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With the growth of the Internet over recent years, the use of distributed systems has
increased dramatically. Components of distributed systems require a communications
infrastructure in order to interact with other components. One such method of com-
munication is a notification service (NS), which delivers notifications of events between
publishers and consumers that have subscribed to these events. A distributed NS is
made up of multiple NS instances, enabling publishers and consumers to be connected
to different NSs and still communicate. The NSs attempt to optimise message flow be-
tween them by sharing subscriptions between consumers with similar interests. In many
cases, there is a mismatch between the dissemination notifications from a publisher and
the delivery preferences of the consumer in terms of frequency of delivery, quality, etc.
Consumers wish to receive a high quality of service, while a service provider acting as
a publisher wishes to make its service available to many consumers without overloading
itself. Negotiation is applicable to the resolution of this mismatch. However, existing
forms of negotiation are incompatible with distributed NSs, where negotiation necds
to take into account the preferences of the publisher and consumer, as well as existing
subscriptions held by NSs. We introduce the concept of chained negotiation, where oue
or more intermediaries sit between the client and supplier in a negotiation, as a solution
to this problem. Automated chained negotiation can enable a publisher and consunicr
to find a mutually acceptable set of delivery preferences for a service to be delivered
through a distributed NS, while still enabling NSs to share subscriptions between coi-
sumers with similar interests. In this thesis, we present the following contributions: first,
we show that by using negotiation over quality of service conditions, a service provider
can serve more clients with a lower load on itself, presenting a direct negotiation engiue
for this purpose. We present chained negotiation as a novel form of negotiation enabling
quality of service negotiations to involve intermediaries which may be able to satisfy a
client’s request without involving the service provider. Finally, we present a distributed
notification service with support for chained negotiation, showing the benefit gained

from chained quality of service negotiation in a real application.
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Chapter 1

Introduction

1.1 Distributed Systems

Possibly the biggest change in the field of computing over the past decade has been the
explosive growth of the Internet, linking networks all over the world and enabling people
to communicate and collaborate, sharing information. It has also enabled computer
systems to interact with other geographically distributed computer systems, almost as
easily as if they were locally connected. Stock control systems in shops can automatically
place orders with their suppliers where previously a human would have placed an order
by telephone or mail, customers can track the current location of a parcel they have
shipped anywhere in the world, and traders can monitor and trade stocks and shares in
real time where they would previously have telephoned a broker. Prior to the Internet,
businesses could interact electronically by means of private dial-up networks, whiclh
were costly, slow and restricted in terms of which organisations they could interact with.
The Internet has provided an affordable global network which enables interaction with

millions of other organisations around the world.

While the most common use of the Internet is to enable people to communicate with
other people, or to interact with businesses and other organisations electronically, a more
recent development has seen improvements in methods enabling machines to interact
with each other — Web Services. A Web Service is a software system designed to support
interoperable machine-to-machine interaction over a network (Web Services Architecture
Working Group, 2004). Web services encompass a universal language for the exchange of
data between applications and protocols for remotely discovering and accessing electronic
services with a machine-processable interface, and enable applications to interact with

other applications distributed anywhere in the world.
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1.1.1 The Grid

Access to a global network has also enabled scientific projects to collaborate, leading
to the vision of the Grid, which is a system enabling the distributed coordination of
resources. These resources can include computing power, storage space, databases,
scientific apparatus and any other service or device that can be networked. Having
these shared resources allows a group of people who have never met to dynamically form
a virtual organisation in order to collaborate on a task (Norman et al., 2004). When the
task has completed, the virtual organisation may be disbanded without the individuals
involved ever knowing their collaborators. While the Grid is still a vision, many grid
systems have been created, realising some of the ideas in the Grid concept. Scientific
applications are major users of grid systems — they are typically computation- or data-
intensive, making them ideal candidates for using shared resources and making their own
resources available. By sharing resource and using shared resources, an organisation can
typically run such an application at a lower cost than by having to acquire and support

the necessary resources themselves.

1.1.2 Service-Oriented Architectures and Quality of Service

Both Web Services and grid systems have led to the notion of a service-oriented archi-
tecture (Burbeck, 2000) — an architecture that focuses on the description of services
and supporting their dynamic, automated discovery and use. Services offered can vary
in complexity from simple stock quote services to more complex scientific experiments or
database searches. Service providers may exist for the sole purpose of providing services

to others, potentially for financial reward.

In some situations, it may be insufficient to simply request a service make assumptions
about the quality of service. For example, a scientific experiment may have some equip-
ment time preallocated in the future, but requires an external service to perform some
analysis on existing data before it can use the equipment. If the external service does
not complete in time, the pre-booked equipment time is wasted. Hence, it is often de-
sirable to specify constraints about how a service is delivered, which we broadly refer
to as Quality of Service (QoS). QoS parameters control how a service is delivered, as
opposed to what service is delivered or the inputs to that service, e.g. service delivery

time, or accuracy with which a service is run.

There is commonly a difference between the levels of QoS a client would like to get,
and those which a service provider would like to provide. Service providers may try and
provide lower QoS than a client would prefer to receive in order to reduce their costs or
increase their throughput, enabling them to serve more clients. A small number of clients
requesting a very high QoS could overload a service provider, making it unavailable to

subsequent clients. In such situations, negotiation can be used to find a compromisc
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between the QoS levels a client prefers and those the provider is willing to supply, as is
commonly used in distributed real-time systems to specify requirements for resources (Li
and Ravindran, 2004), and in multimedia systems for resource reservation (Rothermel
et al., 1997).

1.1.3 Notification Services

Computationally-intensive experiments in grid systems make take hours, days or even
weeks for each stage, composed of a grid service made available for use, to complete.
It is undesirable for a service to be waiting on a previous stage of the experiment to
complete, as the time spent waiting could be better used to serve other experiments.
In such situations, a message-based system where actions can be triggered on receipt of
an event notification may be used to trigger the next part of the experiment, freeing up
the waiting services to carry out other actions while they are free. Notification Services
(NSs) are message-based communication systems that are used to inform consumers
that an event has taken place, by delivering a notification to them. These notifications
are created by publishers, which are information sources, and are published on a specific
topic, grouping similar messages together. Consumers subscribe to the topic they are
interested in, and then receive all notifications published on that topic. A NS could he
used to inform users that one stage of an experiment has been completed, or that a stock
price they are monitoring has changed. It is possible for a consumer to request specific
QoS levels when they subscribe to a topic. For example, they could request that their

notifications are compressed, or specify a minimum interval between notifications.

A common trait with any distributed system is that as the use of a system scales up, oue
part can become a bottleneck or a potential single point of failure for the entire system. A
NS could become such a bottleneck in a distributed system, as it can potentially support
many different services and applications. Having multiple NSs can enable a system to
stay running if one fails, and also means that publishers and consumers can be spreac
between the different instances, spreading the load. Hence, an extension of a notification
service is a distributed notification service, made up of multiple individual notification
services linked together (Krishna et al., 2003). A distributed NS can also enable a wider
range of users to be serviced — users behind a firewall could be connected to a local
NS that can connect through the firewall to other parts of the distributed NS. In a
distributed NS, messages are still delivered to consumers if the publisher is connected
to a different NS. The routing of messages between the various NSs is handled by the
NSs; the publisher and consumer do not even need to know they are connected by a
distributed NS. When multiple consumers at the same NS are subscribing to the same
topic published at a different NS, an optimisation can be made in the message routing.
Instead of an individual copy of every notification being sent between the NSs, a single

copy could be sent, then redistributed to each consumer by the NS. The consumers’ NS
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only needs to make a single subscription to the publishing NS, which it will then share
between the subscribed consumers. Hence, we refer to shared subscriptions as those
made by a NS to another NS in order to share notifications between multiple consumers

interested in the same topic.

However, as mentioned above, consumers can request specific QoS conditions along with
a subscription. For example, notifications can be assigned a priority to ensure that
urgent notifications are delivered quickly, or a particular format of notification can be
specified. For a subscription to be shared, the topic has to be the same, and the QoS
conditions have to be compatible — whether a particular QoS can satisfy another QoS
request. For example, if price is a QoS condition, and a request specifies a certain
price, if the service is obtained for less, that is compatible with the QoS request. In
this example, QoS conditions better than requested are compatible with the request.
Other QoS conditions may only be considered compatible if the QoS value is exactly
as requested. If two consumers request a subscription to the same topic, but their
QoS conditions are incompatible, it would be impossible for the NS to share a single
subscription between them; instead, it would need to make two individual subscriptions
to the same topic, one for each consumer. As the scale of this problem increases beyond
two consumers, it could potentially lead to a large number of additional subscriptions
being required, greatly increasing the number of notifications that must be sent between
NSs and increasing the overall load on the system. To resolve this, a mechanism is
required that can find a compromise between the QoS preferences of a consumer, the
QoS preferences of a publisher and any existing subscriptions already held by a NS, in

order to maximise the benefits of sharing subscriptions and notifications.

1.2 Research Aims

The problem we are seeking to address in this thesis is to allow a service provider
to support more consumers, yet minimise system load by enabling a compromise to be
reached between the levels of QoS a consumer would like and manageable levels a service
provider can maintain for many consumers without placing too much load on itself. We
believe that adopting work done on negotiation in the field of agent-based computing
provides a means to improve the performance of such systems. Our research aims can

therefore be enumerated as follows:

1. As consumers and service providers typically have different preferences about QoS
when requesting a service, a mechanism is required to manage the provision of
service or notifications that can find a compromise between the high QoS levels
requested by the consumer, and the manageable QoS levels desired by the ser-

vice provider. One technique which can be used for this purpose is automated
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negotiation. We aim to show that direct negotiation is suitable for resolving these

differences, and by empirical evaluation show the behaviour of such a system.

The contributions provided by completing this aim are an empirical evaluation of
a direct negotiation engine showing the behaviour of such a system independent of
external influences, and a demonstration that negotiation is a suitable mechanism
for enabling a service provider to allow a consumer to specify QoS conditions
when requesting a service without imposing an unmanageable load on the service

provider, restricting the number of clients it can support.

2. As the scale of a NS deployment increases, a distributed NS is often used instead.
In this situation, multiple NSs are interconnected, with publishers and consumers
spread between them. Where multiple consumers at the same NS subscribe to the
same topic published at a remote NS, the local NS can share a single subscription
to the remote NS, sharing notifications received on that topic between the sub-
scribed consumers. However, if the consumers request different QoS constraints it
may be impossible to share a subscription between them. In this situation, nego-
tiation offers an appropriate means to find a compromise between the QoS levels
requested by the consumer, those desired by the service provider, and any existing
subscriptions held by a local NS. However, direct negotiation is unable to provide
a solution in this case, as it only involves two parties, the consumer and service
provider. We thus need to develop a new form negotiation capable of involving
intermediaries between a service provider and a consumer. In this situation, a
chain is formed between the service provider and consumer, with NSs as interme-
diate steps. In consequence, we aim to develop a new form of negotiation that will
involve intermediaries in the chain. This chained negotiation method will enable
a service provider to support more consumers more efficiently than by allowing

them to obtain their requested QoS levels.

Chained negotiation, being a new form of negotiation, will represent a contribution
of this thesis, enabling the reselling or redistribution of items obtained through

negotiation.

3. Although many existing NSs allow a consumer to specify QoS constraints when
subscribing to notifications, none currently use negotiation to find a set of QoS
conditions acceptable to both the consumer and service provider publishing the
notifications. We thus propose to develop a new architecture based on a distributed
NS that will enable multiple consumers to request levels of QoS for a service that
will be delivered as notifications through a NS. Our objective is to be able to
find a compromise between the typically high preferences of the consumer, the
manageable levels of QoS favoured by a service provider, and existing subscriptions
to the service held by intermediaries between the consumer and service provider.
This will enable the load on the service provider to be kept to a manageable

level, while enabling the distributed NS to efficiently share subscriptions betwecn



Chapter 1 Introduction 6

1.3

consumers with similar preferences. To show the validity of this approach, we
propose to take a scientific application from the bioinformatics field and develop
it to work within this architecture, showing any improvements made by using our

approach.

This new architecture enabling QoS negotiation for services in a distributed notifi-
cation service will represent a contribution of this thesis, along with the evaluation

of the architecture demonstrating the benefits of using it in a real application.

Thesis Structure

The remainder of this thesis is organised as follows:

In Chapter 2 we introduce notification services, explaining the need for them and

reviewing existing implementations.

In Chapter 3, we discuss negotiation. Different negotiation mechanisms are in-
troduced before examining automated negotiation. We review existing automated

negotiation systems.

In Chapter 4 we take a bilateral negotiation model and develop DiNE, a direct
negotiation engine. Through simulations, we show that using negotiation over
QoS enables a service provider to offer services at a QoS level acceptable to both

service provider and client, enabling more clients to be served.

In Chapter 5, we develop the negotiation engine discussed in Chapter 4 to sup-
port chained megotiation, where one or more intermediaries are involved in the
negotiation between client and service provider. We present a negotiation model
supporting chained negotiation, which is developed into ChaNE, a chained nego-
tiation engine. We show through simulations that in the context of a distributed
notification service, chained negotiation can enable consumers and publishers to
negotiate over QoS levels, while still being able to share subscriptions to notifica-

tions between consumers with similar preferences.

In Chapter 6 we integrate an existing distributed notification service, and integrate
it with our chained negotiation engine, creating an architecture for delivering ser-
vices with negotiable quality of service through a distributed notification service.
We adapt a specific example of a protein compressibility analysis application to
make use of the NS, enabling us to show that a service provider can reduce the load

on itself and support more clients by using chained negotiation with a distributed
NS.

Finally, we present our conclusions in Chapter 7 and discuss future work.



Chapter 2

Notification Services

In a distributed system where services depend on other service running in different
locations, messages can be delivered by notification services informing an object that an
event has taken place. In large scale distributed systems, these notification services can
make delivery of these messages more efficient amongst large numbers of recipients. In
this chapter, we explain the concepts behind notification services, and review existing
work in the field.

2.1 Introduction

With the increase of the Internet and global networks over the past few years, the use of
distributed computer systems has grown significantly. This has led to the vision of the
Grid — a system that “coordinates resources that are not subject to centralised con-
trol, using standard, open, general-purpose protocols and interfaces to deliver non-trivial
qualities of service” (Foster, 2002). In this vision, teams of scientists or users arouid
the world can dynamically form a group or virtual organisation in order to collaborate,
sharing heterogeneous services. After the task has been completed, the virtual organi-
sation may disband without the members ever having known their collaborators. At the
moment, some of the vision of the Grid remains just that. The Grid requires open stan-
dards and protocols to be agreed on and used such that resources can be shared and used
by any interested party, not just one from the same system. However, parts of the Grid
vision have been realised by many different grid systems. These are typically used to
support scientific applications that are computationally-intensive, data-intensive and/or
resource-intensive. They provide mechanisms for the discovery and accessing remote
services dynamically at runtime. e-Science applications are major uses of grid systems,
utilising them to carry out experiments in the areas of bioinformatics (myGrid Project,
2003), combinatorial chemistry (Comb-e-chem Project, 2003), and physics (GriPhyN

Project, 2005) for example. Experiments can be carried out in silico, or can make use

7
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of networked laboratory equipment exposed as a grid resource.

At the same time, new uses for the Internet have taken shape. While the Internet has
been traditionally used for enabling interactions between humans, providing sites full of
information and enabling communication between people, very little had been done until
recently to make these features universally available to machines. Web Services are soft-
ware systems enabling machine-to-machine interactions, encompassing techniques such
as data interchange (using XML-based protocols), service discovery (UDDI), machine-
readable descriptions of a service (Christensen et al., 2001) and remote invocation of ser-
vices (World Wide Web Consortium, 2003). As web services have matured and gained
in popularity, grid systems have begun to adopt web services techniques. For exam-
ple, one of the most recent incarnations of a grid framework is the Open Grid Services

Infrastructure, which is based on web services technologies.

Both grid systems and web services are examples of a service oriented architecture
(SOA), which is a model exposing functional units of an application through services
(Colan, 2004). Services have well-defined interfaces, and may be accessed in a platform-
independent manner, enabling services on different operating systems and hardware to
interact. Different services can be composed together, and made available as a service
itself. SOAs have been around for a long time in one form or another — CORBA and
DCOM are both older examples. The concept of a SOA today typically (but not ex-
clusively) includes the use of XML for data interchange and WSDL for describing the

interfaces of a service.

Experiments in grid systems, and complex services in SOAs, may be expressed as work-
flows, structures composing different services or components together to accomplish
specific goals. In computationally-intensive experiments, each stage of a workflow may
take a long time to complete. For this reason, it is undesirable to have a service or
resources tied up waiting for a previous stage of the workflow to complete. Instead,
a messaging-based model can be used to send the output of one stage of a workflow
onto the next stage(s). A Message-Oriented Middleware (MOM) provides the basis
for such an architecture by facilitating messaging between different components or ser-
vices. There are many variations of MOMs, including message queueing systems and

notification services.

A notification service (NS) is a messaging system that delivers notifications of events
to consumers who have registered an interest in receiving them. The notifications come
from publishers, which are information sources. NSs enable a publisher to distributc

information to many consumers without needing to be aware that they even exist.

For the remainder of this chapter, we review message-oriented middleware systems,
specifically notification services, as communication mechanisms for a distributed sys-
tem. In Section 2.2, we examine two communication patterns which are relevant to this

chapter. Then in Section 2.3, we introduce message-oriented middleware systems as a
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mechanism for remote invocation of services and interaction between distributed com-
ponents. We move on to Notification Services in Section 2.4, then discuss distributed
notification services in Section 2.4.2, which increase tlhie scalability and reliability of a
notification service. Section 2.5 discusses standardisation efforts for notification services,
and Section 2.6 reviews some existing notification services. We summarise in Section

2.7 and discuss how this is relevant to our aims in Section 2.8.

2.2 Communication Patterns

In software development today, there are many different types of communication patterns
between parts of a program. Some of these patterns are also used for communication
between components in a distributed system. We describe some of these communication

patterns below, so that we may draw on their definitions later in this chapter.

2.2.1 Remote Procedure Calls

Remote Procedure Calls (RPCs) are a paradigm for providing communication between
programs over a network (Birrell and Nelson, 1984), and are based on the simple model
of procedure calls within a program where control is transferred to another portion of
the same program on the same computer. RPC simply extends this paradigm to allow
control and data to be transferred to a procedure running in another program, usually
on another computer in a network. As shown in Figure 2.1, when a remote procedure
call is executed, the calling environment is suspended and state information is passed to
the callee, or the environment where the remote procedure will be executed. When this
procedure finishes, the state information including the procedure result is passed back

to the caller, and execution continues.

Caller Callee

request

activity
response

FIGURE 2.1: Sequence Diagram of RPC Interactions

For the caller, an RPC interaction is synchronous, meaning that the caller must stop

and wait for the remote activity to complete before continuing its execution. This could
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be a problem in situations where the remote activity is going to take a long time, or

when the communication link between the two is unreliable.

Most of today’s high-level programming languages support RPC, either through an OS
implementation or as part of the language, such as Java RMI (Microsystems, 2003),
Microsoft’s DCOM (Horstmann and Kirtland, 1997), and SOAP (World Wide Web
Consortium, 2003), which provides a mechanism for achieving RPC-style interactions in

a web services environment, in addition to a much wider range of interaction styles.

2.2.2 Publish/Subscribe Interactions

In object-oriented software engineering, the observer interaction pattern is used where
there is a dependency between a subject, and a number of observers — objects interested
in changes to the state of the subject (Gamma et al., 1995). A subject can have any
number of observers, as it does not need to be aware of them. Whenever a change occurs
in the state of the subject, it notifies all observers of this change, using a mechanism
that does not change whether it is notifying 0, 1 or 1000 observers of the changes. Figure
2.2 shows the interactions between the subject and observers — observers subscribe to
a subject in order to receive notifications of updates. When the subject is updated, it

notifies any observers of these changes.

Subject Observer Observer

4 subscribe

subscribe

P
%

update |

notity . notify

FIGURE 2.2: Sequence Diagram of Publish/Subscribe Interactions

The observer pattern is used in situations where changes in one subject cause events to
occur in an indeterminate number of observers, without the subject needing to interact
directly with the observers. In software development, it is often used to enable a graph-
ical user interface to display updates to underlying data structures. It is also used in
distributed systems, where it is more commonly known as publish/subscribe (Birman,
1993). In publish/subscribe Subjects are publishers of notifications, and any number of
consumers (observers) can subscribe to receive these notifications. Publish/subscribe
resembles multicast in nature, as it allows a publisher to reach multiple consumers with

no difference from sending the message to a single consumer.
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2.3 Message-Oriented Middleware

Over recent years, there has been a significant increase in the number of computers and
other devices wishing to access and run remote services over a network. Traditionally,
this would have been accomplished using RPC (as described above), but there are a
number of disadvantages to this approach. RPC usually requires a client to issue their
request, then await a response. This is often undesirable or difficult to achieve. For
example, a user can invoke a long-running job from a PDA while on the move. It is
impractical for them to stay connected while the service runs, as the device has limited
battery life and an unreliable or expensive network connection. Additionally, RPC
interactions generally mean a service is run immediately, which makes it difficult for a

service provider to handle load from multiple clients simultaneously.

An alternative method of distributed interaction is distributed messaging, where com-
munications are based on the exchange of messages (often referred to as events, as
messages are often sent to indicate that something has taken place). Message-oriented
middleware (MOM) systems are messaging systems facilitating the asynchronous, reli-
able communication between entities by the exchange of messages, and can be used for a
range of scenarios, including integrating distributed applications (Banavar et al., 1999b),
information exchange and event notification. They are an extension to the client-server
paradigm of computing to enable asynchronous operations, so that a client can send a
request to a server that is currently ofi-line, or a server can operate without the worry
that a client is waiting for an immediate response (Birman, 1996). They also enable
clients to communicate with servers without ever being directly connected — the MOM
handles routing of messages as appropriate. Essentially, MOM systems are similar to
an e-mail system for applications, letting different programs use named mailbozes for
sending and receiving, and acting upon the contents of the messages (Birman, 1996).
A subset of MOM, Message Queuing Middleware (MQM), uses queues for sending aid
receiving messages, further decoupling the client or server from the MOM by making
the send or receive asynchronous (as compared to synchronous, where they have to wait
for the message to be sent or for the reply to be received). By enabling simultaneous
access to both sending and receiving queues, a MQM system can support many users.
MQMs also facilitate load balancing by using queues — multiple service providers could
be connected to a queue of requests, sharing the load between them without their clieuts

knowledge.

MOM systems solve some of the problems associated with a traditional RPC-based
approach: long-running operations can be scheduled without the client having to wait
on-line for a response; service providers can handle a large number of simultaneous
clients, potentially by transparently sharing the load with other service providers. MOM
also enables a simpler programming model than RPC — it is possible for a client to make

use of a remote service without specifying where or which server should carry out the
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request. Instead, the client locates a messaging server and sends the request. The client
does not need to know which service carries out the request, or what software it is

running.

MOM systems have been around for some time, hence there are many established im-
plementations available. Examples include Microsoft Message Queue (MSMQ) !, IBM’s
Websphere MQ? (formerly MQSeries), and DEC’s MessageQ, which allow reliable asyn-

chronous communications within guaranteed delivery constraints.

2.4 Notification Services

A notification service (NS) is part of a MOM utilising the Publish/Subscribe model
described above. In the above description of publish/subscribe, no mention is made of
how notifications reach the consumers from the publisher. A NS is an object that takes
this responsibility, taking notifications from the publisher and handling the distribution
and delivery to the subscribed consumers (Hapner et al., 2002; Object Management
Group, 2004, 2002). A NS uses the publish/subscribe model in two locations as shown
in Figure 2.3 —- to receive notifications from the publisher (the publisher notifies the

NS of any notifications), and to publish these notifications to the consumers (consumers
subscribe to the NS and receive notifications).

Publisher

FIGURE 2.3: Publish/Subscribe interactions in a NS

_.subscribe....
publish

..subscribe......
publish

The basic model of interactions in a notification service is shown in Figure 2.4, where a
NS is used to manage the subscriptions held by consumers, enabling the efficient delivery
of notifications. The NS represents a service mediating between the publishers publishing
notifications, and consumers consuming notifications. A consumer will register interest
in notifications by subscribing, indicating the topic of the notifications they are interested
in. consumers may not be aware of the sources of the notifications, only the topic to
which they belong. Equally, publishers may not be aware of the number or identity of
any consumers, as this information is managed by the NS. Consumers unsubscribe when

they no longer wish to receive notifications.

There are two types of subscription in a NS — push subscription and pull subscription.
In a push subscription, it is the job of the NS to deliver a notification to a consumer wheu
it is published. Conversely, in a pull subscription it is the responsibility of the consumer

to check for any new notifications on the NS. These subscriptions can be likened to

Thttp://www.microsoft.com/msmq/
*http://www-306.ibm.com/software/integration /wmgq/
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Notification Service

Publisher osci9 Consumer
A\M\——————
- Storage and
Publish management of | | subscribe c
ublisher subscriptions onsumer
Publisher publis notify Consumer
. noti
Publisher b » Consumer

FIGURE 2.4: Interactions in a Notification Service

e-mail protocols — push subscriptions are like SMTP (Postel, 1982) where messages are
delivered to waiting servers. Pull subscriptions likened to receiving your e-mail with a
mail client using POP3 or IMAP, where the messages reside on a server while you are
offline. Push subscriptions tend to be delivered as soon as a notification is published,
hence are well-suited to time-critical applications. However, consumers may be located
behind firewalls, with no way for a NS to contact them directly. In this situation, a pull

subscription is the only way a consumer can receive any notifications.

The publish/subscribe interaction pattern decouples the publisher from the consuimers
in terms of time, space and synchronisation (Eugster et al., 2003). Time is decoupled
as there is no need for the publishers and consumers to be active at the same time —
notifications may be published while a consumer is off-line, in which case they will be
delivered when the consumer reconnects later. In terms of space, there is no need for
the publisher and consumer to ever contact each other directly, or even be aware of
each other’s existence. Notifications are delivered to the consumers by a third party,
so publishers do not know how many consumers are receiving their notifications, or the
identities of any of them. Equally, consumers do not necessarily know the source of tle
notifications that they receive. Decoupling of synchronisation is implied by the previous
two properties — as the consumer and publisher do not contact each other directly, the
processes of publishing and receiving notifications can be asynchronous non-blocking
operations, allowing each to work on something else while not processing notifications.
Decoupling the publishers and consumers in a system increases the scalability by re-
ducing the explicit dependencies between the parties in a system, and enabling it to he
more suited to a distributed environment, such as in a mobile environment (Huang and
Garcia-Molina, 2001).

Notification services can provide additional functionality on top of the delivery of noti-

fications between publishers and consumers, including these diverse possibilities:

o Reliable message delivery — As an increasing number of network-based appli-

cations rely on a MOM layer for communications, the need for guaranteed de-
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livery of interactions becomes more important (Pallickara et al., 2005). This is
shown in particular for the field of Web Services by the recent development of two
standards, WS-Reliability (OASIS, 2004a) and WS-ReliableMessaging (Bilorusets
et al., 2005). Reliable message delivery for a notification service ensures that a
consumer subscribed to notifications on a particular topic is guaranteed to re-
ceive every notification published on that particular topic, and that failures in the
middleware layer can be tolerated (Pallickara and Fox, 2004b).

e Durable topics — If a consumer connects to a NS and subscribes to a particular
topic, they will typically receive all notifications sent on that topic from that point
forward Krishna et al. (2003). Durable topics allow a consumer to subscribe to
a topic and receive all existing notifications that were sent before the point of

subscription.

o Message prioritisation — In some cases it may be important to prioritise certain
messages, to ensure that important messages are delivered as soon as possible.

NSs can enable notifications to be prioritised in such a way.

o Message digests — Consumers may not wish to receive a single notification for
every event that occurs in a system; they may instead wish for a single digest
of all notifications sent over a certain period to be created for them by a NS
(Fox et al., 2005). Such a service can be extended further to provide arbitrary
transformations of messages, such as translating a notification from one format
to another, or combining notifications from multiple publishers to remove any

duplicate notifications.

o Message Filtering — While a consumer registers an interest in notifications on
a particular topic, they may not actually be interested in all of the messages on
that topic. The NS may provide additional filtering, to restrict the notifications
that the consumer receives to those that it is interested in (Banavar et al., 1999a;
Carzaniga et al., 2000).

Notification services can be used to publish notifications of many different events, such
as changes to a database (Oinn, 2002) or stock prices. Recently, they have also been

used in projects from the grid community, including the following examples:

e myGrid (myGrid Project, 2003) is an e-Science project that aims to help biologists
and bioinformaticians perform workflow-based in silico experiments, and automate
the management of such workflows through personalisation, notification of change
and publication of experiments (Moreau et al., 2003). The focus of myGrid is
on increasingly data-intensive bioinformatics and the provision of a distributed

environment that supports the in silico experimental process. This experimental
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process is expressed as a workflow script, describing how services should be coni-
posed in order to realise the experiment desired by the scientist. As such workflows
may take days or even weeks to complete, it is impractical to have a user agent
on-line to monitor the status of their job. Instead, the myGrid notification service
(MGNS) is used to forward messages to user agents when present, or to store and

forward messages in their absence (Krishna et al., 2003).

e SERVOGrid (Donnellan et al., 2004; ServoGRID Project, 2005) is a Grid system
for earthquake modelling and simulations. One application is RDAHMM (Granat,
2004), a time series data analysis program for mode change detection. In SER-
VOGrid there are a number of geographically distributed GPS stations, which
publish data continuously. This data is used by the RDAHMM application, as
well as other applications including a database for permanent storage, and portal
applications for human interaction. Since data is published by a number of sources
and consumed by a number of applications, this is ideal for a notification service.
The NaradaBrokering notification service (Pallickara and Fox, 2003) is used to de-
liver notifications from the individual GPS stations to any applications that have
expressed an interest in it. In turn, these applications may publish events based
on the data from the GPS stations, which may be used through the notification

service by other applications.

2.4.1 Quality of Service in Notification Services

Being able to request subscriptions to a particular set of notifications is sometimes not
enough. As a notification service is generally asynchronous, there may be no explicit
guarantees on how a service will be delivered. Service-oriented architectures are iu-
creasingly supporting Quality of Service (QoS) constraints to be set when a service is
requested, and even when a service is discovered (Deora et al., 2004). Hence, a mech-
anism must be present to enable a subscription to be requested with a specified set of
Quality of Service (QoS) guarantees. Such QoS terms specify how a service is delivered
(non-functional requirements) rather than details about the subscription itself (func-
tional requirements), and may be used to indicate properties of the subscription itself,
or of services that a notification service may provide on top of the subscription (such as
notification digests or aggregation). To illustrate the range of QoS terms, the following

are all possible:

e Notification Frequency — The amount of time between notifications, for situations

where the NS may store notifications to be delivered later.

o Message Size — Whether a message should be compressed, or restricted to a

certain size before sending an additional message.
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e Notification Format — The format a message should be in. NSs are capable of

translating from one format to another.
e Reliability — Whether a guarantee is provided that a notification will be delivered.

e Priority — The priority a message is sent with. Higher priority messages may be

delivered before lower priority messages ahead of them in a queue.

e Timeliness — The amount of time between an event occuring and a notification

being sent.

Every notification service we have examined supports QoS to some degree by allowing
subscriptions to be requested with certain conditions. However, consumers and publish-
ers may not always agree on what QoS conditions a service should be provided under.

Current NSs provide no mechanism for resolving this.

2.4.2 Distributed Notification Services

As the scale of a deployment increases, so too does the load placed on the NS. As with
any single service in a system, if load increases too much it can become a bottleneck,
potentially restricting performance or availability of the entire system (Pallickara and
Fox, 2001). Hence, in large-scale deployments, multiple instances of a NS are likely to
be hosted at different locations (Krishna et al., 2003), with such distribution of NSs
offering many benefits. As there is no longer a single NS responsible for the delivery
of all notifications, the system scales better to handle larger numbers of publishers,
consumers and messages. It also tolerates one or more NSs failing without bringing
down the entire system, thus increasing the scalability and reliability of the system.
Additionally, this can increase security in a system by allowing information on private
topics to be published only to a local NS situated behind a firewall, while being able to

use the same NS for global topics.

Distributed NSs are networked, enabling them to propagate notifications between pub-
lishers and consumers that are connected to different NSs. It is the responsibility of
the NS to handle the routing of messages between publishers and subscribed consumers.
Figure 2.5 shows a scenario where there are many consumers subscribing to notifica-
tions being published by a single publisher. The consumers are distributed between
many NSs, relying on their NS to deliver notifications. In a distributed NS, multiple
publishers and consumers may be connected to different NSs, which in turn are con-
nected to each other using any topology. A clear problem with a distributed NS such as
this is how to optimise the number of notifications being sent between NSs (Pallickara
and Fox, 2004a). For example, if a NS has ten consumers subscribing to notifications
on the same topic, it is only necessary for the NS to receive a single copy of each noti-

fication. A shared subscription is a subscription made between notification services in
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order to receive notifications that will be redistributed between multiple consumers with
similar interests. The process of redistributing notifications received on this subscription
is sharing notifications. For multiple consumers to be able to use a single shared sub-
scription, the two subscriptions from the consumer must be compatible, i.e. the same
topic, and compatible QoS conditions. For example, if one QoS constraint is message

format, consumers requesting different formats will not be able to share a subscription.

ns4 ns3 ns2 nsl p

L 1 1 1

1 1 1
u c u c u c u c ‘
FIGURE 2.5: Consumers (c) connected through notification services (ns) to publishers

(p)

There are many existing implementations of notification services, in both commercial and
research environments. Many of these support deployment in a distributed configuration,
as discussed in this section. In Section 2.6, we discuss the approaches taken by some

existing NSs to the problem of sharing notifications.

2.5 Standardisation Efforts

With many different implementations of messaging-based products, it is difficult for them
to work together. A number of efforts have been undertaken to enable different solutions
to work together: WS-Notification is a standard being developed to enable web services-
based notification services to work together; WS-Eventing is a similar but competing
standard; JMS, while not a standard, is an API which many other implementations
of messaging products support, providing some common ground on which they can

cooperate. We consider each in detail below.

2.5.1 WS-Notification

WS-Notification (Graham et al., 2004) is a family of specifications making up part of
the Web Services Resource Framework (WSRF) (Czajkowski et al., 2004) defining a
web services approach to notification using a topic-based publish/subscribe model. It is
made up of WS-BaseNotification (OASIS, 2005a) and WS-BrokeredNotification (OASIS,
2005b). WS-BaseNotification defines the basic roles necessary for publish/subscribe

interactions — a NotificationProducer and NotificationConsumer.
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A NotificationConsumer defines an endpoint for receiving notifications from a Notifi-
cationProducer. The WS-Notification standard defines two types of notifications that
may be received — raw notifications and notify messages enriched with metadata. Raw
notifications are intended to be used for an application-specific context, whereas notify
messages provide additional information in a well-defined format, such as the topic of

the notifications, and references to the subscription and producer.

A NotificationProducer produces notifications to be delivered to a NotificationConsumer
on a particular topic. The NotificationProducer is also responsible for handling subscrip-
tion requests and maintaining a record of which subscriptions are in place. The Notifi-
cationProducer handles NotificationConsumers subscribing to topics, but uses another
entity, a SubscriptionManager to enable advanced subscription operations including un-

subscribing, renewing, pausing and resuming a subscription.

WS-BaseNotification only defines the entities required for basic publish/subscribe noti-
fication, and makes no provision for a separate entity acting as a notification service —
publishers and consumers must be directly connected instead. The specification of WS-
BrokeredNotification enables support for distributed notification, primarily by defining
a NotificationBroker, which is “an intermediary that allows publication of messages from
entities that are not themselves service providers” (OASIS, 2005b). Essentially, it allows
notifications to be sent from a NotificationProducer to a NotificationConsumer via any
number of intermediaries, enabling advanced messaging features such as the publishing
of notifications collected from multiple sources. As this specification is built to coexist
with WS-BaseNotification, a NotificationBroker is both a NotificationProducer and a
NotificationConsumer. Hence, as far as a NotificationConsumer is concerned, there is
no difference between subscribing to notifications from a NotificationProducer and sub-
scribing to notifications from a NotificationBroker. As WS-BrokeredNotification does
not define what a NotificationBroker should do with a notification it receives, any num-
ber of services can be provided. A basic service would simply to forward notifications
unaltered, but more advanced features are also possible, such as on-demand publishing,

logging of notifications and transformation of notification topics and content.

Closely related to the WS-Notification family is WS-Topics (OASIS, 2004b), a standard
for the hierarchical definition of topics for notifications. This allows NotificationCou-
sumers to specify precisely which parts of a topic they are interested in. For example, a
topic may be composed of several subtopics. If the NotificationConsumer is interested
in enough of the subtopics individually, it can subscribe to the parent topic and receive
notifications from all of the topics. Hierarchical topics also enable easier administration,
for example administering security policies. WS-Topics is an XML format, defining top-
ics as being unique within an XML namespace. A shared understanding of what each

topic means is still required, such as an ontology (Gruber, 1993).

It is worth noting that at the time of writing, both WS-BaseNotification and WS-
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BrokeredNotification have recently moved to the first public review stage, but WS-Topics

is still in a draft form.

2.5.2 WS-Eventing

A similar but competing standard to WS-Notification is WS-Eventing (Box et al., 2004)
produced by IBM, BEA Systems, Microsoft, Computer Associates, SUN Microsystems
and TIBCO Software. Regarding the relationship between the competing protocols, the
authors of WS-Eventing mention that WS-Eventing provides similar functionality to
that of WS-BaseNotification.

In WS-Eventing, subscribers register their interest with a web service called an event
source which provides notifications, although there is no formal specification of topics.
Notifications are only in the form of raw, application-specific messages, rather than
the metadata-enriched notify messages offered by WS-Notification. The subscription
management interface of WS-Eventing is similar to WS-Notification described above,
albeit with a lack of mechanism for defined topics. There is also no equivalent of a
NotificationBroker.

WS-Eventing does contain features missing from an earlier version of WS-Notification
such as support for pull notifications (Pallickara and Fox, 2005), but as both standards
are still in draft or review states, it is still unclear which one will become more widely
used. However, WS-Notification appears to be the more complete specification that is

closer to becoming a full standard.

2.5.3 JMS

First released in August 1998, the Java Message Service (JMS) (Hapner et al., 2002)
is an API enabling applications to send and receive messages, and to interoperate with
other JMS-compatible messaging products. The original intention of JMS was to enable
Java programs to interoperate with other MOM systems, such as IBM’s Webspherc
MQ. JMS Providers are entities implementing JMS for a specific messaging product,
and have been created for many popular MOM systems, enabling interaction between

Java programs and a variety of MOM systems.

JMS supports both point-to-point messaging (sending a message from one compoueut
to another) and the publish-subscribe subscription model. A MessageProducer object is
used to publish messages on a particular topic, which are then received by MessageCon-
sumers. Messages can be published and received asynchronously. The JMS API also
provides for reliable message delivery, ensuring that every message is received exactly

once.
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2.5.4 Summary

JMS is a mature API, with support in the form of JMS providers for many MOM sys-
tems available today. However, with the increasing movement towards web services,
specifications like WS-Notification and WS-Eventing are important for the use of mes-
saging platforms from web services. Of these specifications, WS-Notification is the more
complete, but still lacks some of the more advanced MOM features supported by JMS,
such as reliable messaging (Humphrey et al., 2004). However, both specifications still
provide a substantial specification for using MOM systems from web services. Reliable
messaging is being implemented by two further specifications from the same groups as
WS-Notification and WS-Eventing — WS-Reliability (Web Services Reliable Messaging
TC, 2004) from OASIS and WS-ReliableMessaging (Bilorusets et al., 2005) from IBM,

Microsoft and other companies.

2.6 Existing Notification Services

There are many MOM platforms available today. Some of these are also notification
services, of which there are also many examples, both from the commercial and research

communities. We review existing notification services below.

2.6.1 myGrid Notification Service

The myGrid notification service (MGNS) is a messaging platform based on JMS, origi-
nally intended to provide asynchronous notifications between grid services for myGrid.
However, as grid services have become more aligned with web services, MGNS can
provide messaging capabilities to any web service. MGNS is built on top of an existing
JMS server (OpenJMS), to which it delegates the basic messaging functionality, enabling
MGNS to concentrate on providing additional features, including durable topics (where
a consumer subscribing to a durable topic will receive all notifications ever published on

that topic, including those from before it subscribed) and virtual topics.

MGNS supports deployment as a federated notification service, where multiple instances
of MGNS each have a set of local topics (Krishna et al., 2004). These topics are then
registered with a topic registry (Miles et al., 2005), marking them as a member topic
of a wirtual topic. Each MGNS instance participating in the virtual topic subscribes to
each of the member topics. Consumers then subscribe to the local topic at their MGNS

instance, and receive all message published on the virtual topic at any of the instances.

Notifications are shared in this system when a MGNS instance in a virtual topic sub-
scribes to a member topic on another instance. Every time a notification is published, a

single copy is sent between NS instances which is then shared between the consuners at
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each instance. However, in this system, each MGNS instance in a virtual topic subscribes
to every other instance, which could cause a scalability problem in a large deployment.
However, the service supports subscriptions through intermediate instances, for example

to facilitate connection through a firewall.

2.6.2 NaradaBrokering

NaradaBrokering® (Pallickara and Fox, 2003) is a high-performance distributed brokering
system, which provides support for centralised, distributed and peer-to-peer interactions.
It is a JMS compatible system (Fox and Pallickara, 2002) supporting audio and video
conferencing (Uyar et al., 2003), integrated performance monitoring and communication
through firewalls. The main focus of the work on NaradaBrokering is efficiently handling

the issues of scaling, load balancing and resilience.

NaradaBrokering uses brokers, which are organised into clusters, in turn organised hier-
achically. The brokers have a Broker Network Map (BNM), making each broker aware
of the broker network layout enabling efficient routing of messages to different destina-
tions. As the system is intended to support a large number of brokers, each broker does
not need to know the topology of every other broker in the network, only an abstract
view of the network that still enables them to calculate optimal paths. Changes to the
broker network (brokers joining, leaving or moving) are only propagated to those brokers
whose BNM would be affected. The process of computing destinations for each message
is referred to as the matching of events, and a significant amount of work has gouc
into creating efficient matching algorithms for the system (Pallickara and Fox, 2004a).
Notifications being passed between brokers can be shared between multiple subscrip-
tions, since the matching algorithm determines consumer interest in a topic, and the
notifications are also shared between the consumers by the matching algorithms. How-
ever, NaradaBrokering enables its consumers and publishers to connect to any broker in
the network, making it difficult to explicitly share subscriptions over a predefined route

through the broker map.

2.6.3 Other Notification Services

Elvin (Segall and Arnold, 1997) is a notification service developed at the University
of Queensland. It supports federation of Elvin servers to enable the system to scalc
beyond the limits of a single server, with each server subscribing to the other servers
in the federation. To reduce the amount of redundant data being transmitted, gquench
messages are sent when there are no subscriptions at a particular server. These messages
contain updates to a list of filters which will catch notifications a server is not interested
in (Segall et al., 2000).

http://www.naradabrokering.org/
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Gryphon? from IBM is a broker network which was designed to enable the efficient
distribution of notifications in a content-based subscription system, where arbitrary
filters can be applied to content, as opposed to subject-based subscriptions where all
data on a particular subject or topic is delivered. The problems identified with such a
system are how to match an event to a large number of consumers, and how to multicast
the events to the consumers within the network (Banavar et al., 1999a). In Gryphon,
brokers use link matching to maintain partial lists of subscriptions at each broker. When
a message is published, each broker partially matches events against the subscription
list at each hop in the network. Shared subscriptions are used to only send a single
message over each hop of the network, providing an efficient method of disseminating

the message between multiple consumers.

Siena® is another distributed notification service based on the principles of IP multicast,
and its objectives are to route notifications in one copy as far as possible, as close to
the client as possible. As the consumers specify filters on the information they require,
this information is replicated as close to the sources of notifications as possible, so that

subscriptions can be shared (Carzaniga et al., 2000).

The Object Management Group (OMG) has produced the CORBA Event Service (Ob-
ject Management Group, 2004), which supports channels where a producer can create
an event on that channel that will be received by any consumers listening on that chai-
nel. This was extended by the creation of the CORBA Notification Service (Object
Management Group, 2002), adding functionality in order to allow applications to send
messages to objects in other applications without any knowledge of the receiving object’s
existence. The notification service uses an event channel so that a supplier can publish
messages to any number of consumers, without knowledge of the consumers, or even
whether there are any consumers, and provides event filtering and QoS capabilities.
At the application level, the consumer of one channel can be a publisher for another
channel, enabling an implementation of a distributed notification service similar to that
used in MGNS. However, there is no explicit system-level support for the sharing of

subscriptions.

Commercial message queuing products such as IBM’s Websphere MQ and Microsoft’s
MSMQ are primarily aimed at MQM applications rather than a subscription-based ap-
proach to delivering notifications to multiple consumers. However, publish/subscribe
interactions are supported in Websphere MQ (Perry et al., 2001), which facilitates pub-
lish /subscribe operations in a distributed manner, enabling publishers and consumers to
use different brokers and have notifications routed between them. Websphere MQ also

supports persistent and reliable delivery of notifications.

“http://www research.ibm.com/distributedmessaging/gryphon.html
Shttp:/ /serl.cs.colorado.edu/~carzanig/siena/
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2.7 Summary

In this chapter, we have pointed out that many current distributed systems, commonly
based on web services technologies, can make use of a Message-Oriented Middleware
platform in order to facilitate asynchronous communications between entities in such
a system. In systems where notifications about a particular subject need to be dis-
tributed to many consumers, a notification service using the publish/subscribe model
of interactions is a suitable delivery mechanism. Notification Services can be used for
publishing any event-based information, such as changes to the contents of a database,

or notification that a real-world event has occurred.

As the scale of a NS deployment is increased, distributed NSs become useful in order
to solve such problems as load balancing, reliability and security. A distributed NS
is a network of NSs interlinked so that consumers and consumers may be distributed
throughout the network, publishing notifications to, and consuming notifications from,
different instances of a NS. A distributed NS handles the routing of messages between
publishers and consumers. When multiple consumers are subscribed to the same topic
at the same NS instance, that instance may make a single shared subscription to receive

the data from the publisher, sharing the notifications between its consumers.

2.8 Discussion

Notification Services enable consumers to request a desired Quality of Service from the
NS, which can guarantee certain conditions about the delivery of notifications. How-
ever, if all consumers are allowed to request any levels of QoS, it may be possible for
a small number of consumers to overwhelm a service by requesting significantly high
QoS conditions. As differences may exist between the preferences of a consumer and a
publisher over QoS levels, a mechanism of finding a compromise between the two dif-
ferent preferences is required. Negotiation of QoS conditions is already used in other
fields such as distributed real-time systems to specify requirements for resources (Li and
Ravindran, 2004), and in multimedia systems for resource reservation (Rothermel et al.,
1997). Hence we see negotiation as a suitable mechanism for resolving differences in the
preferences of consumers and publishers, but no existing NSs support negotiation for

this purpose.

In a distributed notification service, when many consumers at a particular notification
service subscribe to notifications on the same topic with similar levels of QoS, the notifi-
cation service can share the subscription between multiple consumers. However, if thesc
levels of QoS are significantly different, it may be impossible to share the subscriptions.
In this case, extra copies of notifications may be unnecessarily transmitted between the

notification services. Negotiation could be used here to persuade additional consumers
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to request QoS levels compatible with the existing subscriptions that are held.

In the next chapter we will discuss negotiation, and review different negotiation models
to find one suitable for use in this context of a notification service. A suitable model
for negotiation would enable the developers of a notification service to support negoti-
ation over QoS levels without needing to be knowledgeable in negotiation techniques,
and without causing significant modification to the interaction patterns used by the

notification service.



Chapter 3

Automated Negotiation

In a notification service where consumers are allowed to request levels of quality of
service (QoS) when they subscribe to a particular topic, there can often be a difference
between the levels of QoS a service provider is willing to provide, and the levels the
consumer would like to receive. Automated negotiation can be a solution to resolving
these differences and producing a compromise between the two, enabling the consumer
to still receive an acceptable level of QoS while the service provider is not overloaded by
providing services of a quality that is difficult to maintain for many consumers. In this

chapter we review automated negotiation.

3.1 Introduction

Recent trends in computing have seen computer systems consisting of many different
components distributed across networks (such as grid systems (Foster and Tuecke, 2001))
and agent-based systems (Jennings, 2000)) and working together to accomplish their
goals. As much of the work on automated negotiation comes from the field of agent-
based computing, we choose to adopt a view of agent-based systems for the purpose of

explanation, in which an agent has the following characterisation (Wooldridge, 1997):

“an agent is an encapsulated computer system that is situated in some envi-
ronment and that is capable of flexible, autonomous action in that environ-

ment in order to meet its design objectives”

An agent’s goal may be comprised of subgoals or tasks that it is not capable of achieving
itself, instead requiring the use of a service provided by another agent. Alternatively it
may be capable of achieving the subgoals itself, but less efficiently or at a higher cost
than by using another agent. To enable the goals to be achieved efficiently, the agents

need to be able to interact in order to co-ordinate achievement of the shared task.

25
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Negotiation is the process by which two or more parties communicate in order to reach
a mutually acceptable agreement on a particular matter (Jennings et al., 2000). It can
be described as a joint search over a problem space with the goal of reaching a consensus
(Guttman and Maes, 1998). Negotiation is key to managing the interactions between
autonomous agents because, by definition, autonomous agents will do what they want
to do. For one agent to obtain a service from another, it must first convince the agent
providing the service to cooperate on the task. In its simplest form, negotiation involves
asking for a service, and receiving a positive or negative response. Negotiation may
also include iterating sequences of offers and counter-offers, and rewards or payment for
the item under negotiation. After a successful negotiation, a mutually acceptable set of

conditions for the supply of an item or service will have been reached.

In the context of a notification service, where participants can request a subscription
to notifications on a particular topic with constraints specified on various QoS issues,
the negotiation item represents the subscription to notifications on a specific topic.
The issues under negotiation represent various QoS conditions, such as the frequency of
notifications, the granularity of the information contained in the notifications, the length
of the subscription and the price paid for the subscription. In general, a publisher and
a consumer will tend to have conflicting preferences over many of these conditions.
For example, a consumer may wish to have frequent notifications of an event, and
may wish to receive these notifications without paying too much for them. However, a
busy publisher may wish to limit the frequency that notifications are sent out in order
to reduce its load, and may additionally like to receive a payment for the services it
provides. Hence, negotiation can be used to find a mutually acceptable set of conditions

under which a subscription to notifications may be delivered.

In this chapter we review existing work on automated negotiation. To give this con-
text, we first discuss different mechanisms for negotiation between humans or agents in
Section 3.2. In Section 3.3 we discuss the different approaches taken to automated ne-
gotiation. For the use of automated negotiation to become more widespread, standards
for negotiating and the formation of agreements are required, as discussed in Section
3.4. Additional related work is discussed in Section 3.5, before summarising in Section

3.6 and discussing how this relates to our aims in Section 3.7.

3.2 Negotiation Mechanisms

Negotiations occur for one party to obtain a negotiation item, which could be an object
or a service, from another. While trying to obtain this item, various negotiation issues
are proposed — attributes about the item or the constraints on its delivery, over which
participants usually have conflicting preferences. Preferences define the desired outcome

of the negotiation for each participant.
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There are many mechanisms by which negotiation can take place, which can be equally
applied to autonomous agents as they can to human interactions, though we use the term
agent in the descriptions of each. In order to summarise the different types of negotiation,
a distinction can be drawn based on the number of participants in a negotiation. Three
different groups of negotiation techniques are produced using this classification: one-to-

one, one-to-many and many-to-many techniques.

3.2.1 Omne-to-one Negotiations

In a one-to-one negotiation, a single agent attempts to obtain an item from another single
agent. Both agents may have conflicting preferences over the conditions under which
they would like the transaction to take place, so a mutually acceptable set of conditions
must be found before a deal can be reached. Bilateral negotiation (negotiation between
two agents) mainly takes the form of bargaining: a situation in which individuals have the
possibility of concluding a mutually beneficial agreement, there is a conflict of interests
over which agreement to conclude, and no agreement may be imposed on any individual

without their approval (Osborne and Rubinstein, 1990).

Essentially, bargaining consists of making alternating offers, or proposals, (i.e. poten-
tial agreements) containing values for each of the issues in a negotiation (Larson and
Sandholm, 2002). Behaviour of a participant upon receipt of a proposal varies with
different negotiation mechanisms, but has the basic requirement of accepting or reject-
ing the proposal. Rather than rejecting a proposal outright, a common behaviour is to
offer a counter-proposal in return, allowing concessions to be made by both parties in
a negotiation, hopefully speeding up the process of finding a mutually acceptable con-
dition under which an agreement may be formed. Bargaining enables multi-attribute
negotiation (such as over price, delivery time, etc.), rather than negotiation over a single

attribute, a typical property of auctions (described in Section 3.2.2).

An extension to the model of bargaining is argumentation-based negotiation (ABN)
(Rahwan et al., 2004; Kraus et al., 1998). In ABN, participants can exchange additional
information with a proposal in order to argue, justifying their negotiation stance, or
attempting to persuade their opponent to change his negotiation stance. Jennings et al.
(1998) use the analogy of negotiation as a search through a multi-dimensional space of
potential solutions, where the number of issues in the negotiation controls the number of
dimensions of the space. Negotiation is thus a distributed search through this space of
solutions, attempting to find a solution cousidered by all participants to be acceptable.
The minimum capabilities needed to negotiate are the abilities to propose some part of
the agreement space as being acceptable, and the ability to respond to such a proposal
indicating whether it is acceptable or not. A proposal (as defined above) marks a single
point in the solution space, rather than a region, and if agents can only accept or reject

these proposals, negotiation is very time consuming. However, if counter-proposals are
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offered, the recipient of a counter-proposal can attempt to infer the preferences of its
opponent from the change between the proposal and counter-proposal. In ABN, meta-
data sent with a proposal rejection or a counter-proposal offers a critique of why the
proposal was not acceptable, indicating to the recipient of the critique which regions of

the agreement space are acceptable.

While an opponent may try to influence his opponent’s negotiation stance by suggesting
that they change the values they consider acceptable, ABN also allows dynamic mod-
ification of the set of issues under negotiation — for example, when negotiating over
the purchase of a new car, the dealer may choose to fit a car alarm free of charge as
an incentive to make the customer agree on a price. This may not have been an issue
earlier in the negotiation, but the inclusion of the additional issue can make forming
an agreement easier. ABN represents a significant ongoing research effort (Sierra et al.,
1997b; Parsons and McBurney, 2003; Amgoud and Maudet, 2002; Karunatillake and
Jennings, 2004).

3.2.2 One-to-many Negotiations

In a one-to-many negotiation, a single agent attempts either to obtain or make available
a service or product to one of a number of agents. The most common type of one-to-
many negotiation is an auction, defined as a bidding mechanism, described by a set of
auction rules that specify how the winner is determined and how much he has to pay
(Wolfstetter, 1994). Auctions have become commonplace on the Internet, with sites such
as eBay! being used for thousands of items daily, and provide a mechanism of selling
an item to a bidder who values it the most (i.e. who bids the most). There are several
different types of auction, but a big distinction lies between single-sided and double-
sided auctions. Single-sided auctions are those in which a single seller accepts bids
from multiple buyers, whereas in double-sided auctions, multiple buyers and multiple
sellers submit bids at the same time. Double-sided auctions are actually many-to-many
negotiations and are discussed in Section 3.2.3. Although many different types of single-
sided auctions have been created, there are four main types (Klemperer, 1999), described

below:

e English Auction (Ascending bid)

In an English auction, a starting bid is offered by the auctioneer. Buyers then place
a bid on the item. An unlimited number of bids can be made, with the restriction
that each new bid must exceed the current high bid by a specified amount. When
no more bids are received, the item under auction is sold to the current high bidder

at the final price.

Thttp://www.ebay.com/
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e Dutch Auction (Descending bid)

Dutch auctions are the opposite of English auctions: an auctioneer starts with an
initial high offer, and calls out decreasing offers. The first bidder to accept the

offer made by the auctioneer wins the item.

e First price, Sealed bid

In a first price, sealed bid auction, each bidder submits a single bid privately, so
the other bidders do not see it. The auctioneer then sells the item to the highest
bidder.

e Vickrey auction (Second price, Sealed bid)

A Vickrey auction is similar to first price, sealed bid, with the difference that the
item is sold to the highest bidder, but for the price bid by the second-highest bidder.
This minimises the effect of winner’s curse, where the winner in an auction often
ends up overpaying for the item they have won. The Vickrey auction encourages

bidders to bid their true estimation of the item’s value.

Variations on English auctions are often used for an online auctions (Anthony, 2003),
typically to increase the flexibility of the auction. In an auction, participants gather
in one room, and the auction lasts a few minutes, requiring quick decisions. Online

auctions can run for days, with people able to participate remotely.

3.2.3 Many-to-many Negotiations

In many-to-many negotiations, several buyers and sellers submit bids for an item si-
multaneously. An example of this type of negotiation is a Continuous Double Auction
(CDA) (Friedman and Rust, 1993). In a CDA, many buyers and sellers continuously
submit bids to buy and sell items, and bids are matched between buyers and sellers con-
tinuously throughout the period of the auction. Trades occur without terminating the
negotiation, as opposed to auctions in which the formation of an agreement terminates
the negotiation. CDAs are widely used in the trading of stocks and commodities, such

as shares in the New York stock exchange (Friedman, 1993).

3.2.4 Summary

Many different mechanisms for negotiation have been proposed, and we have presented
a summary of some of these mechanisms above. The context we are examining is a
notification service, where consumers subscribe to notifications on a particular topic
while negotiating over QoS constraints. While in a distributed system there may be

many potential service providers which could be used, often in scientific fields such as
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bioinformatics, scientists may have varying levels of trust in different service providers,
and therefore dictate themselves which one should be used. Hence, we consider the
process of selecting partners to be separate from that of negotiating with them, which
is a one-to-one interaction between a consumer and a publisher. Each party holds
conflicting preferences over the constraints associated with the subscription. Bargaining
and ABN both allow a consumer and a publisher to agree on a set of mutually acceptable
constraints over which a subscription will be formed. Bargaining enables the two parties
to exchange proposals in order to find this set of constraints, and ABN also allows

arguments to be used to strengthen or change a party’s stance within the negotiation.

3.3 Approaches to Automated Negotiation

As described in the previous section, there are many different types of negotiation.
For two or more autonomous agents to use negotiation to cooperate on some activity,
automated negotiation is required. Research in automated negotiation is concerned with
enabling autonomous agents or entities to negotiate with each other with no human
input. Automated negotiation can be split into two main topics: negotiation protocols

and strategies.

Negotiation protocols describe the set of rules governing a particular type of interaction
(Rosenschein and Zlotkin, 1994; Jennings et al., 2001). In an automated negotiation,
a negotiation protocol defines the negotiation mechanism that will be used, and how a
participant can act in the negotiation. This covers the types of participants allowed,
the valid negotiation states, and the actions that may be taken by the participants in
each state, such as which messages can be sent by each party. Specifying a negotiation
protocol enables a participant to act within the rules of a negotiation, but does not

specify how it should behave within these conditions.

A negotiation strategy defines how a participant may act in a negotiation, within the
rules speciﬁed by the protocol. While any action that complies with the protocol is
permitted, there are many possible courses of action that would lead to a poor result.
For example, it is normally assumed that an agent participating in a negotiation is
rational — it will always act to try and increase the benefit to itself, or to the system
as a whole. It is therefore irrational for an agent trying to purchase an item for the best
price to propose a price significantly over its valuation of the item as an opening offer.
However, it is still valid to do so according to the negotiation protocol. The negotiation
strategy of an agent is referred to as its decision-making model in Jennings et al. (2001),
and is defined as the decision making apparatus the participants employ in order to act
in line with the negotiation protocol in order to achieve their objectives. We adopt this

definition for the rest of this work.

It should be noted that different approaches to automated negotiation put varying de-
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grees of emphasis on both the protocol and the strategy. As an example, consider a
Vickrey auction (discussed in Section 3.2.2). Vickrey auctions have a dominant strategy
(a strategy that always yields a better payoff than any other strategies, regardless of
the behaviour of opponents): an agent should always bid what it considers the item to
be worth. Following this strategy will always lead to the optimal outcome, hence there
is no reason for a rational agent to deviate from it. Under this assumption, it may be
possible to specify this behaviour as part of a negotiation protocol. In other situations,
the negotiation strategy is considerably more important. For example, when an agent
bids in multiple auctions of different types siinultaneously, a good negotiation strategy is
required to maximise the chances of acquiring all of the desired items (He and Jennings,
2004; Sierra et al., 1997a).

In addition to the above, automated negotiation requires an understanding of various
concepts to be shared between the participants in the negotiation. In particular, every
participant should have a shared understanding of what the negotiation item (the object
or service they are negotiating over) is, and the different issues (attributes of the item
that are under negotiation). For example, when negotiating with a notification service
for the provision of notifications, a subscription to notifications on a requested topic is
the item under negotiation, and the issues represent the QoS aspects of the subscription
being negotiated over, such as the frequency of notifications, granularity of information
or the price paid for the subscription. All participants should have the same definition
of frequency of notifications and the requested topic, otherwise the client may obtain
something that it was not expecting. An ontology is a specification of a concept (Gru-
ber, 1993), and enables the participants to share a common definition of the concepts

involved.

3.3.1 Game-theoretic Approaches

Game theory (Osborne and Rubinstein, 1994) is a branch of economics concerned with
interactions between self-interested agents, based on work described in von Neumann and
Morgenstern (1953). It was originally aimed at the interactions between self-interested
people, but is equally applicable to interactions between autonomous agents, as rational
agents try to maximise the expected utility of any outcome (Simon, 1955), making them

self-interested.

Essentially, game theory is concerned with an agent selecting the best or most rational
strategy out of all possible strategies, taking many factors into account including, but
not limited to, the behaviour of other agents in the negotiation, its own preferences
and its estimate of private valuations held by its opponents. However, the space of
possible strategies is extremely large, and searching this space is often computationally
intractable. Classical game-theoretic approaches have been based on the assumption of

unbounded computational resources being used to search this large problem space (Dash
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et al., 2003), but this assumption rarely holds, as negotiations must often be completed

before a deadline, or may be performed by a device with limited computational power.

Game-theoretic models have some disadvantages making them hard to apply to some
fields. They rely on the assumption that it is possible to characterise an agent’s pref-
erences over a set of possible outcomes, which is often a difficult task, especially with
multiple negotiation issues, as an agent’s preferences may be based on private values,
or may change over time as a negotiation progresses (Jennings et al., 2001). As such,
game-theoretic models are more suited to negotiations where preferences are obvious,
rather than more complex multi-attribute negotiation. Game theory tends to produce
highly specialised models tailored to a specific negotiation mechanism — it is difficult to
generalise the decision-making process. Such models often assume that all participants
in a negotiation are completely rational, fully informed and have access to large amounts
of computational power. Unfortunately, this is rarely the case — there are often restric-
tions on the resources available, and agents are not fully aware of their environment and

opponents.

3.3.2 Heuristic-based Approaches

Game-theoretic approaches to automated negotiation alm to produce optimal solutions
by searching the entire space of solutions. As this is both computationally hard and
sometimes impossible due to incomplete awareness of the participants, an alternative is
a heuristic-based approach. With such an approach, the aim is to find a good solution
rather than the optimal solution. The methods of generating these solutions may be
approximations based on game-theoretic approaches, or on more informal negotiation
models (e.g. Raiffa (1982)). Heuristics allow the assumptions about access to resources
and knowledge of the domain to be relaxed (Rahwan et al., 2004). For example, it is
not always possible to fully model an opponent, or to consider the full space of possible
outcomes. Heuristic-based approaches are based on realistic assumptions, rather than
by searching for a fully-optimal solution. This makes them suitable for a wider range
of domains, where the negotiating agent does not need to know the intricacies of the
domain in which it is negotiating. This also makes it possible to use a heuristic-based
approach to develop a reusable negotiation component which can be used in different
domains without needing to be given additional information about its domain. Hence
a heuristic-based approach is an ideal solution to automated negotiation for a system

whose domain has not been fully defined.

However, heuristic-based approaches do suffer from some disadvantages. Due to their
simplified model in comparison with a game-theoretic approach, they do not examiue the
entire space of potential solutions and may find an outcome that is sub-optimal (Jennings
et al., 2001). Additionally, it is difficult to predict how such systems will behave, so tlicy

need extensive evaluation in order to determine whether the outcome will be satisfactory.
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Two examples of heuristic-based approaches to automated negotiation are given below.

Faratin (2000) describes a bilateral negotiation model called Negotiation Decision Func-
tions (NDF') using a heuristic-based approach. NDF clearly defines a negotiation proto-
col, specifying the rules of the negotiations. The strategies used are separate, allowing
this to be varied independently of the protocol, and are based on combinations of funec-
tions called tactics that generate a value for one issue in the negotiation based on a
single criteria. For example, time-dependent tactics use the amount of time remaining
before the deadline to control their rate of concession. Resource-dependent tactics use
the amount of a particular resource remaining to control their concession. Using these
functions it is possible to create a negotiation strategy that can work in multiple do-
mains without knowledge of the domain. Domain-specific information such as resource
levels can be supplied by an external party, but negotiations are possible without such
knowledge. Proposal evaluation is handled by wutility functions, returning a value for an
issue based on an agent’s preferences. Utility is a measure of how good an agent con-
siders a particular outcome. Utility functions control an agent’s valuation of proposals,
and can be implemented as simple linear functions or complex functions taking multiple

factors into account.

Barbuceanu and Lo (2000) describe another example of a heuristic-based approach to
automated negotiation, which finds the pareto-optimal solution for a negotiation (a
solution for which it is impossible for one party to increase their utility without a corre-
sponding decrease in their opponent’s utility). This is done by generating every possible
solution using all possible values for each issue, then evaluating each proposal and rank-
ing them in order of utility. The best solution is then proposed to the opponent. If this is
rejected, the opponent repeats the process, trimming the set of potential solutions after
taking into account the received proposal. Using this approach it is always possible to
find a solution that is optimal for both agents. However, this is an exhaustive process
and, for multiple issues, requires a very large number of proposals to be exchanged. It
is a computationally- and time-intensive solution. Optimisations have been suggested
for this approach, including using probabilistic modelling to identify proposals likely
to be accepted, although this comes with the risk of sacrificing the ability to find the

pareto-optimal solution.

3.3.3 Argumentation-based Negotiation

Argumentation-based negotiation was introduced earlier in Section 3.2.1 as a negotia-
tion mechanism for an agent to provide feedback justifying its negotiation stance or to
attempt to influence the stance of its opponent. To enable automated ABN, negotiation
protocols are required allowing this meta-information to be passed alongside proposals
and counter-proposals. Sierra et al. (1997a) describe the augmentation of an existing ne-

gotiation protocol with the ability to pass this information, while McBurney and Parsons
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(2004) describe an argumentation protocol to be used with other protocols. Jennings
et al. (2001) makes the point that the transmission of this information can be seen
as moving from a negotiation protocol into an argumentation protocol (e.g. Amgoud
et al. (2000)), and then back again to the negotiation protocol when the argumentation

dialogue terminates.

The reasoning of agents employing ABN techniques can include models based on beliefs,
desires and intentions, such as shown in Parsons et al. (1998). A detailed review of ABN

frameworks and systems is given in Rahwan et al. (2004).

3.4 Standardisation Efforts and Automated Negotiation

Although there have been many different efforts to produce automated negotiation
frameworks (Bartolini et al., 2005; Faratin, 2000), these frameworks are typically sepa-
rate from and unrelated to each other and unable to interoperate with each other. To
facilitate the wider uptake of automated negotiation techniques, standards are required
to define the protocols and interactions with which to negotiate. Any new work aimed at
a field such as web services should be aware of relevant standards. Two major standards

in this area are WS-Agreement and FIPA, which we describe below.

3.4.1 WS-Agreement

WS-Agreement (Andrieux et al., 2004) is the Global Grid Forum’s (GGF) standardisa-
tion effort, comprising an XML-based protocol for the representation of agreements, an
interaction protocol for establishing these agreements, and an interface for monitoring
agreements already in place. WS-Agreement has arisen due to the frequent requirement
in distributed service-oriented environments for a consumer to be able to request a ser-
vice with a guaranteed QoS from a service provider, and for a mechanism to monitor

compliance with guaranteed QoS levels to be available.

In WS-Agreement, an agreement between a service consumer and a service provider
specifies one or more service-level objectives as expressions of requirements on the part
of the consumer, and as an assurance about the availability of resources on the part of
the service provider. Agreements include information about the service definition, as
service objectives are often related to the definition of the service. Agreements are made
up of the following information: service definition terms; guarantee terms specifying
service level objectives; and an agreement context comprising information about the

agreement parties and any relevant prior agreements.

WS-Agreement has been aimed at forming agreements in service-oriented distributed

systems, such as job submission of computing jobs, or establishment of a set of QoS
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terms for access to a particular service. As such, the protocol also supports the moni-
toring of agreement compliance. However, WS-Agreement makes no assumptions about
the methods by which agreements are formed — it is independent of any negotiation

mechanism.

Although WS-Agreement is still in draft, Ludwig et al. (2004) present an implementation
of a WS-Agreement based architecture for creating and monitoring agreements for a
service-oriented system, specifying the interface for domain-specific components such as

system monitors.

3.4.2 FIPA

As negotiation is a form of interaction between involved agents, any negotiation frame-
work requires a language with which to communicate. As most automated negotiation
research is agent-based, an Agent Communication Language (ACL) is a suitable basis
for a negotiation interaction protocol. The two major ACLs are FIPA ACL and KQML
(Labrou et al., 1999).

The Foundation for Intelligent Physical Agents? (FIPA) is an organisation aimed at
producing standards for the interoperation of heterogenous software agents. At the time
of writing, FTPA had defined over 90 specifications. Of these, there are many interaction
protocols which can be used to enable negotiation between autonomous agents, specified
in the FIPA Agent Communication Language (FIPA, 1998).

The FIPA specifications are limited to the interaction protocols — they do not impose
any restrictions on the strategies employed within these interactions. For example, in
an English auction, the interaction protocol specifies that a bidder in an auction should
propose an amount, and the auctioneer will either accept or reject that proposal. It
imposes no requirement that the bid must be higher than the current highest bid, one of
the main rules of an English auction. Thus, any system designed to use one of the FIPA
negotiation protocols is designed to use a predetermined negotiation mechanism. FIPA
interaction protocols are defined for many different types of negotiation including, but

not limited to, English auctions, Dutch auctions and proposals in bilateral negotiations.

3.5 Other Related Work

Bartolini et al. (2005) highlight that current efforts for the standardisation of negotia-
tion impose restrictions on the types of negotiation supported, or the knowledge of a
negotiation protocol that is required. They propose an approach requiring all aspects

of a negotiation mechanism to be formally specified and explicit, and focus on the full,

*http://www fipa.org/
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formal specification of negotiation protocols. Whereas some negotiation protocols such
as WS-Agreement (Andrieux et al., 2004) specify the interaction protocol between par-
ties involved in a negotiation, Bartolini et. al. stresses the need for additional protocol
information, for example constraints on the amount by which a bid must increase, to
be included in the specification. Without this information, the choice of a negotiation
mechanism becomes implicit when a system is designed. By formally specifying all of
the rules about a negotiation mechanism, it becomes possible to design a system that
can support multiple negotiation mechanisms, and not be tied to any one in particular,
potentially enabling trade and interactions with a wider range of consumers or service
providers. A key part of creating the software framework for automated negotiation is
the presentation of an abstract view of a negotiation process, taken from an analysis of
many different negotiation mechanisms, both automated and human. In this abstract
view of negotiation, a negotiation host facilitates the negotiation by providing commu-
nication mechanisms, using the analogy of a blackboard with controls over write access
and visibility. Participants in a negotiation require admission, involving checking of
credentials and the presentation of the rules for that negotiation. A negotiation tem-
plate is shared between the participants, describing the conditions of the negotiation.
During the course of the negotiation, the participants exchange proposals, expressing
constraints over some or all of the conditions specified in the negotiation template.
These proposals are sent to the negotiation host, which checks that they comply with
the rules of the negotiation. Agreement formation rules are used to convert proposals
into agreements when certain conditions are satisfied, and termination rules describe the
conditions which will cause a negotiation to end. This abstract process is then extended
to give a taxonomy of rules for negotiation, specified using the FIPA ACL (FIPA, 1998),

which form part of an implementation of a software framework.

Cremona (Ludwig et al., 2004) is an architecture for the creation and monitoring of
agreements based on WS-Agreement. Although this is more concerned with the estab-
lishment and monitoring of agreements than arriving at an agreement using negotiation,
the application here is similar to our intention of negotiating over QoS conditions prior
to the subscription to a notification service. RFC 1782 (Malkin and Harkin, 1995) de-
scribes a simple extension to the Trivial File Transfer Protocol (TFTP) in which options

can be negotiated prior to a file transfer.

Tu et al. (1998) describe a way of dynamically adding negotiation abilities to an agent
at run time using a pluggable architecture, sharing the negotiation capabilities between
communication modules, protocol modules and strategy modules. This enables a pro-
gram to load components enabling negotiation at runtime, determining the need for

them dynamically.
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3.6 Summary

Negotiation among computer programs and agents is an established field, and as such
is supported by a wealth of literature. There are already different mechanisms for

negotiation, whether one-to-one, one-to-many or many-to-many.

With the increasing popularity of distributed computer systems, such as those using
the Grid and multi-agent systems, automated negotiation has become a real need to
facilitate the cooperation and interactions of two or more autonomous systems, and to
find a compromise when two parties have conflicting beliefs about the constraints of a
service delivery. In this chapter, we have presented different approaches taken to tackling

the area of automated negotiation.

3.7 Discussion

In a notification service where a consumer can request a particular level of QoS, auto-
mated negotiation would enable differences between the preferences about the level of
QoS to be provided between the consumer and the service provider to be resolved. For
use in a distributed system, any negotiation mechanism has to be able to work within
computational and time constraints, in order that the addition of negotiation abilities
does not prove detrimental to the primary function of the system (providing notifications

in the context of a notification service).

Game-theoretic approaches typically assume access to large amounts of computational
power, and that it is possible to characterise the preferences of an agent and its opponent.
They also assume prior knowledge of the domain in which they are negotiating, and while
it is possible to define some potential QoS conditions that can be negotiated, this would
be insufficient for an architecture enabling service providers to offer QoS conditions that
are unknown to the negotiation model. Hence, game-theoretic approaches are unsuitable

for QoS negotiation in a distributed system.

Heuristic-based approaches can be used to negotiate in a domain of which the nego-
tiating agent has no prior knowledge. It also imposes a low computational burden.
Argumentation-based approaches tend to use strategies based on prior knowledge of the
domain, although they can negotiate more efficiently than heuristic-based approaches
due to being able to justify their stance to their opponent. Both approaches are valid
for use with our proposed architecture, but as heuristic-based approaches more suited
to unknown domains, they are the most appropriate choice. Due to similarities in the
protocols used for ABN and heuristic-based approaches, we also argue that a design

using a heuristic approach would not preclude the use of ABN in the future.

A generic automated negotiation framework was discussed in Bartolini et al. (2005) in
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which many different negotiation mechanisms could be supported, but the implementa-
tion is based on a centralised negotiation host, which controls the negotiation process.
One of the goals of a distributed notification service is to improve the scalability and
reliability of a system, and relying on a central host for negotiation would contradict
this aim. However, we recognise that this approach has the advantage that it can sup-
port additional negotiation protocols that were not considered at design time. The aim
of negotiating over QoS in a notification service is to reduce load placed on a service
provider while enabling clients to receive a high QoS. Thus, any negotiation solution
should not place too much load on the service provider, otherwise it would negate the
benefit of using negotiation in the first place. Although the model used in Barbuceanu
and Lo (2000) always finds a solution that is optimal for both participants, it assumes
an unlimited amount of computational power and time to do so. For this reason, it
is unsuitable for such a use. The model in Faratin (2000) uses predefined negotiation
strategies, some of which need no knowledge of the domain they are operating in. Hence,
negotiations can be constrained to finishing within a certain time, which is a useful prop-
erty when trying to set up a subscription for a time-critical task in a notification service.
Using this model, the notification service or service provider would be able to influence
negotiation process without getting involved in the details of negotiation, for example
by supplying current resource levels. This model is thus well suited to use as the basis
for enabling negotiation over QoS in a notification service, and we will further develop
this in Chapter 4.

The current standardisation efforts of the Global Grid Forum in the form of the WS-
Agreement standard are an important move towards enabling negotiation between a
wider range of different systems. It is important that any model of negotiation being
designed for use with web services or grid systems be aware of any relevant standards
in the area. As WS-Agreement does not specify anything about the process of making
agreements, it is not relevant to the actual process of negotiation. However, it could
be used as the format for exchanging agreements and proposals. The concepts in NDF|
which was created before the existence of WS-Agreement, are compatible with the con-
cepts in WS-Agreement. We believe that it is possible to add WS-Agreement compliance

into a system built on NDF once the specification of WS-Agreement is finalised.

Although we have determined that NDF is a suitable basis for negotiating over QoS, it
does not provide the features we require in order to support negotiation with intermedi-
aries, in order that a distributed notification service can make use of shared subscriptions
from pre-existing negotiations. If multiple consumers at a notification service request
subscriptions to the same topic, the notification service can recognise this and share a
subscription for all of them. However, if the consumers have requested different QoS
levels from each other, this may not be possible. A solution is required where the negoti-
ation process not only takes into account the preferences of the client and supplier in the

negotiation, but also any existing commitments held by intermediaries between then.



Chapter 3 Automated Negotiation 39

These intermediaries could offer to satisfy the client’s request without any further inter-
vention from the supplier, reselling or redistributing the item already being received. No
existing models of negotiation support this pattern of negotiation. Hence we propose
chained negotiation as a model supporting the redistribution or reselling of items or
services obtained previously for other clients. In a distributed notification service, this
will enable subscriptions to notifications to be shared between multiple consumers. We

discuss this further in Chapter 5.



Chapter 4
Direct Negotiation Engine

In Chapter 3 we introduced the concept of negotiation, and discussed existing work
in the field of negotiation. In this chapter, we introduce a direct negotiation engine: a
component that can automatically negotiate over a set of conditions on behalf of another

system (the host), with minimal interaction required from the host.

4.1 Introduction

Negotiation is the process by which two or more parties attempt to reach a mutually
acceptable set of terms over which an item or a service should be exchanged. It can enable
differences in preferences about how a service is delivered to be resolved. However, since
negotiation can be a complicated process, it is desirable for the negotiation behaviour
to be encapsulated in a reusable component, allowing negotiation to be supported by
many different applications in a standard manner without those applications needing
to be aware of how to negotiate. We have designed DINE, a direct negotiation engine

based on bilateral negotiation which enables external services to support negotiation.

DiNE is intended for use in a notification service, where consumers subscribe to a pub-
lisher to receive notifications on a particular topic, while being able to specify some
Quality of Service constraints and have DINE automatically resolve differences in the

requirements of the publisher and consumer.

The novel contributions presented in this chapter consist of: an empirical evaluation
of a heuristic-based automated negotiation model showing behaviour not previously
demonstrated, giving us a better understanding of the model; and a demonstration of
the suitability of the negotiation model for resolving differences between QoS preferences
in a notification service. While existing notification services allow consumers to specify
QoS conditions with a subscription, they do not allow differences in the preferences of

a service provider and consumer to be resolved.

40
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Later in this thesis we will extend this contribution to include intermediaries in a ne-
gotiation (Chapter 5) and to integrate this work with a distributed notification service,
enabling service providers to automatically negotiate over QoS with consumers, and
allowing distributed notification services to share subscriptions to the service provider,
further increasing the number of consumers that can be satisfied without overloading

the service provider.

The rest of this chapter is organised as follows: In Section 4.2, we present the design of
DiNE, our direct negotiation engine, giving a detailed description of the protocols and
strategies employed. We then evaluate the behaviour and performance of our negotiation
engine using an experimental evaluation in Section 4.3. In Section 4.4, a scenario is
presented where the negotiation engine is integrated into a notification service publishing
bioinformatics data. We show that using negotiation in this scenario can reduce the load
requirements on the service provider, enabling more clients to be serviced. Finally in

Section 4.5, we summarise this chapter.

4.2 Negotiation Engine Design

In this section we present the design of DINE, our Direct Negotiation Engine. DiNE
encapsulates the protocol required to perform negotiation, enabling external systems to
support negotiation, without needing to know how to negotiate. These systems may
still influence the negotiation process at the strategy level, for example, in the form of

resource levels for use in utility functions and proposal generation.

DiNE is based around the Negotiation Decision Functions model of negotiation, intro-
duced previously Section 3.3.2. As this is a fundamental part of DiINE, we expand on

this below before discussing DiNE.

4.2.1 Negotiation Decision Functions

Negotiation Decision Functions (NDF) is an approach to automated negotiation using a
heuristic-based approach, and is presented by Faratin (2000) as well as numerous other
papers (Sierra et al., 1997a; Faratin et al., 1997, 1999a,b, 2000). Faratin introduces a
bilateral (one-to-one) negotiation model which clearly separates negotiation protocol and
strategies. This enables many different negotiation strategies to be used, without having
to change the protocol. Agents using this model simply supply the resource functions
and make decisions that will influence the outcome of the negotiation, enabling them
to effectively negotiate with varying levels of understanding of required protocols and
strategies. The routines for proposal generation and evaluation can be chosen from a
range of predefined functions, some of which make use of an external resource function,

measuring the availability of some system resource. Throughout this thesis, we will refer
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to this model as Negotiation Decision Functions (NDF). A more complete description
of NDF is presented in Faratin (2000).

In NDF, the subject of a negotiation is a contract, representing the current or final
bid in the negotiation, and contains values for one or more issues, the values that will
change over the course of a negotiation. A negotiation is an alternating sequence of offers
and counter-offers by a client to obtain the item or service referenced in the contract,
terminating in either a commitment by both parties to a mutually agreed solution, or
a failure to reach such an agreement (unsuccessful termination). To negotiate with
each other, agents must have a shared understanding of the individual issues before the
negotiation starts. A common way of sharing this understanding is by use of an ontology,

which is a specification of a concept (Gruber, 1993).

Each agent has preferences defining the limits of a continuous range of values each issue
is permitted to take in order to be considered acceptable. In this context, acceptable
values are those that an agent would be prepared to commit to. It does not mean the
agent will take this course of action — it may try and obtain a better offer to accept if
there is still time remaining for a negotiation to be completed. For quantitative issues,
preferences define a range of values considered acceptable by the agent for each issue.
Qualitative issues are more complicated, as they do not use a continuous set of values.
Instead, the model imposes the restriction that the discrete values a qualitative issue
can take must be defined over an ordered domain, and the limits of the preferences are

redefined as the limits of that issue’s score.

To evaluate offers, each agent has a scoring function that takes a value for a single
issue and returns a score between 0 and 1. An agent also assigns a relative importance
weight to each issue. These scoring functions and weights are combined using a weighted

average function to give an overall score for the contract.

It is assumed that the two parties involved in a negotiation will have conflicting interests
— for example a buyer normally wants to obtain something as cheaply as possible, while
the seller strives to maximise the amount of money they would receive. This allows
each agent to assume it will know the direction of any change in preferences of the
opponent, although it will not know the exact details of their preferences. Additionally,
the assumption is made that scoring functions are either monotonically increasing or

decreasing.

Proposals are generated using methods based on tactics and strategies, as follows. Tac-
tics are functions that generate a value for a single issue for inclusion in a proposal based
on a single criterion, such as the remaining time or available system resources. Three
types of tactic are defined: time-dependent tactics use the amount of time remaining
until the deadline to concede; resource-dependent tactics use a resource function in a
similar way to the remaining time, conceding based on the availability of a specified re-

source; and behaviour-dependent tactics react to the offers received from their opponent.
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Examples of the resources used by resource-dependent tactics include the current sys-
tem load and the number of negotiations currently in progress. This typically involves

a callback to a resource function external to the negotiating agent.

Tactics are combined using weightings to produce values for proposals that may be based
on more than a single criterion, and agents have the ability to vary these weightings over
the course of a negotiation. For example, a resource-dependent tactic may be weighted
more highly at the start of a negotiation, with the bias switching to a time-dependent
tactic as the deadline approaches. This behaviour is the agent’s strategy. Strategies are
used to combine tactics instead of generating proposals purely as a result of a single

factor.

Further work on NDF has enabled trade-offs to be calculated (Faratin et al., 2000),
enabling better counter-proposals to be generated that are more likely to be acceptable
by the other party. Faratin (2000) also discusses an extension to enable dynamic issue
set manipulation, where issues can be added or removed from a negotiation while it is
still running. This can enable a negotiation that has become deadlocked (where neither
party are willing to make further concessions) to continue (by removing resolved issues,

or introducing a new one to broaden the range of possible outcomes).

This model was chosen for the following reasons: it enables the system to be designed
in such a way that the negotiation protocol can be completely handled by DiNE, while
allowing other systems using DiNE to influence the negotiation strategy; and it enables
negotiation to take place without requiring additional third parties to participate in
the negotiation process; some automated negotiation models such as Bartolini et al.
(2002) support a more general form of negotiation, but require a third party to host
the negotiation process. In a distributed environment such as the notification service
scenario we are using, a dedicated negotiation host would lead to performance and/or

availability problems under load, as many services try and make use of it.

4.2.2 Core Concepts

In this section we introduce the concepts which will be used throughout the rest of this
chapter and subsequent chapters discussing DiNE. A negotiation occurs between a client
and a supplier, where a client tries to obtain a negotiation item! from the supplier, which
could be goods or a service. When applied to the idea of a notification service, the client
is a consumer negotiating for a subscription to notifications on a particular topic (the
negotiation item) from the publisher (the supplier). Our terminology differentiates be-

tween clients and consumers, and publishers and suppliers, to indicate where we discuss

! A negotiation item is referred to as a contract in NDF — we use the term negotiation item to
indicate a broader use for DiNE than for contract negotiation, being suitable of the acquisition of goods
or services.
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concepts specific to notification services and to negotiation in general. The client and

supplier are both hosts to the negotiation engine.

The values that are under negotiation are attributes of the negotiation item or the way
in which the item would be delivered. These are referred to as issues (which correspond
to agreement contexts in WS-Agreement (Andrieux et al., 2004)). For example, consider
the use of negotiation in a notification service. A consumer would try to set up a
subscription for a particular topic, and would negotiate over various Quality of Service
parameters, such as: message size; accuracy; granularity of notifications; duration of

subscription; and cost.

A conversation between the client and supplier, where proposals and counter-proposals
are exchanged, is known as a negotiation thread. Both the client and supplier have
preferences, representing the ideal value (i.e. the value they would like to obtain in an
ideal world) and a reservation value, placing a limit on the concessions that will be made.
Values beyond the reservation value are unacceptable to that party, and a negotiation
will fail if it is not possible to reach a proposal that satisfies the preferences. Each party
measures the wutility of an outcome — the measure of how good the outcome is for that
party. It is rational behaviour for an agent to try and maximise their expected utility
(Simon, 1955).

In the process of negotiation, each party tries to maximise their utility — the measure

of how good an outcome is for a particular party.

4.2.3 Architecture

At a conceptual level, DINE can be regarded as an entity shared between all of the par-
ticipants in a negotiation, as shown in Figure 4.1. The client and the supplier use some
shared entity to negotiate on behalf of them, resulting in a mutually acceptable proposal
to which they can commit. To realise this concept, there are two possible architectures
of DiNE: 1) A shared negotiation engine mirroring the conceptual architecture; and 2)

a negotiation engine using separate negotiation components linked to each party.

Client DIiNE +«— » Supplier

FIGURE 4.1: Conceptual Architecture of DIiNE
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4.2.3.1 Shared Negotiation Engine

A single negotiation engine shared between both the client and the supplier takes the
preferences from both parties, carries out all of the negotiation internally, and informs
each party of the outcome. Neither party needs to be aware of any negotiation protocols
in use — they just need to know that conflicts between their preferences are being medi-
ated externally. In order for the negotiation engine to be able to handle the negotiation,
it needs to know the preferences of both the client and the supplier in a negotiation. It
also needs any information from each party that would influence the decision making
process within the negotiation. Assuming this is based in a service-based architecture,
it is possible that the client, supplier and negotiation engine are all located in different

places.

A shared negotiation service design enables the easy provision of negotiation between
the involved parties without either of them needing to know the details of how the
negotiation works. All aspects of the negotiation can be hidden from the hosts, enabling

them to simply request an agreement, and receive back either an agreement or a failure.

However, there are two main disadvantages with the shared negotiation engine archi-
tecture. Certain aspects of a negotiation, including how to evaluate proposals, may
require the use of dynamic, locally-sensed environmental values from the hosts, such as
the system load or amount of free disk space. This either requires the negotiation engine
be co-located with the host and has access to these variables, or it requires the host to
provide a callback mechanism for the centrally-hosted negotiation engine to obtain these
values. Co-locating the negotiation engine with one party (e.g. the supplier) makes it
harder for the other party (client) to make use of this facility, as it would rely on the
client trusting the supplier. Providing a callback mechanism does enable the negotia-
tion engine to access these variables, but at the expense of the simplicity of the shared

architecture.

The second disadvantage of this architecture is that the negotiation engine has access to
the preferences and other information of both parties in the negotiation, thus requiring
that both parties implicitly trust the same negotiation engine. For example, if the main
aspect of a negotiation was the price to be paid for a service, a malicious negotiation
engine could tell each party that the negotiation completed at their reservation values,
while keeping the difference between values for itself. Similarly, where the negotiation
engine is colluding with the supplier, an outcome could be obtained that is only just

acceptable for the client, while proving extremely favourable to the supplier.

4.2.3.2 Separate Negotiation Components

In the second proposed architecture of DINE, each party in the negotiation hosts its

own negotiation component (NC), which tries to find a mutually acceptable proposal
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over which an agreement may be formed on behalf of its host. This is shown in Figure
4.2. The NCs are given the preferences of their hosts at the start, and are able to
request information from their host throughout the process of the negotiation for use in
counter-proposal generation and evaluation. Thus, locally-sensed environmental values

can be easily integrated as factors in the negotiation.

Client Client NC |« » Supplier NC | Supplier

FIGURE 4.2: Separate negotiation component architecture

This architecture enables the use of inputs from the host to influence or control the
process of how proposals are generated and evaluated, while still allowing the host to
remain ignorant of the negotiation protocol. As the NC is private to each host, there are
no issues regarding trust between the host and NC. This enables interactions in untrusted
environments — if a negotiation component finds a mutually acceptable proposal, it is
within the limits of what the host has requested from its NC. With this architecture is
that the host can vary the degree to which it influences the outcome of the negotiation
anywhere between simply supplying the preferences, and supplying custom routines for

proposal evaluation and generation.

The disadvantage of separate NCs is that the interaction pattern is more complex.
With a shared negotiation engine, each party instructs the negotiation engine to find
a mutually acceptable proposal, and no more interactions occur until the negotiation
has terminated. With separate NCs, interactions occur between a host and its NC, and
between the two NCs. If the negotiation engine is to be independent of a particular
communication system, the host must facilitate communication between the two NCs

by way of implementing a message transport.

4.2.3.3 Chosen Negotiation Engine Architecture

The architecture of DINE is based on the approach of using separate NCs discussed in
Section 4.2.3.2 above, so that external locally-sensed environmental variables could be
used in the negotiation, and so that the privacy of the preferences and utility functions
of the hosts can be maintained even in an untrusted environment. This architecture
allows the hosts a varying level of control over the negotiation process, by allowing them
to choose between the provided routines for proposal generation and evaluation and
their own modified versions of the routines. The NCs use their host’s communication
mechanism to send proposals so that the design of the engine remains independent of a

communication mechanism (for example, in Section 6.2.3, we describe an implementation
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based around a Web Services model). The alternative proposal suggested in Section
4.2.3.1 is rejected because of the requirement that both parties need to trust the same
negotiation engine, and because hosts cannot influence the negotiation process as easily

as with separate NCs.

Figure 4.3 shows in more detail the parts that make up the architecture of DiNE, show-
ing the sections that can be shared with the host. The main part of the negotiation
protocol handling is done by the NC internally. Proposal generation and evaluation is
controlled by the NC. However, hosts can supply their own routines for proposal gen-
eration and evaluation which will be used by the NC. Additionally, the routines may
call for information to be provided by the host, such as information about system re-
sources. The host is required to provide a reliable message transport for use by the NCs.

Communication is the only part of this architecture that must involve the host.

Communication < > Communication
Proposal Proposal
Generation Generation
Proposal Proposal
Evaluation Evaluation
Supplier
Client Negotiatlon < ..................................................... > Negotiation
Component Client Supplier Component

FIGURE 4.3: Detailed Architecture of DiNE

4.2.4 Negotiation Protocol

The negotiation protocol specifies how each party in a negotiation component can act:
the messages that can be sent, the actions that can be taken and the various states the
negotiation process can take. A clear specification of this information is essential to
understanding the interactions that can occur between the various parties involved in a

negotiation, and how these interactions are interpreted.

4.2.4.1 Interactions in a negotiation

Figure 4.4 shows a negotiation taking place between a client and a supplier through
their respective NCs. The interactions between each party are shown as arrows with the
message type. The numbers indicate the stages of the negotiation, which are explained

below.

1. Preference Registration
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Client Client NC Supplier NC Supplier

1: registerPreferences(item) 1: registerPreferences(item)
» >

2: negotiateFor(item, requestees)
-

callback

3: generatelnitialProposal()

4: propose(proposal)
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FIGURE 4.4: Interactions between components of a negotiation

Before the negotiation begins, both parties initialise their respective negotiation
component with a set of preferences for the items they are interested in or are
making available. The preferences consist of two values, an ideal value and a
reservation value which, combined, represent the range considered acceptable for

a specific issue.

2. Negotiation Initiation

The client gives its negotiation component an instruction to begin the negotiation
process.? In order to constrain the amount of time a negotiation can take, a
deadline is specified as the negotiation is started. Not only does this ensure that a
negotiation will complete, it also ensures that if the item is required in a specific
time frame, the negotiation will have completed (with either a success or failure)

within this time frame.

3. Initial Proposal Generation

The client’s negotiation component generates an initial proposal ready to send
to the supplier’s negotiation component. Typically, this would contain the ideal
values for all of the issues involved in the negotiation. Optionally, this step can
involve callbacks to the client in order to give the client a chance to influence the

initial proposal generation.

?Although it is possible for the supplier to initiate a negotiation, we concentrate on the more typical
case where a client initiates the negotiation (for example, a customer tries to buy something from a
seller, or requests a service from a service provider). If the supplier were to initiate the negotiation, the
diagram would look identical apart from stage 2 coming from the supplier to the supplier’'s NC.
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4. Proposal Transmission

The negotiation process now enters a cycle, initiated by a proposal being transmit-
ted. Negotiation messages are transmitted to their recipient by the host. The NCs
assume that the communication mechanism is reliable -— there is no mechanism

for dealing with missing messages.

5. Counter-proposal generation

When a proposal is received by a NC, a counter-proposal is generated. Detailed
information on proposal generation can be found in Section 4.2.5.3. As with initial
proposal generation, counter-proposal generation can involve callbacks to the host,
in order to retrieve external environmental conditions such as system load, or to

enable the host to provide a customised proposal generation routine.

6. Proposal Evaluation

Once the counter-proposal is generated, both the generated counter-proposal and
the recently received proposal are evaluated using p’s utility functions. A compari-
son is made between the score of the counter-proposal and the received proposal. If
the counter-proposal has a higher utility, it is transmitted to the other negotiation
component, and the process returns to step 4. If the received proposal has equal

or higher utility than the generated counter-proposal, it is considered acceptable.

7. Proposal Acceptance

If the last received proposal has a utility equal to or higher than that of the gen-
erated counter-proposal, an acceptable state has been reached. The negotiation
component issues an Accept message to signify its acceptance of the received pro-
posal. Both negotiation components then inform their respective hosts that an

acceptable state has been reached.

Acceptance of a proposal by the negotiation components does not constitute a commit-
ment between the client and the supplier — it merely indicates that both parties have
found a mutually acceptable set of issues to base a commitment on. The client would
typically contact the supplier after a successful negotiation to make a commitment — a
contract where the supplier agrees to supply the client with the negotiation item under
the issues agreed on during the negotiation. Leaving the process of making a commit-
ment to the hosts enables a client to negotiate with multiple suppliers simultaneously,

and to proceed to making a commitment with the one that offered the best deal.

The diagram in Figure 4.4 only shows the case where a negotiation is successful, but
negotiations can fail for two main reasons. The most likely reason for a failure would be
deadline expiry — no mutually acceptable proposal is found before the deadline expires.
In this situation, no counter-proposal would be generated on receipt of a proposal if the

deadline has expired. Instead, a negotiation failure message would be sent giving the
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reason for the failure. Negotiations can also fail due to being explicitly terminated by
either the client or supplier, for example when a system is being shut down, if the client

has found another supplier for the item being negotiated for.

The negotiation protocol described above relies on a reliable communication protocol —
it makes no allowances for messages not being delivered. Additionally, the interactions
between a NC and its host are synchronous — when the client begins a negotiation,
its NC returns the negotiation outcome. Similarly, if the NC requires a callback to the
host, for example to obtain a resource level, the NC will wait for the host to provide this
information before continuing with the negotiation. There is no specification of how the
communication between the NCs should happen — it is left to the NCs to implement.
This allows the negotiation engine to be integrated into a number of different distributed
environments — we integrate it with a SOAP messaging system later in this thesis
(Section 6.2.3).

4.2.4.2 Message Types

While trying to reach an agreement over a particular item, negotiation components
exchange messages to convey their current offers and reactions to the offers. Three

types of messages are used:

e Propose

Propose messages are the main part of any negotiation. They convey an offer from
one negotiation component to another with a set of values proposed by the sender

for each of the issues in the negotiation.

e Accept

Accept messages are used when a negotiation component receives a proposal that
it is prepared to accept. An Accept message simply contains a reference to the

proposal it is related to.

e Terminate

Terminate messages are used to signify a negotiation failure or explicit termination.
A reason field is contained in the message to indicate to the other party why the

negotiation failed. The most common reason for failure would be deadline expiry.

All messages contain a common message header for identifying the message type, source
and destination of the message, and for identifying the negotiation the message is related
to. Details of the fields found in the message header, as well as the flelds in the specific

messages, are detailed in Table 4.1.
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Message | Field Name Description
MessageType Identifies the type of this negotiation message
SenderID Identifier for the sender of this message
(All) RecipientID Identifier for the recipient of this message
NegotiationID Unique identifier for this negotiation
ProposallD Unique identifier for this proposal in the negotiation
Propose Ttem Item this negotiation is for
Elements List of values for issues in this negotiation
TimeRemaining | Amount of time remaining in this negotiation
Accept ProposallD ID of the proposal being accepted
TimeRemaining | Amount of time remaining in this negotiation
Terminate | Reason Reason for the negotiation being terminated

TABLE 4.1: Negotiation Message Structure

A sequence of messages between two parties regarding one particular negotiation is
known as a negotiation thread. Threads are started using a propose message, and ter-
minated using an accept or terminate message. The thread is made up of an exchange
of propose messages, and is terminated either by an Accept message or a terminate

message.

4.2.5 Negotiation Strategy

The protocol described in the previous section defines the rules which must be adhered
to when negotiating using this model. However, there are many possible courses of
action that may be followed while conforming to this protocol. The negotiation strategy
describes the type of actions that a negotiation component performs within the protocol.
There is no requirement for the negotiation strategy to be fixed or the same between
opponents — it is possible for two NCs with completely different strategies to negotiate

under the same protocol.

The negotiation strategy used in DiNE is controlled by a set of functions for influencing
proposal generation and evaluation routines. It is up to the host to select these functions
—- predefined routines may be used, or the host can supply their own routines. The
functions are used by the negotiation algorithm to enable the host to remain ignorant
of the negotiation protocol, while maintaining control over the behaviour of the NC.
The functions generate values for inclusion in proposals, and to evaluate proposals and

counter-proposals.

4.2.5.1 Terminology

Through the rest of this section we will be detailing the components used in the strategy

part of the NC. We introduce here some terminology and notation that will be used to
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describe the different parts.

C = {co,c1,---} (Set of clients)
S = {so,s1,---} (Set of suppliers)
X = {zo,z1,.--} (Set of negotiation items)
n (Number of negotiation issues)
Q = {90,91,---,9n} (Set of n negotiation issues)
tmaz (Deadline at negotiation start)

Characteristic variables are:

ceCseS;a,be(CUS)zeX;ge Q

A proposal sent from src to dest is represented as a tuple:

p = (src, dest, idneg, 1dp, trem, T, E) .

To relate all messages to a specific negotiation, a unique identifier id,¢4 is used to identify
the negotiation to which they belong. This identifier is created by the client initiating
the negotiation. A proposal also contains a proposal identifier, id,, which is unique
within the negotiation, and which is used in Accept messages to identify the proposal
being referenced. The set of proposal elements E is a set of values included in a single
proposal specifying a value for each issue under negotiation. The notation psre_.dest 1S
used as shorthand for specifying the source and destination of the proposal, and the

notation p|q] represents the value of element ¢ from within proposal p.

An example proposal between client a and supplier b for item item01 might contain the

following information:
p = (a,b, ‘negl01’, ‘prop-005’, 10, ‘item01’, (price=0.2,timeliness=5) )

A negotiation thread P is an ordered list of proposals exchanged between two negotiation

parties a and b at time ¢ (t < tyaz):

t _ 0 1 i
Pa,«—»b - (pa—rbapb—»an . 7pa—>b) .

It represents the history of a negotiation from the receipt or transmission of the first

message, up to the most recent.

An Accept message sent between src and dest is represented by

acc = (src, dest, idneg, idp, trem)
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where id,, represents the proposal identifier of the proposal being accepted. If a negoti-

ation is unsuccessful, it is terminated using a failure message, represented as
fail = (src, dest, idneq, reason)

where reason indicates the reason for failure.

4.2.5.2 Proposal Evaluation

The NCs rely on being able to evaluate a proposal to determine how useful it is to
the host. The scoring function mechanism enables a negotiation component to create a

mapping between values for each issue to a wtility for its host.

Preferences given by a host to its negotiation component for each issue comprise two
values — the ideal and reservation value. The ideal value gives the highest utility for
that party, i.e. the value they would like to receive. The reservation value represents the
absolute limit on any concessions, i.e. the value giving the lowest possible utility while

still being acceptable. Values beyond the reservation value are not accepted.

Issues can be quantitative or qualitative. The range of values considered acceptable
by party a for issue ¢ is represented as Dy = [z’dealg,resg] for a quantitative issue.
Qualitative issues must be handled differently; the range of values a qualitative issue

can take must be defined as an ordered set, with scores being assigned to each one. The

a
q

score for the issue, allowing qualitative issues to be treated similarly to quantitative

values for idealg and resg can be defined as the values giving the maximum and minimum

issues.

To determine the valuation placed on the value for a single negotiation issue g, party a

a
q

that it be monotonically increasing or decreasing. Within these limitations, the scoring

has a scoring function v§ : D¢ — [0,1]. The only requirement of a scoring function is

function could be linear between the preference limits, or it could take any other shape

such as exponential.

Scoring functions produce a score for a single issue only. A weighted summation function
is used to combine these scoring functions with their weightings to give an overall proposal

scoring function:
n
Vep) = Y wivi(plai])
i=1
4.2.5.3 Proposal Generation

Proposals are generated using tactics — functions that generate a value for a single

issue based on a single criterion, such as the time remaining before a deadline, or avail-
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able system resources. As tactics only use a single criterion to generate a value, a NC
would normally use a combination of different tactics. Three families of tactic were in-
troduced in NDF': time-dependent, resource-dependent and behaviour-dependent, which

are summarised below
Time-dependent Tactics

The basic form of tactic is one whose concession rate is controlled exclusively by the
amount of time remaining in the negotiation: time-dependent tactics. These tactics
do not take into account any information about the local environment. However, they
are still important as they influence a concession in a negotiation; negotiations that
do not concede are unlikely to reach a successful proposal. Time-dependent tactics
generate a value for each issue based on the amount of time remaining using the following
expression:
plg] = idealy + (1 — ag(t))(resq — idealy)

The definition of the function o depends on the type of tactic:

min(t,tmaz) ) ﬁl—q

tma:c

e Polynomial: og4(t) = kg + (1 — kq)(

min(t,t )
(I—T‘,:m;)ﬁq lTLI‘iq

e Exponential: a4(t) =e

There are two controlling parameters used as input to the a function — « and p.
The initial offer made is controlled by kg : when k¢ = 0, the initial offer is the ideal
value for that issue, and with x; = 1, the initial offer is the reservation value. The
rate of concession is controlled by the parameter (. Different values for § cause the
values produced to concede in different patterns. The behaviour of both exponential

and polynomial time-dependent tactics can be seen in Figure 4.5.

The behaviour of time-dependent tactics can be classified into three different families:
Boulware, linear and conceder (Faratin, 2000). We will explain these below, using values
for § from polynomial time-dependent tactics, as exponential time-dependent tactics do

not exhibit a true linear behaviour.

Boulware tactics (8 < 1) concede very slowly for most of the negotiation. As the deadline
approaches, the concession rate increases dramatically towards the reservation valuc.
Boulware tactics aim to keep the utility higher for those using it, but this behaviour

comes at the risk of not making a deal at all.

Linear tactics (f = 1) are the simplest of all time-dependent tactics, and concede at a

consistent, predictable rate throughout the course of the negotiation.

Conceder tactics (3 > 1) are suitable for occasions where an agreement must be reached

very quickly. The conceder tactic drops close to its reservation value very early on in
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a) Polynomial Time Dependent Tactics
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b) Exponential Time Dependent Tactics
100 ' d — B=05 ]
= B=1
B2
9 =
80 = B=5 g
\ B=10
60 1
)]
=2
3]
>

40

20

0 20 40 60 80 100
Deadline

FIGURE 4.5: Behaviour of a) Polynomial and b) Exponential time-dependent tactics

the negotiation, with the rate of concession dropping as time passes. After the initial

concession it reaches its final reservation value much more gradually.
Resource-dependent Tactics

Time-dependent tactics are useful for ensuring that some concession does occur in a
negotiation, but does not take any environmental conditions into account. For this
purpose, resource-dependent tactics should be used. Resource-dependent tactics need
a mechanism for obtaining resource levels from the host to be used as the controlling
factor for generating a value to be returned. Examples of these resource levels could be

system load or the number of commitments already in place.

Behaviour-dependent Tactics
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Behaviour-dependent tactics calculate the next value for an issue based on the behaviour
of their opponent. Proposals are generated based on the change between proposals
received from the opponent. This change can be imitated relatively, absolutely or using
an average of the changes. However, Axelrod has established that behaviour-dependent
tactics can never do better than other tactics; they can only gain equal utility to the
best tactic (Axelrod, 1984). Hence, although behaviour-dependent tactics are supported

by DiNE, we have chosen to omit them from any evaluation.
Tactic Combinations

A NC typically uses a number of different tactics based on the constraints they are
negotiating in. Multiple tactics are combined using a weighted average in order to
give preference to different criteria for proposal generation. It is possible to vary these
weightings at any time during the course of the negotiation. Strategies control the
weightings of the individual tactics, and how they are varied over time. A strategy
could, for example, increase the weighting against a time-dependent tactic as the deadline

approaches to ensure that a negotiation concedes at the end.

4.2.5.4 Negotiation Process

In order for a client to begin a negotiation with a supplier, it must have first determined
the identity and the item for which negotiation will take place. Selection of negotiation
partners is beyond the scope of the negotiation process and is assumed to have been
carried out by the host prior to a negotiation being initiated, possibly using a directory

service, such as UDDI.

Algorithm 1 shows that to begin a negotiation, a client NC first assigns a unique identifier
to the negotiation. This is attached to all messages in the negotiation to link them
together. The NC then generates a set of values for the initial proposal using the tactics
and preferences (described in Section 4.2.5.3). The proposal is then constructed and

sent using the host’s communication mechanism.

Algorithm 1 Client ¢ initiating a negotiation with s for item z, with max time ¢4z
idneg = genUID()
idp = genUID()
P=()
E = applyTactics(tmar) {Generates values for a proposal by applying tactics}
pg—»s - (idnega idpa C7 S; tmam CC, E>
sendMessage(p?_ ;)
P=PU{p’.,}

When messages are received, they are handled by Algorithm 2. When a message is
received, a counter-proposal is immediately generated using the combination of tactics.

Both the received and generated proposals are evaluated using the proposal scoring
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functions (described in Section 4.2.5.2). If the value of the incoming proposal is higher
or equal to that of the received proposal, an Accept message is sent and the negotiation
component’s host is notified of the successful negotiation. Otherwise, the deadline is
examined. If there is time remaining, the generated proposal is sent using the host’s
communication mechanism. Otherwise, a failure message is sent and the host is notified

that no agreement was made.

Algorithm 2 Negotiation Component a processing a proposal message from b

Drecy = receiveProposal()
<idnega Z.dp,-em,, bya,t,z, Brecy) = Drecy
E = applyTactics(t — 1) {Generates values for a proposal by applying tactics}
idp,.., = genUID()
Prew = (idneg, idp,,., 0, bt — 1,2, E)
if Va(precv) > V(pnew) then
sendMessage((idneg, ip,ecy @, b, t — 1)) {Send an Accept message}
notifyHost(success, precy) {Inform host of the success}
else
if t = 0 then
sendMessage((idneg, a, b, ‘Deadline Expiry’))
notifyHost(failure, ‘Deadline Expiry’) {Inform host of failure with reason}
else
sendMessage(Prew) {Send generated proposal}
end if

end if

4.3 Experimental Evaluation

DINE has been designed to incorporate a number of external inputs as controls over the
negotiation process. As such, it is not possible to undertake an experimental evaluation
covering the full range of situations in which it could be used. In this section, we evaluate
the performance and behaviour of DiNE while using only time-dependent tactics and
linear proposal evaluation routines. Observing the system under these conditions gives
an indication of the behaviour without any external influences, showing any behaviour

patterns which may influence the combination of other tactics.

In this evaluation, we focus on time-dependent tactics, as these are likely to remain the
same in a working implementation due to no reliance on resources. Time-dependent
tactics force a negotiation to concede towards the deadline, and are useful for ensur-
ing that concessions are made. We do not expect time-dependent tactics to be used
alone in a real implementation; resource-dependent tactics would be used to factor in
environmental conditions, and behaviour-dependent tactics may be used to react to the
behaviour of the opponents. However, resource-dependent tactics are domain-specific by
their nature — they rely on an environmental factor to control any concessions made,

making it impossible to evaluate them independently of specific resources.
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To evaluate the behaviour of DiNE, three experiments were run: in the first experiment
we varied the amount of time available in which to negotiate; in the second experiment,
the number of issues being negotiated over was varied, and the final experiment measured

the performance of our implementation in terms of real time.

4.3.1 Experiment Setup

The experiments in this section all share the same basic structure. A set of environ-
ments is generated containing the variables that restrict the outcome of each negotiation,
namely the preferences and deadline (described below). NCs run a negotiation in each
environment using each tactic. For every tactic, a NC negotiates against every other
tactic (including itself) for each environment in the experiment. The outcomes of the

negotiations were collated and averaged.

4.3.1.1 Environments

The variables that control the outcome of a negotiation are primarily the time available
in which to negotiate, and the preferences of each party for each of the issues. We
group these variables into an environment for the purpose of analysis. Since the space
of possible issues is not defined, the number of potential environments is infinitely large.
For our experiments, we created a set of randomised environments that can be used for

repeatable experiments.

For each environment, there are a number of issues defined (depending on how many
are required for the experiment). For each of these issues, the minimum and maximuimn
acceptable values for each party are defined by the following variables: idealf represent-
ing the ideal value for ¢ for issue g, #; controlling the size of the range of acceptable
values for c, #7 controlling the size of the range of acceptable values for s, and ¢, the
fraction of the acceptable regions that overlap. If ¢4 = 0, there is no overlap between
the acceptable regions of the preferences, and a successful outcome cannot be found. If
¢q = 1, both parties have fully-overlapping preferences, and any value acceptable to one
party is also acceptable to the other. These parameters are shown in Figure 4.6, giving
an overview of how they produce the remaining preference values. Table 4.2 shows the

ranges of values used when generating proposals.

H s s
ld?al L g S ideal’, = supplier ideal value
« 1 > ideal”, = client ideal value
05 i res’, = supplier reservation value
res’y ideal’, res’, = client reservation value

FIGURE 4.6: Effect of environment parameters on preferences for issue ¢
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Parameter | Explanation Range
idealg Ideal value for client 30

05, 05 Size of acceptable regions 10-50
bq Amount over overlap in acceptable regions 0-0.99
tmaz Amount of time available in which to negotiate | 10-60

TABLE 4.2: Values used for environment generation

We define the following function to determine the optimal utility of a negotiation, where
neither the client or supplier can increase their utility without a drop in their opponent’s

utility:
dn
Z OSres? + @ress
Oth — IT‘ 2 + IT‘ 1
i=1

6¢ + 0

4.3.1.2 Issues

The negotiations run in our experiments may use a number of issues. These issues are
independent of each other — the value of one issue does not directly influence the value
of another. This is a simplification of a real-world situation, but is necessary due to the
complexity that dependent issues would introduce. For example, in a situation where
a consumer wishes to subscribe to notifications about a particular topic for which the
publisher charges a fee, the fee may be partially related to the frequency with which the
notifications are requested. In our experiments, these issues are modelled as independent.

All issues in the experiments are qualitative, and take numeric real values.

4.3.1.3 Tactics

The only type of tactics we are evaluating in this section is time-dependent tactics.
We have used one of each of the three families of polynomial time-dependent tactic —
Boulware (8 = 0.2), linear (8 = 1) and conceder (8 = 5). The behaviour of these tactics
can be seen in Figure 4.5. The experiments in this section use polynomial tactics, as
their behaviour can be classed as simpler than exponential tactics (see Section 4.2.5.3
for details) We also ran the experiments with exponential tactics, and report on the

difference in outcomes in Section 4.3.3.

Single tactics are used in each experiment, rather than using a strategy involving mul-
tiple tactics, because we are examining how negotiations perform with these tactics.
Combining behaviours makes it more difficult to determine the cause of any changes in

behaviour.
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4.3.1.4 Time Model

In a real negotiation, the amount of time available in which to negotiate would be
measured in terms of real time. In our simplified experiments, we use an interval-based
time model, where a NC can send a single message in each time interval, which we refer
to as a tick. In practical terms, this allows us to measure time by counting the number of
messages sent, as in a full implementation, processing time would be negligible compared
to transmission time. Increasing the deadline by one tick allows one extra message to

be sent.

4.3.2 Hypotheses and Results

We evaluate DIiNE using two criteria in this section: behaviour given different amounts of
time in which to negotiate; and behaviour when the number of issues in the negotiation
is varied. As the negotiations have been simplified to include only time-dependent
tactics, deadline is the most significant factor of the evaluation since it alone controls

the behaviour of the tactics.

4.3.2.1 Variable Deadline

In many situations requiring negotiation, a time limit is placed on a negotiation. This
can be for one of many reasons. For example, a service could be attempting to set up
subscriptions to an information source in order to monitor a particular task that starts
at a predefined time. Everything needed to monitor the task must be in place before
it begins, so any negotiation involved must have reached a mutually acceptable value
within a specified time. Our hypothesis about the effect of time available in a negotiation

is as follows:

If a negotiation has a large amount of time to complete, the outcome is closer to the
optimal for both parties. In shorter negotiations, the difference between the utility for

the client and that of the supplier is greater.

It may seem that with shorter deadlines, negotiations are more likely to fail completely
and not find a mutually acceptable proposal. However, if both tactics are time-dependent
and both offer their reservation values at the last possible chance, negotiations should
always produce a successful outcome under the assumption that the environment in
which they are negotiating allows for a mutually acceptable proposal to be found (i.e.
there is some overlap in the acceptable regions of the preferences of both parties in the

negotiation).

In order to test the hypothesis, negotiations were run through 500 environments using a

single negotiation issue. The variable in this experiment is the amount of time available
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in which to negotiate — the deadline, which was varied between 2 and 100 ticks. Ne-
gotiations take place in the same environments for each value of the deadline. For each
combination of deadline and environment, the same negotiation was run with each type

of tactic at each end.

Figure 4.7 shows that as the deadline increases, the utilities obtained by the client
and the supplier get closer to each other, and also to the optimal utility. However, it
does not show that increasing the deadline will lead to both parties receiving a higher
utility. Instead, it appears that it is possible to get a better utility using a much shorter
deadline. Closer examination of the graph reveals that when the client receives a higher
than average utility, it is at the expense of the supplier, who receives a significantly
worse utility. As the period of the oscillations in the graph is constant, it appears that

this behaviour is predictable.
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FIGURE 4.7: Average utility as deadline is varied

In Figure 4.8 we have divided the results into those with even values for the deadline and
those with odd. From these graphs it can be seen that whenever an even value for utility
is chosen, the client comes out significantly better off than the supplier. The situation is
reversed using odd values for the deadline. The explanation for this behaviour is that if
negotiations use all available time, for a given deadline, it will always be the same party
offering their reservation value. Since the reservation value is the biggest concession a
party is willing to make over the preferences for a particular negotiation issue or set of
issues, it would normally be offered only when the alternative is for the negotiation to
fail. Because the time model used in thesc experiments allows a single message to be
composed and sent in each tick, the same party is always the onc making the concession

for a given deadline.

To illustrate the above behaviour, consider a simple negotiation between two partics,
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FIGURE 4.8: Average utility as deadline is varied through A) even values
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and B) odd

in which there is time for four messages to be sent. The client makes the initial offer,

and the supplier also responds with its initial offer. At this point, the client nust make

another offer. It knows that the supplier can still concede, so makes an offer normally.

However, when the supplier comes to make the next offer it determines that this will

be the last proposal offered, and therefore if the reservation value is not offered, the

negotiation could fail.

Comparison of tactics

To further examine this situation, we split the results of the experiment even further

in order to examine the behaviour of each type of time-dependent tactic in order to

determine whether one type is more susceptible to this behaviour than another. These

results are shown in Figure 4.9, in which the key part of the graphs is the shape of the
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lines between each graph. This shows that over the course of many negotiations, a client
gets the best utility from using a Boulware tactic, although this is at the expense of
the supplier utility. Considering all parties involved, it is better for the client to use a
linear time-dependent tactic, as this leads to the case where both the client and supplier
utility cannot get much higher without sacrificing the other’s utility, and is closer to the

optimal utility.

Client Tactic

Boulware Linear Conceder

Client Utility
Supplier Utility
Optimal Utility -

FIGURE 4.9: Average utility as deadline is varied with different client tactics (Client
vs. Supplier)

In still more detail, the results are broken down into the individual tactic groups in Figure
4.10, which shows the results of each type of time-dependent tactic playing against each
other. Above, we stated that it is better for the client to use a linear tactic. From this
statement, it would be expected that linear versus linear tactics would produce a result
closest to the optimal, and this is shown to be correct in the graph. The graphs also
show that Boulware tactics often produce a better outconie than the other tactic groups,

and conceder tactics can be expected to perform worse.

From these results, it would appear that this negotiation model is exploitable by one
party to maximise their own utility at the expense of the others. The negotiation
component initiating the negotiation could choose a deadline that is even and short,
in order to force their opponent to offer the reservation value as soon as possible. A
negotiation component’s reservation value represents the lowest possible utility it could
get from a negotiation if it succeeds. Additionally, the reservation value represents
the highest possible utility the opponent could get from the negotiation. Forcing the
opponent to offer their reservation value early would be the ideal way of winning a

negotiation in a situation where each party is self-interested.

However, it must be noted that these experiments have been performed with many
simplifications. It is the combination of these that have made this behaviour so apparent
and easily defined. The main differences between these experiments and real-world

versions are as follows:
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FIGURE 4.10: Average utilities as deadline is varied with different tactics (Client vs.
Supplier

o Interval-based time clock — In these negotiations, the time taken to create a mes-
sage or proposal is negligible, and a single message may be sent in every tick. In
a real-world negotiation, an amount of time would elapse during the transmission
of a proposal. If such a system used the Internet for communication, it is likely
that this time would vary slightly between each message, especially for inter-site
communication. This makes it difficult, if not impossible, to predict the number

of messages that could be exchanged in a negotiation before it starts.

Additionally, a single message is sent in every interval. The protocol does not
specify that a negotiation component must reply to a message in the interval
following the one in which it received the original proposal. This fits in with the
real time aspect of a negotiation — if it is not possible to predict the amount of
time taken to transmit a message, then it is impossible to determine when a reply
must be received. Instead, a final deadline is imposed on the entire negotiation

indicating the time by which a mutually acceptable proposal should be found.

e Single tactics — Only a single time-dependent tactic has been used in cach one

of these experiments. In negotiations for a service, one would expect a resource-
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dependent tactic to be used in addition to the time-dependent tactic. This means
that there are multiple tactics influencing the values chosen for each proposal, so
the effect of the time-dependent tactic would be dampened by other additional
tactics.

o Tactic Behaviour — A negotiation protocol specifies nothing about how a party
should behave within the rules of the protocol, so it does not constrain the be-
haviour of each tactic. The tactics here all concede from their ideal value to their
reservation value over the course of a negotiation. It may be desirable to prevent
a tactic from conceding too quickly, resulting in the behaviour shown above. This
could be done by having a minimum period before the concession value is offered,
or using other methods. However, if the negotiation reaches the final opportunity
to make a proposal and the reservation value is not offered, the negotiation may
well fail. This may be an acceptable solution to a service provider that would
rather trade off the possibility of losing business against being forced into offering

a reservation value to a client.

These experiments show that increasing the amount of time available in which to ne-
gotiate does not necessarily increase the utility seen by either party. With increased
deadlines, the utility of the two parties involved in a negotiation end up closer together
than with a shorter deadline. With predictable message durations and fixed transmis-
sion times, it is possible to choose a deadline value that will maximise the utility of
one party at the expense of another by forcing the other party to offer their reservation
value early on. However, this behaviour would be harder to replicate in a real-world
situation. This is investigated further later in this thesis, when a negotiation engine
is integrated with the myGrid notification service. The experiments also show that a
linear time-dependent tactic consistently produces a more predictable outcome, closer

to the optimum for both parties than other time-dependent tactics.

4.3.2.2 Multiple Issues

The previous section concentrated on experiments using a single negotiation issue. Real
world negotiations are likely to use multiple negotiation issues, as negotiation is often a
trade-off of one issue against another. We expect that real world negotiations would use a
small number of issues in order to facilitate trade-offs. With the behaviour using a single
issue understood, we examine the implications of using multiple issues in a negotiation.

Again, using only time-dependent tactics, the hypothesis about many issues is as follows:

As a negotiation involves more issues, the utility remains unchanged from that of nego-
tiations involving a single issue (assuming all of the issues are independent). Taking the
average length of a negotiation, increasing the number of 1ssues should not make negoti-

ations take any more time to complete, assuming that all issues concede independently.



Chapter 4 Direct Negotiation Engine 66

In order to test this hypothesis, negotiations were run through 500 environmemnts, in
which the amount of time available for a negotiation was randomised. Using a random
deadline removes the effect shown in the previous section where, for a given deadline, one
party always has better utility than the other. The number of issues being negotiated
over was varied between 1 and 25, and the average utilities are recorded along with the

average number of messages exchanged in each negotiation.

As shown in Figure 4.11A, as the number of negotiation issues increases, the utility
achieved by both the client and supplier does not change significantly. A few fluctuations
are present, but these are due to the randomised nature of the environments in which

negotiations are occuring.
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varied

Figure 4.11B also shows that with a larger number of issues, the same number of mes-
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sages are exchanged in reaching a mutually acceptable proposal. As the issues in these
experiments are independent and concede as such, the amount of time the negotiation
takes is constrained solely by the issue with the most restrictive preferences, regardless

of how many other issues there are.

4.3.2.3 Execution Time

The previous experiments use an interval-based time model in which a single message
can be sent each tick, allowing deadlines to be measured in terms of the number of
messages that can be sent during the negotiation. This is based on the assumption that
the time taken to transmit a message is the dominant factor in sending a message, and
that the processing time is negligible in comparison. To validate this assumption, we
measured the actual time taken to complete different negotiations. As the components
of this test are directly coupled, there is no transmission delay and the measured time

is purely processing time. Our processing time hypothesis is as follows:

The amount of time taken for a negotiation is directly proportional to the number of

messages exchanged during the negotiation.

To confirm this hypothesis, negotiations in 500 different environments were run, each
one being iterated 500 times to reduce inaccuracies in measurement. The amount of
time taken for each was recorded, and collected to obtain the minimum, average and

maximum amount of time taken against the number of messages sent in that negotiation.

Figure 4.12 shows that the mean time taken for negotiations varies linearly as the number
of messages exchanged increases. The maximum time has a couple of fluctuations, which
we have determined to be caused by garbage collection. These are rare enough not to
affect the mean execution time. From the graph, we can conclude that the time taken

is linearly related to the number of messages exchanged.

4.3.3 Experiments with Exponential Tactics

The experiments in the sections above were run with polynomial time-dependent tactics
only. To verify that the behaviour observed from these experiments was not restricted to
this class of time-dependent tactic, we repeated the experiments above using exponential
time-dependent tactics instead of their polynomial counterparts. The behaviour of these
tactics was shown earlier in Figure 4.5, and from this figure it can be seen that different
values of the 3 parameter need to be chosen for these tactics. As such, we have used
Boulware (8 = 1), Linear® (3 = 5). All other details of the experiments were kept the

salrie.

3 Exponential tactics do not exhibit a true linear behaviour, but we have selected a value for § that
produces a curve closest to the linear behaviour of a polynomial tactic with 8 = 1.
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FIGURE 4.12: Graph of time taken for negotiations

In each experiment, the general pattern of the results was the same with exponential
tactics as it is with polynomial tactics. Hence, we do not show the results here separately.
Instead we say that the only differences observed were slight variations on the exact
patterns of utility curves plotted from the results of the experiments. These results did
not change any of the outcomes of the experiments. For comparison, we show the results

of the variable deadline experiment side by side in Figure 4.13 below.
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FIGURE 4.13: Average utility is deadline is varied with a) Polynomial time-dependent
tactics and b) Exponential time-dependent tactics

4.4 Notification Service Scenario

In the previous section, we described experiments carried out using abstract issues and
without a particular scenario in mind. In this section, we use a scenario in which the

negotiation engine is integrated in the myGrid notification service.
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To illustrate the functionality of Grid-based bioinformatics, myGrid has adopted an
application that helps scientists study Graves’ Disease, a hormonal disorder caused by
over-stimulation of the thyrotrophin receptor by thyroid-stimulating antibodies secreted
by lymphocytes of the immune system (Stevens et al., 2003). The Graves’ Disease
application follows an in silico experimental process typical of bioinformatics. In this
process, the scientist attempts to discover information about candidate genes, makes an
educated guess of the gene involved in the disease and then designs an experiment to
be realised in the laboratory in order to validate the guess. This in silico experiment
operates over the Grid, where resources are geographically distributed and managed by
multiple institutions. It is a data-intensive Grid in which the complexity is in the data
itself, the number of repositories and tools that need to be involved in the computations,
and the heterogeneity of the data, operations and tools (Moreau et al., 2004). Users
would like the Graves’ disease experiment to be run repeatedly as new data is added to

the knowledge base, and be notified of any changes in the results.

Our specific case experiment is a simplified version of this scenario — a notification
service providing notifications from the SWISS-PROT database. SWISS-PROT is a
curated protein sequence database providing a high level of annotation, minimal redun-
dancy and high integration with other databases (EBI, 2003). It can be queried for
sequences and annotations that are related to specified sequences, and is continually
expanding: in the four months between two recent releases, the database grew by 7%,

with an average of 890 changes per day*.

For our example scenario, we assume 1000 consumers are interested in anything that
matches 100 different protein sequences, and that a particular similarity search can be
run with different precision. For simplicity, we represent precision by a number between
1 and 5, and we assume that a search with precision 2 takes twice as long as a search
with precision 1. A particular consumer would like their search run as accurately as
possible, every 8 hours. If we assume that a search with precision 1 takes 1 second, some
416 hours of CPU time are required every day (1000%100*(24/8)*5 seconds).

Negotiation is introduced into this experiment using two issues. Frequency represents
the maximum number of hours between notifications: for the provider, the ideal value
is 72 hours and the reservation value 12 hours; and for the consumer the ideal value is 8
hours and the reservation value 48 hours. The second issue is the number of iterations
of the search. The provider prefers this to be between 1 and 5 and the client between
5 and 1. The preferences for the provider are kept constant, and a random variation is
introduced into the client preferences to simulate different clients. Negotiation deadlines

are between 30 and 60 messages.

We ran negotiations using the issues described above, and calculated the average out-

come. The average frequency was 39.2 hours, and the average number of iterations

‘http://www.expasy.org/sprot/relnotes/relstat.html
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was 2.69. These figures lead to 164,912 seconds of CPU time (45.8 hours), a reduction
of 89% on simply allowing clients to request arbitrary Quality of Service levels. Fig-
ure 4.14 shows the difference in the amount of CPU time required when negotiation
is introduced, and the corresponding differences in utility seen by both sides using the

preferences above.

Introducing negotiation significantly lowers the amount of work the provider must do
in this case, resulting in a significant increase in provider utility. However, this comes
at the expense of the client utility; although there was a very large gap between the

provider and client utility previously, the gap has now been reduced.

Introducing negotiation enables a provider to balance the utility of its clients with its
workload. Although decreasing the client utility, lowering the amount of work required

enables it to serve more clients while still satisfying them.

4.5 Summary

In this section, we have presented the design of DINE, a Direct Negotiation Engine
based on a version of NDF (Faratin, 2000), tailored for usc in a situation such as a
notification service. DIiNE is a negotiation engine providing support to other services
and applications wishing to support negotiation. DiNE allows the services using it to
vary the level to which they are involved in the negotiation process, giving them access to
influence the routines of proposal generation and evaluation. Proposals may be generated
using a combination of system-supplied and host-supplied information, such as the level

of available system resources.

We also presented an evaluation of the perforimance and behaviour of DINE, using time-
dependent tactics, a type of tactic which would be used in real-world applications of
DiNE in conjunction with resource-dependent tactics taking system resources into ac-

count. This allowed us to observe the characteristics of the system using only these
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tactics as different parameters are varied. Based on these experiments, we can make the

following statements about DiNE:

e In Grid systems, time is often a critical resource. Agreements may have to be in
place by a particular time in order for a service to run. Knowing how the amount
of time available for negotiation affects the outcome is an important factor in
choosing this deadline. In negotiations which have more time available in which
to negotiate, results give utilities closer to the optimums for both parties. With
shorter deadlines, the results are more unpredictable; the utilities of the client and

supplier are further apart than with longer deadlines.

e Any negotiation mechanism should be fair to all parties involved. If one party
can predict the outcome of the negotiation before it is run, it can be unfair to
the other party. If the message transmission time is predictable, it is possible for
the client to initiate a negotiation using a deadline chosen to produce significantly
better results for the client at the expense of the supplier. This is due to the
client being able to predict that the supplier will have to offer its reservation value
at the expiry of the deadline, causing the supplier to receive the lowest possible
utility. Unpredictable message transmission times in a real-world implementation
are expected to mask this effect, making it harder to select a deadline chosen to

cause this behaviour.

e Negotiations are typically undertaken over multiple issues, trading one issue oft
against another one. Negotiations involving multiple issues do not take any longer
to complete than negotiations with a single issue, assuming thiat each issue is

independent and concedes as such.

e When choosing a deadline for negotiation, it is useful to know that there will be no
factors other than the deadline affecting the amount of time taken. As negotiations
take longer in terms of the number of messages sent, the processing time takei
to perform the negotiation is linearly related to the number of messages — the

system scales predictably.

DiNE was designed with the context of a notification service in mind, where consumers
and publishers of information have conflicting preferences about delivery conditions for
a subscription to notifications. To show the intended benefit of such a configuration,
our experiment simulating this scenario showed that negotiation enables the load on
the service provider to be reduced, and the number of clients able to be served to be

increased.

In summary, DiNE enables automated negotiation to occur between two services, allow-
ing one to request a service from another while specifying conditions about the quality

of service with which the service is delivered, and having differences in the preferences
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about these conditions automatically resolved by DiNE. The evaluation of this nego-
tiation is novel work, as it examines the behaviour of time-dependent tactics in more
depth than other work, discovering the precise behaviour of the tactics with respect to

predictable deadlines.

The contributions presented in this chapter were an empirical evaluation of a heuristic-
based bilateral negotiation model, showing the behaviour of the model in an isolated
environment; and a demonstration that negotiation is a suitable model for resolving
differences between the QoS preferences of a consumer and a service provider in a dis-

tributed system.

DiNE is a direct, bilateral negotiation engine. To enable negotiation in a distributed
notification service, we need an extension of DiNE where intermediaries can contribute to
a negotiation, redistributing or reselling items obtained for previous clients. In the next
chapter, we present a model of chained negotiation enabling this, and develop CRANE,

a chained negotiation engine.



Chapter 5
Chained Negotiation Engine

In Chapter 4, we established that direct negotiation provides one way of resolving the
differences in requirements between consumers and publishers of notifications in a notifi-
cation service. We developed a negotiation engine, DINE, to enable mutually acceptable
values for notification parameters to be automatically determined for directly connected
producers and consumers, and demonstrated that, by using the negotiation engine to
manage client demands, the load on the service provider can be reduced, enabling more
clients to use the same service. In this chapter, we present an evolution of DINE, ChaNE
(Chained Negotiation Engine), which supports negotiation via intermediaries (or mid-

dlemen).

5.1 Introduction

In large-scale deployments of notification services, multiple instances of a NS are likely to
be hosted at different locations (Krishna et al., 2003) and, consequently, publishers and
consumers may interact with different NS instances. Typically, they publish messages to,
or consume them from, their local NS. Such distribution of NSs offers better scalability
(by avoiding a single NS being responsible for all notifications) and better security (by
allowing NSs dealing with private topics to be hosted behind firewalls). It is natural,
therefore, to expect such distributed NSs to be networked (similar to news servers)
and to be capable of propagating notifications between publishers and consumers. In
this view, as a result, a common configuration pattern consists of several NSs chained
between a consumer and publisher; hence, publishers and consumers may be separated

by several NSs, which we also refer to as intermediaries or middlemen.

Although distributed notification is more complex, it offers some potential efficiency
gains. Instead of sending the same notification messages to multiple consumers sub-

scribed to the same topic, it becomes possible to propagate a single instance of such

73
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a message between NSs to reduce network traffic. We refer to such an optimisation as
sharing notifications. The difficulty with this, however, is that if consumers can nego-
tiate QoS parameters for a subscription, two sets of requirements may be sufficiently
different that they preclude the sharing of notifications, and hence may impose a higher
load on the network of NSs.

Our direct negotiation engine (DiNE) discussed previously in Chapter 4 is unsuitable
in this context, as it was aimed at directly connected consumers and producers. With
distributed notification services, by contrast, consumers and publishers are connected
through a series of middlemen, which can in turn have their own QoS requirements. In
response, we have designed a negotiation model, which we refer to as chained negoti-
atton, in which the consumer and publisher no longer communicate directly; instead,
negotiation takes place through middlemen, which pass service proposals back and forth
between publishers and consumers, potentially modifying them in order to satisfy their

own QoS requirements.

Furthermore, chained negotiation is designed to promote sharing of notifications. Specif-
ically, middlemen record previous commitments of publishers to provide QoS at given
levels; they not only pass proposals but also attempt to identify existing commitments
that can be reused to satisfy consumer requirements, potentially impacting on the nego-
tiation outcome for the consumer or the publisher. Using these existing commitments to
satisfy a new consumer represents a gain in efficiency, as without it, a new commitment

would need to be made between the consumer and the publisher.

In this chapter, we discuss the design and evaluation of ChaNE, a negotiation engine
supporting chained negotiation. To demonstrate its effectiveness, we have designed
a series of experiments that aim to show that using a chained negotiation system in
conjunction with a distributed notification service enables more consumers to be served
by a given set of notification services, and that this can be done at the same time as

reducing the load on service providers.

This chapter provides a novel contribution — chained negotiation is a new form of negoti-
ation that deals with the situation where negotiation takes place through interinediaries,
enabling the redistribution and/or reselling of items obtained through negotiation, and
allowing the sharing of subscriptions between intermediaries, reducing the overall load
on the system by enabling notifications to be shared between intermediaries and con-
sumers. Our empirical evaluation demonstrates that chained negotiation is an effective
way of enabling a consumer and a service provider to resolve differences in their prefer-
ences over quality of service, while providing a mechanisin for an intermediary to supply
the requested item or service if it already has a commitment to provide the itemn to

another consumer.

The rest of this chapter is organised as follows. In Section 5.2 we present chained

negotiation, and the design of ChaNE, our implementation of chained negotiation. In
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Section 5.3 we evaluate the behaviour of ChaNE, to determine the costs and benefits
associated with chained negotiation. Section 5.4 describes a simulation of the intended
use of chained negotiation, a distributed notification service. Finally, we summarise the

chapter in Section 5.5.

5.2 Design of a Chained Negotiation Engine

In this section we present ChaNE, our Chained Negotiation Engine. ChaNE is an
evolution of DINE, and as such builds on many concepts introduced in Section 4.2.2.
ChaNE encapsulates the behaviour of chained negotiation, enabling other systems to

make use of chained negotiation functionality.

5.2.1 Core Concepts

Before discussing the design of ChaNE, we introduce some core concepts which will be
used during discussion of chained negotiation, and ChaNE in particular. Firstly, we re-
call that direct negotiation takes place between one or more clients attempting to obtain
products or services from one or more suppliers. Both parties exchange proposals to find
a mutually acceptable price or set of constraints for the negotiation item. By contrast,
chained negotiation is an extended form of negotiation, in which a client initiates a ne-
gotiation with a middleman. If the middleman cannot provide the requested item itself,
it will in turn initiate negotiation with a supplier, or potentially another middleman.
Thus a chain is formed between the client and the supplier.! More specifically, middle-
men forward proposals between the clients and suppliers so that an agreement can be
reached, as illustrated in Figure 5.1, where the Client is negotiating with the Supplier
via Middlemanl and Middleman2. The client and supplier at each end of the negotia-
tion chain are referred to as end NCs. Messages sent towards the supplier are referred
to as upstream, whereas messages sent towards the client are referred to as downstream
messages. Middleman also have ability to modify the messages that they send between
the client and supplier. For example, a commercial service redistributing notifications
on a particular topic may have to pay for the initial subscriptions. To recoup this outlay,
and to provide a return for offering the service, it may add an amount that it will retain

to the price paid by the consumer.

Chained negotiation is the general term for negotiations involving middlemen. When

a chained negotiation terminates successfully, it can be placed into one of two classes:

! It is not our intention that chained negotiation deals with the selection of negotiation partners. In
DiINE, we leave the selection of supplier to an external mechanism such as a directory service. Similarly,
for chained negotiation, we assume that an external process creates the chain between clients, middlemen
and suppliers.
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Client Middleman1 || Middleman2 || Supplier

FIGURE 5.1: Message exchange sequence in chained negotiation

matched negotiation, which satisfies the client’s request by using an existing commit-
ment; and unmatched negotiation, which requires a new commitment to be made up-
stream. We also define forwarded negotiation as a variant of chained negotiation where
no existing commitments are used. In the context of a notification service, existing

commitments are represented by subscriptions held for previous consumers.

5.2.2 Negotiation Protocol

The negotiation protocol defines the rules of the negotiation — the parts of the negoti-
ation that must remain constant no matter how a participant behaves. Specifying this
allows a clear distinction to be drawn between the actions that are taken because they
are specified by the protocol, and those which have been taken due to the influence of
a negotiation strategy. The protocol consists of the valid participant types, the inter-
actions between those participants, the format of the messages, and rules that must be

followed.

5.2.2.1 Participant Types

In a chained negotiation, there are three types of participant: client, middleman and
supplier. A client is interested in obtaining a product or a service from a supplier,
and typically has a set of preferences for the ranges of values considered acceptable for
each issue in a negotiation. A supplier is attempting to provide products or services
to interested parties. A middleman can act as both a client by obtaining an item from
another supplier, and a supplier by reselling or redistributing goods or services to other

parties.

5.2.2.2 Interactions in Chained Negotiation

The interactions in chained negotiation are similar to those in direct negotiation, with

some additional messages to enable multiple parties to agree to a commitment. These
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interactions are shown in Figure 5.2, and described below. Interactions that differ from

those in direct negotiation are marked with a (*) in the text.

Client Client NC Middleman Supplier NC Supplier
1: registerPreferences(item) ; 1: registerPreferences(item)
> < :
2: negotiateFor(item, requestees) ;
N

»

3: genlnitProposal()

4: propose(proposal) i  7: propose(proposal)

10: accept

10: accept

‘o
Bt

< : 11: confirmaccept
success(acceptableProposal)

11: confirmaccept =
) :

»
> >

success(acceptableProposal

FIGURE 5.2: Interactions in a chained negotiation

1. Preference Registration

Before the negotiation begins, both parties initialise their respective negotiation
component (NC) with a set of preferences for the items they are interested in or
are making available. The preferences consist of two values, an ideal value and
a reservation value which, combined, represent the extent of the range the host

considers acceptable for a specific issue.

. Negotiation Initiation

The client gives its NC an instruction to begin the negotiation process. In order to
constrain the amount of time a negotiation can take, a deadline is specified as the
negotiation is started. Not only does this ensure that a negotiation will complete,
it also ensures that if the item is required in a specific time frame, the negotiation

completes in time for delivery to take place.

3. Initial Proposal Generation

The client’s NC generates an initial proposal ready to send to the supplier’s nego-
tiation component. Typically, this would be the client’s ideal values for all of the
issues involved in the negotiation. Optionally, this step can involve callbacks to

the client in order that the client may influence the initial proposal generation.
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4. Proposal Transmission

The negotiation process now enters a cycle, initiated by a proposal being transmit-
ted. The communication mechanism is left unspecified — the host must implement
a reliable message transport for message delivery, as no checks are performed to

ensure message delivery. The message is sent to the closest middleman.

5. Action Generation (*)

Once a middleman receives a proposal, it must decide what to do with it. The
protocol does not specify behaviour here; only that it should transmit a proposal
to either the upstream or the downstream party in the negotiation. The proposal
can be forwarded unaltered, or the middleman could change some values for the
issues in the proposal. A series of actions are generated covering the different

messages to consider sending.

6. Action Selection (*)

The list of actions generated in the previous stage are evaluated, and the best one
is selected for execution. The message from this action is sent to the intended

destination in the next stage.

7. Proposal Transmission/Forwarding (*)

The message from the action selected in the previous stage is sent onto the next
NC in the chain — this could be an end NC, or another middlemar. Eventually,

this stage results in a message reaching an end NC.

8. Counter-proposal generation

When a proposal is received by an end NC, a counter-proposal is generated. Fur-
ther details of proposal generation by end NCs can be found in Section 4.2.5.3.
As with the initial proposal generation, counter-proposal generation can involve
callbacks to the NC in order to retrieve external environmental conditions such
as the current system load, or to allow p to provide a custom proposal generation

routine.

9. Proposal Evaluation

Once the counter-proposal is generated, both the generated counter-proposal and
the recently received proposal are evaluated using p’s utility functions. A compari-
son is made between the score of the counter-proposal and the received proposal. If
the counter-proposal has a higher utility, it is transmitted to the other negotiation
component (return to step 4). If the received proposal has equal or higher utility

than the generated counter-proposal, the situation is considered acceptable.

10. Proposal Acceptance (*)
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Client Middleman1 || Middleman2|| Supplier Client Middleman1 || Middleman2 || Supplier

F1cURE 5.3: Example of Interactions in a chained negotiation

Once an acceptable state has been reached, one party issues an accept message to
indicate that they consider the values for the issues in the proposal to be accept-
able. This does not cause a commitment to be made; it merely signifies that the
party is prepared to commit to the values in the acceptable proposal. A reliable
communication mechanism is assumed, as each party needs to be sure that all

involved parties are prepared to commit before proceeding.

11. Make Commitment (*)

Once an accept message reaches the client in the negotiation, a state has been
reached where there exists a party somewhere upstream of the client that is pre-
pared to supply the client with the requested negotiation item using the values
for the issues in the acceptable proposal. At this point. the client sends a mmessage
upstream, initiating a commitment. This message is propagated further upstream
by the middlemen to the party supplying the item (this could either be the supplier

or one of the middlemen in the chain).

For the client and supplier, the interactions they have when negotiating directly with
each other are identical to those when interacting with a middleman, therefore there is

no difference for them between direct and chained negotiation in ChaNE.

The different combinations of these interactions form interaction patterns. Interaction
patterns are affected by a number of factors, including the number of middleman in
a negotiation, the number of existing commitments held by the middlemen, and the
strategies and preferences in place at the middlemen. For this reason it is not possible
to show all possible interaction patterns, but examples permitted by the protocol are given
in Figure 5.3. It is worth noting that although these interactions are possible within
the protocol, the figure on the right requires the strategy for a middleman be capable of
generating proposals not based on simply forwarding or offering existing commitments

— the strategy which we will present does not support this and it is left for future work.

The pattern of using Accept and ConfirmAccept messages is used in response to the
difficulty of enabling acceptance by multiple parties. When only two parties are involved,

the presence of an Accept message indicates that the other party accepts the proposal,
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and this can be turned into a commitment very easily. When more than two parties are
involved, all have to “agree to agree” on something first — Accept messages indicate
that each party agrees to a particular proposal, and then a ConfirmAccept message is
used to initiate turning the agreement into a commitment. This is a variation of the
two-phase commit approach (Gray, 1978) used for distributed databases to commit an
action atomically. In DiNE, commitments are not actually made within the NCs —
it is left to the host components to arrange a commitment separately. We chose to
add commitment making into ChaNE rather than have hosts arrange this because of
the added complexity of getting multiple parties prepared to commit to something, and
because otherwise, clients and suppliers would need to be aware that they are part of a

chained negotiation, interacting with all of the involved parties.

5.2.2.3 Message Structure

In the process of a chained negotiation, messages are exchanged between parties con-

veying offers and other information. Four different types of message are used:

e Propose

Propose messages convey an offer from one NC to another, with a set of values

proposed by the sender for each of the issues in the negotiation.

o Accept

Accept messages indicate that the sender is prepared to accept the proposal ref-

erenced in the message.

e ConfirmAccept

A ConfirmAccept message indicates that a commitment is being made to the
proposal referenced in the message. No party should receive a ConfirmAccept

message referencing a proposal they have not previously accepted.

e Terminate

Terminate messages are used to signify a negotiation failure or explicit termination.
A reason field is contained in the message to indicate to the other party why the

negotiation failed.

As in the messages used in direct negotiation, all of the messages contain a common
message header, used for identifying the type of message, sender and recipient, and
the negotiation it is related to. Additionally, chained negotiation messages also contain
fields holding the distance upstream and downstream, measured in number of hops, to
each end of the negotiation chain. The need for this field is explained in Section 5.2.2.5.

These fields are populated by the end NC setting the distance from itself to zero when a
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Message Field Name Description
MessageType Identifies the type of this negotiation message
SenderID Identifier for the sender of this message
(All) RecipientID Identifier for the recipient of this message
NegotiationID Unique identifier for this negotiation
DistUpstream Distance between sender and supplier in hops
DistDownstream | Distance between sender and client in hops
ProposallD Unique identifier for proposal in the negotiation
Propose Item Item this negotiation is for
Elements List of values for issues in this negotiation
TimeRemaining | Amount of time remaining in this negotiation
Accept ProposallD ID of the proposal being accepted
TimeRemaining | Amount of time remaining in this negotiation
ConfirmAccept | ProposallD ID of proposal that was accepted
TimeRemaining | Amount of time remaining in this negotiation
Terminate Reason Reason for the negotiation being terminated

TABLE 5.1: Chained Negotiation Message Structure

message is sent, and by middlemen incrementing the field for the distance in which they

are sending. Details of the fields found in the message header, as well as the specific

messages, may be found in Table 5.1.

5.2.2.4 Rules

Chained negotiation is governed by a set of rules ensuring that all negotiations follow

a prescribed pattern and have sufficient information to complete successfully within a

specified period, assuming that the preferences of the parties involved overlap sufficiently

so that an agreement is possible. If the preferences do not overlap, no agreement can be

reached. These rules are discussed below.

1. NGCs upstream of the client can only send Accept messages downstream if they can

provide the required item.

For any negotiation component further upstream than the client (i.e. the supplier

or any of the middlemen), they must not send an accept message downstream

without first having either:

(a) matched the current negotiation to an existing commitment it holds that is

capable of fulfilling the negotiation; or

(b) received an accept message from the party directly upstream in the negoti-

ation, indicating that they are definitely able to supply the item under the

conditions in the accepted proposal.

If this rule is adhered to, the case where a client agrees to buy something the seller

cannot actually provide will not arise. The rule is not enforcible — the protocol




Chapter 5 Chained Negotiation Engine 82

does not allow the client to verify that there is an upstream agreement in place to
satisfy an accepted proposal. However, it is rational that this rule would be obeyed
— failure to deliver an item for which a contract has been made could result in
penalties or loss of reputation (Zacharia et al., 1999). Verifying compliance with

this rule is beyond the scope of this work and is left for future work.

2. Propose and Accept messages can only be sent if there is time remaining before
the deadline.

The deadline specified by a negotiation indicates the amount of time remaining in
which an acceptable proposal can be found. By the time the deadline expires, the
client should have received an Accept message from upstream. If this is the case,
Rule 1 means that all parties involved in the negotiation have found an acceptable
proposal and are prepared to make a commitment. All that remains is for the client
to initiate the ConfirmAccept messages. This message can be sent at any time up
to and including the deadline, as it will be propagated to the party fulfilling the

negotiation without delay.

3. Oanly send a message if the reply can reach the client before the deadline.

Proposals are often generated using the amount of time remaining before the dead-
line as one of the controlling factors in the rate of concession (see Section 4.2.5.3).
The amount of time remaining before the deadline also influences which direction
a middleman should choose to negotiate in. Rule 2 states that the negotiation
must have found an acceptable proposal by the time the deadline expires if the
negotiation is to be successful. For this to be possible, a middleinan must ensure
that before sending a message to an upstream party there is enough time remaining
for the reply to be received and forwarded back to the client before the deadline

expires. Implications of this rule are discussed below.

5.2.2.5 Distance to Client and Supplier

In order to satisfy Rule 3 above, it must be possible for a middleman to determine
how long it will take for a reply to reach the client. This is done by adding a field
to the messages to hold the distance to the client, measured in number of hops. It is
also possible to hold the distance to the supplier using the same method. This section

discusses the implications of using these distances.

Without knowing the distance to client and supplier a party is negotiating with, they
must make an assumption about the distance. Clients and suppliers know their down-
stream and upstream distances respectively are both 0, but may not know how far away
the other is. Middlemen can be an unknown distance from both ends. A middleman
could assume that it is directly downstream and upstream of the party, i.e. a distance of

1 in each direction, but this assumption being incorrect causes two separate but related
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problems: an inability to determine whether there is time to negotiate upstream; and an
inability to correctly determine the amount of time remaining before a final concession

can be made.

If a NC is unable to correctly detect that there is sufficient time to send a proposal
upstream so that a reply can reach the client, it will not be possible for an Accept message
to reach the client before the deadline expires. Rule 2 states that only ConfirmAccept
messages can be sent after the deadline has expired, and Rule 1 means that only the
client can initiate ConfirmAccept messages. Because the client will not receive an Accept
message, the negotiation will fail due to deadline expiry. This is illustrated in Figure
5.4, where a chained negotiation is taking place with two middlemen. Middleman?2 does
not know the distance to the client, and assumes this to be 1. This enables it to send a
proposal upstream to the supplier, although there is no time for the reply to reach the

client, so the negotiation fails due to deadline expiry at Middlemanl.

The second problem arising from not knowing the distance to the client and supplier
is that it is impossible to accurately determine the last possible moment at which a
final concession should be made. With time-dependent tactics (see Section 4.2.5.3), the
reservation value is offered at the last possible moment. The last possible moment is not
at the deadline, as it would not be possible for this final offer to be received by anyone.
Instead, it must be made at the latest time at which it is possible for the message to be

received by the opponent, and for a reply to reach the client before the deadline expires.

Client ‘ Middieman1 ‘MiddlemanZ Supplier

remaining time

FI1GUurE 5.4: Example of negotiation failure when not using distance to client

To illustrate this problem, consider the example shown in Figure 5.5. A client ¢ and
supplier s are negotiating for an item via middleman m1, with the negotiation involving
a single issue. The preferences of both parties have an overlapping region, so that it is
possible for an agreement to be made. The acceptable range of ¢ for the preference 1s
[10:50], and for s is [80:40]. Proposals are forwarded unchanged by mi. The negotiation
begins with an initial deadline of 8. In this example, s knows the distance to ¢ is 2, but

¢ does not know the distance to s and assumes it is 1.

The first proposals issued by ¢ and s contain their ideal values from their preferences,
indicating what value they would like to get. This causes a problem when ¢ receives
the proposal from s, since the value in the proposal is not acceptable and a counter-
proposal is generated. The remaining time at this point is 4, indicating that there is
still enough time to make a proposal to the party directly upstream, receive a reply,

and then offer the reservation value if necessary in the next step. However, the party
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r = remaining time
v = value in proposal

FIGURE 5.5: Example of reservation value being missed not using client distance

directly upstream is actually a middleman forwarding the proposals onto s. This causes
the message to take longer than expected to come back. Supplier s correctly realises
that as the remaining time is now 2, it is its last chance to make an offer in time to get to
¢, so offers the reservation value. This value is actually within the preferences of ¢, but
as the deadline has elapsed and ¢ has not received an accept message, it is impossible
to make a commitment. If ¢ had known that the distance to s was actually 2, when the
remaining time was 4 it would have offered its reservation value, which would have been

accepted by s and the negotiation would have been successful.

To avoid the problems discussed in this section, all messages sent in chained negotiation
carry a field containing the distance of the message sender to both the client and supplier.
The contents of these fields are calculated automatically — the client and supplier set
the distance to themselves to be zero when they send a message, and when middlemen
send a message upstream, they increment the distance downstream by one (and vice
versa). The client and middlemen do not know the distance to the supplier until a
message has been received by the supplier and a reply sent downstream, enabling the

distances to be calculated by all of the NCs in the chain.

5.2.3 Negotiation Strategies

The previous section described the negotiation protocol — the rules that constrain all
behaviour within chained negotiation. However, actions within this protocol have to
be defined before chained negotiation can occur. The negotiation strategy controls how
each participant behaves within the protocol. In chained negotiation, the behaviour of
the client and supplier is no different from parties in direct negotiation, albeit with the
minor modifications to the protocol described in the previous section. For this reason,
the strategy described below applies only to middlemen, as the reasoning involved in

middlemen is significantly different to clients and suppliers.

Figure 5.6 shows an overview of the data flow in the negotiation strategy. A context
store holds information on every negotiation, including all messages sent and received so
far, and details of the participants and item in the negotiation. The commitment store is

used to record details of commitments that have already been made for previous clients.
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FIGURE 5.6: Data flow in ChaNE

Messages are received using the Message Transport layer and stored in the context store,
before the action generation routine uses the context and commitment stores to generate
a series of potential actions to be taken. Actions are messages that can potentially be
sent. The best action is then selected using the action selection routine, and the message
from that action is added to the context store before being sent to its recipient using the

message transport. The action generation and selection routines are described below.

5.2.3.1 Action Generation

Actions are the major part of chained negotiation — they comprise a message which
would be sent if that action was to be chosen. This message can be either a proposal,

or an accept message. Actions are generated in two main ways:

e Commitment Matching: Proximity functions (described below) are used to select
existing commitments that are close (i.e. similar values for the issues under nego-
tiation) to the last received proposal from downstream. As they are close to the
last received proposal, they are more likely to be acceptable to that party than
one further away. The commitments selected by the proximity functions are made
into proposals to be sent back downstream. No upstream proposals are generated

using this method.

e Proposal Forwarding: The last received proposal from upstream is copied as a
proposal to be sent downstream, and vice versa. The proposal elements are left

unchanged.

e Proposal Modification: The last received proposal from upstream is copied as a
proposal to be sent downstream, and vice versa. During the process of copying the
proposal elements, some of them may be altered by the middleman, for example
so that it can take some of the cost element of the proposal as profit for operating

the service.
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Not all of the above methods are used to generate actions in all negotiations — nego-
tiations where the middleman is not trying to make a profit do not use the proposal
modification method, for example. Each method may generate any number of actions,
which are evaluated using the scoring functions described below. It is also possible to
add extra routines for generating actions here — potential future work includes gener-
ating proposals speculatively, allowing a middleman to anticipate high demand for an

item and try to obtain this at a high QoS to potentially satisfy many clients.

5.2.3.2 Proximity Functions

Chained negotiation uses prozimity functions to determine whether one proposal is sat-
isfiable by another proposal or commitment. Proposal p; is satisfiable by po if each
element of py is at least as good as its counterpart in p; (from the point of view of the

sender of p1), and the negotiation item of each proposal is the same.

—1 if Subj(p1) # Subj(p2)

0 if Elements(p;) = Elements(ps)

proz(pi,p2) = , :
< 0 if p1 not satisfiable by po

0 if p; satisfiable by po

Proximity functions are used to determine appropriate existing commitments. A thresh-
old is used to determine which commitments are appropriate — if the middleman is only
forwarding proposals, a threshold of 1 will ensure that any time a commitment is se-
lected, it should be accepted by the client. A threshold of slightly less than 1 allows
commitments that are very close to be selected, and these might be acceptable when the
client makes its next concession. However, in the next section we will show that prox-
imity functions are also used by scoring functions to rank actions, and using a threshold
of less than 1 can cause a problem here when matched commitments that are very close
to, but less than, 1 are ranked higher than a forwarded proposal close to the deadline,

causing the negotiation to potentially fail if it is not accepted.

5.2.3.3 Action Selection

Each time a message is received, the best course of action must be selected. To determine
this, chained negotiation uses scoring functions, which assign a score to a particular
action. They are required because multiple actions are generated every time, and the
most appropriate one must be selected. ChaNE has been designed to allow additional
scoring functions to be supplied by the host, but core scoring functions are necessary to
confrol the behaviour of chained negotiation. We have defined the following core scoring

functions:
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e Proximity

Proximity functions as described in Section 5.2.3.2 are used to select actions that
are closer to being acceptable, which occurs when the proposal they contain is
closer to the last received proposal from the party to which the action will be sent.
This allows different ways of generating proposals to be used, and the best one
selected. Actions containing proposals that are close to the last received proposal

are given a higher score than those that are further away by this scoring function.

e Acceptable actions

This function gives a higher score for actions that would directly lead to an accept-
able state, such as accepting a proposal already received. This function addition-
ally gives a higher score for an action that would reuse an existing commitment.
It favours actions that complete the negotiation earlier, and those that incur less

cost by reusing an existing commitment.

e Path least recently chosen

In the early stages of a negotiation, there may be no reason to score the forwarding
of a proposal upstream any differently to sending a proposal downstream. This
could lead to the situation where the negotiation does not proceed because no
messages are ever forwarded upstream. Considering the two directions in which to
negotiate, this function gives a higher score for the direction least recently used.
For example, if the last message was sent upstream, downstream actions get a
higher score. If the last five messages were sent upstream, downstream actions get
a significantly higher score from this function. The scoring function can also be
used to bias a middleman into favouring one side of a negotiation. For example, it
may be configured to do as much of the negotiation as possible without involving
the client, which could be on a low-power device or connected via an unreliable or

slow connection.

Actions are evaluated using a weighted average of all of the configured scoring functions.

5.2.3.4 Negotiation Algorithm

The significant part of chained negotiation occurs when a message is received by a
middleman, which generates a set of possible actions (each including a message to be

sent), and then executes the best action, as shown in Algorithm 3.

Initially, the most recently received message from each side is collected. The middleman
looks for a commitment that can satisfy the last message from downstream using a
proximity function, as described above. If one is found, or if an accept message from

upstream has been received matching the downstream message, an action is generated
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Algorithm 3 Processing Propose and Accept messages
msgq =getLastDownstreamMessage()
msg, =getLastUpstreamMessage()
msg =mostRecentMessage(msgy, msgy)

if remainingTime = 0 then terminateWithFailure()

if indCommit(msgy) or hasUpstreamAccept(msgq) then
actions.add(makeAction(ACCEPT, down, msgq))

end if

if tem > (distp + 2 * disty) then
actions.add(makeAction(PROPOSE, up, msg,))

end if

if msg, != null then
actions.add(makeAction(PROPOSE, down, msg,))

end if

a =selectBestAction(actions)

executeAction(a)

to accept the downstream message. Otherwise, proposals from upstream are passed
downstream, and from downstream to upstream. Note that messages will only be sent
upstream if there is time for a reply to reach the client. The middleman may modify
a proposal at this point (to make a profit) but this is omitted from the algorithm for

clarity of presentation. Finally, the best action is selected and executed.

5.3 Experimental Evaluation

In the previous chapter, we presented an experimental evaluation of DINE, our direct
negotiation engine. This evaluation focused on core elements of the negotiation which
would be present in any negotiations using DINE. In this section, we evaluate the per-
formance and behaviour of ChaNE, repeating the experiments in the previous chapter
to examine any differences in behaviour, so that the implications of using chained nego-

tiation can be determined.

In addition to the experiments performed previously, we examine behaviour traits spe-
cific to chained negotiation, such as the effect of middlemen taking a cut from negoti-
ations. To evaluate the behaviour of ChaNE, we present four experiments: in the first
experiment we vary the amount of time available in which to negotiate to observe the
impact of chained negotiation; in the second experiment the number of middlemen is var-
ied; in the third experiment we observe how chained negotiation behaves with multiple
negotiation issues; and in the final experiment we examine the effect of the middleman

making a profit by taking a cut of the proposals.
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5.3.1 Experiment Setup

The experiments in this section all share the same basic structure as described in Section
4.3.1, where all variables controlling the outcome of a negotiation, such as the time
available in which to negotiate, and the preferences of the parties involved, are grouped
into an environment. Both the end NCs (the client and the supplier) use the same set
of tactics described earlier (Boulware, linear and conceder polynomial time-dependent
tactics). In each experiment, every tactic is run against every other tactic (including
itself).

In a negotiation, clients and suppliers usually try to maximise their utility. Middlemen
can exist to benefit the community they serve, or to make a profit by reselling items. We
expect that when reusing existing commitments, clients receive a higher utility because
of chained negotiation, as a favourable commitment may already be in place, instead of
having to negotiate again with the supplier, whose preferences may have changed since
the first agreement. However, it is harder to measure the benefit to the utility of the
supplier, since it requires the assignment of utility to the case in which another client
is satisfied without the supplier having to do anything. Instead, it is better to consider
benefit in terms of being able to satisfy more clients and, consequently, we concentrate
on client utility in these experiments. Comparisons are drawn again to the optimal

utilities, calculated as described previously in Section 4.3.1.1.

5.3.2 Hypotheses and Results
5.3.2.1 Variable Negotiation Deadline

When an agreement must be in place by a certain time, deadlines are specified by which
a negotiation must have completed. In direct negotiation, it was shown that a longer
deadline leads to outcomes closer to the optimal utilities for each party, and shorter
deadlines give a greater difference between the utility of the client and supplier. Shorter

deadlines also increase the chance of a negotiation failing to make a deal.

In chained and forwarded negotiation, a single middleman is used for this experiment.
Here, the amount of time taken for a message to be sent from the client to the publisher
at the end of the chain is higher than in direct negotiation, which could lead to differing
behaviour as deadlines are varied. In this experiment, we examine the behaviour of
negotiation over a number of environments as the deadline is varied between 1 and 100

messages. We also record the amount of time taken in each negotiation.

Hypothesis: With longer deadlines, chained negotiation produces utilities closer to the
optimal set of values. As the deadline increases, chained negotiation completes in less

time than forwarded and direct negotiation.
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Figure 5.7 shows the behaviour that results. First, direct negotiation increases above
the optimal utility as soon as the deadline is long enough for a single negotiation. Then,
it converges towards a level slightly lower than the optimal line in an oscillating manner,
which is explained below. Forwarded negotiation follows a similar pattern, except that
the period of the oscillation is greater, and convergence takes longer. Chained negotia-
tion also oscillates, but this converges towards a significantly higher utility than direct
and forwarded negotiations. This is because once a good commitment has been found,
it can be reused for many subsequent negotiations. From Figure 5.8, it can be seen
that the number of negotiations matched to existing commitments is very high, reusing

commitments for most negotiations (over 95%).
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The oscillations in the utility of the consumer and supplier occur in each type of nego-
tiation. To explain this effect, consider direct negotiation, where messages take a fixed
amount of time to be transmitted (one period). Assuming that each party replies as
soon as possible, it is possible to calculate which party is able to send the last message,
as the deadline is measured in periods. This party will always be the one who offers
their reservation value (the limit of the concessions they are prepared to make) if the
negotiation has not completed by this point, indicating that they will receive the lowest
possible utility for that deal. Thus, in direct negotiation, if the deadline is increased
by 1, the two parties will swap over and the other will become the one to make the
final concession, so that they receive the lower utility, causing the oscillations in the
graph. Because in chained negotiation the time taken to send a message from client
to supplier increases, the period of the oscillations is greater (twice the amount of time
taken to send a message from client to supplier). The curves converge because where
the negotiations complete before the deadline, more time in which to negotiate means
that a mutually acceptable value closer to the ideal value can be found. For both direct
and forwarded negotiations, if the supplier utility curve is plotted on the same graph, it
oscillates at the same period, but out of phase with the client utility, as an increase in
client utility comes at the expense of supplier utility. This behaviour was also seen in

direct negotiation (Section 4.3.2.1).

Figure 5.9 shows the number of messages used in the negotiations in this experiment.
On average, for any instance, direct negotiation and forwarded negotiation exchange the
same number of proposals, linearly related to the deadline. Chained negotiation uses
significantly fewer messages on average since, when an existing commitment is suitable,
it is identified quickly. Thus we can conclude that once chained negotiation makes some
initial commitments, further negotiations will take less time than direct and forwarded

negotiations.

5.3.2.2 Number of Middlemen

The previous experiment examined the behaviour of the three types of negotiation as
the deadline was increased, but using only a single middleman. Chained negotiation
is likely to involve multiple middlemen, so we also need to examine behaviour as more

middlemen are introduced.

Hypothesis: As more middlemen are introduced, the utilities seen by the client and
supplier will be further from the optimal. Additionally, the oscillations in utility will be

larger due to the increased transmission times.

Figure 5.10 shows that as the number of middlemen increases, the shape of the curve
for the client utility with an increasing deadline does not change. However, the period

of the oscillations of each curve increases as the number of middlemen is increased.
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This is due to the increased time it takes to send a proposal between the consumer and
the supplier. However, with a larger number of middlemen, the client utility converges
towards the same high value as with a single middleman, as in chained negotiation,
existing commitments will be used where possible, and these are matched by the closest

possible middleman.
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5.3.2.3 Variable Number of Issues

When using a single issue, it is easy to match a new negotiation to an existing com-
mitment. As more issues are introduced, the negotiation must find a proposal where all
issues are satisfled by an existing commitment to avoid having to make a new one. In
this experiment, we vary the number of issues in a proposal and determine how it affects
the level of re-used commitments and utility received. A single middleman is used for

forwarded and chained negotiation.

Hypothesis: As the number of issues increases, chained negotiation satisfies fewer ne-
gotiations with ezisting commitments, but utility remains largely unaffected. Forwarded

negotiation is not affected by the number of issues

Match Rate
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FIGURE 5.11: Amount of matched negotiations with variable number of issues

Figure 5.11 shows that in chained negotiation, as the number of issues is increased,
the number of negotiations that can be satisfied using existing commitments decreascs.
Since matched negotiations generally have a higher client utility than unmatched ones,
client utility decreases, but only converging towards the levels of forwarded and direct
negotiation (as seen in Figure 5.12). If all issues are independent and concessions are
made on each of them simultaneously, forwarded and direct negotiation are not affected
by the number of issues. This is because the negotiation is constrained by the most

restrictive issue rather than a combination of all issues.

Figure 5.12 also shows that as it gets harder for proposals to be matched by an existing
commitment (i.e. as the number of issues increases), the performance of chained nego-
tiation drops to the level of forwarded negotiation. From this, we can say that chained
negotiation always perforins at least as well as forwarded negotiation in this experinent.

Chained negotiation will always perform at least as well as forwarded negotiation when
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attempting to match to existing commitments using the strategies we have described in

this chapter.

5.3.2.4 Middleman profit rate

In both forwarded and chained negotiation, the middleman is able to modify a proposal
before passing it onto the supplier, enabling the middleman to add a profit onto any
cost issue in the proposal. However, if a middleman is making a profit, it becomes
harder for the client and supplier to reach an agreement, and negotiations may fail.
In this experiment, we examine the effect of a single middleman adding a profit to a
proposal on forwarded negotiation. The proposals contain an issue representing the

amount charged for the item.

Hypothesis: As the middleman adds more profit, more negotiations will fail to reach

an agreement. Additionally, the client utility and supplier utility will fall.

Figure 5.13 shows that as the middleman adds an increasing amount onto a proposal as
profit, the utility seen by both the client and the supplier decreases. As the profit rate
reaches 60%, both utilities are very low. Not shown on the graph is the success rate

the percentage of negotiations that complete successfully, which decreases in the same
way as utility, reaching 0 at 70% profit. This means that as the profit rate is increased,
more negotiations will not reach an agreement, which is bad for all concerned. Also
shown on the graph is the average profit made by the middleman per negotiation. Up
to about 25%, this increases steadily. However, above 30%, too many negotiations fail,

bringing the profit rate back down again.
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It is possible to combine these utility curves with the profit made by the middleman to
calculate a utility to the system as a whole. To do this, we normalise the utilities of the
client and supplier, so that their utility (U, and U,) with no profit taken is 1, and create

a utility function for the middleman

U, = _Prof
plrofmar
where prof is the total amount of profit made by the middleman for that cut rate, and

Profmaz is the maximum value of prof. We then combine these using a weighting w
(0 <= w <=10.5) to form an additive utility function U:

U=(1-20)Un,+ 20U,

Values of w close to 0 favour the utility of the middleman, and values closer to 0.5
favour the utilities of the client and supplier. Figure 5.14 shows additive utility curves
for different values of w, and indicates that for all weightings, overall utility drops with a
profit rate of above 30%. When favouring the utility of the middleman more, a profit rate
of 20-30% gives a high overall utility. However, it can be seen than with any weighting,
as the profit rate is set too high (above 40%), utility for the whole system begins to drop
rapidly.

5.4 Sharing of Notifications

Chained negotiation in the context of a distributed notification service can reduce the

degree of redundancy required in sending notifications, thereby increasing the number
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Ficure 5.14: Additive Utilities with different weightings

of consumers a single publisher can serve. To show how this might happen, we set up
a simulation shown in Figure 5.15, where 4 NSs are connected together in a chain, with
the end of the chain being connected to a publisher. A large number of consumers are
then spread evenly between the NSs and begin to request subscriptions with different
parameters. Additionally, the publisher and each NS are assumed to be able to make
a maximum of 500 commitments downstream, which leads to a theoretical optimum of
1997 consumers served (nsl,2,3 serving 499 consumers and 1 middleman each, and ns4
serving 500 consumers), with the publisher only having made a single commitment. This
case is then contrasted with the case where all of the consumers communicate directly

with the publisher. We then compare the number of consumers satisfied in each case.

@ Qsz nsl P

ns4
"

. 2 = —
C C C C

FIGURE 5.15: Consumers (c) connected via notification services (ns) to publishers (p)

As the publisher can only support 500 commitments, the case of direct negotiation
showed that only 500 consumers could be supported. However, when the clients used
their individual NSs using chained negotiations, many of the requests could be satisfied
using existing subscriptions, sharing the notifications between consumers with similar
requests. Here, 1911 consumers were satisfied before each NS reached their commit-

ment limit, as shown in Figure 5.16. At this point, the publisher had only made 31
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commitments, and was still able to satisfy many more consumers.

Consumers Served
2000 Subscriptions with Provider === -

1500 .

1000 -

500 r

Without Negotiation With Negotiation

FIGURE 5.16: Consumers served and publisher’s subscriptions with and without
chained negotiation

The experiment was extended to allow middlemen to be arranged differently in a tree
pattern, rather than the linear chain above. The arrangement was controlled by two
parameters, d and w. These are illustrated in Figure 5.17. The depth of the tree
is limited by the parameter d, the length of the chain between the provider and the
furthest middlemen, and w limits the width of each node in the tree (the number of
middlemen connected downstream of any given middleman). The provider and each of
the middlemen were limited to making 100 commitments. The clients and providers used
linear time-dependent tactics, and were run through 150,000 environments. The number

of successful negotiations was counted and used as the metric for this experiment.

O—0O—0O
a=3, w=1 ~
a ( )
provider
middleman —

d=2, w=3
FIGURE 5.17: Examples of arrangement of middlemen

The comparison for this experiment is again the case where clients negotiate directly
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with the provider, in this case only allowing 100 negotiations to complete successfully.
With the middlemen arranged in a tree pattern, many more negotiations completed
successfully. Figure 5.18 shows the number of consumers satisfied using different numbers
of notification services acting as middlemen. As the number of middlemen at each node
of the tree is increased, the number of successful negotiations increases. With d = 1, this
increase is linear as each middleman only satisfies its own clients — each middleman
makes the maximum amount of downstream commitments, while only requiring the
publisher to make a small number of commitments, as shown in Figure 5.19. As the
depth of the tree is increased, the increase in number of satisfied consumers beconies
exponential as the number of child NSs at each parent NS increases. The number of
commitments made by the publisher reaches its maximum with a lower number of child
NSs per parent as the depth of the tree increases, while still allowing a large number of

consumers to be satisfied.
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FIGURE 5.18: Consumers served with NS tree

However, as the number of overall middlemen in the system increases, a point is reached
where the number of clients served starts to decrease, due to middlemen on the path
to the supplier reaching their commitment limit. Chained negotiation works well when
there are a large number of negotiations to form good commitments for other clients.
When the number of middlemen is increased too far, the clients are spread around the
tree too thinly to make and reuse good commitments efficiently. We checked this by
repeating the experiment with a lower commitment level, restricting the middlemen and
provider to 25 commitments. As shown in Figure 5.20, the decrease in number of clients

served occurred with lower numbers of middlemen, proving this explanation.

Using negotiation in this scenario enables a single provider to serve significantly more
consumers through middlemen than if they subscribing directly to the provider. The

amount of increase in the number of consumers is controlled by the configuration of
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FIGURE 5.20: Consumers served with NS tree using lower capacity limit (25)

middlemen — a tree pattern gives the largest increase, but if the number of middlemen
becomes significantly large, some clients may be precluded from making deals due to

commitment limits being reached upstream of them.

5.5 Summary

In this chapter, we have presented the design of ChaNE, a Chained Negotiation Engine.
This system represents an evolution of DINE, the Direct Negotiation Engine presented

in Chapter 4, and enables services to be made available with the possibility of being
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redistributed or resold. The use of ChaNE in a notification service allows the services
provided (i.e. notifications on a particular topic) to be shared amongst multiple con-
sumers, sharing subscriptions between groups of consumers with similar interests, and

enabling the NS to share notifications between then when a notification arrives.

We presented an evaluation of the behaviour of chained negotiation to determine its
impact in comparison to direct negotiation. Chained negotiation introduces extra steps
to the process of negotiation, so an evaluation demonstrating that the benefits of using
chained negotiation outweigh the costs involved shows that it is a useful technique. These
evaluations focused on three types of negotiation: direct negotiation (with no middle-
men involved), forwarded negotiation (in which middlemen forward proposals without
matching to existing commitments) and chained negotiation (in which middlemen for-
ward proposals after attempting to match them to existing commitments). From the

evaluation, we can make the following claims about chained negotiation:

e In all three types of negotiation, the outcomes are more predictable with a longer
deadline than with shorter deadlines. When chained negotiation makes use of
existing commitments, the results are significantly better for the client than direct

and forwarded negotiation.

e Negotiations are always given deadlines by which to finish. With direct and for-
warded negotiation, negotiations tend to use most of the time they have available.
In chained negotiation, if an existing commitment can be reused, this is typically
determined very quickly, so that chained negotiations take significantly less time

to complete than direct or forwarded negotiations.

e Chained negotiation can in principle use an infinite number of middlemen. As
the number of middlemen in a negotiation is increased, the costs of using chained
negotiation also increase. With more middlemen, the minimum amount of time
required for a forwarded negotiation is increased. Additionally, the utilities of the
client and supplier differ more for a given deadline as more middlemen are used,

and take more time to converge.

e Negotiations typically involve more than a single issue. Chained negotiation works
best with a single issue. With few issues, chained negotiation still provides an
increase in client utility. As the number of issues increases further, the amount of
benefit decreases. However, even as the number of issues increases further, chained
negotiation never gives a worse outcome than forwarded negotiation, which is not
affected by the number of issues. Forwarded negotiation gives slightly poorer

results than direct negotiation.

e If the middlemen in a negotiation make a profit by taking some of the cost issue
in a proposal, this reduces the number of successful negotiations, and reduces

the utility seen by both the client and supplier. If the profit margin is increased
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too much, negotiations generally fail and nobody gains. Hence, a compromise
is required between profit made by a middleman, and utility to the system as a

whole.

ChaNE was designed for the context of a distributed notification service, where noti-
fication services attempt to share subscriptions to notifications on a particular topic
between multiple consumers. To show the benefit of using chained negotiation in such
a system, our simulation of the scenario showed that a significantly higher number of
consumers could be served by the same provider using chained negotiation than with

each of them making a subscription to the provider directly.

In summary, ChaNE enables services to be provided using chained negotiation, enabling
the items of the service to be shared, redistributed or resold for the benefit of society as

a whole, or for the benefit of the middlemen reselling the services.

The contributions in this chapter are the presentation of chained negotiation, and the
evaluation of the chained negotiation engine. The chained negotiation model is novel as
existing negotiation models do not incorporate input from intermediaries between a client
and supplier. The evaluation of this model shows the behaviour of chained negotiation,
and shows that by using such a model, a service provider can allow the redistribution
or reselling of items enabling more clients to be served, and without imposing too much

load on the service provider itself.

In the next chapter, we will describe the integration of ChalNE with a distributed notifi-
cation service, creating an architecture in which a service provider can deliver its service
through a notification service, negotiating with consumers over the QoS to provide the
service, and having notification services share subscriptions to its content. We will show

the benefit of the system by applying it to a practical application.



Chapter 6

QoS Negotiation in a Federated

Notification Service

In Chapter 4, we showed that direct negotiation can enable a service provider to reduce
the load placed on itself by finding a compromise between Quality of Service (QoS)
requested by a client, and more manageable levels the service provider can maintain.
Then in Chapter 5 we extended this negotiation model to develop chained negotiation,
capable of negotiating between intermediaries who can also fulfil the negotiation by
reselling or redistributing an item they have obtained from a previous commitment. In
this chapter, we take ChaNE, the chained negotiation engine developed in Chapter 5 and
integrate it with the myGrid notification service (MGNS), creating a new architecture
where a service provider can support negotiation over QoS conditions for a service that is
delivered using a distributed notification service. We then evaluate the benefits received

by a real application adapted to this architecture.

6.1 Introduction

When a service provider allows a client to request a service with a particular set of
QoS constraints, it is possible that a small number of clients requesting the service at a
high QoS can place enough load on the service provider to prevent it from serving more
clients. Different optimisation techniques can mitigate this effect: negotiation can be
used to find a compromise between the levels of QoS a client requests and the levels a
service provider considers manageable for a large number of clients, and sharing of the
service output between clients asking for the same thing. A notification service achieves
this by sharing subscriptions to a topic between all consumers connected to it that are
interested in the same topic at the same levels of QoS. When a notification arrives on

that particular topic, it is is shared between subscribed consumers.

102
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QoS negotiation and sharing of subscriptions have both been examined separately in
other work — QoS negotiation is commonplace in real-time and multimedia systems
(Li and Ravindran, 2004; Rothermel et al., 1997), and existing distributed notifications
reduce the number of redundant messages transmitted between NS instances, sharing
subscriptions (Krishna et al., 2004; Pallickara and Fox, 2004a; Banavar et al., 1999a).
In the previous chapter, we showed how chained negotiation could be used to combine
the two optimisations, enabling consumers to negotiate over QoS conditions while still
attempting to share subscriptions to notifications as much as possible, reducing the

number of redundant messages sent in a distributed notification service.

Our contributions in this chapter are a presentation of a new architecture supporting
quality of service negotiation with a service provider for services delivered over a distrib-
uted notification service, and the evaluation of the benefits provided a real application

adapted to work in this architecture.

In this chapter, we present our approach to creating a negotiation-capable distributed
notification service by integrating the chained negotiation engine into a notification
service. In Section 2.6.1 we discuss our choice of notification services, then choose
MGNS and explain that its current method for sharing notifications is not suitable for
negotiation in Section 6.2.2. We then present our negotiation-capable version of MGNS
in Section 6.2.3. In Section 6.3.1, we outline an application that can benefit from our
NS, and adapt this to our architecture in Section 6.3.2. We then present experimental
data in Section 6.3.3 to show the benefits this application received from the NS. Finally,

we present a summary and conclusions in Section 6.4.

6.2 A Chained Negotiation-enabled Notification Service

6.2.1 Notification Services

In Section 2.6, we reviewed existing notification services, examining which of them em-
ployed subscription and notification sharing already, so that we may build on this to
support QoS negotiation and sharing of notifications. Two of the NSs reviewed there,
MGNS and NaradaBrokering, both seem to be suited to enabling negotiation over QoS
while sharing subscriptions. In MGNS, when a consumer subscribes to a federated topic,
the notification services set up subscriptions to each other to receive the notifications.
Using negotiation, it would be possible for subscriptions to be set up only to those
sources that are providing the relevant information at the desired QoS. In NaradaBro-
kering, the individual brokers in the network also set up subscriptions between each
other to satisfy a consumer’s subscription. However, due to the fact that NaradaBroker-
ing allows a consumer to disconnect from one broker and reconnect to another broker

at any point, setting up subscriptions based on a negotiated QoS would be harder to
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efficiently maintain. For example, if a number of consumers all subscribe to the same
topic at one location, so that only a single subscription is shared between them, they
could then each move to different locations in the network. This means that each new
broker must be subscribed to the topic, reducing the benefit from negotiating to get a
similar level of QoS. Because of this additional complexity, MGNS has been chosen as a

notification service to integrate with a negotiation mechanism.

In Elvin, the basic model is to flood the network with shared notifications and then send
quench messages where these are not needed. This has been shown not to scale very
well (Segall et al., 2000), so is not suitable for consideration here. Gryphon focuses on
applying filters to notifications as far away from groups of consumers as possible, sending
only the minimal amount of messages required. This technique provides an interesting
opportunity to integrate with negotiation, but we choose to focus on resolving difference
in QoS preferences instead of persuading clients to change their filtering preferences.
The technique of multicasting notifications close to groups of consumers while filtering

them as close to the source is also used in Siena.

6.2.2 Federated Topics in the myGrid notification service

The standard configuration of MGNS is a standalone notification service, with no facil-
ities for interacting with other MGNS instances. However, MGNS can also be deployed
as a distributed NS, in which it handles the distribution of messages between NS in-
stances by using federated topics (Krishna et al., 2004). Normal topics in MGNS are
unique within the scope of a single NS — publishers and consumers connect to the same
NS in order to publish or consume messages on a specific topic. In a distributed deploy-
ment of MGNS, each NS instance operates independently of the others, continuing to

use locally-scoped topics.

A federated topic is created using local topics at each NS. A local topic is created,
and assigned some metadata giving the topic some semantic meaning. When semantic
metadata is assigned to a local topic in a MGNS instance, the NS contacts a topic registry
(Miles et al., 2003). A wirtual topic record is then added to the registry, with a pointer to
the local topic at a particular NS. When subsequent NSs have local topics created with
the same semantic markup, they too register with the registry, adding their local topic
as a member topic to the virtual topic record. Figure 6.1 shows a deployment of four
MGNS instances, each having registered their local topics with the topic registry. In
this example, NS-D is behind a firewall and cannot be contacted except through NS-C,

so the topic registry also reflects this routing information.

In order for a consumer to subscribe to a virtual topic, the member topic at their local
topic is looked up from the topic registry. The consumer then subscribes to this topic.

The MGNS instance recognises that this is part of a virtual topic, and retrieves the
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FIGURE 6.1: Federation of MGNS instances

virtual topic record from the topic registry. The MGNS instance then subscribes to
the local member topics on each NS registered as part of the virtual topic, so that
if a message is published on the virtual topic at a remote NS, every other NS will
receive a copy of this notification and forward it to their consumers accordingly. In the
example shown in Figure 6.1, the virtual topic record contains routing information to
reach NS-D through NS-C. If a publisher publishes a message on this topic to NS-A]
it knows that to forward this to NS-D it has to send the notification to NS-C, which
will then forward on the notification. When messages are published on a virtual topic,
the NS they are published to forwards the notification onto every other NS that has
subscribed to the virtual topic. Message filters are used to prevent messages that have
already been forwarded from being sent further (to avoid messages continuously being
forwarded between the NSs).

This federated NS deployment enables consumers and publishers to be connected to
different instances of MGNS in a network, and have notifications routed between them
accordingly. A major disadvantage of this approach is that when there are more than two
NSs participating in a virtual topic, the network is flooded by notifications whenever

a message is published. Each NS pushes the NS received to every other NS, which
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represents a potential scaling problem in a large-scale deployment. A solution where
notifications are routed via intermediate notification services (similar to the sharing of

subscriptions discussed previously in this thesis) could provide greater efficiency.

In its current form, the distributed version of MGNS is not suitable for integration with

ChaNE for the following reasons:

e In MGNS federated topics, publishers can connect to any NS and publish messages.
In chained negotiation, a consumer negotiates QoS conditions with the publisher.
Chained negotiation is also used by intermediate NSs to set up shared subscriptions

when multiple consumers subscribe to the same topic.

e MGNS only provides limited support for routing of notifications through interme-
diate NSs. Chained negotiation supports complex routes between publishers and
consumers through a number of intermediate NSs, forming an efficient distribution

network for publishing notifications.

For these reasons, we decided to base our integration of ChaNE into MGNS on a mod-
ified architecture for sharing of subscriptions between consumers rather than the ex-
isting federated topics. This architecture, which we refer to as ChaNNSe (Chained

Negotiation-enabled Notification Service), is described in the following section.

6.2.3 Integration of ChaNE and MGNS

To develop ChalNNSe, the method of sharing subscriptions between multiple consumers
was replaced with a subscription prory, which runs inside a MGNS instance. A sub-
scription proxy subscribes to a topic on a remote NS, then republishes every notification
received on that topic to the local NS, creating a prozied topic. Any number of consumers
can be connected to the proxied topic, and they will all share a single subscription to the
source of the notifications. The NS will share any notifications on that topic between
them automatically. Figure 6.2a shows the notifications that are sent from NS-1 (where
the message was published) to all other NSs participating in the virtual topic. In Figure
6.2b, the NSs use subscription proxies to limit the number of notifications sent between
NSs. Consumers at NS-3 are subscribed via NS-2, so notifications are forwarded from
NS-1 by NS-2, rather than an extra subscription being required. In this example, NS-4

has no interested consumers so is not receiving any notifications.

Figure 6.3 shows the components in a chained negotiation-enabled MGNS. Negotiation
abilities are provided by a Negotiation Component (NC, described in Chapter 5), which
has a communication module to implement communication between negotiation compo-
nents via SOAP. When a consumer requests a service, it begins negotiating with the NC

in the NS (1). The NC examines the commitment store to see if there are any existing
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FIGURE 6.2: Sharing of subscriptions with a) Federated Topics, b) Subscription Proxy

subscriptions which will satisfy the request of the new consumer. If not, negotiation
continues upstream (away from the consumer): either to another NS (2), or to a known
service provider, which contains a NC, and a wrapper for the service it is providing.
When a negotiation is successful with a service provider, the provider registers a topic
with the nearest NS in the chain that it will use for delivering the results of the service.
The NS then passes details of this topic back downstream. Any intermediate NSs add a
proxied topic to their subscription proxy so that the results are fetched from the pub-
lisher’s NS (4). The consumer then subscribes to the proxied topic at its local NS (5),
and begins to receive results via the distributed NS (6). If any of the NSs in the nego-
tiation chain are able to use an existing subscription, this is done instead of continuing

to negotiate upstream.

Using this architecture, a service provider makes available a service with a variable
level of QoS. A client interested in the service negotiates over the QoS via a number
of intermediate NSs, which all attempt to provide the service the client is interested in
without making additional subscriptions to the service provider. If the client and service
provider reach an agreement on a set of conditions under which the service should be
supplied, subscriptions are set up between NSs as needed to get the results of the service
to the client. Notifications as a result of the service are shared between any clients with
similar interests at the same NS if they can agree to use the same QoS levels already

being provided by existing subscriptions. Otherwise, notifications cannot be shared.

In the next section, we describe an application suited to deployment in this architecture,

and show how we adapt it to use ChalNNSe.
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6.3 Application and Evaluation of ChalNNSe

6.3.1 A Protein Compressibility Analysis application

Very large scale computations are now becoming routinely used as a methodology to
undertake scientific research, examples of which can be found in many different fields.
In Bioinformatics, a particular application of such an experiment is a protein compress-
ibility analysis application, which uses a mixture of brute-force computation, statistical
methods and guesswork in order to study the structure of protein sequences. The pro-
tein compressibility analysis application uses compression techniques to attempt to find

patterns in protein sequences, and was designed by Zauner (Groth et al., 2005).

Proteins are the essential function components of all known formns of life; they are linear
chains of typically a few hundred building blocks. Protein sequences are assembled
following a code sequence represented by another polymer (mature mRNA), which is
produced by splicing certain pieces of a molecular copy of the coding region of a gene on
the DNA, while discarding other pieces of the copy. During the assembly, the protein

curls up and forms a 3D shape, which determines its function.

The linear structure of a protein sequence is of interest for predicting which sections of
DNA encode for proteins and for predicting and designing their 3D shape. For com-

parative studies of the structure present in a protein sequence, it is useful to determine
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the textual compressibility of the sequence, as compression algorithms exploit context-
dependent correlations within a sequence. The fraction of its original length to which
a sequence can be compressed is an indication of the structure present in the sequence,
but in general, no practical compression method can discover all of the structure in a
sequence. Actual compression of a sequence can only yield a lower bound on its com-
pressibility. For the same reason, compressibility values are also relative to the applied
compression method. Methods that are good at discovering structure are computation-
ally expensive; it is difficult to discover structure in protein sequences, although more
progress has been made by grouping amino-acids: if the compression of the sequences is
only for determining the structure, the sequences can be recoded with a reduced alpha-
bet. For example, each amino acid symbol is replaced by a symbol representing a group
of amino acids, and compression is then applied to the recoded sequence. The results
of this analysis can then be used to determine the amino acid groupings that maximise

compressibility.

This protein compressibility experiment is expressed as a workflow, as shown in Figure
6.4. A protein sequence sample is selected, potentially from several individual samples
(Collate Sample). This is then recoded with a given group coding (Encode by Groups).
The recoded sequence is then compressed with different compression algorithms (e.g.
gzip, bzip2, ppmz) to obtain the length of the compressed sequence. Random permuta-
tions of the sequence (Shuffle) are also compressed to provide a standard for comparison,
removing the influence of two factors from the calculation of compressibility: the data
encoding used to represent the groups, and the non-uniform frequency of groups. From
these results, a compressibility value is obtained for the sample sequence that is relative
to both the compression method and group coding employed. The variability in the com-
pressed length of the permuted sequences leads to a distribution of compressibility values
(collate sizes). The workflow entails a sufficient number of compressions of permuted

sequences to estimate the standard deviation for the compressibility (Average).

The measure step from Figure 6.4 is expanded and shown in Figure 6.5, where each sam-
ple is compressed using different compression algorithms, and the size of the compressed
sample is measured. The size data from all of the measure steps is collated into a single
table.

6.3.2 Adaptation of application for evaluation

To use the protein compressibility analysis application within ChaNNSe, the workflow
shown in Figure 6.4 is run as the service in the service provider. In this scenario, scientists
run the experiment repeatedly. The number of permutations used is considered a QoS
condition, as a higher number of permutations gives a more accurate result. Hence the

service is available with two QoS conditions:



Chapter 6 QoS Negotiation in a Federated Notification Service 110

Sequences

Coliate Sample Size
Sample
Sample
Encode by Amino Acid Groupings
Groups

Encoded Sample

1 Number of
Measure Shuffle Eermutanons (N}
1
- IE%!TDHP?!?R"..T.." N lPe..rmuta.tion 20 lPermutati.on N
Sizes
Measure Measure Measure
[ ] ‘ ‘ Sizes
Collate
Sizes
lSizes Table
Permutation Set Size
Average —————

Results

FI1CURE 6.4: Protein Compressibility Workflow

e Frequency — The number of seconds between each consecutive run of the service

for a particular client.

e Permutations — The number of permutations the input sequence is shuffled into

during the experiment.

To be able to share notifications of the service running, consumers have to request the
service with the same frequency and number of permutations. Every time the service is
run, the output data is delivered to the consumer via the notification service. In this
application, a commitment represents an accepted request to run the service with the
specified intervals and the specified number of permutations. Each notification service
involved in an accepted negotiation will subsequently hold one of these commitments

which can be used for future requests.

6.3.3 Evaluation Process

ChaNNSe is intended to enable consumers and service providers to find a mutually

acceptable QoS level under which a service can be provided, with the aim of reducing the
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load on the service provider and enabling more consumers to be served by it. Through
the sharing of notifications in the distributed notification service, more consumers can

be served without even involving the service provider.

To determine how effective chained negotiation is in providing these benefits, we created
a number of scenarios under which we could measure the load imposed by a number of
consumers, and determine how many consumers can be served before the service provider
iIs overwhelmed by the load. In each scenario, a single service provider is started with
no existing commitments, and consumers request services from the provider until it is

too busy handling existing commitments to accept new requests.

We examine the following scenarios, taking the same measurements for each:

1. No negotiation, no shared subscriptions — consumers request the experiment be
run, supplying their ideal values for the frequency and number of permutations.
The service provider accepts this request, without attempting to negotiate over
the QoS levels.

2. Negotiation, no shared subscriptions — consumers request the experiment be run,
and the service provider negotiates over the QoS. When a mutually acceptable
set of conditions 1s found, the service is delivered to the consumers. Consumers

cannot share subscriptions to the service.

3. Negotiation, single NS sharing subscriptions — the consumer and service provider
negotiate over QoS as in the previous scenario, but the NS delivering the notifica-
tions allows consumers to share subscriptions, enabling multiple consumers with

the same interest to only require a single subscription to the service provider.

4. Negotiation, distributed NS sharing subscriptions — as in the previous scenario,
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negotiation and sharing of subscriptions are supported. However, multiple NSs are

deployed in this scenario with consumers being spread between them.

In the experiments, we give the service provider a static set of preferences for both the
number of permutations and the frequency with which to run the experiment. These
preferences are shown in Table 6.1. The negotiation component for the service provider
uses a single linear time-dependent tactic, as we would not expect such a detail to be
varied on a service provider once running. The consumers will use either a Boulware,
linear or conceder time-dependent tactic to represent different negotiation behaviour.

Values for the deadline were chosen between 10 and 60 messages.

Issue Ideal Value | Reservation Value
Frequency 43200 1800
Permutations 10 500

TABLE 6.1: Service Provider Preferences

For each scenario described above, the experiment comprises clients continually trying
to subscribe to the service until the service provider, or a critical notification service on
the path to the service provider, have reached their capacity. To determine the capacity
of the service provider and notification services, we measure the CPU time taken to

perform their relevant tasks and use this data in the experiment.

6.3.3.1 Service Provider Capacity

To determine the number of commitments a service provider can handle, the protein
compressibility analysis application was run and timed. Due to the nature of the ex-
periment, the number of permutations is the controlling factor in the amount of time
the experiment takes to run. Hence, we measured the execution time of the application
with values for the number of permutations between 50 and 1000. These measurements
were run on an Intel Pentium 4 1.5GHz with 1Gb RAM running Debian Linux and Sun
JDK 1.4.2.

Figure 6.6 shows that the time taken to run the protein compressibility analysis ex-
periment increases approximately linearly. Hence, we model the relationship between

permutations and execution time as:

CPUTime = Permutations x0.174

As there are two variable factors for each request from a consumer, it is impossible to
give an absolute limit on the number of jobs a service provider can handle. Instead, it is
determined by the amount of CPU time that is used by the service provider executing thie

experiment the required amount in a day. As a simplification, we allow 80,000 seconds
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FIGURE 6.6: Execution time for Protein Compressibility Analysis application

of CPU time in one day, allowing the remainder for other tasks. The service provider

can accept no more jobs when the following condition becomes true:
(MsgPerDay x AvPermutations x 0.174) > 80000

where M sgPerDay is the number of messages that is required per day if a notification
is sent out at the requested frequency for every consumer, and AvPermutations is the

average number of permutations for the jobs over the whole day.

6.3.3.2 Notification Service Capacity

To determine the limit a notification service can handle, we measured the time taken
on MGNS for messages to be published and for them to be distributed to consumers.
These measurements were taken using the same hardware as in the previous section.
We found that publishing a message took an average of 60ms, and consumers pulling

waiting messages!' took 975ms. Both times were averaged over 100 iterations.

The limit that a notification service can handle is determined by the number of messages
that it is sending and receiving. Hence, it is only affected by the number of consumers
and the frequency with which they are receiving notifications. The notification service

can no longer accept new requests when the following condition becomes true:
(UpstreamM sgPer Day * 0.06) + (DownstreamM sgPerDay x 0.975) > 80000

where UpstreamM sqPer Day is the number of messages that arc received from the NS

! Although we have used a pull model for consumers receiving notifications, a push model would be

equally valid here.
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or provider upstream, and DownstreamM sgPerDay is the number of messages that

are distributed to consumers or other notification services downstream.

It should be noted that the performance data for the NS may not be optimum, but this
does not detract from the value of this experiment. Indeed, higher performance from

the NS would only result in any benefit from using this architecture being magnified.

6.3.4 Results

For the consumers, their preferences were varied. These were calculated by randomly
selecting a reservation value between the limits of the service provider’s preferences, and
choosing an ideal value in a range outside of service provider’s preferences. This has the
effect that for every negotiation it is possible to find a mutually acceptable set of QoS

values, but every negotiation requires some negotiation in order to find this set.

For each scenario, we reset any commitments held by the service providers and NSs if
applicable, then ran negotiations using a number of different consumers until either the
service provider or a critical NS reached their capacity. In this context, a critical NS
is one between a consumer and the provider in a chain — if a critical NS has reached
capacity and a new subscription is required, the negotiation will fail. In each case, we
measured the number of consumers served in total, the nuinber of messages the service
provider needs to send per day and the average value for the number of permutations

that are used.

From the results in Table 6.2, we can see that in our reference case of no negotiation
where a consumer is provided with the service at the QoS conditions they request, only 2
consumers could be served before the load they had placed on the service provider would
prevent further commitments being made. When negotiation was used to determine
more suitable QoS values, the number of consumers served increased significantly to 128.
It can also be seen than in the case with negotiation, the service provider runs twice
as many jobs as without negotiation, and that the number of permutations requested

for each job is significantly lower, meaning that the amount of work required per job is

lower.
Scenario/ | Consumers | Provider | Average Provider
Topology | Served Msg/Day | Permutations | Load
1/ 2 659 610.2 87.5%
2/ 128 1296 347.3 97.9%
3/ - 2434 1143 399.7 99.4%
4 / Linear | 1977 1044 437.0 99.2%
4 / Tree 1030 1076 427.0 99.9%

TABLE 6.2: Consumers served and service provider capacity

When shared subscriptions are introduced, the number of consumers satisfied by the
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service provider increases dramatically. However, the number of messages sent per day
by the service provider and the average number of permutations does not change signif-
icantly from the case where negotiation is used without sharing of subscriptions. This
is because the additional consumers are served using a shared subscription at a NS, not
requiring any additional intervention from the service provider. However, this scenario
would place additional load on the NS. To check this, we measured the number of mes-
sages being received from upstream and being sent downstream by the NS. The results
shown in Table 6.3 show that for the two scenarios without sharing of subscriptions,
the NS handles a small number of messages, hence the load on it is very small. For
the scenario using shared subscriptions, the NS sends nearly 10 times as many messages
downstream as it receives from upstream. The load on the NS for this scenario is 63.3%,

indicating that it is still possible for it to serve more consumers.

Scenario | Msgs Up | Msgs Down | Load
1 659 659 0.85%
2 1296 1296 1.68%
3 1155 50567 63.3%

TABLE 6.3: Messages sent by Notification Service for Scenarios 1-3

In the fourth scenario, chained negotiation using a distributed NS potentially enables a
much larger numnber of consumers to be satisfied. Efficient distribution of notifications
from the service provider could enable a very large number of consumers. In theory, if
each NS runs at full load, the number of potential consumers that could be supported
is determined only by the topology of the distributed NS. To show this, we compare the

results from the topologies shown in Figure 6.7.

linear chain tree chain

©®

provider Q middleman

F1GURE 6.7: Topolgies in distributes NS for Scenario 4

The results from running the experiment for the different toplogies in Scenario 4 are
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given in Table 6.4, along with a comparison result for Scenario 3. From this data, we
can see that the distributed NS topologies serve fewer consumers in total than when

using a single NS. In each case the service provider has reached full capacity.

Scenario/ | Consumers | Provider | Average Provider
Topology | Served Msg/Day | Permutations | Load
3/- 2434 1143 399.7 99.4%
4 / Linear | 1977 1044 437.0 99.2%
4 / Tree 1030 1076 427.0 99.9%

TABLE 6.4: Consumers served and service provider capacity for Scenarios 3-4

Table 6.5 shows the number of messages sent by each NS in the toplogy and the load
on each. Comparing this to the load on the single NS in Scenario 3, which received
1155 messages from upstream, sent 50567 downstream and ran at a capacity of 63.3%,
we can see that the load has been distributed evenly around multiple NSs. In this
example, there is no advantage to using a distributed topology in terms of numbers
of consumers served. It does, however, distribute the load between NSs more evenly.
From the results in Chapter 5, it might be expected that more consumers would be
served using existing subscriptions. However, we showed in Section 5.3.2.3 that with
more issues under negotiation, matching new requests to existing commitments becomes
more difficult. This also explains the reason the tree topology serves fewer consumers
than the linear one — as fewer consumers are going via each NS in the chain, the
potential for matching to existing subscriptions is reduced. To show this more clearly,
we ran the experiment again, using a fixed value for the number of permutations (we
used 400, the average from Scenario 3), and only negotiating over the frequency. Table
6.6 shows that when only a single issue is used, the distributed NSs are able to serve
many more consumers without having to place load on the service provider. In every
case where subscriptions are shared, the service provider is not running at capacity and
the experiment terminates because an NS has reached capacity. Table 6.7 shows the
capacities of the NSs in Scenario 4, and shows that when deployed in a tree topology, the
number of consumers that are satisfied is significantly higher than without a distributed

NS, or with a linear topology of NSs.

Topology Linear Tree
Middleman | US | DS | Load | US | DS | Load
0| 1204 | 7302 | 8.99% | 1078 | 4254 | 5.27%
1| 1287 | 7073 | 8.72% | 711 | 3633 | 4.48%
2 | 1288 | 8429 | 10.4% | 757 | 3883 | 4.79%
3| 1153 | 7943 | 9.77% | 364 | 3024 | 3.71%
4| 932 | 7986 | 9.80% | 475 | 3222 | 3.96%
5| 673 | 7188 | 8.81% | 336 | 3006 | 3.68%
6 | 494 | 6789 | 8.31% | 410 | 2947 | 3.62%

TABLE 6.5: Messages upstream (US), downstream (DS) and NS Capacities (Load) for
Scenario 4
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Scenario/ | Consumers | Provider | Average Provider
Topology | Served Msg/Day | Permutations | Load
1/- 6 1124 400 97.8%
2/- 125 1146 400 99.7%
3/- 2956 137 400 11.9%
4 / Linear | 2749 179 400 15.5%
4 / Tree 20488 519 400 45.2%

TABLE 6.6: Consumers served and service provider capacity (Single Issue only)

Topology Linear Tree
Middleman | US DS | Load | US| DS | Load
184 | 12099 | 14.8% | 519 | 82019 | 100%
176 | 12177 | 14.9% | 338 | 82029 | 100%
223 | 10895 | 13.3% | 395 | 80760 | 98.5%
20 1152 | 1.41% | 241 | 82036 | 100%
22 3392 | 4.14% | 233 | 82036 | 100%
77293 | 77293 | 100% | 315 | 78674 | 95.9%
58758 | 58758 | 76.0% | 173 | 82040 | 100%

SO W N~ O

TABLE 6.7: Messages upstream (US), downstream (DS) and NS Capacities (Load) for
Scenario 4 (Single Issue only)

6.4 Summary

In this chapter, we have described ChalNNSe, an architecture for QoS-aware service
providers to deliver their services through a distributed notification service. We imple-
mented this by integrating ChalNE, the chained negotiation engine described in Chapter
5 with the myGrid notification service. We adapted an application using a protein com-
pressibility analysis to be used in this architecture, and presented an evaluation of the

performance benefits received from using it.

From the evaluation of ChalNNSe presented in this chapter, we can make the following

statements about the use of chained negotiation in a distributed notification service:

e A service provider allowing QoS to be selected by its clients risks running itself to
full capacity for just a few clients if it does not attempt to negotiate the QoS level
with the client. However, by supporting negotiation, the number of clients it can

support increases significantly.

o If a service provider is likely to be offering the same service to multiple clients, it is
a waste of time to do the same job twice. By using a notification service to deliver
the service to consumers requesting the same service, the service provider only
need carry out the job once. This significantly increases the number of consumers

that can be served.

¢ A notification service itself can reach capacity by having many consumers request-
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ing a service through it. To combat this, distributed notification services are used,
with consumers able to connect to different instances of a NS. Using chained ne-
gotiation and the distributed NS, they can share subscriptions to a service with
other consumers at the same NS without imposing additional load on the service
provider. Notifications are then shared between the consumers whenever one is
received on the shared subscription. Different choices of distributed NS topology

allow the load to be spread between multiple NSs, removing potential bottlenecks.

In summary, using chained negotiation in a distributed notification service enables a
service provider to serve more clients than by dealing with them directly. This is due to
two reasons — chained negotiation is used to determine QoS conditions acceptable to
both the service provider and the client, and the distributed notification service shares
subscriptions to the service provider between as many consumers with similar interests
as possible. This results in an efficient distribution system for the service provided by

the service provider.

The contributions in this chapter are the presentation of a new architecture supporting
quality of service negotiation with a service provider for services delivered over a distrib-
uted notification service, and the evaluation of the benefits provided a real application

adapted to work in this architecture.



Chapter 7

Conclusions & Future Work

7.1 Summary

In this thesis, we have presented an architecture enabling service providers to make their
service available through a distributed notification service (NS), efficiently delivering no-
tifications to consumers by sharing subscriptions to notifications between consumers with
similar interests. Consumers and service providers negotiate to find mutually acceptable
quality of service (QoS) levels under which the service can be provided — high enough

to satisfy the consumer, without placing unnecessary load on the service provider.

In more detail, we have reviewed existing work in the field of notification services, paying
attention to how distributed notification services share subscriptions and notifications
amongst multiple consumers with similar interests. A NS shared subscriptions to a topic
when multiple consumers request the same topic with the same QoS conditions. Notifi-
cations are shared between them when one is received on that topic. We then reviewed
work in the field of automated negotiation, examining different negotiation mechanisms
used both in automated and non-computational negotiation. After examining different
automated negotiation techniques, we selected a heuristic-based approach upon which

to base our negotiation engines.

We presented DINE, the first evolution of our negotiation engine, supporting direct ne-
gotiation (between two parties only). We evaluated the behaviour of DINE in performing
direct negotiations to determine the effect of different deadlines and different numbers

of issues under negotiation.

We then discussed the need for a new type of negotiation involving intermediaries,
and introduced chained negotiation for this task. ChaNE, the next evolution of our
negotiation engine which supported chained negotiation was presented along with an

evaluation of its behaviour, showing the benefits that chained negotiation can offer.

119
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To validate the application of chained negotiation to a distributed NS, we have devel-
oped ChaNNSe, a chained negotiation-enabled NS based on ChaNE and MGNS. This
enables a service provider to allow consumers to request QoS conditions for a service,
without placing unnecessary burden on the service provider. It also enables the efficient
delivery of notifications for the service by sharing subscriptions to notifications between
consumers at a NS with similar interests, further helping to reduce the load on a service

provider.

7.2 Research Contributions and Publications

The contributions of this thesis have been:

1. We have shown that by using negotiation, a service provider can enable a client to
request a service with a specific Quality of Service that is high enough to satisfy
the client, and manageable enough so that it will not place an unnecessary load
on the service provider, enabling it to support a large number of clients. We
created a direct negotiation engine and showed through simulations that it would
allow QoS levels to be requested along with a subscription in a notification service.
Existing notification services allow QoS conditions to be specified, but make no
attempt to resolve differences between the preferences of the client and supplier.
Our empirical evaluation of our negotiation engine has shown the behaviour of the

system independent of external influences.

2. As direct negotiation is unsuitable for negotiation through intermediaries, we de-
veloped chained negotiation, a new form of negotiation that involves the client and
supplier as well as any number of intermediaries between them. Intermediaries
can fulfil a client’s request using an existing commitment they have made on be-
half of an existing client, redistributing or potentially reselling the item. We have
used this as the basis for ChaNE, a chained negotiation engine. The evaluation of
ChaNFE shows the benefits that can be obtained by using chained negotiation in a
distributed notification service. Chained negotiation is a novel form of negotiation

— existing forms of negotiation only involve clients and suppliers.

3. We have taken our chained negotiation engine and integrated it with an existing
notification service, creating ChaNNSe, a novel architecture for supplying services
over a distributed notification service while enabling negotiation over QoS to re-
solve differences between the consumer and service provider. We have used a
real application from the field of Bioinformatics to show the benefits offered by
this architecture. As stated earlier, existing notification services do not support

negotiation over QoS conditions. Hence, this represents a novel contribution.



Chapter 7 Conclusions & Future Work 121

The work on direct negotiation was presented at the Ninth International EUROPAR
conference (EURO-PAR ’03) in Klagenfurt, Austria (Lawley et al., 2003a) and published

in a special issue of Parallel Processing Letters (Lawley et al., 2003b).

Chained negotiation was presented at two different conferences: the second UK e-
Science All Hands Meeting (AHM ’04) in Nottingham (Lawley et al., 2004); and the
IEEE/WIC/ACM International conference on Web Intelligence (WI ’05) in Compiégne,
France (Lawley et al., 2005).

7.3 Conclusions

When a service provider enables clients to request certain QoS conditions under which
a service should be provided, there may be differences between levels of QoS the client
desires, and levels a service provider can maintain for a large number of clients. Ne-
gotiation can be used to resolve these differences, finding a compromise between the
preferences of both parties that is mutually acceptable. DINE, our direct negotiation
engine, enables automatically finding this compromise. Through our evaluations, we

have identified the following behavioural characteristics of DiNE:

e Negotiations are often given a deadline by which to complete, in order to ensure a
service is delivered when it is needed. When short deadlines are used, the outcome
of the negotiation is harder to predict than with a longer deadline. Concessions
must be made rapidly in order to reach an agreement before the deadline expires,

hence the outcome tends to be further from an optimal solution for both parties.

e A negotiation usually involves multiple issues, potentially trading one issue off
against another to find a mutually acceptable solution. A large number of issues
makes no significant difference to the outcome of negotiations, assuming each issue

is independent from the others.

e If it is possible to predict the message transmission times, it may be possible for
a client to choose a deadline such that it can force the supplier to offer the final
proposal in the negotiation, typically causing it to offer its reservation value. The
supplier’s reservation value represents the lowest possible utility it can receive, and
the highest possible utility the client can receive. However, it would be difficult in

a real implementation to accurately predict this message transmission time.

Direct negotiation, however, does not enable intermediaries between a client and a sup-
plier to provide input to the negotiation process. In a distributed NS, intermediate NSs
may be able to fulfil a consumer’s request by offering to share an existing subscription

created for another consumer. Chained negotiation enables intermediaries to participate
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in the negotiation, allowing the reselling or redistribution of items to clients. We devel-
oped ChaNE to support chained negotiation, and through its evaluation we can make

the following statements about chained negotiation:

e As with direct negotiation, longer negotiation deadlines give results closer to the
optimal solutions when no existing commitments are available. However, once
favourable commitments have been made by a middleman, clients that can make
use of them complete negotiations very quickly, getting a higher utility than con-
tinuing to negotiate with the supplier and not requiring the supplier to do any

additional work.

e As chained negotiation increases message transmission times, it has the effect of
reducing the amount of time available in a negotiation. As more intermediaries
are used, this effect is magnified, increasing the minimum amount of time required

for a negotiation and making negotiations take longer to converge.

e Asthe number of issues in a negotiation is increased, it gets harder for a middleman
to match a new request to existing commitments, as it must match on all issues.
Hence as the number of issues is increased, the benefits of chained negotiation are
decreased, eventually falling to the same level as if existing commitments were not

available.

e Intermediaries in a chained negotiation can make a profit by adjusting a cost
element within proposals in order to take a portion of the reward for supplying
a service. However, this process makes it more likely that the negotiation will
fail to find a mutually acceptable set of conditions under which the service can
be supplied. If an intermediary tries to make a large enough profit, very few

negotiations will succeed and all participants lose out.

The objective of this thesis has been to enable a service provider to make its service
avajlable to consumers who can request levels of QoS, while still enabling the efficient
delivery of the service to consumers and allowing the service provider to support as many
clients as possible. Our solution to this problem was to integrate chained negotiation into
a distributed NS, allowing consumer and service provider to negotiate over QoS levels
for a service, and allowing the distributed NS to share subscriptions to notifications from
the service to be shared amongst consumers with similar interests. From evaluating this

system, we can make the following statements:

e Chained negotiation enables a consumer and publisher to find a mutually accept-
able set of conditions under which a service can be supplied, while still enabling a

NS to share subscriptions to the service.
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s By supporting negotiation between the consumer and service provider, the con-
sumers do not always get the high QoS they would ideally like, but do get a level
they are prepared to accept that will not place unnecessary burden on the ser-
vice provider, which could prevent the service provider from being available to

subsequent consumers.

e By sharing subscriptions to notifications from the service, the distributed NS fur-
ther reduces the load placed on a service provider by supporting additional con-
sumers without any extra burden being placed on the supplier. This also reduces
the load placed on the distributed NS itself, as fewer notifications have to be sent
between the individual NSs.

e As the number of instances in a distributed NS is increased, the number of po-
tential consumers that can be satisfied by a single service provider can increase
dramatically. Different topologies of a distributed NS can offer even better results
— for example a tree-style topology enables a higher potential number of con-
sumers than a linear topology. However, as the distance between consumer and
service provider increases, the performance of chained negotiation deteriorates. As
more issues are negotiated over, it becomes harder to match a new request to an
existing commitment (thereby reusing a shared subscription). Hence, a balance
must be found between the topology of a distributed NS and the different benefits

it offers.

Overall, we can say that by using chained negotiation in a distributed notification ser-
vice, a service provider can enable clients to request services with a specified QoS and
have differences between the preferences of the client and provider resolved, while still
enabling the distributed notification service to share subscriptions to the service, sharing

notifications between groups of consumers with similar interests.

7.4 Limitations

Although we have demonstrated in this thesis that chained negotiation can provide a
benefit to a service provider by enabling it to negotiate over QoS with a client, and share
subscriptions to its service through a distributed notification service, we recognise that

there are a number of limitations:

¢ In both direct and chained negotiation, the negotiation issues must be independent.
In a real life implementation, it is likely that at least some issues will be dependent
on others, for example if a service is going to be run with a higher priority, the
service provider would expect to be able to charge more for it. Dependent issues

are more complex to model, and lead to the notion of trading one issue off against
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another. Due to the complexity of dependent issues, adding support for them
would have required a significant effort, and was hence considered beyond the

scope of this work.

e The evaluations of both direct and chained negotiation have used a single tactic for
proposal generation, and single linear utility functions for proposal evaluation. In
a real implementation, it is highly likely that multiple tactics would be used, and
potentially more complex utility functions. However, it was important to evaluate
these parts of the system independently of external influences to determine their
behaviour. As resource-dependent tactics are domain-specific in nature, it would
have been impossible to evaluate them independently of a specific domain. The
evaluations also used an interval-based model of time where exactly one message
is sent in each interval, rather than a real-time based model. Using real time
would have meant that additional variables, such as the amount of time required
to compose and send a message (which will most likely not be constant) must be

introduced.

e The integration of chained negotiation into a distributed notification service has
focussed on the context of a service provider delivering its service through a notifi-
cation service, rather than a general notification service environment where there

can be multiple publishers and multiple consumers all attached to the same topic.

e In some distributed notification service (e.g. NaradaBrokering), consumers may
disconnect from a broker and reconnect to another point in the network, and still
have notifications routed to them. ChaNNSe does not support this relocation as
chained negotiation sets up subscriptions for notifications to be delivered along
a fixed route, but it may be possible to dynamically change the subscriptions to

follow the consumer.

7.5 Future Work

While we have demonstrated that chained negotiation can provide significant benefits
to the provision of services in a distributed notification service, we have also identified

a number of areas for potential improvement and for further future work.

7.5.1 Real-time Deadlines

Both DINE and ChaNFE used deadlines based on the number of messages that can be
transmitted during the negotiation. This approach enables chained negotiation compo-
nents to accurately determine whether they have enough time to negotiate upstream,

a crucial part of chained negotiation. In a real implementation, it may sometimes be
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desirable to specify a deadline in terms of an absolute time, rather than how many mes-
sages can be sent in the negotiation. This would be needed in a real-time application

where a client is negotiating for provision of a time-critical service.

To convert the negotiation engines to use real-time, some issues must be overcome. The
most important issue is that a mechanism must be created to enable each negotiation
component to determine whether it has enough remaining time for a negotiation to pro-
ceed upstream. If it cannot accurately determine this, a message may be sent upstream
without enough time for the reply to reach the client before the negotiation deadline
expires, causing the negotiation to fail outright. One possible method for doing this
would be to measure the average time taken for a message to be sent over the course
of each negotiation, and use this average to determine the number of messages that can
be sent in the remaining time. Problems such as network latency and irregular traffic

might cause these numbers to become distorted.

When using real time, the problem of potentially predicting which party will make the
final proposal in a negotiation (discussed in Section 4.3.2.1 on Page 61) will be reduced.
As message transmission time is likely to be variable, it may be impossible to accurately

predict which party will make the final concession.

7.5.2 Parallel Negotiations

Chained negotiation can be seen as a chain of individual negotiations. A middleman is a
participant in two negotiations at once, upstream (towards the supplier) and downstream
(towards the client). In our implementation of ChaNE, negotiation proceeds in one
direction at a time. It may be possible to conclude negotiations quicker if a middleman
is able to negotiate in both directions simultaneously, making concessions with both

sides of the negotiation.

Additionally, a middleman may be able to recognise that two clients are requesting the
same item at the same time, and can attempt to combine the two before they complete,
potentially getting a better deal from the supplier than if it were negotiating for one

client only.

7.5.3 Renegotiation of existing commitments and combining of com-

mitments

With the current implementation of ChalNNSe, a NS will attempt to share a subscription
to a consumer that requests a similar set of QoS conditions. However, if the consumer
requests a higher or incompatible set of conditions, it will be impossible to share the
subscription and a new one may be made. In this situation, it would be possible to

examine the current set of subscriptions and determine if any of them are unnecessary.
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For example, in a service providing stock quote updates with a specified frequency,
consumer A may request updates for a particular stock every 2 hours. If consumer B
then requests updates for the same stock, but every hour, the NS could cancel the initial
subscription and use the 1 hour subscription to satisfy both clients — it could forward
the notifications immediately to consumer B, and store alternate notifications to deliver

a combined notification to consumer A.

Similarly, a NS could learn the common interests of its consumers, and factor this
information in when making subscriptions. For example, if one service proves very
popular with many consumers, the NS could negotiate with a service provider for a
higher QoS, justifying it by saying it will support multiple consumers using the provided
subscription. The NS can also do extra work to translate or filter the data provided by
the publisher in order to satisfy multiple consumers — taking a single subscription that
has enough content to satisfy all of its consumers and doing additional translations
or filtering as appropriate to each consumer. Miihl (2002) describes a similar idea
applicable to content-based publish/subscribe systems where the content of notifications
is determined by filters specified by consumers — NSs can share a subscription by
using algorithms to combine filters, requesting a single subscription from the publisher

containing enough information to satisfy multiple consumers.

A third related possibility is to enable middlemen to use multiple existing commitments
to satisfy a new request. For example, if consumer A has requested notifications every
2 hours (odd numbered hours), consumer B has requested notifications every 2 hours
(even numbered hours), when consumer C requests hourly notifications, a NS could use

the commitments held for both consumer A and B in order to satisfy C.

7.5.4 Protocol compliance and agreement monitoring

A negotiation protocol specifies the rules which a participant in a negotiation should
adhere to. However, it is possible for a malicious agent to break some of the rules in
chained negotiation to get a better outcome at the expense of its opponent. For example,
messages in chained negotiation contain a field indicating the number of hops from each
end of the negotiation. By falsely setting one of these values, it would be possible for
an agent to convince its opponent that it should prematurely offer its reservation value.
This would cause the agent offering the reservation value to get the minimum possible
utility for that negotiation, while the malicious agent gets the maximum utility. It is also
possible for middlemen to accept proposals from clients without actually having made
arrangements to supply the item. A malicious middleman would take payments for a
service and then not supply it. It would be desirable for some checking or enforcement of
the rules in the protocol so that it becomes harder or impossible to break them without

being detected.
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Approaches using cryptographic techniques could be used to ensure the number of hops
in the message is accurate. Alternatively, random checks could be carried out where
the client makes direct contact with the supplier to determine if protocol rules have
been broken by an intermediary. If an agent is found to have broken the protocol
rules, a negative reputation could be left. We believe that a trust model or reputation
mechanism, such as those presented in (Patel et al., 2005) and (Zacharia et al., 1999)

would be of use in this situation.

Related to the area of protocol compliance monitoring is agreement monitoring. In
ChaNNSe, consumers can request a particular quality of service when they request a
service. Especially in cases where the consumer has paid for the service, it is desirable to
have a mechanism for monitoring the quality of service actually received by the consumer.
The WS-Agreement specification provides an interface for monitoring of agreements, and
(Ludwig et al., 2004) details an implementation of this work. Monitoring of agreements

using such techniques would be of benefit to the ChaNNSe architecture.

7.5.5 Further negotiation techniques

ChaNE uses a heuristic-based approach to automated negotiation. However, we believe
that some additional negotiation techniques may be of use in improving the performance
or providing additional functionality. For example, the use of argumentation-based
negotiation may be helpful to the extra work on renegotiation suggested earlier — a
middleman can negotiate for higher QoS than would normally be received from a supplier
by justifying the need for the higher quality of service as being required to support
multiple clients. It may also help improve the performance of chained negotiation —
if a supplier can make no further commitments, a middleman may suggest an existing
commitment and inform the client that this is being suggested because the supplier

cannot satisfy the request directly.

7.5.6 Compliance with Industry Standards

ChaNNSe is based upon an automated negotiation engine and a notification service.
Both of these fields have active development of a web standard — WS-Agreement for
negotiation and WS-Notification for notification services. At the time of writing, neither
of these standards had made it to a final version, so building in support for them was
considered unnecessary. However, the system has been designed with these standards in
mind, and is hence compatible with both. Once the standards reach a final version, it
could be beneficial for ChaNNSe to become compliant with these standards, potentially

enabling it to interoperate with other standards-compliant systems.
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7.6 Concluding Remarks

As computing in service-oriented architectures increases in popularity, more and more
services will depend on other services. We believe that quality of service will be an
important factor in selecting service providers, and that it should be possible for clients
and service providers to come to an agreement over the QoS that they will receive,
especially when the service is being paid for. We also believe that when multiple clients
have similar interests, they should be able to benefit from their common interest, in the
same way that group buy schemes are often organised between interest groups. This is
especially so when it also benefits the service provider by not imposing as much load
as serving each client separately. The ideas presented in this thesis go some way to

progressing this field in this respect.
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