(count[01=3 && count [ l j=3) ( 
store_cellO; 
count[0J=0; 
count[lj=0; 

print^fiinO; 
return 0; 

10.1.3 ini_read.cpp 
// Read file information 

#includc "things.h" 
#inctudc "flu_strucLh'' 

void ini_readO 
{ 
inti=0j=0; 
ifstrcam inl; 
in 1. open(" connect.dat"); 

cout«"Reading information\n"; 
for(i=0; i<K; i+4-)( 
inl » j ; 
edges_all[il, vert_num[0 |=j; 
inl » ; ; 
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edges_all[i]. verLnum[ 1 j=j, 
// new fluent only has two entries 
//inl » j ; 

! 
cout«"DONE\n''; 
inl.closcO; } 

10.1.4 print_fun.cpp 
// print mformation 

#include "things.h" 
#iaclude ''flu_slruct,h" 

extern int ori_edge_num; 
extern int ori_edge_vcrt[2], 
extern int ceH_num, 

void print_funO 
( 
int i=0j=0; 
ofstream outl; 
outl.open(''cell_xy.dat''), 

for(i=0; i<cell_num; i-H-) ( 
outl « i « "Xt": 
for(j=0;j<4;j-H-){ 
outl « cellsri] nodes[j| « "Xt" 
) 

outl « endl; 

1 
outl.closeO; 

10.1.5 store, cell.cpp 
// finds the six edges connected to a known edge 

#includc "things.h" 
#includc ''flu_strucLh'' 

extern int ori_edge_nuni, 
extern int ori_edge_vert[2]; 
extern int last_edge_num; 
extern int last_edgc_vert[2]; 
extern int celLnum; 

void store_cellO 
( 
int i=0.k=0J=0,v2=0,v3=0,q=0', 
int numer[3|=(0,l,0) , 
int f=0,g=0,h=0,p=0,l=0; 

// find edges sharing edgeOl vertex and edge02 vertex 
fm^(k=0; k<3; k++) { 
for(i=0; i<E, i++) { 
for(j=0,j<2;j-H-){ 

if(edges_aH[i].vert_num[jj=edgeOHk|.vert_numtl|)( 
v2=numcr|j+l]; 
v3=edges_all[i].vcrt_num{v2]; 
for(q=0; q<3; q++){ 
if(edge02[q].vert_numn |==v3)( 
last_edgc_num=i; 
last_edge_vert[0 j=edgcO I [kJ. vert_nu ml 11; 
last_edge_vcrtf 1 ]=edge02[q] .vcrt_num[ 11, 

cclls[ccll_numj.edges[0j.number=0; 
colls[ccll_num|.edges[0|.vert_num[0|=ori_ed2e_vertl 

OJ; 
cellsrcell_numl.edgcs[01.vcrt_num!l]=ori_cdge_vert[ 

11; 

_num[0]; 

ceUs[cell_num].edges[l].number=l; 
celk[cell_num].cdges[l].vert_num[0]=edge01[kj.vert 

cclls[ccH_num1.edgesll].vert_num[l]=cdgc01[k|.ven 
_num[l]; 

0]; 

1], 

_num[lj; 

_num[0], 

cells[cell_nuni].edges [2].numbep=:2, 
cells[cell_numj.edges[2j.vcrt_num(0j=last_edge_vert[ 

cells[cell_num].edges[2].vert_num[l]=lasl_edge_vcrt[ 

cells[ceU_num].edges[31.number=3', 
cells[ccll_num].edges[3].vert_nuin[0]=edge02[qj.vcrt 

cells[ceU_num],edges[3|,vert_num[l]=edge02[qj,vcrt 

// store cell vertices in order 
cells[cell_num].nodes[Oj=ori_edge_vert[Oj; 
cells[cell_num].nodes[l]=cdge01[k].vert_num[ll, 
ceHs[cell_num] .nodcs[2]=lasLcdgc_vert[l 1; 
ceHs[cell_num] .nodes[3 j=cdge02[ql. verl_num[Oj, 

if(celLnum=0){ 
ccll_num++; 
} 
else( 
l=cell_num; 
for(f=0; f<l; (++){ 
p=0; 
for(h=0; h<4; h+4-)( 
for(g=0', g<4; g++){ 
if(celk[cell_num] .nodeslhj=cclls[f | .nodcs[g]) { 

i f (p=4){ 
f=E; 
} 
}// end of f loop 

if(p!=4)( 
cell_num++; 
} 
)// end of else 

)// if to find edge 
) 

) // loop all edges 

10.1.6 flu struct.h 
// A header file of structures 

#include "things.h" 

struct cd( 
int vert_num[2|; 
inl number; 

extern struct ed edge01[31L 
extern struct ed edge02[3]; 
extern struct ed edges_all[H+1], 
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stmct ed edges[EDGE]; 
inlTiodes[4]; 

) ; 

extern struct ce cells[C+I]; 

10.1.7 Struct.h 
// A header fUe of structures 

#include "things.h" 

struct ed{ 
int vert^num[2], 
inl number; 

) ; 

sln]ctededge01[3]; 
struct ed edge02[3j', 

struct ed edges_all[E+l]; 
struct ce{ 

struct ed edges[EDGE]; 
int nodes[4]', 

); 

struct ce cells[C+l]; 

10.1.8things.h 
// the header RIe 

#include <iostream.h> 
#include <Atream.h> 

#deGne NUM 60181 
WefineE 117110 
#defme C E 
#defincEDOE4 

10.2 Pre-processing Fluent unstructured data - II 
The second pre-processing step is to calculate the adjacent cell numbers to each cell. 
Following programs starting with flu_man.cpp as the main program output a Rle with 
the adjacent cell numbers to each cell edge. If there is no adjacent cell to an edge of a 
current cell numerical value of - 1 is used. 
10.2.1 find_six.cpp 10.2.2 flu_man.cpp 
// finds the six edges connected to a known edge 

#include "things.h" 
#include ''flu_struct.h'' 

// take in cell number and the edge number 
void share_edees(int cO, int eO) 
{ 
int i=0j=0; 
int v0=0,vl=0,v3=0,v2=0J(=0,q=0, 
int numer[3j=(0,l,0}; 
int ori_edge_ven[2]; 
int count=99; 

Ori_edge_vcrt[0]=cells[c0],edgcs[e0].vert_num[0]; 
ori_edge_ven[l]=cells[cO].edges[eO].vert_num[l]; 

fm^(i=0; i<C; i4-+) ( 
for(j=0, j<EDGE, j-H-) { 
fw(k=0; k<2; k++) [ 
// if current cell number then do nothing 

if(i=cO)( 
// do nothing 
) 
elsc( 
if(celkri1,edges|j1.vcrt_num[kj=ori_cdgc_vcrttO|)( 
v2=numer[k+l]i 
if(cells[i].edges[j],verl_num[v2]=ari_edge_vert[11){ 
cells[cO].cdgcs[cO]^di=i, 
count=0, 

} // end of else 
} // end of vertices 
) // end of edges 
j // end of cells 

if(count!=0){ 
cells|cO|,edgesreO].adj=-l, 

// Read Tecplot files into ijk format 

#include "things.h" 
#include "structh" 

void share_edges(int i, int j); 
void print_funO; 
void ini_readO', 
//void storc_cellO; 

int 
mainO 
{ 
inti=0j=0; 
int count_ceU=0, 
// read cell nodes 
ini_readO', 
//share_edges(i,j); 
// return 0, 

for(i=:0', i<C; i-H-) { 
c o u t « "Trial cell number " « i « endl; 
for(j=0, j<EtXjE; j++) { 
// find sharing cells 
share_edges(i,j); 

print_funO; 
return 0; 

10.2.3 in! read.cpp 
// Read Gle information 

#include "things.h" 
#includc "flu_slruct.h'' 

void ini_readO 
{ 
int i=0 j=0.a=0,b=0,c=0,d=0,e=0'. 
ifstream inl; 
in 1. open(" cell_xy. dat"); 
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c o u t « "Reading inf(M]a[ion\ii" 
for(i=0; i<C; i4-+) { 
in! » a; 
inl » b; 
in! » c; 
ml » d; 
inl » e; 

cells[i] .edges[0]. vert_num[01=b 
cells[i].edges[0].verLnum[l]=c 
cclls[i].edgcs[lJ.verLnum[Oj=c 
cens[il.edges[lj.vert_num[l]=d 
cells[i].cdges[21.verLniim[0|=d 
cells[i].edges[2].vert_num[l]=e 
cellsri|.edges[31.vaLnum[01=e 
cellsm.edges[3J,vcrt_num[l|=b; 
) 
c o u l « "DONE^n", 
inl.closeO; 

10.2.4 print_fun.cpp 
// print inforniation 

#include "things.h" 
#include ''Gu_strucLh'' 

void pnnt_fun() 
( 
int i=0 j=0; 
ofstream ouU , 
outi .open(" cell_adj.dat"); 
for(i=0; i<C; i++)( 
outl « i « "\r; 
l:or(j=0;j<EDGE;j++)( 
outl « cells[i].cdKCsUI adj « It": 
} 

outl « endl, 
} 
outl.closeQ; 

10.2.5 flu struct.cpp 
// A header file of structures 

#include ' things.h" 

struct ed{ 

int vert_num[2]; 
int number; 
int adj; 

}; 

struct ce{ 
struct ed edgcs[EDGE]. 
int nodes[4]; 

}; 

extern struct ce cclls[C+l], 

10.2.6 struct.cpp 
// A header file of structures 

Anclude "things.h" 

struct cd{ 

int vert_num[2] ; 
int number; 
int adj; 

struct cef 
struct ed edges[HDGE]; 
int nodes [4]; 

struct ce cellsl^C+l]; 

10.2.7 things.h 
// the header file 

finclude <iostrcam.h> 
#include <lstream.h> 

fdefine NUM 6018] 
#deHneE 117110 
Meline C 56930 
//#deflne C IIO 
#dcfine EDGE 4 

10.3 Solver 

The main program is main_prog.cpp. 

10.3.1 cart_curvi.cpp 
// interpolation routine 
#include 'tophead.h" 
#include "ext_slruct.h" 

extern int cparticle; 
extern int ccell; 
extern double x[MAX_N+l]; 
extern double y[MAX_N+l]; 
extern double ach[MNj; 

void cart_curviQ 
( 
int i=0,j=0; 
int nl=0,n2=0,n3=0,n4=0; 
double al=0.0,bl=0,0,cl=0.0,dl=0,0; 
double a2=0,0,b2=0,0,c2=0,0,d2=0,0; 
double aH=0.0,al2=0,a21=0.0,a22=0.0; 

double bl 1=0.0, b22=0,0; 
double h0=0.0,hl=0.0; 
double etal=0,0, cia2=0.0; 
double diff=0,0,tol l=0.0,tol2=0.0; 
int t=0; 

nl =cells[ccell].nodcs[Oj; 
n2=cclls[cccll].nodcs[ I ]; 
n3=cclls[cccll|.nodcs[2]; 
n4=cells[ccell].nodesl3|; 
n l = n l - l ; 
n 2 = n 2 - l ; 

n3=n3-r, 
n4=:n4-r, 
t^alLparticles[cpaniclej.last_t; 
al=x[nl|-all_particles[cparticle|.px[t|; 
bl=x[n2j-x[nl|; 
cl=x[n4]-x[nl|; 
dl=x[nl]-x[n21+x[n3]-x[n4j; 

a2=y[n 1 ]-a]Lparticlcs[cparticlc] .py[tl; 
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b2=y[Ti2j-y[nlJ; 
c2=y[n4]-y[nl]; 
d2=y[n]]-y[n2]+y[n3]-y[n4], 

// let the guessed value of ctal eta2 is cell centre 
etal=0.25*(x[nl]+x[n2]+x[n3]+x[n4]); 
eta2=0.25*(y[nl]+y[n2]+y[n3]+y[n4]), 

// set error limit to 1/1000 tb of mid length 
toll=0.001*fabs(etal-x[nl]); 
tol2=0.00l *fabs(eta2-y[n] ]); 

far(j=0; j<MAX_CURV2; j ++) ( 
for(i=0; i<MAX_CURVl; i++){ 
a l l=b l+d] *eia2; 
al2=cl+dl*etar, 
a21=b24-d2*eta2; 
a22=c2+d2*etal; 

bll=al+bl*elal+cl*eta2+dl *etal*eta2; 
b22=a2+b2*etal+c2*eta2+d2*clal *eta2; 

if(a21=0.0){ 
hl=-b22/a22; 
h0=(-bl1-al2*hl)/all , 
) 
else( 
hl=(all*(b22/a2I)-bU)/(al2-an*(a22/a21)); 
h0=-(hl*(a22/a21)+b22/a21); 
} 
etal=eml+hO; 
ela2=eta2+h], 
) 
diff=fabs(bO); 
if(diff<=toll){ 
j=MAX_CURV2+]; // exit loop 

diff=fabs(hl), 
if(diff<=tol2)[ 
j=MAX_CURV2+l; // exit loop 

acb[0|=etal; 
ach[l]=cta2, 

10.3.2 initial part.cp 
// Main of the particle tracking code 
// Converting in to 2D form hy hiding [he 3D works 
//Date 30/05/01 

#include "tophead.h" 
#include "exLstruct.h" 

extern int cparticle, 
extern int particle_num; 

void initial__partO 
{ 

int x=0,i=0j=0; 
double inLx=0,ini_y=0; 
ifstream par_xy, 
par_xy.open(''particle_xy,txt"); 
// reading the total number of particles 
par_xy » panicle_num; 
all_particles[i j. tot_par=panicle_num; 
c o u t « "\n Number of particles arc " « particle_num « endl, 
for(i=0, i<particle_num; i++) ( 
par_xy » x; // particle number 

par_xy » i m _ x ; 
all_particles[i].px[0]=ini_x; 
par_xy » i n i _ y , 
alLparticles [i] .py[0]=ini_y; 
all_particles[ij.last_t=0; 
! 
par_xy.closeO; 

10.3.3 InitiaLsearch .cpp 

// Search for the particle cell and locate it 

#include "tophead-h" 
#include ''ext_struct,h'' 

extern int cparticle; 
extern int ccell, 
extern double x[MAX_N+l] , 
extern double y[MAX_N4-lj; 

int initial_searchO 
( 
double edgc_vec[2], 
double rela_vec[2], 
double norm_vec[2]; 
double origin[2], 
double rel_pos[2J; 
double dot=0.0; 
double mod_rcl=0.0,mod_norm=0.0,cos_thcta=0.0; 
int a=0,b=0,c=0,d^; 
inti=0j=0,M); 
int count=0, 

cout«"\nln search and locateW, 
// find SEARCH_LOOP number of cells 
for(j=0:j<C;j++)( 
c o u t « endl « "loop =" « j « endl; 
count=0; 
far(i=0; i<EDGE; i++) ( 
// c o u t « i « endl; 
a=cells[ccell], edges[ il. vert_num[ 0]; 
b=cclls[ccell1. edgesf i]. vert_n umt 1 ], 
a=a-1; 
b=b-l; 
ongin[0]=x[a]; 
arigin[l]=y[a]; 
edge_vec[0]=x[hj-x[a]; 
edge_vec[l]=y[b]-yla] 
a=cclls[cccll|.nodcs[0| 
b=:cells[ccell|.nodest 11 
c=cells[ccell].nodes[2J 
d=cells[ccell],nodcs[3] 

1 - 1 ; 

b=b-l; 
c=c-l; 
d=d-1; 
rcla_vcc[0]=0.25*(x[a]+x[hj+x[c]+x[d])-origin[0]; 
rela_vec[l]=0.25*(y[a]+y[b]+y[c]+y[d])-origin[l]; 

norm_vec[ 0 j=edge_ vec[0] *edge_vec[ 11 *rela_vec[ 11-
rela_vec[0| *pow(cdge_vecl 1 j ,2); 
norm_vcc[lj=edge_vec[0]*edgc_vcc[11*rela_vec[0]-
rela_vec[11*pow(edge_vec[0],2); 
]^all_particles[cparticlcj.last_t; 
rel_pos[OJ=all_particlcs[cparticle].px[tl-ongin[OJ; 
rcl_pos[ 1 l=all_particles[cparticlel.py[tJ-ongin[ 1 ]; 
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dot=0.0; 
dot=dot+rel_pos[0] *nm^m_vcctOJ; 
dol=dot+rel_pos[]]*iionn_vec[]]; 
mod_rel=:sqn(pow(rel_pos[0],2)+pow(rel_pos[l],2)); 
mod_norm=sqrt(pow(nm^m_veclO],2)+pow(nonn_vec[lj,2)); 
cos_theta=dot/(mod_rel*mod_nonn); 

if(cos_theta>0.0){ 
c o u t « "\nParticle not within^" « c c e l l « endl, 
// panicle is in the adjacent edge 
i=EDGE+l, 
ccell++', 
} 
eke{ 
count++; 

1 
} // end of edges 
if(count=4) [ 
c o u t « endl « "particle located in search and locate in> " « 
c c e l l « endl; 
return 0, 
j=C+l. 
) 
) // end of trials 
if(count !=4) ( 
c o u t « cndl « "Particle not found within the domain" « endl; 
return 99; 
} 
return 0; 

// 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * * * * # * * * * * * 
* * * * * * * * * * * 

// NOTE INSTEAD OF DO LOOP COUI,D HAVE 
FOR LOOP WITH 
// MAXIMUM NUMBER OF rFERAnONS. THEN 
ERROR SIGNAL 
// CAN BE USED m DISCOVER THE PROBLEM 
// 
* * * * * * * * * * * * 
* * * * * * * * * * * 

* * * * * * * * * * * * * * * * * * * * * * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// KNOW THAT IN 3D ONLY 26 CVS 
SURROUNDING A GIVEN 
// CV. THE PARTICLE MUST GO TO ONE OF 
THESE CELLS 
// HENCE THE FOR LOOP MUST ONLY SEARCH 
WITHIN IWO OTHER CVs. 
// OTHERWISE THE PARTICLE MUST HAVE 
JUMPED A CELL OR THAT PAR HCLE 
// HAS GONE BEYOND THE COMPUTATIONAL 
BOUNDARIES 
// 

10.3.4 Interpol.cpp 

// performs linear interpolation 

#include "tophead.h" 
#include "ext_struct,h'' 

extern int cceU; 
extern int cparticle; 

extern double 
extern double 
extern double 
extern double 
extern double 
extern double 
extern double 
extern double 

x[MAX_N+ll; 
y[MAX_N+l]; 
urMAX_N+11; 
v[MAX_N+li; 
dudx[MAX_N+Il; 
dudy[MAX_N+I]; 
dvdx|:MAX_N+l]; 
dvdy[MAX_N+l]; 

double ach[MN]=(0.0,0.0); 
void cart_curviO; 

void interpolQ 
{ 
intnl=0,n2=0,n3=0,n4=0; 
int ci=0,cj=0,ck=0,i=0,templ=0,temp2=0,t=0; 
double 7,erou=0.0,oneu=0.0,twou=0.0,threeu=0.0; 
double zerov=0.0,onev=0.0,lwov=0.0,threev=0.0; 
double zerodudx=0.0^erodudy=0.0,zerodvdx=0.0,zerodvdy=0.0; 
double onedudx=0.0,onedudy=0.0,onedvdx=0.0,onedvdy=0.0; 
double twodudx=0.0,twodudy=0.0,twodvdx=0.0,twodvdy=0.0; 
double 
threedudx=0.0,lhreedudy=0.0,threedvdx=0.0,threedvdy=0.0; 
double up=0.0,vp=0.0; 

// velocity at 8 vertices 
nl=cellslccellj.nodes[0j; 
n2=cells[ccelll .nodes[ 11. 
n3=cellsrccell|.nodes[2]; 
n4=celIs[cceU] ,nodes[3]; 

n l=nl - l ; 
n2=n2-l; 
n3=n3-l; 
n4=n4-l; 

7.erou=u[nl]; 
zerov=v[nl]; 
zerodudx=dudx[n 1J; 
zerodudy=dudy [n 1 j; 
zerodvdx=dvdx{nl]; 
zerodvdy=dvdy[nl]; 

oneu=u[n2]; 
onev=v[n2]; 
onedudx=dudx[n2j; 
onedudy=dudy[n2J; 
onedvdx=dvdx[n2]; 
onedvdy=dvdy[n2|; 

twou=u[n3]; 
twov=v[n3|; 
twodudx=dudx[n3J; 
twodudy=dudy[n3]; 
twodvdx=dvdx[n3]; 
twodvdy=dvdy [n31; 

lhreeu=uln4]; 
threev=v[n4]; 
thrccdudx=dudx [n4], 
threedudy=dudy [n4] 
tbreedvdx=dvdxln4J; 
threcdvdy=dvdy [n4 j; 

// obtain the local coordinate of particle position 
// i.e. curvilinear coordinates bounded by CV 
cart_curviO; 
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n* ' linear interpolation 
* * * * * * * * * * * * * * * 

// customised for 2D 
up=0.0; 
up=zerou*ach[0| *ach[ 1J; 
up=up+oneu*( 1 -ach[0]) *acb[ 1 ]; 
np=tip+twou*(l-ach[0])*(l-ach[l]); 
up=up+tl]reeu*acb[OJ*(I-ach[lj); 

vp=0.0; 
vp=zero v*acb[0] *acb[ 1 ]; 
vp=vp+onev*( 1 -acb[0])*acb[ 1 ]; 
vp=vp+twov*(l-acb[0])*(l-acb[l]), 
vp=vp+threev*acb[0]*(l-acb[lj); 

///* 
II* ' shape function interpolation 

double step_x=0.0,step_y=0,0; 

stcp_x=fabs(x[n 1 ]-x[n2]), 
step_y=fabs(y[n3J-y[n2]); 

up=0.0; 
up=up+zerou*(pow((I-acbl0|),2))*(l+2*ach[0])*(pow((l-
acb[lj),2))*(l+2*ach[lD; 
up=up+zerodudx*acb[0]*step_x*(pow((l-acb[0j),2))*(pow((l-
ach[lD,2))*(l+2*acb[li); 
up=up+zerodudy*(pow((I-
acb[0j).2))*(I+2*ach[01)*step_y*acb[I]*(pow((l-ach[lj),2)); 

up=up+oneu*(pow(ach[01,2))*(3-2*acb[0])*(pow((l-
acb[l]),2))*(l+2*acb[lj); 
up=up+onedudx*step_x*(pow(ach[01,2))*(ach[01-l)*(pow((I-
ach[l]),2))*(]+2*ach[l]); 
upcup+onedudy * (pow(acb[0] ,2)) *(3-
2*acb[0])*slep_y*acb[l|*(pow((l-achtl|)^)); 

up=up+tbreeu*(pow((l-
acb[0]).2))*(l+2*ach[0])*(pow(acb[]],2))*(3-2*acb[n); 
up=up+threcdudx*step_x*ach[0|*(pow((l-
acb[0]),2))*(pow(acb[lj,2))*(3-2*acb[lj); 
up=up+threedudy *(po w(( 1 -
ach[0|)^))*(l+2*acbl0])*step_y*(pow(acb[l]^))*(acb[l]-l), 

up=up+twou*(pow(acbl0],2))*(3-2*acb[0])*(pow(ach[l|,2))*(3-
2*acb[l]); 
up=up+twodudx*stcp_x*(pow(ach[0].2))*(ach[0]-
I)*(pow(ach[lj,2))*(3-2*achf 1|); 
up=up+t wodudy * (po w(ach[0] ,2)) *( 3-
2*ach[0]) *s tep_y *(po w(ach[ 1 ] ,2)) *(acb[ 1 ]-1); 

vp^O.O; 
vp=vp+zerov*(pow((l-ach[0j),2))*(l+2*acb[0])*(pow((l-
acb[l]),2))*(l+2*ach[l]); 
vp=vp+zcrodvdx*acb[01 *stcp_x*(pow(( I -ach[0]) ̂ ))*(pow(( 1 -
acb[lD,2))*(l+2*acb[11), 
vp=vp+zerodvdy*(pow((l-
ach[0]),2))*(I+2*acb[0J)*stcp_y*ach[l]*(pow((l-ach[l]).2)); 

vp=vp+oncv*(pow(ach[01.2))*(3-2*ach[01)*(pow((]-
ach[l]),2))*(l+2*acb[li); 
vp=vp+onedvdx*step_x*(pow(achr01,2))*(ach[01-l)*(pow((l-
ach[l|),2))*(l+2*acb[lj)'. 
vp=vp+onedvdy*(pow(ach[0] ̂ )) *(3-
2*ach[0])*step_y*ach[l]*(pow((l-ach[11)^)); 

vp=vp+threev*(pow(( 1-
acb[0]);Z))*(l+2*ach|;0])*(pow(ach[l],2))*(3-2*ach[l|); 
vp=vp+tbreedvdx*step_x*ach[0]*(pow((l-
acb[0]),2))*(pow(acb[l],2))*(3-2*ach(l]); 
vp=vp+threedvdy*(pow((I-
ach[0]),2))*(l+2*ach[0])*step_y*(pow(acb[l],2))*(acb[l]-l); 

vp=vp+twov*(pow(acb[0j,2))*(3-2*acb[0])*(pow(acb[11^))*(3-
2*acb[lj); 
vp=vp+twodvdx*step_x*(pow(acb[0],2))*(acb[01-
l)*(pow(acb[l],2))*(3-2*acb[l]); 
vp=vp+twodvdy *(pow(ach[0] ,2))*(3-
2*acb[0j)*step_y*(pow(acb[ 1 ] *(ach[ 1]-1); 

//*/ 

t=alLpaiticles[cparticle| .last_t; 
all_particles[cpaiticle].fu[t]=up; 
all_particles[cparticlc].fv[t]=vp; 

10.3.5 main prog.cpp 

// The main program 

#include "tophead-b" 
#include "structures.h" 

voidreadingO; 
void initial_part(); 
int initiaLsearchO; 
void tstepO; 
//void wnte_dump(int ii); 
void wnle_dump(int ii, int count,int dis); 
void writc_dump2(int ii); 
int searchJocateO; 
void intcrpotO, 

int cparticle=0; 
int ccell=0; 
int particle_num, 
double time_step=0.0; 
double x[MAX_N+l ]; 
double y[MAX_N+11; 
double u[MAX_N+l]; 
double v[MAX_N+l]; 
double dudx[MAX_N+l]; 
double dudy[MAX_N+l], 
double dvdx[MAX_N+] j: 
double dvdy[MAX_N+lj; 

int 
mainO 
( 
int i=0, 
int dis=0; 

// read in tbc data files 
// grid nodes, 
// cell centered, 
// velocity components 
readingO; 

// initialise particle position 
initial_pariO; 

ccell=15075, 

int part^0,t=0,count=0. 
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double x0=0.0.y0=0.0; 
double cul=0,0,cu2=0,0,cu3=0.0,cu4=0.0, 
double evl=0.0,cv2=0,0,cv3=0.0,cv4=0.0; 
double s[ore_l'[T_S1T5P+l], 

double k=0,0,kul=0.0,ku2=0.0,ku3=0.0,ku4=0.0, 
double kvl=0.0,kv2=0.0,kv3=0.0,kv4=0.0, 
double fl=0.0,xp=0.0,yp=0,0,up=0.0,vp=0.0,uf^0.0,vf=0.0, 
double kxp=0.0jcyp=0.0,kuf=0.0,kvf=0.0; 

double tau=0.0; 
double viscosity=1.82e-5; 
double vclo=2.6218487395, dia=3.5e-3; 
double pait_dia=3.0c-6; 
//double slk=0.02; 
//double parLden=9.7183333c2; 
//double s(k=0.04; 
//double paTt_dcn= 1.9437e3; 
//double stk=0.06; 
//double part_den=2.9155e3; 
//double sdc=0.08, 
//double part_den=3.8873e3; 
//double stk=0.r, 
//double part_dGn=4.g5917e3, 
double slk=0.12; 
double pan_den=5,83 le3; 

for(part=0;pan<PAR; ++part) ( 
cparticle=part, 
//ccell=16675; 
//ccell=]5375; 
//ccell= 15375; 
//ccell=15425', 
//ccell=16225; 

// /* 
// find the particle containing CV numver 
ccell=0; 
i=initial_searcbO; 
i f( i=99){ 
c o u t « "XnParticle not found within the domain\n"; 
return 0; 
1 
eke{ 
c o u t « "YnParticle is located within the domain\n": 

// return 0; 
//*/ 
// Und fluid velocities at particle position 
interpolQ; 
c o u t « e n d l « c c e l l « endl; 
//return 0; 
// set initial conditions 
t=all_particlesLcparticle1.1asLt; 
all_particles[cparticle].pu[t]=all_particlesrcparticlc|.fu[t]; 
a]l_particles[cparticle].pv[tj=all_particlesrcparticlcl.fvrtl; 
// tstepO; 
count=0; 
int var9=0; 

store_T[0]=0.0; 
double tt=0.0; 

for(i=0; i<T_S'mP; i-H-){ 
c o u t « "time step='' « i « " ccetl='' « ccell; 

********* 
yy * * * * * * * * * * * g ^ p Q ^ * * * * * * 

// calculate the time step 
tstepO; 

store_T[i1=tt+time_stcp; 
tt=stoTe_T[ij; 
c o u t « " time=" « store_T[i] « endl; 

//tau=( 18* viscosity)/(dp*dp*rhop); 
tau=(velo/dia)/stk; 
//tau=5000; 
tau=(l 8*viscosity)/(part_dia*part^dia*part_den); 

// calculate particle position from know particle velocity 
t=al]_particles[cparticle] .lasi_t; 
xp=all_particles[cparticle],p)c[t]; 
yp=alLparticles[cparticlej,py[tj; 
up=all_particles[cparticle1 ,pu [t]; 
vp=alLparticles[cparticlel.pv[t]; 
uf=all_particles[cparticlc|.fu[t]; 
vf=all_particles[cparticle].fvrt:1; 

///* 
fl=tau*(uf-up); 
kul=0.5*time_step*fl; 
fl=tau*(vf-vp); 
kvl=0 j*time_step*f]; 
//*/ 

/* 
fl=tau*(uf-uf); 
kul=0.5*timc_stcp*fl; 
fl=tau*(vf-vf); 
kvl=0_5*time_step*fl; 
•I 

///* 
k=0.5*time_step*(up+0.5*kul); 
kxp=xp+k; 
k=0.5*time_stcp*(vp+0.5*kvl); 
kyp=yptk; 
//*/ 
/* 
k=0.5*time_step*(uf+0.5 *ku 1); 
kxp=xp+k; 
kM).5*[ime_step*(vf+0.5*kvl); 
kyp=yp+k; 

t=all_particles[cparticle|.last_t; 
all_particles[cparticle].px[t]=kxp; 
alLparticles[cparticle].py[t]=kyp; 

dis=search_locate(); 
if(dis==99)( 
c o u t « endl « "Particle is outside (1)" « endl; 
//write_dump2(var94-l); 
write_diunp2(i); 
write_dump(i,count, dis); 

T_STEP+5; 
count=0; 
c o u t « "\ntau=" « tau « endl; 
//return 0; 
) 

else( 
interpolQ; 
l^all_particles[cparticle|.last_t; 
kuf=all_particles[cparticle|.fult|; 
kvf=alLparticlcs[cparticlc|.fv[t]; 
///* 
n=tau*(kuf-up-kul); 
ku2=0.5*time_step*n; 
n=tau*(kvf-vp-kvl); 
kv2=0_S*timc_step*fl; 
n=tau*(kuf-up-ku2); 
ku3=0^*time_step*fl; 
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fl=lau*(kvf-vp-kv2); 
kv3=0.5*time_step*fl, 

k=time_step*(up+ku3); 
kxp=xp+k; 
k=time_step*(vp+kv3), 
kyp=yp+k; 
//*/ 

/ * 

n=iau*(kuf-uf-ku]); 
ku2=0.5*lime_slep*fl; 
fl=tau*(kvf-vf-kvl); 
kv2=0.5*lime_step*fl; 
n=mu*(kuf-uf-ku2); 
ku3=0.5*time_step*fl; 
fl=lau*(kvf-vf-kv2); 
kv3=0.5*lime_step*fl; 

k=time_step*(uf+ku3); 
kxp=xp+k; 
k=dme_step*(vf+kv3); 
kyp=yp+k; 
*/ 

t=all_particles[cparucle]. lasU; 
a]l_particles[cparticlej.px[[J=kxp; 
all_pardcles[cparticle1.py[t]=kyp; 
(lis=scarch_loca[eO; 
if(dis=99){ 
c o u t « e n d l « "Particle is outside (2)" « endl; 
//writc_dump2(var9+l), 
whte_dump2(i)', 
wri le_dump(i,count,dis); 
i=T_STEP+5; 
count=0; 
c o u t « ''\ntau='' « tau « endl; 
//return 0; 
} 
else{ 
interpolQ; 
t;=all_parricles[cparuclej.last_t; 
kuf=all_particles[cparticle].fu[tl, 
kvf=all_particles[cparticle| .fv[t], 
///* 
n=tau*(kuf-up-2.0*ku3); 
ku4=0.5*time_step*fl; 
fl=tau*(kvf-vp-2.0*kv3)', 
kv4=0.5*time_step*fl; 
//*/ 
/ * 

fl=tau*(kuf-uf-2.0*ku3). 
ku4=0.5*time_step*n; 
fl=tau*(kvf-vf-2.0*kv3); 
kv4=0,5*time_step*fl; 
*/ 
l=all_particlcs[cparticlc].last_t, 
all_particlcs[cparticlel.px[tl=xp; 
aU_particles[cparticlcl.py[t]=yp. 
all_particles[cparticle|.fu[[|=uf; 
ail_particles[cparticlej. f v[t]=vf: 
aU_particlesrcparticlc].pu[t]=up, 
all_particles[ cparticle ], pv[t1=vp 

all_particles[cparticle].last_l++; 
t=all_particles[cparticlcl.last_t, 
/ * 

c o u t « "kul=" « kul « endl; 
c o u t « ''ku2='' « ku2 « endl; 
c o u l « "ku3=" « ku3 « endl; 

c o u t « "ku^^" « ku4 « endl; 
*/ 

///* 
all_panicles[cparticle].px(t]=xp+time_step*(up+(l 0/3.0)*(kul+k 
u2+ku3)); 
alLparticlcs[cparticle].py[t]=yp4-time_step*(vp-i-(1.0/3.0)*(kvl+k 
v2+kv3)); 
all_particles[cparticlej.pu[tl=up+(1.0/3.0)*(kul+2.0*ku2+2,0*ku 
3+ku4); 
all_particles[cparticle].pv[t]=vp+(1.0/3,0)*(kv]+2.0*kv2+2.0*kv 
3+kv4); 
//*/ 
/ * 

all_particles[cparticle] .pxltj=xp+time_step*(uf+(l .0/3.0) *(ku 1+k 
u2+ku3)); 
all_particles[cparticle1.py[t|=yp+timc_step*(vf+(1.0/3.0)*(kvl+k 
v24-kv3)); 
all_particles[cparticle].fu(t]=uf+(1.0/3.0)*(kul+2.0*ku2+2.0*ku3 
+ku4); 
all_particles[cparticle1.fv[t]=vf+(1.0/3.0)*(kvl+2.0*kv2+2.0*kv3 
+kv4); 
all_particles[cparticlej.pu(t]=uf+(1.0/3.0)*(kul+2.0*ku2+2.0*ku 
3+ku4); 
all_particles[cparticle].pv[t]=vf4-(1.0/3.0)*(kvl+2.0*kv2+2.0*kv 
3+kv4); 
*/ 

//count++; 

// *********** gtepog**************" 
dis=search_locateO; 
if(dis=99){ 
c o u t « endl « "Particle is outside (3)" « endl; 
//write_dump2(var9+l); 
write_dump2(i); 
write_duinp(i ,count,dis); 
i=T_STEP+5; 
count=0; 
c o u t « "Xntaus" « tau « endl; 
//return 0; 
} 
Glse{ 
// interpolation 
interpolQ; 
//t=alLparticlcs[cparticle].last_t; 
/ / c o u t « "before fu=" « all_particles[cpaTticle].fu[t] « "Xt" « 
t « endl; 
count4-+; 
if(count=DUMP_T){ 
vaf9=i; 
write_dump(i,count,dis); 
couni=0; 
//t=ali_particles[cparticlc|.last_t; 
/ / c o u t « "after fu='' « all_particles[cpanicle].fu[t] « "\t" « t 
« endl; 

)//2 
}//! 
}// end of time stepping 
// end of all pardclcs 

c o u t « "\ntau=' « tau « endl; 
return 0; 

10.3.6 reading.cpp 
// 

//initialise flow variables 
// 
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#iiiclude "topbead.h" 
#include "exLstnicl.h" 

extern double 
extern double 
extern double 
extern double 
extern double 
extern double 
extern double 
extern double 

void readingO 

x[MAX_N+l|; 
y[MAX_N+ll; 
urMAX_N+l]; 
v[MAX_N+lj; 
dudxIMAX_N+1 ], 
dudyrMAX_N+l]; 
dvdxiMAX_N+li; 
dvdyiMAX_N+l], 

int i=0j=0,a=0,b=0,c=0,d=0,e=0; 
ifstream inl; 
inl .open(''cell_xy.dat''); 
// Reading cell node numbers 
cout«"Reading infmmatioa\n"; 
for(i=0', i<C; i++){ 
inl » a, 
inl » b; 
inl » c; 
ml » ( 1 ; 
inl » c; 
cells[i],edges[01.vercnum[01=b; 
cells[il.edges[Oj,vert_num[lj=c; 
cells[i].edgcs[l].vert_num[01=c; 
cells[i].cdges[l].vert_num[l]=d; 
cclk[i].edges[2].verl_num[0]=d; 
cells[i].edges[2j.vcrt_numflj=e; 
cells[i].cdges[31.vert_num[01=:e. 
celk[i] .edges[3]. vert_num[ l]=b; 

cellsm.nodeslOj=b, 
celk[i].nodes[l]=c; 
cells[i].nodcs[2]=d; 
cclls[i].nodes[3]=e; 

c o u t « "DONEXn"; 
inl.closeO; 
// Reading adjacent cell numbers 
inl ,opcn("ceil_adj.dat"); 
for(i=0, i<C', ]++)( 
inl » a; 
fm(i=0;j<EDGE,j-H-){ 
inl » cells[ij.edges[j] adj; 

inl.closeO; 

// reading the cell centered x-coordinatc 
inl .opcn(''x_cen.dat"); 
for(i=0', i<MAX_N; i++)( 
inl » xfil; 
} 

inl.closeO; 
// reading the cell centered y-coordinate 
inl.open("y_cen.dat''); 
for(i=0; i<MAX_N; i++) ( 
inl » y t i | ; 
1 
inl.closcO; 

// reading the cell centered u-velocity 
inl.open(''u_cen.dat"); 
for(i=0; i<MAX_N; i++){ 
inl » uM; 

inl.closeO; 
// reading the cell centered v-velocity 
in 1. open(" v_cen.dat''); 
for(i=0; i<MAX_N; i++){ 
inl » v[i]; 
) 
inl.closeO; 

///* 
// reading the cell centered dudx 
inl.open("dudx_cen.dat''); 
for(i=0; i<MAX_N; i++)( 
in I » dudx[i]; 
} 
inl.closeO; 

// reading the cell centered dudy 
inl.opcnC dudy_cen.dat''); 
for(i=0; i<MAX_N; i++){ 
inl » dudy[i]; 
) 
inl.closeO; 

// reading the cell centered dvdx 
in 1. openC dvdx_cen, dat"); 
for(i=0; i<MAX_N; i++)( 
inl » dvdx[i]; 
) 
inl.closeO; 

// reading the ccll centered dvdy 
inl.oponCdvdy.cen.dat"); 
for(i=0; i<MAX_N; i++){ 
inl » dvdy[il; 
} 
inl.closeO; 
//*/ 

10 .3 .7 s e a r c h j o c a t e . c p p 

// Search for the particle cell and locate it 

#include "tophead.h" 
#include ''ext_strucl.h" 

extern int cparticle; 
extern int ccell; 
extern double x |MAX_N+l|; 
extern double y| MAX_N+11; 

int searcb_locatcO 
f 
double cdge_vecr2|; 
double rela_vec[2J; 
double norm_vec[2|; 
double origin[2|, 
double rel_pos[2]; 
double dot=0.0; 
double mod_rel=0.0,mod_norm= 

int a=0,b=0,c=0,d=0. 
int i=0j=0,t=0; 
inl counu=0; 

0.0,cos_theta=0.0; 

cout « " \ n l n search and locateXn"; 
find SEARCH_LOOP number of cells 
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for(j=0; j<SEARCH_LOOP, j++) { 
// c o u t « Gndl « "loop =" « j « endi; 
counW); 
for(i=0; i<EDGE;!++){ 
// c o u t « i « endl; 
a=cel]s[cceIl].edges[i].vert_num[OJ; 
b=cells[ccell] edges [i]. vert_num[ 1]; 

a=a-l; 
b=b-l; 

angin[0]=x[a]; 
ohgin[l]=y[a]; 

edge_vec[0]=x[b]-x[aj; 
edge_vec[l |=y[bj-y[a]; 

a=cells[ccell].nodes[0] 
b=cells[ccell].nodes[l] 
c=celk[cceli].nodes[2] 
d=ceHs[cceU1.nodes[3] 

a=a-r, 
b=b-]; 
c=c-l . 
d=d-l, 

rela_vec[0]=0.25*(x[al+x[bj+x[cj+x[d])-originf0j; 
rela_vec[ 1 ]=0.25 *(y[a]+y[b]+y[c]+y(dl)-ongin( 11; 

norm_vec[0]=edge_vec[0]*edge_vec[ 1] *rela_vec[ 1 ]-
rc]a_vec[OJ*pow(edge_vec[lJ^); 
norm_vcc[t]=edge_vec[0j*edge_vec[l|*rela_vcc[0]-
rela_vec[l]*pow(edge_vec[0]^); 

k=all_particles[cparticlel.last_t, 
rGLpos[0]=alLparticles[cparticle].px[t]-origm[0J; 
reLpos[ I ]=all_panicles[cparticlc] .py[t]-ongm[l j, 

dor=0.0, 
dot=do[+rel_pos[Oj *nornLvec[0]; 
dot=dot+rel_pos[l]*nonn_vec[l], 

mod_rcl=sqrt(po w(rcLpos[01.2) +po w(rel_pos[ 1 ] ,2)), 
mod_n(?m=sqrt(pow(norni_vec[0],2)+pow(nonn_vec[IJ,2)); 

cos_±ela=dot/(mod_rel*mod_norm); 
if(cos_theta>0.0)( 
ccell=cells[ccell] edgesri] adj; 
i f (cce l l=- l ){ 
// reachcd a wall/boundary 
return 99; 

! 
else} 
// panicle is in the adjacent edge 
i=EDGE+l; 

else( 
count++', 

! 
) // end of edges 
if(cotmt=4){ 
// c o u t « cndl « "panicle located in search 
and locate" « cndl; 
return 0; 
j=SEARCH_LOOP+l. 
) 
) / /end of trials 
return 0; 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// NOTE INSTEAD OF DO LOOP CO ULD HAVE 
FOR LOOP WITH 
// MAXIMUM NUMBER OF ITERATIONS. THEN 
ERROR SIGNAL 
// CAN BE USED TO DISCOVER THE PROBLEM 
// 

* * * * * * * * * * * 

* * * * * * * * * * * * * * * 

// K N O W ' m A T I N 3 D O N L Y 2 6 C V S 
SURROUNDING A GIVEN 
// CV.THEPAR-nCLEMUSTGOTOONEOF 
THESE CELLS 
// HENCE THE FOR LOOP MUST ONLY SEARCH 
WITHIN TWO OTHER CVs. 
// OTHERWISE THE PARTICLE MUST HAVE 
JUMPED A CELL OR THAT PARTICLE 
// HAS GONE BEYOND THE COMPUTATIONAL 
BOUNDARIES 
// 

* * * * * * * * * * * * * * * * * * * * * * 

* * * * * * * * * * * 

10.3.8 tstep.cpp 

// Calculating the direction vectors 

#include "tophead.h" 
#include "ext_struct.h" 

extern int cparticle; 
extern double time_step, 
extern int cceU; 
extern double x[MAX_N+lj, 
extern double y[MAX_N+l]. 

void tstepO 
{ 
double centcrx=0.0,centery=0.0; 
double diatance=0.0, velocity=0.0, 
int a=0,b=0,c=0,d=0; 
intt=0; 

a=cells[ccclll.nodes[0]; 
b=cells[cceIl].nodcs[ 1], 
c=ceIls[ccell].nodcs[2]; 
d;=cel]s[ccclll.nodesr3|; 

a=a-1, 
b=h-l; 
c=c-l; 
d=d-1; 

// absolute cell centcr 
centerx=0.25*(x[a|+xlb|+x[c|+xtd|); 
center y=0.25*(y[a]+y[h|+y[cl+y[d]), 

// relative cell center 
centerx=cen tcrx-x(a]; 
center y=ccntery-y[aj; 
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t=aU_particles[cparticlej. lasu; 
distance=sqrt(pow(centcrx,2)+pow(cenlery,2)); 
velocily=sgTt(pow(alLparucles[cpaTtic]c].pu[t],2)+pow(all_partic 
les [cparticle] .pv[ tj ,2)), 
//time_stcp=(1.0/4.0) *(dismnce/veloci[y); 
ume_s[ep=0.02*(distaiice/velocity); 
// cout«"\a Xn"; 

10.3.9 write dump.cpp 

// collected information during particle tracks are written to file 
#include "tophead-h" 
#ir]cludc "ext_slruct.h" 

extern int cparticle; 

//void write_dump(int ii) 
void write_dump(int ii, int count, int status) 
{ 
const char *file = ''oulput_part.dat''; 

ofstream par_out(OlG, iosxout | iosxapp), 
//ofstream par_out(ios::out | iosxapp); 
//par_out.open(''output_part.txt"). 
int i=0,t=0; 
double tempi =0.0, 
int c=0; 
par_out« "Xn" , 
//for(i=l,i<=DUMP_'r;++i){ 
for(i=l;i<=count;-H-i) [ 
//par_out « i i - (DUMP_T-l)+i« "V; 
c=:ii-(count-l)+i', 
par_out« c « "\t"; 
par_out« alLpartictes[cparticlc].px(i1, 
p a r _ o u t « ; 
par_out« all_particles[cparticlej.py|i|; 
par_out«"V; 
par_out« all_particlcs[cparticle|.puli|, 
par_out«"Xt", 
par_ou l« aH_particles[cparticle] .pv[i]; 
par_out«"Xt"; 
par_out« all_partictcs|cparticle|.fu[i]', 
par_out«It"; 
par_out« all_particles[cpartictc].fv[i]; 
par_out«"Xn"; 
) 
par_ouLcloseO, 
t=all_particles[cparticlc].last_t, 
// cout « : " \ n l ^ l time=" « t « endl; 
tcmpl=alLparticles[cparticle|.fu[t|. 
all_particlcs[cparticle|.fu[0|=tempr, 

tcmpl=all_particles[cparticle].fvlt]; 
all_particles[cparticle]. fv(0 j=temp 1: 

temp 1 =all_particles[cpanicle] ,pu[tj; 
all_particles[cparticle|.pu[0|=templ; 

lempl=all_particles[cparticlc].pv[t]; 
aU_particles[cparticle].pv[0]=temp 1; 

templ=all_particlcs[cparticle] .px[ t|; 
all_particlcsrcparticle|.px[0|=tcmpl', 

templ=alLparticlcs[cpaniclc].py[t], 
all_particIcs[cparticle|.py[0]=templ, 

all_particles[cparticlcj.last_t=0, 

t=a]Lparticles[cparticle1.1ast_t; 
} 

10.3.10 write_dump2.cpp 

// collected information during particle tracks are written to file 
#includc "tophead.h" 
#include "exLstruct.h" 

extern int cparticle; 

//void write_dump(int ii) 
void write_dump2(int ii) 
{ 

const char *filel - "partjnfo.dat"; 
ofstream par_info(Glel, iosxout | iosxapp); 

par_info « "\n" « cparticle « "\t'' « i i ; 
parJnfo.closeO; 

10.3.11 ext struct.h 
// A header file of extems 

#include "topheaih" 

struct particle( 
double px[DUMP_'r4-l]; 
double pyrDUMP_T+l|; 
double pL[DUMP_T+l]; 
double pv[DUMP_T+I]; 
double fu[DUMP_T+f 1; 
double fv[DUMP_T+l]; 
double time_stcpsLDUMP_T+l | 
int num_ceU; 
int lasl_particle; 
int last__t; 
int tot_par, 

}; 

extern struct particle all_imrticlcs[PAR+l]; 
struct derivf 

double dudx[C+l |; 
double dudy[C+lj; 
double dudz[C4-l j; 
double dvdx[C+1 ]; 
double dvdy[C+l I; 
double dvdz[C+l J; 
double dwdx[C+ ] ]; 
double dwdy[C+l|; 
double dwdz[C+lj; 

i; 
exiem struct deriv allblock_dev[] +1 J; 
struct cd{ 

int vert_num[2]; 
int adj; 

}; 

struct ce{ 
struct cd edges[KDGC|; 
int nodes[4|; 

) ; 

extern struct ce cells^C+l]; 

10 .3 .12 structures.h 
// A header Hie of structures 

#include "tophead.h" 

struct particlej 
double px[D[JMP_T+l 1; 
double py[DUMP_T+11; 
double pu[DUMP_T+l j; 
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double pv[DUMP_T+ll; 
double fu[DUMP_T+lJ, 
double fv[DUMP_T+l], 
double [ime_steps[DUMP_T+l]; 
int num_cell; 
inl lasLpartide; 
int l a s u ; 
int tot_par; 

struct particle all_particlcs[PAR+l] 

struct deriv{ 
double dudx[C+l]; 
double dudy[C+l]; 
double dudz[C+l]; 
double dvdx[C+l]; 
double dvdy[C+l]; 
double dvdz[C+l]; 
double dwdx[C+l]; 
double dwdy[C+]]; 
double dwdz[C+l]; 

I; 

struct deriv allblock_dev[ I+1 ], 

struct ed( 
int vert_num[2j; 
intacy; 

struct ccl 
struct ed cdgesrEDGE 
intnodesMI; 

struct ce ceHs[C+lj, 

10.3.13 tophead.h 
// include all the header Qles used by all programs 

#include <iostream,h> 
#include <ma±.h> 
#include <fslrcam.h> 
#include <stdlib.h> 

#deAne C 56930 
#de(ine MAX_N 60181 
^define EDGE 4 
#dc6neMAX_CURVI 5 
#deane MAX.CURVZ 2 
#define MN 2 // 3 for 3D, 2 for 2D, size of matrix for 
calculation curvilliear 
Adeline SEARCH.LOOP 5 
//#deAne T_STEP 345 // total particlc time steps 
#deGne T_STEP 50000 // total particle time steps 
#define DUMP_T 100 
#define PAR 91 // Total number of particles 
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11 Appendix D 

Three dimensional laminar flow fields through a single bifurcation was simulated using 

commercial software. A grid was generated on the multi-block domain shown in Figure 3-

7. Inlet condition was uniform velocity and the outlet conditions were equal relative static 

pressure. The u-velocity profiles given here are not quantitatively validated, but have 

qualitatively the same trends as in the experimental profile under equal mass flow rate 

studies conducted by (Zhao and Lieber 1994). The velocity profiles were evaluated at 

various cross-sections along the bifurcation at approximate locations as shown in Figure 

11-1. 

0 0 0 0 

Figure 11-1 Cross-sections from which data are extracted labelled from 1 to 6 

The Hrst six sub-figures in Figure 11-2 show the axial velocity profiles extracted from the 

six cross-sections shown in Figure 11-1. In Figure 11-3 another set of six sub-figure show 

the velocity proGles extracted from a plane perpendicular to the bifurcation plane. 

(1) 

(2) 

1 /• 

(3) 

(4) 
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(5) (6) 
Figure 11-2 Six sub-figures shows six axial velocity profiles at six cross-sections (shown in Figure 11-1) 
in the three dimensional bifurcation 

(1) (4) 

(2) 

(3) 

(5) 

(6) 

Figure 11-3 Six sub-figures shows the velocity profiles normal to the horizontal bifurcation plane at six 
cross-sections (shown in Figure 11-1) in the three dimensional bifurcation 

11.1 Reference 
Zhao, Y. and B. B. Lieber (1994). "Steady inspiratory flow in a model symmetric 

bifurcation." Journal of Biomechanical Engineering. (TASME) 116: 488-496. 
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12 Appendix E 

The equations used by (Zhao Yao 1994a) describing the bifurcation geometry had some 

anomalies. Some equations were modiAcations with permission of (Zhao Yao 1994a) after 

author upon personal conmiunication. 

0 0 " 
Fl@. 1 Twt aectkn In Uw MfureaUon pfane (z=0) and 

plan* (y=0). Typlca* crosg-secWona ml station 1,4,8,10, and 
12 a(# ahown on Uie MghL 

Figure 12-1 Geometrical specifications of the three dimensional bifurcation 

An airway bifurcation has three sections: parent tube, flow divider and daughter branches. 

The geometrical parameters that define the bifurcation are as follows. 

o Parent tube diameter, D 

a Daughter tube diameter, d 

a Length of flow divider, L 

o Branch angle, 2a 

a Curvature of daughter tube centrehne, R 

Another curvature ratio, p, has also been used to describe the flow divider in order for the 
flow divider to be independent of the curvature of the daughter tubes. 

Line ME: 

Equation 12-1 

y = a;X^ -l-biX^ 4-0.5D 
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Equation 12-2 

_ 8dcos,^-(L-dsiny^)tany^-4D 

^ 6(L-dsin)g)^ 

Equation 12-3 

(L-ds in tan;9-2dcoSy^ + D 
bi 

6(L-dsiny^)^ 

Line EF: 

Equation 12-4 

1 
y = (R + 0.5d) cos yg - {(R - 0.5d)" - (x - L+(R -h 0.5d) sin ' 

Line GK: 

Equation 12-5 

y = a(x-0.5L)''^ 

Equation 12-6 

_ O.Sdcosyg 

(0.5L-0.5dsinyg)^ 

Equation 12-7 

tan)9(L-dsin)^) 
X = -

dcos 

Line KJ: 

Equation 12-8 

i 

y = (R + 0.5d) cos yg - {R - - (X - L + (R + 0.5d) sin yg)"}^ 

Line CH: 

Equation 12-9 

1 
y = (R + 0 . 5 d ) c o s { ( R + 0.5d)- - (x -L-k (R + 0.5d)sinyg)' 



Line NP: 

Equation 12-10 

0.5(d-D)x 

L-0.5dsiny^ 
+ 0.5D 
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Line QR: (The line that separates the flow divider) 

Equation 12-11 

X = 
^ tan^^ 

1 + -
tanyg 

Equation 12-12 

L 

2 

z = b. 

Equation 12-13 

Equation 12-14 

0.5(d-D) 

L-0.5dsin)^ 

Equation 12-15 

^ 

2tan)^cos^ 

Equation 12-16 

(y,sin^ + yj-k0.5D 

L 
= (y,cos^ + a| —+ &/,sin^ 

2tanyg \ 2 

/ 
+ b 

/ 

L 
— s i n 0 

v2 
-t-0.5D 

y 

Equation 12-17 

L 

2tany^ 
^2 cos ̂  + a(((f2 sin 

Some things to note is that 'Line NP' start from O and end at K, and 'Line QR' start at G 
and end at C. 

The geometrical parameter values are as follows. 

a D=3.81 
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o 2d^ / = 1 (Constant cross-sectional area at the flow divider) 

a 2a=70° 

o 13=18° 

o R=7d 

Cartesian coordinates of points A and B are (L- (R + 0.5d)sin)9,(R + 0.5d)coS)^,0) and 

(L/2,tan^(L/2),0) respectively. 

Zhao Yao, L. B. B. (1994a). "Steady inspiratory flow in a model symmetric bifurcation." 
Journal of Biomechanical Eneineerinp. (TASME) 116: 488-496. 


