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In distributed systems, the individual processing units typically solve parts of the overall 

problem while having only localised views of the system. In such settings, the individ

ual views could be in conflict with one another because there is no centrally controlled 

synchroniser (by choice of design). This problem can, in turn, create conflicting par

tial solutions, thereby generating sub-optimal solutions to the overall problem. Such 

conflicts are aggravated by dynamically changing states (which are common in such sys

tems). Thus, coordinating the distributed components is of critical importance to allow 

successful task processing. 

Now, distributed resource allocation (RA), which is a central problem in several im

portant applications, exhibits all of the challenges mentioned above. Specifically, in this 

domain, individual processors allocate resources to partially complete tasks which are 

successfully solved by allocating all the necessary resources. In a shared task environ

ment, they must act by considering the resource availabilities across the system to ensure 

conflict-free and successful allocations. Moreover, resource availabilities can change re

quiring allocations to adapt to solve tasks efficiently. Against this background, in this 

thesis, we focus on developing an effective solution for tasks where RA is sequential since 

they are commonly found in real-world RA systems. 

Multi-agent systems (MAS) is a promising solution paradigm for such distributed 

RA problems. This is because, in a MAS, the agents are designed as autonomous, goal

directed, reactive programs that can adapt to environment changes to achieve the system 

objective. However, in line with the discussion above, such behaviour rests upon two key 

properties: the ability to estimate states and to update these estimates as states change 

so as to adapt their behaviour. We argue that such capabilities require a mechanism for 

sharing state information to allow the agents to acquire the necessary knowledge of the 

states so that they can generate non-conflicting partial solutions and successfully adapt 

to state changes. 
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Against this background, in this thesis, we develop a multi-agent information-sharing 

protocol to efficiently solve sequential RA problems. This protocol lets the agents coop

erate with one another, by sharing information, to build reliable estimates of the system 

states which, in turn, generate effective adaptive behaviour. We use Q-Iearning, an algo

rithm for generating robust estimates without any prior knowledge of the environment 

dynamics, as the tool for estimate learning using the shared information. In so doing, 

our research significantly extends the state-of-the-art in cooperative MAS technology for 

sequential RA problems. 

First, our information-sharing protocol - the post task-completion (PTC) protocol 

- is novel in its principle of application and is also the most effective information

sharing method for generating high-quality estimates in dynamic distributed sequential 

RA problems. We establish its merits using theoretical analyses. Second, we design 

communication heuristics based on PTC that can be used in a real sequential RA ap

plication: call routing in mesh networks. Using empirical analyses, we show that these 

heuristics outperform a host of benchmark algorithms used in this application domain. 

Third, we improve the adaptiveness of PTC in highly dynamic environments by extend

ing the communication heuristic. Empirical analyses demonstrate that this extended 

protocol achieves superior responsiveness to state changes caused by network failures 

and successfully diagnoses failures. Finally, we extend the effectiveness of the extended 

PTC heuristic by using selective information-sharing. We show that sharing informa

tion using a notion of information redundancy significantly reduces the communication 

overhead of PTC but without sacrificing its performance advantages. 

In achieving the above-mentioned contributions, we successfully establish the valid

ity of our claim about cooperative information-sharing being able to generate effective 

state estimation and adaptive behaviour required for efficiently solving dynamic dis

tributed sequential RA problems. In so doing, we also contribute towards extending the 

current technology for distributed network call routing by providing a highly efficient 

communication protocol that generates high quality solutions for the routing problem. 
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Chapter 1 

Introduction 

Research in the field of distributed systems has been primarily focused towards concep

tualising, designing, and implementing techniques that use autonomous problem solving 

entities (also, termed as agents) to interact in flexible, effective and efficient ways (Brad

shaw, 1997; Jennings, 2001). Such "multi-agent" systems (MAS) are proving useful in 

a variety of real-world applications such as Grid computing (CCGRID), the Semantic 

Web (Lee et al., 2001), planning and scheduling in supply chains (Denkena et al., 2004), 

smart sensor networks (Viswanathan and Varshney, 1997), and network routing (Mi

nar et al., 1999) among others. Now, although these applications are highly disparate, 

they have a number of properties that are common to complex, distributed computer 

systems. First, the task objective is too complex to be effectively implemented by a 

single, centralised problem solver. In a network routing application, for example, a 

centralised routing server that takes all routing and monitoring decisions for the entire 

network would be complex to design, difficult to scale, and a vulnerable single point of 

failure. Second, with multiple, distributed problem solvers that solve only parts of the 

overall problem, there should be effective ways to tie together their individual solutions 

to generate a consistent global solution: thus the activities of the distributed problem 

solvers should be coordinated in some way. For example, in a distributed sensor net

work, the separate pieces of (possibly overlapping) information (of, say, partial tracks 

of moving vehicles) collected by the individual sensors need appropriate integration to 

generate a coherent solution (e.g., a complete picture of all vehicle routes) useful to the 

user. Third, most of these applications are deployed in environments characterised by 

unpredictable and continuous changes (Hewitt, 1990). Thus, appropriate measures are 

needed to respond to such changes and generate solutions with some performance guar

antee when building a robust solution. For example, in a transportation system owned 

by a delivery company, there should be provisions to cope with unforeseen situations 

such as hazardous weather condition or road blocks to prevent a complete breakdown 

of service. 

1 
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Given these characteristics, a multi-agent solution is a natural way of tackling the 

problem. This is because agents - autonomous, goal-directed, reactive problem solvers 

capable of communicating and interacting with one another (Wooldridge, 2002) - pos

sess the necessary properties to meet the above requirements. For example, the property 

of autonomy allows agents to act without centralised control. In addition, they are ca

pable of adapting their behaviour in response to changing environmental conditions so 

that the overall task objective is met (being goal-directed and reactive). In so doing, 

they will invariably need to coordinate their actions with one another to minimise the 

occurrence of mutually conflicting partial solutions. Communication can be used as the 

key mechanism to achieve such coordination. Thus, a network of agents can be used in 

distributed applications where they individually solve, in a reactive, goal-directed man

ner, parts of an overall problem and share information via communication to generate 

the global solution. Such interactions, therefore, represent the cooperation of multiple 

distributed agents working towards solving a common goal. 1 

Now, in most distributed systems, one of the most fundamental problems that should 

be solved is that of resource allocation (RA). For example, in the Grid, the distributed 

computational resources such as storage and processor cycles need appropriate sharing 

and allocation so that the demands of the users of these resources are met optimally. In 

an analogous way, in supply-chain scheduling, the amount of time and the order in which 

processors attend different jobs have to be optimised to meet the required objectives 

such as timeliness and quality. Also, in sensor networks (and in network routing), the 

useful bandwidth of the sensors (routers) should be allocated or deallocated to ensure 

both bandwidth usage efficiency and effective sensing of the target (maintaining network 

quality of service). 

To this end, this research specifically focuses on building a cooperative MAS solution 

for distributed RA. However, resource allocation applies to a variety of tasks and different 

distributed systems are designed for handling tasks that require different modalities of 

RA. The following examples illustrate some representative cases. 

Allocation of Computational Resources in the Grid: One of the aims of Grid computing 

is to allocate appropriate resources (CPU, storage, etc.) for the execution of het

erogeneous distributed applications (Foster and Kesselman, 1998). For example, 

a bioinformatician, investigating the characteristics of a chemical compound, can 

record his research methodology, search for logs of similar experiments conducted 

by fellow scientists, run experiments, and store the experimental results for future 

use by the community in a Grid infrastructure. Thus, in such a scenario, the 

resource allocation and scheduling module allocates the computational resources 

among the jobs that are submitted by the Grid users. 

1 An orthogonal approach of designing MAS solutions is by considering agents that act as selfish 
individuals trying to maximise their own utility. Such non-cooperative systems are discussed in chapter 2. 
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Allocation of Satellite Images: In the system PLEIADES (CNES, 2001), an earth obser

vation satellite, jointly funded by organisations across different countries, is used 

for acquiring terrestrial images (Lemaitre et a1., 2003). The users of this appli

cation are the funding bodies who periodically send image requests with specifi

cations such as the image size, quality, and priority, among others. The satellite 

"agent" has the task of allocating its available resources (the images) to match the 

incoming requests in a way that the allocation is both efficient (allowing judicious 

exploitation of the resources) and equitable (allowing each requester to obtain re

sults proportional to their contribution towards maintaining the satellite). Thus, 

in this application, utility-based decision mechanisms are used to allocate resources 

among multiple users. 

Allocation of Spectrum Licenses: The Federal Communications Commission (FCC) in 

the United States use auctions to distribute licenses for radio frequency spectra. 

Thus, the entire set of licenses represent the resource pool that is owned by the 

FCC. It then has the task of allocating these licenses for different bandwidth 

segments (used for different services such as mobile phone, radio broadcast, or 

taxi calling service) and covering different geographical regions, among competing 

applicants. Typically, multiple rounds of simultaneous auctions are conducted to 

allocate the different licenses. Thus, in this system, an auction protocol is used to 

simultaneously allocate resources to multiple agents (the bidders). 

In the context of our research, however, a "task" is used to refer to an activity 

extended in time that requires the participation (actions) of multiple agents in any 

order for completion. Specifically, the participation of the agents involve allocating 

resources that are available to them such that the task gets successfully accomplished. 

This is a more appropriate representation of distributed task processing than some of 

the applications listed above where the task is simply an (often, centrally controlled) 

allocation of resources among multiple agents. Now, we identify that in many instances 

of distributed task processing, the agents need to take sequential decisions to accomplish 

tasks. This implies that in order to complete such a task, the actions of different agents 

need to be chained together from the "start state" (when the task processing is initiated) 

to the "finish state" (when the task processing ends). We focus specifically on those types 

of tasks in which resources are allocated by distributed agents in a sequential fashion. 

Several examples of this type of applications exist in practice. A few are listed in the 

following: 

Manufacturing Assembly Line: In several manufacturing industries (e.g., automobile, 

computer hardware, soft drinks, and so on) the various parts of the manufactured 

unit (e.g., a car, a computer part, a bottle of drink) are assembled by different au

tomated assemblers in a fixed sequence. Each assembler devotes a certain amount 
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of time doing a particular action to put together a specific part of the unit. Hence, 

each assembler represents the resources of the assembly line which are to be ap

propriately allocated in sequence to successfully complete the assembling task. 

Bandwidth Allocation for Call Routing: In circuit switched networks, in order to con

nect a call from its source to destination, nodes should allocate parts of their 

available bandwidth so that a continuous circuit is formed. Thus, the nodes trans

mitting the call need to carry out the allocation in sequence starting from the 

source node. The bandwidth reserved by each node represents the resource allo

cated for the completion of the task: to successfully connect the call. 

Distributed Vehicle Monitoring: In this application, distributed sensors perform the 

task of tracking vehicle movements in their surrounding environment. Each sensor 

can sense vehicles when they come within its reception range. To track each 

such target, a sensor allocates a part of its radio bandwidth for the time the 

target remains within range. So, the sensing acts of individual sensors need to 

be integrated (be in sequence) to derive the complete track of a vehicle. Thus, 

allocation of resources (assigning bandwidth) proceeds sequentially between nodes 

to complete the task (acquire a complete track). 

In this context, we choose bandwidth allocation for call routing as the example test 

bed to demonstrate how our solution can benefit such systems. Our choice is justified 

since an effective solution to the problem of distributed routing in networks is of funda

mental importance in present day computer science (Jones, 1992; Julian et al., 2004). 

Nevertheless, it is envisaged that the results of this research should also be more broadly 

applicable to the other instances of this type of RA task. 

The particular type of network we consider in this thesis is that of a wireless mesh 

network (Chandler et al., 1993). Here, a mesh network is defined by a set of wireless 

nodes able to radio-communicate with their direct neighbours. They have limited band

width and operate on batteries and solar power and, hence, are designed to consume as 

little power as possible. This puts severe restrictions on the duration for communication. 

Also, the nodes can fail due to battery power outage. A set of fixed or mobile handsets 

may be connected to these nodes representing the users of the networks (the points of 

call origin and destination). 2 In this system, therefore, the task is to route calls from 

the node of origin to the destination using the limited node bandwidths (representing 

the network resource) and accounting for the unpredictable node failures. Hence, the 

nodes have to sequentially allocate their bandwidths in order to successfully accomplish 

the task of routing the call from its source to destination. Now, the above-mentioned 

2Such networks, typically installed in developing countries, where large areas and lack of resources 
prevent the installation of traditional technologies, are particularly useful for providing Internet access 
in educational environments (Moreau et al., 2001). 
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characteristics of this type of network make it a suitable test bed for a MAS solution, 

Specifically, in any typical MAS, the agents have limited knowledge of the entire system 

state (similarly, each node in a mesh network does not know about the entire network 

state), they can typically communicate with only a subset of the other agents at any 

given time (similarly, the network nodes can communicate with those that are within 

their radio range), they have limited computational and communication capacity (just 

as the nodes have limited processing power and bandwidth), and they require the par~ 

ticipation of other agents to execute tasks (multiple nodes are required to route calls). 

Hence, this application provides us with a practical test bed for the deployment and eval

uation of our MAS solution. This is in contrast with the approach of analysing MAS 

solutions on hypothetical problem settings, the results of which are typically limited by 

the ad-hoc assumptions made by the designer and the lack of real-world constraints. 

Against this background, in the following section 1.1, we first outline our thesis 

regarding a MAS solution for sequential RA tasks in distributed systems. Subsequently, 

the research challenges that need to be overcome to substantiate our thesis are discussed. 

In section 1.2, an overview of the contributions of our research in attempting to address 

these challenges is presented. Finally, section 1.3 summarises the organisation of the 

remaining document. 

1.1 The Aims and The Research Challenges 

We note that while processing tasks, the agents can be acting upon multiple tasks and 

sharing the task environment. Moreover, the quality of the final outcome of such dis

tributed processing depends upon the fidelity with which each agent performs while shar

ing the environment with other agents. Thus, the agents must estimate the behaviour 

of one another so that their actions can be coordinated and scheduled appropriately to 

achieve consistent solutions. In addition, to resolve potential conflicts between their ac

tions, they should also share information such that they can have estimates of the states 

of other agents. More importantly, they should have ways to adapt the task execution 

process dynamically to cope with changes in the system environment. In this context, 

our thesis of a MAS solution for sequential RA tasks in distributed systems is: 

Cooperative information-sharing achieves effective state estimation to gener

ate the adaptive behaviour required for efficiently solving sequential resource 

allocation tasks in dynamic distributed systems. 

Three research challenges are identified as the cornerstones of a MAS solution that can 

substantiate this thesis. They are described in the following. 
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1.1.1 State Estimation 

In MAS, individual agents can typically monitor the environment in their immediate 

vicinity. Such local observations provide information about both the physical environ

ment (e.g., bandwidth usage level of network nodes) and the behaviour of other agents 

(e.g., routing decisions taken by nearby routers). However, an agent also requires the 

knowledge of the physical environment and agent actions that it cannot directly observe. 

This is essential to ensure that the partial solutions to the overall task, generated by the 

individual agents, are consistent with each other and, hence, a better quality overall so

lution is produced. In network routing, if an agent decides to route packets based solely 

on the network state in its local neighbourhood, it will result in an inefficient use of 

the overall network bandwidth and, consequently, a degraded quality of service. This is 

because routing decisions are taken without considering how the state in different parts 

of the network would effect the route of a packet. Thus, it would result in increased 

congestion in certain portions of the network, while certain other parts would remain 

relatively unused, leading to increased delays and packet losses. On the other hand, by 

explicitly reasoning about the effects of the environments and actions of other agents, 

a better global solution will be achieved. For example, if agents had estimates of the 

network load values at other routers they can determine the possible effects on delay 

(due to congestion) and packet losses caused by routing along a particular path. Using 

such assessments, they can take more informed and potentially more effective routing 

decisions. 

To do this, however, an agent requires some knowledge about the environment that 

it cannot directly monitor; in other words, the estimates of those states that are beyond 

its local observation space. Thus, the first research challenge is to develop a mechanism 

that would allow the agents with localised knowledge to maintain good quality estimates 

of the system's states. 

1.1.2 Cooperative Information-Sharing 

The preceding discussion highlighted that knowledge of the unobserved states is essential 

for generating mutually consistent partial solutions to a global task. Information about 

such states can be obtained by allowing the agents to communicate their local state 

values with one another. Such communication would ensure that the agents gain access 

to the information that they cannot directly observe and enable them to maintain reliable 

estimates of the states. This is essentially a way of assisting each other (a cooperative 

MAS) in generating better solutions to the overall problem by alleviating the partial 

observability constraint. However, the information-sharing should be designed in a way 

that while it serves the above-mentioned purpose, it should also attempt to limit the cost 

of communication (bandwidth usage for transmitting state information). For example, 
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not all of the information available locally to one agent might be required by another 

agent. Moreover, certain local information of an agent can be required by multiple other 

agents. In addition, it is important to consider when a certain agent would require a 

certain piece of information. Examples of these considerations in the network routing 

problem are as follows: an agent can transmit its load estimate of a particular network 

region to another agent that is handling calls that need to be routed through that region; 

certain critical information (such as, node failure) which is known to an agent may need 

to be shared with multiple other agents (for example, those that were using the failed 

node to route calls); by examining the history of communication with another agent, an 

agent can determine whether a certain change in its local state would be useful for that 

other agent at that time. These considerations would improve the effectiveness of the 

information-sharing strategies towards generating better cooperative MAS. 

In summary, therefore, the second research challenge is to design an information

sharing protocol that would be both effective, allowing the agents to remain updated 

about the system states, and efficient, requiring a communication overhead that is within 

tolerable limits. 

1.1.3 Adaptive Decision Making 

Cooperative information-sharing is important to allow the agents to maintain estimates 

of those states that they cannot directly observe. However, system states change, often 

in an unpredictable manner (as in dynamic environments), not all of which can be 

anticipated a priori. Thus, the agents should have a decision-making mechanism that 

is able to respond effectively (by adapting the actions selected) to changing conditions. 

For example, the decision to route a call along a particular route should be adapted in 

response to a critical state change (such as, node failure, or overload) in one or more 

of the nodes that are currently being used. A good decision strategy may even allow 

the agents to build predictive estimates of such changes and hence, allow additional 

flexibility in action selection to counter these changes. 

Against this background, the third research challenge is to allow the agents to ef

fectively adapt their actions (by updating their estimates about the state changes) in 

response to dynamic and unpredictable changes in the environment so that they can 

maintain quality of performance. 

1.2 Research Contributions 

This research aims at addressing the above-mentioned challenges to establish the thesis 

outlined before. In so doing, it achieves a number of important research contributions 
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to the state-of-the-art in cooperative MAS used for distributed problem solving. In 

particular, this research starts by proposing a novel communication protocol among 

cooperative agents. This mechanism allows the agents to inform one another about their 

local state values in a timely and accurate manner. Thus, this contribution addresses 

the research challenges of state estimation (section 1.1.1) and cooperative information

sharing (section 1.1.2). Moreover, the agents use Q-Iearning (Watkins and Dayan, 1992) 

(a variant of the more generic reinforcement learning (RL) algorithm (Sutton, 1988)) 

to build statistical models of the dynamics of the system states from the information 

distributed by the afore-mentioned communication protocol. Since Q-Iearning allows 

the learner to generate a model that is both robust (an accurate representation of the 

actual states) and adaptive (effectively reacts to changes in the states), the agents using 

such models are capable of taking effective decisions regarding RA tasks in decentralised 

systems. Hence, this approach addresses the research challenge of adaptive decision 

making identified in section 1.1.3. The rest of this research goes on to extend the 

communication protocol with the objectives of improving its performance to handle 

more dynamic environments and to reduce the communication overhead it incurs. The 

following discusses the above-mentioned contributions of this research in more detail. 

1.2.1 A Novel Information-Sharing Protocol 

One of the research challenges identified earlier in this chapter is that of providing infor

mation about system states to agents having localised views so that they can coordinate 

their actions effectively (section 1.1.2). Against this background, this research starts by 

developing a novel information-sharing mechanism to allow the agents to share the values 

of their locally observable system states. In particular, such cooperative information

sharing occurs between those agents who work together in solving a given task (a large 

MAS can have many simultaneous tasks being executed by different subsets of agents). 

Specifically, the novelty of this mechanism is that it advocates that the cooperative agent 

group share information only after they complete executing a task. A formal model of 

this mechanism is developed in chapter 3. This chapter further establishes, via theoret

ical analyses, that this mechanism generates a more effective cooperative MAS solution 

in comparison to a relatively standard method of cooperation based on communication 

between neighbouring agents. 3 

In chapter 4, this information-sharing protocol is used to develop a set of communica

tion heuristics that are empirically evaluated in a simulated circuit-switched call routing 

application. Moreover, in this simulation-based empirical study, Q-Iearning is used as 

3Note that a "neighbourhood" in a MAS is based on the criteria that define inter-agent relationships. 
For example, relationships can be based on some form of complex functional dependencies between agents 
(such as, supplier and consumer in a supply chain) or simple physical properties (such as, geographical 
proximity in a sensor network application). 
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the mechanism to generate robust and flexible state estimates from the communicated 

information. Such estimates are then used by the routing agents to perform decentralised 

bandwidth allocation. In these simulations, our approach is compared against a range of 

state-of-the-art learning algorithms also used in network routing problems. Experimen

tal results indicate the superior performance of our approach and, therefore, provide 

empirical evidence to substantiate the theoretical guarantees of chapter 3. Thus, al

though there have been other cooperative MAS solutions based on information-sharing, 

our protocol achieves the best performance. Specifically, the above-mentioned results 

have been published in the Journal of Artificial Intelligence Research (JAIR) (Dutta 

et al., 2005b) and at the Third International Joint Conference on Autonomous Agents 

and Multiagent Systems (AAMAS 2004) (Dutta et al., 2004). 

Against this background, therefore, this contribution addresses all the three research 

challenges identified before. Specifically, the communication protocol enables the agents 

to share information cooperatively (section 1.1.2). Moreover, Q-learning, coupled with 

this protocol, allows for state estimation (section 1.1.1) and adaptive behaviour (sec

tion 1.1.3). 

1.2.2 Improving Performance of the Information-Sharing Protocol in 

Highly Dynamic Environments 

The communication protocol of chapter 3 prescribes the sharing of information only after 

the completion of tasks by cooperative agent groups. It should be noted, however, that 

in dynamic MAS, task execution may fail without prior indication and in unpredictable 

ways. For example, in a transportation management system, delivery vehicles may not 

be able to reach a warehouse due to unforeseen situations like hazardous weather, road 

blocks, or breakdowns. Similarly, in a network routing scenario, a node failure can lead 

to the subsequent failure of call attempts involving the failed node. Thus, such incidents 

can cause serious disruption in the normal functioning of the system and can degrade its 

performance significantly. Our communication protocol, relying on sharing information 

only after tasks have been completed, therefore, would not be able to distribute the 

critical information related to such disruptive events. Thus, the agents would essentially 

remain uninformed about the causes of the failure of a given task. This, in turn, would 

prevent them from taking appropriate counter measures to deal with the effects of such 

failures. Against this background, this research identifies the following broad objectives 

that a cooperative MAS should meet to effectively deal with failures: 

Adapt behaviour post failures: This objective resonates with the adaptive decision 

making research challenge identified in section 1.1.3. However, it particularly aims 

at generating effective responses of the MAS when sudden and severe disruptive 

events occur. For example, such adaptiveness may imply the selection of alter-
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native routes by routing agents when a node fails. Appropriate responsiveness 

to emergency events would, in turn, ensure that the system performance remains 

within tolerable limits. 

Diagnose failures: In addition to effectively adapting agent behaviour after failures, it 

is important to identify the failure itself. This is because, in decentralised systems 

with no central monitoring and management centre available, the individual agents 

or groups of agents should be able to detect the cause for failures. Such capability 

would, in turn, enable the system to take appropriate measures to recover from 

failures. For example, if the individual nodes can detect a network failure and 

raise an alert, then network support personnel could be summoned and the failure 

recovered. 

To achieve the above-mentioned objectives, this research adopts the approach of ex

tending the communication protocol of chapter 3. Specifically, this extension allows the 

cooperative agent groups to share information not only after task completion but also 

after task failures. Thus, this essentially expands the set of events after which the agents 

are allowed to communicate. By so doing, the agents can inform each other about the 

changes in the system states caused by failures. Such information, in turn, allows them 

to update the estimates about their non-local states which further lets them modify 

their action-selection process. In this way, the extended protocol attempts to enforce 

appropriate adaptivity in the agents' behaviours. This is a novel approach in that it is, 

to the best of our knowledge, the first approach to use simple cooperative information

sharing as the mechanism for generating robust adaptive behaviour of a decentralised 

system when unpredicted and hazardous events occur. This protocol is the topic of 

discussion of chapter 5. In particular, an empirical evaluation of this protocol is done 

in the network routing test bed by comparing its performance against the implemen

tation of chapter 4 when network failures occur. Results from these simulation-based 

experiments indicate that the extended protocol achieves superior performance than the 

basic protocol when failures occur. Specifically, it is more effective in terms of recov

ering the system performance post failures. More importantly, it serves as the basis 

for a mechanism for distributed failure detection. Thus, our extended protocol achieves 

both the above-mentioned objectives and also addresses the broad research challenges 

of state estimation and adaptive behaviour via cooperative communication identified 

before. These results were published at the Fourth International Joint Conference on 

Autonomous Agents and Multiagent Systems (AAMAS 2005) (Dutta et al., 2005c). 
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1.2.3 Limiting Communication Cost of the Information-Sharing Pro
tocol 

Chapter 5 aims at improving the basic communication protocol in terms of maintain

ing effective system performance against disruptive events by enhancing the scope of 

information-sharing among cooperative agents. While this approach does satisfy its ob

jectives, it achieves this at the cost of using a higher communication overhead. This is 

because communicating more (both after task completion and failure as opposed to only 

after completion) simply implies that the agents transmit more messages. Now, in any 

resource-constrained system, such as a limited-bandwidth mesh network, an increase in 

the communication overhead acts as a performance deterrent. Thus, too many or too 

large information-bearing messages in the network application would exhaust the avail

able bandwidth from transmitting the calls. Hence, the call throughput would plummet 

causing a performance degradation. 

Against this background, this research investigates ways of improving the efficiency 

of the extended communication protocol of chapter 5 by controlling the latter's com

munication overhead. At the same time, an attempt is made to retain the advantage 

of this protocol in terms of maintaining performance quality when failures occur. The 

approach adopted to achieve these objectives is as follows. 

The objective of sharing local state values is to allow the agents with restricted views 

of the system states to remain informed about the relevant non-local states. Neverthe

less, transmitting too much information leads to a high communication overhead. In this 

context, it is identified that such overhead can be restricted if information is shared in a 

selective fashion. In more detail, if an agent can identify that its local state information 

is redundant for another agent then it can do without transmitting it and, thus, save 

some communication overhead. Here, redundancy is measured in terms of "similarity" 

between information; an agent treats a certain state information value as redundant if 

it has already received a similar value of the same state. 

Given this, chapter 6 develops a mechanism to aid such decision making of agents. 

Specifically, this mechanism allows the agents to retain in memory their past history of 

communication which, in turn, allows them to verify whether a given piece of informa

tion would be redundant to a specific recipient agent. If such a redundancy is detected, 

then that information is not transmitted. The recipient agent, in this case, extracts the 

information from its communication history that it did not receive from the transmitter 

(since the latter had detected a redundancy in transmission) and uses it for its deci

sion making. In this manner, therefore, transmission is restricted but without letting 

the recipient effectively lose any information. Hence, it is envisaged that this mecha

nism would reduce communication overhead without sacrificing performance. This way 

of limiting communication overhead by making information-transmission selective but 
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without sacrificing performance quality is a novel design of a cooperative MAS solution 

for sequential RA tasks. 

Chapter 6 implements this selective information transmission mechanism for an em

pirical evaluation in the network routing test bed. Experimental results from the 

simulation-based studies indicate that a significant saving in the communication over

head is achieved compared to the protocol of chapter 5, but without sacrificing call 

throughput across a wide range of environmental settings. Hence, this work also ad

dresses the broad challenges identified before: adaptive decision making by way of (se

lective) information exchange among cooperative agents. This work is submitted for 

publication at the Fifth International Joint Conference on Autonomous Agents and 

MuItiagent Systems (AAMAS 2006) (Dutta et al., 2005a). 

The work in this thesis has contributed in part or in full to the following publications: 

• P. S. Dutta, N. R. Jennings and L. Moreau. Adaptive Distributed Resource Al

location and Diagnostics Using Cooperative Information-Sharing Strategies. Sub

mitted to the Fifth International Joint Conference on Autonomous Agents and 

Multiagent Systems (AAMAS 2006). 

• P. S. Dutta, C. V. Goldman, and N. R. Jennings. Efficient communication using 

selective information exchange in resource-constrained multiagent systems. Sub

mitted to the Fifth International Joint Conference on Autonomous Agents and 

MuItiagent Systems (AAMAS 2006). 

• P. S. Dutta, N. R. Jennings, and L. Moreau (2005). Cooperative information shar

ing to improve distributed learning in multi-agent systems. Journal of Artificial 

Intelligence Research (JAIR), 24:407-463, October 2005. 

• P. S. Dutta, N. R. Jennings, and L. Moreau (2005). Sharing information for 

Q-learning-based network bandwidth estimation and network failure detection 

(poster). In Proceedings of the Fourth International Joint Conference on Au

tonomous Agents and MuItiagent Systems (AAMAS 2005), pages 1107-1108, 2005. 

• P. S. Dutta, S. Dasmahapatra, S. R. Gunn, N. R. Jennings, and L. Moreau (2004). 

Cooperative information sharing to improve distributed learning. In AAMAS-04 

workshop on Learning and Evolution in Agent-Based Systems, pages 18-23, 2004. 

1.3 Thesis Structure 

The rest of this thesis is structured as follows: 
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III Chapter 2 reviews the most relevant previous research that has developed theories 

and applications of cooperative MAS solutions in the context of distributed RA 

problems. 

III Chapter 3 develops a novel information-sharing protocol for the design of a co

operative MAS solution to distributed sequential RA problems. Its advantages in 

generating high quality state estimates are established theoretically using a formal 

analysis. 

III Chapter 4 designs communication heuristics based on the protocol of chapter 3 in 

the network call routing application to verify its utility in practice using empirical 

analysis. 

III Chapter 5 then improves upon the implementation of chapter 4 to make the pro

tocol more effective in dealing with highly dynamic environments, caused by such 

phenomena as network failures. 

III Chapter 6 further improves the performance of the protocol by reducing its com

munication overhead with the aid of selective communication. 

III Chapter 7 summarises how this research successfully establishes our thesis and the 

contributions it makes in doing so. Finally, it identifies future research strands 

that can potentially stem from our work. 





Chapter 2 

Related Work 

An effective MAS solution for distributed problem solving should allow multiple, dis

tributed problem solvers (processors, network nodes, agents, etc.) to cooperate and co

ordinate in order to generate quality solutions for complex tasks that cannot be produced 

by anyone of them acting alone. Such technology is required to meet the challenges 

in solving some of the most fundamental problems that form the core of present-day 

computer science (several examples of these were cited in section 1). To this end, in 

this chapter, some of the most successful research on cooperative MAS is analysed and 

its suitability and shortcomings highlighted with respect to the requirements elaborated 

in chapter 1. Also, it is explained how our research builds upon the existing concepts 

and attempts to address their limitations. The rest of this section is divided into the 

following. 

In section 2.1, a review of the most relevant theoretical and empirical research on co

operative MAS is presented. This review emphasises that building effective cooperative 

MAS requires a generic mechanism, capable of generating reliable estimates of unob

served states from limited interactions, and adapting decisions in response to dynamic 

environments. In addition, it highlights that the agent decision mechanism should not 

depend on pre-encoded cooperation rules. Instead, the agents should be able to adapt 

their cooperative behaviour online in response to changing environmental conditions. 

Otherwise, the mechanism would not be effective when deployed in dynamic environ

ments. 

Then, section 2.2 discusses some applications for cooperative MAS based on RL 

techniques. In this case, RL provides the basic framework for adaptive decision-making. 

Specifically, it uses an abstract representation of the environment and generates a prob

abilistic mapping of environment states onto possible actions. Subsequently, the agents, 

using such techniques, can choose the action with the highest estimated utility in a 

given environment. Since no domain-specific knowledge or pre-defined rules of coopera-

15 
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tion are required to build such state-action mappings, RL can act as a powerful tool for 

an effective implementation of MAS. 

Finally, section 2.3 summarises how our research attempts to build upon and address 

the limitations of existing literature. Also, it delineates the key contributions that our 

research makes in so doing. 

Before going into the details of the review, it should be noted that, in this thesis 

we are specifically concerned with cooperative MAS. As stated in chapter 1, an or

thogonal approach to building MAS solutions to complex distributed problems is to 

design agents that act as selfish individuals that try to maximise their individual util

ities (in cooperative systems, on the other hand, it is the overall system utility that 

the agents try to maximise together). Coupled with the appropriate mechanisms to 

interact with each other or, equivalently, the rules of the play, such selfish agents can 

act towards solving distributed problems. Typically, researchers in this area draw upon 

algorithms from a combination of game theory (Fudenberg and Tirole, 1991; Myerson, 

1997), auctions (Klemperer, 2004; Milgrom, 2004), and control theory (Brogan, 1990) 

to develop such non-cooperative solutions. Although non-cooperative algorithms have 

been proven successful in a variety of applications (Gibney et al., 1999; Haque et al., 

2005; Rachlevsky-Reich et al., 1999), there has so far been no evidence that they are 

generally more preferable to cooperative solutions. Nevertheless, non-cooperative algo

rithms have been criticised for some restrictive assumptions such as perfectly rational 

agents (Maynard-Smith, 1982) and the high computational complexity (Kalagnanam 

et al., 2001; Sandholm and Suri, 2001) that is typically associated with the distributed 

mechanisms used in such systems. Given this, we will not look at non-cooperative MAS 

in this chapter. 

2.1 Cooperative Multi-Agent Systems for Distributed Prob

lem Solving 

In the following, a review of some of the key research works in cooperative MAS IS 

presented. 

2.1.1 Functionally Accurate Cooperation 

Agents deployed for solving a complex task in a distributed environment (for exam

ple, in distributed network monitoring), can have uncertain, incomplete, and erroneous 

information about the global state of the system. This is because of their restricted 

capabilities to observe the dynamics of the entire system and to communicate and share 

information with others. To be able to accomplish the tasks despite such uncertainties, 
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the functionally accurate, cooperative (FA/C) approach advocates the exchange of par

tial, tentative solutions of local problems among agents (a distributed speech recogniser 

application is developed by Erman and Lesser based on this concept (Lesser and Erman, 

1988)). The main objective of this method is to ensure, as much as possible, consistent 

partial solutions develop. In turn, this helps to generate predictive information about 

future partial solutions that furthers the build up of a consistent global solution. The 

timeliness of the exchanges of partial solutions is essential to reduce searching for consis

tent solutions, hence, making distributed problem solving faster. It should be noted that 

the cost to obtain complete and up-to-date information to build a completely consistent 

solution can be prohibitively large because of delays in synchronisation and communi

cation. Hence, in such situations, it is more practical (cost effective) to achieve a global 

solution (that may have a tolerable degree of inconsistency) via the timely exchange of 

partial, tentative solutions. Thus FA/C is based on the requirement of (see section 1) 

communication to generate consistent estimates of the global problem solving scenario. 

In the research reported here, the agents are situated in different regions of a mesh 

network without complete and up-to-date information that would have helped them take 

consistent decisions with respect to allocating appropriate resources for establishing calls. 

Also, not all resources (bandwidth) may be available for anyone agent to place a call. 

The uncertainty in the failure of network nodes furthers the complexity of the situation. 

Thus the agents, in this context, can adopt principles of the FA/C approach. They need 

to share, via communication, their partial local views of the network states so that they 

can allocate node bandwidth in a manner consistent with each other and maximise the 

likelihood of successfully routing calls. This implies that all agents place calls through the 

most efficient channel although their individual actions are asynchronous. Nevertheless, 

FA/C only discusses "what" is to be done, viz., agents should cooperate with partial 

solutions to reach an acceptable solution quality. It does not provide a recipe of "how" 

it could be achieved. Against this background, our thesis proposes a specific protocol for 

sharing information which is then used (by a Q-Iearning algorithm) to generate estimates 

of the distributed states. 

2.1.2 Organisational Structuring 

Although FA/C allows distributed agents to handle inconsistency by sharing partial so

lutions, the agents, in general, are ignorant about the broader picture of the problem 

solving scenario. Such a lack of knowledge can lead to excessive communication, dupli

cation of effort, and uneconomical use of resources while solving a complex problem. To 

alleviate this bottleneck, some researchers have incorporated organisational "structures" 

- patterns of information and control relationships that exist between the agents and 

the distribution of problem-solving abilities among them (Carley and Gasser, 1999) -

into the agent models. The purpose is to augment FA/C systems by giving an agent 
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high-level knowledge about how the system solves problems, the roles that agents play, 

its own position in the network, and how are they connected. Just as the notion of 

"bounded rationality" (used in human organisation theory (Galbraith, 1977; March and 

Simon, 1958; Simon, 1957), implying the limited information processing capability of 

human beings) has prompted organisations to form and solve complex problems be

yond the abilities of an individual, organisational structures have been used to bolster 

problem solving by a group of cooperative agents. Also, in a way similar to how a 

human organisational structure can be found to work optimally towards achieving the 

organisation's objective in a given task environment (viz., with increasing uncertainty 

of the task domain, hierarchies emerge, whereas increasing complexity demands loos

ening of rigid structures within organisations (Fox, 1981)), a particular organisational 

design can be chosen for a cooperative distributed agent system depending on the prob

lem domain. Imposing organisational structures, therefore, is to efficiently resolve the 

requirement (see section 1) of maintaining high-fidelity estimates of the portions of a 

system that the agents cannot directly monitor. The effectiveness of this concept was 

demonstrated in practice by Lesser and Corkill who developed a system of distributed 

vehicle monitoring agents the DVMT (Lesser and Corkill, 1983). More recently, it 

has been demonstrated that a computational organisation is an effective metaphor for 

formally specifying multi-agent systems and also for analysing their behaviours (Zam

bonelli et a1., 2001). Moreover, the organisational relationships based on roles played by 

different agents in a MAS are exploited to improve coordination performances in (Soon 

et a1., 2004). 

The agents considered in this thesis are also characterised by bounded rationality 

- they have incomplete information about the problem solving activity of the entire 

network. Here, some knowledge about the availabilities of various resources of other 

agents to perform certain tasks would allow them to take informed decisions about which 

agent to interact with and when. Wasteful communication and uneconomical resource 

usage would, then, be minimised. However, instead of making agents follow pre-defined 

structures of roles and relationships, they should be able to identify such properties 

by interacting with and analysing the behaviour of other agents. This would make 

the multi-agent cooperation model (that is the aim of this research) more flexible and 

applicable across domains unlike the ones in existing literature that use fixed organisation 

structures. 

2.1.3 Sophisticated Local Control 

Effective cooperation among multiple problem solving agents cannot be achieved by al

lowing them to simply communicate messages. The sophisticated local control methodol

ogy advocates that such agents also need to understand the implications of their actions 

on those of other agents and on the overall problem solving behaviour of the system. 
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Such understanding forms the basis of their decisions such as how to exchange informa

tion to resolve inconsistencies, whom to interact with to improve cooperation by building 

complete solutions, what information exchange can achieve that objective, whether to 

take different organisational roles, and the like. 

The partial global planning (PGP) approach (Durfee and Lesser, 1991) emphasises 

integrating sophisticated control into an agent's decision making. In this framework, 

agents form contracts, plan their actions and interactions, negotiate over plans, use or

ganisational information to guide their planning and problem-solving decisions, tolerate 

inconsistent views, and converge on acceptable network performances in dynamic envi

ronmental conditions. Each agent maintains its own set of PGP's - a set of local plans 

that represent the agent's view of the global problem solving situation. The various 

"slots" in a PGP frame, that represent an agent's goals, actions, and relationships with 

other agents, are dynamic structures. They are updated by the exchange of local, partial 

plans among agents and reflect the most recent network scenario in terms of achieving 

the global solution. Hence, this methodology caters for the requirements (see section 1) 

of state estimation and strategic information-sharing. 

Elaborating on the PGP approach, Decker and Lesser advocated the importance of 

modelling multi-agent coordination based on the characteristics of the task environment. 

Their aim was to study how agent architectures arise naturally from their task environ

ments. To this end, they developed the TAEMS (Task Analysis, Environment Modelling, 

and Simulation) framework to model task structures (Decker, 1995b,a), where task mod

els can be expressed at three levels of detail viz., objective (the actual, true task), sub

jective (an agent's perspective of a task), and generative (a set of statistical properties 

that can be used to generate the objective and subjective descriptions). Using TAEMS, 

coordination is achieved by a set of mechanisms that address three broad areas of agent 

behaviour: how and when to communicate and construct non-local views of the current 

problem solving situation; how and when to exchange the partial results of problem 

solving; how and when to make/break commitments made to other agents about what 

results will be available and when. The generalised partial global planning (GPGP) 

approach consists of a group of coordination mechanisms based on the above broad be

havioural types of agents (Decker and Lesser, 1995; Decker and Li, 2000). Specifically, 

depending on the characteristics of the task environment, agents select the appropriate 

coordination mechanism. Unlike PGP, GPGP distinguishes local scheduling of an agent 

from its coordination activities; while the coordination mechanisms provide an agent 

with non-local views of the problem, its local scheduler creates plans (including both 

local actions and non-local effects via such actions) to improve global system-wide utility 

by using information from the coordination mechanisms. 

The principles underlying both the PGP and GPGP frameworks address the require

ments of an effective cooperative MAS as identified in section 1. However, both PGP 
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and GPGP employ, albeit flexibly, a set of predetermined coordination mechanisms. 

Preplanned coordination can prove to be inadequate against all sorts of contingencies 

that can occur in domains where agents maintain incomplete, incorrect views of the 

world state (which change non-deterministically) and may even fail without prior indi

cation. In contrast, the approach researched in this thesis, that of learning to map the 

information about the world states to actions which would guarantee the improvement 

of the global system performance, requires no such pre-specified coordination rules. An 

additional goal of this research is to develop an analytical model of the cooperative MAS 

so that formal analyses of performance can be performed, a feature lacking in PGP and 

GPGP. 

2.1.4 Teamwork Based on Joint Intentions 

Probably the most comprehensive cooperative MAS framework existing in current liter

ature (e.g., (Jennings, 1995; Rich and Sidner, 1997)) is STEAM (Tambe, 1997). At its 

core, STEAM follows the principles of the joint intentions theory of Cohen and Levesque 

(1991) and the principle of joint commitments by Jennings (1993) as fundamental frame

works for multi-agent coordination. The joint intentions theory is developed on the no

tion of a "joint persistent goal" (JPG) maintained by a team of agents which dictates 

that all agents in the team are jointly committed in doing some team activity, while mu

tually believing that they are doing it. The notion of JPG synchronises the activities of 

the team. Agents in STEAM arrive at a JPG by exchanging speech acts: "request", that 

they use to announce their individual partial commitments about attaining the global 

goal, and "confirm", which establishes that an agent has the same partial commitment 

to the one who made the "request". While joint intentions ensure synchronous agent 

activities within a team, they do not contribute towards team coherence following a 

common solution path by all team members who are jointly committed on a common 

goal. STEAM borrows principles from the "shared plans" (SP) model (Grosz and Kraus, 

1996) to ensure coherence. A full SP is established if the team members mutually believe 

in the existence of a team goal and also in a recipe (a set of action sequences) to achieve 

it. It also depends on whether a subgroup of the team has the recipe to execute each 

step of the global recipe. In addition, all other team members believe (and, intend that) 

the subgroup has some recipe to bring about the step. Thus, STEAM addresses the 

requirements of maintaining estimates of what the other agents are capable of and their 

actions. This is ensured via sharing control information. 

The strength of the STEAM framework lies in the advantages of using joint commit

ment as the building block of teamwork models. It provides a principled framework for 

reasoning about coordination in teamwork, and also provides guidance for monitoring 

and maintenance of team activities (Tambe, 1997). Nevertheless, achieving joint belief 

on mutual commitments in large systems of widely distributed agents might prove to be 
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a performance bottleneck rather than an advantage because of the excessive communica

tion required to achieve it. This is especially true in environments where the agents have 

to replan the task execution process in response to environmental changes. Although 

STEAM treats this issue by using a replanning protocol, it requires the re-establishment 

of joint commitments among all the team members. A significant amount of delay might 

be incurred to achieve this and the communication latency can degrade the quality of 

service significantly in some applications. This limitation is addressed by Kalech and 

Kaminka (2005), where the authors use a set of heuristics to restrict the communication 

and computational complexity of diagnosing large teams. However, it is important to 

have a cooperation model that allows the agents to continue solving the overall task 

without requiring them to establish a system-wide commitment whenever replanning 

occurs. The Q-Iearning-based cooperation model built upon information-sharing that is 

researched in this thesis is envisaged to have this advantage. 

2.1.5 Coordination using Markov Decision Processes 

In (Boutilier, 1999), the author attempts to design a mechanism that allows multiple 

cooperative agents to take the optimal joint actions in the presence of coordination con

flicts. He recognises that to do this the agents need to consider not only the world state 

but also the state of their coordination mechanism. To this end, he presents a multi-agent 

Markov decision process (MMDP) formalisation of the multi-agent coordination. In par

ticular, the value iteration algorithm, used to evaluate optimal joint actions, is extended 

by augmenting the state space representation with a representation of the coordina

tion mechanism used by agents. In this work, evaluation of the optimal value function 

(hence, optimal joint policy) is done by reasoning explicitly about short and long-term 

prospects of coordination, and the long-term consequences of (mis)coordination. Analy

sis of several coordination problems show that depending on the expected payoff, agents 

sometimes decide to engage in or avoid coordination problems. 

Boutilier's analysis demonstrates that agents need to reason about prospective coor

dination problems that can arise while selecting optimal joint actions sequentially. This 

work, therefore, captures the requirement of adaptive decision making outlined in sec

tion 1. Since the agents only have partial, and possibly incorrect knowledge of the entire 

system, they should make decisions based on the possibilities of coordination conflicts 

(caused by the effects of actions taken by the other agents). However, although faced 

with a similar challenge, Boutilier's solution cannot be applied, as is, to the research pre

sented in this thesis. This is because, the value iteration algorithm takes a global view 

of the entire problem-solving situation - it assumes that all actions of all agents are 

correctly available for evaluation of the optimal joint action. This directly contradicts 

the fact that the agents have only partial observability. In this situation, applicability of 

the same value iteration algorithm requires at least one agent to have perfect knowledge 
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about the actions of every other agent at every time instant in order to compute the 

optimal joint action to be taken by all agents. This, in turn, necessitates all agents 

communicating every action that they take to at least one agent who is evaluating the 

policy. This is precisely the underlying principle of an algorithm developed by Nair et al. 

(2003) for solving a decentralised partially observable Markov decision problem (DEC

POMDP) (Goldman and Zilberstein, 2004), where the assumption of full observability 

is removed. However, such indiscriminate communication makes it infeasible to be re

alised in practice. Also, the computational load for evaluating the policy by a single 

agent becomes exorbitant. In an extension to their algorithm, they use some ad-hoc 

communication heuristics to reduce the computational load (Nair et al., 2004). How

ever, they assume a synchronous communication mechanism where all agents need to 

coordinate their views of the world states at the same time. Again, this is not a practical 

assumption in real-life MAS applications. Our communication protocol is asynchronous 

and designed to provide a practical solution to such applications. 

2.1.6 Cooperative Social Networks 

In developing cooperative MAS, some scientists have drawn inspiration from the social 

networks literature (Jin et al., 2001; Kautz et al., 1997). These works simulate the growth 

and evolution of artificial agent societies in an attempt to understand and explain the 

behaviour of real world societies and how they work together to solve complex problems. 

Typically, such simulations use simple agents, capable of very limited problem solving 

abilities, who can interact with a limited subset of other agents using simple interaction 

protocols. In this way, an empirical model of the essential interaction dynamics in a 

group of cooperative problem solvers is created. The underlying assumption of these 

simulation-based studies is that it is unlikely for a tractable mathematical model to 

precisely and comprehensively capture all details of a complex distributed multi-agent 

system. Instead, the broad interaction patterns are simulated to simplify the analysis 

yet retaining the essential mechanics intact. 

In this context, the work of Yu et al. (2003) is relevant to our thesis. They model 

agents as service centres satisfying the needs of their users. However, not all agents 

retain the relevant services to satisfy all user needs. Thus, they forward the users' 

service queries to other agents in the system so that the latter can provide the required 

service. Those agents who receive a request from another agent but do not have the 

service appropriate to the request, forward the request further. This mechanism allows 

the agents to explore the system for partners with matching expertise. A network is 

formed when agents connect with partner agents and can provide a service to each 

other, hence, representing mutual collaboration. Stability of a collaboration depends 

on the relevance of the service provided by a partner the higher the relevance, the 

stronger the collaboration, the lesser the relevance, the weaker the collaboration. 
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This work, therefore, addresses the essential requirement of maintaining state esti

mates for a cooperative MAS (see section 1). By way of forwarding queries and evaluat

ing the quality of information received for a given query, the agents are able to estimate 

the expertise of other agents in the system. This information, in turn, helps build and 

maintain cooperative relationships where the agents mutually cater to the information 

requirement of one another. However, in their work, the agents can, potentially, main

tain direct interactions with all other agents. This is impossible in most real-world 

applications: for example, in the network routing problem, a node/agent can at best 

maintain an estimate of the load of a distant router and not directly communicate with 

it. In this thesis, we do not restrict our approach by assuming such direct one-to-one 

interactions. 

2.2 Learning-Based Cooperative Multi-Agent Systems 

In the following, reviews of some of the most relevant applications on cooperative MAS 

that use RL algorithm are presented. 

2.2.1 Q-Routing in Dynamic Networks 

RL is applied to the problem of cooperative distributed problem solving in a seminal piece 

of work by Boyan and Littman (1993). Specifically, they applied this technique to solve 

a network packet routing problem. In their paper, they modelled each communication 

node on an irregular 6 x 6 grid as a reinforcement learner who maintains estimates of 

the delays in routing packets to different destinations. To route a packet to a given 

destination, an agent requests each of its neighbouring agents for their delay estimates 

for that destination node. Upon receiving the delay estimates of its neighbours, the 

requesting agent forwards the packet to that neighbour which has the minimum delay 

estimate. It then updates its prior delay estimate for that destination with the estimate 

that it received from this neighbour. Specifically, Q-Iearning is used to update the 

estimates. 1 In more detail, if there is a set of N agents in the network, an agent a (which 

has a set of lCa neighbours) has a Q table with each entry Qa(d, n) (for all dEN and 

n E lCa ) equal to the minimum expected delay to reach destination d via the neighbour 

n. Upon sending the packet to n, a immediately receives n's minimum estimated delay of 

the packet for the remainder of the trip, t = minzElCn Qn(d,z). Subsequently, a updates 

its previous estimated delay Qa(d, n) as, Qa(d, n) = (1 - a)Qa(d, n) + at; where a (also 

IThis is a value-search algorithm (Sutton, 1988). Such algorithms work by iteratively computing the 
maximum expected utility over all possible actions under a given state. In this case, the action is to 
select the neighbour agent with the minimum estimated delay (the action with the maximum utility) in 
order to route a packet to a given destination. 
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termed as the "learning rate") is the weight that this agent gives to the recently received 

information t. 

The authors of this paper demonstrate, using empirical studies, that their approach 

enables the agents to learn better policies (in terms of choosing a neighbouring agent 

for routing to a given destination) than a hand-coded shortest path algorithm. The 

differences are more pronounced when the network load increases indicating that the 

learning algorithm is able to adapt routing decisions (the paths along which packets are 

routed) under dynamic network conditions. In addition, the authors test their algorithm 

with changes in the network topology (by manually breaking the links between certain 

nodes) and in the pattern of call traffic (changing different regions in the network where 

calls can originate and terminate). They demonstrate that their Q-routing algorithm 

successfully adapts to these changes and performs better than the deterministic shortest 

path algorithm. 

In their work, therefore, Boyan and Littman have used a simple communication pro

tocol to allow the agents to cooperatively share their own estimates about the packet 

routing delays. Also, these agents use RL as the environment-modelling tool to esti

mate the delays to route packets across the network (not all of which they can directly 

monitor). In addition, RL allows the agents to adapt their routing decisions in response 

to environmental (network load and topology) changes. Hence, their work addresses all 

three requirements identified in section 1. Nevertheless, the communication protocol 

they have used only allows an agent to inform its immediate neighbour about its own 

estimates. This method would incur long latency for information to reach agents further 

away. As a result, considering states change continuously, the information can become 

outdated by the time an agent receives it. Such outdated information would then be of 

little use to generate reliable estimates of the non-local states. In this context, therefore, 

it is envisaged that by allowing state-change information to be shared between the group 

of cooperating agents only after task completion, the agents can maintain more accurate 

estimates of their non-local states. This, in turn, can improve the overall performance 

of the cooperative MAS than in (Boyan and Littman, 1993). Moreover, in (Boyan and 

Littman, 1993), the agents update their Q-estimates with the estimates received from 

direct neighbours. Note that in so doing, one learner depends on the estimates learned 

by another. Thus, this approach (essentially, a TD(O)-type learning (Sutton, 1988)) 

has the potential pitfall that "bad" estimates are propagated due to the poor learning 

of one agent. We attempt to address these limitations in this thesis. In so doing, we 

choose the Q-routing algorithm as one of our benchmarks for empirically evaluating the 

performance advantage of our approach. 
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2.2.2 Team Partitioned Opaque Transition Reinforcement Learning 

The Team Partitioned, Opaque Transition Reinforcement Learning algorithm (TPOT

RL) (Stone, 2000) has the objective to make the learning task easier in a MAS by 

reducing the state space dimensionality. It does this by mapping the state onto a limited 

number of action-dependent features. Analogous methods of state aggregation have been 

used in other RL algorithms (e.g., (McCallum, 1996; Singh et aL, 1995)) to reduce the 

size of the learning task. However, TPOT-RL differs from these approaches because it 

emphasises deriving a set of small yet informative features for effective learning. More 

specifically, these features are used to represent the short term effect of actions that 

an agent may take. Thus, the agents learn the utility of selecting actions with respect 

to their own feature space. This is especially useful when the agents cannot observe or 

immediately influence the actions taken by other agents (such as in many practical multi

agent settings and, in particular, in network routing). That TPOT-RL is an effective 

algorithm is demonstrated by its successful application across multiple domains (Stone 

and Veloso, 1999). 

Stone and Veloso have evaluated the TPOT-RL algorithm in a simulated network 

routing environment. The action-dependent features in this case are the load levels of 

a node's adjacent links. The agents transmit their delay estimates along with a packet 

while routing the latter. Furthermore, these estimates, collected at the correspond

ing destination nodes, are distributed to the nodes who participated in the routing 

after fixed time intervals. Thus, TPOT-RL in fact uses communication to distribute 

information among the agents. Their empirical studies demonstrate that TPOT -RL 

outperforms (performance measure is average packet delivery time) the shortest path 

and Q-routing protocols when learning is done under switching traffic conditions - the 

algorithm is trained under conditions where the selection of packet sources and desti

nations are changed to form two different traffic patterns. Nevertheless, the following 

limitations are envisaged in this work. First, identifying action-dependent features from 

local observations only can lead to loss of information. This is because not all non-local 

state changes may be reflected in an agent's immediate state space, but such infor

mation may be required by an agent to select actions. Thus, in such circumstances, 

the non-local state values should be known. Second, as a consequence of the above

mentioned problem, the fidelity of the derived estimates would deteriorate. This, in 

turn, would decrease the overall performance of the system. Third, in (Stone, 2000), 

since the agents update their estimates based on others' estimates and not using the ac

tual states, a similar shortcoming as identified in section 2.2.1 of learning bad estimates 

can occur. Finally, in TPOT-RL, information is distributed at regular intervals ((Stone, 

2000) does not prescribe a formal way of specifying this interval). This is an arbitrary 

scheme which can result in large latencies in information reaching target nodes. Hence, 

estimates generated based on such information may not be up-to-date. Again, because 
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of its claimed effectiveness and broad applicability, we choose TPOT-RL as the second 

benchmark for empirical evaluation against our approach in which we attempt to remove 

the above-mentioned shortcomings. 

2.2.3 Policy Gradient Search 

Another approach of using RL for cooperative distributed problem solving is that of 

policy gradient search (Sutton et al., 2000). A policy, in an RL context, is a mapping 

from a state on to an action; it is stochastic if the mapping specifies a probability 

distribution over all possible actions given a state. The policy is a function of a set of 

parameters which are variables defining the (local) state and hence, influencing the action 

selection. A policy gradient search is a mechanism that tries to optimise the parameter 

values such that the average long-term reward of the learners is maximised. For example, 

in a network routing problem, these parameters can be the destination of the packet at a 

router (agent) and the outgoing link it selects for that (note these parameters are locally 

observable to an agent) and reward is a measure of utility (or, sometimes implemented 

as a negative cost) that an action achieves given the parameter values. In the network 

routing domain, the reward can be the negative trip time for a packet to reach its 

destination node. In the policy gradient approach, it is assumed that all agents (the 

individual learners) receive the reward of all actions taken by all agents at every time 

step.2 It is only this reward information that is globally known by the agents. Thus the 

policy gradient algorithm is model free independent of domain models and knowledge 

about others' states and actions. Individual agents adjust their policy parameters in the 

direction of the gradient of the average reward that they compute using the global 

reward information hence the term policy gradient. Therefore, communication (of 

reward values) is key to allow the learners to optimise the parameter values. However, 

the dependence on the global reward information to update the policy parameters can 

be a bottleneck in systems where the communication bandwidth is limited and there is a 

finite latency in messages to propagate (as in most practical systems). These constraints 

can lead to very slow responsiveness to environment changes in agents using the policy

gradient approach. 

The use of policy gradient search is used to build various RL-based MAS, e.g., (Williams, 

1992), (Baxter and Bartlett, 1999), and (Peshkin and Savova, 2002), among others. All 

of these works demonstrate that the policy-gradient search achieves reasonable perfor

mance (in terms of average routing delay compared to other benchmark algorithms such 

as the shortest path algorithm). However, in both (Williams, 1992) and (Baxter and 

Bartlett, 1999), an exceedingly large amount of time is required for the learners to con

verge. This is due to the fact that the learners need the global reward information to 

2More realistically, each agent may broadcast the reward it receives to all other agents. Hence, the 
agents may receive the reward signals from the entire system with some delay. 
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update their policy parameters and, hence, take a long time to optimise the parameter 

values. This puts a restriction on the applicability of this approach to build practi

cal systems. A similar limitation is likely in (Peshkin and Savova, 2002) although the 

authors do not provide these results. 

In contrast to uninhibited communication required in the policy gradient search ap

proach, in this thesis, communication is used as a controlled strategy to inform the 

agents about the portions of the global state that are relevant to their action selection. 

Thus, our work is envisaged to be a better practical solution than the policy gradient 

approach. 

2.2.4 Communication Decisions in Multi-Agent Coordination 

In (Xuan et al., 2001), communication decisions are treated as integral to an agent's 

decision to coordinate in a cooperative, distributed MAS. The authors consider that each 

agent solves a local Markov Decision Process (MDP) (Feinberg and Schwartz, 2001) that 

generates both a communication action and a state-changing action at every decision 

sub-stage. The agents are only given local observability (i.e., they cannot observe the 

states of other agents). However, they can observe the communication actions of other 

agents. The important reason for introducing a communication decision in an agent's 

local MDP, they argue, is because communication incurs cost. Hence, an agent should 

employ reasoning to decide when communication is required such that the overall utility 

earned from the agent's decisions is maximised. In this context, this work extends the 

theoretical analysis of multi-agent MDP (section 2.1.5) where the agents are assumed to 

have global state information. Specifically, the authors propose two simple heuristics to 

generating communication decisions that aim to reduce the computational complexity 

of solving the full MDP to generate the optimal global policy. 

As we are interested in studying the impact of communication on the performance 

of a cooperative MAS, the work reported in (Xuan et al., 2001) is related to our re

search. However, while they analyse whether communication is necessary at any stage 

of an agent's decision, we consider communication to be inevitable. Moreover, in (Xuan 

et al., 2001), the following additional shortcomings are identified. Firstly, the agents are 

assumed to iterate through a sequence of communicate and act stages synchronously. A 

generic approach of completely asynchronous behaviour is suitable for a practical MAS 

solution. Secondly, communication is assumed to be instantaneous; thus, information 

sent by an agent is received by another immediately. On the contrary, in real applica

tions, there is always a finite delay associated with communication. Finally, the commu

nication heuristics proposed are based on each agent individually monitoring their own 

progress towards achieving a commonly agreed upon goal. However, in distributed task 

processing, an agent can take a local action and the actions of multiple agents together 
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complete a task (more on this in chapter 3). Hence, in such scenarios, individual agents 

cannot monitor the progress of a task execution process towards completion; they are 

only capable of taking their local actions using estimates of the unobserved states. 

In this context, Davies and Edwards (1997) propose version space (Mitchell, 1978) 

boundary sets to generate hypotheses (by agents with localised views) to describe the 

world states. Moreover, communication is used by these agents to share the hypotheses 

which can then be further refined (using set-theory operations to alter the hypotheses 

bounds) in order to find one that is consistent with others. Thus, this work resonates 

with the broad objective of our research in coordinating distributed agent actions via 

communication. However, our focus is not primarily on resolving coordination con

flicts, but rather on developing a practical communication protocol that would generate 

effective coordinated behaviour in agents deployed in dynamic distributed applications. 

2.2.5 Other Machine Learning Algorithms 

Our approach of designing a communication protocol for cooperative information-sharing 

may appear to be similar to conventional supervised learning (SL) (Widrow and Hoff, 

1960), where the actual outcome of a multi-stage prediction problem is fed back to 

the individual learners (predictors). However, the characteristic properties of SL do 

not sufficiently meet the requirements of a cooperative MAS solution as highlighted in 

chapter 1: 

• In SL, only the final outcome (such as whether a prediction was "correct") acts 

as the source of information for the learners to update their prediction algorithm. 

Thus, a learner does not gain any estimate about how the states of other agents 

in the cooperative group change along with the outcome. 

• In SL, an agent typically learns a mapping from its own actions onto the outcomes 

of a multi-stage prediction problem. Hence, it does not allow an agent to consider 

the impact of the states of other agents on the final outcome of the task. Such 

information is, however, crucial for the distributed agents to effectively coordinate. 

• Typically, SL is used for prediction in stationary environments. On the other 

hand, a robust solution should provide a mechanism for maintaining high-fidelity 

estimates in fundamentally dynamic and uncertain environments. 

Also related to this thesis is the method of using eligibility traces in which a learner is 

provided with the entire sequence of state transitions after a complete training episode 

(i.e., after starting from the start state and reaching the goal state) (Mitchell, 1997). 

In this technique, an agent, upon reaching the goal state after executing a series of 

actions, updates in reverse order {i.e., starting from the goal state and moving to the 
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starting state) its Q-estimates for each state transition. In a practical MAS, however, 

it is not possible for a single agent to observe all transitions occurring during a task 

processing episode as assumed in the approach using eligibility traces. Further, in a 

large and complex MAS, the computational load incurred by a single agent attempting 

to take decisions using the information about of all state-transition sequences of every 

task would be too prohibitive to be realised in practice. In this situation, therefore, our 

research contributes towards developing a practical and effective means of distributing 

state information to improve learning. In so doing, it removes the requirement of an 

agent having to maintain the entire chain of state transitions in its memory. Rather, it 

allows the agents to acquire a summary of the state-changes in the cooperative group that 

perform a task, which, in turn, allows them to take decisions for effective coordination. 

2.3 Summary 

This chapter presents the key concepts that underlie previous research on cooperative 

MAS. At the same time, it highlights the limitations in existing literature in the context 

of the requirements identified in chapter 1. For example, some research addresses only 

a subset of the three requirements (e.g., FA/C, organisational structuring, and social 

networks). In our work, we aim to incorporate all the requirements into our solution and, 

hence, address the above-mentioned limitations of existing work. On the other hand, 

others address all the three requirements, but under certain restrictive assumptions such 

as predetermined rules of coordination (leading to inflexibility in dynamic systems) as 

in PGP and GPGP, joint commitments (causing large communication latencies) as in 

STEAM, and global knowledge of agent actions (incurring communication overhead; as 

in the work based on MDPs. Thus, although our research is inspired by these, we still 

extend these approaches by removing the above-mentioned limitations. In particular, our 

aim is to build a MAS solution that does not rely on pre-defined coordination rules (e.g., 

PGP and GPGP), allows the system to function without requiring all agents to jointly 

commit (e.g., STEAM), and does not require global state knowledge or indiscriminate 

communication to coordinate the agents' actions (e.g., the MDP-based works). 

Furthermore, section 2.2 identifies the limitations of the applications on cooperative 

MAS based on RL. These include restricted communication (the Q-routing algorithm) 

and excessive communication to obtain global reward information (the policy-gradient 

search methodologies). The review of TPOT-RL outlines potential limitations of that 

approach that bases action selection solely on local observations. Also, several other 

machine learning algorithms that are used to generate estimates in distributed systems 

are reviewed and their potential shortcomings identified. Although we use RL to ensure 

adaptive behaviour, we aim to improve such behaviour by developing a suitable mecha

nism for sharing information that addresses all the above-mentioned shortcomings. 
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In this research, we use Q-Iearning (a specific instance of the more generic RL algo

rithm) to generate robust and flexible estimates of the system states that the agents 

cannot directly observe. Moreover, this capability of building estimates allows the 

agents to adapt their actions to environmental changes. To this end, we develop a 

novel information-sharing protocol that distributes the agents' local state values so that 

they can build these estimates effectively. Therefore, we adopt the approach of using 

RL to build a cooperative MAS as done by other researchers, but, at the same time, 

advance the state-of-the-art by incorporating information-sharing to improve the system 

performance. In this way, we address all the essential requirements for addressing our 

thesis identified in chapter 1. To the best of our knowledge, our information-sharing 

protocol in both novel in its principle of application and, among the currently available 

protocols that can be used for sequential RA tasks in distributed systems, the most 

effective and successfully deployable in real applications. 
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Post Task-Completion 

Information--Sharing Protocol 

Chapter 1 identified cooperative information-sharing and adaptive decision making as 

two key challenges in designing an effective solution for sequential RA tasks in distributed 

systems. To this end, this chapter develops a novel information-sharing protocol for 

building an effective cooperative MAS. This protocol is termed the post task-completion 

(PTC) protocol because it advocates that cooperative groups of agents share their local 

state values only after they have completed a sequence of resource allocation actions 

to complete a task. While information-sharing has been used previously in cooperative 

MAS (Tambe, 1997; Xuan et al., 2001), the novelty of our protocol is the "delay" (un

til task completion) in sharing information between the agents. As will be shown in 

this chapter, this feature indeed generates more accurate estimates by ensuring a more 

time-efficient distribution of information compared to a relatively standard mechanism 

of sharing information between nearest neighbours (section 2.2.1). Furthermore, this 

protocol forms the basis of state-estimate learning by agents which then allows them to 

adapt their task processing behaviour in response to environment changes. In particu

lar, this chapter discusses how the PTC protocol is used by the agents to generate such 

estimates using Q-learning (Watkins and Dayan, 1992). Thus, by designing the PTC 

protocol and providing theoretical evidence about its effectiveness in generating quality 

state estimates in sequential RA problems, this chapter sets up a theoretical foundation 

for establishing the validity of our thesis stated in chapter 1. 

In the rest of this chapter, section 3.1 defines the scope of applicability of PTC, that 

of distributed sequential RA tasks. It also identifies the functional requirements for an 

information-sharing protocol to be effective in this type of task domain. Subsequently, 

it explains how these requirements motivate the design of PTC. Section 3.2 describes 

how the PTC protocol will be designed in the example application of call routing in 

a wireless mesh telephone network (TN). In addition, this section presents a set of 

31 
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benchmark algorithms, Q-routing (section 2.2.1) and TPOT-RL (section 2.2.2), used in 

this application domain against which the PTC-based design will be compared using 

empirical studies (in chapter 4). Section 3.3 then presents a detailed formal analysis 

of the advantages of using PTC in generating an effective cooperative MAS. Finally, 

section 3.4 summarises the contribution of this chapter. 

3.1 Application Task Domain and Motivation for Design

ing PTC 

As stated in chapter 1, in our work we focus on designing an effective MAS solution 

for solving distributed sequential RA tasks. Thus, the design of our PTC information

sharing protocol is motivated by the characteristics of this task domain. In the following, 

we first define what we consider as sequential RA tasks (section 3.1.1) and then present 

the PTC information-sharing protocol (section 3.1.2). 

3.1.1 Sequential Resource Allocation Tasks 

In this research, the way we identify sequential RA tasks is defined in the following. 

Definition 1 A sequential resource allocation task is a sequence of allocation of the 

appropriate resources such that each allocation contributes towards the partial completion 

of the task and it is successfully completed once all the necessary resources have been 

allocated in an order that satisfies its requirements from initiation to completion. 

In more detail, the processing of such tasks is extended in time where the individual 

allocations by agents are of finite time duration and that requires the availability of the 

necessary resources to complete part of the task. For the partial completion of a task, 

an agent allocates resources that it has direct access to. After allocating resource, it 

forwards the task to another agent for further processing towards achieving completion. 

In particular, the individual agent decisions (and, thus, the quality of the overall solution) 

are improved by providing them with estimates of the states of other agents. This is 

because, such estimates help the agents by making their individual actions contribute 

towards the successful completion of the task. When an agent delegates the allocation to 

the subsequent agent, it uses its estimates of the states of the agents in the subsequent 

sequence of allocations to measure the chance of the successful completion of the task. 1 

1 If, during a sequence of such allocations and delegation to a subsequent agent, an agent cannot 
process the task due to non-availability of the necessary resources, the processing fails and the task 
remains incomplete. Thus, we consider that an uninterrupted sequence of allocations to be required 
to complete the task. No intermediate restarts are assumed if task processing fails. More on this in 
chapter 5. 
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As an example, consider the task to successfully place a call between two nodes. To do 

so, a set of node bandwidth units should be allocated in order, starting from the source 

and ending at the destination. Thus, the availability of bandwidth at a set of nodes that 

can form a continuous circuit from source to destination is necessary. However, at each 

routing step, a node has to take the decision of forwarding a request for the subsequent 

allocation to the appropriate node so that the call is placed via an efficient channel. It 

uses its estimates of the bandwidth availabilities (a measure of node state) of the other 

nodes in the network to take this decision to ensure an efficient overall allocation. 

In this context, PTe contributes by providing good quality estimates of the system 

states such that efficient allocations are achieved. The following discussion identifies 

the criteria required for an information-sharing protocol to achieve this objective and 

defines PTe in this context. 

3.1.2 Designing PTe for Sequential Resource Allocation Tasks 

To ensure good quality state estimation in dynamic environments by sharing information 

between agents, the communication strategy should satisfy the following criteria: 

• Time efficient distribution: There is a latency associated with communication. 

Hence, the more timely the information that is communicated to an agent, the 

more likely it is that the information will be up-to-date. 

• Accuracy of information: In continuously changing environments, it is im

possible for all agents to remain synchronised with state changes at all times. 

Nevertheless, the more accurate the information received, the better. 

Given these desiderata, here PTe is proposed as an effective strategy for distributing 

the local state information of agents. In the following, we define PTe formally. 

Definition 2 Post task-completion information-sharing refers to the distribution of state 

information between a group of agents, by way of a mechanism that depends on the al

lowed agent interactions, only after the completion of the sequence of allocation actions 

by these agents. 

The motivation for using this scheme is to let an agent that participated in complet

ing a task have an indication of the state changes of the other agents in the group that 

resulted from processing that task. Such information is then used to learn estimates 

of the states of other agents. These estimates, in turn, are useful for making more 

informed decisions while processing a subsequent task (as explained in section 3.1.1). 

In a dynamic system, the world states change while the agents process a given task. 
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Therefore, by delaying the transmission of information until the task is completed, this 

protocol ensures that all those agents who participated in the task completion process 

are informed about these state changes and how that affects the outcome of the task 

In so doing, we hypothesise that the agents would be able to distribute information in 

a time-efficient manner and learn reasonably accurate estimates, thereby satisfying the 

requirements identified above. In particular, in tasks that require actions of different 

agents to be ordered sequentially for them to be completed, the PTC model of informa

tion distribution allows any agent to maintain highly up-to-date information about the 

states of the others. The analysis presented in section 3.3 establishes our hypothesis by 

comparing the timeliness and estimate qualities of PTC against those of a widely used 

protocol of sharing information between nearest neighbours (hereafter termed as the NN 

protocol, discussed in section 2.2.1) while processing such tasks. 

3.2 Information-Sharing Protocols for a Network Call Rout

ing Application 

In this section, we describe the designs of PTC and the benchmark algorithms, Q-routing 

and TPOT-RL, in the example application of network call routing. First, we describe 

the sequential RA task performed by agents in this application. 

Assuming a TN has a set of agents A, we consider an arbitrary subset of A, N = 

{ai 1 i = 1, ... , n} (where n =1 N I), participating in routing a call (the task) at a given 

time. While doing so, an agent in N considers one of its neighbours to forward the call 

(hence, the task processing requires the actions of different agents to be in sequence). 

This decision is based on the agent's Q-estimates. Specifically, we use a Q-table for each 

agent ai where an entry Qi(n, k) represents the expected utility of choosing neighbour ak 

when the call destination is an (note the size of the Q-table for each agent is 1 A 1 x 1 JC I, 
where JC is the set of neighbour agents). In particular, for a TN, we chose the Q-values 

to represent the estimated availability of free bandwidth channels on nodes along the 

various paths from ak to an. Note, in this representation of the Q-function, n is the goal 

state (the fact that the call has to be routed to an) of the agent and the current state is 

i (the fact that the call is currently with ai). So, effectively, the agent learns to forward 

a call along the path with the maximum available bandwidth to reach the goal state 

from the current state. This representation has the advantage that all intermediate 

state transitions (the sequence of nodes that the call has to be routed through) are 

collapsed into one effective transition from the current state to the goal state. The Q

value, therefore, signifies the "effective utility" (in terms of the available bandwidth; the 

higher the value of which the better is the utility in terms of successfully routing a call) 

of selecting a given neighbour to reach the goal state. This Q-value is learnt from the 

information distributed by the information-sharing strategies, described shortly. Note, 
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a similar Q-function has been used previously by researchers studying adaptive routing 

using Q-learning (see section 2.2.1). 

In the above context, an agent (ai) who wants to route a call to a destination node (an) 

using a set of nodes that have the highest expected bandwidth availability, chooses the 

neighbour a~ such that a~ = argmax Qi (n, k), where the maximisation is over all neigh-
ak 

bouring agents of ai. In our empirical study, we use Boltzmann's exploration (Watkins, 

1989), a standard scheme for probabilistically choosing a neighbour as opposed to this 

deterministic strategy (because the deterministic greedy strategy may not allow a suf

ficient exploration by choosing all possible neighbours and, thus, generate a skewed, 

sub-optimal performance). 

In more detail, an instance of agent aI's request to its neighbour a2 to forward a 

call toward the destination node an is shown in figure 3.1(a). Being cooperative, a2 will 

accept the request if it has the available capacity. After forwarding the request, al pre

allocates one unit of call channel bandwidth (figure 3.1(b)) for the partially connected 

call until it is either successfully connected or dropped (as described shortly). The 

forwarding continues (figure 3.1(b)) until the destination node (an) is reached. In this 

manner, therefore, the task gets completed (the call is successfully connected between 

its source and destination nodes) by the actions of bandwidth allocation and request 

forwarding by the agents in sequence. At this point, a message is transmitted back 

along the route through which the call was routed to inform each agent that the call 

has actually connected. Each agent then allocates one unit of call channel bandwidth 

to complete a circuit from the source to destination (before this, the nodes had only 

pre-allocated bandwidth) (figure 3.1(c)). Also, using this message, agents transmit their 

local state values to other agents on the route. Hence, those agents that cooperated on 

a task (routing the call) share among themselves their local state information after the 

task is completed (after the sequence of requests reach the destination node). In this 

way, therefore, the PTC principle (see definition 2) has been instantiated specifically in 

the TN domain. More details on this follow shortly. 

However, the forwarding process stops if an agent is contacted that has no unallocated 

bandwidth. Then, the agent transmits a message to inform those on the route to drop 

the partially connected call and deallocate the pre-allocated bandwidth (figure 3.1(d)). 

In addition, the worst case setup time of a call is bounded by an upper limit for the time 

that the agents can continue with the forwarding process. After this time, the call is 

dropped if it has not connected. This time is equivalent to the maximum delay a caller 

would experience between dialling a number and hearing the ring tone. 2 Finally, if an 

2In case of the above two conditions, we do not use any backtracking to search for alternative 
paths. This keeps the routing protocol simple and makes the analysis of the system behaviour easy. 
Moreover, this simplification should not impact the overall conclusions of this research since inclusion of 
backtracking would impact all strategies equally. 
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Figure 3.1: The call forwarding process 

agent, while forwarding the call, detects a cycle in the route taken by the sequence of 

requests it generates a message with a penalty and transmits it to the agents on the 

cycle. This penalty, an exponentially decreasing function with the distance of a node 

from the loop end, is subsequently used by those agents to update their estimates such 

that the occurrence of further cycles is reduced. Moreover, while penalising, the agents 

on the loop de-allocate the previously pre-allocated bandwidth since loops are redundant 

portions of a call path (for more details, see section 4.2). 

In the preceding, we presented a broad description of the sequential bandwidth al

location task performed by the routing agents. In the following, we first explain how 

the PTC protocol is implemented in this setting. Then, the implementations of the 

benchmarks in this domain are presented. A more detailed discussion of our simulation 

of the call routing application is presented in chapter 4.3 

3In all of these information-sharing strategies, communication is used as a controlled mechanism for 
distributing information between agents. In this context, it may be argued that broadcasting information 
between all agents can yield better solutions than any of these strategies. This is because, by broad
casting, all agents could be updated about the global state at all times. However, this is not the case. 
This is because broadcast is completely impractical in the mesh network application due to the very 
high bandwidth requirement caused by excessive messaging. Moreover, in large distributed systems, it is 
the right information about the right, often partial, portions of the global state (rather than indiscrimi
nate communication used in broadcast) that generates the desired performance. Thus, broadcast is not 
treated as a benchmark in our work The fact that it is not used as a benchmark by other researchers 
using communication-based MAS solutions in real applications is also indicative of the rationality of our 
choice. We report a brief evaluation of broadcast in appendix A. The observations of this study confirm 
the above arguments. 
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3.2.1 Post Task-Completion Information-Sharing 

Consider (as described above) a call is routed from al (source) to an (destination) along 

the path al ... an . In the instantiation of the PTC principle, agent an starts commu

nicating its own local state (in a TN a node's state is represented by the available 

bandwidth units on that node) when the bandwidth allocation process completes at 

time t at an, thereby, establishing a complete circuit from source to destination. Agent 

an communicates this information to an-I' Thus, an-I updates its prior estimate of an's 

available bandwidth units Qn-I (n, n) with the new state information using the standard 

Q-update rule (Watkins and Dayan, 1992): Qn-I (n, n) +- (1 - a)Qn-1 (n, n) + a s(n, t), 

where s(n, t) represents the local state of an at time t and is the "reward" for the Q

learner to update its prior Q-estimate. Subsequently, an-I communicates to an-2 its own 

local state at time t f s (n - 1, tf) (tf of- t, because ofthe latency in communication between 

neighbour agents) and the information it had received from an. Alternatively, it can use 

its own state information and that received from an to communicate a summary infor

mation that captures the overall state of the path being used to route the call. Agent 

an-2 similarly updates its prior estimate of the bandwidth availability Qn-2(n, n - 1) 

using the information received from an-I. This procedure of distributing their own 

and the previously received state information continues until the source agent (here, 

al) is reached. Typically, the information about the states of multiple nodes is used to 

generate a summary estimate of the state of the downstream route as described in sec

tion 4.3.4 The distinction between local state (an agent's own state) and non-local state 

(another agent's state) is lost in aggregating information of multiple nodes to maintain 

a summary of call routes. However, this is not a problem in a TN since information 

about the path bandwidth availability is sufficient for an agent to take effective routing 

decisions (selecting a subsequent node to forward a call request). On the other hand, 

maintaining the information of individual nodes would necessitate each agent solving a 

computationally expensive least-cost-path problem before every routing decision. How

ever, in a different domain, it is entirely possible for an agent to maintain separate state 

estimates of other agents in the cooperative group while using the same PTC principle. 

In this instantiation of PTC, only those nodes who participated in routing a call share 

information. So, the state information of the other nodes in the system is not distributed. 

But, the decision of which agents should be informed about which system states is a 

separate problem. In this thesis, we advocate PTC as a specification for distributing 

information among those agents who cooperate on a task after its completion. Therefore, 

distributing information among the routing nodes follows this specification. In future, 

we plan to investigate the problem of how we can determine which agents within a 

cooperative group should be notified of a certain piece of state information after task 

4Such summarisation of state information is separate from the basic PTe principle which simply 
states that information is shared between a cooperating group after task completion. 
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completion and the consequence of such selective distribution. Chapter 6 presents one 

approach of using such selective information distribution in the context of the sequential 

RA tasks. Note that in the above description, the communicated state information 

acts as the "reward" for Q-learning. Therefore, the accuracy and the timeliness of this 

information is critical in determining the quality of the Q-estimates. This, in turn, 

directly impacts the effectiveness of an agent's decision to route calls. 

3.2.2 Q-routing 

The Q-routing algorithm is based on the NN protocol (as discussed in section 2.2.1). In 

Q-routing (hereafter, referred to as QR), an agent ai, after forwarding a call to neighbour 

ai+l, receives the latter's current best estimate of the bandwidth availability to reach des

tination an. Thus, neighbour ai+l informs ai with Qi+l = min(Si+l,maxQi+l(n,i+2)), 
ai+2 

where the maximisation is done over all neighbours ai+2 of ai+l. Since, on a given path 

in a TN, the node with the minimum bandwidth availability determines the maximum 

number of calls that can be placed via that path, ai+l determines the minimum of its 

own bandwidth availability (its "state", denoted by Si+l) and its estimate of the subse

quent path. In this way, in QR, information is shared between neighbour agents only 

while the task is being processed as opposed to PTC in which the sharing occurs after 

task completion. Now, agent ai, upon receiving this estimate, updates its prior estimate 

Qi(n, i + 1) as Qi(n, i + 1) +--- (1 - a)Qi(n, i + 1) + a Qi+l. This process of asking neigh

bours and receiving the latter's estimates continues until the destination is reached (see 

figure 3.1(c)) or the forwarding process is terminated (see figure 3.1(d)). The way the 

Q-estimates are updated in QR is similar to the update rule used in PTC as shown in 

section 3.2.1. The difference, however, is in the reward: whereas in QR, the reward is 

the estimate of the immediate neighbour, in PTC, it is a summary of the actual state 

information of all subsequent path agents. 

3.2.3 TPOT-RL 

TPOT-RL is implemented in our TN domain following the description of (Stone, 2000). 

The characteristic features of TPOT-RL (see (Stone, 2000) for more details) are imple

mented as follows: (i) a partitioning function identical to (Stone, 2000); (ii) an action

dependent feature function also identical to (Stone, 2000), where the acti vi ty-window 

parameter is chosen as 100, and the usage-threshold for a link connecting to a neighbour 

is set to 5.0 (half the maximum bandwidth capacity of a node, defined in section 4.5); 

and (iii) the reward update-interval is set to 100. Section 4.2 explains in more detail 

how these parameters are used by the agents to learn estimates and route calls. While 

forwarding a call, a node using TPOT-RL transmits to the subsequent node its current 

estimate about the bandwidth availability to reach the given call destination. Thus, 



Chapter 3 Post Task-Completion Information-Sharing Protocol 39 

TPOT -RL uses an information-distribution mechanism similar to that of QR: between 

neighbour agents while processing tasks. Now, each agent also records the amount of 

bandwidth usage on each of the links connecting to its neighbours. Its Q-values estimate 

the bandwidth availability to reach a given destination via a given neighbour for the given 

link usage level, monitored over the past acti vi ty-window time steps. A call-forwarding 

decision is taken by using a Boltzmann exploration over the Q-estimates. Reward dis

tribution occurs in TPOT-RL every update-interval time steps. More specifically, for 

all calls that are successfully connected, the corresponding destination nodes accumu

late the information that was transmitted by the forwarding nodes along the call paths. 

Then, after every update-interval time steps, these destination nodes start sending 

the accumulated information back along the corresponding call paths. An agent located 

along such a call route, updates its Q-values after receiving this information. So, a 

node ak along the path aI, ... ,ak,'" ,an, gets the estimates (as opposed to the actual 

node states) of its subsequent nodes ak-t-l,'" ,an, using which it updates its Q-value. 

Note that we have used aggregation of the information received from subsequent agents 

similar to that in PTC (section 3.2.1). 

3.3 Advantages of the PTC Protocol 

In this section, we present a formal analysis to explain the advantage of our information

sharing model in generating better learning than the nearest-neighbour-sharing protocol. 

While this establishes the benefits of PTC on a theoretical ground, it also provides an 

explanation for the performance improvements observed in our empirical studies. In 

the following, we first state our assumptions and notations that will be used in later 

discussions. The rest of this section develops a formal representation of the timeliness of 

distributing information by both strategies. This representation is then used to compare 

the accuracies of the non-local state information in each case. 

3.3.1 Basic Assumptions and Notations 

In section 3.1, it was stated that we consider task episodes that require the sequential 

participation of the appropriate agents for successful completion. In this context, our 

analysis focuses on a particular set of agents N = {aI, ... , an} where agent al initiates 

the task execution process by receiving a new task. Also, we assume, without loss of 

generality, that the order in which the agents process tasks is: al --+ ... -+ an. This 

assumption implies that, in this task processing instance, al uses its knowledge of the 

states of other agents and selects a2 to forward the task, a2 similarly selects a3, and so 

on until an-l selects an which is the agent at which the task processing is completed 

(this was described in section 3.2 in the context of a TN). Note that N represents 
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one possible set of agents that can complete the task (equivalently, in a network, there 

can be multiple routes through which a call can be routed to the destination). The 

state estimates that the agents use to select the subsequent agent are generated using 

communicated information of the unobserved states via the particular communication 

protocol used by the agents (PTC or NN). Thus, focusing on one particular set (in this 

case, N) simplifies the analysis of how a communication strategy affects the accuracy of 

a given agent's knowledge of the agents in that set. Since N is arbitrarily selected, it is 

equivalent to selecting any other set of agents. Therefore, the results of our analysis do 

not depend on which N is chosen. 

Further, we consider that the agents process tasks that are generated continuously. 

To this end, let the symbol tc denote the fixed time after which successive tasks are 

generated. Such an assumption of periodicity in the task environment is made to simplify 

our analysis. Subsequently, in section 3.3.6, we show that even under more general, non

periodic environments, the same general conclusions hold. 

In the sequence of agents that jointly participate in executing the task, there is the 

notion of a "subsequent" agent (and, for that matter, a "preceding" agent) for any 

agent except the last (the first). We represent the agent subsequent to an agent ai by 

the identifier ai+l and the one preceding ai by ai-I. 

The agent state, as per section 3.2, is represented by a real-valued function s. For 

example, in a network, this can represent the load level, or, equivalently, the fraction of 

the total bandwidth used on a node. Also as discussed in section 3.2, an agent learns 

these agent states, using the communicated information from other agents, to decide 

which subsequent agent to choose. The actual state of agent ai (as observed by ai itself) 

at time t is represented by s(i, t). Agent ai's knowledge of aj's state at time t is s'(i,j, t) 

(i i- j). The knowledge that ai has of the agents in N at time t is represented by: 

Sf = {s'(i,j, t) I j 1, ... , n}. (3.1) 

The corresponding set of actual state values of the agents in N is represented by: 

st = {s(j,t) I j = 1, ... ,n}. (3.2) 

Note that in dynamic systems these states change with time. For example, the load level 

of a communication node varies with time. Thus, without timely updates, the known 

values can be different from the actual state values. 

As noted earlier, agent ai uses Sf to select the subsequent agents to whom it forwards 

a task. This decision, in turn, affects the overall utility earned from processing tasks 

in the system. The exact function used by an agent to determine the subsequent agent 

depends on the task and the domain characteristics. In a TN, for example, an agent 



Chapter 3 Post Task-Completion Information-Sharing Protocol 41 

can select a subsequent agent for which it estimates that the average load on all nodes 

from that agent to the destination node is minimised. Thus, this decision has the effect 

of using the least congested path every time a call has to be set up which, in turn, 

maximises the number of calls routed in the system. Our analysis does not depend on 

the exact form of the decision function. Rather, it studies the delay between consecutive 

reinforcements of state information by a given information-sharing protocol that generate 

the know ledge 8' ( i, j, t). The 8' ( i, j, t) values act as the parameters in an agent's decision 

function. Hence, it can be concluded that the closer these values are to the true states 

(which, as stated earlier, change with time), the higher is the accuracy of the agent's 

decision. Intuitively, the shorter the delay in sharing information, the more up-to-date 

is the information maintained. Thus, the more effective an agent's decision. In the 

following subsections, we analyse the timeliness of information-sharing by the different 

communication strategies. 

3.3.2 Timeliness of Information Distribution in NN 

In this section, we compute the delay incurred by an agent to get the state information 

from the others in N using the NN protocol. For this, we focus on aI's knowledge about 

the states of {aI, ... , an} at time t. At this time, al has the knowledge of its actual state 

8(1, t). However, its knowledge of the other agents 8'(1,j, t) (j = 2, ... , n) are different 

from the corresponding true states by an amount equal to 1 8(j, t) - 8'(1,j, t) I. Note 

that the information that an agent maintains at a given time is the result of the previous 

communication that occurred between the agents (refer to section 3.2.2 for a discussion 

on how a particular implementation (QR) of the NN protocol works). 

Since tasks originate every te time steps, an agent aj (j = 1, ... , n - 1) requests 

its subsequent agent aj+l for the latter's knowledge every te time steps. Following a 

request at any time t, aj receives the response from aj+l after a delay of 2tit, assuming 

the request arrives at aj+l after a delay of tit, and the response of aj+l comes back to aj 

after a further delay of tit, at t + 2tit. Note here tit refers to the communication delay 

of a message between directly communicating agents. Referring to the description in 

section 3.2.2, we note that aj+l provides the information that it has of the set of agents 

{aj+l, ... , a n }.5 However, aj+l's knowledge is based on the information it received from 

aj+2 on its previous request to aj+2. The previous request of aj+l to aj+2 was during 

the processing of the previous task at t + tit - te for which it had received a response at 

t+tit-te+2tit (i.e., after a delay of ((te-tit) -2tit)). In a similar way, that response of 

aj+2 to aj+l contained information that aj+2 received from its previous request to aj+3' 

5Note that in section 3.2.2, we discussed QR, where a summary of the states of the subsequent agents 
is communicated. In this formalisation, we consider an agent maintains separate records of the states of 
other agents. Such a consideration helps explain the impact of a given communication protocol on the 
accuracy of an agent's knowledge. 
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Table 3.1: Time diagram for nearest-neighbour sharing 

Agent +-- Time 
al (t + 2~t) (t+2.6.t tc) ... (t + 2.6.t - (n - 2)tc) 
a2 (t + .6.t + 2.6.t - tc) ... (t + .6.t + 2.6.t - (n - 2)tc) 

an-l (t + (n - 2).6.t + 2~t - (n - 2)tc) 

That request of aj+2 to aj+3 was at t + 2~t - 2tc for which it had received a response at 

t + 2~t - 2tc + 2~t (i.e., after a delay of (2( tc - ~t) 2.6.t)). Extending this procedure to 

all subsequent agents, therefore, at time t+2.6.t, the information that aj has of any other 

subsequent agent ak is the state of ak delayed by an amount (d -l)(tc - ~t) - 2~t + .6.t, 

where d = k j. Note here, an extra ~t is added to the delay because although the 

response was received at t + (d l).6.t - (d - l)tc + 2.6.t, but this contained information 

about ak at time t + (d - l).6.t (d - l)tc + 2~t - .6.t. 

The above description is summarised in table 3.1. In this table, the rows repre

sent agents (with the agent numbers increasing from top to bottom) and the columns 

represent time (with time farther in the past as we move from left to right). More specif

ically, in table 3.1, each element represents a time when an agent (represented by the row 

number) received the information from its subsequent agent. In particular, it focuses 

on agent al and assumes that it has requested a2 for the latter's knowledge at time t. 

Therefore, al receives information from a2 at t + 2.6.t (row 1, column 2 in table 3.1). 

However, the knowledge about the subsequent agents that a2 provides al is based on 

the requests that these agents made at times further delayed in the past. These are the 

first element of each row. Hence, at time t + 2.6.t, the set of state information of the 

agents {al, ... ,an } that al has is the following: 

{3(1, t + 2.6.t)} u 

{3(i, t + (i - 2).6.t + 2.6.t - (i - 2)tc - .6.t) Ii = 2, ... , n}. (3.3) 

Note that, an additional .6.t is subtracted in the 'U values of all subsequent agents in 

equation (3.3). This is because, while table 3.1 shows the last time an agent received 

information from its subsequent agent, this information is, in fact, delayed by an amount 

of .6.t; hence, the .6.t is subtracted. For clarity, t + 2.6.t in equation (3.3) is replaced by 

t'. Thus, 
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sf {3(1, t')} u {s(i, t' + (i - 2)~t - (i - 2)tc - ~t) I i = 2, ... , n}. (3.4) 

The true states of these agents, at time t', are 

st' = {3(i,t') Ii = 1, ... ,n}. (3.5) 

Thus, equation (3.4) shows that the knowledge that agent al has of any other agent 

in N is delayed by an amount that depends on the distance (number of hops) between 

them. More specifically, the knowledge that an agent, say ai, has of another agent, say 

aj, that is k hops away is delayed by an amount: 

t~:lay = (k - l)(tc - ~t) + ~t. (3.6) 

This measure of delay incurred in NN will be compared to the same in PTe. 

3.3.3 Timeliness of Information Distribution in PTC 

In this section, we compute the delay incurred by an agent to get the state information 

from the others in N using the PTe protocol. Similar to the analysis in section 3.3.2, 

we assume that a task originates every tc time steps when al initiates the processing 

of the task and forwards the request to the remaining agents {a2, ... , an}. In the PTe 

sharing protocol, the state information of agents is communicated only after a task is 

completed. Since new tasks are processed every tc time steps, it can be inferred that 

the distribution of state information by the agents occur every tc time steps (i.e., after 

every task completion phase and assuming that the communication delay between any 

two directly communicating nodes remains the same). 

t + (n-2)L. t -2 tc -< 

t + (n-2)L. t - tc -< 

t + (n-2)L. t -< 

o 0 0-/1 2 3 
Agent ~~ 

2 communicating to 

t-2 tc j ~ t- tc r' 

...... ··.-0 

n communicating to n-1 

- ........... Infonnation transmission 

Figure 3.2: Time diagram for PTe sharing 
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Therefore, an transmits its state information to an-l at time t (i.e., when a task 

completes at time t, for any value of t), and then at t + te, t + 2te, and so on. Given this, 

an-l transmits its own state and the information received from an to an-2 at t+ i:lt, and 

then at t+i:lt+te , t+b..t+2te , and so on (considering the delay of i:lt for the information 

to reach an-l from an). Extending this process, it can be inferred that a2 transmits 

its own state and its knowledge of the set of agents {a3, ... , an} to al at t + (n - 2)b..t, 

and then at t + (n - 2)b..t + te , t + (n - 2)b..t + 2te , and so on. Figure 3.2 shows this 

process. In this figure, each agent is labelled with the time at which it transmits its state 

information to its previous agent. Thus the state information that agent al receives from 

its subsequent agent (in this case, a2) contains the information of the rest of N delayed 

by multiples of i:lt. Thus, al has the following information about the subsequent agent 

states (assuming it received information from a2 at time t'): 

sf = {s(i,t' - (i -l)b..t) Ii l, ... ,n}. (3.7) 

The true states of these agents at this time t', shown in (3.5), however, are different 

from these values. 

Thus, (3.7) shows that the information that agent al has of any other agent in N is 

delayed by an amount that depends on the distance (number of hops) between them. 

More specifically, the information that an agent, say ai, has of another agent, say aj, 

that is k hops away is delayed by an amount: 

(3.8) 

In the following section, we use the delay measures computed in (3.8) and (3.6) to 

establish the advantage of PTC compared to NN. 

3.3.4 Comparing Timeliness of Information Distribution in PTC and 

NN 

The analysis of section 3.3.3 shows that using the PTC protocol, an agent, say i, after 

the completion of a task episode, receives the local state information of another agent j 

after a delay of kb..t (see formula (3.8)), where k is the hop count between i and j. In 

the NN protocol, on the other hand, agent i receives j's state information after a delay 

of (k -l)(te - b..t) +b..t (see formula (3.6)). Comparing the delays, the following can be 

concluded. 

Proposition 1 The delay for non-local information to reach an agent is less uszng 

PTC than using NN if the task environment periodicity is greater than the round trip 

communication delay of a message between directly communicating agents. 
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This is because, for k > 1, 

tc > 2~t =? k~t < (k - l)(tc - ~t) + ~t. (3.9) 

In a typical MAS, the interval between successive episodes oft ask execution (tc) is much 

longer than the communication latency between two directly communicating agents 

(~t).6 Hence, the delay due to PTC is, for all practical purposes, much less than 

that of NN. 

Having established that PTC distributes information in a more time-efficient manner 

than NN, we now focus on analysing how this characteristic of PTC creates more up

to-date information. 

3.3.5 Improved Estimation Accuracy using PTC 

In this section, the improved time-efficient information distribution of PTC is mapped 

to the improved quality of information learnt by PTC over NN. The key idea is that, 

the shorter the delay between successive information messages, the more accurate is the 

knowledge of the actual states. 

As stated before, node states vary dynamically over time. However, at a given time, 

the state of a node can have a certain value from a certain finite set of values, say V. 

Also, a node ni retains its state 3 m 
7 (where 3 m E V, m E {I"" ,M}, and M =1 V I), 

for a certain length of time, say lm. We consider that a certain node ni is dynamically 

estimating the states of another node nj that is at a distance of k hops from ni. Given 

the above information, we want to compute the expected value for a given number of 

state changes that can occur in nj in a given time duration, say tD' We hypothesise that 

if tD increases, so does the expected value for any number of state changes within tD· 

Therefore, if ni receives information from nj with higher delays then it loses more state

change information of the latter. Since NN has a greater delay than PTC (section 3.3.4), 

it incurs a higher loss of state-change information than PTC. In this context, we define 

the following: 

Definition 3 Given a finite set of states V = {3m 1 m = 1, .. " M} (M =1 V I), where 

each state value 3 m lasts for a time-length of lm, and a time duration tD, where tD < 
L lm, a coverage of size h from V on tD, represented by c(h, V, tD), is a set of h 

6For example, in the type of communication networks we are studying in this research, the typical 
delay between successive calls is of the order of minutes, whereas the communication latency between 
adjacent nodes is of the order of milliseconds. 

7The representation sCi, t) used earlier in this section to identify the state value of agent ai at time 
t is replaced with Sm. In the current discussion, since we are considering one agent and the different 
state values that it can take, the identifier i and time t are dropped for an easier notation. Nevertheless, 
Vi, Vt, 3m, sCi, t) = Sm. 
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different states of V (h ~ M) such that L Ii ~ tD' 
h 

Using the above, the expected value of h different state changes of nj within a time

interval t D is given by: 

number of possible c( h + 1, V, t D) 

(h~l) 
(3.10) 

where the numerator counts all possible coverages of size h + 1 (hence, having h different 

state changes) from V on tD. The denominator enumerates all possible ways of choosing 

h + 1 different states from V. 

Now, if we consider a duration t~ > tD (t~ < L Im),8 then it is trivial to identify that 

every c(h, V, tD) will also be a c(h, V, t~), for all h. This is because, all combinations of 

Ii'S that "fit" within tD would necessarily fit within t~" Therefore, it can be said that 

lc(h, V, t~)J = c(h, V, tD)' Hence, the numerator of formula (3.10) with tD replaced 

by t~ would at least be equal to that for t D. The above reasoning brings us to the 

conclusion that the expected value for observing K different state changes (for any 

K) increases with increasing delay between successive observations. Thus, more state

change information is lost as the delay between observations increases. Since, according 

to section 3.3.4, PTC achieves a lower delay than NN between successive observations, 

the following can be concluded. 

Proposition 2 PTC incurs a lower loss of state-change information than NN. 

The analysis presented so far assumes a periodic environment where the task episodes 

repeat after intervals of constant length. In the following, we present a similar analysis 

with the periodic assumption removed and demonstrate that the same conclusions hold. 

3.3.6 Non-periodic Task Environment 

The analyses presented in sections 3.3.2 and 3.3.3 are based on the assumption that 

task completion episodes repeat every te time steps, with a constant te. Therefore, 

the formulae (3.6) and (3.8) were derived using only one of these episodes. In a more 

general setting, however, the task processing episodes would be non-periodic, with the 

time between successive task completion episodes varying. In that case, these formulae 

have to be computed considering the successive episodes as opposed to only one. In 

this context, note that the information dissemination delay of NN alone (formula (3.6)) 

depends on the value of te. Therefore, the assumption of non-periodic episodes impacts 

8If tD = L;lm, then the expected value of observing h different state-changes is equal to 1, for all 
h :::; M - 1. If tD > L; 1m , then we can apply the same reasoning as above for the modified duration t'iJ, 
where tD == t'iJ (mod L; 1m) to reach the same conclusions. 
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the delay terms of only NN. The following discussion indicates how to account for the 

non-periodicity. 

Considering the case described before in section 3.3.2 where agent ai maintains the 

state of aj which is k hops away. In a non-periodic situation, formula (3.6) changes to, 

k-l 

t~~lay = L t~-m - (k - 2).6.t, (3.11) 
m=l 

where, t~-l (for any j) represents the most recent episode, t~-2 the second most recent 

episode, and so on. 

Using a method similar to that discussed in section 3.3.4, t~!ray given by formula 

(3.8) can be compared to t~~lay given by formula (3.11). Therefore, we can conclude 

t
PTC tNN ·f· 
delay < delay 1 . 

k-2 

2(k - 2).6.t < L t~-m. 
m=l 

The following summarises this observation. 

(3.12) 

Proposition 3 In a non-periodic task environment, the information dissemination de

lay is less for PTC than for NN if the time between any two successive task originations 

is greater than the round trip communication delay of a message between directly com

municating agents. 

This is because (from condition (3.12)), for m 2:: 1, 

t j --m 2 At t PTC t NN 
c > L...l :::} delay < delay' (3.13) 

Proposition 3 is similar to proposition 1. It is true for all practical purposes because 

the time interval between successive task processing episodes is typically much greater 

than the round-trip communication delay of a message between directly communicating 

nodes. 

Since the delay between successive information received is smaller in PTC than in NN, 

it can be shown similar to section 3.3.5, that under the non-periodic task assumption, 

the knowledge about the non-local states generated by PTC captures the changes in 

these states better than that by NN. 

Proposition 4 In a non-periodic task environment, PTC incurs a lower loss of state

change information than NN. 

The preceding analysis demonstrates that, under all practical purposes, the timeliness 
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of information distribution and the quality of non-local state information learnt by our 

PTC information-sharing protocol are better than the nearest-neighbour protocol under 

general non-periodic environments. With these theoretical results, it is reasonable to 

infer that PTC allows the agents to take better informed decisions than NN, which, in 

turn, generates better system performance. To demonstrate this further, the practical 

advantage of PTC is evaluated using empirical analysis in a simulated wireless telephone 

network. The following chapter describes this analysis, 

3.4 Summary 

This chapter develops a novel information-sharing protocol that can be used to generate 

good quality state estimates for agents so that an effective MAS solution can be built 

for sequential RA tasks in distributed systems. The novelty of this protocol is that 

cooperative groups of agents share their local state values by delaying it until a task 

is completed. The advantages that this protocol generates (compared to the widely 

used benchmark algorithm of sharing information between nearest neighbours) are a 

time-efficient information dissemination and, hence, highly up-to-date state estimates. 

Thus, the above-mentioned contributions of this chapter address the research challenges 

identified in chapter 1 and, hence, theoretically establish the validity of our thesis. 

Now we set our goal to design communication heuristics based on the PTC protocol 

that can be deployed in a real application: the network call routing problem. In partic

ular, we aim to use empirical analysis to compare the performances achieved by these 

heuristics in this domain against those of the benchmark algorithms QR and TPOT-RL. 

In this manner, we would be able to empirically confirm the validity of our thesis. This 

is the focus of the following chapter. 



Chapter 4 

Empirical Evaluation of PTC in 

Telephone Network Routing 

In chapter 3, we have developed a novel protocol for cooperatively sharing information 

between agents. It has been shown, using a theoretical analysis, that our protocol is 

capable of generating good quality state estimates in a distributed system which, in 

turn, can improve the performance of RA in sequential tasks. In this chapter, we at

tempt to substantiate these theoretical propositions using empirical analysis. To do so, 

we deploy PTC in the exemplar telephone-network call routing problem. Note that this 

domain represents a distributed system where task completion (to place a call by al

locating node bandwidth in a circuit-switched network) requires sequential RA; hence, 

these empirical studies are targeted towards justifying our thesis. More specifically, a 

set of communication heuristics are developed on the basis of the PTC protocol using 

which the network nodes would be able to share information and accomplish the routing 

tasks. The effectiveness with which the agents achieve routing by using the PTC-based 

heuristics is evaluated empirically and compared against the performances of the bench

mark algorithms. Such empirical validation of the theoretical claims of chapter 3 would 

help to establish our thesis further. 

In the rest of this chapter, we first enumerate a number of important physical proper

ties and functional characteristics of the TN application (section 4.1). These properties 

are simulated in our system to appropriately capture their effects on its performance. 

Subsequently, we describe our implementation of a cooperative RA system for routing 

calls in a circuit-switched network (section 4.2). In particular, it elaborates the im

plementations of PTC and the QR and TPOT-RL strategies in the simulation. Then, 

we present two heuristics based on the PTC protocol for aggregating state information 

in a way specified in section 3.2.1 (section 4.3). Section 4.4 then outlines the exper

imental setup used for our empirical studies of the various communication strategies. 

In particular, it identifies a set of performance measures used to evaluate the commu-
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nication strategies and elaborates on the physical properties of the simulated network. 

Subsequently, section 4.5 presents and analyses in detail the experimental results ob

tained from using the communication strategies in a call routing problem in the sim

ulated networks. These results indicate a superior performance of PTC over those of 

the benchmarks across all environmental settings. Finally, section 4.6 summarises the 

contributions of this chapter. 

4.1 Domain Properties 

We assume the following characteristic properties of our simulation of a TN. These prop

erties are typical of the broad class of wireless mesh networks (Krag and Buettrich, 2004) 

where a set of wireless nodes with limited communication bandwidth radio-communicate 

with those within their transmission range. Note that these properties correspond to 

the more general description of the TN domain presented in section 3.1. These features 

are representative of both the physical properties of the network and of its behavioural 

constraints that we aim to model. Thus, the following enumeration is segregated into 

physical properties and model properties. 

• Physical Properties: 

- The communication nodes have limited bandwidth. Therefore, the number 

of calls that can be handled by a node is limited. 

A node can only communicate with the nodes that are within its transmission 

range (its immediate neighbours) . 

• Model Properties: 

- Calls can originate/terminate at any node. These calls originate throughout 

the simulation and last for a finite duration (thus, indicating a continuous 

usage of the network). 

A node's total available bandwidth is divided into two segments: the call 

channel and the control channel. The former is used to route calls and the 

latter to communicate information and control messages. 

The resource available at a node is its call-channel bandwidth. One unit 

of this is allocated for each call routed via the node. The bandwidth units 

of the nodes on a call path are occupied throughout the duration of a call 

to establish a circuit. Thus, we consider a circuit-switched network where 

bandwidth is allocated end to end to establish calls. 

- Each node is modelled as an agent. Every agent has the aim of forwarding a 

call to the neighbour it believes is the first node on a path to the destination 

with the maximum call-channel bandwidth availability. 
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- We define the state of a node at a given time as the ratio of the call channel 

bandwidth units it has unallocated to the maximum number of units that 

it can handle. Each agent has perfect knowledge of the state of the node it 

represents and estimates of the states of other agents. 

4.2 Cooperative Bandwidth Allocation for Call Routing 

In section 3.2, we described broadly how the routing agents allocate bandwidth in se

quence to connect a call between the source and destination nodes. Here, a more detailed 

description of our implementation of this system is presented. To this end, we identify 

from the discussion of section 3.2 that the different actions of agents are in response to 

four types of information message: 

1. Request to forward a call (mr ), 

2. Request to connect a call (me), 

3. Request to drop a call (md), and 

4. Request to penalise loop agents (mp). 

In the following, these activities are elaborated. To facilitate this discussion, we first 

define the following set of variables used in our description: N, set of total agents in 

the network {aI, ... , aN}, where N = INI; JCi , set of Ki neighbours of agent ai (Ki = 

IJCil); a Q-function Qi for each agent ai, where Qi : N x JCi --t [0,1]. The Q-function 

Qi{n, d) is ai's estimate of the bandwidth availability in the nodes on all paths to ad 

(E N) via its neighbour an (E JCi); s{i): actual node state of ai; Bj,k, ... ,z: a set of 

node states {s(j), s(k), ... , s(z)}; Ei(d): feedback information provided by ai about its 

estimate of call channel bandwidth units available over all routes to ad from ai; EKi (d), 

a set of Ej(d) feedback estimates from all aj in JC i ; Ri, a reward computed by ai from 

node state values that it receives via communication from other nodes. In TPOT

RL, however, there is a difference in the representation of the Q-estimates from that 

described above. This is because, in TPOT-RL, an agent uses an action-dependent 

feature function, which summarises the local effects of its actions, to estimate bandwidth 

availability. This function is based on the bandwidth-usage level on the links connecting 

ai to its neighbours. Thus, if the variable li,n denotes the portion of ai's total call

channel bandwidth being used for calls that are routed via its neighbour an, then ai's 

Q-estimate for bandwidth availability to reach a destination ad via an is: Qi(ei,n, n, d). 

In this, ei,n is "high" if the value of li,n, measured over a certain acti vi ty-window time 

interval in the past, is more than a certain threshold, or "low" otherwise (section 3.2.3 

specifies the values used for these parameters in our experiments). 
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A message of type mr: m c , or md contains the following information: ids of the 

call source (as) and destination (ad), the set of ids of the nodes through which it has 

been routed (path), the time of origination (to, on the global clock) and setup (tlive, 

an absolute interval) of the call, and (depending on the information-sharing protocol 

used) a set of node state values Bk, ... ,z' The current global time is represented by t. An 

mp-type message contains, instead of the call source id, the id of the node where the 

loop starts. Also, on a given route, ai+1 (mT) (T can be r, c, d, or p) returns the agent 

id at a position one hop closer to the call destination ad (mT) than the current agent 

ai, while ai-l(mT) returns the id one hop closer to the call source as(mT)' However, 

as (mp) denotes the source of the loop and not the call source node. 

With this in place, figure 4.1 shows the agent activities. Upon reCeIVIng an mr 

(line 1), an agent (say, ad checks whether it has no unallocated bandwidth or the call 

forwarding process has lasted beyond the maximum setup time limit (line 2). In either 

case, the forwarding process is stopped and ai transmits an md (line 5), generated from 

mr (line 4) to refer the appropriate call represented by m r , to the previous agent. Upon 

receiving md (line 33), an agent frees up the pre-allocated call channel bandwidth (line 

34) and sends the same md to the previous agent (line 36) until as(md) is reached. 

If neither of the conditions in line 3 are satisfied, ai first checks if a loop has occurred 

(by checking if path(m) includes its own id). If it has (line 7), ai generates an mp-type 

message (line 8) and computes a penalty p = (-1)0.9X+l (line 10), where x is the hop 

count from ai to the end ofthe loop (i.e., where the loop was first detected). This penalty 

amount is added to mp (line 11). Also, the source node id in mp is set to be the id of 

the node where the loop was detected (line 12). Then this mp message is transmitted 

to the previous agent on the loop (line 13). Upon receiving an mp-type message (line 

50), ai uses the penalty in mp to update its prior Q-estimate of the destination node; 

depending on whether the algorithm used is TPOT-RL or not, one of the updates (line 

52 or 54, respectively) gets executed. Subsequently, if ai is not the agent where the loop 

was detected (line 55), it computes a new penalty which is an exponentially decreasing 

function of the distance of that node from the loop end, adds this to m p , and de-allocates 

the pre-allocated bandwidth for this call (line 57). Finally, it transmits the mp to the 

previous agent (line 58). The intuition here is that the further a node is from the loop 

end, the less it is responsible for causing the looping to occur. Hence, the lower the 

penalty it gets. 1 

After checking for cycles, ai then checks if it is the destination of the current call 

(line 14). If it is, it will allocate one bandwidth unit (line 16) and send an mc (generated 

from mr for reasons cited before) to the previous agent on the route of this call (line 21) 

lIn our experiments, we have observed that this heuristic substantially reduces the number and size 
of loops. Hence, it effectively reduces wasteful use of resources, since loops represent redundant portions 
of a call path. 
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I jfar a message m in control channel Ci of agent ai 

1. if(mr) II CALL FORWARD MESSAGE 
2. if (s(i) == 0llt > (tD(m r ) + tlive(m r ») II no available bandwidth 
3. II or, time exceeded setup time 
4. md t- deriveFrom(mr);//generate drop call message 
5. in!orm(ai_l(mr ),md); II inform drop call to previous agent 
6. else 
7. if(loop( m r » II loop detected in current call route 
8. mp +- deriveFrom(m r ); Ilgenerate penalty message 
9. x +-- mp .1oopEndH opCount(az);j jdistance of Ui from the loop end 
10. penalty = (-1 )0. 9"+ ';llpenalty amount, x = 0 for the first loop agent 
11. mp.addPenalty(penalty); 
12. mp .setS ourceN ode (ai); / /set the source node id to the node where the loop was detected 
13. in!oT171(ai_l(m r ),mp);//penalise previous loop agent 
14. if(ad(mr) == ail Iithis node is the destination 
15. me +-- deriveFrom(mr);//generate connect call message 
16. alloca te U nitBandwidth( me); 
17. if PTC Iisee sections 4.3.1, and 4.3.2 
18. append sri) to me; 
19. if TPOT-RLllsee section 3.2.3 
20. storeM essage (TnT');/ / accumulate estimates 
21. inform(ai_l (TnT), me);! / inform connect to previous agent 
22. else 
23. / / select a neighbour based on Q-estimates for the given destination 
24. aj +- selectNeighbour(Qi,ad(m r »; 
25. preAllocateCall (mr); II pre-allocate bandwidth 
26. if TPOT-RL 
27. append Qi(ei,-i+l,ad(mr ),ai+l) to Tn1';/1 send own estimate 
28. inform(aj, m r );// forward call to selected agent 
29. if QR Iisee section 3.2.2 
30. / jselected neighbour aj returns its local estimate of bandwidth availability 
31. Ej(ad(mr » +- min(s(j), max Qj(ad(m r ), ak)) 

Uk EKj 

32. Qi (ad(m r ), aj) +- (1 - U)Qi (ad(m r ), aj) + uEj (ad(m r »; 
33. else if(md) II DROP CALL MESSAGE 
34. deAllocateCall(md);llde-aliocate bandwidth 
35. if(ai # as (md» Ilif not source 
36. in!orm(oi_1(md),md); 
37. else if(me) II CONNECT MESSAGE 
38. if TPOT-RL and m~/lreward message in TPOT-RL 
39. Ri f- computeReward(Bai+lCm~), ... ,ad(rn~»; 
40. Qi (ei,i+1, ad(m~), ai+ICm~) +- (1 - U)Qi (ei.i+1, ad(m~), ai+1 (m~» + aRi; 
4L else 
42. al/ocateUnitBandwidth(me); 
43. if PTC Iisee sections 4.3.1, and 4.3.2 
44. / / compute reward using own estimate and others' 
45. Ri +- comp uteReward(Bai+1 ); 

46. Q,(ad(mcJ, ai+ICme» +- (1 - U)Qi ai+1 (me» + URi; 
470 append sCi) to me; 
48. if(Oi # as (me» Ilif not source 
49. injorm(ai_l(mcLmc); 
50. else if(mp) II PENALTY MESSAGE 
51. if TPOT-RL 
52. Qi(ei,i+1, ad(m p ), ai+1 (mp») +- (1 - U)Qi (ei.i+1, ad(m p ), ai+1 (mp» + amp.penalty; 
53. else 
54. Qi (ad(mp), ai+1 (mp» +- (1 - U)Qi (ad(mp), ai+" (mp») + amp .penalty; 
55. if(ai #as(m p » 
56. d +- 'm p .loopEndH opCount(ad;lldistance of ai from the loop end 
57. penalty = (_1)0.9d+ 1 ; mp.addPenalty(penalty); deAllocate(mp);llde-aliocate bandwidth 
58. in!orm(ai_1(mp ),mp ); 
59. if TPOT-RL Iitasks specific to TPOT-RL 
60. monitorLinkUsage(Kd; Ilmeasure usage of aIl1i,j' aj E Ki 
61. if(t % update-interval == 0) 
62. for all accumulated mr 
630 m~ +- deriveFrom(mr ); Ilcreate reward message 
64. injorm(ai_l(mr ), m~); I/transmit upstream along this 7n r 'S route 
65. t + 1; 

Figure 4.1: Agent actions in response to various message types 
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to continue this process of allocation (line 42) and sending the message (line 49) until 

as(me ) is reached; at which point a complete circuit is established. However, if an agent 

uses the TPOT-RL algorithm, before sending the me (line 21), it stores the estimates 

obtained along with the mr (line 20); how such estimates are propagated in TPOT-RL 

is described shortly. 

In the two information-sharing heuristics that we have designed based on PTC (de

scribed in sections 4.3.1 and 4.3.2), an agent ai attaches its own node state (s(i)) to 

the message me (lines 18 and 47).2 Each path agent ai, using PTC, upon receiving an 

me that contains the node state information transmitted from other agents, computes a 

reward Ri as a function of the set of communicated state values Bai+l(mC), ... ,ad(mC) con

tained in me (line 45). Sections 4.3.1 and 4.3.2 define two heuristics for calculating this 

reward value. In either case, however, the reward is used to update the prior Q-estimates 

(line 46). The update rule follows standard Q-learning, where CY is the learning rate. 

Thus, the agents cooperatively share their local information to one another to improve 

their estimates of the unobserved node states. 

On the other hand, if ai is not the destination for this call, it selects one of its 

neighbours (excluding the one from which it received the m r ) to forward the call request 

(line 24). This is done by defining a probability distribution over ai's set of Q-estimates 

of its neighbours. In particular, the probability of selecting a neighbour aj is given by: 

(4.1) 

Note that equation 4.1 refers to the selection mechanism when PTC or QR is used. If 

TPOT-RL is used, then, Qi (ei,j , ad(m), aj) replaces the Q-values in equation 4.1. Here T 

is the "temperature" parameter and controls how much the relative differences between 

various Q-estimates would affect the relative probabilities of selection (the smaller the T, 

the larger the skewness). This is a standard heuristic (Boltzmann exploration (Watkins, 

1989)) to probabilistically choose between alternative options. Subsequently, ai pre

allocates a bandwidth unit of its call channel (line 25) and forwards mr to aj (line 28). 

In the QR algorithm, the selected neighbour aj responds to ai with its own estimate 

E j (ad( m r )) of bandwidth availability on routes to the destination ad (mr) (line 31) which 

is equal to min(s(j), max Qj(ad(mr ), ak)) (refer to section 3.2.2). The requesting agent 
ak ElCj 

ai uses this estimate Ej(ad(m)) to update its prior estimate Qi(ad(m),aj) (line 32). In 

2The PTC principle advocates information distribution only after task completion. However, a task 
execution process can fail (e.g., call routing failing in our example application). Note that in this 
situation, PTC can use the task failure as the event to trigger information distribution. We have used 
this concept and introduced information distribution after call failures (see chapter 5). In so doing, we 
have observed that the bandwidth allocation quality is better than distributing information only after 
call successes. 
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TPOT-RL, ai appends its Q-estimate to the mr (line 27) before forwarding the latter to 

aj. This is how the sequence of estimates gets propagated along with the call forwarding 

request in TPOT-RL. 

Now we describe a number of activities that an agent performs only if TPOT-RL 

is used. First, ai monitors the link usage levels for all its neighbours (line 60). This 

information is used to compute the value of ei,j (j E Ki ), as described before. Second, 

every update-interval time steps (line 61), ai starts sending reward messages along 

the paths of those calls that terminated at ai during that period (for those mr's that 

it had stored during that period). Specifically, these reward messages are analogous to 

the me type message, except that no bandwidth is allocated when an agent receives 

one (as opposed to bandwidth being allocated when an me is received (line 38)). To 

distinguish from me, we denote these messages as m~ for our description in figure 4.1. 

Every update-interval, for each m T stored over the past interval, ai creates an m~ 

(line 63) and sends this to the neighbour (line 64) which is the immediate upstream 

node along that call path. Upon receiving an m~, an agent computes a reward using an 

aggregation of the information of the subsequent path nodes (line 39) (similar to PTe) 

and updates its Q-values with this reward (line 40) before sending the m~ upstream. 

It should be noted here, the information used by the agents to compute the reward 

in TPOT-RL are the Q-estimates that the agents had appended while forwarding the 

m r . Therefore, the set Bai+l(mn, ... ,ad(m~) in line 57 represents estimates and not actual 

node states. We have used the same aggregation method for TPOT-RL as described in 

section 4.3.2. 

The above discussion corresponds to a more detailed description of the general do

main description of section 3.1. As identified in that description and observed in the 

above system description, the decision to select a specific neighbour to forward a call 

is critical in determining how effective the system is in successfully routing calls. Since 

this decision is taken based on the Q-estimates, the more accurately they reflect the true 

node bandwidth availabilities, the better informed are the decisions taken by an agent. 

It is emphasised that information-sharing plays a key role in determining the estimation 

accuracy. In the following, we formulate two simple heuristics of PTe that are used to 

define the computeReward function in our simulations. 

4.3 PTC Information-Sharing Heuristics 

The discussion on agent interactions in section 4.2 explains how the agents using PTe 

delay transmitting the information until a call is connected. In this case, the agents 

along the call path can aggregate the information received from those "downstream" 

and pass on that information to the previous path agent. We have formulated two 

simple heuristics for information aggregation based on PTe, viz., to average the state 
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estimates (termed PTC-A) and to take the minimum state estimate (termed PTC-M). 

These are described in the following. 3 

4.3.1 PTC Inform Average Capacity (PTC-A) 

In figure 4.1, upon receiving the me, an agent using the PTC-A heuristic computes a 

reward value Ri by averaging the states of all nodes on the route from ai to ad as: 

L: s(k) 
kE{i+l, ... ,d} 

Ri = L(i, d) (4.2) 

where L(i, d) is the hop count on this route from ai to ad. This describes how the 

function computeReward of figure 4.1 is implemented. Subsequently, this reward is used 

to update its prior Q-estimate. Thus the estimates are updated with the information 

about the resource usage on the "downstream" nodes on the path of this call. 

4.3.2 PTC Inform Minimum Capacity (PTC-M) 

This is similar to PTC-A: but instead of average available capacity, the minimum avail

able capacity is used as reward. For example, agent ai using the PTC-M heuristic 

computes the reward as: 

Ri = min(s(i + 1), ... , s(d)) (4.3) 

This is a more conservative estimate of bandwidth availability than the average capacity 

model. Thus it has the advantage that the probability of a dropped call due to agents 

overestimating the bandwidth availability is reduced. This heuristic is also used to 

aggregate estimates in TPOT-RL in our experiments. 

4.4 Experimental Setup 

Based on the scenario discussed in section 4.2, we have conducted a series of experiments 

to empirically evaluate the effectiveness of PTC compared to the benchmarks (QR and 

TPOT-RL). In this section, we start by enumerating the measures chosen as indicators 

of system performance. Subsequently, the results obtained from the experiments on 

these measures are analysed. 

3Here, it should be noted that the formal analysis in section 3.3 is based on the agents having 
separate estimates of individual agents. Maintaining an aggregate estimate on a set of agents, however, 
reduces the computational complexity at decision time in our simulations. Alternatively, for example, 
with estimates of individual nodes, the run-time complexity of determining the least cost path between 
any two nodes is quadratic in the number of nodes in the graph (the worst case run time of Dijkstra's 
single-source shortest path algorithm (Carmen et al., 2001)). 
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4.4.1 Performance Measures 

The following measures are chosen to evaluate the performance of a given communication 

protocol in a TN. 

4.4.1.1 Number of Successful Calls 

The overall objective of the cooperative agent network is to maximise the number of 

successfully routed calls, given the set of resources (call-channel bandwidth) available, 

the rate at which new calls originate, and the duration calls remain connected (hold up 

resource). Thus, the average number of successful calls determine how successful a given 

protocol has been given the above parameter values. In our system, we record the total 

number of calls that have originated (NO) and the total number of those calls that have 

been successfully routed (NC). Thus, the value x = NC/NO determines the fraction 

of successful calls routed over the time period in which the measurements are taken. 

In addition to measuring the number of calls successfully routed, we keep track of the 

number of calls that could be connected if the agents had global knowledge about the 

network bandwidth availability and if call routing could be done instantaneously. This 

is computed by globally searching for the availability of a path for each call. This search 

is done instantaneously at the beginning of each simulation time step. We term this 

essentially idealistic procedure the "Instantaneous Zero Delay Search" (IZDS). Since, 

in practice, it takes a finite number of time steps to connect a call, the IZDS is repeated at 

every time step until either it finds a path or the call is dropped/connects. 4 In case of the 

former outcome, the NCizds count is incremented by 1. The value Xizds = NCizds/NO 

gives a hard upper limit to the call success rate under the given conditions. 5 The 

various strategies are compared both against the absolute success rate (x) values and 

the percentage deviation of success rate from IZDS, (Xizds - X)/Xizds. It is infeasible 

for any practical system to attain the IZDS success rate because, in practice, there is a 

finite amount of delay to connect a call as opposed to the instantaneous connection in 

IZDS. Also, the agents in a practical system attempt to connect a call by forwarding it 

one hop at a time based on their individual estimates of the world states. IZDS, on the 

other hand, takes a global and accurate view of the entire network to find the least cost 

path. 

4Thus, IZDS is guaranteed to find a path if one is found by the actual routing algorithm, but not 
necessarily vice versa. 

5Note, IZDS is not an optimal measure. Since it tries to connect a call as soon as one originates, it 
is essentially a greedy strategy. Some other scheduling strategy, say that uses some form of lookahead 
before attempting to place a call, may outperform IZDS. 
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4.4.1.2 Successful Routes of Different Lengths 

The call success rate metric, described in section 4.4.1.1, measures the overall rate 

of successful calls in the system. This is an important performance measure because 

it indicates how the system performs at a broad scale. So it is an indicator of how 

successful a communication protocol is in improving the system performance. However, 

it does not indicate how effective the protocol is at connecting calls at a given distance 

(since the success rate metric counts all calls in the system). 

In our case, calls can be required to be routed to destination nodes that are at various 

distances from the nodes of origin. Calls destined for nodes that are at short distances 

are relatively easier to route than those further away. This is because more accurate 

estimates of the load at nodes that are nearer can be maintained. As shown in the 

analysis of section 3.3, the farther an agent, the longer is the delay for the information 

to arrive and, thus, the less up-to-date are the estimates. Therefore, it is less probable 

for a call to be routed successfully to such a distant node. A communication protocol 

that allows better success rates at longer distances can, therefore, be considered more 

competent than another that achieves a poorer success rate at long distances (all other 

conditions being equal). 

Thus we measure the number of successful call connections for various distances 

between the call source and destination nodes. More specifically, the minimum hop count 

(say, d) between the source and destination of a call is computed (global knowledge of 

the network topology is used to measure this distance) and the success counter (NCd ) of 

calls at distance d is incremented if such a call is successfully connected. In this manner, 

a success rate for calls at a distance d can be computed as Xd = Ned/NOd, where NOd 

stands for the number of calls originated with a source-destination distance of d. For 

different values of d, therefore, the different Xd values could be used to compare the 

ability of different communication strategies to place calls at different lengths. 

4.4.1.3 Reward Information Messages 

The agents in our system use different message types for communication (section 4.2 

enumerates these). However, the most important among these are the ones that carry the 

reward information by which the state value of one agent is transmitted to another. This 

is because using this information, the agents update their prior estimates of the network 

load level. Therefore, these messages contribute directly to the quality of learning and 

to the overall performance of the system in allocating resources to place calls. In QR, 

for example, this is the message that an agent receives from its neighbour after handing 

over to the latter a call forwarding request (see section 3.2.2 for details). Therefore, 

at each call forwarding step, a new message is generated by the contacted agent and 
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Figure 4.2: A 36-node irregular grid topology 

transmitted to the contacting agent. In the PTC-based models, on the other hand, these 

are the me type messages, transmitted after a call connects, that contain the summary 

reward information (sections 4.3.1 and 4.3.2 have the details). Note, this is only one 

message generated by the destination node after every successful routing and transmitted 

upstream along the call path. 6 Although several other types of messages (e.g., m r , mp , 

and md) are exchanged between the agents, it is the messages that contain the reward 

that affect the learning quality the most. On the other hand, in our implementation 

of TPOT-RL, an agent, while forwarding a call, transmits along with the call, its own 

estimate of the bandwidth availability along paths to the call destination. Subsequently, 

this information is used to update the Q-values of the agents (see section 4.5 for details). 

Therefore, these messages affect the learning of agents in the way that me does in PTC. 

Hence, the message rate for TPOT-RL is measured by counting these messages. 

The number of such messages can, therefore, be used as a measure of the efficiency 

of a given communication protocol - the lower the number of messages, the higher is 

the efficiency (assuming a given value of some other performance measure such as call 

success rate). More specifically, the total number of information exchanges (represented 

by m, say) for transmitting the agents' state values to one another is computed at every 

T time steps during a simulation. The value r = miT, therefore, gives the rate of 

messages transmitted in the entire system during the interval T. The total simulation 

is divided into several intervals and the values of r over each such interval generate an 

overall time-variation of the message rate. The different communication strategies are 

then compared against various message rates. 

61n chapter 5, we investigate a modified version of the PTC-based heuristics where information is 
shared after a call fails in addition to a call successfully connecting. A whole new set of capabilities, 
those of adaptiveness to failures and diagnosing failures, that are not present in the current strategies 
are achieved by this modification. 
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(a) 50 node random graph (b) 100 node random graph 

Figure 4.3: Random network topologies 

4.4.2 Network Characteristics and Experimental Parameters 

Experiments are conducted on a number of different network topologies. In the following, 

we report our results and observations based on some of those. Figures 4.2 and 4.3 show, 

respectively, a 36-node irregular grid and two randomly generated topologies - a 50-

node random graph (figure 4.3(a)), and a 100-node random graph (figure 4.3(b)). The 

36-node irregular grid topology has been used in previous papers on the application of 

RL in network routing (see section 2.2 for a discussion on these papers) and thus we 

chose it to make valid comparisons. To verify our conclusions across a wider range of 

topologies, we tested the same against random graphs (figures 4.3(a) and 4.3(b) show 

two such examples) of different sizes. 7 In all figures, the nodes are numbered for ease 

of reference. The edges between nodes indicate that those nodes are within each other's 

radio range. Note that the random graphs are designed such that any node is linked to 

only those within a certain maximum radial distance which simulates the transmission 

range of wireless nodes. 

The following parameter values were used for all experiments reported henceforth 

(unless otherwise stated): learning rate a = 0.03, Boltzmann exploration temperature 

T = 0.1, call setup time (tlive) of 36, 50, and 100 time steps for the topologies in 

figures 4.2, 4.3(a) and 4.3(b), respectively. We allowed for a larger call setup time in 

the bigger topologies to give allowance for the larger size of the networks. An average 

7Various other topologies were used with varying number of nodes and connectivity patterns and the 
same general trends in the results were observed. Hence, here, we report on three sample topologies. 

9 
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call duration of 20 times the setup time was used. The "load" in the network is set by 

assigning a probability with which calls originate at every time step in the network. This 

call origination probability was varied to study the effect of different network loads on the 

performance. Calls were allowed to originate and terminate on any randomly selected 

node. We have tested the strategies using both (i) a constant-load simulation where the 

call origination probability is maintained the same throughout a simulation run, and (ii) 

a dynamically changing load simulation where the call origination probability is changed 

during the course of a simulation run. We have used different numbers and values of 

the call origination probability changes in a single simulation run to test the effect of 

various degrees of load fluctuations on the performance of PTC, QR, and TPOT-RL. In 

these dynamic settings, the call origination probability is changed at equal intervals in 

a simulation run. A single simulation run lasted for 500,000 time steps for the topology 

in figure 4.2, for 1,000,000 time steps for the topology in figure 4.3(a), and for 2,000,000 

time steps for the topology in figure 4.3(b). Results are averaged over 10 simulation 

runs (these figures are statistically significant at the 95% confidence level). Also, every 

node had a maximum call channel capacity of 10 units. 

4.5 Results and Analysis 

In this section, the performance of QR, PTC-A, PTC-M, and TPOT-RL are compared 

against the measures described in section 4.4.1. Specifically, results on the overall success 

of the various communication heuristics in connecting calls is presented in section 4.5.1, 

the effectiveness of these heuristics in successfully connecting long-distance calls is shown 

in section 4.5.2, and the overhead due to communicating messages is analysed in sec

tion 4.5.3. 

4.5.1 Performance Call Success Rate 

We anticipate that the higher the accuracy of learned estimates of unobserved states, 

the more capable the agents will be of routing calls to the destination via the most 

appropriate paths. Hence, in turn, the higher will be the call success rate and the lower 

the deviation from the IZDS success rate. In the following, the results from constant 

load are presented first followed by those obtained from dynamically varying load. 

4.5.1.1 Constant Load. 

We experimented with all strategies to calculate: (i) the call success rates, and (ii) the 

percentage deviation of the measured success rate from the IZDS, under steady state 
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conditions (i.e, when the call throughput in the system reached a steady value).8 The 

average success rate and the average IZDS success rate, both computed during the steady 

state phase of the simulation, are further averaged over 10 simulation runs for a given 

value for the call origination probability. Further, call success rate is measured against 

various call origination probabilities to test the impact of network load on the success 

rate. These measurements are repeated for each of the three topologies. 

Table 4.1: Call success rates for all strategies topology of figure 4.2 

Load 
QR PTC-A PTC-M TPOT-RL 

Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS 

0.1 50.94 0.0048 72.66 50.98 0.0076 72.11 51.85 0.0052 70.25 25.74 0.0022 99.57 
0.2 32.41 0.0034 60.69 32.64 0.0037 60.56 33.02 0.0039 58.86 19.94 0.0016 97.65 
0.4 19.99 0.0018 55.37 20.27 0.0021 55.23 20.38 0.002 52.79 14.82 0.0009 89.44 
0.6 14.87 0.0012 54.87 15.07 0.0011 53.44 15.08 0.0014 50.6 11.52 0.0012 85.2 

Table 4.2: Call success rates for all strategies - topology of figure 4.3(a) 

Load 
QR PTC-A PTC-M TPOT-RL 

Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS 

0.1 57.31 0.0042 81.75 58.15 0.0052 81.67 58.49 0.0052 80.9 12.18 0.0027 99.99 
0.2 37.11 0.002 69.75 37.32 0.0028 68.73 37.65 0.0026 68.33 10.21 0.0011 99.8 
0.4 22.98 0.0012 61.44 23.35 0.0012 62.6 23.51 0.0013 60.43 7.46 0.0007 99.8 
0.6 17.17 0.001 58.8 17.47 0.0009 61.29 17.49 0.0008 57.53 6.11 0.0004 99.8 

Table 4.3: Call success rates for all strategies topology of figure 4.3(b) 

Load 
QR PTC-A PTC-M TPOT-RL 

Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS Avg Stdev IZDS 

0.1 35.79 0.0032 66.52 35.86 0.0034 65.58 37.34 0.003 62.65 8.53 0.0031 99.88 
0.2 24.17 0.0017 57.41 24.56 0.002 59.18 24.8 0.0014 54.27 6.12 0.0013 99.83 
0.4 15.88 0.0011 54.01 16.16 0.0007 55.53 16.18 0.0008 50.72 4.79 0.0006 99.9 

In more detail, table 4.1 shows the average steady state success rates achieved by 

the different strategies and by IZDS used alongside these strategies for different network 

loads (call origination probabilities) in the topology of figure 4.2. Tables 4.2 and 4.3 

show the same measurements for the topologies in figure 4.3(a) and 4.3(b), respectively. 

8Note, our TN application represents a dynamic system where node bandwidth availability changes 
with time (new calls are placed and existing calls terminate). The Q-values estimate the bandwidth 
availability. So, as bandwidth availability changes, so do the Q-values. However, the call success rate is 
an overall system measure which reaches a steady state when a constant call origination probability is 
used. 
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The results indicate that the average steady state call success rate (shown under column 

"Avg" in these tables) achieved with PTC-M dominates that of the other strategies under 

different network loads. For example, in table 4.1, when the load is 0.1, PTC-M achieves 

a steady state average call success rate of 51.85%, PTC-A achieves 50.98%, QR 50.94%, 

and TPOT-RL 25074%. As indicated by the analysis of section 3.3, PTC maintains more 

up-to-date information of the network states. Thus, using PTe, the agents are capable 

of taking better informed decisions of forwarding a call which, in turn, ensures a higher 

likelihood of successful connections. This is reflected in the (statistically significant) 

higher call success rate achieved by PTC-M over all other strategies. In particular, 

since the minimum-capacity heuristic restricts overestimation of the node bandwidth 

availability, it generates a slightly better success rate than the average capacity heuristic. 
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We have also measured the improvements in the success rate values achieved from 

the PTC-based information strategies relative to those of QR and TPOT-RL. To do 

so, first the success rate deviation from IZDS is computed as P = (Xizds - X)/Xizds 

(see section 4.4.1.1). Subsequently, PPTC-M and PPTC-A are compared to PQR and 

PTPOT-RL as: (PQR - PPTc)/PQR and (PTPOT-RL - PPTC)/PTPOT-RL, respectively. 

The graphs in figure 4.4 show the relative improvements of the average success rate 

deviation from IZDS achieved by using PTC over QR (figure 4.4(a)) and over TPOT

RL (figure 4.4(b)) when the topology in figure 4.2 is used. Note that in this figure 

a greater negative value indicates less of a deviation from the IZDS relative to QR or 

TPOT-RL, and, hence, a better performance of PTC. From these graphs, a significant 

improvement is observed in PTC-M relative to both QR and TPOT-RL under different 

values of network load (statistical significance is tested at the 95% confidence level). 

For example, (see the row corresponding to "Load" = 0.1 in table 4.1) with a call 

origination probability of 0.1, the deviation of the call success rate from the IZDS is 

26.2% (= (70.25 - 51.85)/70.25) for PTC-M and 29.9% (=(72.66 - 50.94)/72.66) for 

QR. Therefore, the success rate due to PTC-M is 12.37% (=1 (26.2 - 29.9)/29.9 I) closer 

to IZDS relative to that of QR. The deviation of the success rate of PTC-A from IZDS 

also remains lower relative to that of QR in figure 4.4(a). Similarly, comparing PTC

M with TPOT-RL at the same load level, PTC-M achieves a 26.2% deviation from 

IZDS while the corresponding figure for TPOT-RL is 74.15% (=(99.57 - 25.74)/99.57). 

Therefore, the success rate due to PTC-M is 64.66% (=1 (26.2 - 74.15)/74.15 I) closer 

to IZDS relative to that of TPOT-RL. The performance of PTC-M dominates that of 

PTC-A because of the conservative nature of the minimum capacity heuristic compared 

to the average capacity (as stated above). These results further strengthen our analysis 

in section 3.3 that by providing better quality estimates, PTC performs better than QR. 
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An additional observation is that with increasing load, the relative improvement of 

PTC over QR and TPOT-RL reduces. Thus, in figure 4.4(a), the improvement of PTC

Mover QR is 12.37% with load of 0.1, while it is 3.7% with load of 0.6. Similarly, in 

figure 4.4(b), PTC-M is 64.66% better than TPOT-RL at load 0.1, but 18.82% bet

ter at load 0.6. Note that an increase in load implies reduction in the time between 

successive task processing episodes since calls originate more frequently with increased 

load. As explained in section 3,3, the smaller the value of the interval between successive 

task processing episodes, the less is the difference between the timeliness of information 

distribution of PTC and NN. In this context, we notice that with increasing load, the 

success rate deviation of PTC-A from IZDS is slightly higher than that of QR (see fig

ures 4.5(a) and 4.6(a) where the "PTC-A / QR" plots show positive values at higher 

loads). Now, since IZDS is executed on a network simultaneously with the given commu

nication heuristic (PTC, QR, or TPOT-RL), its performance is affected in a way that 

depends on how the heuristics perform. Thus, although the deviation of call success rate 

of PTC-A from that of IZDS is slightly higher than that of QR in some of the cases, it 

does not necessarily indicate a poorer performance of PTC-A compared to QR. More

over, we have shown in tables 4.2 and 4.3 that PTC-A always generates a higher call 

success rate than QR, thereby establishing a superior performance of PTC-A. Hence, 

although the performance differences between PTC and the other strategies decrease 

with an increase in the load, PTC still maintains a clear advantage. 

We observe identical trends in the performances ofPTC-M relative to the benchmarks 

with the other topologies. Figure 4.5 shows the results for the topology in figure 4.3(a), 

and figure 4.6 for the topology in figure 4.3(b). 

4.5.1.2 Dynamically Changing Load. 

In contrast to the steady-state call success rate measured with constant load, here we 

present the time-variation of the call success rate as the network load fluctuates. This 

captures the responsiveness of the system call success rate to dynamically changing load 

levels given a particular information-sharing protocoL To this end, figure 4.7(a) shows 

the time-variation of the call success rates of PTC-M, QR, and TPOT-RL as the call 

origination probability is increased from 0.1 to 0.6 in a simulation run using the topology 

of figure 4.2.9 It demonstrates that the PTC (in this case we show PTC-M; PTC-A is 

excluded from the results since it performs slightly worse than PTC-M and better than 

QR and TPOT-RL) call success rate remains the highest both when the load level is 

0.1 (before time = 50) and when it increases to 0.6 (after time = 50). The call success 

rates of all strategies suffer a drop with the increase in load level since the nodes have 

9We have experimented with all the other topologies under conditions of dynamically changing load. 
The broad patterns observed in the results are identical across all of them. Hence, we choose one sample 
topology to report our results in this thesis. 



66 Chapter 4 Empirical Evaluation of PTC in Telephone Network Routing 

only limited bandwidth to allocate calls, a result that we have observed previously with 

constant load (see table 4.1). We further experimented with multiple load fluctuations 

over a simulation run. Figure 4.7(b) shows the results when the load level changes 

between five different values: 0.1, 0.2, 0.4, 0.6, and 0.8 in that order. In all cases, PTC 

is observed to have the highest call success rate out ofPTC-M, QR, and TPOT-RL. Note 

that in these results, we have used two different types of load fluctuations: one large 

increase (0.1 to 0.6) and monotonically increasing. There can of course be several other 

patterns of load variations, such as random fluctuations or following specific probability 

distributions (e.g., Poisson) but these are not considered in this work. In this context, 

we identify that the impact of a load change is that the agents have to re-Iearn the 

new environmental condition so that calls can be placed effectively. The most severe 

case in this situation is that of increase in load because a higher load demands more 

efficient allocation of (limited) resources. Thus, having shown that PTC outperforms 

the benchmarks under this condition, we envisage that similar broad trends would be 

observed for other patterus. 
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Figure 4.7: Time variation of call success rates of QR, PTC-M, and TPOT-RL with 
network load fluctuations topology of figure 4.2 

N ow we aim to summarise the effects of dynamically changing load on the network 

call success rate given an information-sharing protocol. In so doing, we first designate 

the number of load levels in a simulation run as the "degree of dynamism". For ex

ample, figure 4.7(a) has a degree of dynamism of 2 and figure 4.7(b) has 5 degrees of 

dynamism. Then, for a given degree of dynamism, we compute the percentage differ

ence of the call success rates of QR or TPOT -RL using PTC-M as the baseline as: 

(r~R - r~TCM)/r~TCM' and (rfrpoTRL - r~TCM)/r~TCM' where rt is the time-varying 

call success rate. Note that this difference measure is also time-dependent. To sum

marise the improvement of call success rate using PTC-M, we find the minimum, the 

mean, and the maximum of this difference over every time interval during which the 
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Figure 4.8: Summary statistics of call success rate differences between QR and PTC-M 
with network load fluctuations - topology of figure 4.2 

load-level remains constant. These statistics present the call success rate improvement 

range within the time interval when the load remains at a certain level. Subsequently, 

the means and the standard deviations of each of the minimum, the mean, and the 

maximum differences over all such intervals are computed. This step generates the sum

mary of the different improvement ranges across all such intervals. For example, in 

figure 4.7(a), the minimum, mean, and maximum percentage differences are computed 

in the interval where load = 0.1 and in the interval where load = 0.6. Subsequently, the 

mean and standard deviations of these two sets of difference statistics are computed. 

Figure 4.8 shows the above-mentioned measures for all degrees of dynamism used in 

our experiments when QR is compared to PTC-M. Since TPOT-RL is always observed 

to achieve a lower call success rate rate than both PTC-M and QR, we exclude the 

summary comparison of TPOT-RL with PTC-M. Along the horizontal axis of figure 4.8 

is the degree of dynamism while the summary statistics of the percentage success rate 

difference are along the vertical axis. In this figure, a degree of dynamism 2 indicates the 

load level is changed from 0.1 to 0.2; 3 indicates a change of 0.1, 0.2,0.4; 4 indicates 0.1, 

0.2, 0.4, 0.6; and 5 indicates 0.1, 0.2, 0.4, 0.6, 0.8. The negative values of the call success 

rate differences indicate rhR is lower than that of T~TCM' The figure shows that the gap 

between the minimum and the maximum differences reduces with the number of degrees 

of dynamism. For instance, this gap is approximately 8% with degree of dynamism 2, 

and it is about 4.5% when the degree of dynamism is 5. This is because, with a higher 

number of load changes within a given simulation run, there is less time for any strategy 

to re-learn the changes in the environment. Hence, the call success rates do not attain 

their steady state values (as in table 4.1). Nevertheless, the average statistics of the 

call success rate differences show that PTC-M achieves a significantly higher call success 

rate across all degrees of dynamism. For example, this is about 10.2% with 2 degrees of 

dynamism and 9.5% with 5 degrees of dynamism. 
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Table 4.4: Call success rates at various distances - topology of figure 4.2 

Load Strategy 
Min hop count 

1 2 3 4 5 6 7 8 9 10 
QR 0.87 0.76 0.63 0.51 0.42 0.37 0.355 0.343 0.344 0.34 

0.1 
PTC-A 0.863 0.748 0.632 0.516 0.426 0.374 0.355 0.345 0.348 0.354 
PTC-M 0.857 0.753 0.643 0.534 0.438 0.381 0.362 0.356 0.353 0.365 

TPOT-RL 0.633 0.532 0.356 0.218 0.164 0.148 0.126 0.094 0.071 0.059 
QR 0.785 0.592 0.44 0.31 0.222 0.178 0.158 0.147 0.147 0.139 

0.2 
PTC-A 0.773 0.583 0.44 0.315 0.231 0.181 0.164 0.155 0.151 0.151 
PTC-M 0.768 0.583 0.444 0.326 0.237 0.187 0.168 0.155 0.151 0.152 

TPOT-RL 0.584 0.462 0.266 0.139 0.101 0.098 0.086 0.066 0.056 0.048 
QR 0.693 0.421 0.266 0.161 0.103 0.074 0.064 0.0563 0.053 0.05 

0.4 
PTC-A 0.675 0.417 0.272 0.17 0.111 0.081 0.068 0.06 0.055 0.058 
PTC-M 0.667 0.416 0.274 0.177 0.113 0.081 0.068 0.061 0.057 0.057 

TPOT-RL 0.496 0.375 0.198 0.086 0.059 0.063 0.054 0.04 0.037 0.029 
-. 

QR 0.632 0.326 0.185 0.103 0.062 0.045 0.037 0.03 0.029 0.027 

0.6 
PTC-A 0.61 0.323 0.19 0.111 0.068 0.047 0.04 0.035 0.032 0.03 
PTC-M 0.596 0.322 0.194 0.113 0.069 0.049 0.039 0.035 0.032 0.03 

TPOT-RL 0.418 0.301 0.148 0.065 0.043 0.046 0.037 0.023 0.015 0.013 

These observations reinforce our hypotheses that, under the given simulation en

vironment, the post task-completion information-sharing model with minimum-capacity 

reward achieves the best call success rate among all strategies under different network 

loads under conditions of both static and dynamically fluctuating loads. For example, 

with constant load, the deviation of the success rate from the IZDS is up to 12.37% 

lower in PTC-M than QR, and up to 65% lower in PTC-M than TPOT-RL. Further, 

with dynamically changing load, PTC-M achieves an average 10% improvement in call 

success rate over QR with five different load-level changes in a simulation run. 

4.5.2 Performance - Success Rate for Calls of Different Lengths 

The call success rate values reported in section 4.5.1 indicate better performance ofPTC

Mover QR and TPOT-RL. In addition, to measure the effectiveness of an information

sharing heuristic in connecting a call to a destination that is at a given distance from the 

source, the measure Xd (see section 4.4.1.2 for its definition) is measured for increasing 

values of d. Results from the constant load experiments are reported in this section. 

With dynamically changing load, the summary statistics (as described in section 4.5.1) 

of call success rates indicated better performance of PTC than the benchmarks for all 

values of d. Since we have already shown the better success rate of PTC under dynamic 

load conditions in section 4.5.1, we have excluded the call success rates at different 

distances under the same conditions in this section. 

In more detail, tables 4.4, 4.5, and 4.6 show the values of Xd for different values 
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Table 4.5: Call success rates at various distances - topology of figure 4.3(a) 

Load Strategy 
Min hop count 

1 2 3 4 5 6 7 
QR 0.886 0.761 0.6 0.504 0.428 0.379 0.353 

0.1 
PTC-A 0.876 0.746 0.586 0.495 0.426 0.381 0.365 
PTC-M 0.873 0.753 0.601 0.511 0.443 0.398 0.369 

TPOT-RL 0.187 0.129 0.11 0.102 0.104 0.139 0.203 
QR 0.774 0.57 0.371 0.268 0.197 0.161 0.141 

0.2 
PTC-A 0.77 0.561 0.369 0.265 0.2 0.163 0.145 
PTC-M 0.766 0.564 0.375 0.272 0.207 0.173 0.159 

TPOT-RL 0.214 0.127 0.085 0.065 0.055 0.06 0.061 
QR 0.653 0.383 0.203 0.12 0.782 0.58 0.492 

0.4 
PTC-A 0.648 0.385 0.208 0.126 0.828 0.631 0.53 
PTC-M 0.64 0.384 0.212 0.13 0.87 0.662 0.545 

TPOT-RL 0.202 0.109 0.054 0.025 0.021 0.024 0.048 
QR 0.58 0.286 0.133 0.712 0.428 0.305 0.249 

0.6 
PTC-A 0.566 0.289 0.14 0.781 0.481 0.347 0.287 
PTC-M 0.557 0.287 0.143 0.802 0.504 0.371 0.305 

TPOT-RL 0.177 0.095 0.046 0.017 0.011 0.0070 0.0050 

Table 4.6: Call success rates at various distances - topology of figure 4.3(b) 

Load Strategy Min hop count 
1 2 3 4 5 6 7 8 9 10 11 12 

QR 0.894 0.755 0.616 0.452 0.324 0.247 0.208 0.175 0.149 0.12 0.087 0.082 

0.1 PTC·A 0.89 0.749 0.589 0.432 0.317 0.247 0.22 0.197 0.169 0.141 0.111 0.1 
PTC·M 0.88 0.728 0.598 0.443 0.336 0.267 0.238 0.223 0.191 0.164 0.124 0.122 

TPOT·RL 0.22 0.172 0.14 0.104 0.079 0.057 0.051 0.045 0.037 0.029 0.028 0.029 
QR 0.847 0.647 0.47 0.296 0.189 0.123 0.098 0.079 0.061 0.047 0.036 0.029 

0.2 
PTC·A 0.837 0.628 0.45 0.287 0.178 0.124 0.1 0.087 0.071 0.056 0.046 0.039 
PTC·M 0.823 0.622 0.448 0.292 0.192 0.136 0.109 0.096 0.086 0.066 0.053 0.046 

TPOT·RL 0.202 0.158 0.11 0.072 0.047 0.032 0.029 0.025 0.016 0.012 0.008 0.006 
QR 0.77 0.502 0.315 0.17 0.094 0.057 0.041 0.031 0.022 0.017 0.011 0.012 

0.4 
PTC·A 0.766 0.484 0.298 0.161 0.09 0.057 0.042 0.034 0.026 0.021 0.0145 0.015 
PTC·M 0.746 0.476 0.303 0.172 0.098 0.061 0.046 0.039 0.031 0.024 0.017 0.018 

TPOT·RL 0.189 0.141 0.09 0.056 0.034 0.02 0.0167 0.011 0.006 0.003 0.002 1.0E·4 
QR 0.71 0.4 0.225 0.112 0.06 0.03 0.024 0.018 0.012 0.009 0.006 0.005 

0.6 
PTC·A 0.706 0.393 0.216 0.109 0.057 0.031 0.025 0.0197 0.014 0.0117 0.008 0.0075 
PTC·M 0.688 0.386 0.221 0.113 0.061 0.036 0.028 0.023 0.017 0.013 0.009 0.008 

TPOT·RL 0.171 0.127 0.079 0.047 0.027 0.015 0.01 0.006 0.003 1.0E·4 1.0E·4 1.0E·4 
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of d (the "min hop count" 10) under different network loads for the topologies of fig

ures 4.2, 4.3(a), and 4.3(b), respectively. These tables indicate the following trends. 

For short distances, QR achieves a slightly higher (although, not statistically signif

icant at the 95% confidence level) success rate than PTC-M.11 However, the success 

rate achieved at longer distances with both PTC-M and PTC-A strategies far outper

form that of QR. Additionally, PTC performs better than TPOT-RL for all distances. 

To obtain a clearer picture of the relative advantage of the PTC-based strategies over 

QR and TPOT-RL in this context, we plot the relative improvement of Xd that is 

achieved by using the PTC strategies over QR and TPOT-RL, (xfTC-Y - x~R)/x~R 
and (xfTC-Y - xIPOTRL)/xIPOT-RL, respectively (where, Y can be A for the average 

capacity heuristic, or M for the minimum capacity heuristic). Figure 4.9 shows the 

percentage change of Xd achieved by using PTC-M over QR (figure 4.9(a)), PTC-A over 

QR (figure 4.9(b)), PTC-M over TPOT-RL (figure 4.9(c)), and PTC-A over TPOT

RL (figure 4.9( d)) at increasing values of the minimum hop count between call source 

and destination nodes in the irregular grid topology of figure 4.2. Each plot in each 

of these figures is for a different value of the call origination probability. The graphs 

of figure 4.10 and 4.11 show identical measures using the topologies of figure 4.3(a) 

and 4.3(b), respectively. 

Focusing first on figures 4.9(a) and 4.9(b), it is observed that, for a given call orig

ination probability, when the call destinations are very close to the call sources (i.e., 

when the "minimum hop count" axis has values of 1 and 2), QR performs slightly better 

than either PTC-M or PTC-A, indicated by the small negative deviation. For example, 

at load 0.6, QR achieves about a 5% improvement over PTC-M in connecting calls at 

nodes 1 hop away (see figure 4.9(a)). However, with increasing distances between the 

call source and destination nodes (i.e., where the "minimum hop count" is 3 and above), 

the rate of successful connections is much higher for the PTC-based strategies than QR 

(the deviation values are positive). For example, in figure 4.9(a), for a load value of 

0.6, PTC-M achieves more than 15% improvement over QR in the connection rate of 

calls that have their destinations at least 8 hops away from the sources. Also, this rela

tive improvement is observed to generally increase with increasing distance. Thus, the 

PTC information-sharing strategies are more effective in connecting calls for which the 

source and destination nodes are farther apart. In figures 4.9(c) and 4.9(d), PTC-M and 

PTC-A perform better than TPOT-RL at all distances and under all load values. 

To explain this advantage of PTC, note that although the call connection process is 

executed in steps by multiple agents who use their individual estimates to forward a call, 

laThe maximum value of the minimum hop count is the property of the corresponding network. 
llIn chapter 3, we showed that the delay associated with distributing information is lower in PTC 

than in NN. However, the difference reduces as the distance of the information source reduces (the value 
of k in equation 3.9). This is the reason why the call success rates of PTC and QR (which is based on 
the NN protocol) are almost similar at very short distances. 
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the forwarding decisions of the agents who are closer to the call origin are more critical 

in determining whether it will be successfully routed to the destination. This is because 

if these agents start forwarding a call in a direction where there is a high bandwidth 

occupancy on the nodes, then that will be a sub-optimal decision at the beginning of 

a task execution process. In this case, it is more likely that the call will be forwarded 

where there is no bandwidth left and, therefore, the forwarding process would terminate 

(the call would be dropped). With more up-to-date estimates achieved by PTC (as 

observed in the analysis of section 3.3), an agent is capable of taking better routing 

decisions in terms of forwarding in the appropriate direction than using QR. This is why 

we observe higher call success rates in the PTC-based strategies than QR when calls 

have to be routed at longer distances. Moreover, with increasing distance, successful 

routing becomes more difficult since the farther the destination the less up-to-date are 

the estimates. Given this, the increasing (more positive) deviation of the Xd values with 

increasing distance, as observed in figure 4.9, indicates that PTC is more capable (less 

affected) than either QR or TPOT-RL to route calls at long distances. PTC-M is more 

effective in placing long-distance calls than PTC-A although both are better than QR 

and TPOT-RL. This is evident by the slightly higher positive deviation of PTC-M over 

QR (figure 4.9(a)) than that of PTC-A over QR (figure 4.9(b)) or by the higher positive 

deviation of PTC-M over TPOT-RL (figure 4.9(c)) than that of PTC-A over TPOT-RL 

(figure 4.9(d)) for the same call origination probability. 

The above observations from figure 4.9 also hold in figures 4.10 and 4.11. Additionally, 

in all of these figures, it is observed that, for a given distance d, the deviation of the 

Xd values are generally higher for a higher call origination probability. To justify this 

observation, note that the success rate of any given protocol decreases with increasing 

load (see section 4.5.1 for this result) because with more calls originating, the number 

of dropped calls increases since the nodes have only a limited amount of call channel 

bandwidth. Nevertheless, the communication protocol that generates better estimates 

would enable the agents to cope with the increasing load better by maintaining a higher 

call success rate. This is indicated by the observation that increased load impacts QR 

and TPOT-RL more than the PTC-based strategies, i.e., the decrease in the success rate 

is more in QR or TPOT-RL than in PTC-M or PTC-A with increasing load. Hence, the 

deviations of the Xd values between PTC and the benchmarks increase with load. For 

example, in figure 4.9(a), at a hop length of 8, the deviation of Xd is about 2.5% with 

load 0.1, and more than 15% with load 0.6. 

The observations in this section can be summarised as, the post task-completion 

heuristics are more capable of connecting calls at longer distances than the benchmark 

strategies and exhibit increased effectiveness in achieving this against high network loads. 

A relative improvement of more than 50% is observed in the rate of successful call con

nections of PTC-M over QR at distances of 12 hops in a 100-node random graph with 
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a high network load (see the graph for a load of 0.6 in figure 4.11(a)). For the same 

parameter values, PTC-M achieves a large improvement over TPOT-RL of more than 

1000% (see figure 4.11(c)). 

4.5.3 Performance - Information Message Rate 

The total number of messages (see section 4.4.1.3 for its definition) transmitted in the 

entire network is measured every T time steps of a simulation. The average number of 

such messages per unit time is computed over the steady state. These measurements 

are repeated for each of the three topologies. Results from constant-load experiments 

are reported first, followed by those from a dynamically changing load. 

4.5.3.1 Constant Load, 

Table 4.7 shows the message rate obtained in each of the strategies under steady state 

conditions in the topology of figure 4.2. Tables 4.8 and 4.9 show the same for the 

topologies of figure 4.3(a) and figure 4.3(b), respectively. In all of these results, it is 

observed that for any given call probability, the message rate (under column "A vg") is 

significantly lower in the PTC strategies than both QR and TPOT-RL. For example, in 

table 4.7, it is 0.25 for PTC-M, 0.26 in PTC-A, 0.39 for QR, and 0.523 for TPOT-RL 

with a load level of 0.1. 

An additional observation is that the relative reduction of the message rate (column 

named "% Saving" shows these values) achieved by using PTC becomes more pro

nounced with increasing load. These values are computed as (I m PTCY - mQR 1)/mQR , 

(I m PTCY - mTPOTRL 1)/mTPoTRL, where m represents the average steady state mes

sage rate of a given communication protocol for a given load (and Y can be either A 

or M). For example, in table 4.7, at load 0.1, PTC-M has about 35.6% (=1 (0.251 -

0.39)/0.39 I) less message rate than QR and about 52% (=1 (0.251 - 0.523)/0.523 I) 

less than TPOT-RL. However, this saving in the message rate increases to about 80.3% 

(=1 (0.285 - 1.45)/1.45 /) relative to QR and to about 72.8% (=1 (0.285 - 1.05)/1.05 I) 

relative to TPOT-RL when the call probability is 0.6. This is because with increasing 

network load, the increase in the number of messages in both QR and TPOT-RL is much 

higher than the increase in the PTC-based strategies (e.g., in table 4.7, the message rate 

increases from 0.39 to 1.45 in QR - a 272% increase, from 0.523 to 1.05 in TPOT-RL 

- a 101 % increase, and from 0.251 to 0.285 in PTC-M - only a 13.5% increase as 

the load increases from 0.1 to 0.6). 

Note that in QR, a node transmits a new information message to the forwarding 

(upstream) agent at each step of the call forwarding process. Thus, with increased load, 

this algorithm incurs a large increase in the number of messages because there are many 



76 Chapter 4 Empirical Evaluation of PTe in Telephone Network Routing 

Table 4.7: Information message rates for all strategies - topology of figure 4.2 

Strategies % Saving 
Load QR PTC-A PTC-M TPOT-RL PTC-A / PTC-M I PTC-A I PTC-M I 

Avg Stdev Avg Stdev Avg Stdev Avg Stdev QR QR TPOT-RL TPOT-RL 

0.1 0.39 0.0048 0.26 0.0019 0.251 0.0019 0.523 0.0023 33.33 35.64 50.28 52.00 
0.2 0.66 0.0079 0.281 0.002 0.275 0.0022 0.683 0.0029 57.42 58.33 58.85 59.73 
0.4 1.1 0.01 0.289 0.0018 0.284 0.0016 0.891 0.0036 73.73 74.18 67.56 68.12 
0.6 1.45 0.0125 0.2894 0.0017 0.285 0.0015 1.05 0.0077 80.04 80.34 72.43 72.85 

Table 4.8: Information message rates for all strategies - topology of figure 4.3(a) 

Strategies % Saving 
Load QR PTC-A PTC-M TPOT-RL PTC-A / PTC-M / PTC-A I PTC-M / 

Avg Stdev Avg Stdev Avg Stdev Avg Stdev QR QR TPOT-RL TPOT-RL 

0.1 0.33 0.0023 0.23 0.0012 0.23 0.0014 0.759 0.0054 30.30 30.30 69.69 69.69 
0.2 0.55 0.0048 0.26 0.0013 0.25 0.0012 1.42 0.0074 52.73 54.55 81.69 82.39 
0.4 0.9 0.0049 0.27 0.001 0.26 0.0009 2.163 0.0091 70.0 71.11 87.51 87.97 
0.6 1.2 0.0054 0.272 0.0007 0.267 0.0012 2.70 0.0106 77.33 77.75 89.92 90.11 

more calls to be routed. In TPOT-RL, a node forwards its state information while 

routing a call. So, although reward distribution occurs in TPOT-RL every update

interval time steps, the state information messages propagated during call routing 

contribute toward the message rate in the system. So, when larger numbers of calls 

need to be routed at high load values, the number of such messages increases. The 

PTC-based strategies, on the other hand, attain a significant saving in the message rate 

by delaying the information transmission until a call connects and then transmitting a 

single message from the destination to the source node (with only updating the reward 

information at each step of the message propagation). This prevents any information 

exchange from occurring for calls that fail to connect. Both QR and TPOT-RL, on the 

other hand, would still incur the messaging cost even if a call finally fails to connect. 

In addition, the PTC-based strategies save some messages from being exchanged that 

QR and TPOT-RL incur on the loops of a call route. Because the agents using PTC 

transmit messages only after a call is connected, and the loops on call routes are dropped 

(as a call is forwarded), messages are prevented from being transmitted on loop portions. 

4.5.3.2 Dynamically Changing Load. 

Similar to the call success rate measurements of section 4.5.1, the time-variation of the 

information message rates are recorded for all strategies when the network load fluctuates 
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Table 4.9: Information message rates for all strategies topology of figure 4.3(b) 

Strategies 
Load QR PTC-A PTC-M 

Avg Stdev Avg Stdev Avg Stdev 

0.1 0.58 0.0117 0.214 0.0009 0.21 0.0014 
0.2 0.83 0.0112 0.235 0.001 0.229 0.001 
0.4 1.26 0.0098 0.249 0.001 0.241 0.0008 
0.6 1.63 0.0095 0.253 0.0007 0.245 0.0008 

dynamically in a simulation run. 
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Figure 4.12: Time variation of message rates of QR, PTC-M, and TPOT-RL with 
network load fluctuations topology of figure 4.2 

Figure 4.12(a) shows the message rate variations of PTC-M, QR, and TPOT-RL 

when the load level changes from 0.1 to 0.6 in a simulation run using the topology of 

figure 4.2. Figure 4.12(b) shows the same when the load is varied as 0.1,0.2,0.4,0.6, and 

0.8 after equal intervals of time in the course of a simulation run. Both of these figures 

show that PTC-M has a significantly lower message rate than both QR and TPOT-RL 

under fluctuating load conditions. Further, as the network load increases dynamically, 

both QR and TPOT-RL incur a large increase in the message rates while the increase 

in PTC is insignificant. In both QR and TPOT-RL, information is transmitted during 

call setup (although reward updates occur in TPOT-RL after every update-interval 

time steps). Hence, as more calls originate with increasing network load, the number of 

such information propagations increase in these strategies. It is also observed that with 

increasing load, TPOT-RL has a lower message rate than QR. We identify that this 

relative advantage of TPOT-RL against QR is due to its poorer call success rate than 

QR (reported in section 4.5.1). Since TPOT-RL is less efficient than QR in connecting 
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Figure 4.13: Summary statistics of message rate differences between QR, TPOT-RL, 
and PTC-M with network load fluctuations topology of figure 4.2 

calls (this implies that in TPOT-RL a large number of call attempts are unsuccessful), 

and since both propagate information while call forwarding, TPOT-RL does not incur 

as much of an increase in the number of messages as incurred by QR with increasing 

load. 

In a way similar to the success rate results with fluctuating load, the summary of 

the differences in message rates between QR and PTC-M and between TPOT-RL and 

PTC-M are presented in figures 4.13(a) and 4.13(b), respectively. In both of these 

figures, the degree of dynamism is plotted along the horizontal axis while the percentage 

increase of message rate using QR or TPOT-RL against PTC-M is plotted along the 

vertical axis. As observed in the success rate results of figure 4.8, in both figure 4.13(a) 

and 4.13(b), the gap between the minimum and the maximum differences of message 

rates reduce with increasing degrees of freedom. For instance, in figure 4.13(a), this gap 

is about 140% with 2 degrees of freedom, while it is 60% with 5 degrees of freedom. 

Nevertheless, the mean difference between the message rates of PTC-M and QR or that 

between PTC-M and TPOT-RL increases with increasing degrees of dynamism. For 

example, the mean difference increases from 151% to 321% in figure 4.13(a), while it 

increases from 200% to 284% in figure 4.13(b), This indicates the advantage of PTC in 

terms of maintaining a limited number of message overhead compared to both QR and 

TPOT-RL. 

From these observations, it can be concluded that the post task-completion heuristics 

not only achieve a higher call success rate (section 4.5.1) and higher effectiveness in 

connecting calls at longer distances under high loads {section 4.5.2} than the benchmark 

strategies, but also achieve these at the expense of a significantly lower rate of mes

sages under both static and dynamically changing load conditions. For example, PTC-M 
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achieves an 80% saving in message rate compared to QR, and a 72% saving compared 

to TPOT-RL in the grid topology under high network load. Further, in a dynamic load 

setting, with five changes in the network load, PTC-M saves about 320% in message rate 

than QR and about 284% than TPOT-RL. Thus, PTC is shown to be a more efficient 

protocol toward developing a cooperative MAS for the sequential RA problem. 

4.6 Summary 

This chapter develops a set of communication heuristics based on the PTC protocol 

(introduced in chapter 3) that can be used by network nodes to share information and 

ensure effective call routing (a sequential RA task in a distributed environment). This 

chapter also describes the implementations of the benchmark algorithms, Q-routing and 

TPOT-RL, against which the PTC-based heuristics are compared. The simulation en

vironment is described in detail along with the performance measures used for empirical 

evaluation. Finally, a detailed analysis of the experimental evaluation of the communica

tion strategies under a wide variety of environmental settings is presented. These results 

provide substantial evidence that PTC is a better information-sharing protocol than the 

benchmark algorithms. Hence, this empirical study further strengthens the analysis of 

chapter 3 that had theoretically established the superior performance of PTC. This, in 

turn, substantiates the theoretical justification of our thesis done in chapter 3. There

fore, it implies that the PTC information-sharing mechanism does allow the agents to 

generate good quality state estimates and effectively perform sequential RA tasks in 

distributed domains. 

Now we aim to subject PTC to further empirical tests using environments that exhibit 

more dynamism than that studied in this chapter. In doing so, our goal is to further 

validate the usefulness of PTC as a mechanism that can indeed be used to generate 

highly adaptive behaviour in the context of sequential RA tasks a claim of our thesis, 

stated in chapter 1. In particular, such dynamism is simulated in the network call 

routing problem by means of network failures. 





Chapter 5 

Adaptiveness in Highly Dynamic 

Environments 

In an attempt to establish our thesis, identified in chapter 1, chapter 3 developed the 

novel PTC protocol for sharing information and demonstrated theoretically that it can 

be used as a mechanism for generating good quality state estimates; such estimates 

being useful for effectively solving sequential RA tasks in distributed domains. These 

theoretical claims were then further substantiated using empirical analyses in chapter 4, 

where communication heuristics designed using PTC were shown to perform better in 

a sequential RA task domain (call routing in telephone networks) than a host of bench

mark algorithms. Now, in this chapter, we focus on using PTC-based communication 

heuristics to generate effective adaptive behaviour in highly dynamic environments. Such 

adaptiveness is of significant importance in dynamic systems where all possible environ

ment changes cannot be predicted a priori. With this capability, the agents would be 

able to effectively respond to unforeseen changes in order to successfully generate quality 

solutions to tasks - a claim made in our thesis in chapter 1. Therefore, by subjecting 

PTC to empirical evaluation in dynamic environments, we attempt to further establish 

the thesis. 

Against this background, we note that adaptive behaviour was already demonstrated 

by our communication heuristics in chapter 4 in response to some degree of system 

dynamism that of changing load. In this chapter, however, we aim to achieve effective 

adaptiveness against dynamism caused by drastic events such as a failure of a task 

processing episode. In our domain of interest, such an event can occur due to network 

failures. In particular, failures are non-trivial phenomena in wireless mesh networks used 

for telephony (Chandler et al., 1993). Hence, in this chapter, failures are considered to 

be inevitable in the network domain and a careful investigation is carried out about 

how the PTC framework can be extended such that the network can effectively adapt 

to failures. 

81 
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In more detail, failures of network nodes, caused due to various reasons like hardware 

failures, environmental hazards, power outage, and so on, are a significant cause for 

concern in the type of networks we are investigating (Akyildiz et al., 2002). Such inci

dents are non-deterministic in nature and typically very hard to predict and, therefore, 

problematic by causing sudden and serious disruptions in network services. Moreover, 

in decentralised networks with no single monitoring and management centre (which is 

an undesirable choice because it is a non-scalable solution and a single point of failure), 

it is of critical importance to design strategies to counteract the effects of such failures 

efficiently and effectively. Without this, failures, which effectively result in an alteration 

of the network topology by making a set of network paths unavailable for routing (thus, 

inducing dynamism in the environment), would cause the call success rate to plummet. 

This happens since routing decisions taken by the nodes in such decentralised systems 

are based on their individually estimated routing tables (refer to section 4.2 for a discus

sion on the learning and routing mechanisms). With failures occurring, therefore, unless 

the nodes are updated with the resulting network state changes, the information in the 

routing tables would effectively be out-of-date with respect to the actual network condi

tion. Thus, routing decisions taken would be highly sub-optimal leading to performance 

degradation. 

Against this background, network failures are a significant problem in the given 

application area and one that requires to be counteracted. Given this, the following 

objectives need to be met: 

Adapting routing. Nodes should be able to effectively update their routing tables 

(essentially, the Q-tables) to capture the changes caused by failures. This would 

ensure that they can take the correct routing decisions in the context of failures 

occurring. 

Diagnose failure. It would be of significant benefit for automating the management 

of decentralised networks if nodes can actually detect failures'! Moreover, this 

capability can then be used for appropriate recovery actions to be summoned (for 

example, assign support engineers to recover a failed node, or attempt to re-route 

any ongoing calls that are affected by the failure). 

As it stands, however, the PTC heuristics described in chapter 4 are not capable of 

achieving the above-mentioned objectives (the reasons are discussed shortly). Therefore, 

this chapter focuses on extending the previous PTC heuristics by introducing additional 

information-sharing. Specifically, it is demonstrated by empirical studies and a theo

retical analysis that this modification is successful in addressing the problems identified 

IBy detection, it is implied that a node can identify that another node has failed and, therefore, can 
raise an alarm. More details follow in section 5.6. 
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with network failures. It is observed, however, that these advantages are attained at the 

cost of generating larger messages than those in chapter 4. 

In the remainder of this chapter, section 5.1 describes the failure model we adopt 

and how, after a failure occurs, another node can identify this and initiate transmitting 

information. Section 5.2 explains why and how the previous PTC heuristics need to 

be extended to achieve the above-mentioned objectives when failures occur. Section 5.3 

describes the extended PTC heuristic (henceforth, labelled as e-PTC) in the network 

call routing scenario. Section 5.4 presents the performance measures used for empir

ical evaluation of the e-PTC heuristic in the example application. Then, section 5.5 

presents experimental results to demonstrate the advantage of this extended heuristic in 

improving routing performance with failures. Subsequently, section 5.6 presents how dis

tributed failure diagnosis is achieved with the e-PTC heuristic by designing a detection 

algorithm (section 5.6.2) and then applying it to a simulation-based study (section 5.7) 

to demonstrate its capabilities. Finally, section 5.8 presents concluding remarks on the 

contributions of this chapter. 

5.1 The Network Failure Model 

In this section, we outline our network failure model and the related assumptions. In 

so doing, we identify two distinct functional parts in such a model. These are: (i) the 

characterisation of what defines a failure and (ii) how such a failure is detected. The 

second part is important since it details our assumptions regarding how a failure is 

actually detected by another node, which is when the e-PTC protocol is initiated. The 

following subsections describe each of these. 

5.1.1 Failure Characterisation 

By network failures, we imply failures of network nodes. In particular, only stop failures 

are considered. This is because such failures are the most common type studied in 

distributed systems (Lynch, 1996) and, hence, form a good experimental testbed for 

measuring the performance of e-PTC. We assume that a node failure is associated with 

the following changes in its activities: 

.. It cannot run any processes after failure . 

.. It cannot communicate with other nodes after failure. 

Thus, after a failure, all ongoing calls on this node will be lost since there would not 

be any process available on the node to handle this call. Moreover, it will not be able 
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to detect or acknowledge a request to forward calls from its neighbours. Thus, any new 

attempts to place calls through this node will fail too. In addition, we assume that once 

a node fails, it continues to remain so throughout our simulations. 

5.1.2 Detection Characterisation 

After a node fails, one of its neighbours actually detects that it has failed when the latter 

makes a request to forward a call. The requesting node detects the failed status of the 

requested node since it does not receive any response from the latter (the latter cannot 

communicate after failure).2 It is at this time when the requesting node de-allocates its 

reserved bandwidth for the ongoing calls that were being routed via the failed node. It 

also does the same for the call it was trying to set up. Furthermore, it generates drop 

messages to inform its neighbouring nodes to de-allocate bandwidth for the affected 

calls. 

The above description is clarified in figure 5.1 where node f has failed. One of its 

neighbours, i, detects that f has failed. Thus, it deallocates its bandwidth for all calls 

that were being routed through both i and f, and that for the new call it was trying to 

set up. Also, it informs each j (a neighbour of i that is also on the path of calls via i 

and f) by sending a drop message to de-allocate bandwidth. Each such j continues to 

propagate the drop message until the terminal node on that path is reached. Note that, 

a similar process is undertaken by each neighbour of f whenever they detect that f has 

failed. We assume that call requests, and, thus detections, occur fairly frequently to 

ensure that, post failure, the reserved bandwidth units for the lost calls are de-allocated 

efficiently. 

6. Send drop message 1. Forward request 

~~ 
o O·-----f'f.. 1-------0 
J i "<-. 

3. Deallocate 2:' No response 

4. Create drop message 

5. Append local state to drop message 

f 

Figure 5.1: Failure Detection Model Schematic 

2We do not assume slow communication to be causing a delay in receiving responses which may 
trigger an incorrect detection. 
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5.2 Extending PTC to Deal With Failures 

In this section, we describe the extension made to the PTC heuristics of chapter 4 and 

explain why it is capable of generating adaptiveness in dynamic conditions. In chapter 4, 

the PTC heuristics allow the nodes to transmit their local state knowledge to others only 

after a call successfully connects at its destination node. Thus, after each successful call 

connection, a node along the path of the call gets updated about the states of the 

downstream nodes along the path. However, if a node fails, call setup attempts via this 

node would also fail. This is because a call forwarding request to a failed node would 

not get a response and, hence, the forwarding process along that path would stop. In 

case of a call failure, the previous PTC heuristic transmitted a drop message (refer to 

section 4.2 for details) to free up the pre-allocated bandwidth units on the nodes along 

the partially completed call path. 3 Given this mechanism, where information is shared 

only for successful calls, the information about failures remains hidden from the nodes. 

This is because the drop message simply causes a bandwidth unit to be freed, but does 

not affect a node's Q-estimates in any way. Therefore, the Q-table retains the previous 

information. Hence, on a subsequent attempt to forward a call, a node would still use the 

same outdated Q-estimates (possibly causing the call attempt to fail again). Moreover, 

after a successful call connection, when the ack message is carrying state information 

upstream (as in chapter 4), if an intermediate node fails, the propagation of the ack 

message is stopped and the remaining path nodes do not get updated about the state 

information. 

Against this background, to alleviate the limitation of the previous PTC heuristic 

in not being able to inform nodes about failures, drop messages are used to transmit 

the local state values of nodes in addition to the ack messages. This is the simple yet 

fundamental extension to the PTC heuristics of chapter 4 that is made to achieve the 

required adaptiveness in highly dynamic environments and that defines e-PTC. 

In more detail, in e-PTC, each node along the path of a drop message appends its 

local state value to the message just like they do for an ack message. Moreover, similar 

to the Q-update mechanism of section 4.2 using ack messages, in e-PTC information

sharing, the nodes update their Q-estimates using the state information contained in 

drop messages. In this manner, therefore, the nodes would be able to remain updated 

about the bandwidth availability changes caused due to a node failure. Such capability 

would, in turn, allow the nodes to adapt to failures more effectively than that achieved 

in chapter 4. The following section describes how we have used this e-PTC information

sharing protocol in our network call routing simulations. 

3Note, however, only new call attempts failed (and not ongoing calls) in chapter 4 due to node 
saturation and not due to node failures. 
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503 Extended PTC Information-Sharing in Network Call 

Routing 

As explained in section 5.1, after a failure, the node becomes inaccessible to others which 

effectively changes the network topology by removing the set of paths containing it. The 

way e-PTC is implemented when existing calls and those being attempted are affected 

by a node failure is explained in the following. 

Referring to figure 5.1, consider an ongoing call that is routed through i and f when 

f fails (note that this description is generic and applies equally to all such ongoing calls). 

After this happens, i detects the failure as explained in section 5.L Then, it generates a 

drop message, appends its state value Si, and transmits to j. Node j, in turn, appends 

its state value Sj to this message and transmits to its neighbour on this path. This 

process continues until the terminal node on this path is reached.4 While the drop 

message is transmitted, each node receives the state values of the nodes between itself 

and the failed node f. Thus, in a way similar to the Q-update mechanism (using only 

ack messages) described in section 4.2, each node receiving the drop message, updates 

their Q-estimates. Thus, this additional communication over that of the PTC heuristics 

of chapter 4 characterises e-PTC. 

Now, consider the case of a new call being set up. Thus, when node i requests node 

f, it does not receive an acknowledgement from f. As explained in the failure model 

earlier, it is at this time that i detects that f has failed. So, it generates a drop message 

and transmits to the immediate "upstream" node on the path along which the new call 

was being set up. The processes of generating drop messages, appending state values 

to these messages, transmitting them upstream, and updating Q-estimates are exactly 

similar to what has been explained above. 

Thus, by the above-mentioned procedures, state information distribution after node 

failures provides the basis for a mechanism by which the nodes that receive such informa

tion can effectively update their Q-estimates. Moreover, this mechanism also provides 

a means for the nodes receiving such information to detect failures. For example, in 

figure 5.1, all nodes along all call paths that have f get the state information of f which 

they can use to diagnose its state. In this context, when a node neighbouring the failed 

node transmits state information along with the drop message after unsuccessfully at

tempting to contact the latter, it assigns a state of zero for the latter. When another 

node receives this information, a state value of zero can be used to interpret a node 

failure. However, there is an important issue that needs to be resolved before correct 

4Note that if the node transmitting a drop message fails, the drop message will be lost. However, in 
this case, a new failure detection and drop message propagation would be initiated. This will be able to 
de-allocate the bandwidth reserved for the calls via the previously failed node but which had not been 
de-allocated since the corresponding drop message terminated. 
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interpretation is possible. This is, when a node's bandwidth is completely occupied, 

it rejects a forwarding request and, therefore, the call attempt fails. Similar to a fail

ure, the state value (of the node where the call failed) transmitted in this case is also 

zero. Therefore, correct failure diagnosis requires distinguishing between the informa

tion (zero) received from a failed and a saturated (also zero) node. The key to do this 

is to observe a sequence of state values.5 Note, to indicate failure, a separate message 

(e.g., fail) could be used instead of a zero state. However, the state values are used 

to update the Q-estimates that indicate summary bandwidth availability along network 

paths. Thus, a separate message to explicitly indicate failure would not be useful for 

bandwidth estimation and it would also increase the bandwidth usage (thereby increas

ing the communication overhead of the network). In fact, as will be shown shortly, 

the zero state values can indeed be used for failure detection, in addition to bandwidth 

estimation. This is done with the help of an algorithm that computes the number of 

consecutive state values an agent needs to monitor from another node to achieve the 

correct diagnosis. Specifically, section 5.6.2 describes this algorithm which has two im

portant features; it is (i) without false positives - detection is made only if a failure 

has occurred, and (ii) without false negatives 

occurs. 

detection is guaranteed once a failure 

5.4 Bandwidth Allocation Using e-PTC 

In this section, e-PTC, as described in section 5.3, is applied to the network routing 

problem. In particular, its performance is compared against that of the PTC-based 

communication heuristics of chapter 4 when node failures occur. As in the experiments 

of chapter 4, the call success rate and message overhead are used as the measures of 

performance. Moreover, to compare the performances of the information-sharing strate

gies against failures, an additional measure is chosen: recovery of call success rate. The 

following describes these performance measures in detail: 

Call Success Rate(CSR): As is done in the experimental evaluation of chapter 4, 

the average CSR is chosen as the metric to measure the bandwidth allocation quality 

achieved by a given information-sharing protocol. Thus, the more effective the band

width allocation, the higher the CSR. So, if e-PTC achieves a higher CSR than PTC 

under a given setting, then it can be concluded that e-PTC is a more effective protocol 

than PTC in allocating node bandwidth under the given environmental conditions. To 

measure CSR, if K calls originate in the network in a given time interval, out of which 

k are successfully connected, then CSR within that period is given by kj K. 

5The justification in doing this is that when a saturated node becomes unsaturated, a non-zero state 
value would be received from this node. A failed node, on the other hand, would remain failed and thus, 
would not transmit a non-zero state value again. Sections 5.6 elaborates on this further. 
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CSR Recovery: When a network failure occurs, the CSR would necessarily drop since 

a set of network paths would be unavailable and, therefore, call attempts via these 

paths would fail. However, with the agents attempting to estimate the changes and find 

alternative routes, the CSR should recover from the initial drop. This is measured by 

comparing the CSR (denoted as rfail) when a node fails in the simulation (the "test" 

case) to the CSR (rmiss) when the corresponding node is removed from the topology 

from the start of the simulation (the "baseline" case) keeping all other parameters the 

sameo In the baseline, the agents learn routing policies based on the topology that 

results after failure in the test simulation. If all agents had global information, then, 

after failure, rfail could recover and become equal to rmiss. But, the agents do not 

have global information. Also, the network state before the failure in the test would be 

different from that of the baseline at the same time because the baseline has a different 

topology with one less node. After a failure, therefore, r fail would not be able to recover 

to exactly rmiss. However, the closer and faster it can get to rmiss, the more efficient 

the protocol. The CSR recovery of e-PTC is therefore compared against that of PTC 

by comparing the CSRs of both e-PTC and PTC-based test simulations to that of a 

baseline with PTC. 

Message Size (MS): Any advantage that e-PTC has over PTC in terms of superior 

bandwidth allocation quality is due to sharing more information. Note that one message 

is transmitted for a call success (ack) and one for a call failure (drop) in both e-PTC 

and PTC.6 However, these messages may not be of the same size in e-PTC and PTC 

since MS is determined by the number of state values appended to it. For example, in 

a drop message, PTC does not append any state information but e-PTC does. So, the 

size of these messages in e-PTC would be larger than in PTC. Specifically, the average 

MS of k messages (including both ack and drop messages) is 2:7=1 (li)/k, where li is the 

size of the ith message. The average MS values of the two strategies are compared across 

various experimental settings to assess the message overheads of e-PTC and PTC. In 

this regard, it is important to clarify the following. In our simulations, although there 

are messages of types other than ack and drop, we consider only these two since they are 

the only ones that contain state information (thus, are of a non-trivial size) and directly 

impact estimate learning which, in turn, affects the call routing performance. However, 

we use a separate control channel (refer to section 4.1 for a listing of network properties) 

for all such information-bearing messages. Message size on its own, therefore, would not 

impact call success rate in our simulations. Nevertheless, message size is still an impor

tant measure for performance since larger messages imply larger bandwidth requirement 

which conflicts with the property of bandwidth scarcity (an expensive resource) in mesh 

networks. The objective, therefore, is to minimise the size of the ack and drop messages 

6This is why message rate is not used as a performance measure as done in chapter 4. The message 
rates of e-PTC and PTC are the same in a given experiment. Instead, it is the message size that is 
different in these heuristics and, hence, is chosen as the performance metric. 
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as much as possible. 

5.5 Results and Analysis 

The topologies of figures 5.2 and 5.3 (reproduced from chapter 4) are used for the 

experiments reported in this section.7 Also, as is done in the experimental study of 

chapter 4, evaluation is done by varying the call origination probability to test the 

impact of load on the system performance. All other parameters are kept at the same 

values as in chapter 4. 

In what follows, two broad classes of experiments are presented. First, the CSR 

and MS of e-PTC and PTC are compared in the absence of failures (section 5.5.1). 

These experiments test if e-PTC has any inherent advantage (higher CSR) or overhead 

(higher MS). Second, experiments are designed with failures (section 5.5.2). These 

results specifically highlight the advantages that e-PTC has in coping with failures over 

PTC. Note, in chapter 4, it has already been shown that PTC outperforms a range of 

common benchmark algorithms in this area. Hence, any improvement in e-PTC would 

also indicate an improvement over the current state of the art. 

Figure 5.2: A 50-node network topology 

5.5.1 Without Failures 

In this section, the call success rates and message sizes of e-PTC and PTC are evaluated 

and compared when there are no network failures. 

7 As done in the previous chapter, we have performed the experiments on various other topologies 
and observed the same broad trends in performance. So, we report our results on only a sample subset 
of the topologies used. 
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Figure 5.3: A 100-node network topology 

5.5.1.1 Call Success Rate. 

The relative differences in the CSR values of e-PTC and PTC are computed as (CSR( ePTC)

CSR(PTC))/CSR(PTC), where CSR(x) is the time-varying average call success rate of pro

tocol x. Thus, the relative CSR difference is also a function of time. Figure 5.4 shows 

the time-varying relative CSR difference values for different call origination probabili

ties when the topology of figure 5.2 is used. Although e-PTC is designed to deal with 

failures, these results show that even without failures, e-PTC has a higher CSR than 

PTC: in figure 5.4, at load 0.8, e-PTC achieves a peak 7% CSR increase, while in fig

ure 5.5 (showing the same results when the topology of figure 5.3 is used), for the same 

load value, the peak improvement of e-PTC CSR is about 11%. Without node failures, 

calls fail only due to node saturation which obviously happens more at higher loads. 

Thus, the absolute CSRs of both PTC and e-PTC decrease with increasing load. Now, 

e-PTC shares information after call failures. Thus, at higher loads and hence, whenever 

there are more call failures, e-PTC shares more information and lets the agents remain 

more up-to-date about their bandwidth estimates. Thus, the e-PTC CSR deteriorates 

less than PTC. Hence, the relative improvement of e-PTC over PTC improves with 

increasing load. This shows that e-PTC is inherently a more robust protocol than PTC. 

5.5.1.2 Message Size. 

The time-varying MS values of e-PTC and PTC are compared in a way analogous to 

the comparison of the CSR values of e-PTC and PTC shown previously. Specifically, 

figure 5.6 shows the relative increase in the average MS of e-PTC compared to that of 

PTC when the topology of figure 5.2 is used. It shows that, the higher the load, the 

larger is the e-PTC MS compared to PTC. Thus, in figure 5.6, at the end of a simulation, 
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Figure 5.5: Percentage call success rate increase in e-PTC (no failures) on the 100-node 
topology of figure 5.3 

when the load is 0.2, there is a 130% increase in the e-PTC MS over that of PTC (which 

corresponds to a 2.3 times increase), and at load 0.8, a 290% increase over PTC (a 3.9 

times increase). Since e-PTC appends state values to drop messages, the number of 

which increases with load since more calls fail (explained previously in the CSR results), 

the average MS increases in e-PTC compared to PTC. 

As mentioned earlier, since the drop and ack messages contain state information, 

they contribute significantly towards congesting the control channel which is used for 

transmitting these messages. Therefore, an increase of the average size of these messages 
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in e-PTC implies an increase in the occupancy of the control channel. For example, in 

this topology, using a load value of 0.8, we measured that the drop and ack messages in 

e-PTC occupy approximately 25% of the total control channel size. Therefore, in e-PTC, 

at a load of 0.8, a 3.9 times increase in the size of these messages over PTC (as shown 

above) indicates that the control channel occupancy has increased by approximately 

18% over PTC. In this context, note that the call channel used for handling actual calls, 

is of fixed length (maximum size 10). It is much smaller than the average length of 

the control channel where all the various control messages are queued. Thus, the call 

channel puts a major constraint, in terms of bounded resource availability, on the call 

success rate. An 11 % increase in the occupancy of the call channel, as shown in the 

CSR results in section 5.5.l.1, is, therefore, a more significant result than the increase 

in the control channel occupancy observed here. It shows that e-PTC is able to exploit 

the bounded resource availability more efficiently than PTC. Our objective, however, 

is to restrict the size of the ack and drop messages so that the demand on the control 

channel is reduced. A mechanism for achieving just this is studied in chapter 6. 
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Figure 5.6: Percentage message size increase in e-PTC (no failures) on the 50-node 
topology of figure 5.2 

In figure 5.7 we observe trends similar to those in figure 5.6 where the analogous 

results are plotted using the topology of figure 5.3. Thus, it can be concluded that 

e-PTC attains a higher CSR at a cost of larger MS. 

5.5.2 With Failures 

The way node failures are simulated is as follows. One node fails at a given time 

and multiple failures occur during a simulation run. Different combinations of nodes 

are selected to fail in different experiments to generalise across various network failure 
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scenarios. Such a regular failure interval was chosen because it simplifies our analysis. 

Arbitrary failure patterns would impair a clear understanding of how e-PTC differs from 

PTC by impacting their performances in complex ways. Thus, we use failures of: (i) 

three nodes with the highest edge connectivity (encircled in figures 5.2 and 5.3), and 

(ii) three randomly chosen nodes with average edge connectivity. Nodes with the most 

connectivity are critical points and heavily used for routing. Thus, (i) provides a "hard" 

test (since their failures cause a major disruption in the network by removing a large set 

of paths) for any advantage that e-PTC has over PTC. However, (ii) is a more typical 

scenario. Here, results are reported using (i) since those from (ii) show identical trends. 

5.5.2.1 Call Success Rate. 

Figure 5.8(a) shows the time variation of the CSRs of both e-PTC and PTC for different 

load values when the three nodes with the highest connectivity in figure 5.2 fail in 

succession. As explained in the results without failures, the CSRs of both e-PTC and 

PTC drop with increasing load: after all 3 nodes fail, e-PTC CSR is about 44% at load 

0.1 compared to 16% at load 0.8. There is also a further drop due to failures. However, 

the CSR for e-PTC is always higher than that for PTC, confirming the effectiveness of 

e-PTC over PTC. The difference is more pronounced at lighter loads because at high 

loads the effects of both saturation and failures offset the advantage achieved bye-PTC 

(unlike the case without failures where the relative improvement was more at higher 

loads). Similar trends are observed in figure 5.9(a) which shows the same measurements 

when the topology of figure 5.3 is used. 

Now, figure 5.8(b) plots the time variation of the relative difference of the CSR of 
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e-PTC and PTC, (CSR( ePTC) - CSR(PTC)) / CSR(PTC), for various loads. Here, after all 

three nodes fail, e-PTC CSR is about 15% higher than PTC at load 0.1 compared to 

6% at load 0.8. Also, in figure 5.9(b), the relative improvement is about 20% at load 0.2 

and about 14% at load 0.8. Thus, across all load values, e-PTC achieves a significant 

improvement in the CSR over that of PTC. 

It is further observed that, at a given load, the relative improvement increases with 

the number of failures. Hence, although the CSRs of both e-PTC and PTC decrease with 

failures, the rate of deterioration is lower in e-PTC. This further confirms its advantage 

in providing better adaptiveness against dynamic changes than PTC. 

5.5.2.2 Call Success Rate Recovery. 

Figure 5.10 shows the time variation of the CSRs of the tests and the baseline at load 0.1 

when the node with the highest connectivity fails in the topology of figure 5.2. Before 

the failure, e-PTC (test) has the highest CSR (similar to without failures). The baseline 

has the lowest CSR since, with one less node, it has the least amount of resources among 

the baseline and test cases. However, in the test cases, post failure, the CSRs of both 

e-PTC (test) and PTC (test) drop, from which the CSR of e-PTC (test) recovers at a 

faster rate than PTC (test). Figure 5.11 shows the similar trends on these measurements 

taken under identical conditions when the node with the highest connectivity fails in 

the topology of figure 5.3. 
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Figure 5.10: Call success rate with failure: e-PTC (test), PTC (test) and baseline (load 
0.1) on the 50-node topology of figure 5.2 

The deviation of the test from the baseline, (I CSRbase - CSRtest [) / CSRbase , obtained 

from figure 5.10, is plotted over time in figure 5.12. One plot corresponds to the de

viation of e-PTC(test) from the baseline while the other corresponds to the deviation 
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Figure 5.11: Call success rate with failure: e-PTC (test), PTC (test) and baseline (load 
0.1) on the laO-node topology of figure 5.3 

of PTC( test) from the baseline. It is observed that, post failure, the relative difference 

of e-PTC (test) and the baseline is smaller and reduces at a rate faster than the same 

for PTC (test). For example, e-PTC (test) is about 2.5% of the baseline which is 2.8 

times better than that of PTC (test) which is 7% of the baseline. These trends are 

also observed for all other load values used. Moreover, figure 5.13 plots the relative 

differences of the CSRs of the tests and the baseline, obtained from figure 5.11, when 

the topology of figure 5.3 is used. Similar trends are observed in this figure as that in 

figure 5.12. Thus, the e-PTC CSR recovers from failure with superior efficiency com

pared to that of PTC. This observation reinforces the claim that e-PTC achieves better 

adaptive behaviour against dynamic environment conditions than PTC. The recovery is 

found to be more pronounced at lighter loads. Since the CSRs of all strategies suffer 

with increasing load, the CSR differences between the test cases and the baseline are 

lower at higher loads. Experiments with multiple node failures also reveal similar broad 

trends in the CSR recovery. 

5.5.2.3 Message Size. 

Figure 5.14 plots the relative increase in the average MS of e-PTC over PTC for different 

load values when the three highest connected nodes in the network of figure 5.2 fail in 

succession. It is observed that the relative increase in e-PTC MS becomes greater with 

load. Thus, in figure 5.14, when the load value is 0.2, there is a 180% increase in the 

e-PTC MS over that of PTC at the end of a simulation (that corresponds to a 2.8 times 

increase), and about 360% increase at load 0.8 (a 4.6 times increase). Now, e-PTC 

appends state values at every call failure and connection, but PTC uses only the latter. 
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Figure 5.13: Call success rate deviation of e-PTC and PTC from baseline with node 
failure (load 0.1) on the 100-node topology of figure 5.3 

Thus, as call failures increase due to increased saturation at higher loads coupled with 

node failures, so does the MS of e-PTC. PTC, however, does not incur any increase in 

MS due to call failures as no drop messages in PTC contain state information. Similar 

trends are observed in figure 5.15 that shows the same measurements when the topology 

of figure 5.3 is used. Thus, a tradeoff exists between the message overhead of e-PTC 

and its advantages over PTC discussed previously. At this point, a comment similar 

to that in section 5.5.1.2 applies to the relative significance of the increase in the call 

channel occupancy (a 20% relative increase in CSR is shown in section 5.5.2.1) and 

that in the control channel occupancy as shown here. Since a limited-size call channel 
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Figure 5.14: Percentage increase in e-PTC message size with 3 failures on the 50-node 
topology of figure 5.2 
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presents the largest constraint against achieving a high call success rate) a 20% relative 

increase in the call channel occupancy is a more significant result (indicating a far more 

efficient exploitation of the limited resources by e-PTC than PTC) than the increase 

in the control channel occupancy. It will be the topic of investigation in the following 

chapter whether the increase in the control channel occupancy in e-PTC can be restricted 

by making information transmission in e-PTC selective by letting nodes append state 

information only when necessary. It is envisaged that such a strategy could be able to 

reduce the control channel occupancy of e-PTC by reducing the sizes of the ack and 

drop messages. 

5.6 Failure Diagnosis Using e-PTC 

As discussed in section 5.2, e-PTC is designed to overcome the limitation of PTC in not 

being able to generate effective adaptive behaviour in dynamic environments caused by 

network failures. To substantiate this claim, section 5.5 shows empirically how e-PTC 

achieves superior bandwidth allocation than PTC when failures occur. This section 

describes how e-PTC facilitates the important functionality of diagnosing failures, a 

necessary prerequisite for automating distributed network maintenance. Here, diagnosis 

means that a node raises an alert when it interprets, from the information received, a fail 

condition of another node. Note that failure diagnosis in this section is different from 

the function of the failure detector model discussed in section 5.1.2. In section 5.1.2, 

the model describes how a neighbouring node of a failed node identifies the failure which 

then initiates information transmission via the drop messages. In this section, diagnosis 

implies any node in the network being able to interpret a failure using the information 

transmitted with these drop messages. In this context, we refer to the node that does 

the interpretation as the "monitoring" node and the one that is being interpreted as the 

"monitored" node. Note, any node can take either of these roles because information 

is potentially distributed between all nodes as calls can exist between all nodes and, 

thus, e-PTC distributes information between all node pairs. The aim of the diagnostic 

function is to ensure it is both truly indicative of a failure (no false positives), and that all 

failures will be detected (no false negatives). To ensure the first property, the monitoring 

node needs to observe a series of state values of the monitored node (explained shortly). 

This introduces a tradeoff between the time elapsed since a failure occurs and when it 

is correctly diagnosed, and the "cost" of a false alarm. The second property guarantees 

a detection. In the following, first, the failure diagnosis process is described. Then, an 

algorithm is designed for the nodes to achieve such diagnosis in a decentralised fashion 

using the information distributed by e-PTC. 
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5.6.1 The Failure Diagnosis Process 

To explain the diagnosis, we label the monitoring node as na and the monitored node as 

nb. Thus, our algorithm is used by na to interpret if nb has indeed failed or not. Let T 

be the average interval at which na receives the state values of nb that is transmitted by 

nb either along with the ack or the drop messages (the e-PTC mechanism). Now, this 

information about nb's state can originate either when nb is saturated or unsaturated, 

or when it has failed. But, the state value of a node that is saturated and that is failed 

are both zeros (as discussed in section 5.3). However, the difference is that, a saturated 

node becomes unsaturated when one or more ongoing calls terminate, thereby freeing 

bandwidth, whereas a failed node continues to remain so. Therefore, after receiving the 

first zero state of a saturated nb, if na continues to observe the state values, then it 

will receive a non-zero state after a certain number of observations, when nb becomes 

unsaturated. Now, if na has the information about the average durations for which nb 

remains alternately saturated and unsaturated, then it can compute the number of such 

observations using its knowledge of T (without this information, it cannot perform this 

computation). We assume that nb remains alternately saturated for an average period 

of is and unsaturated for ius. To summarise, when na receives a zero-state of nb, it 

assumes nb is saturated. Then, using the knowledge of T, is, and ius, na computes the 

minimum number of observations (termed as m) after which it would receive a non-zero 

state of nb. If the actual number of zero-state values of nb received exceeds m, then na 

interprets a failure by rejecting its assumption of a saturated nb. 

In the above description, out of T, is, and ius, na can estimate online the average 

interval (T) at which it receives information from nb. However, it cannot estimate online 

is and ius of nb since it does not have complete information about overall network load. 

Nevertheless, na can acquire these estimates from node traffic statistics that are usually 

available for most networks (FloodNet). We present the algorithm to compute m in the 

following section. 

5.6.2 The Diagnosis Algorithm 

After receiving the first zero state of nb, na invokes the algorithm assuming the state 

value to be from a is interval of nb (i.e., from a saturated nb; it may of course be from 

a failed nb). Now, knowing that it would receive state values from nb after every T 

units and that nb would remain alternately saturated for is and unsaturated for ius, na 

determines whether the next reception would be from a is or a ius interval of nb. This 

is done by comparing T against the sum of is and ius. This process is repeated until 

the next projected reception is from a ius interval; the total number of receptions before 

this happens is equal to m. 
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Figure 5.16 shows the algorithm in detail. From our previous explanation of what 

the algorithm achieves, the input to the algorithm are the parameters T, is, and ius and 

the output is m, the minimum number of zero-state messages na would observe from 

nb. In figure 5.16, T' denotes the sum of is and ius. The algorithm identifies the various 

possible relationships between T and is and ius to decide how to compute m. 

Input: T, is, ius; Output: m. 

, A A 

O. T +- is +iusi m +- 1; 
1. if(T < T' and T > is) 
2. m +- 2; 112nd msg in unsaturated interval 
3. else if (T > T') Iinext msg in a subsequent T' zone 
4. 6 +- T%T'; Ilmodulus 
5. while((6 - is) < 0) 
6. m +- m+ 1; 
7. (j +- (T (T' - 6))%T'; I I offset from start of next interval 
8. else if(T ::; is) Iinext msg in a saturation zone 
9. 6 +- 0; 
10. do 

11. m +- m + £'ii5 + 1; Ilinteger division 

12. 6 +- T(isi i5 + 1) - (T' - 6); Iloffset from end of current interval 

13. while(6 > 0); 
14.else 
15. m +- 00; I Ito observe infinite zero-state messages; diagnosis inconclusive 

Figure 5.16: Failure diagnosis algorithm 

First, if T < T' and T > is (line 1), the next state value of nb (after an interval of T 

since the first reception) would be from its ius interval and, hence, m = 2. Figure 5.17(a) 

shows this condition in schematic. Here, the saturated and unsaturated states of nb are 

represented (only for clarification) by a pulse wave, where the "high" value corresponds 

to the is interval and the "low" value corresponds to the ius interval. Along the x-axis 

is time and the y-axis represents state-value. Thus, from the start of the first is interval 

( corresponds to the first zero-state message that na received from nb), the end of a period 

equal to T (which is when na would receive the next message from nb) falls within the 

ius interval; which is when na will receive a non-zero state value. Thus, na would receive 

a non-zero state value on the message after the first zero-state message it received from 

nb. Hence, m = 2. 

Second, ifT > T' (line 3), first, it is computed by how much (6) the next reception is 

within the next T' of nb (line 4). Then, this offset is recomputed (line 7) for successive 

observations (within the loop starting at line 5) until it is greater than is of the next 

T' (line 5), which indicates a non-zero state. Until this happens, in each iteration one 

more zero-state message needs to be observed by na (line 6). Figure 5.17(b) shows this 
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condition in schematic. 

Third, if T :::; is (line 8), a similar calculation is done as above. Specifically, in line 

12, T(tsio + 1) gives the total duration of the consecutive observations made within an 

offset-adjusted is interval, and (T' - 0) gives the effective (offset-adjusted) T' in which 

the above calculation is done. Thus, the new offset from the end of the current T' is 

the difference of the above two values (line 12). The process is repeated until the next 

observation is in the ius of the current T' which is when the offset is less than zero (line 

13) and indicates a non-zero state. As an example of this scenario, consider the case 

where T = is. Then, 0 at the end of iteration 1 is (line 12): 0 = T(tsiO + 1) - (T' - 0), 

= T(~ + 1) - T', = 2T - T'. If, 2T < T', then 0 < 0 (condition of line 13 violated) and, 

thus, the third message after the first zero-state message that na received will be from 

a ius interval of nbi so, in this example, m = 3. Figure 5.17(c) shows this example in 

schematic. If 2T > T', then the condition of line 13 holds. So, in the next iteration, an 

offset-adjusted is and T' are used (where the offset is the 0 of the previous iteration) to 

re-compute a new o. 

Lastly, when T = T' (line 14), the next state from nb always coincides with a is 

interval (see the schematic of figure 5.17(d)). Therefore, na receives an endless sequence 

of zero states from nb and, hence, cannot distinguish between a saturated and a failed 

nb· 

The above algorithm can be invoked when na receives a zero-state of a saturated 

nb. However, assuming na has the correct estimates of T, is, and tus , it will eventually 

receive a non-zero state of nb on the mth instance since the first zero-state instance. This 

is when nb has become unsaturated due to the termination of one or more existing calls. 

Hence, na would not signal a failure which is the correct diagnosis since nb was only 

saturated. Hence, the diagnosis does not generate any false positives. Alternatively, if 

nb had indeed failed when na received the first zero-state, it would continue to be failed 

indefinitely. Therefore, na would eventually receive more than m zero-state values from 

nb and then signal a failure which is also the correct diagnosis. Thus, the diagnosis does 

not generate any false negatives. 

The above algorithm is put to empirical evaluation in simulated network failure sce

narios using the topologies of figure 5.2 and 5.3. The characteristic features of the 

diagnosis achieved in these simulated studies are reported in the following section. 

5.7 Results and Analysis 

'The failure detection algorithm is subjected to empirical evaluation in the simulated 

network routing problem. In a given network (both topologies of figures 5.2 and 5.3 

are used), one node (na ) is selected as the monitoring node and then, in turn, all other 
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nodes are selected to fail (nb), each in a differect simulation with all parameters the same 

as before. In each simulation, only one node failure is implemented which fails at the 

halfway point of a simulation run. Thus, by selecting a different nb in every simulation, 

an overall assessment of the characteristics of the diagnosis achieved by the selected na 

(using the algorithm of figure 5.16) can be obtained. Note that this approach of selecting 

one node to fail in each simulation does not necessarily limit the overall conclusions about 

the performance of our diagnosis algorithm. While our algorithm is theoretically capable 

of detecting failures independent of the number of failures occuring, selecting multiple 

nodes to fail might introduce a practical difficulty of state information not reaching 

the monitoring node due to the network getting disconnected. In such a situation, the 

monitoring node would not be able to compute T for some failed nodes, which is required 

for carrying out the diagnosis. Hence, to keep the simulation simple, yet without losing 

any generality of results, a single node is chosen to fail. 

For every other node in the network, na estimates T and the simulator estimates is 

and ius (as mentioned before, a node which cannot observe the load variations at other 

nodes in the network is, therefore, unable to estimate the is and ius values of other 

nodes), which are fed to na using which, it can invoke the algorithm to compute m. It 

does this whenever it receives a zero state value of any other node. However, for all 

nodes other than the selected nb, a zero state is only due to the latter being temporarily 

saturated. Now, na can correctly identify this fact since it has the values of T, is, and 

ius. More specifically, na computes a value of m after it receives a zero state of any node 

but it receives a non-zero state value from the same node before the mth subsequent 

reception from that node. Thus, na does not issue a failure alert in this case. However, 

after the selected nb fails and na receives a zero state value from nb, it again computes 

m. But this time na keeps receiving zero state values of nb even after the mth subsequent 

reception. So, in this case, na reports a failure of nb. In the experiments conducted, it is 

observed that na reports a failure of only the chosen nb and only after nb has failed (no 

false positives) and in every experimental run (no false negatives). However, it should 

be noted that na reports a failure in each case after a delay of at least (m - 1) x T time 

units after the failure has actually occurred. 

In the following, we report results from the diagnosis experiments that use node 8 

in the 50-node topology of figure 5.2 and node 13 in the 100-node toplogy of figure 5.3 

as the monitoring nodes. A load value of 0.6 was set for these experiments (similar 

broad trends were observed in experiments that used other load values). Now, in each 

experiment, a different node (the monitored node) is set to fail. From these experiments, 

the average values of m and T, as computed by n a , over the monitored nodes that are 

at a given distance from na are computed. Hence, a summary assessment of how many 

consecutive zero-state observations na requires to detect a failure at a given distance is 

obtained. Moreover, from these values of m and T, an estimate of the average delay 
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Table 5.1: Summary statistics of failure diagnosis on the 50-node topology of figure 5.2 

Min dist T m 
A vg. detection delay 

of target avg stdev avg stdev 
1 420 50.7 2.8 1.2 756.0 
2 1559 562.4 2.9 1.4 2962.1 
3 7402 5339.3 2.3 1.2 9622.6 
4 28616 15895.0 2 0 28616 

Table 5.2: Summary statistics of failure diagnosis on the 100-node topology of figure 5.3 

Min dist T m 
Avg. detection delay 

of target avg stdev avg stdev 
1 372 11.2 2.2 0.3 446.4 
2 4148 491.1 2.0 0.1 4148.0 
3 10807 658.9 2.0 0.2 10807.0 
4 20265 1870.5 2.1 0.4 22291.5 
5 33336 4668.6 2.5 1.3 50004.0 
6 44569 15631.4 2.0 0.0 44569.0 
7 63416 8510.4 2.1 0.6 69757.6 
8 132917 15006.6 1.85 0.3 112979.4 
9 464743 13766.6 2.0 0.1 464743.0 

10 425047 21690.3 2.0 0.1 425047.0 

(( m - 1) x T) incurred by na for detecting failures that are at a given distance from na 

can be evaluated. 

In more detail, table 5.1 shows the average estimates of m, T, and the delay between 

the time a node fails and na actually raises a failure alert for the 50-node topology. 

Table 5.2 shows these values for the 100-node topology. Now, in each experiment, 

involving either of the topologies, na has raised a failure alert only after the chosen 

nb has failed. Thus, the properties of no false positives and no false negatives of the 

algorithm of figure 5.16 are corroborated by these empirical results. Nevertheless, both 

tables show that the detection delay increases with increasing distance of the monitored 

nodes. This is as expected because of the increasing time interval (T) between receiving 

state information from distant nodes. Note, the value of T is determined by the system 

parameters, such as topology, load, call pattern, and the information-sharing protocol 

used. By reducing the value of T, such as by distributing information more frequently 

and along multiple paths, the failure detection delay can be reduced; a modification 

we intend to do in our future work. It should be highlighted that, the delay becomes 

significant only for those monitored nodes that are farther away from the monitoring 
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node. However, note that in these experiments, only one node is selected to do the 

monitoring of the entire network. On the other hand, by deploying multiple monitoring 

nodes across the network, the maximum distance from any given node (that can fail) and 

at least one monitoring node can be restricted such that the detection delay of any node 

remains within tolerable limits. The objective of this empirical study, however, is to 

verify the theoretical properties of the detection algorithm. From the results obtained, 

therefore, it can be concluded that this objective is achieved. Moreover, achieving these 

results by using only a single monitoring node further strengthens our claim since a 

single monitoring node is a "harder" test for the diagnosis algorithm compared to using 

multiple monitoring nodes. 

5.8 Summary 

In this chapter, we have improved our PTC information-sharing protocol so that agents 

can adapt their behaviour effectively in response to unpredictable environment changes. 

Such adaptive behaviour is a necessity as most distributed systems are characterised by 

dynamism that cannot be ascertained a priori. Specifically, such behaviour incorporates 

a much needed resilience in such decentralised systems that do not have a central moni

toring and management center. To this end, this chapter uses empirical analysis on the 

network call routing domain to demonstrate that the extended PTC protocol is very 

effective in adapting network performance in response to changes caused by network 

failures and in diagnosing such failures. Hence, the extended protocol and the empirical 

studies both contribute by further substantiating our thesis that effective information

sharing can generate good adaptive behaviour. 

Moreover, this chapter also contributes towards improving the state-of-the-art tech

nology in handling failures in our domain of interest - limited-bandwidth, low-power 

mesh networks used for telephony. In such decentralised systems, ascertaining the ef

fects of failures and detecting them are extremely challenging objectives. Thus, it is 

of critical importance to ensure that the network adapts to failures effectively and also 

provides a decentralised failure detection mechanism. So, by designing the e-PTC pro

tocol, this chapter contributes by providing solutions to the above-mentioned problems 

in this domain. Specifically, the e-PTC protocol of this chapter exploits the message 

transmissions occuring after call failures by appending the state values of nodes to these 

messages. This simple mechanism allows the nodes to effectively update their estimates 

about the bandwidth availability changes caused by failures. By remaining more up

to-date, e-PTC achieves better bandwidth allocation quality than PTC and it supports 

failure detection (thus, better adaptiveness to system dynamism). These results are 

shown using empirical studies on various network topologies and environment settings, 

which show that the call success rate achieved by e-PTC is significantly higher than that 
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of PTC when failures occur. In fact, even when there are no failures, e-PTC is shown to 

achieve higher call success rates than PTC (indicating an inherent improvement in adap

tive behaviour). Moreover, these empirical studies also demonstrate that, after failures, 

e-PTC attains a steady state call success rate faster than PTC which indicates a better 

responsiveness to failures by e-PTC. More importantly, perhaps, the simple mechanism 

of e-PTC allows the nodes to diagnose the states of other nodes and detect failures. In 

particular, an algorithm is designed through which a node can assess if another node has 

failed both with certainty and only when a failure has truly occurred. The algorithm is 

subjected to empirical evaluation where the capability of a node in correctly diagnosing 

failures of other nodes is verified. The results of these studies corroborate the claims of 

the algorithm. 

The above-mentioned contributions provide substantial evidence towards furthering 

our thesis. Nevertheless, now it is our objective to improve the performance of PTC 

more than that achieved in this chapter. In particular, we focus on controlling the 

cost of communciation incurred by e-PTC in achieving the desired adaptive behaviour. 

Note that the advantages of e-PTC are achieved by distributing additional information 

between nodes. This approach results in an increase in the average size of the information 

messages than that of PTC and, hence, indicates an extra overhead of e-PTC. In the 

following chapter, we attempt to make e-PTC more effective by reducing this message 

size overhead but without losing the advantage of generating good adaptive behaviour. 



Chapter 6 

Selective Post Task-Completion 

Information-Sharing 

So far in this research, we have provided both theoretical justifications and empirical 

analyses to substantiate the fact that an effective information-sharing protocol can be 

used for generating quality estimates and, hence, good adaptive behaviour in sequential 

RA tasks - the claim made in our thesis in chapter 1. More specifically, chapter 3 

developed the PTC protocol and established, using a formal analysis, its significance 

in generating good quality state estimates in sequential RA tasks. Then, chapter 4 

further substantiated this theoretical claim by way of extensive empirical evaluation 

of PTC against other benchmark algorithms in an exemplar sequential RA domain. 

Subsequently, chapter 5 improved PTC by incorporating additional information-sharing 

so that it can generate effective adaptive behaviour against unpredictable events such 

as network failures. Now, while this modification ensured significant advantages over 

the basic PTC by generating higher call success rates, faster responses to failures, and 

detection of failures, it suffered from using larger messages. This property represents an 

overhead incurred by the system. In particular, in limited-bandwidth networks, such as 

the one we study in this research, it is essential to minimise the size of control messages 

to save valuable bandwidth as much as possible. 

This chapter aims to address the above-mentioned limitation. Specifically, the objec

tive of this chapter is to make e-PTC more effective by reducing its message size while 

retaining (as far as possible) its advantages of good adaptiveness in dynamic systems. 

Thus, we aim to substantiate our thesis even further by developing a highly effective 

communication protocol capable of providing superior performance in sequential RA 

tasks in distributed systems. 

The line of approach adopted to achieve the above-mentioned objective is to make 

information distribution adaptive in PTC. Broadly speaking, this means that an agent 
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transmits its local state value to another only when it deems the information is necessary 

for the recipient. Thus it attempts to restrict the message size overhead in the system 

by communicating selectively. Note, in all previous PTC heuristics, an agent transmits 

state values on every call success (both PTC and e-PTC) and failure (only e-PTC) 

without regards to whether the transmitted information would indeed be useful to the 

receiving agent. 

In the rest of this chapter, section 6.1 motivates the design of the adaptive PTC 

protocol, details the adaptive version of PTC, and analyses the pros and cons of the 

design. Subsequently, section 6.2 uses this new protocol in our running network call 

routing problem and presents empirical results that compare its performance against 

e-PTC. Finally, section 6.3 reviews the contributions of this chapter. 

6.1 Adaptive PTC (a-PTC) 

This section motivates the design of an adaptive version of our basic PTC protocol. 

Moreover, a formal description of the a-PTC protocol is presented in the context of our 

network routing problem. Also, the possible impact on system performance that a-PTC 

might have is analysed. 

6.1.1 Motivation for Designing a-PTC 

The objective of transmitting a local state value to a neighbour is to inform the latter 

about its unobservable network states. This, in turn, allows the recipient to make 

estimates of the bandwidth availability on other nodes so that it can take judicious 

routing decisions. In this context, however, it can be the case that the state of a node 

at a given time can be identical to what it transmitted on the previous occasion. This 

happens if, after the last transmission, exactly as many new calls have been connected 

through this node as existing calls on this node have terminated and, hence, the resultant 

bandwidth availability on this node is the same. In that case, repeating the transmission 

of the same state value to the same neighbour would be redundant. 1 Therefore, a node 

can do without transmitting the information if it detects the above condition. Note 

that since state values are transmitted by being appended to information messages 

(ack or drop), not transmitting a state value implies that the size of the message does 

not increase. In this manner, therefore, by making information distribution selective, 

the overhead of increasing message size can be restricted.2 Nevertheless, to determine 

10f course, the recipient node can identify this redundancy only if it maintains a record of the last 
state values received from its neighbours. More on this shortly. 

2Note that the number of ack and drop messages remains the same in e-PTC and a-PTC for an equal 
number of successful call connections and failures. However, it is the size of these messages that differs 
in a-PTC and e-PTC. 
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information redundancy, the nodes require additional memory to store communication 

history. Such a requirement indicates a potential downside of this protocol and, hence, 

a performance tradeoff. The following discussion elaborates on these issues. 

To implement the above-mentioned selectivity in the information distribution, the 

following requirements are identified: 

Transmitter memory. A node should store in memory the state values it transmitted 

to each of its neighbours on the most recent transmission. It needs this information 

to compare its current state to that communicated on the most recent transmission 

to a particular neighbour so that it can decide whether the current transmission 

could be redundant (in case the two values are identical). 

Receiver memory. A node has to store in memory the state values it receives from 

any other node on the most recent transmission from the latter.3 Thus, when a 

node receives the ack or a drop message after a call connection or a failure, it 

uses this stored value (say, of node n x , which is on the call path) to update its Q

estimate when it does not receive the current state from n x . This happens when nx 

detects a redundancy (as discussed before) and does not transmit its state value 

along with the ack or the drop message. On the other hand, when it receives 

the state of nx (that is when nx has not identified any redundancy), it uses that 

information to replace the last transmission it received from nx and updates its 

Q-estimate with this new information. 

Combining the above two requirements, this protocol necessitates a memory space of 

(Ki + (N - 1)) for a node ni, where N is the total number of nodes in the network and 

Ki is the total number of neighbours for ni. Specifically, Ki is the size of the transmitter 

memory required to detect a redundancy in transmitted information, while N - 1 is the 

size of the receiver memory used to record the most recent transmissions from other 

nodes. A formal description of the requirements and the mechanism associated with 

selective information distribution is provided in the following. 

6.1.2 Formal Description of a-PTC 

The following symbols are used to describe the system: 

• ni ~ identifier for node i in the system (same as in chapter 3) . 

• Si -- state of ni (same as in chapter 3). 

3Since the PTC protocol in the call routing problem allows state values to propagate along a call 
path, a node can potentially receive the state information from any other node in the network. 
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• T - set of the latest transmitted state values, each element of T corresponds to 

a neighbour. Ti(j) refers to the most recent state value transmitted to neighbour 

nj by ni . 

• n - set of the latest state values received, each element of n corresponds to a 

distinct node in the system. ni(j) refers to the most recent state value received 

by ni from nj. 

T and n are used in the following manner to determine if a node should transmit its 

state information and how it would update Q from the state information received. The 

processes of call forwarding and message propagation are reproduced from chapter 4 in 

the schematic of figure 6.1 to aid this description. In this figure, a call is routed along 

the node sequence: nl, ... ,ni-I,ni,ni+l, ... ,nd. 

6.1.2.1 Transmitting State Value. 

Referring to figure 6.1, during information propagation along with an ack or a drop 

message following a call connection or a failure, any node ni (1 < i ::; d) transmits its 

state to ni-I if, 

(6.1) 

If condition 6.1 holds and ni transmits its state Si to ni-ll then ni updates Ti (i - 1) as: 

Ti(i - 1) = Si- (6.2) 

On the other hand, if condition 6.1 is not true (i.e., Si and Ti(i - 1) are identical), then 

ni does not append Si to the ack or the drop message before sending it to ni-l' 

Sequence of requests to route a new call 

~ 
Source Destination / 
O----------------------Qf------jO)----O Fail point 

ns I 1ld-2 nd-' Ild 

Ongoing call 
1 sd-21 Sd-,IG I 5d·, 1 Sd 1 ~ 

~ '----.-/ ~ 
nd.2 appends Sd-2 nd-, appends Sd·, to nd sends Sd to nd·, 

to <Sd,Sd.'> and <Sd> and sends n d·2 
sends nd-3 

Sequence of local state transmissions 
along path of requests or ongoing call 

Figure 6.1: Schematic of call setup and sequence of node state transmissions 
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6.1.2.2 Updating Q. 

Again, referring to figure 6.1, any node ni (1 :::; i < d) uses the following set of state 

values of the downstream nodes to update its Q-estimate. 

{S~+m 1m = 1, ... , (d - i) 1\ s~+mis the latest of Ri(i + m) and Si+m}. (6.3) 

In the above set of state values (given by 6.3), ni determines the "recency" of state 

information by checking if the state value of node ni+m is present in the message. If it 

is, then ni+m has transmitted this value by determining that this transmission is not 

redundant (using condition 6.1). Then, ni uses this state value to update its Q-estimate 

and also updates Ri(i + m) as: 

(6.4) 

On the other hand, if ni does not find the state value of ni+rn in the message, then it 

uses the last state value received from ni+m, Ri(i + m), to update its Q-value. 

6.1.3 Implications of Selective Information Distribution 

While state information is useful to an agent for updating its Q-estimates of the network 

states, it has the downside of producing larger messages. Against this background, 

selective information distribution, as described in the previous section, is envisaged to 

affect the following: (i) the memory requirement of a node, (ii) the size of the ack and 

the drop messages, and (iii) the quality of Q estimates. Each of these factors can, in 

turn, affect the performance of the network. Therefore, it is crucial to analyse the impact 

of selective communication on these factors and on the system performance in general. 

The following descriptions elaborate on each of these: 

Memory requirement. As discussed before, each node ni needs a memory of size 

Ki + N - 1 to store the Rand T values. Thus, the memory requirement increases 

linearly with the number of nodes in the network and is constant for a given network 

(the memory requirement does not increase at run-time). Hardware memory is 

typically cheap and, thus, can be easily incorporated into the nodes. However, 

here we are primarily concerned with improving bandwidth usage efficiency since 

bandwidth is a valuable resource and is very limited on wireless nodes. 

Message size. The larger the size of a message, the more node bandwidth it uses. 

The size of a message increases only if a node appends its state value to it. Using 
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selective information distribution, therefore, the message size cannot be any more 

than without selective distribution. In fact, node states remain unchanged over 

time intervals when new calls do not originate and when existing calls are ongoing. 

Therefore, there would be instances where an agent finds its state to be the same 

as the previous transmission where selective communication would prevent it from 

appending its state value. Hence, it is envisaged that the size of ack and drop 

messages would be reduced significantly by using selective distribution. 

Quality of Q-estimates. The objective of communicating state values is to ensure 

that the agents are up-to-date about the bandwidth availability information across 

the network (as far as is possible). Now, since selective distribution prevents state 

information from being propagated, the concern is whether it adversely affects the 

quality of Q-estimates. In this context, note that selective communication prevents 

information propagation only if that information is identical to that in the previous 

transmission. Since the agents store in memory the latest transmissions (7), any 

new information is guaranteed to be transmitted. Hence, this protocol ensures 

that the Q estimates learned are 'up-to-date in exactly the same way as would be 

achieved with the basic PTC protocol (without selective distribution). 

6.2 Experimental Evaluation 

As stated in section 6.1, the design objective of a-PTC is to reduce the message over

head of the e-PTC algorithm without sacrificing its advantage of improved bandwidth 

allocation. In this section, therefore, we carry out experiments to test if our design of 

the a-PTC algorithm, as defined in section 6.1, satisfies that objective. In particular, 

a-PTC is compared against e-PTC along the following dimensions: 

• Savings in message size overhead: Given identical sets of environmental parameters 

and the same network topology, by how much (if any) the size of the ack and the 

drop messages are reduced using a-PTC than e-PTC . 

• Loss in call success rate: Given identical parameter values, by how much (if any) 

does the call success rate reduce using a-PTC than e-PTC. 

Experiments are conducted to measure the performance differences of a-PTC and 

e-PTC along the above two dimensions by varying a "selectivity threshold" (.6.s) for 

communication. This threshold is the amount of change in the local state that a node 

needs to observe before it initiates a transmission of state information. In more detail, 

a threshold of .6.si for node ni implies that ni communicates its local state information 

to its neighbour nj only if: 
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(6.5) 

It can be seen that the higher the value of ~s, the more the degree of communication 

selectivity, and the lower the number of information transmissions. This is because a 

large value of ~s implies that nodes communicate only when there is a large state change. 

However, when ~s is small, nodes communicate for both large and small state changes 

(when ~s equals zero, then we revert to e-PTC). Thus, the higher the value of ~s, the 

lower is the frequency of communication. Therefore, ~s acts as a parameter to set the 

degree of information-sharing in a distributed system. This implies that ~s has an effect 

on the size of the ack and the drop messages. Also, since the information distributed is 

used to learn the Q-estimates, ~s can, in turn, affect the quality of learning (equivalently, 

the CSR of the network). Thus, it is envisaged to influence the performance of a-PTC 

along both the above-mentioned dimensions. To evaluate this hypothesis, experimental 

results providing more insight about the impact of a-PTC on the system performance 

are presented and analysed in the following. 4 

As was the case in the previous empirical analyses (see sections 4.5 and 5.5), the 

two algorithms are evaluated by varying the call origination probability. The results 

from using the topologies of figures 4.3(a) and 4.3(b) are reported since the same broad 

trends are observed in other sample topologies. Experiments were run using call origi

nation probabilities (Pc): {O.l, 0.2, 0.4, 0.6, 0.8}. For each of these values, the selectivity 

threshold ~s was varied between {O.l, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.5 All nodes use 

the same value of ~s. The results reported are statistically significant at the 95% con

fidence level. 

6.2.1 Impact on Call Success Rate 

Both e-PTC and a-PTC were run using the above-mentioned parameter values and the 

average CSR was computed for both algorithms. For this case, figure 6.2 shows the 

time-variations of the CSRs of both algorithms for the topology of figure 4.3(a) at a Pc 

value of 0.2 and ~s equal to 0.1. The value of 0.1 is chosen for ~s since a node state 

only takes on values from {O.O, 0.1, ... 1.0} and, therefore, the value of 0.1 represents 

4Note that we used an absolute state-change in equation 6.5. State changes occur either due to 
new calls being set up (using up bandwidth, hence, lowering state value) or ongoing calls terminating 
(increasing state value). An absolute measure, therefore, captures both these possibilities and allows 
communication in either case. Since the purpose of communication is to share information to allow the 
agents to learn the node states accurately, the absolute measure is the suitable approach. This is in 
contrast to using a relative value which can capture either a state increase (if using (Si - Ti (j)) 2: 6.Si) 
or a decrease (if using (Ti(j) - 3;) 2: 6.3i). Hence, absolute state-change is used as the communication 
decision condition. 

5Here, 6.3 is expressed as the fractional bandwidth available, hence it is expressed in the same units 
as the node state (see section 4.1 for the definition of node state). 
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Figure 6.2: Time variation of average call success rates of e-PTC and a-PTC using the 
50-node topology of figure 4.3(a), Pc = 0.2, b.s = 0.1 

the minimum non-zero value of b.s for which the condition 6.1 holds. Thus, this value 

of b.s accounts for the information transmissions possible with all other values of b.s 

and thus, represents a "baseline" a-PTC. 

As can be seen, this figure demonstrates that using the adaptive PTC algorithm 

the CSR has not degraded by any significant amount when compared to that of e-PTC. 

For example, e-PTC CSR is 0.365 at the end of the simulation, while it is 0.363 for 

a-PTC. Thus, in spite of restricting communication (the impact of such selectivity on 

the message size is described in the following subsection), a-PTC retains the superior 

bandwidth allocation quality of e-PTC. Figure 6.3 shows the analogous results when 

the topology of figure 4.3(b) is used where identical trends are observed. Moreover, 

these trends also hold for all values of Pc. These results, therefore, provide evidence to 

substantiate one of the design objectives of a-PTC. 

N ow the CSR performances of a-PTC and e-PTC are compared across the range of 

call origination probability and the selectivity threshold values. To summarise the trends 

in these results, the relative differences of the average steady state CSR (as defined in 

section 4.5) of a-PTC and e-PTC are used. More specifically, for every pair of b.s and 

Pc values, the value of (CSR(ePTC) - CSR(aPTC))/CSR(ePTC) (where CSR(x) 

represents the average steady state call success rate for protocol x) is computed. In 

figure 6.4, these values are plotted when the topology of figure 4.3(a) is used over a 

surface defined by the b.s and the Pc axes. The following trends are observed: 

Observation 1: At small selectivity threshold values, there is no significant degradation 

of a-PTC CSR compared to e-PTC for all call origination probabilities. For example, 

in figure 6.4, for values of b.s less than 0.4, the CSR of a-PTC is within 4.0% of that 
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Figure 6.3: Time variation of average call success rates of e-PTC and a-PTC using the 
100-node topology of figure 4.3(b) , Pc = 0.2, ~8 = 0.1 
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Figure 6.4: Comparing the call success rate profiles of a-PTC and e-PTC on the 50-node 
topology of figure 4.3(a) 

of e-PTC for any value of Pc. A small value of /),.8 implies that communication of state 

information happens for both small and large changes in a node's state. Small state 

changes are more common than large ones at any given value of Pc. This is because, at 

any node, the origination and the termination of one or a few calls are more frequent 

than of a large number of calls. Moreover, the larger state changes occur more at higher 

Pc values. Thus, for any Pc , a low /),.8 value allows frequent communication of state 

information. This allows the nodes to remain updated fairly well about the network 

states and generate good call success rates (almost as well as that of e-PTC). Hence, 
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the CSR of a-PTC does not degrade significantly compared to that of e-PTC. 

Observation 2: At large selectivity threshold values, the a-PTC CSR degrades signif

icantly compared to e-PTC when the call origination probability is low. However, at 

higher call origination probabilities, the a-PTC CSR is not significantly lower than e

PTC. For example, in figure 6.4, at !:3.s = 0.9, there is a relative difference of about 

32.0% in the CSRs of e-PTC and a-PTC (the e-PTC CSR being higher) when Pc = 0.1, 

but it is only about 3.0% when Pc = 0.8. Here, a high value of !:3.s implies that state 

information is communicated only when large state changes occur. Now, at small values 

of Pc, when few calls originate in the network, such large node state changes are rare 

(since all nodes are only sparsely occupied). Therefore, communication of state informa

tion is also infrequent; the nodes are not effectively informed about the state changes in 

the network. Hence, the Q-estimates are far from up-to-date which, in turn, adversely 

affects the CSR performance of a-PTC. On the other hand, when the value of Pc is larger, 

large state changes occur more frequently than when Pc is smaller. So, having a high 

selectivity threshold implies that the nodes communicate the state-change information 

more effectively at larger Pc values than at smaller Pc values. The Q-estimates, there

fore, are more effectively updated and the CSR performance of a-PTC is not significantly 

degraded compared to that of e-PTC. 

The trends observed in figure 6.5, which shows the same measurements using the 

topology of figure 4.3(b) , are similar to those discussed above. These results confirm 

that the call success rate of a-PTC is not significantly lower than that of e-PTC over a 

wide range of environments - at all load values when the selectivity threshold is small 

and at high load values when the selectivity threshold is large. 
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Figure 6.5: Comparing the call success rate profiles of a-PTC and e-PTC on the 100-node 
topology of figure 4.3(b) 
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6.2.2 Impact on Message Size 

Analogous to the CSR results of e-PTC and a-PTC, figure 6.6 plots the time-variations 

of the average message size (considering all ack and drop messages generated by all 

nodes) of e-PTC and a-PTC using the topology of figure 4.3(a) at a Pc value of 0.2 and 

.6..s equal to 0.1. Again, results are reported with .6..s = 0.1 since this value represents 

a "baseline" case (as is explained in section 6.2.1). At.6..8 = 0.1, a-PTC is the least 

selective about transmitting information and, hence, a saving in message overhead over 

that of e-PTC would imply savings for all other (higher) values of .6..s. 

It has been shown in section 6.2.1 that the CSR of a-PTC is not significantly different 

from that of e-PTC under the given experimental setting. However, figure 6.6 demon

strates that the MS oj a-PTC is significantly lower than that oj e-PTC (significance 

testing is perJormed at the 95% confidence level). For example, the MS of e-PTC is 3.0 

at the end of the simulation, while it is 2.0 for a-PTC: a 33% reduction in the MS rela

tive to e-PTC.6 Therefore, a-PTC generates a far lower message overhead than e-PTC. 

Figure 6.7 shows identical trends when the topology of figure 4.3(b) is used. Similar 

trends are observed for all other values of Pc- Hence, these results provide evidence to 

substantiate the second design objective of a-PTC. In this context, it is also important 

to note that, the ack and drop messages occupy a significant portion of the control 

channel. 7 Thus, a reduction in the size of these messages due to the selective communi

cation mechanism is indeed a significant contribution towards reducing communication 

overhead (see discussions in sections 5.5.1.2 and 5.5.2.3). 
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Figure 6.6: Time variation of average message size of e-PTC and a-PTC using the 
50-node topology of figure 4.3(a), Pc = 0.2, .6..s = 0.1 

6Note that there is a slight upward trend in the MS of e-PTC in figure 6.6. However, it settles down 
to a value close to 3.02 after about 2.5 x 106 time steps. 

7In fact, these messages have been observed to occupy about 25% of the total control channel band
width at a load of 0.8 in the topology of figure 4.3(a) using e-PTC. 
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Figure 6.7: Time variation of average message size of e-PTC and a-PTC using the 
100-node topology of figure 4.3(b), Pc = 0.2, ~s = 0.1 

E 
§ 100 
'-' 

i 80 
z 
~ 
ro 
.c 
(f] 60 
::;;: 
.<; 

" 40 u 
~ 

i!! 
~ 
is 20 
if< 1 

0.4 0.8 Load 

Selectivity Threhold 0.2 
o 1 

Figure 6.8: Comparing the message size profiles of a-PTC and e-PTC on the 50-node 
topology of figure 4.3(a) 

Now the MS performances of a-PTC and e-PTC are compared across the range of 

call origination probability and selectivity threshold values. Similar to section 6.2.1, 

summary trends of the relative difference of the average steady state MS of a-PTC and 

e-PTC are used. Thus, for every pair of ~s and Pc values, the value of (MS(ePTC) -

MS(aPTC))/MS(ePTC) (where MS(x) represents the average steady state message 

size for protocol x) is computed. In figure 6.8, these values are plotted when the topology 

of figure 4.3(a) is used over a surface defined by the 6.s and the Pc axes. The following 

trends are observed: 

Observation 3: At a given call origination probability, the larger the selectivity thresh-
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Figure 6.9: Comparing the message size profiles of a-PTC and e-PTC on the 100-node 
topology of figure 4.3(b) 

old, the larger the relative difference in MS of e-PTC and a-PTC. This is because, at 

a given value of Pc, information transmission is more frequent when the value of f:J.s is 

small than when it is large (as explained in section 6.2.1). Thus, at a given Pc, the MS 

of a-PTC decreases as f:J.s increases. Hence, the relative difference in the MS of e-PTC 

and a-PTC increases as f:J.s increases . 

Observation 4: For a given selectivity threshold, a change in the call origination prob

ability does not have any significant impact on the relative difference in MS of a-PTC 

and e-PTC. The MS of any protocol increases as Pc increases because more calls origi

nate as Pc increases and thus, more calls connect and fail leading to more information 

transmissions (larger MS). Thus, given a value of f:J.s the MS of a-PTC increases with 

Pc and so does that of e-PTC. However, in figure 6.8, the uniformity in the relative 

difference of the MS of e-PTC and a-PTC implies that the rate of increase of the MS 

of a-PTC is lower than that of e-PTC with increasing Pc. This is because the relative 

difference is measured as (MS(ePTC) - MS(aPTC))/MS(ePTC), where MS(ePTC) 

is larger than MS(aPTC) at any given Pc (see previous results on the MS time series 

in this section). So, if both MS(aPTC) and MS(ePTC) increase with increasing Pc, the 

relative difference can be uniform (over Pc) only if the rate of increase of MS (aPTC) 

with Pc is smaller than that of MS(ePTC). 

The trends observed in figure 6.9, which shows the same measurements using the 

topology of figure 4.3(b), are similar to those discussed above. These results, therefore, 

establish the advantage of the adaptive PTC algorithm in significantly reducing the 

message overhead of e-PTC. 
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6.3 Summary 

This chapter contributes by improving the effectiveness of the PTC protocol further than 

that achieved in chapter 5. In particular, such an advancement is done by reducing the 

communication overhead of the e-PTC algorithm of chapter 5 but without sacrificing 

the quality of solutions generated for the sequential RA tasks. Hence, this work further 

establishes our thesis (as stated in chapter 1) that an effective information-sharing pro

tocol can be used to generate high quality adaptive behaviour in sequential RA tasks in 

distributed systems. 

The specific way of reducing the PTC message overhead adopted in this chapter is 

by making information-sharing an adaptive process. In the context of our application 

domain of network call routing, this is achieved by providing the nodes with memory to 

keep track of the most recent state values transmitted and received so that they can de

tect if transmitting the current state value will be redundant to the recipient and, in that 

case, not transmit it. Thus, such adaptivity results in a more controlled communication 

protocol in the sense that no messages are generated whenever a redundancy is detected. 

It ensures that the message overhead is restricted; but, since it is only when there is 

a redundancy that information is not shared, its effect on the system's performance in 

terms of successfully placing calls (i.e., the system's capability is successfully complet

ing the sequential RA tasks) is insignificant. In this way, the effectiveness of the PTC 

protocol is improved further. Moreover, this chapter provides a novel advancement to 

the state-of-the-art in this domain by designing an adaptive mechanism for information

sharing that generates highly effective allocation performance but only incurring a low 

message overhead. Empirical analyses show that the simple modification (of adding a 

storage space which is only linear in the number of network nodes and does not increase 

at run time) is very effective by generating call success rates that are not significantly 

lower than that of e-PTC. Moreover, these studies also show that the message overhead 

of the adaptive algorithm is significantly lower than that of e-PTC. 



Chapter 7 

Conclusions and Future Work 

In this chapter, we present our concluding remarks regarding the work presented in this 

thesis (section 7.1) and identify the avenues of future research (section 7.2). 

7.1 Conclusions 

In this research, we had proposed our thesis (see chapter 1) that an effective information

sharing mechanism is essential for the generation of good quality estimates and, hence, 

adaptive behaviour, required for efficiently processing distributed sequential RA tasks. 

To establish this thesis, we have used a series of theoretical and empirical studies that 

have provided conclusive evidence about the validity of our thesis. In order to achieve 

this goal, we had to overcome three important research problems (see chapter 1): (i) 

to design an effective information-sharing protocol; (ii) to show that this protocol can 

be used for estimate generation in sequential task domains; and (iii) to show that such 

estimates can then generate adaptive behaviour in dynamic environments involving this 

task domain. In addition, in so doing, our work has contributed by advancing the 

state-of-the-art in the field of cooperative MAS used for solving distributed sequential 

RA problems. In the following, we summarise the contributions of each chapter in this 

thesis and explain how they contribute towards establishing our thesis. 

In chapter 3, we start by developing an information-sharing protocol- the post task

completion (PTC) protocol - that allows agents to acquire the values of the states they 

cannot directly observe in distributed systems where sequential RA tasks are executed. 

This protocol is both novel in its principle of application and, to the best of our knowl

edge, the most effective among currently available information-sharing protocols (used 

in efficiently solving distributed sequential RA problems) in terms of generating highly 

accurate estimates. In chapter 3, we prove this property of the PTC protocol using a 

formal analysis in a sequential RA task environment. Hence, this chapter establishes 
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the usefulness of an information-sharing mechanism for the generation of high quality 

state estimates in distributed systems a claim made in our thesis in chapter 1. 

In chapter 4, we design a set of communication heuristics based on PTC and em

pirically evaluate their performance in an exemplar application involving distributed se

quential RA tasks call routing in a mesh telephone network. In particular, Q-learning 

is used along with PTC to provide a flexible and robust mechanism for learning state es

timates. The experimental results indicate significant improvements in the performance 

of the PTC-based heuristics compared to a variety of state-of-the-art algorithms used 

in this domain. Specifically, PTC is shown to achieve up to 60% improvement in call 

success rates, up to 1000% improvement in its capability to connect long-distance calls, 

and as low as 0.25 of the message overhead of the benchmark algorithms. The exper

iments were conducted under dynamic environments simulated by varying the network 

load. Thus, these results indicate that the PTC-based heuristics can adapt better than 

the benchmarks. These results, therefore, provide empirical evidence to confirm the 

theoretical claims of chapter 3. Hence, this chapter contributes by further establishing 

the validity of our thesis that effective information-sharing can be used for estimate 

generation and good adaptive behaviour. 

In chapter 5, we focus on improving the performance of PTC under highly dynamic 

environment conditions. Note that chapter 4 has shown that PTC performs better 

than the benchmarks under changing load conditions (one source of environment dy

namics). Chapter 5 furthers this observation by subjecting PTC to environments with 

even greater dynamism. This approach is significant since it helps us to confirm our 

thesis which states that the communication protocol should be able to generate effective 

adaptive response in dynamic systems. Specifically, in chapter 5, system dynamism is 

implemented using network failures in the call routing application, where failures can 

occur anywhere in the network without prior indication. To counter the effects of such 

events, the communication heuristics are extended to share information following failed 

attempts to complete tasks. While this method incurred more communication overhead 

(almost 3 times more), experimental results demonstrate that it performed much better 

than the heuristics of chapter 4 by providing greater adaptiveness when failures occur 

(up to 3 times faster recovery of the call success rate were observed after failures oc

cur). More importantly, the extended heuristics were shown to be capable of performing 

decentralised failure diagnosis, a key functionality for automating the maintenance of 

decentralised systems. In particular, a diagnosis algorithm is developed for correct di

agnosis of failures every time one occurs (no false negatives) and only if they occur (no 

false positives). Using this algorithm in an experimental study with simulated failures, 

it is shown to diagnose failures correctly, thereby verifying the theoretical claims of the 

algorithm. These results, therefore, establish that PTC is indeed capable of generating 

very effective adaptive behaviour in response to dynamism caused by network failures. 
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While chapter 5 successfully improved the performance of PTC by making it adaptive 

in highly dynamic systems, it achieved this advantage by generating larger messages. 

Now, most real applications are resource-bounded systems and, hence, a large message 

size can be a performance bottleneck. Thus, in chapter 6, we focus on improving the 

performance of PTC by reducing this message overhead but without sacrificing the ad

vantage it achieved in chapter 5. This chapter, therefore, contributes to further confirm 

our thesis that effective adaptiveness can be generated by a very effective information

sharing mechanism. To this end, chapter 6 shows that by storing in memory the history 

of communication, the agents can communicate selectively. In particular, they can iden

tify whether a certain communication would be redundant by comparing against the 

history of communication with the other agents. In case a redundancy is detected, they 

can refrain from communicating and, hence, save message overhead. Specifically, using 

empirical analyses on the call routing problem, it is shown that a significant amount 

of communication overhead is saved (up to 90% savings observed) without degrading 

the allocation quality significantly (call success rate with selective communication is ob

served to be within 3% of that obtained by using the heuristics of chapter 5). Thus, 

experimental studies have corroborated our theoretical predictions in this chapter. 

In the context of the above discussion, it can be justifiably claimed that this work 

has established our thesis on a solid foundation supported by both rigorous theoretical 

analyses and extensive empirical evaluation. Thus, our thesis has a significant contribu

tion towards extending the state-of-the-art in cooperative MAS research. Furthermore, 

by successfully applying our insights into practice in the call routing application, this 

thesis also contributes by advancing the technology currently available for this domain. 

7.2 Future Work 

In this section, we identify a set of possible avenues for future extensions to this thesis. 

7.2.1 Effect of Network Topology on Performance 

Our information-sharing algorithm, PTC, is designed in chapter 3 independent of the 

structure of the network on which it is evaluated. However, the empirical studies con

ducted to evaluate its performance in a simulated network routing problem used different 

network topologies. In these studies, although the general trends were broadly identical 

across topologies, the extent to which the performance of PTC differed from that of 

the benchmark algorithms was different in each topology. This observation indicates 

that the performance of an information-sharing algorithm is affected by network struc

ture. Given this, we could have some general conclusions regarding the influence of 

topology on performance. Such insight could then be used as guidance for network 
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designers and users providing them with approximate bounds on the performance of a 

given information-sharing algorithm. To this end, we envisage the need to categorise 

networks based on their structural properties, such as connectivity pattern and network 

diameter. By doing so, we would be able to evaluate our algorithm on multiple in

stances of each of these categories and, thus, create profiles of the effects of topology on 

performance. 

7.2.2 Cost of Communication 

The key focus of this research has been to design an effective communication protocol 

that a MAS can use in practice for improving its performance in sequential RA tasks 

in distributed systems. To this end, we have successfully developed such a protocol 

(chapter 3), evaluated it using empirical analyses on an exemplar network call-routing 

test bed (chapter 4), and worked towards improving its effectiveness both in dealing 

with highly dynamic environments (chapter 5) and controlling its message overhead 

(chapter 6). However, in this context, we identify that communication always incurs 

a "cost". This is simply because sending any message is an overhead. Thus, although 

in chapter 6, we have introduced adaptive communication, the decision-making used to 

adapt communication is based on the notion of redundancy of information. While this 

has been demonstrated as a very useful strategy in controlling the message overhead, we 

envisage further improvements if communication decisions were based on, in addition to 

the notion of redundancy, an explicit cost measure. As an example of communication 

cost, we can introduce in the agents' decision-making, an expected value of the message 

size that it is currently transmitting. Such an estimate can be correlated with the 

dynamics of the system, such as the rate of call origination, traffic patterns, previous 

estimates about message sizes transmitted to specific destinations, among others. This 

would then allow the agents to make even more judicious communication decisions. 

It remains to be investigated if such cost-based communication decisions can reduce 

communication overhead while retaining good call allocation performance. 

7.2.3 Other Resource Allocation Domains 

Our thesis has been proposed to show that a cooperative information-sharing mecha

nism can be useful for estimate generation, and, thus, adaptiveness in dynamic systems 

processing sequential RA tasks. While we have been successful in establishing our thesis 

in the course of this research, we note that RA tasks of other modalities also exist in 

practice in distributed systems. Thus, among the examples cited in chapter 1, the Grid 

RA is not sequential. Rather, in this application, a set of computational resources are 

allocated for a job to successfully execute. This type of allocation, although done in a 

distributed fashion (involving resources across distributed systems), does not necessarily 
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involve a sequence of allocations. Nevertheless, all these applications share some com

mon properties. These are, distributed agents, with only localised views of the system, 

individually process parts of an overall task. So, in all these systems, the agents need to 

use estimates of the non-local states for efficient task processing. Thus, to do so, cooper

ative information-sharing can be useful in these applications. Now, we have analysed a 

specific information-sharing protocol - PTC in the context of a specific task domain 

sequential tasks. However, the underlying motivation of sharing information is to 

allow distributed agents with localised knowledge to generate effective state estimates, 

independent of the nature of the task (sequential or otherwise). So, from the success 

of PTC in the context of sequential tasks, it is reasonable to hypothesise that suitable 

information-sharing protocols can be designed for efficient distributed task processing 

in other RA domains. 

7.2.4 Hierarchical Control 

The specification of our PTC protocol only indicates that information is to be shared 

among those agents that jointly complete a task (section 3.1). Now, this works well 

in the network routing domain which, in its current form, functions effectively as a 

peer-to-peer system. However, in case of much larger systems, we envisage that such 

peer-to-peer interactions may become somewhat inefficient. Specifically, it can incur 

long latencies for information to be shared across agents and, hence, affect the quality 

of estimates learned. 

However, in many multi-agent domains, the flow of control among agents occurs in a 

hierarchical fashion. For example, in network routing, clusters of nodes are often used 

with one or more "head" nodes that act as the cluster representatives. Thus, inter-cluster 

routing occurs at the level of the corresponding cluster heads (Perkins, 2000). Similarly, 

in a multi-agent-based monitoring system used for aging people, sensor agents report to a 

monitor and processing centre, which, again, might report to medical personnel (Cortes 

et al., 2003). Such a hierarchy of control and communication mitigates the scalability 

issues identified before. 

In this context, we envisage that using PTC to share information in a hierarchical 

fashion would ensure that it scales effectively to large multi-agent systems. However, a 

hierarchy can define different organisational structures depending on different problem 

instances. Therefore, it is essential to define cooperative groups in the context of hi

erarchical systems, such that PTC can be used to distribute information among these 

groups. This may then involve sharing of information among agents across different 

hierarchical levels. 
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7.2.5 Extended Representation of State Dynamics 

In this thesis, we have modelled the state dynamics by representing the available band

width as a function of the call destination and the neighbour node to whom the call is 

to be forwarded. Then, for effective call allocation, the Q-estimates are learnt appro

priately. But, we envisage that for very large networks, this representation can lead to 

long delays for estimates to all possible destinations to be learnt. This is because, infor

mation is transmitted between agents along the call paths following call successes and 

failures. Therefore, for large networks, this mechanism would necessitate long delays 

for the information to be shared (and, hence, learnt) between all node pairs. To rectify 

this, we envisage that a modified Q-function is needed. In particular, we can use tech

niques for segmenting the state-space to define "compound" states and use Q-Iearning 

on this augmented state-space. The motivation for such state aggregation is similar to 

that of hierarchical control: to address the dimensionality problem. In this context, 

we can build upon the results from other works on state segmentation for hierarchical 

routing (Ramanathan and Streenstrup, 1998; Shacham and Westcott, 1987). 

7.2.6 Analysis of Algorithm Stability 

The effectiveness of our information-sharing algorithm has been demonstrated by way of 

extensive empirical evaluation on a simulated call routing problem. This problem repre

sents a complex distributed system and its behaviour is governed by several parameters: 

network topology, call origination rate, distribution of call sources and destinations, call 

duration, node capacity, information-sharing algorithm, being some of the most impor

tant ones. It is important to note that all the above-mentioned parameters affect the 

learning of the Q-estimates (which the agents use to route calls). Now, the central ac

tivity of this system is that of distributed agents asynchronously choosing neighbouring 

agents to forward calls. Note that this behaviour is solely influenced by the Q-estimates 

and, hence, by the above-mentioned parameters. In this context, therefore, it is impor

tant to study if such a complex distributed system always performs within "acceptable 

bounds". In other words, we are interested in answering the question whether this sys

tem would always remain stable. Noticing that the agents can only handle a task when 

they have free bandwidth (otherwise, a task is dropped and reserved resources are re

covered) and the Q-estimates are strictly bounded in the range [0.0,1.0]' our hypothesis 

is that the behaviour of each agent is always "bounded" and, thus, the system always 

remains stable. This hypothesis has so far been supported by the numerous experiments 

we have conducted where no instablity has ever occured. Nevertheless, a formal analysis 

of this hypothesis could be useful for strengthening the claim that our algorithm is useful 

in practice. 



Appendix A 

Evaluation of a Broadcast 

Protocol for Sharing Information 

In chapter 1, we identified information-sharing as a necessary prerequisite for generating 

a MAS solution for efficiently solving sequential RA problems. We demonstrated the 

viability of this claim by designing a novel protocol for sharing information (in chapter 3) 

and then demonstrating using empirical evaluation (in chapter 4) that our protocol 

achieves a better solution than a range of state-of-the-art algorithms when used in a 

distributed call routing problem in mesh networks. In this context, a broadcast protocol 

of sharing information was not considered as a viable benchmark. This is because it is 

impractical in applications such as network call routing due to its excessive bandwidth 

requirement caused by indiscriminate communication. Moreover, in large distributed 

systems, it is the right information about the right, often partial, portions of the global 

state (rather than indiscriminate communication used in broadcast) that generate the 

desired performance. 

In this appendix, we design a broadcast protocol for sharing information in the call 

routing application and compare its performance against that of our PTC heuristic. 

Our observations from this study justify the above-mentioned arguments. To this end, 

we first describe the broadcast protocol. Subsequently, the issue of a variable-length 

message queue is discussed that is used to determine how changing the amount of com

munication impacts performance. Then, we present experimental results comparing the 

performances of the broadcast protocol against that of PTC-M (as discussed in sec

tion 4.3). Finally, the observations of this study are summarised. 
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A-I The Broadcast Protocol 

In the broadcast protocol, each node transmits its state value to all other nodes in the 

network whenever there is a change in its local state. By so doing, it attempts to inform 

all other nodes about its new state. Note, however, that a broadcast message reaches 

other nodes not by point-to-point communication but by a multi-hop forwarding process. 

To explain in more detail, consider a node nx with a set of neighbours JCx broadcasting 

its state Sx at time t. Thus, at time t + 1 (assuming a receiving node in a direct 

communication actually receives a message after one time tick in the global clock), all 

nodes in Kx will receive Sx' Each of JCx will then transmit that Sx to their neighbours. 

Note that in so doing, Sx would be transmitted back to the originator n x . However, it 

can detect that this message was being transmitted by itself before and, hence, reject 

it. This check is possible by including the message originator's id nx and the origination 

time t along with the message. 

Against this background, we now describe how the nodes using the broadcast pro

tocol reinforce their Q-estimates. To explain this, the broadcast message, in addition 

to containing Sx (the originator's state), nx (the originator's id), and t (the origination 

time), also contains the states of the intermediate nodes that transmitted it. The nodes 

append their state values to the broadcast message before transmitting it to the neigh

bours. This is similar to what happens while an me type message is transmitted from 

the call destination towards its source (see section 4.2). Thus, a node ni receiving a 

broadcast message also receives the set of state values of those nodes along the path 

that the message traversed. Hence, similar to the PTC-M mechanism, ni computes the 

minimum of these state values and updates its Q function. By using the same aggre

gation operator as PTC-M minimum - a fair comparison of the broadcast-based 

learning and the PTC-based learning is ensured. Thus, if ni receives a broadcast mes

sage, originating at n x , from a neighbour nj, it updates it Q-estimate for nx and nj as: 

Qi(X,j) +- (1 - a)Qi(x,j) + aR. Here, R is the aggregate state of the path taken by 

the message from nx to ni via nj. 

A-2 Effect of Message Queue Size 

A broadcast protocol requires each node to queue all incoming messages. However, we 

observed that even with a reasonably small topology (the network of figure 4.2) and a 

lightly loaded network (call origination probability of 0.1) the number of messages to 

be queued increased rapidly and the simulator ran out of memory on a machine with a 

dual 2.2 GHz AMD Opteron processor and 2GB memory. This is a clear indication of 

the unsuitability of using broadcast in practice due to the indiscriminate communication 

it uses. However, to carry out the simulation-based evaluation of the performance of 
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broadcast without running out of memory, we decided to use message queues with a 

maximum size limit. A tuning parameter like the queue size, provides us with a tool to 

study the impact the amount of communication has on performance. In this context, 

we set the maximum size of the queue used for broadcast messages as a multiple of the 

maximum call-channel capacity (a value of 10, see section 4.4.2). The multiple value 

is varied between 1 and 50; the higher the value, the closer is the protocol to pure 

broadcast (with no restrictions on message queue size). Obviously, the greater the size 

of the queue, the more memory and time it requires for the broadcast simulation to 

complete. On the other hand, the message queue size has insignificant effect on the 

memory consumption and execution time of the PTC-M protocol. This is because being 

a selective mechanism for information-sharing, the PTC protocol has the advantage of 

generating a limited number of messages. Hence, even a small message queue is able 

to hold all messages in PTC-M. In the following section, we discuss the call success 

rate performance of PTC-M and the broadcast protocols using various message queue 

lengths. 

A-3 Experimental Results 

In this section we present and analyse the experimental results obtained by using the 

broadcast and the PTC-M protocols on the topology of figure 4.2. Both the message 

queue size and the call origination probability values were varied. For a given value 

of the message queue size and the call origination probability, the average steady state 

call success rate (as defined in section 4.5) is computed for both protocols. Figure A-I 

shows these values against the various message queue sizes when the call origination 

probability is 0.1. The following observations are made: 

Observation 1: The call success rate of PTC-M remains almost unaffected with 

changing size of the message queue, while that of the broadcast protocol initially increases 

and then stabilises as the message queue size increases. 

PTC-M is a controlled mechanism for distributing information. It allows one message 

to be generated per call success and that message is distributed to only the nodes on the 

call route. Thus, the number of information messages generated are sufficiently limited to 

be accommodated effectively even when the message queue size is small (corresponding 

to a value of 1 along the x-axis of figure A-I). So, obviously, for queues of even larger 

sizes, all messages of PTC-M would also be accommodated. Now, we know that the call 

success rate depends on how well the Q-estimates are learned, which, in turn, depends 

on how effectively information is shared. Since, for all message queue lengths, the 

information messages are effectively distributed among the nodes, their Q-Iearning is 

not affected by the varying queue length. Hence, the call success rate performance of 

PTC-M remains almost unaffected. 
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Figure A-I: Average steady-state call success rates of broadcast and PTC-M using 
various message queue lengths, topology of figure 4.2, load 0.1 

On the other hand, the broadcast protocol generates messages far more frequently 

than PTC-M every time there is a state change in any node. A node's state changes 

if a new call gets placed (thus, using up bandwidth) or an existing call terminates (thus, 

freeing up bandwidth). Now, since calls can originate on any node on a continuous basis, 

the broadcast protocol results in generating a high volume of messages. Therefore, when 

the message queue size is small, a large proportion of these messages are lost. Note that, 

in PTC-M, for the same value of the message queue, all information-bearing messages 

get successfully transmitted to the target nodes. In broadcast, however, losing messages 

that are targeted for every node results in a significant loss of information that could 

have helped a lot of nodes to learn the network state estimates. This is why the call 

success rate of broadcast suffers when the queue length is small. However, with larger 

queues, this problem is alleviated and the call success rate recovers. Also, the broadcast 

call success rate stabilises at large values of message queue size. This indicates that 

communicating more and more information (when the communication approaches pure 

broadcast) does not necessarily improve the network's performance. So, it is selective 

controlled communication (such as that of PTC) that is enough to achieve a sufficiently 

good performance. 

Observation 2: For small message queues, PTC-M generates better call success 

rates than broadcast, while the differences between them are statistically insignificant for 

larger queues. 

As explained previously, the large proportion of information-bearing messages lost in 

broadcast when small message queues are used causes the Q-learning to suffer. However, 

since the desired information messages are transmitted successfully in PTC-M, the nodes 
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learn effectively even when the queues are small. Thus, the call success rate of PTC-M 

is higher than that of broadcast. With larger queue lengths, however, as the broadcast 

can accommodate more and more messages, its learning performance improves, and so 

does the call success rate. In fact, we notice the broadcast call success rate to be slightly 

higher than PTC-M, although the differences are not statistically significant at the 95% 

confidence level. 

In this context, it is important to note that the degree of dynamism and inherent 

latency in the flow of information in a distributed system dictate that simply increasing 

communication does not enable the agents to remain accurately up-to-date with the 

network states at all times. Coupled with this is the fact that task processing takes a 

finite time from start (the node originating the call) to finish (the call getting routed 

to the destination) during which different agents take routing decisions based on their 

individual estimates. This decentralised protocol is always offset from the ideal (and, 

infeasible in practice) situation where all nodes were perfectly synchronised. In this 

network routing scenario, the amount of communication achieved by PTC-M is shown 

to suffice and generate equally good performance to that of unrestricted communication. 

A formal analysis could provide us with a theoretical insight regarding the amount of 

communication that is required to achieve a certain performance in a given complex 

system; however, that is part of our future work. For experiments with other values of 

the call origination probability, similar observations were made. 

A-4 Summary 

In this appendix, we have experimentally demonstrated that broadcasting information 

among nodes is an impractical strategy to be used in real applications due to its excessive 

communication overhead. Moreover, indiscriminate communication does not necessarily 

generate better performance than our PTC algorithm. This supports our claim that in 

distributed, dynamically changing systems where the agents have very localised views of 

the global states, communicating ever more information may not improve performance 

more than transmitting information selectively in a timely and accurate manner. 





Bibliography 

1. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and K Cayirci. A survey on sensor 

networks. IEEE Communications, pages 102-114, 2002. 

J. Baxter and P. L. Bartlett. Direct gradient-based reinforcement learning: 1. Gradient 

estimation algorithms. Technical report, Research School of Information Science and 

Engineering, Australian National University, 1999. 

C. Boutilier. Sequential optimality and coordination in multiagent systems. In Proceed

ings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 

478-485, 1999. 

J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks: 

A reinforcement learning approach. In J. D. Cowan, G. Tesauro, and J. Alspector, 

editors, Advances in N euml Information Processing Systems, volume 6, pages 671-678, 

1993. 

Jeffrey M. Bradshaw. Software Agents. AAAI Press/The MIT Press, Menlo Park, CA, 

1997. 

W. L. Brogan. Modern Control Theory. Prentice Hall, 3rd edition, 1990. 

K. M. Carley and L. Gasser. Computational organisation theory. In G. Weiss, editor, 

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pages 

299-330. The MIT Press, Cambridge, MA, 1999. 

CCGRID. The 3rd IEEE/ ACM International Symposium on Cluster Computing and 

the Grid (CCGRID 2003), May 2003. http://www.ccgrid.org/ccgrid2003. 

S. Chandler, S. Braithwaite, and H. Mgombelo. A distributed rural telephone system for 

developing countries. In Proceedings of the lEE Conference of Telecommunications, 

1993. 

CNES. Pleiades: Satellites and means constellation for earth observation. 

http://smsc.cnes.fr/PLEIADES/, 2001. 

135 



136 BIBLIOGRAPHY 

P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35(4):487-512, 1991. Special Issue 

on Cognitive Science and Artificial Intelligence. 

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms, 

chapter 24: Single Source Shortest Paths. MIT Press, 2nd edition, 2001. 

U. Cortes, R. Annicchiarico, J. Vazquez-Salceda, C. Urdiales, 1. Canamero, M. Lopez, 

M. Sanchez-Marre, and C. Caltagirone. Assistive technologies for the disabled and for 

the new generation of senior citizens: the e-Tools architecture. AI Communications, 

16(3):193-207, 2003. 

W. H. E. Davies and P. Edwards. The communication of inductive inferences. In 

G. Weiss, editor, Distributed Artificial Intelligence Meets Machine Learning: Learning 

in Multi-Agent Environments, Lecture Notes in Artificial Intelligence 1221, pages 223-

241. Springer-Verlag, 1997. 

K. S. Decker. Environment centered analysis and design of coordination mechanisms. 

PhD thesis, University of Massachusetts, Amherst, Massachusetts, 1995a. 

K. S. Decker. TAEMS: A framework for environment centered analysis and design of 

coordination mechanisms. In G. O'Hare and N. Jennings, editors, Foundations of 

Distributed Artificial Intelligence, chapter 16. Wiley Inter-Science, 1995b. 

K. S. Decker and V. R. Lesser. Designing a family of coordination algorithms. In 

Proceedings of the First International Conference on Multi-agent Systems, pages 73-

80, San Fransisco, July 1995. 

K. S. Decker and J. Li. Coordinating mutually exclusive resources using GPGP. Au

tonomous Agents and Multi-Agent Systems, 3(2):133-157, 2000. 

B. Denkena, M. Zwich, and P. Woelk. Holonic and Multi-Agent Systems for Manufac

turing, volume 2744/2004 of Lecture Notes in Computer Science, chapter Multiagent

based process planning and scheduling in context of supply chains, pages 100 - 109. 

Springer-Verlag, Heidelberg, January 2004. 

E. H. Durfee and V. R. Lesser. Partial global planning: A coordination framework for 

distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cyber

netics, 21(5):1167-1183, Sept - Oct 1991. 

P. S. Dutta, S. Dasmahapatra, S. R. Gunn, N. R. Jennings, and L. Moreau. Cooperative 

information sharing to improve distributed learning. In AAMAS-04 workshop on 

Learning and Evolution in Agent-Based Systems, pages 18-23, 2004. 

P. S. Dutta, C. V. Goldman, and N. R. Jennings. Efficient communication using selective 

information exchange in resource-constrained multiagent systems. Submitted to the 



BIBLIOGRAPHY 137 

Fifth International Joint Conference on Autonomous Agents and Multiagent Systems 

(AAMAS 2006), 2005a. 

P. S. Dutta, N. R. Jennings, and L. Moreau. Cooperative information sharing to improve 

distributed learning in multi-agent systems. Journal of Artificial Intelligence Research 

(JAIR) , 24:407-463, October 2005b. 

P. S. Dutta, N. R. Jennings, and L. Moreau. Sharing information for Q-learning-based 

network bandwidth estimation and network failure detection (poster). In Proceedings 

of the Fourth International Joint Conference on Autonomous Agents and Multiagent 

Systems, pages 1107-1108, 2005c. 

E. Feinberg and A. Schwartz. Handbook of Markov Decision Processes: Models and 

Applications. Kluwer Academic Publishers, August 2001. 

FloodNet. Floodnet: Pervasive computing III the environment, 2004. 

http://envisense.orgjfloodnetjfloodnet.htm. 

I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. 

Morgan Kaufmann, 1998. 

M. S. Fox. An organizational view of distributed systems. IEEE Transactions on Sys

tems, Man and Cybernetics, 11(1):140-150, January 1981. 

D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991. 

J. R. Galbraith. Organization Design. Addison-Wesley, 1977. 

M. A. Gibney, N. R. Jennings, N. J. Vriend, and J. M. Griffiths. Market-based call 

routing in telecommunications networks using adaptive pricing and real bidding. In 

S. Albayrak, editor, Intelligent Agents for Telecommunication Applications - Pro

ceedings of the Third International Workshop on Intelligent Agents for Telecommuni

cation (lATA '99), volume 1699, pages 46-61. Springer-Verlag: Heidelberg, Germany, 

1999. 

C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Cate

gorization and complexity analysis. Journal of Artificial Intelligence Research (lAIR), 

22:143-174,2004. 

B. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial Intelli

gence, 86(2):269-357, 1996. 

N. Haque, N. R. Jennings, and L. Moreau. Resource allocation in communication net

works using market-based agents. International Journal of Knowledge Based Systems, 

18( 4-5) :163-170, August 2005. 



138 BIBLIOGRAPHY 

Carl Hewitt. The foundation of artificial intelligence a sourcebook, chapter The 

Challenge of Open Systems, pages 383 - 395. Cambridge University Press, 1990. 

N. R. Jennings. Commitments and conventions: The foundation of coordination in 

multi-agent systems. The Knowledge Engineering Review, 8(3):223-250, 1993. 

N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent sys

tems using joint intentions. Artificial Intelligence, 75(2):195-240, 1995. 

N. R. Jennings. An agent-based approach for building complex software systems. Com

munications of the ACM, 44(4):35-41, 2001. 

M. Jin, M. Girvan, and M. E. J. Newman. The structure of growing social networks. 

Phys. Rev. E, 64, 026118:381-399, 2001. 

P. Jones. Resource Allocation, Control, and Accounting for the Use of 

Network Resources (RFC 1346). Joint Network Team, UK, June 1992. 

http://www.faqs.org/rfcs/rfc1346.html. 

D. Julian, M. Chiang, D. O'Neill, and S. Boyd. Qos and fairness constrained convex 

optimization of resource allocation for wireless cellular and ad hoc networks. In Pro

ceedings of the IEEE InfoComm, pages 1 - 10, 2004. 

J. R. Kalagnanam, A. J. Davenport, and H. S. Lee. Computational aspects of clearing 

continuous call double auctions with assignment constraints and indivisible demand. 

Electronic Commerce Research, 1(3):221-238, July 2001. 

M. Kalech and G. A. Kaminka. Diagnosing a team of agents: Scaling-up. In Proceedings 

of the Fourth International Joint Conference on Autonomous Agents and Multiagent 

Systems, pages 249-255, 2005. 

H. Kautz, B. Selman, and M. Shah. Referralweb: Combining social networks and col

laborative filtering. Communications of the A CM, 40(3):63-65, 1997. 

P. Klemperer. Auctions: Theory and Practice. Princeton University Press, 2004. 

T. Krag and S. Buettrich. Wireless Mesh Network-

ing. O'Reilly Wireless Devcenter, January 2004. 

http://www.oreillynet.com/pub/a/wireless/2004/01/22/wirelessmesh.html. 

T. B. Lee, J. Hendler, and O. Lassila. A new form of web content that is meaningful to 

computers will unleash a revolution of new possibilities. In Scientific American. May 

2001. 

M. Lemaitre, G. Verfaillie, H. Fargier, J. Lang, N. Bataille, and J. M. Lachiver. Equitable 

allocation of earth observing satellites resources. In Proceedings of the 5th ONERA

DLR Aerosapce Symposium (ODA S '03), 2003. 



BIBLIOGRAPHY 139 

V. R. Lesser and D. D. Corkill. The distributed vehicle monitoring testbed: A tool 

for investigating distributed problem solving networks. AI Magazine, 4(3):15-33, Fall 

1983. 

V. R. Lesser and L. D. Erman. Distributed interpretation: A model and experiment. 

In A. H. Bond and L. Gasser, editors, Readings in Distributed Artificial Intelligence, 

pages 120-139. Morgan Kaufmann, San Mateo, CA, 1988. 

N. Lynch. Distributed Algorithms. Morgan Kauffman, 1996. 

J. G. March and H. A. Simon. Organizations. John Wiley & Sons, 1958. 

J. Maynard-Smith. Evolution and the Theory of Games. Cambridge University Press, 

1982. 

R. A. McCallum. Hidden state and reinforcement learning with instance-based state 

identification. IEEE Transactions on Systems, Man and Cybernetics, Part B 

(Cybernetics26):464 - 473, 1996. 

P. Milgrom. Putting Auction Theory to Work. Cambridge University Press, 2004. 

N. Minar, K. H. Kramer, and P. Maes. Cooperating mobile agents for dynamic network 

routing. In Proceedings of the Software Agents for Future Communications Systems. 

Springer-Verlag, 1999. ISBN 3-540-65578-6. 

T. M. Mitchell. Version Spaces: An Approach to Concept Learning. PhD thesis, Stanford 

University, 1978. 

T. M. Mitchell. Machine Learning, chapter 13: Reinforcement Learning. McGraw-Hill, 

1997. 

L. Moreau, S. Braithwaite, N. Jennings, and D. DeRoure. Case for sup-

port: Mohican: Mobile handsets in cooperative agents network, 200l. 

http://www.ecs.soton.ac.uk/-lavm/mohican/case.html. 

R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997. 

R. Nair, M. Tambe, M. Roth, and M. Yokoo. Communication for improving policy 

computation in distributed pomdps. In Proceedings of the Third International Joint 

Conference on Autonomous Agents and Multi Agent Systems, pages 1098-1105, 2004. 

R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming decentralized 

POMDPs: Towards efficient policy computation for multiagent settings. In Proceed

ings of the Eighteenth International Joint Conference on Artificial Intelligence, pages 

705-711, 2003. 

C. E. Perkins, editor. Ad Hoc Networking. Addison Wesley, December 2000. 



140 BIBLIOGRAPHY 

1. Peshkin and V. Savova. Reinforcement learning for adaptive routing. In Proceedings 

of the International Joint Conference on Neural Networks (IJCNN) , 2002. 

B. Rachlevsky-Reich, I. Ben-Shaul, N. T. Chan, A. W. Lo, and T. Poggio. GEM: A 

global electronic market system. Information Systems, 24(6):495-518, 1999. 

R. Ramanathan and M. Streenstrup. Hierarchically organized, multihop mobile wireless 

netwoks for quality-of-service support. ACM/Baltzer Mobile Networks and Applica

tions Journal, 3(1):101 - 119, 1998. 

C. Rich and C. L. Sidner. COLLAGEN: When agents collaborate with people. In 

Proceedings of the First International Conference on Autonomous Agents (Agents '97), 

pages 284-291, 1997. 

T. Sandholm and S. Suri. Market clearability. In Proceedl:ngs of the Seventeenth Inter

national Joint Conference on Artificial Intelligence (IJCAI), pages 1145-1151, 2001. 

N. Shacham and J. Westcott. Future directions in packet radio architectures and pro

tocols. In Proceedings of the IEEE, volume 75, pages 83 - 99, 1987. 

H. A. Simon. Models of Man. Wiley, New York, 1957. 

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state 

aggregation. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural 

Information Processing Systems, volume 7, pages 361-368. The MIT Press, 1995. 

S. Soon, A. Pearce, and M. Noble. Adaptive teamwork coordination using graph match

ing over hierarchical intentional structures. In Proceedings of the Third International 

Joint Conference on Autonomous Agents and Multiagent Systems, pages 294-301, 

2004. 

P. Stone. TPOT-RL applied to network routing. In Proceedings of ICML 2000, pages 

935-942, 2000. 

P. Stone and M. Veloso. Team partitioned, opaque transition reinforcement learning. In 

Proceedings of the Third Annual Conference on Autonomous Agents, pages 206-212, 

1999. 

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy-gradient methods for 

reinforcement learning with function approximation. Advances in Neural Information 

Processing Systems, 12:1057-1063, 2000. 

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine 

Learning, 3:9-44, 1988. 

M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7: 

83-124, 1997. 



BIBLIOGRAPHY 141 

R. Viswanathan and P. K. Varshney. Distributed detection with multiple sensors: Part I 

- fundamentals. In Proceedings of the IEEE, volume 85-1, pages 54-63, January 1997. 

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, Psychology Depart

ment, University of Cambridge, 1989. 

C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning, 8: 

279-292, 1992. 

B. Widrow and M. E. Hoff. Adaptive switching circuits. In WESCON Convention 

Record Part IV, pages 96-104. 1960. 

R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein

forcement learning. Machine Learning, 8(3):229 - 256, 1992. 

M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons, Chich

ester, England, February 2002. 

P. Xuan, V. R. Lesser, and S. Zilberstein. Communication decisions in multi-agent coop

eration: model and experiments. In Proceedings of the Fifth International Conference 

on Autonomous Agents (Agents-Ol), pages 616-623, Montreal, 2001. 

B. Yu, M. Venkatraman, and M. P. Singh. An adaptive social network for information 

access: architecture and experimental results. Applied Artificial Intelligence, 17(1): 

21-38, January 2003. 

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational rules as an ab

straction for the analysis and design of multi-agent systems. International Journal of 

Software Engineering and Knowledge Engineering, 11(3):303-328, 2001. 


