# UNIVERSITY OF SOUTHAMPTON 

## FACULTY OF SCIENCE

## DEPARTEMENT OF CHEMISTRY

# Permanganate Mediated Oxidative Cyclisation and its Application to the Synthesis of Natural Products 

by<br>Carole, Jeanne, Rachèle Bataille

A thesis submitted for the degree of Doctor of Philosophy


#### Abstract

Cis-2,5-disubstituted tetrahydrofurans (THFs) are present in a large number of biologically active molecules, including many polyether antibiotics and acetogenins. In view of the importance of THF-containing structures, their efficient stereocontrolled synthesis remains an important objective.

Permanganate mediated oxidative cyclisation of $1,5,9$-trienoates and subsequent oxidative cleavage provided the corresponding perhydro-2,2-bifuranyl systems with control of relative stereochemistry at four new stereocentres. Optically pure THF-lactones were obtained through the use of the Oppolzer sultam chiral auxiliary. The requisite starting trienes were prepared stereoselectively in just three steps from geranyl and neryl chlorides, providing a short and versatile route to polyether fragments. Permanganate promoted oxidative oxidation was applied toward the synthesis of a natural product, intricatetraol. The construction of a non adjacent bis-THF diol core was investigated via tandem oxidative cyclisation of a tetraene precursor. The tetraene precursor was selectively prepared by coupling two moieties synthesised from neryl acetate. An alternative approach to the synthesis of intricatetraol was also investigated where the bis-THF core was formed via the coupling of two THF rings. The revised approach relied on a metathesis reaction to couple the two THF-containing fragments. Selective oxidative cyclisation of readily available 1,5,9trieneoates provided the desired mono-THFs that would provide the non adjacent bis-THF segment via metathesis. The oxidation of readily available 1,5-dienoates and 1,5,9-trienoates containing a terminal double bond afforded cis-THF-containing products that were easily converted to the corresponding trans-THF adducts. This new methodology was applied toward the synthesis of eurylene, a natural product.


## Contents

Title page ..... i
Abstract ..... ii
Contents ..... iii
List of Tables ..... vii
List of Figures ..... viii
List of Schemes ..... ix
Declaration ..... xV
Acknowledgements ..... xvi
Abbreviations ..... xvii
Chapter 1
Synthetic routes to 2,5-disubstituted tetrahydrofurans ..... 1
1-I Oxidative cyclisation of 1,5 -dienes ..... 1
1-I-1 Permanganate mediated oxidative cyclisation ..... 1
1-I-2 Osmium tetroxide catalysed oxidation ..... 9
1-I-3 Ruthenium tetroxide oxidative cyclisation ..... 11
1-I-4 Use of Rhenium oxide ..... 15
1-I-5 Oxidative cyclisation of 1,5-dienes via a nitrile oxide intermediate ..... 25
1-II Oxidation-cyclisation of unsaturated alcohols ..... 27
1-II-1 Use of anodic coupling reaction ..... 27
1-II-2 Chromium promoted oxidative cyclisation. ..... 30
1-II-3 Vanadium catalysed oxidation-cyclisation ..... 33
1-II-4 Use of mCPBA ..... 38
1-II-5 Oxidative cyclisation of hydroxy alkenes catalysed by cobalt (II) complex ..... 42
1-II-7 $\quad 1,4$-Addition to $\alpha, \beta$-unsaturated sulfones ..... 45
1-III Cyclisation of unsaturated alcohols ..... 47
1-III-1 Haloetherification ..... 47
1-III-2 Selenocyclisation ..... 56
1-III-3 Mercuricyclisation ..... 58
Chapter 2
Stereoselective synthesis of bis-adjacent Cis-2,5-disubstituted ..... 61
tetrahydrofurans
2-I 1,5,9-Trienes synthesis ..... 61
2-II Permanganate oxidation of 1,5,9-trienes ..... 66
2-III Efforts to selectively cleave the ester group ..... 68
2-IV Conclusion and further work ..... 70
Chapter 3
Toward the synthesis of intricatetraol ..... 71
3-I First Approach to intricatetraol ..... 71
3-I-1 Model study on simple 1,5-dienes ..... 72
3-1-1-1 Synthesis of model 1,5-dienes ..... 72
3-I-1-2 Attempted oxidative cyclisation on 1,5-dienes 335a-c ..... 73
3-I-1-3 Synthesis of model 1,5-dienes bearing the Oppolzer's chiral auxiliary ..... 76
3-I-1-4 Attempted oxidative cyclisation of dienes $\mathbf{3 4 5 a}, \mathbf{b}$ ..... 77
3-I-2 Preparation of the tetraene precursor 333a ..... 79
3-I-2-1 Synthesis of compounds 353 and 354 ..... 80
3-I-2-2 Coupling of precursors 353 and 354 ..... 80
3-I-2-3 Attempted oxidative cyclisation of tetraenes 333a,b ..... 82
3-II Second approach to intricatetraol ..... 84
3-II-1 Previous use of metathesis toward the synthesis of non adjacent bis-THF ..... 84
3-II-2 Approach toward intricatetraol via metathesis ..... 89
3-II-2-1 Selective oxidative cyclisation of 1,5,9-trienes 316c,f,h ..... 90
3-II-2-2 Reduction of mono-THFs to the corresponding triols ..... 92
3-III Conclusion and further work ..... 92
Chapter 4
Synthesis of trans-THF and application toward the synthesis of eurylene ..... 95
4-I Previous syntheses of eurylene ..... 95
4-II Strategy for the synthesis of 2,5-trans-disubstituted THFs ..... 102
4-II-1 Synthesis of the precursor 2,5-cis-disubstituted THFs ..... 102
4-II-2 Reductive deoxygenation of the primary alcohol ..... 105
4-II-3 Attempted synthesis of trans-THF 445 and trans-THP 446 ..... 106
4-II-4 Attempted reductive removal of the hydroxymethyl group ..... 108
4-III Toward the synthesis of eurylene ..... 110
4-III-1 Synthesis of fragment 387b ..... 111
4-III-2 Toward the synthesis of fragment 416 ..... 111
4-IV Conclusion and further work ..... 113

## Chapter 5

Concluding remarks ..... 115
Chapter 6
Experimental ..... 116
5-I General procedures ..... 116
5-II Experimental procedures ..... 117
Chapter 7
Appendix ..... 224
Chapter 8
References ..... 244

## List of tables

Table 2.1: Experimental conditions for the ester cleavage.
Table 3.1: Comparative study for the optimisation of the oxidative cyclisation step.
Table 3.2: Results of the oxidative cyclisation of tetraene 333a under different conditions

## List of figures

Figure 2.1: X-ray structure of lactone 314b.
Figure 2.2: X-ray of lactone 314d.
Figure 3.1: Intricatetraol (331).
Figure 4.1: Eurylene (393).
Figure 4.2: X-Ray structure of THF 422b

## List of schemes

Scheme 1.1: First example of $\mathrm{KMnO}_{4}$ mediated oxidative cyclisation.
Scheme 1.2: $\mathrm{KMnO}_{4}$ oxidation of dienes.
Scheme 1.3: Walba's mechanism for the $\mathrm{KMnO}_{4}$ oxidative cyclisation
Scheme 1.4: $\mathrm{KMnO}_{4}$ oxidation of dienes.
Scheme 1.5: Baldwin's proposed mechanism for the $\mathrm{KMnO}_{4}$ oxidative cyclisation.
Scheme 1.6: Synthesis of optically pure THF fragment 12 via $\mathrm{KMnO}_{4}$ oxidative cyclisation.
Scheme 1.7: Oxidative cyclisation of enantiomerically enriched dienoate 15.
Scheme 1.8: Oxidative cyclisation of enantiomerically enriched dienoate 17.
Scheme 1.9: $\mathrm{KMnO}_{4}$ oxidative cyclisation of dienoate 20.
Scheme 1.10: Synthesis of racemic lactone 28 via $\mathrm{KMnO}_{4}$ oxidative cyclisation.
Scheme 1.11: Mechanism of $\mathrm{KMnO}_{4}$ oxidative cyclisation on trienoate 26.
Scheme 1.12: $\mathrm{KMnO}_{4}$ oxidative cyclisation under phase transfer conditions.
Scheme 1.13: Synthesis of cis-solamin (41).
Scheme 1.14: Synthesis of cis-2,6-disubstituted-THP.
Scheme 1.15: First example of $\mathrm{OsO}_{4}$ mediated oxidative cyclisation.
Scheme 1.16: Directed oxidation by $\mathrm{OsO}_{4}$ / TMEDA.
Scheme 1.17: Possible mechanism of $\mathrm{OsO}_{4}$ oxidative cyclisation.
Scheme 1.18: Oxidative cyclisation using catalytic osmium tetroxide.
Scheme 1.19: Oxidative cyclisation of neryl and geranyl acetates $\mathbf{1 a}, \mathbf{b}$ with $\mathrm{RuO}_{4}$.
Scheme 1.20: Oxidative cyclisation of farnesyl acetate with $\mathrm{RuO}_{4}$.
Scheme 1.21: Construction of a penta-THF diol via ruthenium oxidative cyclisation.
Scheme 1.22: Oxidative cyclisation of geranylgeranyl acetate 74 with $\mathrm{RuO}_{4}$.
Scheme 1.23: Mechanistic hypothesis of the $\mathrm{RuO}_{4}$ mediated oxidation on triene 61.
Scheme 1.24: Oxidative cyclisation of geranylgeranyl acetate 74 with $\mathrm{RuO}_{4}$.
Scheme 1.25: Mechanistic hypothesis of the $\mathrm{RuO}_{4}$ mediated oxidation on 1,6-diene 81.
Scheme 1.26: Oxidative cyclisation of 5-hydroxyalkenes with rhenium oxide.
Scheme 1.27: Combined osmium-rhenium approach to polycyclisation of polyenes.
Scheme 1.28: Rhenium oxide-induced tandem syn-oxidative cyclisations of hydroxydienes.
Scheme 1.29: Synthesis of 17,18-bis-epi-goniocin 101.

Scheme 1.30: Synthesis of bis-THFs via rhenium oxide oxidative cyclisation.
Scheme 1.31: Morimoto investigation on the selectivity of rhenium oxidative cyclisation.
Scheme 1.32: Investigation on the selectivity of rhenium oxide oxidative cyclisation.
Scheme 1.33: Sinha investigation on the selectivity of rhenium oxide oxidative cyclisation.
Scheme 1.34: Synthesis of teurilene via rhenium oxide oxidative cyclisation.
Scheme 1.35: Transition state leading to the trans-syn-diastereoselectivity.
Scheme 1.36: Synthesis of rollidencin C (125a) and D (125b).
Scheme 1.37: Preparation of THF rings by "naked" carbon skeleton approach.
Scheme 1.38: Synthesis oxygen heterocycles utilising a cyclisation-fragmentation strategy.
Scheme 1.39: Synthesis of 2,5-disubstituted THFs using a cyclisation-fragmentation strategy.
Scheme 1.40: Synthesis of THF via anodic oxidation reactions.
Scheme 1.41: Synthesis of THF and THP via anodic oxidation reactions.
Scheme 1.42: Synthesis of 2,5 -disubstituted THF via anodic oxidation reactions.
Scheme 1.43: Synthesis of $(+)$-linalool oxide (152).
Scheme 1.44: Synthesis of ( + )-nemorensic acid (157).
Scheme 1.45: First example of chromium mediated oxidative cyclisation.
Scheme 1.46: First example of chromium mediated polycyclisation.
Scheme 1.47: Model of syn-oxidative cyclisation.
Scheme 1.48: Preparation of THF 61b via chromium oxidation.
Scheme 1.49: Synthesis of bis-THF via chromium and rhenium oxidative cyclisations.
Scheme 1.50: THF synthesis via vanadium catalysed cyclisation.
Scheme 1.51: Selectivities in VO(acac) $)_{2}$ catalysed oxidation.
Scheme 1.52: Steric effects on type B selectivity.
Scheme 1.53: Steric effects on type A selectivity.
Scheme 1.54: Synthesis of teurilene (119) via step-by-step THF unit construction.
Scheme 1.55: Synthesis of teurilene (119) via double cyclisation.
Scheme 1.56: Synthesis of glablescol (194) via sequential double cyclisations.
Scheme 1.57: Cyclisation of hydroxy alkenes using $m$-CPBA.
Scheme 1.58: Cyclisation of hydroxy alkenes using $m$-CPBA.
Scheme 1.59: Cyclisation of hydroxy alkenes using $m$-CPBA.
Scheme 1.60: $m$-CPBA-induced synthesis of THFs 204a,b.

Scheme 1.61: m-CPBA-induced synthesis of THFs 206a,b.
Scheme 1.62: Synthesis of bis-THF via m-CPBA oxidation and mercuricyclisation.
Scheme 1.63: Oxidative cyclisation of hydroxy alkenes catalysed by $\mathrm{Co}(\operatorname{modp})_{2}$.
Scheme 1.64: Mechanism of oxidative cyclisation catalysed by $\operatorname{Co}(\operatorname{modp})_{2}$.
Scheme 1.65: Mono-THF synthesis via cobalt oxidation.
Scheme 1.66: bis and tris-THF fragments synthesis via cobalt oxidation.
Scheme 1.67: Tris and tetra-THF fragments synthesis via cobalt oxidation.
Scheme 1.68: 5-endo-trigonal ring closures of unsaturated sulfones.
Scheme 1.69: Synthesis of 2,5-disubstituted THFs via 5-endo-trigonal ring reactions.
Scheme 1.70: Interaction models of the 5-endo-trig cyclisation reaction.
Scheme 1.71: THF synthesis via halocyclisation.
Scheme 1.72: Mechanism of the halocyclisation.
Scheme 1.73: Synthesis of trans and cis linalool oxides $\mathbf{1 5 2 b}$, c via iodocyclisation.
Scheme 1.74: Iodocyclisation toward the synthesis of gymnodimine (251).
Scheme 1.75: Synthesis of trans-THF via iodocyclisation.
Scheme 1.76: THF-oxonium in intermediates 254a and 254b.
Scheme 1.77: Asymmetric synthesis of trans-THFs via iodocyclisation.
Scheme 1.78: Preparation of trans-THF 267 via iodocyclisation.
Scheme 1.79: Conversion of trans-THF 267 in bis, tris and tetra-THFs.
Scheme 1.80: Preparation of bis-THF furanone segment 279 via iodocyclisation.
Scheme 1.81: Preparation of cis-THF 281a via iodocyclisation.
Scheme 1.82: Mechanism of the iodocyclisation on monosaccharide alkenes.
Scheme 1.83: Toward the synthesis of rolliniastratin (290) via iodocyclisation.
Scheme 1.84: Selenocyclisation of 1,5-cod 291 and 1,5-hexadiene 5a.
Scheme 1.85: Selenocyclisation of dienes to the corresponding THFs.
Scheme 1.86: Synthesis of marine natural product (301).
Scheme 1.87: Oxymercuration of linalool 302.
Scheme 1.88: Oxymercuration on $\gamma$-Hydroxy-allenes 306a-e.
Scheme 1.89: Synthesis of bis-THF via permanganate oxidation and mercuricyclisation.
Scheme 2.1: Retrosynthetic analysis of octahydro-2,2'-bifuranyl systems.
Scheme 2.2: Preparation of the $\beta$-ketoesters $\mathbf{3 1 7 a}$ and $\mathbf{3 1 7 b}$.

Scheme 2.3: Synthesis of the $E$ and $Z$ enol-phosphates 318a-c.
Scheme 2.4: Synthesis of the 1,5,9-trienes 316a-c.
Scheme 2.5: Synthesis of $(2 E, 6 E)$ methyl-farnesoate 26.
Scheme 2.6: Syntheses of trienes 316d-f bearing a chiral auxiliary.
Scheme 2.7: Formation of dianion 321 b with $n$ - BuLi .
Scheme 2.8: Preparation of triene $\mathbf{3 1 6 e}$.
Scheme 2.9: Attempted synthesis of diene 326.
Scheme 2.10: Permanganate oxidative cyclisation on trienes 316a-g and 26.
Scheme 2.11: Attempts to cleave the ester moiety from lactone 314c.
Scheme 2.12: Attempts to cleave the ester group from lactone $\mathbf{3 1 4 c}$.
Scheme 2.13: Reduction of the ester group from lactone 314c via transesterification.
Scheme 3.1: Retrosynthetic approach to intricatetraol (331).
Scheme 3.2: Retrosynthetic scheme to 1,5-diene 335.
Scheme 3.3: Synthesis of the aldehyde 19b.
Scheme 3.4: Synthesis of fluorinated phosphonates 338a,b.
Scheme 3.5: Synthesis of dienes 335a-c.
Scheme 3.6: Attempts of oxidative cyclisation on dienes 336a,c.
Scheme 3.7: Synthesis of dienes 336d, e.
Scheme 3.8: Attempted oxidative cyclisation on dienes 336d,e.
Scheme 3.9: Oxidative Cyclisation of diene 336b.
Scheme 3.10: Attempted oxidative cyclisation of triene 316c.
Scheme 3.11: Oxidative cyclisation of dienes 336c-e.
Scheme 3.12: Synthesis of diene 345a.
Scheme 3.13: Synthesis of diene 345b bearing a chiral auxiliary.
Scheme 3.14: Attempted oxidative cyclisation of dienes 345a,b.
Scheme 3.15: Synthesis of diene 348.
Scheme 3.16: Attempted synthesis of 2,5-disubstituted THF 346c.
Scheme 3.17: Synthesis of squalene 72.
Scheme 3.18: Retrosynthetic approach to tetraene 333a.
Scheme 3.19: Synthesis of the precursors 353 and 354.
Scheme 3.20: Synthesis of the diene 357a.

Scheme 3.21: Expected products from oxidation of the mixture of tetraene isomers.
Scheme 3.22: Synthesis of the dialdehyde 352a.
Scheme 3.23: Synthesis of tetraene 333a.
Scheme 3.24: Attempted oxidative cyclisation on tetraene 333a.
Scheme 3.25: Protection of bis-THFs 358a,c.
Scheme 3.26: Retrosynthetic scheme of bis-THF core 360.
Scheme 3.27: Synthesis of THF 361a,b.
Scheme 3.28: Synthesis of bis-THF 360.
Scheme 3.29: Retrosynthetic route to ( - )-mucocin (369).
Scheme 3.30: Synthesis of precursors 371, 372 and 377.
Scheme 3.31: Synthesis of mucocin (369).
Scheme 3.32: Second approach to intricatetraol (331).
Scheme 3.33: Synthesis of trienes 316c,f,h.
Scheme 3.34: Formation of mono-THFs 385a-c.
Scheme 3.35: Synthesis of triols $\mathbf{3 8 7 a} \mathbf{a}$ c and 388.
Scheme 3.36: Selective oxidation of triene 316.
Scheme 3.37: Toward the synthesis of intricatetraol (331).
Scheme 3.38: Synthesis of diene 392.
Scheme 3.39: Synthesis of intricatetraol (331).
Scheme 4.1: Retrosynthetic analysis of eurylene (393).
Scheme 4.2: Synthesis of tetraene 394.
Scheme 4.3: Synthesis of eurylene (393) via vanadium catalysed oxidation.
Scheme 4.4: Retrosynthetic analysis of eurylene (393).
Scheme 4.5: Synthesis of di-epoxide 402.
Scheme 4.6: Synthesis of (+)-eurylene (393).
Scheme 4.7: Retrosynthetic analysis of eurylene (393).
Scheme 4.8: Synthesis of mono-THFs 412a,b.
Scheme 4.9: Synthesis of the left-hand segment 416.
Scheme 4.10: Synthesis of the Right-hand segment 418.
Scheme 4.11: Synthesis of eurylene (393).
Scheme 4.12: Synthesis of trans-THFs via oxidative cyclisation with $\mathrm{KMnO}_{4}$.

Scheme 4.13: Synthesis of the diene precursor 421a.
Scheme 4.14: Synthesis of diene 421b bearing the sultam.
Scheme 4.15: Permanganate promoted oxidative cyclisation of dienes $421 \mathbf{a}, \mathbf{b}$.
Scheme 4.16: Investigation on the diastereoselectivity obtained with the camphor sultam.
Scheme 4.17: Attempted synthesis of tosylate 431.
Scheme 4.18: Synthesis of 3,8-Dioxabicyclo[3.2.1]octane precursor 434 by Walba.
Scheme 4.19: Synthesis of 2,5-trans-disubstituted THF 423a,b.
Scheme 4.20: Synthesis of dienes 436 and 439a,b.
Scheme 4.21: Oxidative cyclisation of dienes 436 and 439 a,b.
Scheme 4.22: Attempted synthesis of trans-THF 445 and trans-THP 446.
Scheme 4.23: Strategic approach to the synthesis of trans-THF 424.
Scheme 4.24: Attempted synthesis of aldehyde 447a.
Scheme 4.25: Attempted protection of the tertiary alcohol group present in THF 422a.
Scheme 4.26: Attempted synthesis of 2,5-trans-disubstituted THF 451.
Scheme 4.27: Alternative strategy involving THF-lactones.
Scheme 4.28: Synthesis of triene 452a.
Scheme 4.29: Toward the synthesis of 2,5-trans-disubstituted-THF-lactone.
Scheme 4.30: Synthesis of a trans-THF adduct 416.
Scheme 4.31: Synthesis of right-half segment $\mathbf{3 8 7 b}$ of eurylene (393).
Scheme 4.32: Synthesis of the trienes 452a-d.
Scheme 4.33: Synthesis of trans-THFs 416b-e.
Scheme 4.34: Synthesis of fragments 416a,f.
Scheme 4.35: Alternative retrosynthesis of trienes 452b,d.
Scheme 4.36: Toward the synthesis of eurylene (393).

## Acknowledgements

I would like to thank Dr. Richard Brown for his supervision, enthusiasm and motivation throughout these three years.

I would also like to thank Dr. Tim Luker, my industrial supervisor, for his help. I really appreciated working with him in Loughborough. I also enjoyed our talks about chemistry and music.

The analytical facilities (NMR, mass spectrometry and crystallography) of the university of Southampton are acknowledged.

I would like to thank Claire, Nev, Simon, Steve, Pam, Rowan, Riaz, Linda, Thomas and Yulai from the Brown group and Emma from the Whitby group. They created a lovely atmosphere in the lab that made my three years of PhD really enjoyable. I would also like to particularly acknowledge Claire Kay for all the conscientious proof-reading she did.

I would especially like to thank Sofia Salim for making these three years in Southampton unforgettable. I don't think I would have enjoyed working in the lab as much as I did if she hasn't been here. I would also like to thank her for her motivation, her help and all the proof-reading she did for this thesis

I also would like to thank Alexander Farnell and José Michel. They have listened to me talking for hours about chemistry without complaining or falling asleep and been really supportive.

And finally, I would like to thank my parents for the moral support, trust and love. They have always been there for me throughout these three years.

|  | Abbreviations |
| :---: | :---: |
| $\delta$ | chemical shift |
| AIBN | 2,2'-azobisisobutyronitrile |
| app. | apparent |
| aq. | aqueous |
| arom | aromatic |
| br | board |
| CAN | ammonium cerium(IV) nitrate |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | dichloromethane |
| CI | chemical ionisation |
| CSA | 10-camphorsulfonic acid |
| d | doublet(s) |
| DABCO | 1,4-diazabicyclo[2.2.2]octane |
| DBU | 1,8-diazabicyclo[5.4.0]undec-7-ene |
| DCC | dicyclohexylcarbodiimide |
| DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone |
| de | diastereoisomeric excess |
| DIBALH | di-iso-butylaluminium hydride |
| DMAP | 4-(dimethylamino)pyridine |
| DMF | $N, N$-dimethylformamide |
| DMPU | $N, N^{\prime}$-dimethyl- $N, N^{\prime}$-propylene urea |
| DMSO | dimethylsulfoxide |
| $d r$ | diastereoisomeric ratio |
| ee | enantiomeric excess |
| EI | electron impact ionisation |
| eq. | equivalent(s) |
| $\mathrm{Et}_{2} \mathrm{O}$ | diethyl ether |
| EtOAc | ethyl acetate |
| FT | Fourier transformation |
| GC | gas chromatography |


| h | hour(s) |
| :---: | :---: |
| HPLC | high performance liquid chromatography |
| HRMS | high resolution mass spectrometry |
| IDCP | iodonium dicollidine perchlorate |
| $i$-Pr | iso-propyl |
| IR | infrared |
| IUPAC | International union of pure and applied chemistry |
| $J$ | coupling constant |
| KHMDS | potassium hexamethyldisilazide |
| $\mathrm{LiAlH}_{4}$ | lithium aluminum hydride |
| LiHMDS | lithium hexamethyldisilazanide |
| m | multiplet(s) |
| $m / z$ | mass to charge ratio |
| $m$-CPBA | 3-chloroperoxybenzoic acid |
| MeCN | acetonitrile |
| MEM | methoxyethoxymethy |
| min | minute(s) |
| mmol | millimole(s) |
| MS | mass spectrometry |
| NaHMDS | sodium hexamethyldisilazide |
| NMO | N -methylmorpholine N -oxide |
| NMR | nuclear magnetic resonnance |
| NOE | nuclear Overhauser effect |
| PDC | pyridinium dichromate |
| Ph | phenyl |
| PMP | p-methoxyphenyl |
| ppm | parts per million |
| PS | polystyrene |
| $p$-TSA | $p$-toluenesulfonic acid |
| q | quartet(s) |
| qu | quintet |


| r.t. | room temperature |
| :--- | :--- |
| s | singlet |
| $\mathrm{SiO}_{2}$ | silica gel |
| sol. | solution |
| t | triplet(s) |
| TBAB | tetrabutylammonium bromide |
| TBAF | tetrabutylammunium fluoride |
| TBDMS | tert-butyldimethylsilyl |
| TBDPS | tert-butyldiphenylsilyl |
| $t$-Bu | tert-butyl |
| TEMPO | $2,2,6,6$-Tetramethylpiperidinyloxy |
| TFA | trifluoroacetic acid |
| THF | tetrahydrofuran |
| THP | tetrahydropyran |
| TLC | thin layer chromatography |
| TMEDA | $N, N, N, N$-tetramethylethylenediamine |
| TMS | trimethylsilyl |
| TPAP | tetra- $n$-propylammonium perruthenate |
| UV | ultraviolet |

## Chapter 1: Synthetic routes to 2,5-disubstituted tetrahydrofurans

2,5-Disubstituted tetrahydrofurans (THF) are a common part of many biologically active natural products. ${ }^{1-5}$ Therefore, numerous synthetic approaches to THF fragments have been developed and published over the years. The following chapter summarises the main synthetic routes used to prepare 2,5-disubstituted tetrahydrofurans directly from alkene precursors. ${ }^{6}$

## 1-I Oxidative cyclisation of $\mathbf{1 , 5}$-dienes

## 1-I-1 Permanganate mediated oxidative cyclisation

In 1924, Kötz et al. attempted oxidation of geranyl acetate with potassium permanganate under slightly basic conditions. ${ }^{7}$ Unfortunately, they failed to identify the product and described it as a "oxidodioxygeraniolmonoacetate". Twenty-two years later, Klein et al. ${ }^{8}$ attempted the same reaction and elucidated the product isolated by Kötz et al. as a 2,5disubstituted THF (Scheme 1.1). This reaction proceeded stereospecifically and yielded only cis-isomers.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone/water (5:1), $\mathrm{pH}=7.5, \mathrm{CO}_{2}$ bubbling, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 1.1: First example of $\mathrm{KMnO}_{4}$ mediated oxidative cyclisation.

The synthetic potential of this stereoselective reaction is quite important as it opens the possibility of stereocontrolled total synthesis of THF containing natural products. Walba et al. investigated the extent of the stereoselectivity of this reaction and the mechanism of action of potassium permanganate on the 1,5 -dienes. ${ }^{9}$ After oxidative cyclisation of the 1,5 -dienes $\mathbf{3 a - c}$, analysis by gas chromatography showed that the corresponding racemic THFs 4a-c were obtained with approximately $97 \%$ stereoselectivity (Scheme 1.2). This study also showed that the resulting stereochemistry of the THF depends on the geometry of the polyene precursor.




Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone/water (5:1), $\mathrm{pH}=7.5, \mathrm{CO}_{2}$ bubbling, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 1.2: $\mathrm{KMnO}_{4}$ oxidation of dienes.

Walba et al. applied Sharpless ${ }^{10}$ proposals concerning the mechanism of oxidations of olefins by oxo transition metal species to the permanganate mediate oxidative cyclisation (Scheme 1.3). It is thought that after the formation of bis- $\pi$-complex $\mathbf{6}$ between diene 5 a and $\mathrm{MnO}_{4}{ }^{-}$, an octahedral Mn (VII) intermediate 7 is produced via two Sharpless-type [2+2] additions. Alkyl migration from the Mn to one of the oxygen atoms with retention affords 8 and after a reductive elimination, Mn (III) diester 9 undergoes oxidation and hydrolysis to yield $\mathrm{MnO}_{2}$ and the desired cis-THF $\mathbf{1 0}$ with the correct relative stereochemistry.


Scheme 1.3: Walba's mechanism for the $\mathrm{KMnO}_{4}$ oxidative cyclisation

At the same time, Baldwin et al. investigated this reaction and its mechanism. ${ }^{11}$ Deuterated dienes $\mathbf{5 b}, \mathbf{c}$ were oxidised with permanganate and yielded the corresponding racemic THFs $\mathbf{6 b}, \mathbf{c}$ (Scheme 1.4). NMR analysis confirmed the cis stereoselectivity of the reaction.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone/water ( $5: 1$ ), $\mathrm{pH}=7.5, \mathrm{CO}_{2}$ bubbling, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 1.4: $\mathrm{KMnO}_{4}$ oxidation of dienes.

In the reported mechanism, the Mn atom is thought to undergo a $[3+2]$ cycloaddition on the first double bond forming the intermediate $\mathrm{Mn}^{\vee}$ ester 7. After rapid oxidation with permanganate, a second [3+2] cycloaddition occurs on the remaining double bond. Basic hydrolysis of the intermediate 9 affords cyclised product $\mathbf{6 c}$ with retention of configuration (scheme 1.5). This mechanism is also supported by evidence for the intermediacy of a cyclic $\mathrm{Mn}^{\mathrm{V}}$ ester in the reaction of alkenes with permanganate. ${ }^{12}$


Scheme 1.5: Baldwin's proposed mechanism for the $\mathrm{KMnO}_{4}$ oxidative cyclisation

Wolfe et al. ${ }^{13}$ have repeated the permanganate oxidative cyclisation on 1,5 -hexadiene 5 a in the presence of $92 \% \mathrm{H}_{2}{ }^{18} \mathrm{O}$. Mass spectrometry analysis showed the presence of a labelled oxygen in the THF adduct. It proved that only one of the oxygen atoms was derived from the solvent. This finding is incompatible with the mechanism described by Walba et al. in which all three oxygen atoms are derived from a single molecule of permanganate. The fact that a symmetrical substrate is converted into a symmetrical product in an unsymmetrical manner confirms a sequential oxidation of the two double bonds via the intermediate $\mathrm{Mn}^{\mathrm{V}}$ ester 7 and therefore is in accord with the mechanism proposed by Baldwin et al.

Spino et al. have described the synthesis of the THF unit in natural product ionomycin (14) using permanganate mediated oxidative cyclisation. ${ }^{14}$ Diene 10 was treated with potassium permanganate under Walba's conditions and afforded THF 11 in good yield (scheme 1.6). Sequential reduction of the ester group with $\mathrm{LiAlH}_{4}$, tosylation of the resulting primary alcohol and reduction with $\mathrm{LiAlH}_{4}$ gave racemic THF adduct 12 in good yield. Resolution was achieved using $(S)-(+)$ - $O$-acetyl-mandelic acid. After selective condensation at the secondary alcohol with the resoling agent, the resulting diastereoisomers 13a and 13b were separated. Basic hydrolysis afforded the optically active diol ( - )-12.


Reagents and conditions: (i) $\mathrm{KMnO}_{4}$, acetone: $\mathrm{H}_{2} \mathrm{O},-25^{\circ} \mathrm{C}$; (ii) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (iii) TsCl , pyridine, $0^{\circ} \mathrm{C}$; (iv) $\mathrm{LiAlH}_{4}$, THF, reflux; (v) (S)-(+)-O-acetyl mandelic acid, DCC DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (vi) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$.
Scheme 1.6: Synthesis of optically pure THF fragment 12 via $\mathrm{KMnO}_{4}$ oxidative cyclisation

An enantioselective version of the oxidative cyclisation with permanganate was then investigated; Walba et al. have reported asymmetric induction in the oxidative cyclisation using 1,5 -dienes bearing a chiral auxiliary. ${ }^{15}$ Initial attempts were performed using Evans' oxazolidinone (scheme 1.7). ${ }^{16}$ Oxazolidinone-functionalized dienoate 15 was prepared by addition of the lithiated oxazolidinone to the corresponding acid chloride. Oxidative cyclisation of dienoate $\mathbf{1 5}$ afforded non racemic THFs 16a,b in a 3:1 ratio and in a good yield, with the major diastereoisomer 16a resulting from an attack on the $R e$ face of the conjugated double bond.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone/water ( $10: 1$ ) $\mathrm{pH}=7.5, \mathrm{CO}_{2}$ bubbling, $-30^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 1.7: Oxidative cyclisation of enantiomerically enriched dienoate 15.

The moderate diastereoselectivity was consistent with previous observations of Evans et al. showing that Lewis acid catalysis and chelation were probably required to reach high face selectivity. ${ }^{17}$ This low selectivity issue was solved by switching from the Evans' oxazolidinone to Oppolzer's camphorsultam auxiliary. ${ }^{18,19}$ Diene 17 was prepared by addition of the sodiated ( $2 R$ )-camphorsultam to the corresponding acid chloride (scheme 1.8). Oxidative cyclisation of diene $\mathbf{1 7}$ yielded the corresponding THF adducts $\mathbf{1 8} \mathbf{a}, \mathbf{b}$ in an improved 9:1 ratio and moderate yield. The major diastereoisomer 18a resulted from the attack of the $R e$ face of the conjugated double bond, the same facial preference was observed previously by Oppolzer et al. in dihydroxylation reactions. ${ }^{18}$


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone/water ( $10: 1$ ) $\mathrm{pH}=7.5, \mathrm{CO}_{2}$ bubbling, $-30^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 1.8: Oxidative cyclisation of enantiomerically enriched dienoate 17.

Permanganate oxidative cyclisation has been widely used in natural product synthesis in racemic ${ }^{14,20,21}$ and asymmetric versions. The first application of permanganate oxidative cyclisation of a polyene bearing the Oppolzer sultam in total synthesis was reported by Kocienski et al. ${ }^{22}$ Known aldehyde 19b was converted in seven steps in the requisite 1,5diene precursor $\mathbf{2 0}$ in good overall yield (scheme 1.9). The replacement of the $\mathrm{CO}_{2}$ bubbling during the oxidation step by a phosphate buffer ( pH 6 ) improved Walba conditions ${ }^{15}$ critically. The desired oxidative cyclisation product 21 was obtained in good yield and diastereoselectivity (dr 6:1). It is interesting to notice that if the reaction was run in the absence of added acetic acid, inferior results were obtained. Treatment of THF adduct 21 with excess ozone gave intermediate hydroxy esters which cyclised using PTSA to afford the corresponding lactone $\mathbf{2 2}$ in good yield. The minor diastereoisomer obtained during the oxidation cyclisation step was successfully separated from lactone $\mathbf{2 2}$ at this stage. The sultam moiety was reductively removed, the primary alcohol selectively tosylated and subsequently removed via a radical reaction with $\mathrm{Bu}_{3} \mathrm{SnH}$ to provide lactone 23. The corresponding mesylate was prepared and underwent silver carbonate promoted solvolytic ring expansion to afford the desired oxane derivative 24 .


Conditions and reagents: (i) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, PTSA, PhH , reflux $\left(-\mathrm{H}_{2} 0\right.$ ), 3 h; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 6.5 h ; (iii) $\mathrm{MsCl}, \mathrm{LiCl}, 2,6$-lutidine, DMF, 0 to $15^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$; (iv) $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{Li}, \mathrm{THF},-65$ to $-10^{\circ} \mathrm{C}, 2.25 \mathrm{~h}$; (v) (a) BuLi , THF, $-78^{\circ} \mathrm{C}$; (b) $\mathrm{ClCO}_{2} \mathrm{Me},-90$ to $-10{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$; (vi) $\mathrm{Et}_{2} \mathrm{CuLi}, \mathrm{THF},-85^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (vii) (a) $\mathrm{NaOH}, \mathrm{MeOH}$; (b) $(\mathrm{COCl})_{2}$; (c) (2S)-bornane-10,2-sultam, BuLi ; (viii) $\mathrm{KMnO}_{4}, \mathrm{pH} 6$ acetate buffer, acetone-AcOH-water, $-35^{\circ} \mathrm{C}$, 5 h ; (ix) (a) $\mathrm{O}_{3}, \mathrm{EtOAc},-80^{\circ} \mathrm{C}, 70 \mathrm{~min}$; (b) PTSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 8 h ; (x) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{NaBH}_{4}, \mathrm{THF},-10^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (xi) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 41 h ; (xii) $\mathrm{NaI}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{DME}, 80^{\circ} \mathrm{C}, 7.5 \mathrm{~h}$; (xiii) (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 30 min ; (b) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, acetone-water, reflux, 27 h .
Scheme 1.9: $\mathrm{KMnO}_{4}$ oxidative cyclisation of dienoate 20

Brown et al. have described that permanganate oxidation of 1,5,9-trienes provided regioselectively substituted octahydro-2,2'-bifuranyl systems. ${ }^{23}$ Methyl ( $E, E$ )-farnesoate 26 was easily prepared from farnesol and oxidised by potassium permanganate in buffered aqueous acetone to afford lactol 27 as an mixture of epimers (6:1) (scheme 1.10 ). Cleavage of the vicinal diol with lead tetraacetate yielded racemic lactone $\mathbf{2 8}$ in moderate yield.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone, water, AcOH , acetate buffer $(\mathrm{pH}=6.5),-30^{\circ} \mathrm{C}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1.10: Synthesis of racemic lactone 28 via $\mathrm{KMnO}_{4}$ oxidative cyclisation

The mechanism of the polycyclisation is in line with the mechanism proposed by Baldwin et al. ${ }^{11}$ Lactol 27 is formed by oxidation of the remaining double bond to the corresponding hydroxy-ketone 30 and lactol formation (scheme 1.11).


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone, water, AcOH , acetate buffer $(\mathrm{pH}=6.5),-30^{\circ} \mathrm{C}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 1.11: Mechanism of $\mathrm{KMnO}_{4}$ oxidative cyclisation on trienoate 26.

Brown et al. have reported the permanganate promoted oxidative cyclisation of 1,5-dienes using phase-transfer catalysis, ${ }^{24}$ oxidation of geranyl benzoate 31 with stoichiometric $\mathrm{KMnO}_{4}$ in presence of AcOH and phase-transfer catalyst Adogen 464 afforded racemic THF 32 in good yield (scheme 1.12). An asymmetric oxidation was also attempted on dienes 34a-c using a chiral phase-transfer catalyst 36 affording the corresponding THF 35a-c in moderate yield and good ee.



Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ ( 2 eq . of a 0.4 M aq. sol.), AcOH (4 eq.), Adogen 464 (0.4 eq.) $/ \mathrm{Et}_{2} \mathrm{O}$; (ii) $\mathrm{KMnO}_{4}$ (powdered, 1.6 eq.), $\mathrm{AcOH}(6.5 \mathrm{eq}$.), 8 ( 0.1 eq.$) / \mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$.

Scheme 1.12: $\mathrm{KMnO}_{4}$ oxidative cyclisation under phase transfer conditions

Brown et al. have described the synthesis of cis-solamin (41) using permanganate mediated oxidative cyclisation. ${ }^{25,26}$ Diene 37 was treated with powdered potassium permanganate in a mixed solvent system of acetone and AcOH and provided the desired mono-THF adduct 38 in good yield and diastereoselectivity (scheme 1.13). After removal of the sultam auxiliary using $\mathrm{NaBH}_{4}$ and tosylation of the primary alcohol, treatment of the resulting tosylate with DBU
gave the epoxide 39. Cuprate addition to epoxide 39 afforded mono-THF 40 that underwent a formal Alder-ene reaction with alkyne 42 and subsequent diimide reduction of the double bond to afford cis-solamin (41) in good yield.



Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (1.3 eq.), acetone/ AcOH (3:2); (ii) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (iii) $\mathrm{Bu}_{2} \mathrm{SnO}$, $\mathrm{C}_{6} \mathrm{H}_{6}$ then $\mathrm{TsCl}, \mathrm{TBAB}$; (iv) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\left.\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{9}\right) \mathrm{MgBr}, \mathrm{CuI}$, THF, -60 to $-20^{\circ} \mathrm{C}$; (vi) 42 , $\mathrm{CpRu}(\operatorname{cod}) \mathrm{Cl}, \mathrm{MeOH}$, reflux; (vii) $\mathrm{TsNHNH} 2, \mathrm{NaOAc}, \mathrm{THF} / \mathrm{H}_{2} 0,60^{\circ} \mathrm{C}$.

Scheme 1.13: Synthesis of cis-solamin (41).

Brown et al. have described the permanganate mediated synthesis of cis-2,6-bis-hydroxyalkyl-tetrahydropyrans. ${ }^{27}$ Racemic 1,6-dienes 43a,b and dienoyl sultams 45 and 47 underwent oxidative cyclisation with permanganate to afford the corresponding exclusively cis-THP adducts in moderate yields (scheme 1.14).


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (1.4 eq.), $\mathrm{AcOH} /$ acetone (2:3), $-15^{\circ} \mathrm{C}$; (ii) $\mathrm{KMnO}_{4}$ (1.4 eq.), AcOH ( 16 eq. ), Adogen $464(10 \mathrm{~mol} \%) / \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$.
Scheme 1.14: Synthesis of cis-2,6-disubstituted-THP.

## 1-I-2 Osmium Tetroxide Catalysed Oxidation

The first example of an osmium tetroxide oxidative cyclisation was published by Piccialli et al. ${ }^{28}$ Geranyl and neryl acetates $\mathbf{1 a , b}$ were oxidised using catalytic $\mathrm{OsO}_{4}$ in presence of sodium periodate as co-oxidant and the corresponding 2,5 -cis-disustituted THFs $\mathbf{2 a}, \mathbf{b}$ were obtained in moderate yields (Scheme 1.15).


Conditions and reagents: (i) $\mathrm{OsO}_{4}(5 \mathrm{~mol} \%), \mathrm{NaIO}_{4}(4 \mathrm{eq}), \mathrm{DMF},.-10^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
Scheme 1.15: First example of $\mathrm{OsO}_{4}$ mediated oxidative cyclisation.

This methodology has been developed further by Donohoe et al.; they have reported the synthesis of 2,5 -cis-disustituted THFs from oxidation using $\mathrm{OsO}_{4}$ and TMEDA. ${ }^{29} \mathrm{OsO}_{4}$ is combined with TMEDA to form a hydrogen bond acceptor reagent. Directed oxidative cyclisation of 1,5-dienes $\mathbf{4 9}$ and 51a afforded the corresponding 2,5-cis-disubstituted THFs $\mathbf{5 0}$ and $\mathbf{5 2}$ in good yields (Scheme 1.16). It is interesting to note that bis-THF systems could also be prepared. $\mathrm{OsO}_{4}$ mediated oxidative cyclisation of the 1,5 -diene unit of triene $\mathbf{5 3}$ afforded the resulting THF 54. After protection of the secondary alcohol and cleavage of the alkene using Lemieux conditions the resulting lactol was oxidised to the lactone $\mathbf{5 5}$ with Jones reagent in moderate yield.




Conditions and reagents: (i) $\mathrm{OsO}_{4}$ (1 eq.), TMEDA (1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (ii) $\mathrm{MeOH}, \mathrm{HCl}$; (iii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, (iv) $\mathrm{Ac}_{2} \mathrm{O}$; (v) $\mathrm{OsO}_{4}$ (cat.), quinuclidine, $\mathrm{NaIO}_{4}$; (vi) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone.

Scheme 1.16: Directed oxidation by $\mathrm{OsO}_{4}$ / TMEDA

The mechanism of this reaction followed the one proposed by Baldwin (scheme 1.5). ${ }^{11}$ The reaction starts with a regioselective dihydroxylation of the polyene, controlled by hydrogen bonding (Scheme 1.17). The Os atom then undergoes a [3+2] cycloaddition with the remaining double bond. It is thought that the acid serves to promote whatever ligand exchange is necessary to allow cyclisation to occur. Alternatively, acid could, by protonation of the oxo ligands make the metal a better electrophile and more reactive during the cyclisation. The cis stereoselectivity of this reaction is explained by the transition structure $\mathbf{5 8}$.


Scheme 1.17: Possible mechanism of $\mathrm{OsO}_{4}$ oxidative cyclisation

Although the yields of this reaction were good, the use of stoichiometric transition metals was a major drawback. Donohoe et al. have recently shown that this reaction can be achieved under catalytic conditions using catalytic $\mathrm{OsO}_{4}$ ( $5 \%$ ), $\mathrm{Me}_{3} \mathrm{NO}$ (4 eq.) and either CSA ( 6 eq .)
or TFA (excess) to lower the $\mathrm{pH} .{ }^{30}$ Under these improved conditions, the dihydroxylation/ oxidative cyclisation provided better yields than when using stoichiometric osmium (Scheme 1.18). Enantiomerically pure adducts could also be obtained. To illustrate the utility of this method, $(+)$-anhydro-D-glucitol ( 66 ) was prepared from readily available diene ( + )-64 in good yield.


Conditions and reagents: (i) $\mathrm{OsO}_{4}$ ( $5 \%$ ), $\mathrm{Me}_{3} \mathrm{NO}$ (4 eq.), TFA (excess), acetone/water ( $9: 1$ ), $-78^{\circ} \mathrm{C}$; (ii) $\mathrm{OsO}_{4}(5 \%), \mathrm{Me}_{3} \mathrm{NO}$ (4 eq.), CSA ( 6 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (iii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$.

Scheme 1.18: Oxidative cyclisation using catalytic osmium tetroxide

## 1-I-3 Ruthenium tetroxide oxidative cyclisation

Sharpless et al. have reported the first oxidative cyclisation of 1,5-dienes with ruthenium tetroxide. ${ }^{31}$ As a part of a study to improve the catalytic conversion of primary alcohols to carboxylic acids with ruthenium, they discovered that the oxidation of geranyl and neryl acetates $\mathbf{1 a} \mathbf{a}, \mathbf{b}$ with their procedure led to the formation of THF adducts $\mathbf{2 a , b}, \mathbf{6 7 a}, \mathbf{b}$ and $\mathbf{6 8}$ (scheme 1.19). The 2,5-disubstituted THFs were obtained as mixtures of cis and trans isomers (3:1 ratio) and a non negligible amount of the cis-THF-ketone 68. Piccialli et al. later investigated this reaction and reported a method improving the cis stereoselectivity of the process. ${ }^{32}$


Conditions and reagents: (i) Sharpless: $\mathrm{RuCl}_{3} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(2.2 \mathrm{~mol} \%), \mathrm{NaIO}_{4}$ (3.1 eq.) $\mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN}$, $25^{\circ} \mathrm{C}, 15 \mathrm{~min}$; Picialli: $\mathrm{RuO}_{2} .2 \mathrm{H}_{2} \mathrm{O}\left(4 \mathrm{~mol} \%\right.$ ), $\mathrm{NaIO}_{4}$ (4 eq.), $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3: 3: 1), 0^{\circ} \mathrm{C}, 4 \mathrm{~min}$.
Scheme 1.19: Oxidative cyclisation of neryl and geranyl acetates $\mathbf{1 a , b}$ with $\mathrm{RuO}_{4}$.

Piccialli et al. have reported the construction of bis, tri and even penta-THF units via ruthenium tetroxide oxidative cyclisation. ${ }^{33-35}$ Oxidation of farnesyl acetate 69 with catalytic $\mathrm{RuO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in presence of $\mathrm{NaIO}_{4}$ afforded bis-cis-THF diol 70a,b with high cis-selectivity with ketone $\mathbf{7 1}$ as the major side-product (scheme 1.20).


Conditions and reagents: (i) $\mathrm{RuO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%), \mathrm{NaIO}_{4}(4 \mathrm{eq}),. \mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3: 3: 1), 0^{\circ} \mathrm{C}, 30$ min.
Scheme 1.20: Oxidative cyclisation of farnesyl acetate with $\mathrm{RuO}_{4}$.

Squalene 72 was oxidised to the penta-THF 73 in good yield (scheme 1.21). The relative configuration of the penta-THF diol $\mathbf{7 3}$ has yet to be determined, although NMR analysis has showed that it possessed a non-meso structure.


Conditions and reagents: (i) $\mathrm{RuO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%), \mathrm{NaIO}_{4}$ (8 eq.), $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN}_{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}(3: 3: 1), 0^{\circ} \mathrm{C}, 30$ min.

Scheme 1.21: Construction of a penta-THF diol via ruthenium oxidative cyclisation.

Polycyclisation of geranylgeranyl acetate 74 afforded a mixture of tri-THF diol 75 and the corresponding tri-THF ketone 76 (2:1) in moderate yield (scheme 1.22). The determination of the relative configuration of tri-THF unit 75 was established by a combination of 600 MHz 2 D NMR studies and chemical correlation work. The relative configuration was also confirmed via the preparation of $\mathbf{7 5}$ via using mechanistically established methods.


Conditions and reagents: (i) $\mathrm{RuO}_{2} .2 \mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~mol} \%\right.$ ), $\mathrm{NaIO}_{4}$ ( 5 eq.), $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3: 3: 1), 0^{\circ} \mathrm{C}, 30$ min.

Scheme 1.22: Oxidative cyclisation of geranylgeranyl acetate 74 with $\mathrm{RuO}_{4}$.

It is thought that the mechanism of this reaction followed the same path as described for permanganate oxidations. In Sharpless publication, they stated that the difference of selectivity between permanganate and ruthenium is probably due to the differences in bond lengths: the longer bonds in the case of the second-row transition metal ruthenium apparently allow incursion of the pathway leading to trans-products. ${ }^{31}$

Further studies carried out by Piccialli et al. have attempted to establish the mechanism of this reaction for the polycyclisation step. ${ }^{33-35}$ It is thought that the formation of $\mathrm{Ru}^{\mathrm{VI}}$ diester 77 via interaction of $\mathrm{RuO}_{4}$ and the most electron-rich double bond is followed by the closure of the
first THF ring through a $[3+2]$ cycloaddition of the $\mathrm{O}-\mathrm{Ru}=\mathrm{O}$ portion of 77 onto the nearest double bond (scheme 1.23). ${ }^{33}$ Intermediate 78 is obtained after hydrolysis. After re-oxidation of the Ru atom to an active oxidation level, species 79 is generated. This explains the requirement for an additional amount of $\mathrm{NaIO}_{4}$ when the number of double bonds increases; each oxidation step requires one equivalent of $\mathrm{NaIO}_{4}$. Intermediate 79 undergoes a second [3+2] cycloaddition of the $\mathrm{O}-\mathrm{Ru}=\mathrm{O}$ portion of 79 onto the last double bond to afford species $\mathbf{8 0}$ from which bis-THF 70a is released via hydrolysis and ketone 71 by oxidative cleavage (see arrows). It is thought also that over-oxidation of $\mathbf{7 0 a}$ by $\mathrm{RuO}_{4}$ leads to the formation of ketone 71, which explains the high proportion of ketone 71 obtained in this reaction.


Scheme 1.23: Mechanistic hypothesis of the $\mathrm{RuO}_{4}$ mediated oxidation on triene 61.

Piccialli et al. have also reported the $\mathrm{RuO}_{4}$-catalysed oxidative cyclisation of 1,6 -dienes to trans-2,6-disubstituted-THPs. ${ }^{36}$ Dienes $\mathbf{8 1}$ and $\mathbf{8 2}$ were oxidised with ruthenium to afford the corresponding trans-THPs 83 and 84 in poor to good yield and good selectivity (scheme 1.24).


Conditions and reagents: (i) $\mathrm{RuO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%), \mathrm{NaIO}_{4}$ (4 eq.), $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3: 3: 1), 0^{\circ} \mathrm{C}, 4$ min.

Scheme 1.24: Oxidative cyclisation of geranylgeranyl acetate 74 with $\mathrm{RuO}_{4}$.

The trans stereoselectivity can be explained by applying the mechanistic model proposed by McDonald et al. ${ }^{37}$ It is thought that after the addition of $\mathrm{RuO}_{4}$ to the diene $\mathbf{8 1}, \mathrm{RuO}_{4}$ reacts with another molecule of diene to form $\mathrm{Ru}^{\mathrm{VI}}$ diester $\mathbf{8 5}$ (scheme 1.25 ). Partial hydrolysis of diester 85 followed by ruthenium oxidation leads to intermediate species 86 and 87 . Intermediate $\mathbf{8 6}$ is favoured by a smaller number of destabilising gauche interactions. Intermediate species $\mathbf{8 8}$ is formed via a [3+2] cycloaddition and trans-THF $\mathbf{8 3}$ is obtained after hydrolysis. Monomeric ruthenate ester 89 is then regenerated via ruthenium oxidation.


Scheme 1.25: Mechanistic hypothesis of the $\mathrm{RuO}_{4}$ mediated oxidation on 1,6-diene $\mathbf{8 1}$

## 1-I-4 Rhenium oxide induced oxidative cyclisation of $\gamma$-hydroxy olefins

Kennedy et al. have reported the synthesis of THF adducts via rhenium oxide oxidation on 5hydroxyalkenes. Alkenes 90a-d were oxidised successfully by stoichiometric $\mathrm{Re}_{2} \mathrm{O}_{7}$ in presence of 2,6-lutidine and NaOOH to afford the corresponding trans-THFs 91a-d in good yield and selectivity along with the non-oxidative cyclisation products $\mathbf{9 2 c}$,d (scheme 1.26). ${ }^{38-}$ ${ }^{40}$ The catalytic version of this reaction, using $\mathrm{H}_{5} \mathrm{IO}_{6}$ as a cooxidant, gave a slight decrease in yield and selectivity. ${ }^{41}$


Conditions and reagents: (i) $\mathrm{Re}_{2} \mathrm{O}_{7}$ (3 eq.), 2,6-lutidine (3 eq.), $\mathrm{NaOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 11h; (ii) $\mathrm{Re}_{2} \mathrm{O}_{7}$ ( $50 \mathrm{~mol} \%$ ), $\mathrm{H}_{5} \mathrm{IO}_{6}$ ( 1.3 eq.), $\mathrm{NaHSO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 15 h .
Scheme 1.26: Oxidative cyclisation of 5-hydroxyalkenes with rhenium oxide

Sinha et al. applied Kennedy oxidation to the asymmetric polycyclisation of polyenes. ${ }^{42}$ Polyenes 93a,b were treated with AD-mix- $\beta$ to afford the corresponding hydroxylatones $\mathbf{9 4 a}, \mathbf{b}$ (scheme 1.27). Oxidation of $\mathbf{9 4 a}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$ produced bicyclic lactone $\mathbf{9 5 a}$ as a single diastereoisomer. Selective monocyclisation of hydroxylactone $\mathbf{9 4 b}$ to give product $\mathbf{9 5 b}$ was achieved by replacing periodic acid by 2,6 -lutidine. It seems that reactions proceed much slower with 2,6 -lutidine than with periodic acid, probably via coordination to the metal. Bicyclic lactone $\mathbf{9 5 b}$ was treated with the more reactive mixture of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and periodic acid to produce the tricyclic lactone $\mathbf{9 6 b}$ in good yield. Tandem oxidative cyclisation with $\mathrm{Re}_{2} \mathrm{O}_{7}$ and $\mathrm{H}_{5} \mathrm{IO}_{6}$ of hydroxy lactone $\mathbf{9 4 b}$ was also achieved to afford $\mathbf{9 6} \mathbf{b}$ in moderate yield.


Conditions and reagents: (i) $\mathrm{AD}-\mathrm{mix}-\beta$; (ii) $\mathrm{Re}_{2} \mathrm{O}_{7}$ (1.5 eq.), $\mathrm{H}_{5} \mathrm{IO}_{6}$ (2 eq.), $\mathrm{NaHSO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 35 $\min$; (iii) $\mathrm{Re}_{2} \mathrm{O}_{7}$ (2 eq.), 2,6-lutidine (4 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 15 h ; (iv) $\mathrm{Re}_{2} \mathrm{O}_{7}$ (3 eq.), $\mathrm{H}_{5} \mathrm{IO}_{6}$ (4 eq.), $\mathrm{NaHSO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $2 h$.

Scheme 1.27: Combined osmium-rhenium approach to polycyclisation of polyenes

McDonald et al. have reported that attempts to oxidise of trisubstituted dienes $\mathbf{9 7 a}, \mathbf{b}$ using the previous methods were unsuccessful and led to a complex reaction mixture including oxidative cyclisation and acid-catalysed cyclohydration by-products. ${ }^{43}$ During the course of the reaction, the formation of perrhenic acid could be responsible for nonoxidative cyclohydration of trisubstituted alkene substrates via tertiary carbenium ion intermediates. They therefore decided to change the leaving group from perrhenate $\left(\mathrm{O}_{3} \mathrm{ReO}^{-}\right)$to a less acidic organic carboxylate ( $\mathrm{RCO}_{2}{ }^{-}$). Oxidation of dienes 97a-c with (tridfluoroacetyl)perrhenate gave the monocyclic trans-THFs 98a-c in good yield and excellent selectivity (scheme 1.28). THFs 98b,c were converted to the bis-THFs 99b,c via rhenium oxide oxidation. It is interesting to note that (dichloroaceetyl)perrhenate combined with excess dichloroacetic acid was more effective in the cyclisation of monocyclic THFs $\mathbf{9 8} \mathbf{a - c}$ to the corresponding bisTHFs 99b,c.


Conditions and reagents: (i) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3}, 2,6$-lutidine ( 3 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; (ii) $\left(\mathrm{Cl}_{2} \mathrm{CHCO}_{2}\right) \mathrm{ReO}_{3}$, $\left(\mathrm{Cl}_{2} \mathrm{CHCO}\right)_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$.
Scheme 1.28: Rhenium oxide-induced tandem syn-oxidative cyclisations of hydroxydienes

Sinha et al. have reported the synthesis of tri-THF in a one step rhenium oxide oxidative cyclisation toward the synthesis of goniocin. ${ }^{44}$ Triene $\mathbf{1 0 0}$ was oxidised and hydrogenation followed by deprotection afforded tri-THF 101 in good yield and selectivity (scheme 1.29). Surprisingly, the NMR data did not correspond to the analysis of natural product goniocin (102) and showed that the stereochemistry of $\mathbf{1 0 1}$ was trans-threo-cis-threo-cis-threo.


Conditions and reagents: (i) $\mathrm{Re}_{2} \mathrm{O}_{7}$, TFAA, THF r.t., 1 h , concentration under vacuum and washing with cold pentane, then alcohol $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFAA, $0^{\circ} \mathrm{C}$ to r.t., 3 h ; (ii) (a) $\mathrm{H}_{2}$, Wilkinson's catalyst ( $20 \%$, w/w), $\mathrm{C}_{6} \mathrm{H}_{6}$ EtOH (4:1), r.t., 4 h ; (b) $4 \% \mathrm{AcCl}$ in $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1, v/v), r.t., 16 h .
Scheme 1.29: Synthesis of 17,18-bis-epi-goniocin 101

Similar observations have been noted by Morimoto et al. ${ }^{45,46}$ who have described the sequential oxidative cyclisation of tertiary alcohols $\mathbf{1 0 3 a}, \mathbf{b}$ and to afford bis-THFs $\mathbf{1 0 5 a} \mathbf{a} \mathbf{b}$
where the second ring is cis-2,5-disubstituted (scheme 1.30 ). The sequential rhenium oxide oxidation of tertiary alcohols to bis-THFs have been reported when alcohols 103a-d were oxidised to the corresponding monocyclic trans-THFs 104a-d in good yield and selectivity. Re-oxidation of trans-THFs 104a-d with rhenium oxide gave bis-THFs 105a-d in good yield. But surprisingly, cis-selectivity was obtained for the second THF ring.


Conditions and reagents: (i) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\left(4 \mathrm{eq}\right.$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, molecular sieves $4 \AA,-45^{\circ} \mathrm{C}, 8 \mathrm{~h}$.
Scheme 1.30: Synthesis of bis-THFs via rhenium oxide oxidative cyclisation

It is thought that the formation of the first trans-THF ring is controlled by steric effects, the intermediate 107 experiences steric hindrance due to the interaction between $R_{L}$ and $H_{a}$, while the preferred pseudoequatorial position of $\mathrm{R}_{\mathrm{L}}$ and the alkene favours alkylorhenium intermediate 106 (scheme 1.31). The trans-THF 104 is then obtained via a [3+2] cycloaddition on the double bond. The reversal of diastereoselectivity in the second oxidation is apparently due to the presence of the THF ring $\alpha$ to the hydroxy group and therefore is controlled by chelation. The intramolecular coordination of the THF ring with rhenium oxide could lead to the formation of the chelated intermediates 108a,b. During the second [3+2] cycloaddition, the least strained approach of the rhenium oxo moieties toward the double bond leads to the formation of the cis-THF. The reason for the low cis-selectivity of $\mathbf{1 0 5 c}$ is unclear; although, it seems that $\mathbf{1 0 4} \mathbf{c}$ has difficulty in forming a rigid chelation structure.


Scheme 1.31: Morimoto's investigation on the selectivity of rhenium oxidative cyclisation.

Further studies by Sinha et al. showed that the tandem rhenium oxide mediated oxidative cyclisation of dienes $\mathbf{1 0 9} \mathbf{a}, \mathbf{b}$ afforded cis-trans-bis-THFs $\mathbf{1 1 0} \mathbf{a}, \mathbf{b}$ however oxidation of dienes $\mathbf{1 0 9} \mathbf{c}, \mathbf{d}$ gave all trans bis-THFs $\mathbf{1 1 0 c}$, d (scheme 1.32). ${ }^{47}$ The formation of all trans-bis-THF was surprising and might mean that Morimoto's explanation was not complete and other factors should be taken in account for the selectivity of the polycyclisation with rhenium oxide.


Conditions and reagents: (i) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3}$ ( 2.5 eq.), TFAA (3 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ 6h; (ii) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\left(4 \mathrm{eq}\right.$.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, molecular sieves $4 \AA,-45^{\circ} \mathrm{C}, 8 \mathrm{~h}$.
Scheme 1.32: Investigation on the selectivity of rhenium oxide oxidative cyclisation.

Sinha's model for the formation of the first trans-THF and the second cis-THF is consistent with Morimoto's conclusions (scheme 1.33). During the second oxidation, the neighbouring THF becomes a bidentate ligand to rhenium and the cyclisation proceeds via transition state 113 to give the second cis-THF fragment. However, they believe that the coordinating efficiency of this ligand depends on the relative configuration of the THF and alcohol moieties. When the relative configuration is threo, the reaction goes via sterically favoured exo-transition state 114 to give cis-selectivity during the [3+2] cycloaddition. Alternatively, when the vicinal oxygen functions have an erythro relationship, the reaction proceeds via the disfavoured endo transition state $\mathbf{1 1 5}$ that favours a non-chelated intermediate like 111 and leads to trans-selectivity. The low selectivity obtained by Morimoto et al. with erythro substrate 105c, could be explained by an endo transition state such as 115 .


Scheme 1.33: Sinha investigation on the selectivity of rhenium oxide oxidative cyclisation.

Morimoto et al. have applied these rules to the synthesis of teurilene (119). ${ }^{46,48}$ Mesylation of THF 116 and subsequent basic treatment yielded the meso bis-epoxide 117 (scheme 1.34). Bis-epoxide 117 was then treated with lithiated neryl sulphide in presence of TMEDA and the sulphide moieties were subsequently removed under Bouvault-Blanc conditions to afford mono-THF 118. Oxidation with rhenium oxide provided a mixture of the desired product teurilene (119) in poor yield and the monocyclised alcohol 120 as by-product.


Conditions and reagents: (i) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 1 h (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 1 h ; (iii) neryl sulfide, $n$-BuLi, TMEDA, THF, $-78^{\circ} \mathrm{C}$, 1 h ; (iv) Na , THF, $i$ - PrOH , reflux, 12 h ; (v) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}, \mathrm{TFAA}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN},-45^{\circ} \mathrm{C}, 8 \mathrm{~h}$.
Scheme 1.34: Synthesis of teurilene via rhenium oxide oxidative cyclisation

The rhenium oxidative cyclisation only gave the trans-syn isomer diastereoselectively as a result of steric control. It is thought that reaction of mono-THF 118 with rhenium gives the bisalkoxyrhenium intermediate 121 (scheme I.35). The chelation control model 122 is disfavoured by the steric repulsion between the two rhenium complexes. These results are consistent with Sinha's rule that if the vicinal oxygens functions formed are in an erythro relative configuration, the next cyclisation has a trans-selectivity.


Scheme 1.35: Transition state leading to the trans-syn-diastereoselectivity.

Sinha et al. have also applied the stereoselectivity rules in the total synthesis of rollidecins C and D. ${ }^{49}$ Trienes $\mathbf{1 2 3 a}, \mathbf{b}$ underwent rhenium-mediated oxidative cyclisation to yield corresponding bis-THFs $\mathbf{1 2 4 a} \mathbf{a} \mathbf{b}$ (scheme 1.36). Cleavage of the TBDPS group of $\mathbf{1 2 4 b}$ was achieved during the cyclisation step by leaving the reaction on for a longer period of time. Hydrogenation of 124b afforded the desired rollidecin $D(\mathbf{1 2 5 b})$ in good yield. Hydrogenation and subsequent deprotection of the TBDPS group of bis-THF $\mathbf{1 2 4 a}$ yielded rollidecin C (125a).


Conditions and reagents: (i) $\mathrm{Re}_{2} \mathrm{O}_{7}$, TFAA, THF r.t., 1 h , concentration under vacuum and washing with cold pentane, then alcohol $14, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFAA, $0^{\circ} \mathrm{C}$ to r.t., 3 h. The same procedure was used for compound 15 with the exception that the mixture was left at r.t. overnight; (ii) $\mathrm{H}_{2}$, Wilkinson's catalyst $(20 \%, \mathrm{w} / \mathrm{w}), \mathrm{C}_{6} \mathrm{H}_{6}$ EtOH (4:1), r.t., 4 h; (iii) $4 \% \mathrm{AcCl}$ in $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1, v/v), r.t., 16 h .
Scheme 1.36: Synthesis of rollidencin C (125a) and D (125b).

Sinha et al. have reported the synthesis of bis-THF segments via the "naked" carbon skeleton strategy. ${ }^{50}$ Sharpless asymmetric dihydroxylation of skeleton $\mathbf{1 2 6}$ followed by a base-acid treatment gave the trihydroxylactone $\mathbf{1 2 7}$ (scheme 1.37). After protection of the vicinal diol, the alkyne was partially hydrogenated to yield cis-olefin 128. Kennedy's oxidative cyclisation with $\mathrm{Re}_{2} \mathrm{O}_{7}$ and mesylation of the resulting alcohol produced bis-THF lactone 129. Acidic hydrolysis of the vicinal diol and subsequent Williamson-type etherification afforded tri-THF lactone 130, precursor to bullatacin (131). They have also applied this method to the synthesis of goniocin and cyclogoniodenin $T .{ }^{51}$



Conditions and reagents: (i) (a) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (b) aqueous KOH , $\mathrm{MeOH}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{HCl}(3 \mathrm{~N})$; (c) $\mathrm{TsOH}(5 \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$; (ii) (a) dimethoxypropane, acetone, TsOH (cat), 0 to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) $5 \% \mathrm{Pd} / \mathrm{CaCO}_{3} /$ lead ( $10 \%$, w/w), hexane $/$ cyclohexene $/ \mathrm{Et}_{3} \mathrm{~N}(2: 2: 1),-10^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iii) (a) $\mathrm{Re}_{2} \mathrm{O}_{7}$, lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$; (b) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, Ih ; (iv) (a) $\mathrm{TsOH}\left(20 \% \mathrm{w} / \mathrm{w}\right.$ ), $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(4: 1)$, $60^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (b) pyridine, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme 1.37: Preparation of THF rings by "naked" carbon skeleton approach.

## 1-I-5 Oxidative cyclisation of 1,5-dienes via a nitrile oxide intermediate

Kurth et al. have reported the preparation of 2,5-disubstituted-THFs via the exposure of 1,5hexadienes to a tandem 1,3-dipolar cycloaddition/electrophilic cyclisation sequence. ${ }^{52}$ Cycloaddition between 1,5-hexadiene 5a ( 5 eq.) and triphenylacetonitrile oxide (prepared from triphenylmethyl chloride and silver fulminate) furnished isoxazoline 132a in quantitative yield (scheme 1.38). Treatment of heterocycle $\mathbf{1 3 2}$ with iodine resulted in electrophilic cyclisation and afforded THF adducts $\mathbf{1 3 3 a}, \mathbf{b}$ in moderate yield and 1:4.1 ratio. The synthesis of (3-trimethylsilyl)isoxazoline 132b was carried out using a similar one-pot process involving cycloaddition of 1,5-hexadiene 5a and trimethylsilylcarbonitrile oxide (generated in situ from trimetylsilyl bromide and mercury fulminate). After treatment with iodine, heterocycle 132b underwent cyclisation and afforded THF adducts 133a,b in moderate yield but this time with cis selectivity (ratio 6.6:1). It is interesting to note that when this methodology was applied to dienes $\mathbf{8 2}$ and 134 the corresponding THP 136a,b and oxepane 138a,b were obtained in good yield and excellent trans-selectivity for the THP examples. The reaction was attempted on deca-1,9-diene but although the corresponding isoxazoline was obtained, it failed to cyclise.




Conditions and reagents: (i) $\mathrm{Ph}_{3} \mathrm{CCNO}$; (ii) $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{Me}_{3} \mathrm{SiCNO}$.
Scheme 1.38: Synthesis oxygen heterocycles utilising a cyclisation-fragmentation strategy.

Kurth et al. adapted this methodology on a polymer support and incorporated a cyclisationbased traceless linker strategy. ${ }^{53,54}$ Aldehyde 139 was prepared from oxidation of commercially available $2 \%$ cross-linked Merrifield polymer (scheme 1.39). Aldehyde $\mathbf{1 3 9}$ then underwent nitroaldol condensation and subsequent protection of the resulting alcohol with a TMS group yielded polymer-supported trimethylsilyl ether 140. Phenyl isocyanatemediated dehydration of the nitroalkane moiety presumably generated the polymer-bound nitrile oxide, which then underwent an intermolecular 1,3-dipolar cycloaddition with 1,5hexadiene $\mathbf{5 a}$ to give the polymer-bound isoxazoline 141. Finally, electrophilic cyclisation of the isoxazoline 141 with iodine monochloride regenerated the polymer-bound aldehyde 139 and afforded THF adduct $\mathbf{1 3 3 a} \mathbf{3} \mathbf{b}$ in overall good yield and a moderate cis/trans selectivity (1:2.1).


Conditions and reagents: (i) $\mathrm{CH}_{3} \mathrm{NO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH} / \mathrm{THF}, 25^{\circ} \mathrm{C}, 15 \mathrm{~h}$; (ii) $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, THF; (iii) 1,5-hexadiene ( 3 eq .), $\mathrm{PhNCO}, \mathrm{Et}_{3} \mathrm{~N}$, benzene, $80^{\circ} \mathrm{C}$ in sealed tube, 4 days; (iv) ICI, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, 30 min .

Scheme 1.39: Synthesis of 2,5-disubstituted THFs using a cyclisation-fragmentation strategy

## 1-II Oxidation-cyclisation of unsaturated alcohols

## 1-II-1 Use of anodic coupling reaction

Moeller et al. have reported the first example of THF rings prepared via anodic oxidation reactions based on reversing the polarity of enol ethers and its application to the synthesis of naturals products. ${ }^{55}$ Previous studies have shown that the addition of an enol ether radical cation to an olefinic nucleophile led to the formation of a radical at the terminating end of the cyclisation. ${ }^{56}$ The compatibility of oxygen nucleophiles with the anodic cyclisation reactions was first examined using simple alcohols (scheme 1.40). After reduction of the lactones $\mathbf{1 4 2 a}, \mathbf{b}$ to the lactols with DIBAL, enol ethers $\mathbf{1 4 3 a}, \mathrm{b}$ were prepared via a Wittig reaction. The enol ethers 143a,b were then oxidized at a constant current of 8 mA in an undivided cell equipped with a reticulated vitreous carbon (RVC) anode and a platinum auxiliary electrode; 0.03 M tetraethylammonium tosylate in $30 \% \mathrm{MeOH} / \mathrm{THF}$ was used as electrolyte along with 2,6-lutidine as a proton scavenger. After the passage of $2.0 \mathrm{~F} / \mathrm{mol}$ of charge, desired THFs 144a,b were obtained in excellent yield and stereoselectivity.


Conditions and reagents: (i) DIBAL-H, THF $-20^{\circ} \mathrm{C}$; (ii) $\mathrm{PH}_{3} \mathrm{P}=\mathrm{CHOMe}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (iii) RVC anode, Pt cathode, $30 \% \mathrm{MeOH} / \mathrm{THF}, 0.03 \mathrm{M} \mathrm{Et}_{4} \mathrm{NOTs}, 2,6$-lutidine, $2 \mathrm{~F} / \mathrm{mole} 8 \mathrm{~mA}$.
Scheme 1.40: Synthesis of THF via anodic oxidation reactions.

This methodology could also be applied to enol ethers bearing a trisubstituted double bond and generating a quaternary chiral center. Enol ether 145a was synthesised along similar lines to $\mathbf{1 4 3 a}, \mathbf{b}$, with addition of MeLi to the lactone prior to the preparation of the alcohol (scheme 1.41). After oxidation, the desired THF 146a was obtained in good yield and moderate selectivity. This difference in selectivity was intriguing and Moeller et al. decided to investigate the stereoselectivity of the reaction. ${ }^{57}$ When this oxidation was attempted on alcohol $\mathbf{1 4 5 b}$, the resulting THP $\mathbf{1 4 6 b}$ was obtained in a $1: 1$ ratio; this lack of selectivity suggested a kinetic control of the reaction. Separation of the cis and trans isomers of enol ether 145a and oxidation of each enol stereoisomer led to THF 146a in the same trans selectivity (3:1). The stereoselectivity of this reaction did not depend of the stereochemistry of the enol ether, confirming earlier observations made on carbon-carbon bond forming reactions. ${ }^{58}$


Conditions and reagents: (i) RVC anode, Pt cathode, $30 \% \mathrm{MeOH} / \mathrm{THF}, 0.03 \mathrm{M} \mathrm{Et} 4 \mathrm{NOTs}, 2 \mathrm{~F} / \mathrm{mole} 8 \mathrm{~mA}$.
Scheme 1.41: Synthesis of THF and THP via anodic oxidation reactions.

The stereoselectivity could result from steric interactions between the forming dimethoxyacetal group and the neighbouring methyl group. This hypothesis was disproved by the preparation and oxidation of alcohols 145 c -e that yielded the corresponding THF $146 \mathrm{c}-\mathrm{e}$ (scheme 1.42). The degree of selectivity obtained had little to do with steric effects. The remaining possibility was that the formation of the trans-product was favoured by a stereoelectronic effect, following Baldwin rules. ${ }^{59-61}$


Conditions and reagents: (i) RVC anode, Pt cathode, $30 \% \mathrm{MeOH} / \mathrm{THF}, 0.03 \mathrm{M} \mathrm{Et}_{4} \mathrm{NOTs}, 2 \mathrm{~F} / \mathrm{mole} 8 \mathrm{~mA}$.
Scheme 1.42: Synthesis of 2,5 -disubstituted THF via anodic oxidation reactions.

This methodology was applied to the synthesis of two natural products, linalool oxide ${ }^{62}$ and $(+)$-nemorensic acid. ${ }^{57,63}$ Diol $\mathbf{1 5 0}$ was obtained via a sequential asymmetric dihydroxylation and Wittig reaction on ketone 149 (scheme 1.43). Anodic oxidation reaction afforded the THF 150 in good yield and selectivity. Hydrolysis of acetal 150 and subsequent Wittig reaction on the resulting aldehyde yielded (+)-linalool oxide (152).


Conditions and reagents: (i) $(\mathrm{DHQ})_{2}$ - $\mathrm{PHAL}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{OsO}_{4}, t$ - $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (ii) $\mathrm{PH}_{3} \mathrm{P}=\mathrm{CHOMe}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (iii) RVC anode, Pt cathode, $30 \% \mathrm{MeOH} / \mathrm{THF}, 0.03 \mathrm{M} \mathrm{Et} 4 \mathrm{NOTs}$, $2 \mathrm{~F} / \mathrm{mole} 8 \mathrm{~mA}$; (iv) $50 \%$ TFA $/ \mathrm{H}_{2} \mathrm{O}, \mathrm{CHCl}_{3}, 25^{\circ} \mathrm{C}$; (v) $\mathrm{PH}_{3} \mathrm{P}=\mathrm{CH}_{2}$, THF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
Scheme 1.43: Synthesis of (+)-linalool oxide (152).

Alcohol 154 was synthesised in seven steps from methyl $(R)-(+)-3$-methylglutarate 153 and oxidised to afford THFs $\mathbf{1 5 5 a}, \mathbf{b}$ in good yield (scheme 1.44 ). ${ }^{64}$ After separation, THF $\mathbf{1 5 5 a}$ was treated under ozonolysis conditions to yield THF 156. Oxidation of the aldehyde moiety and saponification of the ester group afforded the desired $(+)$-nemorensic acid 157 in good yield.


Conditions and reagents: (i) $\mathrm{BH}_{3} \mathrm{Me}_{2} \mathrm{~S}$, THF; (ii) LDA, MeI, THF; (iii) $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{SH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 12 h (iv) TFAA, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$; (v) MeLi, $\mathrm{Et}_{2} \mathrm{O}$; (vi) TFAA, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$; (vii) (-)$1 \mathrm{pc}_{2} \mathrm{BCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{Et}_{2} \mathrm{O}$; (viii) RVC anode, Pt cathode, $30 \% \mathrm{MeOH} / \mathrm{THF}, 0.03 \mathrm{M} \mathrm{Et}_{4} \mathrm{NOTs}$, $2 \mathrm{~F} / \mathrm{mole} 8 \mathrm{~mA}$; (ix) (a) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{Me}_{2} \mathrm{~S} ;$ (x) $\mathrm{KMnO}_{4}, t-\mathrm{BuOH}, 5 \% \mathrm{NaH}_{2} \mathrm{PO}_{4}$; (xi) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$.

Scheme 1.44: Synthesis of (+)-nemorensic acid (157).

## 1-II-2 Chromium promoted oxidative cyclisation

Casida et al. have showed that Collins oxidation of diol 158 afforded cis-THF 159 (scheme 1.45). ${ }^{65}$ Unfortunately, the relative stereochemistry of chiral center A was not reported. Walba et al. have completed this study and described a novel related process involving the $\mathrm{Cr}^{\mathrm{VI}}$ promoted oxidative cyclisation of 5,6-dihydroxyalkene. ${ }^{66}$ Geranyl and neryl acetate diols 160a,b were prepared by acid hydrolysis of the corresponding epoxides obtained via selective $m$-CPBA oxidation ${ }^{65}$ and oxidisation with Collins reagent gave corresponding racemic cisTHF diols $\mathbf{2 a}, \mathbf{b}$ in moderate yields. Small quantities of known aldehydes $\mathbf{1 9 a},{ }^{67}$ were also isolated with traces of ketone 68. Pyridinium chlorochromate oxidation of diol 160b gave similar results while bipyridinium chlorochromate afforded aldehyde $\mathbf{1 9 b}$ as a major product. Analysis of the crude mixtures showed that the oxidative cyclisation process occurred with $>99.5 \%$ stereoselectivity.



Conditions and reagents: (i) $\mathrm{CrO}_{3}$, pyridine, 5 min .
Scheme 1.45: First example of chromium mediated oxidative cyclisation.

McDonald et al. have reported synthesis of polycyclic alcohols and lactones via PCC oxidative cyclisation. ${ }^{68}$ Hydroxy polyenes 161a-d were oxidised to afford a mixture of desired bis-THF alcohols 162a-d and bicyclic lactones 163a-d in overall moderate yield and good selectivity (scheme 1.46). Oxidation with Pyridium dichromate (PDC) was also achieved but in lower yield.


Conditions and reagents: (i) PCC (5 eq.), celite, $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.
Scheme 1.46: First example of chromium mediated polycyclisation.

Mc Donald et al. proposed that the chromium oxidation mechanism is based on a [2+2] cycloaddition, where the steric effects favour the chair-like conformer in which the alkene is in pseudoequatorial position (scheme 1.47). ${ }^{68}$. Trans-THF adduct then is obtained after a reductive elimination. However, the different mechanisms shown previously for the metal
oxidative cyclisation led to believe that chromium probably works along similar lines i.e. via [3+2] cycloadditions (scheme 1.5, 1.17).

$\downarrow^{[2-2]}$


Conditions and reagents: (i) PCC ( 5 eq.), celite, $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$.
Scheme 1.47: Model of syn-oxidative cyclisation.

This method was applied toward the synthesis of venustatriol by Corey et al. ${ }^{69}$ Ring D was prepared via oxidation with pyridimium chlorochromate (scheme 1.48). Epoxidation of geraniol 51a with $(-)$-diethyl $(2 R, 3 R)$-tartrate, $\mathrm{Ti}(\mathrm{OiPr})_{4}$ and $t$ - BuOOH in the presence of molecular sieves afforded the ( $2 R, 3 R$ )-epoxide, that was subsequently converted to the corresponding benzyl ether 167. After cleavage of the epoxide, diol 168 was oxidised with stoichiometric pyridium chlorochromate and afforded stereoselectively the THF 61b in moderate yield.


Conditions and reagents: (i) (-)-diethyl $(2 R, 3 R)$-tartrate, $\mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{4}, t$ - BuOOH , molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) NaH (leq.), $\mathrm{BnBr}\left(1.1 \mathrm{eq}\right.$.), THF, $23^{\circ} \mathrm{C}, 14 \mathrm{~h}$; (iii) perchloric acid, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(6: 1), 23^{\circ} \mathrm{C}, 14 \mathrm{~h}$; (iv) $\mathrm{PCC}(1.05$ eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 10 \mathrm{~h}$.
Scheme 1.48: Preparation of THF 61b via chromium oxidation.

McDonald et al. have described a potential biomimetic approach to the bis-THF region of monensin (175) via the combination of the chromium catalysed oxidative cyclisation and rhenium oxidation. ${ }^{70}$ Triene 170 was treated with AD-mix- $\beta$ and the resulting diol 171 oxidised with Collins reagent to yield the THF ketone 172 (scheme 1.49). The alcohol moiety was protected and the ketone reduced to afford THF 173 in good yield. Oxidative cyclisation of THF 173 gave bis-THF 174 in moderate yield. Compound 174 corresponds to the C and D rings of monensin (175).


Conditions and reagents: (i) AD-mix $\beta, \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), \mathrm{MeSO}_{2} \mathrm{NH}_{2}, 0^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (ii) $\mathrm{CrO}_{3}(\mathrm{py})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 15 min ; (iii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, r.t., 30 h ; (iv) $\mathrm{CeCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{EtOH},-78$ to $20^{\circ} \mathrm{C}$, 1 h ; $\left(\mathrm{Cl}_{2} \mathrm{CHCO}_{2}\right) \mathrm{ReO}_{3},\left(\mathrm{Cl}_{2} \mathrm{CHCO}\right)_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 12 h.
Scheme 1.49: Synthesis of bis-THF via chromium and rhenium oxidative cyclisations.

## 1-II-3 Vanadium catalysed oxidation-cyclisation

Kishi et al. have reported the first stereocontrolled synthesis of THFs via vanadium catalysed epoxidation-cyclisation of $\gamma, \delta$-unsaturated alcohols. ${ }^{71}$ Alcohols 176a-d were treated with a mixture of $\mathrm{VO}(\mathrm{acac})_{2}$ and $t$ - BuOOH to yield the corresponding THFs 178a,c,e in excellent trans stereoselectivity (scheme 1.50). Further studies by Shirahama et al. showed that the stereoselectivity of this reaction depended on the $\gamma, \delta$-unsaturated alcohol precursor and that cis-THF could be prepared. ${ }^{72-74}$ Vanadyl acetylacetonate catalysed oxidation of bishomoallyl alcohol $\mathbf{1 7 9}$ afforded cis-THF $\mathbf{1 8 1}$ in good selectivity. ${ }^{73}$


Conditions and reagents: (i) $\mathrm{VO}\left(\mathrm{acac}_{2}\right)_{2}, \mathrm{t}-\mathrm{BuOOH}, \mathrm{PhH}$, r.t.; (ii) AcOH ; (iii) $\mathrm{VO}\left(\mathrm{acac}_{2}, \mathrm{t}-\mathrm{BuOOH}, \mathrm{PhH}\right.$,
NaOAc , r.t.
Scheme 1.50: THF synthesis via vanadium catalysed cyclisation.

Vanadium catalysed oxidation could therefore be divided in two types (scheme 1.51). In type A, 4-substituted-4-en-1-ol 182a gave trans-2,5,5-trisubstituted THF 184b through an anti epoxide intermediate, while in type B 5-substituted-4-en-1-ol 182b gave cis-2,5-disubstituted THF 184b through a syn epoxide. It is also interesting to note that the stereoselectivity of this reaction did not depend on the stereochemistry of the double bond.

Type A


Type B


Scheme 1.51: Selectivities in $\mathrm{VO}(\mathrm{acac})_{2}$ catalysed oxidation.

It is thought that the stereoselectivity is due to steric factors. It follows the model proposed by Sharpless et al. for epoxidation. ${ }^{75}$ In type B, the transition state of the minor epoxide 185b experiences steric compression due to the interaction between $\mathrm{H}_{\mathrm{a}}, \mathrm{R}$ and $\mathrm{Me}_{\mathrm{a}}$ (scheme 1.52). In contrast, the $A^{1,3}$ strain is minimised in the transition state $185 a$ of major epoxide $\mathbf{1 8 3 b}$. This steric compression becomes more important for $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ than for $\mathrm{R}^{\prime}=\mathrm{H}$, explaining the
decrease of stereoselectivity between examples $\mathbf{1 7 8 c}$ and $\mathbf{1 7 8 e}$ (scheme 1.51 ). The observed selectivity is also solvent dependent. Hanassian et al. have reported that the use of noncoordinating solvent such as hexanes led to improve the selectivity ( $9: 1 \mathrm{cis} /$ trans) in comparison to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene or toluene (4-5:1 cis/trans).


Scheme 1.52: Steric effects on type B selectivity.

In type $A$, the transition state $\mathbf{1 8 5}$ c which leads to the minor epoxide 183d can experience steric compression between the vinylic methyl group $\mathrm{Me}_{\mathrm{a}}$ and the tertiary oxygen bound to the catalyst $\mathrm{OL}_{\mathrm{a}}$ (scheme 1.53 ). ${ }^{76}$ Minimisation of this steric compression favours the transition state $\mathbf{1 8 5 d}$ of the cis isomer 183a.


Scheme 1.53: Steric effects on type A selectivity.

Vanadium catalysed oxidation has been applied to the preparation of mono, bis, tri and penta THF fragments used in total syntheses. ${ }^{77.78}$ Shirahama et al. have reported the synthesis of teurilene via two different methods, both involving vanadium epoxidation-cyclisation. ${ }^{73}$ The first one, involved a step-by-step construction of the bis-THF segment, while in the second approach, oxidation was carried out in one step. Diene 186 was oxidised to the corresponding trans-THF 187 in good yield and stereoselectivity (scheme 1.54). THF 188 was obtained in twelve steps and oxidised with $\mathrm{VO}(\mathrm{acac})_{2}$ to afford bis-THF 189 in good yield. All the MOM groups were then removed by acid, the secondary alcohol of resulting tetrol was mesylated and converted to the corresponding epoxide. Teurilene (119) was obtained after exposure of the epoxide to acid with formation of the third THF ring.


Conditions and reagents: (i) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3.5 h ; (ii) (i) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}$, $\mathrm{AcOH}, \mathrm{PhH}, 50^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (iii) $\mathrm{HCl}, \mathrm{MeOH}$, r.t., 12 h ; (iv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (v) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 30 min ; (vi) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}$, r.t., 1 h .
Scheme 1.54: Synthesis of teurilene (119) via step-by-step THF unit construction.

Tetraene 190 was exposed to $\mathrm{VO}(\mathrm{acac})_{2}$ and simultaneous type A and B oxidation-cyclisation took place to afford bis-THF 189 in moderate yield along with mono-THF 188 (scheme 1.55 ). ${ }^{72,73}$ Bis-THF 189 was then converted to teurilene (119) in the same way that was shown previously.





Conditions and reagents: (i) $\mathrm{VO}\left(\mathrm{acac}_{2}, t-\mathrm{BuOOH}, \mathrm{AcOH}, \mathrm{PhH}, 50^{\circ} \mathrm{C}, 7 \mathrm{~h}\right.$; (ii) $\mathrm{HCl}, \mathrm{MeOH}$, r.t., 12 h ; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 30 min ; (v) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}$, r.t., 1 h.

Scheme 1.55: Synthesis of teurilene (119) via double cyclisation.

Morimoto et al. have described the synthesis of glabrescol, a penta-THF diol via vanadium oxidation. ${ }^{79}$ By replacing AcOH by TFA, they have dramatically improved the results obtained by Shirahama et al.. Diepoxide 191 was prepared using Sharpless asymmetric epoxidation and converted to THF ring $\mathbf{1 1 7 b}$ in good overall yield (scheme 1.56). Introduction of the geranyl side chains and monoacetylation of diol 118 b yielded alcohol 192, double cyclisations of alcohol 192 using the optimised conditions afforded tri-THF 193 as a major product after deacetylation. Repetition on the oxidation step on tri-THF 193 gave glabrescol (194) in good yield. The conversion of diol $\mathbf{1 1 8 b}$ into glabrescol (194) was also achieved directly via vanadium oxidation and in moderate yield and selectivity.


Conditions and reagents: (i) $\mathrm{NaOH}(1 \mathrm{M}$, aq.), 1,4-dioxane, reflux, th , then acidified by $\mathrm{HCl}(\mathrm{pH} 2)$, reflux, 10 min ; (ii) $\mathrm{MsCl}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 1 h ; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 15 min ; (iv) (a) genaryl phenyl sulphide, BuLi, TMEDA, THF, $-78^{\circ} \mathrm{c}, 1 \mathrm{~h}$; (b) $\mathrm{Na}, i$ - $\mathrm{PrOH}, \mathrm{THF}$, reflux; (v) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 24 h ; (vi) (a) $\mathrm{VO}(\mathrm{acac})_{2}\left(0.02 \mathrm{eq}\right.$.) $t$ - $\mathrm{BuOOH}\left(2.5 \mathrm{eq}\right.$.), TFA (2 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min ; (b) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, \mathrm{Ih}$; (vii) $\mathrm{VO}(\mathrm{acac})_{2}(0.02 \mathrm{eq})$.$t - \mathrm{BuOOH}\left(2.5 \mathrm{eq}\right.$.), TFA ( 2 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min ; (viii) $\mathrm{VO}(\mathrm{acac})_{2}(0.05 \mathrm{eq}$.) $t$ BuOOH ( 5 eq.), TFA ( 2 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min .

Scheme 1.56: Synthesis of glablescol (194) via sequential double cyclisations.

## 1-II-4 Use of $\boldsymbol{m}$-CPBA

Casida et al. have reported that the reaction between ethyldiol 195 and $m$-CPBA afforded a 1:1 mixture of the cis and trans THFs 196a and 196b (scheme 1.57). ${ }^{65}$ During the studies on vanadium induced oxidation, Kishi et al. showed that $m$-CPBA oxidised 5-hydroxyalkene $\mathbf{1 7 6 d}$ to give a $1: 1$ mixture of THF $\mathbf{1 7 8 g}, \mathbf{h},{ }^{71}$ they discovered that stereoselectivity could also be obtained with the oxidation of diene 197 providing the trans-THF 198b in moderate selectivity. ${ }^{80}$


Conditions and reagents: (i) $m$ - CPBA ( 1.5 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
Scheme 1.57: Cyclisation of hydroxy alkenes using $m$-CPBA

Iqbal et al. have described the synthesis of 2,5-disubstituted-THF using $m$-CPBA. ${ }^{81}$ The stereochemistry of the reaction is controlled by a remotely placed methoxycarbonyl group. ${ }^{82}$ Alkenes 199a-f were treated with $m$-CPBA and the desired THF 200a-f were obtained in good yield and selectivity (scheme 1.58).


Conditions and reagents: (i) m-CPBA (1.5 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
Scheme 1.58: Cyclisation of hydroxy alkenes using $m$-CPBA

Cis-selectivity obtained for THFs 200a-c,e could be explained by an involvement of the ester group during the cyclisation. It is thought that the electrophilic cyclisation of alcohols 199a,c goes via transition state 201a, the hydrogen bonding lowers the activation energy and therefore is responsible for the high cis selectivity (scheme 1.59). In a similar manner, cis stereoselectivity is obtained for alcohol 199e via hydrogen bonding between the protonated oxirane and the carbonyl of the ester group shown in transition state 201b. The trans selectivity obtained for the cyclisation of $\mathbf{1 9 9} \mathbf{d , f}$ could be explained by the non-involvement of the ester group due to steric interactions.


Scheme 1.59: Cyclisation of hydroxy alkenes using $m$-CPBA
$m$-CPBA has been used toward the synthesis of natural products but in a non-stereospecific manner. Gesson et al. has*ve reported the synthesis of bis-THF adducts 204a,b via m-CPBA induced cyclisation of the 5-hydroxy-alkene unit in compound 203 (scheme 1.60 ). ${ }^{83}$ Bis-THF 204b is a useful intermediate toward the synthesis of natural compound uvaricin.


Conditions and reagents: (i) 1-bromo-3-tetradecyne, Mg ; (ii) Lindlar reduction; (iii) (a) $m$-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
Scheme 1.60: m-CPBA induced synthesis of THFs 204a,b.

Kodama et al. have reported the asymmetric cyclisation of enantiomerically pure dihydroxydiene $\mathbf{2 0 5}$ using $m$-CPBA. ${ }^{84}$ Diene $\mathbf{2 0 5}$ was prepared from farnesol and treated with $m$-CPBA to afford two diastereomeric THFs 206a,b in a 1:1 ratio (scheme 1.61). THF 206a was used in the synthesis of epi-quassiol A (207).


Conditions and reagents: (i) 1-bromo-3-tetradecyne, Mg ; (ii) Lindlar reduction; (iii) (a) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
Scheme 1.61: m-CPBA-induced synthesis of THFs 206a,b.

Evans et al. have described the synthesis of the bis-THF units present in ionomycin (14) via $m$-CPBA oxidation followed by mercuric acetate cyclisation. ${ }^{85}$ Non-selective oxidation of alcohol 207 with $m$-CPBA gave a 1:1 mixture of THFs 208a,b that were separable by chromatography (scheme 1.62). After conversion of the desired THF 208a into THF 209 in 11 steps, internal oxymercuration with $\mathrm{Hg}(\mathrm{OAc})_{2}$ gave bis-THF 210 in good yield and excellent selectivity (trans/cis: 93:7).




Conditions and reagents: (i) $m$ - $\mathrm{CPBA}, \mathrm{EtOAc}, 0$ to $20^{\circ} \mathrm{C}, 24 \mathrm{~h}$, then $\mathrm{AcOH}, 10 \mathrm{~h}$; (ii) (a) $\mathrm{Hg}(\mathrm{OAc})_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ to $20^{\circ} \mathrm{C}, 13 \mathrm{~h}$; (b) $\mathrm{NaBH}_{4}, \mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(6: 1), 20^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Scheme 1.62: Synthesis of bis-THF via m-CPBA oxidation and mercuricyclisation.

## 1-II-5 Oxidative cyclisation of hydroxy alkenes catalysed by cobalt (II) complex

Mukaiyama et al. have described the successful cobalt mediated oxidative cyclisation of 5-hydroxy-1-alkenes. ${ }^{86}$ Alcohols 211a,b were oxidised ${ }^{87}$ with $\mathrm{O}_{2}$ in presence of bis(1-morpholinocarbamoyl-4,4-dimethyl-1,3-pentanedionato)cobalt(II) $\left(\operatorname{Co}(\operatorname{modp})_{2}\right)$ to afford 2,5-disubstituted-THFs 212a,b in good yield and excellent trans stereoselectivity (scheme 1.63).



(GC trans selectivity: 99\%)

Conditions and reagents: (i) $\mathrm{Co}(\operatorname{modp})_{2}(20 \mathrm{~mol} \%), 2$-propanol, molecular sieves, $\mathrm{O}_{2}, t-\mathrm{BuOOH}, 50^{\circ} \mathrm{C}, 30$ min.
Scheme 1.63: Oxidative cyclisation of hydroxy alkenes catalysed by $\operatorname{Co}(\operatorname{modp})_{2}$

It is thought that mechanistically the cyclisation starts by the formation of radical intermediate 213a from the reaction between the alkene, the cobalt complex and $\mathrm{O}_{2}$ (scheme 1.64). Radical 213b then interacts with Co complex in the coordination sphere and is converted to the cyclised intermediate 214. Insertion of $\mathrm{O}_{2}$ into the cobalt-carbon bond of compound 53 forms intermediate 215 that undergoes reductive cleavage and yields the THF product 212 and cobalt peroxide. It is thought that hydroperoxyde accelerates the generation of the radical intermediate 213a. The trans selectivity of this reaction is due to the position taken by groups R and $\mathrm{CoL}_{2}$ during the cyclisation of intermediate $\mathbf{2 1 4} ; \mathrm{R}$ and $\mathrm{CoL}_{2}$ are trans to each other because of steric repulsion between them.


Scheme 1.64: Mechanism of oxidative cyclisation catalysed by $\operatorname{Co}(\operatorname{modp})_{2}$

This methodology has been studied intensively by Shi et al. ${ }^{88-91}$ They described the stereocontrolled construction of mono, bis, tri and tetra trans-THF units from a key triene precursor (scheme 1.65). Triene $\mathbf{2 1 6}$ underwent a Sharpless AD reaction and the obtained diol 217a was subsequently mono-protected by MOMCl. Oxidation of alcohol 218 using $\mathrm{Co}(\operatorname{modp})_{2}$ under an oxygen atmosphere afforded mono-THF 219 in good yield and excellent diastereoselectivity (de calculated from NMR studies). THF 219 was then converted to acetogenin gigantetrocin $\mathrm{A}(\mathbf{2 2 0})$ in 15 steps. ${ }^{89}$



Conditions and reagents: (i) ( DHQ$)_{2}-\mathrm{PHAL}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{OsO}_{4}, t$ - $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (ii) $\mathrm{NaH}, \mathrm{MOMCl}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (iii) $\mathrm{Co}(\mathrm{modp})_{2}(20 \mathrm{~mol} \%)$, TBHP, $\mathrm{O}_{2}, i$-PrOH, $60^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
Scheme 1.65: Mono-THF synthesis via cobalt oxidation.

Using this strategy, adjacent trans-bis-THF and tri-THF could also be easily synthesised and used toward the synthesis of natural products. Diol 217b was obtained by Sharpless AD on triene 216 and was oxidised with $\mathrm{Co}(\operatorname{modp})_{2}$ to yield trans/threo/trans bis-THF ring 221a (scheme 1.66). After mono-protection with a benzyl group and the remaining alcohol was converted to the aldehyde $\mathbf{2 2 2}$ via a Swern oxidation. The aldehyde $\mathbf{2 2 2}$ was coupled with (3-buten-1-yl)magnesium bromide and underwent another Swern oxidation to afford the corresponding ketone that was subsequently reduced by L-selectride to give the enol $\mathbf{2 2 3}$ in overall good yield and excellent diastereoselectivity. Oxidation of enol 223 with $\operatorname{Co}(\operatorname{modp})_{2}$ afforded tri-THF unit 224 in good yield. ${ }^{91}$ It is interesting to note that bis-THF segment 221a was converted to the acetogenin asimilobin (225) in 12 steps. ${ }^{90}$


Conditions and reagents: (i) $\mathrm{Co}(\mathrm{modp})_{2}(20 \mathrm{~mol} \%), \mathrm{TBHP}, \mathrm{O}_{2}, i-\mathrm{PrOH}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (ii) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}$, $25^{\circ} \mathrm{C}$, 12 h ; (iii) oxalyl chloride, $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (iv) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}, \mathrm{THF}$, $20^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (v) L-selectride, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
Scheme 1.66: Bis and tri-THF fragments synthesis via cobalt oxidation.

This methodology has allowed Shi et al. to synthesise tetra-THF using a similar method to the one seen previously. Diol 217a was oxidised with $\mathrm{Co}(\operatorname{modp})_{2}$ to yield trans/threo/trans bisTHF ring 221b (scheme 1.67). After a Swern oxidation, the dial 226 was coupled with two equivalents of (3-buten-1-yl)magnesium bromide and underwent another Swern oxidation to afford the corresponding dione. Subsequent reduction using L-selectride gave the diendiol 227 in overall moderate yield and with a $2.6: 1$ diastereoselectivity; the two diastereoisomers were separated by column on silica gel. Diendiol 227 was then converted the usual manner to afford the $C_{2}$-symmetric tetra-THF unit $\mathbf{2 2 8}$ in excellent trans-selectivity. Compound $\mathbf{2 2 7}$ was also mono-protected with TBDMSCl and bis-THF 229 was oxidised to afford tri-THF 230.


Conditions and reagents: (i) $\mathrm{Co}(\mathrm{modp})_{2}(20 \mathrm{~mol} \%), \mathrm{TBHP}, \mathrm{O}_{2}, i-\mathrm{PrOH}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (ii) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}$, $25^{\circ} \mathrm{C}$, 12 h ; (iii) oxalyl chloride, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{c}$ to $25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (iv) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}$, THF, $20^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (v) L-selectride, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (vi) TBDMSCl, imidazole, THF, $25^{\circ} \mathrm{C}, 25 \mathrm{~h}$.

Scheme 1.67: Tri and tetra-THF fragments synthesis via cobalt oxidation.

Evans et al. have described the synthesis of (-)-mucocin using $\operatorname{Co}(\operatorname{modp})_{2}$ catalysed oxidation to construct the mono-THF unit. ${ }^{92}$ This synthesis will be described later.

## 1-II-6 1,4-Addition to $\alpha, \beta$-unsaturated sulfones

Knochel et al. have reported that $\gamma$-functionalized unsaturated sulfones cyclised under basic conditions to provide THF fragments via a 5 -endo-trig process. ${ }^{93}$ Sulfones 231a-c were treated with catalytic potassium hydride and afforded the corresponding THFs 234a-c in good yield (scheme 1.68). It is thought that the deprotonation of the hydroxy-sulfone $\mathbf{2 3 1}$ gives the corresponding alcoholate 232, which is in equilibrium with the potassium carbanion 233.

Species 233 takes the hydroxy proton from another molecule of 232, this leads to the formation of THF adduct 234 and intermediate 232, which restarts the catalytic cycle.


Conditions and reagents: (i) KH (mol\%), THF, $25^{\circ} \mathrm{C}, 10 \mathrm{~min}$.
Scheme 1.68: 5-endo-trigonal ring closures of unsaturated sulfones.

Craig et al. have developed the methodology further and applied it to the synthesis of 2,5disubstituted THF. ${ }^{94,95}$ Treatment of sulfones 235a-i with stoichiometric potassium tertbutoxide afforded the mixture of THFs 236a-i and 237a-i in diverse yields and ratios (scheme 1.69). The low yield encountered from the reaction of $\mathbf{2 3 5 a}$ may be due to the predominant formation of by-product 238. Although, the cyclisation of most $E$-substrates only gave a modest cis-selectivity, the $Z$-isomers underwent efficient cyclisation with high transselectivity.


Conditions and reagents: (i) $t \mathrm{BuOK}$ ( 1 eq .), $t \mathrm{BuOH}$ ( 5 eq .), THF ( 0.033 M ), $25^{\circ} \mathrm{C}, 6$ to 23 min ; (ii) $t \mathrm{BuOK}$ ( 1 eq .), $t \mathrm{BuOH}$ ( 10 eq .), THF ( 0.033 M ), $25^{\circ} \mathrm{C}, 6$ to 23 min . $\mathbf{2 3 5 f}$ was oxidised using conditions (ii) and $\mathbf{2 3 5 g}$ using conditions (i).
Scheme 1.69: Synthesis of 2,5-disubstituted THFs via 5-endo-trigonal ring reactions.

It is thought that the modest syn-selectivity observed in most cases is due to the destabilising interactions observed in both of the conformers 239a and 239b leading respectively to the syn and anti THFs 236 and 237 (scheme 1.70). On the other hand, if the same model is applied to
the $Z$-substrates, it indicates that the reactions would be selective for anti THF 237 since there is no major destabilising interaction in conformer 239d.

01.71: Interaction models of the 5 -endo-trig cyclisation reaction.

## 1-III Cyclisation of unsaturated alcohols

## 1-III-1 Haloetherification

Bartlett et al. reported the stereocontrolled synthesis of cis and trans disubstituted THF via the cyclisation of alkenes with iodine. ${ }^{96}$ Alkenes 240a-d were treated with iodine and the corresponding 2,5-disubstituted THFs 241a-d and 242a-d were obtained in good yield (scheme 1.71 ). When the alcohol was protected, the reaction gave stereoselectively cisisomers; on the other hand, unprotected alcohol 241a produced the trans-isomer 242a as the major product.


Conditions and reagents: (i) $\mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$; addition of $\mathrm{NaHCO}_{3}$ for entry a and cyclisation performed at $21^{\circ} \mathrm{C}$ for entry $\mathbf{d}$.
Scheme 1.71: THF synthesis via halocyclisation

It is thought that the mechanism of this reaction goes via the formation of an oxonium ion intermediate (scheme 1.72). The alkyl substituent should be bulky enough to have a significant steric effect. But when $R$ is too large, it can prevent cyclisation and therefore leads to reduced yields (e.g. 241b). The limiting factor of this reaction is the loss of the alkyl group R from the oxonium ion intermediates 243a-c. It should be slow in comparison to the reversal of their formation to favour 243c thermodynamically as well as kinetically. The 2,6dichlorobenzyl substituent seems to represent the optimal combination of steric and electronic properties for promoting a transition state that avoids 1,2 -steric interactions, accommodates 1,3 -interactions and allows an easy fragmentation of the intermediate oxonium ion.


Scheme 1.72: Mechanism of the halocyclisation.

Bartlett et al. have applied these observations to the syntheses of racemic cis and trans linalool oxides $\mathbf{1 5 2 b}, \mathbf{c}^{96}$ Iodocyclisation of alkenes $\mathbf{2 4 4 a , b}$ and elimination of HI and cleavage of the acetate group in 245b afforded the corresponding trans and cis-linalool oxides 152b,c in good yield and selectivity (scheme 1.73).



Conditions and reagents: (i) $\mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{NaHCO}_{3}, 0^{\circ} \mathrm{C}$; (ii) $t$-BuOK, DMF, $25^{\circ} \mathrm{C}$; (iii) $\mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$; (iv) NaOH .

Scheme 1.73: Synthesis of trans and cis linalool oxides 152b,c via iodocyclisation.

Bartlett's conditions for the iodocyclisation were applied toward the synthesis of gymnodimine (251) by White et al. ${ }^{97}$ Alkene 246a was treated with iodine and afforded the THF 247b in good yield and selectivity (scheme 1.74). It is interesting to note that when iodocyclisation was performed on alkene 246b, opposite selectivity was obtained. Displacement of the iode in THF 247c with cesium trifluoroacetate was followed by the cleavage of the trifluoroacetate ester and the sequential protection of the resulted primary alcohol and cleavage of the $p$-methoxybenzyl group to yield mono-THF 248. After reductive deoxygenation and deprotection of the silyl group, the primary alcohol was oxidised to the aldehyde, which reacted with diethyl diazomethylphosphonate to give the alkyne 249. THF 249 underwent stannylcupration-methylation followed by metal-halogen exchange and the removal of the dichlorobenzyl group to provide THF $\mathbf{2 5 0}$ in moderate yield.


246a ( $\mathrm{R}=\operatorname{Piv}, \mathrm{R}^{\prime}=\mathrm{H}$ )
$\mathbf{2 4 6 b}\left(\mathrm{R}=\mathrm{DCB} . \mathrm{R}^{\prime}=\mathrm{DCB}\right)$



Conditions and reagents: (i) $\mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}$; (ii) $\mathrm{CsOCOCF}_{3}, \mathrm{DMF}, 90^{\circ} \mathrm{C}, 36 \mathrm{~h}$, then $\mathrm{Et}_{2} \mathrm{NH}, 3 \mathrm{~h}$; (iii), TBSCl, imidazole; (iv) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;(\mathrm{v})(\mathrm{lm})_{2} \mathrm{C}=\mathrm{S}$, toluene, $100^{\circ} \mathrm{C}$; (vi) $n-\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, $100^{\circ} \mathrm{C}$; (vii) TBAF, THF; (viii) $\left(\mathrm{COCl}_{2}\right.$ ), DMSO, $\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}$; (ix) $\mathrm{N}_{2} \mathrm{CHP}(\mathrm{O})(\mathrm{OEt})_{2}, t$ - BuOK ; (x) n- $\mathrm{Bu}_{3} \mathrm{SnCu}(\mathrm{CN}) \mathrm{Li}$, MeI, DMPU-THF; (xi) $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O}$; (xii) $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NaI}, \mathrm{MeCN}$.
Scheme 1.74: Iodocyclisation toward the synthesis of gymnodimine (251)

Mootoo et al. have investigated iodocyclisation intensively and showed that 5,6-Oisopropylidene acetals on treatment with iodonium ion, gave exclusively the trans-2,5disubstituted THF. ${ }^{98}$ Alkenes 252a-d were treated with iodonium dicollidine perchlorate (IDCP) to afford the corresponding THF adducts 253a-d in excellent yield and trans selectivity (no cis isomer was obtained) (scheme 1.75).


Conditions and reagents: (i) $\operatorname{IDCP}$ (2.5 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, r.t., 5 min .
Scheme 1.75: Synthesis of trans-THF via iodocyclisation.

It is thought that the high streoselectivity of this reaction is due to the formation of a THFoxonium ion intermediate which has a fused [5.5.0]oxahydrindan type geometry (scheme 1.76). Intermediate 254a that leads to the cis-isomer is disfavoured by steric effects.


Scheme 1.76: THF-oxonium in intermediates 254a and 254b.

Mootoo et al. combined iodocyclisation with Sharpless asymmetric dihydroxylation to synthesise trans-THF fragments that could be used as intermediates in acetogenin synthesis. ${ }^{99}$ Diene $\mathbf{2 5 6}$ was prepared from 4-(benzyl-oxy)butanal $\mathbf{2 5 5}$ and treated with AD-mix- $\beta$ to afford diol 257 in good yield and excellent ee (scheme 1.77). Isopropylidenation of the diol moiety followed by reduction of the ester group gave alcohol $\mathbf{2 5 8}$ in good yield. Treatment of alkene 258 with IDCP provided a single trans-THF-iodide product $\mathbf{2 5 9}$ in good yield. It is interesting to note that attempted iodocyclisation of triol 261 led to a mixture of cis and trans-THFs (1:3), this result confirmed previous observations. ${ }^{98}$ THF 259 was treated with potassium
carbonate to yield the desired epoxy-THF 260, that could be used for elaboration into a variety of mono and bis-THF acetogenins.




Conditions and reagents: (i) vinyl magnesium bromide, THF, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (ii) $n$-butyl vinyl ether, $\mathrm{Hg}(\mathrm{OAc})_{2}$, reflux, 18 h ; (iii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{3} \mathrm{CN}, 60^{\circ} \mathrm{C}, 40 \mathrm{~min}$; (iv) AD-mix- $\beta$, t-BuOH/ $\mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 3$ days; (v) 2,2-dimethoxypropane, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$; (vi) DIBALH, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (vii) IDCP ( 2.5 eq.), $1 \%$ aq. $\mathrm{CH}_{3} \mathrm{CN}$, r.t., 5 min ; (viii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, r.t., 5 min .

Scheme 1.77: Asymmetric synthesis of trans-THFs via iodocyclisation.

Mootoo et al. have then developed the construction of bis-THF units via iodocyclisation. Treatment of triene 263 with AD-mix- $\beta$ and subsequent acetonation provided the desired bisisoproplylidene alkene $\mathbf{2 6 4 a}$ and side-product $\mathbf{2 6 4 b}$ as a $5: 1$ mixture and in moderate yield (scheme 1.78). Alkene 264a was treated with IDCP and afforded THF 267 in good yield and excellent selectivity. It is thought that the seven-member ring 267 is formed via capture of the oxocarbenium 266 by the neighbouring primary alcohol.



Conditions and reagents: (i) vinyl magnesium bromide, $\mathrm{THF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OEt})_{3}, \mathrm{EtCO}_{2} \mathrm{H}, 138$ to $140^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) DIBALH, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, 1 h ; (iv) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), r.t. to $-3^{\circ} \mathrm{C}, 20 \mathrm{~h}$; (v) 2,2-dimethoxypropane, CSA, DMF, $0^{\circ} \mathrm{C}$ to r.t., 30 min ; (vi) IDCP ( 1.5 eq .), $\mathrm{CH}_{3} \mathrm{CN}$, r.t., 10 min .

Scheme 1.78: Preparation of trans-THF 267 via iodocyclisation.

THF 267 was used as a key precursor to the synthesis of bis, tri and tetra-THFs. After conversion of THF $\mathbf{2 6 7}$ to THF 268, subsequent treatment with dibutyltin oxide afforded bisTHF product 269 in good yield (scheme 1.79). THF 270 was easily prepared from THF 267 and underwent Mitsunobu etherification to yield bis-THF 271. Acetonide hydrolysis of bisTHF 271 and subsequent dibutyl tin oxide etherification followed by sequential silylation and ozonolysis provided aldehyde 272. This underwent $\mathrm{NaClO}_{2}$ oxidation to a resulting carboxylic acid which cyclise under acidic conditions to yield lactone 273 .





Conditions and reagents: (i) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{PPh}_{3}, \mathrm{NaHMDS}$, toluene, r.t. to $-78^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (iii) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, r.t., 14 h ; (iv) $\mathrm{Bu}_{2} \mathrm{SnO}$, benzene, reflux, 17 h ; (v) $\mathrm{CH}_{2}=\mathrm{PPh}_{3}$, toluene NaHMDS , r.t. to $-78^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (vi) 2,2-dimethoxypropane, $\mathrm{CSA}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to r.t., 3 h ; (vii) $\mathrm{PPh}_{3}$, DEAD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h ; (viii) $\mathrm{BF}_{3} \cdot \mathrm{EtO}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (20:3), r.t., 2 days; (ix) $\mathrm{Bu}_{2} \mathrm{SnO}$, benzene, reflux, 17 h ; (x) TBDPSCl, imidazole, DMF, $50^{\circ} \mathrm{C}$, 3 h ; (xi) $\mathrm{O}_{3}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1),-78^{\circ} \mathrm{C}$ to r.t., 1 h ; (xii) $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(5: 1), \mathrm{H}_{2} \mathrm{O}_{2}$ ( $30 \% \mathrm{aq}$.) aq. $\mathrm{NaClO}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 1 h ; (xiii) $\mathrm{HCl}(6 \mathrm{~N}$, aq.) THF, r.t., 2 days.
Scheme 1.79: Conversion of trans-THF 267 in bis, tri and tetra-THFs.

It is interesting to note that high trans-selectivity could also be obtained via the iodoetherification of C5 allylated ribo-furanoside. ${ }^{100}$ Triene 274 was treated with IDCP to give the corresponding trans-THF adduct 275 in good yield and selectivity (scheme 1.80). THF 275 was then converted to bis-THF furanone segment 279, an advanced precursor toward the synthesis of monensin (175). After olefination of aldehyde 275, the resulting ester was treated with AD-mix $\beta$ to give diol 276 in moderate yield and selectivity. Treatment with dibutyltin oxide afforded the bis-THF 277 in good yield. Reduction with dissolved magnesium and subsequent acidic hydrolysis provided lactone 278 in good yield. Protection of the lactone as an orthoester followed by configurational inversion of the homoallylic alcohol via the Mitsunobu conditions afforded desired bis-THF furanone 279.




Conditions and reagents: (i) IDCP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq. sol.); (ii) $\mathrm{Ph}_{3}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{3} \mathrm{CN}$, reflux; (iii) AD-mix- $\beta$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), r.t. to $-3^{\circ} \mathrm{C}$; (iv) $\mathrm{Bu}_{2} \mathrm{SnO}$, benzene, Dean-Stark, reflux; (v) (a) $\mathrm{Mg}, \mathrm{MeOH}$, reflux; (b) $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, MS $4 \AA$, reflux; (vi) ethylene glycol, CSA, Dowex 50WX8-400, benzene, $\mathrm{MgSO}_{4}$, reflux; (vii) (a) $\mathrm{PPh}_{3}$, DEAD, $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$, toluene; (b) NaOH ( 3 N , aq. sol.), EtOH , reflux.

Scheme 1.80: Preparation of bis-THF furanone segment 279 via iodocyclisation.

Mootoo et al. have also developed a methodology leading to the formation of cis-THF via iodocyclisation using IDCP of monosaccharide alkenes. ${ }^{101,102}$ Alkenes $\mathbf{2 8 0}$ were treated with IDCP and the corresponding THFs 281a,b were obtained in good yield (scheme 1.81). Two generalisations emerged from these results, cis-selectivity increase with the aglycone size and $Z$-alkenes are less $c i s$-selective than the $E$-isomers


| Sugar substitution | $\mathbf{R}=\mathbf{R}^{\prime}=\mathbf{H}$ <br> cis/trans, yield | $Z: \mathbf{R}=\operatorname{Pr}, \mathrm{R}^{\prime}=\mathrm{H}$ | $E: \mathbf{R}=\mathbf{H}, \mathbf{R}^{\prime}=\mathbf{P r}$ |
| :---: | :---: | :---: | :---: |
|  |  | cis/trans, yield | cis/trans, yield |
| $\mathrm{A}=\alpha-\mathrm{OC}\left(\mathrm{CH}_{2}\right)_{3} ; \alpha-\mathrm{OBn}$ | 3.5:1 | 1:1.5 | 3.5:1 |
| $\mathrm{A}=\alpha / \beta-\mathrm{OCPh}_{3} ; \alpha-\mathrm{OBn}$ | cis only; $80 \%$ | 8:1;81\% | 20:1; 78\% |
| $\mathrm{A}=\alpha-\mathrm{OC}\left(\mathrm{CH}_{2}\right)_{3} ; \beta-\mathrm{OBn}$ | 3.5:1 | 1:1 | 8:1 |
| $\mathrm{A}=\alpha / \beta-\mathrm{OCPh}_{3} ; \beta-\mathrm{OBn}$ | 10:1; 87\% | cis only; 91\% | Cis only; 79\% |

Conditions and reagents: (i) IDCP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, / \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~min}$.
Scheme 1.81: Preparation of cis-THF 281a via iodocyclisation.

It is thought that the reaction proceeds via the formation of bicyclic THF-oxonium intermediate 283. The bicyclic nature of intermediate $\mathbf{2 8 3}$ allows communication of chirality from the monosaccharide template to the newly formed stereogenic center in the THF product (scheme 1.82). Fragmentation of intermediate 283 leads to species $\mathbf{2 8 4}$ that undergoes hydrolysis to give THF adducts 281. It is thought that conformer 285a with the alkene complex up is preferred to a down orientation, as depicted in conformer 285b. The lower cisselectivity encountered with the $Z$ isomer could be explained by the destabilizing $\mathrm{A}^{1,3}$ interaction between $R$ and $H_{a}$ in conformer 285a.


Scheme 1.82: Mechanism of the iodocyclisation on monosaccharide alkenes.

This result was applied to a synthesis of the bis-THF core of the acetogenin rolliniastratin (290). ${ }^{103}$ Iodoetherification of alkene 286 gave exclusively cis-THF 287 in good yield (scheme 1.83). After olefination of the aldehyde 287 with methylene triphenylphosphorane and acid hydrolysis to provide the intermediate lactol, treatment with methylene triphenylphosphorane led to the cyclisation of the second THF unit as well as olefination of the aldehyde to afford $\mathbf{2 8 8}$ in good yield. Bis-THF $\mathbf{2 8 8}$ was finally converted by hydrogenolysis to the bibutylated bis-hydroxymethyl-bis-THF diol 289.


Conditions and reagents: (i) IDCP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, r.t., 20 min ; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to r.t., 1 h ; (iii) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10: 1)$, r.t., 2 days; (iv) $\mathrm{HCOOH}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, r.t., 16 h .

Scheme 1.83: Toward the synthesis of rolliniastratin (290) via iodocyclisation.

## 1-III-2 Selenocyclisation

Uemura et al. have reported the cyclisation of cyclo-octa-1,5-diene 291 using stoichiometric phenyl selenocyanate to the corresponding THF 293 (scheme 1.84). ${ }^{104}$ The reaction proceeds via the alkoxy or hydroxy-selenation of one of the double bond, followed by intramolecular attack of the phenyl selenocyanate. This reaction was applied to 1,5 -hexadiene 5 a to give the corresponding 2,5-bis(phenylselenomethyl)tetrahydrofuran 295 in good yield. ${ }^{105}$ The authors did not discuss the stereoselectivity of the reaction.



Conditions and reagents: (i) $\mathrm{PhSeCN}\left(2 \mathrm{eq}\right.$. ), $\mathrm{CuCl}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (9:1), reflux, 5 h ; (ii) PhSeCN (2 eq.), $\mathrm{CuCl}_{2}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(5: 1), 76^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Scheme 1.84: Selenocyclisation of $1,5-\operatorname{cod} 291$ and 1,5-hexadiene 5a.

Further investigations using the seleno reagent were carried out by Uemura and Nicolaou's groups to improve the reaction. ${ }^{105-109}$ Uemura et al. have reported the preparation of 2,5disubtituted THFs 293 and 295 using phenylselenyl chloride in aqueous acetonitrile in good yield (scheme 1.85). ${ }^{109}$ On the other hand, Nicolaou et al. have investigated the use of N phenylselenophthalimide ( N -PSP) or N -phenylselenosuccinimide ( N -PSS) as a source of "PhSeOH" to carry out the same reaction and obtained the desired THFs 293, 295 and 296 in good yield. ${ }^{106-108}$


Conditions and reagents: Uemura: (i) PhSeCl (2 eq.), $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(5: 1), 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (ii) PhSeCl (2 eq.), $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(5: 1), 76^{\circ} \mathrm{C}, 5 \mathrm{~h}$; Nicolaou: (iii) NPSP ( 2.6 eq .), $\mathrm{H}_{2} \mathrm{O}$ ( 1.5 eq .), PTSA ( 0.1 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (iv) NPSS ( 2.6 eq.), $\mathrm{H}_{2} \mathrm{O}$ ( 1.5 eq.), PTSA ( 0.1 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

Scheme 1.85: Selenocyclisation of dienes to the corresponding THFs.

Takano et al. applied this method to the synthesis of a natural product ( $6 S, 7 S, 9 R, 10 R$ )-6,9-epoxynonadec-18-ene-7,10-diol (301). ${ }^{110}$ Enantiomerically pure diene 297 was treated with
phenylselenyl chloride to afford the THF adducts 298a,b as a $3: 1$ mixture and in good yield (scheme 1.86). After reduction of the double bond with 2,4,6-triisopropylbenzenesulfonyl hydrazide, the resulting selenide intermediate was converted to the olefins 299a,b in overall good yield. Dihydroxylation of the THFs 299a,b and subsequent cleavage with lead tetraacetate yielded the aldehydes $\mathbf{3 0 0 a}, \mathbf{b}$. After separation, aldehyde $\mathbf{3 0 0 a}$ was treated with Grignard reagent 302 and the benzyl moiety was removed to afford the marine lipid (301).


Conditions and reagents: (i) $\mathrm{PhSeCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (ii) $2,4,6$-triisopropylbenzenesulfonyl hydrazide, THF, reflux; (iii) $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$, THF, r.t.; (iv) $\mathrm{OsO}_{4}\left(10 \mathrm{~mol} \%\right.$ ), NMO , acetone $/ \mathrm{H}_{2} \mathrm{O}$, r.t.; (v) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{THF}-$ $30^{\circ} \mathrm{C}$; (vi) $302, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; (vii) $\mathrm{Li}, \mathrm{NH}_{3}$, reflux.
Scheme 1.86: Synthesis of marine natural product (301).

## 1-III-3 Mercuricyclisation

Itô et al. have reported the formation of a THF derivative as a side-product of the synthesis of cyclonerodiol from linalool 302. ${ }^{111}$ Linalool 302 was treated with $\mathrm{Hg}(\mathrm{OAc})_{2}$ to afford a mixture of products 303a-d (scheme 1.87). The stereochemistry of THF 303b was not described. Investigation of this reaction showed that the first step is the formation of species 304, it is thought that intermediate 304 rearranges to THF 305, which is attacked by another molecule of $\mathrm{Hg}^{\text {II }}$ to give hydroxyether 303b.



Conditions and reagents: (i) $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, r.t., 12 h .
Scheme 1.87: Oxymercuration of linalool 302.

Walkup et al. have applied this method to the synthesis of THF units via intramolecular oxymercuration of allenes. ${ }^{112} \gamma$-Hydroxy-allene 306a was treated with $\mathrm{Hg}(\mathrm{OAc})_{2}$ and gave the corresponding THFs 307a and 308a in moderate yield but no selectivity was exhibited (scheme 1.88). They therefore decided to adapt Bartlett's ${ }^{96}$ strategy of using a bulky ether group to direct the stereochemistry of the electrophilic cyclisation. Oxymercuration of allenes 306b-e afforded the THFs 307b-e with high cis-selectivity.


Conditions and reagents: (i) (a) $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 8$ to 10 h ; (b) $\mathrm{PdCl}_{2}$ ( 0.1 eq .), $\mathrm{CuCl}_{2}$ (3 eq.), $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CO}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 8$ to 10 h ; (ii) (a) $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}, 25^{\circ} \mathrm{C}, 2$ to 4 h ; (b) $\mathrm{PdCl}_{2}$ ( 0.1 eq .), $\mathrm{CuCl}_{2}$ ( 3 eq .), $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CO}(1 \mathrm{~atm}), 25^{\circ} \mathrm{C}, 8$ to 10 h .
Scheme 1.88: Oxymercuration on $\gamma$-Hydroxy-allenes 306a-e.

Chastrette et al. have described the synthesis bis-THF products from 1,5-dienes. ${ }^{113}$ They have applied Klein's permanganate oxidative cyclisation to neryl and geranyl chloride $\mathbf{3 0 9 a} \mathbf{a} \mathbf{b}$ to afford the corresponding THF adducts $\mathbf{3 1 0 a , b}$ (scheme 1.89). After treatment of THFs 310a,b with potassium hydroxide, the resulting epoxides reacted with allylmagnesium bromide to give THFs 311a,b. Cyclisation of the hydroxy-alkene units present in THFs 312a,b with mercuric acetate and subsequent reduction of the organomercuric moiety afforded the corresponding bis-THFs 313a,b in good yield and selectivity.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone $/ \mathrm{H}_{2} \mathrm{O}(9: 1), \mathrm{CO}_{2}$ bubbling, $-10^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ii) powdered KOH , $\mathrm{Et}_{2} \mathrm{O}$, reflux, 5 h ; (iii) allylmagnesium bromide, $\mathrm{Et}_{2} \mathrm{O}$, r.t.; (iv) $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1), r.t., 1 h ; (v) $\mathrm{NaBH}_{4}$, NaOH .

Scheme 1.89: Synthesis of bis-THF via permanganate oxidation and mercuricyclisation.

## Chapter 2: Stereoselective synthesis of bis-adjacent Cis-2,5-disubstituted THFs

As was discussed previously in chapter 1 , preliminary results carried out in our group showed that permanganate oxidation of $1,5,9$-trienes provided substituted octahydro-2,2'-bifuranyl systems regioselectively (scheme 1.10 ). ${ }^{23}$


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$, acetone, water, AcOH , acetate buffer ( $\mathrm{pH}=6.5$ ), $-30^{\circ} \mathrm{C}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1.10: Oxidative cyclisation of enantiomerically enriched dienoate 26.

To demonstrate the versatility and convenience of the triene oxidation method as a stereocontrolled route to polyether fragments, we proposed to prepare and oxidise the four stereoisomers of ethyl farnesoate to construct the corresponding racemic octahydro-2,2'bifuranyl systems (scheme 2.1). An asymmetric version of this reaction was also to be attempted on trienes bearing the Oppolzer's sultam chiral auxiliary.


Scheme 2.1: Retrosynthetic analysis of octahydro-2,2'-bifuranyl systems.

## 2-I 1,5,9-Trienes synthesis

The relative stereochemistry of the final product depends on that of the initial triene. Therefore the triene synthesis should allow access to any of the four possible stereoisomers stereoselectively. The requisite trienes were synthesised using a slight modification of methodology developed by Weiler et al., ${ }^{14,115}$ with the central double bond stereochemistry originating from neryl or geranyl chloride 309a,b (scheme 2.2).

The $\beta$-ketoesters were synthesised by alkylation of the dianion of ethyl acetoacetate with neryl chloride or geranyl chloride $\mathbf{3 0 9 a}, \mathbf{b} .{ }^{116}$ Neryl and geranyl chlorides 309a,b were prepared easily from corresponding commercially available nerol and geraniol 51a,b, ${ }^{22}$ The dianion was produced by treating ethyl acetoacetate with a slight excess of NaH and $n-\mathrm{BuLi}$; the alkylating agent $\mathbf{3 0 9}$ a or $\mathbf{3 0 9 b}$ was then added to afford the corresponding $\beta$-keto esters $\mathbf{3 1 7 a}, \mathbf{b}$ in moderate yields (scheme 2.2).


Conditions and reagents: (i) ethyl acetoacetate, NaH , then $n-\mathrm{BuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) geranyl chloride, $\mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 2.2: Preparation of the $\beta$-ketoesters 317a and 317b.

The $\beta$-ketoester 317a underwent stereoselective enol phosphate formation by treatment with LiHMDS and $(\mathrm{EtO})_{2} \mathrm{POCl}$ to provide the $2-(Z)$ enol phosphate $\mathbf{3 1 8 a}$ in good yield and selectivity (crude isomer ratio: $2 Z: 2 E>49: 1$ by ${ }^{1} \mathrm{H}$ NMR) (scheme 2.3 ). ${ }^{117}$ It is thought that the coordination of the metal ion (Li) with the ester group in the enolate species is responsible for the predominance of the $Z$-isomer. The experiment was also conducted in $\mathrm{Et}_{2} \mathrm{O}$, a non polar solvent, which favours tight binding between the keto-enolate and the counterion.
The $2-(E)$-enol phosphates $\mathbf{3 1 8} \mathbf{a}, \mathbf{c}$ were synthesised from the corresponding $\beta$-ketoesters $\mathbf{3 1 7 a}, \mathbf{b}$ along similar lines, with the exception that the enolization was performed in DMPU with $\mathrm{Et}_{3} \mathrm{~N}$ as the base and a catalytic amount DMAP to afford the corresponding 2-( $E$ )-enol phosphates 318, c (crude isomer ratio: $2 Z: 2 E>49: 1$ by ${ }^{1} \mathrm{H} N M R$ ) in good yield (scheme 2.3). The $E$-isomer is obtained predominately when a polar solvent and a base without a Lewis acidic counterion are used.


Conditions and reagents: (i) LiHMDS, THF, $0^{\circ} \mathrm{C}$; (ii) $\mathrm{PO}(\mathrm{OEt})_{2} \mathrm{Cl}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, 4 h ; (iii) $\mathrm{Et}_{3} \mathrm{~N}$, DMPU, DMAP, $\mathrm{PO}(\mathrm{OEt})_{2} \mathrm{Cl},-20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
Scheme 2.3: Synthesis of the $E$ and $Z$ enol-phosphates 318a-c.

Stereoselective alkylation of enol phosphates 318a-c was carried out using the copper methyl Grignard reagent $\mathrm{Me}_{2} \mathrm{CuLiMgCl}{ }^{114,115}$ Enol phosphates 318a-c were treated with $\mathrm{Me}_{2} \mathrm{CuLiMgCl}$, formed by reaction of CuI with MeLi and MeMgCl , to afford the corresponding desired trienes 316a-c in very good yields and selectivities (scheme 2.4).


Conditions and reagents: (i) $\mathrm{CuI}, \mathrm{MeLi}, \mathrm{MeMgCl}, \mathrm{THF},-30^{\circ} \mathrm{C}, 4 \mathrm{~h}$. (ratios obtained by GC).
Scheme 2.4: Synthesis of the 1,5,9-trienes 316a-c.

Methyl ester trienoate ( $2 E, 6 E$ ) methyl-farnesoate was also synthesised. Farnesol 319 was oxidised with either $\mathrm{MnO}_{2}$ or $\mathrm{BaMnO}_{4}$ to afford farnesal $\mathbf{3 2 0}$ in good yield. ${ }^{23,118}$ Treatment of farnesal 320 with $\mathrm{MnO}_{2}$ or $\mathrm{BaMnO}_{4}$ and an excess of NaCN in MeOH afforded (2E,6E) methyl-farnesoate 26 in poor yield (scheme 2.5).


Conditions and reagents: (i) $\mathrm{MnO}_{2}(20 \mathrm{eq})$, hexane, r.t., 2 days; (ii) $\mathrm{BaMnO}_{4}(10 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3 days; (iii) $\mathrm{MnO}_{2}, \mathrm{NaCN}, \mathrm{MeOH}$, r.t., 24 h ; (iv) $\mathrm{BaMnO}_{4}, \mathrm{NaCN}, \mathrm{MeOH}$, r.t., 24 h .

Scheme 2.5: Synthesis of $(2 E, 6 E)$ methyl-farnesoate 26.

To demonstrate that the overall approach could provide enantiomerically enriched polyether fragments, the Oppolzer camphorsultam auxiliary was introduced into the trienoates 316ac. ${ }^{15.22}$ Basic hydrolysis of the unsaturated esters 316a-c and activation of the resulting carboxylic acids with pentafluorophenol in presence of DCC produced the corresponding pentafluorophenyl esters, which underwent substitution with lithiated (2R)-10,2camphorsultam to afford the corresponding trienes $\mathbf{3 1 6 d} \mathbf{- f}$ in moderate yields (scheme 2.6).


Reagents and conditions: (i) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}$, water, MeOH , reflux, 16 h ; (ii) pentafluorophenol, DCC , EtOAc, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (iii) $n$-BuLi, ( $2 R$ )-10,2-camphorsultam, THF, $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
Scheme 2.6: Syntheses of trienes 316d-f bearing a chiral auxiliary.

It is interesting to note that if a slight excess of $n$ - BuLi was present during the lithiation of the $(2 R)$-10,2-camphorsultam, the unreactive dianion 321b could be obtained which lowered the yield of the reaction (scheme 2.7). It was therefore decided to attempt the preparation of the anion of the sultam with a less reactive base (e.g. NaH ).


Conditions and reagents: (i) $n$-BuLi; (ii) $n$-BuLi.
Scheme 2.7: Formation of dianion 321b with $n$-BuLi.

Liddle et al. have described a method using an acid chloride intermediate prepared in situ from the corresponding carboxylic acid. ${ }^{119}$ Following Liddle's work, acid 322b was treated with a catalytic amount of DMF and a slight excess of $\left(\mathrm{COCl}_{2}\right.$ to provide the acid chloride 323, which was immediately treated with the sodiated sultam to afford the triene 316e in excellent yields (scheme 2.8). Purification of triene 316e was revealed to be difficult because of the presence of by-product $\mathbf{3 2 4} \mathbf{b}$. It is thought that the acidic conditions during the preparation of the acid chloride were responsible for the formation of the by-product 324b.


Conditions and reagents: (i) $\left(\mathrm{COCl}_{2}, \mathrm{DMF}\right.$, toluene, $0^{\circ} \mathrm{C}$ to r.t., 1 h ; (ii) NaH , sultam, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 1 h .
Scheme 2.8: Preparation of triene 316e.

In an attempt to shorten the synthesis of the 1,5,9-trienes bearing the camphorsultam 316d-f, it was attempted to attach the camphorsultam auxiliary earlier in the synthesis by treating geranyl chloride 309b with the dianion of $N$-(3-oxobutanoyl)bornane-10,2-sultam 325 (scheme 2.9); ${ }^{120}$ unfortunately, the desired diene 326 was not obtained and only degradation was observed.


Conditions and reagents: (i) ethyl acetoacetate, NaH , then $n$ - $\mathrm{BuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) 325, THF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
Scheme 2.9: Attempted synthesis of diene 326.

## 2-II Permanganate oxidation of 1,5,9-trienes

Permanganate mediated oxidative cyclisation was performed on the 1,5,9-trienes 316a-g synthesised previously with optimised quantities of reactants, i.e. 3 eq. of $\mathrm{KMnO}_{4}$ ( 1 eq. per double bond), 4.2 eq. of AcOH ( 1.4 eq. per double bond) and a pH 6.24 buffer. ${ }^{23}$ 1,5,9Trienes 316a-g and 26 were oxidised to afford the corresponding lactols 315a-g and 27, which were used without further purification in the next step (scheme 2.10). Careful cleavage of lactols $\mathbf{3 1 5 a - g}$ and 27 using $\mathrm{Pb}(\mathrm{OAc})_{4}$ afforded the desired lactones 314a-g and 28 in reasonable overall yields and stereoselectivity (scheme 2.10). ${ }^{121}$ It was found that cleavage using $\mathrm{NaIO}_{4} / \mathrm{SiO}_{2}$ reagent provided a milder, more convenient and higher-yield method for achieving the same transformation. ${ }^{122,123}$ Lactols 315a-g and 27 were therefore treated with an excess of the $\mathrm{NaIO}_{4} / \mathrm{SiO}_{2}$ reagent prepared following the method described Zhong et al. and provided the resulting lactones $\mathbf{3 1 4 a - g}$ and $\mathbf{2 8}$ in good yields and stereoselectivity (scheme 2.10). ${ }^{124}$ It is interesting to note that in the oxidative cyclisation of the trienes bearing the sultam 316d-f only one diastereoisomer of the corresponding lactols 315d-f was formed (as judged from the crude ${ }^{1} \mathrm{H}$ NMR).


Conditions and reagents: (i) 3 eq. $\mathrm{KMnO}_{4}, 4.2$ eq. AcOH , phosphate buffer $(\mathrm{pH}=6.24)$, water, acetone, $25^{\circ} \mathrm{C}, 40 \mathrm{~min}$; (ii) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (iii) $\mathrm{NaIO}_{4}$ (on silica gel), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 45 min .
Scheme 2.10: Permanganate oxidative cyclisation on trienes 316a-g and 26.

Confirmation of the relative stereochemical assignment was obtained from x-ray crystallographic analysis of the lactone $\mathbf{3 1 4 b}$, which crystallised as a single diastereoisomer (Figure 2.1).


Figure 2.1: X-ray structure of lactone 314b.

Lactone 314d was successfully recrystallised in a mixture EtOAc/hexane to afford small white needles suitable for x -ray structural determination permitting the confirmation of the predicted stereochemistry (figure 2.2).


Figure 2.2: X-ray of lactone 314d.

## 2-III Efforts to selectively cleave the ester group

To demonstrate the utility of the THF lactones 314a-g and $\mathbf{2 8}$ described above, manipulation of the structure was attempted to prepare an intermediate useful for further elaboration. In order to retain the maximum structural and stereochemical complexity, reduction of the ester group or the sultam moiety was investigated. The reduction of the ester moiety would allow the possibility of chain homologation. Many of methods used commonly to reduce ester groups, like the use of $\mathrm{LiAlH}_{4}$ or DIBAL, were not antiicpated to be compatible with substrates 314a-g due to possibilities of reduction of the lactone moiety. ${ }^{19.125,126}$ The method to be used must allow differentiation of the ester and lactone groups.

Kocienksi et al. have shown that it is possible to directly reduce an $\alpha$-hydroxy $N$-acyl-sultam auxiliary in the presence of a lactone. ${ }^{22}$ The hydroxy group is believed to coordinate to the borane and direct the subsequent reduction using $\mathrm{NaBH}_{4}$. It was thought that this method could also be applied to the reduction of the ester group. Lactone $\mathbf{3 1 4} \mathbf{c}$ was treated at $0^{\circ} \mathrm{C}$ with borane dimethylsulfide complex, followed after 30 min by $\mathrm{NaBH}_{4}$ (scheme 2.11). Unfortunately, no desired product was obtained and starting material was recovered. It was thought that maybe the formation of the complex between the hydroxy group and $\mathrm{BH}_{3} . \mathrm{SMe}_{2}$ was not complete; therefore after treatment of the lactone with $\mathrm{BH}_{3} . \mathrm{SMe}_{2}$, the reaction was
warmed to room temperature and left to react for 12 hours before addition of $\mathrm{NaBH}_{4}$. Unfortunately, again only decomposition was observed.

The cleavage was also attempted using two different types of enzymes, a protease (novozym 435) and a lipase (lipase PS "Amnino"); unfortunately starting material was recovered from both experiments.


Conditions and reagents: (i) $\mathrm{NaBH}_{4}, \mathrm{BH}_{3} . \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}$, r.t., 24 h ; (ii) $\mathrm{NaBH}_{4}, \mathrm{BH}_{3} . \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) protease or lipase, $\mathrm{H}_{2} \mathrm{O} / t-\mathrm{BuOH}(9: 1), 25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}, 5$ days.

Scheme 2.11: Attempts to cleave the ester moiety from lactone 314c.

An alternative was the cleavage of both lactone and ester groups with a thiol nucleophile. The lactone ring should then undergo reclosure under mild conditions and reduction of the thioester should be possible using Raney Ni (scheme 2.12). ${ }^{127}$ Two methods were attempted to prepare the thioester $\mathbf{3 2 8 a}, \mathbf{b}$. The first method was based on the use of the "ate" complex BnSAlMe $_{3} \mathrm{Li}^{+}$to convert the ethyl ester moiety to the $S$-benzyl esters. ${ }^{19,128}$ The method employed the "ate" complex $\mathrm{BnSAlMe}_{3}{ }^{-} \mathrm{Li}^{+}$prepared in situ from $\mathrm{AlMe}_{3}$ and BnSLi. In the second method, lactones $\mathbf{3 1 4 b}, \mathbf{c}$ were treated with $\mathrm{AlMe}_{3}$ and $\mathrm{BnSH} .{ }^{129}$ These methods were attempted under different experimental conditions (table 2.1). Unfortunately, no desired product was obtained and only starting material or decomposition was observed (scheme 2.12). It was therefore decided to abandon our efforts to cleave the ester group and focus on the application of the permanganate mediated oxidative cyclisation methodology to the synthesis of natural products.

|  | lactone | eq. of $n$-BuLi | eq. of $\mathrm{AlMe}_{3}$ | eq. of BnSH | Observations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{3 1 4 b}$ | 2.0 | 2.0 | 2.0 | starting material recovered |
| 2 | $\mathbf{3 1 4} \mathbf{c}$ | 3.0 | 3.0 | 3.0 | starting material recovered |
| 3 | $\mathbf{3 1 4 b}$ | 0 | 3.0 | 3.0 | degradation |
| 4 | $\mathbf{3 1 4} \mathbf{c}$ | 0 | 3.5 | 3.5 | degradation |

Table 2.1: Experimental conditions for the ester cleavage.


Conditions and reagents: (i) $\mathrm{AlMe}_{3}, \mathrm{n}-\mathrm{BuLi}, \mathrm{BnSH}, \mathrm{Et}_{2} \mathrm{O}$, toluene, $0^{\circ} \mathrm{C}, 120$ min; (ii) $\mathrm{AlMe}_{3}, \mathrm{BnSH}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 48 h .
Scheme 2.12: Attempts to cleave the ester group from lactone 314c.

## 2-IV Conclusion and further work

A short, efficient and stereoselective synthesis of perhydro-2,2-bifuranyl systems has been achieved from readily accessible trienes using oxidative cyclisation methodology. Excellent levels of asymmetric induction were obtained during the permanganate oxidative cyclisation of trienes bearing the Oppolzer's sultam auxiliary. Unfortunately, the efforts to convert lactones 314a-g to useful intermediates for further elaboration toward natural products synthesis have been yet unsuccessful.

## Chapter 3: Toward the synthesis of intricatetraol.

Suzuki et al. have isolated intricatetraol, a halogenated triterpene alcohol from the red alga Laurencia intricata (figure 3.1). ${ }^{130}$ Intricatetraol is unique because it possesses C2 symmetry and it is the first example of a halogenated triterpenoid with chlorine atoms from the alga genus Laurencia. Unfortunately, the absolute configuration of the halogen atoms on intricatetraol has not been established yet. To our knowledge, there is no published work.


Figure 3.1: Intricatetraol (331).

## 3-I First Approach to intricatetraol

In this chapter, our efforts towards the synthesis of intricatetraol are discussed. Two different approaches were attempted. The first approach is centred on the construction of the bis-THF diol core 332a via permanganate tandem oxidative cyclisation of tetraene precursor 333a (scheme 3.1). Tetraene 333a is prepared by the coupling of 1,5 -dienes 334 .


Scheme 3.1: Retrosynthetic approach to intricatetraol (331).

To our knowledge, permanganate oxidative cyclisation of polyenes possessing a trisubstituted double bond bearing an ester group and an $\alpha$-methyl has not been described previously. According to the established reactivity of the permanganate ion, ${ }^{9-13}$ the double bond $\mathbf{A}$ should be attacked first (scheme 3.1). It raised the question whether the presence of the methyl group
would prevent or retard the attack of the permanganate. It was therefore decided to investigate the oxidative cyclisation of a series of structurally related model 1,5-dienes before attempting to oxidise the desired tetraene.

## 3-I-1 Model study on simple 1,5-dienes

## 3-I-1-1 Synthesis of model 1,5-dienes

A model 1,5-diene 335 was easily prepared from the commercially available neryl acetate $\mathbf{1 b}$ (scheme 3.2).


Scheme 3.2: Retrosynthetic scheme to 1,5-diene 335.

Neryl acetate 1b was treated with $m$-CPBA to afford the corresponding epoxide in quantitative yield; subsequent conversion to the corresponding diol was carried out in quantitative yield via acidic hydrolysis. Aldehyde 19b was obtained, in good yield, after cleavage of the diol with $\mathrm{NaIO}_{4}$ (scheme 3.3).


Conditions and reagents: (i) $m$ - $\mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (ii) $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \% \mathrm{aq}$. sol.), water, r.t., 3h; (iii) $\mathrm{NaIO}_{4}$, acetone/water, r.t., 4 h .
Scheme 3.3: Synthesis of the aldehyde 19b.

Still et al. ${ }^{131}$ have described the use of a fluorinated phosphonate to permit the stereoselective formation of the $Z$-isomer during Wittig-Horner-Emmons reactions. It is thought that the electron withdrawing effects of the $\mathrm{OCH}_{2} \mathrm{CF}_{3}$ groups minimise the lifetime of the oxaphosphetane sufficiently to restrict any thermodynamic equilibration to the $E$-compound. Ethylphosphonic dichloride $\mathbf{3 3 6}$ was treated with fluoroethanol and triethylamine to provide the phosphonate 337 in moderate yield, which was converted to the desired phosphonates 338a or 338b by treatment with LiHMDS and ethyl or methyl chloroformate (scheme 3.4). ${ }^{132}$


Conditions and reagents : (i) $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 10^{\circ} \mathrm{C}$ to r.t., 12 h ; (ii) $n$ - $\mathrm{BuLi}, \mathrm{HMDS}, \mathrm{ClCO}_{2} \mathrm{Et}$, $\mathrm{HCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (iii) $n$ - $\mathrm{BuLi}, \mathrm{HMDS}, \mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{HCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$
Scheme 3.4: Synthesis of fluorinated phosphonates 338a,b.

The aldehyde 19b was treated with the fluorinated phosphonates 338a or 338b in presence of KHMDS and a stoichiometric amount of 18 -crown- 6 to provide the corresponding dienes $\mathbf{3 3 5 a}, \mathbf{b}$ in good yield and selectivity; only a single isomer was observed by ${ }^{1} \mathrm{H}$ NMR and GC (scheme 3.5). Hydroxy-diene 335c was also prepared in good yield by basic hydrolysis of diene 335a.


Conditions and reagents: (i) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{COR} 338 \mathrm{a}(\mathrm{R}=\mathrm{OEt})$ or 338b $(\mathrm{R}=\mathrm{OMe})$, 18-crown6, KHMDS, THF, $-78^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, overnight, $-20^{\circ} \mathrm{C}$ to r.t.

Scheme 3.5: Synthesis of dienes 335a-c.

## 3-I-1-2 Attempted oxidative cyclisation of dienes 335a-c

Permanganate oxidative cyclisation using the previously reported conditions was attempted on diene 335a. ${ }^{23}$ Unfortunately, the reaction gave a mixture consisting of hydroxy ketone 339a as the major product and desired THF 340a as the minor product (crude ratio: 339a:340a > 5:1 by ${ }^{1} \mathrm{H}$ NMR). The same result was obtained when the oxidation was attempted on diene $\mathbf{3 3 5 c}$ (scheme 3.6).
As an alternative, the reaction was conducted on diene $\mathbf{3 3 5 c}$ under phase transfer conditions, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with potassium permanganate and Adogen $464^{\ominus}$ as a phase transfer catalyst, but no improvement was observed (crude ratio: 339c:340c $>4: 1$ by ${ }^{1} \mathrm{H}$ NMR) (scheme 3.6 ). ${ }^{24}$ It is thought that the presence of an electron withdrawing group on the second double bond may disfavour cyclisation of the intermediate on the second double bond, cleavage of the manganese diester intermediate leads to the formation of hydroxy ketones.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}\left(2\right.$ eq.), AcOH (2.8 eq.), buffer, acetone/water, $-25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ii) $\mathrm{KMnO}_{4}$ (powered, 2 eq.), Adogen 464 ( 0.05 eq .), AcOH ( 8 eq .) , $\mathrm{CH} 2 \mathrm{Cl} 2,-30^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
Scheme 3.6: Attempts of oxidative cyclisation on 1,5-dienes 335a,c.

Previous work has shown that palladium was an efficient way to reduce allylic acetates ($\left.\mathrm{CH}_{2} \mathrm{OAc} \rightarrow-\mathrm{CH}_{3}\right) .{ }^{133,134}$ Cleavage was achieved by treatment of diene $\mathbf{3 3 5 a}$ with a catalytic amount of $\mathrm{Pd}(\mathrm{acac})_{2}$ in the presence of dppe and $\mathrm{NMe}_{4} \mathrm{BH}(\mathrm{OAc})_{3}$ (scheme 3.7). ${ }^{135}$ Unfortunately, isomerisation of the double bond occurred and the dienes 335d, e were obtained as a 1:1 $\mathrm{E} / \mathrm{Z}$ mixture, but in good yield.


Conditions and reagents: (i) $\mathrm{Pd}(\mathbf{a c a c})_{2}$, dppe, $\mathrm{NMe}_{4} \mathrm{BH}(\mathrm{OAc})_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 36 h .
Scheme 3.7: Synthesis of dienes 335d, e.

Permanganate oxidative cyclisation was attempted on the mixture of dienes $\mathbf{4 0 a}, \mathbf{b}$, but the hydroxy ketone 339d was also obtained predominately (Scheme 3.8).


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (2 eq.), AcOH (2.8 eq.), buffer, acetone/water, $-25^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
Scheme 3.8: Attempted oxidative cyclisation on dienes 335d, e.

This result proved that the withdrawing effect of the acetate may not be the only reason why the reaction did not go to completion. A different approach to the oxidative cyclisation reaction was also attempted. The use of powdered permanganate in a mixture of acetone and acetic acid as solvent in a $3: 2$ ratio, with $5 \%$ Adogen $464^{\circ}$ as phase transfer catalyst gave the desired product $\mathbf{3 4 0 b}$ in good yield and selectivity (scheme 3.9 ). ${ }^{26}$ A comparative study was set up to optimise this step (table 3.1).


Scheme 3.9: Oxidative Cyclisation of diene 335b.

| Conditions | 340b | 339b | 341b | 342b |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $70 \%$ | - | $15 \%$ | - |
| (ii) | $72 \%$ | - | $10 \%$ | - |
| (iii) | $18 \%$ | - | $40 \%$ | $34 \%$ |

(i) $\quad \mathrm{KMnO}_{4}$ (powered, 2 eq .), Adogen $464(0.05 \mathrm{eq}),. \mathrm{AcOH} /$ acetone $(2: 3),-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h} 30$.
(ii) $\mathrm{KMnO}_{4}$ (powered, 2 eq.), $\mathrm{AcOH} /$ acetone $(2: 3),-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h} 30$.
(iii) $\mathrm{KMnO}_{4}$ (2 eq. of a 0.4 M aqueous sol.), AcOH (2.8 eq.), buffer ( 0.5 mL ), acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h} 30$.
Table 3.1: Comparative study for the optimisation of the oxidative cyclisation step.

As expected, conditions (iii) gave by-products in majority, but when using conditions (i) and (ii), the desired product 340b was obtained in good yield. Therefore, conditions (ii) will be used for oxidative cyclisation work on this type of diene system.
Due to the improved yields obtained for the oxidative cyclisation of 1,5 -diene 335b, it was decided to re-examine the oxidative cyclisation of triene 316c (scheme 3.10 ). Unfortunately, the desired product $\mathbf{3 1 5 c}$ was not obtained, only degradation of the starting material occurred.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (powered), adogen $464, \mathrm{AcOH} /$ acetone $(2: 3),-25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
Scheme 3.10: Attempted oxidative cyclisation of triene 316c.

The oxidative cyclisation step was attempted on diene 335c leading to the corresponding 2,5disubstituted THF 340c as major product (crude ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). Oxidative cyclisation of the isomeric mixture of dienes $\mathbf{3 3 5 d}$,e afforded the corresponding 2,5-disubstituted THF products $\mathbf{3 4 0 a}, \mathrm{b}$ in moderate yield and as an approximately $1: 1$ ratio of diastereoisomers (scheme 3.11).


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (powdered), $\mathrm{AcOH} /$ acetone $(2: 3),-25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}, 2 \mathrm{~h} 30 \mathrm{~min}$.
Scheme 3.11: Oxidative cyclisation of dienes 335c-e.

The syntheses of different racemic 2,5 -cis-disubstituted THFs from simple 1,5-dienes bearing a trisubstituted double bond with an ester group and an $\alpha$-methyl has been achieved successfully with an improved oxidation procedure. Previous work showed that the Oppolzer camphorsultam has given good diastereoselectivity during the oxidative cyclisation step. Oxidative cyclisation of model 1,5-dienes bearing the camphorsultam was therefore the next logical progression.

## 3-I-1-3 Synthesis of model 1,5-dienes bearing Oppolzer's chiral auxiliary

A MEM protecting group would be employed in the 1,5 -diene synthesis, replacing the acetate group. This would provide a substrate which was stable to basic conditions encountered during the proposed synthesis.

Diene 345a was synthesised using the method previously reported for the synthesis of diene 335a. The MEM group was inserted at the start of the synthesis by treatment of nerol 51b
with MEMCl and diisopropylethylamine to give the protected alcohol 343. ${ }^{136}$ After epoxidation of the protected alcohol $\mathbf{3 4 3}$ with $m$-CPBA followed by acidic hydrolysis, the corresponding diol was obtained in quantitative yield. The synthesis of the key aldehyde 344 was completed by cleavage of the diol with $\mathrm{NaIO}_{4}$ in good yield (scheme 3.12). Aldehyde 344 was treated with methyl-phosphonic acid bis-(2,2,2-trifluoro-ethyl) ester in presence of KHMDS and a stoichiometric amount of 18 -crown-6 to provide diene $\mathbf{3 4 5}$ a in good yield and excellent stereoselectivity (only the cis isomer was observed by ${ }^{1} \mathrm{H}$ NMR and GC).


Conditions and reagents : (i) $m$ - $\mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ ( $10 \%$ aq. sol.), water, r.t., 3h; (iii) $\mathrm{NaIO}_{4}$, acetone/water, rt, 4h, (iv) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Me}, 18$-crown-6, KHMDS, THF, $-78^{\circ} \mathrm{C}$, 90 min .
Scheme 3.12: Synthesis of diene 345a.
( $2 R$ )-camphor sultam was attached to diene 345a using the method seen previously (scheme 2.6). Basic hydrolysis of the unsaturated ester 345a and activation of the resulting carboxylic acid with pentafluorophenol in presence of DCC produced the pentafluorophenyl ester, which underwent substitution with lithiated ( $2 R$ )-10,2-camphorsultam to afford the corresponding diene 345b in moderate yields (scheme 3.13).


Reagents and conditions: (i) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}$, water, MeOH , reflux, 18 h ; (ii) pentafluorophenol, DCC , EtOAc, r.t., 24 h ; (iii) $n$-BuLi, ( $2 R$ )-10,2-camphorsultam, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to r.t., 2 h .
Scheme 3.13: Synthesis of diene 345b bearing a chiral auxiliary.

## 3-1-1-4 Attempted oxidative cyclisation of dienes 345a,b

Oxidative cyclisation on the dienes $\mathbf{3 4 5 a}$, $\mathbf{b}$ was then attempted using the two different procedures described previously. Unfortunately, the reaction produced an unknown major byproduct and none of the desired THFs 346a,b (scheme 3.14).


Reagents and conditions : (i) $\mathrm{KMnO}_{4}$ (powered, 2 eq.), $\mathrm{AcOH} /$ acetone (2:3), $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; (ii) $\mathrm{KMnO}_{4}$ ( 2 eq. of a 0.4 M aqueous sol.), AcOH ( 2.8 eq.), buffer ( 0.5 mL ), acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 3.14: Attempted oxidative cyclisation of dienes 345a,b.

The exact structure of the by-product has not been elucidated. It is thought that the permanganate is chelating to the MEM group which directs attack on the proximal double bond and cleavage of the MEM group. To prevent this problem, it was planned to remove the MEM group in diene 345b and replaced it with by an acetyl group. With reference to previous results (scheme 3.9) the oxidative cyclisation of this type of diene was anticipated to be successful.

Diene 345b was treated with a catalytic amount of $\mathrm{FeCl}_{3}$, acetic anhydride and $\mathrm{Et}_{3} \mathrm{~N}$ to afford a mixture of alcohol 346 and diene $348 ;{ }^{136}$ after treatment in situ of this mixture with DMAP, acetic anhydride and $\mathrm{Et}_{3} \mathrm{~N}$ to convert the unreacted alcohol 347, diene 348 was obtained in good yield (scheme 3.15).


Reagents and conditions: (i) $\mathrm{FeCl}_{3}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$; (ii) $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{DMAP}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.
Scheme 3.15: Synthesis of diene 348.

Encouraged by the previous results, the oxidative cyclisation of diene 348 was attempted. Unfortunately, the desired THF 346c was not obtained and the formation of side-products formation was noted (scheme 3.16). Cyclisation did not proceed, possibly because the sultam may block the attack of the permanganate on double bond $\mathbf{B}$ because of its spatial position due to the presence of the methyl group on the double bond $\mathbf{A}$. The use of an alternative chiral auxiliary should be investigated to obtain a solution to this problem.


Reagents and conditions: (i) $\mathrm{KMnO}_{4}$ (powered, 2 eq.), $\mathrm{AcOH} /$ acetone $(2: 3),-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$.
Scheme 3.16: Attempted synthesis of 2,5-disubstituted THF 346c.

## 3-I-2 Preparation of the tetraene precursor 333a

Biellmann et al. have reported the synthesis of squalene $\mathbf{7 2}$ via a nucleophilic substitution of bromide $\mathbf{3 5 0}$ by the carbanion derived from sulphide 349 (scheme 3.17). ${ }^{137}$ The reaction proceeded in good yield and no isomerisation of the double bond occurred. To conclude the synthesis, the sulphide group was removed using lithium in ethylamine.


Reagents and conditions : (i) $\mathrm{DABCO}, n-\mathrm{BuLi},-18^{\circ} \mathrm{C}$ to r.t., 30 min ; (ii) Li , ethylamine $-15^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$..
Scheme 3.17: Synthesis of squalene 72.

We decided to apply this method to the synthesis of tetraene 333a. Tetraene 333a was to be obtained via a Still-Gennari reaction on dialdehyde 352. Diene 352a was to be prepared by coupling alkenes $\mathbf{3 5 3}$ and $\mathbf{3 5 4}$ (scheme 3.18). Alkenes $\mathbf{3 5 3}$ and $\mathbf{3 5 4}$ were to be derived from neryl acetate 1b.


Scheme 3.18: Retrosynthetic approach to tetraene 333a.

## 3-1-2-1 Synthesis of compounds 353 and 354

Aldehyde 19b was protected as its 1,3-dioxolane derivative $\mathbf{3 5 5}$ by treatment with PTSA and 1,2-ethanediol using a Dean-Stark apparatus (scheme 3.19). ${ }^{22}$ Subsequent hydrolysis with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MeOH afforded the corresponding allylic alcohol 356 in moderate yield. Treatment of the alcohol 356 with lithium chloride, 2,6-lutidine and MsCl afforded the corresponding allylic chloride $\mathbf{3 5 3}$ in good yield. Allylic alcohol $\mathbf{3 5 6}$ was then treated with phenyl disulfide and tributyl phosphine to give the corresponding phenyl sulfide 354 in moderate yield (scheme 3.19).


Conditions and reagents : (i) PTSA, 1,2-ethanediol, toluene, reflux, overnight; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, methanol, r.t., overnight; (iii) $\mathrm{LiCl}, \mathrm{MsCl}, 2,6$-lutidine, $\mathrm{DMF}, 0^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (iv) $(\mathrm{PhS})_{2}, \mathrm{Bu}{ }_{3} \mathrm{P}$, pyridine, $0^{\circ} \mathrm{C}$ to r.t., 2 h .
Scheme 3.19: Synthesis of the precursors 353 and 354.

## 3-I-2-2 Coupling of precursors 353 and 354

The coupling adduct 356 was obtained as a mixture of diastereoisomers by treatment of the allylic chloride 353 with the lithiated allylic phenyl sulfide 354 in presence of DABCO (scheme 3.20). ${ }^{138}$ It has been reported the DABCO acts as a ligand in this reaction, leading to improved stereoselectivity. It is thought that DABCO coordinates the newly formed lithiated allylic phenyl sulfide, preventing isomerisation of the double bond. It was shown that the temperature of the reaction has also a critical effect on the stereoselectivity of the reaction. When the reaction mixture was allowed to warm to $-50^{\circ} \mathrm{C}$, a significant amount of the cis,trans-isomer was obtained (cis,cis:cis,trans 1.3:1 mixture by NMR and GC).
The phenyl sulphide group was subsequently removed by treatment with sodium metal in presence of iso-propanol to give the corresponding diene 357 a and a side-product 357 b (resulting from the translocation of one of the double bonds in a $4: 1$ ratio) but in good yield (scheme 3.20). ${ }^{48}$


Conditions and reagents : (i) $\mathrm{DABCO}, n-\mathrm{BuLi},-78^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (ii) $\mathrm{Na}, \mathrm{THF} /$ isopropanol (3:2), reflux, 5 h .
Scheme 3.20: Synthesis of the diene 357a.

The separation of dienes $\mathbf{3 5 7} \mathbf{a}$ and $\mathbf{3 5 7}$ b was not possible by normal chromatography on silica gel; however it has been reported that effective separation of this related isomers could be achieved using silica impregnated with $\mathrm{AgNO}_{3} \cdot{ }^{48,138}$ Attempts were made to separate product 357a from its side-product $\mathbf{3 5 7 b}$ using $\mathrm{AgNO}_{3}$ impregnated silica, unfortunately, separation was not complete, but the ratio was improved from 4:1 to $5: 1$. It was decided to go through the synthesis using the mixture of dienes. The minor tetraene $\mathbf{3 3 3 b}$ will not be able to undergo the double oxidative cyclisation and the product should be separable from bis-THF $\mathbf{3}$ expected from oxidation of the major tetraene 333a (scheme 3.21).


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ oxidation.
Scheme 3.21: Expected products from oxidation of the mixture of tetraene isomers.

The deprotection of the cyclic acetals was then attempted on the mixture of dienes $\mathbf{3 5 7 a}, \mathbf{b}$. Treatment of the dienes $\mathbf{3 5 7 a}, \mathbf{b}$ with HCl in THF/acetone afforded the corresponding dialdehydes 352a,b. Unfortunately, this reaction proceeded slowly and the formation of many by-products was observed (scheme 3.22). ${ }^{139}$ Another method of deprotection was attempted using toluene sulfonic acid in water/acetone, but only decomposition was observed. ${ }^{140}$ Therefore milder deprotection conditions were investigated. Marko et al. have reported the
deprotection of cyclic acetal using ceric ammonium nitrate in the presence of a basic buffer. ${ }^{141}$ Treatment of the diacetals $\mathbf{3 5 7 a}, \mathbf{b}$ with a catalytic amount of CAN in a $1: 1$ mixture of MeCN and a buffer solution ( pH 8 ) afforded the corresponding dialdehydes $\mathbf{3 5 2} \mathbf{a}, \mathbf{b}$ in excellent yield (scheme 3.22).




Conditions and reagents: (i) $\mathrm{HCl}, \mathrm{THF} /$ acetone/water, r.t. to $50^{\circ} \mathrm{C}, 4$ days; (ii) CAN , buffer $\mathrm{pH} 8, \mathrm{MeCN}, 3$ days, $60^{\circ} \mathrm{C}$.
Scheme 3.22: Synthesis of the dialdehyde 352a.

The Still-Gennari conditions seen previously were applied to the aldehydes 352a,b. Treatment of aldehydes $\mathbf{3 5 2} \mathbf{a}, \mathbf{b}$ with the fluorinated phosphonate $\mathbf{3 3 8 b}$ in the presence of KHMDS and 18-crown-6 afforded the corresponding tetraenes 333a,b in good yield and with excellent stereoselectivity; only the cis-cis isomer was observed by ${ }^{1}$ H NMR and GC (scheme 3.23).


Conditions and reagents: (i) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Me} 338 \mathrm{~b}, 18$-crown- $6, \mathrm{KHMDS}$, THF, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
Scheme 3.23: Synthesis of tetraene 333a.

## 3-I-2-3 Attempted oxidative cyclisation of tetraenes 333a,b

Oxidative cyclisation on the tetraenes 333a,b was attempted using the improved conditions (scheme 3.9). Unfortunately, the desired bis-THF 358a was not obtained. The major byproduct resulted from cleavage of the tetraene during the oxidation. Different conditions were then investigated, observing mainly degradation of the starting material (table 3.2). Oxidative cyclisation was successful only when 2.5 eq. of powered $\mathrm{KMnO}_{4}$ in a mixture of acetone/AcOH (3:2) was used (scheme 3.24). The crude NMR showed characteristic peaks for the THF rings and mass spectrometry confirmed the formation of the desired products

358a,b. Unfortunately, purification by chromatography on silica gel has been unsuccessful, resulting in a loss of material; this is thought to be due to the high polarity of products $\mathbf{3 5 8} \mathbf{a}, \mathbf{b}$.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}, \mathrm{AcOH}$, solvent, additive (see table 3.2).

Scheme 3.24: Attempted oxidative cyclisation on tetraene 333a.

| (i) | $\mathrm{KMnO}_{4}$ | Solvent | AcOH | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | Time | Observations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $4 \mathrm{eq} .$ <br> powdered | acetone | co-solvent ${ }^{b}$ | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & \text { to } 0^{\circ} \mathrm{C} \end{aligned}$ | 2h30 | degradation |
| 2 | 4 eq. <br> powdered | acetone | co-solvent ${ }^{\text {b }}$ | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & \text { to } 0^{\circ} \mathrm{C} \end{aligned}$ | 2h30 | degradation |
| 3 | $\begin{aligned} & 4 \text { eq. } \\ & 0.4 \mathrm{M} \text { aq. sol. } \end{aligned}$ | acetone/buffer | 2.8 eq | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & \text { to } 0^{\circ} \mathrm{C} \end{aligned}$ | 2 h 30 | degradation |
|  | 3.5 eq . <br> powdered | acetone | co-solvent ${ }^{\text {b }}$ | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & \text { to }-10^{\circ} \mathrm{C} \end{aligned}$ | 1h30 | degradation |
| 5 | $\begin{aligned} & 3.5 \mathrm{eq} \text {. } \\ & 0.4 \mathrm{M} \text { aq. sol. } \end{aligned}$ | acetone/buffer | 2.8 eq | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & \text { to }-10^{\circ} \mathrm{C} \end{aligned}$ | 1h30 | degradation |
| 6 | $2.5 \text { eq. }$ <br> powdered | acetone | co-solvent ${ }^{\text {b }}$ | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & \text { to }-10^{\circ} \mathrm{C} \end{aligned}$ | 1h30 | 358a,b (25\%, crude) |

${ }^{a}$ Reaction carried out with the addition of $10 \mathrm{~mol} \%$ adogen $464 ;{ }^{b} \mathrm{AcOH} /$ acetone (2:3).
Table 3.2: Results of the oxidative cyclisation of tetraene 333a under different conditions

In order to overcome this problem, the alcohol groups of crude bis-THFs 358a, $\mathbf{c}$ were protected and protected product $\mathbf{2 2}$ was successfully purified, confirming the formation of the bis-THFs 358a,c (scheme 3.25). ${ }^{142}$ Unfortunately, the yield of this step was quite poor probably because of the formation of the mono, bis and tri-protected adducts.


Conditions and reagents: (i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 24 h .
Scheme 3.25: Protection of bis-THFs 358a,c.

The results obtained for the oxidative cyclisation of the tetraene 333a has not been as good as expected, and unfortunately, the oxidative cyclisations carried out on simple 1,5 -dienes $\mathbf{3 4 5} \mathbf{b}$ and 348 bearing the sultam have not been successful, which is a major obstacle for the asymmetric approach. This route was therefore abandoned, although investigation on the replacement of the camphor-sultam by an alternative chiral auxiliary will be attempted later in the laboratory.

## 3-II Second approach to intricatetraol

An alternative approach to the synthesis of intricatetraol (331) was adopted where the bisTHF core 332a was to be formed via the coupling of two THF rings. The revised approach would rely on a metathesis reaction to couple the two THF-containing fragments. Recently, two total syntheses of non-adjacent bis-THFs containing natural products have been published using a related strategy. ${ }^{92,143}$ This approach will provide an interesting alternative toward the synthesis of intricatetraol (331).

## 3-II-1 Previous use of metathesis toward the synthesis of non adjacent bis-THF products

Mootoo et al. have described the synthesis of a precursor of bullatanocin via iodoetherifcation of hydroxy alkenes and olefin cross metathesis (scheme 3.26). ${ }^{143}$ The mono-THFs 361 and 362 were prepared via iodocyclisation of alkenes 363 and 364.








Scheme 3.26: Mootoo's retrosynthetic scheme of bis-THF core $\mathbf{3 6 0}$.

Treatment of 1,3-diene 363 with AD-mix $\beta$ by Mootoo et al. gave a 1:1 mixture of diol 364a ( $e e>92 \%$ ) and the derived lactone 364b in moderate yield (scheme 3.27). Reduction of the mixture and subsequent acetonation afforded alkene 365a. Synthesis of alkene 365b was carried out along similar lines, using AD-mix $\alpha$ instead of AD-mix $\beta$ to provide $\mathbf{3 6 5 b}$ in moderate yield and ee $>95 \%$. The aldols $\mathbf{3 6 5 a}, \mathrm{b}$ were converted to the corresponding aldehydes which underwent Wittig olefination with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OLi}$, respectively. DIBAL reduction or pivaloylation of the olefination products provided the dienes $\mathbf{3 6 2 a}, \mathbf{b}$. Iodocyclisation of diene $\mathbf{3 6 2 a}$ with IDCP gave transTHF 366 a as a single isomer in good yield. THF 366a was treated with sodium methoxide followed by alcohol silylation to produce a silyoxy-epoxide intermediate. This epoxide was opened with nonyl magnesium bromide, the resulting alcohol protected with MOMCl and the silyl group removed to afford THF 361a in good yield. Treatment of diene 362b with IDCP provided the desired THF 366b in good yield and selectivity. After reduction of the iodide with $\mathrm{Bu}_{3} \mathrm{SnH}$, the secondary alcohol was acetylated to afford THF $\mathbf{3 6 1 b}$ in good yield.


Conditions and reagents: (i) AD-mix $\beta, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), \mathrm{MeSONH}_{2}$; (ii) DIBALH, THF, $-78^{\circ} \mathrm{C}$; (iii) (MeO) $)_{2} \mathrm{CMe}_{2}, \mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$; (vi) DIBALH, THF, $-78^{\circ} \mathrm{C}$; (vii) IDCP, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$; (viii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH ; (ix) TBDMSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (x) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{MgBr}, \mathrm{CuBr}$, THF; (xi) MOMCl, $i$ - $\mathrm{Pr}_{2} \mathrm{Net}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xii) $\mathrm{Bu}_{4} \mathrm{NF}$, THF; (xiii) Swern oxidation; (xiv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OLi}$, toluene, $78^{\circ} \mathrm{C}$; (xv) PivCl, pyridine, DMAP; (xvi) $\mathrm{Bu}_{3} \mathrm{SnH}$, toluene, AIBN, reflux; (xvii) $\mathrm{Ac}_{2} \mathrm{O}$, EtOAc, DMAP.

Scheme 3.27: Synthesis of THF 361a,b.

The cross metathesis of THF $\mathbf{3 6 1 a , b}$ was carried out using an excess of ester $\mathbf{3 6 1 b}$ to prevent the formation of homodimers and bis-THF 367 was obtained in good yield ( $76 \%$ related to THF 361a and 75\% related to THF 361b) (scheme 3.28). After hydrogenation of bis-THF 367, sequential hydrolysis of the acetate group, protection of the resulting alcohol with MOMCl and removal of the pivaloate group afforded the bis-THF 360 precursor of bullatanocin (368).


Conditions and reagents: (i) 361a:361b (1:3), Grubbs' catalyst ( $10 \mathrm{~mol} \%$ ), 18 h , r.t., then Grubbs' catalyst ( $10 \mathrm{~mol} \%$ ), 18 h, r.t; (ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (iv) $\mathrm{MOMCl}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (v) NaOMe , MEOH.

Scheme 3.28: Synthesis of bis-THF 360.

Evans et al. have described the total synthesis of (-)-mucocin (369) using a temporary silicontethered ring-closing metathesis cross-coupling reaction (scheme 3.29). ${ }^{92}$ Alkyne 371 and aldehyde $\mathbf{3 7 2}$ are coupled via enantioselective addition. Precursors $\mathbf{3 7 0}$ and $\mathbf{3 7 1}$ are prepared from a common intermediate, epoxide 373 and aldehyde 372 from epoxide 374.


Scheme 3.29: Retrosynthetic route to (-)-mucocin (369).

After a Mitsunobu inversion of the allylic alcohol $\mathbf{3 7 3}$ using $p$-methoxyphenol, the epoxide was opened and the resulting secondary alcohol was protected in situ with TBSOTf to afford triene $\mathbf{3 7 5}$ in good yield (scheme 3.30). Sharpless asymmetric dihydroxylation of the triene 7 using AD-mix $\beta$ ( $d s \geq 99: 1$ by HPLC) followed by the conjugate addition of the cuprate derived from octylmagnesium bromide provided alcohol 376. Reductive etherification of ketone $\mathbf{3 7 6}$ with bismuth tribromide, subsequent protection of the secondary alcohol with TBSOTf and cleavage of the PMP group afforded pyran 377 in good yield.

Mitsunobu inversion of epoxide $\mathbf{3 7 3}$ followed by the epoxide opening with the cuprate derived from allylmagnesium bromide gave diene 378. Trans-THF 379 ( $d s \geq 19: 1$ ) was obtained in good yield via cobalt catalysed oxidative cyclisation of alcohol 378. Conversion of primary alcohol $\mathbf{3 7 9}$ to the corresponding triflate, followed by cuprate displacement and in situ deprotection of trimethylsilyl group furnished THF 371.
Treatment of epoxide $\mathbf{3 7 4}$ with the carbanion derived from alkyne $\mathbf{3 8 0}$ gave the secondary alcohol that was converted to the selenocarbonate $\mathbf{3 8 1}$ in moderate yield. Treatment of selenocarbonate $\mathbf{3 8 1}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$, provided the $\gamma$-butyrolactone; metal-catalysed
isomerisation of the exo-cyclic olefin and hydrolysis of the diethyl acetal afforded the aldehyde 372 in good yield.


Conditions and reagents : (i) $p-\mathrm{MeCOC}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{DIAD}, \mathrm{PPh}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (ii) $\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{2} \mathrm{CHOTBS}, n$ BuLi, THF, $-78^{\circ} \mathrm{C}$, then TBSOTf, 2,6 -lutidine, -78 to $0{ }^{\circ} \mathrm{C}$; (iii) AD-mix $\beta, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), \mathrm{MeSONH}_{2}$; (iv) $n$-octylMgBr, $\mathrm{CuCN}, \mathrm{THF},-78^{\circ} \mathrm{C}$; (v) $\mathrm{BiBr}_{3}, \mathrm{t}$ - $\mathrm{BuMe}_{2} \mathrm{SiH}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}$, then 2,6-lutidine, TBSOTf, $0^{\circ} \mathrm{C}$; (vi) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O},-5^{\circ} \mathrm{C}$ (vii) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}, \mathrm{CuCN}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; (viii) $\mathrm{Co}(\operatorname{modp})_{2}, \mathrm{O}_{2}, t-$ BuOOH , iPrOH; (ix) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (x) $\mathrm{TMSC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{MgBr}, \mathrm{CuI}$ THF, -20 to $-10^{\circ} \mathrm{C}$, then $\mathrm{MeOH}, \mathrm{TBAF},-20^{\circ} \mathrm{C}$ to r.t.; (xi) $S$-propylene oxide $6, n$ - $\mathrm{BuLi}, \mathrm{HMPA}, \mathrm{THF}$; (xii) $\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{6}, 0^{\circ} \mathrm{C}$ to r.t., then PhSeH , pyridine, $\mathrm{THF} / \mathrm{C}_{6} \mathrm{H}_{6}, 0^{\circ} \mathrm{C}$ to r.t.; (xiii) $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$, $\mathrm{AIBN}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux; (xiv) $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, $\mathrm{C}_{6} \mathrm{H}_{6}, 85^{\circ} \mathrm{C}$; (xv) HCOOH , pentane, $0^{\circ} \mathrm{C}$.

Scheme 3.30: Synthesis of precursors 371, 372 and 377.

Enatioselective addition of the alkynyl zinc reagent prepared from THF $\mathbf{3 7 1}$ to aldehyde $\mathbf{3 7 2}$ gave the propargylic alcohol ( $d s=20: 1$ by HPLC), subsequent protection with TIPSOTf and cleavage of the PMP ether afforded THF $\mathbf{3 8 2}$ in good yield (scheme 3.31). Treatment of alcohol $\mathbf{3 8 2}$ with excess of diisoproplydichlorosilane followed by the removal of the excess silylating reagent and addition of pyran 377 furnished the mixed bis-alkoxy silane that underwent ring-closing metathesis with stoichiometric Grubbs' catalyst to afford compound 383 in good yield. After the removal of all silicon groups with HF, chemoselective reduction with diimide gave (-)-mucocin (369) in good yield.


Conditions and reagents : (i) $\mathrm{Et}_{2} \mathrm{Zn}$, toluene, reflux, then $(R)-\mathrm{BINOL}, \mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}, \mathrm{THF}, 4,0^{\circ} \mathrm{C}$; (ii) TIPSOTf, pyridine, DMAP, THF, $0^{\circ} \mathrm{C}$; (iii) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O},-10^{\circ} \mathrm{C}$; (iv) 382, i- $\mathrm{Pr}_{2} \mathrm{SiCl}_{2}$ (xs), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, imidazole, $0^{\circ} \mathrm{C}$ to r.t., then 377 , imidazole, $0^{\circ} \mathrm{C}$ to r.t.; (v), Grubb' catalyst ( 1.8 eq .), 1.2-DCE, reflux; (vi) $\mathrm{HF} / \mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; (vii) $\mathrm{TsNHNH}, \mathrm{NaOAc}_{2}, 1,2-\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}$, reflux.

Scheme 3.31: Evans' synthesis of mucocin (369).

## 3-II-2 Approach toward intricatetraol via metathesis

It is proposed to synthesise intricatetraol (331) using a tethered ring-closing cross metathesis reaction to construct the bis-THF core $\mathbf{3 8 4}$ (scheme 3.32). The mono-THF precursor $\mathbf{3 8 5}$ will be obtained by selective permanganate mediated oxidative cyclisation of the corresponding triene $\mathbf{3 1 6}$ bearing a chiral auxiliary.




Scheme 3.32: Second approach to intricatetraol (331).

## 3-II-2-1 Selective oxidative cyclisation of 1,5,9-trienes 316c,f,h

The synthesis of trienes $\mathbf{3 1 6} \mathbf{c}, \mathbf{f}, \mathrm{h}$ has been previously described strarting from nerol 51b (scheme 3.33 ). The correct absolute stereochemistry should be obtained by using the (2S)camphorsultam auxiliary.



Conditions and reagents : (i) ethyl acetoacetate, NaH , then $n-\mathrm{BuLi}, \mathrm{THF}, 0$ to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) $\mathrm{Et}_{3} \mathrm{~N}$, DMPU, DMAP, $\mathrm{PO}(\mathrm{OEt})_{2} \mathrm{Cl},-20$ to $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iii) $\mathrm{MeCu}, \mathrm{MeMgCl}, \mathrm{THF},-30^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (iv) $\mathrm{NaOH}, \mathrm{NaHCO}$, water, MeOH , reflux, 16 h ; (v) pentafluorophenol, $\mathrm{DCC}, \mathrm{EtOAc}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (vi) $n$ - BuLi , (2S)-10,2camphorsultam, THF, $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (vii) $n$ - $\mathrm{BuLi},(2 R)-10,2$-camphorsultam, $\mathrm{THF},-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.
Scheme 3.33: Synthesis of trienes 316c,f,h.

Oxidative cyclisation of trienes $\mathbf{3 1 6 c} \mathbf{c}, \mathrm{f}, \mathrm{h}$ were attempted using 1.5 eq. of powered $\mathrm{KMnO}_{4}$ in a mixture of acetone/AcOH (3:2), surprisingly, products 386a-c were obtained in good yield instead of the desired products 385a-c (scheme 3.34). It is thought that the important concentration of acid in the reaction may cause strong hydrogen oxygen interactions between
the acid and the permanganate ion, which could become more electrophile and therefore favoured the attack on the double bond A. However, within the group, these oxidation conditions have been applied successfully to similar type of trienes bearing disubstituted double bonds. Therefore, alternative conditions were investigated and treatment of trienes $\mathbf{3 1 6 c} \mathbf{f}, \mathbf{h}$ with 1.7 eq. of $\mathrm{KMnO}_{4}$ (aq. sol.) and 2.8 eq. of AcOH in acetone in presence of a buffer ( $\mathrm{pH}=6.24$ ) afforded the desired products $\mathbf{3 8 5 a} \mathbf{- c}$ in good yield with a small amount of the corresponding THF lactols $\mathbf{1 7 c}, \mathbf{f}, \mathrm{h}$ as minor by-products (scheme 3.34). Oxidative cyclisation of trienes $\mathbf{3 1 6} \mathbf{h}, \mathrm{f}$ was achieved with an excellent level of asymmetric induction.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (powdered, 1.5 eq.), $\mathrm{AcOH} /$ acetone (2:3), $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{KMnO}_{4}$ ( 1.7 eq . of a 0.4 M aq. sol.), AcOH ( 2.8 eq .), buffer ( 0.5 mL ), acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme 3.34: Formation of mono-THFs 385a-c.

## 3-II-2-2 Reduction of mono-THFs to the corresponding triols

Mono-THFs 385a-c and 386a were reduced using $\mathrm{LiAlH}_{4}$ in THF affording the corresponding triols 387a,b and $\mathbf{3 8 8}$ in good yield (Scheme 3.35). ${ }^{126}$ Triol 387b is known in the literature and the data were identical to that reported, which confirmed the predicted diastereoselectivity for the oxidative cyclisation of the triene bearing the sultam. ${ }^{144}$



Conditions and reagents: (i) $\mathrm{LiAlH}_{4}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to r.t., 24 h .
Scheme 3.35: Synthesis of triols 387a-c and 388.

The direct reduction of the sultam moiety of mono-THF 385b to the aldehyde was attempted by treatment with DIBAL, but the desired product was not obtained, starting material was recovered and the chiral centre next to the sultam appeared to have undergone epimerization. ${ }^{19}$

## 3-III Conclusion and further work

The synthesis of all cis-tetraene 333a was achieved via a versatile method in moderate yield, but it was not possible to obtain a pure sample as by-product 333b was carried on through the synthesis. Oxidative cyclisation on tetraenes 333a,b mainly led to degradation and when the desired bis-THFs 358a,c were obtained, it was not possible to obtain a pure sample due to purification issues. Selective permanganate oxidative cyclisation of trienes $\mathbf{3 1 6 c}, \mathbf{f , h}$ afforded the corresponding mono-THFs 385a-c in good yield and high diastereoselectivity. It is interesting to note that it is possible to selectively prepare mono-THF $\mathbf{3 8 5}$ or mono-THF 386
from the same triene precursor 316 by simply changing the conditions of oxidation with permanganate (scheme 3.36).


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (powered, 1.5 eq.), $\mathrm{AcOH} /$ acetone (2:3),$-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{KMnO}_{4}$ ( 1.7 eq. of a 0.4 M aq. sol.), AcOH ( 2.8 eq.), buffer ( 0.5 mL ), acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
Scheme 3.36: Selective oxidation of triene 316.

In order to move towards the synthesis of intricatetraol (331), selective oxidation of the primary alcohol moiety of mono-THF $\mathbf{3 8 7} \mathbf{b}$ with TEMPO will be attempted to produce the aldehyde 389, which will undergo olefination to afford diol $\mathbf{3 9 0}$ (scheme 3.37). ${ }^{145-149}$ THF $\mathbf{3 9 0}$ will then undergo a metathesis and the disubstituted double bond will be subsequently reduced to afford bis-THF 332a.



Conditions and reagents: (i) TEMPO, NaOCl ; (ii) $\mathrm{MePPH}_{3} \mathrm{Br}, \mathrm{NaHMDS}$; (iii) Grubbs' catalyst; (iv) HF/MeCN.
Scheme 3.37: Toward the synthesis of intricatetraol (331).

Sotokawa et al. have shown that tetraalkylammonium dichlorobromate ( $\mathrm{R}_{4} \mathrm{NBrCl}_{2}$ ) can be employed for selective conversion of trisubstituted double bonds to the corresponding dihalogen. ${ }^{150}$ Treatment of diene 391 with stoichiometric $\mathrm{Bu}_{4} \mathrm{NBrCl}_{2}$ afforded the dihalogen 392 in good yield and selectivity ( $>43: 1$ ) following Markovnikov selectivity (scheme 3.38).


Conditions and reagents: (i) $\mathrm{Bu}_{4} \mathrm{NBrCl}_{2}$ (1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, \mathrm{lh}$.
Scheme 3.38: Synthesis of diene 392.

We propose to attempt the conversion of bis-THF 332a to intricatetraol (331) along similar lines (scheme 3.39). The main core of bis-THF 332a should induce the desired regiochemistry. As discussed previously, the absolute configuration of the brome group is as yet unknown; the selective bromochlorination of bis-THF 332a should provide precious indication about the absolute configuration of the natural product intricatetraol (331).


Conditions and reagents: (i) $\mathrm{Bu}_{4} \mathrm{NBrCl}_{2}$.
Scheme 3.39: Synthesis of intricatetraol (331).

## Chapter 4: Synthesis of trans-THFs and application toward the synthesis of eurylene

In this chapter, our efforts on the synthesis of trans-disubstituted THFs via permanganate oxidative cyclisations and their application toward the synthesis of eurylene are summarized. Itokawa et al. have reported the isolation of eurylene a squalene-type triterpene from the woods of Eurycoma longifolia. ${ }^{151,152}$ The absolute configuration of eurylene (393) was elucidated by spectroscopic data, chemical evidence and X-ray analysis (figure 4.1). Although the left hand and right-hand segments of eurylene are structurally and functionally similar, the molecule is not symmetrical because of stereochemical differences; it is therefore a challenging target for total synthesis.


Figure 4.1: Eurylene (393).

## 4-I Previous syntheses of eurylene (393)

Shirahama et al. have described the first total synthesis of eurylene (393) via a double vanadium catalysed oxidation of two bis-homoallyl alcohol systems present in tetraene 394 (scheme 4.1). ${ }^{125}$


Scheme 4.1: Shirahama's retrosynthetic analysis of eurylene (393).

Horner-Emmons olefination of aldehyde 395 with sodium triethyl 2-phosphonopropionate and reduction of the ester moiety with DIBAL afforded the primary alcohol that was converted to the corresponding sulphide 396 by nucleophilic substitution with diphenyl sulphide (scheme 4.2). After cleavage of the epoxide with catalytic perchloric acid, the resulting secondary alcohol was protected using TBDMSOTf to give the tertiary alcohol 397. Oxirane 398 was treated with the lithio derivative of compound $\mathbf{3 9 7}$ and subsequently desulfurised under Birch conditions to afford bis-homoallyl alcohol 394.




Conditions and reagents: (i) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (i) DIBAL, toluene, $78^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (iii) $\mathrm{PhSSPh}, n-\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min ; (iv) $\mathrm{HClO}_{4}$ (cat.), THF/ $\mathrm{H}_{2} \mathrm{O}$ (6:1), reflux, 1 h ; (v) TBDMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (vi) 396, $n$ - BuLi , TMEDA, HMPA, THF, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (vii) $\mathrm{Li} \mathrm{NH}_{3} / \mathrm{EtOH}(1: 1),-78^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Scheme 4.2: Synthesis of tetraene 394.

Vanadium catalysed oxidation of alcohol $\mathbf{3 9 4}$ gave the unstable bisepoxide $\mathbf{3 9 9}$ (scheme 4.3). Acid catalysed cyclisation of the left hand epoxide afforded intermediate $\mathbf{4 0 0}$, deprotection of the TBDMS group and subsequent acid treatment afforded de-acetyleurylene (332b). Finally, acetylation of the alcohol groups provided eurylene (393) in good yield.


Conditions and reagents: (i) TBHP, $\mathrm{VO}(\mathrm{acac})_{2}$ (cat.), MS $3 \AA$, benzene, r.t., 3 h , then $\mathrm{Me}_{2} \mathrm{~S}$, r.t., 30 min ; (ii) CSA (cat.), r.t., 2h; (iii) TBAF, THF, reflux, 2 h ; (iv) HCl (cat.), $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (10:1), reflux, 15 min ; (v) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, r.t., 50 h .

Scheme 4.3: Synthesis of eurylene (393) via vanadium catalysed oxidation.

Morimoto et al. have reported the total synthesis of eurylene (393) using a combination of rhenium and chromium oxidation to construct the trans and cis-THF units respectively from triol precursor 401 (scheme 4.4). ${ }^{153}$ Triol 401 derives from di-epoxide 402 that can be prepared by Sharpless asymmetric epoxidation of the readily available diol 403.


Scheme 4.4: Morimoto's retrosynthetic analysis of eurylene (393).

After mono-protection of diol $\mathbf{4 0 3}$ with TBSCl and Sharpless epoxidation of the remaining allylic alcohol using ( - )-diethyl d-tartrate ( $98 \% \mathrm{ee}$ ), a titanium-assisted epoxide-opening reaction with introduction of the pivaloate group afford the corresponding 1,2-diol intermediate (scheme 4.5). Silylation of the primary alcohol, acetonide formation and desilylation provided the allylic alcohol 404 in good overall yield. Asymmetric epoxidation using $(+)$-diethyl L -tartrate and subsequent $\mathrm{Ti}(\mathrm{OMPM})_{4}$-mediated epoxide-opening reaction with $p$-anise alcohol gave a mixture of the desired 1,2 -diol 405 and a 1,3 -diol derivative in a 3:1 ratio. After sequential deprotection of the actetonide and mesylation of the primary alcohol groups, subsequent basic treatment of the dimesylate intermediate afforded the desired di-epoxide 402 in overall good yield.


Conditions and reagents: (i) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (ii) $\mathrm{TBHP}, \mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{4}, \mathrm{D}-(-)-\mathrm{DET}, \mathrm{MS} 4$ $\AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{PvOH}$, benzene, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iv) 2,2-dimethoxypropane, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 2 h ; (v) $\mathrm{Bu}_{4} \mathrm{NF}$, THF, r.t., 3 h ; (vi) TBHP, $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{~L}-(+)-\mathrm{DET}$, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, 3 h ; (vii) $\mathrm{Ti}(\mathrm{OMPM})_{4}$, MPMOH, benzene, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (viii) $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1)$, r.t., 5 h ; (ix) MsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 5 h ; (x) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , r.t., 1 h .
Scheme 4.5: Synthesis of di-epoxide 402.

Treatment of di-epoxide 402 with the lithio derivative of neryl phenyl sulphide and subsequent desulfurisation under Bouvault-Blanc conditions gave triol 406 in good yield (scheme 4.6). Selective acetylation of the secondary alcohol and removal of the MPM group afforded the triol 401 in good yield. Treatment of triol 401 with $\left[\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right.$ ] furnished the expected trans-THF 407 in good yield and diastereoselectivity. Treatment of mono-THF 407 with PCC afforded (+)-14-deacetyleurylene (408) with complete cisdiastereoselectivity. The synthesis of (+)-eurylene (393) was completed by selective acetylation of bis-THF (408).






Conditions and reagents: (i) neryl phenyl sulphide, $n$-BuLi, TMEDA, THF, $-78^{\circ} \mathrm{C}, 30$ min, then $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ii) $\mathrm{Na}, \mathrm{THF} / \mathrm{iPrOH}(2 / 1)$, reflux, 15 h ; (iii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, r.t., 12 h ; (iv) DDQ, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (v) $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1)$, r.t., 16 h ; (vi) $\left[\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right) \mathrm{ReO}_{3} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right]$, TFAA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}(9 / 1),-40^{\circ} \mathrm{C}$, 1.5 h ; (vii) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 30 min ; (viii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, r.t., 40 h .

Scheme 4.6: Synthesis of (+)-eurylene (393).

Hioki et al. have described the synthesis of eurylene (393) via the coupling of two mono-THF moieties 387 b and 409. ${ }^{144}$ These diastereomeric segments $\mathbf{3 8 7 b}$ and 409 were accessible from a common precursor $\mathbf{4 1 0}$, by the non-stereoselective THF ring formation followed by addition of a prenyl group (scheme 4.7).


Scheme 4.7: Hioki's retrosynthetic analysis of eurylene (393).
$(R)$-allylic alcohol 411 was first converted into the epoxide 410 in excellent yield and diastereoselectivity (scheme 4.8). Treatment of epoxide $\mathbf{4 1 0}$ with $m$-CPBA afforded desired mono-THFs 412a,b in almost equal amount and overall good yield. The stereochemistry of products $\mathbf{4 1 2 a , b}$ was determined by NOE experiments.


Conditions and reagents: (i) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}$, benzene; (ii) $m$ - CPBA , r.t., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 4.8: Synthesis of mono-THFs 412a,b.

Mono-THF 412a was converted to 413a by sequential deprotection and protection of the resulting diol (scheme 4.9). Treatment of acetonide 413a with prenylmagnesium chloride and cuprous iodide afforded alcohol 414a in good yield. Hydrolysation of the acetonide group and cleavage of the resulting diol gave the corresponding aldehyde 415 . Further oxidation and esterification of aldehyde $\mathbf{4 1 5}$ followed by the silylation of the tertiary alcohol afforded the left-hand segment 416a in good yield.



Conditions and reagents: (i) $n-\mathrm{Bu}_{4} \mathrm{NF}$, THF; (ii) DMP, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{Me}_{2}=\mathrm{CHCH}_{2} \mathrm{MgCl}, \mathrm{CuI}$, THF, $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$; (iv) PPTS, EtOH, (v) $\mathrm{NaIO}_{4}$, aq. THF; (vi) $\mathrm{NaClO}_{2}, 2$-methyl-2-butene, $\mathrm{NaHPO}_{4}$, aq. $t$ BuOOH; (vii) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (viii) TMSCl, imidazole, DMF.
Scheme 4.9: Synthesis of the left-hand segment 416.

In a similar way to the left-hand segment, mono-THF 412b was transformed into the diol 414b in moderate yield (scheme 4.10). Diol 414b was selectively converted into the monomesylate that yielded epoxide 417 after treatment with potassium carbonate. The lithiated methylphenyl sulfone was then treated with 417 and the two alcohols groups were
selectively protected as MPM ether and TMS groups to complete the synthesis of the righthand segment 418.



Conditions and reagents: (i) $n-\mathrm{Bu}_{4} \mathrm{NF}$, THF; (ii) DMP, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{Me}_{2}=\mathrm{CHCH}_{2} \mathrm{MgCl}, \mathrm{CuI}$, THF, $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$; (iv) PPTS, EtOH , (v) MsCl, pyridine; (vi) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; (vii) $\mathrm{MeSO}_{2} \mathrm{Ph}, n$ - BuLi , DMPU, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$; (viii) MPMCI, NaH, TDMF; (ix) TMSCl, imidazole, DMF.

Scheme 4.10: Synthesis of the right-hand segment 418.

Coupling of the lithio-anion of THF 416 and THF 418 afforded the corresponding bis-THF in good yield. After reductive desulfonylation and deprotection of the TMS groups, ketone 419 was obtained in good yield. Reduction of the ketone 419 with $\mathrm{LiAlH}_{4}$ or DIBAL led to the corresponding epimeric alcohols as a $1: 1$ mixture. The mixture was acetylated and separated to provide pure 420. Deprotection of the MPM groups with DDQ and acetylation of the resulting alcohol afforded eurylene (393) in moderate yield (scheme 4.11).


Conditions and reagents: (i) LiHMDS, DMPU, THF, $-78^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$; (ii) $\mathrm{SmI}_{2}$, THF-MeOH (5:1), $78^{\circ} \mathrm{C}$; (iii) HCl (1M, aq. sol.), MeO ; (iv) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; (v) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $50^{\circ} \mathrm{C}$; (vi) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NaHCO}_{3}$ (10:1).
Scheme 4.11: Synthesis of eurylene (393).

## 4-II Strategy for the synthesis of 2,5-trans-disubstituted THFs

The different strategies described for the synthesis of intricatetraol could not be applied to eurylene because it is unsymmetrical and possesses a trans-THF fragment (figure 4.1). The direct oxidative cyclisation of 1,5-dienes with potassium permanganate could only afford cisTHF fragments. Therefore, the development of a strategy using potassium permanganate to synthesize trans-THFs would provide a useful extension of our methodology. We imagined that trans-THFs 423 could be prepared from cis-THF diols 422 by means of a selective deoxygenation reaction (scheme 4.12). cis-THFs 422 could also lead to trans-THFs 424 via a sequential selective oxidation to the corresponding aldehyde and decarbonylation. The requisite cis-THF diols should be obtained by permanganate promoted oxidative cyclisation of appropriate 1,5-dienes $\mathbf{4 2 1}$ bearing a terminal double bond.


Scheme 4.12: Synthesis of trans-THFs via oxidative cyclisation with $\mathrm{KMnO}_{4}$.

## 4-II-1 Synthesis of the precursor 2,5-cis-disubstituted THFs

Ethyl cyclopropanecarboxylate $\mathbf{4 2 5}$ was treated with 2 eq. of MeMgI to afford the alcohol $\mathbf{4 2 6}$ in good yield (scheme 4.13). Tertiary alcohol $\mathbf{4 2 6}$ was then opened by treatment with $\mathrm{MgBr}_{2}$ prepared in situ from Mg turnings and 1,2-dibromoethane to afford bromide 427 in moderate yield. According to the method of Vasil'ev et al., ${ }^{154}$ a Horner-Wittig reagent 428 was synthesised from 427 via a nucleophilic substitution on the triethyl phosphonoacetate anion formed in situ; reagent $\mathbf{4 2 8}$ was used in a Horner-Wittig-Emmons type reaction with formaldehyde to afford the desired diene 421 in good yield.


Conditions and reagents: (i) $\mathrm{MeMgI}, \mathrm{Et}_{2} \mathrm{O}$, r.t. to reflux, 1 h ; (ii) $\mathrm{MgBr}_{2}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 3 h ; (iii) NaH , $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DMSO, $6 \mathrm{~h}, 60^{\circ} \mathrm{C}$; (iv) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}, 6 \mathrm{~h}$, r.t. to $50^{\circ} \mathrm{C}$.
Scheme 4.13: Synthesis of the diene precursor 421a.

The ( $2 S$ )-Oppolzer sultam was attached to diene 421a using the ester hydrolysis, activation sequence described previously (scheme 2.6). Basic hydrolysis of diene 421a and activation of the resulting carboxylic acids with pentafluorophenol in presence of DCC produced the corresponding pentafluorophenyl diene, which underwent substitution with lithiated (2S)-10,2-camphorsultam to afford the corresponding diene 421b in satisfactory yields (scheme 4.14).


Conditions and reagents: (i) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}$, water, MeOH , reflux, 16 h ; (ii) pentafluorophenol, DCC , EtOAc, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (iii) $n$-BuLi, ( 2 S ) $-10,2$-camphorsultam, THF, $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.
Scheme 4.14: Synthesis of diene 421b bearing the sultam.

The oxidative cyclisation was carried out on diene 421a using the optimised conditions developed previously to afford the desired 2,5-cis-disubstituted THF 422a in excellent yield (scheme 4.15). It is interesting to note that the reaction product does not require purification; only the desired product was seen by NMR. When the reaction was attempted on diene 421b, the desired THF 422b was obtained in good yield and diastereoselectivity ( $d e>95 \%$ by ${ }^{1} \mathrm{H}$ NMR), the hydroxy aldehyde 429 was obtained as the only significant by-product. This byproduct was not observed during the oxidation of diene 421a. It is thought that the presence of the sultam may slow down the reaction by hindering the attack on the second double bond.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ ( 2 eq. of a 0.4 M aq. sol.), AcOH ( 2.8 eq.), buffer pH 6.24 , acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
Scheme 4.15: Permanganate promoted oxidative cyclisation of dienes 421a,b.

The selectivity obtained with the Oppolzer's camphor sultam could be explained by two different conformation models (scheme 4.16). In conformation 430a, if the potassium coordinates with the equatorial oxygen atom, the lower side of the double bond is blocked by the camphor structure and the attack has to take place on the upper side. On the other hand, in reactive conformation $\mathbf{4 3 0 b}$, if no chelation occurs, the anti-position of the carbonyl and the $\mathrm{NSO}_{2}$ moiety is favoured because of steric and stereoelectronic reasons. Even if the camphor structure is too far to shield the double bond effectively, the axial oxygen atom blocked the lower side and the attack takes place on the upper side. Both of these models lead to the same stereoselectivity and rationalises the high diastereoselectivity obtained during the oxidative cyclisation on diene 421b.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ (2 eq. of a 0.4 M aq. sol.), AcOH ( 2.8 eq.), buffer pH 6.24 , acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
Scheme 4.16: Proposal to rationalise the diastereoselectivity obtained with the sultam.

THF 422b was successfully recrystallized for a mixture $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 422b as small transparent prisms suitable for X-ray structural determination, thus permitting the confirmation of the predicted stereochemistry (figure 4.2).


Figure 4.2: X-Ray structure of THF 422b.

## 4-II-2 Reductive deoxygenation of the primary alcohol

Reductive deoxygenation is commonly realised by conversion of the free primary alcohol to the corresponding tosylate, followed by in situ iodide exchange and radical reduction. ${ }^{155}$ The THF 422a was treated with TsCl , DMAP and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; only the desired compound $\mathbf{4 3 1}$ was visible in the crude NMR albeit in poor yield (scheme 4.17).


Conditions and reagents: (i) $\mathrm{TsCl}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}_{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 4.17: Attempted synthesis of tosylate 431.

It is believed that the tertiary alcohol present on the molecule underwent an intramolecular nucleophilic substitution with the newly formed tosylate to afford product 432, which was lost due to its volatility. The synthesis of this type of bicyclic compound from THF diols has previously been reported by Walba et al. (Scheme 4.18). ${ }^{156}$ In their synthesis, activation of the tertiary alcohol 433 via preparation of the corresponding sodiated anion was needed to obtain the intramolecular nucleophilic substitution. It seemed that the tertiary alcohol present on THF 422a was reactive enough to attack the tosylate group without prior activation.


Conditions and reagents: (i) $\mathrm{TsCl}, \mathrm{py}$, r.t., 10 h ; (ii) $\mathrm{NaH} / \mathrm{DMF}$, r.t., 13 h .
Scheme 4.18: Synthesis of 3,8-Dioxabicyclo[3.2.1]octane precursor 434 by Walba.

It was thought that xanthate chemistry could provide a solution to this issue; indeed xanthate moieties are not such good leaving groups as tosylates. Zard et al. have reported that xanthate chemistry is quite versatile and can be used with many different functional groups present on the molecule. ${ }^{157-160}$ THFs 422a,b were treated with chlorothioformate, pyridine and catalytic DMAP to afford the desired xanthates 435a,b in excellent yield (scheme 4.19). ${ }^{161}$ Xanthate 435a,b underwent a radical reaction with $\mathrm{Bu}_{3} \mathrm{SnH}$ and catalytic AIBN to produce the 2,5-trans-disubstituted THF 423a,b in excellent yield. ${ }^{162}$


Conditions and reagents: (i) $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}$, pyridine, $\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h ; (ii) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux, 5 h .

Scheme 4.19: Synthesis of 2,5-trans-disubstituted THF 423a,b.

2,5-Trans-disubstituted THF 423a was obtained in 6 steps from commercially available ethyl cyclopropanecarboxylate $\mathbf{4 2 5}$ in an overall yield of $43 \%$ and THF 423b was obtained in 10 steps from commercially available ethyl cyclopropanecarboxylate $\mathbf{4 2 5}$ in an overall yield of $22 \%$.

## 4-II-3 Attempted synthesis of trans-THF 445 and trans-THP 446

The application of the above methodology was investigated using other dienes. Diene 436 was prepared easily from diene 421a by reduction with DIBAL and subsequent acetylation of the primary alcohol with acetic anhydride (scheme 4.20). Reduction of aldehyde 437 to the alcohol with $\mathrm{NaBH}_{4}$ and subsequent treatment with $\mathrm{CBr}_{4}$ gave the corresponding bromide 438 in good yield. The phosphonate derived from bromide 438 underwent a Horner-WittigEmmons type reaction with formaldehyde to afford the desired diene 439a in good yield.

Diene 439a was converted to diene 439b bearing the ( $2 S$ )-camphorsultam by the method described previously.

$421 \mathrm{a} \quad 436$


Conditions and reagents: (i) DIBALH, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}$, 3 h ; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) $\mathrm{NaBH} 4, \mathrm{H} 2 \mathrm{O}$, r.t., lh ; (iv) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3 h ; (v) (a) NaH , (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{DMSO}, 60^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, r.t. to $50^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (vi) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}$, water, MeOH , reflux, 16 h ; (vii) pentafluorophenol, DCC, EtOAc, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (viii) $n$ - BuLi , ( 2 S )-10, 2-camphorsultam, THF, $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$.
Scheme 4.20: Synthesis of dienes 436 and 439a,b.

Oxidative cyclisation of dienes 436 and 439a afforded the corresponding THF 440 and THP 441a in good yield (scheme 4.21). Unfortunately, treatment of diene 439b with permanganate failed to give the desired THP 441b and led to the formation of the hydroxy aldehyde 442.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ ( 2 eq. of a 0.4 M aq. sol.), AcOH ( 2.8 eq.), buffer pH 6.24 , acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{KMnO}_{4}$ (powered, 2 eq .), $\mathrm{AcOH} /$ acetone ( $2: 3$ ), $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, 1 h to 2 h .
Scheme 4.21: Oxidative cyclisation of dienes 436 and 439a,b.

THF 440 and THP 441 a were converted to the corresponding xanthates 443 and 444 in good yield (scheme 4.22). Attempts of deoxygenation using the method described previously did not lead to the desired trans products 445 and 446 , instead the reaction afforded the free alcohol products 440 and 441 a . It is thought that the $\mathrm{Bu}_{3} \mathrm{SnH}$ used to carry out the reaction contained water or $\mathrm{Bu}_{3} \mathrm{SnOH}$ which caused the cleavage of the xanthate group.


Conditions and reagents: (i) $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}$, pyridine, $\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h ; (ii) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux, 5 h or 1 day.
Scheme 4.22: Attempted synthesis of trans-THF 445 and trans-THP 446.

## 4-II-4 Attempted reductive removal of the hydroxymethyl group

It was also decided to extend this methodology to the synthesis of trans-THFs bearing two hydrogens at the 2 and 5 positions of the cis-THF diols $\mathbf{4 2 2}$ (scheme 4.23). This strategy involved replacing the hydroxymethyl group with a hydrogen, by selective oxidation of the primary alcohol to an aldehyde followed by stereospecific decarbonylation.


Scheme 4.23: Strategic approach to the synthesis of trans-THF 424.

When THF 422a was treated with a catalytic amount of TPAP and NMO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the bicyclic product 448 was obtained in good yield instead of the desired aldehyde 447 a (scheme 4.24). It is thought that the tertiary alcohol present is reactive enough to cyclise onto the newly formed aldehyde. The same type of side-reaction was encountered when it was attempted to convert THF 422a to the corresponding tosylate $\mathbf{4 3 1}$ (scheme 4.17).


Conditions and reagents: (i) TPAP, molecular sieves $4 \AA, \mathrm{MNO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h .
Scheme 4.24: Attempted synthesis of aldehyde 447a.

Two approaches were attempted to solve this problem. The first approach involved the protection of the tertiary alcohol in compound 422a to prevent any formation of side-product. It was decided to protect both of the alcohols with a trimethylsilyl group that could be easily removed from the primary alcohol under mild basic conditions. THF 422a was treated with TMSCl with triethylamine in dichloromethane; unfortunately the reaction did not go to completion and starting material was recovered (scheme 4.25). ${ }^{163}$ When THF 422a was treated with TMSOTf in presence of 2,6-lutidine, degradation occured. ${ }^{164}$


Conditions and reagents: (i) $\mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 48 h ; (ii) TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 12 h .
Scheme 4.25: Attempted protection of the tertiary alcohol group present in THF 422a.

The second strategy involved the sequential protection of the primary alcohol, then the tertiary alcohol, followed by the selective deprotection of the primary alcohol. THF 422a was treated with TBDMSCl and an excess of imidazole to afford the mono-protected THF, ${ }^{165}$ that was subsequently treated with $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ and a catalytic amount of DMAP to give the bisprotected THF. THF 449c was obtained in good yield by treatment of bis-protected THF with $\mathrm{HCl} .{ }^{166}$ Oxidation of the primary alcohol of THF 449c with TPAP in presence of NMO afforded aldehyde 450 in good yield (scheme 4.26). Different methods were attempted to carry out the selective decarbonylation. Treatment with Wilkinson's catalyst under different conditions was attempted. Unfortunately, the desired trans-THF 451 was not obtained and only degradation was observed. ${ }^{167}$


Conditions and reagents: (i) $\mathrm{TBDMSCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., 3 days; (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 24 h ; (iii) HCl , water $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 24 h ; (iv) TPAP, NMO, crushed molecular sieves, r.t., 1 h ; (v) Wilkinson's catalyst, toluene, r.t., 3 days or Wilkinson's catalyst, toluene, reflux, 24 h or Wilkinson's catalyst, xylene, 24 h , r.t. to reflux.
Scheme 4.26: Attempted synthesis of 2,5-trans-disubstituted THF 451.

As an alternative to the protection of the tertiary alcohol, it was chosen to investigate the oxidative cyclisation of the triene 452a, which would afford THF lactone 453a with a masked
tertiary alcohol (scheme 4.27). cis-THF lactone 453a could then be converted to the transTHF lactone 454a.


Scheme 4.27: Alternative strategy involving THF-lactones.

Treatment of bromide 427 with sodium iodide gave iodide 455 in good yield (scheme 4.28). ${ }^{168}$ Alkene 455 was treated with 2,3-dihydrofuran and $n$-BuLi to afford the desired dihydrofuran 456 in moderate yield. ${ }^{169}$ After conversion of dihydrofuran 456 into homogeraniol using MeMgBr and a catalytic amount of bis(triphenylphosphine)nickel dichloride, subsequent treatment with $\mathrm{CBr}_{4}$ and triphenylphosphine afforded the corresponding homogeranyl bromide 457a in good yield. Horner-Wittig reagent 458a was synthesised from 457a via a nucleophilic substitution on the triethyl phosphonoacetate anion formed in situ; this reagent was used in a Horner-Wittig-Emmons type reaction with formaldehyde to afford the desired diene 452a in good yield.


Conditions and reagents: (i) NaI, acetone, r.t., 1 day; (ii) 2,3-dihydrofuran, $n$ - $\mathrm{BuLi}, \mathrm{THF},-50^{\circ} \mathrm{C}$ to r.t., 18 h ; (iii) $\mathrm{MeMgBr},\left(\left(\mathrm{PPh}_{3}\right)_{2}\right) \mathrm{NiCl}_{2}$, toluene, reflux, 1 h ; (iv) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}$; (v) NaH , ( EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DMSO, $60^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (vi) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, r.t. to $50^{\circ} \mathrm{C}, 6 \mathrm{~h}$.
Scheme 4.28: Synthesis of triene 452a.

Triene 452a was oxidised and subsequently cleaved with $\mathrm{NaIO}_{4}$ on $\mathrm{SiO}_{2}$ to afford lactone 453a in good yield (scheme 4.29). Lactone 453a was treated with catalytic TPAP with NMO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the aldehyde 459a. Decarbonylation using Wilkinson's catalyst was attempted but only degradation was observed.


Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ ( 2 eq . of a 0.4 M aq. sol.), AcOH ( 2.8 eq.), buffer pH 6.24 , acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, 1 h ; (ii) $\mathrm{NaIO}_{4}$ (on $\mathrm{SiO}_{2}$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (iii) TPAP, NMO, crushed molecular sieves, r.t., 1 h .
Scheme 4.29: Toward the synthesis of 2,5-trans-disubstituted-THF-lactone.

It was therefore decided to abandon our efforts toward the synthesis of trans-THFs 424 and focus on the application of the synthesis of trans-THFs 423 toward the synthesis of eurylene (393).

## 4-III Toward the synthesis of eurylene

It was decided to develop the synthesis of the two fragments 416 and 387 b already synthesized by Hioki et al. using oxidative cyclisation with potassium permanganate and therefore achieve the formal synthesis of eurylene (393) (scheme 4.7 and 4.9). After permanganate promoted selective oxidative cyclisation of triene 452, trans-THF 416 should be prepared from cis-THF 460 via the strategy developed to synthesize trans-THFs $\mathbf{4 2 3}$ (scheme 4.30).


Scheme 4.30: Synthesis of a trans-THF adduct 416.

## 4-III-1 Synthesis of fragment 387b

Triol 387b was synthesised previously as part of our efforts toward the synthesis of intricatetraol (scheme 3.35). This synthesis was repeated from commercially available nerol in 10 steps with a good overall yield (Scheme 4.31).


Conditions and reagents: (i) $\mathrm{MsCL}, \mathrm{LiCl}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ii) ethyl acetoacetate, NaH , then $n$ - BuLi , THF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (iii) $\mathrm{Et}_{3} \mathrm{~N}$, DMPU, DMAP, $\mathrm{PO}(\mathrm{OEt})_{2} \mathrm{Cl},-20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iv) $\mathrm{MeCu}, \mathrm{MeMgCl}, \mathrm{THF},-$ $30^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (v) $\mathrm{NaOH}, \mathrm{NaHCO}_{3}$, water, MeOH , reflux, 16 h ; (vi) pentafluorophenol, $\mathrm{DCC}, \mathrm{EtOAc}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (vii) $n$-BuLi, ( 2 S )-10,2-camphorsultam, THF, $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (viii) $\mathrm{KMnO}_{4}$ ( 1.7 eq. of a 0.4 M aq. solution), AcOH ( 2.8 eq .), buffer ( 0.5 mL ), acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (ix) $\mathrm{LiAlH}_{4}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to r.t., 24 h .
Scheme 4.31: Synthesis of right-half segment 387b of eurylene (393).

## 4-III-2 Toward the synthesis of fragment 416

Neryl chloride 309a was treated with NaCN in DMF to afford the corresponding cyanide which was converted into the carboxylic acid via a basic hydrolysis. After reduction of the carboxylic acid with $\mathrm{LiAlH}_{4}$ alcohol 461 was obtained in overall good yield (scheme 4.32). Unfortunately, carbon NMR analysis revealed that isomerisation had occurred and that the product was a $2: 1$ mixture of homonerol 461b and homogeraniol 461a. Isomerisation happened during the preparation of the carboxylic acid. Conversion of the cyanide to the corresponding aldehyde was attempted but was unfortunately unsuccessful. Due to time constraints, it was not possible to find a new route for the effective preparation of pure homonerol 461a. It was therefore decided to carry on with the synthesis using the mixture to test subsequent routes. Alcohols 461a,b were treated with $\mathrm{PPh}_{3}$ and $\mathrm{CBr}_{4}$ to afford the corresponding bromides $\mathbf{4 5 7 a}, \mathbf{b}$. As seen previously, phosphonates were prepared in situ with bromides 457 a,b and sodiated triethyl phosphonoacetate prior to a Horner-Wittig-Emmons reaction with formaldehyde to afford the desired trienes 452a,b in good yield. Trienes 452a,b were converted to the corresponding trienes $\mathbf{4 5 2} \mathbf{c}, \mathrm{d}$ bearing the $(2 R)$-camphorsultam by the method described previously.



Conditions and reagents: (i) $\mathrm{MeMgI}, \mathrm{Et}_{2} \mathrm{O}$, r.t. to reflux, 1 h ; (ii) $\mathrm{MgI}_{2}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 3 h ; (iii) 2,3dihydrofuran, $n$ - BuLi , THF, $-50^{\circ} \mathrm{C}$ to r.t., 18 h ; (iv) $\mathrm{MeMgBr},\left(\left(\mathrm{PPh}_{3}\right)_{2}\right) \mathrm{NiCl}_{2}$, toluene, reflux, 1 h ; (v) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3 h ; (vi) (a) NaH , (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DMSO, $60^{\circ} \mathrm{C}$, 6 h; (b) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, r.t. to $50^{\circ} \mathrm{C}$, 6 h .
Scheme 4.32: Synthesis of the trienes 452a-d.

Trienes 452a-d underwent selective oxidative cyclisation and the corresponding mono-THFs 460a-d were obtained in good yield (scheme 4.33). The primary alcohols 460a-d were treated with chlorothioformate, pyridine and catalytic DMAP to afford the desired mono-THFs 461ad in good yield. Mono-THFs 461a-d were converted to the corresponding 2,5-trans-THFs 416b-e by radical reaction with tributyltin hydride and AIBN in good yields.



$\begin{array}{lll}\mathbf{4 1 6 b}(\mathrm{R}=\mathrm{OEt}) & (62 \%) & \mathbf{4 1 6 c}(\mathrm{R}=\mathrm{OEt}) \\ \mathbf{4 1 6 d}\left(\mathrm{R}=\mathrm{X}_{\mathrm{n}}\right) & (73 \%) & \mathbf{4 1 6 e}\left(\mathrm{R}=\mathrm{X}_{\mathrm{n}}\right)\end{array}$

Conditions and reagents: (i) $\mathrm{KMnO}_{4}$ ( 2 eq. of a 0.4 M aq. sol.), AcOH ( 2.8 eq.), buffer pH 6.24 , acetone, $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (ii) $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h ; (iii) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux, 5 h .
Scheme 4.33: Synthesis of trans-THFs 416b-e.

The synthesis was concluded by a transesterification of the sultam moiety to a methyl ester by treatment of trans-THFs 416d,e with catalytic potassium carbonate in methanol, although the crude NMR and mass spectrometry confirmed the formation of THF 416a and by-product 416f, no product was retrieved after purification on silica gel (scheme 4.34). Insufficient time was available to repeat this reaction.


Conditions and reagents: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 1$ day.
Scheme 4.34: Synthesis of fragments 416a,f.

## 4-III Conclusion and further work

A novel permanganate mediated route to trans-THFs has been accomplished in good overall yields ans showed great potential. The method was applied toward the synthesis of a fragment of eurylene (393) and a formal synthesis of eurylene was achieved by the formation of THFs 416 a and $\mathbf{3 8 7 b}$ in good yield and selectivity.

The preparation of isomerically pure homoneryl bromide 457b proved to be difficult; it would therefore be interesting to investigate the synthesis of triene 452 via a route that does not involve homoneryl bromide 457b. It was shown previously that the reaction of neryl and geranyl chlorides $\mathbf{3 0 9} \mathbf{a}, \mathbf{b}$ with the dianion of ethyl acetoacetate afforded the corresponding $\beta$ keto esters $\mathbf{3 1 7 a , b}$ (scheme 2.13). Triene $\mathbf{4 5 2}$ could be prepared along similar lines, using the dianion of methacrylic acid $\mathbf{4 6 2}$ or of methallyl alcohol 463 (scheme 4.35). The acid 461 resulting from the nucleophilic substitution should be easily converted to the corresponding ester 452b or to triene 452d bearing the Oppolzer sultam.


Scheme 4.35: Alternative retrosynthesis to trienes 452b,d

In the total synthesis reported by Hioki et al., the lack of selectivity observed for the reduction of the ketone 419 was a major drawback (scheme 4.11 ). ${ }^{144}$ To improve this step, it is proposed couple segments 416 and 418 and reduce the ketone moiety before the cleavage of the
hydroxymethyl group present in bis-THF 464 (scheme 4.36). The presence of the free alcohol may serve to direct the reduction of the ketone to the desired alcohol.


Scheme 4.36: Toward the synthesis of eurylene (393).

## Chapter 5: Concluding remarks

A short, efficient and stereoselective synthesis of perhydro-2,2-bifuranyl systems has been achieved from readily accessible trienes using permanganate mediated oxidative cyclisation in good yields. Excellent levels of asymmetric induction were obtained through the use of Oppolzer's sultam auxiliary. Unfortunately, efforts to convert THF-lactones to useful intermediates for further elaboration toward natural products synthesis have been unsuccessful.

Permanganate promoted oxidative cyclisations double bonds bearing an ester group and an $\alpha$ methyl group were achieved in good yields. Unfortunately, the application of this method to the tandem oxidation of an all cis-tetraene was proven to be difficult and mainly led to degradation. However, selective oxidation of $1,5,9$-trienes provided the corresponding monoTHFs in good yield and excellent diastereoselectivity. These mono-THFs should be useful intermediates for the synthesis of intricatetraol.
A series of cis-THF diols were converted to the corresponding trans-THF fragments in good yields and with high diastereoselectivities. This new methodology was applied to the synthesis of the left-hand side of eurylene. Selective permanganate mediated oxidative cyclisation followed by the conversion of the resulting cis-mono-THF to the desired trans-mono-THF proceeded smoothly and in good yield. Unfortunately, the presence of the minor isomer in the bromide precursor of the 1,5,9-triene afforded mixtures throughout the synthesis.

## Chapter 6: Experimental

## I General procedures

All chemicals were used as received from standard chemical suppliers unless otherwise stated. Triethylamine was distilled from calcium hydride and stored over sodium hydroxide. All non aqueous reactions were performed in oven or flame dried apparatus under argon atmosphere using distilled dry solvents. ${ }^{170}$ Reactions were monitored by analytical TLC using aluminium plates precoated with silica gel 60 (Merk). Flash column chromatography was performed on silica gel with particle size $40-63 \mu \mathrm{~m}$. NMR spectra were collected on Bruker AM300, AC300 or DPX400 spectrometers. Chemical shifts are given in ppm, ${ }^{1}$ H NMR coupling constant $J$ are given in Hz and rounded to the nearest 0.1 Hz . ${ }^{1} \mathrm{H}$ NMR spectra were recorded using residual isotopic solvent $\left(\mathrm{CHCl}_{3}, \delta_{\mathrm{H}}\right.$ at 7.27 ppm$)$ as internal reference. ${ }^{13} \mathrm{C}$ NMR spectra were recorded using $\mathrm{CDCl}_{3}$ ( $\delta_{\mathrm{C}}$ at 77.0 ppm ) as internal reference. IR spectra were recorded on Nicolet Impact 400 IRFT Spectrometer from diffuse reflectance. The following abbreviations have been used: s, strong; m, medium; w, weak; b, board. Nominal mass spectra were recorded on a Fisons VG single quadrupole mass spectrometer in electrospray ionisation mode or using a GC-MS method on a Thermoquest trace MS single Quadrupole mass spectrometer. The GC column used a RTX5 capillary column with helium carrier gas, the reagent gas being ammonia and the source temperature $200^{\circ} \mathrm{C}$ for the chemical ionisation mode used.. Melting points were uncorrected. IUPAC nomenclature is adopted throughout.

## II Experimental procedures

(2Z)-1-[(2-Methoxyethoxy)methoxy]-3,7-dimethylocta-2,6-diene (343)


According to the method Behnke et al., ${ }^{136}$ diisopropylethylamine ( $8.81 \mathrm{~mL}, 50.57 \mathrm{mmol}$ ) was added dropwise to a solution of nerol $51 \mathrm{~b}(5.00 \mathrm{~g}, 32.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the mixture was cooled to $0^{\circ} \mathrm{C}$. MEMCl ( $5.8 \mathrm{~mL}, 50.57 \mathrm{mmol}$ ) was then added dropwise and the resulting solution was allowed to warm up to room temperature over 3 hours. The reaction mixture was then diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with an aqueous solution of HCl ( $1 \mathrm{M}, 2 \times 40 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the title product 343 as a pale yellow oil ( $7.70 \mathrm{~g}, 31.77 \mathrm{mmol}, 98 \%$ ). The product was used in the next step without further purification.
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 2964$ (b), 2936 (b), 2884 (b), 1720 (s), 1451 (w), 1375 (w), 1105 (b) and 1049 (b)
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 5.36\left(1 \mathrm{H}, \mathrm{td}, J=6.9\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 5.09(1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.07(2 \mathrm{H}, \mathrm{dd}, J=6.9$ and 1.1 $\left.\mathrm{Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.73-3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.58-3.56(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.11-2.04\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.76$ ( 3 H , br q, $J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}$ ), $1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 141.0\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), 131.9\left(\mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 123.8(\mathrm{C}=\mathbf{C H}), 121.1$
(75MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad(\mathrm{C}=\mathbf{C H}), 94.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 66.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $63.6\left(\mathrm{CHCH}_{2} \mathrm{O}\right), 58.9\left(\mathrm{OCH}_{3}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{C}\right), 26.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 25.6$ $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $281.3\left([\mathrm{M}+\mathrm{K}]^{-}, 18 \%\right), 130.1(100 \%)$.

Neryl chloride (309a) ${ }^{171}$


$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Cl} . \\
& \mathrm{M}=172.70 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a solution of nerol ( $15.0 \mathrm{~g}, 0.097 \mathrm{~mol}$ ) in 2,6-lutidine ( $13.4 \mathrm{~mL}, 0.115 \mathrm{~mol}$ ) was added $\mathrm{LiCl}(94.24 \mathrm{~g}, 0.1 \mathrm{~mol})$, in dry DMF ( 60 mL ). The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{MsCl}(8.54$ $\mathrm{mL}, 0.11 \mathrm{~mol}$ ) was added dropwise to the solution. The resulting mixture was stirred for 2 hours, dissolved in $\mathrm{Et}_{2} \mathrm{O}$ ( 100 mL ), washed with water ( $5 \times 25 \mathrm{~mL}$ ), HCl ( 2 M aq. sol., $3 \times 15$ mL ), brine ( 30 mL ) and $\mathrm{NaHCO}_{3}$ (sat. aq. sol., 30 mL ). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product a pale yellow oil ( $16.0 \mathrm{~g}, 0.092 \mathrm{~mol}, 93 \%$ ). The spectroscopic data were in agreement with the literature. ${ }^{171}$ The crude product was used in the next step without further purification.

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | $2964 \text { (b), } 2916 \text { (b), } 2851 \text { (b), } 1659 \text { (s), } 1446 \text { (s), } 1380 \text { s), } 1244 \text { (s), }$ |
| :---: | :---: |
|  | 1172 (s), 826 (s). |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ | $5.46\left(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{CCHCH}_{2} \mathrm{Cl}\right), 5.11\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, |
| $\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\begin{aligned} & 4.08\left(2 \mathrm{H}, \mathrm{~d}, J=7.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.13\left(4 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.78(3 \mathrm{H}, \\ & \left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$ |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 142.7 \quad\left(\mathrm{CCH}_{3}\right), \quad 132.4 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 123.4 \quad\left(\mathrm{CHCH}_{2}\right), \quad 121.1 \\ & \left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.0\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{C}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}\right), 25.7 \\ & \left(\mathrm{CH}_{3}\right), 23.5\left(2 \times \mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (ES+ ionisation) | $196.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 19 \%\right), 149.1$ (100\%) |

( $Z$ )-4,8-Dimethylnona-3,7-dienenitrile (466) ${ }^{172}$


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N} . \\
& \mathrm{M}=163.26 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Mori et al., ${ }^{172}$ neryl chloride 309a ( $9.54 \mathrm{~g}, 55.3 \mathrm{mmol}$ ), was added dropwise to a suspension of $\mathrm{NaCN}(9.50 \mathrm{~g}, 193.9 \mathrm{mmol})$, in dry DMF ( 120 mL ) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 20 hours and then poured into icewater and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 70 \mathrm{~mL})$. The combined organic phases were washed with water ( 100 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude
product as an orange oil $(15.0 \mathrm{~g})$. After purification on silica gel ( $300 \mathrm{~mL}, \mathrm{Et}_{2} \mathrm{O} /$ hexane, $5: 95$ ) the title product 466 was obtained as a colourless oil ( $7.31 \mathrm{~g}, 44.8 \mathrm{mmol}, 81 \%$ ). The spectroscopic data were in agreement with the literature. ${ }^{172}$

IR ( $\mathrm{cm}^{-1}$ ) $2969(\mathrm{~s}), 2916(\mathrm{~s}), 2859(\mathrm{~s}), 2249(\mathrm{~m}), 1738(\mathrm{~m}), 1448(\mathrm{~s}), 1378$ (s), 1217 (m), 919 (m), 824 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 5.17\left(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CN}\right), 5.07(1 \mathrm{H}, \mathrm{tdd}, J=7.1,2.7$
$\left.\mathbf{( 3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ and $\left.1.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\right), 3.04(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and 1.3 Hz , CHHCN), 3.02 ( $1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $1.3 \mathrm{~Hz}, \mathrm{CHHCN}$ ), 2.12-2.03 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}\right), 1.75(3 \mathrm{H}, \mathrm{dd}, J=2.7$ and 1.3 Hz , $\left.\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ).
${ }^{13}$ C-NMR $\quad 142.1 \quad\left(\left(\mathrm{CH}_{3}\right) \mathbf{C}\right), 132.6 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 123.1 \quad\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathbf{C H}\right), 118.5$ (75MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad(\mathbf{C N}), 112.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), 31.9\left(\mathbf{C H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 25.8\left(\mathbf{C H}_{2} \mathrm{CH}\right)$, $25.6\left(\mathbf{C H}_{3}\right), 23.1\left(\mathbf{C H}_{3}\right), 17.6\left(\mathbf{C H}_{3}\right), 16.1\left(\mathbf{C H}_{2} \mathrm{CN}\right)$.
( $Z$ )-4,8-Dimethylnona-3,7-dienoic acid (467b) and ( $E$ )-4,8-dimethylnona-3,7-dienoic acid (467a) ${ }^{172}$


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} . \\
& \mathrm{M}=\mathbf{1 8 2} .26 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Mori et al., ${ }^{172}$ a solution of $\mathrm{KOH}(7.20 \mathrm{~g}, 126.0 \mathrm{mmol})$, in water $(10 \mathrm{~mL})$ was added to a solution of neryl cyanide $466(6.20 \mathrm{~g}, 38.0 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ and the mixture was stirred and heated at reflux for 20 h . The solvent was removed in vacuo and the residue was diluted in $\mathrm{NaHCO}_{3}$ (sat. aq. sol., 30 mL ) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 40$ $\mathrm{mL})$. The aqueous layer was acidified with $\mathrm{HCl}(20 \mathrm{~mL}, 2 \mathrm{~N}$ aq. solution) and extracted further with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic phases were washed with brine ( 50 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude product as a yellow oil $(6.65 \mathrm{~g}, 36.5 \mathrm{mmol}, 96 \%)$, mixture of the title product $\mathbf{4 6 7 \mathrm { b }}$ and its $E$ isomer 467 a ( $Z: E \geq 3: 1$, by $\left.{ }^{1} \mathrm{H} N M R\right)$. The mixture was used in the next step without further purification.

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2968 \text { (w), } 2918 \text { (m), } 2857 \text { (w), } 1708 \text { (s), } 1441 \text { (w), } 1377 \text { (m), } \\ & 1217(\mathrm{~m}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $9.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 5.32(1 \mathrm{H}$, tdd, $J=7.2,2.5$ and 1.3 Hz , $\left.\mathrm{CHCH}_{2} \mathrm{COOH}\right), 5.09\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right), 3.08(2 \mathrm{H}, \mathrm{d}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{COOH}\right), 2.07\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.64$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 178.3(\mathrm{COOH}), 139.5 \quad\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right), 132.0 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 131.6 \\ & \left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 123.8 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\right), 115.8 \quad\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathbf{C H}\right), 115.1 \\ & \left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right), 39.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 25.6 \\ & \left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right) . \end{aligned}$ |

Homogeraniol (461a) ${ }^{169}$


According to the method of Kocieñski et al., ${ }^{169}$ to a stirred solution of bis(triphenylphosphine)nickel dichloride ( $145 \mathrm{mg}, 0.22 \mathrm{mmol}$ ) in dry toluene ( 20 mL ) was added MeMgBr ( 3 M in $\mathrm{Et}_{2} \mathrm{O}, 4.4 \mathrm{~mL}$ ). The resulting mixture was stirred for 30 minutes before the dropwise addition of a solution of 5-(4-Methyl-pent-3-enyl)-2,3-dihydro-furan 456 $(700 \mathrm{mg}, 4.401 \mathrm{mmol})$ in dry toluene $(10 \mathrm{~mL})$. The resulting solution was heated to reflux for 40 min , then poured in $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 20 mL ) with vigorous stirring, after cooling to room temperature. The mixture was stirred until decoloration and then extracted with ether ( 3 x 30 mL ). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude compound as a yellow oil. Purification on silica gel ( 50 g , EtOAc/hexane, 1:9) gave the title product 461a as a colourless oil ( $460 \mathrm{mg}, 2.72 \mathrm{mmol}, 62 \%$ ). The spectroscopic data were in agreement with the literature. ${ }^{169}$

IR ( $\mathrm{cm}^{-1}$ ) 3328 (b), 2964 (s), 2926 ( s$), 2915$ ( s$), 1735$ ( s$), 1725$ (m), 1436 (m), 1375 (s), 1214 (m), 1049 ( s ).
${ }^{1} \mathbf{H}-\mathrm{NMR} \quad 5.15-5.08(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHC}), 3.64\left(2 \mathrm{H}, \mathrm{q}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$,
( $\left.\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) 2.31\left(2 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.10\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$ and OH$)$,
$1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$,
${ }^{13} \mathrm{C}$-NMR
(75MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$ )
$138.9\left(\left(\mathrm{CH}_{3}\right) \mathbf{C}=\mathrm{CH}\right), 131.6 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $124.1\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, $119.9\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 62.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 39.8\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 31.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, $25.6\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{3}\right)$, $17.6\left(\mathrm{CH}_{3}\right)$.

Homonerol (461b) and homegeraniol (461a) ${ }^{169}$


$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$. $M=168.28 \mathrm{~g} . \mathrm{mol}^{-1}$.

According to the method of Scheideman et al., ${ }^{173}$ the mixture of acids $467 \mathrm{a}, \mathrm{b}(3.42 \mathrm{~g}, 18.76$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(0.74 \mathrm{~g}, 18.76 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting solution was warmed to room temperature and stirred for 3 hours. Excess $\mathrm{LiAlH}_{4}$ was quenched with NaOH ( 2 M aq. sol., 5 mL ). After filtering through celite, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the mixture of alcohols $\mathbf{4 6 1 a , b}\left(Z: E \geq 3: 1\right.$, by ${ }^{1} \mathrm{H} N \mathrm{NR}$ ) as a pale yellow oil ( 2.95 g , $17.53 \mathrm{mmol}, 93 \%$ ). The mixture was used in the next step without further purification.

IR ( $\mathrm{cm}^{-1}$ ) 3354 (b), 2965 (s), 2617 (s), 1737 (w), 1672 (s), 1443 (s), 1376 (s), 1217 (w), 1047 (s).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 5.09-5.07(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHC}), 3.61(2 \mathrm{H}, \mathrm{td}, J=6.6$ and 1.1 Hz ,
$\left.\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad \mathrm{CH}_{2} \mathrm{OH}\right), 2.28\left(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.06\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$ and OH$), 1.65\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 138.8\left(\left(\mathrm{CH}_{3}\right) \mathbf{C}=\mathrm{CH}\right), 131.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 131.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 124.0}\right.$
$\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad\left(\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 120.7\left(\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 119.9\left(\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 62.6$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), \quad 62.3 \quad\left(\mathrm{CH}_{2} \mathrm{OH}\right), \quad 39.8 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), \quad 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 31.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 25.6$ $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right)$.

Homogeranyl bromide (457a) ${ }^{174}$


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{Br} . \\
& \mathrm{M}=231.18 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a solution of homogeraniol $461 \mathrm{a}(0.35 \mathrm{~g}, 2.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{CBr}_{4}$ $(1.80 \mathrm{~g}, 5.40 \mathrm{mmol})$ in one batch. The resulting solution was stirred for 15 min before the addition of $\mathrm{PPH}_{3}(1.65 \mathrm{~g}, 5.40 \mathrm{mmol})$ in 4 portions. The resulting solution was stirred for 90 min. Water ( 40 mL ) was then added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil and a white solid. Purification on silica gel ( 40 g , hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{l}: 3$ ) afforded the title product 457 a as a colourless oil $(0.35 \mathrm{mg}, 1.50 \mathrm{mmol}$, $72 \%$ ). The spectroscopic data were in agreement with the literature. ${ }^{174}$

| IR ( $\mathrm{cm}^{-1}$ ) | 2966 (m), 2914 (m), 2855 (m), 1738 (m), 1443 (s), 1376 (s), 1267 (s), 1204 (m), 1105 ( s ), 1033 ( s$), 833$ (m). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> $\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\begin{aligned} & 5.15-5.10(2 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CHC}), 3.35\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), \\ & 2.59\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 2.08\left(4 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.69 \\ & \left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) ., 1.61\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$ |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 138.6\left(\mathrm{CCH}_{3}\right), 131.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 124.0 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 120.8}^{\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}\right), 32.8\left(\mathrm{CH}_{2} \mathrm{C}\right), 31.7\left(\mathrm{CH}_{2} \mathrm{Br}\right), 31.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right),}\right. \\ & 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (GC-EIMS) | 232 (([M] $\left.{ }^{+}, 2 \%\right)$ |

Homoneryl bromide (457b)


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{Br} . \\
& \mathrm{M}=231.18 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of homogeranyl bromide 457a, the mixture of alcohols $461 \mathbf{a}, \mathrm{~b}(4.90 \mathrm{~g}, 29.11 \mathrm{mmol}$ ) was converted to the crude bromide. Purification on $\mathrm{SiO}_{2}\left(300 \mathrm{~mL}\right.$, hexane/ $\left.\mathrm{Et}_{2} \mathrm{O}, 98: 2\right)$ gave the title product 457 b as a pale yellow oil $(6.27 \mathrm{~g}$, $27.12 \mathrm{mmol}, 93 \%)$.

| IR ( $\mathrm{cm}^{-1}$ ) | 2966 (m), 2914 (m), 2855 (m), 1739 (m), 1443 ( s$), 1376$ ( s$), 1267$ (s), 1205 (m), 1105 ( s$), 1033$ ( s$), 984$ (m), 833 (m). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 5.16-5.13(2 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CHC}), 3.33\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), \\ & 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 2.06\left(4 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.73 \\ & \left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$ |
| ${ }^{13}$ C-NMR <br> ( $\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 138.6\left(\mathrm{CCH}_{3}\right), 131.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 123.9 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 121.6\right. \\ & \left(\mathbf{C H}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}\right), 32.9\left(\mathrm{CH}_{2} \mathrm{C}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{Br}\right), 31.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), \\ & 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 23.3\left(\mathbf{C H}_{3}\right), 17.6\left(\mathbf{C H}_{3}\right) . \end{aligned}$ |
| LRMS (GC-EIMS) | 232 (([M] $\left.{ }^{\top}, 5 \%\right)$ |

## (2Z)-5-(1,3-Dioxolan-2-yl)-3-methylpent-2-en-1-yl acetate (468) ${ }^{22}$



$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4} . \\
& \mathrm{M}=214.26 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Kocieñski et al., ${ }^{22}$ a mixture of aldehyde $\mathbf{1 9 b}(2.0 \mathrm{~g}, 11.75$ mmol), ethane-1,2-diol ( $1.23 \mathrm{~mL}, 22.33 \mathrm{mmol}$ ), PTSA ( 30 mg ) and toluene ( 80 mL ) was refluxed for 6 hours with removal of water ( $\sim 0.5 \mathrm{~mL}$ ) using a Dean-Stark trap. The cooled mixture was washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., 30 mL ) and the combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product 468 as a yellow oil $(1.85 \mathrm{~g}, 8.63$ $\mathrm{mmol}, 73 \%$ ), which was used in the next step without further purification. The spectroscopic data were in agreement with the literature. ${ }^{22}$

| IR ( $\mathbf{c m}^{-1}$ ) | $2969(\mathrm{~b}), 2880(\mathrm{~b}), 1739(\mathrm{~s}), 1451(\mathrm{w}), 1384(\mathrm{w}), 1243(\mathrm{~s}), 1134$ |
| :--- | :--- |
|  | $(\mathrm{~s}), 1020(\mathrm{~b})$. |

$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad 65.0\left(\mathrm{OCH}_{2}\right), 61.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 31.9\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{3}\right)$, $21.3\left(2 \mathrm{x} \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $232.1\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{\top}, 32 \%\right), 153.1$ ( $100 \%$ ).
(2Z)-5-(1,3-Dioxolan-2-yl)-3-methylpent-2-en-1-ol (355) ${ }^{22}$


$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} . \\
& \mathrm{M}=172.22 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

According to the method of Kocieñski et al., ${ }^{22}$ crude acetate 468 ( $900 \mathrm{mg}, 4.20 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg})$ was added in one portion. The resulting mixture was stirred at room temperature overnight. The solvent was then removed in vacuo and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$; the resulting suspension was washed with water ( 50 mL ) and brine ( 50 mL ). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude product as a yellow oil ( 1.0 g ), which was purified on silica gel ( 250 mL , EtOAc/hexane, 3:7) to afford the title product $\mathbf{3 5 5}$ as a colourless oil $(670 \mathrm{mg}, 3.89 \mathrm{mmol}, 93 \%)$. Spectroscopic data were in agreement with the literature.

| IR ( $\mathbf{c m}^{-1}$ ) | $3415(\mathrm{br}), 2969(\mathrm{~b}), 2878(\mathrm{~b}), 1670(\mathrm{w}), 1448(\mathrm{~s}), 1408(\mathrm{~s}), 1210$ |
| :--- | :--- |
|  | $(\mathrm{~s}), 1138(\mathrm{~s}), 1020(\mathrm{~s})$. |

2-[(Z)-5-Chloro-3-methylpent-3-enyl]-1,3-dioxolane (353) ${ }^{22}$


$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClO}_{2} . \\
& \mathrm{M}=190.67 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Allylic alcohol 355 ( $200 \mathrm{mg}, 1.16 \mathrm{mmol}$ ) was dissolved in DMF ( 20 mL ) and cooled down to $0^{\circ} \mathrm{C}$, before the addition of $\mathrm{LiCl}(150 \mathrm{mg}, 3.48 \mathrm{mmol})$ and 2,6-lutidine ( $0.55 \mathrm{~mL}, 4.64 \mathrm{mmol}$ ) followed by the dropwise addition of $\mathrm{MsCl}(0.30 \mathrm{~mL}, 3.48 \mathrm{mmol})$. The reaction was stirred for 3.5 h during which time the temperature rose to $15^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and washed with water ( $2 \times 30 \mathrm{~mL}$ ). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to a yellow oil ( 240 mg ) which was purified on silica gel ( 75 mL , $\mathrm{Et}_{2} \mathrm{O}$ /hexane, 1:9) to afford the title compound $\mathbf{3 5 3}$ as a colourless oil ( $180 \mathrm{mg}, 0.94 \mathrm{mmol}$, $81 \%$ ). Spectroscopic data were in agreement with the literature. ${ }^{22}$
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2974$ (b), 2883 (b), 1734 (s), 1380 (w), 1223 (w), 1134 (s), 1034 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 5.46\left(1 \mathrm{H}, \mathrm{td}, J=8.2\right.$ and $\left.0.8 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{Cl}\right), 4.85(1 \mathrm{H}, \mathrm{t}, J=4.8$ ( $\left.\left.\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{Hz}, \mathrm{OCHO}\right), 4.11\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.02-3.94(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.91-3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.24(2 \mathrm{H}, \mathrm{dd}, J=10.0$ and 7.7 $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 1.80-1.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 141.8\left(\mathbf{C C H}_{3}\right), 121.6\left(\mathbf{C H C C H}_{3}\right), 103.8(\mathrm{OCHO}), 65.0\left(\mathrm{OCH}_{2}\right)$, $\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 40.8\left(\mathbf{C H}_{2} \mathrm{Cl}\right), 31.9\left(\mathbf{C H}_{2}\right), 26.0\left(\mathbf{C H}_{2}\right), 23.3\left(2 \times \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $228.2\left([\mathrm{M}+\mathrm{K}]^{+}, \mathbf{1 0 0 \%}\right.$ ).

## 2-(3-Methyl-(Z)-5-phenylsulfanyl-pent-3-enyl)-[1,3]-dioxolane (354) ${ }^{138}$



$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S} . \\
& \mathrm{M}=264.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Hioki et al., ${ }^{138}$ diphenyl sulphide ( $1.28 \mathrm{~g}, 5.81 \mathrm{mmol}$ ) was added in one portion to an ice-cold solution of allylic alcohol $355(200 \mathrm{mg}, 1.16 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$ and the resulting solution was stirred for 5 minutes. Tributyl phosphine ( $1.2 \mathrm{~mL}, 4.65$
mmol ) was added dropwise and the resulting mixture was warmed to room temperature and stirred for 2 h . Water ( 35 mL ) was then added and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 30 \mathrm{~mL}$ ). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a yellow oil ( 3.0 g ), which was purified on silica gel ( 50 mL , hexane, then EtOAc/hexane, 1:9) to afford the title compound $\mathbf{3 5 4}$ as a colourless oil ( $213 \mathrm{mg}, 0.81 \mathrm{mmol}, 69 \%$ ). Spectroscopic data were in agreement with the literature. ${ }^{138}$

IR ( $\mathbf{c m}^{-1}$ ) 2959 (b), 2922 (b), 2879 (b), 1734 (s), 1446 (w), 1370 (w), 1238 (s), 11438 (w), 1025 (b).
${ }^{1} \mathrm{H}$-NMR $\quad 7.35-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 7.28-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 7.16(1 \mathrm{H}$, $\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{tt}, J=7.2$ and $\left.1.3 \mathrm{~Hz}, \mathbf{C H}\right), 5.33(1 \mathrm{H}, \mathrm{tt}, J=7.7$ and 0.5 Hz , $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right), 4.82(1 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}, \mathrm{OCHO}), 3.99-3.91(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.88-3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.57(2 \mathrm{H}, \mathrm{dd}, J=7.7$ and 1.0 $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.14\left(2 \mathrm{H}, \mathrm{dd}, J=10.2\right.$ and $\left.7.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.72-1.64$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.72\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 139.0\left(\mathbf{C C H}_{3}\right), 136.8(\mathbf{C S}), 129.6(2 \times \mathbf{C H}$, arom), $128.9(2 \times \mathbf{C H}$ $\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad$ arom $), 125.9(\mathbf{C H}$, arom $), 120.4\left(\mathbf{C H C C H}_{3}\right), 104.0(\mathrm{OCHO}), 64.9$ $\left(\mathrm{OCH}_{2}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 31.8\left(\mathrm{CH}_{2} \mathrm{~S}\right), 26.0\left(\mathbf{C H}_{2} \mathrm{C}\right), 23.2(2 \mathrm{x}$ $\mathrm{CH}_{3}$ ).

3-((3Z)-5-[(2-Methoxyethoxy)methoxy]-3-methylpent-3-en-1-yl)-2,2-dimethyloxirane (469)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} . \\
& \mathrm{M}=258.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To an ice cold stirred solution of diene $343(5.00 \mathrm{~g}, 20.63 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $3.74 \mathrm{~g}, 44.00 \mathrm{mmol}$ ) was added in one portion followed by the portionwise addition of mCPBA ( $5.31 \mathrm{~g}, 60 \%, 22.69 \mathrm{mmol}$ ). The resulting mixture was stirred 45 minutes, washed with water ( $2 \times 100 \mathrm{~mL}$ ), $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $2 \times 100 \mathrm{~mL}$ ), water ( $2 \times 75 \mathrm{~mL}$ ) and brine ( $3 \times 50 \mathrm{~mL}$ ). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to obtain the title compound 469 ( $4.91 \mathrm{~g}, 19.02 \mathrm{mmol}, 92 \%$ ) as a colourless oil that was used in the next step without further purification.

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2974 \text { (b), } 2936 \text { (b), } 2870 \text { (b), } 1739 \text { (s), } 1446 \text { (w), } 1370 \text { (s), } 1200 \\ & \text { (w), } 1110 \text { (b), } 1039 \text { (b). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.09$ $\left(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.74-3.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.58-$ $3.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.69(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}$, CHOC), 2.29-2.19 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.72-1.58$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ ), 1.35-1.19 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ ), $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $140.1\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), \quad 121.1(\mathrm{C}=\mathbf{C H}), \quad 94.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.7$ $\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 66.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.8\left(\mathrm{CHCH}_{2} \mathrm{O}\right), 63.4(\mathrm{CHOC})$, $59.0\left(\mathrm{OCH}_{3}\right), 58.3\left(\mathbf{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 28.8\left(\mathrm{CH}_{2} \mathrm{C}\right), 27.6\left(\mathbf{C H}_{2} \mathrm{CH}\right), 24.8}\right.$ $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $297.3\left([\mathrm{M}+\mathrm{K}]^{+}, \quad 100 \%\right), \quad 276.3\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 48 \%\right), \quad 299.3$ ( $\left.[\mathrm{M}+\mathrm{MeCN}]^{\top}, 25 \%\right), 281.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 22 \%\right)$. |

(6Z)-8-[(2-Methoxyethoxy)methoxy]-2,6-dimethyloct-6-ene-2,3-diol (470)


Epoxide $469(6.00 \mathrm{~g}, 23.2 \mathrm{mmol})$ was dissolved in water ( 50 mL ) and a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(10 \%$ sol. in water, 1.3 mL ) was added dropwise. The resulting mixture was stirred at room temperature for 3 hours, until the solution turned homogeneous. The aqueous phase was extracted with EtOAc ( 60 mL ). The organic phase was washed $\mathrm{NaHCO}_{3}$ (sat. aq. sol., 30 mL ), the combined aqueous phases were extracted further with EtOAc ( $3 \times 50 \mathrm{~mL}$ ). The combined organic phase were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the title compound $\mathbf{4 7 0}$ as a colourless oil ( $6.23 \mathrm{~g}, 22.5 \mathrm{mmol}, 96 \%$ ). The product was used in the next step without further purification.
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 3428$ (b), 2969 (b), 2931 (b), 2874 (b), 1720 (s), 1455 (w), 1380 (s), 1110 (b), 1039 (b).
${ }^{1} \mathbf{H}-\mathrm{NMR} \quad 5.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.09$
$\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right)\left(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.74-3.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.58-$
$3.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.69(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}$, CHOC), 2.29-2.19 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.72-1.58$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ ), 1.35-1.19 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ ), $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ). OH peaks were not observed.

| ${ }^{13} \mathbf{C - N M R}$ | $140.1 \quad\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), \quad 121.1 \quad(\mathrm{C}=\mathbf{C H}), \quad 94.7 \quad\left(\mathrm{OCH}_{2} \mathrm{O}\right), \quad 71.7$ |
| :--- | :--- | :--- | :--- |
| $\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ | $\left(\mathbf{C H}_{2} \mathrm{OCH}_{3}\right), 66.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.8\left(\mathrm{CHCH}_{2} \mathrm{O}\right), 63.4(\mathbf{C H O C})$, |
|  | $59.0\left(\mathrm{OCH}_{3}\right), 58.3\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right), 28.8\left(\mathrm{CH}_{2} \mathrm{C}\right), 27.6\left(\mathbf{C H}_{2} \mathrm{CH}\right), 24.8$ |
|  | $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$. |

LRMS (ES+ ionisation) 315.3 ([ $\mathrm{M}+\mathrm{K}]^{+}, 100 \%$ ).
(4Z)-6-[(2-Methoxyethoxy)methoxy]-4-methylhex-4-enal (344)


To a solution of diol $470(4.00 \mathrm{~g}, 17.40 \mathrm{mmol})$ in acetone ( 50 mL ) was added a solution of $\mathrm{NaIO}_{4}(7.45 \mathrm{~g}, 34.8 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$ at room temperature. The resulting white solution was stirred for 3.5 h before the solid was filtered off and some of the acetone was removed in vacuo. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{x} 40 \mathrm{~mL})$, the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford quantitatively the title compound $\mathbf{3 4 4}(3.75 \mathrm{~g}, 17.34 \mathrm{mmol}, 100 \%)$ as a yellow oil. The product was used in the next step without further purification.

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | 2969 (b), 2926 (b), 2879 (b), 1725 (s), 1451 (w), 1361 (w), 1110 (b), 1044 (b). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> $\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $9.78(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}, \mathrm{CHO}), 5.42(1 \mathrm{H}, \mathrm{dt}, J=6.9$ and 0.7 Hz , $\left.\mathrm{CHCH}_{2} \mathrm{O}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.08(2 \mathrm{H}, \mathrm{dd}, J=6.9$ and 0.8 $\left.\mathrm{Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right), 3.72-3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.56-3.53(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{\mathbf{2}}\right), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.45(2 \mathrm{H}, \mathrm{tt}, J=8.2$ and 1.3 Hz , $\left.\mathrm{CH}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{brt}, J=7.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.76(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=1.0 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}$-NMR | $201.5(\mathrm{CHO}), 139.0\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 122.4(\mathrm{C}=\mathbf{C H}), 94.5\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, |
| ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $71.7\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 66.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.2\left(\mathrm{CHCH}_{2} \mathrm{O}\right), 58.9$ |

$\left(\mathrm{OCH}_{3}\right), 42.2\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 24.4\left(\mathrm{CH}_{2} \mathrm{CH}\right)$ and $23.1\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $255.2\left([\mathrm{M}+\mathrm{K}]^{+}, 100 \%\right), 234.2\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 50 \%\right)$.

6-Methyl-2-methylene-hept-5-enoic acid ethyl ester (421a) ${ }^{154}$


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} . \\
& \mathrm{M}=182.26 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Vasil'ev et al., ${ }^{154} \mathrm{NaH}(295 \mathrm{mg}, 7.37 \mathrm{mmol})$ was dispersed in DMSO ( 10 mL ) before the dropwise addition of triethyl phosphonoacetate ( $1.46 \mathrm{~mL}, 7.37$ $\mathrm{mmol})$. Once the gas evolution has ceased, bromide $\mathbf{4 2 7}(720 \mathrm{mg}, 4.42 \mathrm{mmol})$ was added in one portion and the mixture was stirred for 5 hours at $50^{\circ} \mathrm{C}$ then cooled to room temperature. $\mathrm{K}_{2} \mathrm{CO}_{3}(2.1 \mathrm{~g}, 15.35 \mathrm{mmol})$ was added in one portion followed by $\mathrm{CH}_{2} \mathrm{O}(23 \% \mathrm{aq}, 62.4 \mathrm{~mL})$. The resulting mixture was stirred at room temperature overnight then at $60^{\circ} \mathrm{C}$ for 3.5 hours. The reaction was cooled to room temperature, diluted in water ( 35 mL ) and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$. The combined organic phases were washed with brine ( $2 \times 20 \mathrm{~mL}$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow oil $(950 \mathrm{mg})$. Purification on silica gel ( 50 g , hexane/EtOAc, 98:2) afforded the title compound 421a as a colourless oil ( $650 \mathrm{mg}, 3.57 \mathrm{mmol}, 81 \%$ ).

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2978(\mathrm{~m}), 2922(\mathrm{~m}), 2865(\mathrm{w}), 1720(\mathrm{~s}), 1635(\mathrm{~m}), 1446(\mathrm{~m}), \\ & 1299(\mathrm{~m}), 1176(\mathrm{~s}), 1134(\mathrm{~m}), 1034(\mathrm{~s}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR | $6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CCHH}), 5.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CCHH}), 5.10(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0$ |
| ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & \mathrm{Hz}, \mathrm{CH}), 4.21\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.32(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \\ & \left.\mathrm{CH}_{2}\right), 2.15\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.67\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.59(3 \mathrm{H}, \\ & \left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) . \end{aligned}$ |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ | $167.3(\mathrm{COO}), 140.6\left(\mathrm{CCO}_{2} \mathrm{Et}\right), 132.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 124.5\left(\mathrm{CCH}_{2}\right)$, |
| ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\begin{aligned} & 123.4(\mathrm{CH}), 60.5\left(\mathrm{OCH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right) \text {, } \\ & 17.6\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (GC-EIMS) | $182\left([\mathrm{M}]^{+}, 62 \%\right)$. |

## (E)-ethyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoate (452a)



$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} . \\
& \mathrm{M}=250.38 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of 421a, bromide 457 a ( $150 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) was converted to the triene 452a obtained as a colourless oil ( $120 \mathrm{mg}, 0.48 \mathrm{mmol}, 74 \%$ ) after purification on $\mathrm{SiO}_{2}$ ( 25 g , hexane/EtOAc, 95:5).

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2964(\mathrm{~m}), 2922 \text { (s), } 2846 \text { (m), } 1740 \text { (s), } 14446 \text { (m), } 1375(\mathrm{~m}), \\ & 1271 \text { (w), } 1102(\mathrm{w}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> $\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right)$ | $6.15(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{CCHH}), 5.52(1 \mathrm{H}, \mathrm{q}, J=1.5 \mathrm{~Hz}, \mathrm{CCHH})$, $5.13\left(1 \mathrm{H}, \mathrm{tq}, J=7.3\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CHCCH}_{3}\right), 5.08(1 \mathrm{H}, \mathrm{tt}, J=7.0$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.34$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\right), 2.19(2 \mathrm{H}, \mathrm{dd}, J=15.1$ and 7.3 Hz , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.69(3 \mathrm{H}, \mathrm{d}$, $\left.J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.60\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $167.4(\mathrm{COO}), 140.6(\mathrm{CCOOEt}), 136.1\left(\mathrm{CCH}_{3}\right), 131.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $124.5\left(\mathrm{CCH}_{2}\right)$, $\left.124.4\left(\mathrm{CH}_{3} \mathrm{CCH}\right), 123.4\left(\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{CCH}\right), 60.7$ $\left(\mathrm{OCH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 25.8$ $\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 16.1\left(\mathbf{C H}_{3}\right), 14.4\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. |
| LRMS (GC-EIMS) | 250 ([M] $\left.{ }^{+}, 10 \%\right)$. |

( $Z$ )-Ethyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoate (452b) and ( $E$ )-ethyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoate (452a)


Following the procedure used for the synthesis of 421a, mixture of bromides $457 \mathrm{a}, \mathrm{b}(1.52 \mathrm{~g}$, 6.61 mmol ) was converted to a inseparable mixture of trienes 452a,b obtained as a colourless oil ( $1.46 \mathrm{~g}, 5.82 \mathrm{mmol}, 88 \%$ ), after purification on $\mathrm{SiO}_{2}(25 \mathrm{~g}$, hexane/EtOAc, 95:5).

| IR $\left(\mathrm{cm}^{-1}\right)$ | $2954(\mathrm{~m}), 2922(\mathrm{~s}), 2853(\mathrm{~m}), 1740(\mathrm{~s}), 1453(\mathrm{~m}), 1376(\mathrm{~m}), 1267$ |
| :--- | :--- |
|  | $(\mathrm{w}), 1205(\mathrm{w})$. |

LRMS (GC-EIMS) $\quad 250\left([\mathrm{M}]^{+}, 12 \%\right)$.

## Ethyl 7-methyl-2-methyleneoct-6-enoate (439a)



$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} . \\
& \mathrm{M}=196.15 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of 421a, bromide $\mathbf{4 3 8}(250 \mathrm{mg}, 1.412 \mathrm{mmol})$ was converted to triene 439a obtained as a colourless oil ( $206 \mathrm{mg}, 1.050 \mathrm{mmol}, 74 \%$ ), after purification on $\mathrm{SiO}_{2}\left(50 \mathrm{~mL}\right.$, hexane / $\left.\mathrm{Et}_{2} \mathrm{O}, 95: 5\right)$.

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2970(\mathrm{w}), 2934(\mathrm{~m}), 2860(\mathrm{w}), 1720(\mathrm{~s}), 1368(\mathrm{~m}), 1216(\mathrm{~m}), \\ & 1178(\mathrm{~m}), 1135(\mathrm{w}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CCHH}), 5.51(1 \mathrm{H}, \mathrm{q}, J=1.5 \mathrm{~Hz}, \mathrm{CCHH}), 5.12(1 \mathrm{H}$, $\mathrm{ttd}, J=7.3,4.3$ and $\left.2.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.20(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 2.32\left(2 \mathrm{H}, \mathrm{dt}, J=8.5\right.$ and $\left.7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\right), 2.00(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.51(2 \mathrm{H}$, $\mathrm{td}, J=15.3$ and $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.31(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ). |
| ${ }^{13} \text { C-NMR }$ <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | 167.4 ( COO$), \quad 141.0 \quad(\mathrm{CCOOEt}), 131.8 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 124.2$ $\left.\left(\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{CCH}\right), 124.1\left(\mathrm{C}=\mathbf{C H}_{2}\right), 60.5\left(\mathrm{OCH}_{2}\right), 31.4\left(\mathrm{CCH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |

6-Methyl-2-methylenehept-5-enyl acetate (436) ${ }^{154}$


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} . \\
& \mathrm{M}=182.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Vasil'ev et al. ${ }^{154}$ DIBALH ( 1.5 M sol. in toluene, 17.25 mL , 25.85 mmol ) was added dropwise to a solution of diene $\mathbf{4 2 1 a}(2.14 \mathrm{~g}, 11.75 \mathrm{mmol})$ in hexane $(30 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 3 hours and warmed to $0^{\circ} \mathrm{C}$ before addition of $\mathrm{MeOH}(2 \mathrm{~mL})$ and water ( 15 mL ). Cold $\mathrm{HCl}(2 \mathrm{M}$ aq. sol., 3 mL ) was added to dissolve the solid formed. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( 3 x 30 mL ) and the combined organic phases were washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $3 \times 20$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the corresponding alcohol $(1.52 \mathrm{~g}, 10.85 \mathrm{mmol}, 92 \%)$ that was used directly in the next step. The alcohol $(1.50 \mathrm{~g}, 10.70$
mmol ) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ before the addition of triethylamine ( 7.40 mL , 54.00 mmol ) followed by $\mathrm{Ac}_{2} \mathrm{O}(2.20 \mathrm{~mL}, 0.202 \mathrm{mmol})$ and DMAP ( $10 \mathrm{mg}, 0.07 \mathrm{mmol}$ ). the reaction was stirred for 48 hours, $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added and the mixture was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine ( 30 mL ). The combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $30 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 2.50 g ). Purification on silica gel ( 350 mL , hexane $/ \mathrm{Et}_{2} \mathrm{O}, 4: 1$ ) afforded the title product 436 as a colourless oil $(1.85 \mathrm{~g}, 10.16 \mathrm{mmol}$, $95 \%)$.

| IR (cm $\left.{ }^{-1}\right)$ | $2969(\mathrm{w}), 2928(\mathrm{w}), 2858(\mathrm{w}), 1741(\mathrm{~s}), 1441(\mathrm{w}), 1374(\mathrm{~m}), 1225$ |
| :--- | :--- |
|  | $(\mathrm{~s}), 1027(\mathrm{~m})$. |

(2Z,6Z)-Ethyl 8-acetoxy-2,6-dimethylocta-2,6-dienoate (335a)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} . \\
& \mathrm{M}=254.33 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Marshall et al., ${ }^{175}$ to a solution of phosphonate 338a ( 104 mg , $0.329 \mathrm{mmol})$ and 18 -crown- $6(135 \mathrm{mg}, 0.51 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS ( $0.68 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 0.34 mmol ) followed by the dropwise addition of aldehyde $\mathbf{1 9 b}$ ( $50 \mathrm{mg}, 0.296 \mathrm{mmol}$ ). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 90 minutes, then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 15 mL ). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 15 \mathrm{~mL})$. The combined organic phases were washed with water ( $2 \times 10 \mathrm{~mL}$ ) and brine ( $2 \times 10 \mathrm{~mL}$ ). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 70 mg ). Purification on
silica gel ( $20 \mathrm{~g}, \mathrm{EtOAc} /$ hexane, 1:9) afforded the title compound as a colourless oil ( 60 mg , $0.354 \mathrm{mmol}, 93 \%$ ).

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | 2977 (b), 2931 (b), 1739 (s), 1714 (s), 1448 (s), 1378 (s), 1233 <br> (b), 1024 (w). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.88(1 \mathrm{H}, \mathrm{tq}, J=7.4$ and $1.5 \mathrm{~Hz}, \mathrm{CCH}), 5.39(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right), 4.56\left(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.20(2 \mathrm{H}, \mathrm{q}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.21(2 \mathrm{H}, \mathrm{t}, J=7.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right), 1.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.77(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $\mathbf{7 5 M H z}^{\mathrm{MH}}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $171.0(\mathrm{COO}), 168.0(\mathrm{COO}), 141.8(\mathrm{CH}), 141.4\left(\mathrm{CCH}_{3}\right), 127.8$ $\left(\mathrm{CCH}_{3}\right), 119.6\left(\mathrm{CHCH}_{2}\right), 60.9\left(\mathrm{CHCH}_{2}\right), 60.1\left(\mathrm{OCH}_{2}\right), 31.5$ $\left(\mathbf{C H}_{2}\right), 27.8\left(\mathbf{C H}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 20.6\left(\mathbf{C H}_{3}\right), 14.2$ $\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. |
| LRMS (ES+ ionisation) | $\begin{aligned} & 785.2\left([3 \mathrm{M}+\mathrm{Na}]^{+},\right. \\ & 5 \%), \quad 531.3\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 100 \%\right), \quad 277.2 \\ & \left([\mathrm{M}+\mathrm{Na}]^{+}, 80 \%\right) \end{aligned}$ |
| HRMS | 277.1410 |

(2Z,6Z)-methyl 8-acetoxy-2,6-dimethylocta-2,6-dienoate (335b) ${ }^{175}$


$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} . \\
& \mathrm{M}=240.30 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Marshall et al., ${ }^{175}$ to a solution of the phosphonate $\mathbf{3 3 8 b}(1.14 \mathrm{~g}$, 3.42 mmol ) and 18 -crown-6 ( $1.13 \mathrm{~g}, 4.63 \mathrm{mmol}$ ) in THF ( 30 mL ) at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS ( $7.2 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 3.60 mmol ) followed by the dropwise addition of aldehyde $\mathbf{1 9 b}$ ( $525 \mathrm{mg}, 3.08 \mathrm{mmol}$ ). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 90 minutes and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 45 mL ). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with water ( 2 x 30 mL ) and brine ( 2 x 30 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 750 mg ). Purification on silica gel ( 150 mL , EtOAc/hexane, 1:9) afforded the title compound $\mathbf{3 3 5 b}$ as a colourless oil ( $690 \mathrm{mg}, 2.87 \mathrm{mmol}$, $93 \%$ ).

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 3030(\mathrm{w}), 2950(\mathrm{~m}), 2851(\mathrm{w}), 1740(\mathrm{~s}), 1716(\mathrm{~s}), 1455(\mathrm{~m}), 1436 \\ & (\mathrm{~m}), 1380(\mathrm{~m}), 1361(\mathrm{~m}), 1238(\mathrm{~s}), 1125(\mathrm{~m}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) | $5.89(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CCH}), 5.36(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right), 4.54\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.21\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\right)$, $2.03\left(3 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{OCCH}_{3}\right), 1.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.74(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 171.0\left(\mathbf{C O O C H}_{2}\right), 168.1(\mathbf{C O O}), 141.9(\mathbf{C H}), 141.8\left(\mathbf{C C H}_{3}\right), \\ & 127.4\left(\mathbf{C C H}_{3}\right), 119.6\left(\mathbf{C H C H}_{2}\right), 60.9\left(\mathbf{C H C H}_{2}\right), 51.2\left(\mathrm{OCH}_{3}\right), \\ & 31.4\left(\mathrm{CH}_{2}\right), 27.8\left(\mathbf{C H}_{2}\right), 23.2\left(\mathbf{C H}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (ES+ ionisation) | $263.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 55 \%\right), 258.3\left(\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 25 \%\right), 128.1\right.$ (100\%) |

(2Z,6Z)-Ethyl 2,6-dimethylocta-2,6-dienoate (335d) and (2Z,6E)-ethyl 2,6-dimethylocta-2,6-dienoate (335e)

$\begin{array}{ll} & \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} . \\ & M=196.29 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .\end{array}$


$$
M=196.29 \mathrm{~g}_{\mathrm{mol}} \mathrm{~mol}^{-1}
$$

A solution of diene $\mathbf{3 3 5 a}(50 \mathrm{mg}, 0.204 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{acac})_{2}(12 \mathrm{mg}, 0.040 \mathrm{mmol})$, dppe ( 50 mg , 0.121 mmol ) and $\mathrm{nMe}_{4} \mathrm{BH}(\mathrm{OAc})_{3}(526 \mathrm{mg}, 2.002 \mathrm{mmol})$ in THF ( 5 mL ) was stirred for 36 hours. The solvent was removed in vacuo and the resulting crude product was purified on silica gel ( $75 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane, 15:85) to afford the title compound, a pale yellow oil, as a inseparable mixture of dienes $\mathbf{3 3 5 d}, \mathbf{e}$ ( $30 \mathrm{mg}, 0.153 \mathrm{mmol}, 76 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) $2978(\mathrm{~m}), 2922(\mathrm{~m}), 2855(\mathrm{w}), 1711(\mathrm{~s}), 455(\mathrm{~m}), 1239(\mathrm{~m}), 1182$ (s), 1129 (s).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 5.91(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{CH}=\mathrm{CO}), 5.24\left(1 \mathrm{H}\right.$, app $\left.\mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCH}_{2}\right)$, $\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) 4.21\left(2 \mathrm{H}\right.$, app q$\left., J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.55(2 \mathrm{H}$, br $\mathrm{t}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 2.14\left(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{CHHC}\left(\mathrm{CH}_{3}\right)\right), 2.08(1 \mathrm{H}, \mathrm{t}, J$
${ }^{13}$ C-NMR
(75MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right)$
$168.2(\mathrm{COO}), 142.5\left(\mathrm{CH}=\mathrm{CCH}_{2}\right), 142.2\left(\mathrm{CH}=\mathrm{CCH}_{2}\right), 135.1$ $\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)\right)$, $135.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)\right)}\right), 127.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, $127.1\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)$, $119.6\left(\mathrm{CHCH}_{3}\right), \quad 118.9 \quad\left(\mathrm{CHCH}_{3}\right), \quad 60.0 \quad\left(\mathrm{OCH}_{2}\right), \quad 39.1$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 28.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 15.5\left(\mathrm{CH}_{3}\right), 14.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 13.3\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right)$.
LRMS (GC-EIMS) $196\left(\left[\mathrm{M}^{+}, 20 \%\right)\right.$.

## Methyl (2Z,6Z)-8-[(2-methoxyethoxy)methoxy]-2,6-dimethylocta-2,6-dienoate (345a)



$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5} . \\
& \mathrm{M}=286.37 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Marshall et al., ${ }^{175}$ to a solution of the phosphonate $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Me}(1.70 \mathrm{~g}, 5.12 \mathrm{mmol})$ and 18 crown $6(1.83 \mathrm{~g}, 6.92 \mathrm{mmol})$ in THF ( 40 mL ) at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS ( $10.7 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 5.34 mmol ) followed by the dropwise addition of aldehyde 344 ( $1.00 \mathrm{~g}, 4.61 \mathrm{mmol}$ ). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 90 minutes and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 45 mL ). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL}$ ) and $\mathrm{EtOAc}(3 \times 30$ mL ). The combined organic phases were washed with water ( 2 x 30 mL ) and brine ( $2 \times 30$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 1.40 g ). Purification on silica gel ( 200 mL , EtOAc/hexane, 1:4) afforded the title compound 345a as a colourless oil ( $1.10 \mathrm{~g}, 3.84 \mathrm{mmol}, 83 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 2931 (b), 2874 (b), 1725 (s), 1455 (w), 1365 (w), 1214 (s), 1129 (b), 1105 (b), 1044 (b).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 5.90\left(1 \mathrm{H}, \mathrm{tq}, J=7.6\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{CHCCO}_{2} \mathrm{Me}\right), 5.38(1 \mathrm{H}, \mathrm{td}, J=$ $\left.\mathbf{( 3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 6.9$ and $\left.1.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.06(2 \mathrm{H}, \mathrm{dd}, J$ $=6.9$ and $\left.0.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.70-3.67$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.56-3.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$,
$2.55\left(2 \mathrm{H}, \mathrm{qq}, J=7.4\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.17(2 \mathrm{H}, \mathrm{t}, J=7.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C}\right), 1.87\left(3 \mathrm{H}, \mathrm{q}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 1.72(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=1.3$ $\mathrm{Hz}, \mathrm{CH}_{3}$ ).
${ }^{13} \mathrm{C}$-NMR
( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ )
$168.2(\mathrm{COO}), 142.1\left(\mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 140.2\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 127.3$ $\left(\mathrm{CCH}_{3}\right), 121.7\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 94.6\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.8\left(\mathrm{CH}_{3} \mathrm{OCH}_{2}\right)$, $66.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), \quad 63.5\left(\mathrm{OCH}_{2} \mathrm{CH}\right), \quad 58.9 \quad\left(\mathrm{OCH}_{3}\right), \quad 51.2$ $\left(\mathrm{COOCH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $304.4\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right), 325.2\left([\mathrm{M}+\mathrm{K}]^{+}, 42 \%\right)$.

Ethyl (2Z, 6E)-8-hydroxy-2,6-dimethyl-2,6-octadienoate (335c)


$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} . \\
& \mathrm{M}=212.29 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

According to the method of Marshall et al., ${ }^{175}$ a solution of acetate $\mathbf{3 3 5 a}$ ( $50 \mathrm{mg}, 0.197 \mathrm{mmol}$ ) and a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in dry methanol $(1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was stirred overnight. The mixture was diluted with water ( 10 mL ) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine ( $2 \times 10 \mathrm{~mL}$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the title compound $\mathbf{3 3 5 c}$ as a colourless oil ( $40 \mathrm{mg}, 0.188 \mathrm{mmol}, 95 \%$ ), which was used without further purification in the next step.

IR ( $\mathbf{c m}^{-1}$ ) 3300 (b), 2979 (b), 2929 (b), 1730 (s), 1445 (s), 1374 (s), 1225 (b) and 1020 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 5.85\left(1 \mathrm{H}, \mathrm{qq}, J=7.7\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{td}, J=$
$\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) 7.0$ and $\left.1.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 4.10\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $4.04\left(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.48(2 \mathrm{H}, \mathrm{qt}, J=7.8$ and 1.2 $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.10\left(2 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\right), 1.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. OH peak was not óbserved.
${ }^{13} \mathbf{C}$-NMR $\quad 167.9 \quad(\mathbf{C O O}), \quad 141.8 \quad\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), \quad 138.5 \quad\left(\mathrm{CCH}_{2}\right), \quad 127.6$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{CHCH}_{2} \mathrm{OH}\right), 125.0(\mathrm{CCH}), 60.1\left(\mathrm{OCH}_{2}\right), 58.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 31.3$ $\left(\mathrm{CH}_{2} \mathrm{C}\right), 25.6\left(\mathrm{CH}_{2} \mathrm{CH}\right), \quad 23.3\left(\mathrm{CH}_{3}\right), \quad 20.5\left(\mathrm{CH}_{3}\right), 14.2$
$\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $447.3\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 20 \%\right)$.
[ $(Z)$-1-( $(Z)$-5-[1,3]-Dioxolane-2-methyl-pent-1-enyl)-7-[1,3]-Dioxolane -4-methyl-hept-3-enylsulfanyl]-benzene (356) and [( $Z$ )-1-( $(E)-5-[1,3]$-dioxolane-2-methyl-pent-1-enyl)-7-

## [1,3]-Dioxolane -4-methyl-hept-3-enylsulfanyl]-benzene (356b)



Method 1:
Allylic phenyl sulphide 354 ( $2.22 \mathrm{~g}, 8.4 \mathrm{mmol}$ ) was dissolved in THF ( 75 mL ) and cooled to $-78^{\circ} \mathrm{C}$. DABCO ( $942 \mathrm{mg}, 8.4 \mathrm{mmol}$ ) was added in one portion and the resulting solution was stirred for 5 minutes. $n-\operatorname{BuLi}(12.5 \mathrm{~mL}, 29.4 \mathrm{mmol})$ was added dropwise and the mixture was stirred 5 minutes. Allylic chloride $353(1 \mathrm{~g}, 5.24 \mathrm{mmol})$ in THF ( 40 mL ) was added dropwise and the orange resulting solution was warmed at $-50^{\circ} \mathrm{C}$ over 5 hours. The reaction was quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (aq. sat. sol., 30 mL ) followed by the addition of water $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford the crude compound as a yellow oil ( 4 g ), which was purified on silica gel ( 200 mL , EtOAc/hexane, 15:85). Compound $\mathbf{3 5 6}$ was obtained as a colourless oil ( $550 \mathrm{mg}, 1.32 \mathrm{mmol}, 25 \%$ ), compound 356b was obtained as a colourless oil ( $430 \mathrm{mg}, 1.03$ $\mathrm{mmol}, 20 \%$ ) and a mixture of compound $\mathbf{3 5 6}$ and $\mathbf{3 5 6} \mathbf{b}$ as a colourless ( $280 \mathrm{mg}, 0.67 \mathrm{mmol}$, $13 \%$ ).

Method 2:
Allylic phenyl sulphide $\mathbf{3 5 4}(400 \mathrm{mg}, 1.51 \mathrm{mmol})$ was dissolved in THF ( 30 mL ) and cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{DABCO}(170 \mathrm{mg}, 1.51 \mathrm{mmol})$ was added in one portion and the resulting solution was stirred for 5 minutes. $n-\mathrm{BuLi}(4 \mathrm{~mL}, 5.29 \mathrm{mmol})$ was added dropwise and the mixture was stirred 5 minutes. Allylic chloride $\mathbf{3 5 3}$ ( $165 \mathrm{mg}, 0.865 \mathrm{mmol}$ ) in THF ( 10 mL ) was added
dropwise and the orange resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 hours. The reaction was quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (aq. sat. sol., 30 mL ) followed by the addition of water $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to afford the crude compound as a yellow oil ( 1 g ), which was purified on silica gel ( $250 \mathrm{~mL}, \mathrm{EtOAc} /$ hexane, 15:85). The title product $\mathbf{3 5 6}$ was obtained as a colourless oil (250 $\mathrm{mg}, 0.597 \mathrm{mmol}, 69 \%)$.

Compound 356:
IR ( $\mathbf{c m}^{-1}$ ) 2964 (b), 2922 (b), 2884 (b), 1744 (s), 1432 (w), 1375 (w), 1145 (s), 1039 (b).
${ }^{1} \mathbf{H - N M R} \quad 7.44-7.41(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=\mathrm{CH}$, arom), 7.29-7.21(3H, m, $\mathrm{CH}=\mathrm{CH}$
$\left(\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ and $2 \times \mathrm{CH}=\mathrm{CH}$, arom), $5.16(1 \mathrm{H}, \mathrm{td}, J=7.2$ and 1.1 Hz , $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right), 5.07\left(1 \mathrm{H}, \mathrm{dd}, J=10.3\right.$ and $\left.1.1 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 4.80(1 \mathrm{H}$, $\mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{OCHO}), 4.75(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{OCHO}), 3.99-3.90$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CHS}\right.$ and $\left.2 \times \mathrm{OCH}_{2}\right), 3.88-3.78\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 2.38-$ $2.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.09\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.09-1.82(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right)$ 1.72-1.42 (2H, m, CH2) $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.67(3 \mathrm{H}, \mathrm{d}, J$ $=1.1 \mathrm{~Hz}, \mathrm{CH}_{3}$ ).
${ }^{13} \mathrm{C}-\mathrm{NMR}$
$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$
$137.2\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CCH}_{3}\right), 136.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CCH}_{3}\right), 135.0 \quad(\mathrm{CS})$,
$133.5(\mathrm{C}=\mathbf{C H}), 128.5(\mathrm{CH}), 127.0(\mathrm{CH}), 126.5\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right)$, $122.2\left(\mathrm{CHCCH}_{3}\right), 104.2(\mathrm{OCHO}), 104.1(\mathrm{OCHO}), 64.8\left(\mathrm{OCH}_{2}\right)$, 47.1 ( $\mathbf{C H S}), 33.7\left(\mathrm{SCHCH}_{2}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{CHO}\right)$, $26.3\left(\mathbf{C H}_{2} \mathrm{C}\right), 23.3\left(\mathbf{C H}_{3}\right), 23.0\left(\mathbf{C H}_{3}\right)$.
LRMS (ES+ ionisation) 457.2 ([M+K] ${ }^{+}, 75 \%$ ), 587.3 ( $100 \%$ ).
HRMS
Calculated : $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SNa}=441.2070$. Found : 441.2072.

Compound 356b:
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2960$ (b), 2925 (b), 2883 (b), 1746 (s), 1431 (w), 1374 (w), 1147 (s), 1041 (b).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 7.43-7.41(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=\mathrm{CH}$, arom $), 7.28-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$
$\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right)$ and $2 \times \mathrm{CH}=\mathrm{CH}$, arom), $5.19(1 \mathrm{H}, \mathrm{td}, J=7.0$ and 1.3 Hz , $\left.\mathrm{CHCH}_{2} \mathrm{~S}\right), 5.08\left(1 \mathrm{H}, \mathrm{dd}, J=10.3\right.$ and $\left.1.1 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 4.85(1 \mathrm{H}$,


## 2-((3Z,7Z)-3,8-Dimethyl-deca-3,7-dienyl)-di-([1,3]-dioxolane) (357a)



According to the method of Morimoto et al., ${ }^{48}$ a solution of $\mathbf{3 5 6}(250 \mathrm{mg}, 0.574 \mathrm{mmol})$ in a mixture of dry THF ( 20 mL ) and iso-propanol ( 10 mL ) was warmed up to reflux, before the addition of sodium metal ( $100 \mathrm{mg}, 4.35 \mathrm{mmol}$ ). Additional sodium metal (total 700 mg ) was added in small portions during 4 hours. After cooling to room temperature, the reaction was quenched by addition of water ( 5 mL ) and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20$ $\mathrm{mL})$. The combined organic phases were washed with brine ( 30 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude compound as a yellow oil ( 300 mg ). Purification on silica gel ( 150 mL , hexane/EtOAc, 9:1) afforded the title compound 357a and a small amount of by-product $\mathbf{3 5 7 b}$ in a $5: 1$ ratio ( $178 \mathrm{mg}, 0.573 \mathrm{mmol}, 100 \%$ ).
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2959$ (b), 2922 (b), 2874 (b), 1450 (w), 1138 (s), 1039 (b), 732 (w).
${ }^{1} \mathrm{H}-\mathrm{NMR}$
$5.14\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHCH}_{2}\right), 4.82(2 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{OCHO})$,
$\left.\mathbf{( 3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 4.02-3.92\left(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{OCH}_{2}\right), 3.91-3.80\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 2.16-$ $2.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.03\left(4 \mathrm{H}, \mathrm{br} \mathrm{t}, J=3.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 1.75-$ $1.67\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.69\left(6 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$.

| ${ }^{13} \mathbf{C}-\mathbf{N M R}$ | $134.4\left(2 \times \mathrm{CH}_{2} \mathrm{CH}=\mathbf{C C H}_{3}\right), 125.5\left(2 \times \mathrm{CH}_{2} \mathbf{C H}=\mathrm{CCH}_{3}\right), 104.4(2$ |
| :--- | :--- |
| $\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ | $\mathrm{x} \mathrm{OCHO}), 64.9\left(2 \times \mathrm{XCH}_{2}\right), 32.2\left(2 \times \mathrm{CH}_{2} \mathrm{CHO}\right), 28.1(2 \mathrm{x}$ |
|  | $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 26.2\left(2 \times \mathrm{CH}_{2} \mathrm{C}\right)$ and $23.3\left(2 \times \mathrm{CH}_{3}\right)$. |
| LRMS (GC-MSEI) | $310\left([\mathrm{M}]^{+}, 18 \%\right)$. |

## 2-((3Z,7E)-10-(1,3-Dioxolan-2-yl)-3,8-dimethyldeca-3,7-dienyl)-1,3-dioxolane (357c)



$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} . \\
& \mathrm{M}=310.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Morimoto et al. ${ }^{48}$ a solution of $\mathbf{3 5 6 b}(300 \mathrm{mg}, 0.717 \mathrm{mmol})$ in a mixture of dry THF ( 20 mL ) and iso-propanol ( 10 mL ) was warmed up to reflux, before the addition of sodium metal ( $100 \mathrm{mg}, 4.35 \mathrm{mmol}$ ). Additional sodium metal (total 900 mg ) was added in small portions during 4 hours. After cooling to room temperature, the reaction was quenched by addition of water ( 10 mL ) and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( 2 x $30 \mathrm{~mL})$. The combined organic phase were washed with brine ( 40 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude compound as a yellow oil ( 400 mg ). Purification on silica gel ( 150 mL , hexane/EtOAc, 9:1) afforded the title compound 357 c and a small amount of by-product $\mathbf{3 5 7 d}$ in a $4: 1$ ratio ( $222 \mathrm{mg}, 0.709 \mathrm{mmol}, 99 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 2959 (b), 2922 (b), 2874 (b), 1450 (w), 1138 (s), 1039 (b), 732 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 5.15\left(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{2}\right), 4.81(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCHO})$, ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) $\quad 3.95-3.89\left(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{OCH}_{2}\right), 3.87-3.77\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 2.13-$ $2.04\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.00\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}_{2}\right), 1.74-1.67(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.69\left(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R} \quad 135.6 \quad\left(\mathrm{CH}_{2} \mathbf{C H}=\mathbf{C C H}_{3}\right), \quad 134.4 \quad\left(\mathrm{CH}_{2} \mathrm{CH}=\mathbf{C C H}_{3}\right), \quad 125.5$
( $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{CH}_{2} \mathbf{C H}=\mathrm{CCH}_{3}\right), 124.4\left(\mathrm{CH}_{2} \mathbf{C H}=\mathrm{CCH}_{3}\right), 104.3(\mathrm{OCHO}), 104.2$ $(\mathrm{OCHO}), 64.8\left(\mathrm{OCH}_{2}\right), 33.8\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 32.3\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 28.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}\right), 26.1\left(\mathrm{CH}_{2} \mathrm{C}\right), 23.3\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $311.1\left([\mathrm{M}+\mathrm{H}]^{+}, 50 \%\right), 411.3(100 \%)$.


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} . \\
& \mathrm{M}=\mathbf{2 2 2 . 3 3} \mathrm{g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Markò et al., ${ }^{141}$ solid cerium ammonium nitrate ( $43 \mathrm{mg}, 8 \mathrm{~mol} \%$ ) was added to a stirred solution of dienes $\mathbf{3 5 2 a}, \mathbf{b}(300 \mathrm{mg}, 0.966 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ and
 3 days. After cooling to room temperature, water ( 15 mL ) was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were combined, dried $\left(\mathrm{NaSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a yellow oil (450 mg ). Purification on silica gel ( 100 mL , hexane/EtOAc, $4: 1$ ) afforded the title compound 352a and a small amount of by-product $\mathbf{3 5 2 b}$ in a $5: 1$ ratio as a colourless oil ( $207 \mathrm{mg}, 0.931 \mathrm{mmol}$, $96 \%$ ).
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2959$ (b), 2917 (b), 2851 (b), 2718 (b), 1720 (s), 1450 (w), 1101 (s), 1011 (b), 973 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 9.78(2 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \times \mathrm{CHO}), 5.18\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHCH}_{2}\right)$, $\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad 2.16-2.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.03\left(4 \mathrm{H}, \mathrm{br} \mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right)$, $1.75-1.70\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.69\left(6 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR $\quad 202.2(2 \times \mathrm{CHO}), 133.3\left(2 \times \mathrm{CH}=\mathrm{CCH}_{3}\right), 126.2\left(2 \times \mathrm{CH}=\mathrm{CCH}_{3}\right)$, ( $\left.75 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 42.2\left(2 \times \mathrm{CH}_{2} \mathrm{CHO}\right), 28.1\left(2 \times \mathrm{CH}_{2} \mathrm{C}\right), 24.3\left(2 \times \mathrm{CH}_{2} \mathrm{CH}\right), 23.0(2$ $x \mathrm{CH}_{3}$ ).

LRMS (ES+ ionisation) 261.2 ([M+K] ${ }^{+}$, $75 \%$ ), 487.4 (100\%).
HRMS
Calculated: $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}=245.1512$. Found : 245.1509.
(4E,8Z)-4,9-Dimethyl-dodeca-4,8-dienedial (352c)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} . \\
& \mathrm{M}=222.33 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

According to the method of Markò et al., ${ }^{141}$ solid cerium ammonium nitrate ( $28 \mathrm{mg}, 8 \mathrm{~mol} \%$ ) was added to a stirred solution of diene 357 c ( $200 \mathrm{mg}, 0.644 \mathrm{mmol}$ ) in $\mathrm{MeCN}(10 \mathrm{~mL})$ and borate- HCl buffer $5 \mathrm{Merck}\left(\mathrm{pH} \mathrm{8}, 10 \mathrm{~mL}\right.$ ). The faintly yellow solution was heated at $60^{\circ} \mathrm{C}$ for

3 days. After cooling to room temperature, water ( 10 mL ) was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic phases were combined, dried ( $\mathrm{NaSO}_{4}$ ), filtered and concentrated in vacuo to give the crude product as a yellow oil ( 300 mg ). Purification on silica gel ( 100 mL , hexane/EtOAc, 4:1) afforded the title compound 352c and a small amount of by-product 352d in a $4: 1$ ratio as a colourless oil ( $135 \mathrm{mg}, 0.607 \mathrm{mmol}$, 94\%).

IR ( $\mathrm{cm}^{-1}$ ) 2959 (b), 2917 (b), 2860 (b), 2718 (b), 1720 (s), 1445 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 9.75(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \times \mathrm{CHO}), 9.75(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, \mathrm{CHO})$,
$\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 5.15\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CHCH}_{2}\right), 2.55-2.47\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.41-$ $2.30\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.03\left(2 \mathrm{H}, \mathrm{brt}, J=3.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 1.69$ $\left(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 202.5 \quad(\mathbf{C H O}), \quad 202.2 \quad(\mathbf{C H O}), \quad 133.4 \quad\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), \quad 133.2$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), \quad 126.2 \quad\left(\mathbf{C H}=\mathrm{CCH}_{3}\right), \quad 125.0 \quad\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), \quad 42.4$ $\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 42.2\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 31.8\left(\mathrm{CH}_{2} \mathrm{C}\right), 28.1\left(\mathrm{CH}_{2} \mathrm{C}\right), 24.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right), 23.0\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $261.2\left([\mathrm{M}+\mathrm{K}]^{+}, 75 \%\right), 487.4(100 \%)$.
(2Z,6Z,10Z,14Z)-Dimethyl 2,6,11,15-tetramethylhexadeca-2,6,10,14-tetraenedioate (333a) and (2Z,6Z,10Z)-methyl 13-formyl-2,6,11-trimethyltrideca-2,6,10-trienoate (471a)


Method 1:
According to the method of Marshall et al., ${ }^{175}$ to a solution of the phosphonate $\mathbf{3 3 8 b}$ ( 690 mg , $2.070 \mathrm{mmol})$ and 18 -crown- $6(720 \mathrm{mg}, 2.723 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS ( $4.5 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 2.500 mmol ) followed by the dropwise addition of aldehydes 352a,b ( $200 \mathrm{mg}, 0.900 \mathrm{mmol}$ ) in THF ( 15 mL ). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 20 mL ). The
aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with water ( 30 mL ) and brine ( 30 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 1.40 g ). Purification on silica gel ( 250 mL , EtOAc/hexane, 1:4) afforded the title compound 333a and a small amount of by-product 333b in a $4: 1$ ratio as a colourless oil ( $105 \mathrm{mg}, 0.290 \mathrm{mmol}, 32 \%$ ) and the title compound 471a as a colourless oil ( $140 \mathrm{mg}, 0.478 \mathrm{mmol}, 53 \%$ ).

## Method 2:

According to the method of Marshall et al., ${ }^{175}$ to a solution of the phosphonate 338b ( 347 mg , 1.04 mmol ) and 18 -crown-6 ( $355 \mathrm{mg}, 1.35 \mathrm{mmol}$ ) in THF ( 10 mL ) at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS ( $3.2 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 1.60 mmol ) followed by the dropwise addition of aldehydes $\mathbf{3 5 2 a}, \mathbf{b}$ ( $100 \mathrm{mg}, 0.45 \mathrm{mmol}$ ) in THF ( 15 mL ). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 20 mL ). The aqueous phase was extracted with $E t_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 1.40 g ). Purification on silica gel ( 250 mL , EtOAc/hexane, 1:4) afforded the title compound 333a and a small amount of by-product 333b in a 4:1 ratio as a colourless oil ( $140 \mathrm{mg}, 0.386 \mathrm{mmol}, 86 \%$ ).

Compound 333a:
IR ( $\mathrm{cm}^{-1}$ ) 2950 (b), 2922 (b), 2860 (b), 1725 (s), 1455 (w), 1432 (w), 1205 (b), 1129 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 5.92\left(2 \mathrm{H}\right.$, tdd, $J=7.3,2.8$ and $\left.1.2 \mathrm{~Hz}, 2 \times \mathrm{COCCHCH}_{2}\right), 5.17$ ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s} ,2 \times \mathrm{CCHCH}_{2}\right), 3.73\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.54(4 \mathrm{H}, \mathrm{qd}, J$ $=7.3$ and $\left.1.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 2.11\left(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right)$, $2.01\left(4 \mathrm{H}, \mathrm{br} \mathrm{t}, J=3.3 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 1.89(6 \mathrm{H}, \mathrm{t}, J=1.3 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CH}_{3}\right) 1.60\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR $\quad 168.4\left(2 \times \mathrm{COOCH}_{3}\right), 142.7\left(2 \mathrm{x} \mathrm{CH}=\mathrm{CCH}_{3}\right)$, $134.4(2 \mathrm{x}$ ( $\left.\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad \mathrm{CH}=\mathrm{CCH}_{3}\right), 127.0\left(2 \times \mathrm{CH}=\mathrm{CCH}_{3}\right), 125.6\left(2 \times \mathbf{C H}=\mathrm{CCH}_{3}\right), 51.1$ ( $2 \mathrm{x} \mathrm{OCH} \mathrm{O}_{3}$ ), $31.4\left(2 \times \mathrm{CH}_{2} \mathrm{C}\right.$ ), 28.3 ( $2 \times \mathrm{CH}_{2} \mathrm{CH}$ ), 27.9 ( 2 x $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 23.2\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 20.5\left(2 \times \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $385.5\left([\mathrm{M}+\mathrm{Na}]^{+}, 85 \%\right), 417.5$ ( $100 \%$ ).
HRMS
Calculated: $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}=385.2349$. Found : 385.2361.

Compound 471a:
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2945$ (b), 2921 (b), 2895 (b), 2718 (b), 1720 (s), 1445 (w), 1365 (b), 1209 (b), 1124 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 9.78(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CHO}), 5.92(1 \mathrm{H}, \mathrm{tq}, J=7.4$ and 1.5 Hz ,
$\left.\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \mathrm{COCCHCH}_{2}\right), 5.27-5.15\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CCHCH}_{2}\right), 3.73(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.54\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.35\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $2.11\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.01\left(4 \mathrm{H}, \mathrm{br} \mathrm{t}, J=3.3 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right)$, $1.89\left(3 \mathrm{H}, \mathrm{t}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.69\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR $\quad 202.4(\mathrm{CHO}), 168.7\left(\mathrm{COOCH}_{3}\right), 142.8\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 134.4$
$\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), 133.1 \quad\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), 127.0 \quad\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), 126.6$ $\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 125.6\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 51.2\left(\mathrm{OCH}_{3}\right), 42.3\left(\mathrm{CH}_{2} \mathrm{CHO}\right)$, $31.3\left(\mathrm{CH}_{2} \mathrm{C}\right), 28.2\left(\mathrm{CH}_{2} \mathrm{C}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}\right), 24.3\left(\mathrm{CH}_{2} \mathrm{CH}\right), 23.2$ $\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) 331.3 ([M+K] ${ }^{\boldsymbol{\top}}, 100 \%$ ).
(2Z,6Z,10E,14Z)-Dimethyl 2,6,11,15-tetramethylhexadeca-2,6,10,14-tetraenedioate (333c), (2Z,6E,10Z)-methyl 13-formyl-2,6,11-trimethyltrideca-2,6,10-trienoate (471b) and (2Z,6Z,10E)-methyl 13-formyl-2,6,11-trimethyltrideca-2,6,10-trienoate (471c)


According to the method of Marshall et al., ${ }^{175}$ to a solution of the phosphonate $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Me}(311 \mathrm{mg}, 0.931 \mathrm{mmol})$ and 18 crown $6(324 \mathrm{mg}, 1.223$ mmol) in THF ( 15 mL ) at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS $(2.3 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 1.125 mmol ) followed by the dropwise addition of the aldehydes $\mathbf{3 5 2} \mathbf{c}, \mathbf{d}(90 \mathrm{mg}$, 0.405 mmol ) in THF ( 10 mL ). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours and
then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 20 mL ). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $2 \times 20 \mathrm{~mL}$ ) and EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic phases were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 1.10 g ). Purification on silica gel ( 100 mL , EtOAc/hexane, 1:4) afford the title compound 333c and a small amount of by-product 333d in a 4:1 ratio as a colourless oil ( 60 $\mathrm{mg}, 0.166 \mathrm{mmol}, 41 \%)$ and an inseparable mixture of compounds $\mathbf{4 7 1 b}, \mathrm{c}$ as a colourless oil ( $65 \mathrm{mg}, 0.222 \mathrm{mmol}, 55 \%$ ).

Compound 333c:

| IR ( $\mathrm{cm}^{-1}$ ) | 2945 (b), 2922 (b), 2851 (b), 1716 (s), 1450 (w), 1436 (w), 1200 (b), 1124 (w). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\left.\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $5.92\left(2 \mathrm{H}, \mathrm{tq}, J=7.2\right.$ and $\left.1.7 \mathrm{~Hz}, 2 \times \mathrm{COCCHCH}_{2}\right), 5.17(2 \mathrm{H}$, br s $\left.2 \times \mathrm{CCHCH}_{2}\right), 3.74\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.57-2.51(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 2.15-2.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.02(4 \mathrm{H}$, br $\mathrm{t}, J=3.3 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right) 1.89\left(6 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13}$ C-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $168.5\left(\mathrm{COOCH}_{3}\right), 143.2\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 142.8\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 134.5$ $\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 127.0\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 126.7\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 125.7$ $\left(\mathbf{C H}=\mathrm{CCH}_{3}\right), 124.9\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 51.2\left(\mathrm{OCH}_{3}\right), 39.1\left(\mathrm{CH}_{2} \mathrm{CH}\right)$, $28.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 28.1\left(\mathrm{CH}_{2} \mathrm{CH}\right), 28.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 23.2\left(\mathrm{CH}_{3}\right), 20.7$ $\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | 385.5 ([M+Na] $\left.{ }^{\top}, 85 \%\right), 417.5$ (100\%). |

Compounds 471b,c:
IR ( $\mathbf{c m}^{-1}$ ) 2945 (b), 2921 (b), 2895 (b), 2718 (b), 1720 (s), 1445 (w), 1365 (b), 1209 (b), 1124 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 9.79(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CHO}), 9.78(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CHO})$,
( $\left.\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) 5.93\left(2 \mathrm{H}\right.$, br s, $\left.2 \times \mathrm{COCCHCH}_{2}\right), 5.17\left(4 \mathrm{H}\right.$, br s, $\left.2 \times \mathrm{CCHCH}_{2}\right)$, $3.74\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 2.55-2.50\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{CH}_{2}\right), 2.37-2.35$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.11\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}_{2}\right), 2.14-2.01(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 1.89\left(6 \mathrm{H}, \mathrm{t}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right)$ and $1.69\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 1.27$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathrm{NMR} \quad 202.6 \quad(\mathbf{C H O}), \quad 202.3 \quad(\mathrm{CHO}), \quad 168.7 \quad\left(\mathrm{COOCH}_{3}\right)$,
( $\left.\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 143.1\left(\mathbf{C H}=\mathrm{CCH}_{3}\right), 142.7\left(\mathbf{C H}=\mathrm{CCH}_{3}\right), 134.7\left(\mathrm{CH}=\mathbf{C C H}_{3}\right), 133.2$
$\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 126.5 \quad\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 125.5 \quad\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 125.3$
$\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 124.6\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 51.2\left(\mathrm{OCH}_{3}\right), 42.3\left(\mathrm{CH}_{2} \mathrm{CHO}\right)$,
$42.1\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{C}\right), 31.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 28.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 28.2$
$\left(\mathrm{CH}_{2} \mathrm{C}\right), 28.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}\right), 24.3\left(\mathrm{CH}_{2} \mathrm{CH}\right), 23.2$
$\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 20.6(\mathrm{CH} 3), 20.7\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $331.3\left([\mathrm{M}+\mathrm{K}]^{+}, 100 \%\right), 622.5\left([2 \mathrm{M}+\mathrm{K}]^{+}, 35 \%\right)$.
( $Z$ )-6,6-Dimethoxy-3-methyl-hex-2-en-1-ol (472) ${ }^{176}$


$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3} . \\
& \mathrm{M}=174.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According the method of Germain et al., ${ }^{176}$ to aldehyde 19 b ( $7.00 \mathrm{~g}, 41.12 \mathrm{mmol}$ ) in MeOH $(300 \mathrm{~mL})$ was added 4 M hydrogen chloride in dioxane ( $2.1 \mathrm{~mL}, 8.24 \mathrm{mmol}$ ). The mixture was stirred at room temperature for 4 hours before the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(2.25 \mathrm{~g}, 16.34 \mathrm{mmol})$. The mixture was stirred overnight and solvents were removed. $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 50 mL ) was added and the aqueous phase extracted with EtOAc ( $5 \times 50 \mathrm{~mL}$ ). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to obtain the crude product as an orange oil ( 8 g ). Purification on silica gel ( 200 mL , EtOAc/hexane, 2:3) afforded the title product $\mathbf{4 7 2}$ as a yellow oil ( $6.30 \mathrm{~g}, 36.17 \mathrm{mmol}, 88 \%$ ). Spectroscopic data were in agreement with that reported in the literature. ${ }^{176}$

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 3409 \text { (b), } 2959 \text { (b), } 2926 \text { (b), } 2822 \text { (b), } 1663 \text { (s), } 1446 \text { (w), } 1124 \\ & \text { (w), } 1053 \text { (b). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 5.46(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CHC}), 4.31\left(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{OCHCH}_{2}\right), \\ & 4.05\left(2 \mathrm{H}, \mathrm{~d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.27\left(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{OCH}_{3}\right), 2.45 \\ & (1 \mathrm{H}, \mathrm{br} \mathrm{~s}, \mathrm{OH}), 2.11\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.67\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), \\ & 1.67-1.65\left(2 \mathrm{H}, \mathrm{~m}, \mathrm{CH}_{2}\right) . \end{aligned}$ |
| ${ }^{13}$ C-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 138.6\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), \quad 125.0 \quad\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), \quad 102.9 \quad(\mathrm{CO}), \quad 58.3 \\ & \left(\mathbf{C H}_{2} \mathrm{OH}\right), 52.1\left(\mathrm{OCH}_{3}\right), 29.6\left(\mathbf{C H}_{2} \mathrm{CH}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 22.9(2 \mathrm{x} \\ & \left.\mathrm{CH}_{3}\right) . \end{aligned}$ |

LRMS (ES+ ionisation) $196.9\left([\mathrm{M}+\mathrm{Na}]^{+}, 15 \%\right), 379.3$ ( $100 \%$ ).
$(2 E, 6 E)$ Farnesal (320) ${ }^{118,177}$


$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O} . \\
& \mathrm{M}=220.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Method 1:
According to the method of Cane et al., ${ }^{177}$ farnesol $\mathbf{3 1 9}$ ( $100 \mathrm{mg}, 0.45 \mathrm{mmol}$ ) was dissolved in hexane ( 5 mL ) and $\mathrm{MnO}_{2}(1.7 \mathrm{~g})$ was added in one portion. The solution was left to stir overnight. Celite was then added, the solids were filtered off and the solvents were evaporated. The residue was dissolved in hexane, filtered through a pad of silica and concentrated in vacuo to give the crude product as a yellow oil ( 98 mg ). Purification on silica gel ( 15 g , EtOAc/hexane, 1:9) afforded the title product $\mathbf{3 2 0}$ as a yellow oil ( $54 \mathrm{mg}, 0.25$ $\mathrm{mmol}, 56 \%$ ) as well as recovered starting material ( $41 \mathrm{mg}, 0.18 \mathrm{mmol}, 40 \%$ ).

Method 2:
Acording to the method of Zoller et al., ${ }^{118}$ farnesol $\mathbf{3 1 9}$ ( $302 \mathrm{mg}, 1.36 \mathrm{mmol}$ ) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ before the addition of $\mathrm{BaMnO}_{4}(3.50 \mathrm{~g}, 13.6 \mathrm{mmol})$. The resulting mixture was stirred for 4 days. The solution was filtered on a pad of celite and concentrated in vacuo to give the title product $\mathbf{3 2 0}$ as a yellow oil ( $262 \mathrm{mg}, 1.19 \mathrm{mmol}, 88 \%$ ). Spectroscopic data were in agreement with that reported in the literature. ${ }^{118,177}$

| IR $\left(\mathbf{c m}^{-1}\right)$ | $2967(\mathrm{~s}), 2917(\mathrm{~s}), 2850(\mathrm{~s}), 1678(\mathrm{~s}), 1628(\mathrm{w}), 1439(\mathrm{~m}), 1379$ |
| :--- | :--- |
|  | $(\mathrm{~m}), 1193(\mathrm{~m}), 1119(\mathrm{~m})$. |

Ethyl (6E)-7,11-dimethyl-3-oxo-6, 10-dodecadienoate (317b) ${ }^{178}$


$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3} . \\
& \mathbf{M}=266.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To an ice-cooled suspension of sodium hydride ( 1.16 g of a $60 \%$ dispersion in mineral oil, 29.0 mmol ) in dry THF ( 20 mL ) was added dropwise ethyl acetoacetate ( $3.75 \mathrm{~mL}, 29.0$ mmol ). After $10 \mathrm{mins}, n-\mathrm{BuLi}(14.3 \mathrm{~mL}$ of a 2.1 M solution in hexanes, 29.0 mmol ) was added and the mixture was stirred for a further 15 min . A solution of geranyl chloride $\mathbf{3 0 9 b}$ ( $4.75 \mathrm{~g}, 27.5 \mathrm{mmol}$ ) in dry THF ( 25 mL ) was added to the reaction and the resulting orange mixture allowed to warm to room temperature. After 30 min a solution of $\mathrm{HCl}(20 \mathrm{~mL}$ of 3.5 M aq.) and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ $\mathrm{mL})$. The organic layers were combined, washed with water until neutral, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a rusty orange oil. Purification on $\mathrm{SiO}_{2}(300 \mathrm{~mL}$, $\mathrm{Et}_{2} \mathrm{O}$ /hexane, $1: 33$, then $1: 10$ and $1: 3$ ) gave the title compound $\mathbf{3 1 7 b}$ as a light gold oil (3.69 g, $14.0 \mathrm{mmol}, 52 \%$ ). Spectroscopic data were in agreement with that reported in the literature. ${ }^{178}$

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2966(\mathrm{~m}), 2914(\mathrm{~m}), 2858(\mathrm{~m}), 1741(\mathrm{~s}), 1716(\mathrm{~s}), 1649(\mathrm{~m}), 1629 \\ & (\mathrm{~m}), 1445(\mathrm{~m}), 1404(\mathrm{~m}), 1368(\mathrm{~m}), 1312(\mathrm{~s}) \text { and } 1235(\mathrm{~s}) \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.08(2 \mathrm{H}, \mathrm{tt}, J=6.0$ and $1.1 \mathrm{~Hz},=\mathrm{CH}), 4.20(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 3.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 2.57(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.30\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right), 2.15-2.0(4 \mathrm{H}$ $\left.\mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}=\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.59$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 202.6(\mathrm{CO}), 167.2(\mathrm{COO}), 136.7\left(\left(\mathrm{CH}_{3}\right) \mathbf{C}=\right), 131.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), \\ & 124.1 \quad\left(\left(\mathrm{CH}_{3}\right)_{2}=\mathbf{C H}\right), 122.1 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathbf{C H}\right), 61.3 \quad\left(\mathrm{O}-\mathrm{CH}_{2}\right), 49.4 \\ & \left(\mathrm{COCH}_{2} \mathrm{CO}\right), \quad 43.0 \quad\left(\mathrm{CH}_{2} \mathrm{CO}\right), \quad 39.6 \quad\left(=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), \\ & \left(=\mathrm{CHCH}_{2}\right), 25.7 \quad 26.6 \\ & \left.\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{OH}_{3}\right), \mathrm{CH}_{2} \mathrm{CH}_{3}\right) . \end{aligned}$ |

Ethyl (6Z)-7,11-dimethyl-3-oxo-6, 10-dodecadienoate (317a) ${ }^{178}$


Following the method used for the preparation of $\beta$-keto ester 317b, neryl chloride 309a (10.0 $\mathrm{g}, 57.90 \mathrm{mmol})$ afforded the title compound $\mathbf{3 1 7 a}$ as a yellow oil ( $12.1 \mathrm{~g}, 45.42 \mathrm{mmol}, 78 \%$ ) after purification on silica gel ( $300 \mathrm{~mL}, \mathrm{Et}_{2} \mathrm{O} /$ hexane, $2: 3$ ). Spectroscopic data were in agreement with that reported in the literature. ${ }^{178}$
$\boldsymbol{I R}\left(\mathbf{c m}^{-1}\right) \quad 2960(\mathrm{~m}), 2920(\mathrm{~m}), 2864(\mathrm{~m}), 1740(\mathrm{~s}), 1718(\mathrm{~s}), 1651(\mathrm{~m}), 1627$

$$
\text { (m), } 1439 \text { (m), } 1401 \text { (m), } 1367 \text { (m), } 1311 \text { (s), } 1234 \text { (s). }
$$

${ }^{1} \mathbf{H}$-NMR $\quad 5.10(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}), 4.18\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.42(2 \mathrm{H}$,
( $\left.\left.\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.30(2 \mathrm{H}, \mathrm{q}$, $\left.J=7.3 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right), 2.03\left(4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}=\right), 1.69(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 202.6\left(\mathrm{COCH}_{2}\right), 167.3(\mathbf{C O O}), 136.8\left(\left(\mathrm{CH}_{3}\right) \mathbf{C}\right), 131.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}\right)$,
(75MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 124.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), 123.1\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathbf{C H}\right), 61.4\left(\mathrm{OCH}_{2}\right), 49.4$ $\left(\mathrm{COCH}_{2} \mathrm{CO}\right), 43.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), \quad 32.0 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 26.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 25.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 23.4\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 17.7$ $\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $267\left([\mathrm{M}+\mathrm{H}]^{+}, 90 \%\right)$.

Ethyl (2Z, 6E)-3-[(diethoxyphophosryl)oxy]-7,11-dimethyl-2,6,10-dodecatrienoate (318a)


$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{P} . \\
& \mathrm{M}=402.44 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

To an ice-cooled solution of LiHMDS ( 4.12 mL of a 1.0 M solution in THF, 4.12 mmol ) in dry THF ( 20 mL ) was added a solution of $\beta$-keto ester $\mathbf{3 1 7 a}$ ( $1.00 \mathrm{~g}, 3.75 \mathrm{mmol}$ ) in dry THF $(15 \mathrm{~mL})$. After $15 \mathrm{mins}(\mathrm{EtO})_{2} \mathrm{POCl}(0.6 \mathrm{~mL}, 4.12 \mathrm{mmol})$ was added dropwise and the resulting solution was stirred at room temperature for 4 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 20 mL ) and the organic layer was separated then washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., $2 \times 20 \mathrm{~mL}$ ) and with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $3 \times 20 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered
and concentrated in vacuo to give a yellow oil. Purification on $\mathrm{SiO}_{2}\left(85 \mathrm{~g}, \mathrm{Et}_{2} \mathrm{O}\right.$ /hexane, 2:3) afforded title compound $\mathbf{3 1 8 a}$ as a pale yellow oil $(1.20 \mathrm{~g}, 3.03 \mathrm{mmol}, 81 \%)$.


## Ethyl (2E, 6Z)-3-[(diethoxyphosphoryl)oxy]-7,11-dimethyl-2,6,10-dodecatrienoate (318c)



$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{P} . \\
& \mathrm{M}=402.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To an ice-cooled solution of DMAP ( $102 \mathrm{mg}, 0.84 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 8.4 \mathrm{mmol})$ in DMPU ( 15 mL ) was added a solution of $\beta$-keto ester $\mathbf{3 1 7 b}(2.00 \mathrm{~g}, 7.5 \mathrm{mmol})$ in DMPU ( 9.0 mL ). After 50 mins the mixture was cooled to $-20^{\circ} \mathrm{C}$ and $(\mathrm{EtO})_{2} \mathrm{POCl}(1.3 \mathrm{~mL}, 8.9 \mathrm{mmol})$ was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 14 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and acidified with $\mathrm{HCl}(2 \mathrm{~N}, 40$ $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and the organic layers combined, washed with saturated $\mathrm{CuSO}_{4}$ solution ( $2 \times 20 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting rusty orange oil (crude ratio $2 E: 2 Z>49: 1$ by 1 H NMR) was purified on $\mathrm{SiO}_{2}\left(250 \mathrm{~g}, \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, $1: 4$ then $\left.1: 1\right)$ to give the title product 318 c as a pale yellow oil ( $2.15 \mathrm{~g}, 5.34 \mathrm{mmol}, 71 \%$ ).

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)^{\dagger}$ | $\begin{aligned} & 2976 \text { (w), } 2914 \text { (w), } 2853 \text { (w), } 1716 \text { (m), } 1644 \text { (m), } 1445 \text { (w), } \\ & 1373 \text { (w), } 1281 \text { (m), } 1122 \text { (m), } 1030 \text { (s). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> (300MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.82(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},=\mathrm{CHCOO}), 5.15(1 \mathrm{H}, \mathrm{td}, J=7.0$ and 1.5 $\mathrm{Hz},=\mathrm{CH}), 5.12-5.07(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 4.17(4 \mathrm{H}, \mathrm{qu}, J=7.4 \mathrm{~Hz}, \mathrm{P}-$ $\left.\mathrm{OCH}_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 2.79(2 \mathrm{H}, \mathrm{dt}, J=7.7$ and $\left.1.5 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right), 2.25\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right)$, 1.98-2.10 ( $4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$ ), $1.66\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.58(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.35\left(6 \mathrm{H}, \mathrm{td}, J=7.4\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{P}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. |
| ${ }^{13}$ C-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $166.2(\mathbf{C O O}), \quad 166.1 \quad(\mathbf{C}(\mathrm{OP})=), 136.5 \quad\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)=\right), 131.5$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), 124.2(=\mathbf{C H}), 123.2(=\mathbf{C H}), 105.4(\mathbf{C H C O O}), 64.8$ (d, $\left.J=5.6 \mathrm{~Hz} \mathrm{P}-\mathrm{OCH}_{2}\right), 60.0\left(\mathrm{O}-\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right)$, $31.9\left(\mathrm{CH}_{2} \mathrm{C}(\mathrm{OP})=\right)$, $26.5\left(=\mathrm{CHCH}_{2}\right), 25.7 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 25.2$ $\left(\mathrm{CH}_{3} \mathrm{C}=\right), 23.3\left(=\mathrm{CHCH}_{2}\right), 17.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 16.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, P- $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.0\left({\left.\mathrm{P}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \text {. }}^{2}\right.$ |
| LRMS (ES+ ionisation) | $\begin{aligned} & 425.3 \quad\left([\mathrm{M}+\mathrm{Na}]^{+}, 38 \%\right), 420.3\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 100 \%\right), 403.3 \\ & \left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) . \end{aligned}$ |
| HRMS (ESI) | Calculated : $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{P}=403.2244$. Found : 403.2242. |

Ethyl (2E, 6E)-3-[(diethoxyphophoryl)oxy]-7,11-dimethyl-2,6,10-dodecatrienoate (318b)


$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{P} . \\
& \mathrm{M}=402.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure for the preparation of the $E$-enol phosphate $\mathbf{3 1 8} \mathbf{c}$, the $\beta$-keto ester $317 \mathrm{a}(2.00 \mathrm{~g}, 7.5 \mathrm{mmol}$ ) afforded a crude gold green oil (crude ratio $2 E: 2 \mathrm{Z}>49: 1$ by 1 H NMR ), which was purified on $\mathrm{SiO}_{2}\left(180 \mathrm{~g}, \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:5) to give $\mathbf{3 1 8 b}$ as a very pale yellow oil ( $2.30 \mathrm{~g}, 5.7 \mathrm{mmol}, 76 \%$ ).
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 2976$ (w), 2914 (w), 2853 (w), 1716 (m), 1644 (m), 1445 (w), 1373 (w), 1281 (m), 1122 (m), 1030 (s).
${ }^{1} \mathbf{H}$-NMR $\quad 5.84(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz},=\mathrm{CHCOO}), 5.14(1 \mathrm{H}, \mathrm{td}, J=7.4$ and 1.5

```
\(\left.\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad \mathrm{Hz},=\mathbf{C H}\right), 5.07(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz},=\mathrm{CH}), 4.18(4 \mathrm{H}, \mathrm{qu}, J=7.4\) \(\left.\mathrm{Hz}, \mathrm{P}-\mathrm{OCH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 2.80(2 \mathrm{H}, \mathrm{td}, J=\) 7.7 and \(1.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{PO})=\) ), \(2.26(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}\), \(\left.=\mathrm{CHCH}_{2}\right), 2.11-1.92\left(4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.67\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)\), \(1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.35\left(6 \mathrm{H}, \mathrm{t}, J=1.1\right.\) and \(\left.7.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\), \(1.25\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\).
\begin{tabular}{|c|c|}
\hline \({ }^{13} \mathrm{C}-\mathrm{NMR}\) & \(166.2(\mathrm{COO}), 166.1 \quad(\mathrm{C}(\mathrm{OP})=), 136.5 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 131.5\) \\
\hline (75MHz, \(\mathrm{CDCl}_{3}, \mathrm{ppm}\) ) & \(\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 124.2(=\mathrm{CH}), 123.2(=\mathrm{CH}), 105.4((\mathrm{PO}) \mathrm{C}=\mathbf{C H})\), \\
\hline & \(64.8\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{P}-\mathrm{OCH}_{2}\right), 64.7\left(\mathrm{P}-\mathrm{OCH}_{2}\right), 60.0\left(\mathrm{O}_{\left.-\mathrm{CH}_{2}\right)}\right.\), \\
\hline & \(39.8\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right.\) ), \(31.9\left(\mathrm{CH}_{2} \mathrm{C}(\mathrm{OP})=\right.\) ), \(31.9\left(=\mathrm{CHCH}_{2}\right), 26.7\) \\
\hline & \(\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right)\), \(\left.25.8\left(=\mathrm{CHCH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right) \mathrm{C}=\right), 17.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right)\), \\
\hline
\end{tabular} \(16.1\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{P}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\).
LRMS (ES+ ionisation) \(\quad 425.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)\).
HRMS Calculated : \(\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{P}=425.2063\). Found : 425.2071.
```


## General procedure for the methylcopper-catalysed Grignard substitution of enol phosphates: Ethyl ( $2 E, 6 E$ )-3,7,11-trimethyl-2,6,10-dodecatrienoate (316a)

$$
\begin{array}{ll}
\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} . \\
M=264.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{array}
$$

$\mathrm{MeLi}\left(3.0 \mathrm{~mL}\right.$ of a 1.6 M solution in $\mathrm{Et}_{2} \mathrm{O}, 4.1 \mathrm{mmol}$ ) was added dropwise to a suspension of $\mathrm{CuI}(800 \mathrm{mg}, 4.21 \mathrm{mmol})$ in $\mathrm{THF}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The orange mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 mins , before cooling to $-30^{\circ} \mathrm{C} . \mathrm{MeMgCl}(2.3 \mathrm{~mL}$ of a 3 M solution in THF, 6.8 mmol$)$ was added dropwise maintaining the temperature below $-25^{\circ} \mathrm{C}$. After 30 min the resulting light brown suspension was treated with a solution of enol phosphate 318a ( $550 \mathrm{mg}, 1.37$ mmol ) in THF ( 20 mL ), and the mixture stirred at $-30^{\circ} \mathrm{C}$ for 3 h , then quenched by pouring quickly onto an ice-cold $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol.) and ammonia solution. The organic layer was diluted with $\mathrm{Et}_{2} \mathrm{O}$ ( 20 mL ) and washed with a mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol.) and ammonia solution until the blue colouring disappeared. The organic layer was washed with brine ( 3 x 30 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow/orange oil. Purification on $\mathrm{SiO}_{2}\left(20 \mathrm{~g}, \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, $\left.1: 10\right)$ afforded the title product $\mathbf{3 1 6 a}$ as a colourless
oil ( $350 \mathrm{mg}, 1.32 \mathrm{mmol}, 96 \%$, ratio $2 Z: 2 E,>99: 1$ by GC). Spectroscopic data were in agreement with that reported in the literature. ${ }^{179}$

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | 2971 (w), 2919 (w), 2853 (w), 1716 (s), 1650 (m), 1445 (m), |
| :---: | :---: |
|  | 1378 (m), 1224 (s), 1143 (s). |
| ${ }^{1} \mathrm{H}$-NMR | $5.67(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCOO}), 5.08(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 4.14(2 \mathrm{H}, \mathrm{q}, J=7.4$ |
| ( $\left.\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 2.20-2.15\left(4 \mathrm{H}, \mathrm{~m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.16(3 \mathrm{H}, \mathrm{~s},$ |
|  | $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCOO}\right), 2.04\left(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right.$ ), 2.02- |
|  | $1.96\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ |
|  | $\left.\mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ | 166.9 ( $\mathbf{C O O}$ ), $159.8(\mathbf{C}=\mathrm{CHCOO}), 136.1 \quad\left(\mathrm{CH}_{3} \mathbf{C}=\right), 131.4$ |
| $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), 124.3 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), 122.9\left(\mathrm{CH}_{3} \mathrm{C}=\mathbf{C H}\right), 115.6$ |
|  | $(=\mathbf{C H C O O}), \quad 59.4 \quad\left(\mathrm{OCH}_{2}\right), \quad 40.9 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), \quad 39.7$ |
|  | $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right.$ ), $26.7\left(=\mathrm{CHCH}_{2}\right), 25.9\left(=\mathrm{CHCH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right)$, |
|  | $18.8\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCOO}\right), 14.3$ ( $\mathrm{O}-$ |
|  | $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ). |

Ethyl (2Z, $6 E$ )-3,7,11-trimethyl-2,6,10-dodecatrienoate (316b) ${ }^{178}$


Following the General procedure for the methylcopper-catalysed Grignard substitution of enol phosphate 318a, enol phosphate 318b ( $660 \mathrm{mg}, 1.64 \mathrm{mmol}$ ) afforded $\mathbf{3 1 6 b}$ as a colourless oil ( $420 \mathrm{mg}, 1.59 \mathrm{mmol}, 97 \%$, ratio $2 E: 2 Z,>99: 1$ by GC). ${ }^{1} \mathrm{H}$-NMR data were in agreement with that reported in the literature. ${ }^{178}$

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | 2971 (m), 2914 (m), 2858 (w), 1716 (s), 1650 (m), 1445 (m), |
| :---: | :---: |
|  | 1373 (m), 1240 (w), 1209 (w), 1153 (s). |
| ${ }^{1} \mathrm{H}$-NMR | $5.65(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCOO}), 5.17(1 \mathrm{H}, \mathrm{td}, J=7.0$ and $1.1 \mathrm{~Hz},=\mathrm{CH})$, |
| (300MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $5.09(1 \mathrm{H}, \mathrm{tt}, J=5.5$ and $1.1 \mathrm{~Hz},=\mathrm{CH}), 4.12(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}$, |
|  | $\left.\mathrm{OCH}_{2}\right), 2.64\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right.$ ), $2.16(2 \mathrm{H}, \mathrm{q}, J=$ |

$\left.7.4 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right), 2.12-1.95\left(4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.89(3 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl (2Z, 6Z)-3,7,11-trimethyl-2,6,10-dodecatrienoate (316c) ${ }^{180}$


$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} . \\
& \mathrm{M}=264.39 \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the methylcopper-catalysed Grignard substitution of enol phosphate 318a, enol phosphate $\mathbf{3 1 8 c}(1.0 \mathrm{~g}, 2.5 \mathrm{mmol})$ afforded $\mathbf{3 1 6 c}$ as a pale yellow oil ( $520 \mathrm{mg}, 2.0 \mathrm{mmol}, 80 \%$, ratio $2 \mathrm{E}: 2 \mathrm{Z},>11: 1 \mathrm{by} \mathrm{GC}$ ). ${ }^{1} \mathrm{H}$ NMR data were in agreement with that reported in the literature. ${ }^{180}$

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2971(\mathrm{~m}), 2919(\mathrm{~m}), 2853 \text { (w), } 1716 \text { (s), } 1644(\mathrm{~m}), 1450(\mathrm{~m}), \\ & 1378(\mathrm{~m}), 1240(\mathrm{~m}), 1163(\mathrm{~s}), 1143(\mathrm{~s}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.66(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCOO}), 5.17(1 \mathrm{H}, \mathrm{td}, J=7.4$ and $1.5 \mathrm{~Hz},=\mathrm{CH})$ 5.14-5.10 ( $1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 4.13\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.64$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz},=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 2.16(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}$ $\left.=\mathrm{CHCH}_{2}\right), 2.05-2.04\left(4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 1.69\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27$ ( $3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $166.3(\mathrm{COO}), \quad 160.0 \quad(\mathrm{C}=\mathrm{CHCOO}), \quad 135.8 \quad(\mathbf{C}=\mathrm{CH}), 131.5$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 124.4(=\mathrm{CH}), 124.3(=\mathrm{CH}), 116.2(=\mathbf{C H C O O}), 59.4$ $\left(\mathrm{OCH}_{2}\right)$, $33.6\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 26.6\left(=\mathrm{CHCH}_{2}\right)$, $25.7\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $17.6\left(\mathrm{CH}_{3}\right)$, $14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |

$(E, E)$ Methyl Farnesoate (26) ${ }^{177}$


Method 1:
According to the method of Cane et al., ${ }^{177}$ farnesal $\mathbf{3 2 0}(82 \mathrm{mg}, 0.36 \mathrm{mmol})$ was dissolved in dry $\mathrm{MeOH}(5.4 \mathrm{~mL})$ before the sequential addition of $\mathrm{NaCN}(105 \mathrm{mg}, 2.1 \mathrm{mmol}), \mathrm{MnO}_{2}$ ( 700 $\mathrm{mg}, 8.05 \mathrm{mmol})$ and $\mathrm{AcOH}(35 \mu \mathrm{~L}, 0.55 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred for 24 hours. The reaction mixture was filtered through a pad of celite and diluted with ether ( 15 mL ). The organic phase was washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $3 \times 20 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a dark yellow oil ( 100 mg ). Purification silica gel ( 30 g , hexane/Et $2 \mathrm{O}, 9: 1$ ) afforded the title product 26 as a colourless oil $(17 \mathrm{mg}, 0.08$ mmol, $23 \%$ ). The spectroscopic data were in good agreement with that reported in the literature. ${ }^{177}$

## Method 2 :

Farnesal $\mathbf{3 2 0}$ ( $81 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) was dissolved in dry $\mathrm{MeOH}(5.5 \mathrm{~mL}$ ) before the sequential additionof $\mathrm{NaCN}(100 \mathrm{mg}, 2.0 \mathrm{mmol}), \mathrm{BaMnO}_{4}(1.97 \mathrm{~g}, 7.70 \mathrm{mmol})$ and $\mathrm{AcOH}(40 \mu \mathrm{~L}, 0.57$ $\mathrm{mmol})$ at room temperature. The resulting mixture was stirred for 24 hours. The reaction mixture was filtered through a pad of celite and diluted with ether ( 15 mL ). The organic phase was washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $4 \times 15 \mathrm{~mL}$ ), dried ( $\mathrm{MgSO}_{4}$ ) and concentrated in vacuo to give a dark yellow oil ( 95 mg ). Purification silica gel ( 30 g , hexane $/ \mathrm{Et}_{2} \mathrm{O}, 9: 1$ ) afforded the title product 26 as a colourless oil ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 28 \%$ ). The spectroscopic data were in good agreement with that reported in the literature. ${ }^{177}$

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2917 \text { (m), } 2853 \text { (m), } 1712 \text { (s), } 1649 \text { (m), } 1436 \text { (m), } 1385(\mathrm{w}), \\ & 1355(\mathrm{w}), 1257(\mathrm{~m}), 1227(\mathrm{~s}), 1148(\mathrm{~s}) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}$, p | $\begin{aligned} & 5.68\left(1 \mathrm{H}, \mathrm{~s},=\mathrm{CH}-\mathrm{COOCH}_{3}\right), 5.09(2 \mathrm{H}, \mathrm{~m}, 2 \times=\mathrm{CH}), 3.69(3 \mathrm{H}, \mathrm{~s}, \\ & \left.-\mathrm{OCH}_{3}\right), 2.17\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCOOCH}_{3}\right), 2.08-1.98(2 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHCOOCH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.61\left(6 \mathrm{H}, \mathrm{~s} 2 \times \mathrm{CH}_{3}\right) . \end{aligned}$ |
|  | 167.3 ( COO$), 160.3 \quad\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{C}\right), 136.2 \quad\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{C}\right), 131.4$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\mathrm{C}\right), 124.2(\mathrm{C}=\mathbf{C H}), 122.8(\mathrm{C}=\mathbf{C H}), 115.2(\mathrm{CHCOO})$, |

$50.8\left(\mathrm{OCH}_{3}\right), 40.9\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right)$,
$25.7\left(\mathbf{C H}_{2}\right), 18.8\left(\mathbf{C H}_{3}\right), 17.7\left(\mathbf{C H}_{3}\right), 16.0\left(\mathbf{C H}_{3}\right)$.

General procedure for the basic hydrolysis of the ester moiety of the trienoates: (2Z, $6 E$ )-3,7,11-trimetryl-2,6,10-dodecatrienoic acid (322b) ${ }^{181}$


According to the method of Kulkarni et al., ${ }^{181}$ at room temperature, a solution of $\mathrm{NaOH}(230$ $\mathrm{mg}, 5.7 \mathrm{mmol}$ ) and $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $40 \mathrm{mg}, 0.45 \mathrm{mmol}$ ) in water ( 2.7 mL ) was added to a solution of trienoate $\mathbf{3 1 6 b}(235 \mathrm{mg}, 0.89 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$. The resulting solution was heated to reflux and stirred for 24 hours. The reaction was cooled, washed with hexane ( 20 mL ) and carefully neutralised with $\mathrm{HCl}(2 \mathrm{M}, 15 \mathrm{~mL})$ taking care to keep the temperature at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with ether $(4 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to obtain the crude product $\mathbf{3 2 2 b}$ as a yellow oil $(180 \mathrm{mg}, 0.76 \mathrm{mmol}$, $76 \%$ ) which was used without further purification. Spectroscopic data were in agreement with that reported in the literature. ${ }^{181}$


LRMS (ES- ionisation) $\quad 384.8\left([\mathrm{M}+2 \mathrm{Na}]^{2-}, 100 \%\right)$.
(2E, $6 E$ )-3,7,11-Trimetryl-2,6,10-dodecatrienoic acid (322a) ${ }^{181}$


$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} . \\
& \mathrm{M}=236.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the basic hydrolysis of the ester moiety, trienoate 316a ( $600 \mathrm{mg}, 2.27 \mathrm{mmol}$ ) afforded the crude acid 322a as a yellow oil ( $415 \mathrm{mg}, 1.76 \mathrm{mmol}, 78 \%$ ). Spectroscopic data were in agreement with that reported in the literature. ${ }^{181}$

IR ( $\mathbf{c m}^{-1}$ ) 2964 (b), 2925 (b), 1685 ( s$), 1634$ (s), 1443 (s), 1247 (s), 925 (w).
${ }^{1} \mathrm{H}$-NMR
$5.70(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCOO}), 5.09(2 \mathrm{H}, \mathrm{m}, 2 \times=\mathrm{CH}), 5.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,
$\left.\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{OH}\right), 2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.20-2.00\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 1.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.61\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 172.3 \quad(\mathbf{C O O}), \quad 163.2 \quad(\mathrm{C}=\mathrm{CHCOO}), \quad 136.3 \quad\left(\mathrm{CH}_{3} \mathrm{C}=\right), 131.4$
$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 124.1 \quad\left(\mathrm{CH}_{3} \mathbf{C}=\right), 122.7(\mathrm{CH}=), 115.1(=\mathbf{C H C O O})$, $41.2\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right)$, $39.6\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 26.6\left(=\mathrm{CHCH}_{2}\right), 25.9$
$\left(\left(=\mathrm{CHCH}_{2}\right), \quad 25.7 \quad\left(\mathrm{CH}_{3}\right), \quad 19.1 \quad\left(\mathrm{CH}_{3}\right), \quad 17.7 \quad\left(\mathrm{CH}_{3}\right), 16.0\right.$ $\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCOO}\right)$.

LRMS (CI - GCMS) 236 ([M] ${ }^{+}, 100 \%$ ).
(2Z, 6Z)-3,7,11-Trimetryl-2,6,10-dodecatrienoic acid (322c)


$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} . \\
& \mathbf{M}=236.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the basic hydrolysis of the ester moiety, trienoate $\mathbf{3 1 6 c}$ $(4.00 \mathrm{~g}, 15.13 \mathrm{mmol})$ afforded the crude acid $\mathbf{3 2 2} \mathrm{c}$ as a yellow oil ( $3.29 \mathrm{~g}, 13.91 \mathrm{mmol}, 92 \%$ ) which was used without further purification.

IR ( $\mathrm{cm}^{-1}$ ) 2964 (b), 2922 (b), 1687 (s), 1635 (s), 1441 (s), 1248 (s), 925 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 5.69(1 \mathrm{H}, \mathrm{s},=\mathbf{C H C O O}), 5.15(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz},=\mathrm{CH}), 5.15(1 \mathrm{H}$,
$\left.\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{br} \mathrm{s}, \mathrm{OH}\right), 5.12(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 2.66(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$,

|  | $\begin{aligned} & \left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 2.18\left(4 \mathrm{H}, \mathrm{~m},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.12-1.95(2 \mathrm{H}, \mathrm{~m}, \\ & \left.=\mathrm{CHCH}_{2}\right), 1.93\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{H}\right), 1.69\left(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{CH}_{3}\right), \\ & 1.62\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$ |
| :---: | :---: |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{array}{llllll} 170.4 & (\mathrm{COO}), & 163.4 & (\mathbf{C}=\mathrm{CHCOO}), & 136.1 & \left(\mathrm{CH}_{3} \mathbf{C}=\right), \\ \left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), & 124.3 & \left(\mathrm{CH}_{3} \mathrm{C}=\mathbf{C H}\right), & 124.2 & \left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), & 115.4 \\ \left(=\mathrm{CHCOO}_{3}\right), & 33.9 & \left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), & 31.9 & \left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), & 26.6 \\ \left(=\mathrm{CHCH}_{2}\right), & 26.6 & \left(\mathbf{C H}_{3}\right), & 25.7 & \left(\mathrm{CH}_{3}\right), & 23.3 \\ \left(\left(\mathbf{C H}_{3}\right),\right. & 17.6 \\ \left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCOO}\right) . \end{array}$ |
| LRMS (ES- ionisation) | 384.8 ( $[\mathrm{M}+2 \mathrm{Na}]^{2}, 9 \%$ ). |

6-Methyl-2-methylenehept-5-enoic acid (473)


$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} . \\
& \mathrm{M}=154.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the basic hydrolysis of the ester moiety, dienoate 421a $(100 \mathrm{mg}, 0.649 \mathrm{mmol})$ afforded the crude product 473 as a yellow oil $(82 \mathrm{mg}, 0.532 \mathrm{mmol}$, $82 \%$ ) which was used without further purification.

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | 3335 (b), 2953 (b), 2922 (b), 2854 (b) 1735 (s), 1606 (s), 1455 (s), |
| :---: | :---: |
|  | 1377 (s), 1104 (w). |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $6.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHHCCOO}), 5.47(1 \mathrm{H}, \mathrm{br}$ s, CHHCCOO$), 5.10$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.08\left(1 \mathrm{H}, \mathrm{m},=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.26(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.12\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.57$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ | $172.8(\mathrm{COO}), 146.3(\mathrm{CCOO}), 124.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 118.2\left(\mathrm{CH}_{2}=\mathrm{C}\right)$, |
| $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\begin{aligned} & 115.5(\mathrm{CH}=\mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CCH}_{2}=\right), 29.7\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.6 \\ & \left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (ES+ ionisation) | 176.3 ( ${\left.\mathrm{M}+\mathrm{Na}]^{-}, 20 \%\right), 128.8(100 \%) .}^{\text {c }}$ |

## 7-Methyl-2-methyleneoct-6-enoic acid (474)



$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} . \\
& \mathrm{M}=168.12 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the basic hydrolysis of the ester, dienoate 439 a ( 460 mg , 2.347 mmol ) afforded the crude product 474 as a yellow oil ( $380 \mathrm{mg}, 2.260 \mathrm{mmol}, 96 \%$ ) which was used without further purification.

IR ( $\mathbf{c m}^{-1}$ ) 3335 (b), 2953 (b), 2922 (b), 2854 (b), 1735 (s), 1606 (s), 1455 (s), 1377 (s), 1104 (w).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 10.88(1 \mathrm{H}$, br s, OH$), 6.29(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH}), 5.65$ $\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and $1.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH}), 5.12(1 \mathrm{H}, \operatorname{tdd}, J=7.1,2.9$ and $1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}), 2.31(2 \mathrm{H}, \mathrm{ddd}, J=8.6,7.1$ and 0.9 Hz , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), \quad 2.03(2 \mathrm{H}, \quad$ app $\quad \mathrm{q}, \quad J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 1.70\left(3 \mathrm{H}, \mathrm{q}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.61(3 \mathrm{H}, \mathrm{d}, J$ $\left.=0.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right)$.
${ }^{13}$ C-NMR $\quad 172.9(\mathbf{C O O}), 140.2\left(\mathbf{C}=\mathrm{CH}_{2}\right), 131.9\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)$, $126.8\left(\mathrm{C}=\mathrm{CH}_{2}\right)$,
$\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 124.1\left(\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.0\left(\mathrm{CH}_{2} \mathrm{CCO}\right), 28.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCO}\right), 27.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 25.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) 190.1 (M+Na]', 25\%), 128.8 (100\%).
(2Z,6Z)-8-[(2-Methoxyethoxy)methoxy]-2,6-dimethylocta-2,6-dienoic acid (475)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5} . \\
& \mathrm{M}=272.37 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the basic hydrolysis of the ester moiety, the diene 345a ( $980 \mathrm{mg}, 3.42 \mathrm{mmol}$ ) afforded the title product 475 as a colourless oil ( $860 \mathrm{mg}, 3.16 \mathrm{mmol}$, $92 \%$ ), which was used without further purification.

IR ( $\mathbf{c m}^{-1}$ ) 2926 (b), 2879 (b), 1716 (s), 1687 (s), 1451 (s), 1379 (w), 1210 (w), 1167 (w), 1115 (s), 1053 (s).

| ${ }^{1} \mathrm{H}$-NMR | $6.07(1 \mathrm{H}, \mathrm{qq}, J=7.9$ and $1.5 \mathrm{~Hz}, \mathrm{CCH}), 5.36(1 \mathrm{H}, \mathrm{td}, J=6.9$ and |
| :---: | :---: |
| ( $\left.\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\left.1.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.01(2 \mathrm{H}, \mathrm{dd}, J=6.9$ and $\left.1.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.73-3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.64-3.62(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2}\right), 3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.55(2 \mathrm{H}, \mathrm{qq}, J=7.9$ and 1.5 Hz , $\left.\mathrm{CHCH}_{2}\right), 2.19-2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\right), 1.92(3 \mathrm{H}, \mathrm{q}, J=1.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.77\left(3 \mathrm{H}, \mathrm{q}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $172.2(\mathrm{COO}), 144.0\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{H}_{3}\right), 140.2\left(\mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 127.2$ $\left(\mathrm{CCH}_{3}\right), 121.8\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 94.6\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.9\left(\mathrm{CH}_{3} \mathrm{OCH}_{2}\right)$, $66.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 63.5\left(\mathrm{OCH}_{2} \mathrm{CH}\right), 58.9\left(\mathrm{OCH}_{3}\right), 31.6\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathbf{C H}_{2}\right), 23.4\left(\mathbf{C H}_{3}\right), 20.5\left(\mathbf{C H}_{3}\right)$. |
| LRMS (ES+ ionisation) | $\begin{aligned} & 311.2\left([\mathrm{M}+\mathrm{K}]^{+}, \quad 100 \%\right), \quad 583.4 \quad\left([2 \mathrm{M}+\mathrm{K}]^{+}, \quad 75 \%\right), \quad 290.3 \\ & \left(\left[\mathrm{M}_{+}+\mathrm{NH}_{4}\right]^{+}, 45 \%\right), 567.4\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 37 \%\right), 295.2\left([\mathrm{M}+\mathrm{Na}]^{+},\right. \\ & 33 \%), 562.5\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 22 \%\right) . \end{aligned}$ |

General procedure for the activation of the carboxylic acid with pentafluorophenol: pentafluorophenyl (2Z,6E)-3,7,11-trimethyl-2,6,10-dodecatrienoate (476b)


$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{5} \mathrm{O}_{2} . \\
& \mathrm{M}=402.19 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a solution of acid 322b ( $172 \mathrm{mg}, 0.73 \mathrm{mmol}$ ) and pentafluorophenol $(160 \mathrm{mg}, 0.85 \mathrm{mmol})$ in EtOAc ( 6 mL ) was added dropwise a solution of DCC ( $170 \mathrm{mg}, 0.83 \mathrm{mmol}$ ) in EtOAc ( 8 $\mathrm{mL})$. After 24 h , the mixture was diluted in hexane $(40 \mathrm{~mL})$ and the solids removed by filtration. The organic layer was washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $2 \times 40 \mathrm{~mL}$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil ( 350 mg ). Purification on $\mathrm{SiO}_{2}\left(40 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ hexane, $3: 10$ ) gave the title ester $\mathbf{4 7 6 b}$ as a yellow oil ( $285 \mathrm{mg}, 0.71$ mmol, $97 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 2969 (b), 2917 (b), 2851 (b), 1763 (s), 1635 (s), 1517 (s), 1441 (w), 1105 (s), 997 (w).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 5.97(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz},=\mathrm{CHCOO}), 5.15(1 \mathrm{H}, \mathrm{qt}, J=7.3$ and 1.1
$\left.\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{Hz},=\mathrm{CH}\right), 5.10(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OH}), 5.08(1 \mathrm{H}, \mathrm{tt}, J=6.6$ and 1.5 Hz , $=\mathrm{CH}), 2.71\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 2.27(4 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.15-1.97\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2}\right), 2.05(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
$\begin{array}{llllllll}{ }^{13} \mathbf{C}-\mathbf{N M R} & 168.7 & (\mathrm{COO}), & 161.6 & (\mathbf{C}=\mathrm{CHCOO}), & 136.7 & \left(\mathrm{CH}_{3} \mathbf{C}=\right), & 131.7 \\ \left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) & \left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), & 124.5 & \left(\mathrm{CH}_{3} \mathbf{C}=\right), & 123.1 & \left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), & 112.9\end{array}$ $(=\mathbf{C H C O O}), 41.6\left(\mathbf{C H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 39.9 \quad\left(\mathbf{C H}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 34.4$ $\left(=\mathrm{CHCH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.9\left(2 \times \mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right), 16.4$ $\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCOO}\right)$, aromatic carbons not observed.
LRMS (ES+ ionisation)
HRMS (HREI)
443.5 ( $[\mathrm{M}+\mathrm{MeCN}]^{+}, 5 \%$ ), 153.3 ( $100 \%$ ).

Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~F}_{5}: 402.1618$. Found: 402.1617.

## Pentafluorophenyl ( $2 E, 6 E$ )-3,7,11-trimethyl-2,6,10-dodecatrienoate (476a)


$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{5} \mathrm{O}_{2}$. $\mathrm{M}=402.19 \mathrm{~g} . \mathrm{mol}^{-1}$.

Following the general procedure for the activation of the carboxylic acid with pentafluorophenol, acid 322a ( $203 \mathrm{mg}, 0.86 \mathrm{mmol}$ ) afforded the title ester 476a as a yellow oil ( $342 \mathrm{mg}, 0.85 \mathrm{mmol}, 99 \%$ ).
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2960$ (b), 2910 (b), 2856 (b), 1763 (s), 1635 (s), 1518 (s), 1450 (w), 1104 (s), 1001 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 5.97(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz},=\mathrm{CHCOO}), 5.13(1 \mathrm{H}, \mathrm{td}, J=6.8$ and 1.2
$\left.\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{Hz},=\mathbf{C H}\right), 5.10(1 \mathrm{H}, \mathrm{td}, J=6.8$ and $1.4 \mathrm{~Hz},=\mathrm{CH}), 2.25(3 \mathrm{H}, \mathrm{d}, J$ $\left.=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.31-2.24\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.08-2.02(4 \mathrm{H}, \mathrm{m}, 2$
$\left.\times \mathrm{CH}_{2}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR
$\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), \quad 124.1 \quad\left(\mathrm{CH}_{3} \mathbf{C}=\right), \quad 122.3 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), \quad 112.1$
$(=\mathbf{C H C O O}), 41.3 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 39.6 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 29.7$
$\left(=\mathrm{CHCH}_{2}\right), \quad 26.6 \quad\left(\mathbf{C H}_{3}\right), \quad 25.8 \quad\left(\mathbf{C H}_{3}\right), \quad 17.6 \quad\left(\mathrm{CH}_{3}\right), \quad 16.0$
$\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCOO}\right)$, aromatic carbons not observed.
LRMS (ES+ ionisation) 443.5 ( $[\mathrm{M}+\mathrm{MeCN}]^{+}, 5 \%$ ), 153.3 ( $100 \%$ ).

## Pentafluorophenyl (2Z,6Z)-3,7,11-trimethyl-2,6,10-dodecatrienoate (476c)



Following the general procedure for the activation of the carboxylic acid with pentafluorophenol, acid $\mathbf{3 2 2 c}(3.00 \mathrm{~g}, 12.69 \mathrm{mmol})$ afforded the title ester $\mathbf{4 7 6 c}$ as a yellow oil $(4.91 \mathrm{~g}, 12.21 \mathrm{mmol}, 96 \%)$, after purification on $\mathrm{SiO}_{2}\left(200 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane, $\left.3: 10\right)$.

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2962 \text { (b), } 2944 \text { (b), } 2883 \text { (b), } 1678 \text { (s), } 1632 \text { (s), } 1451 \text { (w), } 1328 \\ & \text { (w), } 1202 \text { (s), } 1132 \text { (s), } 1105 \text { (s), } 997 \text { (w), } 538 \text { (s). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> ( $\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.97(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz},=\mathrm{CHCOO}), 5.15(1 \mathrm{H}, \mathrm{td}, J=7.2$ and 1.3 $\mathrm{Hz},=\mathrm{CH}), 5.09(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 2.70(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=$ ), $2.27\left(2 \mathrm{H}, \mathrm{dd}, J=15.3\right.$ and $\left.7.7 \mathrm{~Hz},=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$, $2.10-2.00\left(4 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}_{2}\right), 2.04(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 1.69\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 168.2(\mathrm{COO}), 161.1(\mathbf{C}=\mathrm{CHCOO}), 143.0(2 \times \mathrm{C}=\mathbf{C F}), 140.8 \\ & (\mathbf{C}=\mathrm{CF}), 139.6(2 \times \mathbf{C F}=\mathrm{CF}), 136.5\left(\mathrm{CH}_{3} \mathbf{C}=\right), 136.2(\mathrm{CF}=\mathbf{C F}), \\ & 131.6 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), 124.2\left(\mathrm{CH}_{3} \mathbf{C}=\right), 123.6 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), 112.6 \\ & (=\mathbf{C H C O O}), 34.3 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 31.8 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\right), 26.6 \\ & \left(=\mathrm{CHCH}_{2}\right), 26.4\left(\mathbf{C H}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 23.3\left(\mathbf{C H}_{3}\right), \\ & 17.5\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHCOO}\right) . \end{aligned}$ |

LRMS (ES+ ionisation) $443.5\left([\mathrm{M}+\mathrm{MeCN}]^{+}, 5 \%\right), 153.3(100 \%)$.

## Perfluorophenyl 6-methyl-2-methylenehept-5-enoate (477)



$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{O}_{2} . \\
& \mathrm{M}=320.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the activation of the carboxylic acid with pentafluorophenol, acid $473(80 \mathrm{mg}, 0.519 \mathrm{mmol})$ afforded the title ester 477 as a yellow oil $(150 \mathrm{mg}, 0.468 \mathrm{mmol}, 90 \%)$ after purification on $\mathrm{SiO}_{2}\left(50 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, $\left.3: 10\right)$.

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2970 \text { (b), } 2921 \text { (b), } 2871 \text { (b), } 1780 \text { (s), } 1519 \text { (s), } 1441 \text { (w), } 1147 \\ & \text { (s), } 1078 \text { (s), } 996 \text { (w). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> (400MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\begin{aligned} & 6.49(1 \mathrm{H}, \mathrm{~s},=\mathrm{CHHCCOO}), 5.87(1 \mathrm{H}, \mathrm{~s},=\mathrm{CHHCCOO}), 5.14 \\ & (1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 2.46\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\right), 2.25 \\ & \left(2 \mathrm{H}, \mathrm{q},=\mathrm{CHCH}_{2}\right), 1.72\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$ |
| ${ }^{13}$ C-NMR <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{array}{lllllll} 163.0 & (\mathrm{COO}), & 142.6 & (\mathrm{CF}), & 140.7 & (\mathrm{CF}), & 140.1 \\ (\mathrm{CF}), & 137.8 \\ \left(\mathrm{C}=\mathrm{CH}_{2}\right), & 137.0 & (\mathbf{C F}), & 135.1 & (\mathrm{CF}), & 133.1 & \left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), \\ \left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), & 122.6 & \left(\mathrm{CH}=\mathrm{CH}_{2}\right), & 32.1 & \left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), & 26.8 \\ \left(\mathrm{CH}_{2} \mathrm{CHC}_{\left(\mathrm{CH}_{3}\right) 2}\right), & 25.6 & \left(\mathrm{CH}_{3}\right), & 17.7\left(\mathrm{CH}_{3}\right) . & & \end{array}$ |

LRMS (CI+ ionisation) 320.1 ([M] ${ }^{+}, 100 \%$ ), 321.1 ([M+H] ${ }^{+}, 25 \%$ ).

## Perfluorophenyl 7-methyl-2-methyleneoct-6-enoate (478)



$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{O}_{2} . \\
& \mathrm{M}=334.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the activation of the carboxylic acid with pentafluorophenol, acid $474(400 \mathrm{mg}, 2.381 \mathrm{mmol})$ gave the title ester $\mathbf{4 7 8}$ as a yellow oil ( $717 \mathrm{mg}, 2.145 \mathrm{mmol}, 90 \%$ ) after purification on $\mathrm{SiO}_{2}$ ( $100 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $1: 5$ ).
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$
2930 (w), 2360 (w), 1760 (s), 1510 (s), 1441 (w), 1145 (m), 1080
(s), 1045 (m), 994 (s).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 6.49(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHH}), 5.87(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH}), 5.14$
$\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad(1 \mathrm{H}, \mathrm{tddd}, J=7.1,4.3,2.8$ and $1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}), 2.43(2 \mathrm{H}, \mathrm{dd}, J=$ 7.8 and $\left.7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 2.06(2 \mathrm{H}$, appq, $J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 1.71\left(3 \mathrm{H}, \mathrm{q}, J=1.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 163.0(\mathbf{C O O}), 142.6(\mathbf{C F}, \mathrm{~d}, J=11.6 \mathrm{~Hz}), 141.0(\mathbf{C F}, \mathrm{~d}, J=11.6$ $\left.\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{Hz}\right), 140.6(\mathbf{C}=\mathrm{CF}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 138.3\left(\mathbf{C}=\mathrm{CH}_{2}\right), 138.2(\mathbf{C F}, \mathrm{~d}, J$ $=11.6 \mathrm{~Hz}), 136.7(\mathbf{C F}), 132.2\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 128.9\left(\mathrm{C}=\mathrm{CH}_{2}\right), 122.8$ $\left(\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.5 \quad\left(\mathrm{CH}_{2} \mathrm{CCO}\right), 28.3 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCO}\right), 27.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 25.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$.
(2Z,6Z)-8-(2-Methoxy-ethoxymethoxy)-2,6-dimethyl-octa-2,6-dienoic acid pentafluorophenyl ester (479)


$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{5} \mathrm{O}_{5} \\
& \mathrm{M}=\mathbf{4 3 8 . 4 0} \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the activation of the carboxylic acid with pentafluorophenol, acid 475 ( $200 \mathrm{mg}, 0.734 \mathrm{mmol}$ ) afforded the title ester $\mathbf{4 7 9}$ as a pale yellow oil ( $290 \mathrm{mg}, 0.662 \mathrm{mmol}, 90 \%$ ), which was used in the next step without further purification.

IR ( $\mathbf{c m}^{-1}$ ) 2922 (b), 2874 (b), 1749 (w), 1517 (s), 1063 (w), 1039 (w), 1001 (s).
${ }^{1} \mathbf{H}-\mathrm{NMR} \quad 6.27(1 \mathrm{H}, \mathrm{td}, J=7.4$ and $1.3 \mathrm{~Hz}, \mathrm{CCH}), 5.42(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \mathrm{OCH}_{2} \mathrm{CH}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.08(2 \mathrm{H}, \mathrm{dd}, J=7.2$ and 1.1 $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.71-3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.58-3.55(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.65(2 \mathrm{H}, \mathrm{dt}, J=7.5$ and 1.3 Hz , $\left.\mathrm{CHCH}_{2}\right), 2.24\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\right), 2.08(3 \mathrm{H}, \mathrm{q}, J=1.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{q}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

| ${ }^{13} \mathbf{C - N M R}$ | $162.9(\mathbf{C O O}), 148.3\left(\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 142.2-136.4(5 \times \mathrm{CF}), 139.7$ |
| :--- | :--- |
| $\left(\mathbf{7 5 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right)$ | $\left(\mathbf{C H}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), \quad 125.1 \quad(\mathbf{C}=\mathrm{CF}), \quad 127.7 \quad\left(\mathrm{CCH}_{3}\right), \quad 122.1$ |
|  | $\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), 94.6\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.8\left(\mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 66.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, |
|  | $63.4\left(\mathrm{OCH}_{2} \mathrm{CH}\right), 59.0\left(\mathrm{OCH}_{3}\right), 31.1 \quad\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 23.1$ |
|  | $\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $477.4\left([\mathrm{M}+\mathrm{K}]^{+}, 100 \%\right), 461.4\left([\mathrm{M}+\mathrm{Na}]^{+}, 55 \%\right)$. |

( $Z$ )-Perfluorophenyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoate (481b) and ( $E$ )perfluorophenyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoate (481a)


Following the general procedure for the activation of the carboxylic acid with pentafluorophenol, the mixture of acids $480 \mathbf{a}, \mathbf{b}$ ( $525 \mathrm{mg}, 2.361 \mathrm{mmol}$ ) was converted to an inseparable mixture of esters 481a,b obtained as a yellow oil ( $860 \mathrm{mg}, 2.214 \mathrm{mmol}, 94 \%$ ), after purification on $\mathrm{SiO}_{2}\left(50 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, $\left.3: 10\right)$.

| IR ( $\left.\mathbf{c m}^{-1}\right)$ | $2969(\mathrm{~m}), 2924(\mathrm{~m}), 2858(\mathrm{~m}), 1760(\mathrm{~s}), 1518(\mathrm{~s}), 1450(\mathrm{w}), 1377$ |
| :--- | :--- |
|  | $(\mathrm{w}), 1146(\mathrm{~m}), 1074(\mathrm{~s}), 995(\mathrm{~s})$. |

$131.4\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 129.4\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, $124.2\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 123.3 $\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), \quad 122.5 \quad\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 39.7 \quad\left(\mathrm{CH}_{2} \mathrm{CCO}\right), 32.3$ $\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 23.3$ $\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$.

LRMS (GC-EIMS)
388 ([M] $]^{+}, 9 \%$ ).


$\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{~S}$.
$\mathrm{M}=433.66 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

Method 1 :
To a solution of ( $2 R$ )-10,2-camphorsultam ( $50 \mathrm{mg}, 0.221 \mathrm{mmol}$ ) in dry THF ( 3 mL ) was added $n-\mathrm{BuLi}\left(0.16 \mathrm{~mL}\right.$ of 1.6 M in hexanes, 0.256 mmol ) at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to $-20^{\circ} \mathrm{C}$ over 1 h whereupon a solution of the activated ester $\mathbf{4 7 6 b}$ ( 90 mg , 0.21 mmol ) in dry THF ( 3 mL ) was added dropwise. The solution was then allowed to warm to room temperature. After 40 min . the reaction was diluted in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 25 mL ). The organic phase was washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $3 \times 20 \mathrm{~mL}$ ), dried ( $\mathrm{MgSO}_{4}$ ) and concentrated in vacuo to give a yellow oil ( 220 mg ). Purification on $\mathrm{SiO}_{2}\left(25 \mathrm{~g}\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$ then $1: 4$ ) afforded the title triene 316e as a colourless oil ( $56 \mathrm{mg}, 0.13 \mathrm{mmol}, 61 \%$ ).

Method 2 :
According to the method of Liddle et al. ${ }^{119}$ to a dispersion of $\mathrm{NaH}(24 \mathrm{mg}, 0.55 \mathrm{mmol})$, in dry toluene $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, a solution of $(2 R)-10,2$-camphorsultam ( $80 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) in dry toluene ( 2 mL ) was added dropwise and the resulting mixture was allowed to warm at room temperature for 1 hour.
To a solution of acid $\mathbf{3 2 2 b}$ ( $102 \mathrm{mg}, 0.42 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added a drop of DMF followed by the dropwise addition of oxalyl chloride ( 0.2 mL ). Degazement occurred, the reaction was stirred for 1 hour at room temperature, evaporated to dryness and the resulting residue was dissolved in dry toluene ( 6 mL ). This solution was added dropwise to the mixture of sultam and NaH in toluene, which was prior cooled to $0^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and was stirred overnight. The reaction
was quenched by pouring in $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 30 mL ). The aqueous phase was extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The combined organic phases were washed with brine ( $3 \times 30 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a yellow oil ( 250 mg ). Purification on silica gel ( 20 g , eluting $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $3: 2$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, 4:1) afforded the title product 316e as a colourless oil ( $171 \mathrm{mg}, 0.40 \mathrm{mmol}, 94 \%$ ).

| $[\alpha]^{20}{ }_{\text {D }}$ | $-10.8\left(c 0.3, \mathrm{CDCl}_{3}\right)$. |
| :---: | :---: |
| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2960 \text { (b), } 2914 \text { (b), } 1674 \text { (s), } 1632 \text { (s), } 1461 \text { (w), } 1372 \text { (s), } 1331 \\ & \text { (s), } 1268 \text { (s), } 1240 \text { (s) and } 1133 \text { (s). } \end{aligned}$ |
| ${ }^{1} \mathrm{H}$-NMR <br> (300MHz, $\mathrm{CDCl}_{3}, \mathbf{p p m}$ ) | $\begin{aligned} & 6.32(1 \mathrm{H}, \mathrm{~s},=\mathrm{CHCON}), 5.18(1 \mathrm{H}, \mathrm{dd}, J=7.5 \mathrm{and} 6.2 \mathrm{~Hz},=\mathrm{CH}) \text {, } \\ & 5.10(1 \mathrm{H}, \mathrm{dd}, J=7.7 \text { and } 5.9 \mathrm{~Hz},=\mathrm{CH}), 3.93(1 \mathrm{H}, \mathrm{dd}, J=6.3 \text { and } \\ & 6.2 \mathrm{~Hz}, \mathrm{CHN}), 3.59(1 \mathrm{H}, \mathrm{~d}, J=13.7 \mathrm{~Hz}, \mathrm{CHHSO}), 3.42(1 \mathrm{H}, \mathrm{~d}, J \\ & =13.8 \mathrm{~Hz}, \mathrm{CHHSO}), 2.61-1.88\left(8 \mathrm{H}, \mathrm{~m}, 4 \times \mathrm{CH}_{2}\right), 1.97(3 \mathrm{H}, \mathrm{~s}, \\ & \left.\mathrm{CH}_{3}\right), 1.61\left(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{CH}_{3}\right), 1.43-1.36\left(2 \mathrm{H}, \mathrm{~m}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 1.16 \\ & \left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}\right), 0.98\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}\right) . \end{aligned}$ |
| ${ }^{13}$ C-NMR <br> ( $\mathbf{7 5 M H z}^{\mathbf{M H D C l}} \mathrm{CD}_{3}$ ppm) | 163.9 ( CON$), 163.0(\mathrm{C}=\mathrm{CHCON}), 135.7 \quad\left(\mathrm{CH}_{3} \mathrm{C}=\right), 131.3$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), 124.3 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), 123.5 \quad\left(\mathrm{CH}_{3} \mathrm{C}=\mathbf{C H}\right), 116.0$ (=CHCON), $65.2(\mathrm{CHN}), 53.2\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.1\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.7$ $\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} \quad 44.7 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 39.6 \quad\left(\mathrm{CH}_{2} \mathrm{CHN}\right), \quad 32.8\right.$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 26.6\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 26.5\left(=\mathrm{CHCH}_{2}\right), 25.9$ $\left(=\mathrm{CHCH}_{2}\right), 25.7\left(=\mathrm{CHCH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right)$, $17.7\left(\mathbf{C H}_{3}\right), 16.0\left(\mathbf{C H}_{3} \mathbf{C C H C O N}\right)$. |

LRMS (ES+ ionisation) $889.3\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 22 \%\right), 456.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 34 \%\right), 434.3\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, $39 \%$ ).
$N$-((2E,6E)-3,7,11-Trimethyl-dodeca-2,6,10-trienoyl)-(2R)-camphor-10,2-sultam (316d)


$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{~S} . \\
& \mathrm{M}=433.66 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of 316e, the activated ester $\mathbf{4 7 6 a}(80 \mathrm{mg}$, 0.199 mmol ) afforded the title triene $\mathbf{3 1 6 d}$ as a colourless oil ( $55 \mathrm{mg}, 0.127 \mathrm{mmol}, 64 \%$ ).

| $[\alpha]^{20}{ }_{\text {D }}$ | -11.3 (c 0.3, $\mathrm{CDCl}_{3}$ ). |
| :---: | :---: |
| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2955 \text { (b), } 2935 \text { (b), } 2910 \text { (b), } 1681 \text { (s), } 1632 \text { (s), } 1453 \text { (w), } 1329 \\ & \text { (m), } 1268 \text { (s), } 1236 \text { (s) } 1133 \text { (s). } \end{aligned}$ |
| ${ }^{1} \mathrm{H}-\mathrm{N} M$ | $6.33(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz},=\mathrm{CHCON}), 5.09(1 \mathrm{H}, \mathrm{tt}, J=6.6$ and 1.3 |
| ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\mathrm{Hz},=\mathbf{C H}), 5.08(1 \mathrm{H}, \mathrm{tq}, J=8.2$ and $1.4 \mathrm{~Hz},=\mathbf{C H}), 3.93(1 \mathrm{H}, \mathrm{dd}, J$ $=7.3$ and $5.4 \mathrm{~Hz}, \mathrm{CHN}), 3.46\left(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.43$ $\left(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.16(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCON}$ ), 2.22-1.87 $\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.60\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.43-1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right)$, $1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right)$. |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | 164.6 ( CON ), $162.5(\mathrm{C}=\mathrm{CHCON}), 136.1 \quad\left(\mathrm{CH}_{3} \mathbf{C}=\right), 131.3$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right), 124.3 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right)$, $122.8 \quad\left(\mathrm{CH}_{3} \mathrm{C}=\mathbf{C H}\right), 115.5$ $(=\mathrm{CHCON}), 65.0(\mathrm{CHN}), 53.1\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.2\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.7$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 44.7 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 38.7 \quad\left(\mathrm{CH}_{2} \mathrm{CHN}\right), \quad 32.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 26.6\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 26.5\left(=\mathrm{CHCH}_{2}\right), 26.0$ $\left(=\mathrm{CHCH}_{2}\right), 25.7\left(=\mathrm{CHCH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right)$, $17.7\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3} \mathrm{CCHCON}\right)$. |
| LRMS (ES+ ionisation) | $889.2\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 4 \%\right), 434.2\left([\mathrm{M}+\mathrm{H}]^{+}, 12 \%\right)$. |
| HRMS (ES+ ionisation) | Calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SNa}: 456.2543$. Found: 456.2550. |

## $N$-((2Z,6Z)-3,7,11-Trimethyl-dodeca-2,6,10-trienoyl)-(2R)-camphor-10,2-sultam (316f)



$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{~S} . \\
& \mathrm{M}=433.66 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of 316e, using (2R)-10,2-camphorsultam, the activated ester $\mathbf{4 7 6 c}$ ( $170 \mathrm{mg}, 0.424 \mathrm{mmol}$ ) afforded the title triene $\mathbf{3 1 6 f}$ as a colourless oil ( $135 \mathrm{mg}, 0.311 \mathrm{mmol}, 73 \%$ ), after purification on $\mathrm{SiO}_{2}\left(150 \mathrm{~mL}\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$ then 1:4).
$[\alpha]_{\mathbf{D}} \quad-35.1\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 2963$ (b), 2918 (b), 1679 (s), 1632 (s), 1450 (w), 1330 (s), 1268

|  | (s), 1238 (s) 1202 (s), 1113 (s). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> ( $\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $6.30(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCON}), 5.16(1 \mathrm{H}, \mathrm{td}, J=7.2$ and $1.1 \mathrm{~Hz},=\mathrm{CH})$, |
|  | $5.13(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=6.6$ and $5.8 \mathrm{~Hz}, \mathrm{CHN})$, |
|  | $3.47\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.40(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}$, |
|  | $\mathrm{CH}_{2} \mathrm{SO}_{2}$ ), 2.67-2.49 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), 2.20-2.03 $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.92-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.94(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$, |
|  | $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCON}\right), 1.68\left(6 \mathrm{H}, \mathrm{~s}, 2 \times \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.47-$ |
|  | $1.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 0.96$ ( $3 \mathrm{H}, \mathrm{s}$, |
|  | $\mathrm{CH}_{3} \mathrm{C}$ ). |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | 163.8 ( CON ), $162.8(\mathrm{C}=\mathrm{CHCON}), 135.8 \quad\left(\mathrm{CH}_{3} \mathrm{C}=\right), 131.4$ |
|  | $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}=\right)$, $124.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), 124.3\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathbf{C H}\right), 116.0$ |
|  | $(=\mathrm{CHCON}), 65.0(\mathrm{CHN}), 53.1\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.1\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 48.1$ |
|  | $\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 47.7 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 44.6 \quad\left(\mathrm{CH}_{2} \mathrm{CHN}\right), \quad 38.7$ |
|  | $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 34.7\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 32.8 \quad\left(=\mathrm{CHCH}_{2}\right), 31.9$ |
|  | $\left(=\mathrm{CHCH}_{2}\right), 26.6\left(=\mathrm{CHCH}_{2}\right), 25.9\left(\mathbf{C H}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 25.7$ |
|  | $\left(\mathrm{CH}_{3}\right), \quad 23.3 \quad\left(\mathrm{CH}_{3}\right), \quad 20.8 \quad\left(\mathrm{CH}_{3}\right), \quad 19.8 \quad\left(\mathbf{C H}_{3}\right), 17.6$ |
|  | $\left(\mathrm{CH}_{3} \mathrm{CCHCON}\right)$. |
| LRMS (GC-EI) | 433 (4\%). |

$N$-((2Z,6Z)-3,7,11-Trimethyl-dodeca-2,6,10-trienoyl)-(2S)-camphor-10,2-sultam (316h)


$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{~S} . \\
& \mathrm{M}=433.66 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of 316e, using ( $2 S$ )-10,2-camphorsultam, activated ester $476 \mathrm{c}(4.50 \mathrm{~g}, 11.19 \mathrm{mmol})$ afforded the title triene $\mathbf{3 1 6} \mathrm{h}$ as a colourless oil $(4.13 \mathrm{~g}, 9.52 \mathrm{mmol}, 85 \%)$ after purification on $\mathrm{SiO}_{2}\left(250 \mathrm{~mL}\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$ then $\left.1: 4\right)$.
$[\alpha]^{20}{ }_{D}$
IR ( $\mathrm{cm}^{-1}$ )
${ }^{1} \mathbf{H}$-NMR $\quad 6.30(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCON}), 5.16(1 \mathrm{H}, \mathrm{td}, J=1.3$ and $7.3 \mathrm{~Hz},=\mathrm{CH})$,
$\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) 5.12(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 3.93(1 \mathrm{H}, \mathrm{dd}, J=5.5$ and $7.0 \mathrm{~Hz}, \mathrm{CHN})$, $3.47\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.41(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 2.65-2.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.09-1.85$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCON}\right), 1.62(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.44-1.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 1.17$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 163.9 \quad(\mathbf{C O N}), 162.6 \quad(\mathbf{C}=\mathrm{CHCON}), 135.8 \quad\left(\mathrm{CH}_{3} \mathbf{C}=\right), 131.3$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right), 124.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathbf{C H}\right), 124.3\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right), 116.1$ $(=\mathrm{CHCON}), 65.0(\mathrm{CHN}), 53.1\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.1\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 48.1$ $\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 47.7 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 44.7 \quad\left(\mathrm{CH}_{2} \mathrm{CHN}\right), \quad 38.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 34.7\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 32.8\left(=\mathrm{CHCH}_{2}\right), 31.9$ $\left(=\mathrm{CHCH}_{2}\right), 26.6\left(=\mathrm{CHCH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 23.3$ $\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3} \mathrm{CCHCON}\right)$.
LRMS (ES+ ionisation) $889.9\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 20 \%\right), 456.4\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
$N$-((2Z,6Z)-8-(2-Methoxy-ethoxymethoxy)-2,6-dimethyl-octa-2,6-dienoyl)-(2R)-camphor-10,2-sultam (345b)


$$
\begin{aligned}
& \mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{~S} . \\
& \mathrm{M}=469.64 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of $\mathbf{3 1 6}$ e, using ( $2 R$ )-10,2-camphorsultam, the activated ester $479(270 \mathrm{mg}, 0.616 \mathrm{mmol})$ afforded the title product $\mathbf{3 4 5} \mathbf{b}$ as a colourless gum ( $210 \mathrm{mg}, 0.447 \mathrm{mmol}, 73 \%$ ) after purification on silica gel (small, EtOAc/hexane, 3:7).
$\mathbb{I R}\left(\mathbf{c m}^{-1}\right) \quad 2959$ (b), 2940 (b), 2884 (b), 1682 (s), 1455 (w), 1337 (s), 1280 (s), 1138 (s), 1110 (s) 1049 (s).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 5.57(1 \mathrm{H}, \mathrm{tt}, J=6.9$ and $1.6 \mathrm{~Hz}, \mathrm{COCCH}), 5.37(1 \mathrm{H}, \mathrm{td}, J=6.9$
$\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CCH}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.06(2 \mathrm{H}, \mathrm{d}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.93(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CHN}), 3.71-3.68(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.58-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}$, $\mathrm{CHHSO}_{2}$ ), $3.39\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.40(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{OCH}_{3}\right), 2.24-2.21\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.95(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$, $\mathrm{CH}_{3}$ ), 1.91-1.87 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\mathrm{CH}_{2}$ ), $1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.45$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR
$\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{CH}_{3} \mathbf{C C H}\right), \quad 121.7 \quad\left(\mathrm{CH}=\mathrm{CCH}_{3}\right), \quad 94.7 \quad\left(\mathrm{OCH}_{2} \mathrm{O}\right), \quad 71.8$ $\left(\mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 66.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 65.0(\mathrm{NCH}), 63.6\left(\mathrm{OCH}_{2} \mathrm{CH}\right)$, $59.0\left(\mathrm{OCH}_{3}\right), 53.1\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.3\left(\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 47.7\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)\right)$, $44.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 38.4\left(\mathrm{CHCH}_{2} \mathrm{CH}\right), 33.0\left(\mathrm{CCH}_{2}\right), 31.2$ $\left(\mathrm{CCH}_{2}\right), 28.5\left(\mathrm{CH}_{2} \mathrm{CHCCO}\right), 26.5\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right)$, $20.8\left(\mathbf{C H}_{3}\right), 20.4\left(\mathbf{C H}_{3}\right) 19.9\left(\mathbf{C H}_{3}\right)$.
LRMS (ES+ ionisation) $487.4 \quad\left(\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, 100 \%\right), \quad 508.3 \quad\left([\mathrm{M}+\mathrm{K}]^{+}, \quad 21 \%\right), \quad 956.4$ $\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 18 \%\right)$.
$N$-(6-Methyl-2-methylene-hept-5-enoyl)-(2S)-camphor-10,2-sultam (421b)

$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$.
$\mathrm{M}=351.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

Following the procedure used for the synthesis of $\mathbf{3 1 6 e}$, using ( $2 S$ )-10,2-camphorsultam, the activated ester $477(1.15 \mathrm{~g}, 3.59 \mathrm{mmol})$ afforded the title product $\mathbf{4 2 1 b}$ as a colourless oil $(1.20 \mathrm{~g}, 3.42 \mathrm{mmol}, 95 \%)$ after purification on silica gel ( 150 mL , hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 3$ ).

IR ( $\mathbf{c m}^{-1}$ ) 2991 (w), 2961 (m), 2884 (w), 1744 (w), 1680 (s), 1454 (w), 1334 (s), 1198 (s), 1132 (s), 1113 (m), 1065 (m).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 5.76(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHH}), 5.64(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and $1.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH})$,
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) 5.13\left(1 \mathrm{H}\right.$, tddd, $J=7.0,4.3,2.8$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.05$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $4.8 \mathrm{~Hz}, \mathrm{CHN}), 3.51(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}$, $\left.\mathrm{CHHSO}_{2}\right), 3.41(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{CHHSO} 2), 2.45-2.28(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$ ), 2.23-2.17 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$ ), 2.09-1.92 $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$, sultam $), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam $), 1.69$ $\left(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46-1.34(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}$, sultam), $1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ | $171.2(\mathrm{CON}), 143.2\left(\mathrm{C}=\mathrm{CH}_{2}\right), 132.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 123.6(\mathrm{C}=\mathrm{CH}$ |
| :---: | :---: |
| ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $123.4 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\right), 65.6 \quad(\mathrm{CHN}), 53.6 \quad\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 47.9$ |
|  | $\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}\right.$, sultam), $45.2\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam), |
|  | $38.4 \quad\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), \quad 33.2 \quad\left(\mathrm{CH}_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}, \quad\right.$ sultam $), \quad 32.6$ |
|  | $\left(\mathrm{CH}_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam), $26.5\left(\mathrm{CHCH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right)$, |
|  | $25.6\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$. |
| LRMS (GC-EIMS) | 351 ([M] ${ }^{+}$, 7\%). |

$N$-(( $Z$ )-Ethyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoyl)-(2R)-camphor-10,2-sultam (452d) and $N$-(( $E)$-ethyl 6,10-dimethyl-2-methyleneundeca-5,9-dienoyl)-(2R)-camphor-10,2-sultam (452c)


Following the procedure used for the synthesis of 316e, using the ( $2 R$ )-10,2-camphorsultam, the mixture of activated esters $\mathbf{4 8 1 a}, \mathbf{b}(860 \mathrm{mg}, 2.221 \mathrm{mmol}$ ) was converted to an inseparable mixture of trienes $\mathbf{4 5 2} \mathbf{c}$,d obtained as a colourless oil ( $855 \mathrm{mg}, 2.038 \mathrm{mmol}, 92 \%$ ) after purification on silica gel ( 100 mL , hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 7$ ).
$\operatorname{lR}\left(\mathbf{c m}^{-1}\right) \quad 2960(\mathrm{~m}), 2924(\mathrm{~m}), 2882(\mathrm{~m}), 1679(\mathrm{~s}), 1442(\mathrm{~m}), 1338(\mathrm{~s}), 1195$ (s), 1132 ( s ), 1111 ( s$), 1063$ ( s$), 767$ (m).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHH}), 5.63(1 \mathrm{H}, \mathrm{dd}, J=3.8$ and $1.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHH})$,
( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \quad 5.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCCH}_{3}\right), 5.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.04(1 \mathrm{H}, \mathrm{m}$, CHN), $3.51\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.39(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\left.\mathrm{Hz}, \mathrm{CHHSO}_{2}\right), 2.44-2.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.23-2.17(2 \mathrm{H}$, $\mathrm{dd}, J=14.8$ and $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.09-1.87(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}$


## $N$-(7-Methyl-2-methyleneoct-6- enoyl)-(2S)-camphor-10,2-sultam (439b)



$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S} . \\
& \mathrm{M}=365.53 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the synthesis of 316e, using ( $2 S$ )-10,2-camphorsultam, the activated ester $478(400 \mathrm{mg}, 1.197 \mathrm{mmol})$ afforded the title product 439 b as a colourless oil ( $395 \mathrm{mg}, 1.081 \mathrm{mmol}, 90 \%$ ) which was purified on silica gel ( $\mathrm{small}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $3: 2$ ).
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 2961(\mathrm{~m}), 2925(\mathrm{~m}), 2884(\mathrm{w}), 1744(\mathrm{~m}), 1680(\mathrm{~s}), 1454(\mathrm{w}), 1334$ (s), 1198 (m), 1132 (m), 1113 (m).
${ }^{1} \mathbf{H}$-NMR $\quad 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHH}), 5.63(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHH}), 5.12(1 \mathrm{H}, \mathrm{tdd}, J=$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \quad 7.0,2.8$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 4.8 $\mathrm{Hz}, \mathrm{CHN}), 3.51\left(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.39(1 \mathrm{H}, \mathrm{d}, J=$ $13.6 \mathrm{~Hz}, \mathrm{CHHSO}_{2}$ ), $2.41(1 \mathrm{H}, \mathrm{dd}, J=15.3$ and 7.8 Hz , $\left.\mathrm{CH} \mathbf{H C}=\mathrm{CH}_{2}\right), 2.30\left(1 \mathrm{H}, \mathrm{dd}, J=15.3\right.$ and $\left.7.8 \mathrm{~Hz}, \mathrm{CHHC}=\mathrm{CH}_{2}\right)$, 2.08-1.85 ( $6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $2 \mathrm{XCH}_{2}$, sultam), 1.90 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam $), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60(3 \mathrm{H}, \mathrm{s}$,

|  | $\left.\mathrm{CH}_{3}\right)$, 1.58-1.50 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$, 1.45-1.34 $(2 \mathrm{H}, \mathrm{m}$, |
| :---: | :---: |
| ${ }^{13}$ C-NMR | $\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}$, sultam), $1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. <br> $171.1 \quad(\mathrm{CON}), \quad 143.5 \quad\left(\mathrm{C}=\mathrm{CH}_{2}\right), \quad 131.7 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), \quad 124.2$ |
| $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $47.9\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}\right.$, sultam $), 45.2\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam), $38.4\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam $)$, 32.1 $\left(\mathrm{CH}_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam), $27.8\left(\mathrm{CHCH}_{2}\right)$, $27.6\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right)$, |
|  | $\begin{aligned} & 26.5\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 17.7 \\ & \left(\mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (ES+ ionisation) | $\begin{aligned} & 753.3 \quad\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 4 \%\right), \quad 748.4 \quad\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 4 \%\right), \quad 429.1 \\ & \left([\mathrm{M}+\mathrm{Na}+\mathrm{MeCN}]^{+}, 8 \%\right), 383.1\left(\left[\mathrm{M}_{+}+\mathrm{NH}_{4}\right]^{+}, 7 \%\right), 366.1\left(\left([\mathrm{M}+\mathrm{H}]^{+},\right.\right. \\ & 12 \%), 128.8(100 \%) . \end{aligned}$ |

## Silica gel supported sodium periodate reagent

According to the method described by Zhong et al., ${ }^{25} \mathrm{NaIO}_{4}(2.57 \mathrm{~g})$ was dissolved in water $(5 \mathrm{~mL})$ with an internal temperature of $70^{\circ} \mathrm{C}$. To this solution, silica gel ( 10 g ) was added with vigorous shaking to obtain a free flowing powder (12 g).

General procedure for the $\mathrm{KMnO}_{4}$ oxidation of $\mathbf{1 , 5 , 9}$-trienoates : ( $\pm$ )-Ethyl ( $\mathbf{2 R}^{*}$ )-2-hydroxy-2-[( $\left.2 S^{*}, 2^{\prime} R^{*}, 5 R^{*}\right)$-5'-hydroxy-5'-(1-hydroxy-1-methyl-ethyl)-5,2'-dimethyl-octahydro-[2,2']bifuranyl-5-yl] ethanoate (315c)


$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{7} . \\
& \mathbf{M}=346.39 \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of trieneoate $\mathbf{3 1 6 c}(360 \mathrm{mg}, 1.36 \mathrm{mmol})$ and phosphate buffer $\left(4 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2\right)$ in acetone $(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(10.2 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}),. 4.10 \mathrm{mmol})$ containing $\mathrm{AcOH}(330 \mu \mathrm{~L})$. The purple mixture was stirred rapidly for $30-60$ min during which time it turned dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts and the aqueous layer was saturated with NaCl then extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $6 \times 30 \mathrm{~mL}$ ). The organic extracts were combined, dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated in vacuo to give the crude title lactol 315c ( 510 mg ) as a colourless oil that was
used in the next reaction without further purification. Selected data for major epimer: ${ }^{13} \mathrm{C}$ NMR ( 100 MHz ) 173.0, $109.4,86.4,84.7,84.1,76.2,73.5,62.3,34.7,33.1,29.4,27.6,25.1$, $24.8,24.0,22.5,14.3$.
( $\pm$ )-Ethyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 S^{*}, 2^{\prime} R^{*}, 5 R^{*}\right)$-5'-hydroxy-5'-(1-hydroxy-1-methyl-ethyl)-5,2'-dimethyl-octahydro-[2,2']bifuranyl-5-yl] ethanoate (314c)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} . \\
& \mathrm{M}=286.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

## General procedure for glycol cleavage using $\mathrm{Pb}(\mathrm{OAc})_{4}$ :

To a stirred solution of lactol $\mathbf{3 1 5 c}(90 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(47 \mathrm{mg}, 0.44 \mathrm{mmol})$ followed by $\mathrm{Pb}(\mathrm{OAc})_{4}(165 \mathrm{mg}, 0.36 \mathrm{mmol})$. After 20 minutes celite was added and the mixture stirred for a further 15 min . The solids were then removed by filtration through a short plug of $\mathrm{SiO}_{2}$, washing with EtOAc. The resulting solution was washed with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $2 \times 20 \mathrm{~mL}$ ). The aqueous layer was saturated with NaCl and re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give a colourless oil. Purification on $\mathrm{SiO}_{2}\left(15 \mathrm{~g}, \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{l}: 5\right)$ afforded the title compound $\mathbf{3 1 4} \mathrm{c}$ as a colourless oil ( $35 \mathrm{mg}, 0.13 \mathrm{mmol}, 50 \%$ from $\mathbf{3 1 6 c}$ ).

## General procedure for glycol cleavage using $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ reagent:

To a vigorously stirred suspension of $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ reagent ( 6 g ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a solution of crude lactol $\mathbf{3 1 5 c}(510 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The resulting mixture was stirred for 40 min before the solids were removed by filtration and washed with $\mathrm{CHCl}_{3}$ ( 4 x 40 mL ). The organic filtrate was concentrated in vacuo to give a yellow oil ( 400 mg ). Purification on $\mathrm{SiO}_{2}$ ( $35 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 85: 15$ ) afforded the title lactone 314 c as a colourless oil ( $0.63 \mathrm{mmol}, 180 \mathrm{mg}, 46 \%$ from 316c).

IR ( $\mathbf{c m}^{-1}$ ) 3483 (b), 2971 (w), 2940 (w), 2873 (w), 1767 (s), 1737 (s).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 4.26\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.07(1 \mathrm{H}, \mathrm{dd}, J=9.6$ and 5.9 Hz ,
$\left.\left(\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad \mathrm{CHCH}_{2}\right), 4.03(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHOH}), 3.05(1 \mathrm{H}, \mathrm{d}, J=7.0$ $\mathrm{Hz}, \mathrm{OH}), 2.79(1 \mathrm{H}, \mathrm{ddd}, J=17.5,10.3$ and $7.4 \mathrm{~Hz}, \mathrm{CHH}), 2.54$ $(1 \mathrm{H}$, ddd, $J=17.5,10.3$ and $5.1 \mathrm{~Hz}, \mathrm{CHH}), 2.40-2.26(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2}\right), 1.99-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.80-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}, \mathrm{s}$ $\mathrm{CH}_{2} \mathrm{CCH}_{3}$ ).


Ethyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 R^{*}, 2^{\prime} R^{*}, 5 S^{*}\right)$-5'-hydroxy-5'-(1-hydroxy-1-methyl-ethyl)-5,2'-dimethyl-octahydro-[2,2']bifuranyl-5-yl] ethanoate (315a)


$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{7} . \\
& \mathrm{M}=346.39 \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the $\mathrm{KMnO}_{4}$ oxidation of trienoates, trienoate 316a (97 $\mathrm{mg}, 0.38 \mathrm{mmol}$ ) afforded the crude title lactol $\mathbf{3 1 5 a}(140 \mathrm{mg})$ as a colourless oil that was used in the next reaction without further purification. Selected data: ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, selected signals from crude) $173.3,109.5,86.1,84.8,83.2,76.7,73.2,61.2,36.6,32.4,31.7,27.5$, $24.4,23.9,23.7,23.5,14.1$
( $\pm$ )-Ethyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 R^{*}, 2^{\prime} R^{*}, 5 S^{*}\right)$-2',5-dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-5-yl] ethanoate (314a)

Method 1:
Following the general procedure for the $\mathrm{Pb}(\mathrm{OAc})_{4}$ cleavage, crude $\mathbf{3 1 5 a}$ ( $110 \mathrm{mg}, 0.31 \mathrm{mmol}$ ) afforded the title lactone $\mathbf{3 1 4} \mathbf{a}$ as a pale yellow oil ( $37 \mathrm{mg}, 0.14 \mathrm{mmol}, 46 \%$ from 316a).

Method 2 :
Following the procedure used for the $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ cleavage, crude $\mathbf{3 1 5 a}(20 \mathrm{mg})$ afforded the title lactone $\mathbf{3 1 4 a}$ as a colourless oil ( $10 \mathrm{mg}, 0.035 \mathrm{mmol}, 55 \%$ from $\mathbf{3 1 6 a}$ ).

| IR ( $\mathrm{cm}^{-1}$ ) | 3483 (b), 2983 (w), 2935 (w), 2863 (w), 1768 (s), 1734 (s). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ | $4.28\left(1 \mathrm{H}, \mathrm{dd}, J=10.8\right.$ and $\left.7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.23(1 \mathrm{H}, \mathrm{dd}, J=10.8$ |
| $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | and $\left.7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=8.3$ |
|  | and $\left.6.7 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.89-2.78(1 \mathrm{H}, \mathrm{m}$, |
|  | CHH), 2.49 ( 1 H , ddd, $J=17.5,10.5$ and $4.0 \mathrm{~Hz}, \mathrm{CHH}), 2.44(1 \mathrm{H}$, |
|  | ddd, $J=12.8,10.5$ and $4.0 \mathrm{~Hz}, \mathrm{CHH}), 2.35$ ( 1 H , ddd, $J=12.5$, |
|  | 9.0 and $4.8 \mathrm{~Hz}, \mathrm{CHH}), 2.14-1.88(3 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{td}, J=12.6$ |
|  | and $8.3 \mathrm{~Hz}, \mathrm{CHH}), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.0$ |
|  | $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), 1.18 ( $3 \mathrm{H}, \mathrm{s} \mathrm{CH}_{2} \mathrm{CCH}_{3}$ ). |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ | $177.9(\mathrm{CCOO}), 172.1(\mathrm{COO}), 85.7\left(\mathrm{CCCH}_{3}\right), 85.0\left(\mathrm{CCCH}_{3}\right)$, |
| $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $84.5(\mathrm{CHOH}), 76.4(\mathrm{CCH}), 61.6\left(\mathrm{OCH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 32.0$ |
|  | $\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 14.1$ |
|  | $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |
| (ES+ ionisation) | $595.1 \quad\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 100 \%\right), 309.0 \quad\left([\mathrm{M}+\mathrm{Na}]^{+}, \quad 28 \%\right), \quad 304.1$ |
|  | $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 70 \%\right)$ |
| HRMS | Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}$ : 287.1495 . Found: $287.1495\left(87,[\mathrm{M}+\mathrm{H}]^{+}\right)$. |

( $\pm$ )-Ethyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 S^{*}, 2^{\prime} S^{*}, 5 R^{*}\right)$-5'-hydroxy-5'-(1-hydroxy-1-methyl-ethyl)-5,2'-dimethyl-octahydro-[2,2']bifuranyl-5-yl] ethanoate (315b)


$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{7} . \\
& \mathbf{M}=346.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure for the $\mathrm{KMnO}_{4}$ oxidation of trienoates, trienoate 316b (200 $\mathrm{mg}, 0.76 \mathrm{mmol}$ ) afforded the crude title lactol $\mathbf{3 1 5 b}(240 \mathrm{mg})$ as a colourless oil that was used in the next reaction without further purification. ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, selected signals from crude) $171.8,109.7,85.0,84.8,82.9,77.3,73.3,61.5,33.4,32.7,31.9,28.0,24.7,24.5,24.2$, 24.0, 14.3; MS (ES) $m / z$ (relative intensity) $715.4\left(49,[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 369\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
( $\pm$ )-Ethyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 S^{*}, 2^{\prime} R^{*}, 5 R^{*}\right)$-2',5-dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-5-yl] ethanoate (314b)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} . \\
& \mathrm{M}=\mathbf{2 8 6} .39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Method 1:
Following the general procedure for the $\mathrm{Pb}(\mathrm{OAc})_{4}$ cleavage, crude $\mathbf{3 1 5 b}$ ( 60 mg , from 0.19 mmol of $\mathbf{3 1 6} \mathbf{b}$ ) afforded the title lactone 314b ( $24 \mathrm{mg}, 0.09 \mathrm{mmol}, 44 \%$ from 316b) as a colourless oil which solidified on standing. Recrystallisation from EtOAc/hexane gave colourless needles suitable for x -ray structural determination.

## Method 2 :

Following the procedure used for the $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ cleavage, crude 315b ( 55 mg , from 0.174 mmol of $\mathbf{3 1 6} \mathbf{b}$ ) afforded the title lactone 314b as a colourless oil ( $25 \mathrm{mg}, 0.087 \mathrm{mmol}, 50 \%$ from 316b).
mp (uncorrected)
IR ( $\mathrm{cm}^{-1}$ )
${ }^{1} \mathrm{H}$-NMR
(300MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$ )
$54-59^{\circ} \mathrm{C}$
3473 (b), 2976 (w), 2930 (w), 2873 (w), 1767 (s), 1731 (s).
$4.28\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.02(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CHOH})$,
$3.95\left(1 \mathrm{H}, \mathrm{dd}, J=8.5\right.$ and $\left.7.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.01(1 \mathrm{H}, \mathrm{d}, J=6.0$ $\mathrm{Hz}, \mathrm{OH}), 2.87(1 \mathrm{H}$, app. ddd, $J=17.8,9.8$ and $7.2 \mathrm{~Hz}, \mathrm{CHH})$, 2.52-2.41 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $2.35(1 \mathrm{H}$, ddd, $J=12.8,8.8$ and 5.0 Hz , CHH), 2.07-1.87 (3H, m, CH $\mathbf{C H}_{2}$ and CHH), $1.69(1 \mathrm{H}, \mathrm{td}, J=12.8$ and 8.3 CHH$), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{s} \mathrm{CH} 2 \mathrm{CCH}_{3}\right)$.
${ }^{13}$ C-NMR
$\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 84.6(\mathbf{C H O H}), 75.6(\mathrm{CCH}), 61.9\left(\mathrm{OCH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 31.8$ $\left(\mathbf{C H}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 26.0\left(\mathbf{C H}_{2}\right), 24.3\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 14.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) $595.1\left([2 \mathrm{M}+\mathrm{Na}]^{\top}, \quad 100 \%\right), \quad 309.0 \quad\left([\mathrm{M}+\mathrm{Na}]^{\top}, \quad 28 \%\right), \quad 304.1$ ( $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{-}, 70 \%$ ).
( $\pm$ )-Ethyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 R^{*}, 2^{\prime} S^{*}, 5 S^{*}\right)$-2',5-dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-5-yl] ethanoate (314g)


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} . \\
& \mathrm{M}=286.39 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred suspension of $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ reagent ( 250 mg ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 mL ), pure lactol $\mathbf{3 1 5 g}(15 \mathrm{mg}, 0.043 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added in one portion. The resulting mixture was stirred for 45 minutes. The mixture was filtered and the silica gel was washed with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The solution was concentrated in vacuo to give the crude product as a yellow oil ( 25 mg ). Purification on silica gel ( $25 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 85: 15$ ) afforded the title product $\mathbf{3 1 4 g}$ as a yellow oil ( $9 \mathrm{mg}, 0.031 \mathrm{mmol}, 72 \%$ for one step).

| IR (cm $\left.{ }^{-1}\right)$ | $3411(\mathrm{~b}), 2976(\mathrm{w}), 2940(\mathrm{w}), 1767(\mathrm{~s}), 1731(\mathrm{~s}), 1455(\mathrm{~m}), 1373$ |
| :--- | :--- |
|  | $(\mathrm{~m}), 1081(\mathrm{~s}), 944(\mathrm{~s})$. |

( $\pm$ )-Methyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 R^{*}, 2 R^{*}, 5 S^{*}\right)-5 '$-hydroxy-5'-(1-hydroxy-1-methyl-ethyl)-5,2'-dimethyl-octahydro-[2,2']bifuranyl-5-yl] ethanoate (27)


$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{7} . \\
& \mathrm{M}=332.40 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the general procedure described for the $\mathrm{KMnO}_{4}$ oxidation of trienoates, methyl ( $E, E$ )-farnesoate $\mathbf{2 6}$ ( $15 \mathrm{mg}, 0.060 \mathrm{mmol}$ ) afforded the crude title lactol $\mathbf{2 7}$ as an oily solid ( 25 mg ) that was used in the next reaction without further purification. ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , selected signals from crude) : $173.9,109.6,84.8,84.1,83.2,77.1,73.1,52.0,36.8,32.3,31.8$, 27.7, 24.5, 23.9, 23.7.
( $\pm$ )-Methyl ( $2 R^{*}$ )-2-hydroxy-2-[( $\left.2 R^{*}, 2^{\prime} R^{*}, 5 S^{*}\right)$-2',5-dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-5-yl) ethanoate (28)


$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} . \\
& \mathrm{M}=272.30 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ cleavage, crude lactol $27(25 \mathrm{mg})$ afforded the title lactone 28 as a colourless oil ( $9 \mathrm{mg}, 0.033 \mathrm{mmol}, 55 \%$ from 26 ).

IR ( $\mathrm{cm}^{-1}$ )
${ }^{1} \mathrm{H}-\mathrm{NMR}$
$\left.\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \mathrm{CHCH}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}), 2.99(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{OH}), 2.82(1 \mathrm{H}$, app. ddd, $J=17.8,10.6$ and $8.3 \mathrm{~Hz}, \mathrm{CHH}$ ), 2.55-2.38 ( $2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ ), 2.33 ( 1 H , ddd, $J=17.1,9.0$ and $4.8 \mathrm{~Hz}, \mathrm{CHH}$ ), 2.11-1.88 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ and $\mathrm{CH}_{2}$ ), $1.69(1 \mathrm{H}, \mathrm{td}, J=12.5$ and $8.5 \mathrm{~Hz}, \mathrm{CHH}$ ), $1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right)$.
${ }^{13} \mathrm{C}$-NMR
$\left(\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) 84.7(\mathrm{CH}-\mathrm{OH}), 76.6(\mathrm{CCH}), 52.4\left(\mathrm{O}_{\mathbf{~}} \mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 32.2$ $\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $567.4\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 70 \%\right), 295.4\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 273.2$ (67 $\left.[\mathrm{M}+\mathrm{H}]^{+}, 37 \%\right)$.

HRMS (ES+ ionisation) Calculated : $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}=295.1152$. Found : 295.1155.
$N-\left[(2 R)-2-H y d r o x y-2-\left(\left(2 R, 2^{\prime} R, 5 S\right)-5 '-h y d r o x y-5 '-(1-h y d r o x y-1-m e t h y l-e t h y l)-5,2^{\prime}-\right.\right.$ dimethyl-octahydro-[2,2']bifuranyl-5-yl)ethanoyl]-(2R)-camphor-10,2-sultam (315e)


$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{~S} . \\
& \mathrm{M}=\mathbf{5 1 5 . 5 7} \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

Following the general procedure described for the $\mathrm{KMnO}_{4}$ oxidation of trienoates, oxidation of $316 \mathrm{e}(22 \mathrm{mg}, 0.05 \mathrm{mmol})$ afforded the crude lactol 315 e as a pale yellow oil $(30 \mathrm{mg})$ that was used in the next reaction without further purification. Selected data: ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , selected signals from crude) $172.1,109.7,85.6,85.3,82.1,75.9,72.4,65.4,53.1,48.7,47.8$, 44.8, 38.7, 32.9, 32.1 (x2), 29.8, 26.6, 24.9, 24.0, 23.8, 23.1, 21.1, 20.0.
$N-\left[(2 R)-2-H y d r o x y-2-\left(\left(2 R, 2^{\prime} R, 5 S\right)-2^{\prime}, 5-d i m e t h y l-5 '-o x 0-o c t a h y d r o-\left[2,2^{\prime}\right] b i f u r a n y l-5-\right.\right.$ yl)ethanoyl]-(2R)-camphor-10,2-sultam (314e)


$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S} . \\
& \mathrm{M}=455.57 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure described for the $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ cleavage, the crude lactol 315e (30 mg ) afforded the title lactone 314 e as a colourless oil ( $13 \mathrm{mg}, 0.03 \mathrm{mmol}, 60 \%$ from 316e) after purification on $\mathrm{SiO}_{2}$ ( $25 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 1$ ).

$$
[\alpha]^{20}{ }_{D}
$$

-57.3 (c 0.4, $\mathrm{CDCl}_{3}$ )
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 3483$ (b), 2983 (w), 2935 (w), 2863 (w), 1768 (s), 1734 (s), 1455 (m), 1380 (m), 1095 (w).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 5.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{OH}), 3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}\right.$ and $\left.\mathrm{CHCH}_{2}\right), 3.51(1 \mathrm{H}$,
$\left.\left(\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.46\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right)$, $2.82(1 \mathrm{H}, \mathrm{dd}, J=21.6$ and $9.8 \mathrm{~Hz}, \mathrm{CHH}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=24.6$ and $10.0 \mathrm{~Hz}, \mathrm{CHH}), 2.26-1.89(5 \mathrm{H}, \mathrm{m}), 1.69(1 \mathrm{H}, \mathrm{dd}, J=12.0$
and $10.0 \mathrm{~Hz}, \mathrm{CHH}), 1.57-1.43(6 \mathrm{H}, \mathrm{m}), 1.40(2 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad 177.3(\mathrm{CCOO}), 168.2(\mathrm{CON}), 86.5\left(\mathrm{CC}^{2}-\mathrm{CH}_{3}\right), 85.0\left(\mathrm{CC}^{2} \mathrm{CH}_{3}\right)$,
$\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{p p m}\right) \quad 84.5(\mathbf{C H}-\mathrm{OH}), 75.2(\mathrm{CCH}), 65.0(\mathbf{C H N}), 53.1\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.5$ $\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.5\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.1\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$, $36.8\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 31.2\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.4$ $\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right), 21.0$ $\left(\mathbf{C H}_{3}\right), 19.7\left(\mathbf{C H}_{3}\right)$.

LRMS (ES+ ionisation) $933.0\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 16 \%\right), 478.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 28 \%\right), 128.8(100 \%)$.
$N$ - [(2S)-2-Hydroxy-2-((2R,2'R,5S)-5'-hydroxy-5'-(1-hydroxy-1-methyl-ethyl)-5,2'-dimethyl-octahydro-[2,2']bifuranyl-5-yl)ethanoyl]-(2R)-camphor-10,2-sultam (315d)


Following the general procedure described for the $\mathrm{KMnO}_{4}$ oxidation of trienoates, oxidation of $\mathbf{3 1 6 d}$ ( $30 \mathrm{mg}, 0.069 \mathrm{mmol}$ ) afforded the crude lactol $\mathbf{3 1 5 d}$ as a pale yellow oil ( 40 mg ). Selected data: ${ }^{13} \mathrm{C}$ NMR ( 100 MHz ) 174.2, 109.5, 84.8, 83.9, 83.4, 75.7, 73.0, 65.2, 53.1, $48.4,47.7,44.6,38.0,32.8,32.2,31.5,27.4,26.4,24.4,24.0,23.9,23.6,20.9,19.8$.
$N-[(2 S)-2-H y d r o x y-2-((2 R, 2 ' R, 5 S)-2 ', 5-d i m e t h y l-5 '-o x 0-o c t a h y d r o-[2,2 '] b i f u r a n y l-5-~$ yl)ethanoyl]-(2R)-camphor-10,2-sultam (314d)


$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S} . \\
& \mathrm{M}=455.57 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure described for the $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ cleavage, the crude lactol $\mathbf{3 1 5 d}$ ( 40 mg ) afforded the title lactone $\mathbf{3 1 4 d}$ as a colourless glass ( $18 \mathrm{mg}, 0.04 \mathrm{mmol}, 58 \%$ from $\mathbf{3 1 6 d}$ ) after purification on $\mathrm{SiO}_{2}$ ( $25 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 1$ ). Crystallisation gave colourless needles suitable for x -ray structural determination.

| $[\alpha]^{20}{ }_{D}$ | -49.5 (c 0.3, $\mathrm{CDCl}_{3}$ ) |
| :---: | :---: |
| Mp (EtOAc/hexane) | $151-154^{\circ} \mathrm{C}$ |
| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 3499 \text { (w), } 2959 \text { (b), } 2936 \text { (b), } 2874 \text { (b), } 1763 \text { (s), } 1701 \text { (s), } 1375 \\ & \text { (m), } 1038 \text { (w), } 911 \text { (s). } \end{aligned}$ |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $4.50(1 \mathrm{H}, \mathrm{br}$ s, CHOH), $4.00(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $5.1 \mathrm{~Hz}, \mathrm{CHN})$, $3.93\left(1 \mathrm{H}, \mathrm{dd}, J=9.4\right.$ and $\left.6.2 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.52(1 \mathrm{H}, \mathrm{d}, J=13.7$ $\left.\mathrm{Hz}, \mathrm{CHHSO}_{2}\right), 3.43\left(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.15(1 \mathrm{H}, \mathrm{br}$ s, OH ) , 2.94-2.85 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ ), $2.51(1 \mathrm{H}, \mathrm{dt}, J=4.4$ and 2.8 $\mathrm{Hz}, \mathrm{CHH}), 2.33(1 \mathrm{H}, \mathrm{ddd}, J=12.6,9.1$ and $3.4 \mathrm{~Hz}, \mathrm{CHH}) 2.30-$ $1.86\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 1.74(1 \mathrm{H}$, ddd, $J=12.6,9.3$ and 8.4 Hz , CHH), 1.51-1.45 (3H, m, CHH and CH2 $), 1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.17$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ), $0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ ). |
| ${ }^{13} \mathrm{C}$-NMR <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 178.2(\mathrm{CCOO}), 169.8(\mathrm{CON}), 85.4\left(\mathrm{CC}-\mathrm{CH}_{3}\right), 84.4\left(\mathrm{CC}^{-\mathrm{CH}_{3}}\right), \\ & 84.3(\mathrm{CH}-\mathrm{OH}), 75.0(\mathrm{CCH}), 65.2(\mathrm{CHN}), 52.9\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.6 \\ & \left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), \quad 47.7 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 44.7 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \\ & \left(\mathrm{CH}_{2} \mathrm{CHN}\right), 34.8\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 32.1\left(\mathrm{CH}_{2}\right), 29.5 \\ & \left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right), 21.0 \\ & \left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (ES+ ionisation) | $\begin{aligned} & 933.2\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 6 \%\right), 478.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 5 \%\right), 456.2\left([\mathrm{M}+\mathrm{H}]^{+},\right. \\ & 16 \%) 153.3(100 \%) . \end{aligned}$ |
| HRMS (ES+ ionisation) | Calculated : $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{SNa}=478.1870$. Found : 478.1869. |

## $N-\left[(2 R)-2-H y d r o x y-2-\left(\left(2 R, 2^{\prime} R, 5 S\right)-5 '-h y d r o x y-5 '-(1-h y d r o x y-1-m e t h y l-e t h y l)-5,2^{\prime}-\right.\right.$

 dimethyl-octahydro-[2,2']bifuranyl-5-yl)ethanoyl]-(2S)-camphor-10,2-sultam (315h)
$\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{~S}$.
$\mathrm{M}=515.57 \mathrm{~g} . \mathrm{mol}^{-1}$.

Following the general procedure described for the $\mathrm{KMnO}_{4}$ oxidation of trienoates, oxidation of $\mathbf{3 1 6} \mathbf{~ ( ~} 100 \mathrm{mg}, 0.231 \mathrm{mmol}$ ) afforded the crude lactol $\mathbf{3 1 5 h}$ as a pale yellow oil $(125 \mathrm{mg})$ that was used in the next reaction without further purification. Selected data: ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , selected signals from crude) 169.5 , 109.3, $86.9,84.8,82.9,75.4,73.9,65.3,53.1,48.7$, $47.8,44.6,38.2,33.7,32.8,29.7,27.0,25.6,24.7,24.1,23.9,23.4,21.0,20.8,19.8$.
$( \pm)-\left(2 R^{*}, 5 S^{*}\right)$-Ethyl tetrahydro-5-( $\left(2 R^{*}\right)$-tetrahydro-5-hydroxy-5-(2-hydroxypropan-2-yl)-2-methylfuran-2-yl)-2-(hydroxymethyl)furan-2-carboxylate (482a)


$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{7} . \\
& \mathbf{M}=332.40 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a stirred solution of triene $\mathbf{4 5 2 a}$ ( $80 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) in a mixture of acetone ( 3 mL ) and AcOH ( 2 mL ) at $-30^{\circ} \mathrm{C}$ was added in one batch powered $\mathrm{KMnO}_{4}(152 \mathrm{mg}, 0.96 \mathrm{mmol})$. The solution was stirred for 1 hour maintaining the temperature between $-30^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$. The solution was poured into an ice-cold sat. sol. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(10 \mathrm{~mL})$, discolouring the brown solution. The aqueous phase was extracted with EtOAc ( $2 \times 10 \mathrm{~mL}$ ), $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, EtOAc ( $2 \times 10 \mathrm{~mL}$ ). The aqueous phase was then neutralised with $\mathrm{NaHCO}_{3}$ (sat. aq. sol., 10 mL ) and extracted further with EtOAc ( $2 \times 10 \mathrm{~mL}$ ); these organic phases were washed with brine ( 10 mL ). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 150 mg ). Purification on silica gel ( 50 $\mathrm{mL}, \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 4$ ) afforded the title product 482a as a pale yellow oil ( $70 \mathrm{mg}, 0.211$ mmol, 66\%).

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | $3491 \text { (b), } 2952 \text { (w), } 2931 \text { (w), } 2885 \text { (w), } 1737 \text { (s), } 1370 \text { (m), } 1101$ (w). |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $4.22\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.17-4.13(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}$ and $\mathrm{OH}), 3.82(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{CHHOH}), 3.76(1 \mathrm{H}, \mathrm{d}, J=11.8$ $\mathrm{Hz}, \mathrm{CHHOH}), 2.59-2.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHH}), 2.35-1.83(9 \mathrm{H}, \mathrm{m}$, CCHH and $3 \mathrm{xCH}_{\mathbf{2}}$ and $\left.2 \times \mathrm{OH}\right), 1.30\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.27$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $174.3(\mathrm{COO}), 109.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 98.4\left(\mathrm{CC}-\mathrm{CH}_{3}\right), 85.4(\mathrm{CH}-\mathrm{OH})\right.$, $84.4\left(\mathrm{CCCH}_{3}\right), 73.0(\mathrm{COH}), 66.0\left(\mathrm{OCH}_{2}\right), 61.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{3}\right), 24.0$ $\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $687.6\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 355.3\left([\mathrm{M}+\mathrm{Na}]^{+}, 25 \%\right)$. |
| HRMS | Calculated: $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{Na}=355.1727$ Found: 355.1722. |

$( \pm)-\left(2 R^{*}, 5 S^{*}\right)$-Ethyl tetrahydro-5-( $\left(R^{*}\right)$-tetrahydro-2-methyl-5-oxofuran-2-yl)-2-(hydroxymethyl)furan-2-carboxylate (453a)


$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} . \\
& \mathrm{M}=272.31 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure used for the $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ cleavage, lactol $482 \mathrm{a}(65 \mathrm{mg}, 0.196 \mathrm{mmol}$ ) afforded the title lactone 753 a as a colourless oil ( $0.183 \mathrm{mmol}, 50 \mathrm{mg}, 93 \%$ ) after purification on $\mathrm{SiO}_{2}\left(25 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 75: 25\right)$.
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 4.25\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.18(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CHO})$, $\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 3.85(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and $5.3 \mathrm{~Hz}, \mathrm{CHHOH}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=$ 11.8 and $4.5 \mathrm{~Hz}, \mathrm{CHHOH}), 2.81-2.79(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHH}), 2.84-2.49$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHH}), 2.51(1 \mathrm{H}, \mathrm{dt}, J=10.5$ and $4.2 \mathrm{~Hz}, \mathrm{CHHC}), 2.16-$ $1.94\left(6 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$ and CHH and OH$), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 177.9(\mathbf{C O O}, \mathrm{THF}), 173.5(\mathbf{C O O}), 87.3\left(\mathrm{CCH}_{2} \mathrm{OH}\right), 86.3(\mathbf{C H O}$,
$\left.\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{THF}\right), 85.5\left(\mathrm{CCH}_{3}\right), 66.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 31.9$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 26.0\left(2 \times \mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) 567.3 ([2M+Na] $\left.{ }^{+}, 35 \%\right), 295.3$ ( $\left.[\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
HRMS Calculated: $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}=295.1152$ Found: 295.1149.
( $\pm$ )-Ethyl ( $2 R^{*}$ )-2- triethylsilanyloxy -2-[( $\left.2 S^{*}, 2^{\prime} R^{*}, 5 R^{*}\right)$-2',5-dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-5-yl) ethanoate (483a)

$\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}$.
$\mathrm{M}=400.59 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

According to the method of Ishiyama et al., ${ }^{182}$ lactone $\mathbf{3 1 4 c}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ before the dropwise addition of 2,6lutidine ( $0.03 \mathrm{~mL}, 0.36 \mathrm{mmol}$ ) followed by the dropwise addition of TESOTf ( $0.05 \mathrm{~mL}, 0.27$ $\mathrm{mmol})$. The resulting solution was allowed to warm at room temperature and stirred for one hour. The reaction was quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., 10 mL ) and the
aqueous phase was extracted with EtOAc ( $5 \times 20 \mathrm{~mL}$ ). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 200 mg ). Purification on $\mathrm{SiO}_{2}\left(25 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 19: 1\right)$ afforded the pure product 483a as a yellow oil ( $58 \mathrm{mg}, 0.15 \mathrm{mmol}, 88 \%$ ).

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 2950 \text { (w), } 2905 \text { (m), } 2872 \text { (w), } 1772 \text { (s), } 1746 \text { (s), } 1457 \text { (m), } 1375 \\ & \text { (w), } 1242 \text { (w) } 1137 \text { (s). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) | $4.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ OTES), $2.78(1 \mathrm{H}, \mathrm{ddd}, J=18.0,10.5$ and $2.9 \mathrm{~Hz}, \mathrm{CHH}), 2.59$ $2.21\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and CHH$), 1.96-1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.67-1.56$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{O}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}_{3}\right), 0.96(9 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$ $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.60\left(6 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right)$. |
| ${ }^{13}$ C-NMR <br> (75MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$ ) |  |
| LRMS (ES+ ionisation) | $\begin{aligned} & 823.2\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 80 \%\right), 423.2\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 401.1\left([\mathrm{M}+\mathrm{H}]^{+},\right. \\ & 100 \%) . \end{aligned}$ |

$N-[(2 R)-2-T r i e t h y l s i l a n y l o x y ~-2-((2 R, 2 ' R, 5 S)-2 ', 5-d i m e t h y l-5 '-o x o-o c t a h y d r o-~$ [2,2']bifuranyl-5-yl)ethanoyl]-(2R)-camphor-10,2-sultam (483b)


## $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{6} \mathrm{SSi}$.

$\mathrm{M}=\mathbf{5 6 9 . 8 4} \mathrm{g} . \mathrm{mol}^{-1}$.

Following the procedure for the preparation of the protected lactone 483a, lactone 314e (20 $\mathrm{mg}, 0.04 \mathrm{mmol}$ ) afforded the title product 483b as a yellow oil ( $20 \mathrm{mg}, 0.035 \mathrm{mmol}, 88 \%$ ).
$[\alpha]^{20}{ }_{D}$
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$
-61.1 (c 0.5, $\mathrm{CDCl}_{3}$ )
2959 (b), 2916 (b), 2870 (b), 1768 (s), 1697 (s), 1455 (w), 1327 (s), 1230 (s), 1130 (s), 751 (w).

| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ | 4.77 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{CHOTES}$ ), $3.88(1 \mathrm{H}, \mathrm{dd}, J=7.5$ and $5.5 \mathrm{~Hz}, \mathrm{CHN})$, |
| :---: | :---: |
| ( $\mathbf{0 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) | $3.78\left(1 \mathrm{H}, \mathrm{dd}, J=8.4\right.$ and $\left.6.4 \mathrm{~Hz}, \mathrm{CHCH}_{2}, \mathrm{THF}\right), 3.58(1 \mathrm{H}, \mathrm{d}, J=$ |
|  | $\left.13.7 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.48\left(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 2.68-$ |
|  | $2.05\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.3 \times \mathrm{CH}_{2}\right), 1.89-1.63$ ( $6 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}$ |
|  | $\left.\mathrm{CH}_{2}\right), 1.37\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right),$ |
|  | $0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.64(6 \mathrm{H}$, |
|  | q, $\left.J=7.9 \mathrm{~Hz}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ | $174.2(\mathrm{CCON}), 170.5(\mathbf{C O N}), 85.7\left(\mathrm{CCH}_{3}\right), 85.6\left(\mathrm{CCH}_{3}\right), 81.8$ |
| ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | (CHOTES), $75.0(\mathrm{CCH}), 66.0(\mathrm{CHN}), 52.8\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 48.1$ |
|  | $\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.7\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), 387\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$, |
|  | $34.4\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 30.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 26.3$ |
|  | $\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 6.8(3 \mathrm{x}$ |
|  | $\left.\mathrm{SiCH}_{2}\right), 4.8\left(3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $1161.1\left([2 \mathrm{M}+\mathrm{K}]^{+}, 4 \%\right), 592.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 34 \%\right), 570.2\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, |
|  | 12\%). |

$( \pm)-\left(2 R^{*}, 5 S^{*}\right)$-Ethyl 2-formyl-tetrahydro-5-( $\left(R^{*}\right)$-tetrahydro-2-methyl-5-oxofuran-2-yl)furan-2-carboxylate (459a)


$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} . \\
& \mathrm{M}=270.28 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a solution of THF 453a ( $20 \mathrm{mg}, 0.073 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ containing 50 mg of crushed molecular sieves, was added NMO ( $17 \mathrm{mg}, 0.127 \mathrm{mmol}$ ) and TPAP ( 5 mg ). The resulting solution was stirred for 45 minutes, filtered through a plug of silica using EtOAc as eluent and concentrated in vacuo to afford the crude compound as a pale yellow oil ( 25 mg ). Purification on silica gel ( $15 \mathrm{~g}, \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 3$ ) afforded the title product 459a as a yellow oil ( $15 \mathrm{mg}, 0.055 \mathrm{mmol}, 76 \%$ ).
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 2960(\mathrm{w}), 2915(\mathrm{w}), 2895(\mathrm{w}), 1772(\mathrm{~s}), 1760(\mathrm{~s}), 1742(\mathrm{~s}), 1450$ (m), 1130 (s).
${ }^{1} \mathrm{H}$-NMR $\quad 9.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=7.0$ and $1.5 \mathrm{~Hz}, \mathrm{CHOC})$, $\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) 4.25\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.90(1 \mathrm{H}, \mathrm{dt}, J=8.0$ and 4.8 Hz ,

CHHC), $2.55(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ and CHH$), 2.27(1 \mathrm{H}, \mathrm{tt}, J=8.0$ and $4.8 \mathrm{~Hz}, \mathrm{CHHC}), 2.09-1.94\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 196.6(\mathrm{CHO}), 177.9(\mathrm{CCOO}), 177.1(\mathrm{COO}), 90.1\left(\mathrm{CCCH}_{3}\right), 87.3$
$\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad(\mathrm{CHOH}), 85.1\left(\mathrm{CCCH}_{3}\right), 62.2\left(\mathrm{OCH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $563.5\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 25 \%\right), \quad 558.5\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 49 \%\right), \quad 288.4$ $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right)$.
$( \pm)-\left(2 R^{*}, 5 S^{*}\right)$-Ethyl tetrahydro-2-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)furan-2carboxylate (422a)


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5} . \\
& \mathrm{M}=232.28 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of diene 421a ( $520 \mathrm{mg}, 2.857 \mathrm{mmol}$ ) and phosphate buffer $\left(1.5 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2\right)$ in acetone ( 40 mL ) at $-20^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(14.3 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 5.714 \mathrm{mmol})$ containing $\mathrm{AcOH}(0.322 \mathrm{~mL}, 8.00$ mmol ). The purple mixture was stirred rapidly for 20 min during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $2 \times 40 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 40 \mathrm{~mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a colourless oil. Purification on silica gel $\left(20 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 1\right)$ afforded the title product 422a as a colourless oil ( $636 \mathrm{mg}, 2.738 \mathrm{mmol}, 96 \%$ ). The crude compound could be used without further purification in the next step.

IR ( $\mathbf{c m}^{-1}$ ) 3409 (b), 2969 (s), 2936 (s), 2874 (m), 1734 (s), 1465 (w), 1370 (s), 1110 ( s ), 1053 ( s ).
${ }^{1} \mathbf{H}-\mathrm{NMR} \quad 4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.04(1 \mathrm{H}, \mathrm{brt}, J=7.4 \mathrm{~Hz}, \mathrm{CCH}), 3.89(1 \mathrm{H}$, ( $\left.\left.\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{CHHOH}\right), 3.74(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{CHHOH})$, $3.18(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.92(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J=$ $\left.7.4 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$,
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 174.1(\mathrm{COO}), 87.6(\mathrm{OCH}), 86.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 71.5\left(\mathrm{OCCH}_{2}\right), 66.0}\right.$
$\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)\left(\mathrm{OCH}_{2}\right), 61.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), \quad 32.0\left(\mathrm{CH}_{2} \mathrm{C}\right), \quad 27.5\left(\mathrm{CH}_{3}\right), 26.1$ $\left(\mathrm{CHCH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) $487.2\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 75 \%\right), 465.2\left([2 \mathrm{M}+\mathrm{H}]^{+}, 18 \%\right)$.
HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}:$ 255.1203. Found: 255.1202.
$( \pm)-\left(\left(2 R^{*}, 5 S^{*}\right)\right.$-Tetrahydro-2-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)furan-2yl)methyl acetate (440)


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5} . \\
& \mathbf{M}=\mathbf{2 3 2 . 2 7} \mathrm{g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure for the preparation of THF 422a, oxidative cyclisation of diene $\mathbf{4 3 6}$ ( $70 \mathrm{mg}, 0.385 \mathrm{mmol}$ ) afforded THF 440 as a colourless oil ( $80 \mathrm{mg}, 0.344 \mathrm{mmol}, 89 \%$ ) after purification on silica gel ( $50 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 2: 1$ ).

| IR $\left(\mathbf{c m}^{-1}\right)$ | $3495(\mathrm{~b}), 2976(\mathrm{~m}), 2886(\mathrm{~m}), 1743(\mathrm{~m}), 1491(\mathrm{w}), 1288$ |
| :--- | :--- |
|  | $(\mathrm{~m}), 1201(\mathrm{~s}), 1046(\mathrm{~m})$. |

( $\pm$ )-2-[5-(2-Acetoxy-1-hydroxy-ethyl)-2-methyl-tetrahydro-furan-2-yl]-2-hydroxypropionic acid methyl ester.


$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{7} \\
& \mathbf{M}=290.31 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Powdered $\mathrm{KMnO}_{4}(67 \mathrm{mg}, 0.42 \mathrm{mmol})$ was added in one portion to a solution of triene $\mathbf{4 a}$ ( 50 $\mathrm{mg}, 0.21 \mathrm{mmol})$, in Acetone $/ \mathrm{AcOH}(3: 2,3 \mathrm{~mL}, 2 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The purple mixture was rapidly stirred for 2 hours during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 20 \mathrm{~mL})$, then with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated with NaCl and extracted further with $\operatorname{EtOAc}(2 \times 20 \mathrm{~mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a yellow oil ( 80 mg ). Purification on $\mathrm{SiO}_{2}(25 \mathrm{~g})$ eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(50: 50)$ gave the title mono-THF 16a as a colourless oil ( $44 \mathrm{mg}, 0.151 \mathrm{mmol}, 72 \%$ ).
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 3030(\mathrm{~b}), 2945(\mathrm{~m}), 2912(\mathrm{w}), 2878(\mathrm{w}), 1740(\mathrm{~s}), 1716(\mathrm{~s}), 1470$ (m), 1440 (m), 1380 (m), 1120 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 4.25\left(1 \mathrm{H}, \mathrm{dd}, J=11.5\right.$ and $\left.2.5 \mathrm{~Hz}, \mathrm{CH} \mathrm{HOCOCH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathbf{( 3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad J=7.8$ and $\left.6.3 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}\right), 3.98(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and 7.8 $\mathrm{Hz}, \mathrm{CHHOCOCH} 3), 3.89(1 \mathrm{H}, \mathrm{dd}, J=7.0$ and $2.5 \mathrm{~Hz}, \mathrm{CHOH})$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55(1 \mathrm{H}, \mathrm{OH}), 2.22(1 \mathrm{H}, \mathrm{ddd}, J=12.3,9.3$ and $7.3 \mathrm{~Hz}, \mathrm{CHHC}, \mathrm{THF}), 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right), 2.04-1.84(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 1.53(1 \mathrm{H}$, ddd, $J=12.3,8.8$ and 5.8 Hz , $\mathrm{CHHC}, \mathrm{THF}), 1.48\left(\mathrm{CH}_{3}\right), 1.21\left(\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$-NMR
( $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$
$175.4(\mathrm{COO}), 171.3\left(\mathrm{CH}_{3} \mathrm{CO}\right), 85.8(\mathrm{COH}), 81.6(\mathrm{CHO}, \mathrm{THF})$, 76.7 ( $\mathrm{OC}, \quad \mathrm{THF}), 74.9(\mathrm{CHOH}), \quad 65.6\left(\mathrm{CH}_{2} \mathrm{OCO}\right), 52.9$ $\left(\mathrm{CH}_{3} \mathrm{OCO}\right), 31.2\left(\mathrm{CH}_{2} \mathrm{C}, \mathrm{THF}\right), 27.2\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 23.6\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{OCCH}_{3}\right)$.
LRMS (ES+ ionisation) $604.4\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 25 \%\right), 313.1\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
$N$-[(2S,5R)- Tetrahydro-2-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)furanoyl]-2-(2S)-camphor-10,2-sultam (422b)

$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}$.
$\mathrm{M}=401.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

To a vigorously stirred mixture of diene $\mathbf{4 2 1 b}(420 \mathrm{mg}, 1.196 \mathrm{mmol})$ and phosphate buffer ( $1.5 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2$, pH 6.2 ) in acetone $(25 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(6.0 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 2.40 \mathrm{mmol})$ containing $\mathrm{AcOH}(0.192 \mathrm{~mL}, 3.35$ mmol ). The purple mixture was rapidly stirred for 90 min during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $2 \times 20 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a colourless oil ( 600 mg , de $>9: 1$, from crude ${ }^{1} \mathrm{H}$ NMR). Purification on $\mathrm{SiO}_{2}\left(100 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1\right)$ gave the major diastereoisomer 422b as a colourless glass ( $395 \mathrm{mg}, 0.984 \mathrm{mmol}, 82 \%$ ). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave transparent crystals suitable for x-ray structural determination.

| $[\alpha]_{\mathbf{D}}$ | $20.5\left(\mathrm{c} 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. |
| :--- | :--- |
| $\mathbf{M p}($ EtOAc/hexane $)$ | $49-54^{\circ} \mathrm{C}$ |

$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 3422$ (b), 2969 (b), 2942 (b), 2920 (b), 1674 (s), 1458 (w), $1340(\mathrm{~s}), 1287(\mathrm{~m}), 1166(\mathrm{~s}), 1141(\mathrm{~s})$ and $1062(\mathrm{~s})$.
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 4.17(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $7.0 \mathrm{~Hz}, \mathrm{CHO}$, THF $), 4.10(1 \mathrm{H}, \mathrm{dd}, J=$ $\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) 8.3$ and $\left.4.0 \mathrm{~Hz}, \mathrm{NCH}\right), 4.01(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{CHHO}), 3.67$ $(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{CHHO}), 3.55(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}$, $\mathrm{CHHSO}_{2}$ ), $3.42\left(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 2.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.32(1 \mathrm{H}$, ddd, $J=12.8,7.5$ and 4.7 $\mathrm{Hz}, \mathrm{CHHCHO}, \mathrm{THF}), 2.17(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, \mathrm{CHHCHO}, \mathrm{THF})$, $2.07(1 \mathrm{H}, \mathrm{dd}, J=13.9$ and $8.8 \mathrm{~Hz}, \mathrm{CHHCHN}), 1.96-1.82(5 \mathrm{H}, \mathrm{m}$, $2 \mathrm{x} \mathrm{CH}_{2}$ and CHHCHN ), $1.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.37-1.32(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.17(3 \mathrm{H}, \mathrm{s}$,

|  | $\left.\mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| :---: | :---: |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $176.8(\mathrm{COO}), 89.1\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}\right), 88.5(\mathrm{OCH}, \mathrm{THF}), 71.5(\mathrm{CO}$, THF), $67.8(\mathrm{NCH}), 67.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 54.9\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 47.7$ $\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}\right), 45.5\left(\mathrm{CHCH}_{2}\right), 39.3\left(\mathrm{CH}_{2} \mathrm{CO}\right.$, THF), $35.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $33.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $27.5\left(\mathrm{CH}_{3} \mathrm{C}\right)$, 26.1, $\left(\mathrm{CH}_{2} \mathrm{CHO}\right.$, THF), $24.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$ and $20.0\left(\mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $825.8\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 25 \%\right), 424.4\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$. |
| HRMS | Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{SNa}: 424.1764$. Found: 424.1767 |

## $( \pm)-\left(2 R^{*}, 6 S^{*}\right)$-Ethyl tetrahydro-2-(hydroxymethyl)-6-(2-hydroxypropan-2-yl)-2H-pyran-2-carboxylate (441a)



$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5} . \\
& \mathrm{M}=246.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of dienoate 439 ( $82 \mathrm{mg}, 0.418 \mathrm{mmol}$ ) and phosphate buffer $\left(0.5 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2\right)$ in acetone $(10 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(2.09 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 0.834 \mathrm{mmol})$ containing $\mathrm{AcOH}(67 \mu \mathrm{~L}, 1.170$ mmol ). The purple mixture was stirred rapidly for 2.5 hours during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 20$ $\mathrm{mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product ( 200 mg ) as a yellow oil. Purification on $\mathrm{SiO}_{2}(100 \mathrm{~mL}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 1$ ) gave the title product 441 a as a colourless oil $(69 \mathrm{mg}, 0.280 \mathrm{mmol}$, $67 \%$ ).
$\left.\mathbb{R}\left(\mathbf{c m}^{-1}\right) \quad 3420(\mathrm{~b}), 2978(\mathrm{~m}), 2935(\mathrm{~m}), 2907(\mathrm{~m}), 1711 \mathrm{~s}\right), 1370(\mathrm{~m}), 1218$ (s), 1187 (s), 1111 (s), 1065 (s), 1021 (s).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 4.32\left(2 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.3\right.$ and $\left.4.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.78(1 \mathrm{H}, \mathrm{dd}, J=$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \quad 10.8$ and $\left.9.0 \mathrm{~Hz}, \mathrm{CHHO}\right), 3.62(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=10.8$ and 5.3 Hz , CHHO), 3.61 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}, \mathrm{THF}$ ), 2.58 ( 2 H , br s, $2 \times \mathrm{OH}$ ), $1.80-$ $1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.65-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38-1.30(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2}\right), 1.37\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.34\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

| ${ }^{13} \mathbf{C - N M R}$ | $174.9(\mathbf{C O O}), 88.8(\mathbf{C C = O}), 78.3(\mathrm{OCH}, \mathrm{THF}), 76.1(\mathbf{C O H}), 67.8$ |
| :--- | :--- |
| $\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ | $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.5 \quad\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 35.2 \quad\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{CH}, \mathrm{THF}\right), 34.0$ |
|  | $\left(\mathrm{CH}_{2} \mathbf{C H}_{2} \mathrm{CH}, \mathrm{THF}\right), 26.5\left(2 \times \mathrm{CH}_{3}\right), 17.4\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{C}, \mathrm{THF}\right), 14.2$ |
|  | $\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. |

LRMS (ES+ ionisation) $310.1\left([\mathrm{M}+\mathrm{MeCN}+\mathrm{Na}]^{+}, 24 \%\right), 269.1\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
$( \pm)-\left(2 S^{*}, 5 R^{*}\right)$-Ethyl tetrahydro-2-( tert-Butyl-dimethyl-silanyloxymethyl methyl)-5-(2-hydroxypropan-2-yl)furan-2-carboxylate (484)


$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si} . \\
& \mathrm{M}=346.54 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a ice-cold stirred solution of THF 422a ( $30 \mathrm{mg}, 0.129 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added triethylamine ( $72 \mu \mathrm{~L}, 0.516 \mathrm{mmol}$ ) followed by $\mathrm{TBDMSCl}(30 \mathrm{mg}, 0.195 \mathrm{mmol})$ and DMAP $(1.6 \mathrm{mg}, 0.013 \mathrm{mmol})$. After warming up to room temperature, the reaction was stirred for 3 days, before the addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. the mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sol., $10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 45 mg ). Purification on $\mathrm{SiO}_{2}$ ( $25 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1$ ) afforded the title product 484 as a colourless oil ( 40 mg , $0.115 \mathrm{mmol}, 89 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3470 (b), 2959 (b), 2936 (b), 2860 (b), 1730 (w), 1460 (s), 1261
(s), 1110 (w), 845 (s), 779 (s).
${ }^{1} \mathrm{H}$-NMR $\quad 4.24-4.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J=7.5$ and 4.2 Hz ,
( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) CCH), $3.90(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CHHOH}), 3.87(1 \mathrm{H}, \mathrm{d}, J=10.5$ $\mathrm{Hz}, \mathrm{CHHOH}), 2.28-2.21(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHH}), 2.08-1.97(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2}$ and OH$), 1.96-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHH}), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.27\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.95(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 173.7(\mathbf{C O O}), 87.6(\mathrm{OCH}), 87.0\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 71.6\left(\mathrm{OCCH}_{2}\right), 65.5$ $\left(\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{OCH}_{2}\right), 61.0\left(\mathbf{C H}_{2} \mathrm{OH}\right), 31.2\left(\mathrm{CH}_{2} \mathrm{C}\right), 27.7\left(\mathrm{CH}_{3}\right), 25.9\left(\mathbf{C H}_{3}\right)$,
$25.9\left(\mathrm{CHCH}_{2}\right), 24.8\left(\mathbf{C H}_{3}\right), 18.4(\mathrm{SiC}), 14.2\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right), 1.0(2 \mathrm{x}$ $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right),-5.5\left(3 \times \mathrm{SiCC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

LRMS (ES+ ionisation)
$715.4\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 8 \%\right), 369.1\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
HRMS
Calculated: $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}=369.2068$ Found: 369.2062.
$( \pm)-\left(2 R^{*}, 5 S^{*}\right)$-Ethyl tetrahydro-2-( tert-Butyl-dimethyl-silanyloxymethyl methyl)-5-(2-acetoxypropan-2-yl)furan-2-carboxylate (485)


$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si} . \\
& \mathrm{M}=388.57 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

To a stirred solution of THF $484(35 \mathrm{mg}, 0.101 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added triethylamine ( $70 \mu \mathrm{~L}, 0.510 \mathrm{mmol}$ ) followed by $\mathrm{Ac}_{2} \mathrm{O}(20 \mu \mathrm{~L}, 0.202 \mathrm{mmol})$ and DMAP ( 2 $\mathrm{mg}, 0.014 \mathrm{mmol})$. The reaction was stirred for 48 hours before addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 40 mg ), Purification on $\mathrm{SiO}_{2}\left(25 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 6: 1\right)$ afforded the title product 485 as a colourless oil ( $30 \mathrm{mg}, 0.077 \mathrm{mmol}, 76 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3470 (b), 2959 (b), 2936 (b), 2860 (b), 1730 (w), 1460 (s), 1261 (s), 1110 (w), 845 (s), 779 (s).
${ }^{1} \mathrm{H}$-NMR $\quad 4.22-4.19\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CCH}\right.$ and $\left.\mathrm{OCH}_{2}\right), 3.88(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}$,
(400MHz, $\left.\left.\mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad \mathrm{CHHOH}\right), 3.80(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CHHOH}), 2.28-2.21(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CCHH}), 2.08-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.96-$
$1.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CCHH}), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 173.5(\mathrm{COO}), 170.3(\mathrm{COO}), 87.7(\mathrm{OCH}), 85.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 82.8$ $\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad\left(\mathrm{OCCH}_{2}\right), 66.9\left(\mathrm{OCH}_{2}\right), 61.0\left(\mathbf{C H}_{2} \mathrm{OH}\right), 31.3\left(\mathrm{CH}_{2} \mathrm{C}\right), 29.7$ $\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CHCH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 18.3$ (SiC), $14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.0\left(2 \mathrm{x} \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right),-5.5(3 \mathrm{x}$ $\left.\mathrm{SiCC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
$\begin{array}{ll}\text { LRMS (ES+ ionisation) } & \begin{array}{l}427.2\left([\mathrm{M}+\mathrm{K}]^{+}, 15 \%\right), ~ 411.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 25 \%\right), 411.2\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+},\right. \\ 100 \%) .\end{array}\end{array}$
( $\pm$ )-( $2 S^{*}, 5 R^{*}$ )-Ethyl 5-(2-acetoxypropan-2-yl)-tetrahydro-2-(hydroxymethyl)furan-2carboxylate (449c)


$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{6} . \\
& \mathrm{M}=274.31 \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

A solution of $\mathrm{HCl}(5 \mathrm{~mL}$ of $1 \mathrm{M}(\mathrm{aq}))$ was added to a stirred solution of THF $\mathbf{4 8 5}$ ( 750 mg , 1.925 mmol ) at room temperature. The reaction was stirred overnight and neutralised with $\mathrm{NaHCO}_{3}$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a pale yellow oil ( 720 mg ). Purification on $\mathrm{SiO}_{2}\left(200 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1\right)$ afforded the title product 449 c as a colourless oil ( $395 \mathrm{mg}, 1.827 \mathrm{mmol}, 95 \%$ ).

| $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 3545 \text { (b), } 2996 \text { (b), } 2941 \text { (b), } 2925 \text { (b), } 1738 \text { (s), } 1366 \text { (w), } \\ & 1216 \text { (m), } 1204 \text { (m), } 1091 \text { (s), } 1023 \text { (m). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $\mathbf{4 0 0 M H z}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $4.21\left(2 \mathrm{H}, \mathrm{qd}, J=7.1\right.$ and $\left.4.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, CCHO), $3.50(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHHOH}), 3.45(1 \mathrm{H}, \mathrm{d}, J=7.2$ $\mathrm{Hz}, \mathrm{CHHOH}), 2.42(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.34-1.94(3 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ and $\mathrm{CH}_{\mathbf{2}}$, THF), $2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}, \mathrm{THF}), 1.59$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $173.7(\mathrm{COO}), 170.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 87.0(\mathrm{CHO}, \mathrm{THF}), 86.7$ $\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 82.5\left(\mathrm{OCCH}_{2}, \quad \mathrm{THF}\right), \quad 65.8 \quad\left(\mathrm{COOCH}_{2}\right), \quad 61.2\right.$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 31.8\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 26.1\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 22.6$ ( 2 x $\left.\mathrm{CH}_{3} \mathrm{C}\right), 22.5\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. |
| LRMS (ES+ ionisation) | $297.1\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 275.1\left([\mathrm{M}+\mathrm{H}]^{+}, 7 \%\right)$. |

## $( \pm)-\left(\left(2 R^{*}, 5 S^{*}\right)\right.$-2-(Ethoxycarbonyl)-tetrahydro-5-(2-hydroxypropan-2-yl)furan-2yl)methyl 4-methylbenzenesulfonate (431)



$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~S} . \\
& \mathrm{M}=386.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a solution of THF 422a ( $36 \mathrm{mg}, 0.155 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL}, 0.24 \mathrm{mmol})$ and a trace of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{TsCl}(40 \mathrm{mg}, 0.176 \mathrm{mmol})$. The mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$ and then diluted with EtOAc $(10 \mathrm{~mL})$ and washed with water ( $2 \times 10$ mL ), $\mathrm{HCl}\left(2 \times 10 \mathrm{~mL}, 2 \mathrm{M} \mathrm{aq}\right.$. sol.), $\mathrm{NaHCO}_{3}$ (sat. aq. sol., $2 \times 10 \mathrm{~mL}$ ) and brine ( $2 \times 10 \mathrm{~mL}$ ). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 90 mg ). Purification on silica gel ( 20 g , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1$ ) gave the title product 431 as a pale yellow oil $(19 \mathrm{mg}, 0.049 \mathrm{mmol}$, $32 \%$ ).

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 3527 \text { (b), } 2978 \text { (m), } 2926 \text { (m), } 2898 \text { (w), } 1735 \text { (s), } 1588 \text { (w), } \\ & 1366 \text { (s), } 1194 \text { (s), } 1172 \text { (s), } 969 \text { (s), } 807 \text { (m). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $7.80(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{SCCH} \times 2$, arom), $7.35(2 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz},\left(\mathrm{CH}_{3}\right) \mathrm{CCH} \times 2$, arom $), 4.34(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CHHO})$, $4.22(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CHHO}), 4.17(2 \mathrm{H}, \mathrm{qd}, J=7.2$ and 2.6 $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.05(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 2.45(3 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CCH}_{3}\right), 2.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.18-1.85\left(4 \mathrm{H}, \mathrm{CH}_{2} \times 2, \mathrm{THF}\right)$, $1.27\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10(3 \mathrm{H}$, $\mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $171.9(\mathrm{COO}), 145.1\left(\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right), 132.8(2 \times \mathrm{SC}=\mathrm{CH}), 129.9$ $\left(\mathrm{CH}=\mathrm{C}(\mathrm{CH})_{3}\right), 127.9(2 \times \mathrm{CH}=\mathrm{CS}), 88.3$ ( $\left.\mathrm{CHO}, \mathrm{THF}\right), 84.0$ ( $\mathrm{CO}, \mathrm{THF}$ ), $71.3\left(\mathrm{CH}_{2} \mathrm{OS}\right), 70.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 61.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $32.5\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 27.4\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2} \mathrm{CHO}\right.$, THF), 24.6 $\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $\begin{aligned} & 810.9 \quad\left([2 \mathrm{M}+\mathrm{K}]^{+}, \quad 40 \%\right), \quad 794.9\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 100 \%\right), 425.1 \\ & \left([\mathrm{M}+\mathrm{K}]^{+}, 60 \%\right) . \end{aligned}$ |
| HRMS | Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{SNa}$ : 409.1297. Found: 409.1281. |

$( \pm)-\left(2 R^{*}\right)$-Ethyl-2-( $\left(2 R^{*}, 5 S^{*}\right)$-tetrahydro-5-( $\left.R^{*}\right)$-2-hydroxy-6-methylhept-5-en-2-yl)-2-methylfuran-2-yl)-2-hydroxyacetate (385a)


$$
\begin{aligned}
& \mathrm{C}_{17} \mathbf{H}_{30} \mathrm{O}_{7} \\
& \mathbf{M}=314.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of trieneoate $\mathbf{3 1 6 c}(100 \mathrm{mg}, 0.379 \mathrm{mmol})$ and phosphate buffer ( $0.5 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2$ ) in acetone ( 15 mL ) at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(1.6 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 0.644 \mathrm{mmol}$ ) containing $\mathrm{AcOH}(61 \mu \mathrm{~L}, 1.061$ mmol). The purple mixture was rapidly stirred for 2 hours during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $2 \times 20 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated with NaCl and extracted further with EtOAc ( $2 \times 20 \mathrm{~mL}$ ). The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product ( 110 mg ) as a colourless oil. Purification on $\mathrm{SiO}_{2}(100 \mathrm{~mL}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 90: 10$ ) gave the title mono-THF 385a as a colourless oil ( $0.280 \mathrm{mmol}, 88 \mathrm{mg}$, $74 \%$ ) and the bis-lactol 315 c as a by product ( $0.026 \mathrm{mmol}, 9 \mathrm{mg}, 7 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3430 (b), 2974 (b), 2932 (b), 2874 (b), 1734 (s), 1451 (w), 1375 (w), 1270 (m), 1204 (m), 1091 (s), 1023 (m).
${ }^{1}$ H-NMR $\quad 5.10\left(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.06$
( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 3.87(1 \mathrm{H}, \mathrm{dd}, J=9.6$ and $6.0 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF})$, $3.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x} \mathrm{OH}), 2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COH}\right), 2.06-1.93(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}, \mathrm{THF}\right), 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.76-1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.68$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.33(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 173.2(\mathrm{COO}), 131.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 124.4\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 85.9(\mathrm{OCH} \text {, }}\right.$
$\left.\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{THF}\right), 83.8(\mathrm{COH}), 75.1(\mathbf{C H O H}), 72.4\left(\mathrm{OCCH}_{2}, \mathrm{THF}\right), 61.9$ $\left(\mathrm{OCH}_{2}\right), 37.8\left(\mathrm{CH}_{2} \mathrm{COH}\right), 35.2\left(\mathrm{CH}_{2} \mathrm{C}, \mathrm{THF}\right), 25.6\left(\mathrm{CH}_{3}\right), 25.4$ $\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right)$, $17.6\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) 337.4 ([M+Na] $\left.{ }^{+}, 100 \%\right)$.
HRMS
Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}: 337.1985$. Found: 337.1981.
$N-[(S)-2-((2 S, 5 R)$-Tetrahydro-5-((S)-2-hydroxy-6-methylhept-5-en-2-yl)-2-methylfuran-2-oyl)]-2-hydroxy-(2S)-camphor-10,2-sultam (385b)


$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{~S} . \\
& \mathrm{M}=483.7 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of trieneoate 316h ( $600 \mathrm{mg}, 1.384 \mathrm{mmol}$ ) and phosphate buffer ( $1.5 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2$ ) in acetone $(40 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(5.9 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 2.353 \mathrm{mmol}$ ) containing AcOH ( $222 \mu \mathrm{~L}, 3.875$ mmol ). The purple mixture was rapidly stirred for 2 hours during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $3 \times 40 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 20$ $\mathrm{mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product ( 540 mg ) as a colourless oil. Purification on $\mathrm{SiO}_{2}(150 \mathrm{~mL}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /EtOAc, 9:1) gave the major diastereoisomer 385b as a colourless solid glass ( 0.924 mmol, $447 \mathrm{mg}, 67 \%$ ), the minor diastereoisomer as a colourless oil ( $0.052 \mathrm{mmol}, 25 \mathrm{mg}, 4 \%$ ), and the bis-lactol $\mathbf{3 1 5}$ h as a by product ( $0.029 \mathrm{mmol}, 15 \mathrm{mg}, 2 \%$ ).

Major diastereoisomer 385b:
$[\alpha]_{D}$
-29.8 (c 0.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
Mp (EtOAc/hexane) $\quad 47-51^{\circ} \mathrm{C}$
IR ( $\mathbf{c m}^{-1}$ ) 3432 (b), 2964 (b), 2937 (b), 2882 (b), 1701 (s), 1454 (w), 1329
(w), 1270 (m), 1219 (m), 1134 (s), 1060 (s).
${ }^{1} \mathbf{H}$-NMR $\quad 5.12\left(1 \mathrm{H}, \mathrm{tdd}, J=7.0,2.8\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.63(1 \mathrm{H}$,
$\left.\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \mathrm{s}, \mathrm{CHOH}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J=7.5$ and $4.8 \mathrm{~Hz}, \mathrm{CHN}), 3.85(1 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.55(1 \mathrm{H}, \mathrm{d}, J=$ $\left.13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.45\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.13$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.27(1 \mathrm{H}, \mathrm{ddd}, J=9.3,6.0$ and $3.3 \mathrm{~Hz}, \mathrm{CHHCO}$, THF), $2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 2.10-1.99(3 \mathrm{H}, \mathrm{m}, \mathrm{CHC}$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$ ), 1.97-1.86 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHO}$, THF and $\mathrm{CH}_{2} \mathrm{COH}$ and $\left.\mathrm{CH}_{2}\right), 1.79(1 \mathrm{H}$, ddd, $J=10.6,6.5$ and $4.0 \mathrm{~Hz}, \mathrm{CHHCO}$,

THF), $1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.51-1.30(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHCO}, \mathrm{THF}$ and CHH and $\left.\mathrm{CH}_{2}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
$\left.{ }^{13} \mathbf{C - N M R} \quad 170.1(\mathbf{C O O}), 131.6\left(\mathbf{C}_{\left(\mathrm{CH}_{3}\right)}\right)_{2}\right), 124.5\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), 83.9(\mathrm{OCH}$, $\left(\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right)$ THF), $75.6(\mathrm{CHOH}), 73.4(\mathrm{COH}), 65.2(\mathbf{C H N}), 53.0\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right)$, $48.7\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 44.6\left(\mathrm{CHCH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right)\right.$, $38.1\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 32.8\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.0$ $\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.2$ $\left(\mathrm{CH}_{2}\right), 20.8\left(2 \times \mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) $990.0\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 60 \%\right), 506.4\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
HRMS
Calcd for $\mathrm{C}_{25} \mathrm{H}_{4} \mathrm{NO}_{6} \mathrm{SNa}$ : 506.2547. Found: 506.2551.
$N-[(R)-2-((2 R, 5 S)-T e t r a h y d r o-5-((R)-2-h y d r o x y-6-m e t h y l h e p t-5-e n-2-y l)-2-m e t h y l f u r a n-$ 2-oyl)]-2-hydroxy-(2R)-camphor-10,2-sultam (385c)


$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{7} \mathrm{~S} . . \\
& \mathrm{M}=483.7 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of trieneoate $\mathbf{3 1 6 f}(300 \mathrm{mg}, 0.692 \mathrm{mmol})$ and phosphate buffer ( $1 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2$ ) in acetone ( 20 mL ) at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(2.9 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 1.176 \mathrm{mmol})$ containing $\mathrm{AcOH}(111 \mu \mathrm{~L}, 1.938$ mmol ). The purple mixture was rapidly stirred for 2 hours during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $2 \times 20 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product ( $450 \mathrm{mg}, d e>9: 1$ ) as a colourless oil. Purification on $\mathrm{SiO}_{2}(100 \mathrm{~mL}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 1$ ) gave the major diastereoisomer 385 c as a colourless oil ( 0.459 mmol , $222 \mathrm{mg}, 66 \%$ ), the minor diastereoisomer as a colourless oil ( $0.021 \mathrm{mmol}, 10 \mathrm{mg}, 3 \%$ ), and the bis-lactol $\mathbf{3 1 5 f}$ as a by product ( $0.010 \mathrm{mmol}, 5 \mathrm{mg}, 2 \%$ ).

Major diastereoisomer 385c:
$[\alpha]_{D} \quad 39.4\left(\mathrm{c} 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$\boldsymbol{I R}\left(\mathrm{cm}^{-1}\right) \quad 3456$ (b), 2964 (b), 2936 (b), 2884 (b), 1702 (s), 1454 (w), 1331 (w), 1270 (m), 1219 (m), 1135 (s), 1061 (s).
${ }^{1} \mathrm{H}-\mathrm{NMR} \quad 5.11\left(1 \mathrm{H}\right.$, ddt, $J=7.0,2.8$ and $\left.1.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.64(1 \mathrm{H}$,
$\left.\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad \mathrm{s}, \mathrm{CHOH}\right), 3.93(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $5.0 \mathrm{~Hz}, \mathrm{CHN}), 3.85(1 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.55(1 \mathrm{H}, \mathrm{d}, J=$ $\left.13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.45\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.11$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.28(1 \mathrm{H}$, ddd, $J=9.5,6.3$ and $3.0 \mathrm{~Hz}, \mathrm{CHHCO}$, THF), $2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 2.11-2.00(3 \mathrm{H}, \mathrm{m}, \mathrm{CHC}$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$ ), 1.98-1.87 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHO}$, THF and $\mathrm{CH}_{2} \mathrm{COH}$ and $\left.\mathrm{CH}_{2}\right), 1.77(1 \mathrm{H}$, ddd, $J=10.3,6.3$ and $4.0 \mathrm{~Hz}, \mathrm{CHHCO}$, THF), $1.68\left(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.51-$ $1.32\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHHCO}, \mathrm{THF}\right.$ and CHH and $\left.\mathrm{CH}_{2}\right), 1.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 170.1(\mathbf{C O O}), 131.6\left(\mathbf{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 124.5\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), 83.9(\mathrm{OCH} \text {, }}\right.$
( $\left.\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)$ THF), $75.6(\mathbf{C H O H}), 73.4(\mathrm{COH}), 65.2(\mathbf{C H N}), 53.0\left(\mathbf{C H}_{2} \mathrm{SO}_{2}\right)$, $48.7\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 44.6\left(\mathrm{CHCH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right)\right.$, $38.1\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 32.8\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.0$ $\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.2(2 \mathrm{x}$ $\left.\mathbf{C H}_{2}\right), 20.8\left(\mathbf{C H}_{3}\right), 19.8\left(\mathbf{C H}_{3}\right), 17.6\left(\mathbf{C H}_{3}\right)$.
LRMS (ES+ ionisation) $990.0\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 55 \%\right), 506.4\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.
$N$-[ ( $2 S, 5 R$ )-Ethyl tetrahydro-5-((S)-2-hydroxy-6-methylhept-5-en-2-yl)-2-
(hydroxymethyl)furan-2-oyl]-2-(2S)-camphor-10,2-sultam (460c) and $N$-[ ( $2 S, 5 R$ )-ethyl tetrahydro-5-((R)-2-hydroxy-6-methylhept-5-en-2-yl)-2-(hydroxymethyl)furan-2-oyl]-2--(2S)-camphor-10,2-sultam (460d)


$$
\begin{aligned}
& \mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{~S} . \\
& \mathrm{M}=469.6 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$



To a vigorously stirred mixture of trieneoates $\mathbf{4 5 2 c}, \mathbf{d}(150 \mathrm{mg}, 0.358 \mathrm{mmol})$ and phosphate buffer ( $1.0 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2$ ) in acetone $(15 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(1.5 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 0.608 \mathrm{mmol})$ containing $\mathrm{AcOH}(57 \mu \mathrm{~L}, 1.002$ mmol ). The purple mixture was rapidly stirred for 1.5 hours during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 20$ $\mathrm{mL})$. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product ( 200 mg ) as a colourless oil. Purification on $\mathrm{SiO}_{2}(100 \mathrm{~mL}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 1$ ) gave an inseparable mixture of products $\mathbf{4 6 0} \mathbf{c}$, $\mathbf{d}$ as a colourless oil (108 $\mathrm{mg}, 0.230 \mathrm{mmol}, 64 \%$ ).
$[\alpha]_{\mathrm{D}} \quad-22.6\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
IR ( $\mathbf{c m}^{-1}$ ) 3458 (b), 2968 (m), 2943 (m), 2881 (m), 1738 (m), 1677 ( s$)$, 1455 (m), 1339 ( s ), 1289 (m), 1200 (m), 1166 ( s$), 1140$ ( s$), 1062$ (s).
${ }^{1} \mathbf{H}$-NMR $\quad 5.12\left(1 \mathrm{H}\right.$, ddd, $J=14.8,7.3$ and $\left.2.5 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.21(1 \mathrm{H}$,
$\left.\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{m}, \mathrm{CHO}, \mathrm{THF}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and $4.0 \mathrm{~Hz}, \mathrm{NCH}), 3.99$ $(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and $5.0 \mathrm{~Hz}, \mathrm{CHHO}), 3.69(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}$,

CHHO), $3.56\left(1 \mathrm{H}, \mathrm{dd}, J=13.3\right.$ and $\left.3.5 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.43(1 \mathrm{H}$, d, $\left.J=13.6 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 2.81(\mathrm{OH}), 2.33(1 \mathrm{H}$, ddd, $J=12.8$, 8.3 and $4.8 \mathrm{~Hz}, \mathrm{CHHCHO}, \mathrm{THF}), 2.19-1.83(10 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $\mathrm{CHCH}_{2} \mathrm{CHN}$ and $\left.4 \times \mathrm{CH}_{2}\right), 1.61-1.25\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 2 \times \mathrm{CH}_{2}\right)$, $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.22$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ), $1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
$\left.\left.{ }^{13} \mathbf{C - N M R} \quad 176.8 \quad(\mathbf{C O N}), 131.4 \quad\left(\mathrm{CCH}_{3}\right)_{2}\right), 124.8 \quad\left(\mathrm{CHCCH}_{3}\right)_{2}\right), 124.5$
$\left.\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)\left(\mathrm{CHCCH}_{3}\right)_{2}\right), 89.2\left(\mathrm{CH}_{3} \mathbf{C O}, \mathrm{THF}\right), 87.7(\mathbf{C H O}, \mathrm{THF}), 73.5$ $\left(\mathrm{CH}_{3} \mathrm{COH}\right), 73.4\left(\mathrm{CH}_{3} \mathrm{COH}\right), 67.8(\mathrm{CHN}), 67.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 54.8$ $\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 47.8 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 47.5 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.6$ $\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), 39.5\left(\mathrm{CH}_{2} \mathrm{COH}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 37.3$ $\left(\mathrm{CH}_{2} \mathrm{CHO}\right.$, THF), $35.1\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 33.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 26.2$ $\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 25.7\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{2} \mathrm{CH}\right), 21.8$ $\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right), \quad 21.6\left(\mathrm{CH}_{3}\right), \quad 19.9\left(\mathrm{CH}_{3}\right), 17.7$ $\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$.
LRMS (ES+ ionisation) $956.5\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 12 \%\right), 487.2\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 100 \%\right), 470.1$ ( $[\mathrm{M}+\mathrm{H}]^{+}, 42 \%$ ).
HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{4} \mathrm{NO}_{6} \mathrm{SNa}: 506.2547$. Found: 506.2551 .
$( \pm)-\left(2 R^{*}, 5 S^{*}\right)$-Ethyl tetrahydro-5-( $\left(R^{*}\right)$-2-hydroxy-6-methylhept-5-en-2-yl)-2-
(hydroxymethyl)furan-2-carboxylate (460a) and ( $2 R^{*}, 5 S^{*}$ )-Ethyl tetrahydro-5-(( $S^{*}$ )-2-hydroxy-6-methylhept-5-en-2-yl)-2-(hydroxymethyl)furan-2-carboxylate (460b)

$+$


$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} . \\
& \mathrm{M}=300.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

To a vigorously stirred mixture of trieneoates $\mathbf{4 5 2 a}, \mathbf{b}(235 \mathrm{mg}, 0.939 \mathrm{mmol})$ and phosphate buffer ( $0.5 \mathrm{~mL}, \mathrm{KH}_{2} \mathrm{PO}_{4}: \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8: 2, \mathrm{pH} 6.2$ ) in acetone $(20 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{KMnO}_{4}(3.3 \mathrm{~mL}$ of $0.4 \mathrm{M}(\mathrm{aq}), 1.314 \mathrm{mmol})$ containing $\mathrm{AcOH}(150 \mu \mathrm{~L}, 2.630$ mmol). The purple mixture was rapidly stirred for 1 hour during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to
dissolve all of the manganese salts. The aqueous layer was extracted with EtOAc ( $2 \times 30 \mathrm{~mL}$ ), then with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, saturated with NaCl and extracted further with $\mathrm{EtOAc}(2 \times 30 \mathrm{~mL}$ ). The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product ( 300 mg ) as a colourless oil. Purification on $\mathrm{SiO}_{2}(100 \mathrm{~mL}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1$ ) gave a inseparable mixture of mono-THFs $460 \mathrm{a}, \mathrm{b}$ as a colourless oil ( $205 \mathrm{mg}, 0.682 \mathrm{mmol}, 73 \%$ ).

| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 3381 \text { (b), } 2973 \text { (m), } 2925 \text { (m), } 2877 \text { (m), } 1729 \text { (s), } 1448 \text { (w), } 1376 \\ & \text { (w), } 1102 \text { (s), } 1056 \text { (s). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$-NMR | $5.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.87(1 \mathrm{H}, \mathrm{dd}, J$ |
| $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $=8.3$ and $6.8 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.86(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and 3.3 Hz , |
|  | CHHO), $3.74(1 \mathrm{H}, \mathrm{dd}, J=11.3$ and $3.3 \mathrm{~Hz}, \mathrm{CHHO}), 2.97(1 \mathrm{H}, \mathrm{br}$ |
|  | $\mathrm{s}, \mathrm{OH}), 2.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.21-2.06\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.02-$ |
|  | $1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70-1.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.68(3 \mathrm{H}, \mathrm{d}, J=1.2$ |
|  | $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, |
|  | 1.10 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ). |
| ${ }^{13} \mathrm{C}$-NMR | $174.0 \quad(\mathrm{COO}), \quad 131.9 \quad\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 131.6 \quad\left(\begin{array}{c}\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 124.4\end{array}\right.$ |
| ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 124.2\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 87.0(\mathrm{OCH}, \mathrm{THF}), 86.3$ |
|  | $\left(\mathrm{OCCH}_{2}, \mathrm{THF}\right), 86.2(\mathrm{OCH}, \mathrm{THF}), 73.4(\mathrm{COH}), 73.2(\mathrm{COH})$, |
|  | $66.2\left(\mathrm{CCH}_{2} \mathrm{OH}\right), \quad 61.2\left(\mathrm{OCH}_{2}\right), \quad 40.0 \quad\left(\mathrm{CH}_{2} \mathrm{COH}\right), 38.1$ |
|  | $\left(\mathrm{CH}_{2} \mathrm{COH}\right), 32.1\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 32.0\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2} \mathrm{C}\right.$, |
|  | THF), $25.6\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right), 22.1\left(\mathrm{CH}_{3}\right), 22.1$ |
|  | $\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right), 17.6\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $623.5\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 8 \%\right), 618.5\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \quad 8 \%\right), \quad 318.1$ |
|  | ( $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%$ ). |
| HRMS | Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}: 323.1829$. Found: 323.1828. |

$( \pm)-\left(R^{*}, E\right)$-Ethyl 6-((2S*, $\left.5 R^{*}\right)$-tetrahydro-5-(2-hydroxypropan-2-yl)-5-methylfuran-2-yl)-6-hydroxy-3-methylhept-2-enoate (386a)


$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{7} . \\
& \mathrm{M}=314.2 \mathrm{~g} . \mathrm{mol}^{-1} .
\end{aligned}
$$

Powdered $\mathrm{KMnO}_{4}$ ( $155 \mathrm{mg}, 0.984 \mathrm{mmol}$ ) was added in one portion to a solution of triene 316c ( $200 \mathrm{mg}, 0.758 \mathrm{mmol}$ ), in acetone $/ \mathrm{AcOH}(3: 2,6 \mathrm{~mL}, 4 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The purple mixture was stirred rapidly for 1 hour during which time it became dark brown. The reaction was then quenched with sufficient ice-cooled saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (aq.) to dissolve all of the manganese salts. The aqueous layer was extracted with $\mathrm{EtOAc}\left(2 \times 20 \mathrm{~mL}\right.$ ), then with $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$, saturated with NaCl and extracted further with EtOAc ( $2 \times 20 \mathrm{~mL}$ ). The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a yellow oil ( 250 mg ). Purification on $\mathrm{SiO}_{2}\left(100 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 7: 3\right)$ gave the title mono-THF 386a as a colourless oil ( $0.414 \mathrm{mmol}, 130 \mathrm{mg}, 55 \%$ ) and the bis-lactol 315c as a by product ( $0.072 \mathrm{mmol}, 25 \mathrm{mg}, 9 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3475 (b), 2973 (b), 2941 (b), 2877 (b), 1712 (s), 1646 (s), 1449 (w), 1376 (w), 1231 (m), 1167 (m), 1078 (s) and $1035(\mathrm{~m})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$
(400MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{p p m}\right)(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=10.8$ and 1.8 $\mathrm{Hz}, \mathrm{CHOH}), 3.11(1 \mathrm{H}$, ddd, $J=12.6,9.5$ and 7.3 Hz , CHHCHOH), $2.36(1 \mathrm{H}$, ddd, $J=12.3,7.5$ and 4.5 Hz , $\mathrm{CHHC}=\mathrm{CH}), 2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHC}\left(\mathrm{CH}_{3}\right), \mathrm{THF}\right), 2.04-1.90(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}, \mathrm{THF}\right), 1.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHC}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}\right), 1.52-1.31$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHOH}$ and $\mathrm{CHHC}\left(\mathrm{CH}_{3}\right)$, THF and $\left.2 \times \mathrm{OH}\right), 1.44$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 167.3(\mathrm{COO}), 159.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 117.2(\mathbf{C H C O O}), 85.8\left(\mathrm{OCCH}_{3} \text {, }\right.}\right.$ $\left.\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad \mathrm{THF}\right), 85.0(\mathrm{HCO}, \mathrm{THF}), 75.2(\mathbf{C H O H}), 71.7\left(\mathrm{HC}=\mathbf{C C H}_{3}\right), 60.0$ $\left(\mathrm{OCH}_{2}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 30.2\left(\mathrm{CH}_{2} \mathrm{CCHCOO}\right), 29.9$ $\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right), 27.7\left(\mathbf{C H}_{3} \mathrm{CO}, \mathrm{THF}\right), 25.1\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right)$, $23.5\left(2 \times \mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
$667\left([2 \mathrm{M}+\mathrm{K}]^{+}, 5 \%\right), 651.6\left([2 \mathrm{M}+\mathrm{Na}]^{\dagger}, 15 \%\right), 629.6\left([2 \mathrm{M}+\mathrm{H}]^{-}\right.$,
LRMS (ES+ ionisation) 8\%), $353.1\left([\mathrm{M}+\mathrm{K}]^{+}, 20 \%\right), 337.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 315.2$ $\left([\mathrm{M}+\mathrm{H}]^{-}, 85 \%\right)$.

HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}:$ 337.1985. Found: 337.1981.
$( \pm)-\left(R^{*}, E\right)-6-\left(\left(2 S^{*}, 5 R^{*}\right)\right.$-Tetrahydro-5-(2-hydroxypropan-2-yl)-5-methylfuran-2-yl)-3-methylhept-2-ene-1,6-diol (388)


$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} . \\
& \mathrm{M}=272.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Davies et al., ${ }^{126}$ a solution of THF 386a ( $70 \mathrm{mg}, 0.223 \mathrm{mmol}$ ) in THF ( 5 mL ) was cooled to $-78^{\circ} \mathrm{C}$, before the addition of $\mathrm{LiAlH}_{4}$ ( 1 M in THF, $223 \mu \mathrm{~L}, 0.223$ $\mathrm{mmol})$. The resulting mixture was allowed to warm at room temperature and stirred for 24 h . $\mathrm{NaOH}(2 \mathrm{~mL})$ was added cautiously under vigorous stirring and the reaction was heated to reflux for 30 min before being filtered though Celite, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and concentrated in vacuo to give the crude product ( 65 mg ) as a colourless oil. Purification on $\mathrm{SiO}_{2}\left(75 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 1\right)$ gave the title triol $\mathbf{3 8 8}$ as a colourless oil $(0.168 \mathrm{mmol}, 46$ $\mathrm{mg}, 75 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3395 (b), 2969 (b), 2926 (b), 2873 (b), 1739 (s), 1455 (w), 1375 (w), 1167 (m), 1081 (s), 1002 (m).
${ }^{1} \mathbf{H}$-NMR $\quad 5.60\left(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 4.23(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and $\left.\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 11.8 \mathrm{~Hz}, \mathrm{CHHOH}\right), 4.00(1 \mathrm{H}, \mathrm{dd}, J=7.0$ and $12.0 \mathrm{~Hz}, \mathrm{CHHOH})$, $3.84(1 \mathrm{H}, \mathrm{dt}, J=2.8$ and $7.0 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 3.54(1 \mathrm{H}, \mathrm{dd}, J=1.8$ and $11.0 \mathrm{~Hz}, \mathrm{CHOH}), 2.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.57(1 \mathrm{H}, \mathrm{ddd}, J=6.5,10.0$ and $13.3 \mathrm{~Hz}, \mathrm{CHHCHOH})$, 2.17-2.05 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2} \mathrm{COH}$ and $\mathrm{CHHCO}, \mathrm{THF}$ ), 1.98-1.88 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 1.68(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}^{2} \mathrm{HCH}_{2} \mathrm{COH}\right), 1.55-1.38(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCO}, \mathrm{THF}$ and CHHCOH and OH ), $1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.13$ (3H, s, $\mathrm{CH}_{3}$ ).
${ }^{13} \mathbf{C}$-NMR $\quad 140.4\left(\mathrm{CH}=\mathbf{C}\left(\mathrm{CH}_{3}\right)\right), 125.1\left(\mathbf{C H}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 86.2\left(\mathrm{OCCH}_{3}\right.$, THF $)$,
$\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) 84.5(\mathrm{HCO}, \mathrm{THF}), 75.0(\mathrm{CHOH}), 72.0\left(\mathrm{HOC}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 58.1}\right.$ $\left(\mathbf{C H}_{2} \mathrm{OH}\right), 31.4\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 29.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 27.7$ $\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 27.6\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, $26.8\left(\mathrm{CH}_{2} \mathrm{CHO}\right.$, THF), 25.6 $\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) $567.2\left([2 \mathrm{M}+\mathrm{Na}]^{+}, \quad 10 \%\right), \quad 545.3\left([2 \mathrm{M}+\mathrm{K}]^{+}, \quad 25 \%\right), \quad 295.0$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 273.0\left(\left[\mathrm{M}^{+} \mathrm{H}^{+}, 70 \%\right)\right.$.
(S)-1-((2R,5S)-Tetrahydro-5-((R)-2-hydroxy-6-methylhept-5-en-2-yl)-2-methylfuran-2-yl)ethane-1,2-diol (387c)


$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} . \\
& \mathrm{M}=272.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure for the preparation of mono-THF 388, diol $\mathbf{3 8 5}$ ( $150 \mathrm{mg}, 0.310$ mmol ) was reduced to afford the desired triol $\mathbf{3 8 7 c}$ ( $72 \mathrm{mg}, 0.264 \mathrm{mmol}, 85 \%$ ).

$$
\begin{array}{ll}
{[\alpha]_{\mathbf{D}}} & -10.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) \\
\mathbf{I R}\left(\mathbf{c m}^{-1}\right) & 3361(\mathrm{~b}), 2967(\mathrm{~m}), 2931(\mathrm{~m}), 2875(\mathrm{~m}), 1451(\mathrm{~m}), 1375(\mathrm{~m}), \\
& 1071(\mathrm{~s}) . \\
& 5.11\left(1 \mathrm{H}, \mathrm{tt}, J=7.0 \text { and } 1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.84(1 \mathrm{H}, \mathrm{t}, J= \\
{ }^{1} \mathbf{H}-\mathbf{N M R} & \left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \\
& 7.3 \mathrm{~Hz} \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.71(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=4.5 \text { and } 3.5 \mathrm{~Hz}, \\
& \left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.55(1 \mathrm{H}, \mathrm{dd}, J=11.8 \text { and } 7.8 \mathrm{~Hz}, \mathrm{CHOH}), 2.40(2 \mathrm{H}, \\
& \mathrm{br} \mathrm{~s}, 2 \mathrm{x} \mathrm{OH}), 2.15(1 \mathrm{H}, \mathrm{ddd}, J=12.3,9.0 \text { and } 5.3 \mathrm{~Hz}, \\
& \mathrm{CHHCOH}), 2.10-1.87\left(3 \mathrm{H}, \mathrm{~m}, \mathrm{CHH} \text { and } \mathrm{CH}_{2}\right), 1.61-1.32(4 \mathrm{H}, \\
& \left.\mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.69\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.28(3 \mathrm{H}, \mathrm{~s}, \\
& \left.\mathrm{CH}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}) .
\end{array}
$$

(R)-1-((2S,5R)-Tetrahydro-5-((S)-2-hydroxy-6-methylhept-5-en-2-yl)-2-methylfuran-2-yl)ethane-1,2-diol (387b) ${ }^{144}$


$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} . \\
& \mathrm{M}=272.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

Following the procedure for the preparation of mono-THF 388, diol $\mathbf{3 8 5 b}$ ( $110 \mathrm{mg}, 0.227$ mmol ) was reduced to afford the desired triol $\mathbf{3 8 7 b}(53 \mathrm{mg}, 0.195 \mathrm{mmol}, 86 \%)$. Spectroscopic data were good agreement with that reported in the literature. ${ }^{144}$

| $[\alpha]_{\mathrm{D}}$ | 6.8 (c 1.3, $\mathrm{CHCl}_{3}$ ) |
| :---: | :---: |
| IR ( $\mathrm{cm}^{-1}$ ) | $\begin{aligned} & 3361 \text { (b), } 2967 \text { (m), } 2931 \text { (m), } 2875 \text { (m), } 1451 \text { (m), } 1375 \text { (m), } \\ & 1071 \text { (s). } \end{aligned}$ |
| ${ }^{1} \mathrm{H}$-NMR <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $5.09\left(1 \mathrm{H}, \mathrm{tt}, J=7.0\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.87(1 \mathrm{H}, \mathrm{t}, J=$ $7.0 \mathrm{~Hz} \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and 6.0 Hz , CHHOH), $3.71(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and $6.0 \mathrm{~Hz}, \mathrm{CHHOH}), 3.51$ ( $1 \mathrm{H}, \mathrm{dd}, J=6.5$ and $3.0 \mathrm{~Hz}, \mathrm{CHOH}$ ), $3.01(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times \mathrm{OH})$, $2.32(1 \mathrm{H}, \mathrm{ddd}, J=12.0,9.5$ and $4.5 \mathrm{~Hz}, \mathrm{CHHCOH}), 2.17-1.93$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCOH}\right.$ and $\left.\mathrm{CH}_{2}, \mathrm{THF}\right), 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.71-$ $1.32\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHH}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $132.0\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 124.2\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 84.6(\mathrm{OCH}, \mathrm{THF}), 83.8$ ( COH ), $76.7(\mathrm{CHOH}), 73.9\left(\mathrm{OCCH}_{2}, \mathrm{THF}\right), 63.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 38.5$ $\left(\mathrm{CH}_{2} \mathrm{COH}\right), 32.6\left(\mathrm{CH}_{2} \mathrm{C}, \mathrm{THF}\right), 26.2\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right)$, $24.2\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right), 17.6\left(\mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $\begin{aligned} & 567.4\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 15 \%\right), 336.1\left(\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+}, 52 \%\right), 295.1 \\ & \left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right) . \end{aligned}$ |

(土)-O-((2R*,5S*)-2-(Ethoxycarbonyl)-tetrahydro-5-(2-hydroxypropan-2-yl)furan-2yl)methyl $\boldsymbol{O}$-phenyl carbonothioate (435a)


$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S} . \\
& \mathrm{M}=368.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Ireland et al., ${ }^{161}$ to a solution of THF 422a ( $50 \mathrm{mg}, 0.215 \mathrm{mmol}$ ), pyridine ( $1.29 \mathrm{mmol}, 105 \mu \mathrm{~L}$ ) and a trace of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added chlorothioformate ( $110 \mu \mathrm{~L}, 0.778 \mathrm{mmol}$ ). The bright yellow mixture was stirred for 3 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{HCl}(10 \mathrm{~mL}, 2 \mathrm{M}$ aq. sol.) and water ( $2 \times 10$ $\mathrm{mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 90 mg ). Purification on silica gel ( 100 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 15: 85$ ) gave the title product 435a as a pale yellow oil ( $75 \mathrm{mg}, 0.203 \mathrm{mmol}$, 94\%).
$\mathbf{I R}\left(\mathbf{c m}^{-1}\right) \quad 3445$ (b), 2976 (b), 1736 (s), 1376 (w), 1293 (m), 1201 (s), 1113 (s), 1019 (s).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 7.43(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom $), 7.30(1 \mathrm{H}, \mathrm{d}, J=$
( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) $7.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$, arom), $7.10(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom), $4.86(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHHO}), 4.82(1 \mathrm{H}, \mathrm{d}, J=11.0$ $\mathrm{Hz}, \mathrm{CHHO}), 4.31-4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.15(1 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}, \mathrm{CCH}), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.26-1.94\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.31$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}$ ).
${ }^{13}$ C-NMR
$\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{p p m}\right) \quad \mathrm{OC}=\mathbf{C H}$, arom), $126.6(\mathrm{HC}=\mathbf{C}-\mathrm{CH}$, arom), 121.8 (2 x $\mathrm{OCCH}=\mathbf{C H}$, arom), $88.2(\mathrm{OCH}), 84.6(\mathbf{C C}=\mathrm{O}), 75.4\left(\mathrm{SCOCH}_{2}\right)$, $71.1(\mathrm{COH}), 61.6\left(\mathrm{OCH}_{2}\right), 32.9\left(\mathrm{OCCH}_{2}\right), 27.4\left(\mathrm{CH}_{3}\right), 25.7$ $\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CHCH}_{2}\right)$ and $14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $432.0\left(\left[\mathrm{M}+\mathrm{MeCN}^{+}, \quad 20 \%\right), \quad 391.0\left([\mathrm{M}+\mathrm{Na}]^{+}, \quad 60 \%\right), \quad 386.1\right.$

$$
\begin{array}{ll} 
& \left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right) . \\
\text { HRMS } & \text { Calcd for } \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{SNa}: 391.1186 . \text { Found: 391.1183. }
\end{array}
$$

( $\pm$ )-O-(( $\left.2 R^{*}, 5 R^{*}\right)$-2-(Acetoxymethyl)-tetrahydro-5-(2-hydroxypropan-2-yl)furan-2yl)methyl $\boldsymbol{O}$-phenyl carbonothioate (443)


$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S} . \\
& \mathrm{M}=\mathbf{3 6 8 . 4 4} \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

Following the procedure for the preparation of THF 435a, THF $440(350 \mathrm{mg}, 1.507 \mathrm{mmol})$ was converted to the crude xanthate $443(420 \mathrm{mg})$. Purification on silica gel ( 120 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 1$ ) afforded the title product 443 as a pale yellow oil $(515 \mathrm{mg}, 1.398 \mathrm{mmol}$, $93 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3495 (b), 2976 (w), 3886 (w), 1743 (m), 1491 (w), 1376 (w), 1288 (m), 1201 (s), 1046 (m).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 7.43(2 \mathrm{H}$, tdd, $J=7.3,1.7$ and $2.6 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom), 7.31
$\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathbf{C H}=\mathrm{CH}$, arom $), 7.10(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, $\mathrm{OCH}=\mathrm{CH} \times 2$, arom $), 4.58(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{CHHOC}=\mathrm{S})$, $4.55(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{CHHOOC}=\mathrm{S}), 4.20(1 \mathrm{H}, \mathrm{d}, J=11.5$ $\mathrm{Hz}, \mathrm{CHHOC}=\mathrm{O}), 4.09(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CHHOOC}=\mathrm{O}), 4.15$ ( $1 \mathrm{H}, \mathrm{dd}, J=5.8$ and $8.7 \mathrm{~Hz}, \mathrm{CCH}, \mathrm{THF}), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 2.11-1.88 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.59(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 195.0(\mathbf{C}=\mathrm{S}), 170.1\left(\mathrm{CH}_{3} \mathbf{C O O}\right), 153.4(2 \times \mathrm{OC}=\mathrm{CH}$, arom), ( $\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}$ ) $129.0(2 \times \mathrm{OC}=\mathbf{C H}$, arom), 126.9 ( $\mathrm{HC}=\mathbf{C - C H}$, arom), 121.1 $(\mathrm{OCCH}=\mathrm{CH}), 89.3\left(\mathrm{CCH}_{2} \mathrm{O}, \mathrm{THF}\right), 85.2(\mathrm{OCH}, \mathrm{THF}), 76.1$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.1(\mathrm{COH}), 64.8\left(\mathrm{CH}_{2} \mathrm{OAc}\right), 32.9\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right)$, $24.1\left(\mathrm{CH}_{2} \mathrm{CH}, \mathrm{THF}\right), 24.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) $391.0\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.

HRMS
( $\pm$ )-O-(( $\left.2 R^{*}, 6 S^{*}\right)$-2-(Ethoxycarbonyl)-tetrahydro-6-(2-hydroxypropan-2-yl)-2H-pyran-2yl)methyl $O$-phenyl carbonothioate (444)


$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S} . \\
& \mathrm{M}=382.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Following the procedure for the preparation of THF 435a, THP $441 \mathbf{a}(120 \mathrm{mg}, 0.490 \mathrm{mmol})$ was converted to the crude xanthate $444(170 \mathrm{mg})$. Purification on silica gel ( 75 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 4$ ) afforded the title product 444 as a pale yellow oil ( $142 \mathrm{mg}, 0.371 \mathrm{mmol}$, $76 \%$ ).
$\mathbb{R}\left(\mathrm{cm}^{-1}\right) \quad 3471(\mathrm{~b}), 2979(\mathrm{~m}), 2937(\mathrm{~m}), 1742(\mathrm{~m}), 1710(\mathrm{~m}), 1472(\mathrm{w})$, 1309 (s), 1210 (m).
${ }^{1} \mathrm{H}$-NMR $\quad 7.41(2 \mathrm{H}$, ddd, $J=8.0,7.8$ and $2.3 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH}$ x 2, arom $), 7.30$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right)(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$, arom), $7.09(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz}$, $\mathrm{OCH}=\mathrm{CH} \times 2$, arom $), 4.65(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{CHHO}), 4.59$ $(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{CHHO}), 4.42-4.29(3 \mathrm{H}, \mathrm{m}, \mathrm{CCH}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.48(1 \mathrm{H}$, br s, OH$), 2.08(1 \mathrm{H}$, ddd, $J=14.3,10.8$ and $5.3 \mathrm{~Hz}, \mathrm{CHH}), 1.89-1.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CHH}\right.$ and $\left.2 \times \mathrm{CH}_{2}\right), 1.38$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $199.7(\mathbf{C}=\mathrm{S}), 176.6(\mathrm{COO}), 153.3(2 \times \mathrm{OC}=\mathrm{CH}$, arom), $129.5(2 \mathrm{x}$
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \mathrm{OC}=\mathbf{C H}$, arom$), 126.6(\mathrm{HC}=\mathbf{C}-\mathrm{CH}$, arom), $121.7(\mathrm{OCCH}=\mathbf{C H})$, $88.2(\mathrm{CC}=\mathrm{O}), 77.6(\mathrm{OCH}, \mathrm{THF}), 76.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.2(\mathrm{COH}), 62.8$ $\left(\mathrm{OCH}_{2}\right), 35.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}, \mathrm{THF}\right), 34.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}, \mathrm{THF}\right), 26.6$ $\left(2 \times \mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}, \mathrm{THF}\right), 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

LRMS (ES+ ionisation) $421.1\left([\mathrm{M}+\mathrm{K}]^{+}, 100 \%\right)$.
$N$-[ $O$-((2S,5R)-2-(Methyl $O$-phenyl carbonothioatyl)-tetrahydro-5-(2-hydroxypropan-2-yl)furan-2-yl]-2-(2S)-camphor-10,2-sultam (435b)


$$
\begin{aligned}
& \mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}_{2} . \\
& \mathrm{M}=537.7 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method of Ireland et al., ${ }^{161}$ to a solution of THF $\mathbf{4 2 2 b}$ ( $70 \mathrm{mg}, 0.174 \mathrm{mmol}$ ), pyridine ( $83 \mu \mathrm{~L}, 1.04 \mathrm{mmol}$ ) and a trace of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added chlorothioformate ( $85 \mu \mathrm{~L}, 0.626 \mathrm{mmol}$ ). The bright yellow mixture was stirred for 3 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{HCl}(2 \times 10 \mathrm{~mL}, 2 \mathrm{M}$ aq. sol.) and water ( $2 \times 20 \mathrm{~mL}$ ). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 110 mg ). Purification on silica gel ( 120 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 85: 15$ ) gave the title product $\mathbf{4 3 5 b}$ as a pale yellow oil $(91 \mathrm{mg}, 0.169 \mathrm{mmol}$, 97\%).
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 3521$ (b), 2964 (b), 2884 (b), 1678 (s), 1490 (w), 1339 (s), 1287 (s), 1199 (s), 1143 (s), 1052 (w).
${ }^{1} \mathbf{H}$-NMR $\quad 7.41(2 \mathrm{H}$, br $\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom $), 7.28(1 \mathrm{H}, \mathrm{m}$,
( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) $\mathrm{CH}=\mathrm{CH}$, arom), $7.11(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom), $4.98(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHHO}), 4.84(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}$, CHHO), $4.16(1 \mathrm{H}, \mathrm{dd}, J=8.8$ and $6.5 \mathrm{~Hz}, \mathrm{NCH}), 4.10(1 \mathrm{H}, \mathrm{dd}, J$ $=7.5$ and $4.2 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}), 3.53(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}$, $\left.\mathrm{CHHSO}_{2}\right), 3.48\left(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 2.45(1 \mathrm{H}, \mathrm{ddd}, J$ $=13.0,8.8$ and $4.2 \mathrm{~Hz}, \mathrm{CHHCHO}, \mathrm{THF}), 2.31(1 \mathrm{H}, \mathrm{td}, J=13.3$ and $8.8 \mathrm{~Hz}, \mathrm{CHHCHO}, \mathrm{THF}), 2.11-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.99(6 \mathrm{H}$, $\left.\mathrm{m}, 3 \times \dot{\mathrm{C}} \mathrm{H}_{2}\right), 1.37-1.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 195.1(\mathbf{C}=\mathrm{S}), 175.2(\mathrm{COO}), 153.5(2 \mathrm{x} \mathrm{OC}=\mathrm{CH}$, arom), $129.5(2$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \times \quad \mathrm{OC}=\mathbf{C H}, \quad$ arom $), \quad 126.5 \quad(\mathrm{HC}=\mathbf{C}-\mathrm{CH}, \quad$ arom $), \quad 121.9$
$(\mathrm{OCCH}=\mathbf{C H}), 88.9(\mathrm{OCH}, \mathrm{THF}), 87.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}\right), 75.4$ $\left(\mathrm{CH}_{2} \mathrm{OCS}\right), 71.3(\mathrm{CO}, \mathrm{THF}), 67.6(\mathrm{NCH}), 54.6\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 47.9$ $\left(\mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 47.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C}\right), 45.5\left(\mathrm{CHCH}_{2}\right), 39.3\left(\mathrm{CH}_{2} \mathrm{CH}\right), 35.3$ $\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 33.7\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 27.3\left(\mathrm{CH}_{3} \mathrm{C}\right), 26.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 26.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 24.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 20.0$ $\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $1098.0\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 1093.0\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 20 \%\right), 576.4$ $\left([\mathrm{M}+\mathrm{K}]^{-}, 100 \%\right), 560.2\left([\mathrm{M}+\mathrm{Na}]^{-}, 40 \%\right), 555.4\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$, $100 \%$ ).

HRMS
Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}_{2} \mathrm{Na}: 560.1747$. Found: 560.1749 .
$( \pm)-O-\left(\left(2 S^{*}, 5 R^{*}\right)\right.$-2-(Ethoxycarbonyl)-tetrahydro-5-(( $\left.S^{*}\right)$-2-hydroxy-6-methylhept-5-en-2-yl)furan-2-yl)methyl $O$-phenyl carbonothioate (486a) and ( $\pm$ )- $O-\left(\left(2 S^{*}, 5 R^{*}\right)\right.$-2-(ethoxycarbonyl)-tetrahydro-5-(( $\left.R^{*}\right)$-2-hydroxy-6-methylhept-5-en-2-yl)furan-2yl)methyl $O$-phenyl carbonothioate (486b)


Following the method used for the preparation of THF 435a, the mixture of THFs 460a,b (77 $\mathrm{mg}, 0.256 \mathrm{mmol}$ ), was converted to an inseparable mixture of products $\mathbf{4 8 6} \mathbf{a}, \mathbf{b}$, obtained as a pale yellow oil ( $105 \mathrm{mg}, 0.240 \mathrm{mmol}, 94 \%$ ) after purification on silica gel ( 100 mL , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 95: 5\right)$.

IR ( $\mathbf{c m}^{\mathbf{- 1}} \mathbf{)} \quad 3496(\mathrm{~b}), 2968(\mathrm{~m}), 2904(\mathrm{~m}), 2880(\mathrm{~m}), 1736(\mathrm{~m}), 1490(\mathrm{~m})$, 1377 (m), 1294 (s), 1201 ( s , 1113 (m).

| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ | $7.42(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom $), 7.30(1 \mathrm{H}, \mathrm{dd}, J=$ 7.5 and $1.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$, arom), $7.10(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $\mathrm{OCH}=\mathrm{CH} \times 2$, arom $), 5.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.86(1 \mathrm{H}, \mathrm{d}, J$ $=11.3 \mathrm{~Hz}, \mathrm{CHHO}), 4.82(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHHO}), 4.33-4.21$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $6.8 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF})$, 2.26-1.94 ( $7 \mathrm{H}, \mathrm{m}, 3 \mathrm{x} \mathrm{CH} 2$ and OH ) , 1.68-1.36 $(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{COH}\right) 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.31(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. |
| :---: | :---: |
| ${ }^{13}$ C-NMR <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | 195.2 ( $\mathbf{C}=$ S), 172.3 ( $\mathbf{C O O}$ ), 153.4 ( $2 \mathrm{x} \mathrm{OC=CH}$, arom), 131.8 <br>  ( $\mathrm{HC}=\mathbf{C}-\mathrm{CH}$, arom $), 124.5\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 124.4\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $121.8(\mathrm{OCCH}=\mathbf{C H}$, arom), 87.7 ( $\mathrm{OCH}, \mathrm{THF}$ ), 86.9 ( $\mathrm{OCH}, \mathrm{THF}$ ), $84.3\left(\mathrm{OCCH}_{2}, \mathrm{THF}\right), 75.5\left(\mathrm{CCH}_{2} \mathrm{OCS}\right), 72.9(\mathrm{COH}), 72.8$ $(\mathrm{COH}), 61.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{COH}\right), 37.8\left(\mathrm{CH}_{2} \mathrm{COH}\right)$, $32.9\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 32.8\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2} \mathrm{C}\right.$, THF), $25.2\left(\mathrm{CH}_{2} \mathrm{C}, \mathrm{THF}\right), 22.5\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right), 22.1$ $\left(\mathrm{OCHCH}_{2}, \mathrm{THF}\right), 21.7\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathbf{C H}_{3}\right)$. |
| LRMS (ES+ ionisation) | $454.1\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right)$. |
| HRMS | Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SNa}$ : 459.1812. Found: 459.1810. |

$N-[O-((2 S, 5 R)-2-(M e t h y l ~ O-p h e n y l ~ c a r b o n o t h i o a t y l)-t e t r a h y d r o-5-((S)-2-h y d r o x y-6-~$ methylhept-5-en-2-yl)furan-2-yl)]-2-camphor-10,2-sultam (486c) and $N$-[ $O$-( $(2 S, 5 R)$-2(methyl $O$-phenyl carbonothioatyl)-tetrahydro-5-(( $R$ )-2-hydroxy-6-methylhept-5-en-2-yl)furan-2-yl)]-2-camphor-10,2-sultam (486d)


According to Ireland et al., ${ }^{161}$ to a solution of the mixture of THFs $\mathbf{4 6 0 c}, \mathbf{d}(110 \mathrm{mg}, 0.234$ mmol ), pyridine ( $114 \mu \mathrm{~L}, 1.321 \mathrm{mmol}$ ) and a trace of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added chlorothioformate ( $120 \mu \mathrm{~L}, 0.884 \mathrm{mmol}$ ). The bright yellow mixture was stirred for 3 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{HCl}(2 \times 10 \mathrm{~mL}, 2 \mathrm{M}$ aq. sol.) and water (2 x 20 mL ). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product as a yellow oil ( 180 mg ). Purification on silica gel ( 140 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$, $95: 5$ ) gave an inseparable mixture of products $\mathbf{4 8 5} \mathrm{c}$, $\mathbf{d}$ as a pale yellow oil ( $130 \mathrm{mg}, 0.214 \mathrm{mmol}, 91 \%$ ).
$[\alpha]_{\mathrm{D}} \quad-31.3\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 3485$ (b), 2959 (m), 2932 (w), 2882 (w), 1753 (m), 1678 (m), 1593 (w), 1490 (m), 1346 (m), 1257 (s), 1206 (s), 1166 (m).
${ }^{1}$ H-NMR $\quad 7.35(2 \mathrm{H}$, tdd, $J=7.3,2.0$ and $2.5 \mathrm{~Hz}, \mathrm{OCH}=\mathrm{CH} \times 2$, arom), 7.25
$\left(\mathbf{4 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right)(1 \mathrm{H}, \mathrm{dd}, J=2.5$ and $1.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$, arom), $7.21(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}=\mathrm{CH} \times 2$, arom), $5.13(1 \mathrm{H}$, ddd, $J=7.0,2.8$ and 1.3 Hz , $\left.\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHHO}), 4.60(1 \mathrm{H}, \mathrm{d}, J=$ $11.0 \mathrm{~Hz}, \mathrm{CHHO}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=9.3$ and $6.0 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF})$, $4.13(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $4.8 \mathrm{~Hz}, \mathrm{NCH}), 3.54(1 \mathrm{H}, \mathrm{d}, J=13.6$ $\left.\mathrm{Hz}, \mathrm{CHHSO}_{2}\right), 3.47\left(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.28(\mathrm{OH})$,
2.31 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHO}, \mathrm{THF}), 2.14-2.05\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 1.95-1.84 ( $5 \mathrm{H}, \mathrm{m} \mathrm{CHCH} 2 \mathrm{CHN}$ and $2 \times \mathrm{CH}_{2}$ ), $1.74(1 \mathrm{H}, \mathrm{dd}, J=$ 11.6 and $5.7 \mathrm{~Hz}, \mathrm{CHHCHO}, \mathrm{THF}), 1.62-1.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.36$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}$ ), $1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR $\quad 196.5(\mathbf{C}=\mathrm{S}), 175.3(\mathbf{C O O}), 154.4(2 \times \mathrm{OC}=\mathrm{CH}$, arom), 131.1
( $\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}$ ) $\left.\left(\mathrm{CCH}_{3}\right)_{2}\right), 129.4(2 \times \mathrm{OC}=\mathbf{C H}$, arom), $126.0(\mathrm{HC}=\mathbf{C}-\mathrm{CH}$, arom), $\left.125.3\left(\mathrm{CHCCH}_{3}\right)_{2}\right), 121.3(\mathrm{OCCH}=\mathbf{C H}), 89.1\left(\mathrm{CH}_{3} \mathbf{C O}, \mathrm{THF}\right)$, 87.9 ( $\mathrm{CHO}, \mathrm{THF}), 72.3\left(\mathrm{CH}_{3} \mathrm{COH}\right), 71.0\left(\mathrm{CH}_{3} \mathrm{COH}\right), 67.5$ ( $\mathbf{C H N}$ ), $54.7\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 47.9\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, sultam), 47.6 $\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 45.4 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 39.5 \quad\left(\mathrm{CH}_{2} \mathrm{COH}\right), \quad 39.2$ $\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 35.3\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 33.6\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 26.2$ $\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 25.8\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{2} \mathrm{CH}\right), 22.1\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 21.8$ $\left(\mathbf{C H}_{3}\right), 21.3\left(\mathbf{C H}_{3}\right), 19.9\left(\mathbf{C H}_{3}\right), 17.7\left(\mathbf{C H}_{3}\right)$.
LRMS (ES+ ionisation) $1235.7\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 7 \%\right), 1230.0\left(\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 12 \%\right), 644.3$ $\left([\mathrm{M}+\mathrm{K}]^{+}, 18 \%\right), 628.3\left([\mathrm{M}+\mathrm{Na}]^{+}, 97 \%\right), 623.3\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$, $100 \%$ ).
( $\pm$ )-( $2 R^{*}, 5 R^{*}$ )-Ethyl tetrahydro-5-(2-hydroxypropan-2-yl)-2-methylfuran-2-carboxylate (423a)


$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4} . \\
& \mathrm{M}=216.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to Lopez et al., ${ }^{162}$ to a solution of THF 435a ( $40 \mathrm{mg}, 0.108 \mathrm{mmol}$ ) in toluene ( 2 mL ) was added $\mathrm{SnBu}_{3} \mathrm{H}(35 \mu \mathrm{~L}, 0.130 \mathrm{mmol})$ followed by AIBN ( $3 \mathrm{mg}, 0.022 \mathrm{mmol}$ ). The reaction was heated up to reflux and stirred for 4 hours. The solvents were then removed in vacuo and the crude mixture ( 85 mg ) was purified by column chromatography ( 100 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 4: 1$ ) to yield the title product 423a as a colourless oil ( $21 \mathrm{mg}, 0.097 \mathrm{mmol}$, $90 \%$ ).

IR ( $\mathbf{c m}^{-1}$ ) 3496 (b), 2980 (b), 2965 (b), 2937 (b), 1731 (s), 1645 (w), 1373 (w), 1271 (w), 1176 (s), 1123 (s), 1023 (s).

| ${ }^{1} \mathrm{H}$-NMR <br> ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $4.20\left(2 \mathrm{H}, \mathrm{dq}, J=7.3\right.$ and $\left.3.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.98(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, CCHO, THF), 2.33-2.26 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHO}, \mathrm{THF}$ ), 1.91-178 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHO}\right.$ and $\left.\mathrm{CCH}_{2}\right), 1.76(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 1.50(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.15\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{XCH}_{3}\right)$. |
| :---: | :---: |
| ${ }^{13}$ C-NMR <br> ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $175.1(\mathbf{C O O}), 87.0\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 83.7(\mathrm{OCH}, \mathrm{THF}), 71.0\left(\mathrm{OCCH}_{3}\right.$, THF), $61.0\left(\mathrm{OCH}_{2}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 27.1\left(\mathrm{CH}_{2} \mathrm{CHO}\right.$, THF), $25.9\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. |
| LRMS (ES+ ionisation) | $\begin{aligned} & 280.0\left([\mathrm{M}+\mathrm{Na}+\mathrm{MeCN}]^{+}, 100 \%\right), 239\left([\mathrm{M}+\mathrm{Na}]^{-}, 75 \%\right), 234.0 \\ & \left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 67 \%\right) . \end{aligned}$ |
| HRMS | Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ : 239.1254 . Found: 239.1251. |

$N$-[(2R,5R)-Tetrahydro-5-(2-hydroxypropan-2-yl)-2-methylfuranoyl-2-(2S)-camphor-10,2-sultam (423b)


According to Lopez et al., ${ }^{162}$ to a solution of THF 435b ( $70 \mathrm{mg}, 0.130 \mathrm{mmol}$ ) in toluene ( 3 mL ) was added $\mathrm{SnBu}_{3} \mathrm{H}(53 \mu \mathrm{~L}, 0.195 \mathrm{mmol})$ followed by AIBN ( $4 \mathrm{mg}, 0.026 \mathrm{mmol}$ ), the reaction was heated up to reflux and stirred for 4 hours. The solvents were then removed in vacuo and the crude mixture ( 85 mg ) was purified by column chromatography ( 100 mL , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 4$ ) to yield the title product $\mathbf{4 2 3 b}$ as a colourless glass ( $47 \mathrm{mg}, 0.122 \mathrm{mmol}$, 94\%).
$[\alpha]_{\mathrm{D}} \quad 17.4\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right) \quad 3422$ (b), 29569 (b), 2942 (b), 2920 (b), 1674 (s), 1458 (w), 1340 (s), $1287(\mathrm{~m}), 1166(\mathrm{~s}), 1141(\mathrm{~s})$ and $1062(\mathrm{~s})$.
${ }^{1} \mathbf{H}$-NMR $\quad 4.08(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $4.0 \mathrm{~Hz}, \mathrm{NCH}), 4.02(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$,
(400MHz, CDCl $3, \mathbf{p p m}) \quad \mathrm{CHO}, \mathrm{THF}), 3.54\left(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.41(1 \mathrm{H}, \mathrm{d}, J$ $\left.=13.3 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 2.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.34(1 \mathrm{H}, \mathrm{ddd}, J=$ 16.3, 8.3 and $8.0 \mathrm{~Hz}, \mathrm{CHHCHO}, \mathrm{THF}$ ), 2.09-1.99 ( $5 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHN}$ and $\mathrm{CHCH}_{2} \mathrm{CHN}$ and $\mathrm{CH}_{2} \mathrm{CO}$ ), 1.97-1.85 ( $3 \mathrm{H}, \mathrm{m}$, CHHCHO and $\left.\mathrm{CHCH}_{2}\right), 1.54\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37-1.33(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2}\right), 1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.16(6 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}\right) \quad\left(\left(\mathrm{CCH}_{3}\right)_{2} \mathrm{OH}\right), 67.7(\mathrm{CHN}), 54.6\left(\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 47.8\left(\mathrm{CC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $47.5\left(\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.6 \quad\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 39.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 33.9$
$\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 25.9\left(\mathrm{CH}_{3}\right), 24.5$
$\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 23.5\left(\mathrm{CH}_{2} \mathrm{CH}\right), 21.9\left(\mathrm{CH}_{3}\right), 19.9\left(2 \times \mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $560.1\left([\mathrm{M}+\mathrm{Na}]^{+}, 60 \%\right), 555.2\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100 \%\right)$.
HRMS
Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}_{2} \mathrm{Na}: 560.1747$. Found: 560.1749 .
$N-[(2 R, 5 R)$-Tetrahydro-5-((S)-2-hydroxy-6-methylhept-5-en-2-yl)-2- methylfuranoyl-2( $2 R$ )-camphor-10,2-sultam (416d) and $N$-[(2R,5R)-tetrahydro-5-(( $R$ )-2-hydroxy-6-methylhept-5-en-2-yl)-2- methylfuranoyl-2-(2R)-camphor-10,2-sultam (416e)



$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{~S} . \\
& \mathrm{M}=453.64 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to Lopez et al., ${ }^{162}$ to a solution of the mixture of THFs $\mathbf{4 6 0 c}, \mathbf{d}$ ( $60 \mathrm{mg}, 0.099$ $\mathrm{mmol})$ in toluene ( 2 mL ) was added $\mathrm{SnBu}_{3} \mathrm{H}(33 \mu \mathrm{~L}, 0.121 \mathrm{mmol})$ followed by AIBN ( 3 mg , 0.020 mmol ), the reaction was heated up to reflux and stirred for 4 hours. The solvents were then removed in vacuo and the crude mixture ( 75 mg ) was purified by column chromatography ( 50 mL SiO 2 containing $10 \% \mathrm{KF}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 2$ ) to yield a inseparable mixture of products $\mathbf{4 1 6 d , e}$ as a colourless glass ( $40 \mathrm{mg}, 0.088 \mathrm{mmol}, 89 \%$ ).
$[\alpha]_{D}$

$$
-24.2\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

IR ( $\mathrm{cm}^{-1}$ )

$$
\begin{aligned}
& 3440(\mathrm{~b}), 2968(\mathrm{~m}), 2940(\mathrm{~m}), 2897(\mathrm{~m}), 1738(\mathrm{~m}), 1675(\mathrm{~s}), 1458 \\
& (\mathrm{~m}), 1339(\mathrm{~s}), 1289(\mathrm{~m}), 1200(\mathrm{~m}), 1166(\mathrm{~s}), 1140(\mathrm{~s}), 1062(\mathrm{~s}) .
\end{aligned}
$$


$( \pm)-\left(2 R^{*}, 5 R^{*}\right)$-Ethyl tetrahydro-5-( $\left(S^{*}\right)$-2-hydroxy-6-methylhept-5-en-2-yl)-2-methylfuran-2 carboxylate (416b) and ( $\pm$ )- $\left(2 R^{*}, 5 R^{*}\right)$-ethyl tetrahydro-5-( $R^{*}$ )-2-hydroxy-6-methylhept-5-en-2-yl)-2-methylfuran-2 carboxylate (416c)


$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} . \\
& \mathrm{M}=284.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to Lopez et al., ${ }^{162}$ to a solution of the mixture of THF $\mathbf{4 6 0 a}, \mathrm{b}$ ( $100 \mathrm{mg}, 0.271$ mmol ) in toluene ( 5 mL ) was added $\mathrm{SnBu}_{3} \mathrm{H}(90 \mu \mathrm{~L}, 0.331 \mathrm{mmol})$ followed by AIBN ( 8 mg , 0.052 mmol ). The reaction was heated up to reflux and stirred for 4 hours. The solvents were then removed in vacuo and the crude mixture ( 125 mg ) was purified by column chromatography ( 100 mL SiO 2 containing $10 \% \mathrm{KF}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1: 1$ ) to yield a inseparable mixture of products $\mathbf{4 1 6 b}, \mathbf{c}$ as a colourless glass ( $53 \mathrm{mg}, 0.186 \mathrm{mmol}, 69 \%$ ).
$\operatorname{IR}\left(\mathbf{c m}^{-1}\right) \quad 3381(\mathrm{~b}), 2973(\mathrm{~m}), 2925(\mathrm{~m}), 2877(\mathrm{w}), 1729(\mathrm{~s}), 1448(\mathrm{~m}), 1376$ (m), 1271 (m), 1190 (m), 1102 (s), 1056 (s).
${ }^{1} \mathbf{H}$-NMR $\quad 5.13\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00(1 \mathrm{H}$, ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) dt, $J=7.0$ and $\left.9.5 \mathrm{~Hz}, \mathrm{CHO}, \mathrm{THF}\right), 2.31$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHHC}, \mathrm{THF}$ ), $2.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COH}\right), 1.97-1.77\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right.$ and $\mathrm{CHHCO}, \mathrm{THF}), 1.37-1.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COH}\right), 1.62(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

$\left(\mathbf{1 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) 124.6\left(\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 86.1(\mathrm{CHO}, \mathrm{THF}$, minor), 85.7 ( CHO , THF), $83.5(\mathrm{CO}, \mathrm{THF}), 72.8\left(\mathrm{CH}_{3} \mathrm{COH}\right), 60.9\left(\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, $40.1\left(\mathrm{CHCH}_{2}\right), 37.1\left(\mathrm{CH}_{2} \mathrm{CO}\right.$, THF, minor), $36.6\left(\mathrm{CH}_{2} \mathrm{CO}, \mathrm{THF}\right.$, minor), $25.6\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right), 24.0$ $\left(\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{THF}\right.$, minor $), 22.4\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 17.6$ $\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $591.5\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 8 \%\right), 307.1\left([\mathrm{M}+\mathrm{Na}]^{+}, 8 \%\right), 302.1\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$,
$100 \%$ ).
HRMS
Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$ : 307.1880 . Found: 307.1883

## 17,4-Dimethyl-2-oxo-3,8-dioxa-bicyclo[3.2.1]octane-1-carboxylic acid ethyl ester (448)



$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5} . \\
& \mathrm{M}=\mathbf{2 2 8 . 2 5} \text { g. } \mathrm{mol}^{-1} .
\end{aligned}
$$

To a solution of THF 422a ( $50 \mathrm{mg}, 0.216 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 mL ) containing 200 mg of crushed molecular sieves, was added NMO ( $49 \mathrm{mg}, 0.377 \mathrm{mmol}$ ) and TPAP ( 29 mg ). The resulting solution was stirred for 45 minutes, , filtered through a plug of silica using EtOAc as eluent and concentrated in vacuo to afford the crude compound as a pale yellow oil ( 55 mg ) Purification on silica gel ( $15 \mathrm{~g}, \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 3$ ) afforded the title product 448 as a yellow oil ( $40 \mathrm{mg}, 0.175 \mathrm{mmol}, 81 \%$ ).

| $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & 2983 \text { (b), } 2921 \text { (b), } 2841 \text { (d), } 1753 \text { (s), } 1327 \text { (w), } 1167 \text { (w), } 1103 \\ & \text { (w). } \end{aligned}$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ <br> ( $\mathbf{3 0 0 M H z}, \mathrm{CDCl}_{3}, \mathbf{p p m}$ ) | $\begin{aligned} & 4.40-4.26\left(3 \mathrm{H}, \mathrm{~m}, \mathrm{OCH}_{2} \text { and } \mathrm{CH}\right), 2.51-2.10\left(4 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), \\ & 1.63\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.57\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 1.35(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \\ & \left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \end{aligned}$ |
| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ <br> ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ) | $\begin{aligned} & 166.3(\mathrm{COO}), 166.0(\mathrm{COO}), 85.6(\mathrm{CCO}), 83.7(\mathrm{CHCO}), 80.2 \\ & (\mathrm{CHCO}), 62.4\left(\mathrm{OCH}_{2}\right), 32.8\left(\mathrm{CH}_{2} \mathrm{CO}\right), 27.2\left(\mathbf{C H}_{3}\right), 23.8\left(\mathbf{C H}_{3}\right), \\ & 22.7\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) . \end{aligned}$ |
| LRMS (ES+ ionisation) | $\begin{aligned} & 479.2\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 30 \%\right), 292(100 \%), 267.1\left([\mathrm{M}+\mathrm{K}]^{+}, 15 \%\right), \\ & 229.1\left([\mathrm{M}+\mathrm{H}]^{+}, 33 \%\right) . \end{aligned}$ |

$N$-(3-oxobutanoil)bornane-10,2-(2R)-sultam (487) ${ }^{120}$


$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ONO}_{4} \mathrm{~S} . \\
& \mathrm{M}=299.39 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
\end{aligned}
$$

According to the method described by Marco et al., ${ }^{120}$ ( $2 R$ )-10,2-camphorsultam ( $500 \mathrm{mg}, 2.3$ mmol ) was dissolved in toluene ( 5 mL ) and dioxinone ( $500 \mathrm{mg}, 3.5 \mathrm{mmol}$ ) was added in a
preheated bath at $130^{\circ} \mathrm{C}$. The solution was stirred for 50 minutes and allowed to cool to room temperature. Solvents were removed under reduced pressure to give a sticky orange residue, which was purified on silica gel ( 45 g , hexane/EtOAc, 9:1 then 4:1). The product was obtained as an orange oil which was crystallised in a mixture hexane/EtOAc (98:2) to give the title product 487 as transparent needles ( $628 \mathrm{mg}, 2.1 \mathrm{mmol}, 91 \%$ ). The structure was confirmed by X-ray crystallography. The spectroscopic data were in good agreement with literature. ${ }^{120}$

IR ( $\mathbf{c m}^{-1}$ ) 3281 (w), 2959 (b), 2879 (b), 1730 (s), 1692 (s), 1630 (s), 1455 (s), 1342 (w), 1134 (s), 997 (s).
${ }^{1} \mathbf{H}-\mathbf{N M R} \quad 4.10(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}, \mathrm{CHHCO}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=7.9$ and 4.8
$\left.\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \mathrm{Hz}, \mathrm{CHNSO}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}, \mathrm{CHHCO}), 3.49(1 \mathrm{H}, \mathrm{d}, J$ $\left.=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 3.42\left(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{CHHSO}_{2}\right), 2.26-$ $2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.93-1.91(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2}\right), 1.46-1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C - N M R} \quad 200.1\left(\mathrm{COCH}_{3}\right), 178.7(\mathbf{C O N}), 65.0\left(\mathbf{C H N S O}_{2}\right), 52.8\left(\mathbf{C H}_{2} \mathrm{SO}_{2}\right)$, $\left(\mathbf{7 5 M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \quad 50.7 \quad\left(\mathbf{C H}_{2} \mathrm{CO}\right), 48.6 \quad\left(\mathbf{C C H}_{2} \mathrm{SO}_{2}\right), 47.8 \quad\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 44.7\right.$ $\left(\mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.6\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 32.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~S}\right), 30.3$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 26.5\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right)$.
LRMS (ES+ ionisation) $621.3\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 6 \%\right), 300.2\left([\mathrm{M}+\mathrm{H}]^{+}, 9 \%\right)$.

## Chapter 7: Appendix

## X-Ray:

Diffractometer: Nonius KappaCCD area detector ( $\phi$ scans and $\omega$ scans to fill asymmetric unit sphere). Cell determination: DirAx (Duisenberg, A.J.M.(1992). J. Appl. Cryst. 25, 92-96.) Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction and cell refinement: Denzo ( Z . Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Absorption correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

Ethyl (2S*)-2-hydroxy-2-[(2R*,2'S*,5 ${ }^{*}$ )-2',5-dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-$5-\mathrm{yl}]$ ethanoate (314b)


| Empirical formula | $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}$ |  |
| :--- | :--- | :--- |
| Formula weight | 286.32 |  |
| Temperature | $120(2) \mathrm{K}$ |  |
| Wavelength | $0.71073 \AA$ |  |
| Crystal system | Orthorhombic |  |
| Space group | Pna 21 |  |
| Unit cell dimensions | $a=9.3133(3) \AA$ | $\alpha=90^{\circ}$ |
|  | $b=15.4441(4) \AA$ | $\beta=90^{\circ}$ |
|  | $c=9.8424(3) \AA$ | $\gamma=90^{\circ}$ |
| Volume | $1415.69(7) \AA^{3}$ |  |
| $Z$ | 4 |  |
| Density (calculated) | $1.343 \mathrm{Mg} / \mathrm{m}^{3}$ |  |
| Absorption coefficient | $0.104 \mathrm{~mm}^{-1}$ |  |
| $F(000)$ | 616 |  |
| Crystal | Plate; colourless |  |
| Crystal size | $0.26 \times 0.22 \times 0.10 \mathrm{~mm}^{3}$ |  |


| $\theta$ range for data collection | $3.29-27.49^{\circ}$ |
| :--- | :--- |
| Index ranges | $-10 \leq h \leq 12,-19 \leq k \leq 20,-12 \leq l \leq 12$ |
| Reflections collected | 14735 |
| Independent reflections | $3218\left[R_{i n t}=0.0585\right]$ |
| Completeness to $\theta=27.49^{\circ}$ | $99.8 \%$ |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.9896 and 0.9733 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | $3218 / 1 / 186$ |
| Goodness-of-fit on $F^{2}$ | 1.024 |
| Final $R$ indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$ | $R 1=0.0340, w R 2=0.0767$ |
| $R$ indices (all data) | $R 1=0.0435, w R 2=0.0810$ |
| Absolute structure parameter | $0.7(7)$ |
| Extinction coefficient | $0.0098(16)$ |
| Largest diff. peak and hole | 0.174 and -0.170 e $\AA^{-3}$ |

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

| Atom | x | y | z | $U_{\text {eq }}$ | S.o.f. |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| C1 | $3738(2)$ | $-661(1)$ | $2416(2)$ | $19(1)$ | 1 |
| C2 | $5029(2)$ | $-964(1)$ | $3196(2)$ | $23(1)$ | 1 |
| C3 | $5245(2)$ | $-267(1)$ | $4268(2)$ | $21(1)$ | 1 |
| C4 | $4585(2)$ | $541(1)$ | $3598(2)$ | $18(1)$ | 1 |
| C5 | $5689(2)$ | $1053(1)$ | $2788(2)$ | $24(1)$ | 1 |
| C6 | $3783(2)$ | $1134(1)$ | $4571(2)$ | $17(1)$ | 1 |
| C7 | $2834(2)$ | $1820(1)$ | $3898(2)$ | $21(1)$ | 1 |
| C8 | $1644(2)$ | $1941(1)$ | $4944(2)$ | $22(1)$ | 1 |
| C9 | $1438(2)$ | $1032(1)$ | $5517(2)$ | $19(1)$ | 1 |
| C10 | $963(2)$ | $1014(1)$ | $6996(2)$ | $27(1)$ | 1 |
| C11 | $400(2)$ | $505(1)$ | $4602(2)$ | $19(1)$ | 1 |
| C12 | $133(2)$ | $-399(1)$ | $5159(2)$ | $21(1)$ | 1 |
| C13 | $1039(2)$ | $-1800(1)$ | $5515(2)$ | $31(1)$ | 1 |
| C14 | $2280(2)$ | $-2334(1)$ | $5057(2)$ | $32(1)$ | 1 |
| O1 | $2997(1)$ | $-1071(1)$ | $1644(1)$ | $26(1)$ | 1 |
| O2 | $3520(1)$ | $186(1)$ | $2642(1)$ | $20(1)$ | 1 |
| O3 | $2845(1)$ | $638(1)$ | $5438(1)$ | $19(1)$ | 1 |
| O4 | $-937(1)$ | $936(1)$ | $4454(1)$ | $25(1)$ | 1 |
| O5 | $-964(1)$ | $-605(1)$ | $5723(1)$ | $33(1)$ | 1 |
| O6 | $1241(1)$ | $-934(1)$ | $4962(1)$ | $23(1)$ | 1 |

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

| $\mathrm{C} 1-\mathrm{Ol}$ | 1.2056(19) | O1-C1-C2 | 128.06(14) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C} 1-\mathrm{O} 2$ | $1.3416(17)$ | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | 109.88(13) |
| C1-C2 | $1.502(2)$ | C1-C2-C3 | 103.87(12) |
| C2-C3 | 1.521(2) | C1-C2-H2A | 111.0 |
| C2-H2A | 0.9900 | C3-C2-H2A | 111.0 |
| C2-H2B | 0.9900 | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 111.0 |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.539(2)$ | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 111.0 |
| C3-H3A | 0.9900 | H2A-C2-H2B | 109.0 |
| C3-H3B | 0.9900 | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 102.98(12) |
| $\mathrm{C} 4-\mathrm{O} 2$ | $1.4733(17)$ | C2-C3-H3A | 111.2 |
| C4-C6 | 1.520(2) | C4-C3-H3A | 111.2 |
| $\mathrm{C} 4-\mathrm{C} 5$ | 1.523(2) | C2-C3-H3B | 111.2 |
| C5-H5A | 0.9800 | C4-C3-H3B | 111.2 |
| C5-H5B | 0.9800 | H3A-C3-H3B | 109.1 |
| C5-H5C | 0.9800 | O2-C4-C6 | 107.18(11) |
| C6-03 | $1.4412(17)$ | O2-C4-C5 | 108.24(12) |
| C6-C7 | $1.531(2)$ | C6-C4-C5 | 110.42(12) |
| C6-H6 | 1.0000 | O2-C4-C3 | 103.89(11) |
| C7-C8 | 1.524(2) | C6-C4-C3 | 114.52(12) |
| C7-H7A | 0.9900 | C5-C4-C3 | 112.09 (12) |
| C7-H7B | 0.9900 | C4-C5-H5A | 109.5 |
| C8-C9 | 1.526(2) | C4-C5-H5B | 109.5 |
| C8-H8A | 0.9900 | H5A-C5-H5B | 109.5 |
| C8-H8B | 0.9900 | C4-C5-H5C | 109.5 |
| C9-03 | $1.4468(17)$ | H5A-C5-H5C | 109.5 |
| C9-C10 | $1.521(2)$ | H5B-C5-H5C | 109.5 |
| C9-C11 | $1.551(2)$ | O3-C6-C4 | 110.55(11) |
| C10-H10A | 0.9800 | O3-C6-C7 | 105.91(11) |
| C10-H10B | 0.9800 | C4-C6-C7 | 115.37 (13) |
| C10-H10C | 0.9800 | O3-C6-H6 | 108.3 |
| C11-O4 | 1.4190 (17) | C4-C6-H6 | 108.3 |
| C11-C12 | $1.520(2)$ | C7-C6-H6 | 108.3 |
| C11-H11 | 1.0000 | C8-C7-C6 | 102.26(12) |
| C12-O5 | 1.2053(19) | C8-C7-H7A | 111.3 |
| C12-06 | $1.3358(18)$ | C6-C7-H7A | 111.3 |
| C13-O6 | 1.4573 (17) | C8-C7-H7B | 111.3 |
| C13-C14 | $1.489(2)$ | C6-C7-H7B | 111.3 |
| C13-H13A | 0.9900 | H7A-C7-H7B | 109.2 |
| C13-H13B | 0.9900 | C7-C8-C9 | 103.20(12) |
| C14-H14A | 0.9800 | C7-C8-H8A | 111.1 |
| C14-H14B | 0.9800 | C9-C8-H8A | 111.1 |
| C14-H14C | 0.9800 | C7-C8-H8B | 111.1 |
| O4-H4 | 0.8400 | C9-C8-H8B | 111.1 |
| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$ | 122.00(14) | H8A-C8-H8B | 109.1 |


| $\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10$ | $107.92(12)$ | $\mathrm{O} 5-\mathrm{C} 12-\mathrm{C} 11$ | $123.14(13)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 8$ | $104.60(11)$ | $\mathrm{O} 6-\mathrm{C} 12-\mathrm{C} 11$ | $112.88(12)$ |
| $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$ | $113.97(13)$ | $\mathrm{O} 6-\mathrm{C} 13-\mathrm{C} 14$ | $107.15(13)$ |
| $\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 11$ | $108.25(11)$ | $\mathrm{O} 6-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$ | 110.3 |
| $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11$ | $111.43(12)$ | $\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$ | 110.3 |
| $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$ | $110.28(13)$ | $\mathrm{O} 6-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$ | 110.3 |
| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$ | 109.5 | $\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$ | 110.3 |
| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$ | 109.5 | $\mathrm{H} 13 \mathrm{~A}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$ | 108.5 |
| $\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$ | 109.5 | $\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$ | 109.5 |
| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$ | 109.5 | $\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$ | 109.5 |
| $\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$ | 109.5 | $\mathrm{C} 14-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$ | 109.5 |
| $\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$ | 109.5 | $\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$ | 109.5 |
| $\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12$ | $108.91(12)$ | $\mathrm{H} 14 \mathrm{~B}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$ | 109.5 |
| $\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 9$ | $111.12(11)$ | $\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 4$ | 109.5 |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$ | $111.97(12)$ | $\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 9$ | $111.57(11)$ |
| $\mathrm{O} 4-\mathrm{C} 11-\mathrm{H} 11$ | 108.2 | $\mathrm{C} 11-\mathrm{O} 4-\mathrm{H} 4$ | $110.99(10)$ |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$ | 108.2 | $\mathrm{C} 12-\mathrm{O} 6-\mathrm{C} 13$ | 109.5 |
| $\mathrm{C} 9-\mathrm{C} 11-\mathrm{H} 11$ | 108.2 |  | $114.43(12)$ |
| $\mathrm{O} 5-\mathrm{C} 12-\mathrm{O} 6$ | $123.98(14)$ |  |  |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

| Atom | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| C1 | $17(1)$ | $21(1)$ | $19(1)$ | $1(1)$ | $3(1)$ | $1(1)$ |
| C2 | $20(1)$ | $24(1)$ | $25(1)$ | $-1(1)$ | $0(1)$ | $3(1)$ |
| C3 | $19(1)$ | $24(1)$ | $20(1)$ | $-1(1)$ | $-1(1)$ | $4(1)$ |
| C4 | $15(1)$ | $22(1)$ | $17(1)$ | $-1(1)$ | $-3(1)$ | $-1(1)$ |
| C5 | $21(1)$ | $27(1)$ | $22(1)$ | $-1(1)$ | $2(1)$ | $-2(1)$ |
| C6 | $14(1)$ | $20(1)$ | $18(1)$ | $-1(1)$ | $0(1)$ | $-3(1)$ |
| C7 | $18(1)$ | $19(1)$ | $25(1)$ | $3(1)$ | $1(1)$ | $-2(1)$ |
| C8 | $20(1)$ | $17(1)$ | $30(1)$ | $-2(1)$ | $1(1)$ | $0(1)$ |
| C9 | $15(1)$ | $20(1)$ | $22(1)$ | $-1(1)$ | $1(1)$ | $2(1)$ |
| C10 | $19(1)$ | $36(1)$ | $25(1)$ | $-7(1)$ | $2(1)$ | $-2(1)$ |
| C11 | $15(1)$ | $20(1)$ | $22(1)$ | $0(1)$ | $-1(1)$ | $1(1)$ |
| C12 | $18(1)$ | $21(1)$ | $24(1)$ | $-2(1)$ | $-1(1)$ | $-1(1)$ |
| C13 | $26(1)$ | $19(1)$ | $48(1)$ | $6(1)$ | $5(1)$ | $-1(1)$ |
| C14 | $26(1)$ | $22(1)$ | $48(1)$ | $-1(1)$ | $-1(1)$ | $2(1)$ |
| O1 | $22(1)$ | $25(1)$ | $31(1)$ | $-7(1)$ | $-5(1)$ | $0(1)$ |
| O2 | $19(1)$ | $20(1)$ | $20(1)$ | $-2(1)$ | $-5(1)$ | $0(1)$ |


| O3 | $14(1)$ | $21(1)$ | $22(1)$ | $3(1)$ | $2(1)$ | $-1(1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O4 | $17(1)$ | $28(1)$ | $30(1)$ | $4(1)$ | $-2(1)$ | $3(1)$ |
| O5 | $23(1)$ | $24(1)$ | $53(1)$ | $2(1)$ | $13(1)$ | $-2(1)$ |
| O6 | $19(1)$ | $18(1)$ | $34(1)$ | $1(1)$ | $4(1)$ | $0(1)$ |


$N$-[(2S,5R)- tetrahydro-2-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)furanoyl]-2-camphor-10,2-sultam (422b)


Table 1. Crystal data and structure refinement.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}$
401.3

120(2) K
$0.71073 \AA$
Orthorhombic
$P 2{ }_{1} 2_{1} 2_{1}$
$a=14.3472(14) \AA \quad \alpha=90^{\circ}$
$b=17.3099(13) \AA \quad \beta=90^{\circ}$
$c=8.1910(10) \AA \quad \gamma=90^{\circ}$
Volume
Z
Density (calculated)
Absorption coefficient
$F(000)$
Crystal
Crystal size
$\theta$ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $F^{2}$
Final $R$ indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
$R$ indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
2034.2(4) $\AA^{3}$

4
$1.370 \mathrm{Mg} / \mathrm{m}^{3}$
$0.200 \mathrm{~mm}^{-1}$
904
Slab; colourless
$0.46 \times 0.42 \times 0.18 \mathrm{~mm}^{3}$
$3.69-27.50^{\circ}$
$-18 \leq h \leq 18,-22 \leq k \leq 22,-10 \leq l \leq 10$
22230
$4655\left[R_{\text {int }}=0.0410\right]$
$99.6 \%$
Semi-empirical from equivalents
0.9649 and 0.9135

Full-matrix least-squares on $F^{2}$
4655 / 1/381
1.037
$R 1=0.0316, w R 2=0.0723$
$R 1=0.0385, w R 2=0.0749$
0.00 (5)
0.0050 (11)
0.244 and -0.222 e $\AA^{-3}$

Table 2. Atomic coordinates [ $\times 10^{4}$ ], equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

| Atom | $x$ | $y$ | $z$ | $U_{e q}$ | S.o.f |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| C1 | $6510(1)$ | $11488(1)$ | $3888(2)$ | $22(1)$ | 1 |
| C2 | $6612(2)$ | $10267(1)$ | $2269(2)$ | $28(1)$ | 1 |
| C3 | $7046(1)$ | $10740(1)$ | $3631(2)$ | $19(1)$ | 1 |
| C4 | $7080(1)$ | $10266(1)$ | $5206(2)$ | $18(1)$ | 1 |
| C5 | $7598(1)$ | $10632(1)$ | $6651(2)$ | $26(1)$ | 1 |
| C6 | $8507(1)$ | $10176(1)$ | $6755(2)$ | $22(1)$ | 1 |
| C7 | $8223(1)$ | $9385(1)$ | $6101(2)$ | $17(1)$ | 1 |
| C8 | $9025(1)$ | $8907(1)$ | $5364(2)$ | $23(1)$ | 1 |
| C9 | $7805(1)$ | $8883(1)$ | $7460(2)$ | $17(1)$ | 1 |
| C10 | $6670(1)$ | $8001(1)$ | $8651(2)$ | $16(1)$ | 1 |
| C11 | $5739(1)$ | $7619(1)$ | $8190(2)$ | $16(1)$ | 1 |
| C12 | $5760(1)$ | $7468(1)$ | $6368(2)$ | $18(1)$ | 1 |
| C13 | $6450(1)$ | $8427(1)$ | $10261(2)$ | $22(1)$ | 1 |
| C14 | $5454(1)$ | $8144(1)$ | $10643(2)$ | $22(1)$ | 1 |
| C15 | $5506(1)$ | $7275(1)$ | $11018(2)$ | $24(1)$ | 1 |
| C16 | $5671(1)$ | $6904(1)$ | $9315(2)$ | $22(1)$ | 1 |
| C17 | $4987(1)$ | $8165(1)$ | $8945(2)$ | $19(1)$ | 1 |
| C18 | $4913(1)$ | $8983(1)$ | $8245(2)$ | $23(1)$ | 1 |
| C19 | $4002(1)$ | $7821(1)$ | $8891(3)$ | $26(1)$ | 1 |
| N1 | $6966(1)$ | $8498(1)$ | $7259(2)$ | $15(1)$ | 1 |
| O1 | $7977(1)$ | $10963(1)$ | $3191(2)$ | $26(1)$ | 1 |
| O2 | $7567(1)$ | $9548(1)$ | $4850(1)$ | $17(1)$ | 1 |
| O3 | $9529(1)$ | $9309(1)$ | $4153(2)$ | $31(1)$ | 1 |
| O4 | $8222(1)$ | $8817(1)$ | $8755(1)$ | $24(1)$ | 1 |
| O5 | $5838(1)$ | $8808(1)$ | $4844(1)$ | $20(1)$ | 1 |
| O6 | $7136(1)$ | $7903(1)$ | $4385(1)$ | $21(1)$ | 1 |
| S1 | $6445(1)$ | $8218(1)$ | $5455(1)$ | $15(1)$ | 1 |
| O1S | $9038(1)$ | $9795(1)$ | $1161(2)$ | $30(1)$ | 1 |

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

| $\mathrm{C} 1-\mathrm{C} 3$ | $1.520(2)$ | $\mathrm{C} 4-\mathrm{O} 2$ | $1.4545(19)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | $0.94(2)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.535(2)$ |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | $1.02(2)$ | $\mathrm{C} 4-\mathrm{H} 4$ | $1.069(18)$ |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | $0.95(2)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.527(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.517(2)$ | $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | $1.02(2)$ |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | $0.90(2)$ | $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$ | $1.00(2)$ |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | $1.00(2)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.526(2)$ |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | $0.99(2)$ | $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | $1.005(16)$ |
| $\mathrm{C} 3-\mathrm{O} 1$ | $1.437(2)$ | $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | $0.96(2)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.529(2)$ | $\mathrm{C} 7-\mathrm{O} 2$ | $1.4196(19)$ |


| C7-C9 | 1.534(2) | H1A-C1-H1C | 111.9(18) |
| :---: | :---: | :---: | :---: |
| C7-C8 | 1.540(2) | H1B-C1-H1C | 105.3(16) |
| C8-03 | 1.410(2) | C3-C2-H2A | 110.6(12) |
| C8-H8A | 0.99(2) | C3-C2-H2B | 108.8(13) |
| C8-H8B | $1.005(16)$ | H2A-C2-H2B | 108.2(18) |
| C9-O4 | 1.223(2) | C3-C2-H2C | 108.0(12) |
| C9-N1 | $1.385(2)$ | H2A-C2-H2C | 110.1(17) |
| $\mathrm{C} 10-\mathrm{N} 1$ | $1.491(2)$ | H2B-C2-H2C | 111.2(18) |
| C10-C11 | $1.537(2)$ | O1-C3-C2 | $109.99(15)$ |
| $\mathrm{C} 10-\mathrm{C} 13$ | 1.543(2) | O1-C3-C1 | $105.95(14)$ |
| $\mathrm{C} 10-\mathrm{H} 10$ | 0.976(17) | C2-C3-C1 | 110.77(15) |
| C11-C12 | $1.515(2)$ | O1-C3-C4 | 109.02(13) |
| C11-C16 | $1.546(2)$ | C2-C3-C4 | 110.11(14) |
| C11-C17 | $1.563(2)$ | C1-C3-C4 | 110.90 (14) |
| C12-S1 | $1.7915(17)$ | O2-C4-C3 | 107.77(12) |
| C12-H12A | 0.940(18) | O2-C4-C5 | 105.94(13) |
| C12-H12B | 0.983(18) | C3-C4-C5 | $116.39(14)$ |
| C13-C14 | $1.543(2)$ | O2-C4-H4 | 114.0(9) |
| C13-H13A | 0.96 (2) | C3-C4-H4 | 114.1(9) |
| C13-H13B | 0.952(19) | C5-C4-H4 | 98.3(9) |
| C14-C15 | $1.537(2)$ | C6-C5-C4 | 104.09(14) |
| C14-C17 | $1.545(2)$ | C6-C5-H5A | 109.8(12) |
| C14-H14 | 0.991(18) | C4-C5-H5A | 109.1(12) |
| C15-C16 | 1.554(2) | C6-C5-H5B | 110.6(12) |
| C15-H15A | 0.931(19) | C4-C5-H5B | 111.9(12) |
| C15-H15B | 1.00 (2) | H5A-C5-H5B | 111.1(17) |
| C16-H16A | 1.00 (2) | C7-C6-C5 | 102.45(14) |
| C16-H16B | 0.969(18) | C7-C6-H6A | 110.3(9) |
| C17-C18 | $1.530(2)$ | C5-C6-H6A | 107.2(9) |
| C17-C19 | $1.533(2)$ | C7-C6-H6B | 111.4(13) |
| C18-H18A | 1.02(2) | C5-C6-H6B | 113.9(12) |
| C18-H18B | 1.00 (2) | H6A-C6-H6B | 111.1(15) |
| C18-H18C | 0.97(2) | O2-C7-C6 | 104.61(13) |
| C19-H19A | 1.02(2) | O2-C7-C9 | 112.15(12) |
| C19-H19B | 1.02(2) | C6-C7-C9 | 110.92 (14) |
| C19-H19C | 0.98 (2) | O2-C7-C8 | 108.67(13) |
| N1-S1 | $1.7256(13)$ | C6-C7-C8 | 114.77(14) |
| O1-H1O | 0.94(3) | C9-C7-C8 | 105.85(13) |
| O3-H3O | 0.902(10) | O3-C8-C7 | 113.22(14) |
| O5-S1 | $1.4312(12)$ | O3-C8-H8A | 108.1(11) |
| O6-S1 | 1.4321.(12) | C7-C8-H8A | 108.2(11) |
| O1S-H1S | 0.71(3) | O3-C8-H8B | 107.2(9) |
| O1S-H2S | 1.09(4) | C7-C8-H8B | 115.2(9) |
| C3-C1-H1A | 110.8(14) | H8A-C8-H8B | 104.3(14) |
| $\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 107.8(12) | O4-C9-N1 | 118.89(15) |
| H1A-C1-H1B | 109.1(19) | O4-C9-C7 | 119.42(14) |
| $\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 111.7(11) | N1-C9-C7 | 121.69(14) |


| N1-C10-C11 | 107.94(12) | C11-C16-H16A | 109.2(11) |
| :---: | :---: | :---: | :---: |
| N1-C10-C13 | 115.85(14) | C15-C16-H16A | 112.0(11) |
| C11-C10-C13 | 103.75(13) | C11-C16-H16B | $111.0(11)$ |
| N1-C10-H10 | 105.6(10) | C15-C16-H16B | 114.2(11) |
| C11-C10-H10 | 110.8(10) | H16A-C16-H16B | 108.0(15) |
| $\mathrm{C} 13-\mathrm{C} 10-\mathrm{H} 10$ | 112.9(11) | C18-C17-C19 | 106.50(15) |
| C12-C11-C10 | 107.39(13) | C18-C17-C14 | 112.95(14) |
| C12-C11-C16 | 116.74(14) | C19-C17-C14 | 114.64(14) |
| C10-C11-C16 | 104.65(13) | C18-C17-C11 | 117.32(14) |
| C12-C11-C17 | 120.52(14) | C19-C17-C11 | 112.97(14) |
| C10-C11-C17 | 104.06(12) | C14-C17-C11 | $92.38(12)$ |
| C16-C11-C17 | 101.81(13) | C17-C18-H18A | 106.9(12) |
| C11-C12-S1 | 107.27(11) | C17-C18-H18B | 110.3(11) |
| $\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 111.6(11) | H18A-C18-H18B | $111.0(16)$ |
| $\mathrm{S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 108.4(11) | C17-C18-H18C | 114.0(12) |
| C11-C12-H12B | 116.2(10) | H18A-C18-H18C | 107.6(18) |
| $\mathrm{S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 104.1(10) | H18B-C18-H18C | 107.0(16) |
| H12A-C12-H12B | 108.8(15) | C17-C19-H19A | 113.5(11) |
| C14-C13-C10 | 102.19(13) | C17-C19-H19B | 109.6(11) |
| C14-C13-H13A | 115.6(12) | H19A-C19-H19B | 108.0(16) |
| $\mathrm{C} 10-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$ | 109.8(12) | C17-C19-H19C | 112.0(13) |
| C14-C13-H13B | 112.4(12) | H19A-C19-H19C | 105.5(17) |
| C10-C13-H13B | 110.7(11) | H19B-C19-H19C | 108.0(17) |
| H13A-C13-H13B | 106.3(17) | C9-N1-C10 | 115.75(13) |
| C15-C14-C13 | 107.91(14) | C9-N1-S1 | 127.86(11) |
| C15-C14-C17 | 102.96(14) | C10-N1-S1 | 111.67(10) |
| C13-C14-C17 | 102.21(13) | $\mathrm{C} 3-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$ | 107.4(18) |
| C15-C14-H14 | 115.6(10) | C7-O2-C4 | 110.13(12) |
| C13-C14-H14 | 113.6(10) | C8-O3-H3O | 112(3) |
| C17-C14-H14 | 113.2(10) | O5-S1-O6 | 118.63(7) |
| C14-C15-C16 | 103.42(13) | O5-S1-N1 | 111.31(7) |
| C14-C15-H15A | 110.7(11) | O6-S1-N1 | 109.32(7) |
| C16-C15-H15A | $111.0(11)$ | O5-S1-C12 | 109.23(8) |
| C14-C15-H15B | 108.7(11) | O6-S1-C12 | 110.99(8) |
| C16-C15-H15B | 109.6(11) | N1-S1-C12 | 94.81(7) |
| H15A-C15-H15B | 113.0(15) | H1S-O1S-H2S | 101(3) |
| C11-C16-C15 | 102.36(13) |  |  |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

| Atom | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| C1 | $22(1)$ | $18(1)$ | $27(1)$ | $3(1)$ | $-2(1)$ | $1(1)$ |
| C2 | $37(1)$ | $24(1)$ | $24(1)$ | $1(1)$ | $-10(1)$ | $0(1)$ |
| C3 | $18(1)$ | $18(1)$ | $20(1)$ | $2(1)$ | $-1(1)$ | $-2(1)$ |
| C4 | $20(1)$ | $18(1)$ | $17(1)$ | $0(1)$ | $1(1)$ | $3(1)$ |
| C5 | $30(1)$ | $26(1)$ | $23(1)$ | $-3(1)$ | $-5(1)$ | $5(1)$ |
| C6 | $22(1)$ | $21(1)$ | $24(1)$ | $1(1)$ | $-3(1)$ | $-5(1)$ |
| C7 | $15(1)$ | $20(1)$ | $15(1)$ | $3(1)$ | $-4(1)$ | $-2(1)$ |
| C8 | $17(1)$ | $27(1)$ | $23(1)$ | $7(1)$ | $4(1)$ | $1(1)$ |
| C9 | $15(1)$ | $18(1)$ | $19(1)$ | $0(1)$ | $1(1)$ | $0(1)$ |
| C10 | $18(1)$ | $19(1)$ | $12(1)$ | $3(1)$ | $1(1)$ | $-1(1)$ |
| C11 | $18(1)$ | $14(1)$ | $15(1)$ | $-1(1)$ | $2(1)$ | $-1(1)$ |
| C12 | $23(1)$ | $15(1)$ | $16(1)$ | $-2(1)$ | $1(1)$ | $-2(1)$ |
| C13 | $27(1)$ | $25(1)$ | $14(1)$ | $-3(1)$ | $2(1)$ | $-5(1)$ |
| C14 | $26(1)$ | $23(1)$ | $17(1)$ | $-2(1)$ | $8(1)$ | $0(1)$ |
| C15 | $28(1)$ | $26(1)$ | $18(1)$ | $5(1)$ | $4(1)$ | $-1(1)$ |
| C16 | $28(1)$ | $18(1)$ | $20(1)$ | $4(1)$ | $3(1)$ | $-2(1)$ |
| C17 | $21(1)$ | $16(1)$ | $21(1)$ | $0(1)$ | $6(1)$ | $1(1)$ |
| C18 | $24(1)$ | $17(1)$ | $28(1)$ | $1(1)$ | $7(1)$ | $5(1)$ |
| C19 | $23(1)$ | $27(1)$ | $29(1)$ | $4(1)$ | $5(1)$ | $0(1)$ |
| N1 | $16(1)$ | $18(1)$ | $11(1)$ | $1(1)$ | $-1(1)$ | $-1(1)$ |
| O1 | $23(1)$ | $23(1)$ | $33(1)$ | $2(1)$ | $9(1)$ | $-3(1)$ |
| O2 | $17(1)$ | $17(1)$ | $16(1)$ | $2(1)$ | $-2(1)$ | $3(1)$ |
| O3 | $21(1)$ | $42(1)$ | $29(1)$ | $12(1)$ | $7(1)$ | $2(1)$ |
| O4 | $23(1)$ | $31(1)$ | $18(1)$ | $6(1)$ | $-6(1)$ | $-5(1)$ |
| O5 | $18(1)$ | $20(1)$ | $22(1)$ | $5(1)$ | $-5(1)$ | $-2(1)$ |
| O6 | $24(1)$ | $24(1)$ | $15(1)$ | $-2(1)$ | $4(1)$ | $1(1)$ |
| S1 | $17(1)$ | $16(1)$ | $13(1)$ | $0(1)$ | $-1(1)$ | $0(1)$ |


$N-\left[(2 S)\right.$-2-hydroxy-2-(( $\left.2 R, 2^{\prime} R, 5 S\right)-2^{\prime}, 5-$ dimethyl-5'-oxo-octahydro-[2,2']bifuranyl-5yl)ethanoyl] camphor-10,2-sultam (314d)


Table 1. Crystal data and structure refinement.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
$\theta$ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=25.03^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $F^{2}$
Final $R$ indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
$R$ indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S}$
455.55

120(2) K
$0.71073 \AA$
Monoclinic
$P 2_{1}$
$a=11.9402(7) \AA \quad \alpha=90^{\circ}$
$b=7.8852(5) \AA \quad \beta=95.159(2)^{\circ}$
$c=11.9838(9) \AA \quad \gamma=90^{\circ}$
1123.71(13) $\AA^{3}$

2
$1.346 \mathrm{Mg} / \mathrm{m}^{3}$
$0.187 \mathrm{~mm}^{-1}$
488
Needle; Colourless
$0.32 \times 0.02 \times 0.01 \mathrm{~mm}^{3}$
$3.10-25.03^{\circ}$
$-14 \leq h \leq 14,-9 \leq k \leq 9,-11 \leq l \leq 14$
7943
$3821\left[R_{\text {int }}=0.0905\right]$
$99.8 \%$
Semi-empirical from equivalents
0.9981 and 0.9425

Full-matrix least-squares on $F^{2}$
$3821 / 1 / 286$
1.002
$R 1=0.0738, w R 2=0.1040$
$R 1=0.1480, w R 2=0.1235$
$0.04(14)$
0.0129 (18)
0.261 and $-0.256 \mathrm{e}^{-3} \AA^{-3}$

Special details: All hydrogen atoms were fixed.

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. $U_{e q}$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

| Atom | $x$ | $y$ | $z$ | $U_{e q}$ | S.o.f |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| S1 | $6366(1)$ | $12052(2)$ | $11058(1)$ | $28(1)$ | 1 |
| O1 | $6444(3)$ | $13730(4)$ | $10595(3)$ | $34(1)$ | 1 |
| O4 | $8401(3)$ | $14891(5)$ | $11997(3)$ | $39(1)$ | 1 |
| O2 | $5705(3)$ | $11872(5)$ | $11990(3)$ | $32(1)$ | 1 |
| N1 | $7685(3)$ | $11302(5)$ | $11399(4)$ | $24(1)$ | 1 |
| O3 | $9176(3)$ | $11007(4)$ | $12672(3)$ | $39(1)$ | 1 |
| O6 | $5897(3)$ | $16091(5)$ | $13977(3)$ | $35(1)$ | 1 |
| O5 | $8246(3)$ | $15607(4)$ | $14300(3)$ | $31(1)$ | 1 |
| O7 | $5732(3)$ | $17033(6)$ | $12204(3)$ | $48(1)$ | 1 |
| C2 | $7065(4)$ | $9576(7)$ | $9797(5)$ | $26(1)$ | 1 |
| C7 | $7890(4)$ | $9661(7)$ | $10859(5)$ | $26(1)$ | 1 |
| C17 | $7546(5)$ | $15348(7)$ | $15198(5)$ | $32(2)$ | 1 |
| C18 | $6534(4)$ | $16507(6)$ | $15041(5)$ | $30(2)$ | 1 |
| C8 | $7777(4)$ | $10241(6)$ | $8851(5)$ | $29(1)$ | 1 |
| C9 | $7203(5)$ | $9977(6)$ | $7672(5)$ | $37(2)$ | 1 |
| C1 | $5996(4)$ | $10493(6)$ | $10015(5)$ | $27(1)$ | 1 |
| C13 | $8697(4)$ | $14014(6)$ | $13929(5)$ | $29(1)$ | 1 |
| C11 | $8382(4)$ | $11860(7)$ | $12320(4)$ | $28(1)$ | 1 |
| C12 | $8090(4)$ | $13628(6)$ | $12786(5)$ | $30(1)$ | 1 |
| C5 | $8744(5)$ | $8987(7)$ | $9175(5)$ | $36(2)$ | 1 |
| C10 | $8120(4)$ | $12131(7)$ | $8906(5)$ | $40(2)$ | 1 |
| C14 | $9968(4)$ | $14238(7)$ | $13913(5)$ | $43(2)$ | 1 |
| C20 | $6876(5)$ | $18371(6)$ | $14922(5)$ | $30(2)$ | 1 |
| C4 | $8151(4)$ | $7258(7)$ | $9143(5)$ | $38(2)$ | 1 |
| C3 | $6961(4)$ | $7702(6)$ | $9514(5)$ | $29(2)$ | 1 |
| C22 | $6130(4)$ | $17201(8)$ | $13162(5)$ | $34(1)$ | 1 |
| C16 | $7302(5)$ | $13452(7)$ | $15204(5)$ | $41(2)$ | 1 |
| C6 | $9068(4)$ | $9448(7)$ | $10420(5)$ | $37(2)$ | 1 |
| C21 | $6876(5)$ | $18592(7)$ | $13652(5)$ | $36(2)$ | 1 |
| C19 | $5771(5)$ | $16220(8)$ | $15969(5)$ | $45(2)$ | 1 |
| C15 | $8388(5)$ | $12721(7)$ | $14810(5)$ | $41(2)$ | 1 |

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

| S1-O2 | $1.431(3)$ | $\mathrm{N} 1-\mathrm{C} 7$ | $1.477(6)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 1-\mathrm{O} 1$ | $1.441(4)$ | $\mathrm{O}-\mathrm{C} 11$ | $1.207(6)$ |
| S1-N1 | $1.698(4)$ | $\mathrm{O} 6-\mathrm{C} 22$ | $1.358(7)$ |
| S1-C1 | $1.780(5)$ | $\mathrm{O} 6-\mathrm{C} 18$ | $1.462(6)$ |
| O4-C12 | $1.445(6)$ | O5-C17 | $1.435(6)$ |
| O4-H4 | 0.8400 | O5-C13 | $1.452(6)$ |
| N1-C11 | $1.393(6)$ | O7-C22 | $1.210(6)$ |


| $\mathrm{C} 2-\mathrm{Cl}$ | 1.509(7) | C21-H21A | 0.9900 |
| :---: | :---: | :---: | :---: |
| C2-C3 | $1.519(7)$ | C21-H21B | 0.9900 |
| C2-C7 | 1.540(7) | C19-H19A | 0.9800 |
| C2-C8 | 1.566 (8) | C19-H19B | 0.9800 |
| C7-C6 | $1.554(7)$ | C19-H19C | 0.9800 |
| $\mathrm{C} 7-\mathrm{H} 7$ | 1.0000 | C15-H15A | 0.9900 |
| C17-C18 | $1.513(7)$ | C15-H15B | 0.9900 |
| C17-C16 | $1.524(7)$ | O2-S1-O1 | 116.8(2) |
| C17-H17 | 1.0000 | $\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$ | 110.0(2) |
| C18-C19 | $1.517(7)$ | O1-S1-N1 | 108.8(2) |
| C18-C20 | $1.535(7)$ | O2-S1-C1 | 111.1(2) |
| C8-C9 | $1.528(7)$ | O1-S1-C1 | 112.6 (3) |
| C8-C5 | $1.543(7)$ | N1-S1-C1 | 95.4(2) |
| C8-C10 | $1.545(8)$ | C12-O4-H4 | 109.5 |
| C9-H9A | 0.9800 | C11-N1-C7 | 120.8(4) |
| C9-H9B | 0.9800 | $\mathrm{C} 11-\mathrm{N} 1-\mathrm{S} 1$ | 123.8(4) |
| C9-H9C | 0.9800 | C7-N1-S1 | $112.8(3)$ |
| C1-H1A | 0.9900 | C22-O6-C18 | $111.0(4)$ |
| C1-H1B | 0.9900 | C17-O5-C13 | $111.3(4)$ |
| C13-C12 | $1.522(7)$ | C1-C2-C3 | 116.8(4) |
| C13-C14 | $1.530(7)$ | C1-C2-C7 | 108.9(4) |
| C13-C15 | $1.537(7)$ | C3-C2-C7 | 105.1(4) |
| C11-C12 | $1.553(7)$ | C1-C2-C8 | 119.2(5) |
| C12-H12 | 1.0000 | C3-C2-C8 | 101.7(4) |
| C5-C4 | $1.535(7)$ | C7-C2-C8 | 103.6(4) |
| C5-C6 | $1.550(8)$ | N1-C7-C2 | 106.3(4) |
| C5-H5 | 1.0000 | N1-C7-C6 | 115.7(4) |
| C10-H10A | 0.9800 | C2-C7-C6 | 104.3(4) |
| C10-H10B | 0.9800 | N1-C7-H7 | 110.1 |
| C10-H10C | 0.9800 | C2-C7-H7 | 110.1 |
| C14-H14A | 0.9800 | C6-C7-H7 | 110.1 |
| C14-H14B | 0.9800 | O5-C17-C18 | 109.4(4) |
| C14-H14C | 0.9800 | O5-C17-C16 | $105.5(5)$ |
| C20-C21 | 1.531(7) | C18-C17-C16 | 116.3(5) |
| $\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$ | 0.9900 | O5-C17-H17 | 108.4 |
| C20-H20B | 0.9900 | C18-C17-H17 | 108.4 |
| C4-C3 | $1.567(7)$ | C16-C17-H17 | 108.4 |
| C4-H4A | 0.9900 | O6-C18-C17 | 108.6(4) |
| C4-H4B | 0.9900 | O6-C18-C19 | $107.9(4)$ |
| C3-H3A | 0.9900 | C17-C18-C19 | 110.1(5) |
| C3-H3B | 0.9900 | O6-C18-C20 | 104.8(4) |
| C22-C21 | $1.499(8)$ | C17-C18-C20 | $111.9(4)$ |
| C16-C15 | $1.532(7)$ | C19-C18-C20 | 113.2(5) |
| C16-H16A | 0.9900 | C9-C8-C5 | 114.1(4) |
| C16-H16B | 0.9900 | C9-C8-C10 | 105.4(4) |
| C6-H6A | 0.9900 | C5-C8-C10 | 114.7(4) |
| C6-H6B | 0.9900 | C9-C8-C2 | 113.3(4) |


| C5-C8-C2 | 92.6(4) |
| :---: | :---: |
| C10-C8-C2 | 116.8(4) |
| C8-C9-H9A | 109.5 |
| C8-C9-H9B | 109.5 |
| H9A-C9-H9B | 109.5 |
| C8-C9-H9C | 109.5 |
| H9A-C9-H9C | 109.5 |
| H9B-C9-H9C | 109.5 |
| C2-C1-S1 | 107.0(4) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 110.3 |
| S1-C1-H1A | 110.3 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 110.3 |
| S1-C1-H1B | 110.3 |
| H1A-Cl-H1B | 108.6 |
| O5-C13-C12 | 106.8(4) |
| O5-C13-C14 | 107.5(4) |
| C12-C13-C14 | 113.9(5) |
| O5-C13-C15 | 104.2(4) |
| C12-C13-C15 | 111.2(5) |
| C14-C13-C15 | 112.6(5) |
| O3-C11-N1 | 119.7(5) |
| O3-C11-C12 | 124.7(5) |
| N1-C11-C12 | 115.5(5) |
| O4-C12-C13 | 108.7(4) |
| O4-C12-C11 | 107.7(4) |
| C13-C12-C11 | 113.5(4) |
| O4-C12-H12 | 108.9 |
| C13-C12-H12 | 108.9 |
| $\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$ | 108.9 |
| C4-C5-C8 | 103.3(4) |
| C4-C5-C6 | 107.9(5) |
| C8-C5-C6 | 102.0(4) |
| C4-C5-H5 | 114.1 |
| C8-C5-H5 | 114.1 |
| C6-C5-H5 | 114.1 |
| C8-C10-H10A | 109.5 |
| C8-C10-H10B | 109.5 |
| H10A-C10-H10B | 109.5 |
| C8-C10-H10C | 109.5 |
| H10A-C10-H10C | 109.5 |
| H10B-C10-H10C | 109.5 |
| C13-C14-H14A | 109.5 |
| C13-C14-H14B | 109.5 |
| H14A-C14-H14B | 109.5 |
| C13-C14-H14C | 109.5 |
| H14A-C14-H14C | 109.5 |
| H14B-C14-H14C | 109.5 |


| C21-C20-C18 | 103.0(5) |
| :---: | :---: |
| $\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$ | 111.2 |
| C18-C20-H20A | 111.2 |
| C21-C20-H20B | 111.2 |
| C18-C20-H20B | 111.2 |
| H20A-C20-H20B | 109.1 |
| C5-C4-C3 | 102.8(4) |
| C5-C4-H4A | 111.2 |
| C3-C4-H4A | 111.2 |
| C5-C4-H4B | 111.2 |
| C3-C4-H4B | 111.2 |
| H4A-C4-H4B | 109.1 |
| C2-C3-C4 | 102.9(4) |
| C2-C3-H3A | 111.2 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 111.2 |
| C2-C3-H3B | 111.2 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 111.2 |
| H3A-C3-H3B | 109.1 |
| O7-C22-O6 | 121.6(6) |
| O7-C22-C21 | 128.4(6) |
| O6-C22-C21 | 110.0(5) |
| C17-C16-C15 | 101.6(5) |
| C17-C16-H16A | 111.5 |
| C15-C16-H16A | 111.5 |
| C17-C16-H16B | 111.5 |
| C15-C16-H16B | 111.5 |
| H16A-C16-H16B | 109.3 |
| C5-C6-C7 | 101.3(4) |
| C5-C6-H6A | 111.5 |
| C7-C6-H6A | 111.5 |
| C5-C6-H6B | 111.5 |
| C7-C6-H6B | 111.5 |
| H6A-C6-H6B | 109.3 |
| C22-C21-C20 | 104.6(5) |
| $\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$ | 110.8 |
| $\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$ | 110.8 |
| $\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B}$ | 110.8 |
| $\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B}$ | 110.8 |
| H21A-C21-H21B | 108.9 |
| C18-C19-H19A | 109.5 |
| C18-C19-H19B | 109.5 |
| H19A-C19-H19B | 109.5 |
| C18-C19-H19C | 109.5 |
| H19A-C19-H19C | 109.5 |
| H19B-C19-H19C | 109.5 |
| C16-C15-C13 | 102.9(4) |
| C16-C15-H15A | 111.2 |


| $\mathrm{C} 13-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$ | 111.2 | $\mathrm{C} 13-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$ | 111.2 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$ | 111.2 | $\mathrm{H} 15 \mathrm{~A}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$ | 109.1 |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

| Atom | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| S1 | $25(1)$ | $28(1)$ | $31(1)$ | $-1(1)$ | $0(1)$ | $2(1)$ |
| O1 | $37(2)$ | $27(2)$ | $38(3)$ | $6(2)$ | $-2(2)$ | $2(2)$ |
| O4 | $44(3)$ | $38(2)$ | $33(3)$ | $-2(2)$ | $0(2)$ | $-4(2)$ |
| O2 | $26(2)$ | $41(2)$ | $29(2)$ | $-1(2)$ | $3(2)$ | $-1(2)$ |
| N1 | $18(2)$ | $24(2)$ | $29(3)$ | $-2(2)$ | $-4(2)$ | $-2(2)$ |
| O3 | $33(2)$ | $34(2)$ | $47(3)$ | $-10(2)$ | $-9(2)$ | $10(2)$ |
| O6 | $34(2)$ | $42(3)$ | $28(3)$ | $0(2)$ | $-3(2)$ | $-7(2)$ |
| O5 | $34(2)$ | $26(2)$ | $33(3)$ | $-6(2)$ | $4(2)$ | $5(2)$ |
| O7 | $47(2)$ | $61(3)$ | $35(3)$ | $-2(3)$ | $-5(2)$ | $6(3)$ |
| C2 | $20(3)$ | $35(3)$ | $24(4)$ | $0(3)$ | $2(3)$ | $-1(3)$ |
| C7 | $27(3)$ | $26(3)$ | $25(4)$ | $-5(3)$ | $4(3)$ | $-1(2)$ |
| C17 | $36(3)$ | $33(3)$ | $26(4)$ | $-2(3)$ | $-1(3)$ | $-4(3)$ |
| C18 | $24(3)$ | $35(3)$ | $29(4)$ | $3(3)$ | $-2(3)$ | $-4(2)$ |
| C8 | $27(3)$ | $35(3)$ | $25(4)$ | $-6(3)$ | $4(3)$ | $-8(3)$ |
| C9 | $47(4)$ | $36(4)$ | $29(4)$ | $1(3)$ | $13(3)$ | $4(3)$ |
| C1 | $26(3)$ | $25(3)$ | $29(4)$ | $-2(3)$ | $2(3)$ | $-1(3)$ |
| C13 | $25(3)$ | $22(3)$ | $38(4)$ | $-9(3)$ | $-6(3)$ | $7(2)$ |
| C11 | $24(3)$ | $26(3)$ | $32(4)$ | $-6(3)$ | $1(3)$ | $-6(3)$ |
| C12 | $27(3)$ | $25(3)$ | $37(4)$ | $2(3)$ | $-1(3)$ | $-2(3)$ |
| C5 | $27(3)$ | $51(4)$ | $32(4)$ | $-13(3)$ | $7(3)$ | $4(3)$ |
| C10 | $40(3)$ | $43(3)$ | $38(4)$ | $3(4)$ | $7(3)$ | $-8(3)$ |
| C14 | $38(4)$ | $34(3)$ | $55(5)$ | $-12(3)$ | $-6(3)$ | $6(3)$ |
| C20 | $28(3)$ | $29(3)$ | $32(4)$ | $-9(3)$ | $4(3)$ | $2(3)$ |
| C4 | $34(3)$ | $40(4)$ | $39(4)$ | $-15(3)$ | $1(3)$ | $2(3)$ |
| C3 | $29(3)$ | $26(3)$ | $31(4)$ | $-2(3)$ | $-2(3)$ | $0(2)$ |
| C22 | $32(3)$ | $36(3)$ | $33(4)$ | $1(4)$ | $-4(3)$ | $8(3)$ |
| C16 | $54(4)$ | $34(3)$ | $33(4)$ | $2(3)$ | $4(3)$ | $-10(3)$ |
| C6 | $28(3)$ | $35(3)$ | $47(4)$ | $-6(3)$ | $1(3)$ | $8(3)$ |
| C21 | $37(4)$ | $37(3)$ | $33(4)$ | $-2(3)$ | $4(3)$ | $4(3)$ |
| C19 | $44(4)$ | $61(4)$ | $32(4)$ | $-2(3)$ | $9(3)$ | $-5(3)$ |
| C15 | $49(4)$ | $29(3)$ | $42(5)$ | $-3(3)$ | $-12(3)$ | $1(3)$ |
|  |  |  |  |  |  |  |

Table 5. Hydrogen coordinates $\left[\times 10^{4}\right]$ and isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$.

| Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}$ | S.o.f |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| H4 | 7885 | 14986 | 11476 | 58 | 1 |
| H7 | 7743 | 8707 | 11376 | 31 | 1 |
| H17 | 7987 | 15651 | 15919 | 39 | 1 |
| H9A | 7695 | 10392 | 7119 | 55 | 1 |
| H9B | 6492 | 10605 | 7593 | 55 | 1 |
| H9C | 7054 | 8767 | 7547 | 55 | 1 |
| H1A | 5443 | 9686 | 10282 | 32 | 1 |
| H1B | 5660 | 11038 | 9320 | 32 | 1 |
| H12 | 7260 | 13690 | 12841 | 36 | 1 |
| H5 | 9381 | 9059 | 8690 | 44 | 1 |
| H10A | 8649 | 12360 | 8345 | 60 | 1 |
| H10B | 8480 | 12390 | 9654 | 60 | 1 |
| H10C | 7450 | 12840 | 8755 | 60 | 1 |
| H14A | 10120 | 15122 | 13372 | 64 | 1 |
| H14B | 10303 | 13166 | 13696 | 64 | 1 |
| H14C | 10295 | 14569 | 14661 | 64 | 1 |
| H20A | 6326 | 19140 | 15230 | 36 | 1 |
| H20B | 7631 | 18588 | 15306 | 36 | 1 |
| H4A | 8551 | 6448 | 9670 | 45 | 1 |
| H4B | 8094 | 6770 | 8379 | 45 | 1 |
| H3A | 6365 | 7500 | 8899 | 35 | 1 |
| H3B | 6793 | 7029 | 10177 | 35 | 1 |
| H16A | 6642 | 13161 | 14680 | 49 | 1 |
| H16B | 7176 | 13047 | 15964 | 49 | 1 |
| H6A | 9507 | 10514 | 10491 | 44 | 1 |
| H6B | 9502 | 8527 | 10818 | 44 | 1 |
| H21A | 6575 | 19718 | 13415 | 43 | 1 |
| H21B | 7646 | 18476 | 13417 | 43 | 1 |
| H19A | 5136 | 17012 | 15879 | 68 | 1 |
| H19B | 6195 | 16411 | 16697 | 68 | 1 |
| H19C | 5489 | 15053 | 15932 | 68 | 1 |
| H15A | 8260 | 11582 | 14475 | 49 | 1 |
| H15B | 8986 | 12644 | 15437 | 49 | 1 |



## Chapter 8: References

1. Chavez, D.; Acevedo, L. A.; Mata, R. J. J. Nat. Prod. 1998, 61, 419-423.
2. Leboeuf, M.; Cave, A.; Bhaumik, P. K.; Mukherjee, B.; Mukherjee, R. Phytochemistry 1982, 21, 2783-2813.
3. Alali, F. Q.; Liu, X. X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62, 504-540.
4. Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z. M.; He, K.; McLaughlin, J. L. Nat. Prod. Rep. 1996, 13, 275-306.
5. Fang, X. P.; Rieser, M. J.; Gu, Z. M.; Zhao, G. X.; McLaughlin, J. L. Phytochem. Anal. 1993, 4, 27-67.
6. Harmange, J.-C.; Figadere, B. Tetrahedron: Asymmetry 1993, 4, 1711-54.
7. Kötz, A.; Steche, T. J. Parkt. Chem. 1924, 107, 193-195.
8. Klein, E.; Rojahn, W. Tetrahedron 1965, 21, 2353-2358.
9. Walba, D. M.; Wand, M.; Wilkes, M. J. Am. Chem. Soc. 1979, 101, 4396-4397.
10. Sharpless, K. B.; Teranishi, A. Y.; Backvall, J. E. J. Am. Chem. Soc. 1977, 99, 31208.
11. Baldwin, J. E.; Crossley, M. J.; Lehtonen, E. M. M. J. Chem. Soc., Chem. Comm. 1979, 918-920.
12. Lee, D. G.; Brownridge, J. R. J. Am. Chem. Soc. 1973, 95, 3033-4.
13. Wolfe, S.; Ingold, C. F. J. Am. Chem. Soc. 1981, 103, 940-941.
14. Spino, C.; Weiler, L. Tetrahedron Lett. 1987, 28, 731-734.
15. Walba, D. M.; Przybyla, C. A.; Walker, C. B. J. Am. Chem. Soc. 1990, 112, 56245625.
16. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129.
17. Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1984, 106.
18. Oppolzer, W.; Barras, J. P. Helv. Chim. Acta 1987, 70, 1666-1675.
19. Oppolzer, W.; Darcel, C.; Rochet, P.; Rosset, S.; DeBrabander, J. Helv. Chim. Acta 1997, 80, 1319-1337.
20. Walba, D. M.; Edwards, P. D. Tetrahedron Lett. 1980, 21, 3531-3534.
21. Gale, J. B.; Yu, J. G.; Hu, X. F. E.; Khare, A.; Ho, D. K.; Cassady, J. M. Tetrahedron Lett. 1993, 34, 5847-5850.
22. Kocienski, P. J.; Brown, R. C. D.; Pommier, A.; Procter, M.; Schmidt, B. J. Chem. Soc. Perkin Trans. l 1998, 9-39.
23. Brown, R. C. D.; Hughes, R. M.; Keily, J.; Kenney, A. Chem. Commun. 2000, 17351736.
24. Brown, R. C. D.; Keily, J. F. Angew. Chem. Int. Ed. 2001, 40, 4496-4498.
25. Cecil, A. R. L.; Brown, R. C. D. Org. Lett. 2002, 4, 3715-3718.
26. Cecil, A. R. L.; Hu, Y.; Vicent, M. J.; Duncan, R.; Brown, R. C. D. J. Org. Chem. 2004, 69, 3368-3374.
27. Cecil, A. R. L.; Brown, R. C. D. Tetrahedron Lett. 2004, 45, 7269-7271.
28. de Champdoré, M.; Lasalvia, M.; Piccialli, V. Tetrahedron Lett. 1998, 39, 97819784.
29. Donohoe, T. J.; Winter, J. J. G.; Helliwell, M.; Stemp, G. Tetrahedron Lett. 2001, 42, 971-974.
30. Donohoe, T. J.; Butterworth, S. Angew. Chem. Int. Ed. 2003, 42, 948-951.
31. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3937-3938.
32. Piccialli, V.; Cavallo, N. Tetrahedron Lett. 2001, 42, 4695-4699.
33. Bifulco, G.; Caserta, T.; Gomez-Paloma, L.; Piccialli, V. Tetrahedron Lett. 2002, 43, 9265-9269.
34. Bifulco, G.; Caserta, T.; Gomez-Paloma, L.; Piccialli, V. Tetrahedron Lett. 2003, 44, 3429.
35. Bifulco, G.; Caserta, T.; Gomez-Paloma, L.; Piccialli, V. Tetrahedron Lett. 2003, 44, 5499-5503.
36. Piccialli, V. Tetrahedron Lett. 2000, 41, 3731-3733.
37. McDonald, F. E.; Singhi, A. D. Tetrahedron Lett. 1997, 38, 7683-7686.
38. Kennedy, R. M.; Tang, S. Tetrahedron Lett. 1992, 33, 3729-3732.
39. Tang, S. H.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5299-5302.
40. Boyce, R. S.; Kennedy, R. M. Tetrahedron Lett. 1994, 35, 5133-5136.
41. Tang, S. H.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5303-5306.
42. Sinha, S. C.; Sinhabagchi, A.; Keinan, E. J. Am. Chem. Soc. 1995, 117, 1447-1448.
43. McDonald, F. E.; Towne, T. B. J. Org. Chem. 1995, 60, 5750-5751.
44. Sinha, S. C.; Sinha, A.; Keinan, E. J. Am. Chem. Soc. 1997, 119, 12014-12015.
45. Morimoto, Y.; Iwai, T. J. Am. Chem. Soc. 1998, 120, 1633-1634.
46. Morimoto, Y.; Kinoshita, T.; Iwai, T. Chirality 2002, 14, 578-586.
47. Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1998, 120, 9076-9077.
48. Morimoto, Y.; Iwai, T.; Kinoshita, T. J. Am. Chem. Soc. 1999, 121, 6792-6797.
49. D'Souza, L. J.; Sinha, S. C.; Lu, S.-F.; Keinam, E.; Sinha, S. C. Tetrahedron 2001, 57, 5255-5262.
50. Avedissian, H.; Sinha, S. C.; Yazbak, A.; Sinha, A.; Neogi, P.; Keinan, E. J. Org. Chem. 2000, 65, 6035-6051.
51. Sinha, S. C.; Sinha, A.; Keinan, E. J. Am. Chem. Soc. 1998, 120, 4017-4018.
52. Kurth, M. J.; Rodriguez, M. J. J. Am. Chem. Soc. 1987, 109, 7577-7578.
53. Beebe, X.; Kurth, M. J.; Schore, N. E. J. Am. Chem. Soc. 1992, 114, 10061-10062.
54. Beebe, X.; Kurth, M. J.; Schore, N. E. J. Org. Chem. 1995, 60, 4196-4203.
55. Sutterer, A.; Moeller, K. D. J. Am. Chem. Soc. 2000, 122, 5636-5637.
56. Hudson, C. M.; Moeller, K. D. J. Am. Chem. Soc. 1994, 116, 3347-3356.
57. Liu, B.; Duan, S.; Sutterer, A. C.; Moeller, K. D. J. Am. Chem. Soc. 2002, 124, 10101-10111.
58. Hudson, C. M.; Marzabadi, M. R.; Moeller, K. D.; New, D. G. J. Am. Chem. Soc. 1991, 113, 7372-7375.
59. Deslongchamps, P. Stereoelectronics Effects in Organic Synthesis 1983, Pergamon Press: Oxford U.K. , 32-33.
60. Bürgi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153-156.
61. Bürgi, H. B.; Dunitz, J. D.; Shefter, E. J. Am. Chem. Soc. 1973, 95, 5065-5066.
62. Duan, S.; Moeller, K. D. Org. Lett. 2001, 3, 2685-2688.
63. Liu, B.; Moeller, K. D. Tetrahedron Lett. 2001, 42, 7163-7165.
64. Sun, Y.; Liu, B.; Kao, J.; D.A., d. A.; Moeller, K. D. Org. Lett. 2001, 3, 1729-1732.
65. Hammock, B. D.; Gill, S. S.; Casida, J. E. J. Agric. Food. Chem. 1974, 22, 379-385.
66. Walba, D. M.; Stoudt, G. S. Tetrahedron Lett. 1982, 23, 727-730.
67. Stork, G.; Cgregson, M.; Grieco, P. A. Tetrahedron Lett. 1969, 1391-1392.
68. McDonald, F. E.; Towne, T. B. J. Am. Chem. Soc. 1994, 116, 7921-7922.
69. Corey, E. J.; Ha, D. C. Tetrahedron Lett. 1988, 29, 3171-3174.
70. McDonald, F. E.; Schultz, C. C. Tetrahedron 1997, 53, 16435-16448.
71. Fukuyama, T.; Vranesic, B.; Negri, D. P.; Kishi, Y. Tetrahedron Lett. 1978, 31, 2741-2744.
72. Hashimoto, M.; Harigaya, H.; Yanagiya, M.; Shirahama, H. Tetrahedron Lett. 1988, 29, 5947-5948.
73. Hashimoto, M.; Harigaya, H.; Yanagiya, M.; Shirahama, H. J. Org. Chem. 1991, 56, 2299-2311.
74. Hashimoto, M.; Kan, T.; Yanagiya, M.; Shirahama, H. Tetrahedron Lett. 1987, 28, 5665-5668.
75. Chong, A. O.; Sharpless, K. B. J. Org. Chem. 1977, 42, 1587-1590.
76. Hanessian, S.; Cooke, N. G.; Dehoff, B. S.; Sakito, Y. J. Am. Chem. Soc. 1990, 112, 5276-5290.
77. Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407-2473.
78. Makabe, H.; Hattori, Y.; Tanaka, A.; Oritani, T. Org. Lett. 2002, 4, 1083-1085.
79. Morimoto, Y.; Iwai, T.; Kinoshita, T. J. Am. Chem. Soc. 2000, 122, 7124-7125.
80. Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Scola, P. M.; Yoon, S. K. Tetrahedron Lett. 1992, 33, 1553-1556.
81. Iqbal, J.; Pandey, A.; Chauhan, B. P. S. Tetrahedron 1991, 47, 4143-4154.
82. Ting, P. C.; Barlett, P. A. J. Am. Chem. Soc. 1984, 106, 2668-2669.
83. Bertrand, P.; Gesson, J. P. Tetrahedron Lett. 1992, 33, 5177-5180.
84. Kodama, M.; Yoshio, S.; Tabata, T.; Deguchi, Y.; Sekiya, Y. Tetrahedron Lett. 1997, 38, 4627-4630.
85. Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, 112, 5290-5313.
86. Inoki, S.; Mukaiyama, T. Chem. Lett. 1990, 67-70.
87. Mukaiyama, T.; Isayama, S.; Inoki, S.; Kato, K.; Yamada, T.; Takai, T. Chem. Lett. 1989, 449-451.
88. Wang, Z.-M.; Tian, S.-K.; Shi, M. Tetrahedron Lett. 1999, 40, 977-981.
89. Wang, Z.-M.; Tian, S.-K.; Shi, M. Tetrahedron: Asymmetry 1999, 10, 667-670.
90. Wang, Z.-M.; Tian, S.-K.; Shi, M. Eur. J. Org. Chem. 2000, 349-356.
91. Tian, S.-K.; Wang, T. L.; Jiang, J.-K.; Shi, M. Tetrahedron: Asymmetry 1999, 10, 2551-2562.
92. Evans, P. A.; Cui, J.; Gharpure, S. J.; Polosukhin, A.; Zhang, H.-R. J. Am. Chem. Soc. 2003, 125, 14702-14703.
93. Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1985, 26, 4455-4458.
94. Craig, D.; Smith, A. M. Tetrahedron Lett. 1992, 33, 695-698.
95. Craig, D.; Ikin, N. J.; Mathews, N.; Smith, A. M. Tetrahedron 1999, 55, 13471 13494.
96. Rychnovsky, S. D.; Bartlett, P. A. J. Am. Chem. Soc. 1981, 103, 3963-3964.
97. White, J. D.; Wang, G.; Quaranta, L. Org. Lett. 2003, 5, 4109-4112.
98. Zhang, H. P.; Mootoo, D. R. J. Org. Chem. 1995, 60, 8134-8135.
99. Zhang, H. P.; Seepersaud, M.; Seepersaud, S.; Mootoo, D. R. J. Org. Chem. 1998, 63, 2049-2052.
100. Dabideen, D.; Mootoo, D. R. Tetrahedron Lett. 2003, 44, 8365-8368.
101. Wilson, P.; Shan, W.; Mootoo, D. R. J. Carbohydr. Chem. 1994, 13, 133.
102. Zhang, H. P.; Wilson, P.; Shan, W.; Ruan, Z. M.; Mootoo, D. R. Tetrahedron Lett. 1995, 36, 649-652.
103. Ruan, Z. M.; Dabideen, D.; Blumenstein, M.; Mootoo, D. R. Tetrahedron 2000, 56, 9203-9211.
104. Uemura, S.; Toshimitsu, A.; Aoai, T.; Okano, M. J. Chem. Soc., Chem. Comm. 1979, 610-611.
105. Uemura, S.; Toshimitsu, A.; Aoai, T.; Okano, M. Chem. Lett. 1979, 1359-1360.
106. Nicolaou, K. C.; Petasis, N. A.; Claremon, D. A. Tetrahedron 1985, 41, 4835-4841.
107. Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704-3706.
108. Scarborough Jr., R. M.; Smith III, A. B.; Barnette, W. E.; Nicolaou, K. C. J. Org. Chem. 1979, 44, 1742-744.
109. Uemura, S.; Toshimitsu, A.; Aoai, T.; Okano, M. Tetrahedron Lett. 1980, 21, 15331536.
110. Hatakeyma, S.; Sakurai, K.; Saijo, K.; Takano, S. Tetrahedron Lett. 1985, 26, 13331336.
111. Matsuki, Y.; Komada, M.; Ito, S. Tetrahedron Lett. 1979, 42, 4081-4084.
112. Walkup, R. D.; Park, G. Tetrahedron Lett. 1987, 28, 1023-1026.
113. Amouroux, R.; Folefoc, G.; Chastrette, F.; Chastrette, M. Tetrahedron Lett. 1981, 22, 2259-2262.
114. Alderice, M.; Spino, C.; Weiler, L. Tetrahedron Lett. 1984, 25, 1643-1648.
115. Alderice, M.; Spino, C.; Weiler, L. Can. J. Chem. 1993, 71, 1955-1961.
116. Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 95, 1082-1083.
117. Sum, F.-W.; Weiler, L. Can. J. Chem. 1979, 57, 1431-1433.
118. Zoller, T.; Uguen, D.; DeCian, A.; Fischer, J.; Sable, S. Tetrahedron Lett. 1997, 38, 3409-3412.
119. Liddle, J.; Huffman, J. W. Tetrahedron 2001, 57, 7607-7612.
120. Marco, J. L.; Martin, N.; Martinezgrau, A.; Seoane, C.; Albert, A.; Cano, F. H. Tetrahedron 1994, 50, 3509-3528.
121. Weijard, J.; Wolf, F. J. Organic Syntheses, Coll. Vol. 4, 124.
122. Shing, T. K. M.; Wong, C. H.; Yip, T. Tetrahedron: Asymmetry 1996, 7, 1323-1340.
123. Marco-Contelles, J.; Destabel, C.; Gallego, P.; Chiara, J. L.; Bernabé, M. J. Org. Chem. 1996, 61, 1354-1362.
124. Zhong, Y. L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622-2624.
125. Ujihara, K.; Shirahama, H. Tetrahedron Lett. 1996, 37, 2039-2042.
126. Davies, S. G.; Epstein, E. W.; Garner, A. C.; Ichihara, O.; Smith, A. D. Tetrahedron: Asymmetry 2002, 13, 1555-1565.
127. Liu, H.-J.; Luo, W. Can. J. Chem. 1992, 70, 128-134.
128. Miyata, O.; Fujiwara, Y.; Nishiguchi, A.; Honda, H.; Shinada, T.; Ninomiya, I.; Naito, T. Synlett 1994, 637-638.
129. Hatch, R. P.; Weinreb, S. M. J. Org. Chem. 1977, 42, 3960-3961.
130. Suzuki, M.; Matsuo, Y.; Takeda, S.; Suzuki, T. Phytochemistry 1993, 33, 651-656.
131. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
132. Patois, C.; Savignac, P.; Aboutjaudet, E.; Collignon, N. Synth. Commun. 1991, 21, 2391-2396.
133. Hutchins, R. O.; Learn, K.; Fulton, R. P. Tetrahedron Lett. 1980, 21, 27-30.
134. Greca, M. D.; Monaco, P.; Pollio, A.; Previtera, L. Phytochemistry 1992, 31, 41194124.
135. Fischer, M. PhD Thesis, University of Southampton 2002.
136. Behnke, D.; Hennig, L.; Findeisen, M.; Welzel, P.; Muller, D.; Thormann, H.-J. Tetrahedron 2000, 56, 1081-1095.
137. Biellmann, J.; Ducep, J. Tetrahedron 1971, 27, 5861-5872.
138. Hioki, H.; Ooi, H.; Hamano, M.; Mimura, Y.; Yoshio, S.; Kodama, M.; Ohta, S.; Yanai, M.; Ikegami, S. Tetrahedron 2001, 57, 1235-1246.
139. Fujiwara, K.; Awakura, D.; Tsunashima, M.; Nakamura, A.; Honma, T.; Murai, A. J. Org. Chem. 1999, 64, 2616-2617.
140. Wipf, P.; Reeves, J. T.; Balachandran, R.; Guiliano, K. A.; Hamel, E.; Day, B. W. J. Am. Chem. Soc. 2000, 122, 9391-9395.
141. Markó, I. E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel, Y.; Vanherck, J.-C. Angew. Chem. Int. Ed. 1999, 38, 3207-3209.
142. McDonald, F. E.; Bravo, F. W., X.; Wei, X.; Toganoh, M.; Rodriguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K. I. J. Org. Chem. 2002, 67, 2515-2523.
143. Zhu, L.; Mootoo, D. R. Org. Lett. 2003, 5, 3475-3478.
144. Hioki, H.; Yoshio, S.; Motosue, M.; Oshita, Y.; Nakamura, Y.; Mishima, D.; Fukuyama, Y.; Kodama, M.; Ueda, K.; Katsu, T. Org. Lett. 2004, 6, 961-964.
145. Polt, R.; Sames, D.; Chruma, J. J. Org. Chem. 1999, 64, 6147-6158.
146. Inoue, M.; Wang, J.; Wang, G.-X.; Ogasawara, Y.; Hirama, M. Tetrahedron 2003, 59, 5645-5659.
147. Smith III, A. B.; Wood, J. L.; Wong, W. Y.; Gould, A. E.; Rizzo, C. J. J. Am. Chem. Soc. 1990, 112, 7425-7426.
148. Leanna, R. M.; Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992, 33, 5029-5032.
149. Tanaka, H.; Sawayama, A. M.; Wandless, T. J. J. Am. Chem. Soc. 2003, 125, 68646865.
150. Sotokawa, T.; Noda, T.; Pi, S.; Hirama, M. Angew. Chem. Int. Ed. 2000, 39, 34303431.
151. Itokawa, H.; Kishi, E.; Morita, H.; Takeya, K.; Iitaka, Y. Tetrahedron Lett. 1991, 32, 1803-1804.
152. Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. Phytochemistry 1993, 34, 765-771.
153. Morimoto, Y.; Muragaki, K.; Iwai, T.; Morishita, Y.; Kinoshita, T. Angew. Chem. Int. Ed. 2000, 39, 4082-4084.
154. Vasil'ev, A. A.; Engman, L.; Serebryakov, E. P. J. Chem. Soc. Perkin Trans. 1 2000, 2211-2216.
155. Tsvetkov, Y. E.; Shashkov, A. S.; Knirel, Y. A.; Zahringer, U. Carbohydr. Res. 2001, 335, 221-243.
156. Walba, D. M.; Stoudt, G. S. J. Org. Chem. 1983, 48, 5404-5406.
157. Cordero Vargas, A.; Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2003, 5, 3717-3719.
158. Bacqué, E.; Pautrat, F.; Zard, S. Z. Chem. Commun. 2002, 2312-2313.
159. Liard, A.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 1996, 37, 5877-5880.
160. Quiclet-Sire, B.; Wendeborn (née Bertrand), F.; Zard, S. Z. Chem. Commun. 2002, 2214-2215.
161. Ireland, R. E.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 71667172.
162. Lopez, R. M.; Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 6949-6950.
163. Fernandez, C. N., O.; Rivas, E.; Montenegro, G.; Fontenla, J.A.; FernandezMayoralas, A. Carbohydr. Res. 2000, 327, 353-?
164. Shimizu, H.; Okamura, H.; Iwagawa, T.; Nakatani, M. Tetrahedron 2001, 57, 19031908.
165. Urbanek, R. A.; Sabes, S. F.; Forsyth, C. J. J. Am. Chem. Soc. 1998, 120, 2523-2533.
166. Horita, K.; Noda, I.; Tanaka, K.; Miura, T.; Oikawa, K.; Yonemitsu, O. Tetrahedron 1993, 49, 5979-5996.
167. O'Connor, J. M.; Ma, J. J. Org. Chem. 1992, 57, 2075-5077.
168. Smitt, O.; Högderg, H.-E. Tetrahedron 2002, 58, 7691-7700.
169. Kocienski, P.; Wadman, S.; Cooper, K. J. Org. Chem. 1989, 54, 1215-1217.
170. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 1996.
171. Naruta, N. J. Org. Chem. 1980, 45, 4097-4104.
172. Mori, K.; Fumaki, Y. Tetrahedron 1985, 41, 2369-2377.
173. Scheideman, M.; Shapland, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 1050210503.
174. Oehlschlager, A. C.; Singh, S. M.; Sharma, S. J. Org. Chem. 1991, 56, 3856-3861.
175. Marshall, J. A.; Lebreton, J.; Dehoff, B. S.; Jenson, T. M. J. Org. Chem. 1987, 52, 3883-3889.
176. Germain, J.; Deslongchamps, P. J. Org. Chem. 2002, 67, 5269-5278.
177. Cane, D. E.; Iyengar, R.; Shiao, M. S. J. Am. Chem. Soc. 1981, 103, 914-931.
178. Gibbs, R. A.; Krishnan, U.; Dolence, J. M.; Poulter, C. D. J. Org. Chem. 1995, 60 , 7821-7829.
179. Fernandez, J. J.; Souto, M. L.; Norte, M. Nat. Prod. Rep. 2000, 17, 235-246.
180. Xie, H.; Shao, Y.; Becker, J. M.; Naider, F.; Gibbs, R. A. J. Org. Chem. 2000, 65, 8552-8563.
181. Yashwant, S.; Kulkarni, Y. S.; Niwa, M.; Ron, E.; Snider, B. B. J. Org. Chem. 1987, 52, 1568-1576.
182. Ishiyama, H.; Takemura, T.; Tsuda, M.; Kobayashi, J. J. Chem. Soc. Perkin Trans. I 1999, 1163-1166.
