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Conventional approaches to training a supervised image classification aim to fully 

describe all of the classes spectrally. To achieve this, a large training set is typically 
required. Much of the literature on training data are based on the classical view of 
classification process emphasing a large training set. It is not, however, always necessary 
to have training statistics that can potentially provide a complete and representative 
description of the classes, especially if using non-parametric classifiers. For classification 
by a support vector machine (SVM), only the training samples that are support vectors, 
which lie on part of the edge of the class distribution in feature space, are required; all 
other training samples provide no contribution to the classification analysis and can 
effectively be discarded without compromising the accuracy of the classification. 
The work presented here mainly focuses on the issue of reducing the training data 
requirements by exploiting the potential of SVM classifier. 

First, an SVM analysis was evaluated against a series of classifiers with particular 
regard to the effect oftraining set size on classification accuracy. For each classification, 
accuracy was positively related with training set size. In general, the most accurate 
classifications were derived from the SVM approach, and with the largest training set the 
SVM classification were more accurate (93.75%) than that derived from the discriminant 
analysis (90.00%),decision tree (90.31%) and artificial neural networks (92.18 %). The 
SVM classifier used about 50 per cent of the training data as support vectors. 

If the regions likely to furnish support vectors could be identified prior to the 
classification, it may be possible to intelligently select useful training samples. This was 
explored for the classification of agricultural crops in Feltwell area of U.K. The support 
vectors of one of the crops, wheat, were mainly derived from peat soils. Thus the ability to 
target useful training samples, in this case, based on soil type may allow accurate 
classification from small training sets in case the analysis is repeated in future. 

The training data requirements may be reduced if there is a prior knowledge or 
some ancillary information that can be used to identify/locate training sites to regions from 
which the most informative training samples, the support vectors can be derived. This 
allows an intelligent training acquisition scheme to be devised in advance of training 
acquisition process and should include the variables affecting the spectral response of the 
classes. This was demonstrated for agricultural classes in south western part of Punjab 
state of India. Considering all the growth stages of the crops and background properties 
(water and soil) of the training sites provided appropriate support vectors central to the 
establishment of SVM classifier. The scheme was successful in its intent to capture 
support vectors directly from field as 70 % of the training samples collected were used by 
SVM as support vectors as compared to 47.7 % for conventional training scheme. The 
intelligent scheme of training data acquisition was cheaper by 26.09 per cent over the 
conventional scheme of training data acquisition because of reduced training set size. 

The training data requirements can also be reduced when the concern is to map 
accurately only one class from the many land cover classes available in the study area. In 
such instances training data should be limited to the class of interest and classes facing the 
class of interest in feature space. This was demonstrated here in accurately mapping cotton 
crop. 

The research thus illustrates the potential to direct training data acquisition 
strategies to target the most useful training samples to allow efficient and accurate image 
classification by SVM. 
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decision surface but after tranSitrmation to a high dimensional feature space 
through a function <p, the data can be separated by a linear decision surface 
(Vapnik, 1995). 

Figure 3.1: Location of training data in feature space. 

Figure 3.2: Histograms of training data for the six classes in bands 4, 6, 9. 
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Figure 4.1: Soil map of Felt well area. The black box represents the bounds of 93 
study area. The sand soil comprised of humic gleyic rendzinas (346), brown 
rendzinas (343g), typical brown sands (551g), typical humic-sandy gley soils 
(861 b), whereas, peat soils comprised of earthy eutro-amorphous peat soil 
(l024a and b) and earthy eu-fibrous peat soils (1022a) (source: Soil Survey of 
England and Wales). 

Figure 4.2: SPOT HRV FCC of study area demarcated into sandy and peat 95 
soils by the yellow line. The study area was dominated by winter wheat and 
barley crops. (Data, courtesy NERC). The area west of yellow line is covered 
by peat soils and that to its east by sandy soils. 

Figure 4.3: The distribution of training data of winter wheat and barley class 97 
in feature space. The lone support vector of winter wheat class from peat soil is 
encircled and its a value of 4.32 highlighted. 

Figure 5.1: Study area shows the districts (1. Bathinda 2. Muktsar 3. Faridkot 104 
4. Moga 5. Part of Ludhiana district) of Punjab state. 

Figure 5.2: An unlined canal. 106 

Figure 5.3: Salt affected land due to waterlogging. 107 

Figure 5.4: Wilted rice as a result of waterlogging. 108 

Figure 5.5: No watering (dry conditions) of cotton crop after flowering stage. 110 
The exposed soil is dryas farmers do not water cotton crop after flowers 
appear. 

Figure 5.6: FCC of raw IRS-ID satellite data (date of acquisition 16-09-2002) 113 
of selected segments A, Band C of the Muktsar district for cotton area 
estimation under CAPE project. These segments constitute 15 per cent of 
Muktsar district in area. The figure also shows that some of the B type 
segments (marked as C in the FCC) definitely belong to C type. The problem 
arises because the segments are selected once in 4 -5 years and the area under 
cotton is fluctuating. 

Figure 5.7: The newspaper report about waterlogging in the study area. 116 

Figure 5.8: Procedure followed for training data acquisition under 118 
conventional scheme. 

Figure 5.9: Spectral distribution of training data collected under conventional 119 
training data collection scheme. 

Figure 5.10: Histograms of the training data collected under conventional 120 
training data scheme. 

Figure 5.11: Procedure followed for training data acquisition under intelligent 123 
scheme. The scheme was tested on testing data acquired under conventional 
scheme. 
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Figure 5.12: Rice fields showing matured crop in far end with nearer fields 122 
still green and healthy. This variation can be exploited to capture support 
vectors. 

Figure 5.13: Farmers being consulted in field about the crop status in the area. 124 

Figure 5.14: Cotton crop in saline land. The white patches of salt due to 128 
waterlogging can be seen on the exposed soil. This was expected to increase 
the spectral response in all three bands. 
Figure 5.15: Basmati rice was very young and green throughout the study area 128 
as such no variability could be observed in field by the naked eye. 

Figure 5.16: The canopy of basmati rice does not permit soil to be exposed to 129 
sky. Thus the contribution of the soil in the spectral response of the crop could 
be considered only due to its contribution in the growth of the crop. 

Figure 5.17a: Very matured local rice. NIR values would be low and Red 129 
higher as compared to a young healthy crop. Likewise MIR value would be 
higher as the crop was dry. 

Figure 5.17b: Very matured local rice NIR values would be low and Red 130 
higher as compared to a young healthy crop. Likewise MIR value would be 
higher as the crop was dry. 

Figure 5.17c: Very matured local rice adjoining a canal. Water reduces 130 
spectral response especially in MIR band. 

Figure 5.18a: Matured local rice near canal. The leaves have started yellowing 131 
and grain formation has set in. Water reduces spectral response especially in 
MIR band. 

Figure 5.18b: Matured local rice. Grain formation has taken place and 131 
yellowing of leaves has also started. The spectral values would be between 
young healthy and very matured local rice in similar conditions. 

Figure 5.19a: Young local rice. The grain formation is there but leaves are still 132 
green. The NIR values would be high and Red very low as compared to 
matured crop. 

Figure 5.19b: Young local rice. The grain formation is there but leaves are 132 
still green. The values in NIR would be high, low in Red and low in MIR 
(leaves were moist) as compared to matured crop. 

Figure 5.20: Local rice in area affected by waterlogging. The white salt can be 133 
seen on the soil (lower right corner of the photograph). The pump in the field is 
to drain out water due to waterlogging from the field out into surrounding 
drain. 

Figure 5.21: Top view oflocal rice. The canopy does not expose soil to sky. 133 

Figure 5.22: spectral distribution of training data collected under intelligent 134 
scheme. 
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Figure 5.23: Training data of conventional scheme overlaid by that captured 137 
under intelligent scheme. The prefix SV in labels in the legend refers to 
training data collected by intelligent scheme. The 'A' refers to training data 
from site with very matured local rice collected under intelligent scheme. 

Figure 5.24: Tree structure when DT was trained by training data collected 156 
under conventional scheme. Each box is a node with root at the top which 
contains all the training data. Splitting rules used the values in the three input 
bands (Red, NIR and MIR) at nodes to make the data purer in the child nodes. 
For example, the left node after the root splits the data into child nodes based 
on values of Red band. Thus the splitting rule Red < 77 qualifies training data 
with values less than 77 in Red band for this branch of the tree. The terminal 
node (last node) circular in shape refers to the classified output with numbers 1 
to 5 corresponding to classes Built-up, sand, Cotton, Local rice and Basmati 
rice in the study. 

Figure 5.25: Tree structure when DT was trained by training data collected 157 
under intelligent scheme 
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CHAPTER 1 - Introduction 

1.1 Introduction 

The availability of accurate and up-to-date land-cover maps is crucial for many 

applications including agriculture, environment and forestry. Remote sensing is one of the 

efficient tools as compared to conventional methods of surveying in terms of providing 

land cover information at frequent intervals. 

Despite the considerable potential of remote sensing as a source of land cover 

information many problems are encountered and the accuracy of the derived land cover 

information is sometimes viewed as insufficient by the user community (Foody, 2002). 

There are many factors responsible for this situation including: the nature of the classes 

being studied, properties of sensing system used (e.g. spatial and spectral resolutions) to 

acquire the imagery and the techniques used to extract thematic information from the 

imagery, the classification techniques (Pal and Mather, 2003). 

Supervised classification is one of the widely used approaches in extracting 

information from remotely sensed data. Supervised classification comprises of three 

stages: training, allocation and testing. In the training stage generally the areas of known 

ground identity (training areas) are identified on the image. The spectral response of the 

training areas (training data) may be used to generate descriptive statistics for the land 

cover classes such as mean and standard deviation to inform the second stage (allocation 

stage) of the classification. The accuracy of the classification is evaluated in the testing 

stage, usually on a sample of cases not used in the training stage. 

The value of the classified output generated is typically a function of the accuracy 

of the classification (Hashemain et at., 2004). The accuracy of supervised classification is 

generally dependent on the first two stages of the classification over which the analyst has 

considerable control. As a consequence, means to increase the accuracy of classifications 



derived from remotely sensed data have been widely researched. Much research, has, for 

example, focused on the allocation stage, the classifiers used to classify the data. 

Achieving an optimal classification is, however, a challenging and open problem (Ho et 

ai., 1994). The accuracy of classification is also dependent to a large extent on the quality 

of the training data used to train the classifier. Indeed the nature of the training stage can 

have a larger impact on classification accuracy than the classification technique used 

(Hixon et ai., 1980; Campbell, 2002). Much research, therefore, focused on issues related 

with the design of the training stage of a supervised image classification. This includes 

sampling design (Campbell, 2002), training set size (Congalton, 1991), spacing of training 

data (Atkinson, 1991) and time of sampling with respect to image acquisition time (Justice 

and Townshend, 1981). However, the size of training set, the number of samples for 

training the classifier, has been the core focus as it is costly in terms of time and finance to 

acquire large training sets (Buchheim and Lillesand, 1989; Jackson and Landgrebe, 2001). 

The design of the training stage is often guided by the classical statistical view of 

the classification process, generally considering a probabilistic algorithm such as the 

maximum-likelihood classifier (MLC). Statistical classifiers are based on statistical 

description generated from training data and require a complete description of each class in 

feature space. For this, a large training set, spread over the entire study area is often 

required to capture the spectral variability of the classes. 

In general, studies have shown that classification accuracy tends to be positively 

related to training set size (Pal and Mather, 2003; Zhang et al., 1994). Fewer training 

samples or inappropriate placement of training samples produces statistics which may not 

be able to characterize the land cover classes. The requirement for large sample sizes is, 

therefore, not unusual and penalties on classification accuracy for using small training sets 

can in some cases be severe (Curran and Williamson, 1985). Conventional training data 

acquisition schemes, therefore, aims to capture a large training set spread all over the study 

area. 
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Much research has focused on the potential to reduce the training data requirements 

without compromising the accuracy of the classification so as to reduce the cost of the 

classification process. This includes selecting non-autocorrelated (spatially independent) 

training data by using semi-variograms (Atkinson, 1991; Chen and Stow, 2002), signature 

extension, establishing permanent ground data sites, reducing the dimensionality of the 

data to avoid Hughes phenomenon (for finite training samples, accuracy first increases 

with dimensionality and then decreases)(Melgani and Bruzzone, 2004). 

There are many recommendations made as to the required size of the training set, 

typically based on the classical statistical view of the classification process. For example, 

Lillesand et at., 2004 related the requirement of training data with spectral bands used per 

class and proposed a minimum of 10 to 100 times the discriminatory bands used. 

However, such recommendations are general and are based without any regard to the study 

area or the complexity of the classes therein or the classifier to be used. 

Different classifier often produces different results even with the same training sets 

(Huang et at., 2002). This can be attributed to the way the classifiers partition the feature 

space. For example, parametric classifiers like MLC are based on an assumed parametric 

model and, therefore, requires, a large training sample for wider coverage to ensure that 

the statistical parameters are able to describe the classes. However, non-parametric 

classifiers like decision tree (DT) and artificial neural networks (ANN) are not based on 

any parametric model but use the training data directly for training. Foody (1999) has 

shown that with MLP neural network, the training samples that lie at the edge of class 

distribution in feature space are most informative for an accurate classification than those 

that lie away in the feature space. This indicates that some training samples are more 

useful than others. 

The objective in classification is to get as accurate a map as possible using, if 

possible, a small number of training sets to make the classification process economical. An 

optimal classifier would be one that generalizes accurately on unseen cases as compared to 
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other classifiers and at the same time needs a small training set. SVM is potentially one 

such classifier. 

An SVM classification aims to fit an optimal separating hyperplane (OSH) 

between classes by focusing on the training samples that lie at the edge of the class 

distributions, the support vectors. The OSH is a hyperplane oriented in feature space such 

that it is placed at maximum distance between the two classes. It is because of this 

orientation that SVM is expected to generalize more accurately on unseen cases as 

compared to classifiers that aim to minimize the training error such as neural networks. 

Thus for a SVM, the training data are not equally informative and those lying near the 

hyperplanes are most informative for SVM classification. 

Sample size or number of data points within a sample is not simply a matter of 

"bigger the better" (Mather, 1999). Every data has a cost attached to it. With a SVM, only 

the training samples that lie at the edge of the class distributions in feature space (support 

vectors) are relevant in the establishment of the OSH. Data other than support vectors can 

effectively be discarded without compromising the accuracy of the classification. 

The main aim of the research reported in this thesis was to reduce the training data 

requirements by exploiting the potential of SVM that of using only training samples that 

are potential support vectors. The research reported first investigates the effect of training 

set size on classification accuracy using discriminant analysis (DA), ANN, DT and SVM. 

The thesis then focuses on means to enhance classification studies by intelligent training 

site selection. Here attention was focused especially on SVM classifier and was based on 

the hypothesis that if there is prior knowledge or ancillary information that can be used to 

identify/locate training sites to regions from which the most informative training samples, 

the support vectors can be derived, it may be possible to acquire a small intelligently 

selected training set that can be used to accurately classify the data. In addition, the 

research focuses on means to reduce the training data requirements if the same 

classification analyses are repeated in future. This was with the understanding that the 
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knowledge gained about the relationship of support vectors derived from SVM 

classification with ancillary information can be exploited in case the analysis is repeated in 

future to focus the training data acquisition process to the regions most likely to furnish 

support vectors. 

Thus the research essentially explores the means for reducing the training data 

requirements. A procedure to reduce training set size requirements of SVM is outlined and 

tested in this research. 

1.2 Thesis Overview 

Chapter 2 reviews the literature on different classification techniques, with special 

regard to supervised classification that are used in remote sensing. The chapter focuses on 

training data issues, details of supervised classifiers used in the research reported later and 

accuracy assessment. 

Chapter 3 reports on the effect of training set size on classification accuracy using 

DA, ANN, DT and SVM classifiers. The results show that in general the classification 

accuracy was positively related with training set size. The SVM used in the analyses was 

more accurate as compared to other classifiers in most of the cases and used only a fraction 

of training data called as support vectors. 

Chapter 4 reports on the procedure to exploit the potential of SVM to reduce the 

training data requirements. It is shown that with information on soil type, training sample 

acquisition can be focused to regions most likely to furnish support vectors. 

Chapter 5 details the procedure for the acquisition of a small intelligently selected 

training data that provided appropriate support vectors for an SVM classification directly 

from field. The intelligent scheme was compared against a conventional scheme in which a 

large training set was acquired. It is also shown that with ancillary information on soil and 

water status of the training sites, training sample acquisition can be focused to regions 

most likely to furnish support vectors. The work also shows that for accurately mapping 
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only one class from the many land cover classes available in the study area, training data 

for all the land cover classes are not required. 

Chapter 6 discusses the conclusions that arise from the research detailed in chapters 

3,4 and 5. 
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CHAPTER 2 - Literature Review 

2.1 Introduction 

Land cover affects our climate by influencing energy, water and gas exchanges 

with the atmosphere and through acting as a source and sink in biogeochemical cycles 

(Betts et al., 1996). Accurate information on land cover is, therefore, required to aid the 

understanding and management of the environment. The term land cover refers to natural 

entities like vegetation, water bodies, rock/soil, whereas land use refers to the use of land 

by human beings. The terms, land cover and land use are both closely related and, 

therefore, are commonly used interchangeably (Campbell, 2002). 

Information on land cover is central to scientific studies that link many parts of the 

human and physical environments. Accurate and up-to-date information on land cover is 

required for a plethora of applications, including land resource planning, studies of 

environmental change and biodiversity conservation. The researchers often want land 

cover data in map form (Marcal et at., 2005). 

Land cover maps are generally not readily available or are difficult to acquire 

(DeFries and Townshend, 1994; Foody, 2002). Even if the maps are available, they are 

often outdated and in need for updating due to change of time. The frequency of updating 

required, however, depends upon the land cover categories under consideration. For 

example, a general map of global land cover may be required every ten years but a crop 

map may be required on annual basis. 

A thematic land cover map can be generated by conventional (ground surveys) or 

by remote sensing techniques. The conventional ground techniques are time consuming, 

laborious, and expensive. However, remote sensing techniques are not only quick but also 

may be used for inaccessible areas. 
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Remote sensing has been used worldwide in a number of land cover projects, 

especially for crop inventory. For example, large area crop inventory experiment (LAC IE) 

(Pinter et al., 2003; Olthof et al., 2005), Monitoring agriculture with remote sensing 

(MARS) program (Gallego, 1999) and Crop acreage and production estimation (CAPE) 

(Navalgund et al., 1991). 

Initially remote sensing was limited to the use of aerial photographs taken from 

balloons or cameras onboard an aeroplane. However, the launch of Landsat satellite in 

1972 brought a new milestone in the development of remote sensing (Campbell, 2002). 

Remote sensing satellite sensors provided repetitive and systematic observations of Earths 

surface. This led to ready acceptance of satellite remote sensing data. 

A thematic map can be generated using remote sensing data by a process called as 

image classification (Foody, 2004; Tatem et al., 2004). Remote sensing can provide multi

spectral, multi-spatial, muti-temporal data useful for land cover mapping by both visual 

interpretation and quantitative (digital) techniques. 

The advancement in computer technology and the availability of inexpensive 

computer hardware and software (Townshend and Justice, 1981; Mather, 1999) has 

brought to fore the development in digital remote sensing. The ability to hold and 

manipulate voluminous data consistently and in a format ready for integration in 

geographical information systems (GIS) for geographic analysis has resulted in extensive 

use of digital image classification techniques for remote sensing data (Campbell, 2002). 

However, it is not yet possible to map land cover accurately from remotely sensed 

data. There are many reasons for this and one key issue is the errors inherent in the 

remotely sensed data. The data, therefore, needs to be pre-processed before the 

classification can be undertaken. 
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2.2 Preprocessing 

The raw remote sensing data contains error in geometry and in the measured 

spectral response or brightness values of pixels (Richards and Jia, 1998). The errors in the 

brightness are called as radiometric errors, whereas errors in the image geometry are called 

as geometric errors. The operations that are carried on the raw image before the main 

analysis (e.g., classification) are called as preprocessing. Preprocessing is essentially 

carried to remove unwanted radiometric and geometric distortions to the data that may 

otherwise impact negatively on later analyses. Key preprocessing operations are feature 

reduction, radiometric correction and geometric correction. 

2.2.1 Feature Reduction 

There are two approaches to feature reduction, feature selection and feature 

extraction. 

The objective of feature selection is to identify spectral bands out of all the 

available bands that contain the most important information, almost as much as all the 

bands put together. Generally the discarded data contains noise and errors present in the 

original data (Campbell, 2002). Thus feature selection reduces the number of bands which 

in tum reduces the cost of analysis (Melgani and Bruzzone, 2004). 

Often the data acquired in some bands are redundant as they are strongly correlated 

with data in other bands. Correlation between bands helps to identify such redundant 

bands. High correlation between pair of bands reflects that the two bands are closely 

related and only one band be retained for the analysis with the other removed. This 

removal may have only a minor loss of information but gives the analyst advantages that 

will be apparent later. 
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Reduction in bands can also be achieved by a process called as feature extraction. 

In feature extraction, the spectral space is altered unlike feature selection. Principal 

component analysis (PCA) is one of the important techniques of feature extraction (Han et 

ai., 2004). 

The process decorrelates the data by transforming the spectral response around sets 

of new multi-spaced axes. The process generates a number of principal components that is 

equal to the original number of input bands. The first principal component explains the 

maximum information. The first few principal components should be chosen as they carry 

the most information. Thus a reduced dataset is obtained, which in tum reduces the time 

required for analysis. 

2.2.2 Radiometric Preprocessing 

Radiometric preprocessing influences the spectral response (e.g., brightness value 

or DN) of pixels by removing undesirable influences such as those associated with 

atmospheric interference, system noise and sensor motion. 

The brightness recorded by the sensor is generally a result of reflectance from 

Earth's surface and that by atmospheric scattering. The undesirable atmospheric 

component can be removed through an atmospheric correction such as dark object 

subtraction (Chavez, 1988). The method involves identifying very dark objects (e.g., very 

deep water) in the image. The spectral response of such a dark object should be zero or 

nearly zero but if it has some brightness value, it can be attributed basically to the effects 

of atmospheric scattering. The brightness value of a dark object should, therefore, be 

subtracted from each pixel on that band to reduce atmospheric effects. 

2.2.3 Geometric Correction 

The transformation of a remotely sensed image so that the resulting image has the 

projection properties of a map is called as geometric correction (Mather, 1999). The 

10 



remotely sensed images undergo geometric distortions due to a number of factors like 

rotation and curvature of the Earth, wide field of view of some sensors etc., (Richards and 

Jia, 1998). The image is usually geometrically corrected in case the information has to be 

integrated with other map data. 

The geometric correction can be achieved by establishing a mathematical 

relationship between the locations of pixels of an image with their corresponding location 

in reality (ground). This can be achieved by making use of a map, which can provide 

ground control points (GCPs). The GCPs are features that can be identified both on image 

and map and thus helps in deriving the mathematical relationship between their location on 

image and on Earth. 

2.3 Classification 

According to the Chambers twentieth century dictionary of the English language 

(Mather, 1999), classification is defined as the act of forming into classes. Classification in 

remote sensing terminology can be defined as the process of assigning pixels or other 

defined spatial unit of an image to various categories to which they belong. In the context 

of this thesis, the focus of study is pixel as a unit. Classification is one of the most often 

used methods for information extraction in remote sensing. The classification algorithm 

uses the spectral response of various features to determine class membership. 

The classification can be either hard or soft (Foody, 2002). A hard classifier 

assumes that pixels are pure that is they are composed of one cover type only. In reality, 

the pixels may not represent only one class but more than one class especially at the edges 

of two classes (e.g., pixels lying on the border of built-up and agriculture). The problem of 

mixed pixel is, therefore, most pronounced with coarse spatial resolution data (e.g., 1.1 km. 

Advanced Very High Resolution Radiometer (AVHRR) data) (Atkinson et al., 1997). In a 

soft classification, each pixel is allowed to belong to more than one class (Foody, 2002). 
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The present study is limited only to hard classification and, therefore, the discussion would 

focus on hard classification. 

The process of digital classification can be performed using either unsupervised or 

supervised approach. 

2.3.1 Unsupervised Classification 

Unsupervised classification is a process by which pixels in an image are assigned 

to spectral classes without the user having the fore knowledge of the existence or names of 

those classes (Richards and Jia, 1998; Boles et al., 2004). 

With an unsupervised classification technique, the classification algorithm groups 

the pixel data into different spectral classes using a clustering method (Duda and Canty, 

2002, Han et al., 2004). The user specifies the number of clusters based on his experience 

of the study area covered by the image. The analyst then assigns these spectral classes into 

information classes, based on ground data/reference data. ISODATA and AMOEBA are 

some of the well known unsupervised classification algorithms. 

Since the classes are not selected beforehand, this method is called unsupervised 

classification. The unsupervised classification is undertaken if ground data/reference data 

are not sufficient or the analyst is not sure whether the classes proposed can be spectrally 

discriminated and is, therefore, not the focus of this thesis. 

2.3.2 Supervised Classification 

Supervised classification is more closely controlled by the analyst than 

unsupervised classification. The supervised classification requires more input by the 

analyst as compared to unsupervised classification. The general procedure is to identify 

homogeneous, representative samples of classes of interest called training areas. The 

training areas are usually selected by consulting maps, aerial photographs or from field 

visits. Infact, the selection of training data is more of an art than a science (Lillesand et al., 
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2004), which requires close interaction between the image analyst and the data to be used. 

The analyst then demarcates these training sites on the digital image using interactive 

graphics device such as light pen, joystick, mouse etc., which helps to extract spectral 

information of the classes in all the bands for the pixels comprising the training sites. The 

spectral information, thus generated are used to train the classification algorithm to 

recognize spectrally similar areas for each class using algorithms (of which there are 

several variations) specifically tailored for classification purpose. Since the analyst guided 

the learning process, the procedure is called as "supervised classification". Infact, 

supervised classification procedure is most often used for quantitative analysis of remote 

sensing image data (Arora and Foody, 1997; Richards, 1996). 

In general, supervised classification algorithms lie within one of the two types, 

parametric and non-parametric (Emrahoglu, 2003). 

2.3.2.1 Parametric Classifiers 

Parametric classifiers assume that the training data obtained for each class in each 

band follows some distribution, usually a normal Gaussian distribution. For example, the 

maximum-likelihood classifier (MLC) is a parametric classifier assuming normal 

distribution of training data. The MLC is the most popular statistical algorithm and is 

widely accepted as a standard approach (Emrahoglu, 2003). 

2.3.2.2 Non-parametric Classifiers 

A non-parametric classifier does not assume any distribution for the training data 

(i.e., it is distribution-free) (Kavzoglu and Mather, 2003). Commonly used non-parametric 

classifiers are ANN, DT, and SVM. 

2.3.3 Stages in Supervised Classification 

Supervised classification whether parametric or non-parametric has three broad 

stages (Figure 2.1). The first stage is the training stage in which the pixels or other defined 
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areas of known class membership are identified on the image called as training areas. The 

spectral response of the training areas may be used to generate statistics depending upon 

the requirements of the classifier to be used. For example, minimum distance classifier 

requires mean of the classes in all the bands used. However, some classifiers like the ANN 

and DT does not require any statistical parameters but use the spectral response of the 

training areas directly to train the classifier. In the second stage, the trained classifier 

classifies the image into various information classes. Thirdly, the accuracy of the 

classification is evaluated in the testing stage. The accuracy should ideally be tested for a 

dataset not used in the training stage of classification. 

Training data extraction 

Training 

classification 

Accuracy 
~ Assessment 

Figure 2.1: Stages in supervised classification. 
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2.3.3.1 Training Stage 

Remote sensing provides view oflarge areas of Earth's surface at one time and 

help extract useful information at a very attractive cost-benefit ratio. It does not however 

mean "absence from field" (Anonymous, "Ground Truthing", 2002, 

http://www.ecoman.une.edu.au//BRMSALIchapter.htm). The ground data has to be 

collected to relate to digital image. 

Ground data typically, refers to any reference data or ancillary information used in 

support of the analysis. Ground data play an important role in the training stage of the 

classification to identify areas of known ground identity. The training data can be collected 

by field visits or by ancillary means, if there are constraints of time, labour and money 

provided the source is current. 

The training data collected should describe the classes under investigation. The 

quality of training data can, therefore, significantly influence the classification accuracy 

(Hixson et at., 1980). Inappropriate placement or too few pixels in training site produces 

statistics which may not be able to characterize the land cover classes. Studies have shown 

that different training strategies can result in very different accuracy estimates for the final 

classification (Fitzpatrick-Lins, 1981; Congalton, 1988; Gong and Howarth, 1990). 

Therefore, several researchers have emphasized the importance of the training stage so that 

the classifier generalizes well for unseen cases (Hixson et al., 1980; Foody, 1999). 

2.3.3.1.1 Design of Training Strategy 

The objective in designing a training strategy should be such that the training 

samples are able to describe the classes under investigation. Foody (1999) shows that the 

border training pixels (pixels lying away from mean of the spectral distribution of a 

category) classify unseen cases accurately as compared to the core pixels (pixels 

concentrated near the mean value of spectral distribution of the categories). Hence some 
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intelligent way of planning ground data are needed to collect only border training pixels 

for classes under consideration. 

A range of factors, however, should be considered while designing a training 

strategy, such as: 

1. Time of sampling 

2. Sample type 

3. Sample size 

4. Sample design 

2.3.3.1.1.1 Time of Sampling 

Generally, the samples should be recorded at the time of remote sensing data 

acquisition. This is particularly the case if mapping rapidly changing phenomenon like soil 

moisture, erosion, and land cover resulting from floods or fire. But it is not always possible 

to collect the data at the time of satellite sensor overpass. Thus sample data may be 

collected at least for the same season as the satellite sensor data, even if the dates are 

different (Justice and Townshend, 1981) for categories which undergo seasonal changes 

like forest. 

2.3.3.1.1.2 Sample Type 

When planning a project involving remote sensing data, a classification scheme 

must be finalized in the beginning to fulfill the very objectives of the project. In many 

cases, an existing classification scheme such as Anderson classification system (1976) for 

United States Geological Survey (Lillisand and Kiefer et al.,2004; Campbell, 2002) or The 

International Geosphere-Biosphere programme (IGBP) scheme (Hansen and Reed, 2000) 

of the U.S Geological survey can be used. Some other classification schemes are based 

upon it. The benefit of using an existing scheme is that the study can be compared with 

other similar projects completed using the same standard scheme. The classification 
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scheme chosen should ensure that the classes are mutually exclusive and defined 

exhaustively that is any particular parcel of land should fall into one category only. 

The sampling scheme must be clearly understood at the beginning of the work, 

otherwise there is bound to be a great loss of time and much frustration at the end of the 

project (Congalton, 1991). 

2.3.3.1.1.3 Number of Training Samples 

To ensure that the sample data provide a representative statement of the spatial 

population, the sample size must be chosen with care (Curran and Williamson, 1985). 

However, sample size or number of data points within a sample is not simply a matter of 

"bigger the better" (Mather, 1999). The cost involved in collecting the training data is also 

an important factor. Each sample collected has a cost attached to it and thus it is very 

important that the sample size of training data should be kept to a minimum. The 

requirement for large sample sizes is however not unusual and penalties for collecting less 

in some cases can be severe (Curran and Williamson, 1985). 

A number of relationships have been suggested to ascertain the minimum number 

of training samples. For example, Fitzpatrik-Lins (1981) argue that the number of samples 

(n) can be computed by the following relationship: 

(2.1) 

where: 

Z = Z score and represents the number of standard deviations a data value 

falls above or below the mean of a normal distribution. 

A Expected accuracy (%) 

Q IOO-A 

E allowable error 
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Hay (1979) suggested that as a general rule 50 sample points (pixels) per-category 

are required. Mather (1999) suggested that at least 30n pixels per class should be selected, 

where n is the number of bands. Lillesand et ai., (2004) stated that a minimum of IOn to 

100n pixels should be used for each class, where n is the number of spectral bands. 

Congalton (1991) suggested that as a thumb rule minimum of 50 samples for each 

land cover category be chosen and if the area is very large (more than a million acres) or if 

there are large number of categories (more than 12 categories) minimum number of 

samples should be increased to 75. He further stressed that number of samples can be 

adjusted based on the spectral variability of the categories in the study (e.g., fewer samples 

can be taken for water as it shows little spectral variability). 

In general, the number of training samples should be sufficient to capture the 

spectral variability of the categories so that the classifier is able to generalize well for 

unseen cases. 

2.3.3.1.1.4 Sample Design 

The location of training areas of each class must be well distributed over the study 

area; otherwise, the training data would be biased and unrepresentative, thereby affecting 

the accuracy of classification, on unseen cases. 

There are a number of ways in which an area can be sampled in a two dimensional 

space. These include simple random, stratified random and systematic random sampling 

(Figure 2.2). In unaligned sampling, each point is chosen randomly, that is both x and y 

coordinates of a point is chosen randomly, whereas in aligned sampling one of the two 

coordinates is fixed and the other is chosen randomly. Simple random sampling is one, 

where every distinct sample has an equal chance of being drawn. The scheme has a 

drawback that it may under sample or may not sample categories, which cover very small 

area. This drawback can be nullified by using stratified sampling or systematic sampling. 

In stratified sampling scheme, the area is divided into strata. These stratas should not 
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overlap and together should constitute the whole area under study. In systematic sampling, 

the area is divided into sections, usually rectangular or square in shape. 

The above sampling designs are single stage but there are two stage sampling 

design also. In the two stage sampling, the area is divided into strata as in stratified 

sampling. Sampling is then restricted to only a limited number of randomly selected sub-

areas called as primary units. The advantage of the sampling design lies in the fact, that the 

time to travel between the samples is reduced, as the samples are concentrated in a small 

area. However, the disadvantage is that the samples may not be representative of the area 

and, therefore, they may fail to capture the spectral variability of the categories under 

consideration. However, the number of samples can be increased because of the 

operational advantage of less travel. 

With cluster sampling, a group of pixels are selected unlike individual pixels in 

simple random sampling, stratified random sampling etc., as discussed above. However 

large clusters should be avoided as adjoining pixels may add very little information due to 

autocorrelation (Congalton, 1991). Cluster sampling is less costly as compared to other 

sampling designs discussed above. 

However, an ideal sample distribution should derive non-autocorrelated (spatially 

independent) training data (Atkinson, 1991; Chen and Stow, 2002). Spatial dependence 

can be summarized as the expectation that observations close together are more likely to 

be similar than observations further apart. An estimate of spatial autocorrelation can be 

made via the semi-variogram (Curran and Williamson, 1985). The semi-variogram is a 

graph (Figure 2.3) of semi-variance of values given for pixels separated by different 

distances. The semi-variance represents the average of the squared difference in values 

separated by a specific lag distance. Semi-variogram reg) is given by: 

a 
L:(x(i) - xU + g»)2 

y(g) = -'-i;l'--___ _ 

2a 
(2.4) 
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Figure 2.2: Sampling techniques. 
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Figure 2.3: Semi-variogram. 

where, a is the number of pixel pairs separated by a distance g, and x(i) and x(i + g) are 

pixel values at i and i + g respectively. As distance between pixels becomes larger, the 

difference in pixel values between pixel pairs generally becomes larger, and at some 

distance, the semi-variogram develops a flat region which is the limit of auto-correlation 

that is it indicates the distance over which the values sampled are similar. 

Investigators have reported that the use of va rio gram resulted in a 3.5 to 9 fold 

reduction in sample size for a given level of error (McBratney and Webster, 1983). 

However to take advantage of such reductions in sample effort, an investigator needs to 

pre-sample in order to construct the semi-variogram (Curran and Williamson, 1986). 
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2.3.3.2 Allocation 

In the allocation stage, the trained classifier classifies the image into various 

categories. Most attention has, however, been focused on the allocation phase of the 

classification particularly with regard to the development of new algorithms to increase the 

classification accuracy. A number of algorithms, both parametric and non-parametric have 

been developed over the years in remote sensing. A number of different classifiers having 

very different approaches used in the present research are discussed briefly hereafter with 

details following in section 2.4 to 2.7. 

MLC is the most commonly used classifier. MLC is a parametric classifier based 

on statistical theory. It assumes that the distribution of the spectral classes can be described 

by Gaussian normal probability distribution. Generally, the spectral distribution of 

categories is not normally distributed, and in that case, it is statistically invalid to apply 

MLC algorithm. 

The limitation of the parametric classifiers, and following advances in computer 

technology, alternative non-parametric classification like ANN, DT and SVM have been 

developed. 

One of the alternatives to the statistical classifier is the ANN, particularly the feed

forward multi-layer perceptrons using back-propagation (Kanellopoulos and Wilkinson, 

1997; Liu and Wu, 2005). There has been an explosion of interest in ANN by the remote 

sensing community. This includes their widespread use in supervised classification 

(Foody, 1999). One of the main advantages of the ANN for classification is that they are 

distribution-free, that is, no underlying model is assumed for the classes in the training 

data. The training phase in a neural network, unlike MLC, is not a one time calculation of 

statistical measures, but is an iterative process with the intention to achieve minimal error 

between the desired output (determined from training data) and actual output values of the 

network. The trained network may then be used to allocate pixels to classes based on the 

response at the output stage. ANN are very attractive for the classification of large data 
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sets because networks once trained provides very rapid processing (Foody and Arora, 

1997). 

A decision tree recursively partitions the data into smaller subsets on the basis of 

tests or thresholds applied at each node of the tree. Decision trees are non-parametric 

classifier that are computationally very efficient, unlike ANN, which take very long to 

undertake thousands of iterations before the network stabilizes and is ready for final 

classification. Feature reduction is inherent in the decision tree, which reduces the 

requirement of larger training data. The decision tree can be easily interpreted by the 

analyst as compared to ANN. 

Support vector machines (SVM) are relatively new to the remote sensing 

community as compared to other classifiers like MLC, ANN or the DT. Key attraction of 

SVM based approach is that it seeks to fit an optimal hyperplane between classes. The 

optimal hyperplane is so chosen that it maximizes the margin between the categories and, 

therefore, should generalize well to unseen cases with least errors amongst all possible 

boundaries, separating the classes. 

2.3.3.3 Accuracy Assessment 

After classification, the thematic map produced has to be checked for accuracy, as 

a key concern is that the land cover maps derived are often judged to be of insufficient 

quality for operational applications (Foody, 2002). The exercise is necessary for both users 

and producers of the maps to understand the utility of the map so produced. The producer 

would like to identify and correct the errors so as to increase the information content of the 

thematic map. The user on the other hand requires accuracy information of individual class 

or a number of classes to understand the suitability for a particular purpose (e.g., a user 

may be interested only in wheat category out of all the categories represented by a 

thematic map). This inference is based on the comparison of the derived land cover map 
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with ground or other reference data. The accuracy of the classification refers to the degree 

to which the derived image classification agrees with reality or conforms to the truth 

(Jensen and Van der WeI, 1994; Smits et at., 1999; Campbell, 2002; Foody, 2002). 

Ideally, accuracy assessment should consider the entire population of pixel pairs 

from reference and classified images (Campbell, 2002) but in practice it is seldom 

possible. The collection of complete reference data may not be feasible because of time, 

labour and cost constraints or because of the inaccessibility of the area. As such, the 

accuracy assessment is usually conducted on a sample of ground/reference data. 

2.3.3.3.1 Design of Sampling for Reference Data Acquisition 

After classification, accuracy of classification should be tested on a data set 

independent to that used in training the classifier. In remote sensing applications, for 

accuracy assessment, reference data should be collected at the same time as that of training 

sample collection (Richards and Jia, 1998). 

The data for testing accuracy can be collected after the remote sensing data has 

been received and classified. However, collecting data for testing accuracy of classification 

independent of training data is not economical. Further, some of the categories present at 

the time of data acquisition may not be available because of the time delay between 

classifying the data and visiting the field. For example, crops like wheat may be harvested 

by the time remote sensing data are acquired; analyzed and field visit is made. 

The testing pixels can be randomly located on the thematic map after the remote 

sensing data has been classified. The problem is that minor categories (categories 

occupying a small area on thematic map) may be under-sampled or may not be sampled at 

all. Other sampling schemes as detailed in section 2.3.3.1.1.4 can also be followed. 

However, stratified random approach has the advantage in the sense that if the thematic 

map can be divided into strata based on categories, then all the categories can be 

represented in the accuracy assessment. 
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2.3.3.3.2 Number of Testing Data Samples 

The testing data can be collected along with the training data or based on the 

thematic map generated as a result of classification. In case, the testing data are collected 

at the same time as training data, then testing data can be akin to the training data i.e., 

equal in number to the training data as discussed in section 2.3.3.1.1.3. 

However, the number of testing data can also be calculated based on the thematic 

map. The sample size can be calculated based on binomial statistics. If the accuracy of a 

class is e, then probability P that s pixels in a sample of u pixels belongs to that class is 

given by the binomial distribution (Schowengerdt, 1983); 

(2.2) 

Van Genderen et al., (1977) presumed that if the sample is too small then there is a 

fair chance that all the pixels selected are correctly labelled, that is s=u. For example, if 

only one pixel is considered for a category, the accuracy may be 100 % if it is correctly 

classified (Richards and Jia, 1998). Then, 

(2.3) 

Van Genderen et al., (1977) evaluated the above expression as tabulated in Table 

2.1. 

Classification accuracy (%) Sample size 

0.95 60 

0.90 30 

0.85 20 

0.80 15 

0.60 10 

0.50 5 

Table 2.1: Minimum sample size necessary per 
category (after Van Genderen et al., 1977). 
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2.3.3.3.3 Error Matrix 

The error matrix also known as confusion matrix or contingency table is the most 

widely used means of accuracy assessment in remote sensing. It is a simple cross

tabulation of the mapped class label against those observed in the ground or in the 

reference data for a sample of cases at specified locations (Canters, 1997; Campbell, 2002; 

Foody, 2002). The confusion matrix provides the means to describe both the classification 

accuracy and confusion between the classes. 

The columns of the error matrix may represent the correct (reference) data and 

rows, the classified as generated from remotely sensed data or vice-versa. The diagonal 

elements represent the correct classification (i.e., classification is in agreement with 

ground/reference data). The non-diagonal elements represent the error in the classification. 

The error matrix (Table 2.2) can be used to derive a number of metrics of 

classification accuracy, the most popular is the percentage of overall (sum total of all the 

classes) cases correctly allocated in the classification and is a measure of overall accuracy 

of classification. Likewise accuracy can also be calculated for individual categories, by 

comparing their correct allocation to the total number of cases in the respective categories. 

For individual categories, the total number of correctly classified pixels can be 

divided either by total number of pixels in the corresponding row or by corresponding 

column. The total number of pixels of a category is divided by the total number of pixels 

of that category as derived from the reference data (Table 2.2). This accuracy is known as 

producer's accuracy as the producer of the map is more interested to understand how well 

a certain area on ground (reference data) can be classified (Congalton, 1991). However, if 

the total number of correct pixels in a category is divided by the total number of pixels 

classified in that category by the classifier (row total), the accuracy is known as user's 

accuracy. This reflects that a pixel classified on the map is in agreement with the ground. 

The off diagonal elements in the error matrix are used to generate error of omission 

and commission. The error matrix must be diagnosed for non-diagonal elements to 
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Table 2.2: Error matrix of a classification. 

understand the interclass confusion. Error of omission (exclusion) refers to not assigning to 

correct class. It is 1 OO-producer accuracy. Error of commission (inclusion) on the other 

hand, refers to assigning to incorrect class. It is 100-users accuracy. 

The equation of various metrics extracted from confusion matrix depends upon the 

sampling scheme followed in collecting the sample data. The error matrix detailed in Table 

2.2 corresponds to simple random sampling. If, however, stratified random sampling is 

followed, then calculations of various metrics are based on stratas employed by the 

sampling. 

A major problem in classification accuracy is that some cases may be allocated to 

the correct class by chance (Hord and Brooner, 1976; Rosenfield and Fitzpatrik-Lins, 
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1986; Congalton, 1991; Pontiffs, 2000). The kappa coefficient of agreement, K (Table 2.2) 

compensates for such a chance agreement. It can be defined (Campbell, 2002) as; 

observed - expected 
K=-----~--

1- expected 
(2.5) 

Here, observed designates, the overall accuracy reported in the error matrix and 

expected refers to the correct classification that can be anticipated by chance agreement of 

both the reference and the remote sensing data. Kappa ( K ) has a range from 0 to 1. A 

value of 1 suggests perfect effectiveness of the classification and a value 0 suggests that 

the contribution of chance is equal to the effect of correct classification (Campbell, 2002). 

The kappa coefficient has been widely used in remote sensing for comparison of 

classification accuracy even though the approach may be inappropriate (Foody, 2004) 

because the assumption of independence of samples is violated. For instance, comparative 

studies using different classification algorithms (e.g., ANN and SVM) generally use the 

same ground/reference data in assessing the accuracy of classification by each of the 

classifier. As such, the assumption of independence of samples is violated. 

2.3.3.3.3.1 Comparison of Error Matrices 

Error matrices permit comparison of different classifications due to analysis carried 

for data, acquired at different dates or classified by different algorithms. In such instances, 

comparison of error matrices provide means of judicious selection of factors that provide 

the highest accuracy of classification (e.g., digital data with its date of acquisition, issues 

related with training data properties, choice of algorithms). 

The direct comparison of matrices can be difficult in case of differing number of 

observations. Normalization of error matrix can be undertaken to circumvent such 

problem. Normalization may be achieved through an iterative procedure that brings the 

row and column sums to unity. 
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Examination of the normalized matrices affords very convenient comparison. 

However, in some instances normalized values are so small that they are neglected with 

the notion that they do not alter the interpretation. It is also impossible to derive original 

matrix from normalized version and, therefore, should not be attempted. 

2.3.4 Problems in Land Cover Classification 

There has been considerable developments made recently in land cover 

classifications, but the accuracy with which thematic maps may be derived from remotely 

sensed data are, however, often still judged to be too low for operational use (Foody, 

2002). Typically, the reasons for accurate land cover mapping include; characteristics of 

remote sensing data, the nature of the classes and the methods used in mapping (Foody, 

1999). 

2.3.4.1 Issues Related to Characteristics of Remote Sensing Data 

The digital data provided by remote sensing is raster or grid based. The smallest 

element of a digital image, the pixel is, therefore, not a point entity but represents an area 

on the Earth's surface described by the spatial resolution or instantaneous field of view of 

the sensor. The spectral response of a pixel is, therefore, not representative of any point on 

Earth's surface but is an average of spectral response over the area described by the pixel 

on the Earth. The digital classifications are based on these values with the understanding 

that they are faithful representation of the Earth's entity. 

The characteristics of remote sensors are, however, far from ideal (Cracknell, 

1998). One of the drawbacks is that the spectral response of a pixel (e.g., reflectance) is 

not only contributed by land cover inside the pixel, but also by adjoining pixels. Another 

drawback is that the sensors are centre biased such that the reflectance towards the centre 

of the pixel has the most influence on the reflectance value of the pixel. In other words, the 

reflectance information contained in a pixel tends to be more similar to the reflectance of 
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land cover located towards the centre of the pixel's ground area and least similar to cover, 

towards its edge. This effect of reflectance of one part of the field-of-view on the value 

recorded is not well understood, especially if the reflectance of that part is very different 

from the remainder (Fisher, 1997). 

The problem in recording the spectral response can thus lead to the analyst 

observing the same reflectance for very different mixtures of sub-pixel classes. Such 

differences cannot be distinguished by the analyst. The contribution depends basically 

upon the area of the pixel covered by the categories. Hence, the representation of digital 

numbers of a pixel is truly speaking, not very faithful of the area represented by it on the 

ground. 

The available sensor provides data in many different spatial resolutions, for 

example 1m (IKONOS), 1 km (NOAA A VHRR). Each pixel is commonly classified as 

belonging to only one land cover class with the assumption that land cover fits exactly into 

multiples of rectangular spatial units, and that such small areas are homogeneous up to the 

coarsest pixel (Fisher, 1997). Typically, the Earth does not fit into the concept of pure 

elemental squares of even the finest pixel. However, the analyst is always faced with the 

problem of extracting information, much smaller than the size of the pixel (e.g., pixels 

lying on boundaries of two land cover classes). These give rise to mixed pixel problem. 

There are other operational problems linked with cloud cover and topography of 

the area being sensed. The remote sensing data for land cover is not available in optical 

range under cloudy conditions. The effect of shadows because of obstruction (like 

mountains, high rise buildings) alters the digital values of the pixel. 

2.3.4.2 Nature of the Classes 

There is no guarantee that different land cover classes will have different spectral 

responses. Indeed, an accurate land cover class map assumes that each land cover class has 

unique spectral properties. Classes lacking such unique characteristics must either be 
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combined to give broader classes so that the resulting classes are spectrally unique or they 

should be separated using ancillary data or by multi-date analysis. 

2.3.4.3 Methods used in the Analysis 

There are a number of factors in land cover mapping controlled by the analyst. The 

accuracy of a classification is determined by a range of factors including the analyst's skill, 

judgement and familiarity with the study area (Foody, 1999). The factors include issues 

related to remote sensing data, the ancillary data and the choice of classifier to generate the 

land cover map. 

The choice of sensor and date of image acquisition should be such that the spectral 

bands are able to discriminate the various land cover classes of interest and the spatial 

resolution is able to furnish the required details. 

The quality of training data can significantly influence the accuracy of 

classification. The objective in designing the training strategy as discussed under section 

2.3.3.1.1.4. should be such that the training samples are able to characterize the classes 

under investigation. The nature of the testing set can have a significant affect on the 

resulting accuracy statement (Congalton, 1988). The testing data should be representative 

of the classes. 

The training and the testing set has to be extracted from digital image for training 

the classifier and subsequent accuracy assessment. This involves the registration of the 

remote sensing with ancillary data (usually a map), and if the two sets are not accurately 

co-registered, it will have detrimental effect on both the classification and the accuracy 

assessment. 

At times, the land cover classes are spectrally overlapping, so multi-date analysis 

can help to segregate the confusing classes by carrying out analysis at different times of 

their growth period. Such an exercise may be very costly. Therefore, classifiers, which can 
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discriminate the land cover classes, based on single date remote sensing data, would be an 

optimum choice. 

There are a number of classifiers with very different approaches available with the 

fact that the most accurate classifier is unknown. The land cover problem should, 

therefore, be submitted to various classifiers, and the classifier or an ensemble 

(combination) of classifiers (Steele, 2000) giving the highest accuracy under the given 

conditions should be chosen to generate the land cover map. 

It is, however, unrealistic to suppose that a single optimal method can be devised 

for all classification tasks in all terrain types (Townshend and Justice, 1981). The analyst 

must be aware of how the different variables affect the accuracy of classification to enable 

maximum extraction of information from remotely sensed data. Then the analyst may 

select an approach, which is appropriate for a particular investigation (Arora and Foody, 

1997). 

The thesis is focused with the aim to study some of the variables affecting 

classification accuracy. To study the effect of classifiers on classification accuracy, four 

classifiers namely MLC, ANN, DT and SVM with very different approaches towards 

classification were used for analysis and are discussed in detail hereafter. 

2.4 Maximum-likelihood 

Maximum-likelihood classification (MLC) is the most common supervised 

classification method used with remote sensing image data (Richards and Jia, 1998; Wang 

et at., 2004). An important assumption in MLC is that each spectral class can be described 

by a normal Gaussian probability distribution in multi-spectral space. Such a distribution 

describes the chance of finding a pixel as belonging to any particular class at any given 

location in the multi-spectral space. Generally most pixels in a distinct cluster or spectral 

class would lie towards the centre and would gradually decrease away from the centre, 

thereby resembling a Gaussian probability distribution. 
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2.4.1 Design of MLC Classifier 

The conditional probability that a pixel at a location x belongs to a class is given 

by: 

p (Wi/X), i = 1, ..... , q 

where, q is the total number of classes. 

The probability p (wi!x), therefore, gives the likelihood that the correct class is Wi 

for a pixel at position x. Classification is performed accordingly if: 

for all j:;t:i (2.6) 

that is the pixel at x belongs to class Wi if its likelihood p (w iI x) is the largest amongst all 

the classes. 

However, p(wi!x) are unknown. The solution is to estimate a probability 

distribution P(X/Wi) for the cover types from training data. P(X/Wi) describes the chance of 

finding a pixel from class Wi at the position x. There would be as many probabilities p(x/wD 

as there are ground cover classes. In other words, the set of probabilities p(x/wD would give 

relative membership of a pixel with respect to all the available classes. 

The desired probability P(WiJX) and the computed likelihood's P(X/Wi) from training 

data are related by Bayes theorem as; 

(2.7) 

where: 

p (wD is the probability of class Wi in the image. 

P(x) = I P(X/Wi) P (Wi), is the probability of finding a pixel from any class 

at location x. The p (Wi) are called a priori or prior probabilities. The classification rule of 

equation 2.6, using equation 2.7 becomes: 

(2.8) 
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The rule given by equation 2.8 is more acceptable than that given by equation 2.6, since 

p(xlwD are known from training data and pew)) are either known or can be estimated, based 

on analyst experience. For mathematical convenience, taking logarithm of both side of 

equation 2.8: 

fiCx)=ln{ p(xlwD p(wD} 

(2.9) 

Where, :fj(x) is referred to as discriminant function and In is the natural logarithm. 

Equation 2.8 in terms of discriminant functions can be restated as: 

fi (x) > fj(x) for all j:;t:i (2.1 0) 

Generally, the probability distribution for the classes are assumed to be 

multivariate normal, as the properties of such a distribution is well known. This is an 

assumption, rather than a practical property of natural spectral classes. It is because of this 

assumption of normality, that MLC is categorized as a parametric classifier. For A bands 

(Richards and Jia, 1998) 

-1 

P(XIWi) = (2rcyAJ2 I Li 1- 112 exp {-1/2 (X-miY L (X-mi)} (2.11 ) 

where, 

-1 

mi and I are the mean and covariance matrix of the data in class Wi. 

2.4.1.1 Thresholding 

The output of MLC is a set of likelihood values for each pixel, one likelihood value 

for each class considered in training the classifier. The pixel is then classified as belonging 

to the class for which it has the greatest likelihood value. Hence in MLC all the pixels are 

classified into one of the classes for which the classifier was trained. 

In many remote sensing applications, the main operational objective is the 

identification of a specific land cover class or of a few land cover classes of interest in a 
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geographical area. Hence pixels of categories not considered in the training stage will have 

some likelihood values and will be classified, irrespective of how small the likelihood 

values are, to the class with which it has maximum likelihood. Thus mis-classification can 

result, if all the classes constituting the land cover are not considered. The problem can be 

solved by applying threshold to the discriminant functions. The decision rule given by 

equation 2.10 after incorporation of threshold becomes 

X E Wi if 

where, 

fi (x) > fj(x) for all j:;t:i 

and fi (x) > Ui 

(2.12) 

Ui is the threshold specified by the user for all the classes under consideration. 

The threshold should be so chosen so that the classes not considered in training the 

classifier would lie below the threshold value. Pixels belonging to these classes will 

eventually be rejected. 

2.4.2 Limitations of Maximum-likelihood Classifier 

MLC is a parametric supervised classifier and, therefore, assumes data of each 

class in each band to be normally distributed, which may not be the case generally. Hence 

the data has to be checked for its distribution, usually by viewing the histogram of each 

class in each band. If the distribution assumption is violated, then it is invalid to represent 

the class by normal probability function. 

Apart from being normally distributed, the training data sample has to be large 

enough to derive statistics (like mean and covariance). The statistics can be derived from a 

small sample but the key thing is that they should be representative of the area under study. 

The MLC classifier requires the mean and covariance for each class. At least (n+ 1) 

training samples are, therefore, needed for each class (where n is the number of bands) 

otherwise variance/covariance matrix will be singular (i.e., its determinant will be zero and 
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the matrix will not be able to be inverted). This would make it impossible to derive the n

dimensional probability density function (Richards and Jia, 1998). 

Typically, the training data should be 10 to 100 times the discriminating variables 

(e.g., wavebands) (Swain and Davis, 1978). Likewise, the increase in wavebands, as those 

in imagine spectrometers would increase the demand of training data linearly. Clearly a 

very large training set is required for mapping from multispectral data sets and this runs 

contrary to a major goal of remote sensing, which involves extrapolation over large areas 

from limited ground data (Foody, 1999). Infact, according to Hughes effect, increase in 

dimensionality of data sets may decrease the classification accuracy in MLC. 

2.5 Artificial Neural Networks 

The term artificial neural network refers to a network of interconnected neurons. It 

goes by many names such as connectionist models, parallel distributed processing models. 

The very development of ANN can be called biologically inspired following the idea using 

general organization principles found in human brains (Atkinson and Tatnall, 1997). The 

principles on which the brain works and used in ANN are parallel and distributed 

processing that is the information is not processed serially and is not stored at one fixed 

location. 

2.5.1 Multi-layer Perceptrons 

In remote sensing, multi-layered feed-forward networks are most commonly 

encountered (Foody, 1999; Zhan et al., 2003; Pal and Mather, 2004). Multi-layer 
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Figure 2.4: Multi-layer perceptron. 

perceptrons (MLP) or feed-forward networks have been widely used for supervised image 

classification in remote sensing (Kanellopoulos and Wilkinson, 1997; Atkinson and 

Tatnall, 1997; Foody, 1999). MLP are, therefore, used in the present research and 

discussed in detail here. 

MLP consists of a layered structure with three layers of neurons, an input layer, an 

output layer and a layer in between; called as the hidden layer (Figure 2.4). The input layer 

comprises of one unit for each discriminating variable (e.g., waveband). There may be one 

or more hidden layers each containing units as defined by the user. The output layer 

consists of one unit for each class. 

2.5.1.1 Training of Multi-layer Perceptron 

In MLP, the data is processed in parallel (Figure 2.4). The data in the input layer 

are multiplied by the weight of the associated interconnecting channel and are summed to 

derive: 

(2.19) 

where: 

W if is the weight from node i to node j 
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o pi is the output of unit i for pattern p 

This net input is then transformed by the activation function fnet , usually sigmoid 

function, such as: 

1 
fnet = 1 -k*net +e 

(2.20) 

where, k is a gain parameter, usually set to 1 . 

During training, the network is fed with the training data in a feed-forward fashion 

with weights set randomly initially for the connecting channels. At the output, the network 

error, which is the difference between the desired (as obtained from training) and actual 

network output is calculated. This error is then passed backwards through the net towards 

the input layer and in the process alter the weights connecting the units in the proportion of 

the error. The process is repeated a number oftimes till the output error declines to an 

acceptable level or had stabilized (Foody, 1995). 

The network error E p can be defined as 

(2.21) 

where: 

t pj = Target output for pattern p on node j 

o pj = Actual output for pattern p on node j 

Each iteration computes the gradient or change in error ( 5E P ) with respect to each 
5wij 

weight: 

5Ep 5Ep 5netpj 
--=--x--
6wij 5netpj 5wij 

5Ep 
-- = -Opj X 0pi 
5wij 
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(2.23) 



bEp Where, -- = -b ., IS the change III error as a function of change of net inputs, 
bnet . Pi 

Pi 

Equation 2.23 shows that decreasing the value of E p , changes the weight 

proportional to b PP pi' that is: 

(2.24) 

where: 

L1 p W ij , is the change for the weight, which connects, channel i to j 

'7 is a constant, defines the learning rate 

The calculation of b pj is different for output and hidden layers, as the desired output 

is known from the training data for the output layer, but not for the hidden layer. The error 

for the output layer can be calculated as: 

bEp bEp bOpj b =---=---x---=-
Pi bnet pj bo pj bnet pj 

50 pj , 

--'-'-- = Ij (net pj) 
5netpj 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

For hidden units, where output are connected to k other units, the error is defined in 

proportion to the sum of the errors of all k units as modified by the weights connecting 

these units. 
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(2.31) 

The equation 2.31 shows that the change in error is proportional to the errors b pk ill 

subsequent units, so the error has to be calculated in the output unit first as given by 

equation 2.21 and then passed back through the hidden layers using equation 2.31 to alter 

the connecting weights between the units. It is this process of passing back ofthe error 

value that leads to the network being referred to as back propagation network. 

During the training phase, the iterations are continued till the output error declines 

to an acceptable level (Kavzoglu and Mather, 2003). The training data are used to adjust 

the weights and thresholds to minimize the error as given by equation (2.21). This equation 

represents the amount by which the output of the neural network differs from the required 

output. This error can be represented as energy function. The energy function is related to 

the weights between the units and the input data. 

In the error surface, each of the N weights and thresholds are taken as single 

dimension with N+ 1 being the network error. For example, with one weight, the graph 

(Figure 2.5) is two-dimensional, one representing weight and other, the error. 

The energy surface (Figure 2.6) consists of valleys, wells and peaks. The points of 

minimum energy correspond to the wells and maximum are related with peaks. The aim of 

neural network is to minimize the error (equation 2.21) by adjusting the weights of the 

network so as to find the lowest point in the error surface called as global minima. The 

error surface in general are characterized by local minima that is the error surface has a lot 

of wells which are lower than the surrounding terrain but are above the global minima. 

E 

Desired 
weights 

w 

Figure 2.5: Error surface. 
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Figure 2.6: Energy surface showing local and global minima. 

In case energy function is in a local minima (i.e., in every direction in which the 

network could move, the energy is higher than at the local minima), it becomes difficult to 

reach global minima. This problem ofreaching global minima can be minimized by 

altering the weights in a progressively decreased manner. A gain term YJ (equation 2.24) is 

therefore incorporated. Large gain means that large steps are taken across the error surface 

and small steps when the gain value is smaller. If the gain term is made large in the 

beginning and smaller later, the gradient descent will take larger steps at first thereby 

possibly bypassing local minima in the initial stage. The smaller steps at the later stage 

will help to settle in some deeper minima possibly global minima. 

The changes in the weights can also be given some momentum by introducing a 

momentum factor into the weight adaptation equation (equation 2.31). This will produce a 

proportional change in the weight (i.e., it will produce a large change in weights if changes 

are currently larger and smaller ifthe changes are smaller). This process is likely to skip 

local minima in the initial stages as the momentum term will push the changes in the 

direction of downward slope. The inclusion of momentum tenn will therefore reduce time 

to converge towards global minima. 

The training stops when the error stops decreasing. To achieve this, the network 

may over-fit the training data (Figure 2.7) and may not generalize well for unseen cases. A 

solution to check over-fitting oftraining data are by making use of a validation data. The 
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Figure 2.7: Over-fitting oftraining data. 

validation data are like training data, which has not been used to train the network. The 

accuracy ofnetworks trained by the training data are evaluated by the validation data and 

the network with the smallest error with respect to validation data are selected. The use of 

validation data to evaluate the accuracy ofnetwork can over-fit the validation data and, 

therefore, the accuracy of the selected network should be confrrmed by evaluating its 

accuracy on a third independent data called as test data. 

2.5.2 Limitations of Artificial Neural Network 

Artificial neural networks operate directly on the training data without regard to 

any distribution assumption as in MLC. They, therefore, fall into the class of non-

parametric classifiers. They, however, have all the problems associated with supervised 

classification. For instance, the accuracy ofthe classification is dependent upon the quality 

ofthe training data. Factors like number and composition of training samples, number of 

bands used, affect the accuracy of ANN (Foody and Arora, 1997). Error in correct 

identification of an individual training sample pixel may not influence statistical classifier 

like MLC but has considerable impact on ANN (Mather, 1999). For example one 

erroneous pixel may not contribute too much to the mean of the spectral distribution of the 

category under consideration on which the MLC is trained but will have direct effect on 

ANN as the classifier is trained directly on the training data. The composition ofthe 

training data especially those lying close to the decision boundary, prone to be removed by 
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conventional training set refinement techniques (for use in parametric classifier like MLC) 

playa very important role in accurate classification using ANN (Foody, 1999). A neural 

network aims to minimize an overall error and, therefore, the proportion of training data of 

the categories under investigation is of paramount importance. For example, a network 

trained on unbalanced data set (unequal training data for classes under investigation), 

would bias its decision towards the majority class. This is so as the network may minimize 

overall error by classifying majority class accurately as compared to the minority class. 

The training data should, therefore, have equal representation for all the categories under 

investigation. 

One of the most important limitations of ANN is the judicious selection of various 

parameters associated with the design. Many of these parameters are interrelated and in the 

absence of definite rules, trial runs or experience of the analyst is the usual recourse to 

develop an optimal network. Thus for instance, the number of units and hidden layers that 

should be used is a commonly encountered problem (Foody and Arora, 1997). 

Kolmogorov's theorem, however, sheds some light on the requirement of hidden layers 

and associated units. It states that a three-layer perceptron with n(2n+ 1) nodes can 

compute any continuos function of n variables. 

The architecture of the network has to be so designed, that the network has the 

capacity to learn accurately during the training phase and also maintain a high 

generalization power. A large network is likely to learn the training data accurately but 

may not generalize well, but a small network on the other hand, will have difficulty in 

learning but may end with a greater generalization power. There exists a variety of 

procedure which determine the network size like pruning, growing hidden units or by cross 

validation. The learning and generalization power of a network is also dependent on the 

number of training iterations. More the iterations, more accurate is the training but lesser 

the generalization ability. As the objective in classification is to generalize well for unseen 
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cases, utmost care should be taken, not to over train the network, as it would decrease the 

generalization power. 

Feature reduction can also be employed to reduce the network size, as only the 

most discriminating variables are then chosen for analysis, thereby decreasing the training 

time while maintaining if not possibly increasing the classification accuracy (Battiti, 1994; 

Lee and Landgrebe, 1997; Benediktsson and Sveinsson, 1997; Foody, 1999). 

The remote sensing specialist is usually not a neural network specialist, therefore, 

the design of the classifier (network) should be automated as much as possible. There are 

software's available which automatically generate promising networks from the training 

data set. Such an arrangement reduces time to design optimal networks manually by 

repeated trial and runs, and thus compensates for the long time taken to train the network, 

and makes neural network a very strong candidate for classification problems. 

2.6 Decision Trees 

A decision tree can be defined as a classification procedure that recursively 

partitions data into smaller subsets on the basis of tests or thresholds at each node in the 

tree (Figure 2.8). The tree is composed of a root node, which is at the top of the hierarchy 

(unlike a natural tree) contains all the input data, a set of internal nodes (splits) and a set of 

terminal nodes (leafs). 

Decision tree classification techniques have been used successfully for a wide 

range of classification problems but have not found widespread use in remote sensing until 

recently (Safavian and Landgrebe, 1991), although these techniques have many advantages 

over the traditional supervised classification procedures such as the maximum-likelihood 

classifier. Decision trees are non-parametric and, therefore, do not make any assumptions 

regarding the distribution of input data. They are computationally efficient and have 

intuitive appeal, as the tree structure is easily interpretable (Pal and Mather, 2004). The 
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Figure 2.8: Classification of a forest using a decision tree. Each box is 
a node with root at the top which contains all the data (Infrared values 
(IR)). Splitting rules based on the value of IR values are applied at 
each node to make the data in the child nodes homogeneous. The 
forest is classified as Oak, Maple, Pine and Deodar as shown by the 
leaf of the decision tree. 

Leaf 

tree structure clearly shows the features (discriminating variables, for example spectral 

bands) of the input data used by the tree to discriminate the categories. 

2.6.1 Classification of Decision Trees 

Decision trees can be classified as homogenous or heterogeneous based on the 

algorithms employed to estimate the splitting of data at the nodes. Traditionally, 

homogenous decision trees are used which employ only a single algorithm to estimate the 

split at the node. A hybrid decision tree on the other hand employs more than one 

algorithm. Homogenous decision trees can further be subdivided or classified as univariate 

and multivariate. 

2.6.1.1 Univariate Decision Tree 

A univariate decision tree (UDT) is a type of decision tree in which the decision 

boundaries at each node of the tree are defined by a single feature of the input data (Swain 

and Hauska, 1969). The threshold/test applied at each node for splitting the data are 
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estimated from the training data. For continuous data, the test is of the form; u i > t, where 

u i is a feature in the data space (training data) and t is a threshold (lies in the observed 

range of ui ). The threshold t can be estimated by some measure, which maximizes the 

dissimilarity in the descendent nodes. 

2.6.1.2 Multivariate Decision Tree 

A multivariate decision tree (MDT) is like a UDT, except for the splitting test used 

at the nodes. The splitting test in MDTs is based on more than one feature of the input 

data, unlike UDTs which are based on only one feature. 

MDTs are often more compact and can be more accurate for classification than 

UDT's (Brodley and Utgoff, 1995). However relative to UDT's, MDT's have many 

disadvantages because of their complex structure (splitting test based on more than one 

feature of the input data). First, unlike UDT many different algorithm/rules can be used to 

split the nodes (Briemmen et at., 1984; Murthy et at., 1994), which makes MDT more 

difficult to interpret than UDTs. Secondly, as the split at the nodes are governed by more 

than one feature, so several different algorithms are available to perform feature selection. 

Further, the feature selection is carried locally rather than globally that is, they choose the 

features to include in each test at the nodes on the basis of the data observed at a particular 

node rather than selecting a uniform set of features to be used for the entire tree (Friedl and 

Brodley, 1997). 

2.6.1.3 Hybrid Decision Tree 

A hybrid decision tree is a decision tree, where different classification algorithms 

may be used in different subtrees of a larger tree (Brodley, 1995). Figure 2.9 shows an 

example of hybrid decision tree in which three different classification algorithms, a linear 
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Figure 2.9: A hybrid decision tree classifier, using splitting rules as linear discriminant 
function (LDF) at root, k nearest neighbour on the left tree and a univariate decision 
tree on the right to classify four classes Oak, Maple, Grass, Pine and Deodar. 

discriminant function (LDF), K nearest neighbour (K-NN) and Univariate decision tree 

(UDT) are used to classify a dataset. 

The objective of using different classification algorithms in a hybrid decision tree 

is due to the fact that different algorithms can classify different data with different 

accuracy. This property of classification algorithms is termed "selective superiority" 

(Brodley, 1995). By allowing a hybrid hypothesis space, a decision tree can be adapted to 

the problem, thereby producing a more accurate classification result (Brodley, 1995). 

The decision tree generation broadly consists of two phases; the tree design and the 

tree pruning. 

2.6.2 Design of a Decision Tree 

The main objectives of decision tree as any other classifier are to correctly classify 

training samples and generalize well to unseen cases. Additionally, the tree should be so 

designed that it has a simple structure and easy to update if more training data are made 

available (Safavian and Landgrebe, 1991). 
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The design of a decision tree depends on appropriate choice of the tree structure, 

choice of feature subsets to be used at each internal node and choice of the decision rule or 

strategy to be used at each internal node (Kulkarni and Kanal, 1976; Kurzynski, 1983). 

Since, the number of possible tree structures, even for a moderately small number 

of classes can be astronomical; it is very difficult to design an optimal classifier. To make 

the design task easier, binary decision trees are often adopted. Binary trees are those in 

which each node contains two children identified as left and right child. However, the 

discrimination ability is not necessarily weakened by choosing a binary approach, since a 

general decision tree can be uniquely transformed into an equivalent binary tree (Rounds, 

1980). The accuracy of classification with a decision tree depends on how the tree was 

designed (Safavian and Landgrebe, 1991). The various heuristic methods for designing a 

decision tree can roughly be divided into four categories (Safavian and Landgrebe, 1991) 

bottom-up-approach, top-down approach, the hybrid approach and tree growing-pruning 

approach. 

2.6.2.1 Bottom-up Approach 

In a bottom up approach, the information classes are combined until one is left with 

a node containing all the classes. In this approach, the design is initiated at the level of 

leaf, where all information classes reside and move upwards till the root is reached, where 

all the data resides. 

Initially, pair-wise class separation are computed (Richards and Jia, 1998) using a 

distance metric, such as Mahlanoobis distance. The two most similar classes are merged 

and their mean calculated. The process is continued until all the classes lie in a single 

group at the top of the tree that is the root. In a tree constructed this way, the more separate 

classes are discriminated first, near the root and more subtle ones at the later stages of the 

tree. 
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2.6.2.2 Top-down Approach 

The top-down approach employs splitting rules starting from the root of the tree, 

the classes are divided until a stopping criterion is met. It is also called as a progressive 

two class decision classifier (Richards and Jia, 1998). The top down method of tree design 

is the best known (Floriana et at., 1997) amongst all the approaches. 

In top down approaches, the design of a decision tree reduces to the selection of a node 

splitting rule, decision as to which nodes are terminal and assignment of each terminal 

node to a class label (Safavian and Landgrebe, 1991). 

The task of class assignment is the easiest of the three tasks. The objective is to 

minimize the misclassification rate by assigning terminal nodes to the classes that have the 

highest probabilities of membership (based on the majority rule that is assign to the 

terminal node, the label of the class that has the most samples present). 

The decision whether a node is terminal can be made by the splitting rules itself as 

the use of stopping rules may halt the growth of the tree too soon at some nodes and too 

late at the others (Brieman et at., 1984). The use of the splitting rules, on the other hand, 

helps the tree to grow until the leafs are left with only the pure classes. This may result in 

very large trees, which can be pruned. Most of the research in decision tree design has 

concentrated in finding various splitting rules (Safavian and Landgrebe, 1991). 

2.6.2.2.1 Selection of Node Splitting Rules 

The splitting rule is aimed to make the data in the child nodes purer (homogeneous) 

(Fraser et at., 2005). This can be achieved by two approaches; the first approach measures 

the goodness of split at the nodes while the second approach tries to minimize the impurity 

of the training data. Information gain and Information gain ratio, Gini-index, Towing rule 

and Chi-square contingency method are some of the node splitting rules. However in the 

present work Information gain and Information gain ratio splitting rule has been used and 

discussed in detail. 
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2.6.2.2.1.1 Information Gain and Information Gain Ratio 

Quinlan (1986) proposed the use of information gain and information gain ratio 

based on the concept of entropy to represent information in data sets. Quinlan described 

the entropy or information content as: 

(2.32) 

Where, Pj is the probability of class} 

For a given training set G, the probability that a case selected randomly belongs to 

class C j is given by: 

(2.33) 

Where, freq(Cj , G) is the number of cases in G that belongs to Cj ' and T denotes 

total cases in training data. The information (entropy) gained using equation 2.32 and 2.33 

can be defined as: 

• k freq(C),G) freq(C) ,G) 
mf o( G) = - L X log2 ---"--

H G G 
(2.34) 

If a test X, partitions the set T into n outcomes, the expected information content 

can be found, as the weighted sum over the subtrees as: 

inf 0x(G) = - ± Gi x inf o(Gi ) 

j=! G 
(2.35) 

The information, therefore, gained by splitting training set T using test X can be 

measured by: 

Gain (x) = info (G)-infox (G) (2.36) 

This criterion is called as the gain criterion and is used to select a test, which 

maximizes the information gain. The gain criterion however has a serious drawback as it 
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has a strong bias in favour of tests with many outcomes. The bias can be rectified by 

normalization of equation 2.35 as: 

1· . f n G G sp 1tm o(x) = -L:-l log2-' 
i=! G G 

(2.37) 

The split info represents the potential information generated by splitting T into n 

subsets, whereas the information gain measures the information relevant to classification 

that arises from the same division. The gain ratio gives the proportion of information 

generated by the split useful for classification. 

Gain ratio (x) =gain (x) / split info (x) (2.38) 

The training data T then recursively partitions the data set, so that the gain ratio is 

maximized at each node of the tree. The procedure is continued until each leaf node 

contains data only from a single class or any further splitting yields no increase in 

information. 

2.6.2.3 Hybrid Approach 

The hybrid approach proposed by Kim and Landgrebe (1991) uses both bottom-up 

and top-down approaches sequentially. The rationale for the approach is that the bottom up 

procedure assists the top-down procedure in the growth of the tree. The procedure, first 

consider the entire data, uses a bottom up approach to come up with two clusters of 

classes. Then mean and covariance of both the clusters are computed, to be used by top 

down algorithm to generate two new clusters from each of the original clusters. If the 

resulting clusters contain only one class, the cluster is labelled as terminal; else the 

procedure is repeated till all the clusters are labelled as terminals. 

2.6.3 Pruning of Decision Trees 

A decision tree can be grown so as to have zero error on the training data. In other 

words, the decision tree can grow indefinitely until all the classes are separated. This 

process can lead to a very large decision tree (Simard et al., 2000) and may over-fit to the 
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noise in the training data. This would result in erroneous classification of unseen cases. To 

overcome this problem, the tree needs to be pruned in order to generalize accurately to 

unseen cases (Pal and Mather, 2004). 

The pruning process involves the elimination of the inefficient or weak branch 

(those branches of tree, the removal of which do not alter classification accuracy) of the 

decision tree. This results in a less complex and more interpretable tree. There are two 

different ways of pruning (Breiman et aI., 1984); either by prospectively deciding when to 

stop the growth of a tree referred to as pre-pruning or by reducing the size of a fully 

expanded tree by pruning some branches (post-pruning). 

Pre-pruning methods establish stopping rules for preventing the growth of those 

branches that do not seem to improve the predictive accuracy of the tree (Floriana et al., 

1997). The problem with this approach is to specify a correct stopping rule (Breiman et al., 

1984) as also to understand the benefits of the splits, to take place in the pruned part of the 

branch. To ward off these problems, post pruning methods are adopted. 

In post pruning, a tree is grown, even when it seems worthless and is then 

retrospectively pruned of those branches that seem superfluous with respect to predictive 

accuracy (Niblett, 1987). 

In general, pruning methods aim to simplify decision trees that over-fits training 

data resulting in higher accuracies for unseen data. The benefits of pruning lured many 

researchers with the outcome that many pruning methods are available now. 

Some methods follow the top-down approach that works from root to leaf to 

examine the branches to be pruned, other follows the reverse direction; bottom up 

approach. Furthermore, some method employ only the training set to evaluate the accuracy 

of a decision tree; other works on additional data set called as pruning set. The use of an 

independent pruning set might be problematic especially when small training samples are 

involved. 
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There are a number of post pruning methods available because of the inherent 

advantages over pre-pruning approach, but the following six have achieved widespread 

popularity (Floriana et al., 1997). 

l. Reduced error pruning (REP) 

2. Pessimistic error pruning (PEP) 

3. Minimum-error pruning (MEP) 

4. Critical value pruning (CVP) 

5. Cost-complexity pruning (CCP) 

6. Error based pruning (EBP) 

The pessimistic error pruning has been used in the present work and, therefore, 

discussed hereafter. 

2.6.3.1 Pessimistic Error Pruning 

The PEP method was proposed by Quinlan (1987) uses the same training data, both 

for growing and pruning a tree. The apparent error, that is the error rate on the training set 

is, therefore, biased and should not be used to select the best pruned tree. Quinlan (1987), 

therefore, introduced the continuity correction, considering binomial distribution that 

might give a more realistic error rate. 

Let e(t) and n(t) represent the number of examples misclassified and total number 

of examples at node t respectively, then apparent error rate r(t) at node t is given by: 

r(t) = e(t) 
n(t) 

Similarly, apparent rate r(I;) for whole subtree I; with total n leaves is: 

n 

Ie(i) 
r(I;)=~ 

In(i) 
i~J 
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The corrected misclassification rate r' (t) at node t after continuity correction for 

binomial distribution is: 

r' (t) = [e(t) + 112] 
net) 

(2.45) 

Similarly corrected misclassification rate r' (TJ for the whole subtree is given by: 

n 

[L(e(i) + 112)] 
r' (Ts) = -'j-';\-n----

Ln(i) 
j;\ 

n 

Le(i) + nl2 
_ j;j 

n 
(2.46) 

Ln(i) 
j;\ 

The numerator of equation 2.45 and 2.46 represents the number of errors at node t 

and for the subtree Ts respectively. The subtree is expected to make fewer errors on the 

training set than the parent node t when t becomes a leaf, but sometimes the reverse may 

happen, that is n' (t) :s; n(T;) due to continuity correction, in which case the node tis 

pruned. For this reason, Quinlan (1987) weakens the condition so that: 

(2.47) 

Where, SE is the standard error for subtree Ts . 

Hence, the algorithm only keeps the subtree, if the corrected figure for subtree is 

more than one standard error better than the figure for the node. 

As the algorithm evaluates each node starting from the root of the tree and, if a 

branch is pruned then its descendent structure is not examined. This top-down approach, 

therefore, accomplishes the task very quickly. 
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2.6.4 Limitations of Decision Tree Classification 

A number of factors have to be considered in the optimal design of decision trees 

which includes the choice of decision tree (univariate, multivariate or hybrid), attribute 

selection methods to be employed to split the nodes and pruning methods to prune the tree. 

Reliably few studies using decision trees have been undertaken using remote 

sensing data (Safavian and Landgrebe, 1991; Friedl and Brodley, 1997; De Colstrun et al., 

2003). 

De Fries et al., (1998) used decision tree classifier for global land cover 

classification at 8 km. spatial resolution data. They studied the effect of imbalanced 

training sets and found that the tree might be slightly biased towards those cover types 

with a large number of training pixels as compared to a tree trained with equal number of 

training pixels. 

Pal and Mather (2002) employed decision tree on Landsat-7 ETM+ data and 

compared the effect of various node splitting rules and pruning methods on classification 

accuracy. They compared the effect of four node splitting rules, the information gain, gini 

index, information gain ratio and chi-square and concluded that the overall accuracy 

obtained is almost same, except for information gain ratio, which results in an increase of 

less than one per cent. The study confirms the finding of Brieman et al., (1984) that 

classification accuracy is not affected by choice of attribute selection measure. They also 

compared the accuracy resulting from pruning methods REP, PEP, CVP, CCP and EBP 

(Esposito et al., 1997) and found that accuracy ranged from 81.4 % to 82.9 %. 

Friedl and Brodley (1997) applied decision trees on TM data (30 ill spatial 

resolution) and concluded that hybrid decision tree provided higher accuracy (76 %) as 

compared to univariate (75.2 %) and multivariate decision tree (75.9 %). They also 

revealed a tendency of decision trees to penalize solutions for classes with fewer 

observations in the training data and suggested that this bias also depend on the overall 

separability in feature space relative to other classes. 
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2.7 Support Vector Machines 

The support vector machines (SVM) have recently attracted the attention of the 

remote sensing community (Brown et al., 1999; Huang et al., 2002; Halldorsson et al., 

2003). They are gaining popularity due to many attractive features. A key feature behind 

the technique is to separate the classes with a decision surface that maximizes the margin 

between them called as the optimal separating hyperplane. A separating hyperplane refers 

to a plane in a multidimensional space that separates the data samples of two classes. 

There can be a number of separating hyperplane that can separate the classes but the 

optimal separating hyperplanes is expected to generalize well for unseen cases (Figure 

2.10). 

A key feature of this classifier is its ability to use high dimensional data without the 

usual recourse to feature selection to reduce the dimensionality and is, therefore, being 

used in very diverse fields like optical character recognition, hand written digit recognition 

(Vapnik 1995). 

The SVM derived its name from support vectors, training data points which lies on 

two parallel hyperplane (Figure 2.11) and contain all the information relevant to the 

classification problem. 

2.7.1 Design of Support Vector Machines 

In this section, the mathematical derivation of support vector machines (SVM) is 

introduced in steps, first the simplest case of a linear classifier and linearly separable case 

is described, followed by a linear classifier and non-separable case and finally, a non-linear 

classifier (non linear decision surface) and non separable case, useful of all the three cases 

(Osuna et al., 1997). 
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2.7.1.1 Linearly Separable Case 

Linearly separable case is one in which the data set can be separated into its 

constituent classes by a linear separating surface (Figure 2.10). 

Let the training data of two separable classes (Figure 2.10) with a total of r 

samples, a belonging to class I, and b belonging to class II (a + b = r) be represented by: 

where, 

2002). 

XiERn, is an n dimensional space and Yi E {1,-1} are class labels (Huang et a!., 

i 
Band 2 

• •• ••• 
••• • • • 

Q 

Band 1 ) 

) 

Legend 

+1 (class 1) 

• -1 (class 2) 

- Optimal hyperplane 

Figure 2.10: The two classes ( Qand . ) can be separated by a number of decision 
surfaces (shown by black lines in between the two classes). However, there is only one 
decision surface called the optimal separating hyperplane (shown by dark blue line), that is 
expected to generalize accurately on unseen cases as compared to other decision surfaces. 
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The goal is to produce a classifier that works well on unseen data (i.e., it 

generalizes well). There can be a number of hyperplanes that can separate the data but 

there is only one optimal separating hyperplane (Figure 2.10) which is expected to 

generalize well in comparison to other hyperplanes. 

The goal of optimal hyperplane is that; 

1. Data belonging to both the classes (Figure 2.11) should lie on its opposite 

side. 

2. It should be so placed that the distance of the closet data points (training 

data) in both the classes are furthest from it (to generalize well for unseen 

cases). 

The hyperplane can be defined by the equation: 

where, 

w.x+b =0 

x is a point on the hyperplane, 

w is an n dimensional vector perpendicular to the hyperplane (determines the 

orientation of the plane in space), 

b is distance of the closet point on the hyperplane to the origin (offset of 

hyperplane from origin) 

• 
"\~ 

'-, W • 
-'/ . 

/'~ 

• • 
• 

\'" P2 
"-

Figure 2.11: Optimal hyperplane (dark black line) with parameters wand b. 
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Parallel planes PI and P2 contains support vectors relevant in the formulation of 

optimal hyperplane. 

The classifier can be defined by: 

F w,b = sgn( w.x+b) (2.56) 

Let di be the perpendicular distance of x. from any point x on hyperplane. 
I 

Where, y. are class labels + 1 or -1 of the two classes. 
I 

(2.57) 

Substituting equation 2.55 in equation 2.57 gives 

(2.58) 

y. 
di = _1 (w.x. + b) 

I wi I 
(2.59) 

The parameters wand b describing the hyperplane can be scaled by a constant 

without changing the hyperplane. This implies that the decision surface will remain same 

if both wand b are scaled by the same non-zero constant. In order to eliminate this scaling 

freedom so that each decision surface corresponds to a unique pair (w, b), the following 

constraint is imposed. 

if i is a support vector (2.60a) 

>0 if i is not a support vector (2.60b) 

or, 

y(w.xi + b) -1 ~ 0 i=1,2 ..... k (2.61) 
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The set of hyperplanes that satisfy equation2.60a are called as canonical 

hyperplanes. The data points that are nearest to the hyperplanes are called as support 

vectors and playa very important role in establishing the optimal separating hyperplane. 

The distance between the canonical hyperplane to the support vectors can be found, by 

substituting equation 2.60a into equation 2.59, as: 

1 
d.=-

I Iwl 

(2.62) 

Maximizing this distance would help in finding the optimal hyperplane that is 

separating hyperplane for which the distance between the two convex hulls (of the two 

classes of training data), measured along a line perpendicular to the hyperplane, is 

maximized. This distance is called as margin. 

(2.63) 

under the constraints, 

y( w,Xj + b) - 1 ~ 0 i=I,2 ..... k 

Hence, the hyperplane that optimally separates the data are the one that minimizes: 

(2.64) 

The quadratic optimization problem of equation 2.64 can be simplified, so as to 

replace the inequalities with a simpler form by transforming the problem to a dual space 

representation using lagrangian multipliers a i as; 

1 2 r 
L (w,b,U) = -II w II -IUi(Yj[(w'Xj + b)] -1) 

2 i=! 

(2.65) 
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The solution is basically determined by a saddle point of lagrangian, which has to 

be minimized with respect to w and b, and maximized with respect to a, the lagrangian 

multipliers. The dual problem becomes: 

max minL(w,b,u1, ...... ·u
r

) (2.66) 

u i =I, ... r w,b 

with constraints, 

a i ;:::: O,i = 1, .... r 

y(w,Xi + b) -1;:::: O,i = 1, ..... r 

The minimization of lagrangian (equation 2.65) with respect to wand b gives: 

r 

:::::> IUiYiXi = w 
i=1 

r 

IUiYi = ° 
i=1 

Equation 2.67 shows that optimal hyperplane can be written as a linear 

combination of training data. 

(2.67) 

(2.68) 

According to Karush-Kuhn-Tuker (KKT) theory, only data points that satisfY the 

inequality equation 2.61 can have non-zero coefficients a i • The KKT conditions playa 

central role in the solution of constrained optimization. The equations 2.67 and 2.68 along 

with the constraints of equation 2.66 are KKT conditions. As the constraints in SVM are 

linear (equation 2.61) and the problem is convex, the KKT conditions are necessary and 

sufficient for w, b, a to be the solution of dual optimization problem (equation 2.65). 

The pattern Xi' for which a i > ° lie exactly on the margin according to equation 

2.61 and are used to establish the optimal hyperplane (equation 2.65); hence these data 

points are called as support vectors (Pal and Mather, 2005). All remaining examples in the 

training dataset are irrelevant. Their constraints are satisfied automatically and they do not 
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appear in the expansion of equation 2.67. The support vectors playa very important role in 

establishing the optimal separating hyperplane and, therefore, the classification technique 

is referred to as the support vector machine. 

The expression obtained (equation 2.69) by substituting the expansion of equation 

2.67 into the decision function given by equation 2.55, can be evaluated by the pattern to 

be classified and the support vectors. 

r 

f(x) = sgn(l: u i Yi (x, Xi) + b) (2.69) 
i=1 

2.7.1.2 Linearly Non-separable Case 

Typically land cover classes cannot be separated by a linear separating hyperplane 

in feature space (Figure 2.12) because ofthe outliers. In such a case, a linear separating 

surface, as in the linearly separable case, does not exist. It is, therefore, not possible to 

satisfy all the constraints of equation 2.61. 

y(w.xj +b)-l;?:O, i=l, .... r 

To deal with such cases using only linear separating boundaries, Cortes and Vapnik 

(1995) introduced a new set of variables {~i };=1; that measures the amount of violation of 

the constraints. 

The constraint then becomes: 

Y(W.X i + b) > 1- ~i (2.70) 

The above constraints, in case of outliers, can always be met by making ~i very large, so, 

r 

a penalty term CI ~i is added to penalize solutions for which ~i are very large. The 
i=1 

constant C controls the magnitude of the penalty associated with training samples that lie 

on the wrong side of the decision boundary. The optimization from equation 2.64 then 

becomes: 
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w 2 
r 

min[-+CL~J 
2 ;=1 

(2.71) 

under the constraints, 

0 

r • 0 

Band 2 •• ••• 0 

•• • 
) 

Band 1 ) 

Figure 2.12: Training data cannot be separated by single linear separating hyperplane. 

r 

Ifthe classes overlap considerably in feature space then CI';i can be very large 
;=1 

and the hyperplane may not generalize well. 

The solution ofthis problem is determined by the saddle point ofthe lagrangian in 

a way similar to that described in linearly separable case. The uncertain part however is 

that the coefficient C has to be chosen by the analyst so as to reflect the noise in the data. 

2.7.1.3 Decision Surfaces 

In the situation, where it is not possible to define a hyperplane by linear equations 

on training data (e.g., if the classes overlap considerably in feature space), the techniques 

can be extended to allow for non-linear decision surfaces (Pal and Mather, 2004). A 

technique introduced by Boser et aI., (1992), maps input data into a high dimensional 

space through some non-linear mapping. The transformation to a high dimensional space 

spreads the data in a way that facilitates the fitting of a linear hyperplane (Figure 2.13). 
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More precisely, one maps the input data into a high dimensional-space H , through a 

mapping function ¢ : 

Input space 

+ 
+ 

Fea tu re space 

+ 
+ 

(2.72) 

Figure 2.13: The two classes ~ and 0 ) cannot be separated by linear decision 
surface but after transformation to a high dimensional feature space through a function 
cp, the data can be separated by a linear decision surface (Vapnik, 1995). 

An input data x can be represented as tp(x) in the high dimensional space H. The 

evaluation of the decision function given by equation 2.72 requires the computation of 

(cp(x), ~CxJ) in a high dimensional space. These computationally expensive calculations 

are reduced significantly by using a positive definite kernel (Vapnik, 1995), such that: 

(cp(x), ~(xJ) = k(x, xJ (2.73) 

leading to decision functions of the form; 

r 

f(x) = sgnCL: uiyjk(x, Xi) + b) (2.74) 
i=1 

A kernel that can be used to construct a SVM must meet Mercer's condition 

(Huang et aI., 2002). The following two types of kernels meet the condition (Marcal et aI., 

2005) 

The polynomial kernels of degree p, 

and the radial basis functions (RBF) 
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k( x ,Xi) = e -rllex 
-Xi )11

2 

where y is the parameter controlling the width of the Gaussian kernel 

2.7.2 Multi-Class Support Vector Machine 

Support vector machines were designed for binary classification that is one SVM 

can only separate two classes. Many real world problems have more than one class, one of 

the examples being land cover. SVMs, therefore, must be adapted to multi-class problems. 

Two simple ways to generalize a binary classifier to a multi-class classifier (Gualtieri and 

Cromp, 1998) for k classes are: 

1. Train k binary classifiers, each one using training data from one of the k 

classes and lumping together training data of the remaining k-1 classes into a mega 

class. In other words, the strategy is to break the k class problem, into k binary 

classifiers, each trained to separate one class from the rest (one-against-all 

approach) and then combining them by carrying multi-class classification (applying 

a voting scheme) according to the maximal output before applying the decision 

rule. 

2. Construct a machine (classifier) for each pair of classes (one-against-one 

approach) resulting in n (n-1)/2 machines. When applied to a test data, each 

machine gives one vote to the winning class, and the pixel is labeled with the class 

having most votes. 

In the first option, the sizes of the two concerned classes can be disproportionately 

imbalanced, because one of them groups n-1 classes, a mega class against a single class. A 

classifier may not be able to find a boundary between the two classes because the classifier 

probably would make least errors by labelling all data points belonging to the smaller class 
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with the mega class. The second option has the drawback that it requires n(n-1)/2 binary 

classifiers to be trained for an n class problem, as compared to only n for the first option. 

Multi-class classifications of remotely sensed data by SVM have to-date been 

based on the above approaches (Huang et al., 2002; Halldorsson et al., 2003; Mercier and 

Lennon, 2003; Gualtieri and Cromp, 1998). While both strategies to reducing the multi-

class problem to a set of binary classifications enable the basic SVM to be employed, a 

more appropriate approach, that is less computationally demanding, is to consider all 

classes at one time, yielding a multi-class SVM (Hsu and Lin, 2002). 

One means to achieve this, which is similar in basis to the 'one-against-all' 

approach, is by solving a single optimization problem. With this, n two class rules where 

the mth function w;,tp(x) + b separates the training data vectors of class m from that of 

others are constructed. Hence, there are n decision functions or hyperplanes but all are 

obtained by solving one problem, 

1 n I 

min- Lw;,wm +CL L;t 
w,b,r; 2 m=! ;=1 IW"Y, 

(2.75) 

under the constraints, 

;t' ;:::: O,i = 1, ..... ,l,m E {l, .... n} \ y; 

The decision function is then, 

argmax m=l, ... n (W;,tp(X) + bm ) (2.76) 

In reducing the classification to a single optimization problem this approach may 

also require fewer support vectors than a multi-class classification based on the combined 

use of many binary SVM (Hsu and Lin, 2002). 
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2.7.3 Limitations of Support Vector Machine 

Support vector machines are a non-parametric supervised classification technique 

and, therefore, they do not assume any distribution of the training data as in conventional 

classifier such as the maximum-likelihood classifier. They, however, share all the 

problems associated with supervised classification. For instance, the accuracy of the 

classification is dependent upon the quality of the training data. Factors like number of 

training samples, number of discriminating variables affect the accuracy of support vector 

machines. 

Support vector machines also depend upon kernel parameter choice, and class 

separability. The polynomial kernels, especially higher order kernels take more time than 

RBF kernels. Training the SVM to classify classes highly overlapping in feature space can 

take several times longer than training it to classify two separable classes. 

Huang et al. J (2002) compared four classifiers MLC, DTC, ANN and SVM in land 

cover classification and found that SVM's were generally the most accurate and MLC the 

least. However the training speeds of the four classifiers were substantially different. They 

found that, for their data set, the MLC and DTC could be trained in a few minutes while 

ANN and SVM took hours and days respectively. 

SVM's have been successfully used in optical character recognition, handwritten 

digit recognition (Vapnik, 1995), but they are relatively new to remote sensing community 

as compared to other classifiers like MLC, ANN, DTC (Huang et aI., 2002). They have 

however been found superior in classifying hyperspectral images acquired from air-borne 

visible/infrared imaging spectrometer (A VRIS) (Gualtieri and Cromp, 1998). The high 

dimensionality of hyperspectral data are challenging for traditional classifiers, due to the 

Hughes effect. The support vector machine does not suffer from this handicap and is thus 

suitable for use with hyperspectral data. 

The use of support vector machines for data having fewer spectral bands should 

have a practical implication for land cover classification (Huang et al., 2002), as the major 
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sensor systems like Thematic Mapper, Linear Image Self Scanning operate very few 

spectral bands as compared to hyperspectral data, and are generally employed for 

generating land cover maps. The performance of SVMs on data sets with very few 

variables should be investigated because data sets with fewer variables were not 

considered in previous studies (Cortes and Vapnik, 1995). 

The potential of SVM reported in literature can be attributed to its ability to locate 

optimal separating hyperplane. The optimal separating hyperplane are expected to 

generalize accurately on unseen examples with fewer errors than any other separating 

hyperplane that might be found by the other classifiers (Huang et at., 2002). The potential 

of SVM should be exploited in remote sensing, especially on data sets with fewer 

discriminating variables to generate land cover map. 

2.8 Conclusions 

Accurate information on land cover possibly in map form is required for a plethora 

of applications, including land resource planning, studies of environmental change and 

bio-diversity conservation. Remote sensing has many advantages in generating thematic 

maps over conventional ground based surveys. Supervised classification methods in 

particular are the most popular and widely used technique for deriving thematic maps from 

remote sensing data. The accuracy of supervised classification, however, is often 

insufficient for operational applications. One of the important reasons for this is associated 

with the inputs in supervised classification, especially the training data. 

There are a number of approaches available for supervised classification. MLC is 

the most popular parametric classifier but works under the assumption that the training 

data are normally distributed. Key distribution free methods with very different approaches 

are ANN, DT and SVM. 

The general requirement of training data is that they should be able to characterize 

the classes under investigation. SVM have recently attracted the attention of the remote 
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sensing community. A key attraction of the SVM based approach to classification is that it 

seeks to fit an optimal hyperplane between the classes and since it uses only the training 

samples that lie at the edge of the class distributions in feature space it may require only a 

small training sample. Studies have shown that SVM results in higher accuracy as 

compared to other classifiers like ANN, DT and MLC. 

This inherent property of the classifier to use only border training data provides an 

opportunity to review ground data collection policy. The analysis in this thesis, therefore, 

aims to evaluate SVM and will focus on: 

a) Relative evaluation ofSVM with respect to MLC, DT and ANN by 

comparing the effect of training set size on classification accuracy. 

b) Assess ability to identify most useful training patterns (support vectors) in 

SVM classification. 

c) Intelligently reducing the requirement of training data by collecting training 

data of agricultural classes that acts as support vectors directly from field. 

d) Intelligently reducing the requirement of training data by relating support 

vectors with ancillary data. 

e) Reducing the requirement of training data if the concern is to map 

accurately only one class from the many land cover classes available in the 

study area. 
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CHAPTER 3 - Relative Evaluation of Multi-Class 
Image Classification by SVM 

3.1 Introduction 

Supervised classification method uses training data to train the classifiers. The 

training data may be of unequal importance in an image classification and their importance 

may also depend upon the classification algorithm used. The study was undertaken with 

the aim to investigate the effect of training set size on classification accuracy with respect 

to a series of supervised classifiers. Both parametric and non-parametric classification 

algorithms were used. Discriminant analysis (DA) which is similar in approach to 

maximum-likelihood classification (MLC), the most popular parametric classifier was 

used as a benchmark. Key non-parametric classifiers evaluated were artificial neural 

network (ANN), decision tree (DT) and support vector machine (SVM). 

Section 3.1.1 describes the study area and data used in the pilot study. The 

methodology is described in section 3.1.2 with results in 3.1.4. 

3.1.1 Study Area and Data Used 

Airborne thematic mapper (ATM) imagery with a spatial resolution of 

approximately 5 m acquired by a Daedalus 1268 sensor on 15 July, 1986 for a flat region 

of agricultural land near the village of Felt well, UK., were used. The data set comprised 

three bands (4, 6, and 9) out of possible twelve bands after feature reduction. The feature 

reduction was carried on the data set in an earlier study (Arora and Foody, 1997) and it 

was apparent that the data in all 11 bands was not required but three wavebands identified 

as providing the greatest level of inter class separability were selected for the analyses. The 

three waveband combination 4,6 and 9 selected for analyses corresponds to 

electromagnetic spectrum range of 0.60-0.63 )lm, 0.69-0.75 )lm and 1.55-1.75 )lm 

respectively. 
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The ground data used, comprised a crop map produced by conventional field 

survey around the time of ATM data acquisition. Six agricultural classes namely; sugar 

beet, wheat, barley, carrot, potatoes and grass were mainly grown in the study area and 

were the focus of this study. The sugar beet and wheat classes were noticeably abundant in 

the study area. 

3.1.1.1 Characteristics of Training Data 

The training data were selected randomly from the study area. Training data 

comprised 100 pixels for each class. 

The spectral distribution ofthe classes comprising the digital numbers (DN) in the 

three bands shows that the class sugar beet, wheat and barley were highly overlapping in 

the feature space (Figure 3.1). This was also confirmed in the summary description 

statistics ofthe training data (Table 3.1). 

The training data were close to normal but multi-modal (Figure 3.2) and, therefore, 

MLC should not be used. 
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Figure 3.1: Location oftraining data in feature space. 
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Figure 3.2: Histograms of training data for the six classes in bands 4,6, 9. The solid 

lines show the smoothened histograms. 
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Band-4 (ON) Band-6 (ON) Band-9 (ON) 

Class Min Max Mean Sd Min Max Mean Sd Min Max Mean Sd 

Sugar beet 43 77 49.10 4.6 85 136 104.22 9.55 52 112 67.69 10.48 

Wheat 42 59 47.71 3.39 73 101 83.88 6.82 49 82 61.43 6.48 

Barley 49 86 62.76 8.16 61 101 86.80 9.74 60 130 80.11 12.38 

Carrot 41 63 46.19 2.95 44 117 75.33 16.71 54 119 83.61 8.63 

Potato 43 53 47.73 2.26 69 133 116.47 13.90 50 109 89.82 11.81 

Grass 49 83 61.21 8.92 74 100 85.44 6.04 83 155 112.6 16.51 

Table 3.1: Statistics of training data showing minimum (MIN), maximum (Max), Mean and 
standard deviation (Sd) of digital numbers of training data of the six classes in the three 
bands. 

3.1.2 Methodology 

There are many factors that affect the accuracy of a classifier. This study examined . 

the effect of training set size, classification algorithms used and testing set size on the 

classification accuracy. The variables studied are tabulated in Table 3.2 and detailed under 

section 3.1.2.1 to 3.1.2.3. 

Variables 
Training set size 

Classification algorithms 

Testing set size 

Scenarios investigated 
15 pixels per-class 
30 pixels per-class 
45 pixels per-class 
60 pixels per-class 
75 pixels per-class 
90 pixels per-class 
100 pixels per-class 
Discriminant analysis 
Artificial neural network 
Decision tree 
Support vector machine 
The classifiers were tested on testing sets 
comprising of two sizes (Group A and B) 
Group-A 
Comprises all the available pixels for testing 
Sugar beet 97 pixels 
Wheat 96 pixels 
Barley 51 pixels 
Carrot 31 pixels 
Potatoes 26 pixels 
Grass 17 pixels 
Group-B 
17 pixels per class 

Table 3.2: Variables studied in the study. 
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3.1.2.1 Training Set 

There can be a number of combinations of training set size that can be constructed 

from the available training data to evaluate the effect of training set size on classification 

accuracy. The training set size was defined by the number of bands used, three in the 

present study (e.g., 3x5=15 pixels/class). The training sets, therefore, comprised of 15,30, 

45,60, 75 and 90 randomly selected pixels per-class (multiples of 3, the number of bands 

used) as also all the 100 pixels available for training (Table 3.2). These pixels were 

selected randomly from the total set of pixels available for training, which comprised of 

100 pixels for each class. Since the results of a classification may be highly dependent on 

the specific sample of pixels selected, for each size of training set, except that using all 100 

pixels available for each class, five independent samples were derived without replacement 

from the available training data (Table 3.3). 

3.1.2.2 Algorithms Used 

DA is a conventional probabilistic classifier that like the maximum likelihood 

classifier allocates each case to the class with which it has the highest posterior probability 

of membership. As a basic probabilistic classifier, the discriminant analysis results provide 

a benchmark against which the relative accuracy of the other classifications may be 

assessed. 

The ANN used was a basic multi-layer perceptron. The network's architecture and 

algorithm parameters were defined from an evaluation of several hundreds of candidate 

networks. 

A DT can be defined as a classification procedure that recursively partitions data 

into smaller subsets on the basis oftests or thresholds at each node in the tree. The 

decision tree algorithm used the gain ratio to split nodes and the pessimistic error rate in 

tree pruning. 
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The SVM used was a one shot multi-class classifier. The advantage of multi-class 

support vector machine lies in the fact that all the classes gets classified in one step, unlike 

binary support vector machine which can work only on two classes at a time and therefore 

needs a number of such binary classifications (depending upon number of classes) for 

classifying all the classes under consideration (Gualtieri and Cromp, 1998). In reducing the 

classification to a single optimization problem this approach may also require fewer 

support vectors than a multi-class classification based on the combined use of many binary 

SVMs (Hsu and Lin, 2002). 

Key studies reported in the remote sensing literature have used binary support 

vector machines only (Gualtieri and Cromp, 1998). The present study, therefore, is one of 

the first in the use of multi-class support vector machine in classification problem of 

remote sensing data. 

The four classifiers described above were chosen for analysis as they differed 

markedly in their basis for class allocation and expected dependency on training set. 

3.1.2.3 Testing Set 

The testing set comprised variable number of pixels to estimate the accuracy of the 

classification as detailed in Table 3.2. The variable number of testing pixels can be 

attributed to the spatial abundance of the crops in the study area. Sugar beet and wheat 

were noticeably abundant and therefore had greater representation in the testing set as 

compared to other crops. 

The direct comparison of matrices can be difficult in case of variable number of 

testing pixels. In such instances, the error matrices can be normalized. Examination of the 

normalized matrices affords very convenient comparison. However, in some instances 

normalized values are so small that they are neglected with the notion that they do not alter 

the interpretation. Apart, it is also difficult to derive original matrix from normalized 

version and therefore should not be attempted. 
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An additional set comprising equal number of pixels for all the classes were, 

therefore, generated. Grass had the least number of pixels (17 pixels) for testing the 

accuracy (Table 3.2) out of all the six classes. So, a testing set comprising 17 pixels per 

class were generated. Since the results of a classification may be highly dependent on the 

specific sample of pixels selected, for each size of testing set, five independent samples 

were derived without replacement from the available testing data. 

Two cases were analysed, hereafter referred to as case A and case B for simplicity 

(Table 3.3), generated from combinations of training and testing set. 

In case 'A', various combination of training data size (five per size) (Table 3.3) 

were used and accuracy tested on testing data comprising of all the pixels acquired for 

testing. The combination out of the five per each training size (Table 3.3) that gave the 

median accuracy was selected for comparison to avoid extreme results. 

In case 'B', the combination of training data was same as in case' A', however, the 

testing data comprised of five different combinations of 17 pixels per class chosen 

randomly with replacement. Each combination of testing size was used to test the four 

classifiers (Table 3.2) trained by corresponding training set. For example testing set 

labelled as Nl was used to test the classifier trained only by corresponding training set Nl 

(15Nl in case of training set of 15 pixels per class). 

However for comparing the effect of various variables on classification accuracy, 

the testing set (out of the five for any particular testing size) which gave the median overall 

accuracy was chosen to represent the outcome for that particular training/testing size 

combination to avoid extreme results i.e., out of the five repetitions on testing set, the one 

in the middle of the overall accuracy hierarchy was selected for comparison. 
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Case Training set Testing set 
Pixels per class five combinations (N1 to NS) 

----

A 15 15N1, 15N2, 15N3, 15N4, 15NS -all available testing data 
30 30N1, 30N2, 30N3, 30N4, 30NS sugar beet 97 
45 45N1, 45N2, 45N3, 45N4, 45NS wheat 96 
60 60N1, 60N2, 60N3, 60N4, 60NS barley 51 
75 75N1, 75N2, 75N3, 75N4, 75NS carrot 33 
90 90N1, 90N2, 90N3, 90N4, 90NS potato 26 
100 100 (all available training set) grass 17 

B Same as above as in case A 17 pixels per class (five 
combinations N1 to N5 
corresponding to five 
combinations of training set) --.. . . 

Table 3.3: CombmatlOn of trammg and testmg set SIze for analysIs. The trammg and 
testing set size has been abbreviated with prefix to N as the number of pixels and suffix as 
the iteration number. 

3.1.3 Accuracy Assessment 

Fundamental to this work is the comparison of classification accuracy statements. 

The evaluation and comparison of classifications were based on the overall accuracy. 

Apart from comparing the overall accuracy, the statistical significance of differences in 

classification accuracy was also evaluated. 

The testing set, especially for case-A analysis, was same for all the analysis, as 

such, the statistical significance of differences in classification accuracy was evaluated 

based on related samples using MCNemar test (Foody, 2004). The test is non-parametric 

and is based on a 2x2 dimensional error matrix (Table 3.4). The error matrix generated as 

a result of classification can be collapsed into the required 2x2 dimensional error matrix by 

focusing only into correct and incorrect class allocations. 

Classification 2 t 

Allocation Correct Incorrect I 

Correct III 112 Classification 1 ~ 

Incorrect 12l 122 
I 

Table 3.4: 2x2 error matrix to calculate the statistical significance of differences 
in classification accuracy based on MCNemar test for related samples. 
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The MCNemar test is given by: 

(3.1) 

For case-B, the testing data size was 17 pixels per class generated randomly from 

the overall testing set. There were in all five combinations of testing set for each training 

set size as17Nl, 17N2, I7N3,17N4 and I7N5 (Table 3.2). In some of the cases, the testing 

set was same for the two classifiers to be compared; as such MCNemar test as detailed 

above was evaluated. In case, where the testing set were different for the two classifiers to 

be compared, the statistical significance of differences between the outcomes were based 

on independent samples (Foody, 2004) and evaluated as; 

~-~ 
nl n2 Z = --;:===========-

1 1 
p(1 - p)( - + -) 

(3.2) 

nl n2 

Where, Xl and x2 are correctly allocated cases in the two independent samples of sizes n l 

and n
2 

respectively and p = Xl + x2 • 

nl +n2 

3.1.4 Results 

The overall classification accuracy obtained by different classifiers were compared 

to understand the effect of training set size on classification accuracy. Section 3.1.4.1 to 

3.1.4.4 focuses on the overall accuracy obtained by employing the four classifiers DA, 

ANN, DT and SVM respectively on different training set sizes. The comparison of the 

results of the four classifiers is followed in section 3.1.5 with conclusions in 3.1.6. 

However, the error matrices for each classification are given in Appendix (Tables A.I to 

A.56) to derive the various indices of error matrices if desired. 
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3.1.4.1 Discriminant Analysis (DA) 

Case A (all available testing data) 

Table 3.5 shows the effect of training set size on classification accuracy of 

individual classes and overall accuracy on the test set for case A analysis (using all the 

available test set). The table shows that wheat class had a very large accuracy of94.8 % 

even when the training set size was only 15 pixels per class. This shows that wheat class 

was spectrally discriminable from other classes. 

The overall accuracy was positively related with training set size (Table 3.5) and is 

compatible with the results reported in literature (Huang et aI., 2002). The difference in 

accuracy between the classifications trained on the largest and smallest training set size 

was 2.20%, and this difference was statistically significant at 95% confidence level (Table 

3.15). 

Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 85.60 85.60 88.70 89.70 88.70 88.70 89.70 
Wheat 94.80 93.80 93.80 94.80 93.80 94.80 93.80 
Barley 84.30 86.30 84.30 88.20 88.20 88.20 88.20 
Carrot 78.80 87.90 93.90 84.80 87.90 87.90 87.90 
Potato 92.30 88.50 88.50 88.50 88.50 88.50 88.50 
Grass 82.40 82.40 88.20 82.40 82.40 82.40 82.40 
Overall accuracy 87.80 88.40 90.00 90.00 89.70 90.00 90.00 

Table 3.5: Overall and class wise accuracy (%) on testing data using discriminant 
analysis for case A (all available testing data) analyses. 

Case B (17 pixels per class) 

It is evident from Table 3.6 that the overall accuracy was in general positively 

related with training set size. The difference in the overall accuracy between the 

classifications trained on the largest and smallest training set size was 3.90%, but the 

difference was not statistically significant at 95 % confidence level (Table 3.15). 

Wheat class had the highest accuracy as compared to other classes in 4 out of 6 

training sizes analysed. Sugar beet had a very low accuracy of 64.7 % and 76.5 % when 
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Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 64.70 94.10 76.50 100.00 82.40 94.10 100.00 
Wheat 94.10 88.20 100.00 94.10 100.00 100.00 94.10 
Barley 82.40 82.40 88.20 76.50 88.20 76.50 76.50 
Carrot 94.10 82.40 94.10 94.10 82.40 82.40 94.10 
Potato 88.20 88.20 88.20 88.20 82.40 88.20 82.40 
Grass 82.40 82.40 82.40 82.40 82.40 82.40 82.40 
Overall accuracy 84.30 86.30 88.20 89.20 86.30 87.30 88.20 

Table 3.6: Overall and class wise accuracy (%) on testing data using dIscnmmant analysis 
for case B (17 pixels per class in testing data) analyses. 

training size was 15 pixels and 45 pixels per class respectively. However the accuracy of 

class grass was 82.4 % irrespective of training set size. 

The comparison of the two cases, A (unequal testing data set) and B (equal testing 

set with 17 pixels per class) shows that overall accuracy was generally positively related 

with training set size. Wheat class was the most discriminable class out of all the six in 

both the cases for most of the training set size. 

3.1.4.2 Artificial Neural Network 

Case A (all available testing data) 

Table 3.7 shows that there was a marginal increase in overall accuracy when 

training size increased from 15 to 100 pixels per class. This increase was, however, not 

significant at 95 % confidence level (Table 3.15). The increase in classification accuracy 

was in general positively related with training set size. The class grass had the highest 

individual class accuracy (100%) when training set size was 45 pixels/class or more. 

Training set size 
Class 15 30 45 60 75 90 
Sugar beet 86.59 85.56 87.62 89.69 90.72 88.65 
Wheat 92.70 94.79 90.62 91.66 92.70 90.62 
Barley 90.19 84.31 96.07 92.15 94.11 98.03 
Carrot 93.93 96.96 96.96 96.96 96.96 96.96 
Potato 88.46 88.46 88.46 84.61 88.46 88.46 
Grass 82.35 88.23 100.00 100.00 100.00 100.00 
Overall accuracy 89.68 89.68 91.56 91.56 92.81 92.18 

Table 3.7: Overall and class wise accuracy (%) on testing data using artificial 
neural network for case A (all available testing data) analyses. 
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Case B (17 pixels per class for testing data) 

There was no noticeable trend of overall accuracy related with training set size 

(Table 3.8). However, barley and carrot classes showed the highest accuracy amongst all 

the classes. The class sugar beet had a very low accuracy of 64.7 % when training set size 

was 15 pixels/class. The difference in the overall accuracy between the classifications 

trained on the largest and smallest training set size was 5.88 %, but the difference was not 

statistically significant at 95 % confidence level (Table 3.15). 

Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 64.70 82.35 94.11 88.23 94.11 88.23 88.23 
Wheat 82.35 94.11 94.11 88.23 82.35 100.00 88.23 
Barley 94.11 100.00 94.11 100.00 100.00 100.00 100.00 
Carrot 100.00 94.11 100.00 100.00 100.00 100.00 100.00 
Potato 88.23 82.35 88.23 88.23 94.11 88.23 88.23 
Grass 100.00 100.00 100.00 100.00 100.00 94.11 100.00 
Overall accuracy 88.23 92.15 95.09 94.11 95.09 95.09 94.11 

Table 3.8: Overall and class wise accuracy (%) on testing data using artIficIal neural 
network for case B (17 pixels per class in testing data) analyses. 

The comparison of the two cases, A (unequal testing data set) and B (equal testing 

set with 17 pixels per class) shows that overall accuracy in both the cases increased with 

training set size but the increases in accuracy were not monotonic with increase in training 

set size. In addition, the accuracy for case 'B' with a smaller testing set had generally 

greater overall accuracy as compared to case 'A' with a larger testing set. 

3.1.4.3 Decision Tree 

Case A (all available testing data) 

Table 3.9 shows that the increase in overall accuracy was positively related with 

training set size. The difference in accuracy between the classifications trained on the 

largest and smallest training set size was 23.13 % and this difference in accuracy was 

significant at 95 % confidence level (Table 3.15). 
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Grass and carrot classes had the highest accuracy of 100 % when the training set 

was 100 pixels per class. 

Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 87.62 81.44 82.47 90.72 93.81 85.56 91.75 
Wheat 71.87 76.04 86.45 78.12 71.87 82.29 82.29 
Barley 86.27 80.39 76.47 88.23 94.11 94.11 94.11 
Carrot 48.48 87.87 87.87 93.93 100.00 93.93 100.00 
Potato 73.07 88.46 84.61 88.46 84.61 88.46 88.46 
Grass 82.35 100.00 100.00 76.47 94.11 94.11 100.00 
Overall accuracy 77.18 81.87 84.37 85.94 87.19 87.50 90.31 

Table 3.9: Overall and class wise accuracy (%) on testing data using decision tree 
algorithm for case A (all available testing data) analyses. 

A very low percentage of pixels (48.48 %) of carrot could be correctly classified 

when the training size was 15 pixels per class, but the carrot class could be classified with 

100 % accuracy when the classifier was trained with the largest training set size (100 

pixels/class). 

Case B (17 pixels per class for testing data) 

The examination of Table 3.10 shows that the increase in overall accuracy of 

classification was positively related with training set size. The difference in accuracy 

between the classifications trained on the largest and smallest training set size was 15.69 % 

and this difference was statistically significant at 95 % confidence level (Table 3.15). 

Typically all the classes showed higher accuracies with larger training set. For 

example, classes sugar beet, carrot and grass obtained 100 % accuracy when the training 

size was 100 pixels per class. 

Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 94.11 94.11 82.35 88.23 82.35 82.35 100.00 
Wheat 82.35 64.70 82.35 88.23 70.58 82.35 88.23 
Barley 70.58 94.11 82.35 94.11 94.11 88.23 88.23 
Carrot 70.58 82.35 100.00 94.11 100.00 100.00 100.00 
Potato 82.35 82.35 88.23 82.35 100.00 88.23 88.23 
Grass 70.58 94.11 82.35 82.35 100.00 100.00 100.00 
Overall accuracy 78.43 85.29 86.27 88.24 91.18 90.20 94.12 

Table 3.10: Overall and class wise accuracy (%) on testing data using decision tree 
for case B (17 pixels per class in testing data) analyses. 
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The class sugar beet could be correctly classified to the tune of 94.11 % even when 

the training set size was of 15 pixels per class. 

In both the cases, A and B overall accuracy was positively related with training set 

size and classes carrot and grass could be classified with 100 % accuracy. In addition, the 

accuracy for case 'B' with a smaller testing set had greater overall accuracy as compared 

to case 'A' with a larger testing set. 

3.1.4.4 Support Vector Machine 

Case A (all available testing data) 

Table 3.11 shows that the increase in overall accuracy was positively related with 

training set size. The difference in accuracy between the classifications trained on the 

largest and smallest training set size was 6.25 % and the difference was statistically 

significant at 95 % confidence level (Table 3.15). Sugar beet and wheat classes had very 

high accuracy even when the training set size was as low as 15 pixels per class. 

Typically, higher accuracies of the classes were associated with larger training set 

as a larger training set had more chances of including appropriate support vectors to 

generate the optimal boundaries between the classes. 

Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 92.78 88.65 91.75 87.62 91.75 92.78 91.75 
Wheat 94.79 92.70 85.41 93.75 90.62 89.58 91.66 
Barley 76.47 92.15 96.07 92.15 94.11 98.03 96.07 
Carrot 66.67 90.90 90.90 96.96 100.00 93.93 100.00 
Potato 88.46 88.46 92.30 88.46 88.46 88.46 92.30 
Grass 88.23 94.11 100.00 94.11 100.00 100.00 100.00 
Overall accuracy 87.50 90.94 90.93 91.56 92.81 92.81 93.75 

Table 3.11: Overall and class WIse accuracy (%) on testmg data usmg support vector 
machine for case A (all available testing data) analyses. 
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Case B (17 pixels per class for testing data) 

Table 3.12 shows that the increase in overall accuracy was generally 

positively related with training size. The highest overall accuracy of96.07 % was obtained 

when the training set was 30 pixels per class. This can be attributed to the fact that the 

training data included the appropriate support vectors for all the classes, resulting in higher 

overall accuracy even with smaller training sets. 

Training set size 
Class 15 30 45 60 75 90 100 
Sugar beet 70.58 100.00 82.35 76.47 88.23 94.11 94.11 
Wheat 76.47 94.11 82.35 100.00 88.23 94.11 94.11 
Barley 94.11 100.00 94.11 94.11 100.00 94.11 94.11 
Carrot 94.11 100.00 88.23 100.00 94.11 100.00 100.00 
Potato 88.23 94.11 100.00 94.11 88.23 82.35 88.23 
Grass 82.35 88.23 100.00 94.11 100.00 100.00 100.00 
Overall accuracy 84.31 96.07 91.17 93.13 93.13 94.11 95.09 

Figure 3.12: Overall and class wise accuracy (%) on testing data using support vector 
machine for case B (17 pixels per class for testing data) analyses. 

The difference in accuracy between the classifications trained on the largest and 

smallest training set size was 9.80 % and the difference was statistically significant at 95 

% confidence level (Table 3.15). 

The comparison of the two cases, A (unequal testing data set) and B (equal testing 

set with 17 pixels per class) shows that overall accuracy in both the cases generally 

increased with training set size. The results also show that higher accuracies can be 

obtained with smaller training set size in SVM if appropriate support vectors are available 

in the training data. In addition, the accuracy for case 'B' with a smaller testing set had 

generally greater overall accuracy as compared to case 'A' with a larger testing set. 

84 



3.1.5 Results and Discussion 

Case A Analysis (all available testing data) 

From the range of classifications undertaken, the highest accuracy, 93.75%, was 

obtained from the SVM trained with 100 cases of each class (Table 3.l3). Moreover, this 

classification was significantly more accurate than that derived from the decision tree and 

discriminant analysis (p<0.05) (Table 3.16). 

With all the four classification methods it was apparent that classification accuracy 

was positively related to training set size (Table 3.13). For the SVM based classifications, 

the difference in accuracy between the classifications trained on the largest and smallest 

training sets was 6.25%. Classification by the decision tree algorithm appeared to be most 

sensitive to training set size, with the accuracy increasing from 77.18% to 90.31 % as the 

training set increased from containing 15 to 100 cases of each class. For all classifiers, 

except the artificial neural network, the difference in the accuracy of the classifications 

derived with the use of the largest and smallest training sets was statistically significant 

(p<0.05) (Table 3.l5). At each training set size, the SVM was also relatively accurate and 

often the most accurate classifier, with accuracies often statistically different from those 

derived from the other classifiers (Table 3.16). 

The effect of variation in training set size on the accuracy of the classifications by 

the four classifiers is compatible with results reported in the literature (Huang et ai.) 2002). 

The sensitivity of the SVM classification to the nature of the sample is also evident in 

Table 3.l3 which shows that the five SVM classifications based on a training set 

comprising 15 cases of each class were very varied in accuracy. Thus, while the SVM 

classification may be based on the information provided by a small number of training 

sites, forming the support vectors (Table 3.13), a large training sample may still be 

required to ensure that appropriate support vectors are available. 

Although the four classifiers were able to classify the data very accurately, each 

>90% accurate (Table 3.13) for the analyses based on the largest training set size, there 
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were some important differences. It was apparent, for example, that the classifiers varied 

in their ability to distinguish between specific classes and the accuracy with which 

individual classes were classified differed markedly (Appendix). 

Case B Analysis (17 pixels per class for testing data) 

From the range of classifications undertaken, the highest accuracy, 96.07%, was 

obtained from the SVM trained with 30 cases of each class (Table 3.14). Moreover, this 

classification was significantly more accurate than that derived from the decision tree and 

discriminant analysis (p<0.05) (Table 3.17). 

With all the four classification methods it was apparent that classification accuracy 

was in general positively related to training set size (Table 3.14). For the SVM based 

classifications, the difference in accuracy between the classifications trained on the largest 

and smallest training sets was 9.80%. Classification by the decision tree algorithm 

appeared to be most sensitive to training set size, with the accuracy increasing from 

78.43% to 94.12% as the training set increased from containing 15 to 100 cases of each 

class. The difference in the accuracy of the classifications derived with the use of the 

largest and smallest training sets was statistically significant (p<0.05) for decision tree and 

support vector machine classifiers (Table 3.15). At each training set size, the SVM was 

also relatively accurate. 

The sensitivity of the SVM classification to the nature of the sample is also evident 

in Table 3.14 which shows that the five SVM classifications based on a training set 

comprising 15 cases of each class were very varied in accuracy. Thus, while the SVM 

classification may be based on the information provided by a small number of training 

sites, forming the support vectors, a large training sample may still be required to ensure 

that appropriate support vectors are available. 

Although the four classifiers were able to classify the data very accurately, each 

>88% accurate (Table 3.14) for the analyses based on the largest training set size, there 
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were some important differences. It was apparent, for example, that the classifiers varied 

in their ability to distinguish between specific classes and the accuracy with which 

individual classes were classified differed markedly (Appendix). 

For both, case A and case B analysis, the results are data-specific but they do 

indicate the value of multi-class SVM classification. The SVM classifications were 

generally more accurate than ANN, DT and DA and, with the analyses constrained to a 

single optimization problem, requiring fewer support vectors as compared to binary 

analyses (Hsu and Lin, 2002). Classification accuracy was, however, a function of training 

set size and the potential of using small training sets in SVM based classification will 

require a means of intelligent training data acquisition. 

3.1.6 Conclusions 

In this chapter classification accuracy on testing set resulting from training four 

different classifiers by differentially sized training set were compared. The results can be 

summarized as: 

• SVM have considerable potential for the classification of remotely sensed data. 

• It has been demonstrated here that a single multi-class SVM classification may be 

undertaken and used to derive very accurate classifications. 

• In general, the SVM classifications were more accurate than comparable 

classifications derived with the use of the other classification techniques. 

• The accuracy of the classifications produced from all of the classifiers for both 

Case A and Case B analyses were in general positively related to training set size, with the 

accuracy of the classifications derived from three of the classifiers increasing significantly 

as the training set size increased from 15 to 100 cases per-class for case A analysis (Table 

3.16) and two for case B analysis (Table 3.17). 
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• Although a SVM classification is effectively based on a small number of training 

sites a large training sample may still, therefore, be required to ensure that appropriate 

support vectors (training data) are available. 

• The sensitivity of the accuracy of the SVM classifications to training set size 

indicates the need for the training set to include the cases of the classes that lies on the 

border of the spectral distribution of the classes in feature space essentially those that faces 

the cases of other classes to yield appropriate support vectors. 

• While a large training sample may not be required in order to estimate a statistical 

distribution it is, however, critical for the training sample to include useful support vectors 

and, unless some intelligent training data acquisition process is followed, these are more 

likely to be found from a large rather than small sample. 
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\0 

Discriminant Decision Tree Artificial Neural Network Support Vector Machine 
analysis 

Training Training Testing Training Testing Training Testing Parameters Training Testing RBF No of support 
size (gamma) vectors (nsv) 

15N1 85.60 87.50 94.44 81.25 87.77 89.68 MLP, 13 98.88 88.12 0.03 83 
15N2 81.10 87.80 93.33 77.18 85.55 89.38 MLP,8 86.67 87.50 0.005 74 
15N3 75.60 87.80 94.44 81.56 85.55 89.68 MLP,4 90.00 89.37 0.005 71 
15N4 93.30 88.40 96.67 76.87 93.33 89.68 MLP,7 96.67 87.18 0.01 58 
15N5 82.20 87.80 91.11 75.31 85.55 88.75 MLP,5 82.22 84.38 0.001 61 
30N1 83.90 88.40 95.56 78.75 85.55 89.68 MLP,8 89.44 90.00 0.005 101 
30N2 81.70 87.80 96.11 84.06 87.77 89.37 MLP,7 93.89 90.94 0.01 118 
30N3 82.20 87.80 95.56 83.75 90.55 91.25 MLP,12 98.33 90.00 0.03 142 
30N4 82.20 89.10 94.44 79.68 91.66 89.68 MLP,12 97.22 91.87 0.03 148 
30N5 77.20 89.70 93.89 81.87 90.00 91.25 MLP,19 97.22 90.00 0.03 154 
45N1 83.00 90.00 93.70 84.37 89.25 91.56 MLP,16 96.66 90.93 0.03 194 
45N2 84.80 90.00 95.56 85.62 89.25 90.93 MLP,3 97.40 90.31 0.03 211 
45N3 83.00 90.00 93.70 84.37 89.25 92.81 MLP,24 96.66 90.93 0.03 194 
45N4 82.20 90.60 96.30 85.62 91.11 91.56 MLP,13 90.37 90.93 0.005 151 
45N5 83.00 89.10 93.33 83.43 89.62 90.93 MLP,15 86.51 90.93 0.01 175 
60N1 81.90 90.00 94.17 83.75 90.83 92.18 MLP,25 94.72 91.25 0.03 259 
60N2 82.80 90.30 95.00 85.94 90.27 91.87 MLP,15 97.22 92.50 0.05 290 
60N3 81.10 90.00 94.17 87.19 90.00 90.93 MLP,11 94.17 92.19 0.03 257 
60N4 83.90 89.40 95.56 88.44 91.38 91.25 MLP,16 97.50 89.69 0.03 234 
60N5 81.10 90.30 95.83 85.62 90.00 91.56 MLP,25 86.67 91.56 0.005 183 
75N1 82.00 90.30 93.11 84.06 89.77 92.18 MLP,16 94.44 92.81 0.03 296 
75N2 83.80 89.70 95.78 88.75 92.00 93.43 MLP,25 98.88 92.81 0.08 226 
75N3 82.00 89.40 95.33 90.94 92.00 92.81 MLP,15 91.78 92.81 0.01 235 
75N4 80.90 89.70 94.67 87.19 89.77 91.56 MLP,25 94.89 92.50 0.03 284 
75N5 81.10 88.80 94.22 85.94 88.44 92.81 MLP,9 94.89 92.50 0.03 227 
90N1 82.40 89.70 94.26 87.19 91.11 92.81 MLP,14 94.81 92.81 0.03 332 
90N2 81.10 89.70 94.63 87.81 90.92 91.56 MLP,14 94.63 93.12 0.03 333 
90N3 80.90 90.30 95.00 89.37 88.88 91.56 MLP,16 94.44 92.50 0.03 332 

90N4 81.90 90.30 94.81 87.19 90.55 92.5 MLP,25 94.81 92.50 0.03 393 

90N5 82.40 90.00 94.26 87.5 90.74 92.18 MLP,16 95.00 92.81 0.03 331 
ALL(100) 81.80 90.00 95.17 90.31 91.66 91.88 MLP,25 93.33 93.75 0.02 302 

Table 3.13: Overall accuracy for case A analysis. Bold values indicate the median overall accuracy obtained for the five combinations oftrammg 
data and is used for comparison with accuracies obtained with different training set size combinations to avoid extreme results. 
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Discriminant Analysis Decision Tree Artificial Neural Network Support Vector Machine 

Training Parameter nsv 
size Training Testing Training Testing Training Testing Parameters Training Testing RBF (gamma) 

15N1 85.60 87.30 94.44 78.43 94.44 93.13 MLP, 13 96.67 90.19 0.010 72 
15N2 81.10 83.30 93.33 72.55 88.88 88.23 MLP,8 86.67 82.35 0.005 74 
15N3 75.60 87.30 94.44 80.39 85.55 92.15 MLP,4 90.00 88.23 0.005 71 
15N4 93.30 84.30 96.67 79.41 93.33 88.23 MLP,7 96.67 84.31 0.010 58 
15N5 82.20 84.33 91.11 77.45 88.88 88.23 MLP,5 93.33 84.31 0.010 72 
30N1 83.90 89.20 95.56 91.20 90.55 96.07 MLP,8 99.44 98.03 0.030 144 ! 

30N2 81.70 84.30 96.11 86.27 91.66 92.15 MLP,7 93.89 89.21 0.010 118 
30N3 82.20 86.30 95.56 85.29 91.66 93.13 MLP,12 98.33 89.21 0.030 142 
30N4 82.20 84.30 94.44 79.41 92.77 89.21 MLP,12 97.22 96.07 0.030 148 
30N5 77.20 87.30 93.89 82.35 91.11 90.19 MLP,19 97.22 96.07 0.030 154 
45N1 83.00 86.30 93.70 82.35 91.17 92.59 MLP,16 96.66 91.17 0.030 194 

45N2 84.80 89.20 95.56 86.27 94.44 95.09 MLP,3 90.37 87.25 0.005 146 
45N3 83.00 84.30 93.70 86.27 90.74 92.15 MLP,24 96.66 93.13 0.030 194 
45N4 82.20 93.10 96.30 94.12 91.85 96.07 MLP,13 92.96 91.17 0.010 162 
45N5 83.00 88.20 93.33 86.27 90.55 96.07 MLP,15 94.44 94.11 0.030 207 
60N1 81.90 89.20 94.17 91.20 92.22 93.13 MLP,25 94.72 93.13 0.030 259 
60N2 82.80 90.20 95.00 85.29 92.77 96.07 MLP,15 88.06 94.11 0.005 185 
60N3 81.10 89.20 94.17 88.24 87.50 94.11 MLP,11 99.44 93.13 0.100 330 
60N4 83.90 88.20 95.56 91.18 94.16 94.11 MLP,16 97.50 92.15 0.030 234 
60N5 81.10 92.20 95.83 84.31 85.55 96.07 MLP,25 86.67 93.13 0.005 183 
75N1 82.00 86.30 93.11 86.27 90.44 94.11 MLP,16 91.56 93.13 0.010 229 
75N2 83.80 89.20 95.78 91.18 89.33 95.09 MLP,25 89.77 95.09 0.005 209 
75N3 82.00 86.30 95.33 91.18 92.00 91.17 MLP,15 95.78 93.13 0.030 305 
75N4 80.90 90.20 94.67 91.20 89.11 95.09 MLP,25 90.67 93.13 0.010 227 
75N5 81.10 86.30 94.22 89.22 91.33 95.09 MLP,9 94.89 93.13 0.030 284 

90N1 82.40 86.30 94.26 90.20 93.14 95.09 MLP,14 94.81 95.09 0.03 332 
90N2 81.10 87.30 94.63 89.22 86.66 94.11 MLP,14 94.63 94.11 0.03 333 
90N3 80.90 88.20 95.00 93.14 89.81 96.07 MLP,16 94.44 94.11 0.03 332 
90N4 81.90 91.20 94.81 93.34 91.66 97.05 MLP,25 91.29 96.07 0.01 254 
90N5 82.40 86.30 94.26 87.25 90.74 94.11 MLP,16 91.66 92.15 0.01 264 

1 00(17n1) 81.80 88.20 95.17 93.14 90.16 94.11 MLP,25 91.00 95.09 0.01 278 

100(17n2) 81.80 87.30 95.17 94.12 90.50 93.13 MLP,11 94.50 94.11 0.03 348 

100(17n3) 81.80 88.20 95.17 94.12 90.33 94.11 MLP, 10 94.50 94.11 0.03 348 

100(17n4) 81.80 91.20 95.17 98.04 90.83 97.05 MLP,16 94.50 96.07 0.03 348 

100(17n5) 81.80 86.30 95.17 92.16 91.00 94.11 MLP, 15 91.00 94.11 0.01 278 
-

Table 3.14: Overall accuracy for case B analysis. Bold values indicate the median overall accuracy obtained for the five combinations of training 
data and is used for comparison with accuracies obtained with different training set size combinations to avoid extreme results. 



Z values 
Classifiers CASE A CASEB 

Discriminant analysis 2.11 0.81 
Decision tree 4.90 3.25 

Artificial neural network 1.28 1.48 
Support vector machine 3.24 2.25 

Table 3.15: Significance value (Z) of differences between accuracies of testing set 
obtained when the classifiers were trained with smallest training set size of 15 pixels and 
largest available size of 100 pixels per class at 95 % confidence level. Differences 
significant at the 95% confidence level (Z;:::: 1.96) are highlighted in bold with positive 
values indicating higher accuracy when training data was 1 00 pixels/class. 

Training SVMvDA SVMvDT SVMv ANN ANNvDA ANNvDT DTvDA 
set size 
15N -0.22 4.09 -l.35 1.60 4.65 -3.95 
30N -0.27 3.84 0.85 1.07 3.15 -2.64 
45N 0.00 4.58 -0.40 1.14 4.13 -3.28 
60N 1.21 2.65 0.00 1.21 2.65 -1.85 
75N 1.62 3.00 0.00 2.13 2.85 -1.09 
90N 1.56 3.40 0.44 1.70 3.00 -1.26 
lOON 2.27 2.30 1.50 1.18 0.96 0.16 

Table 3.16: Comparison of classification accuracy statements. The classifications derived 
with each method (SVM = support vector machine, DA = discriminant analysis, DT = 
decision tree and ANN =artificial neural network) at each size of training set for case A 
(all testing set), defined by the number of cases of each class, were compared using a 
MCNemar test. Differences significant at the 95% confidence level (Z;:::: 1.96) are 
highlighted in bold with positive values indicating that the first named classifier had the 
higher accuracy. 

Training SVMvDA SVMvDT SVMv ANN ANNvDA ANNvDT DTvDA 

set size 
15N 0.00 1.08 -1.15 1.50 1.88 -1.08 
30N 2.47 2.64 1.18 1.35 1.55 -0.24 
45N 0.69 1.11 -1.10 1.77 2.71 -0.42 
60N 0.99 1.41 -0.29 1.27 1.48 -0.22 
75N 1.73 0.52 0.60 2.17 1.10 1.11 
90N 1.69 1.04 0.31 1.98 2.12 0.66 
lOON 1.48 0.00 0.00 1.48 0.00 1.48 

Table 3.17: Comparison of classification accuracy statements. The classifications derived 
with each method (SVM = support vector machine, DA = discriminant analysis, DT = 
decision tree and ANN = artificial neural network) at each size of training set for case B 
(testing set comprising of 17 pixels per class), defined by the number of cases of each 
class, were compared using a MCNemar test. Differences significant at the 95% confidence 
level (Z;:::: 1.96) are highlighted in bold with positive values indicating that the first named 
classifier had the higher accuracy. 
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CHAPTER 4 - Reducing Requirement of Training 
Data by Relating Support Vectors with Soil Type of 
Training Fields 

4.1 Introduction 

The potential of SVM was demonstrated from a series of analyses that classified 

land cover from imagery of Feltwell, Norfolk (chapter 3). The, inspection of the number of 

support vectors used in each SVM classification indicated a potential to reduce training set 

size without any negative impact on classification accuracy. This requires a means to 

intelligently identify training samples. The present study focuses on one such approach, 

based on the use of ancillary data on soil type to direct training site acquisition. The study 

was undertaken with the intent to use information on soil type to focus on regions most 

likely to furnish support vectors. In this way, an accurate SVM classification may be 

undertaken using a small training set. 

4.1.1 Data and Methods of Classification 

Imagery acquired by SPOT HRV with a spatial resolution of20 m on 16 June, 

1986 for a flat region of an agricultural land near the village of F eltwell in Eastern England 

was used. The data set comprised three bands corresponding to electromagnetic spectrum 

range of 0.50-0.59 /lm (Green band), 0.61-0.68 /lm (Red band) and 0.79-0.89 /lm (Near-

Infrared band). Near the time of the data acquisition a crop map for the test site was 

constructed by conventional field survey methods. This map identified the single crop type 

planted in the fields that were very large in comparison to the spatial resolution of the 

Imagery. 

Most of the test site had been planted to winter wheat and barley crops. The study 

area comprised of two types of soil, sand and peat. The sand soil comprised of humic 

gleyic rendzinas, brown rendzinas, typical brown sands, typical humic-sandy gley soils, 
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Figure 4.1: Soil map of Felt well area. The black box represents the bounds of study area. 
The sand soil comprised of humic gleyic rendzinas (346), brown rendzinas (343g), typical 
brown sands (55Ig), typical humic-sandy gley soils (86Ib), whereas, peat soils comprised 
of earthy eutro-amorphous peat soil (l024a and b) and earthy eu-fibrous peat soils (1022a) 
(source: Soil Survey of England and Wales). 

brown rendzinas whereas, peat soils comprised of earthy eutro-amorphous peat soil and 

earthy eu-fibrous peat soils (Figure 4.1). Winter wheat was planted in both types of soil, 

whereas barley was limited only to sandy soils (Figure 4.2). Focusing on just these two 

classes, a random sample of75 pixels per-class was derived for each class. For winter 

wheat class, out ofthe 75 pixels for training, 40 were derived from sandy soils and 35 from 

peat soils. 

To ensure that the basic assumptions that underlie classification, namely ofpure 

pixels and discrete classes, were satisfied, locations in the vicinity offield boundaries were 

masked-out of the analyses to ensure that the sampled pixels were located within the 

relatively homogeneous cover ofthe crop planted in the large fields. 

The spectral distribution oftraining data (Figure 4.3) shows that the cluster of 

training data ofwinter wheat class has two very distinct zones in feature space, one 
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populated by pixels from sandy soils and faces the other class barley, whereas the other 

zone comprises of pixel of winter wheat class from peat soils. 

In SVM, the individual training cases vary in importance, with those lying close to the 

class borders most informative and helpful in determining the location of the classification 

hyperplanes. This property ofSVM was utilized to reduce the requirement of training data. 

For the present study, from the above discussed property of SVM, the support vectors 

for winter wheat class was expected to be mainly derived from sandy soils as training data 

of winter wheat class from sandy soils faces the other class, barley in feature space. In 

such a scenario, no training data would be required for winter wheat class from peat soils 

and that reduces the requirement for training data. 

Two SVM analyses were, therefore, undertaken to understand the effect of removing 

training data from peat soils for winter wheat class. 

1. SVM trained for the two classes of interest (barley & winter wheat) for training 

data derived from both type of soils (sand and peat) and tested on an independent test set. 

2. SVM trained for the two classes of interest (barley & winter wheat) for training 

data derived only from sandy soils and tested on an independent test set as above. 

The SVM approach was used with a RBF kernel to classify the data. There are two 

parameters C (section 2.7.1.2) and'Y (section 2.7.1.3) in SVM to be optimised before 

training the classifier. A 5n cross validation approach (using a random sample of one fifth 

of the training set for validation purposes) was used to fine tune the two parameters. 

Accuracy was assessed using a further, independent, random sample of 40 pixels/class. 

The testing set for winter wheat class comprised of 20 pixels each from sand and peat 

soils. This testing set was used in the evaluation of the accuracy of the two classification 

analyses undertaken. 

The comparison of classification accuracy statements for both the above analyses was 

undertaken in a statistically rigorous fashion. Here, the statistical significance of 

differences in the accuracy of classifications on testing set derived using different training 
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Figure 4.2: SPOT HRV FCC of study area demarcated into sandy and peat soils by the 
yellow line (Data, courtesy Natural Environment Research Council (NERC)). The study 
area was dominated by winter wheat and barley crops. The area west of yellow line is 
covered by peat soils and that to its east by sandy soils. 

data was assessed using a MCNemar test, without correction for continuity, for related 

samples (Foody, 2004) given by: 

(4.1) 

where, fi2 and./21 represent the off-diagonal entries in the matrix 

4.1.2 Results and Discussion 

The optimal values for parameters C and y deduced from 5n cross validation (Table 

4.1) for training set derived from both type of soils were 24 and 2-8 respectively. These 

parameter settings were used to train the SVM classifier. The support vectors generated as 

a result are given in Table 4.2. 
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r .... C=T" C=X1 C=2u C=21 C=2L C=2 3 C=24 C=2' C=2° 
XIL 79.33 82.00 84.66 90.667 91.33 90.67 89.33 90.00 91.33 
2- JU 82.00 84.00 91.33 92.667 92.00 90.67 91.33 92.00 92.00 
Xy 

85.33 91.33 91.33 90.66 91.33 91.33 91.33 92.00 92.00 
X~ 90.00 89.33 90.00 89.33 90.00 90.67 92.67 91.33 92.00 
TI 89.33 90.00 90.00 91.33 91.33 91.33 92.00 90.66 90.67 
2-6 90.00 90.00 90.67 91.33 91.33 92.00 90.67 90.00 90.67 
X' 90.00 90.00 90.67 92.00 92.00 91.33 90.67 91.33 90.00 
X4 89.33 90.00 91.33 9l.00 91.33 90.67 91.33 86.67 86.00 
2-3 89.33 90.67 90.67 90.67 91.33 90.67 88.67 89.33 89.33 
2-2 88.66 89.33 89.33 89.33 88.66 88.00 88.00 88.00 88.00 
Xl 72.00 88.67 87.33 87.33 87.33 87.33 87.33 87.33 87.33 
2u 46.00 73.33 86.66 86.66 86.67 86.67 86.67 86.67 86.67 
21 43.33 52.66 74.00 74.66 74.67 74.66 74.67 74.67 74.67 
24 43.33 50.00 64.00 66.66 66.67 66.67 66.67 66.67 66.67 

Table 4.1: Results of 5n cross-valIdatIOn on trammg data for optImal selectIOn of 
parameters C and y. The value in the bold gives the highest accuracy obtained on training 
data with parameters C=24 and y= 2-8 respectively. 

The relation between a and C is given by the equation: 

O::;a::;C (4.2) 

The values in first column in Table 4.2 represent ex values and ranges from 0 to 16 

as the optimised value for C parameter used was 16 (24
). The overall distribution of 

support vectors and their a values are summarized in Table 4.3. 
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SV (ex) 83 82 81 Crop Soil 

16 106 37 60 Barley sand 

4.494650187 109 37 60 Barley sand 

16 103 36 59 Barley sand 

8.04803743 96 37 59 Barley sand 

16 118 36 57 Barley sand 

16 111 36 57 Barley sand 

16 119 35 59 Barley sand 

6.554303967 125 34 58 Barley sand 

16 121 36 58 Barley sand 

11.87109497 118 36 59 Barley sand 

16 116 36 58 Barley sand 

16 110 35 56 Barley sand 

16 119 34 58 Barley sand 

16 120 35 57 Barley sand 

9.744216682 118 36 59 Barley sand 

7.529921847 116 37 59 Barley sand 

16 108 34 55 Barley sand 

16 111 35 58 Barley sand 

16 117 36 59 Barley sand 

4.324733828 101 33 56 winter wheat peat 

16 119 35 57 winter wheat sand 

16 118 35 57 winter wheat sand 

16 111 38 59 winter wheat sand 

16 106 37 59 winter wheat sand 

4.437130987 112 35 57 winter wheat sand 

16 117 36 58 winter wheat sand 

6.532216624 112 35 57 winter wheat sand 

16 121 35 56 winter wheat sand 

16 115 35 57 winter wheat sand 

16 118 35 58 winter wheat sand 

16 122 34 57 winter wheat sand 

16 119 35 59 winter wheat sand 

16 103 35 57 winter wheat sand 

16 111 35 57 winter wheat sand 

16 115 35 58 winter wheat sand 

16 102 36 57 winter wheat sand 

16 115 36 58 winter wheat sand 

Table 4.2: Support vectors when training data comprised of pixels from both type of soils 
with parameter settings of C and y of 24 and X8 respectively deduced from 5n cross 
validation. The first column shows the a values of each support vector followed by 
spectral values of the support vector (training data) in the three bands under B3, B2 and 
B1. 
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Class Total number of support vectors (number of support 
vectors with maximum a value of 16). 

Barley (sand) 19 (13) 
Winter wheat (sand) 17 (15) 

Winter wheat (peat) 1 (0) 

Table 4.3: Support vectors with a values. 

Table 4.3 shows that support vectors (which are central to the establishment of the 

decision surface (classifier)) in case of winter wheat class was mainly derived from sandy 

soils. This can be attributed to the fact that the training data for winter wheat class from 

sandy soils faced the other class barley in feature space. There was only one support vector 

for winter wheat class from peat soil (Table 4.2 and Table 4.3) and it can be considered of 

little consequence as its a value was very low to the tune of 4.32 (Table 4.2 and Figure 

4.2) as compared to very high values (maximum possible) of 16 for majority of support 

vectors (15 out of 17) for winter wheat class from sandy soils (Table 4.3). 

The meager contribution of a value of 4.32 by the lone support vector of winter 

wheat class from peat soil was expected to hardly affect the decision surface (hyperplane) 

given by the equation: 

r 

I(x) = sgn(IaiYik(x,xi) + b) (4.3) 
i=! 

It can, therefore, be presumed that removing the lone support vector of winter 

wheat class from peat soils (in other words removing training data of winter wheat class 

from peat soils as data other than support vectors are redundant and do not play any role in 

the establishment of the classifier) will hardly/marginally effect the outcome on the testing 

data as the classifier (equation 4.3) is hardly altered. 

98 



42 + + 

+ 
40 + 

B + 
-i;-

a 38 ++ -i;-

n + a+ + 

d 36 
+ 

+ 
a 

2 34 
a 

32 
Legend 

a Wheat (peat) 

a Wheat (sand) 

+ Barley (sand) 

Figure 4.3: The distribution of training data of winter wheat and barley class in feature 
space. The lone support vector of winter wheat class from peat soil is encircled and its a 
value of 4.32 highlighted. 

In light of above, two SVM machines were trained, one trained with training data 

of both classes from both type of soils discussed above (section 4.1.1) and other trained 

with training data ofboth classes only from sandy soils (75 pixels for barley class and 40 

pixels ofwinter wheat class from sandy soils leaving the 35 pixels of winter wheat class 

from peat soils). Both the classifiers were tested on an independent test set resulting in 

same outcome (Table 4.4). 

Classified ... 

Actual .. 

Barley Winter Total 
wheat 

Barley 39 1 40 

Winter wheat 5 35 40 

Total 44 36 80 

Table 4.4: Confusion matrix oftesting set for both the analysis 
(classifier trained with or without wheat pixels from peat soils). 
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The comparison of classification accuracy statements for both the above analyses 

was undertaken in a statistically rigorous fashion. Here, the statistical significance of 

differences in the accuracy of classifications on testing set derived using two different 

training data was assessed using a MCNemar test resulting in Z value of O. 

4.2 Conclusions 

In this chapter, the support vectors of an SVM classification were related with soil 

type of training sites. The results can be summarized as: 

• The analyses shows that support vectors of class winter wheat were mainly drawn 

from sandy soils implying that only training data of winter wheat from sandy soils are 

relevant in establishing the decision surface between winter wheat and barley classes using 

SVM classifier. 

• The analyses shows that training data for winter wheat class from peat soil are not 

required as the accuracy on the testing set remains same with or without training data of 

winter wheat class from peat soils. 

• The study shows that with information on soil type, training sample acquisition can 

be focused to regions most likely to furnish support vectors. 

• An accurate SVM classification may be undertaken using a small training set if 

support vectors resulting from SVM classification can be identified with ground properties 

such as soil type of training fields. 
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CHAPTER 5 - Intelligently Reducing Training 

Requirements of Supervised Image Classifications: 

Directing Training Data Acquisition for SVM 

Classification 

5.1 Introduction 

The analysis detailed in chapters 3 and 4 demonstrated the potential of SVM as a 

classifier. SVM classifications were more accurate than classifications derived with other 

classification techniques. In addition, SVM used only a fraction of training data as 

compared to other classifiers. Although SVM classifications are effectively based on a 

small number of training data, the support vectors, a large training set may still be required 

to ensure that appropriate training data are included. Indeed, the nature of the training data 

can have a larger impact on classification accuracy than the classifiers used (Hixson et. at., 

1980, Campbell 2002). 

The design of training stage is often guided by the classical statistical view of the 

classification process generally considering a probabilistic algorithm such as the MLC. 

This type of classifier requires a complete description of each class in feature space. To 

achieve this, a large training set, spread over the entire study area is required. Inappropriate 

placement or too few pixels in training site produces statistics which may not be able to 

characterize the land cover classes. The requirement for large sample sizes is, therefore, 

not unusual and penalties for collecting less in some cases can be severe (Curran and 

Williamson, 1986). Conventional training data acquisition schemes, therefore, aim to 

capture a large training set spread all over the study area to obtain representative samples 

of the classes. For data to be representative, a number of training data acquisition schemes 

has been suggested in literature (e.g. random, conventional and systematic sampling 

techniques) (section 2.3.3.1.1.4). 
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It is costly in terms of time and finance to acquire large, representative (spread all 

over the study area) training samples (Buchheim and Lillesand, 1989; Jackson and 

Landgrebe, 2001). Much research has, therefore, focused on ways to reduce the 

requirement of training data. This includes methods to reduce the dimensionality of the 

data sets to be classified to avoid Hughes phenomenon (for finite training samples 

accuracy first increases with increase in dimensionality and then decreases) (section 2.2.1), 

designing efficient training sampling scheme by incorporating the spatial dependence of 

the classes (section 2.3.3.1.1.4). 

An alternative procedure is to recognize that individual training samples vary in 

value and this importance depends on the classifier used. Thus by focusing only on the 

most informative training samples, an accurate classifier may be defined at the cost of only 

a small training set. With SVM as a classifier, only the training samples that lie at the edge 

of the class distributions in feature space (support vectors) are relevant in the establishment 

of the decision surface. Data other than support vectors can effectively be discarded 

without compromising the accuracy of the classification (section 2.7.1.1). 

The objective in classification is to extract the maximum information from the 

remotely sensed data and if possible with a small number of training sets to make the 

classification process economical. Given that SVM classifiers are more accurate than other 

classifiers (section 3.1.4.4), they should be adopted increasingly and, critically, the design 

of their training stage constructed around their nature. 

SVM is expected to generalize more accurately as compared to other classifiers 

even if trained with a small training set that provides appropriate support vectors. The 

requirement of small training set translates to less expenditure on acquiring training data 

from field both in time and monetary terms. Thus the key property of SVM to use a small 

training set provides an opportunity to review the ground data collection policy with the 

intent to reduce the requirement of training data. 
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The study discussed in this chapter aims to evaluate classification accuracy with 

special regard to SVM classifier and will focus on: 

1. An assessment of the ability to intelligently identify most useful training samples, 

the support vectors for SVM classification directly from field. 

2. Comparing classification accuracy resulting from SVM classification with a suite 

of other classifiers namely DA, DT and ANN to appreciate the generalibilty of 

SVM. 

3. Identifying support vectors resulting from an SVM classification with ground 

attributes to help focus training acquisition process for future analysis to a limited 

area. 

4. Evaluating financial implication of training a SVM with a small intelligently 

collected training set with a large training set collected under conventional training 

data acquisition scheme. 

5. Evaluating reduced requirement of training data to accurately classify only one 

class from the many land cover classes available. 

5.2 Study Area 

The study area comprises the south-western districts ofthe Punjab state ofIndia. It 

includes the districts of Bathinda, Faridkot, Muktsar, Moga and parts of Ludhiana (Figure 

5.1) covering an area of 11037 km2
• The area falls under sub-tropical, semi-arid climate 

and the region has, therefore, marked extremes of climate. It is influenced by westerly 

winds in summer raising temperatures as high as 44°C in May and June and in winters, the 

north easterly winds reduces temp to 2 _3°C. The area is basically flat with alluvial soil 

and dotted with a number of sand dunes (notably in the southern part of study area) locally 

called as tibbas. The area is criss-crossed by a number of canals. The Sirhind canal and 

Rajasthan feeder are major canals of the area. 
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The area is predominantly under agriculture with kharif or monsoon season (May 

to October) followed by rabi season (October to May). The major crops grown in the 

kharif season are cotton and rice followed by wheat during rabi season. Besides this, citrus 

and grape orchards are also found in the area. 

o 10 ;w :II) -40 lie 

Figure 5.1: Study area shows the districts (l. Bathinda 2. Muktsar 3. Faridkot 4. Moga 
5. Part of Ludhiana district) of Punjab state. 

The southern part, especially the Muktsar district (Figure 5.1), is affected with the 

problem of waterlogging which in turn affects agricultural productivity. 

5.2.1 Description of Study Area 

The study area is agrarian with 84% of land under agriculture (Director of Land 

Records, Punjab, 2004). The state witnessed a Green revolution in 1970s with the 

introduction of the high yield varieties (HYVs) of wheat developed by Nobel laureate 

Normal Borlaug (Shiva, 1991). The Green revolution in Punjab transformed India from a 

position of a begging bowl to a position of a bread basket (Shiva, 1991). 

The native varieties of wheat sown by farmers before Green revolution tend to 

lodge or fall over when subjected to intensive fertilizer to supplement organic manure. The 

varieties introduced under Green revolution were shorter with stiff stems and were able to 
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2. The topography of the area is very flat with slopes ranging approximately from 1 ° 
to 1.5°. As a result water due to rains or water applied to agricultural fields 

stagnates in area. The percolation of accumulated water increases water table depth 

and subsequently results in waterlogging. 

3. Less with drawl of ground water for irrigation due to its poor quality for 

agriculture. 

4. Construction of roads, railway lines and canals obstructing the natural gradient of 

flow of water. 

5. Increase in area cultivated for water intensive crops such as rice (Table 5.1). The 

appropriate water supplied to rice fields from canals seeps into the ground, thereby, 

increasing the ground water level and resulting in waterlogging at places. 

Figure 5.2: An unlined canal. 
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Area under crop ('000 Km2
) 

Year Rice Cotton 
1960-1961 2.27 4.47 
1970-1971 3.90 3.97 
1980-1981 11.83 6.49 
1990-1991 20.15 7.01 
1999-2000 26.04 4.77 
2000-2001 26.12 4.73 
2001-2002 24.89 6.07 
2002-2003 25.30 4.50 

Table 5.1: Comparative area under nce and cotton III Punjab state (Source: Drrector of 
Land Records, Punjab, 2004). 

Figure 5.3: Salt affected land due to waterlogging. 

The study area especially, the Muktsar district (Figure 5.1) was severely affected 

by waterlogging in 1995 and 1997 (Singh, 1998). This problem has continued since 

(Figure 5.3), though anti-waterlogging measures like construction of drains along with 

medium-depth tube-wells have been installed (The Tribune newspaper, 19 July, 1999). 

Waterlogging adversely affects the growth of plants as (a) humid conditions are 

conducive for the growth of insects, pests and pathogens which attacks the crops (b) 

waterlogging ofthe root zone results in oxygen deficiency, leading to a halt in root growth 
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and metabolism, death ofthe roots and eventual wilting ofthe crops (Figure 5.4) (c) soil in 

some areas gets affected with salinity affecting the growth of the crops (Figure 5.3). 

The growth of cotton crop in particular has been the hardest hit of all the crops in 

the area as it is sensitive to water (needs less water) and farmers at time have to uproot the 

whole crop wilted as a consequence of waterlogging (The Tribune newspaper, July 2003; 

The Indian Express newspaper, Oct 29, 1998). The damage to cotton crop is due to attack 

by pest, lack of fruitification due to excessive humidity (i. e. dry conditions are required 

after flowering 

Figure 5.4: Wilted rice as a result of waterlogging. 

stage for fruitification to take place (Figure 5.5» 

(http://www.on1ypunjab.coml1atestifullstory-newsID-1445.htm1). 

As a result ofwater10gging, cotton has often been replaced by rice. The diversion 

from cotton to rice requires more canal water as quality of ground water in the study area 

is not suitable for agriculture and rice is a water intensive crop. As a consequence, more 

water is being added into the area through canals to provide appropriate water for rice crop 

and as there is no with drawl of ground water (because of the poor quality for agriculture) 
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creating a water imbalance in the study area. This is reflected by the increased problem of 

high water table and waterlogging afflicting the study area. 

The diversion from cotton cropping to rice brought immediate benefits to the 

farmers because of secured rice crop being water intensive. However, the increase in area 

under rice (Table 5.1), a water intensive crop, aggravated the problem of waterlogging 

detrimental to agriculture in the long run. The farmers are, therefore, being lured back into 

cotton cropping. This decision to shift back from rice to cotton cropping is also aided by 

the reduced demand for rice as the state of Punjab is surplus in rice production like other 

parts of the country. As a consequence, the surplus rice is rotting in the store houses of the 

state (B. K. Chum, July24, 2002, 

http://economictimes.Indiatimes.com/cms.dlllarticleshort/art id=16897102). Thus the rice 

crop is no longer a lucrative crop as the demand has decreased in the markets and is also 

one of the reasons of waterlogging in the area. However, the domestic demand of cotton of 

the country is met on many occasions by imports 

(www.Indiaone.stop.com/cottonicotton.html). In addition, the crop insurance for cotton 

(http://www.tribuneindia.comI1999/agro.html) introduced from October 1999 by the 

government and contract farming by textile mills (http:///www.thehindubusinessline.com. 

03 March, 2004), which compensates for any loss of the crop are added incentives for 

growing cotton crop (http://www.onlypunjab.com/latest/fullstory-newsID-1445.html). 
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Figure 5.5: The cotton crop is not watered after flowering stage. The exposed soil is dryas 
farmers do not water cotton crop after flowers appear to avoid attack by insects and 
pathogens. 

Cotton is a major input to the textile industry and, therefore, plays an important 

role in India's agrarian and industrial economy. The pre-harvest area and production of 

cotton is given by the Directorate of Economics and Statistics (DES), Ministry of 

Agriculture and cooperation, apart from a number of trade organizations namely Cotton 

Corporation India and The North India Cotton Association (Charanjit Ahuja, 

http://www.expressindia.com//daily// 19980310/06955704.html). The estimates provided 

by these organisations vary greatly which, therefore, does not give a clear picture of 

demand and supply. This makes it imperative to have a more scientific approach which can 

provide pre-harvest estimates of cotton crop needed especially by the textile mills and the 

government so that procurement, storage or import/export strategies for cotton can be 

planned in advance ofthe harvest ofthe cotton crop. 

Remote sensing technology can provide timely and accurate estimates of area 

cultivated under the cotton crop before its harvest. Remote sensing based procedures for 
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pre-harvest acreage estimation have already been developed for important cereals like 

wheat and rice under CAPE project in India. 

The estimation of area under the cotton crop prior to its harvest (pre-harvest 

acreage) is undertaken by the "Crop Acreage and Production Estimation" (CAPE) project 

by Department of Space, Government of India using remote sensing technology 

(Navalgund et. ai., 1991). This project is on a continuous basis over the years since its 

inception in early 1990s. The results provided notably in terms of area under the cotton 

crop are important because of the fluctuation in area sown under the crop over years (Table 

5.1) due to waterlogging problem. The CAPE project, however, has certain drawbacks 

which can be appreciated after understanding the methodology it uses. 

5.2.1.1 Methodology of the CAPE Project 

The project uses the district as the unit of study (i. e., provides pre-harvest acreage 

and production at district level). As the area under the study was very large (average area 

per district is 3000 km2
) (Figure 5.1), a considerable effort is needed to collect ground data 

and also in subsequent analysis. It, therefore, becomes difficult to classify the whole area 

(complete enumeration) in short time to provide pre-harvest estimates of area under the 

crop. 

The alternative to complete enumeration, therefore, followed in the project is based 

on sampling technique. The remotely sensed imagery is chosen for around late September, 

when cotton is at its maximum vegetative phase (onset of flowering) (Navalgund et. at., 

1991). The period oflate September is based on the premise that the cotton crop is 

expected to be most spectrally separable from the other crops and, therefore, could be 

classified accurately. The process includes overlaying a grid of 5 X 5 Km size on a false 

colour composite (FCC) ofIRS LISS-III data. This results in a number of squares 

(segments) of 5 X 5 Km. size for each district. These segments are further classified as A, 

B, C based on cotton crop proportion deduced from FCC (A> 50 %, 25% < B <50 % and 
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C < 25 % of the area of crop under the segment). This stratification of the area into A, B 

and C type is usually undertaken once in 4-5 years. For sampling, 15 per cent of these 

segments from each category A, B, C are randomly selected (Figure 5.6) for further 

analysis (classification). Thus, the grid is used to ensure that training data extracted have 

wide coverage, a requirement of the conventional training data acquisition scheme. 

The training data for all the land cover classes present in the selected segments are 

collected by visiting the field around the most vegetative phase of the cotton crop (second 

week of September). Training signatures are generated for all the classes and the selected 

segments are then classified using MLC. The classified output gives area under cotton in 

the selected segments. The area under cotton for each district in the study area is then 

computed by extrapolating the results of the selected segments (15 per cent of study area) 

with respect to the total segments available for each type of all segments (A, B and C) 

available for the district given by the equation: 

where, 

na, nb, l1c = Mean crop (cotton) proportion of the selected A, Band C type segments 

deduced from classification. 

Na, Nb, Nc = Number of A, Band C type segments in the district. 

AJ) = Area of the district under study. 

Thus the net result comprises of a classified output of the selected segments (15 per 

cent ofthe study area) and a numerical value indicating the area under the cotton crop in 

the district. 
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Figure 5.6: FCC of raw IRS-ID satellite data (date of acquisition 16-09-2002) of selected 
segments A, Band C of the Muktsar district for cotton area estimation under CAPE 
project. These segments constitute 15 per cent ofMuktsar district in area. The figure also 
shows that some ofthe B type segments (marked as C in the FCC) definitely belong to C 
type. The problem arises because the segments are selected once in 4 -5 years and the area 
under cotton is fluctuating. 
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5.2.1.1.1 Drawbacks of the CAPE project 

The CAPE project has certain drawbacks as regards training data requirements and 

classifier used as enumerated below. 

1. The training data are collected from blocks of pixels in the selected segments and are, 

therefore, affected by the problem of spatial auto correlation (section 2.3.3.1.1.4). The 

block of pixels results in a very large training set which does not provide any additional 

information as compared to training data comprising of single pixels spread throughout the 

studyarea. 

2. There appears to be no apparent advantage of segment approach over the one based on 

individual pixels for training distributed randomly throughout the study area as far as the 

field visit is concerned. The team has to traverse the whole study area to reach from one 

segment to another which are spread all over the study area just as for collecting training 

data for individual pixels (section 2.3.3.1.1.4). 

3. The objective of Department of space in CAPE project is to get an accurate map and get 

it cheaply. However, training data collected are very large (though spatially auto 

correlated). The objective can be met if the requirement of training data can be reduced to 

make the classification process economical. 

4. The project uses MLC for classification. One of the objectives of classification is to 

produce a classifier that generalizes accurately on unseen cases. Studies have shown that 

SVMs are generally more accurate than other classifiers (section 2.7.3). 

5. The project produces classified output of only the selected segments and not the whole 

study area. As such no thematic map (crop map) is produced. Only area under cotton is 

given as numerical value like other statistical departments involved in acreage estimation 

(Table 5.1). Thus remote sensing is not fully exploited as it can give area under cotton not 

only in statistical terms but also in spatial context. 
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6. The categorization of segments as A, B, C is undertaken once in 4-5 years which does 

not hold good for areas where the area under crops are changing over years. Cotton in the 

present study is one such example (Table 5.1). 

The present study, therefore, aims to solve the draw backs of CAPE project in 

conjunction with the broader issues of supervised classification specifically relating to the 

use of reduced training set without compromising the accuracy of the classification as 

detailed under section 5.1. 

5.3 Data 

Indian Remote Sensing Satellite (IRS-ID) with a spatial resolution of 

approximately 24 m acquired by LISS-III sensor, date of pass 22nd September, 2003 

path/row of 93/49 and 93/50 encompassing the study area were used. The Red (0.62-0.68 

Ilm), near-infrared (NIR)(0.77-0.86 Ilm) and middle-infrared (MIR) (1.55-1.75 Ilm) bands 

were used. These bands are tailored for agricultural crop discrimination. 

The ground data were collected by visiting the field from 15th to 21 5t September, 

2003, near the time of satellite sensor data acquisition. Three agricultural classes namely: 

cotton, rice (basmati), rice (local) dominated the study area and were the focus of this 

study. Built-up land and sand which were also abundant were included in the study. 

Ancillary data comprised of the following information: 

1. Soil map of Punjab state (1:250,000 scale, 1993) 

2. Newspaper reports: The local newspaper especially "The Tribune" gives 

detailed articles about waterlogged areas and resulting losses to crops (Figure 

5.7). 

3. Status of crops: Agriculture departments located at district headquarters (Figure 

5.1) and farmers at the field level provided valuable information about spatial 

distribution of crops with regard to their type/maturity stages. 
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4. Information gained from scientists of Punjab Remote Sensing Centre, 

Ludhiana, who had earlier visited the field to collect ground data for cotton and 

rice for CAPE project. 

5. In addition, the existing expert knowledge of the author about the study area 

especially pertaining to cotton and rice crops because of the long involvement 

in the CAPE project (1994-2002) helped a lot. 

The ground data collection was designed to fulfil the aims of the study. It, 

therefore, comprised of a conventional training data collection procedure (large training set 

collected by conventional approach) against an intelligent scheme (comprising of small 

training set) designed for SVM classification. 

Heavy rain damages cotton, paddy 
Farmers live in tents as houses collapse 

Chander Parkash 
Tribune News Service 

Midhu Khera (Muktsar), July 22, 2003 

The heavy rain, which lashed this region three days ago, have left behind a trail of 

destruction as hundreds of houses collapsed and cotton, paddy and other crops, including 

vegetables, in thousands of acres have been badly affected in this and other villages, 

including Fatta Kera, Bhullarawala and Bhitiwala, of the district. 

The villages were presenting a picture of destruction. Some of the schools, civil 

and veterinary dispensaries and dharamshalas in these villages had also been inundated. 

Rain water could not be drained out from these pockets of Muktsar district despite the fact 

that crores of rupees had been spent during the previous SAD-BJP government on anti

water logging measures in this area. 

The farmers pointed out that a drain passing from the village had not been cleaned 

by the authorities concerned. They added that various drains dig by the Irrigation and 

Drainage Department to prevent waterlogging also failed to drain out the rain water. 

Figure 5.7: The newspaper report about waterlogging in the study area (source: The 
Tribune newspaper, July 22,2003, chandigarh edition) 
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5.3.1 Conventional Training Data Scheme 

In the conventional training data scheme, the ground data (training and testing data) 

were collected based on stratified random (by class) sampling technique (Figure 5.8). For 

this, a land cover map of previous year (September, 2002) produced by remotely sensed 

data was used as a rough guide. A grid with a spacing of 500 m was overlaid on vector 

layers of each class resulting in a number of squares (segments). The function of the grid 

was to ensure that the training data were acquired from throughout the study area so as to 

capture the spectral variability of the classes, a requirement of the conventional training 

data acquisition scheme. In all 180 such segments were selected randomly for each of the 

five classes under study (90 each for training and testing). These selected segments were 

then visited on ground for locating homogeneous sites for classes around the satellite over 

pass time (section 5.3). From each selected segment, one pixel was selected from the 

homogenous sites of the classes visited. The size of 90 pixels per class for training set was 

decided based on the recommendation of 30 times the discriminatory bands to be used 

(Lillesand and Kiefer, 2004), three in this case. The large training set was intended to 

capture the spectral variability of the classes and thus able to describe the classes 

statistically, a requirement of the training data by conventional standards. The size was 

kept same for all the classes to avoid the effect of unbalanced training sets (section 2.6.4). 

The small grid size of 500x500 m was chosen so that 180 independent samples of 

minor classes like sand and basmati rice could be sampled. The set of 180 data points for 

each class were transferred on the image and data extracted. Thus, each class comprised of 

180 pixels which were divided equally into training and testing set randomly. Thus 

training and testing data comprised of 90 pixels per each class. 

The spectral distribution of the training data (Figure 5.9) comprising the DN in the 

three bands shows that the class built up and sand overlapped mutually. This overlapping 

in feature space was also evident between rice basmati and rice local classes. The 

overlapping of the classes in feature space was also confirmed by the statistical description 
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of the training data (Table 5.2). However, agricultural and non-agricultural classes were 

very distinct in the feature space (Figure 5.9). 

Training set 
(90 pixels per class). 

Conventional scheme of 
training data acquisition. 

Devised to capture 
spectral variability of 
classes. A large training 
set required 

Extraction of vector 
layers class wise from 
land cover map in GIS. 

500 x 500m grid overlaid 
on vector layers of each 
class. 

Randomly selected 180 
squares (segments) per 
class and verified on 
ground. 

Data divided equally (90 
pixels per class) into 
training and testing set. 

I 

Testing set 
(90 pixels per class). 

Figure 5.8: Procedure followed for training data acquisition under conventional scheme. 
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Legend 

a Rice (local) 

a Rice (basrrnti) 

a Cotton 

a Sand 

a Built-up land 

Figure 5.9: Spectral distribution of training data collected under conventional training data 
collection scheme. 

The training data were close to normal but multi-modal (Figure 5.10) and, 

therefore, MLC should not be used. 

Red Band (ON) NIR Band (ON) MIR Band (ON) 

Class Min Max Mean Sd Min Max Mean Sd Min Max Mean Sd 

Built-up 
77 118 96.31 7.57 77 115 98.13 6.78 123 189 157.71 12.42 

Sand 
93 137 115.16 9.97 93 128 112.37 7.39 129 221 179.12 14.71 

Cotton 
48 64 52.60 3.36 119 172 144.59 10.5 103 136 118.61 5.23 

RiceBasmati 
54 67 58.14 2.85 84 115 99.42 5.14 83 114 92.70 4.81 

Rice Local 
48 67 53.49 3.87 99 139 115.26 7.64 79 115 93.73 8.59 

Table 5.2: Statistics oftraining data showing minimum (Min), maximum (Max), Mean and 
standard deviation (Sd) of digital numbers of the training data of the five classes in the 
three bands. 
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Figure 5.10: Histograms of the training data The solid lines show the smoothened 
histograms. 
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5.3.2 Intelligent Training Data Scheme 

The intelligent scheme for training data collection was devised to acquire training 

data from sites with relatively extreme spectral responses (potential border training 

samples) to act as support vectors for SVM classifier (Figure 5.11). This approach required 

understanding ofthe variables affecting the spectral response of the classes. These 

variables were well defined for agricultural crop classes. For example, in case of crops, the 

location in feature space is a function of many variables. These range from factors related 

with growth of the crop (topography, environment, management practices) to the satellite 

sensor characteristics (spatial and spectral resolution). The judicious combination ofthese 

factors can help to identify sites that may form useful support vectors. For example, for 

crops this translates to very high, very low or a combination of very high or very low 

values of spectral response of the bands used in feature space. For instance, a healthy crop 

generally has very high value in NIR band and very low in Red band, a matured crop on 

the other hand has comparatively low value in NIR band and high in red band (Figure 

5.12). Similarly, moisture content influences MIR response, typically reducing reflectance. 

For example, a matured crop is dry, therefore, the spectral response in MIR band is often 

high but for young healthy crop, the leaves are moist, thereby reducing MIR response. The 

MIR response is also affected by the location of the training sites. For, example, if the 

training site is located near water bodies like waterlogged areas or near canal (especially if 

unlined), resulting in higher water-table, the MIR response reduces as compared to training 

site which is away from such locations and located in dry conditions. On the basis of this 

knowledge, one may be able to predict sites that may furnish support vectors to separate 

the various classes of interest. 

Apart from the intrinsic properties of the crops, prior information of soil 

background of the crop can also be exploited to intelligently select sites to furnish the 

appropriate support vectors (section 4.1.2). For instance, in some cases, the feature space 

of a crop can be partitioned based on some soil attributes such as based on dark or light 
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tones. Ifthe support vectors can be identified based on such attributes, training selection 

process can be limited to a smaller area (section 4.1.2). This is especially true for crops 

where soil is exposed to sky and contribute significantly to the spectral response ofthe 

crop. Cotton was one such crop being studied (Figure 5.5).This in tum would help future 

analyses in the area to focus training sample acquisition to regions most likely to furnish 

support vectors based on particular soil type. 

Matured 

-I-
- * ... . 

Figure 5.12: Rice fields showing matured crop in far end with nearer fields still green and 
healthy. This variation can be exploited to capture support vectors 
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Land cover classes 
(agricultural and non
agricultural) 

Other classes 
(non-agricultural classes) 

25 training cases of built 
up and sand selected 
randomly from training 
set collected under 
conventional scheme to 
form part of training data 
under intelligent scheme. 

Training cases collected. 
1. Builtup-25 
2. Sand - 25 

Intelligent scheme of 
training data acquisition. 

Devised to capture 
potential support vectors 
from field 

Classes of interest 
(agricultural classes) 

Understanding the 
variables affecting the 
spectral response of a 
class 

Bands (Red, NIR & 
MIR) related with 
growth of crop, soil and 
water background of 
agricultural sites 

Training cases expected 
to provide appropriate 
support vectors were 
collected for each class 
1. Cotton - 30 
2. Rice Basmati -20 
3. Rice Local - 30 

Training cases collected. 
1. Cotton - 30 
2. Rice Basmati -20 
3. Rice Local - 30 
4. Built up - 25 
5. Sand - 25 

Figure 5.11: Procedure followed for training data acquisition under intelligent scheme. The 
scheme was tested on testing data acquired under conventional scheme. 
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The variables considered for collecting training data intelligently for the three crops 

cotton, rice basmati and rice local are enumerated in Tables 5.3, 5.4 and 5.5 respectively. 

The information regarding the status of crops were collected before going to field (section 

5.3) and was also updated in-situ by consulting the farmers (Figure 5.13) so as to collect 

training data from locations that would provide appropriate support vector. 

For the non-agricultural classes built-up and sand, the spectral variability was not 

well defined as for crops with the available spectral bands. As such, no informed guess 

could be made as regards the training sites that would yield support vectors, though there 

may be some relationship for example, for soil based on particle size. As non-agricultural 

classes were very distinct with respect to agricultural classes in feature space (Figure 5.9), 

only 25 training samples were selected randomly for each of these two classes from the 

training data collected under conventional scheme (Figure 5.11) to form part oftraining 

data under intelligent Scheme. The relative distribution ofthe classes in the feature space 

was expected not to result in any confusion between agricultural and non-agricultural 

classes in the classification process. The inclusion oftraining data of built up and sand 

classes from conventional scheme was intended to include training data of all the classes in 

Figure 5.13: Farmers being consulted in field about the crop status in the area. 
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the intelligent scheme so that multi-class comparison of the two schemes could be made by 

training the classifiers with both the training schemes. 

General condition of crop/field from where support vectors 
were acquired 
1. Generally the crop was in flowering stage throughout the study 

area (Figure 5.5). 

As such no variability due to growth of crop could be observed by 

naked eye in the field. 

2. The soil was generally exposed to sky in the cotton fields 

(Figure 5.5). 

The contribution of soil to the spectral response of cotton crop 

comprised of (a) direct contribution (b) in the growth of the crop. 

So all soil types were considered to account for variability in soil 

type. In addition training data was also acquired from saline land 

(salt left on ground due to waterlogging) (Figure 5.14). 

3. Generally the cotton fields were not watered 

The cotton fields were not watered (Figure 5.5) for frutification to 

take place. Training sites from near waterlogged areas or canals 

which have higher water table that would affect spectral response 

especially of water sensitive MIR band were considered. 

Table 5.3: Variables considered in the intelligent scheme of training data collection for 
cotton. 
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General condition of crop/field from where support vectors 
were acquired 

1. Generally the crop was young and healthy (Figure 5.15) 

2. The canopy of the crop was such that it did not permit 

exposure of soil to sky (Figure 5.16). 

3. The fields were generally watered as crop was young 

(Figure 5.15). 

There was thus no apparent variability that naked eye could 

notice in the field. However, training samples were collected 

from fields comprising all soil types and from near/away from 

canals that would affect the spectral response of the crop and 

yield support vectors. 

Table 5.4: Variables considered in the intelligent scheme of training data collection for rice 
basmati. 
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General condition of crop/field from where support vectors for 
rice local were acquired 
1.Three different stages of maturity were noticed for the crop 

Very matured-Dark yellow (Figure 5.17 a, band c), Less 

matured-Light yellow (Figure 5.18 a and b), Young-Green 

(Figure 5.19 a and b). 

The growth stages offer a defined relation with spectral response 

of a crop. For example, for healthy young crop, spectral response 

would be higher in NIR band and low in Red band but as the crop 

matures, there is a shift towards the red band, thereby reducing the 

value in NIR band and increasing in Red band as compared to 

young crop. 

2. Training sites near water bodies especially of less (Figure 5.l8a) 

and very matured (Figure 5.l7c) varieties oflocal rice not watered 

in field would affect spectral response especially in MIR bands. 

3. Different soil types (though soil has contributed only in the 

growth of crop and there was no direct contribution due to 

exposure to sky (Figure 5.21)). From saline land resulting from 

waterlogging (Figure 5.20) 

Table 5.5: Variables considered in the intelligent scheme of training data collection for rice 
local. 
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Figure 5.14: Cotton crop in saline land. The white patches of salt due to waterlogging can 
be seen on the exposed soil. This was expected to increase the spectral response in all three 
bands. 

Figure 5.15: Basmati rice was very young and green throughout the study area as such no 
variability could be observed in field by the naked eye. 
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Figure 5.16: The canopy ofbasmati rice does not permit soil to be exposed to sky. Thus 
the contribution ofthe soil in the spectral response of the crop could be considered only 
due to its contribution in the growth of the crop. 

Figure 5.17 a: Very matured local rice. NIR values would be low and Red higher as 
compared to a young healthy crop. Likewise MIR value would be higher as the crop was 
dry. 
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Figure 5.17b: Very matured local rice NIR values would be low and Red higher as 
compared to a young healthy crop. Likewise MIR value would be higher as the crop was 
dry. 

Figure 5.17 c: Very matured local rice ad jo ining a canal. Water reduces spectral response 
especially in MIR band. 
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Figure 5.l8a: Matured local rice near canal. The leaves have started yellowing and grain 
formation has set in. Water reduces spectral response especially in MIR band. 

". 

" 

.~~ ... 

Figure 5.l8b: Matured local rice. Grain formation has taken place and yellowing ofleaves 
has also started. The spectral values would be between young healthy and very matured 
local rice in similar conditions. 
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Figure 5.19a: Young local rice. The grain formation is there but leaves are still green. The 
NIR values would be high and Red very low as compared to matured crop. 

Figure 5.19b: Young local rice. The grain formation is there but leaves are still green. The 
values in NIR would be high, low in Red and low in MIR (leaves were moist) as compared 
to matured crop. 
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Figure 5.20: Local rice in area affected by waterlogging. The white salt can be seen on the 
soil (lower right comer ofthe photograph). The pump in the field is to drain out water due 
to waterlogging from the field out into surrounding drain. 

Figure 5.21: Top view oflocal rice. The canopy does not expose soil to sky. 

The spectral distribution of training data collected under intelligent scheme is given 

in Figure 5.22 and statistics in Table 5.6. 
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Class Red Band (ON) NIR Band (ON) MIR Band (ON) 

Min Max Mean Sd Min Max Mean Sd Min Max Mean Sd 

Built-up 81 104 96.16 5.5 81 109 97.56 6.76 129 189 156.68 13.21 

Sand 101 128 116.00 6.88 99 124 113.40 6.54 159 199 178.96 8.98 

Cotton 47 58 52.87 2.22 112 170 143.17 15.60 97 132 116.33 8.40 

Rice(basmati) 49 65 57.95 3.93 83 110 96.70 5.69 85 103 93.55 5.41 

Rice (local) 44 73 55.73 8.06 89 138 108.93 13.09 83 119 98.47 10.31 

Table 5.6: Statistics oftraining data showing minimum (Min), maximum (Max), Mean and 
standard deviation (Sd) of digital numbers of the training data ofthe five classes in the 
three bands. 
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Figure 5.22: spectral distribution of training data collected under intelligent 
scheme. 

5.4 Methodology of Classification 

There are many factors that affect the accuracy of an image classification. This 

study examines the effect oftraining set acquired under conventional scheme and the 

intelligent scheme oftraining data acquisition along with classification algorithms used on 

classification accuracy (Table 5.7). Though the intelligent scheme was tailored for SVM 

classification, the intention of using other classifiers DA, DT and ANN in the study was to 
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assess the effect of intelligent scheme on the accuracy of these classifiers. In addition, the 

intelligent scheme was devised to acquire potential border training data and studies have 

shown that border training data are more important for classification by an ANN classifier 

(Foody, 1999), the DT uses extreme cases in the splitting rules to make data more 

homogeneous, as such the inclusion of other classifiers especially ANN and DT were 

justified to test the accuracy trained with intelligent scheme of training data acquisition. 

The four classifiers were trained with both the conventional and intelligently 

defined training sets. The classification accuracy of the trained classifiers were tested on 

the same testing set which were acquired under the conventional scheme (section 5.3.1). 

The accuracy statements of classifications derived from both the analyses (conventional 

and intelligent scheme oftraining data acquisition) was compared in a rigorous fashion 

using MCNemar test that accommodated the testing samples for the related nature in the 

analyses (section 3.1.3). 

Variables Scenarios investigated 
Training set A) Conventional sampling scheme: 

training set comprised of 90 pixels 
per each class. 

B) Intelligent scheme: Training set 
comprised of variable number of 
cases per class as detailed below: 

-Built-up 25 cases 
-Sand 25 cases 
-Cotton 30 cases 
-Rice Basmati 20 cases 
-Rice Local 30 cases 

The number of training cases acquired 
depended upon the cases likely to 
provide appropriate support vectors 
which varied for each class. 

Classification algorithms Discriminant analysis 
Artificial neural network 
Decision tree 
Support vector machine 

Testing set Testing set comprised of 90 pixels per 
each class collected along with training 
set in conventional scheme of training 
data acquisition. 

Table 5.7: Vanables considered m the study. 
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5.5 Results and Discussions 

5.5.1 An Assessment of Ability to Intelligently Identify Most Useful Training 

Samples (Support Vectors) Directly from Field 

The intelligent scheme was tailored to capture training data from sites which would 

provide appropriate potential border training data (potential support vectors) (Figure 5.23). 

This was driven by the desire that the SVM needs only training data that are located on the 

border of the spectral distribution of the classes in feature space. The intelligent scheme 

was devised for agricultural classes (section 5.3.2) as the variables affecting the spectral 

response are well understood for agricultural classes. Thus external knowledge of crop 

status, soil background and water condition of the agricultural fields were used to select 

suitable training sites to obtain potential border training data (Tables 5.3, 5.4 and 5.5). 

The training data collected under the intelligent scheme was overlaid with those 

collected under the conventional scheme (Figure 5.23) to visualize if the training data 

collected under intelligent scheme was successful in capturing border training data 

(potential support vectors). 

The intelligent scheme was successful in capturing border training data for 

agricultural classes especially cotton and local rice (Figure 5.23). However, for basmati 

rice, there was hardly any variability that eye could notice in field and, therefore, the 

training data collected for basmati rice under intelligent scheme did not fully describe the 

border of training data as collected by conventional scheme in feature space. Further 

examination of Figure 5.23 shows that the element of external knowledge involved in 

intelligent scheme helped to capture potentially border training data especially very 

matured local rice (Figure 5.23), which could not be captured by the conventional scheme. 

This can be attributed to the reason that the very matured variety of local rice could be 

found only in small parts of the study area and, therefore, the training set (90 cases per 
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class) devised for conventional scheme was not large enough to acquire training data from 

very matured variety oflocal rice. Perhaps, a still larger training set could have acquired 

training data pertaining to very matured variety oflocal rice under conventional scheme of 

training data acquisition. 

The distribution of training data collected under intelligent scheme over 

conventional scheme (Figure 5.23) shows that the intelligent scheme was successful in 

collecting training data from border regions of the spectral distribution of the agricultural 

classes in feature space. However, the success of intelligent scheme over the conventional 

scheme of training data acquisition needs to be conflrmed by training the various 

classiflers, especially the SVM and testing on the same testing set for comparative 

analysis. 

Legend 

• SV (Rice Local) 

o SV (Rice Basmati) 

+ SV (Cotton) 

• SV (Sand) 

• SV (Built-up) 

Rice local 

x Rice basmati 

o Cotton 

o Sand 

o Built-up 

Figure 5.23: Training data of conventional scheme overlaid by that captured under 
intelligent scheme. The preflx SV in labels in the legend refers to training data 
collected by intelligent scheme. The 'A' refers to training data from site with very 
matured local rice collected under intelligent scheme. 

137 



5.5.2 Relative Accuracy 

The overall classification accuracy obtained on the testing set by different 

classifiers trained with training data acquired under conventional scheme were compared 

with accuracies obtained with corresponding classifiers trained with data acquired under 

intelligent scheme to understand the effect of the nature of training set and classifiers used 

on classification accuracy. Section 5.5.2.1 to 5.5.2.4 focuses on accuracy obtained by the 

four classifiers DA, ANN, DT and SVM respectively, trained by training data collected by 

conventional and by intelligent scheme. The comparison of the results of the four 

classifiers is followed in section 5.5.2.5. 

5.5.2.1 Discriminant Analysis 

Table 5.8 and 5.9 shows the confusion matrix of testing set when DA was trained 

by training data collected by conventional and by intelligent scheme respectively. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 82 8 0 0 0 90 
Sand (S) 18 72 0 0 0 90 
Cotton (C) 0 0 87 0 3 90 
Rice Basmati (RB) 0 0 0 83 7 90 
Rice Local (RL) 0 0 3 13 74 90 
Total 100 80 90 96 84 450 

Overall accuracy=88.44% 

Table 5.8: Error matrix of testing set for the classification derived from the discriminant 
analysis (DA) trained by data acquired under conventional scheme. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 83 7 0 0 0 90 
Sand (S) 19 71 0 0 0 90 
Cotton (C) 0 0 88 0 2 90 
Rice Basmati (RB) 0 0 0 76 14 90 
Rice Local (RL) 0 0 4 4 82 90 
Total 102 78 92 80 98 450 

Overall accuracy=88.88% 

Table 5.9: Error matrix of testing set for the classification derived from the discriminant 
analysis (DA) trained by data acquired under intelligent scheme. 
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Comparative analysis of the two tables (Table 5.8 and Table 5.9) shows that overall 

accuracy obtained by DA was very similar for both the training schemes, conventional and 

intelligent. The differences in accuracy between the classifications trained by conventional 

and intelligent scheme were statistically not significant at 95 % confidence level (Table 

5.16). This can be attributed to the reason that statistical parameters generated by both the 

training schemes (Table 5.2 and Table 5.6) were very similar. The examination ofthe two 

tables (Table 5.2 and Table 5.6) shows that the statistical parameters for the first three 

classes were very similar for both the training schemes resulting in very similar class 

accuracies for the first three classes for DA trained with either training schemes. However, 

for the last two classes (Rice local and Rice basmati), statistical parameters generated 

from the two training schemes were not similar and were reflected in their varied 

accuracies for the classes (local rice and basmati rice) for DA trained with conventional 

and intelligent schemes. 

5.5.2.2 Decision Tree 

Table 5.10 and 5.11 shows the confusion matrix of testing set when DT was trained 

by training data collected by conventional and by intelligent scheme respectively. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 76 14 0 0 0 90 
Sand (S) 19 71 0 0 0 90 
Cotton (C) 0 0 82 0 8 90 
Rice Basmati (RB) 0 0 0 78 12 90 
Rice Local (RL) 0 0 2 13 75 90 
Total 95 85 84 91 95 450 

Overall accuracy = 84.88% 

Table 5.10: Error matrix of testing set for the classification derived from the decision tree 
(DT) trained by data acquired under conventional scheme. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 78 12 0 0 0 90 
Sand (S) 11 79 0 0 0 90 
Cotton (C) 0 0 66 0 24 90 
Rice Basmati (RB) 0 0 0 66 24 90 
Rice Local (RL) 0 0 5 16 69 90 
Total 89 91 71 82 117 450 

Overall accuracy=79.55% 
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Table 5.11: Error matrix of testing set for the classification derived from the decision tree 
(DT) trained by data acquired under intelligent scheme. 

Comparative analysis of the two tables (Table 5.10 and Table 5.11) shows that 

overall accuracy obtained by DT trained with intelligent scheme of training data 

acquisition was less as compared to one trained with training data from conventional 

scheme. The differences in accuracy between the classifications trained by conventional 

and intelligent scheme were statistically significant at 95 % confidence level (Table 5.16). 

This can be attributed to the reason that DT is a non-parametric classifier and the node 

splitting rules to make child nodes purer is based on the extreme spectral values of the 

training data ((Figure 5.24, Table 5.2) and (Figure 5.25 and Table 5.6» of the various 

classes. The small intelligently selected training data under intelligent scheme provided 

extreme values (for agricultural classes especially local rice, Figure 5.23) and, therefore, 

the classifier had more extreme values as compared to conventional scheme of training 

data (Table 5.6 and Table 5.2 respectively). The extreme values under intelligent scheme, 

therefore, provided more overlap between agricultural classes in feature space and, 

therefore, more confusion with DT classification. 

The node splitting rules in decision tree trained with intelligent scheme, therefore, 

had more extreme cases (Figure 5.25) as compared to one trained with conventional 

scheme (Figure 5.24). This resulted in more overlap in decision rules between classes in 

feature space and, therefore, more confusion when trained with training data from 

intelligent scheme. This made DT very sensitive to the nature of training scheme used to 

acquire training samples. The overall accuracy for DT trained with conventional scheme of 

training data decreased from 84.88 per cent to 79.55 per cent when trained with intelligent 

scheme. This difference was very pronounced for agricultural classes. 
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5.5.2.3 Artificial Neural Networks 

Table 5.12 and 5.13 shows the confusion matrix of testing set when ANN was 

trained by training data collected by conventional and by intelligent scheme respectively. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 85 5 0 0 0 90 
Sand (S) 13 77 0 0 0 90 
Cotton (C) 0 0 85 0 5 90 
Rice Basmati (RB) 0 0 0 78 12 90 
Rice Local (RL) 0 0 1 8 81 90 
Total 98 82 86 86 98 450 

Overall accuracy = 90.22% 

Table 5.12: Error matrix of testing set for the classification derived from the artificial 
neural network (ANN) trained by data acquired under conventional scheme. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 81 6 0 0 3 90 
Sand (S) 16 74 0 0 0 90 
Cotton (C) 0 0 88 0 2 90 
Rice Basmati (RB) 0 0 0 77 13 90 
Rice Local (RL) 0 0 5 7 78 90 
Total 97 80 93 84 96 450 

Overall accuracy = 88.44% 

Table 5.13: Error matrix of testing set for the classification derived from the artificial 
neural network (ANN) trained by data acquired under intelligent scheme. 

Comparative analysis of the two tables (Table 5.12 and Table 5.13) show that 

overall accuracy as well as individual class wise accuracies obtained by ANN were very 

similar for both the training schemes, conventional and intelligent. The differences in 

accuracy between the classifications trained by conventional and intelligent scheme were 

statistically not significant at 95 % confidence level (Table 5.16). This can be attributed to 

the findings (Foody, 1999) that border training data are more important than core for 

classification undertaken by ANN classifier. This, therefore, resulted in very similar 

accuracy for ANN trained with intelligent scheme (training data collected with potential 

border cases of classes in feature space) with that collected by conventional scheme. 
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For agricultural classes only, for which the intelligent scheme was tailored, 

conventional scheme resulted in 244 pixels correct (Table 5.12), whereas the intelligent 

scheme provided 243 pixels correct (Table 5.13) for SVM classification. Thus the 

accuracy of agricultural classes were very similar for both the training schemes. 

5.5.2.4 Support Vector Machine 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 89 1 0 0 0 90 
Sand (S) 15 75 0 0 0 90 
Cotton (C) 0 0 88 0 2 90 
Rice Basmati (RB) 0 0 0 82 8 90 
Rice Local (RL) 0 0 3 7 80 90 
Total 104 76 91 89 90 450 

Overall accuracy = 92.00% 

Table 5.14: Error matrix of testing set for the classification derived from the Support 
Vector Machine (SVM) trained by data acquired under conventional scheme. 

Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 88 2 0 0 0 90 
Sand (S) 18 72 0 0 0 90 
Cotton (C) 0 0 88 0 2 90 
Rice Basmati (RB) 0 0 0 78 12 90 
Rice Local (RL) 0 0 4 4 82 90 
Total 106 74 92 82 96 450 

Overall accuracy = 90.66% 

Table 5.15: Error matrix of testing set for the classification derived from the Support 
Vector Machine (SVM) trained by data acquired under intelligent scheme. 

Comparative analysis of the two tables (Table 5.14 and Table 5.15) show that 

overall accuracy as well as individual class wise accuracies obtained by SVM was very 

similar for both the training schemes, conventional and intelligent. The differences in 

accuracy between the classifications trained by conventional and intelligent scheme were 

statistically not significant at 95 % confidence level (Table 5.16). 

The two analysis used only a fraction of the input training data, the conventional 

used 215 training data as support vectors from a total of 450 (47.7 %) input training set 

(51, 52, 28, 38, 46 support vectors for class Built-up, Sand, Cotton, Rice basmati and Rice 
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local respectively) whereas, the intelligent scheme used 76 training data as support vectors 

from a total of 130 input training set (11,9, 11, 18,27 support vectors for class Built-up, 

Sand, Cotton, Rice basmati and Rice local respectively). However, for intelligent scheme 

which was devised for agricultural classes 56 out of 80 (70 %) training samples were used 

as support vectors. 

Support vectors central to the establishment of decision surfaces in SVM could be 

successfully captured under intelligent scheme of training data acquisition especially for 

cotton and local rice. However for rice basmati, there was hardly any variability that eye 

could notice in fields (table 5.4) and, therefore, the intelligent scheme was not very 

successful in capturing potential support vectors for rice basmati class (Figure 5.22). Thus, 

the unavailability of proper support vectors for rice basmati class resulted in confusion of 

rice basmati with rice local class (class facing rice basmati class in feature space) in the 

classification process (Table 5.15). 

For agricultural classes only, for which the intelligent scheme was tailored, 

conventional scheme resulted in 250 pixels correct (Table 5.14), whereas the intelligent 

scheme provided 248 pixels correct (Table 5.15) for SVM classification. Thus the 

accuracy of agricultural classes were very similar for both the training schemes, though 

training data was reduced by more than two-thirds from 270 cases for conventional scheme 

to 80 pixels under the intelligent scheme. 

5.5.2.5 Discussion 

The results obtained for the four classifiers with focus on SVM are discussed 

hereafter for classifications trained for conventional scheme in next section, followed by 

intelligent scheme in section 5.5.2.5.2 and finally the comparative analysis of the two 

schemes in section 5.5.2.5.3. 
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5.5.2.5.1 Analysis of Classifications Trained with Conventional Scheme of Training 

Data Acquisition 

From the range of classifications undertaken, the highest overall accuracy of 92 % 

was obtained from the SVM. Moreover, this classification was significantly more accurate 

than that derived from DA and DT (Table 5.17) at the 95 % confidence level. 

The sensitivity of the SVM classification to the nature of the training sample is also 

evident (Table 5.18) which shows that SVM classification are based on a fraction input 

training data that lie on part of the edge of class distribution in feature space. The SVM 

used only 215 training samples out of a possible 450 as support vectors for training (Table 

5.18). 

There was no confusion between agricultural and non-agricultural classes by any of 

the four classifiers. This is due to the reason that agricultural classes and non agricultural 

classes were spectrally distinct in feature space (Figure 5.9). However, SVM in general 

produced the most accurate classification for all the agricultural classes as compared to 

other classifiers. 

5.5.2.5.2 Analysis of Classifications Trained with Intelligent Scheme of Training 

Data Acquisition 

From the range of classifications undertaken, the highest overall accuracy of 

90.66 % was obtained from the SVM. Moreover, this classification was significantly more 

accurate than that derived from DT and ANN (Table 5.17) at the 95 % confidence level. 

The sensitivity of the SVM classification to the nature of the sample is also evident 

(Table 5.18) which shows that SVM classification used only a fraction of the input training 

data. SVM used only 76 training pixels as support vectors (Table 5.18). 

The accuracy obtained by ANN and SVM were very similar as expected. Studies 

have shown that border training data are more important in classification with ANN 
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(Foody, 1999) and training data captured under intelligent scheme strived to collect border 

training data. 

DA, ANN and SVM correctly classified 88 pixels of cotton out of90 but the SVM 

used only 11 pixels of cotton as support vectors (Table 5.18) as compared to all the 

available training data of cotton (30 pixels) by the other three classifiers. 

The small intelligently collected training data under the intelligent scheme was 

devised for agricultural classes but for non-agricultural classes (built-up and sand) for 

which no educated guess could be made (may be possible with certain attributes such as 

particle size for sand) in the present study as regards the sites that would provide 

appropriate support vectors, 25 training samples for each class were included from 

conventional scheme. This was intended so that multi-class comparison could be 

undertaken for the two schemes of training data acquisition. The size of 25 training 

samples were chosen as the spectral distribution of the two classes (built-up and sand) 

(Figure 5.9) were very distinct with agricultural classes in feature space. This relative 

distribution of the classes was expected not to result in any confusion between agricultural 

and non-agricultural classes in the classification process. There was, as expected no 

confusion between agricultural and non-agricultural classes by any of the four classifiers 

used and, therefore, justifies the selection of25 training samples each for non-agricultural 

classes. In addition, it can be argued that the information on built-up and sand is often 

available in GIS format or from earlier image analysis and can be masked out from the 

study area. This implies that from practical consideration mapping agricultural classes are 

of paramount importance. The intelligent scheme devised for agricultural classes, 

therefore, served its purpose. 
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5.5.2.5.3 Comparison between Classifications Trained with Conventional and 

Intelligent Scheme of Training Data Acquisition 

SVM provided the highest accuracy for both the training schemes (Table 5.14 and 

Table 5.15). The SVM used only a fraction of input training data for both the training 

schemes. However, the intelligent scheme devised for agricultural classes was successful 

in its intent to capture support vectors directly from field as the SVM classification used 56 

out of 80 (70 %) training samples collected under intelligent scheme for agricultural 

classes as support vectors as compared to 215 out of 450 (47.7 %) for all the classes used 

by the conventional scheme (section 5.5.3.3). 

DT was most sensitive of all the four classifiers to the nature of the training data 

(Table 5.16). The differences in accuracy between the DT classifications trained by 

conventional and intelligent scheme were statistically significant at 95 % confidence level 

(Table 5.16). 

However, there was no confusion between agricultural and non-agricultural classes 

by any of the four classifiers trained by either of the training acquisition schemes. 

Z values 

Classifiers Conventional' v Intelligent scheme 
Discriminant analysis -0.447 
Decision tree 2.650 
Artificial neural network 1.290 
Support vector machine 1.500 

Table 5.16: Significance value (Z) of differences between accuracies of testing set 
obtained when the classifiers were trained with training data collected under Conventional 
and by Intelligent scheme of training data collection. Differences significant at the 95% 
confidence level (Z ~ 1.96) are highlighted in bold with positive values indicating higher 
accuracy when classifier trained with training data collected under conventional scheme. 
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Training SVM v SVMvDT SVM v ANN v ANNvDT DTvDA 
scheme DA ANN DA 
Conventio 3.138 5.600 1.7060 1.410 4.110 -2.470 
nal 
Intelligent 0.125 5.976 2.0412 -0.426 4.714 -4.817 

Table 5.17: Comparison of classification accuracy statements for classifications trained 
with conventional and intelligent scheme of training data acquisition (SVM = support 
vector machine, DA = discriminant analysis, DT = decision tree and ANN =artificial 
neural network). Differences significant at the 95% confidence level (Z ~ 11.961) are 
highlighted in bold with positive values indicating that the first named classifier had the 
higher accuracy. 

Training DA DT ANN SVM 
scheme Acc Acc(%) Acc(%) Architecture Acc(%) parameters SV's 

(%) 
Conventional 88.44 84.88 90.22 3:8:5 92.00 C=0.25 215 

Y =.005 
Intelligent 88.88 79.55 88.44 3:11:5 90.66 C=1 76 

Y =.000625 

Table 5.18: Parameters used to model the classifiers. The architecture in ANN describes 
the input layers, the nodes in the middle layer and the output layers. The network's 
architecture were defined from an evaluation of several hundreds of candidate networks. 
The parameters for SVM were chosen with the intent to maximize accuracy on testing set. 

5.5.3 Identifying Support Vectors with Ground Attributes of the Training Sites 

The SVM analysis detailed in Chapter 4 demonstrated that the support vectors of 

wheat class were mainly derived from brown soils. In particular, this knowledge may 

allow small intelligently selected training samples to be derived from regions with 

particular soil type for future analysis without loss of classification accuracy. Thus in 

situations, when support vectors of a class can be identified with a particular variable 

associated with the spectral response of a class (e.g., for crops, growth or background 

properties of training sites such as soil or water) can be exploited to direct training 

acquisition activities to regions most likely to furnish support vectors for future analysis. 

The intelligent scheme of training data acquisition (section 5.3.2) for agricultural 

classes was based on ancillary information on the growth status and background conditions 

(soil type and water) of the training sites. The intelligent scheme used 56 out of 80 training 

samples of agricultural classes as support vectors (section 5.5.2.4). 
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If, however, support vectors resulting from SVM classification based on intelligent 

scheme of training data acquisition can be related with ancillary information on the growth 

status of crops or ground attributes (like soil or moisture status) of training sites, there is 

scope of further reducing the requirement of training data over and above the small 

intelligently acquired training data collected under the intelligent scheme for future 

analysis. Thus the knowledge gained about the relationship of support vectors with 

ancillary information from SVM classification can be exploited in case the analysis is 

repeated in future to focus the training data acquisition process to the regions most likely 

to furnish support vectors. 

The analysis detailed in chapter 4 shows that the support vectors of wheat class 

were mainly derived from only one soil type and, therefore, provides an opportunity to 

acquire training data from sites with particular soil type for future analysis. It was expected 

based on the experience of chapter 4 that support vectors for cotton crop being studied 

would be related with a particular soil type. This was hypothesised as the soils in the 

cotton fields were exposed to sky (Figure 5.5) and were expected to contribute directly to 

the spectral response of the cotton crop in addition to its contribution in the growth of the 

cotton crop unlike the case in Feltwell study (chapter 4) where soil was not exposed to sky 

and contributed only in the growth of the crop. However, the examination of support 

vectors along with ancillary information (Table A57) suggested that in general support 

vectors of cotton crop were derived from training sites located near the water bodies like 

canals or waterlogged areas and not soil as anticipated. This can be attributed to the reason 

that cotton crop was generally not watered, to avoid attack by pathogens and pests for 

frutification to result (section 5.2.1). The training data collected from near canals or 

waterlogged surfaces for cotton crop resulted in higher moisture content of the soil, 

reducing spectral response of cotton crop especially in MIR band. These training data of 

cotton crop, therefore, were located between the dry cotton crop (majority condition for 

cotton crop) and local rice in feature space and formed support vectors for cotton crop. 
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In all 10 out of 11 support vectors of cotton crop (Table A57) were derived from 

near waterlogged or near canals. Thus there was only one exception; one of the support 

vectors of the cotton crop was derived from dry soil (Table A57). Moreover, this single 

support vector drawn from the region of dry soil had a small ai value of 0.6051 (Table 

A57). The contribution of the support vectors to the establishment of the optimal 

separating hyperplane (OSH) is directly proportional to its a value as is evident from 

equation 2.69, with training samples for which (hi=O making no contribution to the fitting 

of the hyperplane. Thus, training samples with (hi=O carry no useful information, unlike 

those that lie in the border region of classes in feature space where (hi tends to its maximum 

value (1 for cotton class in the present case as the value of parameter C is I). Thus 

maj ority of support vectors (10 out of 11) of cotton crop were drawn from training sites 

with wet conditions with the highest possible (hi value of 1 (Table A57). 

The lone support vector of cotton crop drawn from dry soil having a small a value 

of 0.6501 had a very meagre contribution to the fitting of the hyperplane between cotton 

and local rice crop. Thus removing this lone support vector of cotton crop drawn from dry 

soil was expected not to have a significant influence on the location lorientation of the 

hyperplane between cotton and local rice classes and thereby the classification accuracy. 

The analysis was, therefore, extended to appreciate if the support vectors of cotton crop 

derived only from waterlogged or near canal (i.e. wet conditions) provided the same 

accuracy as SVM trained with all training data of cotton crop (including training data 

drawn from dry soil (majority condition) of the cotton crop). For this, training data of 

cotton crop with wet ground conditions was only retained for training the SVM classifier. 

Repeating the SVM classification but with the training samples of cotton crop drawn from 

near canals or waterlogged areas (wet conditions of training sites) only resulted in the 

same set of class allocations (Table 5.15) as made for the testing cases as before (Z=O). 

Thus, classification accuracy was maintained despite the exclusion of training samples of 

149 



cotton crop from dry soils. 

The result indicates that training data for cotton needs be acquired only from near 

water bodies (near canals or waterlogged areas) if the analysis is repeated in future. In this 

way, an accurate classification may be undertaken with SVM classifier using a small 

training set for cotton crop derived from a small spatial area near waterlogged or from near 

canals. 

5.5.4 Financial Implication of Reducing the Requirement of Training Data 

The objective in remote sensing classification process should be to provide an 

accurate land cover product keeping the whole process as economical as possible. The 

analysis carried in the work was designed to reduce the requirement of training data under 

intelligent scheme of training data acquisition and was thus aimed to reduce the cost of 

classification process as compared to one based on a large training set collected under 

conventional training data acquisition scheme. Both the approaches intelligent and 

conventional had very different requirements especially with regard to training acquisition 

process. There are a number of steps involved in image classification process and efforts 

should be made to reduce the costs involved at each step if possible. The costs involved in 

classification analysis can be broken into four broad parts: 

1. Set up costs (costs for acquiring hardware and software) 

2. Field survey costs (vehicle costs and costs incurred on personnel involved) 

3. Image acquisition costs (cost of remotely sensed data) 

4. Time spent on analysis of field data and processing of imagery (costs on computer 

and image analyst time) 

The potential to reduce the requirement of training data as detailed under the 

intelligent scheme has direct bearing on cost associated with field survey and also on time 

spent on the analysis as compared to the one carried with conventional training data 

scheme. The other two costs (set up costs and cost to acquire imagery) as detailed above 
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were, however, same for conventional and intelligent training scheme as both the analysis 

were carried on the same setup (hardware and software) and on the same imagery. The 

approximate costs incurred in the two classification analysis are tabulated in Table 5.19. 

Table 5.19 shows that the intelligent scheme of training data acquisition was 

cheaper by Rs. 9288 (26.09 per cent) over the conventional scheme. The difference in cost 

for the classification process with the two schemes was mainly on account of preparatory 

work and distance traversed on ground to acquire training sites. The conventional scheme 

needed plot outs of selected segments (section 5.3.1) on transparent sheet for each class to 

be overlaid on the reference maps of the study area to locate the selected segments on 

ground so as to acquire sites for training and testing data. Thus not only was the 

conventional scheme costly as compared to intelligent scheme but at the same time had 

more paper work in the form of plot outs from plotter. The conventional scheme was based 

on the concept of capturing the spectral variability of the classes in feature space by the 

sheer large number of training sets. However, the intelligent scheme was devised to 

capture a small number of training set aided by external knowledge on factors like crop 

growth and background properties of training sites (soil type and water) and, therefore, 

made training data acquisition under intelligent scheme more scientific and interesting in 

field. 

The calculation enumerated in Table 5.19 are, however, based when both training 

and testing data were collected together at the same time in the conventional scheme 

(section 5.5.1) but this difference in costs for classification undertaken with intelligent and 

conventional schemes of training acquisition would magnify if training and testing data 

had been collected independently of each other. Keeping this scenario in mind, the 

expenditure likely to incur if training and testing data were collected independently were 

recalculated. For this situation, the only difference with one tabulated in Table 5.19 would 

be in distance travelled for collecting training data. For efforts to acquire testing data are 

same for both the schemes, hence negated. The distance to be traversed to acquire only 
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training data under conventional and intelligent scheme would have been 1700 Km and 

1040 Km respectively. The overall costs for the two schemes conventional and intelligent 

would have been Rs 33000 and Rs. 23390 respectively. This makes intelligent scheme 

cheaper by Rs 9610/- over conventional scheme or 29.12 per cent over the conventional 

scheme. 

Random Intelligent 
Field survey 
-Preparatory work (a)Land cover map (Rs. (a) Soil map (Rs 16000) 

20,000) 
(b )Preparation of random (b) Gathered information 
segments (one man day= Rs. about growth status of crops, 
600) waterlogging through (i) news 

- (c) Plot outs of selected paper (ii) agriculture 
segments on 1 :250000 sheets departments (iii) farmers 
(Rs. 150 per sheet, totalling (one man day Rs 600) 
Rs 1800=00 for 12 sheets) 

Travelling 
-In field (a)Distance travelled 2442 

Km (@Rs.3.5IKm = (a)Distance travelled 1874 Km 
Rs.8547) (@Rs.3.5IKm = Rs.6559) 

Analysis 
-Training data 
extraction, data (a) 31 hours (@Rs. 150/hr (a) 21 hours (@Rs. 150/hr= 
formatting and SVM for PC = Rs.4650) Rs.3150) 
classification carried 
on personal 
computer (PC). 

Total Rs.35597 RS.26309 
Table 5.19: Companson of expendIture incurred on SVM classIficatIOn process based on 
conventional with intelligent scheme of training data acquisition. The cost has been 
calculated in Indian Rupees with approximate rates prevalent in India for the work, though 
part of the analysis has been carried in United Kingdom too. (1 US dollars (USD) = Rs 
43.40 and 1 United Kingdom Pounds (GBP) = Rs 80.26 as on 15 May 2005). 

5.5.5 Reduced Requirement of Training Data for Classifying Accurately only One 

Class. 

The analysis detailed in this chapter so far was directed towards the production of a 

standard (multi-class) land cover map. However, often the concern is to map accurately 

only one class from the many land cover classes available. For example, the Large Area 
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Crop Inventory (LAC IE) project of United States Geological Survey (USGS) was 

concerned only with the wheat crop. The intention in such projects such as LAC IE was to 

map accurately the class of interest without any regard to the accuracy of the other land 

cover classes in the area. 

Conventional classifiers require training set for all the classes even if the project is 

focused on just one class, as in the CAPE project (section 5.2.1.1). However, training data 

of all the land cover classes present in the study area may not be required if the concern is 

to accurately map only one class from the many land cover classes available ifusing SVM 

as a classifier. 

For classification by an SVM, only the training samples that are support vectors, 

which lie on part of the edge of the class distribution in feature space, are required; all 

other training samples provide no contribution in fitting the decision boundary. Thus to 

accurately map only one class, training data are required only from the class of interest 

and from classes facing the class of interest in feature space. Training data of classes not 

facing the class of interest in feature space do not contribute in the establishment of the 

SVM classifier classifying the class of interest and are, therefore, redundant. This is 

illustrated here with reference to the classification of cotton. 

Cotton has been chosen as the class of interest in the present study (section 5.3) as 

the satellite sensor data used was acquired for CAPE project for accurately mapping only 

the cotton crop. The remotely sensed data of late September were chosen on the premise 

that cotton crop was at its maximum vegetative phase at that time and was thus expected 

to be most spectrally separable from other crops in the area. 

The spectral distribution of training data in feature space acquired under intelligent 

scheme of training data acquisition (Figure 5.22) shows that rice basmati class did not 

face class cotton in feature space. Since, the focus in SVM classifier lies on the border 

region between the classes in feature space to establish the optimal hyperplane, it may be 

anticipated that for cotton crop, the training samples drawn from rice basmati class would 
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not contribute to the establishment of SVM classifier separating cotton class with other 

classes. Thus to accurately classify only one class from the many land cover classes 

available using an SVM classifier, training data were required from the class of interests 

and from classes facing the class of interest in feature space. The exclusion of training 

data of rice basmati class from training the SVM classifier was thus not expected to 

influence the accuracy of classification accuracy of cotton crop. 

Two SVM classifications were trained to understand the effect of excluding 

training data of rice basmati class on the classification accuracy of cotton crop. First, an 

SVM trained with all the classes. Second, an SVM trained with training data of all the 

classes except rice basmati class. Both the trained SVM classifiers were tested on the 

same testing set as acquired under the conventional scheme (section 5.3.1) of training data 

acquisition that included samples from all classes including rice basmati class. 

The error matrices of testing set when SVM classifier was trained with all the 

classes (Table 5.15) and trained with all classes except rice basmati class (Table 5.20) 

shows that accuracy of cotton crop classification (97.7 %) was maintained for both the 

cases. Thus excluding training data of rice basmati class from training the SVM classifier 

did not affect the accuracy of the cotton crop. 

However, when the training set without basmati rice was used, all cases of rice 

basmati were classified as rice local for the testing set (Table 5.20). The classification of 

rice basmati into rice local was expected as all the cases of basmati rice were located 

towards the rice local side of the SVM classifier established by training data of cotton and 

rice local class. Thus for mapping cotton crop in future in the study area, there is no need 

to acquire training data of rice basmati as it does not contribute in establishing SVM 

classifier separating the cotton class from other classes. 

The exclusion of training data of rice basmati class for accurately mapping cotton 

crop is contrary to the requirements of many classification projects aimed to accurately 
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Actual class Predicted class 
B S C RB RL Total 

Built-up (B) 88 2 0 0 0 90 
Sand (S) 18 72 0 0 0 90 
Cotton (C) 0 0 88 0 2 90 
Rice Basmati (RB) 0 0 0 0 90 90 
Rice Local (RL) 0 0 4 0 86 90 
Total 106 74 92 0 178 450 

Table 5.20: Error matrix of testing set for the classification derived from the support vector 
machine (SVM) trained by data acquired under intelligent scheme for all classes except 
rice basmati. 

classify only one class from the many land cover classes, for example CAPE project 

where objective is to accurately map only the class of interest but training data are 

acquired from all the land cover classes in the study area (section 5.2.1.1). 

The analysis demonstrate that for accurately mapping cotton crop only, there is no 

need to acquire training data from class basmati rice as the class of interest cotton did not 

share any boundary with basmati rice in feature space (Figure 5.22). Thus in cases where 

the interest is in accurately classifying only one class, the requirement of training data can 

be identified from the relative distribution of training data in feature space, excluding 

training data of classes not facing the class of focus in feature space. Thus classification 

accuracy of class of interest can be maintained despite the reduction in training size. 
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Figure 5.24: Tree structure when DT was trained by training data collected under conventional scheme. Each box is a node with root at the top which contains all the training data. Splitting rules used the values in the 
three input bands (Red, NIR and MIR) at nodes to make the data purer in the child nodes. For example, the left node after the root splits the data into child nodes based on values of Red band. Thus the splitting rule Red 
< 77 qualifies training data with values less than 77 in Red band for this. branch of the tree. The terminal node (last node) circular .in shape refers to classified output with numbers 1 to 5 corresponding to classes Built-

il up, sand, Cotton, Local rice lL'1d Pasmati rice in the ftudy. 
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5.5.6 Summary 

SVM provided the highest accuracy when trained with training data acquired with 

the conventional (92.00 %) and intelligent training scheme (90.66 %) with respect to other 

classifiers DA, DT and ANN (Table 5.18). Furthermore, the accuracy of90.66 % by SVM 

trained by training data from intelligent scheme was more accurate than any other 

classifier (DA, DT and ANN) even when the classifiers were trained with a large training 

data collected with the conventional scheme (Table 5.18). 

However, the SVM classifiers trained by the two schemes used only a fraction of 

input training data (215 out of 450) for conventional scheme and (76 out of 130) for 

intelligent scheme as against 450 and 130 cases used by all other classifiers for training 

with conventional scheme and intelligent scheme respectively. 

The intelligent scheme devised for agricultural classes was successful in its intent 

to capture support vectors directly from field as the SVM classification used 56 out of 80 

(70 %) training samples collected under intelligent scheme for agricultural classes as 

support vectors as compared to 215 out of 450 (47.7 %) for all the classes used by the 

conventional scheme (section 5.5.2.4). 

The intelligent scheme of training data collection was successful in capturing 

potential border training data for agricultural classes which provided appropriate support 

vectors for SVM classification. The difference in accuracy between land cover 

classifications trained by SVM for conventional (92.00%) and intelligent schemes 

(90.66 %) were not significant at 95 % confidence level (Table 5.16). For agricultural 

classes only, for which the intelligent scheme was tailored, the conventional scheme 

resulted in 250 pixels correct (Table 5.14), whereas the intelligent scheme provided 248 

pixels correct (Table 5.15) for SVM classification. Thus the accuracy of agricultural 

classes were very similar for both the training schemes, though training data was reduced 

by more than two-thirds from 270 cases for conventional scheme to 80 pixels under the 

intelligent scheme. 
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The mechanism devised for intelligent scheme to acquire small intelligently 

selected training samples provided similar accuracy for cotton crop (97.7 %) as a large 

training set acquired by conventional technique for SVM classification (Tables 5.14 and 

5.15). The intelligent scheme used only 30 pixels of cotton for training as compared to 90 

pixels used under conventional scheme to train the SVM classifier (Table 5.7). 

The small intelligently selected training data acquired under the intelligent scheme 

which was driven by external knowledge was able to capture cases for classes with very 

extreme spectral responses in feature space, for example, very matured local rice which 

was limited on ground to a very small area (Figure 5.23). However, the conventional 

scheme failed to capture cases of very matured local rice (may be possible with a still 

larger training set than acquired in the study). This is, therefore, one of the strengths of the 

intelligent scheme of training data acquisition of being able to capture sub-classes of a 

class that occupy very small area on ground. 

The intelligent scheme which resulted in very similar accuracy for SVM trained 

with training data acquired by conventional scheme of training data acquisition was also 

very promising for DA and ANN classifier. The classification accuracy obtained with DA 

and ANN trained with both training schemes were very similar. The differences in 

accuracy between the classifications trained with conventional and intelligent schemes 

were not statistically significant at 95 % confidence level (Table 5.16) for DA classifiers as 

well as for ANN classifiers. 

The similar accuracy obtained for DA classifier trained by the two schemes of 

training data acquisition can be attributed to the reason that statistical parameters 

generated by both the training schemes (Table 5.2 and Table 5.6) were very similar. 

For ANN, the reason for similar accuracy when the classifier was trained by the 

two schemes of training data acquisition can be attributed to the findings that border 

training data are more important than core for classification undertaken by ANN classifier 

(Foody, 1999). This, therefore, resulted in very similar accuracy for ANN trained with 
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intelligent scheme (training data collected with potential border cases of classes in feature 

space) with that collected by conventional scheme. 

DT classifier was most sensitive to the nature of training samples. The difference in 

accuracy between the classifications trained with conventional and intelligent schemes 

were statistically significant at 95 % confidence level (Table 5.16). This can be attributed 

to the reason that DT is a non-parametric classifier and the node splitting rules to make 

child nodes purer is based on the extreme spectral values of the training data ((Figure 5.24, 

Table 5.2) and (Figure 5.25 and Table 5.6) of the various classes. The small intelligently 

selected training data under intelligent scheme provided extreme values (for agricultural 

classes especially local rice, Figure 5.23) and, therefore, the classifier had more extreme 

values as compared to conventional scheme of training data (Table 5.6 and Table 5.2 

respectively). The extreme values under intelligent scheme, therefore, provided more 

overlap between agricultural classes in feature space and, therefore, more confusion with 

DT classification. 

There was, however, no confusion between agricultural and non-agricultural 

classes by any of the four classifiers under both the training schemes. 

The SVM classifications derived with a small training set captured under intelligent 

scheme had very similar classification accuracy with respect to one trained with a large 

training set collected under conventional scheme. Thus not only did the intelligent scheme 

nearly maintained classification accuracy with respect to conventional scheme of training 

data acquisition but at the same time was less costly. The intelligent scheme of training 

data acquisition was cheaper by 26.09 % over the conventional scheme of training data 

acquisition (Table 5.19). This difference would have magnified to 29.12 % if the training 

and testing set would have been acquired independently of each other (section 5.5.4). 

However, the cost of classification can be further reduced for future analysis by 

exploiting the knowledge gained once about the relationship of support vectors with 

ancillary information by SVM classification by focusing the training data acquisition 
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process to the regions most likely to furnish support vectors. For instance, the support 

vectors of cotton were derived from near water bodies (waterlogged or canals) (section 

5.5.3). This indicates that training data for cotton need be acquired only from near water 

bodies (near canals or waterlogged areas) if the analysis is repeated in future. In this way, 

an accurate classification may be undertaken with SVM classifier using a small training set 

for cotton crop derived from a small spatial area near waterlogged or from near canals. 

The study also demonstrated that for mapping cotton with SVM, there is no need 

to acquire training samples from rice basmati class. Thus in cases where the interest is in 

accurately classifying only one class, the requirement of training data can be identified 

from the relative distribution of training data in feature space, excluding training data of 

classes not facing the class of focus in feature space. Thus classification accuracy of class 

of interest can be maintained despite the reduction in training size. 

The studies (section 5.5.3 and section 5.5.5) demonstrated that for mapping cotton 

crop in future analysis in the study area, training acquisition for cotton crop should be 

limited only to locations near water bodies like canals or waterlogged areas and that no 

training data is required from rice basmati. 

The analysis confirms the results of chapters 3 and 4 that a representative training 

sample of each class in feature space is not required ifusing SVM as a classifier. The 

potential of SVM of using only border training samples of a class in feature space can be 

exploited to limit the size of training samples especially of agricultural classes using 

external knowledge. Thus if knowledge regarding the status of the crop (matured, young), 

soil and water background of the agricultural fields is known, the training data process can 

be directed to intelligently capture a small relevant training set from sites that would 

provide appropriate support vectors central to the establishment of decision surface in 

SVM classification. The knowledge gained about the relationship of support vectors with 

ancillary information in SVM classification can be exploited in future analysis by focusing 

the training data acquisition process from regions most likely to furnish support vectors. 
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5.5.7 Conclusions 

• SVM provided the highest accuracy as compared to other conventional classifiers 

DA, DT and ANN for both schemes of training data acquisition, the Conventional 

as well as the Intelligent scheme. 

• The intelligent scheme tailored for agricultural classes was successful as 70 % of 

the training data collected was used as support vectors in SVM classification. 

• The overall accuracy obtained by SVM trained with intelligent scheme of training 

data acquisition was very comparable with one trained with conventional scheme. 

The difference in accuracy obtained by the two classifications was statistically not 

significant. 

• The overall accuracy obtained by SVM trained with the Intelligent scheme of 

training data acquisition was higher as compared to that achieved by training the 

other classifiers DA, DT and ANN for both schemes of training data acquisition, 

the Conventional as well as the Intelligent scheme. 

• The intelligent scheme of training data acquisition was cheaper by 26.09 % over 

the conventional scheme of training data acquisition. 

• The support vectors of cotton class for classification trained with training data 

acquired under the Intelligent scheme of training data acquisition were mainly 

derived from near water bodies. Thus for analysis in future, training data for cotton 

crop may be collected mainly from near water bodies. 

• The study also demonstrated that for accurately mapping cotton crop, training data 

of classes not facing the class of interest in feature space is not required. Thus 

accuracy of mapping cotton remained unaffected when training data included or 

excluded training data of rice basmati class. 
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• Essentially the analysis shows that a representative sample of each class in feature 

space is not required if using SVM as a classifier. The potential ofSVM of using 

only border training data samples of a class in feature space can be exploited to 

reduce the requirement of training data over the conventional techniques of 

classification. 
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CHAPTER 6 - Summary and Conclusions 

6.1 Summary 

The desire in training a supervised classifier has tradionally been to derive an 

accurate and complete description of the spectral response of all the classes in the study 

area. To achieve a complete description of each class in feature space, a large training set 

is typically required. Much of the literature on training data is based on the classical view 

of classification process with a conventional probabilistic classifier like MLC as the basis 

of classification. 

The MLC is a parametric classifier and requires a large number of training samples 

acquired from across the entire study area to capture the spectral variability of the classes. 

The analysis in chapter 3, designed with a large representative training set (100 

cases per class) acquired with a mindset to provide a complete description of each class in 

feature space reinforces the effect of training set size on classification accuracy. The 

accuracy of the classifications produced from all the four classifiers (DA, DT, ANN and 

SVM) were positively related with training set size. 

The increase in accuracy with training set size for the different classifiers can be 

attributed to different reasons based primarily on the way the classifiers allocate the cases 

to the various classes. The non-parametric classifiers (DT, ANN and SVM) are not based 

on any parametric model as DA. The classifiers differ markedly in their approach for 

training. For example, for training, DT is based on the extreme values of the spectral 

response of a class in feature space. Thus if the classes overlap considerably in feature 

space, there will be more confusion between the classes if using DT as a classifier. 

However, Foody (1999) has shown that ANN is more biased towards extreme cases of a 

class in feature space. The SVM classifier depends on training samples which lie on part of 

the edge of the class distribution in feature space, the support vectors. Data other than 
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support vectors are redundant and do not contribute in the establishment of the decision 

surface and can be discarded without compromising the accuracy of the classification. 

Thus the four classifiers differ in the basis of class allocations and, therefore, expected 

dependency on the nature of training set. For example, training set with extreme spectral 

response of the classes would result in higher accuracy for ANN and SVM classifier as 

compared to DT classifier. 

The increased training set size (chapter 3) fulfilled the requirements of the four 

classifiers resulting in higher accuracy as the training set size increased. SVM was 

comparatively the most accurate classifier of all the four classifiers and provided the 

highest accuracy when trained with the largest training set (lOa pixels/class). The 

increased accuracy of SVM can be attributed to the reason that a large training set has 

more chances of including support vectors. It is, therefore, not always necessary to have 

training statistics that provides a complete description of the class's especially using non

parametric classifiers. The design of training stage should, therefore, be guided by the 

classifiers used. For example with a SVM classifier the concern is to identify and 

characterize the remotely sensed data that lie near to the location of the classification 

hyperplane or classes in the feature space. 

The potential of SVM was evident from analysis detailed in Chapters 3 and 5. In 

general, the SVM classifications were more accurate than comparable classifications 

derived with the use of other classifiers DA, DT and ANN. In addition, SVM used only a 

fraction of the input training data (support vectors) as compared to other classifiers and 

should, therefore, be increasingly used in classifying remotely sensed data. Thus for SVM , 

the training samples are not equally important with those lying near the edge of the class 

distributions in feature space and facing the distributions of other classes in feature space 

(support vectors) more important in the fitting of decision boundaries between the classes. 

The support vectors typically occupy a small discrete area of the distribution of a class in 

feature space and, therefore, may have something in common. The support vectors of a 
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class may be derived from training sites with particular ground property of training sites. 

For example, analysis detailed in chapter 4 demonstrated that support vectors may be 

related with ground property of training sites like soil. This relationship of support vectors 

with attributes like soil can be exploited to limit acquisition of training data from sites that 

provides appropriate support vectors for future analysis. 

Thus if there is a prior knowledge or some ancillary information that can be used to 

identify/locate training sites to regions from which the most informative training samples, 

the support vectors can be derived, it may be possible to acquire a small intelligently 

selected training set that can be used to accurately classify the data. This would in tum 

reduce the cost of the classification process as every training data collected has a cost 

attached to it. 

The analysis detailed in chapter 5 demonstrates that external knowledge can be 

employed in the training acquisition process for any current land cover classification from 

sites that provides the most informative training samples, the support vectors. The training 

acquisition scheme, in such instances, needs to be devised in advance of training 

acquisition process and should include the variables affecting the spectral response of the 

agricultural classes. The procedure detailed in chapter 5 with intelligent scheme of training 

data acquisition demonstrates that considering all the growth stages of the crop and 

background properties (water and soil) of the training sites can provide appropriate support 

vectors central to the establishment of SVM classifier. 

The intelligent scheme devised for agricultural classes was successful in its intent 

to capture support vectors directly from field as the SVM classification used 56 out of 80 

(70 %) training samples collected under intelligent scheme for agricultural classes as 

support vectors as compared to 215 out of 450 (47.7 %) for all the classes used by the 

conventional scheme (section 5.5.2.4). The SVM classifications derived with the 

intelligent scheme of training data acquisition had very similar classification accuracy (248 

pixels correct) for agricultural classes with respect to one trained with a large training set 
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collected under conventional scheme (250 pixels correct). Thus not only did the intelligent 

scheme resulted in similar classification accuracy with respect to conventional scheme of 

training data acquisition but at the same time was less costly. The intelligent scheme of 

training data acquisition was cheaper by 26.09 % over the conventional scheme of training 

data acquisition (Table 5.19). 

However, the cost of classification can be further reduced for future analysis by 

exploiting the knowledge gained from the SVM classification about the relationship of 

support vectors with ancillary information by focusing the training data acquisition process 

to the regions most likely to furnish support vectors. The analysis detailed in chapter 4 

demonstrated that support vectors can be related with ancillary information like soil type. 

The analysis detailed in chapter 5 shows that the support vectors of cotton were derived 

from near water bodies (waterlogged or canals) (section 5.5.3). This indicates that training 

data for cotton needs be acquired only from near water bodies (near canals or waterlogged 

areas) if the analysis is to be repeated in future. In this way, an accurate classification may 

be undertaken with SVM classifier using a small training set for cotton crop derived from a 

small spatial area near waterlogged or from near canals. Thus not only can the limited 

training data acquisition process be tailored for any current land cover classification but 

can be extended for future analysis based on the relationship of support vectors derived 

with ground attributes like soil type and water condition of the training sites. 

The study (section 5.5.5) also demonstrated that training acquisition scheme should 

be designed on the nature of the output desired. For example, for land cover mapping, 

training data is generally acquired from all the land cover classes available in the study 

area but if the concern is to accurately map only one of the many land cover classes in the 

area, training data of classes not facing the class of interest in feature space can be 

excluded without affecting the accuracy of the class of concern with SVM classification. 

This was demonstrated with cotton crop as the class of concern whereby excluding the 
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training data of class rice basmati did not affect classification accuracy of the cotton crop 

(section 5.5.5). 

The hypothesis that classes which do not share their boundaries with other classes 

III feature space are not required for classification. This is more apparent for SVM 

classifications which are based on a small training set that occupies only part of border of 

feature space of class. This potential of SVM can be exploited to reduce the requirement of 

training data if the concern is to map accurately only one class. 

The success of classification undertaken using a small intelligently acquired 

training data collected under intelligent scheme for classification task and the potential to 

limit training data acquisition for future analysis based on ground property of training sites 

like soil and water questions the very understanding prevailing in remote sensing 

community over many years namely; 

1. Training data collection is more of an art than science. 

Tradionally training data collection is based on the premise to collect a large 

training set spread all over the study area so as to capture the spectral variability of the 

classes. The external knowledge used in collecting training data under intelligent scheme 

from sites that provided appropriate support vectors was founded on scientific rationale. 

The small intelligently collected training data was based on scientific knowledge about the 

relation of crop status and background properties of training sites (soil and water) with 

spectral response. Thus scientific knowledge played a key role in training data collection. 

2. Training data should be representative of the classes 

For classification by SVM, only the training samples that are support vectors, 

which lie on part of the edge of the class distribution in feature space are required, all other 

training samples are redundant. Thus the accuracy of the classification was maintained 

despite reduction in training set size (chapter 4 and chapter 5). Thus training data need not 

be representative of the classes used if using SVM as a classifier. 
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6.2 Conclusions 

• SVMs have considerable potential for the classification of remotely sensed data. It 

has been demonstrated here that a single multi-class SVM classification may be 

undertaken and used to derive very accurate classifications. 

• In general, the SVM classifications were more accurate than comparable 

classifications derived with the use of the other classification techniques. 

• SVM classification is effectively based on a small number of training samples, the 

support vectors, which are training data that lies on part of the edge of a class 

distribution in feature space. 

• The analysis shows that a representative sample of each class in feature space is not 

required if using SVM as a classifier. The potential of SVM of using only border 

training data samples of a class in feature space, the support vectors can be 

exploited to reduce the requirement of training data over the conventional 

techniques of classification. 

• The study shows that training data requirements of agricultural classes can be 

reduced by intelligently planning training data acquisition scheme that can provide 

appropriate potential border training data (potential support vectors). This was 

shown with the Intelligent scheme of training data acquisition (section 5.3.2), 

which was devised for agricultural classes as the variables affecting the spectral 

response are well understood for agricultural classes. Thus external knowledge of 

crop status, soil background and water condition of the agricultural fields were 

used to select suitable training sites to obtain potential border training data. 

• The classification accuracy obtained by training SVM with a small intelligently 

selected training data acquired under the Intelligent scheme of training data 

acquisition was very comparable with one obtained by training SVM with a large 

training set collected under the conventional scheme. 
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• The intelligent scheme of training data acquisition was cheaper over the 

conventional scheme of training data acquisition essentially due to the reduced 

requirement of training data. 

• The study shows that support vectors resulting from SVM classification may be 

related with ground property like soil type or water background of training sites. 

This knowledge may be utilized for future analysis by collecting training data from 

on1X, those sites that would provide appropriate support vectors. 

• The study also demonstrated that if the concern is to accurately map only one class 

from the many land cover classes available, training data of classes not facing the 

class of interest in feature space is not required. This was shown for mapping 

cotton crop (section 5.5.5). The accuracy of cotton class remained unaffected when 

training data included or excluded training data of rice basmati class 

• The key conclusion of the analyses is that a complete description of each class in 

feature space is not required for an accurate classification. With a SVM, only 

training samples located near the hyperplane are required with other samples not 

contributing the analysis can effectively be discarded. The acquisition of training 

samples from beyond the border region of a class in feature space is, therefore, 

unnecessary and a waste of effort and resources. Thus, in situations when 

knowledge of a variable such as growth of crops or background soil or water status 

of training sites that may impact on the spectral response of a class is available, this 

could be used to direct training activities. In particular, this knowledge may allow 

small, intelligently selected, training samples to be acquired that may be used to 

discriminate between the classes as accurately as a much larger, unintelligently 

selected, sample. Knowledge may, therefore, be used to reduce training set size 

without loss of classification accuracy by directing the training site acquisition 

process to regions most likely to provide appropriate support vectors. The 
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requirement of reduced training set size based on scientific knowledge not only has 

financial implications on the classification process but makes training acquisition 

process very interesting in the field too. The intelligent scheme was interesting in 

the sense that there was more interaction as compared to the conventional scheme 

of training data acquisition with the farmers at the field level to locate sites that 

provided appropriate support vectors. 

6.3 Future Work 

The future work relates to the implementation of the findings of the research work 

in the CAPE project for accurately mapping the cotton crop. This would help to reduce the 

requirement of training data. For accurately mapping cotton, training data for only cotton 

and rice local classes would be needed and there would be no need to acquire training data 

for rice basmati class. In addition, training data for cotton need be acquired from near 

water bodies like canals or near waterlogged areas. The reduced training data requirements 

in turn would reduce the cost on the classification process. 

The analysis detailed in the research was limited to the use of only a few spectral 

bands. The hyperspectral remote sensing data made available nowadays makes it 

imperative to study the feature reduction based on the training data requirements of the 

classifier to be used. The general approach in feature reduction uses all the training data to 

select the most separable bands. However, feature reduction should be based on the 

classifier to be used. For SVM, only training data which lie on border of the spectral 

distribution of a class in feature space which are potential support vectors needs be 

considered to select the most separable bands. 
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APPENDIX 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 83 6 0 0 8 0 97 
Wheat (W) 3 91 2 0 0 0 96 
Barley (B) 0 8 43 0 0 0 51 
Carrot (C) 0 2 0 26 5 0 33 
Potato (P) 0 2 0 0 24 0 26 
Grass (G) 0 0 0 1 2 14 17 
Total 86 109 45 27 39 14 320 

Overall accuracy = 87.80% 
Table A.l: Error matric for the classification derived from the DA trained with training set 
5n (containing 15 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 83 7 0 0 7 0 97 
Wheat (W) 3 90 2 1 0 0 96 
Barley (B) 0 7 44 0 0 0 51 
Carrot (C) 0 1 0 29 3 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 2 14 17 
Total 86 107 46 31 35 15 320 

Overall accuracy =88.40% 
Table A.2: Error matric for the classification derived from the DA trained with training set IOn 
(containing 30 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 86 4 0 0 7 0 97 
Wheat (W) 5 90 0 1 0 0 96 
Barley (B) 1 7 43 0 0 0 51 
Carrot (C) 0 1 0 31 1 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 1 15 17 
Total 92 104 43 33 32 16 320 

Overall accuracy =90.00% 
Table A.3: Error matric for the classification derived from the DA trained with training set 
15n (containing 45 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 87 3 0 0 7 0 97 
Wheat (W) 3 91 2 0 0 0 96 
Barley (B) 0 6 45 0 0 0 51 
Carrot (C) 0 2 0 28 3 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 2 14 17 
Total 90 104 47 29 35 15 320 

Overall accuracy=90.00% 
Table A.4: Error matric for the classification derived from the DA trained with training set 
20n (containing 60 cases of each class) for case A analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 86 4 0 0 7 0 97 
Wheat (W) 3 90 2 1 0 0 96 
Barley (B) 0 6 45 0 0 0 51 
Carrot (C) 0 1 0 29 3 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 2 14 17 
Total 89 103 47 31 35 15 320 

Overall accuracy =89.7% 
Table A5: Error matric for the classification derived from the DA trained with training set 
25n (containing 75 cases of each class) for case A analysis. 

Actual class Pred icted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 86 4 0 0 7 0 97 
Wheat (W) 3 91 2 0 0 0 96 
Barley (B) 0 6 45 0 0 0 51 
Carrot (C) 0 1 0 29 3 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 2 14 17 
Total 89 104 47 30 35 15 320 

Overall accuracy =90.00% 
Table A6: Error matric for the classification derived from the DA trained with training set 
30n (containing 90 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 87 3 0 0 7 0 97 
Wheat (W) 3 90 2 1 0 0 96 
Barley (B) 0 6 45 0 0 0 51 
Carrot (C) 0 1 0 29 3 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 2 14 17 
Total 90 102 45 31 35 15 320 

Overall accuracy =90.00% 
Table A.7: Error matric for the classification derived from the DA trained with the largest 
training set (containing 100 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 11 1 0 0 5 0 17 
Wheat (W) 1 16 0 0 0 0 17 
Barley (B) 0 3 14 0 0 0 17 
Carrot (C) 0 0 0 16 1 0 17 
Potato (P) 0 2 0 0 15 0 17 
Grass (G) 0 0 0 1 2 14 17 
Total 12 19 14 17 23 14 102 

Overall accuracy =84.30% 
Table A8: Error matric for the classification derived from the DA trained with training set 
5n (containing 15 cases of each class) for case B analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 0 0 0 1 0 17 
Wheat (W) 1 15 1 0 0 0 17 
Barley (B) 0 3 14 0 0 0 17 
Carrot (C) 0 2 0 14 1 0 17 
Potato (P) 1 1 0 0 15 0 17 
Grass (G) 0 0 0 1 2 14 17 
Total 18 21 15 15 19 14 102 

Overall accuracy =86.30% 
Table A.9: Error matric for the classification derived from the DA trained with training set 
1 On (containing 30 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 13 2 0 0 2 0 17 
Wheat (W) 0 17 0 0 0 0 17 
Barley (B) 0 2 15 0 0 0 17 
Carrot (C) 0 1 0 16 0 0 17 
Potato (P) 0 1 0 0 15 1 17 
Grass (G) 0 0 0 1 2 14 17 
Total 13 23 15 17 19 15 102 

Overall accuracy =88.20% 
Table A.IO: Error matric for the classification derived from the DA trained with training 
set 15n (containing 45 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 17 0 0 0 0 0 17 
Wheat (W) 1 16 0 0 0 0 17 
Barley (B) 0 4 13 0 0 0 17 
Carrot (C) 0 0 0 16 1 0 17 
Potato (P) 0 2 0 0 15 0 17 
Grass (G) 0 0 0 1 2 14 17 
Total 18 22 13 17 18 14 102 

Overall accuracy =89.20% 
Table A.II: Error matric for the classification derived from the DA trained with training 
set 20n (containing 60 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 14 0 0 0 3 0 17 
Wheat (W) 0 17 0 0 0 0 17 
Barley (B) 0 2 15 0 0 0 17 
Carrot (C) 0 1 0 14 2 0 17 
Potato (P) 0 2 0 0 14 1 17 
Grass (G) 0 0 0 1 2 14 17 
Total 14 22 15 15 21 15 102 

Overall accuracy =86.30% 
Table A.12: Error matric for the classification derived from the DA trained with training 
set 25n (containing 75 cases of each class) for case B analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 0 0 0 1 0 17 
Wheat (W) 0 17 0 0 0 0 17 
Barley (B) 0 4 13 0 0 0 17 
Carrot (C) 0 1 0 14 2 0 17 
Potato (P) 0 1 0 0 15 1 17 
Grass (G) 0 0 0 1 2 14 17 
Total 16 23 13 15 19 15 102 

Overall accuracy =87.30% 
Table A.13: Error matric for the classification derived from the DA trained with training 
set 30n (containing 90 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 17 0 0 0 0 0 17 
Wheat (W) 1 16 0 0 0 0 17 
Barley (B) 0 4 13 0 0 0 17 
Carrot (C) 0 0 0 16 1 0 17 
Potato (P) 0 2 0 0 14 1 17 
Grass (G) 0 0 0 1 2 14 17 
Total 18 22 13 17 17 15 102 

Overall accuracy =88.20% 
Table A.14: Error matric for the classification derived from the DA trained with the largest 
training set (containing 100 cases of each class) for case B 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 85 7 0 0 5 0 97 
Wheat (W) 4 69 21 0 0 2 96 
Barley (B) 1 5 44 0 0 1 51 
Carrot (C) 0 4 1 16 7 5 33 
Potato (P) 5 2 0 0 19 0 26 
Grass (G) 0 0 0 0 3 14 17 
Total 95 87 66 16 34 22 320 

Overall accuracy =77.18% 
Table A.15: Error matric for the classification derived from the DT trained with training 
set 5n (containing 15 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 79 4 4 0 9 1 97 
Wheat (W) 12 73 10 1 0 0 96 
Barley (B) 5 2 41 2 1 0 51 
Carrot (C) 1 2 1 29 0 0 33 
Potato (P) 1 1 0 0 23 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 98 82 56 32 33 19 320 

Overall accuracy =81.87% 
Table A.16: Error matric for the classification derived from the DT trained with training 
set 1 On (containing 30 cases of each class) for case A analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 80 6 1 8 2 0 97 
Wheat (W) 3 83 7 3 0 0 96 
Barley (B) 5 1 39 2 4 0 51 
Carrot (C) 0 3 1 29 0 0 33 
Potato (P) 1 2 0 1 22 0 26 
Grass (G) 0 0 0 0 0 17 17 
Total 89 95 48 43 28 17 320 

Overall accuracy =84.37% 
Table A.17: Error matric for the classification derived from the DT trained with training 
set 15n (containing 45 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 88 3 1 4 1 0 97 
Wheat (W) 12 75 7 1 1 0 96 
Barley (B) 4 2 45 0 0 0 51 
Carrot (C) 0 2 0 31 0 0 33 
Potato (P) 1 1 1 23 0 26 
Grass (G) 0 0 4 0 0 13 17 
Total 105 83 57 37 25 13 320 

Overall accuracy =85.94% 
Table A.18: Error matric for the classification derived from the DT trained with training 
set 20n (containing 60 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 91 1 2 2 1 97 
Wheat (W) 6 69 10 3 7 1 96 
Barley (B) 3 0 48 0 0 0 51 
Carrot (C) 0 0 0 33 0 0 33 
Potato (P) 1 1 2 22 0 26 
Grass (G) 0 0 0 0 1 16 17 
Total 101 71 58 40 32 18 320 

Overall accuracy =87.19% 
Table A.19: Error matric for the classification derived from the DT trained with training 
set 25n (containing 75 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 83 6 2 1 4 1 97 
Wheat (W) 6 79 7 2 0 2 96 
Barley (B) 0 1 48 0 1 1 51 
Carrot (C) 0 2 0 31 0 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 1 0 0 0 0 16 17 
Total 90 90 57 34 28 21 320 

Overall accuracy =87.50% 
Table A.20: Error matric for the classification derived from the DT trained with training 
set 30 (containing 90 cases of each class) for case A analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 89 4 1 0 2 1 97 
Wheat (W) 8 79 6 1 0 2 96 
Barley (B) 3 0 48 0 0 0 51 
Carrot (C) 0 0 0 33 0 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 100 85 55 34 25 20 320 

Overall accuracy =90.31 % 
Table A.21: Error matric for the classification derived from the DT trained with the largest 
training set (containing 100 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 1 0 0 0 0 17 
Wheat (W) 0 14 3 0 0 0 17 
Barley (B) 2 0 12 0 3 0 17 
Carrot (C) 0 1 0 12 1 3 17 
Potato (P) 1 2 0 0 14 0 17 
Grass (G) 0 0 3 1 1 12 17 
Total 19 18 18 13 19 15 102 

Overall accuracy =78.43% 
Table A.22: Error matric for the classification derived from the DT trained with training 
set 5n (containing 15 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 0 1 0 0 0 17 
Wheat (W) 3 11 2 1 0 0 17 
Barley (B) 1 0 16 0 0 0 17 
Carrot (C) 2 1 0 14 0 0 17 
Potato (P) 1 1 0 1 14 0 17 
Grass (G) 0 0 1 0 0 16 17 
Total 23 13 20 16 14 16 102 

Overall accuracy =85.29% 
Table A.23: Error matric for the classification derived from the DT trained with training 
set IOn (containing 30 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 14 0 0 1 2 0 17 
Wheat (W) 1 14 0 1 0 1 17 
Barley (B) 1 2 14 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 1 15 0 17 
Grass (G) 0 0 3 0 0 14 17 
Total 16 17 17 20 17 15 102 

Overall accuracy =86.27% 
Table A.24: Error matric for the classification derived from the DT trained with training 
set 15n (containing 45 cases of each class) for case B analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 15 1 0 1 0 0 17 
Wheat (W) 1 15 0 0 1 0 17 
Barley (B) 1 0 16 0 0 0 17 
Carrot (C) 1 0 0 16 0 0 17 
Potato (P) 0 2 0 0 14 1 17 
Grass (G) 0 0 2 1 0 14 17 
Total 18 18 18 18 15 15 102 

Overall accuracy =88.24% 
Table A.25: Error matric for the classification derived from the DT trained with training 
set 20n (containing 60 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 14 2 0 0 1 0 17 
Wheat (W) 1 12 2 1 0 1 17 
Barley (B) 1 0 16 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 0 0 0 17 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 16 14 18 18 18 18 102 

Overall accuracy =91.18% 
Table A.26: Error matric for the classification derived from the DT trained with training 
set 25n (containing 75 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 14 3 0 0 0 0 17 
Wheat (W) 0 14 0 0 3 0 17 
Barley (B) 0 0 15 0 2 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 2 0 0 15 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 14 19 15 17 20 17 102 

Overall accuracy =90.20% 
Table A.27: Error matric for the classification derived from the DT trained with training 
set 30n (containing 90 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 17 0 0 0 0 0 17 
Wheat (W) 0 15 2 0 0 0 17 
Barley (B) 2 0 15 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 0 15 1 17 
Grass (G) 0 0 0 0 0 17 17 
Total 19 16 17 17 15 18 102 

Overall accuracy =94.12% 
Table A.28: Error matric for the classification derived from the DT trained with the largest 
training set (containing 100 cases of each class) for case B analysis 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 84 4 2 0 7 0 97 
Wheat (W) 3 89 3 1 0 0 96 
Barley (B) 0 5 46 0 0 0 51 
Carrot (C) 0 1 0 31 1 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 2 14 17 
Total 87 101 51 33 33 15 320 

Overall accuracy =89.68% 
Table A.29: Error matric for the classification derived from the ANN trained with training 
set 5n (containing 15 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 84 5 0 0 8 0 97 
Wheat (W) 4 90 1 1 0 0 96 
Barley (B) 1 7 43 0 0 0 51 
Carrot (C) 0 1 0 31 1 0 33 
Potato (P) 0 2 0 0 24 0 26 
Grass (G) 0 0 0 0 2 15 17 
Total 89 105 44 32 35 15 320 

Overall accuracy =89.68% 
Table A.30: Error matric for the classification derived from the ANN trained with training 
set IOn (containing 30 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 85 2 1 0 8 1 97 
Wheat (W) 4 87 4 1 0 0 96 
Barley (B) 1 1 49 0 0 0 51 
Carrot (C) 0 1 0 32 0 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 90 93 54 33 31 19 320 

Overall accuracy =91.56% 
Table A.31: Error matric for the classification derived from the ANN trained with training 
set 15n (containing 45 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 87 3 0 0 7 0 97 
Wheat (W) 4 88 3 1 0 0 91 
Barley (B) 1 3 47 0 0 0 51 
Carrot (C) 0 1 0 32 0 0 33 
Potato (P) 0 2 0 1 22 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 92 97 50 34 29 18 320 

Overall accuracy =91.56% 
Table A.32: Error matric for the classification derived from the ANN trained with training 
set 20 (containing 20 cases of each class) for case A analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 88 5 0 0 3 1 97 
Wheat (W) 3 89 3 1 0 0 96 
Barley (B) 2 1 48 0 0 0 51 
Carrot (C) 0 1 0 32 0 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 93 93 51 33 23 18 320 

Overall accuracy =92.81 % 
Table A.33: Error matric for the classification derived from the ANN trained with training 
set 25n (containing 75 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 86 4 0 0 6 1 97 
Wheat (W) 3 87 4 1 0 1 96 
Barley (B) 0 1 50 0 0 0 51 
Carrot (C) 0 1 0 32 0 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 89 95 54 33 29 20 320 

Overall accuracy =92.18% 
Table A.34: Error matric for the classification derived from the ANN trained with training 
set 30n (containing 90 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 90 3 1 0 3 0 97 
Wheat (W) 3 84 7 1 0 1 96 
Barley (B) 0 2 49 0 0 0 51 
Carrot (C) 0 2 0 31 0 0 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 0 0 17 17 
Total 93 93 57 32 26 19 320 

Overall accuracy =91.88% 
Table A.35: Error matric for the classification derived from the ANN trained with the 
largest training set (containing 100 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 11 1 0 0 4 1 17 
Wheat (W) 1 14 2 0 0 0 17 
Barley (B) 0 0 16 0 0 1 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 2 0 0 15 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 12 17 18 17 19 19 102 

Overall accuracy =88.23% 
Table A.36: Error matric for the classification derived from the ANN trained with training 
set 5n (containing 15 cases of each class) for case B analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 14 0 0 1 2 0 17 
Wheat (W) 0 16 0 1 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 1 0 16 0 0 17 
Potato (P) 0 2 0 0 14 1 17 
Grass (G) 0 0 0 0 0 17 17 
Total 14 19 17 18 16 18 102 

Overall accuracy =92.15% 
Table A.37: Error matric for the classification derived from the ANN trained with training 
set IOn (containing 30 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 0 0 0 1 0 17 
Wheat (W) 0 16 0 1 0 0 17 
Barley (B) 1 0 16 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 1 15 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 17 17 16 19 16 17 102 

Overall accuracy =95.09% 
Table A.38: Error matric for the classification derived from the ANN trained with training 
set 15n (containing 45 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 15 0 0 0 2 0 17 
Wheat (W) 1 15 1 0 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 0 15 1 17 
Grass (G) 0 0 0 0 0 17 17 
Total 16 16 18 17 17 18 102 

Overall accuracy =94.11 % 
Table A.39: Error matric for the classification derived from the ANN trained with training 
set 20n (containing 60 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 0 0 0 1 0 17 
Wheat (W) 1 14 2 0 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 0 16 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 17 15 19 17 17 17 102 

Overall accuracy =95.09% 
Table A.40: Error matric for the classification derived from the ANN trained with training 
set 25n (containing 75 cases of each class) for case B analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 15 2 0 0 0 0 17 
Wheat (W) 0 17 0 0 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 2 0 0 15 0 17 
Grass (G) 0 0 0 0 1 16 17 
Total 15 21 17 17 16 16 102 

Overall accuracy =95.09% 
Table A.41: Error matric for the classification derived from the ANN trained with training 
set 30n (containing 90 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 15 1 0 0 1 0 17 
Wheat (W) 2 15 0 0 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 2 0 0 15 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 17 18 17 17 16 17 102 

Overall accuracy =94.11 % 
Table A.42: Error matric for the classification derived from the ANN trained with the 
largest training set (containing 100 cases of each class) for case B analysis 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 90 4 2 0 1 0 97 
Wheat (W) 4 91 1 0 0 0 96 
Barley (B) 3 7 39 2 0 0 51 
Carrot (C) 0 3 0 22 3 5 33 
Potato (P) 1 2 0 0 23 0 26 
Grass (G) 0 0 0 0 2 15 17 
Total 98 107 42 44 28 20 320 

Overall accuracy =87.50% 
Table A.43: Error matric for the classification derived from the SVM trained with training 
set 5n (containing 15 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 86 8 1 0 1 1 97 
Wheat (W) 2 89 4 1 0 0 96 
Barley (B) 1 3 47 0 0 0 51 
Carrot (C) 1 1 0 30 0 1 33 
Potato (P) 1 1 0 0 23 1 26 
Grass (G) 0 0 0 0 1 16 17 
Total 91 102 52 31 25 19 320 

Overall accuracy =90.94% 
Table A.44: Error matric for the classification derived from the SVM trained with training 
set 1 On (containing 30 cases of each class) for case A analysis. 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 89 4 1 1 1 97 
Wheat (W) 2 82 11 1 0 0 96 
Barley (B) 1 1 49 0 0 0 51 
Carrot (C) 0 3 0 30 0 0 33 
Potato (P) 0 2 0 0 24 0 26 
Grass (G) 0 0 0 0 0 17 17 
Total 93 92 61 31 25 18 320 

Overall accuracy =90.93% 
Table A.45: Error matric for the classification derived from the SVM trained with training 
set 15n (containing 45 cases of each class) for case A analysis. 
Actual class Predicted class 

(S) (W) (B) (C) (P) (G) Total pixels 
Sugar beet (S) 85 3 2 0 6 1 97 
Wheat (W) 3 90 2 1 0 0 96 
Barley (B) 1 3 47 0 0 0 51 
Carrot (C) 0 0 0 32 0 1 33 
Potato (P) 0 2 0 0 23 1 26 
Grass (G) 0 0 0 1 0 16 17 
Total 89 98 51 34 29 19 320 

Overall accuracy =91.56% 
Table A.46: Error matric for the classification derived from the SVM trained with training 
set 20n (containing 60 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 90 4 0 0 2 1 97 
Wheat (W) 6 83 6 1 0 0 96 
Barley (B) 1 0 50 0 0 0 51 
Carrot (C) 0 0 0 33 0 0 33 
Potato (P) 0 1 0 0 25 0 26 
Grass (G) 0 0 0 1 0 16 17 
Total 97 88 56 35 27 17 320 

Overall accuracy =92.81 % 
Table A.47: Error matric for the classification derived from the SVM trained with training 
set 25n (containing 75 cases of each class) for case A analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 90 5 0 0 1 1 97 
Wheat (W) 2 86 7 1 0 0 96 
Barley (B) 1 0 50 0 0 0 51 
Carrot (C) 0 2 0 31 0 0 33 
Potato (P) 1 1 0 1 23 0 26 
Grass (G) 0 0 0 0 0 17 17 
Total 94 94 57 33 24 18 320 

Overall accuracy =92.81 % 
Table A.48: Error matric for the classification derived from the SVM trained with training 
set 30n (containing 90 cases of each class) for case A analysis. 

183 



Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 89 6 0 0 1 1 97 
Wheat (W) 2 88 5 1 0 0 96 
Barley (B) 1 1 49 0 0 0 51 
Carrot (C) 0 0 0 33 0 0 33 
Potato (P) 0 2 0 0 24 0 26 
Grass (G) 0 0 0 0 0 17 17 
Total 92 97 54 34 25 18 320 

Overall accuracy =93.75% 
Table A.49: Error matric for the classification derived from the SVM trained with the 
largest training set (containing 100 cases of each class) for case A analysis 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 12 1 0 0 4 0 17 
Wheat (W) 4 13 0 0 0 0 17 
Barley (B) 0 1 16 0 0 0 17 
Carrot (C) 0 1 0 16 0 0 17 
Potato (P) 1 1 0 0 15 0 17 
Grass (G) 0 0 3 0 0 14 17 
Total 17 17 19 16 19 14 102 

Overall accuracy =84.31 % 
Table A.50: Error matric for the classification derived from the SVM trained with training 
set 5n (containing 15 cases of each class) for case B analysis. 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 17 0 0 0 0 0 17 
Wheat (W) 1 16 0 0 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 0 16 0 17 
Grass (G) 0 0 0 0 2 15 17 
Total 18 17 17 17 18 15 102 

Overall accuracy =96.07% 
Table A.51: Error matric for the classification derived from the SVM trained with training 
set 1 On (containing 30 cases of each class) for case B analysis 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 14 2 0 1 0 0 17 
Wheat (W) 0 14 2 1 0 0 17 
Barley (B) 0 1 16 0 0 0 17 
Carrot (C) 0 2 0 15 0 0 17 
Potato (P) 0 0 0 0 17 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 14 19 18 17 17 17 102 

Overall accuracy =91.17% 
Table A.52: Error matric for the classification derived from the SVM trained with training 
set 15n (containing 45 cases of each class) for case B analysis 
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Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 13 3 0 0 0 1 17 
Wheat (W) 0 17 0 0 0 0 17 
Barley (B) 1 0 16 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 0 16 0 17 
Grass (G) 0 0 0 1 0 16 17 
Total 14 21 16 18 16 17 102 

Overall accuracy =93.13% 
Table A.53: Error matric for the classification derived from the SVM trained with training 
set 20n (containing 60 cases of each class) for case B analysis 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 15 1 0 0 1 0 17 
Wheat (W) 0 15 2 0 0 0 17 
Barley (B) 0 0 17 0 0 0 17 
Carrot (C) 0 2 0 16 0 1 17 
Potato (P) 0 1 0 1 15 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 15 19 19 18 16 18 102 

Overall accuracy =93.13% 
Table A.54: Error matric for the classification derived from the SVM trained with training 
set 25n (containing 75 cases of each class) for case B analysis 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 1 0 0 0 0 17 
Wheat (W) 1 16 0 0 0 0 17 
Barley (B) 0 1 16 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 1 0 2 14 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 17 19 16 19 14 17 102 

Overall accuracy =94.11 % 
Table A.55: Error matric for the classification derived from the SVM trained with training 
set 30n (containing 90 cases of each class) for case B analysis 

Actual class Predicted class 
(S) (W) (B) (C) (P) (G) Total pixels 

Sugar beet (S) 16 1 0 0 0 0 17 
Wheat (W) 0 15 2 0 0 0 17 
Barley (B) 1 1 15 0 0 0 17 
Carrot (C) 0 0 0 17 0 0 17 
Potato (P) 0 0 0 1 16 0 17 
Grass (G) 0 0 0 0 0 17 17 
Total 17 17 17 18 16 17 102 

Overall accuracy =94.11 % 
Table A.56: Error matric for the classification derived from the SVM trained with the 
largest training set (containing 100 cases of each class) for case B analysis 
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a(1 ) a(2) a(3) a(4) RED NIR MIR Clas Location Soil code Growth 
s 

0.0000 0.0000 0.0000 1.0000 96 81 129 1 --
1.0000 0.0000 0.0000 0.0000 104 99 176 1 
1.0000 0.0000 0.0000 0.0000 101 106 163 1 --
1.0000 0.0000 0.0000 0.0000 99 105 163 1 .. _-
1.0000 0.0000 0.0054 0.2047 95 106 189 1 

.. -
0.9903 0.0000 0.0000 0.0000 97 103 168 1 

.. -
1.0000 0.0000 0.0000 0.0000 96 109 167 1 
1.0000 0.0000 0.0000 0.0000 104 104 164 1 .-
1.0000 0.0000 0.0000 0.0000 102 104 165 1 
0.7776 0.0000 0.0000 0.0000 104 100 158 1 
0.0000 0.0000 0.0000 0.7893 94 84 131 1 
1.0000 0.0000 0.0000 0.0000 111 109 181 2 
1.0000 0.7849 0.5720 0.4596 107 99 169 2 --
0.7110 0.0000 0.0000 0.0000 109 124 167 2 -- . 
1.0000 0.0000 0.0000 0.0000 103 122 172 2 

';i.i-

.. -
0.1833 0.0000 0.0000 0.0000 111 113 182 2 -

.--
1.0000 0.0000 0.0000 0.0000 110 111 159 2 --
1.0000 0.3478 0.0000 0.2130 101 114 167 2 ---. 

-
1.0000 0.0000 0.0000 0.0000 113 110 179 2 - . 

1.0000 0.0000 0.0000 0.0000 112 100 174 2 '.' 

---
0.0000 0.0000 0.0000 1.0000 54 132 113 3 Near Canal 47 

-
0.0000 0.0000 0.0000 0.2035 54 138 116 3 Near Canal 43 -

--
0.0000 0.0000 0.0000 1.0000 53 130 114 3 Near Canal 46 .-
0.0000 0.0000 0.0000 I 1.0000 53 137 115 3 Waterlogged 44 

--
0.0000 0.0000 0.0000 1.0000 56 129 115 3 Adjoining Canal 18 --
0.0348 0.0201 0.0000 0.6051 47 170 119 3 very dry 44 --
0.0000 0.0000 0.0000 1.0000 53 122 99 3 Waterlogged 45 - -
0.0000 0.0393 1.0000 1.0000 54 116 97 3 Waterlogged 45 

.-
0.0000 0.0000 1.0000 1.0000 58 112 107 3 Waterlogged 45 .. 

-
0.0000 1.0000 118 waterlogged 43 0.0000 1.0000 56 99 3 ,..a.~ .. 

and near canal .. 

0.0000 0.0000 0.0000 1.0000 55 122 100 3 waterlogged 43 -
along canal .. ~ 

0.0000 0.0000 0.0000 1.0000 62 93 97 4 Along River 41 ... 
0.0000 0.0000 0.0000 1.0000 62 92 97 4 Along River 41 .. 

~.-

0.0000 0.0000 0.0000 1.0000 61 97 97 4 Along canal 41 
. -

0.0000 0.0000 0.0000 1.0000 60 92 95 4 Along canal 41 _. 
0.0000 0.0000 0.0000 1.0000 58 98 94 4 Dry (no canal) 41 

.. 

0.0000 0.0000 0.0000 1.0000 58 100 90 4 Dry (no canal) 41 -> 

0.0000 0.0000 0.0000 1.0000 65 96 102 4 Dry (no canal) 41 
0.0000 0.0000 0.0000 1.0000 56 100 87 4 Along canal 14 

# ~ 

0.7038 1.0000 1.0000 1.0000 55 110 97 4 near built up 18 
0.0000 0.0000 0.0000 1.0000 55 102 92 4 dry near 18 

.- -

wasteland 
0.0000 0.0000 0.0000 1.0000 58 99 90 4 near road 18 - -

0.0000 0.0000 0.0000 1.0000 56 101 90 4 dry (near road) 19 
~-

~) -
0.0000 0.0000 0.0000 1.0000 58 98 90 4 near built -up 14 --

(dry) 
0.0000 0.0000 0.0000 0.2510 57 95 90 4 near built -up 19 1 

~ , 
(dry) -. 

0.0000 0.0000 0.0000 1.0000 55 104 88 4 near built -up 16 
(dry) ." .-

186 



,,-
0.0000 0.0000 0.0000 1.0000 53 94 98 4 near road 16 
0.0000 0.0000 0.0000 1.0000 60 95 102 4 near river 41 

0.0000 0.0000 0.0000 1.0000 65 83 103 4 near river 41 

0.0000 0.0000 0.0000 1.0000 51 107 96 5 Near Canal 45 R2 
~C • ....: 

0.0000 0.0000 0.0000 1.0000 48 112 92 5 Near Canal 45 R3 

0.0000 0.0000 0.0000 1.0000 53 113 89 5 Near Canal 46 R2 

0.0000 0.0000 1.0000 0.0000 50 112 98 5 Near Canal 46 ::R3' 

0.0000 0.0000 0.0736 1.0000 58 101 95 5 Dry (no canal) 46 R2' 
~"3r 

0.0000 0.0000 1.0000 1.0000 66 95 101 5 earlier 18 R2 , 
waterlogged 

(now salt) ~ , 
0.0000 0.0000 0.0150 0.0000 70 94 119 5 Near Canal 16 ~Rl 

0.0000 0.0000 0.0000 1.0000 55 100 99 5 Dry (no canal) 16 l~3-; 

1.0000 0.0000 0.0000 1.0000 73 91 117 5 dry (no canal) 16 R2 
, --'-

0.0000 0.0000 0.0000 0.5842 67 93 116 5 dry (no canal) 16 R1 

0.0000 0.0000 1.0000 0.0000 57 106 107 5 16 lrf 
0.0000 0.0000 0.0000 1.0000 69 91 112 5 adjoining road 16 Hi 
0.0000 0.0000 0.0000 1.0000 48 101 90 5 46 R3 

0.0000 0.0000 0.0000 1.0000 60 94 106 5 earlier affected 50 R2 
by waterlogged ~-.L 

0.0000 0.0000 1.0000 1.0000 60 102 100 5 waterlogged 44 R2 
?'.....-

0.6237 0.4620 1.0000 0.0000 51 138 115 5 near canal 44 ~1 
0.0000 0.0000 1.0000 0.0000 52 125 95 5 47 ::8,~ 

. ,~""'-

0.0000 0.0000 0.0000 1.0000 50 112 86 5 46 R3 
0.0000 0.0000 1.0000 0.0000 52 133 105 5 18 R'''-• J 

,._,':"-

0.0000 0.0000 1.0000 0.0000 51 120 92 5 18 "R::~ 

0.0000 0.0000 0.4770 0.0000 49 123 89 5 16 ~R3 

0.0000 0.0000 1.0000 0.0000 50 119 97 5 16 ~T 
0.0000 0.0000 0.0000 1.0000 56 106 97 5 16 R3 

0.4436 0.0000 0.1229 1.0000 70 89 104 5 41 
-c-':-

R'l-

0.0000 0.0000 0.0000 1.0000 44 114 86 5 Adjoining canal 44 ~,t 
- -.'-

0.0000 0.0000 0.0000 1.0000 62 99 103 5 Adjoining canal 43 r'4:") 
·r,",,:) 

0.0000 0.0000 1.0000 0.0000 56 116 96 5 Adjoining canal 45 ~:; 
and ~,' ,-

-
waterlogged 11--": t' -

Table A57: Summary of 76 support vectors resulting from SVM analysis using training data :?, 
acquired under intelligent scheme of training data acquisition. The a values in SVM are between 
a pair of classes as SVM is basically a binary classifier and, therefore, there are four a values for 
the five classes in the analysis. The four columns follow some particular order based on class .' 
label, for example, the a values for cotton class (label 3) has a values in column 1, column 2, 
column 3 and column 4 with respect to class 1,2,4 and 5 respectively. ;:.'.:' 

187 



7~ , 

188 



189 



REFERENCES 

Arora, M. K. and Foody, G. M., "Log-linear modelling for the evaluation of the 
variables affecting the accuracy of probabilistic, fuzzy and neural network 
classifications," International Journal of Remote Sensing, vol. 18, no. 4, pp. 785-
798, 1997. 

Atkinson, P. M., Cutler, M. E. 1., and Lewis, H., "Mapping sub-pixel proportional 
land cover with A VHRR imagery," International Journal of Remote Sensing, vol. 18 
pp.917-935,1997. 

Atkinson, P. M., "Optimal Ground-Based Sampling for Remote-Sensing 
Investigations - Estimating the Regional Mean," International Journal of Remote 
Sensing, vol. 12, no. 3, pp. 559-567, 1991. 

Atkinson, P. M. and Tatnall, A. R. L., "Neural networks in remote sensing
Introduction," International Journal of Remote Sensing, vol. 18, no. 4, pp. 699-709, 
1997. 

Atkinson, P. M., Foody, G. M., Curran, P. 1., and Boyd, D. S., "Assessing the ground 
data requirements for regional scale remote sensing of tropical forest biophysical 
properties," International Journal of Remote Sensing, vol. 21, no. 13-14, pp. 2571-
2587,2000. 

Battiti, R., "Using Mutual Information for Selecting Features in Supervised Neural
Net Learning," IEEE Transactions on Neural Networks, vol. 5, no. 4, pp. 537-550, 
1994. 

Benediktsson, 1. A. and Sveinsson, 1. R., "Feature extraction for multi source data 
classification with artificial neural networks," International Journal of Remote 
Sensing, vol. 18, no. 4, pp. 727-740, 1997. 

Betts, A. K., Ball, 1. H., Beljaars, A. C. M., Miller, M. 1., and Viterbo, P. A., "The 
land surface atmosphere interaction: A review based on observational and global 
modelling perspectives.," Journal of Geophysical Research, vol. 101 pp. 7209-7225, 
1996. 

Boles, S. H., Xiao, x., Liu, 1., Zhang, Q., Munkhtuya, S., Chen, S., and Ojima, D., 
"Land cover characterization of temperate east asia using multi-temporal vegetation 
sensor data," Remote Sensing of Environment, vol. 88, no. 1, pp. 157-169,2004. 

Boser, B., Guyon, I., and Vapnik, V. N. A training algorithm for optimal margin 
classifiers. 144-152. 1992. Proceedings of 5 th Annual Workshop on computer 
Learning Theory. 

Brieman, L., Friedman, 1. H., Olshen, R. A., and Stone, C. 1., Classification and 
regression Trees Monterey, C.A.: Wadsworth, 1984. 

188 



Brodley, C. E. and Utgoff, P. E., "Multivariate Decision Trees," Machine Learning, 
vol. 19,no.l,pp.45-77, 1995. 

Brown, M., Gunn, S. R., and Lewis, H. G., "Support vector machines for optimal 
classification and spectral unmixing," Ecological Modelling, vol. 120 pp. 167-179, 
1999. 

Buchheim, M. P. and Lillesand, T. M., "Semi-Automated Training Field Extraction 
and Analysis for Efficient Digital Image Classification," Photogrammetric 
Engineering and Remote Sensing, vol. 55, no. 9, pp. 1347-1355, 1989. 

Campbell, J. B., Introduction to Remote Sensing, 3 ed. Taylor and Francis, 2002, 
London. 

Canters, F., "Evaluating the uncertainty of area estimates derived from fuzzy land
cover classification," Photogrammetric Engineering and Remote Sensing, vol. 63, 
no. 4, pp. 403-414, 1997. 

Chavez, P. S., Jr., "An improved dark-object subtraction technique for atmospheric 
scattering correction of multispectral data," Remote Sensing of Environment, vol. 24 
pp.459-479,1988. 

Chen, D. M. and Stow, D., "The effect of training strategies on supervised 
classification at different spatial resolutions," Photogrammetric Engineering and 
Remote Sensing, vol. 68, no. 11, pp. 1155-1161,2002. 

Con galton, R. G., "A comparison of sampling schemes used in generating error 
matrices for assessing the accuracy of maps generated from remotely sensed data," 
Photogrammetric Engineering and Remote Sensing, vol. 54, no. 5, pp. 593-600, 
1988. 

Congalton, R. G., "A review of assessing the accuracy of classifications of remotely 
sensed data," Remote Sensing of Environment, vol. 37, no. 1, pp. 35-46,1991. 

Cortes, C. and Vapnik, V., "Support-Vector networks," Machine Learning, vol. 20, 
no. 3,pp. 273-297, 1995. 

Cracknell, A. P., "Synergy in remote sensing - what's in a pixel?," International 
Journal of Remote Sensing, vol. 19, no. 11, pp. 2025-2047, 1998. 

Curran, P. J. and Williamson, H. D., "The accuracy of ground data used in remote
sensing investigations," International Journal of Remote Sensing, vol. 6, no. 10, pp. 
1637-1651, 1985. 

Curran, P. J. and Williamson, H. D., "Sample-size for ground and remotely sensed 
data," Remote Sensing of Environment, vol. 20, no. 1, pp. 31-41, 1986. 

De Colstoun, E. C. B., Story, M. H., Thompson, C., Commisson, K., Smith, T. G., 
and Irons, J. R., "National park vegetation mapping using multi-temporal Landsat 7 

189 



data and a Decision tree classifier," Remote Sensing of Environment, vol. 85, no. 3, 
pp.316-327,2003. 

DeFries, R. S. and Townshend, J. R. G., "Ndvi-derived Land-cover classifications at 
a global scale," International Journal of Remote Sensing, vol. 15, no. 17, pp. 3567-
3586, 1994. 

DeFries, R. S., Hansen, M., Townshend, J. R. G., and Sohlberg, R., "Global land 
cover classifications at 8 Km spatial resolution: the use of training data derived from 
Landsat imagery in decision tree classifiers," International Journal of Remote 
Sensing, 1998. 

Duda, T. and Canty, M., "Unsupervised classification of satellite imagery: choosing 
a good algorithm," International Journal of Remote Sensing, vol. 23, no. 11, pp. 
2193-2212,2002. 

Emrahoglu, N., Yegingil, 1., Pestemalci, V., Senkal, 0., and Kandirmaz, H. M., 
"Comparison of a new algorithm with the supervised classifications," International 
Journal of Remote Sensing, vol. 24, no. 4, pp. 649-655, 2003. 

Esposito, F., Malerba, D., and Semeraro, G., "A comparative analysis of methods for 
pruning decision trees," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 19, no. 5, pp. 476-491, 1997. 

Fisher, P., "The Pixel: a snare and a delusion," International Journal of Remote 
Sensing, vol. 18, no. 3, pp. 679-685, 1997. 

Fitzpatrick-Lins, K., "Comparison of sampling procedures and data analysis for a 
Land-use and Land-cover map," Photogrammetric Engineering and Remote Sensing, 
vol. 47, no. 3, pp. 343-351, 1981. 

Floriana, E., Donato, M., and Giovanni, S., "A Comparative Analysis of Methods for 
Pruning Decision Trees," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 19, no. 5, pp. 476-491, 1997. 

Foody, G. M., "Land-Cover classification by an artificial neural-network with 
ancillary information," International Journal of Geographical Information Systems, 
vol. 9,no. 5,pp.527-542, 1995. 

Foody, G. M. and Arora, M. K., "An evaluation of some factors affecting the 
accuracy of classification by an artificial neural network," International Journal of 
Remote Sensing, vol. 18, no. 4, pp. 799-810, 1997. 

Foody, G. M., "The significance of border training patterns in classification by a 
feedforward neural network using back propagation learning," International Journal 
of Remote Sensing, vol. 20, no. 18, pp. 3549-3562, 1999. 

Foody, G. M., "Status ofland cover classification accuracy assessment," Remote 
Sensing of Environment, vol. 80, no. 1, pp. 185-201,2002. 

190 



Foody, G. M., "Hard and soft classifications by a neural network with a non
exhaustively defined set of classes," International Journal of Remote Sensing, vol. 
23,no. 18,pp. 3853-3864,2002. 

Foody, G. M., "Thematic map comparison: evaluating the statistical significance of 
differences in classification accuracy," Photogrammetric Engineering and Remote 
Sensing, vol. 70, no. 5, pp. 627-633,2004. 

Foody, G. M., Sargent, 1. M. 1., Atkinson, P. M., and Williams, 1. W., "Thematic 
labelling from hyperspectral remotely sensed imagery: trade-offs in image 
properties," International Journal of Remote Sensing, vol. 25, no. 12, pp. 2337-2363, 
2004. 

Fraser, R. H., Abuelgasim, A., and Latifovic, R., "A method for detecting large-scale 
forest cover change using coarse spatial resolution imagery," Remote Sensing of 
Environment, vol. 95, no. 4, pp. 414-427, 2005. 

Friedl, M. A. and Brodley, C. E., "Decision tree classification of land cover from 
remotely sensed data," Remote Sensing of Environment, vol. 61, no. 3, pp. 399-409, 
1997. 

Gallego, F. 1. Crop Area Estimation in the MARS Project. Conference on ten years 
of MARS project, Brussels, pp.1-11, 1999. 

Genderen Van, 1. L. and Lock, B. F., "Testing land-use map accuracy," 
Photogrammetric Engineering and Remote Sensing, vol. 43, no. 9, pp. 1135-1137, 
1977. 

Gong, P. and Howarth, P. 1., "An assessment of some factors influencing 
multispectral Land- Cover classification," Photogrammetric Engineering and 
Remote Sensing, vol. 56, no. 5, pp. 597-603, 1990. 

Gualtieri, 1. A. and Cromp, R. F. Support vector machines for hyperspectral remote 
sensing classification. 27.1998. 27 th AIPR Workshop: Advances in Computer 
Assisted Recognition. 

Zhan, H., Shi, P., and Chen, C., "Retrieval of oceanic chlorophyll concentration 
using support vector machines," IEEE Transactions Geoscience Remote sensing, vol. 
41, no. 12, pp. 2947-2951, 2003. 

Halldorsson, G. H., Benediktsson, 1. A., and Sveinsson, 1. R. Support vector 
machines in multisource classification. 2003. IEEE, IGARSS. 21-7-2003. 

Hansen, M. C. and Reed, B., "A comparison of the IGBP DISCover and University 
of Maryland lkm global land cover products," International Journal of Remote 
Sensing, vol. 21, no. 6-7, pp. 1365-1373,2000. 

191 



Hashemain, M. S., Abkar, A. A., and Fatemi, S. B. Study of sampling methods for 
accuracy assessment of classified remotely sensed data. 2005. Istanbul. 12-7-2004. 

Hay, A. M., "Sampling design to test land use map accuracy," Photogrammetric 
Engineering and Remote Sensing, vol. 45 pp. 529-533, 1979. 

Hixson, M., Scholz, D., and Fuhs, N., "Evaluation of several schemes for 
classification of remotely sensed data," Photogrammetric Engineering and Remote 
Sensing, vol. 46, no. 12, pp. 1547-1553, 1980. 

Ho K.T, Hull J.J, and Srihari S.N, "Decision combination in multiple classification 
systems," IEEE Transactions on Pattern Analysis and Machine Analysis, vol. 16, no. 
1, pp. 66-75,1994. 

Hord, R. M. and Brooner, W., "Land-use map accuracy criteria," Photogrammetric 
Engineering and Remote Sensing, vol. 42 pp. 671-677, 1976. 

Hsu, C. W. and Lin, C. 1., "A comparison of methods for multiclass support vector 
machines," IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 
2002. 

Hsu, C. W. and Lin, C. 1., "A simple decomposition method for support vector 
machines," Machine Learning, vol. 46, no. 1-3, pp. 291-314,2002. 

Huang, C., Davis, L. S., and Townshend, 1. R. G., "An assessment of support vector 
machines for land cover classification," International Journal of Remote Sensing, 
vol. 23 pp. 725-749, 2002. 

Huang, C., Townshend, J. R. G., Liang, S., Kalluri, S. N. V., and DeFries, R. S., 
"Impact of sensors point spread function on land cover characterization: assessment 
and deconvolution," Remote Sensing of Environment, vol. 80 pp. 203-212, 2002. 

Jackson, Q. and Landgrebe, D. A., "An adaptive classifier design for high
dimensional data analysis with a limited training data set," IEEE Transactions on 
Geoscience and Remote Sensing, vol. 39, no. 12, pp. 2664-2679, 2001. 

Jensen, L. L. F. and Van der WeI, F. J. M., "Accuracy assessment of satellite derived 
land-cover data: A review," Photogrammetric Engineering and Remote Sensing, vol. 
60 pp. 419-426, 1994. 

Kanellopoulos, 1. and Wilkinson, G. G., "Strategies and best practice for neural 
network image classification," International Journal of Remote Sensing, vol. 18, no. 
4, pp. 711-725, 1997. 

Kavzoglu, T. and Mather, P. M., "The use of back propagating artificial neural 
networks in land cover classification," International Journal of Remote Sensing, vol. 
24, no. 23,pp.4907-4938,2003. 

192 



Kim, B. and Landgrebe, A., "Hierarchical classifier design in high-dimensional 
numerous class cases," IEEE Transactions Geoscience Remote sensing, vol. 29, no. 
4, pp. 518-528, 1991. 

Kulkarni, A. V. and Kanal, L. N. An optimization approach to hierarchical classifier 
design. 3. 1976. International Joint Conference Pattern Recognition. 

Kurzynski, M. W., "The optimal strategy of a tree classifier," Pattern Recognition, 
vol. 16, no. 81, pp. 87,1983. 

Han, K., Champeaux, 1., and Roujean, 1., "A land cover classification product over 
France at 1 Km resolution using SPOT4/VEGETA TION data," Remote Sensing of 
Environment, vol. 92, no. 1, pp. 52-66, 2004. 

Wang, L., Sousa, W. P., Gong, P., and Biging, G. S., "Comparison oflKONOS and 
QuickBird images for mapping mangrove species on the Caribbean coast of 
panama," Remote Sensing of Environment, vol. 91, no. 3, pp. 432-440, 2004. 

Lee, C. and Landgrebe, D. A., "Decision boundary feature extraction for neural 
networks," IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 75-83,1997. 

Lillesand, T. M., Kiefer, R. W., and Chipman, 1. W., Remote Sensing and image 
Interpretation, 5 ed. Wiley Text Books, 2004, NJ. 

Liu, W. and Wu, E. Y., "comparison of non-linear mixture models: sub-pixel 
classification," Remote Sensing of Environment, vol. 94, no. 2, pp. 145-154,2005. 

Marcal, A. R. S., Borges, 1. S., Gomes, 1. A., and Da Costa, 1. F. P., "Land cover 
update by supervised classification of segmented ASTER images," International 
Journal of Remote Sensing, vol. 26, no. 7, pp. 1347-1362,2005. 

Mather, P. M., "Land Cover Classification Revisited," in Atkinson, P. M. and 
Nicholas 1.Tate (eds.) Advances in Remote Sensing and GIS Analysis John Wiley and 
sons Ltd., 1999, Chichester. 

Mather, P. M., Computer Processing of Remotely-Sensed images: an Introduction, 2 
ed. John Wiley and sons Ltd., 1999, Chichester. 

Mcbratney, A. B. and Webster, R., "How Many Observations Are Needed for 
Regional Estimation of Soil Properties," Soil Science, vol. 135, no. 3, pp. 177-183, 
1983. 

Melgani, F. and Bruzzone, L., "Classification of hyper spectral remote sensing 
images with support vector machines," IEEE Transactions Geoscience Remote 
sensing, vol. 42, no. 8, pp. 1778-1790, 2004. 

Mercier, G. and Lennon, M. Support Vector Machines for Hyperspectral Image 
Classification with Spectral-based kernels. Proceedings IEEE International 

193 



Geoscience and Remote Sensing Symposium. 2003. 

Murthy, S., Salzberg, S., and Kasif, S., "A system for induction of oblique decision 
trees," JArtificial Intelligence Research, vol. 2 pp. 1-33, 1994. 

Navalgund, R. R., Parihar, 1. S., Ajai, and Rao, P. P. N., "Crop Inventory using 
Remotely Sensed Data," Current Science, vol. 61, no. 3, pp. 162-171, 1991. 

Niblett, T. Constructing Decision Trees in Noisy Domains. Progress in Machine 
Leraning 87, 67-78. 1987. 

Olthof, I., Butson, C., and Fraser, 0., "Signature extension through space for 
northern landcover classification: A comparison of radiometric correction methods," 
Remote Sensing of Environment, vol. 95, no. 3, pp. 290-302, 2005. 

Osuna, E. E., Freund, R., and Girosi, F. Support vector machines: Training and 
applications. ftp publications.aLmit.edu . 1997. 

Pal, M. and Mather, P. M., "An assessment of the effectiveness of decision tree 
methods for land cover classification," Remote Sensing of Environment, vol. 86, no. 
4, pp. 554-565, 2003. 

Pal, M. and Mather, P. M., "Assessment of the effectiveness of support vector 
machines for hyperspectral data," Future Generation Computer Systems, vol. 20, no. 
7, pp. 1215-1225,2004. 

Pal, M. and Mather, P. M., "Support vector machines for classification in remote 
sensing," International Journal of Remote Sensing, vol. 26, no. 5, pp. 1007-1011, 
2005. 

Pinter, P. J., Ritchie, Jr. J. C., Hatfield, 1. L., and Hart, G. F., "The agricultural 
research services remote sensing program: An example of interagency 
collaboration," Photogrammetric Engineering and Remote Sensing, vol. 69 pp. 615-
618,2003. 

Pontius, R. G., "Quantification error versus location error in comparison of 
categorial maps," Photogrammetric Engineering and Remote Sensing, vol. 66 pp. 
1011-1016,2000. 

Quinlan, J. R., "Induction of decision trees," Machine Learning, vol. 1, no. 81, pp. 
106,1986. 

Quinlan, 1. R., "Simplifying decision trees," International Journal of Man-Machine 
Studies, vol. 27, no. 3, pp. 221-234, 1987. 

Richards, J. A. and Xiuping, 1., Remote sensing digital image analysis: An 
introduction, 3 ed. Springer, 1998, Berlin. 

194 



Richards, J. A., "Classifier performance and map accuracy," Remote Sensing of 
Environment, vol. 57 pp. 161-166, 1996. 

Rosenfield, G. H. and Fitzpatricklins, K., "A coefficient of agreement as a measure 
of thematic classification accuracy," Photogrammetric Engineering and Remote 
Sensing, vol. 52, no. 2, pp. 223-227, 1986. 

Rounds, E., "A combined non-parametric approach to feature selection and binary 
decision tree design," Pattern Recognition, vol. 12, no. 313, pp. 317,1980. 

Safavian, S. R. and Landgrebe, D., "A Survey of Decision Tree Classifier 
Methodology," IEEE Transactions on Systems Man and Cybernetics, vol. 21, no. 3, 
pp. 660-674,1991. 

Schowengerdt, R. A., Techniques for Image Processing and Classification in Remote 
Sensing 1983, Academic press, London. 

Shiva, V., "The Green Revolution in the Punjab," The Ecologist, vol. 21, no. 2, 1991. 

Simard, M., Saatchi, S. S., and De Grandi, G., "The use of decision tree and 
multiscale texture for classification of JERS-l SAR data over tropical forest," IEEE 
Transactions on Geoscience and Remote Sensing, vol. 38, no. 5, pp. 2310-2321, 
2000. 

Singh, H. Delineation of waterlogged areas in muktsar district using remote sensing 
technology. L-94-AE-15-BIV, 1-24. 1998. Ludhiana, College of agricultural 
engineering, Punjab Agriculture University. 

Smits, P. C., Dellepiane, S. G., and Schowengerdt, R. A., "Quality assessment of 
image classification algorithms for land cover mapping: a review and proposal for 
cost based approach," International Journal of Remote Sensing, vol. 20 pp. 1461-
1486, 1999. 

Steele, B. M., "Combining multiple classifiers: An application using spatial and 
remotely sensed information for land cover type mapping," Remote Sensing of 
Environment, vol. 74, no. 3, pp. 545-556,2000. 

Swain, P. H. and Husaka, H., "The decision tree classifier: design and potential," 
IEEE Transactions Geoscience Remote sensing, vol. 15 pp. 142-147, 1969. 

Swain, P. H. and Davis, S. M., Remote Sensing: the Quantitative Approach 
McGraw-Hill IntI. Book Co, 1978, London. 

Tatem, A. J., Noor, A. M., and Hay, S. I., "Defining approaches to settlement 
mapping for public management in Kenya using medium spatial resolution satellite 
imagery," Remote Sensing of Environment, vol. 93, no. 1, pp. 42-52, 2004. 

195 



Townshend, J. R. G. and Justice, C., "Information extraction from remotely sensed 
data, a user view," International Journal of Remote Sensing, vol. 2, no. 4, pp. 313-
329, 1981. 

Van Genderen, J. L. and Lock, B. F., "Testing land-use map accuracy," 
Photogrammetric Engineering and Remote Sensing, vol. 43, no. 9, pp. 1135-1137, 
1977. 

Vapnik, V. N., Statistical Learning Theory John Wiley and sons Inc., 1998. 

Zhuang, X., Engel, B. A., Lonzanogarcia, D. F., Fernandez, R. N., and Johnannsen, 
C. 1., "Optimization of training data required for neuro-classification," International 
Journal of Remote Sensing, vol. 15 pp. 3271-3277, 1994. 

196 


