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One of the characteristics of a good Augmented Reality (AR) system is to be 

able to register virtual objects correctly onto the specified location in the real 

world. A displacement from this specified location is called registration error. 

This error can be caused by several factors, such as system delay, optical 

distortion and poor camera calibration. The problem of poor camera 

calibration in AR has always been overcome by employing careful camera 

calibration steps with the use of a specific known object. However this task is 

time consuming and mostly performed offline. This dissertation aims to 

develop an AR system known as a SCAR (Self-Calibration for Augmented 

Reality) system, which incorporates a self-calibration of a camera so that the 

system updates the camera intrinsic parameters whenever they change. The 

SCAR system incorporates an algebraic approach to self-calibration where it 

can solve camera parameters based on only three views and reguires only the 

fundamental matrices as the inputs. The solution proposed here can be used 

for any AR system that uses visual-based tracking. Several pre-calibration 

stages including feature detection, point correspondence matching, and 

fundamental matrix estimation are developed. 111e problem of inaccuracy 

with general corner detector has been identified and a new algorithm, which 

combines Harris and SUSAN corner detectors, has been suggested. This 

hybrid detector increases tl1e corner detection accuracy and reduces 



localisation errors of up to several pixels. A novel point correspondence 

matching has been developed, which is based on motion vector and simple 

statistic calculation. The matching process is efficient and capable of 

removing outliers from corner detection as well as maintaining a good 

number of correct matches even in the event of occlusion. Lens distortion is a 

common problem in visual-based tracking. This problem is dealt with by 

solving general epipolar constraints in order to simultaneously solve for the 

distortion parameters and fundamental matrix using lvLAPSAC algorithm. 

Finally the SCAR system is compared with the ARToolKit calibration 

procedure and has proven to produce reliable results with better flexibility. 

The theoretical aspects of critical motion, which may exist between pairs of 

views, are also discussed. A new measure of the criticalness of the motion for 

the case of parallel camera axis followed by rotation along the principal axis is 

also presented. 
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Chapter 1 

INTRODUCTION 

1.1 Augmented Reality 

1.1.1 Definitions 

In the past few years, there has been considerable interest in mixing live 

video from a camera with computer-generated graphical objects that are 

registered in a user's three-dimensional environment; this process is called 

Augmented Reality (AR) [.rhuma 1997]. This is due to emergmg 

developments in Virtual Reality (VR) and wearable computing. People in 

virtual reality are extending their research on fully virtual immersive system 

into research that combines virtual objects in real scenes, i.e. A.R, or 

combines real objects in virtual scenes, i.e . .r\ugmented Virtuality (A V). The 

increasing development of wearable devices, from monitor-based displays to 

head-mounted displays (Hf--IDs), is having a significant impact on AR 

research. HtvIDs make it possible for the .AR system to function outdoors as 

well as in the laboratory em'ironment . 

.r\ugmented Reality is a combination of the real scene viewed by the user 

and a 3D virtual object generated by the computer, which augments the 

user's view of the real world. According to A.zuma [1997], an AR system is a 



system that has the following three characteristics: one, it combines real and 

virtual; two, it is interactive in real time; and three, it is registered in 3D. 

Therefore, overlaying 2D virtual objects onto the real world cannot be 

considered AR. Films like Jurassic Park also cannot be regarded as AR, 

because they are not in an interactive medium. Figure 1.1 shows an example 

of AR where a man is interactively realising a car body in Spacedesign using 

3D devices and AR/VR I-IMD. 

Virtual Reality (VR) is an area that is closely related to AR. AR differs from 

VR due to the fact that it brings the computer into the 'world' of the user 

(compositing real and virtual), rather than immersing the user in the world 

of the computer (virtual only). A lvlilgram's Reality-Virtuality Continuum 

[l\lilgram and K..ishino 1994] shown in Figure 1.2 illustrates how real and 

\·irtual worlds are combined in various proportions. A.R has the real world 

as the background plus some virtual objects, whereas A V is vice versa. 

Virtual Environment represents VR and Real Environment represents the 

real world. 

1.1.2 Applications 

Some of the target application domains for AR include computer-aided 

surgery, repair and maintenance of complex engines, facilities modification, 

education, the games and entertainment industry and many more. For 

example, in medical applications AR images of i\IRI-derived models could 

be overlaid on top of a surgeon's view of a patient during surgery to help 

identify malignant tissue to be removed or sensitive healthy areas to be 

avoided [Tuceryan et al. 1995]. Lorensen et al. [1993] and Figl et al. [2002] 

also used an AR system for surgical planning applications. 
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Figure 1.1: An example of Augmented Reality [Fiorentino et al 02] . 

• 
Real 

Environment 
Augmerned 
Reality (AR) 

Augmented 
Virtualtty (AV) 

Reality-Virtuality (RV) Continuum 

• 
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Figure 1.2: Milgram's Reality-Virtuality Continuum 
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Figure 1.3: A typical AR system based on the ARToolKit architecture. 



Original Image Thresholded Image Connected Components 

Contours Extracted Marker Edges and Comers Fitted Cube based on Estimated CM 

Figure 1.4: Four steps involved in the marker detection stage in the 

ARToolKit, which consist of thresholding the captured image; finding 

connected components and contours; extracting marker edges and comers. 

Feiner et al. [1993] used AR in a laser printer maintenance task where the 

user is guided in the steps required to open the printer and replace various 

parts. Wellner [1993] developed an AR system in an office environment by 

overlaying a virtual desktop on a physical desk. Drascic et al. [1993] and 

Milgram et al. [1993] performed Telerobotics tasks by using an AR system 

with computer-generated stereo graphics. 

More recent applications include using AR in a classroom as a visual aid for 

students to understand Geography [Shelton and Hedley 2002], using AR for 

an exhibition in a museum [Grafe et al. 2002], and an interactive AR theatre 

that gives users a novel theatre experience through the exciting features of 

human-to-human social and physical interaction [Cheok et al. 2002]. 
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1.1.3 Augmented Reality System 

Figure 1.3 shows a typical j\R system. It illustrates the system that is being 

used in ARToolKit, software developed by the Human Interface 

Technology Lab 1n Washington (this can be downloaded from 

11\RToolKitJ). ARToolKit was first developed in late 1998 for a 

collaborative AR project at the University of\'Vashington's Human Interface 

Technology Laboratory. Since that time, it has grown to be used at dozens 

of research and academic institutions by hundreds of developers in various 

/\.R applications. 

The system consists of a live camera taking real world scenes as the input 

into the system. The system then tries to detect markers from the input 

stream (refer 1-'ippendix ,-'l for examples of the marker patterns used in 

ARTooIKit). I\fter a marker has been detected, the pattern inside the 

marker is identified so that the system knows which marker corresponds to 

which 3D virtual object. Normally, one pattern represents only one virtual 

object. The orientation of the marker is also determined during the marker 

pattern identification stage. Finally, after the camera transformation (from 

3D co-ordinate to 2D co-ordinate and vice yersa) has been calculated, this 

3D object is rendered on the pattern and shown on the "-'lR display (refer 

Appendix A). The system will then continually repeat the process of 

detecting markers, identifying marker patterns, calculating camera 

transformations and merging \'ideo, so that it can track any changes in the 

position and orientation of the pattern. If changes occur, the 3D virtual 

object is rendered according to the new position and orientation of the 

pattern. 

In order to render the virtual object according to the position and 

orientation of the pattern, the camera has to be calibrated. This is usually 

done before the system runs. The purpose of camera calibration is to 

provide the system with the intrinsic camera parameters, which include focal 
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length, aspect ratios and the centre of the image plane. These parameters are 

important for the system to calculate the 3D to 2D transformation and vice 

versa. A more detailed explanation of camera calibration will be given in 

Chapter 2. 

Once the camera has been calibrated, the AR system is said to be able to do 

3D tracking. Tracking in AR terms means observing movement by knowing 

the position and orientation of the object or pattern being tracked in space 

in real time. There are two ways of tracking in an AR system: 

a) Vision-based tracking 

This type of tracking depends on camera vISIOn. An object will be 

tracked if it is positioned within the camera view. The advantage of 

vision-based tracking is that it utilises the very same image or pattern on 

which virtual objects are overlaid. Therefore, nearly perfect registration 

can be achieved under certain conditions [Uenohara and Kanade 1995; 

Mellor 1995b]. Vision-based tracking outperforms other kinds of 

tracking in terms of the accuracy of registration. ARToolKit uses this 

form of tracking to track markers and patterns. 

b) Magnetic tracking 

Most tracking systems used today in fully immersiYe VR systems have 

been magnetic. The disad,'antage of using magnetic trackers is that they 

produce large amounts of error and jitter. An uncalibrated system may 

exhibit position errors of 10 cm or more, particularly in the presence of 

magnetic field disturbances such as metal and electric equipment. 

Carefully calibrating a magnetic system can reduce position errors to 

within :2 cm [Livingston and State 1995]. Despite their lack of accuracy, 

magnetic trackers are popular because they are robust and place minimal 

constraints on user motion. 
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1.1.4 AR Display Technology 
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Figure 1.5: Monitor based AR display [Vallino 2002]. 
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Figure 1.6: Video see-through AR display [Vallino 2002]. 

Figure 1.7: Optical see-through AR display [Vallino 2002] . 
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There are currently three types of display technology used in AR systems, 

namely monitor-based AR display (Figure 1.5), video see-through AR 

display (Figure 1.6) and optical see-through AR display (Figure 1.7). 

In general, a monitor-based £I.E. display is employed in a situation where the 

sense of presence is not important. The display is visually isolated from the 

system and typically not aligned with the camera. In situations where the 

user wants to feel more sense of presence, Head-Mounted Displays (HMDs) 

are often used. Figures 1.6 and 1.7 illustrate two types of HMD, video see­

through and optical see-through. 

Figures 1.5 and 1.6 illustrate that the architecture of video see-through is 

\'ery similar to that of the monitor-based display except that in video see­

through the camera is aligned with the monitor display and is placed on the 

HMD. This enables the user to see an augmented worldview that is 

immediately in front of his eyes. However, it does not allow any direct view 

of the real world because the real world view comes from the monitor. 

Optical see-through HI\ID allows the user to observe the real world, with 

virtual objects superimposed by optical or video technologies. It operates by 

placing an optical combiner in front of the user's eyes, which is partially 

transmissive and partially reflective. An optical approach Hl'vID has the 

following advantages over a video approach HI\ID [Azuma 1997]: 

a) Simp/idly: Optical blending is simpler and cheaper than video blending. 

b) ReJoilltioll: Optical see-through shows the virtual unages at the resolution 

of the display device, but the user's view of the real world is not 

degraded. 

c) Safety: In video see-through, if the power is cut off, the user is effectively 

blind, which may be dangerous in certain applications. 
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d) No rye offset: In most configurations of video see-through, the cameras 

are not located exactly where the user's eyes are, creating an offset 

between cameras and the real eyes. 

In contrast, a video approach BMD has the following advantages over an 

optical approach BMD khuma 1997]: 

a) F!e.Yibi/ity ill (ompoJitiolZ ortrategieor: In optical see-through, the virtual objects 

do not completely obscure the real world objects. This makes the user 

observe the virtual object as if a 'ghost object' were overlaid on the real 

scene. Unless a new technology of optical combiner can be created to 

overcome this, people will prefer the video see-through display for their 

applications. 

b) Real Clild /Jirtlla/ /Jle/JJ de!a)'J ((/11 be matched· In video see-through, it is 

possible to delay the video of the real world to match the delay from the 

virtual image stream. This can reduce the registration error that comes 

from the system delay. 

1.2 State of the Art in Calibration for AR 

1.2.1 Offline Plane-Based Camera Calibration 

One of the calibration techniques in c~R that is most commonly used IS 

offline plane-based calibration. Figure 1.8 shows an example of a plane used 

for calibrating a camera. The motintions for considering planes for 

calibrating cameras are mainly twofold [Sturm and I\Iaybank 1999]. First, 

planar calibration patterns are cheap and easy to produce. Second, planar 

surface patches are probably the most important two-dimensional features. 

If their metric stmcture is known, they already carry enough information to 

determine a camera's position up to only two solutions in general [Holt and 

Netravali 1991]. This method yields a very accurate determination of the 
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camera parameters, provided the calibration pattern is carefully set [Faugeras 

et al. 1992]. 

The disadvantage of the method is that it is not possible to calibrate on-line 

when the camera is already involved in a visual task. This can happen when 

the intrinsic parameters are changed either intentionally, for example during 

adjustment of focal length, or unintentionally, for example due to the effect 

of thermal variation. ARToolKit software uses this kind of calibration 

technique to calibrate the camera [ARToolKit]. 
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.1111111111 II 
11111111 1111 

1111 1111 
1111111111111111 

111111 II 
1111 II II 

1111 
Figure 1.8: Example of calibration pattern. 
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1.2.2 Magnetic Tracker Calibration 

Azuma and Bishop [1994] demonstrated accurate static registration across a 

wide variety of viewing angles and position by using an optoelectronic 

tracker for optical see-through HMD. Since optical see-through does not 

need a camera, three calibration steps were created to directly measure the 

viewing parameters, using simple tasks that rely on geometric constraints. 

Dynamic errors are reduced by predicting future head locations using 

inertial sensors mounted on the I-lIvID. Even though this method achieved 

high accuracy, they require many technical steps and extra hardware devices, 

making the system demanding of time and concentration for the user. 

1.2.3 Offline Hybrid Calibration (Camera and Magnetic 

Tracker) 

Bajura [1992] proposed calibration for video see-through systems based on 

tracking known features in the working environment. Two types of 

transformation, consisting of transducer transformation and camera 

transformation (for position and orientation), are used to calibrate the 

system. However, there is no information on how the cameras' intrinsic 

parameters are found. 

In Tuceryan et al. [1995], the calibration method developed for monitor­

based augmented reality systems at ECRC (GIL-\SP System) relies on a 

specific pattern. The dependency on a specific pattern makes this system 

only suitable for use indoors or inside a laboratory. The use of a magnetic 

tracker makes the whole calibration process lengthy and expensive. 

In ARGOS (Augmented Reality through Graphic Overlays on Stereo­

video), semi-automatic calibration is used to calibrate stereoscopic cameras 

for an Amiga-based AR system [ARGOS]. This calibration assumes that the 
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user has prior knowledge about the focal length of the camera. The 

inclusion of manual steps requires a lot of time and effort to accurately 

measure the parameters needed for the camera. 

1.2.4 Other Calibration 

Fuhrmann et al. [2000] propose an HMD calibration, which consists of 

displaying points in the corners of each HMD display and aligning these 

points with the hotspot of a stylus. The measured data gives all the 

necessary calibration information - eye position, view-plane distance, and 

aspect ratio. 

Grasset et al. [2001] proposed an augmented reality system dedicated to the 

kind of collaborative applications where users meet around a table. The 

calibration technique used is for optical-based I-IMDs and is very simple and 

intuitive, at the cost of a loss in accuracy. The achieved accuracy is only 

sufficient for non-critical applications like architectural design, gaming and 

planning simulation. 

Yao and Calway [2002] proposed a method of estimating 3D camera motion 

based on sparse feature tracking and recursive structure from a motion 

algorithm developed by f\zarbayejani and Pentland [1995]. The method is 

highly dependent on the ability of the feature tracker to track the points 

malting it unreliable when the points being tracked are lost due to being 

obscured by other objects. 

1.2.5 No Calibration 

There is an approach in AR, which avoids the need for any calibration 

[Kutulakos and Vallino 1996; Kutulakos and Vallino 1998]. Kutukalos 
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represents virtual objects in a non-Euclidean affine frame of reference that 

allows rendering without knowledge of camera parameters. However it 

should be noted that this approach might not recover all the information 

required to perform all potential AR tasks. For instance, this approach does 

not recover true depth information, which is useful when compositing the 

rcal and the virtual. 

1.3 Motivations 

The most likely problem faced in /\R applications is achieving accurate 

registration, in which the virtual object must be properly aligned with the 

real world [Azuma 1993]. There are two types of error source that cause 

registration problems: static and dynamic [Holloway 1995]. Static errors are 

ones that cause registration errors when both the user's viewpoint and the 

object in the environment remain still. Dynamic errors are ones that cause 

registration errors when either the \'iewpoint or the objects begin to move. 

One way to ml1111TI1Se registration errors is by having good camera 

calibration. Good calibration will ensure that the correct 2D camera to 3D 

world relationship is established. This will guarantee the accurate registration 

of the virtual object and hence produce less registration error. In order to 

achieve this, certain criteria must be met. Tsai [1987] stated that the 

calibration procedure should be an autonomous process, meeting certain 

accuracy requirements, reasonably efficient and versatile. Therefore, any 

work to develop good calibration techniques should have at least the 

aforementioned criteria in mind. 

Serious research on camera calibration for AR only began less than a decade 

ago (refer section 1.2 for a complete review of camera calibration in AR). 

Before then, AR researchers concentrated on developing AR systems as a 

whole, with a minor focus on camera calibration. Therefore, most "'\R 
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systems employ the traditional way of calibrating a camera for AR by using 

calibration objects (refer Chapter 2 for more details on camera calibration). 

This is normally done offline and may require a lot of time to complete. 

This will produce more problems when the focal length of the camera 

changes either intentionally or unintentionally. 

,-'l.dditionally, the significant development of "-'l.R in various applications such 

as games requires the calibration process to be fast, simple and flexible. This 

cannot be achieved with offline calibration where the process requires a 

specific known pattern, a special setup and certain movements. If 

offline calibration were used, the excitement of children playing games 

would diminish, as they would have to keep stopping during their play 

merely to recalibrate the camera. 

To solve these problems in ~AR, we propose a novel AR system that has a 

more flexible way of calibrating a camera without a known pattern, which 

can be done online. To have an f\R system with a more flexible approach is 

worthwhile because of the fast emerging development of wearable 

computing such as HMDs. People will no longer want to bring along a 

pattern whenever they want to calibrate a camera. The system should be 

able to calibrate the camera any time and anywhere, while performing the 

f\R task. 

1.4 Aims and Scope 

The aim of the research is to develop a method of camera self­

calibration based on a moving camera for an augmented reality 

system. This means that the AR system will be able to update the intrinsic 

parameters of a camera while performing its AR task. An AR system that 

integrates camera self-calibration into the system has the advantage of being 
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flexible while avoiding the cumbersome steps that need to be done if plane­

based calibration is used. 

Since the aim is to integrate camera self-calibration into an AR system as a 

whole, the research will not only focus on the calibration stage, but also on 

the pre-calibration stages. This is because the success of self-calibration 

will also depend on the pre-calibration stages, which supply the input for the 

calibration stage. The main pre-calibration stages include the feature 

detection stage, the feature correspondence matching stage and the 

fundamental matrix estimation stage. The proposed pre-calibration stages 

involved and how they are integrated into :\R system are illustrated in 

Figure 1.9. The calibration stage is shown in green and the pre-calibration 

stages are shown in yellow. The stages involved are described as follows: 

Feature Detection 

In the feature detection stage, we choose to focus on corner detection. 

/'llthough other features such as line or profile may well be used in 

computer vision to estimate the fundamental matrix [lvIendonca 2002], we 

believe that corners are the most widely found features in many situations. 

Our focus has been on increasing the accuracy of the detection. This is 

because the fundamental matrix estimation stage is quite sensitive to the 

accuracy of corners detected. Therefore, rather than developing a totally 

new algorithm for corner detection we focus on finding a new algorithm to 

increase the accuracy of detection using existing corner detectors. 

Feature Correspondence Matching 

In the feature correspondence matching stage, we focus on ways to discard 

false corners and false matches. No further focus on the accuracy of the 

location of the matches is made, since this is dealt with in the feature 

detection stage. The simplicity of the algorithm was kept in rnind when 
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creating the algorithm, as speed IS one of our concerns In real-time AR 

applications. 

Fundamental Matrix Estimation 

In this stage we use the MAPSAC algorithm proposed by Torr [2002]. 

Calibration Matrix Estimation 

In the calibration stage, we propose the use of the algebraic approach 

algorithm based on three views for finding the intrinsic parameters of the 

camera being used for augmented reality. The algebraic constraints are 

chosen because of the simplicity of derivation and implementation 

compared with those based on geometrical constraints [Luong and Faugeras 

97], in which calibration parameters are estimated by minimising the 

geometric distance between features and epipolar lines (a more complicated 

criterion). Its reduced sensitivity to initialisation parameters for non-linear 

optimisation makes it more reliable than other techniques that are highly 

dependent on good initialisation parameters in order to get correct results. 

"-\s for .AR display, for the present this research \vill focus on the monitor­

based augmented reality display as a starting point, before investigating 

other types of AR display such as video see-through and optical see­

through. This means that the computer-generated graphics are combined 

with a live video signal to produce an enhanced view of a real scene, which 

is then displayed on a standard video monitor. This is because the 

technology of HMD for AR is still in its infancy. 
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In addition, this research also aims to focus on improving the calibration 

results, particularly when dealing with camera distortion. This is especially 

important if wide-angle lenses, which have severe distortion, are used in AR 

applications. Severe distortion cannot simply be neglected, as it will result in 

the virtual object being overlaid incorrectly. \Ve focus on ways to integrate 

distortion parameter estimation wIth fundamental matrix estimation stage, 

as done by Zhang [1996]. This makes the system more automatic, rather 

than having to estimate distortion parameters offline, which involves user 

intervention as in ARToolKit. 

Finally, this research aims to look at the critical motion issue in camera self­

calibration for AR. Sturm [2002] pointed out that there exist several motion 

sequences that are critical when solving camera pararneters using self­

calibration. This is important, as self-calibration based on a moving camera 

will produce false results if critical camera motion sequences are used as 

input into the AR system. The research aims to detect these critical motion 

sequences and consequently select only the particular frames to be used as 

an input into self-calibration stages. This is to ensure that the results gained 

are as close as possible to the correct values. 

1.5 Outline and Contributions 

This thesis is organised as follows: 

• Chapter 2 presents the theory of camera self-calibration. This includes 

details on camera model, distortion model and epipolar geometry from 

which is derived the basis of camera self-calibration. 

• Chapter 3 focuses on corner detection. A literature reVlew of the 

available techniques for edge and corners detection is presented. Two 

state of the art corner detectors are chosen for their suitability for 

incorporation in an AR system and the algorithms of the two detectors 
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are discussed. A new hybrid Harris-Susan corner detection method is 

introduced to increase the accuracy of detection. Comparisons with 

other methods are presented. 

• Chapter 4 touches on point correspondence matching. It discusses the 

issue of false matching and how it is to be overcome. \'V'e then present a 

novel way of discarding false matches that is simpler and more efficient. 

Comparison between the proposed method and other methods is also 

shown. 

• Chapter 5 proposes the algebraic approach to camera self- calibration 

based on three views for AR. It then shows how the method can be 

extended to a case that has more than three views. The method 

derivation is explained and the algorithm of the proposed method is 

presented. It then touches on the issue of critical motion and suggests a 

new way to detect critical motion resulted from two cameras with 

parallel principal axis. 

• Chapter 6 presents the experiments based on the algorithm described in 

Chapter 2, 3, 4 and 5 combined together to form the whole system. This 

includes discussion of the comparison between the proposed method 

and the calibration routine in the ARToolKit. The effect of camera 

distortion on the proposed method is also presented. Some related 

issues on iteration are also discussed. 

• Chapter 7 presents a summary of the work carried out and conclusions, 

and points to future research directions in this area. 
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Original contributions of this thesis are presented as follows: 

• A novel approach to automated camera calibration in Augmented 

Reality systems has been developed. In particular this research has 

explored the use of self-calibration for monitor-based AR displays 

[Abdullah and Martinez 02]. 

• A new Harris-SUSAN hybrid corner detector has been developed to 

reduce corner localisation error and increase detection accuracy. 

• ;-\ new point correspondence matching technique has been 

developed based on motion vector and mode calculation to find 

matching features 111 ;-\R applications. This simple technique 

outperforms other matching methods in terms of simplicity and 

efficiency. 

• 1-\n improved pre self-calibration stage through the integration of 

distortion parameters estimation and fundamental matrix 

estimation has been developed. This is based on the use of MAPSAC 

algorithm to minimise the epipolar geometry constraint in order to 

simultaneouslv estimate the fundamental matrix and distortion 

parameters. 

• \\fe present theoretically a new way of detecting critical motion 

sequence that result from two views \~,Tith parallel principal axes and 

how to overcome it. 

£\ paper relating to this study has been published as "Camera Self­

Calibration for the ARTooIKit", in The First IEEE Illtemational Augmented 

Realit)! ToolKit lf7orkshop, Darmstadt, Germany, September 2002. 
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Chapter 2 

THEORY OF CAMERA SELF-

CALIBRATION 

2.1 Introduction 

This chapter presents some of the theories that are necessary to understand 

the work carried out in the remainder of this thesis. The author has no 

intention of presenting a comprehensive survey of the theories since they 

can be found in so many books on projective geometry [Semple and 

Kneebone 1998; Springer 1964; Coxeter 1969; Coxeter 1974] and computer 

vision [Beardsley 1992; IvIundy and Zissermann 1992; Faugeras 1993; 

Hartley and Zisserman 2000]. £\ reader who is already proficient in these 

two subJects may want to skip this chapter and continue with Chapter 3. 

The first part of this chapter describes the mathematical model of a pinhole 

camera. The model explains the intrinsic and extrinsic parameters of a 

pinhole camera and how they are derived; an understanding of this is 

important for familiarity with how a camera is normally calibrated. It then 

discusses the different types of distortion that exist in a normal camera lens 

and how they are mathematically modelled. This is the basis for the reader 

to understand further Chapter 5, which discusses how distortion correction 

is inserted as an integral part of the self-calibration. 



Figure 2.1 : Perspective projection of a pinhole camera 

The chapter subsequently discusses epipolar geometry and the deriva tion of 

the fundamental and essential matrices. It gives the reader some th eories 

behind fea ture correspondence m atching and the fundamenta l matrix 

estimation stage. T his is follo wed by a review of tl1e di fferen t techniques for 

es timating a fundamenta l matrix fro m point matches that are used in the 

li terature. 

2.2 Camera Model 

Normally, perspective projection (also called central projection) is used to 

model cameras. Perspec tive projection describes Image form ation by a 

pinh ole camera . 

The geometry of a pl11h ole camera is depicted in Figure 2.1 . The image 

plane has been refl ec ted with respect to the .lY)'c plane in order not to have 

a m.irrored Image wi th negative co-ordinates . It should be noted that there 

are three co-ordinate sys tems involved: 



(a) The world Euclidean co-ordinate system (X w' Yw ' Zw ). 

It has origin at point 0 w . 

(b) The camera Euclidean co-ordinate system (Xc, Z, ZJ . 

It has origin at point 0 c . WI e can make world co-ordinates align with 

camera co-ordinates by performing a Euclidean transformation, which 

consists of a translation t and rotation R, which is shown in Figure 2.1. 

(c) The image affine co-ordinate system (u, v) . 

The plane uv is parallel with the plane XcYc' Axis v is parallel with 

axis 1';. but the axis u may have a different orientation to the axis Xc' 

A point on an object with co-ordinates Xc = (xc, Yc' Zc /' (3D camera 

Euclidean co-ordinate system) will be imaged at some point U c = (u c ' VJT 

(2D camera Euclidean co-ordinate system) in the image plane. The 

relationship between the two co-ordinate systems is given by: 

f Xc uc = -
Zc 

(2.1) 

and 

v =f~ (2.2) c 
Zc 

where f (focal length) is the distance between the origin 0 c and the centre 

of the image plane. 

In homogeneous co-ordinates, this can be written as: 
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(2.3) 

where here s -::j::. 0 is a scale factor and in this case S = Zc . 

T Now, we need to transform the Vc = (ue, vJ point (expressed 111 2D 

camera Euclidean co-ordinate system) into the Va=(ua,val point 

(expressed in 2D image affine co-ordinate system), with respect to the origin 

in the top left-hand corner of the linage plane (refer Figure 2.1). Equation 

(2.4) describes the transformation: 

Ue ua =uo +- (2.4) 
w 

and 

v 
va = va +--.::.. 

h 
(2.5) 

where VaO = (uo' va) is the centre co-ordinate of the image plane in pixels, 

wand h is the distance between adjacent pixels in the horizontal and 

vertical directions of the image plane respectively. 

By substituting Equation (2.1) into Equation (2.4) and Equation (2.2) into 

Equation (2.5) and subsequently multiplying by ze' we obtain: 

(2.6) 

and 
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y,f 
z,v" = Z,Vo + h (2.7) 

Therefore, the transformation from a point in 3D camera Euclidean co­

ordinate system to a point in 2D image affine co-ordinate system can be 

expressed using a 3 x 4 matrix as in Equation (2.8): 

f b Uo 0 x, 

[suo J 
w 

0 f 0 
y, 

(2.8) s:" = 
Vo 

h Z 

0 0 0 

where b represents shear, which is the degree of slant of the co-ordinate 

axis u in the camera image plane. The parameter b is normally 

introduced for the case when a non-pinhole camera such as a digitizing 

camera is used, where the image plane may not be perpendicular to the 

principal axis of the digitizing camera. This is measured in pixels, and 

usually the effect is very minimal (b:::::; 0) and can be neglected for 

simplicity. In this equation, scale factor s has the value of zc. If s is 

assumed to be equal to one, Equation (2.8) can be expressed as: 

(2.9) 

where Va represents a point in the 2D camera affine co-ordinate system 

expressed in homogeneous co-ordinates, K is the camera calibration matrix 

and X, represents a point in the 3D camera Euclidean co-ordinate system 

expressed in homogeneous co-ordinates. 
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f f 
Let all = wand a" = h' then lIo, va, au and a", the coefficients of 

matrix K are called the intrinsic parameters of the camera (assuming 

b = 0). These four coefficients describe the camera, independent of its 

position and orientation in space. 

If the position and orientation of the camera in space is considered, then 

Equation (2.9) will become: 

(2.10) 

where X" represents a point in 3D world Euclidean co-ordinate system 

expressed in homogeneous co-ordinates and M is a 4 x 4 transformation 

matrix: 

M =[R -Rtj 
0; 1 

(2.11 ) 

In Equation (2.11), R represents a 3 x 3 rotation matrix that encodes 

camera orientation with respect to a given world frame and 3 x I vector t 

captures the camera's displacement from the world frame origin. The matrix 

R can be expressed as a function of ¢, e, and rp as follows: 

l 
cos rp cos [) 

R= -sinrpcos¢+cosrpsin[)sin¢ 

sin rp sin ¢ + cos rpsin [) cos ¢ 

sin rp cos [) 

cos rp cos ¢ + sin rp sin [) sin ¢ 

- cos rp sin ¢ + sin rp sin [) cos ¢ 

-sin [) j 
cos[)sin¢ 

cos [) cos ¢ 

(2.12) 

where ¢, e, and rp are the angle of rotation about the Xli"' ~,. and Z" aXIS 

respectively. The translation vector tis: 
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(2.13) 

which represents the displacement between point 0", and 0," in 3D space. 

As we can see, matrix M has six degrees of freedom, three for the 

orientation, and three for the translation of the camera. These parameters 

are known as the extrinsic camera parameters. 

After combining 3 x 4 camera calibration matrix [K I 0] and the 4 x 4 

transformation matrix M in Equation (2.10), we obtain a single 3 x 4 

matrix P, which is called the projective matrix, as shown in Equation (2.14): 

(2.14) 

where the general form of P can be expressed as a function of K, Rand 

t, as shown in Equation (2.15): 

P=[KRI-KRtJ (2.15) 

Generally, Equation (2.14) and Equation (2.15) show the resulting matrix P 

derived from an ideal pinhole camera model that relates the 3D co-ordinates 

of the real world with the 2D co-ordinates of the image plane. Once this 

relation is found, the next step is to find a means to determine the intrinsic 

and extrinsic parameters. 
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2.2.1 Algorithm for Calibrating a Camera from a Known 

Scene 

In order to calibrate a camera from a known scene, a calibration grid is often 

used. The calibration process will normally require two stages. First, the 

estimation of matrix P and second, the estimation of intrinsic and extrinsic 

parameters from the matrix P. The first stage can be achieved by finding 

3D points from the calibration grid and their corresponding 2D points in 

the image plane. The process can be described as follows: 

Let P,! represents the entry of matrix P at th row and )'h column and 

where 1 ~ i ~ 3 and 1 ~ j ~ 4, then Equation (2.14) can be rewritten as 

follows: 

XC 
PI2 PI3 

P"j Yc 
P22 P23 P24 

ZC 
P32 P33 P34 

[

SUaj [PIIXC + PI2Yc + Pl3
z
c + PI4 j 

sVa = P21 xc + P22Yc + P23zc + P24 

S P31 xc + P32Yc + P33 zc + P34 

Ua(P3I Xc + P31Yc + P33zc + P34) = Pllxc + PI1Yc + Pl3zc + PI4 

va (P3I Xc + P31Yc + P33 Zc + P34) = Pli Xc + P22Yc + P23 Zc + P24 

(2.16) 

(2.17) 

(2.18) 

Equations (2.18) shows that for each known corresponding scene and image 

point, we get two linear equations with 12 unknowns PI I , ... , P34' If there 

are n correspondences, Equations (2.18) can be written as a 2n x 12 

matrix, 
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Xci Y cl Zcl 0 0 0 0 -UalXcI -UalYel -U"IZcI -Ual PII 

0 0 0 0 Xci Yci Zcl -ValXcl -Va I Y ci -ValZcI -v al PI2 

=0 

XCII YCIl zen 1 0 0 0 0 -Uan XC/1 -UanYol -UonZcn -UUII P33 

0 0 0 0 XCII Yen Ze/l -VOJIXCII -VanYcn -v Z an en -Van P34 

(2.19) 

Based on Equation (2.19), at least six known 3D to 2D correspondence 

points are needed to obtain a solution. In the event of more than six 

correspondence points, which is always the case, Equation (2.19) is solved 

using the least-square method. 

After matrix P is solved, the extrinsic parameters (the rotation matrix R 

and the translation vector t) can be obtained by rewriting projective matrix 

P as Equation (2.20). 

(2.20) 

If A = KR and b = -KRt then translation vector t can be obtained by 

t=(-KRr1b=-A-1b. Rotation matrices Rand K can be found by 

using matrix factorization, namely QR decomposition [press et al. 1992; 

Golub and Loan 1989] which will decompose matrix A into a product of 

upper triangular matrix and orthogonal matrix. Note that the rotation ITlatrix 

is an orthogonal matrix and calibration matrix K is an upper triangular 

n1atrtx. 

2.3 Lens Distortion 

This subsection will give reader some theoretical background on lens 

distortion in order to further understand Chapter 5, which will discuss the 
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integration of distortion correction in camera self-calibration for AR. This 

subsection describes different types of lens distortion and how to model it 

mathematically. 

In theory, the lens performs an ideal central projection, but with real lenses, 

this is not the case. A typical lens performs with distortion of several pixels. 

Tordoff and Murray [2000] describe distortion as the displacement of an 

image point from the position predicted by the ideal pinhole camera model. 

There are two components of lens distortion [Brown 1971; Slama 1980]: 

1) Radial distortion, which bends the ray more or less than in the ideal 

case. This is usually caused by an imperfect lens shape [Zhang 1996]. 

The ideal image points are distorted along radial directions from the 

distortion centre (normally the principal point). 

2) De-centring, which displaces the principal point from the optical axis. 

This is caused by improper lens assembly [Zhang 1996]. 

Lens distortion can be described by the following equations: 

(2.21 ) 

and 

(2.22) 

where (u,., vJ are the distorted (true) image co-ordinates on the Image 

plane and (6u ' 6,,) are the distortion corrections to (£i" v,) . The 

distortions are often modelled as even power polynomials in order to secure 

rotational symmetry as shown in Equation (2.23) and (2.24): 

6u =u,(k1r
2 +k2r4 +k3 r6 +",)+[PI(r2 + 2U(2)+2P2U,V,](1 + P3r2 + ... ) 

~._.:l (7 7") 
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(2.24) 

where r2 = u~ + V,2 , kl' k2 and k3 are coefficients of radial distortion; PI' 

P2 and P3 are coefficients of de-centring distortion. 

Distortions are usually modelled depending on the type of lenses used. 

According to Tsai [1987] and Brown [1971], unless one is specifically 

concerned 'with the reduction of distortion to very low levels, it is likely that 

the distortion function is totally dominated by the kl term. The first two 

radial terms are enough to model distortion since any more elaborate 

modelling not only would not help (negligible when compared with sensor 

quantisation), but also would cause numerical instability. This is confirmed 

by Wei and Ma [1994]. To avoid any cause of instability to our self-

calibration algorithm, we will only use the kl term to model the distortion. 

Figure 2.2 shows examples of radial distortion. On the left is pincushion­

like distortion (a minus sign in Equation (2.25) and (2.26)), and on the right 

a depiction of barrel-like distortion corresponding to a plus sign. 

-------

Pincustiion BatTel 

Figure 2.2: Example of radial distortion. 

(2.25) 

(2.26) 
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2.4 Epipolar Geometry 

w 

x, X ' , 

V' a 

t f 
0 ' 

R 

Figure 2.3: Epipolar Geom etry 

This subsec tion describes background theories in epipolar geom etry and 

how the essential matrix and fundamental matrix are derived from the vision 

, 

perspective. T his will help the reader to understand how the constraints of 

the algebraic approach for self-calibration based on three views are derived, 

as cli scussed in Chapter 5. 

E pipolar geometry exists between any two camera systems or a single 

camera with two views separated by general motion. Consider the case of 

two cameras as shown in Figure 2.3. 

Let 0 , and 0 ;. be the optical centres of the first and second cameras, 

respectively, and let J and ]' be the image planes o f the first and second 

cameras respectively. Given a point V a in the first linage, its corresponcling 

poin t in the second image is constrained to lie on a line called the epipolar 
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line of U ,denoted by lu . Similarly, point U' in the second image has its 
(f a a 

corresponding point constrained to lie on epipolar line lu;, . The line lu" is 

the intersection of the epipolar plane Jr, defined by W, 0, and 0; with 

second image plane 1'. Similarly, the line lu; is the intersection of epipolar 

plane Jr, defined by W, 0, and 0; with first image plane I. 

2.4.1 Derivation of the Fundamental Matrix 

The co-ordinate system of the first view can be transformed to the right 

view by translation tl and rotation R,. Let K and K' be the calibration 

matrices of the left and right cameras respectively. Let the centre of the 

world Euclidean co-ordinate system be aligned with the centre of the first 

camera. Based on Equation (2.9) and Equation (2.10), the left projection 

U a and the right projection U;, of the scene point Ware shown below: 

(2.27) 

U' ::::[K'R. I-K'Rt J[XC]=K'(R X -R.t .. )=K'X' a- I ././ 1 ./, II c (2.28) 

Note that vectors X" X; and t I are co-planar and the symbol ~ is used to 

denote projection up to unknown scale. Let subscripts I. and 11 represent 

the left and right camera co-ordinate systems respectively so that XcI and 

X;I are the co-ordinate vectors expressed with respect to the left camera 

co-ordinate system, while XcIi and X;'Ii are the co-ordinate vectors 

expressed with respect to the right camera co-ordinate system. The 
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relationship between X:R and X;'I. in terms of rotation can be expressed as 

X:R = RrX:!. ' and hence X;L = R jl X;R . 

If points U a and U;, correspond to a single physical point W in space, 

then U {/, U;" 0 c and 0; must lie in a single plane. This is called the co-

planarity constraint and can be written as: 

(2.29) 

From Equation (2.27) we have Xci. = K-1U", X;R = (K'tl U;" and hence 

X;L = R jl (K'tl U~ . Substituting these equations into (2.29) we have: 

(2.30) 

Note that Equation (2.30) is homogeneous with respect to t f , meaning that 

scale is undetermined and the absolute scale of the scene can only be 

recovered if we have some extra information such as knowing the distance 

between two points in space. 

)' 

Let A be a regular matrix and tr = [tt' t)., to ] ,then vector product t x A 

can be replaced with S(t!)A where 

S(tf)=rt~ 
-t 

)' 

-/. 

o 

is a skew symmetric matrix and t I ::j:. 0 . 
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Therefore, Equation (2.30) can be rewritten as: 

(2.32) 

The fundamental matrix F between the two VIews can be obtained by 

rearranging Equation (2.32) to the following form: 

(2.33) 

where 

(2.34) 

It is shown in Equation (2.34) that all the information that can be recovered 

from a pair of images is contained in a single 3 x 3 matrix F if the 

correspondence problem is solved. Note that in order for point Va (a point 

in I) to be the corresponding point for V~ (a point in 1'), Equation (2.33) 

must be satisfied. From epipolar constraints (Equation (2.33», the search 

for correspondence can be reduced from searching through the whole 

image to a searching a single epipolar line. 

2.4.2 Derivation of the Essential Matrix 

The term essential matrix describes the relative motion of a single camera 

moving in space with known calibration, meaning that K has been 

determined. For a system with two cameras, both K and K' are known. 

Knowing these values allows us to normalize measurement for the left and 

right images. Let V" and V;, be the normalized measurements for the left 

and right images respectively, thus we can have the following relations: 

(2.35) 
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and 

(2.36) 

If we substitute Equation (2.35) and (2.36) in (2.32), we get 

(2.37) 

Essential matrix E can be obtained by substituting E = Set I)R jl and thus 

we get the following: 

(2.38) 

It is shown in Equation (2.37) that essential matrix E contains all the 

information about the relative motion from the first to the second position 

of a calibrated camera. 

2.4.3 Essential Matrix and Fundamental Matrix Properties 

The properties of the essential matrix can be listed as follows [Sonka et al. 

1999]: 

• The essential matrix E has rank 2. 

• Let t f be the translational vector, and c = R It I' Then Ec = 0 and 

• SVD (singular value decomposition) decomposes E as E = VDV T for a 

diagonal D (note that V is not the same as Va); then 

(2.39) 
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• Equation (2.38) can be rearranged from 

to 

(2.40) 

where E can now be represented as E = RrS(tr). Using SVD, we can 

calculate the rotation matrix R j and translation t f between two views 

when essential matrix E has already been estimated. The procedure is 

as follows [Hartley 1992]: 

SVD decomposes essential matrix E as the product of V, D and Y. 

Let G and Z be defined as: 

(2.41) 

(2.42) 

The rotation matrix R J can be calculated as 

Rr = UGyT or Rr = UGTyT 
. . 

(2.43) 

and S( t f) from Equation (2.40) can be obtained from 
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S(tr)=vzvr 
(2.44) 

The properties of the fundamental matrix F can be summarized as follows: 

• The fundamental matrix F has rank 2. 

• SVD of the fundamental matrix gives F = UDVT 
, where 

o 
(2.45) 

• Let e and e' be the epipoles in the fIrst and second image respectively, 

then 

(2.46) 

and 

Fe' =0 (2.47) 

2.4.4 Techniques for Fundamental Matrix Estimation 

Let a homogeneous point U ai = [uai , vai ' 1 r in the fIrst image be matched to 

a homogeneous point U:,i = [U;'i' V~i' 1 r in the second image where 

represent i'" point. They must satisfy the epipolar Equation (2.33): 

(2.48) 

39 



Rewriting the 3 x 3 fundamental matrix F as a column vector of 9 unknown 

coefficients f, Equation (2.48) can be written as a system of linear equations: 

(2.49) 

where 

and Fij is the element of F at row i and column j. 

For n point matches, we have the following linear system: 

AJ=O (2.50) 

where 

(2.51) 

These equations allow us to estimate the epipolar geometry between two 

vlews. 

There are many techniques for estimating the fundamental matrix reported 

in the literature; some of these are listed below [Zhang 1996a]: 

1. Exact solution with 7 point matches [Huang and N etravali 1994]. 

2. Analytic method with 8 or more point matches: 

a. Linear least-squares technique. 

b. Eigen analysis. 

c. Imposing the rank-2 constraint [Hartley 1995]. 

d. Geometric interpretation of the linear criterion. 

e. Normalizing input data [Hartley 1995]. 
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3. Analytic method with rank-2 constraint [Faugeras 1995]. 

4. Non-linear method minimising distances of points to epipolar lines: 

a. Iterative linear method 

b. Non-linear minimization in parameter space 

5. Gradient-based technique 

6. N on-linear method minimizing distances between observation and 

reprojection [Faugeras 1993] 

2.5 Summary and Conclusions 

This chapter has reviewed some of the theories necessary for a better 

understanding of this dissertation. The main topics addressed were: 

Camera model - the camera model is based on a pinhole model. The 

mathematical background on how a point in a 3D world coordinate is 

related to a point in a 2D image plane is presented. This includes the 

derivation of a camera calibration matrix consisting of all' al' , Uo and vo' 

Lens distortion - the types of distortion existing in a typical camera lens 

were depicted, namely barrel and pincushion. This includes the derivation of 

the mathematical equation used to represent both types of distortion. The 

brief introduction provides some background to help the reader understand 

Chapter 5 further when distortion correction is incorporated into the i\R 

system. 

Epipolar geometry - the constraints existing between a point in one image 

plane with its epipolar line in a second image plane sharing the same view 

were presented. The fundamental matrix and essential matrix and how they 

were derived were briefly discussed. 
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In computer vision, camera calibration techniques can be classified into two 

cases, as follows [Sonka et al. 1999]: 

1. Known scene 

In this case, a set of non-coplanar points lies in the 3D world, and the 

corresponding image points are known. In order to achieve this, calibration 

objects are often used. Each 3D scene that corresponds to a 2D-image point 

provides one equation. The matrix coefficients are found by solving an 

over-determined system of linear equations [Faugeras 1993]. Even though 

this calibration technique gives the most accurate approximation of the 

intrinsic parameters, the calibration process involves a lengthy time. This 

condition is even worse if the focal length of the camera needs to be 

changed online and the camera needs to be recalibrated. 

2. Unknown scene 

In this case, different camera views become important since the solution of 

the calibration matrix can no longer depend on the calibration object. It has 

to depend on camera motion. From here, there are two cases: 

(aJ K"owil camera motion 

According to the known motion constraints (which are rotation and 

translation), this can be further divided into three cases: 

1. Both rotation and translation 

The general case of arbitrary known motion from one view to another 

view has been solved [Horaud et al. 1995]. 

11. Pure rotation 

Hartley [1994] has glVen the general solution for the case where the 

camera motion is restricted to pure rotation. 

111. Pure translation 

The linear solution of pure translation is given 111 [pajella and Hlavac 

1995]. 
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By knowing the camera motion, the coefficients of the essential matrix can 

be calculated and knowledge of the matrix can then be used to find the 

intrinsic parameters. The problem with this kind of calibration is that the 

known camera motion can mostly be accomplished through a certain set-up 

in a particular place, such as in the lab. The future direction of AR where the 

head mounted camera is going to be used not only indoors but also 

outdoors requires a more flexible approach to camera calibration. 

(b) Unknown camera motion (tmJJera Jelfcalibration) 

f\ccording to Maybank and Faugeras [1992] and Faugeras et al. [1992], in 

this case, the solution is non-linear and at least three views are needed. 

Calibration from an unknown scene is still considered numerically hard. 

Consideration of the problem can be found in Butterfield [1997]. 

Despite being numerically hard, it is believed that self-calibration will 

continue to be one of the important research topics in computer vision 

because of its flexibility. With fast development in AR applications, it is 

hoped that this research will make some contributions to solving a well­

known problem in AR, namely the problem of registration with added 

flexibility through camera self-calibration. 
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Chapter 3 

CORNER DETECTION 

3.1 Introduction and Motivation 

Vision-based tracking in augmented reality normally needs pre-defined 

marker patterns or fiducials for tracking. They are also used for reference as 

to where the virtual object would be overlaid in the real world .. A..RTooIKit 

detects the presence of a marker in a scene by finding objects that have a 

square shape (refer Figure 1.4). £\.n l\'R system with fiducials, on the 

contrary, uses different colour coding to differentiate the fiducials from 

other objects and to track their position in the scene. £\,11 fiducials and 

marker patterns need to be kept in view so that the system knows where the 

virtual object needs to be overlaid. \y'hen people move into markerless AR, 

detection of available features in the scene becomes more important. This is 

because the system can no longer depend on markers or fiducials for 

tracking, but needs to start using other features in the scene as a means of 

tracking and reference to register virtual objects. 

If we refer to Figure 1.4, edge and corner detection of markers are already 

being used in ARTooIKit. One might ask why we do not simply use the 

feature extraction algorithm contained in ARToolKit and what is the point 

of developing a new method of corner detection? \\le need to be aware that 



the edge and corner detection developed In ARToolKit is designed 

specifically to extract edges and corners for its markers ,only and is not 

general enough to detect and extract other corners or edges in the scene. In 

addition, the purpose of developing new corner detection is to cater for pre­

calibration stages not only for the ARToolKit system but also for other AR 

systems, which might not use any kind of marker or fiducial in theIr system 

(markerless environment). Furthermore, as shown in Chapter 2, the 

minimum number of corners needed as input for feature correspondence 

matching and fundamental matrix estimation stage is seven or eight, which 

might not be possible to achieve in the A.RTooIKit corner detection stage 

when only one marker is involved. Corners were chosen as the preferred 

features because we assume a corner is the easiest feature to find in a scene. 

There are many corner detectors available, and these will be reviewed in the 

next subsection. The decision about which corner detector is to be chosen 

will depend on the need to tackle specific issues in the applications. In 

camera self-calibration, the most important thing that needs to be taken into 

consideration during feature extraction is the detection accuracy of features, 

which in our case refers to corner accuracy. This is due to the high 

sensitivity of the fundamental matrix estimation stage, which will produce 

different results for small changes in the position of the corners. Based on 

experiments conducted by Sojka [2003], we found that Harris and Stephens 

[1988] corner detector outperformed many other corner detectors in terms 

of higher number of true detected corners, lower numbers of false 

detections and lower localisation errors which means higher accuracy. For 

these reasons, we chose Harris corner detector as a candidate to be used in 

the feature detection stage. 
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Figure 3.1 : The position of the feature detection stage (comer detection) in 

the proposed self-calibration for an AR system. 
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A set of good localised corners in the AR system during the feature 

detection stage will help the system to perform good tracking and also help 

in reducing the amount of error propagation through the pre-calibration 

stages. This is to ensure that only the best corners are provided for the 

fundamental matrix estimation stage. However, the problem with good 

available detectors like our chosen detector Harris is that they are based on 

edge detectors which mean that even though corners can be successfully 

detected, the accuracy of the detection is not adequate. This is due to the 

fact that general edge detectors cannot localise edge points well around 

corners because of the rounding effect, leading to errors in reporting 

corners [Shen and Wang 1001]. 

The second criterion that needs to be taken into account in an AR system is 

that the corner detection algorithm must be fast due to its real-time 

application. Based on the problems of accuracy and speed, we propose a 

new refinement of Harris corner detector in order to improve the corner 

localisation. The refinement algorithm is based on the idea of calculating 

area in a circular mask as developed by Smith and Brady [1995] who 

developed the SUSAN corner detector. With this, we can benefit from the 

good performance of Harris corner detector and at the same time the 

refinement of corners will not take too much time since SUSAN algorithm 

was reported to be 10 times faster than the Harris corner detector [Shen and 

\X'ang 2001], apart from its robustness to noisy images [Cazorla et al. 1999]. 

\X'e denote the combination of these two corner detectors algorithm as 

Harris-SUSAN hybrid. 

In this chapter, the first pre-calibration stage, which is the corner detection 

stage, is presented. The stage referred to is shown in the bold box in Figure 

3.1. We name it feature/marker to show that this proposed self-calibration 

can be used with or without the presence of markers or fiducials in the 

scene. If a marker is present, its 4 corners will be used as the input to the 
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next pre-calibration stages, plus other corners available in the scene. If no 

marker is present, then only the available corners in the scene will be the 

input. This is to ensure that the calibration matrix can still be updated in the 

presence or absence of markers. 

This chapter then reviews the corner detectors currently available with brief 

discussions of their strengths and weaknesses. \\1 e then present more detail 

on the Harris and Susan corner detectors. After that, the new Harris­

SUSAN hybrid corner detector is proposed. Experiments showing 

comparisons with original Harris and SUSAN corner detectors in terms of 

localisation error for different test Images are presented and discussed. 

3.2 Literature Review on Corner Detection 

Many corner detectors have been reported in the past 20 years. Perhaps the 

simplest corner detector is the Moravec detector, which defines corners as 

points where there is a large intensity variation in every direction [Moravec 

1977]. 

Zuniga and Haralick [1983] and Haralick and Shapiro [1992] then produced 

a better corner detectors than the Moravec detector, although 

computationally more expensive, which is based on facets, in which the 

neighbourhood of each image pixel is modelled as a piecewise continuous 

function. Once the facet model parameters have been obtained for each 

image pixel the response is calculated using the Zuniga-Haralick operator 

[Sonka et al. 1999]. 

I<itchen and Rosenfeld [1982] proposed a gradient-based corner detector by 

measuring the curvature of an edge that passes through a neighbourhood. 

The edge strength and the rate of change of edge direction are the measures 

that determine the strength of the corner response. 
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Freeman and Davis [1977], Asada and Brady [1986] and Medioni and 

Yasumoto [1987] are among those who propose techniques that use binary 

edge maps to find corners. The method will find edges and calculate edge 

curvature to locate corners. The disadvantage of this method is that it 

cannot accurately locate corners at junctions. 

Rangarajan et al. [1989] developed a corner detector based on optimal 

function, which yields a maximum at the corner point when convolved with 

the grey level function. 

Wang and Brady [1995] found that the total curvature of the grey level 

lmage is proportional to the second order directional derivative in the 

direction to edge normal and inversely proportional to edge strength [Shen 

and Wang 2001]. 

In Sojka [2003], comparison is made between several well-known corner 

detectors and in his experiments on corner detector the Harris detector 

outperforms the SUSAN detector in terms of more true corners, fewer false 

corners, less multiple detection and fewer missed corners. 

3.3 SUSAN Corner Detector 

SUSAN is the acronym for Smallest Univalue Segment Assimilating 

Nucleus. The underlying principle behind the SUSAN corner detector is 

basically to find the position of the pixel that gives the smallest value in 

terms of area of interest. Figure 3.2 shows four circular masks at different 

places on a simple image where the dark area represents the background and 

the light area is a simple object with 4 corners. Each mask has a nucleus that 

represents a pixel located at the centre of the mask. 
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As shown in Figure 3.3, when the mask is located on the edge, there will be 

some pixels that represent the background and some pixels that represent 

the front object. The area of the mask is defined as the total number of 

pixels inside the mask that have the same brightness value as the nucleus 

pixel. The area of the mask is known as 'USAN' (Univalue Segment 

£\ssimilating Nucleus). In effect, the area when the nucleus is near the edge 

is approximately half of the area of the mask. In addition, the area of the 

mask will be at its minimum when the nucleus falls near the corner and will 

be at its maximum when there is no edge inside the circle mask. Thus, a 

corner is said to be detected at the nucleus when the area is at its minimum. 

The normal SUSAN circular mask encompasses 37 pixels with a radius of 4 

pixels as shown in Figure 3.4. The following describes the mathematical 

aspect of the SUSAN corner detector. 

Firstly the circular mask is convolved through all pixels in the image. For 

each convolution step, the brightness value for each pixel in the circular 

mask is compared with the one at the nucleus. This can be represented by: 

(3.1) 

where l(ra)is the pixel brightness value at position ra (nucleus), J(r) is 

pixel brightness value at position r (other than the nucleus within the mask) 

and t is the threshold for pixel brightness difference. 
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+ + 

Figure 3.2: Four circular masks at different places on a simple image. 

section where pixels have same brightness as nucleus 

+ 

section where pixels have different brightness to nucleus 

Figure 3.3: Four circular masks with similarity colouring; USANs are shown 

as th e white parts of th e masks. 
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Figure 3.4: A circular mask comprised of 37 pixels with a circled cross 

representing the nucleus (centre). 
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Figure 3.5: Similarity function versus pixel brightness difference. 

52 



The graph shown in Figure 3.5 comes from Equation (3.2), which is a more 

stable and sensible replacement for Equation (3.1). 

_(I(i')-I(i'o»" 

c(r,ro)=e ( 

The total number of pixels in the USAN, nCFa) , is given by 

n(ro) = Ic(r,ro) 
F 

(3.2) 

(3.3) 

and let geometric threshold g = ~ nmax where nmax is effectively the total 

number of pixels inside the mask, then the initial edge response can be 

written as: 

{g -n(r) if nero) < g 
R(ro) = 0 0 

othel111ise 
(3.4) 

The SUSAN principle is formulated in Equation (3.4) where the edge 

response will be at its maximum when the USAN area is at its minimum. 

The value ~ nmax is created for optimal noise rejection. 

3.4 Harris Corner Detector 

The Harris corner detector has been used in various applications that need 

the reliable detection of a corner. It is also known as the Plessey corner 

detector and was developed by Harris and Stephen [1988]. Corners are 

detected by first finding the image derivatives due to the fact that the 

derivatives are bigger at locations where the image function undergoes rapid 

changes, such as around edges and corners. However, derivatives ha\"e the 
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effect of suppressing low frequency signals and increasing high frequency 

signals, which include both wanted (edges and corners) and unwanted 

signals (noise). To reduce the amount of noise in the image, Harris 

introduced a low pass Gaussian filter and to avoid the wanted signals being 

smoothed, the derivatives are squared. The mathematical expression of the 

algorithm is described in the following section. 

3.4.1 Algorithm 

The algorithm of the Harris corner detector can be described as follows. Let 

H= 
(

aJ )2 
au (~~)(~~) 

(:J 
(3.5) 

where J(u, v) is the intensity value of an image pixel. A point is detected as 

a corner when the two eigenvalues of the matrix are large. The sign 

indicates that each entry of matrix H is smoothed by a Gaussian ftlter. The 

corner response function D can be written as: 

D = det(H) - 111(trace(H))2 (3.6) 

where 0.04 is the value of 111 as suggested by Harris, which was empirically 

arrived at as it gave the best result. The location of corners can be 

determined by extracting the local maxima of the corner response 

functionD. 
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3.5 Harris-SUSAN Hybrid Comer Detector 

actual corner 

Figure 3.6: The displacement between a Harris detected comer and the actual 

comer. 

It has been shown by Sojka [2003] that the Harris detector performs better 

than the SUSAN detector in terms of number of correct matches. Although 

the Harris detector is capable of detecting comers successfully, each 

individual comer detection is, however, not as accurate as it should be. The 

detected comers are mostly displaced between 0 to 3 pixels from the actual 

comer, even for a clearly strong comer. This is illustrated in Figure 3.6. 
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The poor localisation of corners by Harris motivates us to develop a 

refinement algorithm to improve the accuracy of detected corners. The 

algorithm uses the detected corners from Harris as a starting point and 

based on the calculated area in a circular mask, it will search the position of 

the true corners. The idea is derived from the algorithm presented by Smith 

and Brady [1995] who developed the SUSAN corner detector but with 

adaptive size of circular mask that changes based on the number of 

connected components in a variable window mask. We denote the new 

combination of Harris and SUSAN algorithm in this section as Harris­

SUSAN Hybrid corner detector. 

The introduction of a variable mask in SUSAN is because we believe that 

different sizes of mask are important to improve localisation especially in 

the case when two or more detected corners are very close together so that 

refinement to the wrong corner can be avoided. 

A search window is established so that the search for true corners can be 

confined to a certain area. The refinement steps consist of searching for the 

location that has the least value of n(~) until the minimum value is found. 

For each step, the mask will be moved and compared with its neighbouring 

mask. These steps can be illustrated in Figure 3.7. 

In Figure 3.7, the circles represent the nucleus of circular masks. At each 

step the values n(~) of masks with the nucleus positioned to the right, left, 

top, bottom, top-left, top-right, bottom-left and bottom-right pixel are 

calculated. 

The mask is moved to the position where the value of n(~) is the lowest 

among the eight until it reaches the minimum. 
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Figure 3.7: Illustration of refinement steps performed by the algorithm. 

Algorithm 3.1 Refinemen t o f Harris detected corner. 

convert image into binary; 

set value for threshold t; 

for i = 1 to number of corners 

copy selected area around corner i into a circle m ask; 

initialise I1(Fa) by computing equation (3 .3) for corner i; 

while I1CFa) not minimum do 

compute I1,CFa) , nhU~ ), n,U~ ) , I1rCFa) , 11"CFa), I1Ir CFa ), I1h1 CFa L I1hr CFa); 

nCFa) = min( n,CFa)' nhCFa), I1, CFa) , nrCFa) , l1,tCFa)' l1,r CFaL I1h1 CFa), 

I1br CFa) ); 

end while 

new corner = position o f I1CFa) nucleu s; 

end for 
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total number of pixels in the USAN where the nucleus position is to the 

top, bottom, left, right, top-left, top-right, bottom-left, bottom-right pixel of 

a corner. Algorithm 3.1 explains the refinement steps. 

In our algorithm we use three different sizes of mask, as shown in Figure 

3.8. The size of mask changes adaptively according to the number of 

connected regions found in a predefined square Illask window. The mask 

window size can vary between 7 x 7 and 5 x 5 pixels. The selection of the 

size of mask for each corner is described as follows: 

1. A 7 x 7 mask window is positioned to a detected corner where the 

centre of the mask window is on the same position of the corner. 

2. The number of connected region in the mask window is calculated. 

3. If the number of connected region are less than or equal to 2, then 

the highest mask is used, otherwise the 7 x 7 mask window is 

changed into a 5 x 5 mask ·window. 

4. Step 1 and 2 are repeated with a 5 x 5 mask window. 

5. If the number of connected region in the 5 x 5 mask 'window are 

less than or equal to 2, then the medium mask is used, otherwise the 

smallest mask is selected. 

The steps are illustrated in Figure 3.8 to 3.11. 

xxx 
xxxxx 

xxxxxxx 
xxx(8)xxx 
xxxxxxx 

xxxxx 
xxx 

Biggest mask 

xxx 
xxxxx 
xx@xx 
xxxxx 

xxx 

Medium mask 

xxx 
x@x 
xxx 

Smallest mask 

Figure 3.8: Three different masks used in the proposed algorithm. 

58 



xxx 
XXXXX 

XXXXXXX 
XXX(8)XXX 
XXXXXXX 

XXXXX 
xxx 

Figure 3.9: A 7 x 7 mask window with the number of connected regions 

less than or equal to two. Therefore, the bigges t mask size is used. 

xxx 
XXXXX 
X X(2)X X 
XXXXX 

XXX 

Figure 3.10: A 7 x 7 m ask \vindow \vith the number of connected regions 

m ore than two. Therefore, the medium mask size is used. 

XXX 
x(2)X 
XXX 

Figure 3.11 : A 5 x 5 mask window with the number of connected regions 

m ore than two. Therefore, the smallest mask is used. 
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3.6 Experimental Setup 

\X/e have carried out experimen ts to m easure the performance of our 

approach in terms o f localisa tion error. In our experiments, nine tes t images 

are used. \X/e chose different tes t images to m easure our algorithm's 

performance for different AR applications, including indoor and outdoor 

J\R. Figure 3.12(a) and Figure 3.12(b) are the test images chosen for the AR 

applica tion where only th e planar pattern is in the camera view. Examples of 

the application include positioning several m arker patterns on a table, no tice 

board or white board . Figure 3.12(c), Figure 3.12(d) and Figure 3.12(e) are 

chosen as representing th e indoor AR cases where planar patterns and other 

objects migh t present at the sam e time. The rest o f o ther test images (from 

Figure 3.1 2(D until Figure 3.120)) represent the cases for the outdoor AR 

applica tions. 

T he performance in terms o f localisa tion error o f th e H arris-SUSAN hybrid 

approach is compared with the H arris and SUSAN corn er detectors. 

Figure 3.12(a) Pattern image 1 of size 239 x 200 pixels. 
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Figure 3.12(b) Pattern image 2 of size 320 x 240 pixels. 

Figure 3.12(c) Box image of size 256x 256 pixels. 

Figure 3.12(d): Lab image 1 of size 512x512 pixels. 
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Figure 3.12(e) : Lab image 2 of size 507 x 480 pixels. 

Figure 3.12(f): Car image of size 640 x 440 pixels. 

Figure 3.12(g): Grayscale building image of size 208 x 211 pixels. 
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Figure 3.12(h): Natural scene image of size 640x480 pixels. 

Figure 3.12(i): Red building image of size 640 x 480 pixels. 

Figure 3.120): Pentagon image of size 512x512 pixels. 
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In our implementation we set the evaluation of results as follows. Let Sre! 

and Ses, be the set of reference solutions and set of corners found by the 

corner detector respectively. A corner is determined as "correct" when its 

distance d(u,v) to the reference solution is less than Max_dist. 

Max dist defines the maximum allowable distance between a corner and 

the reference solution for the corner to be determined as "correct". The 

reference solution was done manually. In our implementation we set 

Max dist = 4. Localisation error is defined as the average of distance 

d(u, v) for the correct corners. 

3.7 Results and Discussion 

Figure 3.13 to Figure 3.18 illustrate the corners detected by Harris and our 

proposed Harris-SUSAN hybrid detector for different test images. \"Y/e can 

see some improvements in corner localisation when the Harris-SUSAN 

hybrid detector is used in comparison with the original Harris detector. 

Table 3.1: Comparison with Harris and SUSAN corner detector in terms of 

localisation error (in pixels) for different test images. 

Test images 

(a) (b) ( c) (d) (e) (f) (g) (h) (i) (j) 

(FJ 

.\:1 
0.70 1.69 2.17 1.95 2.23 1.77 2.03 2.15 1.71 1.69 '-< 

c:<l 

::G 

Z 
< 0.89 1.47 2.31 2.01 2.26 2.70 2.12 2.49 1.84- 2.27 
Vl 
;::J 
Vl 

-0 ..... ... 0.58 1.16 2.08 1.63 2.09 1.64 1.82 1.87 1.12 1.63 ..c 

£' 
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Figure 3.13: Resulting comers from Harris detector for pattern image 1. 

Figure 3.14: Resulting comers from Harris-SUSAN hybrid for pattern image 1 
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Figure 3.15: Resulting comers from Harris detector for lab image 1. 

Figure 3.16: Resulting comers from Harris-SUSAN hybrid for lab image 1. 
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Figure 3.17: Resulting comers from Harris detector for building image. 

Figure 3.18: Resulting comers from Harris-SUSAN Hybrid for building image 
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The comparisons between our technique and other detectors in terms of 

localisation errors are summarised in Table 3.1. From Table 3.1 and Figure 

3.15 to Figure 3.19, the Harris-SUSAN Hybrid shows superiority over the 

two detectors in terms of localisation errors. However, as shown in Figure 

3.20, the percentage improvement of the Harris-SUSAN Hybrid over the 

two detectors is varied from test image (a) to test image G) . This might be 

due to the different complexity of the images and because it is hard to 

manually determine the corner reference correctly, especially for images that 

contain natural objects such as trees, clouds and sky. 

Another experiment carried out is to find whether the new corners resulting 

from the Harris-SUSAN Hybrid really improve intrinsic parameters 

estimation. Both sets of corners from the Harris and the Harris-SUSAN 

Hybrid are used to find the camera intrinsic parameters. A RANSAC 

algorithm [Fishler and Boles 1981] is used to find the fundamental matrix 

and correspondence matching technique (Chapter 3) is employed to find the 

correspondence for both sets of corners. As expected, Figure 3.21 clearly 

shows improvements in terms of the accuracy of intrinsic parameters. 

Comparison between Harris, SUSAN and Harris-SUSAN 

2.5 y---------------------------, 

1.5 +----------1 

0.5 

Test images 

Figure 3.19: Performance in terms of localisation error for Harris, SUSAN 
and Harris-SUSAN hybrid detector. 
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Percentage of Localisation Error Improvements of Harris-SUSAN Hybrid over SUSAN and Harris 
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15 

10 

Test Image 

Figure 3.20: Localisation Error improvements of Hams-SUSAN Hybrid over 

SUSAN and Harris detector. 

Comparison of Intrinsic Parameters Based on Comers Detected by Harris and Harris-SUSAN Hybrid 
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400 

200 

Reference Harris-SUSAN Hybrid Harris 

Figure 3.21: Comparison of intrinsic parameters obtained based on Hams 

and Harris-SUSAN Hybrid. 
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3.8 Conclusion 

Feature detection is one of the important stages in AR system used to track 

the movement of marker or fiducials. It becomes more important when self­

calibration of AR camera is to be included in the AR system. This is because 

the corners detected will be used for fundamental matrix estimation. In this 

chapter we propose corner detection to be the first pre-calibration stages for 

self-calibration in AR based on the fact that corners are the most available 

features in a scene. 

\'(/e pointed out that based on [Sojka 2003], Harris corner detector 

outperforms most of available corner detectors in terms of higher number 

of correct matches and lower false matches. Based on these reasons, we 

have chosen Harris to be our preferred corner detector. \\1e also pointed out 

that fundamental matrix estimation requires good localised corners for 

accurate estimation. However, Harris corner detector produces quite poor 

localised corners. Therefore, we proposed a new refinement step to improve 

the corner localisation. The proposed algorithm is based on calculating area 

inside a circular mask in search of true corner position. Different sizes of 

mask which changes adaptively based on the connected region inside a mask 

window are introduced. The resulting corner detector was denoted as 

Harris-SUSAN Hybrid. 

Experiments with three different real data test images were performed to 

find the performance of the Harris-SUSAN Hybrid in terms of corner 

localisation error. Results obtained were compared to Harris and SUS1-\N 

corner detector. Results show improvement in terms of corner accuracy to 

several pixels. \\1hen these corners are used to find camera intrinsic 

parameters, the results shows some improvements compared to when 

Harris detected corners are used. 
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It is sometimes unavoidable to have some false corners, and false corners 

can be discarded during our point correspondence matching stage. In the 

self-calibration of AR it is very important to have a high accuracy of corners 

in order to minimise error propagation through the next stage, especially in 

the fundamental matrix estimation stage, which is very sensitive to corner 

location. This explains why corner accuracy is our main focus in this section 

and not merely the detection itself. 

Sub pixel accuracy is one way to improve the algorithm in the future and is 

not included in this section due to time constraints. 

71 



Chapter 4 

POINT CORRESPONDENCE 

MATCHING 

4.1 Introduction 

The main goal for point correspondence matching is to find the right pair of 

detected corners between two images. In this stage any corner that has no 

match is discarded leaving the same number of corners in both images. 

Even though we are dealing with a sequence of images, we have focused our 

implementation on solving the point correspondence matching problem 

between three captured frames from a sequence of images at different time 

instants. This is because in this stage the output that we want is not for 

tracking objects but as the input for the fundamental matrix estimation. 

Therefore, we will not be trying to solve the general problem of multi-frame 

point correspondence (e.g. Salari and Sethi [1990]), which is categorised as 

NP Hard for three or more frames. Matching in dynamic linages (e.g. 

moving cars, clouds, etc.) is also not in our application area; instead, we will 

be focusing on finding matched points for a non-moving object or 

background. 
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Figure 4.1: The position of the feature correspondence matching stage in 

the proposed self-calibration for AR system. 

73 



To apply self-calibration in AR that can update intrinsic parameters online 

requires the point correspondence stage to be efficient. Therefore, in this 

chapter we propose a novel way of matching point correspondence based 

on motion vector. We will show how our approach is different from other 

available techniques by exploiting motion vector and a simple statistical 

method. To achieve this, some matching techniques in the literature are 

discussed in the following section. 

In our approach, matching by correlation is used to find an initial set of 

matches and we then use our new technique to discard false matches, which 

is important to provide correct and accurate input for the fundamental 

matrix estimation stage. Note that the accuracy of the input has been 

addressed and improved in the feature detection stage (Chapter 3) by 

reducing localisation error. The position of the point correspondence 

matching stage in the self-calibration for AR system is shown in Figure 4.1. 

\Ve will discuss the suitability of the new algorithm to be applied to a 

sequence of images, and also prove that it can be used to tackle problems 

with occlusion during the matching process for an AR application. The 

results and discussion are provided at the end of the chapter. 

4.2 Literature Review 

In recent years, a large number of correspondence-matching algorithms 

have been proposed. One criterion that is most commonly used is the 

correlation of image pixels [Torr 1995; Lucas and Kanade 1981; Zhang et al. 

1994], which is based on the assumption of image similarity. 

Berthilsson and Astrom [1997] and Sudhir et al. [1997] solve 

correspondence based on assuming the rigidity of the 3D scene while Ohta 

and Kanade [1985] used the smoothness of the disparity field to solve the 

ambiguity between multiple solutions. 
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Other approaches used constraints, such as the epipolar constraint by 

Zhang et al. [1994], which proposed a robust approach to image matching 

by using classical technique (correlation and relaxation) to find an initial set 

of matches, and then used the Least Median of Squares (LMedS) to discard 

false matches. Epipolar geometry is then estimated and more matches are 

eventually found by using the recovered epipolar geometry. Other similar 

works using epipolar constraint include Ohta and Kanade [1985] and Roy 

and Cox l1997]. Besides epipolar, unicity constraint was also proposed by 

Gold et al. [1998]. 

The approach we propose in this chapter aims at exploiting motion vectors 

between two successive frames to establish correspondence between two 

perspective images of a single scene. \'Ve first detect corner points and then 

match them using correlation followed by a new technique based on motion 

vector to find the correct matches. 

4.3 Correspondence Matching through 

Correlation 

Matching detected corner points between two uncalibrated Views can be 

achieved through a correlation-based matching algorithm. If corner 

detection is perfect, then each point in the first image will have its 

corresponding point in the second image. 

In our implementation, a classical correlation technique is used to find initial 

matching candidates between two images. This is based on the assumption 

that the perspective changes between the successive frames are small. 
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(a) Image 11 (b) Image 12 

Figure 4.2: Illustration of a correlation process. 

Figure 4.2 illustrates the correlation process . m I is the detected corner 

point, u l and VI are the pixel coordinates of m l in horizontal and vertical 

directions respectively. T he correlation window in Figure 4.2(a) is of size 

(2n + 1) x (2m + 1) centred at point m l where n and 111 are the minimum 

distances in pixels between the centre point of the window and the points 

on the horizontal and vertical edges respectively. 

T he search window as shown 111 Figure 4.2(b) IS of SIze 

(2du + 1) x (2d" + I) centred at coordinate (u l , VI) where du and d" 

represent half o f the width of the window size respectively. By using a 

search window, the search area for a corresponding point is reduced from 

the whole image to a given window. The correlation score is defined as 

Equation (4.1) where 

point (u, v) of image I k (k = 1,2), and o-(1k) is the standard deviation of 

the un age I k in the neighbourhood (211 + 1) X (2m + 1) of (u , v), \.vhich is 

represented by Equation (4.2) . 
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Score(ml' m 2 ) == 

I f [ll(u l +i,v, + })-I,(u"v,)]x[12(u2 +i,v2 + })-12(u2 ,vz )] 
i=-n .1'=-111 

(4.1) 

,\,11 ,\,111 12 
L.i=-n L.j=-m k (U, V) _ 1 ( ) 

k U, V 
(2n + 1)(2m + 1) (4.2) 

A score of -1 indicates two correlation windows that are not similar at all, 

whereas a score of 1 implies two correlation windows that are identical. 

It is a common practice to apply a certain threshold in order to select the 

most probable matches. By doing this we have selected candidates for 

matches. The number of candidate matches will depend on how high the 

threshold is set. The higher the threshold the less the number of candidate 

matches we will get. The situation where the number of candidate matches 

is more than one is known as matching ambiguities. 

Matching ambiguities occur when a point in the fIrst image is paired to 

several points in the second image, namely the candidate matches. This 

occurs when the correlation technique using a certain threshold as discussed 

in this section is used. One of the widely used techniques for resolving 

matching ambiguities is known as the relaxation technique. In our 

implementation, to reduce the complexity of the algorithm the matches that 

have the highest correlation score will be selected as the most suitable 

matches. The problem with this approach is that the point found might not 

be the desired matched point, due to differences in image intensities 

between the two matches. 
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4.4 Determining Correct Matches through 

Motion Vector 

L I I 2 2 b he' f . If I d I et m" m k , m i' m l e t e leature pomts 0 two unages. m i an m k 

match m~ and m} respectively, we can expect that the motion vector of 

111,1 to m~ is approximately similar to that of m! to m1
2

• This idea is 

illustrated as in Figure 4.3. 

f 2 I 2 I 
I V Plfx = mqx - mpx and V PlfY = mqy - mpy where V pqx represents a vector in 

x direction (from left to right of the image) and V pqy represents a vector in 

y direction (from top to bottom of the image), then vijX should be similar 

to V klx and VUY should be similar to V kly' These constraints can be used if 

we are absolutely certain as to which pair is the correct match. A pair that 

has a correct match can be the reference vector in order to determine other 

matching pairs. 

(a) Image 11 (b) Image 12 

Figure 4.3: Similarity measure of relative vectors for two matched feature 

point pairs. 
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If m,1 and m~ are really the correct matching points, naturally we will have 

many vectors that are similar to V ij plus some outliers. To find the riferenee 

IJector we do the following: 

(a) \X/e perform correlation and choose any palr that has the maximum 

correlation score to be candidate matches. 

(b) Let M.~i and M~'i be arrays of x -coordinates and y -coordinates of 

feature points in image 11 respectively that is i = 1 ... n where n is the 

total number of matches. 

(c) Let M;i and M~i be arrays of x -coordinates and y -coordinates of 

corresponding matches in image 12 respectively, that is i = 1 ... n 

where n is the total number of matches. 

(d) We define VXi = M~i - M.~i and V)'i = M~, - M~i as arrays of vectors in 

x direction and y direction. 

(e) We choose the highest occurrence of V" that is mode (Vx,) and highest 

occurrence of VYi that is mode (V"i) to be our rife renee vectors. 

(f) Let D,'xi be arrays of the difference between V'i and its mode and D,}" 

be arrays of the difference between VYi and its mode, that is 

D"xi = V'i - mode(VxJ and D'}'i = V yi - mode(V,.J . 

(g) To determine whether the it" match is a correct match, Dl'xi and DI'\'1 

must fulfill constraint IDI'\i 1-ID')'i I::::; R where R is the radius of 

difference in pixels defined by the user. This number can be between 1 

and 10. 

(h) If the above constraint is fulfilled, consider the it" pair as a good match, 

otherwise discard it. 
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4.5 Experimental Setup 

\YJe are uS111g biz-hotlJe-irame Jequence from website 

http://www.cv.iit.nrc.ca!~gerhard!rVT /. The sequences were chosen to 

show the ability of our algorithm to find point correspondence successfully 

even though there are many repetitive patterns. Repetitive patterns may 

occur 111 an AR scene where 2 or more markers are present. During 

implementation, the points were extracted using the Harris corner detector 

as a standard method for comparison with other point correspondence 

technique. The values of nand m for the correlation window are set to 7. 

For the search window, the values of d" and d
ll 

are set to a quarter of the 

image height and width, respectively. This equals half of the image area. The 

radius R is set to 7 and the threshold for the correlation score is set to 0.8. 

These values are chosen as they give the best results empirically. \YJe 

compare our results with the famous and established Image Matching 

Software developed by Zhang [1994]. 

4.6 Results and Discussion 

Figure 4.8 shows the comparison in terms of the total number of correct 

matches between our algorithm and Zhang's algorithm for house sequence. 

Our algorithm proves to outperform Zhang'S algorithm, as the percentage 

of correct matches from our algorithm varies between 95 and 99 percent 

whereas Zhang's algorithm varies between 89 and 96 percent. 

Figure 4.4 and 4.5 show the matches found by our algorithm and Zhang's 

algorithm respectively when the camera undergoes general motion. Based 

on obsel-vation, our matched points show 98% correct matches, whereas 

Zhang's algorithm shows 96% correct matches. An example of incorrect 

matches found by our algorithm is shown by match number 1 in Figure 4.4, 

which is not severe compared with matches' number 14, 18 and 17 in Figure 
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4.5 by Zhang's algorithm. Figures 4.6 and 4.7 show the matches found when 

the camera undergoes forward motion. Both algorithms perform well, but 

the incorrect matches found by Zhang's algorithm (matches number 25 and 

29 in Figure 4.7) are more severe than the incorrect matches found by our 

algorithm (matches number 7 and 9 in Figure 4.6). 

Since matching is based on motion vector, if any of the matched pairs are 

wrongly matched due to occlusion (refer Figure 4.8 and Figure 4.9), the 

algorithm will detect it simply by the reference vector. Our algorithm can be 

used effectively to find correct matches for repeated texture. As long as the 

number of correct matches is more than 50% of the whole data, this 

algorithm will produce a nearly perfect ratio of correct matches. 

One of the weaknesses of this algorithm is that it is not suitable for two 

images that are widely separated from each other. However, as the images 

are from a sequence of frames, the difference in perspective views is not too 

apparent, enabling our algorithm to suit the AR application. 

Figure 4.9 and Figure 4.10 illustrate the comparison between Zhang's and 

our algorithm in terms of the number of correct matches when there is 

occlusion in the scene. In this image pair, the occlusion objects are the 

finger and the laptop. Figure 4.9 shows matches from Zhang's algorithm 

when there is an occlusion, which gives 88% correct matches. Figure .. \..10 

shows our algorithm, which gives 98% correct matches. From Figure 4.9, it 

is shown that corners number 126, 132, 133, 143, and 165 are poorly 

matched due to the occlusion caused by the laptop. Similarly corners 

number 73, 125, and 134 and 125 are also poorly matched due to the 

occlusion caused by the finger. On the other hand, referring to Figure 4.10, 

our algorithm performs better in the case of occlusion. N one of the corner 

points are affected by both occluding objects. Hence, the number of correct 

matches, which is 98%, is better than Zhang'S, which attains 88%. 
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Figure 4.4: Feature point matching between first and second frame. There 

are 89 pairs of feature points. The ratio of correct matches is 98% using our 

algorithm. 
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Figure 4.5: Feature point matching between first and second frame. There 

are 283 pairs of feature points. The ratio of correct matches is 96% using 

Zhang's. 
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Figure 4.6: Feature point matching between 7th and 9th frame under 

forward motion. There are 108 pairs of feature points. Ratio of correct 

matches is 98% using our algorithm. 
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Figure 4.7: Feature point matching between 7th and 9th frame with forward 

motion. There are 302 pairs of feature points. Correct matches ratio is 86% 

using Zhang's. 
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Figure 4.8: Comparison number of correct matches between our algorithm 

and Zhang's algorithm for house sequence. 

4.7 Conclusion 

Point correspondence matching IS one of the necessary pre-calibration 

stages after comer detection in self-calibration for AR. It finds the 

correspondence of each comer in first image with the second one which is 

important as the input for the next pre-calibration stage which is 

fundamental estimation stage. Correct comer matches ensures good 

estimation of the fundamental matrix. 

In this chapter, we proposed a simple and robust algorithm for point 

correspondence matching as one of the pre-calibration stages for an AR 

system. The algorithm is based on simple correlation technique and motion 

vector between two images separated by general motion. We introduced 

reference vectors (in horizontal and vertical direction) as the measures of how 

close a motion vector of a point to the true vector. This is determined from 

the number of highest occurrence vector in horizontal and vertical 

directions. 
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Figure 4.9: Matches from Zhang's algorithm when there is an occlusion 

showing 88% correct matches. 
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figure 4.10: Our algorithm showing 98% correct matches. 
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Experimental results show that by using our algorithm we can discard 

outliers effectively for house sequence images even though there are 

repetitive patterns in the scenes. This also applies when the camera 1S 

moving forward or backward. The performance is always superior 

compared with algorithm proposed by Zhang [1994]. As it chooses the 

points with the maximum correlation as the most probable match, it only 

needs to scan the image once and there is no need for any further relaxation 

process. This shows its efficiency, which is important for real-time AR 

app lica tions. 

Apart from that, our algorithm shows better performance when the scene is 

occluded whether intentionally or unintentionally. The number of correct 

matches is still better in comparison to Zhang's. One disadvantage of our 

proposed algorithm is that the number of matches found is as not many as 

the one found by Zhang. This is due to the fact that we only select the 

points that have the highest correlation score to be our matches. This 

approach is less effective for a scene, which contains pure repetitive 

structure. Possible improvement might include finding new matches based 

on the reference vector especially for a scene with repetitive object. This will 

however increase the complexity of the algorithm. 
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Chapter 5 

CAMERA SELF-CALIBRATION 

BASED ON THREE VIEWS 

5.1 Introduction 

This chapter addresses the problem of self-calibrating a camera based on 

three captured views taken from a sequence of frames and based on 

algebraic constraints derived by Dornaika and Chung [2001]. Its main 

contribution to AR research is the use of an algebraic approach in the 

development of self-calibration for AR system. This is incorporated with a 

technique that simultaneously recovers the fundamental matrix and 

distortion parameters which provides the input for calibration matrix 

estimation stage. Only three captured yiews are needed from the camera 

input, although the proposed method can equally be used \v"ith more than 

three views. In our system, these three views/frames need to undergo 

corner detection, point correspondence matching and fundamental matrix 

estimation before they can be used to find the camera parameters. Figure 5.1 

illustrates the location of the self-calibration process in the system. The 

input involved is solely from the fundamental matrix and the output is 

camera intrinsic parameters, which are then used in the subsequent process 

for calculating the 2D-3D transformation matrix. 
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Figure 5.1: The position of Calibration Matrix Estimation (Self-Calibration 

based on three views) in the proposed self-calibration for AR system. 
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Also this chapter contains details of the method of derivation of the 

algebraic constraints and of how the distortion parameter estimation is 

integrated into the self-calibration. Experiments with synthetic and real data 

have shown that the technique can estimate camera intrinsic parameter 

accurately and is quite reliable for highly distorted images. 

5.2 Literature Review 

Self-calibration has drawn the attention of researchers in the computer 

vision community as one of the effective methods of recovering 3D models 

from sequences of images. It is different from normal classical calibration 

due to the fact that it does not require any particular structure in order to 

estimate the intrinsic parameters. Instead, it uses constraints that are derived 

from the projective and epipolar geometry of the sequence of images. 

Some of these constraints are expressed as the Trivedi constraints [Trivedi 

1988], the Huang and Faugeras constraints [Hartley 1992; Mendonca and 

Cipolla 1999], and the IZruppa equations [Lourakis and Deriche 2000; 

Luong and Faugeras 1997]; are formulated in terms of absolute quadric 

[pollefey et al. 1999; Triggs 1996] and also algebraic constraints [Dornaika 

and Chung 2001; Abdullah and Martinez 2002]. 

Perhaps the earliest introduction to the concept of self-calibration in 

computer vision was done by Maybank and Faugeras [1992], who 

established the relationship between intrinsic parameters and absolute conic, 

from which were then developed the K.mppa equations. Hartley [1992] used 

Huang and Faugeras constraints to develop a self-calibration algorithm that 

estimates the focal lengths of two cameras based on a known corresponding 

fundamental matrix and other intrinsic parameters. Hartley [1994a] then 

developed an algorithm for self-calibration for more than three cameras 

based on the method proposed by Maybank and Faugeras [1992]. He also 
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introduced the idea of updating a projective reconstruction to a Euclidean 

one through 3D homography. Based on this approach, Triggs [1997] 

introduced absolute quadric while Pollefeys et al. [1998] developed the self­

calibration of multiple cameras with varying and unknown intrinsic 

parameters. 

In this chapter, we employ the constraints derived by Dornaika and Chung 

[2001] to find camera intrinsic parameters based on three views for an AR 

system. In our implementation we assume that shear measure b = 0 and 

that other intrinsic parameters are unknown and can be varied throughout 

sequence of images. The algorithms developed will also takes into account 

distortion correction should the image captured be heavily distorted The 

method takes only the fundamental matrix which has been estimated from 

the previous stage (refer Figure 5.1) as an input to find the intrinsic 

parameters. 

Note that the third pre-calibration stages which is the fundamental matrix 

stage, is not specified into one chapter. This is because most of the theories 

and literature reviews have been covered in Chapter 2. This does not imply 

however that this stage is less significant but it is just as important as other 

pre-calibration stages. In our implementation we propose the use of 

MAPSAC algorithm described in [Torr 2002] in order to estimate the 

fundamental matrices. The reader can refer to Chapter 2 for more details on 

how fundamental matrices are derived and how it can be found from point 

correspondences. Different techniques employed for fundamental matrix 

estimation also can be found in Chapter 2. 
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5.3 Derivation of the Method 

Recall from Chapter 2 that for a single camera undergoing general motions, 

the fundamental matrix equation is F = (K-l)TS(t)R(K'rl. This equation 

can be written as 

KTFK == S(t)R (5.1 ) 

where we assume that K = K' (same camera is used for two views or both 

cameras have the same calibration matrix). Multiplying both sides with R T
, 

(5.2) 

Recall that Set) is a skew-symmetric matrix, hence if fundamental matrix F 

is known, we can obtain six polynomial constraints on the entries of K and 

l' l' R. Let a jk where 1::; j, k::; 3 be the entries of K FKR ,then 

(5.3) 

Let Jjk and r jk be the entries of the matrices F and R respectively where 

1 ::; j, k ::; 3 . Equation (5.3) can be written as: 

(5.4) 

(5.5) 

(5.6) 
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(5.7) 

(5.8) 

+ 131)au r21 + (f12 UO + 122VO + h2)al'r22 + ((.hIUO + 121 VO + hl)uo 

+ (.h2 LtO + 122 Vo + 132 )Vo + .h3uo + 113 Vo + 133 )rn = 0. 

(5.9) 

where au and al' are the horizontal and vertical scale factors respectively 

while uo and Vo represent the x and y co-ordinates of the principal point. 

The rotation R IS represented by its associated unit quaternion 

T 
q = (qo, qx' qy' qz) . Therefore, 

2(qxqy - qoqJ 
? ? ? ? 

qC; - q; + q~ - q; (5.10) 

2(qyq: + qoqJ 

The 6 constraints (Equation (5.4) to Equation (5.9)) can be written in a 

compact form of vector v: 

v=o, (5.11 ) 
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where 

(5.12) 

Note that these 6 constraints are associated with a pair of views only (one 

motion). We require at least three views (two pairs of views) before we can 

recover the intrinsic parameter K and the rotation matrix R. 

5.4 Algorithm 

Let n represents the number of camera motions. The constraints (Equation 

(5.4) to Equation (5.9» can be cumulated by building a positive error 

function f that will be minimised over the unknowns. Since the 

fundamental matrix can be obtained from point correspondence matching 

(refer Chapter 4) and epipolar geometry (refer Chapter 2), the unknowns 

will be the intrinsic parameters K and the quaternion q. Therefore, the 

error function can be written as follows: 

11 

f(all,a,., uO' vo,ql" .. ,qJ = I [II Vi 112 +A(1-11 q, 112)2] (5.13) 
i=1 

where the second term in f is a penalty function that constrains the 

quaternion qi (for camera motion i) to be a unit quaternion, and A 1S a 

real positive number. Each Vi contains six polynomials where the 

coefficients are given by the corresponding fundamental matrix Fi . 

Since the error function f is the sum of positive functions, it can be 

written in such a way that it becomes a classical non-linear least squares 

constrained minimisation problem: 
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(5.14) 

T T T 4+411 where X = (aU,a",uO' vo,ql , ... ,qn) E 9t for a four-parameter camera 

model and n is the number of camera motions. For each motion, the first 

six ¢i are given by Equation (5.4) to Equation (5.9). The implementation of 

the algorithm has been done using the Levenberg-Marquardt technique 

[1v1arquardt 1963] for its robustness. 

We can simultaneously recover the intrinsic parameters and the rotation 

matrices by minimising the function f(x) over the vector x. For n 

motions, we have 4 + 4n unknowns and 7n constraints. Thus, for a 

calibration matrix with four parameters we need at least two motions so that 

we have 12 unknowns and 14 constraints, from which we are able to obtain 

a solution. 

The weight A can be set through the following: 

• An arbitrary value is chosen and the non-linear algorithm is run until 

convergence is obtained. 

• Then, the penalty functions (1-11 qi 112)2 are evaluated for all motions. 

• The weight has to be increased accordingly if the penalty functions are 

not close to zero. 

5.4.1 Initialisation Procedure 

The unknowns in the function f(x) contain two components. The first 

component is the intrinsic parameters (au' a", uO' vo) and the second 
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parameters are initialised by using an educated guess or values provided by 

the manufacturers. 

The initial estimate of the quaternion can be obtained as follows: 

• From the initial estimate of the intrinsic parameter, the upper triangular 

matrix K is formed. 

• Then the essential matrix E is calculated for each motion using the 

relation: 

(5.15) 

• Each quaternion q, is then estimated by factorising the corresponding 

essential matrix as in Luong [1997]: 

E, == S(t,)R(q,) (5.16) 

N ate that in this algorithm the derivation of the 6 constraints was quite 

simple and purely algebraic. Note also that the initialisation of the intrinsic 

parameters is only done by an educated guess and does not require a good 

approximation to the actual value, making this algorithm more robust than 

other available self-calibration techniques for AR systems. 

5.5 Dealing with Critical Motion 

It is well known in several works that self-calibration of all parameters may 

not be possible for certain motions [Zeller and Faugeras 1996; Sturm 1997; 

Sturm 2002]. This kind of motion is called critical motion. Any attempt to 

self-calibrate a camera under critical motion will result in incorrect values for 
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intrinsic parameters. Such ambiguities may be resolved by adding further 

constraints, e.g. zero skew, square pixels or knowledge of the principal 

point. Nevertheless, even with these constraints applied, certain motions 

remaln ambiguous. This fact is supported by work of Zisserman et al. 

[1998]. 

According to Sturm [2002], there are 3 types of critical motion sequences 

for a moving camera that can lead to failure in self-calibration: 

1) Arbitrary position of optical centres but parallel optical axes. In other 

word, camera motions are pure translations possibly combined with an 

arbitrary rotation about the optical axis. 

2) Collinear optical centres, which means that camera motions are pure 

forward translations with two exceptions where the translation may be 

followed by an arbitrary rotation about the optical centre. 

3) The optical centres lie on an ellipse/hyperbola pair as shown in Figure 

5.2. The views may be partitioned into at most two sets, for which the 

centres and optical axes are all coplanar. 

) 

I 

/ 

/ , <I> 
I \ 

f \ 
I \ 

I 

I 
I 

I 

I 

Figure 5.2: Locus of camera positions in a critical motion sequence with 

respect to a conic <l> not on the ideal plane. The conic <l> is shown in 

dotted style to illustrate that it is virtual and can in fact not be drawn. Refer 

to [Sturm 2002] for details. 
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In this section, a novel method has been developed to calculate how near 

the particular motion is to the critical motion associated with case 1 

described above, based on the fact that the cross product of two parallel 

vectors equals zero. 

Recall that the fundamental matrix equation can be written as 

F = K-TS(t)RK- I where E = S(t)R. Given that the fundamental matrix 

has been estimated using SVD (that is from Equations (2.38) and (2.39)), we 

can estimate the rotation matrix R and skew-symmetric matrix Set) 

between two views. 

Let the first VIew of the motion correspond to a camera pointing In z 

direction, which means that the optical axis is equal to the z-axis. Let us 

assume that the vector pointing towards the z direction for the first view is 

(5.17) 

and the rotation matrix R is defined by equation (2.12). To find the vector 

for the second view V2 with respect to the first view we need to multiply 

R with VI: 

V2 =RVr (5.18) 

which gives 

rr,,] V2 = r 23 (5.19) 

r33 

If VI is crossed product with V2 , equation (5.19) becomes: 
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(5.20) 

Let the translation t = 0 , then the angle \}f between vector VI and V2 IS 

given by: 

(5.20) 

The magnitude of vector W is given by: 

(5.21 ) 

where w is the measure of the closeness of the motion to being critical. 

Figure 5.3 illustrates the value of w plotted for different elevation angles T 

and vergence angles v. It shows the usefulness of w in Equation (5.21) as a 

measure of closeness to case 1 critical configuration between the motions of 

a given pair of cameras. The bigger the value of w, the less likely that the 

pair of views is involved in critical motion. 

In our implementation, we set the threshold w = 0.1 to determine whether 

a motion is involved in critical motion. If yes, then the pair will be discarded 

and changed for another pair of views. 
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Figure 5.3: Critical measure of camera motion (case 1). 

Self-Calibration 5.6 Integrating 

Distortion Correction 

30 

with 

Distortion correction to an image is an important issue, especially when 

there is a need to register virtual objects correctly. It will become more 

important if the AR camera is being used in critical areas such as in surgical 

planning or other medical applications where incorrect registration due to 

distorted images might harm the patient under treatment because of the 

incorrect data it produces. Therefore, during the process of camera 

calibration, distortion correction needs to be taken into consideration. 

Some offline calibration techniques such as the one described in Abdel-Aziz 

and Karara [1971] and most self-calibration algorithms available [Trivedi 

1988; Mendonca and Cipolla 1999; Lourakis and Deriche 2000; Pollefey et 

al. 1999; Domaika and Chung 2001] make the assumption that the images 
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that they use for calibration are distortion-free or have been corrected in a 

separate process before the calibration. However, in an AR system that 

employs a camera with varying parameters and especially if the AR camera 

has a wide-angle lens or zoom lens, the distortion can be varied between 

views, which make it easier for the distortion to be considered during 

calibration and not before calibration. 

Therefore, in this section we develop an improved version of self-calibration 

in AR that has distortion parameters estimated simultaneously with the 

estimation of fundamental matrix whenever there is a need to correct 

distorted images. This enables the distortion parameters to be estimated 

online together with the camera parameters and these two processes can be 

done without the need of special calibration object. We follow the distortion 

model described in Chapter 2 combined with the algorithm proposed by 

Zhang [1996] to solve for distortion parameters and fundamental matrix and 

consequently intrinsic parameters. 

5.6.1 Algorithm 

Recall from Chapter 2 that lens distortion can be described by {Ie = ue + 5
11 

(Equation 2.21) and ve = ve + 51' (Equation 2.22) where (u e, vJ are the 

distorted (true) image co-ordinates on the image plane and (5
11
,51') are the 

distortion corrections to Ute' -OJ. Recall that the transformation from point 

U ~ U e to point U a is given by u" = Uo + _e (Equation 2.4) and va = Vo +-
W h 

(Equation 2.5) respectively where (uo' vo) is the principal point, wand h 

are the distances between adjacent pixels in the horizontal and vertical 

directions of the image plane respectively. 
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Combining Equation (2.21) with Equation (2.4) and Equation (2.24) with 

Equation (2.5) yields: 

(5.22) 

(5.23) 

Since (u e , ve ) is the ideal co-ordinate expressed in the Euclidean co-ordinate 

system, we denote (ua , va) to be the ideal co-ordinate expressed in the 

image affine co-ordinate system, which is given by: 

(5.24) 

(5.25) 

Equations (5.22) and (5.23) yield: 

(5.26) 

(5.27) 

Equation (5.26) and (5.27) describe explicitly how ideal point co-ordinates 

are obtained from distorted ones. 

Based on epipolar constraint, iJ~FiJ~ = 0 (Equation (2.32) in Chapter 2), 

we can estimate k\ provided that variables wand h are known where 
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5.6.2 Experiments on Radial Distortion 

In our experim en ts we use a pair o f distortion-free real images, toto 1.bmp and 

toto2.bmp. We assume that variable w and h are known. We distort the 

images by applying different values of dis tortion param eter k, ranging from 

1 x 1 0-6 to 2.5 x 1 0-5 with 1 x l 0-6 for each step . An example of distor ted 

corn er distorted vvi th k, = I x l 0-5 is shown in Figure 5.4 . The distorted 

linages are then corner detected and correspondences bel:\veen corners are 

found. 

Figure 5.4: Example of totol.bmp image distolied wi th va lue of 

k, = 1 x 1 0-5
. 
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Two experiments are implemented. The fIrst experiment includes estimation 

of variable k
J 

only with the centre of distortion CUo' vo) set to be half of the 

size of the image vertically and horizontally. The second experiment consists 

of the estimation of variable k
J 

together with the centre of distortion 

CUo' vo) . 

Figure 5.5 illustrates the comparison between the actual and estimated value 

of k
J

• The algorithm can be said to estimate k
J 

near to the actual value 

when the distortion is less than 7 x 1 0-5 and starts to be unstable when 

more severe distortion is imposed. The author believes that this is due to the 

number of correct point correspondence matches being reduced 

signifIcantly as the distortion level is increased. This consequently affects the 

robustness of the fundamental matrix estimation stage. 

Figure 5.6 illustrates the companson between the estimated and actual 

values of kJ with the distortion centre not fIxed and allowed to vary. Our 

algorithm seems to be able to estimate k
J 

near to the actual value when the 

distortion is less than 1.2 x 10-4
. This means that when the centre of 

distortion is allowed to vary, the algorithm can estimate the value of k
J 

more reliably than when the centre of distortion is fIxed for a distortion 

level less than 1.2 xl 0-4
. 

The value of the estimated distortion centre can be said to be stable and not 

vary too much from the actual principal point. The deviation of the average 

value from the true point is about 5.4%. This is illustrated in Figure 5.7. 

It is worth mentioning here that, although the proposed algorithm can 

successfully estimate distortion parameters for medium to low distortion 

especially when the estimation of the distortion centre is included, the time 
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needed to estimate these parameters is enormous, around 30 minutes for 

estimation of k1 and (uo' vo)· The time to estimate Ie, parameter with a 

fixed (uo' vo) is around 3 minutes. Both experiments were implemented in 

Matlab. Therefore, it is suggested that the estimation of distortion 

parameters be done offline rather than online, especially when the distortion 

centre is also estimated. Additionally, if the distortion is not too severe, it is 

better to estimate the distortion parameter with a fixed distortion centre 

rather than allowing the centre to vary in order to take the advantage of the 

less completion time. 

Comparison between estimated and actual values of k1 (k1 only) 
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Figure 5.5: Comparison between estimated and actual value of Ie, with the 

centre of distortion fixed to half of the image. 
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Comparison between estimated and actual values of k1 (k1 with distortion centre) 
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Figure 5.6: Comparison between estimated and actual value of k, with the 

centre of distortion not fixed. 
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Figure 5.7: Distortion centre plot resulting from application of different 

distortion levels of k, 1 x 1 0-6 to 2.5 x 10-5 with 1 x 1 0-6 for each step. 
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5.7 Conclusion 

The fourth stage for self-calibration in AR has been described. The method 

employs an algebraic approach based on three views separated by general 

motion. The algebraic approach is proposed for its simplicity of derivation 

and requires less attention to accurate initialisation parameters. This shows 

the algorithm efficiency without the need to run eight-point algorithm prior 

to constraints minimisation to find a good initialisation like other available 

methods. Additionally, the proposed approach only needs a minimum of 

two fundamental matrices arising from the two pairs of the three views to 

be used as the inputs. 

In this chapter, the common problem in self-calibration which is the critical 

motion is addressed. A new technique to measure the severity of camera 

motion involved in case 1 critical motion is also described. The 

measurement can be used to determine whether a pair of images can be 

chosen as inputs to be processed in the self-calibration stages. The 

technique proposed, however, only tackles one of the 3 critical motion 

configurations mentioned by Sturm [2002] and does not guarantee that the 

system is free from other critical configurations. 

A technique to deal with lens distortion based on epipolar constraint is also 

developed. The advantage of this approach is that it can simultaneously 

estimate the fundamental matrix as well as the distortion parameters. This 

enables the distortion parameters to be estimated online. Experiments on 

real images showed that the proposed algorithm performed better on the 

estimation of the k\ parameter when the distortion centre is allowed to vary 

than when it is fixed. Even though the distortion centre is allowed to vary, 

the estimated centre points are still close to the actual principal point, 

showing the robustness of the estimation of the distortion centre. The time 

required to estimate distortion parameters when the distortion centre 
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(uo, vo) is fixed is shorter than when the distortion centre is allowed to vary. 

Therefore, if the distortion is not too severe, it is advised to estimate only 

the k
J 

term with a fixed distortion centre to take advantage of the shorter 

completion tune. A disadvantage of the algorithm is that, it performs badly 

when the level of distortion is too severe (kJ > lxlO-4
). The condition of 

this high distortion however is rarely occurring in AR application. 
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Chapter 6 

EXPERIMENTS 

6.1 Introduction 

This chapter describes experiments conducted based on the combination of 

the entire algorithm discussed in previous chapters. Let the combined 

algorithm be known as the Self-Calibration of Augmented Reality (SCAR) 

system. This chapter compares the performance of the SCAR system in 

terms of accuracy and stability with the ARToolKit, the latter being one of 

the most widely used AR systems. Experiments show that the SC\R system 

produces comparable results for intrinsic parameters to the offline 

calibration used in ARToolKit. The experiments also demonstrate its 

stability in producing consistent results for a sequence of frames at different 

time instances when the focal length is not changing. As the focal length 

changes, the system demonstrates its ability to estimate new intrinsic 

parameters, showing its adaptability to changes. 

One of the differences between SCAR and ARToolI<it is that the SCAR 

system proposes the calibration of intrinsic parameters online, which 

ARToolKit does not have; this is an advantage should the focal length of 

the camera change during an AR task. In contrast, ARToolI<it suggests the 

use of offline camera calibration in an AR system, which has the benefit of 



good accuracy of the camera's intrinsic parameters at the expense of being a 

time-consuming calibration process. In this chapter, the performance of 

both systems in terms of accuracy and stability will be presented and the 

suitability of each method to AR applications will be discussed. In the next 

section, we describe the procedures followed in our experiment for offline 

camera calibration in the ARToolKit and the steps taken for the SCAR 

system to show the flexibility of our system. Next, we measure the 

performance of both methods in terms of its accuracy of intrinsic parameter 

estimation. Then, we compare the stability performance of the SCAR 

system with real image data from a static camera and a video camera with 

and without distortion correction. 

\\fe then discuss other implementation issues related to the SCAR system in 

terms of the maximum iterations needed for the optimisation process and 

the sensitivity of the SCAR system to varying initialisation parameters for 

optimisation. The integration of the SCAR system into ARToolKit is also 

performed to show its applicability for easy incorporation into any AR 

system. 

6.2 Offline Calibration in ARToolKit 

In this section we describe the procedures of the offline calibration as 

suggested by the ARToolKit. It aims to show the accuracy and stability of 

the offline calibration used by the ARToolKit for an AR system. Two stages 

are involved, which include procedures for distortion parameter estimation 

and procedures for intrinsic parameter estimation. The suitability of these 

procedures to future AR systems is discussed. Results are presented and 

discussed at the end of the section. 
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6.2.1 Experimental Setup 

The experiment was conducted using a Pulnix TM-765 camera wi th a 

COSMICAR television lens connected to a Hauppauge WinTV card with a 

Pentium III 700 MHz as the processor speed. 

There are two calibration patterns employed in the ARToolKit camera 

calibration routines, calib_dzst pattern and wlib_ tparam pattern, as shown in 

Figure 6.1 and Figure 6.2. 

The wlib_dist pattern contains an array of 6 x 4 dots, which is scaled so that 

the dots are exactly 40mm apart. This pattern is used to measure the amount 

of distortion produced by the lens. The wlib_tparam pattern is a grid of lines 

and is scaled so that the lines are exactly 40mm apart. This pattern is used 

for the estimation of the intrinsic parameters after taking into account the 

distortion that may exist in the incoming images. 

These two patterns were printed out from the calib_"para.p4f and calib_dzst.pdf 

files that come with ARToolKit and were glued to pieces of cardboard to 

make them flat and rigid. 

• • • • • • 
• • • I 
• • • • • • 

" • • • • • • 
,9 .~ ~. I i 
!;it i oc';;i,,,, 

Figure 6.1: ca/ib_dist pattern Figure 6.2: calib_tparam pattern 
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There are two programs that need to be run to calibrate the camera: firstly, 

the calib_dist program, which is used to measure the distortion centre of the 

camera image (xo,Yo) and the distortion parameter k,; and secondly, the 

calib_{param program, which produces the calibration matrix of the camera. 

The calib_dist program was performed before the calib_cparam since the 

wlib_{param needs parameters from the calib_dist as its inputs. 

6.2.2 Running the calib_dist Program 

This program uses the co-ordinates of the dots from the calib_dist pattern as 

its input. The camera captures the image of the calib_dist pattern and the 

user will manually draw a rectangular shape around each dot in the following 

order as shown in Figure 6.3. The process will be repeated using other 

itnages taken from various positions and orientation of the same wlib_dist 

pattern. The experimental setup is illustrated in Figure 6.4. 

In this experiment, one of our aims is to verify that the greater the number 

of images taken, the more accurate the calibration, as is mentioned in the 

ARToolKit documentation. 

All calibration steps are manually done by the user, which can take quite 

some time and is cumbersome due to the repetition. This is in contrast with 

our SCAR system where the feature detection can be done automatically. 
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Figure 6.3: The sequence of dots to be covered by the user for calib_dist 

pattern. 
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6.2.3 Results and Discussion for calib_dist 
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Figure 6.4: Experimental setup for calib _dist program. 

camera 

--..- --..- --..- --..-

500mm 

Figure 6.5: Experimental setup for calib_lparam program. 
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\Vhen running the wlib_dist program, after completing the manual steps in 

the previous section, the program will automatically store the co-ordinates 

of each dot in memory. Table 6.1 shows an example of the co-ordinates 

stored in memory for a captured image. In this case, the position of the 

pattern's plane is perpendicular and at a distance of 45 em from the camera. 

As we can see in Figure 6.6, the rows and columns of the dots are not in 

straight lines, which is due to camera lens distortion. 

After several images of different positions and orientations have been 

captured, the program calculates the distortion centre of the image (uo, vo) 

and the distortion parameter kJ in order to correct any distortion exhibited 

from the lens. Table 6.2 shows the end results from calib_dist. 

From Table 6.2, we see that the distortion centres do not converge to a 

certain value as the number of captured images increases. In other words, 

the number of captured images has little to do with producing a better 

result. Once these values have been passed to the next program 

(wlib_tparam) , this will result in different values for the calibration matrix 

parameters. 
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Figure 6.6: Plotted co-ordinates of the dots. 
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Table 6.1: The Co-ordinates of All 24 Dots 

Row Column Co-ordinate X (pixel) Co-ordinate Y (pixel) 

1 1 113.85 125.25 

2 1 191.97 123.82 

3 1 271.76 122.23 

4 1 351.98 122.61 

5 1 430.61 122.81 

6 1 506.06 123.86 

1 2 107.98 201.04 

2 2 189.46 200.51 

3 2 272.26 198.98 

4 2 355.83 199.02 

5 2 437.39 197.88 

6 2 515.58 197.62 

1 3 103.60 282.78 

2 3 187.56 283.24 

3 3 273.00 282.14 

4 3 359.30 281.24 

5 3 443.43 279.33 

6 3 524.11 277.15 

1 4 100.57 368.89 

2 4 186.15 369.88 

3 4 274.03 369.59 

4 4 362.43 367.84 

5 4 448.63 364.89 

6 4 531.14 360.90 
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Table 6.2: Results from calib_dist 

Number of Distortion Distortion 

Images 
Distortion parameter, 

Centre, Uo Centre, Vo 
(multiplied by 108

) 
Captured 

k
J 

(pixel) (pixel) 

10 301.5 211.0 52.5 

9 298.5 222.0 51.0 

8 294.5 219.0 53.0 

7 299.0 221.5 51.8 

6 278.0 231.5 45.8 

5 305.5 225.5 51.6 

4 299.0 206.5 53.1 

3 306.5 225.5 52.3 

2 303.5 229.0 54.0 

1 304.0 217.0 53.7 

6.2.4 Running the calib_cparam Program 

This program uses a grid pattern of 7 horizontal lines and 9 vertical lines 

from the calib_"param pattern as its input (refer Figure 6.2). The procedures 

for calib_cparam program are as follows: 

a) Type calib_"param at the command prompt and input the distortion 

centre co-ordinates and distortion parameter k
J 

when requested. A 

live video appears. 

b) Place the grid pattern in the camera view so that the pattern is 

perpendicular to the camera with all of the grid lines in view. 

c) Click the left mouse button to capture the image. This generates a 

white horizontal line overlaid on the image. 
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d) Move the computer-generated line to fit the top-most horizontal 

grid line. The arrows keys are used to move the line up, down, 

clockwise or anticlockwise. As the white line is aligned with the top­

most horizontal grid line, press the enter key. This line turns blue 

and another white line is generated. This process should be 

repeated for all the horizontal lines from top to bottom. 

e) When the last horizontal line has been placed, a vertical white line 

appears and process (d) is repeated for the vertical grid lines from 

left to right. 

f) Once this process is completed for one image, the grid pattern is 

moved 100mm away from the camera (keeping the camera 

perpendicular to the pattern). Then, the whole process (a) to (e) is 

repeated 5 times until the total distance of plane movement away 

from the camera becomes 500mm. 

g) After the fifth movement, the program automatically calculates the 

camera parameters. The user is prompted for a filename for storing 

these parameters in memory. 

Figure 6.5 illustrates the experimental setup for the above-mentioned 

processes. 

6.2.5 Results and Discussion for calib_cparam 

Based on the values in Table 6.2, which are passed into the mlib_param 

program, the following results shown in Table 6.3 were obtained. These 

results were drawn in a chart as shown in Figure 6.7 and Figure 6.S. 

Table 6.3 illustrates the intrinsic camera parameters produced by the 

mlib_,param program. In Figure 6.7, it is shown that the values for the centre 

co-ordinates vary between the range of 200 and 300 as the number of 

captured images in mlib_di.rt increases. The same case applies for the value of 
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au and a" where the values keep changing between the range 800 to 900 

(refer to Figure 6.8). These figures show that it is difficult to get accurate 

results even though the number of captured images has been increased. This 

can happen due to the number of images being captured involving user 

intervention, which increases with the number of images. Therefore more 

human error is likely to occur during the calibration process. 

Suppose we take the average value to be the true value, the standard 

deviation of the image centre is equal to 6.8% from the true value. As for 

the scale factors, the standard deviations for au and al' are both 3.5%. 

These values will be compared with the one produced by the SCAR system 

in Section 6.3. 

Table 6.3: Results from calib_"param 

Number of Captured all a" lIo Vo 

Image 

10 796.241 818.242 279.637 232.433 

9 861.804 882.457 258.062 233.239 

8 847.152 866.309 277.637 272.392 

7 832.968 855.019 246.272 262.016 

6 807.511 832.661 216.184 262.064 

5 834.73 859.495 241.259 254.637 

4 821.739 844.389 260.869 223.386 

3 881.247 906.183 230.814 253.543 

2 843.687 869.928 204.533 193.674 

1 787.377 807.932 281.265 267.265 

Average 831.446 854.262 249.653 245.465 
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Table 6.3 illustrates the intrinsic camera parameters produced by the 

calib_cporom program. In Figure 6.7, it is shown that the values for the centre 

co-ordinates vary between the range of 200 and 300 as the number of 

captured images in caiib_diJt increases. The same case applies for the value of 

au and a,. where the values keep changing between the ranges 800 to 900 

(refer to Figure 6.8). These figures show that it is difficult to get accurate 

results even though the number of captured images has been increased. This 

can happen due to the number of images being captured involving user 

intervention, which increases with the number of images. Therefore more 

human error is likely to occur during the calibration process. 

Suppose we take the average value to be the true value, the standard 

deviation of the image centre is equal to 6.8% from the true value. As for 

the scale factors, the standard deviations for all and al' are both 3.5%. 

These values will be compared with the one produced by the SCAR system 

in Section 6.3. 

6.2.6 Conclusion from the Experiment 

Based on the experiments carried out, the characteristics of offline plane­

based calibration in ARToolKit can be assessed as follows: 

a) Once the user adjusts the focal length of the camera, the camera 

has to be calibrated again, which can waste time. 

b) The calibration plate has to be in a location where the amount of 

light is sufficient and the reflection of the light on the camera is 

kept to a minimum. 

c) The calibration process involves human manipulation, which IS 

prone to error. 

d) Since the coiib_dist pattern is positioned randomly before capturing 

the image, the result is in some way dependent on the position and 
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orientation of the pattern plane. Results for intrinsic parameters 

appear to be different with different setups for the plane orientation 

and position. For example, results for patterns captured slanting to 

the right are different from those of patterns captured slanting to 

the left. 

6.3 Experiment on Self-Calibration 

Augmented Reality (SCAR) System 

In this section, the SCAR system was evaluated in terms of stability and the 

accuracy of the intrinsic parameters produced. Using the same camera, the 

accuracy of the intrinsic parameters produced by the SCAR system is 

compared with the intrinsic parameters resulting from the offline camera 

calibration in ARTooiKit. In addition, using the same camera, the stability 

of the values of intrinsic parameters from different captured views is also 

compared with that of the values from the offline calibration in ARTooiKit. 

Another criterion that needs to be compared in the SCAR system is perhaps 

its performance in terms of speed. Since the prototype of the SCAR system 

is done in Matlab, the actual performance of the algorithm in terms of speed 

cannot be compared with that in ARToolI<.:it. It goes without saying that by 

doing such calibration omine the calibration in ARToolI<.:it will always 

outperform any self-calibration embedded in an AR system, especially when 

there is no need to adjust the focal length during an . ./\.R task. 

As speed is one of the important criteria for real-time .A.R systems, we 

propose not to process every frame in order to update the camera's intrinsic 

parameters. Instead, in our implementation, we select one frame for every 

second. This frame will then be corner-detected and the total number of 

correct point correspondence matches checked. If the total of correct 
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correspondences is more than 20 matches, then the frame is selected for 

further processing, otherwise we discard it. Then, if the motion involved is a 

critical one, the next frame will be selected. This procedure is repeated until 

three views are collected. Following this, the first intrinsic parameters are 

estimated - this is currently done for video scene. 

After this the system ,,yill search for another three VIews from the next 

sequence of frames so that any changes in focal length between the former 

and the current three views can be updated as soon as possible. However, 

our system assumes there are no changes in focal length within the three 

captured views to be processed. This is for simplicity, which is due to the 

algorithm derivation (refer to Chapter 5, Section 5.4), which has 4 + 4 n 

number of unknowns and 7 n number of constraints, where n represents 

the number of motions involved in solving them. If we were to consider the 

changes of focal length within the three captured frames in the algorithm, 

the number of unknowns and constraints to be solved would be 4 + 4 n + 

4 sand 7 n ,respectively. Hence this would require a minimum of 4 views 

or 3 motions to recover the unknowns \\rithin the 4 views. The additional 

4 s unknowns represent the changes in the 4 intrinsic parameters of the s 

additional views. 

6.3.1 Experiments for Intrinsic Parameters from Static 

Camera 

In this experiment, no camera is used; instead, test images with three views 

acquired from several websites were used. This is due to the actual values 

provided for the intrinsic parameters, which can be used as a reference to 

the outcome of the experiments carried out for our method. These values 

were used as a basis to check the performance of the SCAR system in terms 

of its accuracy and stability. 
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The experiments were carried out on sets of monocular test images. The test 

lmages were retrieved from the public web site ftp:/Iftp­

robotvis.inria.fr/pub/IMI\GES ROBOTVIS. Figure 6.9(a) and Figure 

6.9(b) illustrate examples of the two pairs of test images taken from a static 

camera. The matches are shown as red crosses. The results from self­

calibration methods are shown in Table 6.4. 

The first row of Table 6.4 gives the initialisation of the non-linear methods 

in self-calibration. Note that these values are chosen based on good guesses. 

The second row shows the correct intrinsic parameters associated with the 

camera capturing the images as provided by the website. The third row 

shows the intrinsic parameters acquired from the algebraic method in our 

SCAR system. The values shown are the average from 10 repetitions. Note 

that from Table 6.4 the self-calibration produces results that are close to the 

reference solution. The deviation of all and al" from the true value is 2.8% 

and 1.4% respectively whereas for the centre point it is 7%. 

Table 6.4: Self-Calibration Results 

Method all a l • 
Uo Vo Iterations 

Initialisation 1500 1500 250 250 

Reference (Off- 659 935 242 283 

line calibration) 

Self-Calibration 640.64 948.30 258.68 286.38 32 

Deviation 2.8% 1.4% 7.0% 
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Figure 6.9(a): First pair of test images from static camera. 
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Figure 6.9(b): Second pair of test images from static camera. 
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6.3.2 Radial Distortion Experiments on Test Images from 

Live Video for the ARToolKit and SCAR System 

In this section, test images were generated from a sequence of captured 

frames from a live video camera connected to a computer. The difference 

between images from a static camera and live video is that the former have 

better quality than the latter. In other words the images captured from live 

video have more noise than images from a static camera. Examples of test 

images captured from the COSMICAR television lens are shown in Figure 

6.14. 

An experiment with 20 trials was carried out to check the consistency of 

camera self-calibration results on the captured images and to compare the 

effect of radial distortion on the result from camera self-calibration. 

Comparison between the results from this experiment is based upon the 

results from the offline camera calibration. Distorted images were corrected 

offline and the intrinsic parameters resulting from self-calibration before 

and after distortion correction were recorded and are shown in Figure 6.10 

to Figure 6.13. 
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(a) (b) 

Figure 6.14: Example of test images captured from live video. 

From Figure 6.10 and Figure 6.11, we can observe that the principal points 

and scale factors estimation for self-calibration without distortion correction 

is no t very reliable for noisy images. However, Figure 6.12 and Figure 6.13 

show improvements in the clusters for the self-calibration method in 

comparison to the clusters in Figure 6. 10 and Figure 6.1 1. From this we can 

presume that taking distortion correction into account will improve the 

accuracy o f the camera calibration parameters for noisy images. 

6.4 Full Implementation of the SCAR System 

The goal of this experiment is to examine implementation issues that may 

arise when the SCAR system is implemented as a whole including the pre­

calibration stages. In order to achieve this, 3 different sequences (toto, 

bigbotlseJrame and fountain) in Appendix B have been chosen as the test 

sequences . T he dimensions of toto, bigbotlseJrame and foul/taili sequence are 

512 x 512 , 576 x 384 and 320 x 240 pixels respectively. 

The experiment takes these three un calibrated sequences as inputs and 

implemen ts them using the follO\:ving procedures: 

A. Corner D etection using Harris-SUSAN H ybrid Corner D etector 

(refer to Chapter 3). 
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a. The algorithm will detect corners from each image. The 

following parameters are set: 

• Standard deviation of smoothing Gaussian, CJ' = 3 . 

• Threshold value for Harris detector, 

thresh = 1000. 

• Radius of region considered in non-maximal 

suppression (optional), radius = 3. 

B. Point Correspondence Matching (refer to Chapter 4). 

a. Matching is done using correlation and calculating motion 

vector. Point is said to be matched when the correlation 

between them has the maximum value. 

b. False matches and outliers are discarded by usmg reference 

vedor. 

C. Fundamental Matrix Estimation 

a. A modification of the MAPSAC algorithm based on 

controlled random selection of corner points is used. 

D. Intrinsic Parameters Estimation based on three views (refer Chapter 

5) 

a. An algebraic method with Levenberg-Marquardt technique 

for minimisation process is used. 

Since all sequences are not distorted, an algorithm without distortion 

correction is used. The results from the intrinsic parameters estimation are 

plotted and are used as input to be integrated into ARTooiKit. The findings 

are discussed in the following section. 
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6.4.1 Results from Correspondence Matching and 

Calibration Matrix 

The following figures illustrate the results from corner detection as well as 

point correspondence matching. The total numbers of corners detected by 

the Harris-SUSAN corner detector before and after matching are recorded 

in Table 6.5, Table 6.6 and Table 6.7 for toto, bighouse and fountain sequence 

respectively. 

Based on observation from Figure 6.15 to Figure 6.18, there is not a single 

false match after point correspondence matching. Thus, these 

correspondences can become good inputs for the fundamental matrix 

estimation stage. 

From this experiment, it can be concluded that, provided the corners are 

well detected, the algorithm for matching can produce reliable 

correspondences while retaining sufficient number of good corners for 

fundamental matrix estimation. Accurate values for corners and correct 

matches are very important for fundamental matrix estimation due to the 

fact that it is very sensitive to any changes in corner positions and incorrect 

matches. This experiment demonstrates the robustness of our developed 

matching algorithm even though there are missed corners resulting from the 

Harris corner detector. The resulting calibration matrix for fountaill sequence 

is au = 398.344, al' = 254.962, ua = 154.226, va = 134.490 and for 

bighouseJrame sequence is au =976.676, al' =1027.809, ua =371.151, 

va = 210.300. 
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Figure 6.15: Comers detected for toto2.bmp and toto3.bmp before matching. 
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Figure 6.16: Comers detected for toto1 .bmp and toto2.bmp after matching. 
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Figure 6.17: Comers detected for bighouseJ rameOOO.bmp and 

bighouseJrame001.bmp after matching. 
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Figure 6.18: Comers detected for foulltain03.bmp and fountai1l05.bmp after 

matching. 

13 7 



Table 6.5: N umber o f corners before and after matching for toto sequence. 

toto 1 tot02 tot03 
Total corners 

113 123 114 
before m atching 

Total corners after 
86 

matching 
74 

Percentage of 
24% 30%-40% 35% 

discarded corners 

Table 6.6: Number of corners before and after matching for bigbotlseJrome 

sequence. 

bit,hol/se JramcOO 1 bit,botfse jromeOO2 bi;,bouseJrameOO3 
Total corners 

579 611 596 
before matching 

92 
Total corners 
after m atching 

92 

Percentage of 
discarded 84% 85% 85% 
corners 

Table 6.7 : N wnber of corners before and after matching for jozl11toin 

sequence. 

jozIIltoi1l0 1 jolllltoi1l0 3 jotltltoinO 5 
Total corners 

187 168 183 
before matching 

Total corners after 120 
m atching 

113 

Percentage of 
36% 29%-33% 38% 

discarded corners 
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6.4.2 Value Setting for Maximum Iterations in Levenberg-

Marquardt Optimisation 

Maximum Iterations is defined as the maXImum number of iterations 

allowed for Levenberg-Marquardt optimisation to perform in order to find 

the actual value that minimise the constraints. The purpose of this 

experiment is to find the best value for Maximum Iterations that can 

produce the optimum result for the intrinsic parameters. In this experiment, 

the system runs up to 100 times with the same test image. The intrinsic 

parameters are recorded each time. 

Figures 6.19 to 6.21 illustrate how the values for Maximum Iterations may 

affect the accuracy and consistency of the scale factors. The x-aXlS 

represents alpha_u (all)' which is the distance between adjacent pixels 

vertically, and the y-axis represents alpha_ v (a,.), which is the distance 

between adjacent pixels horizontally. Figures 6.19, 6.20, 6.21 and 6.22 

represent the scale factors plot for Maximum Iterations of 200, 100, 50 and 

30, respectively. From these results the optimum number of Maximum 

Iterations for the whole system to be accurate is 30. Any value set more or 

less than 30 for the Maximum Iterations will result in the estimation of the 

intrinsic parameters become less accurate. From the figures, we can see that 

as the Maximum Iterations value is decreased the cluster of points becomes 

more focused and the distance between the average and actual scale factors 

becomes closer. 

Figures 6.23 to 6.26 illustrate how the value for Maximum Iterations affects 

accuracy and consistency for the principal points. The x and y axis represent 

the coordinates of the principal points (uo, va) found in the image. Figure 

6.23, 6.24, 6.25 and 6.26 represent the scale factor plot for Maximum 

Iterations of 200, 100, 50 and 30 respectively. From this result the optimum 

number of Maximum Iterations for the system to be accurate is 30 as is the 

case with the scale factors. From the obtained results, we can see that 30 is 
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the optimal value for Maximum Iterations in the Levernberg-Marquardt 

minimisation process in order to obtain the most accurate results for 

intrinsic parameters. 

One might argue that the reason for the points grouping into clusters when 

Maximum Iterations is set to a reduced limit is that the author has chosen 

the initial value to be near the actual value. This is not the case, as is shown 

in Table 6.8 and Table 6.9. Even though the initialisation number is larger or 

smaller than the true value, the number of iterations taken to complete the 

minimisation is still about the same, that is, less than 30. Exceptions are 

when the initial values for all and a\, were chosen as less than 400, or 

Uo = Vo were greater than 1000, which rarely happens. This proves that the 

number of iterations taken to complete the minimisation is not highly 

affected by the initial value chosen. 

Table 6.8 and Figure 6.27 demonstrate the stability performance of SCAR 

for different initialisation values of the scale factors au and a ,. In this case 

the initialisation value for the principal point is set to Uo = Vo = 250. The 

results show that values for the resulting intrinsic parameters are not 

affected by the different initialisation values set for au and a , .. 

Table 6.9 and Figure 6.28 illustrate the stability performance of SC\R for 

different initialisation values of the principal points Uo and vo' In this case, 

the initialisation values for the scale factors are set to all = a ,. = 1500. The 

results also show that the resulting intrinsic parameters are not affected by 

different initialisation values being set for Uo and vo' This proves the 

robustness of this algorithm compared to another available algorithm 

[Luong and Faugeras 1997], which requires near to true initialisation values 

in order to get correct results. 
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6.4.3 Computational Complexity and Practical Realisation 

Table 6.10 shows the performance of the whole algorithm in terms of speed 

by using image with resolution 512 x 512 pixels. The algorithm was run in 

Matlab installed in a computer with a 320 Mb RAM memory and Pentium 

III 800 Mhz processor. It shows that the whole algorithm developed 

requires around 20 seconds to be completed. The fundamental matrix 

estimation consumes the most time followed by corner detection, 

calibration matrix estimation and point correspondence match. The longer 

time required by the fundamental matrix estimation is due to a high number 

of samples for correspondence matches to be processed. The lower this 

number is set by the user, the faster the time of completion. In this case, we 

set the number of samples to be 1000. 

The CPU time required for calibration matrix estimation stage is 5.1 second 

for 30 iterations using Levenberg-Marquardt technique. For each iteration, 

the time required is generally higher than other self-calibration methods due 

to more constraints and unknowns to be solved in the algebraic approach. 

However, the need for additional time to obtain the correct initialisation 

parameters and the uncertainty of the number of iterations involved by 

other self-calibration methods make the algebraic approach to be our 

preferred method. 

Table 6.11 illustrates the computational complexity for each stage involved 

in the SCAR system. The computational complexity of lvL\PSAC is not 

fixed because it depends on the number of sample matches set by the user. 

For practical realisation of SCAR, the whole code needs to be converted 

into C++ to take the advantage in terms of speed. Then, capturing of the 3 

images required for SCAR should be set to be done every minute. \'V'henever 

there is a need for updating the intrinsic parameters in between the minutes, 

the AR system should be able to prepare an icon button where the user can 

simply update the parameters at any time. 
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Figure 6.26: Principal Points Plot where Maximum Iterations 30. 
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Table 6.8: Stability performance of SCAR when different initialisation values 

of au and a" are used 

Number 

Initialisation, of 

au =av au a v Uo Vo iterations 

100 654.6860 927.0128 242.3709 271.2405 232 

200 654.6860 927.0021 242.3709 271.2411 59 

300 654.6860 927.0003 242.3709 271.2413 59 

400 654.6860 926.9923 242.3708 271.2417 46 

500 654.6848 926.9239 242.3705 271.2456 31 

600 654.6853 926.9218 242.3705 271.2461 30 

700 654.6858 926.9792 242.3708 271.2426 26 

800 654.6863 927.0193 242.3710 271.2402 27 

900 654.6859 926.9709 242.3708 271.2432 25 

1000 654.6860 927.0003 242.3709 271.2412 26 

1100 654.6860 927.0074 242.3709 271.2408 20 

1200 654.6860 927.0110 242.3710 271.2405 24 

1300 654.6861 927.0100 242.3709 271.2407 20 

1400 654.6859 927.0041 242.3709 271.2410 22 

1500 654.6863 927.0422 242.3712 271.2387 19 

1600 654.6862 927.0381 242.3710 271.2390 21 

1700 654.6861 927.0073 242.3710 271.2408 22 

1800 654.6860 926.9955 242.3709 271.2416 24 

1900 654.6861 927.0024 242.3709 271.2412 24 

2000 654.6860 927.0009 242.3709 271.2412 24 

2100 654.6858 926.9864 242.3708 271.2421 27 
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Table 6.9: Stability performance of SCAR when different initialisation values 

of ua and va are used 

Number 

Initialisation, of 

ua = va au a" ua va iterations 

0 654.686 927.002 242.3709 271.2412 24 

100 654.6859 926.9945 242.3708 271.2416 28 

200 654.686 926.998 242.3709 271.2414 22 

300 654.686 926.9941 242.3709 271.2416 22 

400 654.6861 927.0079 242.3709 271.2408 28 

500 654.6872 927.174 242.3717 271.2306 27 

600 654.6858 926.9808 242.3708 271.2424 30 

700 654.6859 926.963 242.3708 271.2437 37 

800 654.6877 927.2353 242.372 271.2269 34 

900 654.6859 927.0007 242.3709 271.2411 30 

1000 654.6861 927.0083 242.3709 271.2407 32 

1100 654.6859 927.0049 242.3709 271.241 41 

1200 654.6858 926.9905 242.3708 271.2419 39 

1300 654.6861 927.0046 242.3709 271.241 42 

1400 654.6858 926.9632 242.3708 271.2436 32 

1500 654.6861 927.0069 242.3709 271.2407 59 

1600 654.686 927.0006 242.3709 271.2413 31 

1700 654.6861 927.0127 242.3709 271.2405 37 

1800 654.686 926.9856 242.3709 271.2422 39 

1900 654.686 926.9981 242.3708 271.2414 49 

2000 654.6859 926.9925 242.3708 271.2418 121 

2100 654.686 927.0001 242.3709 271.2413 66 

2200 654.6861 926.9972 242.3709 271.2415 35 

2300 654.6861 926.9992 242.3709 271.2413 65 

2400 654.686 926.9939 242.3709 271.2417 40 

2500 654.6859 926.9842 242.3708 271.2423 29 
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Table 6.10: Performance of SCAR in terms of speed for each algorithm. 

Algorithm CPU Time Percentage (%) 

(second) 

Corner detection 5.4 25.1 

Point correspondence 3.4 15.7 

matching 

Fundamental matrix 7.7 35.6 

estimation 

Calibration matrix estimation 5.1 23.6 

Total 21.6 100 

Table 6.11: Computational complexity of SCAR system. 

Stage Technique used Computational Complexity 

Harris corner 95 Addition and 22 Multiplication 

Feature detector ops/pixel 

Detection Harris 37 Addition and 13 Multiplication 

refinement ops/corner 

2W2 (Addition/Subtraction) and 4W 
Point Correlation 

Correspondence 
(Multiplication) times Bops/corner 

Motion Vector 
Matching 2N Subtraction 

Analysis 

Fundamental 

Matrix MAPSAC Not fixed 

Estimation 

Calibration 
Algebraic 55 Addition and 27 Multiplication 

Matrix 
Constraints ops/iteration 

Estimation 
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Stability performance of SCAR for different scale factor initialisation 
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Figure 6.27: Stability performance of SCAR for different scale factor 

initialisation. 

Stability Performance of SCAR for different principal point initialisation 
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A weakness that the SCAR system has is the inability to detect and discard 

pairs of images that undergo critical motion apart from case 1 as described 

in Section 5.5, Chapter 5. \Vhen this occurs, the result for the intrinsic 

parameters would be catastrophic and totally unreliable. Therefore, unless 

this issue is taken into consideration, the motion where a pair of images is 

captured will need to be controlled by the user so that it does not involve in 

critical motion. 

6.S Conclusion 

This chapter describes the full implementation of the SCAR system 

developed throughout this thesis. It demonstrates the performance between 

the offline calibration in ARToolKit with the self-calibration in the SC\R 

system. 

From the first experiment, the ARToolKit calibration procedures show the 

tedious steps that need to be followed every time a camera needs to be 

employed in an AR application. These steps involve user intervention, for 

instance, the movement of the calibration plane further from the camera by 

a certain distance while keeping the perpendicularity of it to the camera, 

which may cause the result of the intrinsic parameters to be varied by a 

certain percentage from the true value. In contrast, the SCAR system 

promotes a more automatic approach to camera calibration and the 

deviation from the true value is about the same as that in the offline 

ARToolKit camera calibration. This is shown in the second experiment with 

the static camera. 

In the third experiment regarding images that come from a normal live 

video, the results show that, given a sequence of images that are noisy, the 

SCAR system is still able to obtain as reliable result as ARTooIKit. When 

the distortion was corrected offline, the SCAR system showed 
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improvements compared with results without distortion correction. 

Therefore, if noisy and distorted images from live video are to be used in 

the SCAR system, the distortion needs to be corrected in order to obtain 

improved results for the camera parameters, especially when the distortion 

IS severe. 

The fourth and fifth experiments demonstrate the full implementation of 

the SCAR system, including the pre-calibration stages. Good results are 

obtained from both the Harris-SUSAN Hybrid corner detection and our 

point correspondence matching stage. These show that the SCAR system 

allows only good point matches to be passed through for the fundamental 

matrix estimation stage and calibration stage. In the fifth experiment, given 

these point matches as the input, the calibration stage shows robustness and 

stability of its intrinsic parameters results even though different initialisation 

values were chosen. The optimum number to be used for Maximum 

Iterations in Levernberg-Marquardt minimisation is only 30, which gives an 

advantage to the SCAR system in terms of speed. 
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Chapter 7 

CONCLUSIONS AND FUTURE 

WORK 

7.1 Conclusions 

Camera calibration remains an important topic in AR. The need to achieve 

high accuracy by using a known pattern, however, overlooks the need to 

provide a more flexible solution to calibrating a camera in AR. In the last 

few years many researchers have tried to address this issue from a number 

of different perspectives, focusing primarily on offline solutions for camera 

calibration in AR. This kind of solution makes the camera calibration a 

separate process from the AR system. An alternative approach, which is 

advocated in this thesis, is to integrate self-calibration into the j\R system; 

this has the benefit of updating the intrinsic parameters online. This thesis 

has developed an AR system that incorporates self-calibration based on a 

moving camera. This chapter will summarise all the work presented in this 

thesis and recommend some future work. 

The aim of this thesis has been to explore the integration of camera self­

calibration in an AR system (SCAR). In particular, this research has been 



concerned with updating the value of the intrinsic parameters of a monitor­

based camera involved in an AR task. To achieve this, several pre­

processing stages have been suggested, including a corner detection stage, a 

point correspondence matching stage, a fundamental matrix estimation stage 

and the self-calibration stage itself. Each chapter in this thesis describes the 

work that has been done in each of the aforementioned stages towards the 

completion of the camera self-calibration in AR. 

In Chapter 1, it was stated that correct registration was a common problem 

in £\R, and that good camera calibration was needed as one of the most 

effective solutions. In the available literature, most AR systems require a 

specified pattern to calibrate their cameras. \Ve argued that even though the 

camera calibration in current AR systems that uses a plane-based solution 

provides good accuracy, it is less flexible, cumbersome and requires specific 

equipment setup. Furthermore, the intrinsic parameters of the camera 

cannot be corrected online if they change whether intentionally or 

uninten tionally. 

Having established the need for a more flexible approach to camera 

calibration, we analysed a typical AR system and proposed an alternative 

solution that replaces an offline plane-based camera calibration AR .rystem with an 

online integrated camera se!fcalibration AR .rystem. \Ve decided that several stages 

need to be included as a pre-requisite to self-calibration, which consist of 

corner detection; point correspondence match and fundamental matrix 

estimation. 

I-laving defined the proposed AR system, we introduced the general theory 

behind self-calibration and its derivation in Chapter 2, including our pinhole 

camera model, lens distortion and epipolar geometry. 
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Harris and SUSAN corner detectors have been proposed by Harris and 

Stephens [1988] and Smith and Brady [1995] respectively as methods of 

detecting high curvature features in an image. In Chapter 3, we reviewed 

these two corner detectors. The performance of each corner detector for 

stability, accuracy and speed was evaluated, and we discussed their 

applicability for point correspondence matching. We addressed the 

importance of accurate corners as input for the fundamental matrix 

estimation stage. Consequently, we proposed a Harris-SUSAN Hybrid 

corner detector in order to increase corner localisation. The search for true 

corners is performed by variable sizes of mask that changes adaptively with 

the number of connected region contained in two different sizes of mask 

"vindow. Results show that localisation error is reduced by using the 

proposed corner detector. 

Correlation functions are often used in searching for similarities in images or 

linage parts. This method was reviewed in Chapter 4 to find point 

correspondences based on the detected corners method from Chapter 3. 

The consequence of applying correlation is a score value between -1 and 1. 

A corner point in one image is assumed to correspond with a point in 

another image when it has the highest correlation score. However, this is 

not always the case. A novel method based on motion analysis was 

developed which discards all outliers. It achieves this by employing two 

simple processes, mode of distance search and threshold setting. Results 

show that this method outperforms other techniques in terms of accuracy, 

simplicity and speed. A limitation of this method is that the performance is 

less efficient for forward or backward motion. 

Chapter 5 starts by describing several techniques for self-calibration. In this 

thesis, an algebraic approach based on three views was used to solve for the 

intrinsic parameters of an AR camera. The presented method directly 

recovers the intrinsic parameters from the fundamental matrices and deals 
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with general camera motions. It has a simpler algorithm than other 

techniques and hence is suitable to be used for AR applications that require 

a fast algorithm in order to reduce lag in the system. In order to tackle the 

case when a camera with lens distortion is used, an algorithm to estimate 

distortion parameters was developed based on epipolar constraint. Based on 

the results obtained, distortion parameters can be estimated correctly when 

the distortion is less than 1.2 xl 0-4 before they become unreliable. 

However, due to the length of time needed to estimate these parameters, the 

estimation of distortion parameters is better done offline. 

I-laving finished developing the different stages, all of them were combined 

to build a complete AR system with built-in self-calibration. In Chapter 6 we 

demonstrated the performance of our AR system in comparison with 

i\RToolI<it, which uses offline camera calibration. \v'e showed in our 

experiments that the SCAR system outperforms /\RToolI<it in terms of ease 

of use while maintaining the accuracy of the intrinsic parameters. \v'e have 

already showed from the results that the pre-calibration stages have been 

designed in such a way that they only provide the best inputs for each stage. 

Provided that the camera motion is not critical, the SCAR system proves to 

be able to produce reliable intrinsic parameters. In order to achieve more 

consistent intrinsic parameters, the number of maximum iterations during 

calibration must be observed to a certain value. This condition, however, 

presents an advantage in terms of speed. The stability of the SC\R system, 

however, holds as long as it is not involved in any of the critical motion 

cases. 

There are other things that need to be considered in order to make self­

calibration a choice as an accurate and robust calibration method apart from 

plane-based calibration. The first consideration is the image-matching 

process in which the coordinates of the points between image pairs need to 

be correctly matched in order for the fundamental matrix to be correctly 
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estimated. A second consideration is the lighting conditions when capturing 

images. Since the image-matching algorithm is highly dependent on pixel 

correlation, different lighting conditions between views can degrade the 

ability to detect correct matches. 

7.2 Future Work 

j-\ large part of the thesis has been concerned with the description of camera 

self-calibration in AR systems with all the necessary stages, which involve 

feature detection, point correspondence matching and fundamental matrix 

estimation. \V'hilst the development of the whole system has been shown to 

be successful, there is much scope for further improvement. In this section, 

some possible future recommendations based on the current work are 

presented. 

The major limitation of using corner detectors in this work is that the 

system will not work efficiently when there are few corners available \v1.thin 

the camera view. A more adaptive approach can be suggested to find other 

features such as curves, but at the expense of complexity. 

Using motion analysis to detect outliers in point correspondence matching 

has limitations in the sense that outliers can hardly be detected when the 

camera is moving forward or bach.··ward. One possible improvement on the 

algorithm might include dividing the image into several segments. Then, 

independent motion analysis could be applied by assigning different mode 

values to each segment. 

Feature detection and point correspondence matching can be improvised by 

the use of visual tracking to speed up the pre-calibration stages. The Lucas­

Kanade algorithm may be employed to find the best features to track. 

However, problems may occur when there is occlusion in the scene. Further 
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research could be focused on the development of more flexible visual 

tracking for real-time correspondence matching. 

In practice, a mechanism to detect and discard critical motion pairs from 

being processed by the system would be very important if we want to ensure 

the consistency of the intrinsic parameters results when performing the AR 

task. One suggestion for tackling the second case of critical motion is by 

employing the algorithm described in Mendonca [2001] that deals with a 

rotating camera where the principal axes of multiple camera positions 

intersect. 
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Appendix A 

MARKER PATTERN FOR THE 

ARTOOLKIT 

The marker pattern is designed in such a way that it can be detected and 

tracked as easy as possible. The followings are example of marker pattern 

used by the ARToolKit (refer Figure A.l and A.2). Note that the marker 

pattern consists of two separate patterns: 

1) Outside pattern which is a thick black square. 

2) Inside pattern which can be in different shape. The users can have 

the chance to design their own inside pattern to suit their 

application. 

Therefore, pattern detection process in ARToolI<.it involves two stages; 

detecting the outside pattern and subsequent to this, the system ,vill search 

for the inside pattern. 

As a rule, one inside pattern corresponds to only one virtual object (refer 

Figure A.3 (a) and A.3 (b)). Therefore when the computer detects a 

particular pattern, the corresponding virtual object ,vill be seen overlaid on 



the pattern. If the camera has been calibrated, the virtual object will be 

overlaid accorcling to the position and orientation of the pattern (refer 

Figure A.3 (c)). The OpenGL API is used for setting the virtual camera co­

orclinates and drawing the virtual images. 
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Figure A.l: Hiro pattern Figure A.2: Kanji pattern 

(a) (b) (c) 

Figure A.3: Augmenting patterns with virtual objects. 
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Appendix B 

TEST IMAGES 

totol toto2 to to3 

Figure B.l: Lab sequence 



bighouse_ frame_009 

Figure B.2: House sequence 
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Figure B3: Fountain sequence 
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