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One of the characteristics of a good Augmented Reality (AR) system is to be
able to register virtual objects correctly onto the specified location in the real
world. A displacement from this specified location is called registration error.
This error can be caused by several factors, such as system delay, optical
distortion and poor camera calibration. The problem of poor camera
calibration in AR has always been overcome by employing careful camera
calibration steps with the use of a specific known object. However this task is
time consuming and mostly performed offline. This dissertation alms to
develop an AR system known as a SCAR (Self-Calibration for Augmented
Reality) system, which incorporates a self-calibration of a camera so that the
system updates the camera intrinsic parameters whenever they change. The
SCAR system incorporates an algebraic approach to self-calibration where it
can solve camera parameters based on only three views and requires only the
fundamental matrices as the inputs. The solution proposed here can be used
for any AR system that uses visual-based tracking. Several pre-calibration
stages including feature detection, point correspondence matching, and
fundamental matrix estimation are developed. The problem of inaccuracy
with general corner detector has been identified and a new algorithm, which
combines Harris and SUSAN corner detectors, has been suggested. This

hybrid detector increases the corner detection accuracy and reduces




localisation errors of up to several pixels. A novel point correspondence
matching has been developed, which is based on motion vector and simple
statistic calculation. The matching process is efficient and capable of
removing outliers from corner detection as well as maintaining a good
number of correct matches even in the event of occlusion. Lens distortion is a
common problem in visual-based tracking. This problem is dealt with by
solving general epipolar constraints in order to simultaneously solve for the
distortion parameters and fundamental matrix using MAPSAC algorithm.
Finally the SCAR system is compared with the ARToolKit calibration
procedure and has proven to produce reliable results with better flexibility.
The theoretical aspects of critical motion, which may exist between pairs of
views, are also discussed. A new measure of the criticalness of the motion for
the case of parallel camera axis followed by rotation along the principal axis is

also presented.
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Chapter 1

INTRODUCTION

1.1 Augmented Reality

1.1.1 Definitions

In the past few years, there has been considerable interest in mixing live
video from a camera with computer-generated graphical objects that are
registered in a user's three-dimensional environment; this process is called
Augmented Reality (AR) [Azuma 1997]. This is due to emerging
developments in Virtual Reality (VR) and wearable computing. People in
virtual reality are extending their research on fully virtual immersive system
into research that combines virtual objects in real scenes, ie. AR, or
combines real objects in virtual scenes, i.e. Augmented Virtuality (AV). The
increasing development of wearable devices, from monitor-based displays to
head-mounted displays (HNDs), is having a significant impact on AR
research. HMDs make it possible for the AR system to function outdoors as

well as in the laboratory environment.

Augmented Reality is a combination of the real scene viewed by the user
and a 3D virtual object generated by the computer, which augments the

user’s view of the real world. According to Azuma [1997], an AR system is a



system that has the following three characteristics: one, it combines real and

virtual; two, it is interactive in real time; and three, it is registered in 3D.

Therefore, overlaying 2D virtual objects onto the real world -cannot be
considered AR. Films like Jurassic Park also cannot be regarded as AR,
because they are not in an interactive medium. Figure 1.1 shows an example
of AR where a man is interactively realising a car body in Spacedesign using

3D devices and AR/VR HMD.

Virtual Reality (VR) is an area that is closely related to AR. AR differs from
VR due to the fact that it brings the computer into the ‘world’ of the user
(compositing real and virtual), rather than immersing the user in the world
of the computer (virtual only). A Milgram’s Reality-Virtuality Continuum
[Milgram and IKishino 1994] shown in Figure 1.2 illustrates how real and
virtual worlds are combined in various proportions. AR has the real world
as the background plus some virtual objects, whereas AV is vice versa.
Virtual Environment represents VR and Real Environment represents the

real world.

1.1.2 Applications

Some of the target application domains for AR include computer-aided
surgery, repair and maintenance of complex engines, facilities modification,
education, the games and entertainment industry and many more. For
example, in medical applications AR 1mages of MRI-derived models could
be overlaid on top of a surgeon’s view of a patient during surgery to help
identify malignant tissue to be removed or sensitive healthy areas to be
avoided [Tuceryan et al. 1995]. Lorensen et al. [1993] and Figl et al. [2002]

also used an AR system for surgical planning applications.

o



Figute 1.1: An example of Augmented Reality [Fiorentino et al. 02].

¢ ¢
—_— ~-g—
Real Augmented Augmented Virtual
Environment Reality (AR} Wirtuality (AV] Environmerit

Reality-Wirtuality (R¥} Continuum

Figure 1.2: Milgram’s Reality-Virtuality Continuum
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Figure 1.3: A typical AR system based on the ARToolI<it architecture.



Original Image Thresholded Image Connected Components

Contours

Figure 1.4: Four steps involved in the marker detection stage in the
ARToolKit, which consist of thresholding the captured image; finding

connected components and contours; extracting marker edges and corners.

Feiner et al. [1993] used AR 1n a laser printer maintenance task where the
user is guided in the steps required to open the printer and replace various
parts. Wellner [1993] developed an AR system in an office environment by
overlaying a virtual desktop on a physical desk. Drascic et al. [1993] and
Milgram et al. [1993] performed Telerobotics tasks by using an AR system

with computer-generated stereo graphics.

More recent applications include using AR in a classroom as a visual aid for
students to understand Geography [Shelton and Hedley 2002], using AR for
an exhibition in a museum [Grafe et al. 2002], and an interactive AR theatre
that gives users a novel theatre experence through the exciting features of

human-to-human social and physical interaction [Cheok et al. 2002].



1.1.3 Augmented Reality System

Figure 1.3 shows a typical AR system. It illustrates the system that is being
used in ARToolKit, software developed by the Human Interface
Technology Lab in Washington (this can be downloaded from
[ARToolKit]). ARToolKit was first developed in late 1998 for a
collaborative AR project at the University of Washington’s Human Interface
Technology Laboratory. Since that time, it has grown to be used at dozens
of research and academic institutions by hundreds of developers in various

AR applications.

The system consists of a live camera taking real world scenes as the input
into the system. The system then tries to detect markers from the input
stream (refer Appendix A for examples of the marker patterns used in
ARToolKit). After a marker has been detected, the pattern inside the
marker is identified so that the system knows which marker corresponds to
which 3D virtual object. Normally, one pattern represents only one virtual
object. The orientation of the marker is also determined during the marker
pattern identification stage. Finally, after the camera transformation (from
3D co-ordinate to 2D co-ordinate and vice versa) has been calculated, this
3D object i1s rendered on the pattern and shown on the AR display (refer
Appendix A). The system will then continually repeat the process of
detecting markers, identifying marker patterns, calculating camera
transformations and merging video, so that it can track any changes in the
position and orientation of the pattern. If changes occur, the 3D virtual
object is rendered according to the new position and orientation of the

pattern.

In order to render the virtual object according to the position and
otientation of the pattern, the camera has to be calibrated. This is usually
done before the system runs. The purpose of camera calibration is to

provide the system with the intrinsic camera parameters, which include focal



length, aspect ratios and the centre of the image plane. These parameters are
important for the system to calculate the 3D to 2D transformation and vice
versa. A more detailed explanation of camera calibration will be given in

Chapter 2.

Once the camera has been calibrated, the AR system 1s said to be able to do
3D tracking. Tracking in AR terms means observing movement by knowing
the position and orientation of the object or pattern being tracked in space

in real time. There are two ways of tracking in an AR system:

a) Vision-based tracking

This type of tracking depends on camera vision. An object will be
tracked if it 1s positioned within the camera view. The advantage of
vision-based tracking is that 1t utilises the very same image or pattern on
which virtual objects are overlaid. Therefore, nearly perfect registration
can be achieved under certain conditions [Uenohara and Kanade 1995;
Mellor 1995b]. Vision-based tracking outperforms other kinds of
tracking in terms of the accuracy of registration. ARToolKit uses this

form of tracking to track markers and patterns.

b) Magnetic tracking

Most tracking systems used today in fully immersive VR systems have
been magnetic. The disadvantage of using magnetic trackers is that they
produce large amounts of error and jitter. An uncalibrated system may
exhibit position errors of 10 cm or more, particularly in the presence of
magnetic field disturbances such as metal and electric equipment.
Carefully calibrating a magnetic system can reduce position errors to
within 2 em [Livingston and State 1995]. Despite their lack of accuracy,
magnetic trackers are popular because they are robust and place minimal

constraints on user moton.



1.1.4 AR Display Technology
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Figure 1.6: Video see-through AR display [Vallino 2002].

Haad-mo
Head Dieplay
Syatnen Wirkual D
Objacts

v Real
N * Worid
Usars

Optical
Vhew Marging

unded

Figure 1.7: Optical see-through AR display [Vallino 2002].



There are currently three types of display technology used in AR systems,
namely monitor-based AR display (Figure 1.5), video see-through AR
display (Figure 1.6) and optical see-through AR display (Figure 1.7).

In gencral, a monitor-based AR display 1s employed in a situation whete the
sense of presence is not important. The display is visually isolated from the
system and typically not aligned with the camera. In situations where the
user wants to feel more sense of presence, Head-Mounted Displays (HMDs)
are often used. Figures 1.6 and 1.7 illustrate two types of HMD, video see-

through and optical see-through.

Figures 1.5 and 1.6 illustrate that the architecture of video see-through is
very similar to that of the monitor-based display except that in video see-
through the camera is aligned with the monitor display and is placed on the
HMD. This enables the user to sece an augmented worldview that is
immediately in front of his eyes. However, it does not allow any direct view

of the real world because the real world view comes from the monitor.

Optical see-through HMD allows the user to observe the real world, with
virtual objects superimposed by optical or video technologies. It operates by
placing an optical combiner in front of the user's eyes, which is partially
transmissive and partially reflective. An optical approach HMD has the

following advantages over a video approach HMD [Azuma 1997]:

a)  Simplicity: Optical blending is simpler and cheaper than video blending.

b) Resolution: Optical see-through shows the virtual images at the resolution
of the display device, but the user's view of the real world is not
degraded.

o) JSafery: In video see-through, if the power is cut off, the user is etfectively

blind, which may be dangerous in certain applications.



d) No eye offset: In most configurations of video see-through, the cameras
are not located exactly where the user's eyes are, creating an offset

between cameras and the real eyes.

In contrast, a video approach HMI has the following advantages over an

optcal approach HMD [Azuma 1997

a)  Flexibility in composition strategzes: In optical see-through, the virtual objects
do not completely obscure the real world objects. This makes the user
observe the virtual object as if a 'ghost object’ were overlaid on the real
scene. Unless a new technology of optical combiner can be created to
overcome this, people will prefer the video see-through display for their
applications.

by Real and virtnal view delays can be matehed: In video see-through, it is
possible to delay the video of the real world to match the delay from the
virtual image stream. This can reduce the registration error that comes

from the system delay.

1.2 State of the Art in Calibration for AR
1.2.1 Offline Plane-Based Camera Calibration

One of the calibration techniques in AR that is most commonly used is
offline plane-based calibration. Figure 1.8 shows an example of a plane used
for calibrating a camera. The motivations for considering planes for
calibrating cameras are mainly twofold [Sturm and Maybank 1999]. First,
planar calibration patterns are cheap and easy to produce. Second, planar
surface patches are probably the most important two-dimensional features.
If their metric structure is known, they already carry enough information to
determine a camera's position up to only two solutions in general [Holt and

Netravali 1991]. This method yields a very accurate determination of the



camera parameters, provided the calibration pattern 1s carefully set [Faugeras

et al. 1992].

The disadvantage of the method is that it is not possible to calibrate on-line
when the camera is already involved in a visual task. This can happen when
the intrinsic parameters are changed either intentionally, for example during
adjustment of focal length, or unintentionally, for example due to the effect
of thermal vanation. ARToolKit software uses this kind of calibration
technique to calibrate the camera [ARToolKit].

Figure 1.8: Example of calibration pattern.
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1.2.2 Magnetic Tracker Calibration

Azuma and Bishop [1994] demonstrated accurate static registration across a
wide variety of viewing angles and position by using an optoelectronic
tracker for optical see-through HMD. Since optical see-through does not
need a camera, three calibration steps were created to directly measure the
viewing parameters, using simple tasks that rely on geometric constraints.
Dynamic errors are reduced by predicting future head locations using
inertial sensors mounted on the HMD. Even though this method achieved
high accuracy, they require many technical steps and extra hardware devices,

making the system demanding of time and concentration for the user.

1.2.3 Offline Hybrid Calibration (Camera and Magnetic
Tracker)

Bajura [1992] proposed calibration for video see-through systerﬂs based on
tracking known features in the working environment. Two types of
transformation, consisting ot transducer transformation and camera
transformation (for position and orientation), are used to calibrate the
system. However, there is no information on how the cameras’ intrinsic

parameters are found.

In Tuceryan et al. [1995], the calibration method developed for monitor-
based augmented reality systems at ECRC (GRASP System) relies on a
specific pattern. The dependency on a specific pattern makes this system
only suitable for use indoors or inside a laboratory. The use of a magnetic

tracker makes the whole calibration process lengthy and expensive.

In ARGOS (Augmented Reality through Graphic Overlays on Stereo-
video), semi-automatic calibration is used to calibrate stereoscopic cameras

for an Amiga-based AR system [ARGOS]. This calibration assumes that the



user has prior knowledge about the focal length of the camera. The
inclusion of manual steps requires a lot of time and effort to accurately

measure the parameters needed for the camera.

1.2.4 Other Calibration

Fuhrmann et al. [2000] propose an HMD calibration, which consists of
displaying points in the corners of each HMD display and aligning these
points with the hotspot of a stylus. The measured data gives all the
necessary calibration information — eye position, view-plane distance, and

aspect ratio.

Grasset et al. [2001] proposed an augmented reality system dedicated to the
kind of collaborative applications where users meet around a table. The
calibration technique used is for optical-based HMDs and is very simple and
intuitive, at the cost of a loss in accuracy. The achieved accuracy is only
sufficient for non-critical applications like architectural design, gaming and

planning simulation.

Yao and Calway [2002] proposed a method of estimating 3D camera motion
based on sparse feature tracking and recursive structure from a motion
algorithm developed by Azarbayejani and Pentland [1995]. The method is
highly dependent on the ability of the feature tracker to track the points
making it unreliable when the points being tracked are lost due to being

obscured by other objects.

1.2.5 No Calibration

There is an approach in AR, which avoids the need for any calibration

[[Kutulakos and Vallino 1996; Kutulakos and Vallino 1998]. Kutukalos



represents virtual objects in a non-Euclidean affine frame of reference that
allows rendering without knowledge of camera parameters. However it
should be noted that this approach might not recover all the information
required to perform all potential AR tasks. For instance, this approach does
not recover true depth information, which is useful when compositing the

real and the virtal.

1.3 Motivations

The most likely problem faced in AR applications is achieving accurate
registration, in which the virtual object must be properly aligned with the
real world [Azuma 1993]. There are two types of error source that cause
registration problems: static and dynamic [Holloway 1995]. Static errors are
ones that cause registration errors when both the user's viewpoint and the
object in the environment remain stll. Dynamic errors are ones that cause

registration errors when either the viewpoint or the objects begin to move.

One way to minimise registration errors is by having good camera
calibration. Good calibration will ensure that the correct 2ID camera to 3D
world relationship is established. This will guarantee the accurate registration
of the virtual object and hence produce less registration error. In order to
achieve this, certain criterta must be met. Tsai [1987] stated that the
calibration procedure should be an autonomous process, meeting certain
accuracy requirements, reasonably efficient and versatile. Therefore, any
work to develop good calibration techniques should have at least the

aforementioned criteria in mind.

Serious research on camera calibration for AR only began less than a decade
ago (refer section 1.2 for a complete review of camera calibration in AR).
Before then, AR researchers concentrated on developing AR systems as a

whole, with a minor focus on camera calibration. Therefore, most AR
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systems employ the traditional way of calibrating a camera for AR by using
calibration objects (refer Chapter 2 for more details on camera calibration).
This is normally done offline and may require a lot of time to complete.
This will produce more problems when the focal length of the camera

changes either intentionally or unintentionally.

Additionally, the significant development of AR in various applications such
as games requires the calibration process to be fast, simple and flexible. This
cannot be achieved with offline calibration where the process requires a
specific known pattern, a special setup and certain movements. If
offline calibration were used, the excitement of children playing games
would diminish, as they would have to keep stopping during their play

metely to recalibrate the camera.

To solve these problems in AR, we propose a novel AR system that has a
more flexible way of calibrating a camera without a known pattern, which
can be done online. To have an AR system with a more flexible approach is
worthwhile because of the fast emerging development of wearable
computing such as HMDs. People will no longer want to bring along a
pattern whenever they want to calibrate a camera. The system should be
able to calibrate the camera any time and anywhere, while performing the

AR task.

1.4 Aims and Scope

The aim of the research is to develop a method of camera self-
calibration based on a moving camera for an augmented reality
system. This means that the AR system will be able to update the intrinsic
parameters of a camera while performing its AR task. An AR system that

integrates camera self-calibration into the system has the advantage of being
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flexible while avoiding the cumbersome steps that need to be done if plane-

based calibration is used.

Since the aim is to integrate camera self-calibration into an AR system as a
whole, the research will not only focus on the calibration stage, but also on
the pre-calibration stages. This is because the success of self-calibration
will also depend on the pre-calibration stages, which supply the input for the
calibration stage. The main pre-calibration stages include the feature
detection stage, the feature correspondence matching stage and the
fundamental matrix estimation stage. The proposed pre-calibration stages
involved and how they are integrated into AR system are illustrated in
Figure 1.9. The calibration stage is shown in green and the pre-calibration

stages are shown in yellow. The stages involved are described as follows:

Feature Detection

In the feature detection stage, we choose to focus on corner detection.
Although other features such as line or profile may well be used in
computer vision to estimate the fundamental matrix [Mendonca 2002], we
believe that corners are the most widely found features in many situations.
Our focus has been on increasing the accuracy of the detection. This is
because the fundamental matrix estimation stage is quite sensitive to the
accuracy of corners detected. Thercfore, rather than developing a totally
new algorithm for corner detection we focus on finding a new algorithm to

increase the accuracy of detection using existing corner detectors.

Feature Correspondence Matching

In the feature correspondence matching stage, we focus on ways to discard
false corners and false matches. No further focus on the accuracy of the
location of the matches is made, since this 1s dealt with in the feature

detection stage. The simplicity of the algorithm was kept in mind when
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creating the algorithm, as speed is one of our concerns in real-time AR

applications.

Fundamental Matrix Estimation

In this stage we use the MAPSAC algorithm proposed by Torr [2002].

Calibration Matrix Estimation

In the calibration stage, we propose the use of the algebraic approach
algorithm based on three views for finding the intrinsic parameters of the
camera being used for augmented reality. The algebraic constraints are
chosen because of the simplicity of derivation and implementation
compared with those based on geometrical constraints [Luong and Faugeras
97], in which calibration parameters are estimated by minimising the
geometric distance between features and epipolar lines (a more complicated
criterion). Its reduced sensitivity to initialisation parameters for non-linear
optimisation makes it more reliable than other techniques that are highly

dependent on good initialisation parameters in order to get correct results.

As for AR display, for the present this research will focus on the monitor-
based augmented reality display as a starting point, before investigating
other types of AR display such as video see-through and optical see-
through. This means that the computer-generated graphics are combined
with a live video signal to produce an enhanced view of a real scene, which
is then displayed on a standard video monitor. This is because the

technology of HMD for AR is still in its infancy.
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In addition, this research also aims to focus on improving the calibration
results, particularly when dealing with camera distortion. This is especially
important if wide-angle lenses, which have severe distortion, are used in AR
applications. Severe distortion cannot simply be neglected, as it will result in
the virtual object being overlaid incorrectly. We focus on ways to integrate
distortion parameter estimation with fundamental matrix estimation stage,
as done by Zhang [1996]. This makes the system more automatic, rather
than having to estimate distortion parameters offline, which involves user

intervention as in ARToolKit.

Finally, this research aims to look at the critical motion issue in camera self-
calibration for AR. Sturm [2002] pointed out that there exist several motion
sequences that are critical when solving camera parameters using self-
calibration. This 1s important, as self-calibration based on a moving camera
will produce false results if critical camera motion sequences are used as
input into the AR system. The research aims to detect these critical motion
sequences and consequently select only the particular frames to be used as
an input into self-calibration stages. This 1s to ensure that the results gained

are as close as possible to the correct values.

1.5 Outline and Contributions

This thesis is organised as follows:
e Chapter 2 presents the theory of camera self-calibration. This includes
details on camera model, distortion model and epipolar geometry from

which is derived the basis of camera self-calibration.

e Chapter 3 focuses on corner detection. A literature review of the
available techniques for edge and corners detection is presented. Two
state of the art corner detectors are chosen for their suitability for

incorporation in an AR system and the algorithms of the two detectors
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are discussed. A new hybrid Harris-Susan corner detection method is
introduced to increase the accuracy of detection. Comparisons with

other methods are presented.

Chapter 4 touches on point correspondence matching. It discusses the
issue of false matching and how it is to be overcome. We then present a
novel way of discarding false matches that is simpler and more efficient.
Comparison between the proposed method and other methods is also

shown.

Chapter 5 proposes the algebraic approach to camera self- calibration
based on three views for AR. It then shows how the method can be
extended to a case that has more than three views. The method
derivaton 1s explained and the algorithm of the proposed method is
presented. It then touches on the issue of critical motion and suggests a
new way to detect critical motion resulted from two cameras with

parallel principal axis.

Chapter 6 presents the experiments based on the algorithm descriBed n
Chapter 2, 3, 4 and 5 combined together to form the whole system. This
includes discussion of the compartison between the proposed method
and the calibration routine in the ARToolKit. The effect of camera
distortion on the proposed method is also presented. Some related

1ssues on iteration are also discussed.

Chapter 7 presents a summary of the work carried out and conclusions,

and points to future research directions in this area.



Original contributions of this thesis are presented as follows:

A novel approach to automated camera calibration in Augmented
Reality systems has been developed. In particular this research has
explored the use of self-calibration for monitor-based AR displays

[Abdullah and Martinez 02].

A new Harris-SUSAN hybrid corner detector has been developed to

reduce corner localisation error and increase detection accuracy.

A new point correspondence matching technique has been
developed based on motion vector and mode calculation to find
matching features 1n AR applications. This simple technique
outperforms other matching methods in terms of simplicity and

efficiency.

An improved pre self-calibration stage through the integration of
distortion parameters estimation and fundamental matrix
estimation has been developed. This is based on the use of MAPSAC
algorithm to minimise the epipolar geometry constraint in order to
simultaneously estimate the fundamental matix and  distortion

pﬂmmeters.

We present theoretically a new way of detecting critical motion
sequence that result from two views with parallel principal axes and

how to overcome it.

A paper relating to this study has been published as “Camera Self-

Calibraton for the ARToolKit”, in The First IEEE International Augmented

Reality ToolKit Workshop, Darmstadt, Germany, September 2002.



Chapter 2

THEORY OF CAMERA SELF-
CALIBRATION

2.1 Introduction

This chapter presents some of the theories that are necessary to understand
the work carried out in the remainder of this thesis. The author has no
intention of presenting a comprehensive survey of the theories since they
can be found in so many books on projective geometry [Semple and
Kneebone 1998; Springer 1964; Coxeter 1969; Coxeter 1974] and computer
vision [Beardsley 1992; Mundy and Zissermann 1992; Faugeras 1993;
Hartley and Zisserman 2000]. A reader who is already proficient in these

two subjects may want to skip this chapter and continue with Chapter 3.

The first part of this chapter describes the mathematical model of a pinhole
camera. The model explains the intrinsic and extrinsic parameters of a
pinhole camera and how they are derived; an understanding of this is
important for familiarity with how a camera is normally calibrated. It then
discusses the different types of distortion that exist in a normal camera lens
and how they are mathematically modelled. This is the basis for the reader
to understand further Chapter 5, which discusses how distortion correction

is inserted as an integral part of the self-calibration.
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Figure 2.1: Perspecuve projection of a pinhole camera

The chapter subscequently discusses epipolar geometry and the derivation of
the fundamental and essenual matrices. It gives the reader some theories
behind  feature correspondence matching and the fundamental matrix
estimaton stage. This is followed by a review of the different techniques for
estimating a fundamental matrix from point matches that are used in the

literature.

2.2 Camera Model

Normally, perspective projecuon (also called central projection) 1s used to
model cameras. Perspective projection describes image formauon by a

pinhole camera.

The geometry of a pinhole camera is depicted in Figure 2.1. The image
£ £

S

planc has been reflected with respect to the X Y,

plane in order not to have
a mirrored Image with negauve co-ordinates. It should be noted that there

are three co-ordinate systems involved:



(a) The world Euclidean co-ordinate system (Xw Y., Z, )

It has origin at point O .

(b) The camera Euclidean co-ordinate system (X _,Y,Z_.).

It has origin at point O . We can make world co-ordinates align with

camera co-ordinates by performing a Euclidean transformation, which

consists of a translation t and rotation R, which is shown in Figure 2.1.

(c) The image affine co-ordinate system (u,v).
The plane uv is parallel with the plane X Y . Axis v is parallel with

axis ¥, but the axis ¥ may have a different orientation to the axis X .

A point on an object with co-ordinates X, :(x‘,,y‘.,z‘.)r (3D camera
Euclidean co-ordinate system) will be imaged at some point U, = (u,v,)"

(2D camera Euclidean co-ordinate system) in the image plane. The

relationship between the two co-ordinate systems is given by:

X
u=f—= 2.1
=fZ e
and
Ye
v, =Jf— 2.2
fZ (2.2)

where f (focal length) is the distance between the origin O, and the centre

of the image plane.

In homogeneous co-ordinates, this can be written as:



su, f 0 0 0f ¢
sv, |={0 f 0 0 Ve (2.3)
s 10010 Zl

where here s # 0 is a scale factor and in this case s =z, .

Now, we need to transform the U, =(u_,v,)" point (expressed in 2D

. . . T .
camera Euclidean co-ordinate system) into the U, =(u,v,) point

(expressed in 2D image affine co-ordinate system), with respect to the origin
in the top left-hand corner of the image plane (refer Figure 2.1). Equation

(2.4) describes the transformation:

Uu

U, =u, +— (2.4)
w
and
v, ‘
v = 2.5)

where U, = (u,,V,) is the centre co-ordinate of the image plane in pixels,

w and A is the distance between adjacent pixels in the horizontal and

vertical directions of the image plane respectively.

By substituting Equation (2.1) into Equation (2.4) and Equation (2.2) into

Equation (2.5) and subsequently multiplying by z,, we obtain:

X,
Z.U, =Z Uy + J (2.6)
w

and
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ZV, =Z. vy +

y.f
p @2.7)

Therefore, the transformation from a point in 3D camera Euclidean co-
ordinate system to a point in 2D image affine co-ordinate system can be

expressed using a 3x 4 matrix as in Equation (2.8):

i b u, 0 X,
su, w
sv, |=| 0 % v, 0|7 (2.8)
s 0 0 1 0 “1"

where b represents shear, which is the degree of slant of the co-ordinate
axis u in the camera image plane. The parameter & is normally
introduced for the case when a non-pinhole camera such as a digitizing
camera is used, where the image plane may not be perpendicular to the
principal axis of the digitizing camera. This is measured in pixels, and
usually.the effect is very minimal (b~0) and can be neglected for

simplicity. In this equation, scale factor s has the value of z . If s is

assumed to be equal to one, Equation (2.8) can be expressed as:

where U, represents a point in the 2D camera affine co-ordinate system
expressed in homogeneous co-ordinates, K is the camera calibration matrix
and X, represents a point in the 3D camera Euclidean co-ordinate system

expressed in homogeneous co-ordinates.
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Let «, :-]; and «, Zi, then u,,v,,a, and « , the coefficients of
w h

matrix K are called the intrinsic parameters of the camera (assuming
b =10). These four coefficients describe the camera, independent of its

position and orientation in space.

If the position and orientation of the camera in space is considered, then

Equation (2.9) will become:
U, {{K|0]MX, (2.10)

where X, represents a point in 3D world Euclidean co-ordinate system

expressed in homogeneous co-ordinates and M is a 4x 4 transformation

matrix:

R |-Rt
M=| | @2.11)
0, 1

In Equation (2.11), R represents a 3x3 rotation matrix that encodes
camera orientation with respect to a given world frame and 3x1 vector t
captures the camera’s displacement from the world frame origin. The matrix

R can be expressed as a function of ¢, &, and ¢ as follows:

cos@cosd singcosf —sind
R =|—singpcosg+cospsinfsing cospcosg+singsindsing cosfsing
singsing+cospsin@cosg —cospsing+singsindcosg cosfcosg

(2.12)

Y and Z_ axis

W w

where ¢, 8, and @ are the angle of rotation about the X

respectively. The translation vector t is:




t=|1 (2.13)

which represents the displacement between point O, and O, in 3D space.

As we can see, matrix M has six degrees of freedom, three for the
orientation, and three for the translation of the camera. These parameters

are known as the extrinsic camera parameters.

After combining 3x4 camera calibration matrix [K‘OJ and the 4x4

transformation matrix M in Equation (2.10), we obtain a single 3x4

matrix P, which is called the projective matrix, as shown in Equation (2.14):
U, =PX, (2.14)

where the general form of P can be expressed as a function of K, R and

t, as shown in Equation (2.15):
P =[KR|-KRt] (2.15)

Generally, Equation (2.14) and Equation (2.15) show the resulting matrix P
derived from an ideal pinhole camera model that relates the 3D co-ordinates
of the real world with the 2D co-ordinates of the image plane. Once this
relation is found, the next step is to find a means to determine the intrinsic

and extrinsic parameters.
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2.2.1 Algorithm for Calibrating a Camera from a Known

Scene
In order to calibrate a camera from a known scene, a calibration grid is often
used. The calibration process will normally require two stages. First, the
estimation of matrix P and second, the estimation of intrinsic and extrinsic
parameters from the matrix P. The first stage can be achieved by finding
3D points from the calibration grid and their corresponding 2D points in

the image plane. The process can be described as follows:

Let p, represents the entry of matrix P at /" row and j" column and

where 1<7<3 and 1< <4, then Equation (2.14) can be rewritten as

follows:

Su, Py P Ps Pu

Ye
Ve || P P P Pu s (2.16)
s P P P Py 1‘-

su PuX.t DY, T D5zt Py
SV, | = PaX, T Pyl T Pz, + Dy (2.17)
§ 3% T Pyl t P332+ Py

o

U, (D3 X + PV + D33Ze + P3y) = PiXe + PpoYe T DisZ. + Diy

(2.18)
V(P31 X, + P3yYe + P32+ Py) = DX, + Py, + DysZ. + Py

Equations (2.18) shows that for each known corresponding scene and image
point, we get two linear equations with 12 unknowns p,,,..., p;, . If there
are n correspondences, Equations (2.18) can be written as a 2nx12

matrix,




_xrl Yo 2z, 10 0 0 0 —uuxy —UyVy “UyZy Uy T Pn 1
0 0 0 0 x, y, zo 1 —=v,x, V.V —VaZi VYl 2o
. 1o
Xy Yoo Zo 10 0 0 0 =uw,x, —-u,Y, —U,Z, —HUu | Py
| 0 0 0 0 x, v, 2z, | —v,x, —-v, v, VaZen  Van || Prs |
(2.19)

Based on Equation (2.19), at least six known 3D to 2D correspondence
points are needed to obtain a solution. In the event of mote than six
correspondence points, which is always the case, Equation (2.19) is solved

using the least-square method.

After matrix P is solved, the extrinsic parameters (the rotation matrix R
and the translation vector t) can be obtained by rewriting projective matrix

P as Equation (2.20).
P =[KR|-KRt]=[A|b] (2.20)

If A=KR and b=-KRt then translation vector t can be obtained by

t=(-KR)'b=-A"b. Rotation matrices R and K can be found by
using matrix factorization, namely QR decomposition [Press et al. 1992;
Golub and Loan 1989] which will decompose matrix A into a product of
upper triangular matrix and orthogonal matrix. Note that the rotation matrix
is an orthogonal matrix and calibration matrix K is an upper triangular

matrix.

2.3 Lens Distortion

This subsection will give reader some theoretical background on lens

distortion in order to further understand Chapter 5, which will discuss the
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integration of distortion correction in camera self-calibration for AR. This
subsection describes different types of lens distortion and how to model it

mathematically.

In theory, the lens performs an ideal central projection, but with real lenses,
this is not the case. A typical lens performs with distortion of several pixels.
Tordoff and Murray [2000] describe distortion as the displacement of an
image point from the position predicted by the ideal pinhole camera model.

There are two components of lens distortion [Brown 1971; Slama 1980]:

1) Radial distortion, which bends the ray more or less than in the ideal
case. This is usually caused by an imperfect lens shape [Zhang 1996].
The ideal image points are distorted along radial directions from the
distortion centre (normally the principal point).

2) De-centring, which displaces the principal point from the optical axis.

This is caused by improper lens assembly [Zhang 199¢].

Lens distortion can be described by the following equations:

U, =u.+0, (2.21)
and

v, =V, +6, (2.22)

where (u,,v,) are the distorted (true) image co-ordinates on the image

plane and (J,

,0,) are the distortion corrections to (u,.v.). The

distortions are often modelled as even power polynomials in order to secure

rotational symmetry as shown in Equation (2.23) and (2.24):

S =u (kr? +k,r +hkr +. )+ [p,(r7 + 22+ 2pu v 0+ por’ + ...
" c i 2 3 1 ¢ 2% ¢ Ve pg

(2.23)
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S, =v, (kyr? +h,r' +kr® +. )+ [2puy, + p, (7 + 291+ pyr’ +..)

(2.24)

2 2 2 . . . .
where r* =u, +v., k;, k, and k; are coefficients of radial distortion; p,,

P, and p; are coefficients of de-centring distortion.

Distortions are usually modelled depending on the type of lenses used.
According to Tsai [1987] and Brown [1971], unless one is specifically
concerned with the reduction of distortion to very low levels, it is likely that
the distortion function is totally dominated by the k, term. The first two

radial terms are enough to model distortion since any more elaborate
modelling not only would not help (negligible when compared with sensor
quantisation), but also would cause numerical instability. This is confirmed

by Wei and Ma [1994]. To avoid any cause of instability to our self-

calibration algorithm, we will only use the £, term to model the distortion.

Figure 2.2 shows examples of radial distortion. On the left is pincushion-
like distortion (a minus sign in Equation (2.25) and (2.26)), and on the right

a depiction of barrel-like distortion corresponding to a plus sign.

Pincushion Barrel
Figure 2.2: Example of radial distortion.

g, =u 1tk (ul +v2)] (2.25)

b, =v, 12k (u] +v))] (2.26)



2.4 Epipolar Geometry

Figure 2.3: Epipolar Geometry

This subsccuon describes background theories in epipolar geometry and
how the essential matrix and fundamental matrix are derived from the vision
perspective. This will help the reader to understand how the consuraints of
the algebraie approach for sclf-calibrauon based on three views are derived,

as discussed in Chapter 5.

Epipolar geometry exists between any two camera svstems or a single
camera with two views separated by general motion. Consider the case of

two cameras as shown in Figure 2.3.

Let O, and O) be the opdcal centres of the first and second cameras,
respectively, and let / and I' be the image plancs of the first and second
cameras respectively. Given a point U, in the first image, its corresponding

point in the second image is constrained to lie on a line called the epipolar

|3
[



line of U,, denoted by /U“ . Similarly, point U], in the second image has its

a
corresponding point constrained to lie on epipolar line /;;, . The line /; is
the intersection of the epipolar plane 7, defined by W, O, and O/ with

second image plane /'. Similatly, the line [, is the intersection of epipolar

plane 7, defined by W, O, and O] with first image plane /.

2.4.1 Derivation of the Fundamental Matrix
The co-ordinate system of the first view can be transformed to the right

view by translation t and rotation R/v. Let Kand K’ be the calibration

matrices of the left and right cameras respectively. Let the centre of the
world Euclidean co-ordinate system be aligned with the centre of the first
camera. Based on Equation (2.9) and Equation (2.10), the left projection

U, and the right projection U/, of the scene point W are shown below:

U, =[K | 0] ﬁ} =KX, (2.27)

U, =[KR, [-KRt, ] ﬁ} =K'(R,X,-Rt,)=K'X,  (228)

Note that vectors X,, X and t, are co-planar and the symbol = is used to
denote projection up to unknown scale. Let subscripts , and , represent
the left and right camera co-ordinate systems respectively so that X, and
XI

., are the co-ordinate vectors expressed with respect to the left camera

co-ordinate system, while X, and X, are the co-ordinate vectors

expressed with respect to the right camera co-ordinate system. 'The
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relationship between X!, and X[, in terms of rotation can be expressed as

I3
Xc'R ol

= RY/vX' and hence X/, = R;-l X,

If points U, and U/ correspond to a single physical point W in space,
then U,, U/, O, and O] must lie in a single plane. This is called the co-

o’ o

planarity constraint and can be written as:
a ’ _
X, (t, xX,)=0 (2.29)

From Equation (2.27) we have X, =K"'U,, X!, =(K')"'U’, and hence

a?d (7384

X, = R;»] (K')'U,. Substituting these equations into (2.29) we have:
(K-'UU)T (t, ><R;,1 (K')_IU;) =0 (2.30)

Note that Equation (2.30) is homogeneous with respect to t,, meaning that

scale is undetermined and the absolute scale of the scene can only be
recovered if we have some extra information such as knowing the distance

between two points in space.

xobyo

.
Let A be a regular matrix and t, = ‘:t t t_,} , then vector product tx A

can be replaced with S(t,)A where

0 -, 1
S(t,)=[t 0 -1 (2.31)
~t, t, 0

is a skew symmetric matrix and tf =0.
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Therefore, Equation (2.30) can be rewritten as:
(K™'0,) (S(t, )R} (K)'U,) =0 (2.32)

The fundamental matrix F between the two views can be obtained by

rearranging Equation (2.32) to the following form:

U'FU =0 (2.33)
where

F=(X")S(t,)R;(X')" (2.34)

It is shown in Equation (2.34) that all the information that can be recovered
from a pair of images is contained in a single 3x3 matrix F if the
correspondence problem is solved. Note that in order for point U, (a point
in 1) to be the corresponding point for U, (a point in /"), Equation (2.33)
must be satisfied. From epipolar constraints (Equation (2.33)), the search

for correspondence can be reduced from searching through the whole

image to a searching a single epipolar line.
g g

2.4.2 Derivation of the Essential Matrix

The term essential matrix describes the relative motion of a single camera
moving In space with known calibration, meaning that K has been
determined. For a system with two cameras, both K and K' are known.

Knowing these values allows us to normalize measurement for the left and
right images. Let U, and U/ be the normalized measurements for the left

and right images respectively, thus we can have the following relations:

U =K'U, (2.35)
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and

U =X)'U, (2.36)
If we substitute Equation (2.35) and (2.36) in (2.32), we get
U/S(t,)R;'U, =0 (2.37)

Essential matrix E can be obtained by substituting E =S(tj-)R}I and thus

we get the following:
U'EU, =0 (2.38)

It is shown in Equation (2.37) that essential matrix E contains all the
information about the relative motion from the first to the second position

of a calibrated camera.

2.4.3 Essential Matrix and Fundamental Matrix Properties
The properties of the essential matrix can be listed as follows [Sonka et al.
1999]:

e The essential matrix E has rank 2.

o Lett, be the translational vector, and C=thf. Then Ee¢=0 and
cE=0.
e SVD (singular value decomposition) decomposes E as E=UDV’ for a

diagonal D (note that U is not the same as U)); then

(2.39)

o

Il
o o X
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Equation (2.38) can be rearranged from

UlS(t,)R;'U, =0
to

U/'R,S(t,)0, =0 (2.40)

where E can now be represented as E=R S(t ). Using SVD, we can
calculate the rotation matrix R/ and translation t, between two views

when essential matrix E has already been estimated. The procedure is

as follows [Hartley 1992]:

SVD decomposes essential matrix E as the product of U, D and V.

Let G and Z be defined as:

0 1 0
G=|-1 0 0 (2.41)

0 0 1

0 -1 0
Z=|1 0 0 (2.42)

0 0 0

The rotation matrix Rj can be calculated as

R,=UGV' or R, =UG'V' (2.43)

and S(t,) from Equation (2.40) can be obtained from
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S(t,)=VZV’ (2.44)

The properties of the fundamental matrix F can be summarized as follows:

e The fundamental matrix F has rank 2.

e SVD of the fundamental matrix gives F = UDV’ | where

k 0 0
D={0 k& O, k, #k,#0 and k >k, (2.45)
0 0 O

e Let e and € be the epipoles in the first and second image respectively,

then

eF=0 (2.46)
and

Fe' =0 (2.47)

2.4.4 Techniques for Fundamental Matrix Estimation
o T :
Let a homogeneous point U, = [um.,vm.,l] in the first image be matched to
. - ro. . .
a homogeneous point U, =[u,,v,,1] in the second image where i

represent i point. They must satisfy the epipolar Equation (2.33):

u!
ai

[t55 Vi 1] F| ¥, | =0 (2.48)
I




Rewriting the 3 x 3 fundamental matrix F as a column vector of 9 unknown

coefficients f, Equation (2.48) can be written as a system of linear equations:
af=0 (2.49)

where

r ! ! ! ’

!
a; —[lt Upis Villyis Uyis U Vyin VY,

]I
aiaid Taiai® ai “ai® Tar T ai® Taid® um” vai’ ] >

f :[FmFlzaF“ leanzanpﬁiﬂ»FszaFB]T

132
and F; is the element of F at row 7and column ;.

For n point matches, we have the following linear system:

Af=0 (2.50)

n

where

A, =[a,...a,] (2.51)

These equations allow us to estimate the epipolar geometry between two

views.

There are many techniques for estimating the fundamental matrix reported

in the literature; some of these are listed below [Zhang 1996a]:

1. Exact solution with 7 point matches [Huang and Netravali 1994].
2. Analytic method with 8 or more point matches:

a. Linear least-squares technique.

b. Eigen analysis.

c. Imposing the rank-2 constraint [Hartley 1995].

d. Geometric interpretation of the linear criterion.

e. Normalizing input data [Hartley 1995].
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3. Analytic method with rank-2 constraint [Faugeras 1995].
4. Non-linear method minimising distances of points to epipolar lines:
a. Iterative linear method
b. Non-linear minimization in parameter space
5. Gradient-based technique
6. Non-linear method minimizing distances between observation and

reprojection [Faugeras 1993]

2.5 Summary and Conclusions

This chapter has reviewed some of the theories necessary for a better

understanding of this dissertation. The main topics addressed were:

Camera model — the camera model is based on a pinhole model. The
mathematical background on how a point in a 3D world coordinate is
related to a point in a 2D image plane is presented. This includes the
[94

derivation of a camera calibration matrix consisting of o u, and v,.

ws Xos
Lens distortion — the types of distortion existing in a typical camera lens
were depicted, namely barrel and pincushion. This includes the derivation of
the mathematical equation used to represent both types of distortion. The
brief introduction provides some background to help the reader understand
Chapter 5 further when distortion correction is incorporated into the AR

system.

Epipolar geometry — the constraints existing between a point in one image
plane with its epipolar line in a second image plane sharing the same view
were presented. The fundamental matrix and essential matrix and how they

were derived were briefly discussed.
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In computer vision, camera calibration techniques can be classified into two

cases, as follows [Sonka et al. 1999]:

1. Known scene

In this case, a set of non-coplanar points lies in the 3D world, and the
corresponding 1mage points are known. In order to achieve this, calibration
objects are often used. Each 3D scene that corresponds to a 2D-image point
provides one equation. The matrix coefficients are found by solving an
over-determined system of linear equations [Faugeras 1993]. Even though
this calibraton technique gives the most accurate approximation of the
intrinsic parameters, the calibration process involves a lengthy time. This
condition is even worse if the focal length of the camera needs to be
changed online and the camera needs to be recalibrated.

2. Unknown scene

In this case, different camera views become important since the solution of
the calibration matrix can no longer depend on the calibration object. It has

to depend on camera motion. From here, there are two cases:

(a) Known camera motion
According to the known motion constraints (which are rotation and

translation), this can be further divided into three cases:

i. Both rotation and translation
The general case of arbitrary known motion from one view to another
view has been solved [Horaud et al. 1995].

1. Pure rotation
Hartley [1994] has given the general solution for the case where the
camera motion Is restricted to pure rotation.

1. Pure translation
The linear solution of pure translation i1s given in [Pajdla and Hlavac

1995].




By knowing the camera motion, the coefficients of the essential matrix can
be calculated and knowledge of the matrix can then be used to find the
intrinsic parameters. The problem with this kind of calibration is that the
known camera motion can mostly be accomplished through a certain set-up
in a particular place, such as in the lab. The future direction of AR where the
head mounted camera i1s going to be used not only indoors but also

outdoors requires a more flexible approach to camera calibration.

(b) Unkenown camera motion (camera self-calibration)

According to Maybank and Faugeras [1992] and Faugeras et al. [1992], in
this case, the solution is non-linear and at least three views are needed.
Calibration from an unknown scene is still considered numerically hard.

Consideration of the problem can be found in Butterfield [1997].

Despite being numerically hard, it is believed that self-calibration will
continue to be one of the important research topics in computer vision
because of its flexibility. With fast development in AR applications, it is
hoped that this research will make some contributions to solving a well-
known problem in AR, namely the problem of registration with added

flexibility through camera self-calibration.
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Chapter 3

CORNER DETECTION

3.1 Introduction and Motivation

Vision-based tracking in augmented reality normally needs pre-defined
marker patterns or fiducials for tracking. They are also used for reference as
to where the virtual object would be overlaid 1n the real world. ARToolIit
detects the presence of a marker in a scene by finding objects that have a
square shape (refer Figure 1.4). An AR system with fiducials, on the
contrary, uses different colour coding to differentiate the fiducials from
other objects and to track their position in the scene. All fiducials and
marker patterns need to be kept in view so that the system knows where the
virtual object needs to be overlaid. When people move into markerless AR,
detection of available features in the scene becomes more important. This is
because the system can no longer depend on markers or fiducials for
tracking, but needs to start using other features in the scene as a means of

tracking and reference to register virtual objects.

If we refer to Figure 1.4, edge and corner detection of markers are already
being used in ARToolKit. One might ask why we do not simply use the
feature extraction algorithm contained in ARToolKit and what 1s the point

of developing a new method of corner detection? We need to be aware that




the edge and corner detection developed in ARToolKit is designed
specifically to extract edges and corners for its markers only and is not
general enough to detect and extract other corners or edges in the scene. In
addition, the purpose of developing new corner detection is to cater for pre-
calibration stages not only for the ARToolKit system but also for other AR
systems, which might not use any kind of marker or fiducial in their system
(markerless environment). Furthermore, as shown in Chapter 2, the
minimum number of corners needed as input for feature correspondence
matching and fundamental matrix estimation stage is seven or eight, which
might not be possible to achieve in the ARToolKit corner detection stage
when only one marker 1s involved. Corners were chosen as the preferred

features because we assume a corner is the easiest feature to find in a scene.

There are many corner detectors available, and these will be reviewed in the
next subsection. The decision about which corner detector is to be chosen
will depend on the need to tackle specific issues in the applications. In
camera self-calibration, the most important thing that needs to be taken into
consideration during feature extraction is the detection accuracy of features,
which in our case refers to corner accuracy. This is due to the high
sensitivity of the fundamental matrix estimation stage, which will produce
different results for small changes in the position of the corners. Based on
experiments conducted by Sojka [2003], we found that Harris and Stephens
[1988] corner detector outperformed many other corner detectors in terms
of higher number of true detected corners, lower numbers of false
detections and lower localisation errors which means higher accuracy. For
these reasons, we chose Harris corner detector as a candidate to be used in

the feature detection stage.
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Figure 3.1: The position of the feature detection stage (corner detection) in

the proposed self-calibration for an AR system.
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A set of good localised corners in the AR system during the feature
detection stage will help the system to perform good tracking and also help
in reducing the amount of error propagation through the pre-calibration
stages. This is to ensure that only the best corners are provided for the
fundamental matrix estimation stage. However, the problem with good
available detectors like our chosen detector Harris is that they are based on
edge detectors which mean that even though corners can be successtfully
detected, the accuracy of the detection is not adequate. This is due to the
fact that general edge detectors cannot localise edge points well around
corners because of the rounding effect, leading to errors in reporting

corners [Shen and Wang 2001].

The second criterion that needs to be taken into account in an AR system 1s
that the corner detection algorithm must be fast due to its real-time
application. Based on the problems of accuracy and speed, we propose a
new refinement of Hartis corner detector in order to improve the corner
localisation. The refinement algorithm is based on the idea of calculating
atea in a circular mask as developed by Smith and Brady [1995] who
developed the SUSAN corner detector. With this, we can benefit from the
good performance of Harris corner detector and at the same tme the
refinement of corners will not take too much time since SUSAN algorithm
was reported to be 10 tmes faster than the Harris corner detector [Shen and
Wang 2001], apart from its robustness to noisy images [Cazorla et al. 1999].
We denote the combination of these two corner detectors algorithm as

Harris-SUSAN hybrid.

In this chapter, the first pre-calibration stage, which is the corner detection
stage, is presented. The stage referred to is shown in the bold box in Figure
3.1. We name it feature/marker to show that this proposed self-calibration
can be used with or without the presence of markers or fiducials in the

scene. If a marker is present, its 4 corners will be used as the input to the
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next pre-calibration stages, plus other corners available in the scene. If no
marker is present, then only the available corners in the scene will be the
input. This is to ensure that the calibration matrix can stll be updated in the

presence or absence of markers.

This chapter then reviews the corner detectors currently available with brief
discussions of their strengths and weaknesses. We then present more detail
on the Harris and Susan corner detectors. After that, the new Harris-
SUSAN hybrid corner detector is proposed. Experiments showing
comparisons with original Harris and SUSAN corner detectors in terms of

localisation error for different test images are presented and discussed.

3.2 Literature Review on Corner Detection

Many corner detectors have been reported in the past 20 years. Perhaps the
simplest corner detector is the Moravec detector, which defines corners as
points where there is a large Intensity variation in every direction [Moravec

1977).

Zuniga and Haralick [1983] and Haralick and Shapiro [1992] then produced
a better corner detectors than the Moravec detector, although
computationally more expensive, which is based on facets, in which the
neighbourhood of each image pixel is modelled as a piecewise continuous
function. Once the facet model parameters have been obtained for each
image pixel the response is calculated using the Zuniga-Haralick operator

[Sonka et al. 1999].

Kitchen and Rosenfeld [1982] proposed a gradient-based corner detector by
measuring the curvature of an edge that passes through a neighbourhood.
The edge strength and the rate of change of edge direction are the measures

that determine the strength of the corner response.
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Freeman and Davis [1977], Asada and Brady [1986] and Medioni and
Yasumoto [1987] are among those who propose techniques that use binary
edge maps to find corners. The method will find edges and calculate edge
curvature to locate corners. The disadvantage of this method is that it

cannot accurately locate corners at junctions.

Rangarajan et al. [1989] developed a corner detector based on optimal
function, which yields a maximum at the corner point when convolved with

the grey level function.

Wang and Brady [1995] found that the total curvature of the grey level
image 1s proportional to the second order directional derivative in the
direction to edge normal and inversely proportional to edge strength [Shen

and Wang 2001].

In Sojka [2003], comparison is made between several well-known corner
detectors and in his experiments on corner detector the Harris detector
outperforms the SUSAN detector in terms of more true corners, fewer false

corners, less multiple detection and fewer missed corners.

3.3 SUSAN Corner Detector

SUSAN is the acronym for Smallest Univalue Segment Assimﬂadng
Nucleus. The underlying principle behind the SUSAN corner detector is
basically to find the position of the pixel that gives the smallest value in
terms of area of interest. Figure 3.2 shows four circular masks at different
places on a simple image where the dark area represents the background and
the light area is a simple object with 4 corners. Each mask has a nucleus that

represents a pixel located at the centre of the mask.
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As shown in Figure 3.3, when the mask is located on the edge, there will be
some pixels that represent the background and some pixels that represent
the front object. The area of the mask is defined as the total number of
pixels inside the mask that have the same brightness value as the nucleus
pixel. The area of the mask is known as USAN’ (Univalue Segment
Assimilating Nucleus). In effect, the area when the nucleus is near the edge
is approximately half of the area of the mask. In addition, the area of the
mask will be at its minimum when the nucleus falls near the corner and will
be at its maximum when there is no edge inside the circle mask. Thus, a

corner 1s said to be detected at the nucleus when the area is at its minimum.

The normal SUSAN circular mask encompasses 37 pixels with a radius of 4
pixels as shown in Figure 3.4. The following describes the mathematical

aspect of the SUSAN corner detector.

Firstly the circular mask 1s convolved through all pixels in the image. For
each convolution step, the brightness value for each pixel in the circular
mask is compared with the one at the nucleus. This can be represented by:

c(F\F,) ={1 S 1Go ) <1 (3.1)

N AGQENICY B

where /(7,)is the pixel brightness value at position 75, (nucleus), /() is
pixel brightness value at position 7 (other than the nucleus within the mask)

and ¢ is the threshold for pixel brightness difference.
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nucleus of mask

boundary ol mask

Figure 3.2: Four circular masks at different places on a simple image.

section where pixels have same brightness as nucleus

section where pixels have different brightness to nucleus

Figure 3.3: Four circular masks with similarity colouring; USANs are shown

as the white parts of the masks.
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Figure 3.4: A circular mask comprised of 37 pixels with a circled cross

representing the nucleus (centre).
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Figure 3.5: Similarity function versus pixel brightness difference.
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The graph shown in Figure 3.5 comes from Equation (3.2), which is a more

stable and sensible replacement for Equation (3.1).

1F)=1(n) 6
—( , (] )( (32>

c(r.rg)=e

The total number of pixels in the USAN, n(#), is given by

”(F0)=ZC(F:F0) (33)

and let geometric threshold g=%nmax where ng,, is effectively the total

max

number of pixels inside the mask, then the initial edge response can be

written as:

(3.4)

R(FO):{g—nm i) < g
0 otherwise
The SUSAN principle is formulated in Equation (3.4) where the edge

response will be at its maximum when the USAN area is at its minimum.

is created for optimal noise rejection.

. 3
I'he value =n
4

3.4 Harris Corner Detector

The Harris corner detector has been used in various applications that need
the reliable detection of a corner. It is also known as the Plessey corner
detector and was developed by Harris and Stephen [1988]. Corners are
detected by first finding the image derivatives due to the fact that the
derivatives are bigger at locations where the image function undergoes rapid

changes, such as around edges and corners. However, derivatives have the




effect of suppressing low frequency signals and increasing high frequency
signals, which include both wanted (edges and corners) and unwanted
signals (noise). To reduce the amount of noise in the image, Hartis
introduced a low pass Gaussian filter and to avoid the wanted signals being
smoothed, the derivatives are squared. The mathematical expression of the

algorithm is described in the following section.

3.4.1 Algorithm

The algorithm of the Harris corner detector can be described as follows. Let

%)
ou

(3.5)

HONG)

where /(u,V) is the intensity value of an image pixel. A point is detected as

a corner when the two eigenvalues of the matrix are large. The sign
indicates that each entry of matrix H is smoothed by a Gaussian filter. The

corner response function Q) can be written as:

Q = det(H) — m(trace(H))’ (3.6)
where 0.04 is the value of m as suggested by Harris, which was empirically
arrived at as it gave the best result. The location of corners can be

determined by extracting the local maxima of the corner response

function Q.
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3.5 Harris-SUSAN Hybrid Corner Detector

Figure 3.6: The displacement between a Harris detected corner and the actual

corner.

It has been shown by Sojka [2003] that the Harris detector performs better
than the SUSAN detector in terms of number of correct matches. Although
the Harris detector is capable of detecting corners successfully, each
individual corner detection is, however, not as accurate as it should be. The
detected corners are mostly displaced between 0 to 3 pixels from the actual

corner, even for a clearly strong comer. This 1s 1llustrated 1 Figure 3.6.
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The poor localisation of corners by Harris motivates us to develop a
refinement algorithm to improve the accuracy of detected corners. The
algorithm uses the detected corners from Harris as a starting point and
based on the calculated area in a circular mask, it will search the position of
the true corners. The idea is derived from the algorithm presented by Smith
and Brady [1995] who developed the SUSAN corner detector but with
adaptive size of circular mask that changes based on the number of
connected components in a variable window mask. We denote the new
combination of Harris and SUSAN algorithm in this section as Harris-

SUSAN Hybrid corner detector.

The introduction of a variable mask in SUSAN is because we believe that
different sizes of mask are important to improve localisation especially in
the case when two or more detected corners are very close together so that

refinement to the wrong corner can be avoided.

A search window is established so that the search for true corners can be

confined to a certain area. The refinement steps consist of searching for the
location that has the least value of n(7;) until the minimum value is found.

For each step, the mask will be moved and compared with its neighbouring

mask. These steps can be illustrated in Figure 3.7.

In Figure 3.7, the circles represent the nucleus of circular masks. At each
step the values n(7) of masks with the nucleus positioned to the right, left,
top, bottom, top-left, top-right, bottom-left and bottom-right pixel are

calculated.

The mask is moved to the position where the value of n(#) is the lowest

among the eight until it reaches the minimum.
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Starting point

End puint

Figure 3.7: Illustration of refinement steps performed by the algorithm.

Algorithm 3.1 Refinement of Harris detected corner.

convert image into binary;
set value for threshold 4
for i = 1 to number of corners
copy sclected arca around corner / into a circle mask;
initialise n(7;) by computing equation (3.3) for corner /;
while »(7;) not minimum do
compute 7,(7y), m, (1), m (1), 1, (i), 1, (1), 1, (1), 1y (7)) 5 11, (1) 5
n(ry) = min(n, (), m (), m(R), n(r), n,(i), n,(5), m(R),
nhr(’i)) )’
end while
new corner = position of 1(#) nucleus;

end for
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Let 1, (’;;)) > nh(’;;)) > nl(FO) > nr(’:;)) > nl/(fg)) > I’Z/r(l—{)) > nhl(’;;)) > nhr(FO) be the
total number of pixels in the USAN where the nucleus position is to the
top, bottom, left, right, top-left, top-right, bottom-left, bottom-right pixel of

a cornet. Algorithm 3.1 explains the refinement steps.

In our algorithm we use three different sizes of mask, as shown in Figure
3.8. The size of mask changes adaptively according to the number of
connected regions found in a predefined square mask window. The mask
window size can vary between 7x7 and 5x5 pixels. The selection of the
size of mask for each corner is described as follows:

1. A 7x7 mask window is positioned to a detected corner where the

centre of the mask window is on the same position of the corner.

1o

The number of connected region in the mask window is calculated.

3. If the number of connected region are less than or equal to 2, then
the highest mask is used, otherwise the 7x7 mask window is
changed into a 5x5 mask window.

4. Step 1 and 2 are repeated with a 5x5 mask window.

5. If the number of connected region in the 5x5 mask window are

less than or equal to 2, then the medium mask is used, otherwise the

smallest mask is selected.

The steps are illustrated in Figure 3.8 to 3.11.

X X X

X X X X X X X X
X XX X XXX XXX XX X X X
X X XX X X X XE)X X X (X)X
XX XXX XX X XX X X X X X
X X X X X X X X

X X X

Biggest mask Medium mask Smallest mask

Figure 3.8: Three different masks used in the proposed algorithm.
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X X X
X X X X X
X X X X X X X
X X X (X)X X X
X X X X X X X
X X X X X
X X X

Figure 3.9: A 7x 7 mask window with the number of connected regions

less than or equal to two. Therefore, the biggest mask sizc is used.

Figure 3.10: A 7x7 mask window with the number of connected regions

more than two. Therefore, the medium mask size is used.

: X X X
X (X)X
X X X

Figure 3.11: A 5x5 mask window with the number of connected regions

more than two. Therefore, the smallest mask is used.
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3.6 Experimental Setup

We have carried out experiments to measure the performance of our
approach in rerms of localisation error. In our experiments, nine test images
arc used. We chose different test images to measure our algorithm’s
performance for different AR applications, including indoor and outdoor
AR. I'igure 3.12(a) and Figure 3.12(b) are the test images chosen for the AR
applicaton where only the planar pattern is in the camera view. Examples of
the application include positioning several marker patterns on a table, notice
board or white board. Figure 3.12(c), Figure 3.12(d) and IFigure 3.12(c) are
chosen as representing the indoor AR casces where planar patterns and other
objects might present at the same time. The rest of other test images (from
Figure 3.12(t) unul Iigure 3.12())) represent the cases for the outdoor AR

applications.

The performance in terms of localisation error of the Harris-SUSAN hybrid

approach is compared with the Harris and SUSAN corner detectors.

Figure 3.12(a) Pattern image 1 of size 239x 200 pixels.
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Figure 3.12(b) Pattern image 2 of size 320x 240 pixels.

Yy 1 0*

Figure 3.12(c) Box image of size 256x256 pixels.

Figure 3.12(d): Lab image 1 of size 512x512 pixels.
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Figure 3.12(e): Lab image 2 of size 507 x 480 pixels.

Figure 3.12(g): Grayscale building image of size 208x211 pixels.
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Figure 3.12(j): Pentagon image of size 512x512 pixels.

63



In our implementation we set the evaluation of results as follows. Let .S

ref
and S,, be the set of reference solutions and set of corners found by the
corner detector respectively. A corner is determined as “correct” when its
distance d{u,v) to the reference solution is less than Max dist.
Max _dist defines the maximum allowable distance between a corner and

the reference solution for the corner to be determined as “correct”. The
reference solution was done manually. In our implementation we set

Max _dist =4 . Localisation error is defined as the average of distance

d{(u,v) for the correct corners.

3.7 Results and Discussion

Figure 3.13 to Figure 3.18 illustrate the corners detected by Harris and our
proposed Harris-SUSAN hybrid detector for different test images. We can
see some improvements in corner localisation when the Harris-SUSAN

hybrid detector is used in comparison with the original Harris detector.

Table 3.1: Comparison with Harris and SUSAN corner detector in terms of

localisation error (in pixels) for different test images.

Test images

@ ®|9 @@ O @& 6|0
E | 070 | 1.69 | 217 | 1.95 | 223 | 1.77 | 203 | 215 | 1.71 | 1.69
T
Z
< | 0.89 | 147 | 231 | 201 | 226 270 | 212 | 249 | 1.84 | 2.27
)
2]
4=
S 058 116 | 2.08 | 1.63  2.09 | 1.64 | 1.82 | 1.87 | 1.12 | 1.63
)
o
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Figure 3.14: Resulting corners from Harris-SUSAN hybnd for pattern image 1
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Figure 3.15: Resulting corners from Harns detector for lab image 1.

Figure 3.16: Resulting corners from Harris-SUSAN hybrid for lab image 1.
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Figure 3.18: Resulting corners from Harrs-SUSAN Hybrid for building image
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The comparisons between our technique and other detectors in terms of
localisation errors are summarised in Table 3.1. From Table 3.1 and Figure
3.15 to Figure 3.19, the Haros-SUSAN Hybrid shows superiorty over the
two detectors in terms of localisation errors. However, as shown in Figure
3.20, the percentage mnprovement of the Harris-SUSAN Hybnd over the
two detectors 1s varied from test image (a) to test image (j). This might be
due to the different complexity of the images and because it i1s hard to
manually determine the corner reference correctly, especially for images that

contain natural objects such as trees, clouds and sky.

Another experiment carried out is to find whether the new corners resulting
from the Harris-SUSAN Hybrid really improve intrinsic parameters
estimation. Both sets of corners from the Harris and the Harris-SUSAN
Hybrid are used to find the camera intrinsic parameters. A RANSAC
algorithm [Fishler and Boles 1981] 1s used to find the fundamental matrix
and correspondence matching technique (Chapter 3) 1s employed to find the
correspondence for both sets of comers. As expected, Figure 3.21 clearly

shows improvements in terms of the accuracy of intrinsic parameters.

Comparison between Harris, SUSAN and Harris-SUSAN

o

Localisation Error

1 2 3
Test images

Figure 3.19: Performance in terms of localisation etror for Harris, SUSAN
and Harrs-SUSAN hybrid detector.
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Percentage of Localisation Error Improvements of Harris-SUSAN Hybrid over SUSAN and Harris

40

Percentage

1 2 3

Test Image

Figure 3.20: Localisation Error improvements of Harris-SUSAN Hybnd over
SUSAN and Harris detector.

Comparison of Intrinsic Parameters Based on Comners Detected by Harris and Harris-SUSAN Hybrid

1200 1

| [Daipha_u
Malpha_v
lowo
lovo

1 2 3
Reference Hamris-SUSAN Hybrid Harris

Figure 3.21: Comparison of mtrinsic parameters obtained based on Harris

and Harns-SUSAN Hybnd.
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3.8 Conclusion

Feature detection is one of the important stages in AR system used to track
the movement of marker or fiducials. It becomes more important when self-
calibration of AR camera is to be included in the AR system. This is because
the corners detected will be used for fundamental matrix estimation. In this
chapter we propose corner detection to be the first pre-calibration stages for
self-calibration in AR based on the fact that corners are the most available

features in a scene.

We pointed out that based on [Sojka 2003], Harris corner detector
outperforms most of available corner detectors in terms of higher number
of correct matches and lower false matches. Based on these reasons, we
have chosen Hartis to be our preferred corner detector. We also pointed out
that fundamental matrix estimation requires good localised corners for
accurate estimation. However, Harris corner detector produces quite poor
localised corners. Therefore, we proposed a new refinement step to improve
the corner localisation. The proposed algorithm is based on calculating area
inside a circular mask in search of true corner position. Different sizes of
mask which changes adaptively based on the connected region inside a mask
window are introduced. The resulting corner detector was denoted as

Harris-SUSAN Hybrid.

Experiments with three different real data test images were performed to
find the performance of the Harris-SUSAN Hybrid in terms of corner
localisation error. Results obtained were compared to Harris and SUSAN
corner detector. Results show improvement in terms of corner accuracy to
several pixels. When these corners are used to find camera intrinsic
parameters, the results shows some improvements compared to when

Harris detected corners are used.
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It is sometimes unavoidable to have some false corners, and false corners
can be discarded during our point correspondence matching stage. In the
self-calibration of AR it is very important to have a high accuracy of corners
in order to minimise error propagation through the next stage, especially in
the fundamental matrix estimation stage, which is vety sensitive to corner
location. This explains why corner accuracy is our main focus in this section

and not merely the detection itself.

Sub pixel accuracy is one way to improve the algorithm in the future and is

not included in this section due to time constraints.

71



Chapter 4

POINT CORRESPONDENCE
MATCHING

4.1 Introduction

The main goal for point correspondence matching is to find the right pair of
detected corners between two images. In this stage any corner that has no
match is discarded leaving the same number of corners in both images.
Even though we are dealing with a sequence of images, we have focused our
implementation on solving the point correspondence matching problem
between three captured frames from a sequence of images at different time
instants. This is because in this stage the output that we want is not for
tracking objects but as the input for the fundamental matrix estimation.
Therefore, we will not be trying to solve the general problem of mult-frame
point correspondence (e.g. Salari and Sethi [1990]), which is categorised as
NP Hard for three or more frames. Matching in dynamic images (e.g.
moving cars, clouds, etc.) is also not in our application area; instead, we will
be focusing on finding matched points for a non-moving object or

background.



y

Image Capture
!

Feature/Marker Detection

Feature
Correspondence
Matching y
Feature/Marker
Identification
Fundamental Matrix
Estimation
v
Calibration Matrix .| Calculating 2D-3D
Es’timaition_ _ Transformation
[
y
Video Merging
\ 4
AR
Display

Figure 4.1: The position of the feature correspondence matching stage in
the proposed self-calibration for AR system.
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To apply self-calibration in AR that can update intrinsic parameters online
requires the point correspondence stage to be efficient. Therefore, in this
chapter we propose a novel way of matching point correspondence based
on motion vector. We will show how our approach is different from other
available techniques by exploiting motion vector and a simple statistical
method. To achieve this, some matching techniques in the literature are

discussed in the following section.

In our approach, matching by correlation is used to find an initial set of
matches and we then use our new technique to discard false matches, which
is important to provide correct and accurate input for the fundamental
matrix estimation stage. Note that the accuracy of the input has been
addressed and improved in the feature detection stage (Chapter 3) by
reducing localisation error. The position of the point correspondence
matching stage in the self-calibration for AR system is shown in Figure 4.1.
We will discuss the suitability of the new algorithm to be applied to a
sequence of images, and also prove that it can be used to tackle problems
with occlusion during the matching process for an AR application. The

results and discussion are provided at the end of the chapter.

4.2 Literature Review

In recent years, a large number of correspondence-matching algorithms
have been proposed. One criterion that is most commonly used is the
correlation of image pixels [Torr 1995; Lucas and Kanade 1981; Zhang et al.

1994], which is based on the assumption of image similarity.

Berthilsson and Astrom [1997] and Sudhir et al. [1997] solve

correspondence based on assuming the rigidity of the 3D scene while Ohta
and Kanade [1985] used the smoothness of the dispatity field to solve the

ambiguity between multiple solutions.
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Other approaches used constraints, such as the epipolar constraint by
Zhang et al. [1994], which proposed a robust approach to image matching
by using classical technique (correlation and relaxation) to find an inidal set
of matches, and then used the Least Median of Squares (LMedS) to discard
false matches. Epipolar geometry is then estimated and more matches are
eventually found by using the recovered epipolar geometry. Other similar
works using epipolar constraint include Ohta and IKanade [1985] and Roy
and Cox [1997]. Besides epipolar, unicity constraint was also proposed by

Gold et al. [1998].

The approach we propose in this chapter aims at exploiting motion vectors
between two successive frames to establish correspondence between two
perspective images of a single scene. We first detect corner points and then
match them using correlation followed by a new technique based on motion

vector to find the correct matches.

4.3 Correspondence Matching through

Correlation

Matching detected corner points between two uncalibrated views can be
achieved through a correlation-based matching algorithm. If corner
detection is perfect, then each point in the first image will have its

corresponding point in the second image.
In our implementation, a classical correlation technique is used to find initial

matching candidates between two images. This is based on the assumption

that the perspective changes between the successive frames are small.
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Figure 4.2: Illustration of a correlation process.

Figure 4.2 illustrates the correlation process. m, is the detected corner

point, u, and v, are the pixel coordinates of m, in horizontal and vertical
directions respectively. The correlation window in Figure 4.2(a) is of size
(2n+1)x(2m+1) centred at point m; where n and m are the minimum

distances in pixels between the centre point of the window and the points

on the horizontal and vertical edges respectively.

The search window as shown in Figure 42(b) 1s of size
(2d, +)x(2d, +1) centred at coordinate (u,,v,) where d, and d,
represent half of the width of the window size respectively. By using a
search window, the search area for a corresponding point is reduced from
the whole image to a given window. The correlation score is defined as

Equation 4.1) where

I, (u,v) = Z;;” Zm I, (u+iv+ DN/I2n+1)2m+1)] is the average at

J=—m
point (u,v) of image I, (k=1,2), and o({,) is the standard deviation of
the image /, in the neighbourhood (217+1)x(2m+1) of (u,v), which is

represented by Equation (4.2).
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Score(m,,m,) =

n m

Z Z [1|(u1 +i,vl+j)—'11(u1,v1)]><[12(u2+i,v2+j)—12(u2,v2)]

| QCn+1)2m+1)Jo* (1) x> (1,)

“4.1)

D 20 H{ U p—
U T G namey (4.2)

A score of -1 indicates two cotrelation windows that are not similar at all,

whereas a score of 1 implies two correlation windows that are identical.

It is 2 common practice to apply a certain threshold in order to select the
most probable matches. By doing this we have selected candidates for
matches. The number of candidate matches will depend on how high the
threshold is set. The higher the threshold the less the number of candidate
matches we will get. The situation where the number of candidate matches

is more than one is known as matching ambiguities.

Matching ambiguities occur when a point in the first image is paired to
several points in the second image, namely the candidate matches. This
occurs when the correlation technique using a certain threshold as discussed
in this section is used. One of the widely used techniques for resolving
matching ambiguities is known as the relaxation technique. In our
implementation, to reduce the complexity of the algorithm the matches that
have the highest correlation score will be selected as the most suitable
matches. The problem with this approach is that the point found might not
be the desired matched point, due to differences in image intensities

between the two matches.
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4.4 Determining Correct Matches through

Motion Vector

2

B m} be the feature points of two images. If m, and m,

i !
Let m;, m,, m
2 2 . .
match m; and m; respectively, we can expect that the motion vector of

2 . . .. 1 2 . .
m' to m , 1s approximately similar to that of m, to m; . This idea is

llustrated as in Figure 4.3.

2 1
v, =m—m, andyV

Pyx

_ 2 1
=m,, —m

o where qux represents a vector in

pPyy

x direction (from left to right of the image) and v represents a vector in

P4y

y direction (from top to bottom of the image), then v, should be similar

ix

to v, and v, should be similar to v, . These constraints can be used if

y
we are absolutely certain as to which pair is the correct match. A pair that

has a correct match can be the reference vector in order to determine other

matching pairs.
AN
! 4 —_—
‘L U ‘/ \‘
X Nt
7
//
//
(Vi)
//
s Vil
//
7
S O
m; i
m,
(a) Image [, (b) Image I,

Figure 4.3: Similarity measure of relative vectors for two matched feature

point pairs.
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If m and mlz. are really the correct matching points, naturally we will have

many vectors that are similar to Vv, plus some outliers. To find the reference

wector we do the following:

(@)

()

®

(®

(b)

We perform correlation and choose any pair that has the maximum

correlation score to be candidate matches.

Let M!, and Ml,,. be arrays of x-coordinates and y -coordinates of
feature points in image /; respectively thatis i = 1...n where n is the
total number of matches.

Let Mi,. and Mi,. be arrays of x-coordinates and ¥ -coordinates of
corresponding matches in image [, respectively, that is i = 1...n
whete # is the total number of matches.

We define V, =M? -M., and vV, = M?', —Mly,. as arrays of vectors in
x direction and y direction.

We choose the highest occurrence of V,, thatis mode(V,;) and highest

occurrence of V, thatis mode(V,,) to be our reference vectors.
Let D, be arrays of the difference between V,, and its mode and D, ,
be arrays of the difference between V, and its mode, that is
D, =V, —mode(V,) and D,=V,- mode(Vy,.) .

. 4 .
To determine whether the /" match is a correct match, D, and D,

<R where R is the radius of

must fulfill constraint iD‘L\_’A‘O‘D‘M

difference in pixels defined by the user. This number can be between 1
and 10.
If the above constraint is fulfilled, consider the i pair as a good match,

otherwise discard it.
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4.5 Experimental Setup

We are using big_house_frame sequence from website

http://swww v dit.nre.ca/~gerhard/PVT/. The sequences wete chosen to

show the ability of our algorithm to find point cortespondence successfully
even though there are many repetitive patterns. Repetitive patterns may
occur in an AR scene where 2 or more markers are present. During
implementation, the points were extracted using the Harris corner detector
as a standard method for comparison with other point correspondence

technique. The values of # and m for the correlation window are set to 7.
For the search window, the values of d, and d, are set to a quarter of the

image height and width, respectively. This equals half of the image area. The
radius R is set to 7 and the threshold for the correlation score is set to 0.8.
These values are chosen as they give the best results empirically. We
compare our results with the famous and established Image Matching

Software developed by Zhang [1994].

4.6 Results and Discussion

Figure 4.8 shows the comparison in terms of the total number of correct
matches between our algorithm and Zhang’s algorithm for house sequence.
Our algorithm proves to outperform Zhang’s algorithm, as the percentage
of correct matches from our algorithm varies between 95 and 99 percent

whereas Zhang’s algorithm varies between 89 and 96 percent.

Figure 4.4 and 4.5 show the matches found by our algorithm and Zhang’s
algorithm respectively when the camera undergoes general motion. Based
on observation, our matched points show 98% correct matches, whereas
Zhang’s algorithm shows 96% correct matches. An example of incorrect
matches found by our algorithm is shown by match number 1 in Figure 4.4,

which is not severe compared with matches’ number 14, 18 and 17 in Figure
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4.5 by Zhang’s algorithm. Figures 4.6 and 4.7 show the matches found when
the camera undergoes forward motion. Both algorithms perform well, but
the incorrect matches found by Zhang’s algorithm (matches number 25 and
29 in Figure 4.7) are more severe than the incorrect matches found by our

algorithm (matches number 7 and 9 in Figure 4.6).

Since matching is based on motion vector, if any of the matched pairs are
wrongly matched due to occlusion (refer Figure 4.8 and Figure 4.9), the
algorithm will detect it simply by the reference vector. Our algorithm can be
used effectively to find correct matches for repeated texture. As long as the
number of correct matches is more than 50% of the whole data, this

algorithm will produce a nearly perfect ratio of correct matches.

One of the weaknesses of this algorithm is that it is not suitable for two
images that are widely separated from each other. However, as the images
are from a sequence of frames, the difference in perspective views is not too

apparent, enabling our algorithm to suit the AR application.

Figure 4.9 and Figure 4.10 illustrate the comparison between Zhang’s and
our algorithm in terms of the number of correct matches when there is
occlusion in the scene. In this image pair, the occlusion objects are the
finger and the laptop. Figure 4.9 shows matches from Zhang’s algorithm
when there is an occlusion, which gives 88% correct matches. Figure 4.10
shows our algorithm, which gives 98% correct matches. From Figure 4.9, it
is shown that corners number 126, 132, 133, 143, and 165 are poorly
matched due to the occlusion caused by the laptop. Similarly corners
number 73, 125, and 134 and 125 are also poorly matched due to the
occlusion caused by the finger. On the other hand, referring to Figure 4.10,
our algorithm performs better in the case of occlusion. None of the corner
points are affected by both occluding objects. Hence, the number of correct

matches, which is 98%, is better than Zhang’s, which attains 88%.
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Figure 4.4: Feature point matching between first and second frame. There
are 89 pairs of feature points. The ratio of correct matches is 98% using our

algonthm.



Figure 4.5: Feature point matching between first and second frame. There
are 283 pairs of feature points. The ratio of correct matches is 96% using

Zhang’s.
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Figure 4.6: Feature point matching between 7th and 9th frame under
forward motion. There are 108 pairs of feature points. Ratio of correct

matches 1s 98% using our algorithm.
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Figure 4.7: Feature point matching between 7th and 9th frame with forward
motton. There are 302 pairs of feature points. Correct matches ratio is 86%

using Zhang’s.
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Figure 4.8: Comparison number of correct matches between our algorithm

and Zhang’s algorithm for house sequence.

4.7 Conclusion

Point correspondence matching is one of the necessary pre-calibration
stages after corner detection in self-calibration for AR. It finds the
correspondence of each corner in first image with the second one which is
important as the input for the next pre-calibration stage which is
fundamental estimation stage. Correct corner matches ensures good

estimation of the fundamental mattix.

In this chapter, we proposed a simple and robust algorithm for point
correspondence matching as one of the pre-calibration stages for an AR
system. The algorithm is based on simple correlation technique and motion
vector between two images separated by general motion. We introduced
reference vectors (in hotizontal and vertical direction) as the measures of how
close a motion vector of a point to the true vector. This is determined from

the number of highest occurrence vector in horizontal and vertical

directions.



Figure 4.9: Matches from Zhang’s algorithm when there is an occlusion

showing 88% correct matches.
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Figure 4.10: Our algonthm showing 98% correct matches.
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Experimental results show that by using our algorithm we can discard
outliers effectively for house sequence images even though there are
repetitive patterns in the scenes. This also applies when the camera is
moving forward or backward. The performance is always superior
compared with algorithm proposed by Zhang [1994]. As it chooses the
points with the maximum correlation as the most probable match, it only
needs to scan the image once and there is no need for any further relaxation
process. This shows its efficiency, which is important for real-time AR

applications.

Apart from that, our algorithm shows better performance when the scene is
occluded whether intentionally or unintentionally. The number of correct
matches is still better in comparison to Zhang’s. One disadvantage of our
proposed algorithm 1s that the number of matches found is as not many as
the one found by Zhang. This is due to the fact that we only select the
points that have the highest correlation score to be our matches. This
approach is less effective for a scene, which contains pure repetitive
structure. Possible improvement might include finding new matches based
on the reference vector especially for a scene with repetitive object. This will

however increase the complexity of the algorithm.
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Chapter 5

CAMERA SELF-CALIBRATION
BASED ON THREE VIEWS

5.1 Introduction

This chapter addresses the problem of self-calibrating a camera based on
three captured views taken from a sequence of frames and based on
algebraic constraints derived by Dornaika and Chung [2001]. Its main
contribution to AR research is the use of an algebraic approach in the
development of self-calibration for AR system. This is incorporated with a
technique that simultaneously recovers the fundamental matrix and
distortion parameters which provides the input for calibration matrix
estimation stage. Only three captured views are needed from the camera
input, although the proposed method can equally be used with more than
three views. In our system, these three views/frames need to undergo
corner detection, point correspondence matching and fundamental matrix
estimation before they can be used to find the camera parameters. Figure 5.1
illustrates the location of the self-calibration process in the system. The
input involved is solely from the fundamental matrix and the output is
camera intrinsic parameters, which are then used in the subsequent process

for calculating the 2D-3D transformation matrix.
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Figure 5.1: The position of Calibration Matrix Estimation (Self-Calibration

based on three views) in the proposed self-calibration for AR system.
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Also this chapter contains details of the method of derivation of the
algebraic constraints and of how the distortion parameter estimation is
integrated into the self-calibration. Experiments with synthetic and real data
have shown that the technique can estimate camera intrinsic parameter

accurately and is quite reliable for highly distorted images.

5.2 Literature Review

Self-calibration has drawn the attention of researchers in the computer
vision community as one of the effective methods of recovering 3D models
from sequences of images. It is different from normal classical calibration
due to the fact that it does not require any particular structure in order to
estimate the intrinsic parameters. Instead, it uses constraints that are derived

from the projective and epipolar geometry of the sequence of images.

Some of these constraints are expressed as the Trivedi constraints [Trivedi
1988], the Huang and Faugeras constraints [Hartley 1992; Mendonca and
Cipolla 1999], and the Kruppa equations [Lourakis and Deriche 2000;
Luong and Faugeras 1997]; are formulated in terms of absolute quadric
[Pollefey et al. 1999; Triggs 1996] and also algebraic constraints [Dornaika
and Chung 2001; Abdullah and Martinez 2002].

Perhaps the eatliest introduction to the concept of self-calibration in
computer vision was done by Maybank and Faugeras [1992], who
established the relationship between intrinsic parameters and absolute conic,
trom which were then developed the Kruppa equations. Hartley [1992] used
Huang and Faugeras constraints to develop a self-calibration algorithm that
estimates the focal lengths of two cameras based on a known corresponding
fundamental matrix and other intrinsic parameters. Hartley [1994a] then
developed an algorithm for self-calibration for more than three cameras

based on the method proposed by Maybank and Faugeras [1992]. He also
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introduced the idea of updating a projective reconstruction to a Euclidean
one through 3D homography. Based on this approach, Triggs {1997]
introduced absolute quadric while Pollefeys et al. [1998] developed the self-
calibration of multiple cameras with varying and unknown Intrinsic

parameters.

In this chapter, we employ the constraints derived by Dornaika and Chung
[2001] to find camera intrinsic parameters based on three views for an AR
system. In our implementation we assume that shear measure b =0 and
that other Intrinsic parameters are unknown and can be varied throughout
sequence of images. The algorithms developed will also takes into account
distortion correction should the image captured be heavily distorted The
method takes only the fundamental matrix which has been estimated from
the previous stage (refer Figure 5.1) as an input to find the intrinsic

parameters.

Note that the third pre-calibration stages which is the fundamental matrix
stage, is not specified into one chapter. This is because most of the theories
and literature reviews have been covered in Chapter 2. This does not imply
however that this stage is less significant but it is just as important as other
pre-calibration stages. In our implementation we propose the use of
MAPSAC algorithm described in [Torr 2002] in order to estimate the
fundamental matrices. The reader can refer to Chapter 2 for more details on
how fundamental matrices are derived and how it can be found from point
correspondences. Different techniques employed for fundamental matrix

estimation also can be found in Chapter 2.
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5.3 Derivation of the Method

Recall from Chapter 2 that for a single camera undergoing general motions,
the fundamental matrix equation is F=(K™") S()R(K)™". This equation

can be written as
K'FK =S(t)R (5.1

where we assume that K =K' (same camera is used for two views or both

cameras have the same calibration matrix). Multiplying both sides with R”,
K'FKR' =S(1). (5.2)

Recall that S(t) is a skew-symmetric matrix, hence if fundamental matrix F
is known, we can obtain six polynomial constraints on the entries of K and

R.Let a, where 1< j,k<3 be the entries of K'FKR’ | then

A, =0y =0y =0, +0y, =0, 0y, =0y +a;, =0 (5.3)

3

Let f, and r, be the entries of the matrices F and R respectively where

1< j,k £3.Equaton (5.3) can be written as:
furnol + (fioraa, + (fiue + fiave + fis)hs)a, =0 (5.4
ot @2+ (forn @y + (Farthy + foaVo + fo3)Ppy)ct, =0 (5.5)
(fuute + foyvo + fa)a, 15 + (fiattg + foaVo + fro)at, 1y + (118 + o1V

+ [V + (frathg + Foavo + f32)vo + Sisttg + fosvg + f33)75; =0
(5.6)
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. 2 .
fuaary + fna, o+ (fo,u, + Lo,y + faa, s + fo,e,n,
+ fzzafru +(f0,uy + [0, v + fr30,)h5 =0

(5.7)

fnauzrsl + [0, 0,1 +(fraug + 1,0, + f130, )5 + (fy g + f51v
+ fa)en + (faug + fove + fi)ah, + ((fug + fovg + f3)u,
+(fipto + FVo + f2)Vo + fistho + frsVo + f35)h5 =0

(5.8)

. 2
faa, o, + fro i, (o uy + oy + fua s + (e + 517
+ i),y (fitte + Ve + fi)a by + (it + fo1v0 + f31)4g

+ (fiatho + foaVo + [32)Vo + fisthe + fr3Vo + f33)75 = 0.
(5.9)

where «, and «, are the horizontal and vertical scale factors respectively

while u, and v, represent the x and y co-ordinates of the principal point.

The rotaton R is represented by its associated unit quaternion

q=(q,.9,, q,-9. )T . Therefore,

G+9.-q,-q9:  29.49,-94.) 24,9, +9.4,)
R=| 2(q,9,+94.) 4% -49:+9,-49; 2(4,9.—94,) (5.10)
209.9.-9,) 2(4,9.+49:4.) 9o —9: 9, +4-

The 6 constraints (Equation (5.4) to Equation (5.9)) can be written in a

compact form of vector v:
v=0, (.11)
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where

_ r
vV =(a,, 4y, G33, G5 + 0y, i3+ 4y, Gyy +0sy) (5.12)

Note that these 6 constraints are associated with a pair of views only (one
motion). We require at least three views (two pairs of views) before we can

recover the intrinsic parameter K and the rotation matrix R.

5.4 Algorithm

Let n represents the number of camera motions. The constraints (Equation
(5.4) to Equation (5.9)) can be cumulated by building a positive etror
function f that will be minimised over the unknowns. Since the

fundamental matrix can be obtained from point correspondence matching

(refer Chapter 4) and epipolar geometry (refer Chapter 2), the unknowns

will be the intrinsic parameters K and the quaternion q. Therefore, the

error function can be written as follows:

1
" 2 252
f(all’a\”uo’vo’ql"'"qu) = Z |.H vi “ +ﬂ'(1_|| ql || ) ] (513)
i=1
where the second term in f is a penalty funcdon that constrains the
quaternion ¢, (for camera motion 7) to be a unit quaternion, and A4 is a
real positive number. Each v, contains six polynomials where the

coefficients are given by the corresponding fundamental matrix F,.

Since the error function f is the sum of positive functions, it can be
written in such a way that it becomes a classical non-linear least squares

constrained minimisation problem:
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f(x) =%i¢} : (5.14)

where X =(a,,@, UV, 5---»q,) €R*™ for a four-parameter camera
model and 7 is the number of camera motions. For each motion, the first
six @, are given by Equation (5.4) to Equation (5.9). The implementation of
the algorithm has been done using the Levenberg-Marquardt technique

[Marquardt 1963] for its robustness.

We can simultaneously recover the intrinsic parameters and the rotation
matrices by minimising the function f(X) over the vector X. For n

motions, we have 4+4n unknowns and 7n constraints. Thus, for a
calibration matrix with four parameters we need at least two motions so that
we have 12 unknowns and 14 constraints, from which we ate able to obtain

a solution.

The weight A can be set through the following:
e An arbitrary value is chosen and the non-linear algorithm is run untl

convergence is obtained.

e Then, the penalty functions (1-|| q, I*)? are evaluated for all motions.

o The weight has to be increased accordingly if the penalty functions are

not close to zero.

5.4.1 Initialisation Procedure

The unknowns in the function f(x) contain two components. The first
component is the intrinsic parameters (,,&,,4,,V,) and the second

component is the quaternion (,=(gy>qy,9,9,). The intrinsic
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parameters are initialised by using an educated guess or values provided by

the manufacturers.

The initial estimate of the quaternion can be obtained as follows:

e From the initia]l estimate of the intrinsic parameter, the upper triangular

matrix K is formed.

e Then the essential matrix E is calculated for each motion i using the

relation:
E, = KTF,. K. (5-15)

e TFach quaternion (; is then estimated by factorising the corresponding

essential matrix as in Luong [1997]:
E, =S(t)R(q,) (5.16)

Note that in this algorithm the derivation of the 6 constraints was quite
simple and purely algebraic. Note also that the initialisation of the intrinsic
parameters is only done by an educated guess and does not require a good
approximation to the actual value, making this algorithm more robust than

other available self-calibration techniques for AR systems.

5.5 Dealing with Critical Motion

It is well known in several works that self-calibration of all parameters may
not be possible for certain motions [Zeller and Faugeras 1996; Sturm 1997,
Sturm 2002]. This kind of motion is called critical motion. Any attempt to

self-calibrate a camera under critical motion will result in incorrect values for
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intrinsic parameters. Such ambiguities may be resolved by adding further
constraints, e.g. zero skew, square pixels or knowledge of the principal
point. Nevertheless, even with these constraints applied, certain motions
remain ambiguous. This fact is supported by work of Zisserman et al

[1998].

According to Sturm [2002], there are 3 types of critical motion sequences
for a moving camera that can lead to failure in self-calibration:

1) Arbitrary position of optical centres but parallel optical axes. In other
word, camera motions are pure translations possibly combined with an
arbitrary rotation about the optical axis.

2) Collinear optical centres, which means that camera motions are pure
forward translations with two exceptions where the translation may be
followed by an arbitrary rotation about the optical centre.

3) The optical centres lie on an ellipse/hyperbola pair as shown in Figure
5.2. The views may be partitioned into at most two sets, for which the

centres and optical axes are all coplanar.

Figure 5.2: Locus of camera positions in a critical motion sequence with
respect to a conic @ not on the ideal plane. The conic @ is shown in
dotted style to illustrate that it is virtual and can in fact not be drawn. Refer

to [Sturm 2002] for details.
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In this section, a novel method has been developed to calculate how near
the particular motion is to the critical motion associated with case 1
described above, based on the fact that the cross product of two parallel

vectors equals zero.

Recall that the fundamental matrix equation can be written as
F=K 'S(t)RK™" where E=S(t)R. Given that the fundamental matrix
has been estimated using SVD (that is from Equations (2.38) and (2.39)), we
can estimate the rotation matrix R and skew-symmetric matrix S(t)

between two views.

Let the first view of the motion correspond to a camera pointing in z
direction, which means that the optical axis is equal to the z-axis. Let us

assume that the vector pointing towards the z direction for the first view is

v,=[0 0 1] (5.17)

and the rotation matrix R is defined by equation (2.12). To find the vector

for the second view V, with respect to the first view we need to multiply

R with V;:

V, =RV/ (5.18)
which gives
hs
V, =|n; (5.19)
B33

If V, is crossed product with V,, equation (5.19) becomes:
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(5.20)

Let the translation t=0, then the angle ¥ between vector V| and V, is

given by:

¥ = tan” {rAJ (5.20)

w=|Vy|=r}+r5 (5.21)

where w is the measure of the closeness of the motion to being critical.

Figure 5.3 illustrates the value of w plotted for different elevation angles ©
and vergence angles v. It shows the usefulness of w in Equation (5.21) as a
measure of closeness to case 1 critical configuration between the motions of
a given pair of cameras. The bigger the value of w, the less likely that the

pair of views is involved in critical motion.
In our implementation, we set the threshold w=10.1 to determine whether
P

a motion is involved in critical motion. If yes, then the pair will be discarded

and changed for another pair of views.
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Figure 5.3: Critical measure of camera motion (case 1).

5.6 Integrating Self-Calibration with

Distortion Correction

Distortion correction to an image is an important issue, especially when
there is a need to register virtual objects correctly. It will become more
important if the AR camera is being used in critical areas such as in surgical
planning or other medical applications where incorrect registration due to
distorted 1mages might harm the patient under treatment because of the
incorrect data it produces. Therefore, during the process of camera

calibration, distortion correction needs to be taken into consideration.

Some offline calibration techniques such as the one described in Abdel-Aziz
and Karara [1971] and most self-calibration algonthms available [Trvedi
1988; Mendonca and Cipolla 1999; Lourakis and Deriche 2000; Pollefey et
al. 1999; Dornaika and Chung 2001] make the assumption that the images
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that they use for calibration are distortion-free or have been cotrected in a
separate process before the calibration. However, in an AR system that
employs a camera with varying parameters and especially if the AR cameta
has a wide-angle lens or zoom lens, the distortion can be varied between
views, which make it easier for the distortion to be considered during

calibration and not before calibration.

Therefore, in this section we develop an improved version of self-calibration
in AR that has distortion parameters estimated simultaneously with the
estimation of fundamental matrix whenever there is a need to correct
distorted images. This enables the distortion parameters to be estimated
online together with the camera parameters and these two processes can be
done without the need of special calibration object. We follow the distortion
model described in Chapter 2 combined with the algorithm proposed by
Zhang [1996] to solve for distortion parameters and fundamental matrix and

consequen tly intrinsic parameters.

5.6.1 Algorithm
Recall from Chapter 2 that lens distortion can be described by @, =u, + 3,
(Equation 2.21) and v, =v, +J, (Equation 2.22) where (u,,v,) are the

distorted (true) image co-ordinates on the image plane and (J,,0,) are the

u?’

distortion corrections to (u,,7V,). Recall that the transformation from point
: . u, . v,
U, to point U, is given by u, = u, +; (Equation 2.4) and v, = v, +7

(Equation 2.5) respectively where (uy,V,) is the principal point, w and A
are the distances between adjacent pixels in the horizontal and vertical

directions of the image plane respectively.
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Combining Equation (2.21) with Equation (2.4) and Equation (2.24) with
Equation (2.5) yields:

4, =wu, —u) 1+, —u) kw’ + (v, —v,) kh*] (5.22)

v, =h(v, —v)[1+(u, —uo)zklwz +(v, —vo)zklhz] (5.23)

Since (#,,V,) is the ideal co-ordinate expressed in the Euclidean co-ordinate
system, we denote (4,,V,) to be the ideal co-ordinate expressed in the

image affine co-ordinate system, which is given by:

a,=—x (5.24)
w

5, = (5.25)

vy =-—*% .

“"h

Equations (5.22) and (5.23) yield:
i, = (u, — )1+ (4, — 1) kyw” + (v, _vo)zklhz] (5.26)
v, = (v, v )1+ (u, - uo)zklw2 +(v, —vo)zklhz] (5.27)

Equation (5.26) and (5.27) describe explicitly how ideal point co-ordinates

are obtained from distorted ones.

Based on epipolar constraint, ﬁZFﬁ; =0 (Equation (2.32) in Chapter 2),

we can estimate k, provided that variables w and h are known where

0, =[4,,9,1] and U, =[a,.5,,1] .

a’ " a?
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5.6.2 Experiments on Radial Distortion

In our experiments we usc a pair of distortion-free real images, /o/07. bmp and
toto2.bup. We assume that variable w and h are known. We distort the
images by applying different values of distortion parameter &, ranging from
%107 to 2.5%107 with [x10™ for each step. An example of distorted
corner distorted with 4, =Ix107 is shown in Figure 5.4. The distorted

images are then corner detected and correspondences between corners are

found.

Figure 5.4: Example of totol.bmp image distorted with value of

k =1x107.
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Two experiments are implemented. The first experiment includes estimation
of variable k, only with the centre of distortion (#,,V,) set to be half of the
size of the image vertically and horizontally. The second expetiment consists

of the estimation of variable K together with the centre of distortion

(U, vy) -

Figure 5.5 illustrates the comparison between the actual and estimated value
of k,. The algorithm can be said to estimate Kk, near to the actual value
when the distortion is less than 7x107 and starts to be unstable when
more sevete distortion is imposed. The author believes that this is due to the
number of correct point correspondence matches being reduced
significantly as the distortion level is increased. This consequently affects the

robustness of the fundamental matrix estimation stage.

Figure 5.0 illustrates the comparison between the estimated and actual

values of k, with the distortion centre not fixed and allowed to vary. Our
algorithm seems to be able to estimate k; near to the actual value when the
distortion is less than 1.2x107". This means that when the centre of
distortion is allowed to vary, the algorithm can estimate the value of £,

more reliably than when the centre of distortion is fixed for a distortion

level less than 1.2x107*.

The value of the estimated distortion centre can be said to be stable and not
vary too much from the actual principal point. The deviation of the average

value from the true point is about 5.4%. This is llustrated in Figure 5.7.
It is worth mentioning here that, although the proposed algorithm can

successfully estimate distortion parameters for medium to low distortion

especially when the estimation of the distortion centre is included, the time
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needed to estimate these parameters is enormous, around 30 minutes for

estimation of &, and (4,,v,). The time to estimate k, parameter with a

fixed (u,,V,)is around 3 minutes. Both experiments were implemented in

Matlab. Therefore, it is suggested that the estimation of distortion
parameters be done offline rather than online, especially when the distortion
centre is also estimated. Additionally, if the distortion is not too severe, it is
better to estimate the distortion parameter with a fixed distortion centre
rather than allowing the centre to vary in order to take the advantage of the

less completion time.

Comparison between estimated and actual values of k1 (k1 only)

14 2 . . - . . PR —— S

B
|
: " LR *'Ir']f"’ .
gt**j’*b‘: \ / !'. III |
17 "|

02 1
3 i ¢__.,¢.._;—K-—n-—¢ P ——
¢ o Lplm—s S = ot Vo [ 1] —5—Estimated ki
{ i |
. 1vi2|lais|s|lejrlaleltoln 1211314%/15 s_1-*ﬁz1¥22324--25123 —*—Acualkl |
et T 111
0.2 ] 1 1
\ \ TE=
\ /] \
04 —1— k il =
\ Fad &

steps * 1e-05

Figure 5.5: Comparison between estimated and actual value of kl with the

centre of distortion fixed to half of the image.
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Comparison between estimated and actual values of k1 (k1 with distortion centre)
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Figure 5.6: Comparison between estimated and actual value of kl with the

centre of distortion not fixed.
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Figure 5.7: Distortion centre plot resulting from application of different

distortion levels of & 1x107° to 2.5x107 with 1x10™® for each step.
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5.7 Conclusion

The fourth stage for self-calibration in AR has been described. The method
employs an algebraic approach based on three views separated by general
motion. The algebraic approach is proposed for its simplicity of derivation
and requires less attention to accurate initialisation parameters. This shows
the algorithm efficiency without the need to run eight-point algorithm prior
to constraints minimisation to find a good initialisation like other available
methods. Additionally, the proposed approach only needs a minimum of
two fundamental matrices arising from the two pairs of the three views to

be used as the inputs.

In this chapter, the common problem in self-calibration which is the critical
motion is addressed. A new technique to measure the severity of camera
motion involved in case 1 «critical motion is also descrbed. The
measurement can be used to determine whether a pair of images can be
chosen as inputs to be processed in the self-calibration stages. The
technique proposed, however, only tackles one of the 3 critical motion
configurations mentioned by Sturm [2002] and does not guarantee that the

system is free from other critical configurations.

A technique to deal with lens distortion based on epipolar constraint is also
developed. The advantage of this approach is that it can simultaneously
estimate the fundamental matrix as well as the distortion parameters. This
enables the distortion parameters to be estimated online. Experiments on
real images showed that the proposed algorithm performed better on the

estimation of the k, parameter when the distortion centre is allowed to vary

than when it is fixed. Even though the distortion centre is allowed to vary,
the estimated centre points are still close to the actual principal point,
showing the robustness of the estimation of the distortion centre. The time

required to estimate distortion parameters when the distortion centre
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(u,,v,) 1s fixed is shorter than when the distortion centre is allowed to vary.
Therefore, if the distortion is not too severe, it is advised to estimate only
the k, term with a fixed distortion centre to take advantage of the shorter
completion time. A disadvantage of the algorithm is that, it performs badly
when the level of distortion is too severe (k, >1x107™*). The condition of

this high distortion however is rarely occurring in AR application.
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Chapter 6

EXPERIMENTS

6.1 Introduction

This chapter describes experiments conducted based on the combination of
the entire algorithm discussed in previous chapters. Let the combined
algorithm be known as the Self-Calibration of Augmented Reality (SCAR)
system. This chapter compares the performance of the SCAR system in
terms of accuracy and stability with the ARToolKit, the latter being one of
the most widely used AR systems. Experiments show that the SCAR system
produces comparable results for intrinsic parameters to the offline
calibration used in ARToolKit. The experiments also demonstrate its
stability in producing consistent results for a sequence of frames at different
time instances when the focal length is not changing. As the focal length
changes, the system demonstrates its ability to estimate new intrinsic

parameters, showing its adaptability to changes.

One of the differences between SCAR and ARToolit is that the SCAR
system proposes the calibration of intrinsic parameters online, which
ARToolKit does not have; this is an advantage should the focal length of
the camera change during an AR task. In contrast, ARToolKit suggests the

use of offline camera calibration in an AR system, which has the benefit of




good accuracy of the camera’s intrinsic parameters at the expense of being a
time-consuming calibration process. In this chapter, the performance of
both systems in terms of accuracy and stability will be presented and the
suitability of each method to AR applications will be discussed. In the next
section, we describe the procedures followed in our experiment for offline
camera calibration in the ARToolIit and the steps taken for the SCAR
system to show the flexibility of our system. Next, we measure the
performance of both methods in terms of its accuracy of intrinsic parameter
estimation. Then, we compare the stability performance of the SCAR
system with real image data from a static camera and a video camera with

and without distortion correction.

We then discuss other implementation issues related to the SCAR system in
terms of the maximum iterations needed for the optimisation process and
the sensitivity of the SCAR system to varying initialisation parameters for
optimisation. The integration of the SCAR system into ARToolit is also
performed to show its applicability for easy incorporation into any AR

system.

6.2 Offline Calibration in ARTo0lKit

In this section we describe the procedures of the offline calibration as
suggested by the ARToolKit. It aims to show the accuracy and stability of
the offline calibration used by the ARToolKit for an AR system. Two stages
ate involved, which include procedures for distortion parameter estimation
and procedures for intrinsic parameter estimation. The suitability of these
procedures to future AR systems is discussed. Results are presented and

discussed at the end of the section.
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6.2.1 Experimental Setup
The experiment was conducted using a Pulnix TM-765 camera with a
COSMICAR television lens connected to a Hauppauge WinTV card with a

Penuum I1I 700 MHz as the processor speed.

There are two calibration patterns employed in the ARToollit camera
calibration routines, ca/ib_dist pattern and calib_cparam pattern, as shown in

Figure 6.1 and I'igure 6.2

‘V'he calib_dist pattern contains an array of 6x4 dots, which is scaled so that
the dots are exactly 40mm apart. This pattern is used to measure the amount
of distortion produced by the lens. The calih_cparam pattern is a grid of lines
and 1s scaled so that the lines are exactly 40mm apart. This pattern is used
for the esumation of the intrinsic parameters after taking into account the

distortion that may exist in the incoming images.

These two patterns were printed out from the calib_cpara pdf and calib_dist.pdf
files that come with ARToolKit and were glued to pieces of cardboard to

make them tlat and rigid.

‘ [
® @ @& & @ @ z l
® ® ¢ & °
® e & © ) L e |
: L] ® ® @ (] ®
|
i i 2
Figure 6.1: calib_dist pattern Figure 6.2: calib_cparam patrern
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There are two programs that need to be run to calibrate the camera: firstly,
the calib_dist program, which is used to measure the distortion centre of the
camera image (x,,¥,) and the distortdon parameter £,; and secondly, the
calib_cparam program, which produces the calibration matrix of the camera.
The calib_dist program was performed before the calib_cparam since the

calib_cparam needs parameters from the ca/ib_dist as its inputs.

6.2.2 Running the calib_dist Program

This program uses the co-ordinates of the dots from the calib_dist pattern as
its input. The camera captures the image of the calib_dist pattern and the
user will manually draw a rectangular shape around each dot in the following
order as shown in Figure 6.3. The process will be repeated using other
images taken from various positions and orientation of the same calib_dist

pattern. The experimental setup is illustrated in Figure 6.4.

In this experiment, one of our aims is to verify that the greater the number
of images taken, the more accurate the calibration, as is mentioned in the

ARToolKit documentation.

All calibration steps are manually done by the user, which can take quite
some time and is cumbersome due to the repetition. This is in contrast with

our SCAR system where the feature detection can be done automatically.

7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

Figure 6.3: The sequence of dots to be covered by the user for calib_dist

pattern.
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6.2.3 Results and Discussion for calib_dist

position direction

rotation direction

camera

Figure 6.4: Experimental setup for ca/ih_dist program.

auejd uoneiqiyed

camera

b_cparam program.
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Figure 6.5: Experimental setup for ca/



When running the calib_dist program, after completing the manual steps in
the previous section, the program will automatically store the co-ordinates
of each dot in memory. Table 6.1 shows an example of the co-ordinates
stored in memory for a captured image. In this case, the position of the
pattern’s plane is perpendicular and at a distance of 45 cm from the camera.
As we can see in Figure 6.6, the rows and columns of the dots are not in

straight lines, which is due to camera lens distortion.

After several images of different positions and orientations have been

captured, the program calculates the distortion centre of the image (,,V,)

and the distortion parameter k, in order to correct any distortion exhibited

from the lens. Table 6.2 shows the end results from calib_dist.

From Table 6.2, we see that the distortion centres do not converge to a
certain value as the number of captured images increases. In other words,
the number of captured images has little to do with producing a better
result. Once these values have been passed to the next program
(calib_cparam), this will result in different values for the calibration matrix

parameters.
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Figure 6.6: Plotted co-ordinates of the dots.
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Table 6.1: The Co-ordinates of All 24 Dots

Row Column | Co-ordinate X (pixel) | Co-ordinate Y (pixel)
1 1 113.85 125.25
2 1 191.97 123.82
3 1 271.76 122.23
4 1 351.98 122.61
5 1 430.61 122.81
6 1 506.06 123.86
1 2 107.98 201.04
2 2 189.46 200.51
3 2 272.26 198.98
4 2 355.83 199.02
5 2 437.39 197.88
6 2 515.58 197.62
1 3 103.60 282.78
2 3 187.56 283.24
3 3 273.00 282.14
4 3 359.30 281.24
5 3 443.43 279.33
6 3 52411 277.15
1 4 100.57 368.89
2 4 186.15 369.88
3 4 274.03 369.59
4 4 362.43 367.84
5 4 448.63 364.89
6 4 531.14 360.90
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Table 6.2: Results from calib_dist

Number of Distortion Distortion
Distortion parameter,
Images Centre, u, Centre, v,
k, (multiplied by 10%
Captured (pixel) (pixel)
10 301.5 211.0 52.5
9 298.5 2220 51.0
8 294.5 219.0 53.0
7 299.0 2215 51.8
6 278.0 2315 45.8
5 305.5 225.5 51.6
4 299.0 206.5 53.1
3 306.5 2255 52.3
2 303.5 229.0 54.0
1 304.0 217.0 53.7

6.2.4 Running the calib_cparam Program
This program uses a grid pattern of 7 horizontal lines and 9 vertical lines
from the calib_cparam pattern as its input (refer Figure 6.2). The procedures

for calib_cparam program are as follows:

a) Type calib_cparam at the command prompt and input the distortion
centre co-ordinates and distortion parameter k, when requested. A
live video appears.

b) Place the grid pattern in the camera view so that the pattern is
perpendicular to the camera with all of the grid lines in view.

c) Click the left mouse button to capture the image. This generates a

white horizontal line overlaid on the image.
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d) Move the computer-generated line to fit the top-most horizontal
grid line. The arrows keys are used to move the line up, down,
clockwise or anticlockwise. As the white line is aligned with the top-
most horizontal grid line, press the enter key. This line turns blue
and another white line is generated. This process should be
repeated for all the horizontal lines from top to bottom.

¢) When the last horizontal line has been placed, a vertical white line
appears and process (d) is repeated for the vertical grid lines from
left to right.

f) Once this process is completed for one image, the grid pattern is
moved 100mm away from the camera (keeping the camera
perpendicular to the pattern). Then, the whole process (a) to (e) is
repeated 5 times until the total distance of plane movement away
from the camera becomes 500mm.

g) After the fifth movement, the program automatically calculates the
camera parameters. The user is prompted for a filename for storing

these parameters in memory.

Figure 6.5 illustrates the experimental setup for the above-mentioned

processes.

6.2.5 Results and Discussion for calib_cparam
Based on the values in Table 6.2, which are passed into the calib_cparam
program, the following results shown in Table 6.3 were obtained. These

results were drawn in a chart as shown in Figure 6.7 and Figure 6.8.

Table 6.3 illustrates the intrinsic camera parameters produced by the
calib_cparam program. In Figure 6.7, it is shown that the values for the centre
co-ordinates vary between the range of 200 and 300 as the number of

captured images in calkib_dist increases. The same case applies for the value of
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a, and o, where the values keep changing between the range 800 to 900
(refer to Figure 0.8). These figures show that it is difficult to get accurate
results even though the number of captured images has been increased. This
can happen due to the number of images being captured involving user
intervention, which increases with the number of images. Therefore more

human error is likely to occur during the calibration process.

Suppose we take the average value to be the true value, the standard

deviation of the image centre is equal to 6.8% from the true value. As for
the scale factors, the standard deviations for «, and ¢, are both 3.5%.

These values will be compared with the one produced by the SCAR system

in Section 6.3.

Table 6.3: Results from calib_cparam

Number of Captured a, a, U, v,
Image
10 796.241 818.242 279.637 232,433
9 861.804 882.457 258.002 233.239
8 847.152 866.309 277.637 272.392
7 832.968 855.019 246.272 262.016
6 807.511 832.601 216.184 262.064
5 834.73 859.495 241.259 254.637
4 821.739 844.389 260.869 223.386
3 881.247 906.183 230.814 253.543
2 843.687 869.928 204.533 193.674
1 787.377 807.932 281.265 267.265
Average 831.446 854.262 249.653 245.465
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Table 6.3 illustrates the intrinsic camera parameters produced by the
calib_cparam program. In Figure 6.7, it is shown that the values for the centre
co-ordinates vary between the range of 200 and 300 as the number of
captured images in ca/zb_dist increases. The same case applies for the value of
o, and o, where the values keep changing between the ranges 800 to 900
(refer to Figure 6.8). These figures show that it is difficult to get accurate
results even though the number of captured images has been increased. This
can happen due to the number of images being captured involving user

intervention, which increases with the number of images. Therefore more

human error is likely to occur during the calibration process.

Suppose we take the average value to be the true value, the standard

deviation of the image centre is equal to 6.8% from the true value. As for
the scale factors, the standard deviations for «, and «, are both 3.5%.

These values will be compared with the one produced by the SCAR system

in Section 6.3.

6.2.6 Conclusion from the Experiment
Based on the experiments carried out, the characteristics of offline plane-

based calibration in ARToolIit can be assessed as follows:

a) Once the user adjusts the focal length of the camera, the camera
has to be calibrated again, which can waste time.

b) The calibration plate has to be in a location where the amount of
light is sufficient and the reflection of the light on the camera is
kept to a minimum.

c) The calibration process involves human manipulation, which is
prone to error.

d) Since the calib_dist pattern is positioned randomly before capturing

the image, the result is in some way dependent on the position and
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orientation of the pattern plane. Results for Intrinsic parameters
appeat to be different with different setups for the plane orientation
and position. For example, results for patterns captured slanting to
the right are different from those of patterns captured slanting to

the left.

6.3 Experiment on Self-Calibration

Augmented Reality (SCAR) System

In this section, the SCAR system was evaluated in terms of stability and the
accuracy of the intrinsic parameters produced. Using the same camera, the
accuracy of the intrinsic parameters produced by the SCAR system is
compared with the intrinsic parameters resulting from the offline camera
calibration in ARToolKit. In addition, using the same camera, the stability
of the values of intrinsic parameters from different captured views is also

compared with that of the values from the offline calibration in ARToolKit.

Another criterion that needs to be compared in the SCAR system is perhaps
its performance in terms of speed. Since the prototype of the SCAR system
is done in Matlab, the actual performance of the algorithm in terms of speed
cannot be compared with that in ARToolKit. It goes without saying that by
doing such calibration offline the calibration in ARToolKit will always
outperform any self-calibration embedded in an AR system, especially when

there is no need to adjust the focal length during an AR task.

As speed is one of the important criteria for real-time AR systems, we
propose not to process every frame in order to update the camera’s intrinsic
parameters. Instead, in our implementation, we select one frame for every
second. This frame will then be corner-detected and the total number of

cotrect point correspondence matches checked. If the total of correct
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correspondences is more than 20 matches, then the frame is selected for
further processing, otherwise we discard it. Then, if the motion involved is a
critical one, the next frame will be selected. This procedure is repeated until
three views are collected. Following this, the first intrinsic parameters are

estimated — this is currently done for video scene.

After this the system will search for another three views from the next
sequence of frames so that any changes in focal length between the former
and the current three views can be updated as soon as possible. However,
our system assumes there are no changes in focal length within the three
captured views to be processed. This is for simplicity, which is due to the
algorithm derivation (refer to Chapter 5, Section 5.4), which has 4 + 4n
number of unknowns and 7n number of constraints, where »n represents
the number of motions involved in solving them. If we were to consider the
changes of focal length within the three captured frames in the algorithm,
the number of unknowns and constraints to be solved would be 4 + 4n +
4s and 7n, respectively. Hence this would require a minimum of 4 views
or 3 motions to recover the unknowns within the 4 views. The additional
4s unknowns represent the changes in the 4 intrinsic parameters of the §

additional views.

6.3.1 Experiments for Intrinsic Parameters from Static

Camera
In this experiment, no camera is used; instead, test images with three views
acquired from several websites were used. This is due to the actual values
provided for the intrinsic parameters, which can be used as a reference to
the outcome of the experiments carried out for our method. These values
were used as a basis to check the performance of the SCAR system in terms

of its accuracy and stability.
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The experiments were carried out on sets of monocular test images. The test
images were retrieved from the public web site ftp://ftp-

robotvis.inria.fl;Lpub/IM_AGES ROBOTVIS. Figure 6.9(a) and Figure

6.9(b) illustrate examples of the two pairs of test images taken from a static
camera. The matches are shown as red crosses. The results from self-

calibration methods are shown in Table 6.4.

The first row of Table 6.4 gives the initialisation of the non-linear methods
in self-calibration. Note that these values are chosen based on good guesses.
The second row shows the correct intrinsic parameters associated with the
camera capturing the images as provided by the website. The third row
shows the intrinsic parameters acquired from the algebraic method in our
SCAR system. The values shown are the average from 10 repetitions. Note
that from Table 6.4 the self-calibration produces results that are close to the

reference solution. The deviation of ¢, and «, from the true value is 2.8%

and 1.4% respectively whereas for the centre point it is 7%.

Table 6.4: Self-Calibration Results

Method a, a, U, Y, Iterations
Initialisation 1500 1500 250 250 -
Reference (Off- 659 935 242 283 -
line calibration)
Self-Calibration  640.64 948.30 258.68 286.38 32
Deviation 2.8% 1.4% 7.0%
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Figure 6.9(a): First pair of test images from static camera.
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Figure 6.9(b): Second pair of test images from static camera.
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6.3.2 Radial Distortion Experiments on Test Images from

Live Video for the ARToolKit and SCAR System

In this section, test images were generated from a sequence of captured
frames from a live video camera connected to a computer. The difference
between images from a static camera and live video is that the former have
better quality than the latter. In other words the images captured from live
video have more noise than images from a static camera. Examples of test
images captured from the COSMICAR television lens are shown in Figure

6.14.

An experiment with 20 trials was carried out to check the consistency of
camera self-calibration results on the captured images and to compare the
effect of radial distortion on the result from camera self-calibration.
Comparison between the results from this experiment is based upon the
results from the offline camera calibration. Distorted images were corrected
offline and the intrinsic parameters resulting from self-calibration before
and after distortion correction were recorded and are shown in Figure 6.10

to Figure 6.13.
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(b)

I'igure 6.14: Lixample of test images captured from live video.

From I'igure 6.10 and I'igure 6.11, we can obsecrve that the principal points
and scale factors estimation for self-calibration without distortion correction
is not very reliable for noisy images. However, Figure 6.12 and Figure 6.13
show improvements in the clusters for the self-calibration method 1n
compatrison to the clusters in Figure 6.10 and Figure 6.11. From this we can
presume that taking distortion correction into account will improve the

accuracy of the camera calibration parameters for noisy images.

6.4 Full Implementation of the SCAR System

The goal of this experiment is to examine implementation issues that may
arise when the SCAR system is implemented as a whole including the pre-
calibration stages. In order to achieve this, 3 different sequences (tof0,
bighonse_frame and fountain) in Appendix B have been chosen as the test
sequences. The dimensions of /ot0, bjghouse_frame and fountiin sequence are

512x512, 576x384 and 320x 240 pixels respectively.

The experiment takes these three uncalibrated sequences as inputs and
implements them using the following procedures:
A. Corner Detection using Harris-SUSAN Hybrid Corner Detector

(reter to Chapter 3).
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a. The algorithm will detect corners from each image. The

following parameters are set:
e Standard deviation of smoothing Gaussian, o =3.
e Threshold value for Harris detector,
thresh =1000.
e Radius of region considered in non-maximal
supptression (optional), radius =3.
B. Point Correspondence Matching (refer to Chapter 4).

a. Matching is done using correlation and calculating motion
vector. Point is said to be matched when the correlation
between them has the maximum value.

b. False matches and outliers are discarded by using reference
veclor.

C. Fundamental Matrix Estimation

a. A modification of the MAPSAC algorithm based on
controlled random selection of corner points is used.

D. Intrinsic Parameters Estimation based on three views (refer Chapter
5)
a. An algebraic method with Levenberg-Marquardt technique

for minimisation process is used.

Since all sequences are not distorted, an algorithm without distortion
correction is used. The results from the intrinsic parameters estimation are
plotted and are used as input to be integrated into ARToolKit. The findings

are discussed in the following section.
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6.4.1 Results from Correspondence Matching and

Calibration Matrix

The following figures illustrate the results from corner detection as well as
point correspondence matching. The total numbers of corners detected by
the Harris-SUSAN corner detector before and after matching are recorded
in Table 6.5, Table 6.6 and Table 6.7 for foto, bighouse and fountain sequence

respectively.

Based on observation from Figure 6.15 to Figure 6.18, there is not a single
false match after point correspondence matching. Thus, these
correspondences can become good inputs for the fundamental matrix

estimation stage.

From this experiment, it can be concluded that, provided the corners are
well detected, the algorithm for matching can produce reliable
correspondences while retaining sufficient number of good corners for
fundamental matrix estimation. Accurate values for corners and correct
matches are very important for fundamental matrix estimation due to the
fact that it is very sensitive to any changes in corner positions and incorrect
matches. This experiment demonstrates the robustness of our developed
matching algorithm even though there are missed corners resulting from the

Harris corner detector. The resulting calibration matrix for fountain sequence

is «a,=398.344, «,6 =254.962, u,=154.226, v,=134490 and for
bighouse_frame sequence is a, =976.676, o, =1027.809, u,=371.151,

v, =210.300.
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Figure 6.15: Corners detected for #of02.bmp and foto3.brp before matching.



Figure 6.16: Cormers detected for 7or07.bmp and roto2.bmp after matching.



Figure 6.17: Corners detected for bighonse_frane000.bmp and

bighouse_frame001.bmp after matching.
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Figure 6.18: Corners detected for fonntain03.bmp and fountain05.bmp after

matching.
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Table 6.5: Number of corners before and after matching for /s sequence.

lotol tolo? tolo3

l_otﬂl cor11c1js 113 123 114
before matching

Total corners after 5
matching
H 74

[Percentage of 24% 30%-40% 35%

discarded corners

Table 6.6: Number of corners before and after matching for bighouse_frame

sequence.

bighouse_jrame001

bishouse_frame002

bighouse_frame003

Total corners
before matching

579

611

596

Total corners
after matching

Percentage of
discarded

corners

84%

85%

85%

Table 6.7: Number of corners before and after matching for fomutain

sequence.
SountainQ1 JountainQ3 JountainQ5
Total corners
. - 187 168 183
before matching
Total corners after 120
matching
113
Percentage of =
: o 36% 29%-33% 38%
discarded corners




6.4.2 Value Setting for Maximum Iterations in Levenberg-

Marquardt Optimisation
Maximum Iterations is defined as the maximum number of iterations
allowed for Levenberg-Marquardt optimisation to perform in order to find
the actual value that minimise the constraints. The purpose of this
experiment is to find the best value for Maximum Iterations that can
produce the optimum result for the intrinsic parameters. In this experiment,
the system runs up to 100 times with the same test image. The intrinsic

parameters are recorded each time.

Figures 6.19 to 6.21 illustrate how the values for Maximum Iterations may
affect the accuracy and consistency of the scale factors. The x-axis
represents alpha_u («,), which is the distance between adjacent pixels
vertically, and the y-axis represents alpha_v (a,), which is the distance
between adjacent pixels horizontally. Figures 6.19, 6.20, 6.21 and 6.22
represent the scale factors plot for Maximum Iterations of 200, 100, 50 and
30, respectively. From these results the optimum number of Maximum
Iterations for the whole system to be accurate is 30. Any value set more or
less than 30 for the Maximum Iterations will result in the estimation of the
intrinsic parameters become less accurate. From the figures, we can see that
as the Maximum Iterations value is decreased the cluster of points becomes
more focused and the distance between the average and actual scale factors

becomes closer.

Figures 6.23 to 6.26 illustrate how the value for Maximum Iterations atfects
accuracy and consistency for the principal points. The x and y axis represent
the coordinates of the principal points (u,,V,) found in the image. Figure
6.23, 6.24, 6.25 and 6.26 represent the scale factor plot for Maximum
Iterations of 200, 100, 50 and 30 respectively. From this result the optimum
number of Maximum Iterations for the system to be accurate is 30 as is the

case with the scale factors. From the obtained results, we can see that 30 is
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the optimal value for Maximum Iterations in the Levernberg-Marquardt
minimisation process in order to obtain the most accurate results for

intrinsic parameters.

One might argue that the reason for the points grouping into clusters when
Maximum Iterations is set to a reduced limit is that the author has chosen
the initial value to be near the actual value. This is not the case, as is shown
in Table 6.8 and Table 6.9. Even though the initialisation number is larger or
smaller than the true value, the number of iterations taken to complete the

minimisation is still about the same, that is, less than 30. Exceptions are
when the initial values for ¢, and <, were chosen as less than 400, or
u, = v, were greater than 1000, which rarely happens. This proves that the

number of iterations taken to complete the minimisation is not highly

affected by the initial value chosen.

Table 6.8 and Figure 6.27 demonstrate the stability performance of SCAR
for different initialisation values of the scale factors «, and «, In this case
the initialisation value for the principal point is set to u, =v, =250. The
results show that values for the resulting intrinsic parameters are not

affected by the different initialisation values set for ¢, and «, .

Table 6.9 and Figure 6.28 illustrate the stability performance of SCAR for
different initialisation values of the principal points %, and v,. In this case,
the initialisation values for the scale factors are set to o, =, =1500. The
results also show that the resulting intrinsic parameters are not affected by
different initialisation values being set for u, and v,. This proves the

robustness of this algorithm compared to another available algorithm
[Luong and Faugeras 1997], which requires near to true initialisation values

in order to get correct results.
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6.4.3 Computational Complexity and Practical Realisation

Table 6.10 shows the performance of the whole algorithm in terms of speed
by using image with resolution 512 x 512 pixels. The algorithm was run in
Matlab installed in a computer with a 320 Mb RAM memory and Pentium
IIT 800 Mhz processor. It shows that the whole algorithm developed
requires around 20 seconds to be completed. The fundamental matrix
estimation consumes the most time followed by corner detection,
calibration matrix estimation and point correspondence match. The longer
time required by the fundamental matrix estimation is due to a high number
of samples for correspondence matches to be processed. The lower this
number is set by the user, the faster the time of completion. In this case, we

set the number of samples to be 1000.

The CPU time required for calibration matrix estimation stage 1s 5.1 second
for 30 iterations using Levenberg-Marquardt technique. For each iteration,
the time required is generally higher than other self-calibration methods due
to more constraints and unknowns to be solved in the algebraic approach.
However, the need for additional time to obtain the correct initialisation
parameters and the uncertainty of the number of iterations involved by
other self-calibration methods make the algebraic approach to be our

preferred method.

Table 6.11 illustrates the computational complexity for each stage involved
in the SCAR system. The computational complexity of MAPSAC is not
fixed because it depends on the number of sample matches set by the user.
For practical realisation of SCAR, the whole code needs to be converted
into C++ to take the advantage in terms of speed. Then, capturing of the 3
images required for SCAR should be set to be done every minute. Whenever
there is a need for updating the intrinsic parameters in between the minutes,
the AR system should be able to prepare an icon button where the user can

simply update the parameters at any time.
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Figure 6.19: Scale Factors Plot where Maximum Iterations = 200.
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Figure 6.20: Scale Factors Plot where Maximum Iterations = 100.
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Figure 6.21: Scale Factors Plot where Maximum Iterations = 50.
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Figure 6.23: Principal Points Plot where Maximum Iterations = 200.
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Figure 6.24: Principal Points Plot where Maximum Iterations = 100.
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Principal Points Plot for Max Iteration = 50
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Figure 6.25: Principal Points Plot where Maximum Iterations = 50.

Principal Point Plot for Max iteration = 30
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Figure 6.26: Prncipal Points Plot where Maximum Iterations = 30.
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Table 6.8: Stability performance of SCAR when different initialisation values

of &, and «, are used

Number
Initialisation, of

o, =, a, &, Uy Yo iterations
100 654.6860 927.0128 242.3709 271.2405 232
200 654.6860 927.0021 2423709 271.2411 59
300 654.6860 927.0003 2423709 271.2413 59
400 654.6860 926.9923 2423708 271.2417 46
500 654.6848 926.9239 2423705 271.2456 31
600 654.6853 926.9218 242.3705 271.2461 30
700 654.6858 926.9792 242.3708 271.2426 26
800 654.6863 927.0193 2423710 271.2402 27
900 654.6859 926.9709 242.3708 271.2432 25

1000 654.6860 927.0003 2423709 271.2412 26
1100 654.6860 927.0074 242.3709 271.2408 20
1200 654.6860 927.0110 242.3710 271.2405 24
1300 654.6861 927.0100 242.3709 271.2407 20
1400 654.6859 927.0041 242.3709 271.2410 22
1500 654.6863 927.0422 2423712 271.2387 19
1600 654.6862 927.0381 242.3710 271.2390 21
1700 654.6861 927.0073 2423710 271.2408 22
1800 654.6860 926.9955 242.3709 271.2416 24
1900 654.6861 927.0024 242.3709 271.2412 24
2000 654.6860 927.0009 242.3709 271.2412 24
2100 654.6858 926.9804 2423708 271.2421 27
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Table 6.9: Stability performance of SCAR when different initialisation values

Initialisation,

Uy =V
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

0

of u, and v, are used

a

u

654.686
654.6859
654.686
654.686
654.6861
654.6872
654.6858
654.6859
654.6877
654.6859
654.6861
654.6859
654.6858
654.6861
654.6858
654.6861
654.686
654.6861
654.686
654.686
654.6859
654.686
654.6861
654.6861
654.686
654.6859

a

v

927.002
926.9945
926.998
926.9941
927.0079
927.174
926.9808
926.963
927.2353
927.0007
927.0083
927.0049
926.9905
927.0046
926.9632
927.0069
927.0006
927.0127
926.9856
926.9981
926.9925
927.0001
926.9972
926.9992
926.9939
926.9842
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Uy
242.3709
242.3708
242.3709
242.3709
242.3709
2423717
242.3708
242.3708

242372
242.3709
242.3709
242.3709
242.3708
242.3709
242.3708
242.3709
242.3709
242.3709
242.3709
242.3708
242.3708
242.3709
242.3709
242.3709
242.3709
242.3708

Yo

271.2412
271.2416
271.2414
271.2416
271.2408
271.2306
271.2424
271.2437
271.2269
271.2411
271.2407
271.241
271.2419
271.241
271.2436
271.2407
271.2413
271.2405
271.2422
271.2414
271.2418
271.2413
271.2415
271.2413
271.2417
271.2423

Number
of
iterations
24
28




Table 6.10: Performance of SCAR in terms of speed for each algorithm.

Algorithm CPU Time Percentage (%)
(second)

Corner detection 54 251

Point correspondence 3.4 15.7
matching

Fundamental matrix 7.7 35.6
estimation

Calibration matrix estimation 5.1 23.6

Total 21.6 100

Table 6.11: Computational complexity of SCAR system.

Stage Technique used Computational Complexity
Harris corner 95 Addition and 22 Multiplication
Feature detector ops/pixel
Detection Harris 37 Addition and 13 Multiplication
refinement ops/corner
] 2W?* (Addition/Subtraction) and 4
Point Correlation .
(Multiplication) times B ops/corner
Correspondence
. Motion Vector
Matching 2N Subtraction
Analysis
Fundamental
Matrix MAPSAC Not fixed
Estimation
Calibration i . o
Algebraic 55 Addition and 27 Multiplication
Matrix ] ) )
Constraints ops/iteration
Estimation
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A weakness that the SCAR system has is the inability to detect and discard
pairs of images that undergo critical motion apart from case 1 as described
in Section 5.5, Chapter 5. When this occurs, the result for the intrinsic
parameters would be catastrophic and totally unreliable. Therefore, unless
this issue is taken into consideration, the motion where a pair of images is
captured will need to be controlled by the user so that it does not involve in

critical motion.

6.5 Conclusion

This chapter describes the full implementation of the SCAR system
developed throughout this thesis. It demonstrates the performance between

the offline calibration in ARToolKit with the self-calibration in the SCAR

system,

From the first experiment, the ARToolKit calibration procedures show the
tedious steps that need to be followed every time a camera needs to be
employed in an AR application. These steps involve user intervention, for
instance, the movement of the calibration plane further from the camera by
a certain distance while keeping the perpendiculatity of it to the camera,
which may cause the result of the intrinsic parameters to be varied by a
certain percentage from the true value. In contrast, the SCAR system
promotes a more automatic approach to camera calibration and the
deviation from the true value is about the same as that in the offline
ARToolKit camera calibration. This is shown in the second experiment with

the static camera.

In the third experiment regarding images that come from a normal live
video, the results show that, given a sequence of images that are noisy, the
SCAR system is still able to obtain as reliable result as ARToolKit. When

the distortion was corrected offline, the SCAR system showed
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improvements compared with results without distortion correction.
Therefore, if noisy and distorted images from live video are to be used in
the SCAR system, the distortion needs to be corrected in order to obtain
improved results for the camera parameters, especially when the distortion

is severe.

The fourth and fifth experiments demonstrate the full implementation of
the SCAR system, including the pre-calibration stages. Good results are
obtained from both the Harris-SUSAN Hybrid corner detection and our
point correspondence matching stage. These show that the SCAR system
allows only good point matches to be passed through for the fundamental
matrix estimation stage and calibration stage. In the fifth experiment, given
these point matches as the input, the calibration stage shows robustness and
stability of its intrinsic parameters results even though different initialisation
values were chosen. The optimum number to be used for Maximum
Iterations in Levernberg-Marquardt minimisation is only 30, which gives an

advantage to the SCAR system in terms of speed.
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Chapter 7

CONCLUSIONS AND FUTURE
WORK

7.1 Conclusions

Camera calibration remains an important topic in AR. The need to achieve
high accuracy by using a known pattern, however, overlooks the need to
provide a more flexible solution to calibrating a camera in AR. In the last
few years many researchers have tried to address this issue from a number
of different perspectives, focusing primarily on offline solutions for camera
calibration in AR. This kind of solution makes the camera calibration a
separate process from the AR system. An alternative approach, which is
advocated in this thesis, is to integrate self-calibration into the AR system;
this has the benefit of updating the intrinsic parameters online. This thesis
has developed an AR system that incorporates self-calibration based on a
moving camera. This chapter will summarise all the work presented in this

thesis and recommend some future work.

The aim of this thesis has been to explore the integration of camera self-

calibration in an AR system (SCAR). In particular, this research has been




concerned with updating the value of the intrinsic parameters of 2 monitor-
based camera involved in an AR task. To achieve this, several pre-
processing stages have been suggested, including a corner detection stage, a
point correspondence matching stage, a fundamental matrix estimation stage
and the self-calibration stage itself. Each chapter in this thesis describes the
work that has been done in each of the aforementioned stages towards the

completion of the camera self-calibration in AR.

In Chapter 1, it was stated that correct registration was a common problem
in AR, and that good camera calibration was needed as one of the most
cffective solutions. In the available literature, most AR systems require a
specified pattern to calibrate their cameras. We argued that even though the
camera calibration in current AR systems that uses a plane-based solution
provides good accuracy, it is less flexible, cumbersome and requires specific
equipment sectup. Furthermore, the intrinsic parameters of the camera
cannot be corrected online if they change whether intentionally or

unintentionally.

Having established the neced for a more flexible approach to camera
calibration, we analysed a typical AR system and proposed an alternative
solution that replaces an offline plane-based camera calibration AR systers with an
online integrated camera self-calibration AR system. We decided that several stages
need to be included as a pre-requisite to self-calibration, which consist of
corner detection; point correspondence match and fundamental matrix

estimation.

Having defined the proposed AR system, we introduced the general theory
behind self-calibration and its derivation in Chapter 2, including our pinhole

camera model, lens distortion and epipolar geometry.




Harris and SUSAN corner detectors have been proposed by Harris and
Stephens [1988] and Smith and Brady [1995] respectively as methods of
detecting high curvature features in an image. In Chapter 3, we reviewed
these two corner detectors. The performance of each corner detector for
stability, accuracy and speed was evaluated, and we discussed their
applicability for point correspondence matching. We addressed the
importance of accurate corners as Input for the fundamental matrix
estimation stage. Consequently, we proposed a Harris-SUSAN  Hybrid
corner detector in order to increase corner localisation. The search for true
corners is performed by variable sizes of mask that changes adaptively with
the number of connected region contained in two different sizes of mask
window. Results show that localisation error is reduced by using the

proposed corner detector.

Correlation functions are often used in searching for similarities in images or
image parts. This method was reviewed in Chapter 4 to find point
correspondences based on the detected corners method from Chapter 3.
The consequence of applying correlation is a score value between -1 and 1.
A corner point in one image is assumed to correspond with a point in
another image when it has the highest correlation score. However, this is
not always the case. A novel method based on motion analysis was
developed which discards all outliers. It achieves this by employing two
simple processes, mode of distance search and threshold setting. Results
show that this method outperforms other techniques in terms of accuracy,
simplicity and speed. A limitation of this method is that the performance is

less efficient for forward or backward motion.

Chapter 5 starts by describing several techniques for self-calibration. In this
thesis, an algebraic approach based on three views was used to solve for the
intrinsic parameters of an AR camera. The presented method directly

recovers the intrinsic parameters from the fundamental matrices and deals
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with general camera motons. It has a simpler algorithm than other
techniques and hence is suitable to be used for AR applications that require
a fast algorithm in order to reduce lag in the system. In order to tackle the
case when a camera with lens distortion is used, an algorithm to estimate
distortion parameters was developed based on epipolar constraint. Based on

the results obtained, distortion parameters can be estimated correctly when

the distortion is less than 1.2x10™ before they become unreliable.
However, due to the length of time needed to estimate these parameters, the

estimation of distortion parameters is better done offline.

Having finished developing the different stages, all of them were combined
to build a complete AR system with built-in self-calibration. In Chapter 6 we
demonstrated the performance of our AR system in comparison with
ARToolKit, which uses offline camera calibration. We showed in our
experiments that the SCAR system outperforms ARToolKit in terms of ease
of use while maintaining the accuracy of the intrinsic parameters. We have
already showed from the results that the pre-calibration stages have been
designed in such a way that they only provide the best inputs for each stage.
Provided that the camera motion is not critical, the SCAR system proves to
be able to produce reliable intrinsic parameters. In order to achieve more
consistent intrinsic parameters, the number of maximum iterations duting
calibration must be observed to a certain value. This conditon, however,
presents an advantage in terms of speed. The stability of the SCAR system,
however, holds as long as it is not involved in any of the critical motion

cases.

There are other things that need to be considered in order to make self-
calibration a choice as an accurate and robust calibration method apart from
plane-based calibration. The first consideration is the image-matching
process in which the coordinates of the points between image pairs need to

be correctly matched in order for the fundamental matrix to be correctly
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estimated. A second consideration is the lighting conditions when capturing
images. Since the image-matching algorithm is highly dependent on pixel
cotrelation, different lighting conditions between views can degrade the

ability to detect correct matches.

7.2 Future Work

A large part of the thesis has been concerned with the description of camera
self-calibration in AR systems with all the necessary stages, which involve
feature detection, point correspondence matching and fundamental matrix
estimation. Whilst the development of the whole system has been shown to
be successful, there is much scope for further improvement. In this section,
some possible future recommendations based on the current work are

presented.

The major limitation of using corner detectors in this work is that the
system will not work efficiently when there are few corners available within
the camera view. A more adaptive approach can be suggested to find other

features such as curves, but at the expense of complexity.

Using motion analysis to detect outliers in point correspondence matching
has limitations in the sense that outliers can hardly be detected when the
camera is moving forward or backward. One possible improvement on the
algorithm might include dividing the image into several segments. Then,
independent motion analysis could be applied by assigning different mode

values to each segment.

Feature detection and point correspondence matching can be improvised by
the use of visual tracking to speed up the pre-calibration stages. The Lucas-
Kanade algorithm may be employed to find the best features to track.

However, problems may occur when there is occlusion in the scene. Further
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research could be focused on the development of more flexible visual

tracking for real-time correspondence matching.

In practice, a mechanism to detect and discard critical motion pairs from
being processed by the system would be very important if we want to ensure
the consistency of the intrinsic parameters results when performing the AR
task. One suggestion for tackling the second case of critical motion is by
employing the algorithm described in Mendonca [2001] that deals with a
rotating camera where the principal axes of multiple camera positions

intersect.
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Appendix A

MARKER PATTERN FOR THE
ARTOOLKIT

The marker pattern is designed in such a way that it can be detected and
tracked as easy as possible. The followings are example of marker pattern
used by the ARToolKit (refer Figure A.1 and A.2). Note that the marker

pattern consists of two separate patterns:

1) Outside pattern which is a thick black square.
2) Inside pattern which can be in different shape. The users can have
the chance to design their own inside pattern to suit their

application.

Therefore, pattern detection process in ARToolKit involves two stages;
detecting the outside pattern and subsequent to this, the system will search

for the inside pattern.

As a rule, one inside pattern corresponds to only one virtual object (refer
Figure A3 (a) and A3 (b)). Therefore when the computer detects a

particular pattern, the corresponding virtual object will be seen overlaid on



the pattern. If the camera has been calibrated, the virtual object will be
overlaid according to the position and otdentation of the pattern (refer
Figure A.3 (c)). The OpenGL API is used for setting the virtual camera co-

ordinates and drawing the virtual images.

Figure A.1: Hiro pattern Figure A.2: Kanji pattern

s — &
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() (b) ©
Figure A.3: Augmenting patterns with virtual objects.
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Appendix B

TEST IMAGES

totol toto2 totol

Figure B.1: Lab sequence



bighouse_frame_000 bighouse_frame_001

bighouse_frame_009 bighousc_frame_010

Figure B.2: House sequence
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Figure B3: Fountain sequence
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