
UNIVERSITY OF SOUTHAMPTON 

Chained Negotiation for Quality of 

Service in Distributed Notification 

Services 

by 

Richard A. Lawley 

A thesis submitted in partial fulfillment for the 

degree of Doctor of Philosophy 

in the 

Faculty of Engineering and Applied Science 

Department of Electronics and Computer Science 

September 2005 



UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

by Richard A. Lawley 

With the growth of the Internet over recent years, the use of distributed systems has 

increased dramatically. Components of distributed systems require a communications 

infrastructure in order to interact with other components. One such method of com

munication is a notification service (NS), which delivers notifications of events between 

publishers and consumers that have subscribed to these events. A distributed NS is 

made up of multiple NS instances, enabling publishers and consumers to be connected 

to different NSs and still communicate. The NSs attempt to optimise message flow be

tween them by sharing subscriptions between consumers with similar interests. In many 

cases, there is a mismatch between the dissemination notifications from a publisher and 

the delivery preferences of the consumer in terms of frequency of delivery, quality, etc. 

Consumers wish to receive a high quality of service, while a service provider acting as 

a publisher wishes to make its service available to many consumers without overloading 

itself. Negotiation is applicable to the resolution of this mismatch. However, existing 

forms of negotiation are incompatible with distributed NSs, where negotiation needs 

to take into account the preferences of the publisher and consumer, as well as existing 

subscriptions held by NSs. We introduce the concept of chained negotiation, where one 

or more intermediaries sit between the client and supplier in a negotiation, as a solution 

to this problem. Automated chained negotiation can enable a publisher and consumer 

to find a mutually acceptable set of delivery preferences for a service to be delivered 

through a distributed NS, while still enabling NSs to share subscriptions between con

sumers with similar interests. In this thesis, we present the following contributions: first, 

we show that by using negotiation over quality of service conditions, a service provider 

can serve more clients with a lower load on itself, presenting a direct negotiation engine 

for this purpose. We present chained negotiation as a novel form of negotiation enabling 

quality of service negotiations to involve intermediaries which may be able to satisfy a 

client's request without involving the service provider. Finally, we present a distributed 

notification service with support for chained negotiation, showing the benefit gained 

from chained quality of service negotiation in a real application. 
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Chapter 1 

Introduction 

1.1 Distributed Systems 

Possibly the biggest change in the field of computing over the past decade has been the 

explosive growth of the Internet, linking networks all over the world and enabling people 

to communicate and collaborate, sharing information. It has also enabled computer 

systems to interact with other geographically distributed computer systems, almost as 

easily as if they were locally connected. Stock control systems in shops can automatically 

place orders with their suppliers where previously a human would have placed an order 

by telephone or mail, customers can track the current location of a parcel they have 

shipped anywhere in the world, and traders can monitor and trade stocks and shares ill 

real time where they would previously have telephoned a broker. Prior to the Internet, 

businesses could interact electronically by means of private dial-up networks, which 

were costly, slow and restricted in terms of which organisations they could interact with. 

The Internet has provided an affordable global network which enables interaction with 

millions of other organisations around the world. 

While the most common use of the Internet is to enable people to communicate with 

other people, or to interact with businesses and other organisations electronically, a more 

recent development has seen improvements in methods enabling machines to interact 

with each other - Web Services. A Web Service is a software system designed to support 

interoperable machine-to-machine interaction over a network (Web Services Architecture 

Working Group, 2004). Web services encompass a universal language for the exchange of 

data between applications and protocols for remotely discovering and accessing electronic 

services with a machine-processable interface, and enable applications to interact with 

other applications distributed anywhere in the world. 

1 
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1.1.1 The Grid 

Access to a global network has also enabled scientific projects to collaborate, leading 

to the vision of the Grid, which is a system enabling the distributed coordination of 

resources. These resources can include computing power, storage space, databases, 

scientific apparatus and any other service or device that can be networked. Having 

these shared resources allows a group of people who have never met to dynamically form 

a virtual organisation in order to collaborate on a task (Norman et al., 2004). When the 

task has completed, the virtual organisation may be disbanded without the individuals 

involved ever knowing their collaborators. While the Grid is still a vision, many grid 

systems have been created, realising some of the ideas in the Grid concept. Scientific 

applications are major users of grid systems - they are typically computation- or data

intensive, making them ideal candidates for using shared resources and making their own 

resources available. By sharing resource and using shared resources, an organisation can 

typically run such an application at a lower cost than by having to acquire and support 

the necessary resources themselves. 

1.1.2 Service-Oriented Architectures and Quality of Service 

Both Web Services and grid systems have led to the notion of a service-oriented archi

tecture (Burbeck, 2000) - an architecture that focuses on the description of services 

and supporting their dynamic, automated discovery and use. Services offered can vary 

in complexity from simple stock quote services to more complex scientific experiments or 

database searches. Service providers may exist for the sole purpose of providing services 

to others, potentially for financial reward. 

In some situations, it may be insufficient to simply request a service make assumptions 

about the quality of service. For example, a scientific experiment may have some equip

ment time preallocated in the future, but requires an external service to perform some 

analysis on existing data before it can use the equipment. If the external service does 

not complete in time, the pre-booked equipment time is wasted. Hence, it is often de

sirable to specify constraints about how a service is delivered, which we broadly refer 

to as Quality of Service (QoS). QoS parameters control how a service is delivered, as 

opposed to what service is delivered or the inputs to that service, e.g. service delivery 

time, or accuracy with which a service is run. 

There is commonly a difference between the levels of QoS a client would like to get, 

and those which a service provider would like to provide. Service providers may try allel 

provide lower QoS than a client would prefer to receive in order to reduce their costs or 

increase their throughput, enabling them to serve more clients. A small number of clients 

requesting a very high QoS could overload a service provider, making it unavailable to 

subsequent clients. In such situations, negotiation can be used to find a compromise 
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between the QoS levels a client prefers and those the provider is willing to supply, as is 

commonly used in distributed real-time systems to specify requirements for resources (Li 

and Ravindran, 2004), and in multimedia systems for resource reservation (Rothermel 

et al., 1997). 

1.1. 3 Notification Services 

Computationally-intensive experiments in grid systems make take hours, days or even 

weeks for each stage, composed of a grid service made available for use, to complete. 

It is undesirable for a service to be waiting on a previous stage of the experiment to 

complete, as the time spent waiting could be better used to serve other experiments. 

In such situations, a message-based system where actions can be triggered on receipt of 

an event notification may be used to trigger the next part of the experiment, freeing up 

the waiting services to carry out other actions while they are free. Notification Services 

(NSs) are message-based communication systems that are used to inform consumers 

that an event has taken place, by delivering a notification to them. These notifications 

are created by publishers, which are information sources, and are published on a specific 

topic, grouping similar messages together. Consumers subscribe to the topic they are 

interested in, and then receive all notifications published on that topic. A NS could be 

used to inform users that one stage of an experiment has been completed, or that a stock 

price they are monitoring has changed. It is possible for a consumer to request specific 

QoS levels when they subscribe to a topic. For example, they could request that their 

notifications are compressed, or specify a minimum interval between notifications. 

A common trait with any distributed system is that as the use of a system scales up, 011e 

part can become a bottleneck or a potential single point of failure for the entire system. A 

NS could become such a bottleneck in a distributed system, as it can potentially support 

many different services and applications. Having multiple NSs can enable a system to 

stay running if one fails, and also means that publishers and consumers can be spread 

between the different instances, spreading the load. Hence, an extension of a notification 

service is a distributed notification service, made up of multiple individual notification 

services linked together (Krishna et al., 2003). A distri bu ted NS can also enable a wider 

range of users to be serviced - users behind a firewall could be connected to a local 

NS that can connect through the firewall to other parts of the distributed NS. In a 

distributed NS, messages are still delivered to consumers if the publisher is connected 

to a different NS. The routing of messages between the various NSs is handled by the 

NSs; the publisher and consumer do not even need to know they are connected by a 

distributed NS. When multiple consumers at the same NS are subscribing to the same 

topic published at a different NS, an optimisation can be made in the message routing. 

Instead of an individual copy of every notification being sent between the NSs, a single 

copy could be sent, then redistributed to each consumer by the NS. The consumers' NS 
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only needs to make a single subscription to the publishing NS, which it will then share 

between the subscribed consumers. Hence, we refer to shared subscriptions as those 

made by a NS to another NS in order to share notifications between multiple consumers 

interested in the same topic. 

However, as mentioned above, consumers can request specific QoS conditions along with 

a subscription. For example, notifications can be assigned a priority to ensure that 

urgent notifications are delivered quickly, or a particular format of notification can be 

specified. For a subscription to be shared, the topic has to be the same, and the QoS 

conditions have to be compatible - whether a particular QoS can satisfy another QoS 

request. For example, if price is a QoS condition, and a request specifies a certain 

price, if the service is obtained for less, that is compatible with the QoS request. In 

this example, QoS conditions better than requested are compatible with the request. 

Other QoS conditions may only be considered compatible if the QoS value is exactly 

as requested. If two consumers request a subscription to the same topic, but their 

QoS conditions are incompatible, it would be impossible for the NS to share a single 

subscription between them; instead, it would need to make two individual subscriptions 

to the same topic, one for each consumer. As the scale of this problem increases beyond 

two consumers, it could potentially lead to a large number of additional subscriptions 

being required, greatly increasing the number of notifications that must be sent between 

NSs and increasing the overall load on the system. To resolve this, a mechanism is 

required that can find a compromise between the QoS preferences of a consumer, the 

QoS preferences of a publisher and any existing subscriptions already held by a NS, in 

order to maximise the benefits of sharing subscriptions and notifications. 

1.2 Research Aims 

The problem we are seeking to address in this thesis is to allow a service provider 

to support more consumers, yet minimise system load by enabling a compromise to be 

reached between the levels of QoS a consumer would like and manageable levels a service 

provider can maintain for many consumers without placing too much load on itself. We 

believe that adopting work done on negotiation in the field of agent-based computing 

provides a means to improve the performance of such systems. Our research aims call 

therefore be enumerated as follows: 

1. As consumers and service providers typically have different preferences about QoS 

when requesting a service, a mechanism is required to manage the provision uf 

service or notifications that can find a compromise between the high QoS levels 

requested by the consumer, and the manageable QoS levels desired by the ser

vice provider. One technique which can be used for this purpose is automated 
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negotiation. We aim to show that direct negotiation is suitable for resolving these 

differences, and by empirical evaluation show the behaviour of such a system. 

The contributions provided by completing this aim are an empirical evaluation of 

a direct negotiation engine showing the behaviour of such a system independent of 

external influences, and a demonstration that negotiation is a suitable mechanism 

for enabling a service provider to allow a consumer to specify QoS conditions 

when requesting a service without imposing an unmanageable load on the service 

provider, restricting the number of clients it can support. 

2. As the scale of a NS deployment increases, a distributed NS is often used instead. 

In this situation, multiple NSs are interconnected, with publishers and consumers 

spread between them. Where multiple consumers at the same NS subscribe to the 

same topic published at a remote NS, the local NS can share a single subscription 

to the remote NS, sharing notifications received on that topic between the sub

scribed consumers. However, if the consumers request different QoS constraints it 

may be impossible to share a subscription between them. In this situation, nego

tiation offers an appropriate means to find a compromise between the QoS levels 

requested by the consumer, those desired by the service provider, and any existing 

subscriptions held by a local NS. However, direct negotiation is unable to provide 

a solution in this case, as it only involves two parties, the consumer and service 

provider. We thus need to develop a new form negotiation capable of involving 

intermediaries between a service provider and a consumer. In this situation, a 

chain is formed between the service provider and consumer, with NSs as interme

diate steps. In consequence, we aim to develop a new form of negotiation that will 

involve intermediaries in the chain. This chained negotiation method will enable 

a service provider to support more consumers more efficiently than by allowing 

them to obtain their requested QoS levels. 

Chained negotiation, being a new form of negotiation, will represent a contribution 

of this thesis, enabling the reselling or redistribution of items obtained through 

negotiation. 

3. Although many existing NSs allow a consumer to specify QoS constraints when 

subscribing to notifications, none currently use negotiation to find a set of QoS 

conditions acceptable to both the consumer and service provider publishing the 

notifications. We thus propose to develop a new architecture based on a distributed 

NS that will enable multiple consumers to request levels of QoS for a service that 

will be delivered as notifications through a NS. Our objective is to be able to 

find a compromise between the typically high preferences of the consumer, the 

manageable levels of QoS favoured by a service provider, and existing subscriptions 

to the service held by intermediaries between the consumer and service provider. 

This will enable the load on the service provider to be kept to a rnanageablc 

level, while enabling the distributed NS to efficiently share subscriptions between 
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consumers with similar preferences. To show the validity of this approach, we 

propose to take a scientific application from the bioinformatics field and develop 

it to work within this architecture, showing any improvements made by using our 

approach. 

This new architecture enabling QoS negotiation for services in a distributed notifi

cation service will represent a contribution of this thesis, along with the evaluation 

of the architecture demonstrating the benefits of using it in a real application. 

1.3 Thesis Structure 

The remainder of this thesis is organised as follows: 

• In Chapter 2 we introduce notification services, explaining the need for them and 

reviewing existing implementations. 

• In Chapter 3, we discuss negotiation. Different negotiation mechanisms are in

troduced before examining automated negotiation. We review existing automated 

negotiation systems. 

• In Chapter 4 we take a bilateral negotiation model and develop DiNE, a direct 

negotiation engine. Through simulations, we show that using negotiation over 

QoS enables a service provider to offer services at a QoS level acceptable to both 

service provider and client, enabling more clients to be served. 

• In Chapter 5, we develop the negotiation engine discussed in Chapter 4 to sup

port chained negotiation, where one or more intermediaries are involved in the 

negotiation between client and service provider. We present a negotiation model 

supporting chained negotiation, which is developed into ChaNE, a chained nego

tiation engine. We show through simulations that in the context of a distributed 

notification service, chained negotiation can enable consumers and publishers to 

negotiate over QoS levels, while still being able to share subscriptions to notifica

tions between consumers with similar preferences. 

• In Chapter 6 we integrate an existing distributed notification service, and integrate 

it with our chained negotiation engine, creating an architecture for delivering SET

vices with negotiable quality of service through a distributed notification service. 

We adapt a specific example of a protein compressibility analysis application to 

make use of the NS, enabling us to show that a service provider can reduce the load 

on itself and support more clients by using chained negotiation with a distributed 

NS. 

• Finally, we present our conclusions in Chapter 7 and discuss future work. 



Chapter 2 

Notification Services 

In a distributed system where services depend on other service running m different 

locations, messages can be delivered by notification services informing an object that an 

event has taken place. In large scale distributed systems, these notification services can 

make delivery of these messages more efficient amongst large numbers of recipients. In 

this chapter, we explain the concepts behind notification services, and review existing 

work in the field. 

2.1 Introduction 

With the increase of the Internet and global networks over the past few years, the use of 

distributed computer systems has grown significantly. This has led to the vision of the 

Grid - a system that "coordinates resources that are not subject to centralised con

trol, using standard, open, general-purpose protocols and interfaces to deliver non-trivial 

qualities of service" (Foster, 2002). In this vision, teams of scientists or users around 

the world can dynamically form a group or virtual organisation in order to collaborate, 

sharing heterogeneous services. After the task has been completed, the virtual organi

sation may disband without the members ever having known their collaborators. At the 

moment, some of the vision of the Grid remains just that. The Grid requires open stan

dards and protocols to be agreed on and used such that resources can be shared and used 

by any interested party, not just one from the same system. However, parts of the Grid 

vision have been realised by many different grid systems. These are typically used to 

support scientific applications that are computationally-intensive, data-intensive and/or 

resource-intensive. They provide mechanisms for the discovery and accessing remote 

services dynamically at runtime. e-Science applications are major uses of grid systems, 

utilising them to carry out experiments in the areas of bioinformatics (myGrid Project, 

2003), combinatorial chemistry (Comb-e-chem Project, 2003), and physics (GriPhyN 

Project, 2005) for example. Experiments can be carried out in silica, or can make usc 

7 
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of networked laboratory equipment exposed as a grid resource. 

At the same time, new uses for the Internet have taken shape. While the Internet has 

been traditionally used for enabling interactions between humans, providing sites full of 

information and enabling communication between people, very little had been done until 

recently to make these features universally available to machines. Web Services are soft

ware systems enabling machine-to-machine interactions, encompassing techniques such 

as data interchange (using XML-based protocols), service discovery (UDDI), machine

readable descriptions of a service (Christensen et al., 2001) and remote invocation of ser

vices (World Wide Web Consortium, 2003). As web services have matured and gained 

in popularity, grid systems have begun to adopt web services techniques. For exam

ple, one of the most recent incarnations of a grid framework is the Open Grid Services 

Infrastructure, which is based on web services technologies. 

Both grid systems and web services are examples of a service oriented architecture 

(SOA), which is a model exposing functional units of an application through services 

(Colan, 2004). Services have well-defined interfaces, and may be accessed in a platform

independent manner, enabling services on different operating systems and hardware to 

interact. Different services can be composed together, and made available as a service 

itself. SOAs have been around for a long time in one form or another ~ CORBA and 

DC OM are both older examples. The concept of a SOA today typically (but not ex

clusively) includes the use of XML for data interchange and WSDL for describing the 

interfaces of a service. 

Experiments in grid systems, and complex services in SOAs, may be expressed as work

flows, structures composing different services or components together to accomplish 

specific goals. In computationally-intensive experiments, each stage of a workflow may 

take a long time to complete. For this reason, it is undesirable to have a service or 

resources tied up waiting for a previous stage of the workflow to complete. Instead, 

a messaging-based model can be used to send the output of one stage of a workflow 

onto the next stage(s). A Message-Oriented Middleware (MOM) provides the basis 

for such an architecture by facilitating messaging between different components or ser

vices. There are many variations of MOMs, including message queueing systems anel 

notification services. 

A notification service (NS) is a messaging system that delivers notifications of events 

to consumers who have registered an interest in receiving them. The notifications COllle 

from publishers, which are information sources. NSs enable a publisher to distribute 

information to many consumers without needing to be aware that they even exist. 

For the remainder of this chapter, we review message-oriented middleware systems, 

specifically notification services, as communication mechanisms for a distributed sys

tem. In Section 2.2, we examine two communication patterns which are relevant to this 

chapter. Then in Section 2.3, we introduce message-oriented middleware systems as a 
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mechanism for remote invocation of services and interaction between distributed com

ponents. We move on to Notification Services in Section 2.4, then discuss distributed 

notification services in Section 2.4.2, which increase the scalability and reliability of a 

notification service. Section 2.5 discusses standardisation efforts for notification services, 

and Section 2.6 reviews some existing notification services. We summarise in Section 

2.7 and discuss how this is relevant to our aims in Section 2.8. 

2.2 Communication Patterns 

In software development today, there are many different types of communication patterns 

between parts of a program. Some of these patterns are also used for communication 

between components in a distributed system. We describe some of these communication 

patterns below, so that we may draw on their definitions later in this chapter. 

2.2.1 Remote Procedure Calls 

Remote Procedure Calls (RPCs) are a paradigm for providing communication between 

programs over a network (Birrell and Nelson, 1984), and are based on the simple model 

of procedure calls within a program where control is transferred to another portion of 

the same program on the same computer. RPC simply extends this paradigm to allow 

control and data to be transferred to a procedure running in another program, usually 

on another computer in a network. As shown in Figure 2.1 , when a remote procedure 

call is executed , the calling environment is suspended and state information is passed to 

the cal lee, or the environment where the remote procedure will be executed. When this 

procedure finishes , the state information including the procedure result is passed back 

to the caller, and execution continues. 

Caller Callee 

request 

response 
~activitY 

FIGURE 2 .1: Sequence Diagram of RPC Interactions 

For the caller , an RPC interaction is synchronous, meaning that the caller must stop 

and wait for the remote activity to complete before cont inuing its execution . This could 
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be a problem in situations where the remote activity is going to t ake a long time, or 

when the communication link between the two is unreliable. 

Most of today's high-level programming languages support RPC, either through an OS 

implementation or as part of the language, such as Java RMI (Microsystems, 2003), 

Microsoft's DCOM (Horstmann and Kirtland , 1997) , and SOAP (World Wide Web 

Consortium, 2003) , which provides a mechanism for achieving RPC-style interactions in 

a web services environment, in addition to a much wider range of interaction styles. 

2.2.2 Publish/Subscribe Interactions 

In object-oriented software engineering, the observer interaction pattern is used where 

there is a dependency between a subject, and a number of observers - objects interested 

in changes to the state of the subject (Gamma et al., 1995) . A subject can have any 

number of observers, as it does not need to be aware of them. Whenever a change occurs 

in the state of the subject, it notifies all observers of this change, using a mechanism 

that does not change whether it is notifying 0, 1 or 1000 observers of t he changes. Figure 

2.2 shows the interactions between the subject and observers - observers subscribe to 

a subject in order to receive notifications of updates. When the subject is updated , it 

notifies any observers of these changes. 

Subject 

.... 

!¥ I
¥ 

update ~ 

observ~ 
subscribe 

subscribe 

notify 
notify 

Observer 

FIGURE 2.2: Sequence Diagram of Publish/Subscribe Interactions 

The observer pattern is used in situations where changes in one subject cause events to 

occur in an indeterminate number of observers, without the subject needing to interact 

directly with the observers. In software development , it is often used to enable a graph

ical user interface to display updates to underlying data structures . It is also used in 

distributed systems, where it is more commonly known as publish/subscribe (Birman, 

1993) . In publish/subscribe Subjects are publishers of notifications, and any number of 

consumers (observers) can subscribe to receive these not ifications. Publish/subscribe 

resembles multicast in nature, as it allows a publisher to reach multiple consumers with 

no difference from sending the message to a single consumer. 
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2.3 Message-Oriented Middleware 

Over recent years, there has been a significant increase in the number of computers and 

other devices wishing to access and run remote services over a network. Traditionally, 

this would have been accomplished using RPC (as described above), but there are a 

number of disadvantages to this approach. RPC usually requires a client to issue their 

request, then await a response. This is often undesirable or difficult to achieve. For 

example, a user can invoke a long-running job from a PDA while on the move. It is 

impractical for them to stay connected while the service runs, as the device has limited 

battery life and an unreliable or expensive network connection. Additionally, RPC 

interactions generally mean a service is run immediately, which makes it difficult for a 

service provider to handle load from multiple clients simultaneously. 

An alternative method of distributed interaction is distributed messaging, where com

munications are based on the exchange of messages (often referred to as events, as 

messages are often sent to indicate that something has taken place). Message-oriented 

middleware (MOM) systems are messaging systems facilitating the asynchronous, reli

able communication between entities by the exchange of messages, and can be used for a 

range of scenarios, including integrating distributed applications (Banavar et al., 1999b), 

information exchange and event notification. They are an extension to the client-server 

paradigm of computing to enable asynchronous operations, so that a client can send a 

request to a server that is currently off-line, or a server can operate without the worry 

that a client is waiting for an immediate response (Birman, 1996). They also enable 

clients to communicate with servers without ever being directly connected - the MOl'd 

handles routing of messages as appropriate. Essentially, MOM systems are similar to 

an e-mail system for applications, letting different programs use named mailboxes for 

sending and receiving, and acting upon the contents of the messages (Birman, 1996). 

A subset of MOM, Message Queuing Middleware (MQM), uses queues for sending and 

receiving messages, further decoupling the client or server from the MOM by making 

the send or receive asynchronous (as compared to synchronous, where they have to wait 

for the message to be sent or for the reply to be received). By enabling simultaneous 

access to both sending and receiving queues, a MQM system can support many users. 

MQMs also facilitate load balancing by using queues - multiple service providers could 

be connected to a queue of requests, sharing the load between them without their clients 

knowledge. 

MOM systems solve some of the problems associated with a traditional RPC-based 

approach: long-running operations can be scheduled without the client having to wait 

on-line for a response; service providers can handle a large number of simultaneous 

clients, potentially by transparently sharing the load with other service providers. MOl\I 

also enables a simpler programming model than RPC - it is possible for a client to make 

use of a remote service without specifying where or which server should carry out the 
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request. Instead, the client locates a messaging server and sends the request. The client 

does not need to know which service carries out the request, or what software it is 

runnmg. 

MOM systems have been around for some time, hence there are many established im

plementations available. Examples include Microsoft Message Queue (MSMQ) 1, IBM's 

Websphere MQ2 (formerly MQSeries), and DEC's MessageQ, which allow reliable asyn

chronous communications within guaranteed delivery constraints. 

2.4 Notification Services 

A notification serV2ce (NS) is part of a MOM utilising the Publish/Subscribe model 

described above. In the above description of publish/subscribe, no mention is made of 

how notifications reach the consumers from the publisher. A NS is an object that takes 

this responsibility, taking notifications from the publisher and handling the distribution 

and delivery to the subscribed consumers (Hapner et al., 2002; Object Management 

Group, 2004, 2002). A NS uses the publish/subscribe model in two locations as shown 

in Figure 2.3 - to receive notifications from the publisher (the publisher notifies the 

NS of any notifications), and to publish these notifications to the consumers (consumers 

subscribe to the NS and receive notifications). 

~. subscribe . ... f<IIIsubscribe . 
Publisher publish NS publish Consumer 

FIGURE 2.3: Publish/Subscribe interactions in a NS 

The basic model of interactions in a notification service is shown in Figure 2.4, where a 

NS is used to manage the subscriptions held by consumers, enabling the efficient delivery 

of notifications. The NS represents a service mediating between the publishers publishing 

notifications, and consumers consuming notifications. A consumer will register interest 

in notifications by subscribing, indicating the topic of the notifications they are interested 

in. consumers may not be aware of the sources of the notifications, only the topic to 

which they belong. Equally, publishers may not be aware of the number or identity of 

any consumers, as this information is managed by the NS. Consumers unsubscribe when 

they no longer wish to receive notifications. 

There are two types of subscription in a NS - push subscription and pull subscription. 

In a push subscription, it is the job of the NS to deliver a notification to a consumer when 

it is published. Conversely, in a pull subscription it is the responsibility of the consumer 

to check for any new notifications on the NS. These subscriptions can be likened to 

lhttp://www.microsoft.com/msmq/ 
2http://www-306.ibm.com/software/integration/wmq/ 
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Notification Service 
Publisher 

~ 
Consumer 

Storage and 
u~su 

Publisher 
management of subscribe 

Consumer subscriptions 

Publisher 
publisQ. notify 

Consumer 

Publisher 
notify 

Consumer 

FIGURE 2.4: Interactions in a Notification Service 

e-mail protocols - push subscriptions are like SMTP (Postel, 1982) where messages are 

delivered to waiting servers. Pull subscriptions likened to receiving your e-mail with a 

mail client using POP3 or IMAP, where the messages reside on a server while you are 

offline. Push subscriptions tend to be delivered as soon as a notification is published, 

hence are well-suited to time-critical applications. However, consumers may be located 

behind firewalls, with no way for a NS to contact them directly. In this situation, a pull 

subscription is the only way a consumer can receive any notifications. 

The publish/subscribe interaction pattern decouples the publisher from the consumers 

in terms of time, space and synchronisation (Eugster et al., 2003). Time is decoupled 

as there is no need for the publishers and consumers to be active at the same time -

notifications may be published while a consumer is off-line, in which case they will be 

delivered when the consumer reconnects Jater. In terms of space, there is no need for 

the publisher and consumer to ever contact each other directly, or even be aware of 

each other's existence. Notifications are delivered to the consumers by a third party, 

so publishers do not know how many consumers are receiving their notifications, or the 

identities of any of them. Equally, consumers do not necessarily know the source of the 

notifications that they receive. Decoupling of synchronisation is implied by the previous 

two properties - as the consumer and publisher do not contact each other directly, the 

processes of publishing and receiving notifications can be asynchronous non-blocking 

operations, allowing each to work on something else while not processing notifications. 

Decoupling the publishers and consumers in a system increases the scalability by re

ducing the explicit dependencies between the parties in a system, and enabling it to be 

more suited to a distributed environment, such as in a mobile environment (Huang and 

Garcia-Molina, 2001). 

Notification services can provide additional functionality on top of the delivery of noti

fications between publishers and consumers, including these diverse possibilities: 

• Reliable message delivery - As an increasing number of network-based appli

cations rely on a MOM layer for communications, the need for guaranteed clc-
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livery of interactions becomes more important (Pallickara et al., 2005). This is 

shown in particular for the field of Web Services by the recent development of two 

standards, WS-Reliability (OASIS, 2004a) and WS-ReliableMessaging (Bilorusets 

et al., 2005). Reliable message delivery for a notification service ensures that a 

consumer subscribed to notifications on a particular topic is guaranteed to re

ceive every notification published on that particular topic, and that failures in the 

middleware layer can be tolerated (Pallickara and Fox, 2004b). 

• Durable topics ~ If a consumer connects to a NS and subscribes to a particular 

topic, they will typically receive all notifications sent on that topic from that point 

forward Krishna et al. (2003). Durable topics allow a conSUIner to subscribe to 

a topic and receive all existing notifications that were sent before the point of 

subscription. 

• Message prioritisation ~ In some cases it may be important to prioritise certain 

messages, to ensure that important messages are delivered as soon as possible. 

NSs can enable notifications to be prioritised in such a way. 

• Message digests ~ Consumers may not wish to receive a single notification for 

every event that occurs in a system; they may instead wish for a single digest 

of all notifications sent over a certain period to be created for them by a NS 

(Fox et al., 2005). Such a service can be extended further to provide arbitrary 

transformations of messages, such as translating a notification from one format 

to another, or combining notifications from multiple publishers to remove any 

duplicate notifications. 

• Message Filtering ~ While a consumer registers an interest in notifications on 

a particular topic, they may not actually be interested in all of the messages on 

that topic. The NS may provide additional filtering, to restrict the notifications 

that the consumer receives to those that it is interested in (Banavar et al., 1999a; 

Carzaniga et al., 2000). 

Notification services can be used to publish notifications of many different events, such 

as changes to a database (Oinn, 2002) or stock prices. Recently, they have also been 

used in projects from the grid community, including the following examples: 

• myGrid (myGrid Project, 2003) is an e-Science project that aims to help biologists 

and bioinformaticians perform workflow-based in silico experiments, and automate 

the management of such workflows through personalisation, notification of change 

and publication of experiments (Moreau et al., 2003). The focus of myGrid is 

on increasingly data-intensive bioinformatics and the provision of a distributed 

environment that supports the in silico experimental process. This experimental 
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process is expressed as a workflow script, describing how services should be com

posed in order to realise the experiment desired by the scientist. As such workflows 

may take days or even weeks to complete, it is impractical to have a user agent 

on-line to monitor the status of their job. Instead, the myGrid notification service 

(MGNS) is used to forward messages to user agents when present, or to store and 

forward messages in their absence (Krishna et a1., 2003). 

• SERVO Grid (Donnellan et a1., 2004; ServoGRID Project, 2005) is a Grid system 

for earthquake modelling and simulations. One application is RDAHMM (Granat, 

2004), a time series data analysis program for mode change detection. In SER

VOGrid there are a number of geographically distributed GPS stations, which 

publish data continuously. This data is used by the RDAHMM application, as 

well as other applications including a database for permanent storage, and portal 

applications for human interaction. Since data is published by a number of sources 

and consumed by a number of applications, this is ideal for a notification service. 

The NaradaBrokering notification service (Pallickara and Fox, 2003) is used to de

liver notifications from the individual GPS stations to any applications that have 

expressed an interest in it. In turn, these applications may publish events based 

on the data from the GPS stations, which may be used through the notification 

service by other applications. 

2.4.1 Quality of Service in Notification Services 

Being able to request subscriptions to a particular set of notifications is sometimes not 

enough. As a notification service is generally asynchronous, there may be no explicit 

guarantees on how a service will be delivered. Service-oriented architectures are in

creasingly supporting Quality of Service (QoS) constraints to be set when a service is 

requested, and even when a service is discovered (Deora et al., 2004). Hence, a mech

anism must be present to enable a subscription to be requested with a specified set of 

Quality of Service (QoS) guarantees. Such QoS terms specify how a service is delivered 

(non-functional requirements) rather than details about the subscription itself (func

tional requirements), and may be used to indicate properties of the su bscri ption i tselL 

or of services that a notification service may provide on top of the subscription (such as 

notification digests or aggregation). To illustrate the range of QoS terms, the following 

are all possible: 

• Notification Frequency - The amount of time between notifications, for situations 

where the NS may store notifications to be delivered later. 

• Message Size - Whether a message should be compressed, or restricted to a 

certain size before sending an additional message. 
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• Notification Format - The format a message should be in. NSs are capable of 

translating from one format to another. 

• Reliability - Whether a guarantee is provided that a notification will be delivered. 

• Priority - The priority a message is sent with. Higher priority messages may be 

delivered before lower priority messages ahead of them in a queue. 

• Timeliness - The amount of time between an event occuring and a notification 

being sent. 

Every notification service we have examined supports QoS to some degree by allowing 

subscriptions to be requested with certain conditions. However, consumers and publish

ers may not always agree on what QoS conditions a service should be provided under. 

Current NSs provide no mechanism for resolving this. 

2.4.2 Distributed Notification Services 

As the scale of a deployment increases, so too does the load placed on the NS. As with 

any single service in a system, if load increases too much it can become a bottleneck, 

potentially restricting performance or availability of the entire system (Pallickara and 

Fox, 2001). Hence, in large-scale deployments, multiple instances of a NS are likely to 

be hosted at different locations (Krishna et al., 2003), with such distribution of NSs 

offering many benefits. As there is no longer a single NS responsible for the delivery 

of all notifications, the system scales better to handle larger numbers of publishers, 

consumers and messages. It also tolerates one or more NSs failing without bringing 

down the entire system, thus increasing the scalability and reliability of the system. 

Additionally, this can increase security in a system by allowing information on private 

topics to be published only to a local NS situated behind a firewall, while being able to 

use the same NS for global topics. 

Distributed NSs are networked, enabling them to propagate notifications between pub

lishers and consumers that are connected to different NSs. It is the responsibility of 

the NS to handle the routing of messages between publishers and subscribed consumers. 

Figure 2.5 shows a scenario where there are many consumers subscribing to notifica

tions being published by a single publisher. The consumers are distributed between 

many NSs, relying on their NS to deliver notifications. In a distributed NS, multiple 

publishers and consumers may be connected to different NSs, which in turn are con

nected to each other using any topology. A clear problem with a distributed NS sllch as 

this is how to optimise the number of notifications being sent between NSs (Pallickara 

and Fox, 2004a). For example, if a NS has ten consumers subscribing to notifications 

on the same topic, it is only necessary for the NS to receive a single copy of each noti

fication. A shared subscription is a subscription made between notification services in 
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order to receive notifications that will be redistributed between multiple consumers with 

similar interests. The process of redistributing notifications received on this subscription 

is sharing notifications. For multiple consumers to be able to use a single shared sub

scription, the two subscriptions from the consumer must be compatible, i.e. the same 

topic, and compatible QoS conditions. For example, if one QoS constraint is message 

format, consumers requesting different formats will not be able to share a subscription. 

p 

FIGURE 2.5: Consumers (c) connected through notification services (ns) to publishers 
(p) 

There are many existing implementations of notification services, in both commercial and 

research environments. Many of these support deployment in a distributed configuration, 

as discussed in this section. In Section 2.6, we discuss the approaches taken by some 

existing NSs to the problem of sharing notifications. 

2.5 Standardisation Efforts 

With many different implementations of messaging-based products, it is difficult for them 

to work together. A number of efforts have been undertaken to enable different solutions 

to work together: WS-Notification is a standard being developed to enable web services

based notification services to work together; WS-Eventing is a similar but competing 

standard; JMS, while not a standard, is an API which many other implementations 

of messaging products support, providing some common ground on which they call 

cooperate. We consider each in detail below. 

2.5.1 WS-Notification 

WS-Notification (Graham et al., 2004) is a family of specifications making up part of 

the Web Services Resource Framework (WSRF) (Czajkowski et al., 2004) defining a 

web services approach to notification using a topic-based publish/subscribe model. It is 

made up of WS-BaseNotification (OASIS, 2005a) and WS-BrokeredNotification (OASIS, 

2005b). WS-BaseNotification defines the basic roles necessary for publish/subscribe 

interactions - a N otificationProducer and N otificationConsumer. 



Chapter 2 Notification Services 18 

A NotificationConsumer defines an endpoint for receiving notifications from a Notifi

cationProducer. The WS-Notification standard defines two types of notifications that 

may be received ~ raw notifications and notify messages enriched with metadata. Raw 

notifications are intended to be used for an application-specific context, whereas notify 

messages provide additional information in a well-defined format, such as the topic of 

the notifications, and references to the subscription and producer. 

A NotificationProducer produces notifications to be delivered to a NotificationConsumer 

on a particular topic. The NotificationProducer is also responsible for handling subscrip

tion requests and maintaining a record of which subscriptions are in place. The Notifi

cationProducer handles NotificationConsumers subscribing to topics, but uses another 

entity, a SubscriptionManager to enable advanced subscription operations including un

subscribing, renewing, pausing and resuming a subscription. 

WS-BaseNotification only defines the entities required for basic publish/subscribe noti

fication, and makes no provision for a separate entity acting as a notification service ~ 

publishers and consumers must be directly connected instead. The specification of WS

BrokeredNotification enables support for distributed notification, primarily by defining 

a NotificationBroker, which is "an intermediary that allows publication of messages from 

entities that are not themselves service providers" (OASIS, 2005b). Essentially, it allows 

notifications to be sent from a NotificationProducer to a NotificationConsumer via any 

number of intermediaries, enabling advanced messaging features such as the publishing 

of notifications collected from multiple sources. As this specification is built to coexist 

with WS-BaseNotification, a NotificationBroker is both a NotificationProducer and a 

NotificationConsumer. Hence, as far as a NotificationConsumer is concerned, there is 

no difference between subscribing to notifications from a NotificationProducer and sub

scribing to notifications from a NotificationBroker. As WS-BrokeredNotification does 

not define what a NotificationBroker should do with a notification it receives, any num

ber of services can be provided. A basic service would simply to forward notifications 

unaltered, but more advanced features are also possible, such as on-demand publishing, 

logging of notifications and transformation of notification topics and content. 

Closely related to the WS-Notification family is WS-Topics (OASIS, 2004b), a standard 

for the hierarchical definition of topics for notifications. This allows NotificationCon

sumers to specify precisely which parts of a topic they are interested in. For example, a 

topic may be composed of several subtopics. If the NotificationConsumer is interested 

in enough of the subtopics individually, it can subscribe to the parent topic and receive 

notifications from all of the topics. Hierarchical topics also enable easier administration, 

for example administering security policies. WS-Topics is an XML format, defining top

ics as being unique within an XML namespace. A shared understanding of what each 

topic means is still required, such as an ontology (Gruber, 1993). 

It is worth noting that at the time of writing, both WS-BaseNotification and WS-
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BrokeredNotification have recently moved to the first public review stage, but WS-Topics 

is still in a draft form. 

2.5.2 WS-Eventing 

A similar but competing standard to WS-Notification is WS-Eventing (Box et al., 2004) 

produced by IBM, BEA Systems, Microsoft, Computer Associates, SUN Microsystems 

and TIBCO Software. Regarding the relationship between the competing protocols, the 

authors of WS-Eventing mention that WS-Eventing provides similar functionality to 

that of WS-BaseNotification. 

In WS-Eventing, subscribers register their interest with a web service called an event 

source which provides notifications, although there is no formal specification of topics. 

Notifications are only in the form of raw, application-specific messages, rather tha.n 

the metadata-enriched notify messages offered by WS-Notification. The subscription 

management interface of WS-Eventing is similar to WS-Notification described above, 

albeit with a lack of mechanism for defined topics. There is also no equivalent of a 

N otificationBroker. 

WS-Eventing does contain features missing from an earlier version of WS-Notification 

such as support for pull notifications (Pallickara and Fox, 2005), but as both standards 

are still in draft or review states, it is still unclear which one will become more widely 

used. However, WS-Notification appears to be the more complete specification that is 

closer to becoming a full standard. 

2.5.3 JMS 

First released in August 1998, the Java Message Service (JMS) (Hapner et al., 2002) 

is an API enabling applications to send and receive messages, and to interoperate with 

other JMS-compatible messaging products. The original intention of JMS was to enable 

Java programs to interoperate with other MOM systems, such as IBM's Webspherc 

MQ. JMS Providers are entities implementing JMS for a specific messaging product, 

and have been created for many popular MOM systems, enabling interaction between 

Java programs and a variety of MOM systems. 

JMS supports both point-to-point messaging (sending a message from one component 

to another) and the publish-subscribe subscription model. A MessageProducer object is 

used to publish messages on a particular topic, which are then received by MessageCon

sumers. Messages can be published and received asynchronously. The JMS API also 

provides for reliable message delivery, ensuring that every message is received exactly 

once. 
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2.5.4 Summary 

JMS is a mature API, with support in the form of JMS providers for many MOM sys

tems available today. However, with the increasing movement towards web services, 

specifications like WS-Notification and WS-Eventing are important for the use of mes

saging platforms from web services. Of these specifications, WS-Notification is the more 

complete, but still lacks some of the more advanced MOM features supported by JMS, 

such as reliable messaging (Humphrey et al., 2004). However, both specifications still 

provide a substantial specification for using MOM systems from web services. Reliable 

messaging is being implemented by two further specifications from the same groups as 

WS-Notification and WS-Eventing - WS-Reliability (Web Services Reliable Messaging 

TC, 2004) from OASIS and WS-ReliableMessaging (Bilorusets et al., 2005) from IBtI/I, 

Microsoft and other companies. 

2.6 Existing Notification Services 

There are many MOM platforms available today. Some of these are also notification 

services, of which there are also many examples, both from the commercial and research 

communities. We review existing notification services below. 

2.6.1 myGrid Notification Service 

The myGrid notification service (MGNS) is a messaging platform based on JMS, origi

nally intended to provide asynchronous notifications between grid services for myGrid. 

However, as grid services have become more aligned with web services, MGNS can 

provide messaging capabilities to any web service. MGNS is built on top of an existing 

JMS server (OpenJMS), to which it delegates the basic messaging functionality, enabling 

MGNS to concentrate on providing additional features, including dumble topics (where 

a consumer subscribing to a durable topic will receive all notifications ever published 011 

that topic, including those from before it subscribed) and virt'ual topics. 

MGNS supports deployment as a federated notification service, where multiple instancc:-; 

of MGNS each have a set of local topics (Krishna et al., 2004). These topics are thell 

registered with a topic registry (Miles et al., 2005), marking them as a member topic 

of a virtual topic. Each MGNS instance participating in the virtual topic subscribes to 

each of the member topics. Consumers then subscribe to the local topic at their MGNS 

instance, and receive all message published on the virtual topic at any of the instance:-;. 

Notifications are shared in this system when a MGNS instance in a virtual topic sub

scribes to a member topic on another instance. Every time a notification is published, (l 

single copy is sent between NS instances which is then shared between the consumers at 
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each instance. However, in this system, each MGNS instance in a virtual topic subscribes 

to every other instance, which could cause a scalability problem in a large deployment. 

However, the service supports subscriptions through intermediate instances, for example 

to facilitate connection through a firewall. 

2.6.2 NaradaBrokering 

NaradaBrokering3 (Pallickara and Fox, 2003) is a high-performance distributed brokering 

system, which provides support for centralised, distributed and peer-to-peer interactions. 

It is a JMS compatible system (Fox and Pallickara, 2002) supporting audio and video 

conferencing (Uyar et al., 2003), integrated performance monitoring and communication 

through firewalls. The main focus of the work on NaradaBrokering is efficiently handling 

the issues of scaling, load balancing and resilience. 

NaradaBrokering uses brokers, which are organised into clusters, in turn organised hier

achically. The brokers have a Broker Network Map (BNM), making each broker aware 

of the broker network layout enabling efficient routing of messages to different destina

tions. As the system is intended to support a large number of brokers, each broker does 

not need to know the topology of every other broker in the network, only an abstract 

view of the network that still enables them to calculate optimal paths. Changes to the 

broker network (brokers joining, leaving or moving) are only propagated to those brokers 

whose BNM would be affected. The process of computing destinations for each message 

is referred to as the matching of events, and a significant amount of work has gOlle 

into creating efficient matching algorithms for the system (Pallickara and Fox, 2004a). 

Notifications being passed between brokers can be shared between multiple subscrip

tions, since the matching algorithm determines consumer interest in a topic, and the 

notifications are also shared between the consumers by the matching algorithms. How

ever, NaradaBrokering enables its consumers and publishers to connect to any broker in 

the network, making it difficult to explicitly share subscriptions over a predefined route 

through the broker map. 

2.6.3 Other Notification Services 

Elvin (Segall and Arnold, 1997) is a notification serVIce developed at the University 

of Queensland. It supports federation of Elvin servers to enable the system to scale 

beyond the limits of a single server, with each server subscribing to the other servers 

in the federation. To reduce the amount of redundant data being transmitted, quench 

messages are sent when there are no subscriptions at a particular server. These messages 

contain updates to a list of filters which will catch notifications a server is not interested 

in (Segall et al., 2000). 

3http://www.naradabrokering.org/ 
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Gryphon4 from IBM is a broker network which was designed to enable the efficient 

distribution of notifications in a content-based subscription system, where arbitrary 

filters can be applied to content, as opposed to subject-based subscriptions where all 

data on a particular subject or topic is delivered. The problems identified with such a 

system are how to match an event to a large number of consumers, and how to multicast 

the events to the consumers within the network (Banavar et al., 1999a). In Gryphon, 

brokers use link matching to maintain partial lists of subscriptions at each broker. When 

a message is published, each broker partially matches events against the subscription 

list at each hop in the network. Shared subscriptions are used to only send a single 

message over each hop of the network, providing an efficient method of disseminating 

the message between multiple consumers. 

Siena5 is another distributed notification service based on the principles of IP multicast, 

and its objectives are to route notifications in one copy as far as possible, as close to 

the client as possible. As the consumers specify filters on the information they require, 

this information is replicated as close to the sources of notifications as possible, so that 

subscriptions can be shared (Carzaniga et al., 2000). 

The Object Management Group (OMG) has produced the CORBA Event Service (Ob

ject Management Group, 2004), which supports channels where a producer can create 

an event on that channel that will be received by any consumers listening on that chan

nel. This was extended by the creation of the CORBA Notification Service (Object 

Management Group, 2002), adding functionality in order to allow applications to send 

messages to objects in other applications without any knowledge of the receiving object's 

existence. The notification service uses an event channel so that a supplier can publish 

messages to any number of consumers, without knowledge of the consumers, or even 

whether there are any consumers, and provides event filtering and QoS capabilities. 

At the application level, the consumer of one channel can be a publisher for another 

channel, enabling an implementation of a distributed notification service similar to that 

used in MGNS. However, there is no explicit system-level support for the sharing of 

su bscri ptions. 

Commercial message queuing products such as IBM's Websphere MQ and Microsoft's 

MSMQ are primarily aimed at MQM applications rather than a subscription-based ap

proach to delivering notifications to multiple consumers. However, publish/subscribe 

interactions are supported in Websphere MQ (Perry et al., 2001), which facilitates pub

lish/subscribe operations in a distributed manner, enabling publishers and consumers to 

use different brokers and have notifications routed between them. Websphere MQ also 

supports persistent and reliable delivery of notifications. 

4http://www.research.ibm.com/distributedmessaging/gryphon.htmI 
5http://serl.cs.colorado.edu/ ~carzanig/siena/ 
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2.7 Summary 

In this chapter, we have pointed out that many current distributed systems, commonly 

based on web services technologies, can make use of a Message-Oriented Middleware 

platform in order to facilitate asynchronous communications between entities in such 

a system. In systems where notifications about a particular subject need to be dis

tributed to many consumers, a notification service using the publish/subscribe model 

of interactions is a suitable delivery mechanism. Notification Services can be used for 

publishing any event-based information, such as changes to the contents of a database, 

or notification that a real-world event has occurred. 

As the scale of a NS deployment is increased, distributed NSs become useful in order 

to solve such problems as load balancing, reliability and security. A distributed NS 

is a network of NSs interlinked so that consumers and consumers may be distributed 

throughout the network, publishing notifications to, and consuming notifications from, 

different instances of a NS. A distributed NS handles the routing of messages between 

publishers and consumers. When multiple consumers are subscribed to the same topic 

at the same NS instance, that instance may make a single shared subscription to receive 

the data from the publisher, sharing the notifications between its consumers. 

2.8 Discussion 

Notification Services enable consumers to request a desired Quality of Service from the 

NS, which can guarantee certain conditions about the delivery of notifications. How

ever, if all consumers are allowed to request any levels of QoS, it may be possible for 

a small number of consumers to overwhelm a service by requesting significantly high 

QoS conditions. As differences may exist between the preferences of a consumer and a 

publisher over QoS levels, a mechanism of finding a compromise between the two dif

ferent preferences is required. Negotiation of QoS conditions is already used in other 

fields such as distributed real-time systems to specify requirements for resources (Li and 

Ravindran, 2004), and in multimedia systems for resource reservation (Rothermel et al., 

1997). Hence we see negotiation as a suitable mechanism for resolving differences in the 

preferences of consumers and publishers, but no existing NSs support negotiation for 

this purpose. 

In a distributed notification service, when many consumers at a particular notification 

service subscribe to notifications on the same topic with similar levels of QoS, the notifi

cation service can share the subscription between multiple consumers. However, if these 

levels of QoS are significantly different, it may be impossible to share the subscriptions. 

In this case, extra copies of notifications may be unnecessarily transmitted between the 

notification services. Negotiation could be used here to persuade additional consumers 
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to request QoS levels compatible with the existing subscriptions that are held. 

In the next chapter we will discuss negotiation, and review different negotiation models 

to find one suitable for use in this context of a notification service. A suitable model 

for negotiation would enable the developers of a notification service to support negoti

ation over QoS levels without needing to be knowledgeable in negotiation techniques, 

and without causing significant modification to the interaction patterns used by the 

notification service. 



Chapter 3 

Automated Negotiation 

In a notification service where consumers are allowed to request levels of quality of 

service (QoS) when they subscribe to a particular topic, there can often be a difference 

between the levels of QoS a service provider is willing to provide, and the levels the 

consumer would like to receive. Automated negotiation can be a solution to resolving 

these differences and producing a compromise between the two, enabling the consumer 

to still receive an acceptable level of QoS while the service provider is not overloaded by 

providing services of a quality that is difficult to maintain for many consumers. In this 

chapter we review automated negotiation. 

3.1 Introduction 

Recent trends in computing have seen computer systems consisting of many different 

components distributed across networks (such as grid systems (Foster and Tuecke, 2001)) 

and agent-based systems (Jennings, 2000)) and working together to accomplish their 

goals. As much of the work on automated negotiation comes from the field of agent

based computing, we choose to adopt a view of agent-based systems for the purpose of 

explanation, in which an agent has the following characterisation (Wooldridge, 1997): 

"an agent is an encapsulated computer system that is situated in some envi

ronment and that is capable of flexible, autonomous action in that environ

ment in order to meet its design objectives" 

An agent's goal may be comprised of subgoals or tasks that it is not capable of achieving 

itself, instead requiring the use of a service provided by another agent. Alternatively it 

may be capable of achieving the subgoals itself, but less efficiently or at a higher cost 

than by using another agent. To enable the goals to be achieved efficiently, the agents 

need to be able to interact in order to co-ordinate achievement of the shared task. 

25 
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Negotiation is the process by which two or more parties communicate in order to reach 

a mutually acceptable agreement on a particular matter (Jennings et al., 2000). It can 

be described as a joint search over a problem space with the goal of reaching a consensus 

(Guttman and Maes, 1998). Negotiation is key to managing the interactions between 

autonomous agents because, by definition, autonomous agents will do what they want 

to do. For one agent to obtain a service from another, it must first convince the agent 

providing the service to cooperate on the task. In its simplest form, negotiation involves 

asking for a service, and receiving a positive or negative response. Negotiation may 

also include iterating sequences of offers and counter-offers, and rewards or payment for 

the item under negotiation. After a successful negotiation, a mutually acceptable set of 

conditions for the supply of an item or service will have been reached. 

In the context of a notification service, where participants can request a subscription 

to notifications on a particular topic with constraints specified on various QoS issues, 

the negotiation item represents the subscription to notifications on a specific topic. 

The issues under negotiation represent various QoS conditions, such as the frequency of 

notifications, the granularity of the information contained in the notifications, the length 

of the subscription and the price paid for the subscription. In general, a publisher and 

a consumer will tend to have conflicting preferences over many of these conditions. 

For example, a consumer may wish to have frequent notifications of an event, and 

may wish to receive these notifications without paying too much for them. However, a 

busy publisher may wish to limit the frequency that notifications are sent out in order 

to reduce its load, and may additionally like to receive a payment for the services it 

provides. Hence, negotiation can be used to find a mutually acceptable set of conditions 

under which a subscription to notifications may be delivered. 

In this chapter we review existing work on automated negotiation. To give this COll

text, we first discuss different mechanisms for negotiation between humans or agents in 

Section 3.2. In Section 3.3 we discuss the different approaches taken to automated ne

gotiation. For the use of automated negotiation to become more widespread, standards 

for negotiating and the formation of agreements are required, as discussed in Section 

3.4. Additional related work is discussed in Section 3.5, before summarising in Section 

3.6 and discussing how this relates to our aims in Section 3.7. 

3.2 Negotiation Mechanisms 

Negotiations occur for one party to obtain a negotiation item, which could be an object 

or a service, from another. While trying to obtain this item, various negotiation issues 

are proposed - attributes about the item or the constraints on its delivery, over which 

participants usually have conflicting preferences. Preferences define the desired outcome 

of the negotiation for each participant. 
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There are many mechanisms by which negotiation can take place, which can be equally 

applied to autonomous agents as they can to human interactions, though we use the term 

agent in the descriptions of each. In order to summarise the different types of negotiation, 

a distinction can be drawn based on the number of participants in a negotiation. Three 

different groups of negotiation techniques are produced using this classification: one-to

one, one-to-many and many-to-many techniques. 

3.2.1 One-to-one Negotiations 

In a one-to-one negotiation, a single agent attempts to obtain an item from another single 

agent. Both agents may have conflicting preferences over the conditions under which 

they would like the transaction to take place, so a mutually acceptable set of conditions 

must be found before a deal can be reached. Bilateral negotiation (negotiation between 

two agents) mainly takes the form of bargaining: a situation in which individuals have the 

possibility of concluding a mutually beneficial agreement, there is a conflict of interests 

over which agreement to conclude, and no agreement may be imposed on any individual 

without their approval (Osborne and Rubinstein, 1990). 

Essentially, bargaining consists of making alternating offers, or proposals, (i.e. poten

tial agreements) containing values for each of the issues in a negotiation (Larson and 

Sandholm, 2002). Behaviour of a participant upon receipt of a proposEd varies with 

different negotiation mechanisms, but has the basic requirement of accepting or reject

ing the proposal. Rather than rejecting a proposal outright, a common behaviour is to 

offer a counter-proposal in return, allowing concessions to be made by both parties in 

a negotiation, hopefully speeding up the process of finding a mutually acceptable con

dition under which an agreement may be formed. Bargaining enables multi-attribute 

negotiation (such as over price, delivery time, etc.), rather than negotiation over a single 

attribute, a typical property of auctions (described in Section 3.2.2). 

An extension to the model of bargaining is argumentation-based negotiation (ABN) 

(Rahwan et al., 2004; Kraus et al., 1998). In ABN, participants can exchange additional 

information with a proposal in order to argue, justifying their negotiation stance, or 

attempting to persuade their opponent to change his negotiation stance. Jennings et al. 

(1998) use the analogy of negotiation as a search through a multi-dimensional space of 

potential solutions, where the number of issues in the negotiation controls the number of 

dimensions of the space. Negotiation is thus a distributed search through this space of 

solutions, attempting to find a solution considered by all participants to be acceptable. 

The minimum capabilities needed to negotiate are the abilities to propose some part of 

the agreement space as being acceptable, and the ability to respond to such a proposal 

indicating whether it is acceptable or not. A proposal (as defined above) marks a single 

point in the solution space, rather than a region, and if agents can only accept or reject 

these proposals, negotiation is very time consuming. However, if counter-proposals are 
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offered, the recipient of a counter-proposal can attempt to infer the preferences of its 

opponent from the change between the proposal and counter-proposal. In ABN, meta

data sent with a proposal rejection or a counter-proposal offers a critique of why the 

proposal was not acceptable, indicating to the recipient of the critique which regions of 

the agreement space are acceptable. 

While an opponent may try to influence his opponent's negotiation stance by suggesting 

that they change the values they consider acceptable, ABN also allows dynamic mod

ification of the set of issues under negotiation - for example, when negotiating over 

the purchase of a new car, the dealer may choose to fit a car alarm free of charge as 

an incentive to make the customer agree on a price. This may not have been an issue 

earlier in the negotiation, but the inclusion of the additional issue can make forming 

an agreement easier. ABN represents a significant ongoing research effort (Sierra et al., 

1997b; Parsons and McBurney, 2003; Amgoud and Maudet, 2002; Karunatillake and 

Jennings, 2004). 

3.2.2 One-to-many Negotiations 

In a one-to-many negotiation, a single agent attempts either to obtain or make available 

a service or product to one of a number of agents. The most common type of one-to

many negotiation is an auction, defined as a bidding mechanism, described by a set of 

auction rules that specify how the winner is determined and how much he has to pay 

(Wolfstetter, 1994). Auctions have become commonplace on the Internet, with sites such 

as eBayl being used for thousands of items daily, and provide a mechanism of selling 

an item to a bidder who values it the most (i.e. who bids the most). There are several 

different types of auction, but a big distinction lies between single-sided and double

sided auctions. Single-sided auctions are those in which a single seller accepts bids 

from multiple buyers, whereas in double-sided auctions, multiple buyers and multiple 

sellers submit bids at the same time. Double-sided auctions are actually many-to-many 

negotiations and are discussed in Section 3.2.3. Although many different types of single

sided auctions have been created, there are four main types (Klemperer, 1999), described 

below: 

• English Auction (Ascending bid) 

In an English auction, a starting bid is offered by the auctioneer. Buyers then place 

a bid on the item. An unlimited number of bids can be made, with the restriction 

that each new bid must exceed the current high bid by a specified amount. When 

no more bids are received, the item under auction is sold to the current high bidder 

at the final price. 

Ihttp://www.ebay.com/ 
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• Dutch Auction (Descending bid) 

Dutch auctions are the opposite of English auctions: an auctioneer starts with an 

initial high offer, and calls out decreasing offers. The first bidder to accept the 

offer made by the auctioneer wins the item. 

• First price, Sealed bid 

In a first price, sealed bid auction, each bidder submits a single bid privately, so 

the other bidders do not see it. The auctioneer then sells the item to the highest 

bidder. 

• Vickrey auction (Second price, Sealed bid) 

A Vickrey auction is similar to first price, sealed bid, with the difference that the 

item is sold to the highest bidder, but for the price bid by the second-highest bidder. 

This minimises the effect of winner's curse, where the winner in an auction often 

ends up overpaying for the item they have won. The Vickrey auction encourages 

bidders to bid their true estimation of the item's value. 

Variations on English auctions are often used for an online auctions (Anthony, 2003), 

typically to increase the flexibility of the auction. In an auction, participants gather 

in one room, and the auction lasts a few minutes, requiring quick decisions. Online 

auctions can run for days, with people able to participate remotely. 

3.2.3 Many-to-many Negotiations 

In many-to-many negotiations, several buyers and sellers submit bids for an item si

multaneously. An example of this type of negotiation is a Continuous Double Auction 

(CDA) (Friedman and Rust, 1993). In a CDA, many buyers and sellers continuously 

submit bids to buy and sell items, and bids are matched between buyers and sellers con

tinuously throughout the period of the auction. Trades occur without terminating the 

negotiation, as opposed to auctions in which the formation of an agreement terminates 

the negotiation. CDAs are widely used in the trading of stocks and commodities, such 

as shares in the New York stock exchange (Friedman, 1993). 

3.2.4 Summary 

Many different mechanisms for negotiation have been proposed, and we have presented 

a summary of some of these mechanisms above. The context we are examining is a 

notification service, where consumers subscribe to notifications on a particular topic 

while negotiating over QoS constraints. While in a distributed system there may be 

many potential service providers which could be used, often in scientific fields such as 
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bioinformatics, scientists may have varying levels of trust in different service providers, 

and therefore dictate themselves which one should be used. Hence, we consider the 

process of selecting partners to be separate from that of negotiating with them, which 

is a one-to-one interaction between a consumer and a publisher. Each party holds 

conflicting preferences over the constraints associated with the subscription. Bargaining 

and ABN both allow a consumer and a publisher to agree on a set of mutually acceptable 

constraints over which a subscription will be formed. Bargaining enables the two parties 

to exchange proposals in order to find this set of constraints, and ABN also allows 

arguments to be used to strengthen or change a party's stance within the negotiation. 

3.3 Approaches to Automated Negotiation 

As described in the preVIOUS section, there are many different types of negotiation. 

For two or more autonomous agents to use negotiation to cooperate on some activity, 

automated negotiation is required. Research in automated negotiation is concerned with 

enabling autonomous agents or entities to negotiate with each other with no human 

input. Automated negotiation can be split into two main topics: negotiation protocols 

and strategies. 

Negotiation protocols describe the set of rules governing a particular type of interaction 

(Rosenschein and Zlotkin, 1994; Jennings et al., 2001). In an automated negotiation, 

a negotiation protocol defines the negotiation mechanism that will be used, and how a 

participant can act in the negotiation. This covers the types of participants allowed, 

the valid negotiation states, and the actions that may be taken by the participants in 

each state, such as which messages can be sent by each party. Specifying a negotiation 

protocol enables a participant to act within the rules of a negotiation, but does not 

specify how it should behave within these conditions. 

A negotiation strategy defines how a participant may act in a negotiation, within the 

rules specified by the protocol. While any action that complies with the protocol is 

permitted, there are many possible courses of action that would lead to a poor result. 

For example, it is normally assumed that an agent participating in a negotiation is 

rational ~ it will always act to try and increase the benefit to itself, or to the system 

as a whole. It is therefore irrational for an agent trying to purchase an item for the best 

price to propose a price significantly over its valuation of the item as an opening offer. 

However, it is still valid to do so according to the negotiation protocol. The negotiation 

strategy of an agent is referred to as its decision-making model in Jennings et al. (2001), 

and is defined as the decision making apparatus the participants employ in order to act 

in line with the negotiation protocol in order to achieve their objectives. We adopt this 

definition for the rest of this work. 

It should be noted that different approaches to automated negotiation put varying de-
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grees of emphasis on both the protocol and the strategy. As an example, consider a 

Vickrey auction (discussed in Section 3.2.2). Vickrey auctions have a dominant strategy 

(a strategy that always yields a better payoff than any other strategies, regardless of 

the behaviour of opponents): an agent should always bid what it considers the item to 

be worth. Following this strategy will always lead to the optimal outcome, hence there 

is no reason for a rational agent to deviate from it. Under this assumption, it may be 

possible to specify this behaviour as part of a negotiation protocol. In other situations, 

the negotiation strategy is considerably more important. For example, when an agent 

bids in multiple auctions of different types simultaneously, a good negotiation strategy is 

required to maximise the chances of acquiring all of the desired items (He and Jennings, 

2004; Sierra et al., 1997a). 

In addition to the above, automated negotiation requires an understanding of various 

concepts to be shared between the participants in the negotiation. In particular, every 

participant should have a shared understanding of what the negotiation item (the object 

or service they are negotiating over) is, and the different issues (attributes of the item 

that are under negotiation). For example, when negotiating with a notification service 

for the provision of notifications, a subscription to notifications on a requested topic is 

the item under negotiation, and the issues represent the QoS aspects of the subscription 

being negotiated over, such as the frequency of notifications, granularity of information 

or the price paid for the subscription. All participants should have the same definition 

of frequency of notifications and the requested topic, otherwise the client may obtaill 

something that it was not expecting. An ontology is a specification of a concept (Gru

ber, 1993), and enables the participants to share a common definition of the concepts 

involved. 

3.3.1 Game-theoretic Approaches 

Game theory (Osborne and Rubinstein, 1994) is a branch of economics concerned with 

interactions between self-interested agents, based on work described in von Neumann and 

Morgenstern (1953). It was originally aimed at the interactions between self-interested 

people, but is equally applicable to interactions between autonomous agents, as rational 

agents try to maximise the expected utility of any outcome (Simon, 1955), making them 

self-interested. 

Essentially, game theory is concerned with an agent selecting the best or most rational 

strategy out of all possible strategies, taking many factors into account including, but 

not limited to, the behaviour of other agents in the negotiation, its own preferences 

and its estimate of private valuations held by its opponents. However, the space of 

possible strategies is extremely large, and searching this space is often computationally 

intractable. Classical game-theoretic approaches have been based on the assumption of 

unbounded computational resources being used to search this large problem space (Dash 
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et al., 2003), but this assumption rarely holds, as negotiations must often be completed 

before a deadline, or may be performed by a device with limited computational power. 

Game-theoretic models have some disadvantages making them hard to apply to some 

fields. They rely on the assumption that it is possible to characterise an agent's pref

erences over a set of possible outcomes, which is often a difficult task, especially with 

multiple negotiation issues, as an agent's preferences may be based on private values, 

or may change over time as a negotiation progresses (Jennings et al., 2001). As such, 

game-theoretic models are more suited to negotiations where preferences are obvious, 

rather than more complex multi-attribute negotiation. Game theory tends to produce 

highly specialised models tailored to a specific negotiation mechanism - it is difficult to 

generalise the decision-making process. Such models often assume that all participants 

in a negotiation are completely rational, fully informed and have access to large amounts 

of computational power. Unfortunately, this is rarely the case - there are often restric

tions on the resources available, and agents are not fully aware of their environment and 

opponents. 

3.3.2 Heuristic-based Approaches 

Game-theoretic approaches to automated negotiation aim to produce optimal solutions 

by searching the entire space of solutions. As this is both computationally hard and 

sometimes impossible due to incomplete awareness of the participants, an alternative is 

a heuristic-based approach. With such an approach, the aim is to find a good solution 

rather than the optimal solution. The methods of generating these solutions may be 

approximations based on game-theoretic approaches, or on more informal negotiation 

models (e.g. Raiffa (1982)). Heuristics allow the assumptions about access to resources 

and knowledge of the domain to be relaxed (Rahwan et al., 2004). For example, it is 

not always possible to fully model an opponent, or to consider the full space of possible 

outcomes. Heuristic-based approaches are based on realistic assumptions, rather than 

by searching for a fully-optimal solution. This makes them suitable for a wider range 

of domains, where the negotiating agent does not need to know the intricacies of the 

domain in which it is negotiating. This also makes it possible to use a heuristic-based 

approach to develop a reusable negotiation component which can be used in different 

domains without needing to be given additional information about its domain. Hence 

a heuristic-based approach is an ideal solution to automated negotiation for a system 

whose domain has not been fully defined. 

However, heuristic-based approaches do suffer from some disadvantages. Due to their 

simplified model in comparison with a game-theoretic approach, they do not examine the 

entire space of potential solutions and may find an outcome that is sub-optimal (Jenning~ 

et al., 2001). Additionally, it is difficult to predict how such systems will behave, so they 

need extensive evaluation in order to determine whether the outcome will be satisfactory. 
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Two examples of heuristic-based approaches to automated negotiation are given below. 

Faratin (2000) describes a bilateral negotiation model called Negotiation Decision Func

tions (NDF) using a heuristic-based approach. NDF clearly defines a negotiation proto

col, specifying the rules of the negotiations. The strategies used are separate, allowing 

this to be varied independently of the protocol, and are based on combinations of func

tions called tactics that generate a value for one issue in the negotiation based on a 

single criteria. For example, time-dependent tactics use the amount of time remaining 

before the deadline to control their rate of concession. Resource-dependent tactics use 

the amount of a particular resource remaining to control their concession. Using these 

functions it is possible to create a negotiation strategy that can work in multiple do

mains without knowledge of the domain. Domain-specific information such as resource 

levels can be supplied by an external party, but negotiations are possible without such 

knowledge. Proposal evaluation is handled by utility functions, returning a value for an 

issue based on an agent's preferences. Utility is a measure of how good an agent con

siders a particular outcome. Utility functions control an agent's valuation of proposals, 

and can be implemented as simple linear functions or complex functions taking multiple 

factors into account. 

Barbuceanu and Lo (2000) describe another example of a heuristic-based approach to 

automated negotiation, which finds the pareto-optimal solution for a negotiation (a 

solution for which it is impossible for one party to increase their utility without a corre

sponding decrease in their opponent's utility). This is done by generating every possible 

solution using all possible values for each issue, then evaluating each proposal and rank

ing them in order of utility. The best solution is then proposed to the opponent. If this is 

rejected, the opponent repeats the process, trimming the set of potential solutions after 

taking into account the received proposal. Using this approach it is always possible to 

find a solution that is optimal for both agents. However, this is an exhaustive process 

and, for multiple issues, requires a very large number of proposals to be exchanged. It 

is a computationally- and time-intensive solution. Optimisations have been suggested 

for this approach, including using probabilistic modelling to identify proposals likely 

to be accepted, although this comes with the risk of sacrificing the ability to find the 

pareto-optimal solution. 

3.3.3 Argumentation-based Negotiation 

Argumentation-based negotiation was introduced earlier in Section 3.2.1 as a negotia

tion mechanism for an agent to provide feedback justifying its negotiation stance or to 

attempt to influence the stance of its opponent. To enable automated ABN, negotiation 

protocols are required allowing this meta-information to be passed alongside proposals 

and counter-proposals. Sierra et al. (1997a) describe the augmentation of an existing ne

gotiation protocol with the ability to pass this information, while McBurney and Parsons 
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(2004) describe an argumentation protocol to be used with other protocols. Jennings 

et al. (2001) makes the point that the transmission of this information can be seen 

as moving from a negotiation protocol into an argumentation protocol (e.g. Amgoud 

et al. (2000)), and then back again to the negotiation protocol when the argumentation 

dialogue terminates. 

The reasoning of agents employing ABN techniques can include models based on beliefs, 

desires and intentions, such as shown in Parsons et al. (1998). A detailed review of ABN 

frameworks and systems is given in Rahwan et al. (2004). 

3.4 Standardisation Efforts and Automated Negotiation 

Although there have been many different efforts to produce automated negotiation 

frameworks (Bartolini et al., 2005; Faratin, 2000), these frameworks are typically sepa

rate from and unrelated to each other and unable to interoperate with each other. To 

facilitate the wider uptake of automated negotiation techniques, standards are required 

to define the protocols and interactions with which to negotiate. Any new work aimed at 

a field such as web services should be aware of relevant standards. Two major standards 

in this area are WS-Agreement and FIPA, which we describe below. 

3.4.1 WS-Agreement 

WS-Agreement (Andrieux et al., 2004) is the Global Grid Forum's (GGF) standardisa

tion effort, comprising an XML-based protocol for the representation of agreements, an 

interaction protocol for establishing these agreements, and an interface for monitoring 

agreements already in place. WS-Agreement has arisen due to the frequent requirement 

in distributed service-oriented environments for a consumer to be able to request a ser

vice with a guaranteed QoS from a service provider, and for a mechanism to monitor 

compliance with guaranteed QoS levels to be available. 

In WS-Agreement, an agreement between a service consumer and a service provider 

specifies one or more service-level objectives as expressions of requirements on the part 

of the consumer, and as an assurance about the availability of resources on the part of 

the service provider. Agreements include information about the service definition, as 

service objectives are often related to the definition of the service. Agreements are made 

up of the following information: service definition terms; guarantee terms specifying 

service level objectives; and an agreement context comprising information about the 

agreement parties and any relevant prior agreements. 

WS-Agreement has been aimed at forming agreements m service-oriented distributed 

systems, such as job submission of computing jobs, or establishment of a set of QoS 
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terms for access to a particular service. As such, the protocol also supports the moni

toring of agreement compliance. However, WS-Agreement makes no assumptions about 

the methods by which agreements are formed - it is independent of any negotiation 

mechanism. 

Although WS-Agreement is still in draft, Ludwig et al. (2004) present an implementation 

of a WS-Agreement based architecture for creating and monitoring agreements for a 

service-oriented system, specifying the interface for domain-specific components such as 

system monitors. 

3.4.2 FIPA 

As negotiation is a form of interaction between involved agents, any negotiation frame

work requires a language with which to communicate. As most automated negotiation 

research is agent-based, an Agent Communication Language (ACL) is a suitable basis 

for a negotiation interaction protocol. The two major ACLs are FIPA ACL and KQML 

(Labrou et al., 1999). 

The Foundation for Intelligent Physical Agents2 (FIPA) is an organisation aimed at 

producing standards for the interoperation of heterogenous software agents. At the time 

of writing, FIPA had defined over 90 specifications. Of these, there are many interaction 

protocols which can be used to enable negotiation between autonomous agents, specified 

in the FIPA Agent Communication Language (FIPA, 1998). 

The FIPA specifications are limited to the interaction protocols - they do not impose 

any restrictions on the strategies employed within these interactions. For example, in 

an English auction, the interaction protocol specifies that a bidder in an auction should 

propose an amount, and the auctioneer will either accept or reject that proposal. It 

imposes no requirement that the bid must be higher than the current highest bid, one of 

the main rules of an English auction. Thus, any system designed to use one of the FIPA 

negotiation protocols is designed to use a predetermined negotiation mechanism. FIPA 

interaction protocols are defined for many different types of negotiation including, but 

not limited to, English auctions, Dutch auctions and proposals in bilateral negotiations. 

3.5 Other Related Work 

Bartolini et al. (2005) highlight that current efforts for the standardisation of negotia

tion impose restrictions on the types of negotiation supported, or the knowledge of a 

negotiation protocol that is required. They propose an approach requiring all aspects 

of a negotiation mechanism to be formally specified and explicit, and focus on the full, 

2http://www.fipa.org/ 
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formal specification of negotiation protocols. Whereas some negotiation protocols such 

as WS-Agreement (Andrieux et al., 2004) specify the interaction protocol between par

ties involved in a negotiation, Bartolini et. al. stresses the need for additional protocol 

information, for example constraints on the amount by which a bid must increase, to 

be included in the specification. Without this information, the choice of a negotiation 

mechanism becomes implicit when a system is designed. By formally specifying all of 

the rules about a negotiation mechanism, it becomes possible to design a system that 

can support multiple negotiation mechanisms, and not be tied to anyone in particular, 

potentially enabling trade and interactions with a wider range of consumers or service 

providers. A key part of creating the software framework for automated negotiation is 

the presentation of an abstract view of a negotiation process, taken from an analysis of 

many different negotiation mechanisms, both automated and human. In this abstract 

view of negotiation, a negotiation host facilitates the negotiation by providing commu

nication mechanisms, using the analogy of a blackboard with controls over write access 

and visibility. Participants in a negotiation require admission, involving checking of 

credentials and the presentation of the rules for that negotiation. A negotiation tem

plate is shared between the participants, describing the conditions of the negotiation. 

During the course of the negotiation, the participants exchange proposals, expressing 

constraints over some or all of the conditions specified in the negotiation template. 

These proposals are sent to the negotiation host, which checks that they comply with 

the rules of the negotiation. Agreement formation rules are used to convert proposals 

into agreements when certain conditions are satisfied, and termination rules describe the 

conditions which will cause a negotiation to end. This abstract process is then extended 

to give a taxonomy of rules for negotiation, specified using the FIPA ACL (FIPA, 1998), 

which form part of an implementation of a software framework. 

Cremona (Ludwig et al., 2004) is an architecture for the creation and monitoring of 

agreements based on WS-Agreement. Although this is more concerned with the estab

lishment and monitoring of agreements than arriving at an agreement using negotiation, 

the application here is similar to our intention of negotiating over QoS conditions prior 

to the subscription to a notification service. RFC 1782 (Malkin and Harkin, 1995) de

scribes a simple extension to the Trivial File Transfer Protocol (TFTP) in which options 

can be negotiated prior to a file transfer. 

Tu et al. (1998) describe a way of dynamically adding negotiation abilities to an agent 

at run time using a pluggable architecture, sharing the negotiation capabilities between 

communication modules, protocol modules and strategy modules. This enables a pro

gram to load components enabling negotiation at runtime, determining the need for 

them dynamically. 
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3.6 Summary 

Negotiation among computer programs and agents is an established field, and as such 

is supported by a wealth of literature. There are already different mechanisms for 

negotiation, whether one-to-one, one-to-many or many-to-many. 

With the increasing popularity of distributed computer systems, such as those using 

the Grid and multi-agent systems, automated negotiation has become a real need to 

facilitate the cooperation and interactions of two or more autonomous systems, and to 

find a compromise when two parties have conflicting beliefs about the constraints of a 

service delivery. In this chapter, we have presented different approaches taken to tackling 

the area of automated negotiation. 

3.7 Discussion 

In a notification service where a consumer can request a particular level of QoS, auto

mated negotiation would enable differences between the preferences about the level of 

QoS to be provided between the consumer and the service provider to be resolved. For 

use in a distributed system, any negotiation mechanism has to be able to work within 

computational and time constraints, in order that the addition of negotiation abilities 

does not prove detrimental to the primary function of the system (providing notifications 

in the context of a notification service). 

Game-theoretic approaches typically assume access to large amounts of computational 

power, and that it is possible to characterise the preferences of an agent and its opponent. 

They also assume prior knowledge of the domain in which they are negotiating, and while 

it is possible to define some potential QoS conditions that can be negotiated, this would 

be insufficient for an architecture enabling service providers to offer QoS conditions that 

are unknown to the negotiation model. Hence, game-theoretic approaches are unsuitable 

for QoS negotiation in a distributed system. 

Heuristic-based approaches can be used to negotiate in a domain of which the nego

tiating agent has no prior knowledge. It also imposes a low computational burden. 

Argumentation-based approaches tend to use strategies based on prior knowledge of the 

domain, although they can negotiate more efficiently than heuristic-based approaches 

due to being able to justify their stance to their opponent. Both approaches are valid 

for use with our proposed architecture, but as heuristic-based approaches more suited 

to unknown domains, they are the most appropriate choice. Due to similarities in the 

protocols used for ABN and heuristic-based approaches, we also argue that a design 

using a heuristic approach would not preclude the use of ABN in the future. 

A generic automated negotiation framework was discussed in Bartolini et al. (2005) III 
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which many different negotiation mechanisms could be supported, but the implementa

tion is based on a centralised negotiation host, which controls the negotiation process. 

One of the goals of a distributed notification service is to improve the scalability and 

reliability of a system, and relying on a central host for negotiation would contradict 

this aim. However, we recognise that this approach has the advantage that it can sup

port additional negotiation protocols that were not considered at design time. The aim 

of negotiating over QoS in a notification service is to reduce load placed on a service 

provider while enabling clients to receive a high QoS. Thus, any negotiation solution 

should not place too much load on the service provider, otherwise it would negate the 

benefit of using negotiation in the first place. Although the model used in Barbuceanu 

and Lo (2000) always finds a solution that is optimal for both participants, it assumes 

an unlimited amount of computational power and time to do so. For this reason, it 

is unsuitable for such a use. The model in Faratin (2000) uses predefined negotiation 

strategies, some of which need no knowledge of the domain they are operating in. Hence, 

negotiations can be constrained to finishing within a certain time, which is a useful prop

erty when trying to set up a subscription for a time-critical task in a notification service. 

Using this model, the notification service or service provider would be able to influence 

negotiation process without getting involved in the details of negotiation, for example 

by supplying current resource levels. This model is thus well suited to use as the basis 

for enabling negotiation over QoS in a notification service, and we will further develop 

this in Chapter 4. 

The current standardisation efforts of the Global Grid Forum in the form of the WS

Agreement standard are an important move towards enabling negotiation between a 

wider range of different systems. It is important that any model of negotiation being 

designed for use with web services or grid systems be aware of any relevant standards 

in the area. As WS-Agreement does not specify anything about the process of making 

agreements, it is not relevant to the actual process of negotiation. However, it could 

be used as the format for exchanging agreements and proposals. The concepts in NDF, 

which was created before the existence of WS-Agreement, are compatible with the con

cepts in WS-Agreement. We believe that it is possible to add WS-Agreement compliance 

into a system built on NDF once the specification of WS-Agreement is finalised. 

Although we have determined that NDF is a suitable basis for negotiating over QoS, it 

does not provide the features we require in order to support negotiation with intermedi

aries, in order that a distributed notification service can make use of shared subscriptions 

from pre-existing negotiations. If multiple consumers at a notification service request 

subscriptions to the same topic, the notification service can recognise this and share a 

subscription for all of them. However, if the consumers have requested different QoS 

levels from each other, this may not be possible. A solution is required where the negoti

ation process not only takes into account the preferences of the client and supplier in the 

negotiation, but also any existing commitments held by intermediaries between them. 
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These intermediaries could offer to satisfy the client's request without any further inter

vention from the supplier, reselling or redistributing the item already being received. No 

existing models of negotiation support this pattern of negotiation. Hence we propose 

chained negotiation as a model supporting the redistribution or reselling of items or 

services obtained previously for other clients. In a distributed notification service, this 

will enable subscriptions to notifications to be shared between multiple consumers. We 

discuss this further in Chapter 5. 



Chapter 4 

Direct Negotiation Engine 

In Chapter 3 we introduced the concept of negotiation, and discussed existing work 

in the field of negotiation. In this chapter, we introduce a direct negotiation engine: a 

component that can automatically negotiate over a set of conditions on behalf of another 

system (the host), with minimal interaction required from the host. 

4.1 Introduction 

Negotiation is the process by which two or more parties attempt to reach a mutually 

acceptable set of terms over which an item or a service should be exchanged. It can enable 

differences in preferences about how a service is delivered to be resolved. However, since 

negotiation can be a complicated process, it is desirable for the negotiation behaviour 

to be encapsulated in a reusable component, allowing negotiation to be supported by 

many different applications in a standard manner without those applications needing 

to be aware of how to negotiate. We have designed DiNE, a direct negotiation engine 

based on bilateral negotiation which enables external services to support negotiation. 

DiNE is intended for use in a notification service, where consumers subscribe to a pub

lisher to receive notifications on a particular topic, while being able to specify some 

Quality of Service constraints and have DiNE automatically resolve differences in the 

requirements of the publisher and consumer. 

The novel contributions presented in this chapter consist of: an empirical evaluation 

of a heuristic-based automated negotiation model showing behaviour not previously 

demonstrated, giving us a better understanding of the model; and a demonstration of 

the suitability of the negotiation model for resolving differences between QoS preferences 

in a notification service. While existing notification services allow consumers to specify 

QoS conditions with a subscription, they do not allow differences in the preferences of 

a service provider and consumer to be resolved. 

40 
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Later in this thesis we will extend this contribution to include intermediaries in a ne

gotiation (Chapter 5) and to integrate this work with a distributed notification service, 

enabling service providers to automatically negotiate over QoS with consumers, and 

allowing distributed notification services to share subscriptions to the service provider, 

further increasing the number of consumers that can be satisfied without overloading 

the service provider. 

The rest of this chapter is organised as follows: In Section 4.2, we present the design of 

DiNE, our direct negotiation engine, giving a detailed description of the protocols and 

strategies employed. We then evaluate the behaviour and performance of our negotiation 

engine using an experimental evaluation in Section 4.3. In Section 4.4, a scenario is 

presented where the negotiation engine is integrated into a notification service publishing 

bioinformatics data. We show that using negotiation in this scenario can reduce the load 

requirements on the service provider, enabling more clients to be serviced. Finally in 

Section 4.5, we summarise this chapter. 

4. 2 Negotiation Engine Design 

In this section we present the design of DiNE, our Direct Negotiation Engine. DiNE 

encapsulates the protocol required to perform negotiation, enabling external systems to 

support negotiation, without needing to know how to negotiate. These systems may 

still influence the negotiation process at the strategy level, for example, in the form of 

resource levels for use in utility functions and proposal generation. 

DiNE is based around the Negotiation Decision Functions model of negotiation, intro

duced previously Section 3.3.2. As this is a fundamental part of DiNE, we expand on 

this below before discussing DiNE. 

4.2.1 Negotiation Decision Functions 

Negotiation Decision Functions (NDF) is an approach to automated negotiation using a 

heuristic-based approach, and is presented by Faratin (2000) as well as numerous other 

papers (Sierra et al., 1997a; Faratin et al., 1997, 1999a,b, 2000). Faratin introduces a 

bilateral (one-to-one) negotiation model which clearly separates negotiation protocol and 

strategies. This enables many different negotiation strategies to be used, without having 

to change the protocol. Agents using this model simply supply the resource functions 

and make decisions that will influence the outcome of the negotiation, enabling them 

to effectively negotiate with varying levels of understanding of required protocols and 

strategies. The routines for proposal generation and evaluation can be chosen from a 

range of predefined functions, some of which make use of an external resource fUllCtiOll, 

measuring the availability of some system resource. Throughout this thesis, we will refer 
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to this model as Negotiation Decision Functions (NDF). A more complete description 

of NDF is presented in Faratin (2000). 

In NDF, the subject of a negotiation is a contract, representing the current or final 

bid in the negotiation, and contains values for one or more issues, the values that will 

change over the course of a negotiation. A negotiation is an alternating sequence of offers 

and counter-offers by a client to obtain the item or service referenced in the contract, 

terminating in either a commitment by both parties to a mutually agreed solution, or 

a failure to reach such an agreement (unsuccessful termination). To negotiate with 

each other, agents must have a shared understanding of the individual issues before the 

negotiation starts. A common way of sharing this understanding is by use of an ontology, 

which is a specification of a concept (Gruber, 1993). 

Each agent has preferences defining the limits of a continuous range of values each issue 

is permitted to take in order to be considered acceptable. In this context, acceptable 

values are those that an agent would be prepared to commit to. It does not mean the 

agent will take this course of action - it may try and obtain a better offer to accept if 

there is still time remaining for a negotiation to be completed. For quantitative issues, 

preferences define a range of values considered acceptable by the agent for each issne. 

Qualitative issues are more complicated, as they do not use a continuous set of values. 

Instead, the model imposes the restriction that the discrete values a qualitative issue 

can take must be defined over an ordered domain, and the limits of the preferences are 

redefined as the limits of that issue's score. 

To evaluate offers, each agent has a scoring function that takes a value for a single 

issue and returns a score between 0 and 1. An agent also assigns a relative importance 

weight to each issue. These scoring functions and weights are combined using a weighted 

average function to give an overall score for the contract. 

It is assumed that the two parties involved in a negotiation will have conflicting interests 

- for example a buyer normally wants to obtain something as cheaply as possible, while 

the seller strives to maximise the amount of money they would receive. This allows 

each agent to assume it will know the direction of any change in preferences of the 

opponent, although it will not know the exact details of their preferences. Additionally, 

the assumption is made that scoring functions are either monotonically increasing or 

decreasing. 

Proposals are generated using methods based on tactics and strategies, as follows. Tac

tics are functions that generate a value for a single issue for inclusion in a proposal based 

on a single criterion, such as the remaining time or available system resources. Three 

types of tactic are defined: time-dependent tactics use the amount of time remaining 

until the deadline to concede; resource-dependent tactics use a resource function in a 

similar way to the remaining time, conceding based on the availability of a specified re

source; and behaviour-dependent tactics react to the offers received from their opponeIlt. 
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Examples of the resources used by resource-dependent tactics include the current sys

tem load and the number of negotiations currently in progress. This typically involves 

a callback to a resource function external to the negotiating agent. 

Tactics are combined using weightings to produce values for proposals that may be based 

on more than a single criterion, and agents have the ability to vary these weightings over 

the course of a negotiation. For example, a resource-dependent tactic may be weighted 

more highly at the start of a negotiation, with the bias switching to a time-dependent 

tactic as the deadline approaches. This behaviour is the agent's strategy. Strategies are 

used to combine tactics instead of generating proposals purely as a result of a single 

factor. 

Further work on NDF has enabled trade-offs to be calculated (Faratin et al., 2000), 

enabling better counter-proposals to be generated that are more likely to be acceptable 

by the other party. Faratin (2000) also discusses an extension to enable dynamic issue 

set manipulation, where issues can be added or removed from a negotiation while it is 

still running. This can enable a negotiation that has become deadlocked (where neither 

party are willing to make further concessions) to continue (by removing resolved issues, 

or introducing a new one to broaden the range of possible outcomes). 

This model was chosen for the following reasons: it enables the system to be designed 

in such a way that the negotiation protocol can be completely handled by DiNE, while 

allowing other systems using DiNE to influence the negotiation strategy; and it enables 

negotiation to take place without requiring additional third parties to participate in 

the negotiation process; some automated negotiation models such as Bartolini et al. 

(2002) support a more general form of negotiation, but require a third party to host 

the negotiation process. In a distributed environment such as the notification service 

scenario we are using, a dedicated negotiation host would lead to performance and/or 

availability problems under load, as many services try and make use of it. 

4.2.2 Core Concepts 

In this section we introduce the concepts which will be used throughout the rest of this 

chapter and subsequent chapters discussing DiNE. A negotiation occurs between a client 

and a supplier, where a client tries to obtain a negotiation item l from the supplier, which 

could be goods or a service. When applied to the idea of a notification service, the client 

is a consumer negotiating for a subscription to notifications on a particular topic (the 

negotiation item) from the publisher (the supplier). Our terminology differentiates be

tween clients and consumers, and publishers and suppliers, to indicate where we discuss 

1 A negotiation item is referred to as a contract in NDF -- we use the term negotiation item to 
indicate a broader use for DiNE than for contract negotiation, being suitable of the acquisition of goods 
or services. 
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concepts specific to notification services and to negotiation in general. The client and 

supplier are both hosts to the negotiation engine. 

The values that are under negotiation are attributes of the negotiation item or the way 

in which the item would be delivered. These are referred to as issues (which correspond 

to agreement contexts in WS-Agreement (Andrieux et al., 2004)). For example, consider 

the use of negotiation in a notification service. A consumer would try to set up a 

subscription for a particular topic, and would negotiate over various Quality of Service 

parameters, such as: message size; accuracy; granularity of notifications; duration of 

subscription; and cost. 

A conversation between the client and supplier, where proposals and counter-proposals 

are exchanged, is known as a negotiation thread. Both the client and supplier have 

preferences, representing the ideal value (i.e. the value they would like to obtain in an 

ideal world) and a reservation value, placing a limit on the concessions that will be made. 

Values beyond the reservation value are unacceptable to that party, and a negotiation 

will fail if it is not possible to reach a proposal that satisfies the preferences. Each party 

measures the utility of an outcome - the measure of how good the outcome is for that 

party. It is rational behaviour for an agent to try and maximise their expected utility 

(Simon, 1955). 

In the process of negotiation, each party tries to maximise their utility -- the measure 

of how good an outcome is for a particular party. 

4.2.3 Architecture 

At a conceptual level, DiNE can be regarded as an entity shared between all of the par

ticipants in a negotiation, as shown in Figure 4.1. The client and the supplier use some 

shared entity to negotiate on behalf of them, resulting in a mutually acceptable proposal 

to which they can commit. To realise this concept, there are two possible architectures 

of DiNE: 1) A shared negotiation engine mirroring the conceptual architecture; and 2) 

a negotiation engine using separate negotiation components linked to each party. 

~ ____ C_I_ie_n_t ____ ~~I'----~.~.~------~.LI ____ s_U_P_p_li_e_r __ ~ 
FIGURE 4.1: Conceptual Architecture of DiNE 
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4.2.3.1 Shared Negotiation Engine 

A single negotiation engine shared between both the client and the supplier takes the 

preferences from both parties, carries out all of the negotiation internally, and informs 

each party of the outcome. Neither party needs to be aware of any negotiation protocols 

in use - they just need to know that conflicts between their preferences are being medi

ated externally. In order for the negotiation engine to be able to handle the negotiation, 

it needs to know the preferences of both the client and the supplier in a negotiation. It 

also needs any information from each party that would influence the decision making 

process within the negotiation. Assuming this is based in a service-based architecture, 

it is possible that the client, supplier and negotiation engine are all located in different 

places. 

A shared negotiation service design enables the easy provision of negotiation between 

the involved parties without either of them needing to know the details of how the 

negotiation works. All aspects of the negotiation can be hidden from the hosts, enabling 

them to simply request an agreement, and receive back either an agreement or a failure. 

However, there are two main disadvantages with the shared negotiation engine archi

tecture. Certain aspects of a negotiation, including how to evaluate proposals, may 

require the use of dynamic, locally-sensed environmental values from the hosts, such as 

the system load or amount of free disk space. This either requires the negotiation engine 

be co-located with the host and has access to these variables, or it requires the host to 

provide a callback mechanism for the centrally-hosted negotiation engine to obtain these 

values. Co-locating the negotiation engine with one party (e.g. the supplier) makes it 

harder for the other party (client) to make use of this facility, as it would rely on the 

client trusting the supplier. Providing a callback mechanism does enable the negotia

tion engine to access these variables, but at the expense of the simplicity of the shared 

architecture. 

The second disadvantage of this architecture is that the negotiation engine has access to 

the preferences and other information of both parties in the negotiation, thus requiring 

that both parties implicitly trust the same negotiation engine. For example, if the main 

aspect of a negotiation was the price to be paid for a service, a malicious negotiation 

engine could tell each party that the negotiation completed at their reservation values, 

while keeping the difference between values for itself. Similarly, where the negotiation 

engine is colluding with the supplier, an outcome could be obtained that is only just 

acceptable for the client, while proving extremely favourable to the supplier. 

4.2.3.2 Separate Negotiation Components 

In the second proposed architecture of DiNE, each party in the negotiation hosts its 

own negotiation component (NC), which tries to find a mutually acceptable proposal 
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over which an agreement maybe formed on behalf of its host. This is shown in Figure 

4.2. The NCs are given the preferences of their hosts at the start, and are able to 

request information from their host throughout the process of the negotiation for use in 

counter-proposal generation and evaluation. Thus, locally-sensed environmental values 

can be easily integrated as factors in the negotiation. 

Client Client NC .... ... Supplier NC Supplier ..... ... 

FIGURE 4.2: Separate negotiation component architecture 

This architecture enables the use of inputs from the host to influence or control the 

process of how proposals are generated and evaluated, while still allowing the host to 

remain ignorant of the negotiation protocol. As the NC is private to each host, there are 

no issues regarding trust between the host and NC. This enables interactions in untrusted 

environments - if a negotiation component finds a mutually acceptable proposal, it is 

within the limits of what the host has requested from its NC. With this architecture is 

that the host can vary the degree to which it influences the outcome of the negotiation 

anywhere between simply supplying the preferences, and supplying custom routines for 

proposal evaluation and generation. 

The disadvantage of separate NCs is that the interaction pattern is more complex. 

With a shared negotiation engine, each party instructs the negotiation engine to find 

a mutually acceptable proposal, and no more interactions occur until the negotiation 

has terminated. With separate NCs, interactions occur between a host and its NC, and 

between the two NCs. If the negotiation engine is to be independent of a particular 

communication system, the host must facilitate communication between the two NCs 

by way of implementing a message transport. 

4.2.3.3 Chosen Negotiation Engine Architecture 

The architecture of DiNE is based on the approach of using separate NCs discussed in 

Section 4.2.3.2 above, so that external locally-sensed environmental variables could be 

used in the negotiation, and so that the privacy of the preferences and utility functions 

of the hosts can be maintained even in an untrusted environment. This architecture 

allows the hosts a varying level of control over the negotiation process, by allowing them 

to choose between the provided routines for proposal generation and evaluation and 

their own modified versions of the routines. The NCs use their host's communication 

mechanism to send proposals so that the design of the engine remains independent of a 

communication mechanism (for example, in Section 6.2.3, we describe an implementation 
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based around a Web Services model). The alternative proposal suggested in Section 

4.2.3.1 is rejected because of the requirement that both parties need to trust the same 

negotiation engine, and because hosts cannot influence the negotiation process as easily 

as with separate NCs. 

Figure 4.3 shows in more detail the parts that make up the architecture of DiNE, show

ing the sections that can be shared with the host. The main part of the negotiation 

protocol handling is done by the NC internally. Proposal generation and evaluation is 

controlled by the NC. However, hosts can supply their own routines for proposal gen

eration and evaluation which will be used by the NC. Additionally, the routines may 

call for information to be provided by the host, such as information about system re

sources. The host is required to provide a reliable message transport for use by the NCs. 

Communication is the only part of this architecture that must involve the host. 

I 

Communication Communication 

Proposal Proposal 
Generation Generation 

I 

Proposal Proposal 
Evaluation Evaluation 

~-
, 

r- .....• 
I 

Supplier 
Client Negotiation Negotiation 
Component Client Supplier Component 

FIGURE 4.3: Detailed Architecture of DiNE 

4.2.4 Negotiation Protocol 

The negotiation protocol specifies how each party in a negotiation component can act: 

the messages that can be sent, the actions that can be taken and the various states the 

negotiation process can take. A clear specification of this information is essential to 

understanding the interactions that can occur between the various parties involved in a 

negotiation, and how these interactions are interpreted. 

4.2.4.1 Interactions in a negotiation 

Figure 4.4 shows a negotiation taking place between a client and a supplier through 

their respective NCs. The interactions between each party are shown as arrows with the 

message type. The numbers indicate the stages of the negotiation, which are explained 

below. 

1. Preference Registration 
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Client Client NC 

: 1: registerPreferences(item) 
~. 

· . 
· 2: negotiateFor(item, requestee~) 
· ~! 

:... ••• call~~~k "'~:~~neratelnitialproposaIO 

4: propose(proposal) 

callback 
~"""."""""""""""""'" 

5: generateCounterPr salO 5: 

callback 
~~., ...... . 

Supplier NC I I Supplier 

1: registerPreferences(item) 

. .. 

eratecounterproP~~~I() ......... ~~II~~~~ ..••.... ~ 

..... t---------~. accept(proposal) accept(proposal) ,--! -----------1~~. 
: success(acceptableProposal) success(acceptableProposal) . 

FIGURE 4.4: Interactions between components of a negotiation 
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Before the negotiation begins, both parties initialise their respective negotiation 

component with a set of preferences for the items they are interested in or are 

making available. The preferences consist of two values, an ideal value and a 

reservation value which, combined, represent the range considered acceptable for 

a specific issue. 

2. Negotiation Initiation 

The client gives its negotiation component an instruction to begin the negotiation 

process. 2 In order to constrain the amount of time a negotiation can take, a 

deadline is specified as the negotiation is started. Not only does this ensure that a 

negotiation will complete, it also ensures that if the item is required in a specific 

time frame, the negotiation will have completed (with either a success or failure) 

within this time frame. 

3. Initial Proposal Generation 

The client's negotiation component generates an initial proposal ready to send 

to the supplier's negotiation component. Typically, this would contain the ideal 

values for all of the issues involved in the negotiation. Optionally, this step can 

involve callbacks to the client in order to give the client a chance to influence the 

initial proposal generation. 

2 Although it is possible for the supplier to initiate a negotiation, we concentrate on the more typical 
case where a client initiates the negotiation (for example, a customer tries to buy something from a 
seller, or requests a service from a service provider). If the supplier were to initiate the negotiation, the 
diagram would look identical apart from stage 2 coming from the supplier to the supplier's NC. 
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4. Proposal Transmission 

The negotiation process now enters a cycle, initiated by a proposal being transmit

ted. Negotiation messages are transmitted to their recipient by the host. The NCs 

assume that the communication mechanism is reliable - there is no mechanism 

for dealing with missing messages. 

5. Counter-proposal generation 

When a proposal is received by a NC, a counter-proposal is generated. Detailed 

information on proposal generation can be found in Section 4.2.5.3. As with initial 

proposal generation, counter-proposal generation can involve callbacks to the host, 

in order to retrieve external environmental conditions such as system load, or to 

enable the host to provide a customised proposal generation routine. 

6. Proposal Evaluation 

Once the counter-proposal is generated, both the generated counter-proposal and 

the recently received proposal are evaluated using p's utility functions. A compari

son is made between the score of the counter-proposal and the received proposal. If 

the counter-proposal has a higher utility, it is transmitted to the other negotiation 

component, and the process returns to step 4. If the received proposal has equal 

or higher utility than the generated counter-proposal, it is considered acceptable. 

7. Proposal Acceptance 

If the last received proposal has a utility equal to or higher than that of the gen

erated counter-proposal, an acceptable state has been reached. The negotiation 

component issues an Accept message to signify its acceptance of the received pro

posal. Both negotiation components then inform their respective hosts that an 

acceptable state has been reached. 

Acceptance of a proposal by the negotiation components does not constitute a commit

ment between the client and the supplier - it merely indicates that both parties have 

found a mutually acceptable set of issues to base a commitment on. The client would 

typically contact the supplier after a successful negotiation to make a commitment - a 

contract where the supplier agrees to supply the client with the negotiation item under 

the issues agreed on during the negotiation. Leaving the process of making a commit

ment to the hosts enables a client to negotiate with multiple suppliers simultaneously, 

and to proceed to making a commitment with the one that offered the best deal. 

The diagram in Figure 4.4 only shows the case where a negotiation is successful, but 

negotiations can fail for two main reasons. The most likely reason for a failure would be 

deadline expiry - no mutually acceptable proposal is found before the deadline expires. 

In this situation, no counter-proposal would be generated on receipt of a proposal if the 

deadline has expired. Instead, a negotiation failure message would be sent giving the 
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reason for the failure. Negotiations can also fail due to being explicitly terminated by 

either the client or supplier, for example when a system is being shut down, if the client 

has found another supplier for the item being negotiated for. 

The negotiation protocol described above relies on a reliable communication protocol -

it makes no allowances for messages not being delivered. Additionally, the interactions 

between a NC and its host are synchronous - when the client begins a negotiation, 

its NC returns the negotiation outcome. Similarly, if the NC requires a callback to the 

host, for example to obtain a resource level, the NC will wait for the host to provide this 

information before continuing with the negotiation. There is no specification of how the 

communication between the NCs should happen - it is left to the NCs to implement. 

This allows the negotiation engine to be integrated into a number of different distributed 

environments - we integrate it with a SOAP messaging system later in this thesis 

(Section 6.2.3). 

4.2.4.2 Message Types 

While trying to reach an agreement over a particular item, negotiation components 

exchange messages to convey their current offers and reactions to the offers. Three 

types of messages are used: 

• Propose 

Propose messages are the main part of any negotiation. They convey an offer from 

one negotiation component to another with a set of values proposed by the sender 

for each of the issues in the negotiation. 

• Accept 

Accept messages are used when a negotiation component receives a proposal that 

it is prepared to accept. An Accept message simply contains a reference to the 

proposal it is related to. 

• Terminate 

Terminate messages are used to signify a negotiation failure or explicit termination. 

A reason field is contained in the message to indicate to the other party why the 

negotiation failed. The most common reason for failure would be deadline expiry. 

All messages contain a common message header for identifying the message type, source 

and destination of the message, and for identifying the negotiation the message is related 

to. Details of the fields found in the message header, as well as the fields in the specific 

messages, are detailed in Table 4.1. 
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Message Field Name Description 
MessageType Identifies the type of this negotiation message 
SenderID Identifier for the sender of this message 

(All) RecipientID Identifier for the recipient of this message 
N egotiationID Unique identifier for this negotiation 
ProposalID Unique identifier for this proposal in the negotiation 

Propose Item Item this negotiation is for 
Elements List of values for issues in this negotiation 
TimeRemaining Amount of time remaining in this negotiation 

Accept ProposalID ID of the proposal being accepted 
TimeRemaining Amount of time remaining in this negotiation 

Terminate Reason Reason for the negotiation being terminated 

TABLE 4.1: Negotiation Message Structure 

A sequence of messages between two parties regarding one particular negotiation is 

known as a negotiation thread. Threads are started using a propose message, and ter

minated using an accept or terminate message. The thread is made up of an exchange 

of propose messages, and is terminated either by an Accept message or a terminate 

message. 

4.2.5 Negotiation Strategy 

The protocol described in the previous section defines the rules which must be adhered 

to when negotiating using this model. However, there are many possible courses of 

action that may be followed while conforming to this protocol. The negotiation strategy 

describes the type of actions that a negotiation component performs within the protocol. 

There is no requirement for the negotiation strategy to be fixed or the same between 

opponents - it is possible for two NCs with completely different strategies to negotiate 

under the same protocol. 

The negotiation strategy used in DiNE is controlled by a set of functions for influencing 

proposal generation and evaluation routines. It is up to the host to select these functions 

- predefined routines may be used, or the host can supply their own routines. The 

functions are used by the negotiation algorithm to enable the host to remain ignorant 

of the negotiation protocol, while maintaining control over the behaviour of the NC. 

The functions generate values for inclusion in proposals, and to evaluate proposals and 

counter-proposals. 

4.2.5.1 Terminology 

Through the rest of this section we will be detailing the components used in the strategy 

part of the NC. We introduce here some terminology and notation that will be used to 
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describe the different parts. 

C {CO,Cl,"'} (Set of clients) 

S {SO,Sl,"'} (Set of suppliers) 

X {XO,Xl""} (Set of negotiation items) 

n (Number of negotiation issues) 

Q { qo, ql, ... , qn} (Set of n negotiation issues) 

tmax (Deadline at negotiation start) 

Characteristic variables are: 

C E C; s E S; a, bE (C US); x E X; q E Q 

A proposal sent from src to dest is represented as a tuple: 

p = (src, dest, idneg , idp , trem, x, E) . 

To relate all messages to a specific negotiation, a unique identifier idneg is used to identify 

the negotiation to which they belong. This identifier is created by the client initiating 

the negotiation. A proposal also contains a proposal identifier, idp , which is unique 

within the negotiation, and which is used in Accept messages to identify the proposal 

being referenced. The set of proposal elements E is a set of values included in a single 

proposal specifying a value for each issue under negotiation. The notation Psrc--+dest is 

used as shorthand for specifying the source and destination of the proposal, and the 

notation p[q] represents the value of element q from within proposal p. 

An example proposal between client a and supplier b for item itemOl might contain the 

following information: 

p = (a, b, 'neg001', 'prop-005', 10, 'item01', (price=O.2,timeliness=5) ) 

A negotiation thread P is an ordered list of proposals exchanged between two negotiation 

parties a and b at time t (t :s: t max ): 

pt ( a 1 t) 
a<-tb = P a--+b' Pb--+a' ... ,p a--+b . 

It represents the history of a negotiation from the receipt or transmission of the first 

message, up to the most recent. 

An Accept message sent between src and dest is represented by 

acc = (src, dest, idneg , idp , trem) , 
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where idp represents the proposal identifier of the proposal being accepted. If a negoti

ation is unsuccessful, it is terminated using a failure message, represented as 

fail = (src, dest, idneg , reason) 

where reason indicates the reason for failure. 

4.2.5.2 Proposal Evaluation 

The NCs rely on being able to evaluate a proposal to determine how useful it is to 

the host. The scoring function mechanism enables a negotiation component to create a 

mapping between values for each issue to a utility for its host. 

Preferences given by a host to its negotiation component for each issue comprise two 

values - the ideal and reservation value. The ideal value gives the highest utility for 

that party, i.e. the value they would like to receive. The reservation value represents the 

absolute limit on any concessions, i.e. the value giving the lowest possible utility while 

still being acceptable. Values beyond the reservation value are not accepted. 

Issues can be quantitative or qualitative. The range of values considered acceptable 

by party a for issue q is represented as D~ = [ideal~, res~] for a quantitative issue. 

Qualitative issues must be handled differently; the range of values a qualitative issue 

can take must be defined as an ordered set, with scores being assigned to each one. The 

values for ideal~ and res~ can be defined as the values giving the maximum and minimum 

score for the issue, allowing qualitative issues to be treated similarly to quantitative 

issues. 

To determine the valuation placed on the value for a single negotiation issue q, party a 

has a scoring function v~ : D~ ---7 [a, 1]. The only requirement of a scoring function is 

that it be monotonically increasing or decreasing. Within these limitations, the scoring 

function could be linear between the preference limits, or it could take any other shape 

such as exponential. 

Scoring functions produce a score for a single issue only. A weighted summation function 

is used to combine these scoring functions with their weightings to give an overall proposal 

scoring function: 
qn 

Va(p) = L wfvf(p[qiD 
i=l 

4.2.5.3 Proposal Generation 

Proposals are generated using tactics - functions that generate a value for a single 

issue based on a single criterion, such as the time remaining before a deadline, or avail-
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able system resources. As tactics only use a single criterion to generate a value, a NC 

would normally use a combination of different tactics. Three families of tactic were in

troduced in NDF: time-dependent, resource-dependent and behaviour-dependent, which 

are summarised below 

Time-dependent Tactics 

The basic form of tactic is one whose concession rate is controlled exclusively by the 

amount of time remaining in the negotiation: time-dependent tactics. These tactics 

do not take into account any information about the local environment. However, they 

are still important as they influence a concession in a negotiation; negotiations that 

do not concede are unlikely to reach a successful proposal. Time-dependent tactics 

generate a value for each issue based on the amount of time remaining using the following 

expression: 

p[q] = idealq + (1 - (};q(t)) (res q - idealq ) 

The definition of the function (}; depends on the type of tactic: 

• Polynomial: (}; (t) = K, + (1 - K, )(min(t,tmax))Jq q q q tmax 

(1 min(t,tmax»)(3ql 
• Exponential: (};q (t) = e - t max nK-q 

There are two controlling parameters used as input to the (}; function - K, and f3. 
The initial offer made is controlled by K,q : when K,q = 0, the initial offer is the ideal 

value for that issue, and with K,q = 1, the initial offer is the reservation value. The 

rate of concession is controlled by the parameter f3. Different values for f3 cause the 

values produced to concede in different patterns. The behaviour of both exponential 

and polynomial time-dependent tactics can be seen in Figure 4.5. 

The behaviour of time-dependent tactics can be classified into three different families: 

Boulware, linear and conceder (Faratin, 2000). We will explain these below, using values 

for f3 from polynomial time-dependent tactics, as exponential time-dependent t.act.ics do 

not exhibit a true linear behaviour. 

Boulware tactics (f3 < 1) concede very slowly for most of the negotiat.ion. As the deadline 

approaches, the concession rate increases dramatically towards t.he reservation value. 

Boulware tactics aim to keep the utility higher for those using it, but this behaviour 

comes at the risk of not making a deal at all. 

Linear tactics (f3 = 1) are the simplest of all time-dependent tactics, and concede at a 

consistent, predictable rate throughout the course of the negotiation. 

Conceder tactics (f3 > 1) are suitable for occasions where an agreement must be reached 

very quickly. The conceder tactic drops close to its reservation value very early on in 
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a) Polynomial Time Dependent Tactics 
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FIGURE 4.5: Behaviour of a) Polynomial and b) Exponential time-dependent tactics 

the negotiation, with the rate of concession dropping as time passes. After the initial 

concession it reaches its final reservation value much more gradually. 

Resource-dependent Tactics 

Time-dependent tactics are useful for ensuring that some concession does occur in a 

negotiation, but does not take any environmental conditions into account . For this 

purpose, resource-dependent tactics should be used. Resource-dependent tactics need 

a mechanism for obtaining resource levels from the host to be used as the controlling 

factor for generating a value to be returned. Examples of these resource levels could be 

system load or the number of commitments already in place. 

Behaviour-dependent Tactics 



Chapter 4 Direct Negotiation Engine 56 

Behaviour-dependent tactics calculate the next value for an issue based on the behaviour 

of their opponent. Proposals are generated based on the change between proposals 

received from the opponent. This change can be imitated relatively, absolutely or using 

an average of the changes. However, Axelrod has established that behaviour-dependent 

tactics can never do better than other tactics; they can only gain equal utility to the 

best tactic (Axelrod, 1984). Hence, although behaviour-dependent tactics are supported 

by DiNE, we have chosen to omit them from any evaluation. 

Tactic Combinations 

A NC typically uses a number of different tactics based on the constraints they are 

negotiating in. Multiple tactics are combined using a weighted average in order to 

give preference to different criteria for proposal generation. It is possible to vary these 

weightings at any time during the course of the negotiation. Strategies control the 

weightings of the individual tactics, and how they are varied over time. A strategy 

could, for example, increase the weighting against a time-dependent tactic as the deadline 

approaches to ensure that a negotiation concedes at the end. 

4.2.5.4 Negotiation Process 

In order for a client to begin a negotiation with a supplier, it must have first determined 

the identity and the item for which negotiation will take place. Selection of negotiation 

partners is beyond the scope of the negotiation process and is assumed to have been 

carried out by the host prior to a negotiation being initiated, possibly using a directory 

service, such as UDDI. 

Algorithm 1 shows that to begin a negotiation, a client NC first assigns a unique identifier 

to the negotiation. This is attached to all messages in the negotiation to link them 

together. The NC then generates a set of values for the initial proposal using the tactics 

and preferences (described in Section 4.2.5.3). The proposal is then constructed and 

sent using the host's communication mechanism. 

Algorithm 1 Client c initiating a negotiation with s for item x, with max time tma.J: 

idneg = gen UID 0 
idp = gen UID 0 
p=o 
E = applyTactics( tma.x) {Generates values for a proposal by applying tactics} 
p~-"s = (idneg , idp , c, s, tma.x, x, E) 
sendMessage(p~-"s) 
p = p U {p~-"s} 

When messages are received, they are handled by Algorithm 2. When a message is 

received, a counter-proposal is immediately generated using the combination of tactics. 

Both the received and generated proposals are evaluated using the proposal scoring 
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functions (described in Section 4.2.5.2). If the value of the incoming proposal is higher 

or equal to that of the received proposal, an Accept message is sent and the negotiation 

component's host is notified of the successful negotiation. Otherwise, the deadline is 

examined. If there is time remaining, the generated proposal is sent using the host's 

communication mechanism. Otherwise, a failure message is sent and the host is notified 

that no agreement was made. 

Algorithm 2 Negotiation Component a processing a proposal message from b 

Precv = receiveProposalO 
(idneg , idprecv, b, a, t, x, Erecv) = Precv 
E = applyTactics(t - 1) {Generates values for a proposal by applying tactics} 
idpnew = gen UID 0 
Pnew = (idneg , idpnew ' a, b, t - 1, x, E) 
if Va(Precv) ~ Va(Pnew) then 

sendMessage( (idneg , idprecv' a, b, t - 1)) {Send an Accept message} 
notifyHost(success, Precv) {Inform host of the success} 

else 
if t = 0 then 

sendMessage( (idneg , a, b, 'Deadline Expiry')) 
notifyHost(failure, 'Deadline Expiry') {Inform host of failure with reason} 

else 
sendMessage(Pnew) {Send generated proposal} 

end if 
end if 

4.3 Experimental Evaluation 

DiNE has been designed to incorporate a number of external inputs as controls over the 

negotiation process. As such, it is not possible to undertake an experimental evaluation 

covering the full range of situations in which it could be used. In this section, we evaluate 

the performance and behaviour of DiNE while using only time-dependent tactics and 

linear proposal evaluation routines. Observing the system under these conditions gives 

an indication of the behaviour without any external influences, showing any behaviour 

patterns which may influence the combination of other tactics. 

In this evaluation, we focus on time-dependent tactics, as these are likely to remain the 

same in a working implementation due to no reliance on resources. Time-dependent 

tactics force a negotiation to concede towards the deadline, and are useful for enSllI"

ing that concessions are made. We do not expect time-dependent tactics to be used 

alone in a real implementation; resource-dependent tactics would be used to factor in 

environmental conditions, and behaviour-dependent tactics may be used to react to the 

behaviour of the opponents. However, resource-dependent tactics are domain-specific by 

their nature ~ they rely on an environmental factor to control any concessions made, 

making it impossible to evaluate them independently of specific resources. 
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To evaluate the behaviour of DiNE, three experiments were run: in the first experiment 

we varied the amount of time available in which to negotiate; in the second experiment, 

the number of issues being negotiated over was varied, and the final experiment measured 

the performance of our implementation in terms of real time. 

4.3.1 Experiment Setup 

The experiments in this section all share the same basic structure. A set of environ

ments is generated containing the variables that restrict the outcome of each negotiation, 

namely the preferences and deadline (described below). NCs run a negotiation in each 

environment using each tactic. For every tactic, a NC negotiates against every other 

tactic (including itself) for each environment in the experiment. The outcomes of the 

negotiations were collated and averaged. 

4.3.1.1 Environments 

The variables that control the outcome of a negotiation are primarily the time available 

in which to negotiate, and the preferences of each party for each of the issues. We 

group these variables into an environment for the purpose of analysis. Since the space 

of possible issues is not defined, the number of potential environments is infinitely large. 

For our experiments, we created a set of randomised environments that can be used for 

repeatable experiments. 

For each environment, there are a number of issues defined (depending on how many 

are required for the experiment). For each of these issues, the minimum and maximum 

acceptable values for each party are defined by the following variables: ideal~ represent

ing the ideal value for c for issue q, e~ controlling the size of the range of acceptable 

values for c, e~ controlling the size of the range of acceptable values for s, and ¢q, the 

fraction of the acceptable regions that overlap. If ¢q = 0, there is no overlap between 

the acceptable regions of the preferences, and a successful outcome cannot be found. If 

¢q = I, both parties have fully-overlapping preferences, and any value acceptable to one 

party is also acceptable to the other. These parameters are shown in Figure 4.6, giving 

an overview of how they produce the remaining preference values. Table 4.2 shows the 

ranges of values used when generating proposals. 
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FIGURE 4.6: Effect of environment parameters on preferences for issue q 
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Parameter Explanation Range 
ideal~ Ideal value for client 30 

e~, e~ Size of acceptable regions 10-50 
¢q Amount over overlap in acceptable regions 0-0.99 
imax Amount of time available in which to negotiate 10-60 

TABLE 4.2: Values used for environment generation 

We define the following function to determine the optimal utility of a negotiation, where 

neither the client or supplier can increase their utility without a drop in their opponent's 

utility: 

4.3.1.2 Issues 

The negotiations run in our experiments may use a number of issues. These issues are 

independent of each other - the value of one issue does not directly influence the value 

of another. This is a simplification of a real-world situation, but is necessary due to the 

complexity that dependent issues would introduce. For example, in a situation where 

a consumer wishes to subscribe to notifications about a particular topic for which the 

publisher charges a fee, the fee may be partially related to the frequency with which the 

notifications are requested. In our experiments, these issues are modelled as independent. 

All issues in the experiments are qualitative, and take numeric real values. 

4.3.1.3 Tactics 

The only type of tactics we are evaluating in this section is time-dependent tactics. 

We have used one of each of the three families of polynomial time-dependent tactic -

Boulware ({3 = 0.2), linear ({3 = 1) and conceder ({3 = 5). The behaviour of these tactics 

can be seen in Figure 4.5. The experiments in this section use polynomial tactics, as 

their behaviour can be classed as simpler than exponential tactics (see Section 4.2.5.3 

for details) We also ran the experiments with exponential tactics, and report on the 

difference in outcomes in Section 4.3.3. 

Single tactics are used in each experiment, rather than using a strategy involving mul

tiple tactics, because we are examining how negotiations perform with these tactics. 

Combining behaviours makes it more difficult to determine the cause of any changes in 

behaviour. 
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4.3.1.4 Time Model 

In a real negotiation, the amount of time available in which to negotiate would be 

measured in terms of real time. In our simplified experiments, we use an interval-based 

time model, where a NC can send a single message in each time interval, which we refer 

to as a tick. In practical terms, this allows us to measure time by counting the number of 

messages sent, as in a full implementation, processing time would be negligible compared 

to transmission time. Increasing the deadline by one tick allows one extra message to 

be sent. 

4.3.2 Hypotheses and Results 

We evaluate DiNE using two criteria in this section: behaviour given different amounts of 

time in which to negotiate; and behaviour when the number of issues in the negotiation 

is varied. As the negotiations have been simplified to include only time-dependent 

tactics, deadline is the most significant factor of the evaluation since it alone controls 

the behaviour of the tactics. 

4.3.2.1 Variable Deadline 

In many situations requiring negotiation, a time limit is placed on a negotiation. This 

can be for one of many reasons. For example, a service could be attempting to set up 

subscriptions to an information source in order to monitor a particular task that starts 

at a predefined time. Everything needed to monitor the task must be in place before 

it begins, so any negotiation involved must have reached a mutually acceptable value 

within a specified time. Our hypothesis about the effect of time available in a negotiation 

is as follows: 

If a negotiation has a large amount of time to complete) the outcome is closer to the 

optimal for both parties. In shorter negotiations) the difference between the utility for 

the client and that of the supplier is greater. 

It may seem that with shorter deadlines, negotiations are more likely to fail completely 

and not find a mutually acceptable proposal. However, if both tactics are time-dependent 

and both offer their reservation values at the last possible chance, negotiations should 

always produce a successful outcome under the assumption that the environment in 

which they are negotiating allows for a mutually acceptable proposal to be found (i.e. 

there is some overlap in the acceptable regions of the preferences of both parties in the 

negotiation) . 

In order to test the hypothesis, negotiations were run through 500 environments using a 

single negotiation issue. The variable in this experiment is the amount of time available 
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in which to negotiate - the deadline, which was varied between 2 and 100 t icks. Ne

gotiations take place in the same environments for each value of the deadline. For each 

combination of deadline and environment , the same negotiation was run with each type 

of tactic at each end . 

Figure 4.7 shows that as the deadline increases, the utilities obtained by the client 

and the supplier get closer to each other, and also to the optimal utility. However, it 

does not show that increasing the deadline will lead to both parties receiving a higher 

utility. Instead, it appears that it is possible to get a better utility using a much shorter 

deadline. Closer examination of t he graph reveals that when the client receives a higher 

than average utility, it is at the expense of the supplier , who receives a significantly 

worse utility. As the period of the oscillations in the graph is constant, it appears that 

this behaviour is predictable. 
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FIGURE 4 .7: Average utility as deadline is varied 

In Figure 4.8 we have divided t he results into those with even values for the deadline and 

those with odd. From these graphs it can be seen that whenever an even value for utility 

is chosen , the client comes out significantly better off than the supplier. The situation is 

reversed using odd values for the deadline. The explanation for t his behaviour is that if 

negotiations use all available time, for a given deadline, it will always be the same party 

offering their reservation value. Since the reservation value is the biggest concession a 

party is willing to make over the preferences for a particular negotiation issue or set of 

issues , it would normally be offered only when the alternative is for the negotia tion to 

fail. Because the t ime model used in these experiments allows a single message to be 

composed and sent in each tick, the same party is always the one making the concession 

for a given deadline. 

To illustrate the above behaviour, consider a simple negotiation between two parties, 



Chapter 4 Direct Negotiation Engine 

A: Even Deadl ines 

0.6 

0.5 

0.4 

.£ 
0.3 

:5 ~ 
--

0.2 
\ 

---
// 

0.1 
/ 

: I 
! I 
II 
'I 
,I 

o 'I 

o 10 20 30 40 50 60 

Deadline 

B: Odd Deadlines 

0.6 

0.5 

\ 
0.4 

£ 
0.3 

~ ---

0.2 

0.1 

0 
0 10 20 30 40 50 60 

Deadline 

- --

Client Utili ty 
Supplier Util ity 
Optimal Utility - -

70 80 90 100 

Client Util ity 
Supplier Utility 
Optimal Utility --

70 80 90 100 

FIGURE 4 .8: Average ut ility as deadline is varied t hrough A) even values and B) odd 
values 

62 

in which t here is time for four messages to be sent. The client makes the initial offer , 

and t he supplier also responds wit h its init ial offer . At this point , the client must make 

another offer. It knows t hat t he supplier can still concede, so makes an offer normally. 

However, when the supplier comes to make the next offer it determines that this will 

be t he last proposal offered, and t herefore if t he reservat ion value is not offered , the 

negotiation could fail. 

Comparison of tactics 

To further examine t his situat ion , we split the results of the experiment even fur ther 

in order to examine the behaviour of each type of time-dependent tactic in order to 

determine whet her one type is more susceptible to this behaviour than another. These 

results are shown in Figure 4.9, in which the key part of t he graphs is the shape of the 
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lines between each graph. This shows that over the course of many negotiations, a client 

gets the best utility from using a Boulware tactic, although this is at the expense of 

the supplier utility. Considering all parties involved , it is better for the client to use a 

linear time-dependent t actic, as this leads to the case where both the client and supplier 

utility cannot get much higher without sacrificing the other 's utility, and is closer to the 

optimal utility. 

Client Tactic 

Boulware Linear Conceder 

Client Utility 
Supplier Utility 
Optimal Utility 

FIGURE 4.9 : Average utility as deadline is varied with different client tactics (Client 
vs. Supplier) 

In still more detail , the results are broken down into the individual t actic groups in Figure 

4.10 , which shows the results of each type of time-dependent t actic playing against each 

other. Above, we st ated that it is better for the client to use a linear tactic. From this 

statement , it would be expected that linear versus linear t actics would produce a result 

closest to the optimal, and this is shown to be correct in the graph. The graphs also 

show that Boulware t actics often produce a better outcome than the other t actic groups, 

and conceder tactics can be expected to perform worse. 

From these results , it would appear that this negotiation model is exploitable by one 

party to maximise their own utility at the expense of t he others . The negotiation 

component initiating the negotiation could choose a deadline that is even and short, 

in order to force their opponent to offer the reservation value as soon as possible. A 

negotiation component 's reservation value represents t he lowest possible ut ili ty it could 

get from a negotiation if it succeeds. Additionally, the reservation value represents 

the highest possible utility the opponent could get from t he negotiation. Forcing t he 

opponent to offer their reservation value early would be the ideal way of winning a 

negotiation in a situation where each party is self-interested . 

However , it must be noted that these experiments have been performed with many 

simplifications . It is the combination of these that have made this behaviour so apparent 

and easily defined . The main differences between these experiments and real-world 

versions are as follows: 
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FIGURE 4.10: Average utilities as deadline is varied with different tactics (Client vs . 
Supplier 

• Interval-based time clock - In these negotiations, the time taken to create a mes

sage or proposal is negligible, and a single message may be sent in every tick. In 

a real-world negotiation, an amount of time would elapse during the transmission 

of a proposal. If such a system used the Internet for communication, it is likely 

that this time would vary slightly between each message, especially for inter-site 

communication. This makes it difficult , if not impossible, to predict the number 

of messages that could be exchanged in a negotiation befa Te it starts. 

Additionally, a single message is sent in every interval. The protocol does not 

specify that a negotiation component must reply to a message in the interval 

following the one in which it received the original proposal. This fits in with the 

real time aspect of a negotiation - if it is not possible to predict the amount of 

time taken to transmit a message, then it is impossible to determine when a reply 

must be received. Instead, a fin al deadline is imposed on the entire negotiation 

indicating the time by which a mutually acceptable proposal should be found. 

• Single tactics - Only a single time-dependent tactic has been used in each one 

of these experiments. In negotiations for a service, one would expect a resource-
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dependent tactic to be used in addition to the time-dependent tactic. This means 

that there are multiple tactics influencing the values chosen for each proposal, so 

the effect of the time-dependent tactic would be dampened by other additional 

tactics . 

• Tactic Behaviour - A negotiation protocol specifies nothing about how a party 

should behave within the rules of the protocol, so it does not constrain the be

haviour of each tactic. The tactics here all concede from their ideal value to their 

reservation value over the course of a negotiation. It may be desirable to prevent 

a tactic from conceding too quickly, resulting in the behaviour shown above. This 

could be done by having a minimum period before the concession value is offered, 

or using other methods. However, if the negotiation reaches the final opportunity 

to make a proposal and the reservation value is not offered, the negotiation may 

well fail. This may be an acceptable solution to a service provider that would 

rather trade off the possibility of losing business against being forced into offering 

a reservation value to a client. 

These experiments show that increasing the amount of time available in which to ne

gotiate does not necessarily increase the utility seen by either party. With increased 

deadlines, the utility of the two parties involved in a negotiation end up closer together 

than with a shorter deadline. With predictable message durations and fixed transmis

sion times, it is possible to choose a deadline value that will maximise the utility of 

one party at the expense of another by forcing the other party to offer their reservation 

value early on. However, this behaviour would be harder to replicate in a real-world 

situation. This is investigated further later in this thesis, when a negotiation engine 

is integrated with the myGrid notification service. The experiments also show that a 

linear time-dependent tactic consistently produces a more predictable outcome, closer 

to the optimum for both parties than other time-dependent tactics. 

4.3.2.2 Multiple Issues 

The previous section concentrated on experiments using a single negotiation issue. Real 

world negotiations are likely to use multiple negotiation issues, as negotiation is often a 

trade-off of one issue against another. We expect that real world negotiations would use a 

small number of issues in order to facilitate trade-offs. With the behaviour using a single 

issue understood, we examine the implications of using multiple issues in a negotiation. 

Again, using only time-dependent tactics, the hypothesis about many issues is as follows: 

As a negotiation involves more issues, the utility remains unchanged from that of nego

tiations involving a single issue (assuming all of the issues are independent). Taking the 

average length of a negotiation, increasing the number of issues should not make negoti

ations take any more time to complete, assuming that all issues concede independently. 
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In order to test this hypothesis , negotiations were run through 500 environments , in 

which the amount of time available for a negotiation was randomised. Using a random 

deadline removes the effect shown in the previous section where, for a given deadline, one 

party always has better utility than the other. The number of issues being negotiated 

over was varied between 1 and 25, and the average utilities are recorded along with the 

average number of messages exchanged in each negotiation. 

As shown in Figure 4.11A, as the number of negotiation issues increases, the utility 

achieved by both the client and supplier does not change significantly. A few fluctuations 

are present, but these are due to the randomised nature of the environments in which 

negotiations are occuring. 
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Figure 4.11B also shows that with a larger number of issues, the same number of mes-
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sages are exchanged in reaching a mutually acceptable proposal. As the issues in these 

experiments are independent and concede as such, the amount of time the negotiation 

takes is constrained solely by the issue with the most restrictive preferences, regardless 

of how many other issues there are. 

4.3.2.3 Execution Time 

The previous experiments use an interval-based time model in which a single message 

can be sent each tick, allowing deadlines to be measured in terms of the number of 

messages that can be sent during the negotiation. This is based on the assumption that 

the time taken to transmit a message is the dominant factor in sending a message, and 

that the processing time is negligible in comparison. To validate this assumption, we 

measured the actual time taken to complete different negotiations. As the components 

of this test are directly coupled, there is no transmission delay and the measured time 

is purely processing time. Our processing time hypothesis is as follows: 

The amount of time taken for a negotiation is directly proportional to the number of 

messages exchanged during the negotiation. 

To confirm this hypothesis, negotiations in 500 different environments were run, each 

one being iterated 500 times to reduce inaccuracies in measurement. The amount of 

time taken for each was recorded, and collected to obtain the minimum, average and 

maximum amount of time taken against the number of messages sent in that negotiation. 

Figure 4.12 shows that the mean time taken for negotiations varies linearly as the number 

of messages exchanged increases. The maximum time has a couple of fluctuations, which 

we have determined to be caused by garbage collection. These are rare enough not to 

affect the mean execution time. From the graph, we can conclude that the time taken 

is linearly related to the number of messages exchanged. 

4.3.3 Experiments with Exponential Tactics 

The experiments in the sections above were run with polynomial time-dependent tactics 

only. To verify that the behaviour observed from these experiments was not restricted to 

this class of time-dependent tactic, we repeated the experiments above using exponential 

time-dependent tactics instead of their polynomial counterparts. The behaviour of these 

tactics was shown earlier in Figure 4.5, and from this figure it can be seen that different 

values of the (3 parameter need to be chosen for these tactics. As such, we have used 

Boulware ((3 = 1), Linear3 ((3 = 5). All other details of the experiments were kept the 

same. 

3 Exponential tactics do not exhibit a true linear behaviour, but we have selected a value for fJ that 
produces a curve closest to the linear behaviour of a polynomial tactic with fJ = 1. 
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In each experiment, the general pattern of the results was the same with exponential 

tactics as it is with polynomial tactics. Hence, we do not show the results here separately. 

Instead we say that the only differences observed were slight variations on the exact 

patterns of utility curves plotted from the results of the experiments . These results did 

not change any of the outcomes of the experiments. For comparison, we show the results 

of the variable deadline experiment side by side in Figure 4.13 below. 
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4.4 Notification Service Scenario 

In the previous section, we described experiments carried out using abstract issues and 

without a particular scenario in mind. In this section, we use a scenario in which the 

negotiation engine is integrated in the myGrid notification service. 
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To illustrate the functionality of Grid-based bioinformatics, myGrid has adopted an 

application that helps scientists study Graves' Disease, a hormonal disorder caused by 

over-stimulation of the thyrotrophin receptor by thyroid-stimulating antibodies secreted 

by lymphocytes of the immune system (Stevens et al., 2003). The Graves' Disease 

application follows an in silica experimental process typical of bioinformatics. In this 

process, the scientist attempts to discover information about candidate genes, makes an 

educated guess of the gene involved in the disease and then designs an experiment to 

be realised in the laboratory in order to validate the guess. This in silica experiment 

operates over the Grid, where resources are geographically distributed and managed by 

multiple institutions. It is a data-intensive Grid in which the complexity is in the data 

itself, the number of repositories and tools that need to be involved in the computations, 

and the heterogeneity of the data, operations and tools (Moreau et al., 2004). Users 

would like the Graves' disease experiment to be run repeatedly as new data is added to 

the knowledge base, and be notified of any changes in the results. 

Our specific case experiment is a simplified version of this scenario - a notification 

service providing notifications from the SWISS-PROT database. SWISS-PROT is a 

curated protein sequence database providing a high level of annotation, minimal redun

dancy and high integration with other databases (EBI, 2003). It can be queried for 

sequences and annotations that are related to specified sequences, and is continually 

expanding: in the four months between two recent releases, the database grew by 7%, 

with an average of 890 changes per day4. 

For our example scenario, we assume 1000 consumers are interested in anything that 

matches 100 different protein sequences, and that a particular similarity search can be 

run with different precision. For simplicity, we represent precision by a number between 

1 and 5, and we assume that a search with precision 2 takes twice as long as a search 

with precision 1. A particular consumer would like their search run as accurately as 

possible, every 8 hours. If we assume that a search with precision 1 takes 1 second, some 

416 hours of CPU time are required every day (1000*100*(24/8)*5 seconds). 

Negotiation is introduced into this experiment using two issues. Frequency represents 

the maximum number of hours between notifications: for the provider, the ideal value 

is 72 hours and the reservation value 12 hours; and for the consumer the ideal value is 8 

hours and the reservation value 48 hours. The second issue is the number of iterations 

of the search. The provider prefers this to be between 1 and 5 and the client between 

5 and 1. The preferences for the provider are kept constant, and a random variation is 

introduced into the client preferences to simulate different clients. Negotiation deadlines 

are between 30 and 60 messages. 

We ran negotiations using the issues described above, and calculated the average out

come. The average frequency was 39.2 hours, and the average number of iterations 

4http://www .expasy.org/ sprot / relnotes / relstat.html 
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was 2.69. These figures lead to 164,912 seconds of CPU time (45.8 hours) , a reduction 

of 89% on simply allowing clients to request arbitrary Quality of Service levels . F ig

ure 4.14 shows the difference in the amount of CPU time required when negotiation 

is introduced , and the corresponding differences in utility seen by both sides using the 

preferences above. 

Introducing negotiation significantly lowers the amount of work the provider must do 

in this case, resulting in a significant increase in provider utility. However, this comes 

at the expense of the client utility; alt hough t here was a very large gap between t he 

provider and client utility previously, the gap has now been reduced. 

Introducing negotiation enables a provider to balance the utility of its clients with its 

workload. Although decreasing the client utility, lowering the amount of work required 

enables it to serve more clients while still satisfying them. 

4.5 Summary 

In this section, we have presented the design of DiNE, a Direct Negotiation Engine 

based on a version of NDF (Faratin, 2000), tailored for use in a situation such as a 

notification service. DiNE is a negotiation engine providing support to other services 

and applications wishing to support negotiation. DiNE allows the services using it to 

vary the level to which they are involved in the negotiation process , giving them access to 

influence the routines of proposal generation and evaluation. Proposals may be generated 

using a combination of system-supplied and host-supplied information, such as the level 

of available system resources. 

We also presented an evaluation of the performance and behaviour of DiNE, using time

dependent tactics, a type of tactic which would be used in real-world applications of 

DiNE in conjunction with resource-dependent tactics taking system resources into ac

count. This allowed us to observe the characteristics of t he system using only these 
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tactics as different parameters are varied. Based on these experiments, we can make the 

following statements about DiNE: 

• In Grid systems, time is often a critical resource. Agreements may have to be in 

place by a particular time in order for a service to run. Knowing how the amount 

of time available for negotiation affects the outcome is an important factor in 

choosing this deadline. In negotiations which have more time available in which 

to negotiate, results give utilities closer to the optimums for both parties. With 

shorter deadlines, the results are more unpredictable; the utilities of the client and 

supplier are further apart than with longer deadlines. 

• Any negotiation mechanism should be fair to all parties involved. If one party 

can predict the outcome of the negotiation before it is run, it can be unfair to 

the other party. If the message transmission time is predictable, it is possible for 

the client to initiate a negotiation using a deadline chosen to produce significantly 

better results for the client at the expense of the supplier. This is due to the 

client being able to predict that the supplier will have to offer its reservation value 

at the expiry of the deadline, causing the supplier to receive the lowest possible 

utility. Unpredictable message transmission times in a real-world implementation 

are expected to mask this effect, making it harder to select a deadline chosen to 

cause this behaviour. 

• Negotiations are typically undertaken over multiple issues, trading one issue off 

against another one. Negotiations involving multiple issues do not take any longer 

to complete than negotiations with a single issue, assuming that each issue is 

independent and concedes as such. 

• When choosing a deadline for negotiation, it is useful to know that there will be no 

factors other than the deadline affecting the amount of time taken. As negotiations 

take longer in terms of the number of messages sent, the processing time taken 

to perform the negotiation is linearly related to the number of messages - the 

system scales predictably. 

DiNE was designed with the context of a notification service in mind, where consumers 

and publishers of information have conflicting preferences about delivery conditions for 

a subscription to notifications. To show the intended benefit of such a configuration, 

our experiment simulating this scenario showed that negotiation enables the load on 

the service provider to be reduced, and the number of clients able to be served to be 

increased. 

In summary, DiNE enables automated negotiation to occur between two services, allow

ing one to request a service from another while specifying conditions about the quality 

of service with which the service is delivered, and having differences in the prefcrcnces 
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about these conditions automatically resolved by DiNE. The evaluation of this nego

tiation is novel work, as it examines the behaviour of time-dependent tactics in more 

depth than other work, discovering the precise behaviour of the tactics with respect to 

predictable deadlines. 

The contributions presented in this chapter were an empirical evaluation of a heuristic

based bilateral negotiation model, showing the behaviour of the model in an isolated 

environment; and a demonstration that negotiation is a suitable model for resolving 

differences between the QoS preferences of a consumer and a service provider in a dis

tributed system. 

DiNE is a direct, bilateral negotiation engine. To enable negotiation in a distributed 

notification service, we need an extension of DiNE where intermediaries can contribute to 

a negotiation, redistributing or reselling items obtained for previous clients. In the next 

chapter, we present a model of chained negotiation enabling this, and develop ChANE, 

a chained negotiation engine. 



Chapter 5 

Chained Negotiation Engine 

In Chapter 4, we established that direct negotiation provides one way of resolving the 

differences in requirements between consumers and publishers of notifications in a notifi

cation service. We developed a negotiation engine, DiNE, to enable mutually acceptable 

values for notification parameters to be automatically determined for directly connected 

producers and consumers, and demonstrated that, by using the negotiation engine to 

manage client demands, the load on the service provider can be reduced, enabling more 

clients to use the same service. In this chapter, we present an evolution of DiNE, ChaNE 

(Chained Negotiation Engine), which supports negotiation via intermediaries (or mid

dlemen). 

5.1 Introduction 

In large-scale deployments of notification services, multiple instances of a NS are likely to 

be hosted at different locations (Krishna et al., 2003) and, consequently, publishers and 

consumers may interact with different NS instances. Typically, they publish messages to, 

or consume them from, their local NS. Such distribution of NSs offers better scalability 

(by avoiding a single NS being responsible for all notifications) and better security (by 

allowing NSs dealing with private topics to be hosted behind firewalls). It is natural, 

therefore, to expect such distributed NSs to be networked (similar to news servers) 

and to be capable of propagating notifications between publishers and consumers. In 

this view, as a result, a common configuration pattern consists of several NSs chained 

between a consumer and publisher; hence, publishers and consumers may be separated 

by several NSs, which we also refer to as intermediaries or middlemen. 

Although distributed notification is more complex, it offers some potential efficiency 

gains. Instead of sending the same notification messages to multiple consumers sub

scribed to the same topic, it becomes possible to propagate a single instance of such 

73 
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a message between NSs to reduce network traffic. We refer to such an optimisation as 

sharing notifications. The difficulty with this, however, is that if consumers can nego

tiate QoS parameters for a subscription, two sets of requirements may be sufficiently 

different that they preclude the sharing of notifications, and hence may impose a higher 

load on the network of NSs. 

Our direct negotiation engine (DiNE) discussed previously in Chapter 4 is unsuitable 

in this context, as it was aimed at directly connected consumers and producers. With 

distributed notification services, by contrast, consumers and publishers are connected 

through a series of middlemen, which can in turn have their own QoS requirements. In 

response, we have designed a negotiation model, which we refer to as chained negoti

ation, in which the consumer and publisher no longer communicate directly; instead, 

negotiation takes place through middlemen, which pass service proposals back and forth 

between publishers and consumers, potentially modifying them in order to satisfy their 

own QoS requirements. 

Furthermore, chained negotiation is designed to promote sharing of notifications. Specif

ically, middlemen record previous commitments of publishers to provide QoS at given 

levels; they not only pass proposals but also attempt to identify existing commitments 

that can be reused to satisfy consumer requirements, potentially impacting on the nego

tiation outcome for the consumer or the publisher. Using these existing commitments to 

satisfy a new consumer represents a gain in efficiency, as without it, a new commitment 

would need to be made between the consumer and the publisher. 

In this chapter, we discuss the design and evaluation of ChaNE, a negotiation engine 

supporting chained negotiation. To demonstrate its effectiveness, we have designed 

a series of experiments that aim to show that using a chained negotiation system in 

conjunction with a distributed notification service enables more consumers to be served 

by a given set of notification services, and that this can be done at the same time as 

reducing the load on service providers. 

This chapter provides a novel contribution - chained negotiation is a new form of negoti

ation that deals with the situation where negotiation takes place through intermediaries, 

enabling the redistribution and/or reselling of items obtained through negotiation, and 

allowing the sharing of subscriptions between intermediaries, reducing the overall load 

on the system by enabling notifications to be shared between intermediaries and con

sumers. Our empirical evaluation demonstrates that chained negotiation is an effective 

way of enabling a consumer and a service provider to resolve differences in their prefer

ences over quality of service, while providing a mechanism for an intermediary to supply 

the requested item or service if it already has a commitment to provide the item to 

another consumer. 

The rest of this chapter IS organised as follows. In Section 5.2 we present chained 

negotiation, and the design of ChaNE, our implementation of chained negotiation. In 
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Section 5.3 we evaluate the behaviour of ChaNE, to determine the costs and benefits 

associated with chained negotiation. Section 5.4 describes a simulation of the intended 

use of chained negotiation, a distributed notification service. Finally, we summarise the 

chapter in Section 5.5. 

5.2 Design of a Chained Negotiation Engine 

In this section we present ChaNE, our Chained Negotiation Engine. ChaNE is an 

evolution of DiNE, and as such builds on many concepts introduced in Section 4.2.2. 

ChaNE encapsulates the behaviour of chained negotiation, enabling other systems to 

make use of chained negotiation functionality. 

5.2.1 Core Concepts 

Before discussing the design of ChaNE, we introduce some core concepts which will be 

used during discussion of chained negotiation, and ChaNE in particular. Firstly, we re

call that direct negotiation takes place between one or more clients attempting to obtain 

products or services from one or more suppliers. Both parties exchange proposals to find 

a mutually acceptable price or set of constraints for the negotiation item. By contrast, 

chained negotiation is an extended form of negotiation, in which a client initiates a ne

gotiation with a middleman. If the middleman cannot provide the requested item itself, 

it will in turn initiate negotiation with a supplier, or potentially another middleman. 

Thus a chain is formed between the client and the supplier. 1 More specifically, middle

men forward proposals between the clients and suppliers so that an agreement can be 

reached, as illustrated in Figure 5.1, where the Client is negotiating with the Supplie7' 

via Middleman1 and Middleman2. The client and supplier at each end of the negotia

tion chain are referred to as end NCs. Messages sent towards the supplier are referred 

to as upstream, whereas messages sent towards the client are referred to as downstream 

messages. Middleman also have ability to modify the messages that they send between 

the client and supplier. For example, a commercial service redistributing notifications 

on a particular topic may have to pay for the initial subscriptions. To recoup this outlay, 

and to provide a return for offering the service, it may add an amount that it will retain 

to the price paid by the consumer. 

Chained negotiation is the general term for negotiations involving middlemen. When 

a chained negotiation terminates successfully, it can be placed into one of two classes: 

1 It is not our intention that chained negotiation deals with the selection of negotiation partners. In 
DiNE, we leave the selection of supplier to an external mechanism such as a directory service. Similarly, 
for chained negotiation, we assume that an external process creates the chain between clients, middlemen 
and suppliers. 
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FIGURE 5.1: Message exchange sequence in chained negotiation 

matched negotiation, which satisfies the client's request by using an existing commit

ment; and unmatched negotiation, which requires a new commitment to be made up

stream. We also define forwarded negotiation as a variant of chained negotiation where 

no existing commitments are used. In the context of a notification service, existing 

commitments are represented by subscriptions held for previous consumers. 

5.2.2 Negotiation Protocol 

The negotiation protocol defines the rules of the negotiation - the parts of the negoti

ation that must remain constant no matter how a participant behaves. Specifying this 

allows a clear distinction to be drawn between the actions that are taken because they 

are specified by the protocol, and those which have been taken due to the influence of 

a negotiation strategy. The protocol consists of the valid participant types, the inter

actions between those participants, the format of the messages, and rules that must be 

followed. 

5.2.2.1 Participant Types 

In a chained negotiation, there are three types of participant: client, middleman and 

supplier. A client is interested in obtaining a product or a service from a supplier, 

and typically has a set of preferences for the ranges of values considered acceptable for 

each issue in a negotiation. A supplier is attempting to provide products or services 

to interested parties. A middleman can act as both a client by obtaining an item from 

another supplier, and a supplier by reselling or redistributing goods or services to other 

parties. 

5.2.2.2 Interactions in Chained Negotiation 

The interactions in chained negotiation are similar to those in direct negotiation, with 

some additional messages to enable multiple parties to agree to a commitment. These 
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interactions are shown in Figure 5.2, and described below. Interactions that differ from 

those in direct negotiation are marked with a (*) in the text. 

Client Client NC Middleman Supplier NC Supplier 

: 1: registerPreferences(item} 
~' 

~ 2: negotiateFor(item, requestee$} 
. ~' 

c:ailback 
:...:::: .......................... . 

3: genlnitProposalO 

4: propose(proposal} ~: 7: propose(proposal} ~~ 

caHback 
!4:::: ................ .. 

~, 

o'Pc, 

5: ge~. Ac'o sO ,0,pC,0~~ 
~ ,\ .. " 

6: sele~ .. tAc io ':0"<;00& 
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:00 
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~ ....... 1-_1_0_: a_c_ce-,-p_t ___ : ... 
10: accept 

1: registerPreferences(item} 

ca~lbad\ 

8: gencountr~;~~~~~i() .~ 

. ............ ~ 

: success(acceptableProposal} 

11: confirmaccept ~' 11: confirmacce~ _________ ~~. 

success(acceptableProposal} , 

FIGURE 5.2: Interactions in a chained negotiation 

1. Preference Registration 

Before the negotiation begins, both parties initialise their respective negotiation 

component (NC) with a set of preferences for the items they are interested in or 

are making available. The preferences consist of two values, an ideal value and 

a reservation value which, combined, represent the extent of the range the host 

considers acceptable for a specific issue. 

2. Negotiation Initiation 

The client gives its NC an instruction to begin the negotiation process. In order to 

constrain the amount of time a negotiation can take, a deadline is specified as the 

negotiation is started. Not only does this ensure that a negotiation will complete, 

it also ensures that if the item is required in a specific time frame, the negotiation 

completes in time for delivery to take place. 

3. Initial Proposal Generation 

The client's NC generates an initial proposal ready to send to the supplier's nego

tiation component. Typically, this would be the client's ideal values for all of the 

issues involved in the negotiation. Optionally, this step can involve callbacks to 

the client in order that the client may influence the initial proposal generation. 
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4. Proposal Transmission 

The negotiation process now enters a cycle, initiated by a proposal being transmit

ted. The communication mechanism is left unspecified - the host must implement 

a reliable message transport for message delivery, as no checks are performed to 

ensure message delivery. The message is sent to the closest middleman. 

5. Action Generation (*) 

Once a middleman receives a proposal, it must decide what to do with it. The 

protocol does not specify behaviour here; only that it should transmit a proposal 

to either the upstream or the downstream party in the negotiation. The proposal 

can be forwarded unaltered, or the middleman could change some values for the 

issues in the proposal. A series of actions are generated covering the different 

messages to consider sending. 

6. Action Selection (*) 

The list of actions generated in the previous stage are evaluated, and the best one 

is selected for execution. The message from this action is sent to the intended 

destination in the next stage. 

7. Proposal Transmission/Forwarding (*) 

The message from the action selected in the previous stage is sent onto the next 

NC in the chain - this could be an end NC, or another middleman.. Eventually, 

this stage results in a message reaching an end NC. 

8. Counter-proposal generation 

When a proposal is received by an end NC, a counter-proposal is generated. Fur

ther details of proposal generation by end NCs can be found in Section 4.2.5.3. 

As with the initial proposal generation, counter-proposal generation can involve 

callbacks to the NC in order to retrieve external environmental conditions such 

as the current system load, or to allow p to provide a custom proposal generation 

routine. 

9. Proposal Evaluation 

Once the counter-proposal is generated, both the generated counter-proposal and 

the recently received proposal are evaluated using p's utility functions. A compari

son is made between the score of the counter-proposal and the received proposal. If 

the counter-proposal has a higher utility, it is transmitted to the other negotiation 

component (return to step 4). If the received proposal has equal or higher utility 

than the generated counter-proposal, the situation is considered acceptable. 

10. Proposal Acceptance (*) 
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FIGURE 5.3: Example of Interactions in a chained negotiation 

Once an acceptable state has been reached, one party issues an accept message to 

indicate that they consider the values for the issues in the proposal to be accept

able. This does not cause a commitment to be made; it merely signifies that the 

party is prepared to commit to the values in the acceptable proposal. A reliable 

communication mechanism is assumed, as each party needs to be sure that all 

involved parties are prepared to commit before proceeding. 

11. Make Commitment (*) 

Once an accept message reaches the client in the negotiation, a state has been 

reached where there exists a party somewhere upstream of the client that is pre

pared to supply the client with the requested negotiation item using the values 

for the issues in the acceptable proposal. At this point the client senJs a message 

upstream, initiating a commitment. This message is propagated further upstream 

by the middlemen to the party supplying the item (this could either be the supplier 

or one of the middlemen in the chain). 

For the client and supplier, the interactions they have when negotiating directly with 

each other are identical to those when interacting with a middleman, therefore there is 

no difference for them between direct and chained negotiation in ChaNE. 

The different combinations of these interactions form interaction patterns. Interaction 

patterns are affected by a number of factors, including the number of middleman in 

a negotiation, the number of existing commitments held by the middlemen, and the 

strategies and preferences in place at the middlemen. For this reason it is not possible 

to show all possible interaction patterns, but examples permitted by the protocol are given 

in Figure 5.3. It is worth noting that although these interactions are possible within 

the protocol, the figure on the right requires the strategy for a middleman be capable of 

generating proposals not based on simply forwarding or offering existing commitments 

- the strategy which we will present does not support this and it is left for future work. 

The pattern of using Accept and ConfirmAccept messages is used in response to the 

difficulty of enabling acceptance by multiple parties. When only two parties are involved, 

the presence of an Accept message indicates that the other party accepts the proposal, 
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and this can be turned into a commitment very easily. When more than two parties are 

involved, all have to "agree to agree" on something first - Accept messages indicate 

that each party agrees to a particular proposal, and then a ConfirmAccept message is 

used to initiate turning the agreement into a commitment. This is a variation of the 

two-phase commit approach (Gray, 1978) used for distributed databases to commit an 

action atomically. In DiNE, commitments are not actually made within the NCs -

it is left to the host components to arrange a commitment separately. We chose to 

add commitment making into ChaNE rather than have hosts arrange this because of 

the added complexity of getting multiple parties prepared to commit to something, and 

because otherwise, clients and suppliers would need to be aware that they are part of a 

chained negotiation, interacting with all of the involved parties. 

5.2.2.3 Message Structure 

In the process of a chained negotiation, messages are exchanged between parties con

veying offers and other information. Four different types of message are used: 

• Propose 

Propose messages convey an offer from one NC to another, with a set of values 

proposed by the sender for each of the issues in the negotiation. 

• Accept 

Accept messages indicate that the sender is prepared to accept the proposal ref

erenced in the message. 

• ConfirmAccept 

A ConfirmAccept message indicates that a commitment is being made to the 

proposal referenced in the message. No party should receive a ConfirmAccept 

message referencing a proposal they have not previously accepted. 

• Terminate 

Terminate messages are used to signify a negotiation failure or explicit termination. 

A reason field is contained in the message to indicate to the other party why the 

negotiation failed. 

As in the messages used in direct negotiation, all of the messages contain a common 

message header, used for identifying the type of message, sender and recipient, and 

the negotiation it is related to. Additionally, chained negotiation messages also contain 

fields holding the distance upstream and downstream, measured in number of hops, to 

each end of the negotiation chain. The need for this field is explained in Section 5.2.2.5. 

These fields are populated by the end NC setting the distance from itself to zero when a 
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Message Field Name Description 
MessageType Identifies the type of this negotiation message 
SenderID Identifier for the sender of this message 

(All) RecipientID Identifier for the recipient of this message 
N egotiationID Unique identifier for this negotiation 
Dist Upstream Distance between sender and supplier in hops 
DistDownstream Distance between sender and client in hops 
ProposalID Unique identifier for proposal in the negotiation 

Propose Item Item this negotiation is for 
Elements List of values for issues in this negotiation 
TimeRemaining Amount of time remaining in this negotiation 

Accept ProposalID ID of the proposal being accepted 
TimeRemaining Amount of time remaining in this negotiation 

ConfirmAccept ProposalID ID of proposal that was accepted 
TimeRemaining Amount of time remaining in this negotiation 

Terminate Reason Reason for the negotiation being terminated 

TABLE 5.1: Chained Negotiation Message Structure 

message is sent, and by middlemen incrementing the field for the distance in which they 

are sending. Details of the fields found in the message header, as well as the specific 

messages, may be found in Table 5.1. 

5.2.2.4 Rules 

Chained negotiation is governed by a set of rules ensuring that all negotiations follow 

a prescribed pattern and have sufficient information to complete successfully within a 

specified period, assuming that the preferences of the parties involved overlap sufficiently 

so that an agreement is possible. If the preferences do not overlap, no agreement can be 

reached. These rules are discussed below. 

1. NCs upstream of the client can only send Accept messages downstream if they can 

provide the required item. 

For any negotiation component further upstream than the client (i.e. the supplier 

or any of the middlemen), they must not send an accept message downstream 

without first having either: 

(a) matched the current negotiation to an existing commitment it holds that is 

capable of fulfilling the negotiation; or 

(b) received an accept message from the party directly upstream in the negoti

ation, indicating that they are definitely able to supply the item under the 

conditions in the accepted proposal. 

If this rule is adhered to, the case where a client agrees to buy something the seller 

cannot actually provide will not arise. The rule is not enforcible - the protocol 
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does not allow the client to verify that there is an upstream agreement in place to 

satisfy an accepted proposal. However, it is rational that this rule would be obeyed 

- failure to deliver an item for which a contract has been made could result in 

penalties or loss of reputation (Zacharia et al., 1999). Verifying compliance with 

this rule is beyond the scope of this work and is left for future work. 

2. Propose and Accept messages can only be sent if there is time remaining before 

the deadline. 

The deadline specified by a negotiation indicates the amount of time remaining in 

which an acceptable proposal can be found. By the time the deadline expires, the 

client should have received an Accept message from upstream. If this is the case, 

Rule 1 means that all parties involved in the negotiation have found an acceptable 

proposal and are prepared to make a commitment. All that remains is for the client 

to initiate the ConfirmAccept messages. This message can be sent at any time up 

to and including the deadline, as it will be propagated to the party fulfilling the 

negotiation without delay. 

3. Only send a message if the reply can reach the client before the deadline. 

Proposals are often generated using the amount of time remaining before the dead

line as one of the controlling factors in the rate of concession (see Section 4.2.5.3). 

The amount of time remaining before the deadline also influences which direction 

a middleman should choose to negotiate in. Rule 2 states that the negotiation 

must have found an acceptable proposal by the time the deadline expires if the 

negotiation is to be successful. For this to be possible, a middleman must ensure 

that before sending a message to an upstream party there is enough time remaining 

for the reply to be received and forwarded back to the client before the deadline 

expires. Implications of this rule are discussed below. 

5.2.2.5 Distance to Client and Supplier 

In order to satisfy Rule 3 above, it must be possible for a middleman to determine 

how long it will take for a reply to reach the client. This is done by adding a field 

to the messages to hold the distance to the client, measured in number of hops. It is 

also possible to hold the distance to the supplier using the same method. This section 

discusses the implications of using these distances. 

Without knowing the distance to client and supplier a party is negotiating with, they 

must make an assumption about the distance. Clients and suppliers know their down

stream and upstream distances respectively are both 0, but may not know how far away 

the other is. Middlemen can be an unknown distance from both ends. A middleman 

could assume that it is directly downstream and upstream of the party, i.e. a distance of 

1 in each direction, but this assumption being incorrect causes two separate but related 
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problems: an inability to determine whether there is time to negotiate upstream; and an 

inability to correctly determine the amount of time remaining before a final concession 

can be made. 

If a NC is unable to correctly detect that there is sufficient time to send a proposal 

upstream so that a reply can reach the client, it will not be possible for an Accept message 

to reach the client before the deadline expires. Rule 2 states that only ConfirmAccept 

messages can be sent after the deadline has expired, and Rule 1 means that only the 

client can initiate ConfirmAccept messages. Because the client will not receive an Accept 

message, the negotiation will fail due to deadline expiry. This is illustrated in Figure 

5.4, where a chained negotiation is taking place with two middlemen. M iddleman2 does 

not know the distance to the client, and assumes this to be 1. This enables it to send a 

proposal upstream to the supplier, although there is no time for the reply to reach the 

client, so the negotiation fails due to deadline expiry at Middleman1. 

The second problem arising from not knowing the distance to the client and supplier 

is that it is impossible to accurately determine the last possible moment at which a 

final concession should be made. With time-dependent tactics (see Section 4.2.5.3), the 

reservation value is offered at the last possible moment. The last possible moment is not 

at the deadline, as it would not be possible for this final offer to be received by anyone. 

Instead, it must be made at the latest time at which it is possible for the message to be 

received by the opponent, and for a reply to reach the client before the deadline expires. 

Client II Middleman~1 Middleman211 Supplier I 
·5 ........................ ~ 

~: ........... ~ 
x.. .................... . 

remaining time 
..... ~ 

FIGURE 5.4: Example of negotiation failure when not using distance to client 

To illustrate this problem, consider the example shown in Figure 5.5. A client c and 

supplier s are negotiating for an item via middleman mI, with the negotiation involving 

a single issue. The preferences of both parties have an overlapping region, so that it is 

possible for an agreement to be made. The acceptable range of c for the preference is 

[10:50], and for s is [80:40]. Proposals are forwarded unchanged by mI. The negotiation 

begins with an initial deadline of 8. In this example, s knows the distance to c is 2, but 

c does not know the distance to s and assumes it is 1. 

The first proposals issued by c and s contain their ideal values from their preferences, 

indicating what value they would like to get. This causes a problem when c receives 

the proposal from s, since the value in the proposal is not acceptable and a counter

proposal is generated. The remaining time at this point is 4, indicating that there is 

still enough time to make a proposal to the party directly upstream, receive a reply, 

and then offer the reservation value if necessary in the next step. However, the party 



Chapter 5 Chained Negotiation Engine 84 
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r = remaining time 
v = value in proposal 

FIGURE 5.5: Example of reservation value being missed not using client distance 

directly upstream is actually a middleman forwarding the proposals onto s. This causes 

the message to take longer than expected to come back. Supplier s correctly realises 

that as the remaining time is now 2, it is its last chance to make an offer in time to get to 

c, so offers the reservation value. This value is actually within the preferences of c, but 

as the deadline has elapsed and c has not received an accept message, it is impossible 

to make a commitment. If c had known that the distance to s was actually 2, when the 

remaining time was 4 it would have offered its reservation value, which would have been 

accepted by s and the negotiation would have been successful. 

To avoid the problems discussed in this section, all messages sent in chained negotiation 

carry a field containing the distance of the message sender to both the client and supplier. 

The contents of these fields are calculated automatically - the client and supplier set 

the distance to themselves to be zero when they send a message, and when middlemen 

send a message upstream, they increment the distance downstream by one (and vice 

versa). The client and middlemen do not know the distance to the supplier until a 

message has been received by the supplier and a reply sent downstream, enabling the 

distances to be calculated by all of the NCs in the chain. 

5.2.3 Negotiation Strategies 

The previous section described the negotiation protocol - the rules that constrain all 

behaviour within chained negotiation. However, actions within this protocol have to 

be defined before chained negotiation can occur. The negotiation strategy controls how 

each participant behaves within the protocol. In chained negotiation, the behaviour of 

the client and supplier is no different from parties in direct negotiation, albeit with the 

minor modifications to the protocol described in the previous section. For this reason, 

the strategy described below applies only to middlemen, as the reasoning involved III 

middlemen is significantly different to clients and suppliers. 

Figure 5.6 shows an overview of the data flow in the negotiation strategy. A context 

store holds information on every negotiation, including all messages sent and received so 

far, and details of the participants and item in the negotiation. The commitment store is 

used to record details of commitments that have already been made for previous clients. 
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FIGURE 5.6: Data flow in ChaNE 

Messages are received using the Message Transport layer and stored in the context store, 

before the action generation routine uses the context and commitment stores to generate 

a series of potential actions to be taken. Actions are messages that can potentially be 

sent. The best action is then selected using the action selection routine, and the message 

from that action is added to the context store before being sent to its recipient using the 

message transport. The action generation and selection routines are described below. 

5.2.3.1 Action Generation 

Actions are the major part of chained negotiation - they comprise a message which 

would be sent if that action was to be chosen. This message can be either a proposal, 

or an accept message. Actions are generated in two main ways: 

• Commitment Matching: Proximity functions (described below) are used to select 

existing commitments that are close (i.e. similar values for the issues under nego

tiation) to the last received proposal from downstream. As they are close to the 

last received proposal, they are more likely to be acceptable to that party than 

one further away. The commitments selected by the proximity functions are made 

into proposals to be sent back downstream. No upstream proposals are generated 

using this method. 

• Proposal Forwarding: The last received proposal from upstream is copied as a 

proposal to be sent downstream, and vice versa. The proposal elements are left 

unchanged. 

• Proposal Modification: The last received proposal from upstream is copied as a 

proposal to be sent downstream, and vice versa. During the process of copying the 

proposal elements, some of them may be altered by the middleman, for example 

so that it can take some of the cost element of the proposal as profit for operating 

the service. 
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Not all of the above methods are used to generate actions in all negotiations - nego

tiations where the middleman is not trying to make a profit do not use the proposal 

modification method, for example. Each method may generate any number of actions, 

which are evaluated using the scoring functions described below. It is also possible to 

add extra routines for generating actions here - potential future work includes gener

ating proposals speculatively, allowing a middleman to anticipate high demand for an 

item and try to obtain this at a high QoS to potentially satisfy many clients. 

5.2.3.2 Proximity Functions 

Chained negotiation uses proximity functions to determine whether one proposal is sat

isfiable by another proposal or commitment. Proposal PI is satisfiable by P2 if each 

element of P2 is at least as good as its counterpart in PI (from the point of view of the 

sender of PI)' and the negotiation item of each proposal is the same. 

-1 if Subj (PI) i Subj (P2) 

o if Elements(PI) = Elements(P2) 

< 0 if PI not satisfiable by P2 

2: 0 if PI satisfiable by P2 

Proximity functions are used to determine appropriate existing commitments. A thresh

old is used to determine which commitments are appropriate - if the middleman is only 

forwarding proposals, a threshold of 1 will ensure that any time a commitment is se

lected, it should be accepted by the client. A threshold of slightly less than 1 allows 

commitments that are very close to be selected, and these might be acceptable when the 

client makes its next concession. However, in the next section we will show that prox

imity functions are also used by scoring functions to rank actions, and using a threshold 

of less than 1 can cause a problem here when matched commitments that are very close 

to, but less than, 1 are ranked higher than a forwarded proposal close to the deadline, 

causing the negotiation to potentially fail if it is not accepted. 

5.2.3.3 Action Selection 

Each time a message is received, the best course of action must be selected. To determine 

this, chained negotiation uses scoring junctions, which assign a score to a particular 

action. They are required because multiple actions are generated every time, and the 

most appropriate one must be selected. ChaNE has been designed to allow additional 

scoring functions to be supplied by the host, but core scoring functions are necessary to 

control the behaviour of chained negotiation. We have defined the following core scoring 

functions: 
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• Proximity 

Proximity functions as described in Section 5.2.3.2 are used to select actions that 

are closer to being acceptable, which occurs when the proposal they contain is 

closer to the last received proposal from the party to which the action will be sent. 

This allows different ways of generating proposals to be used, and the best one 

selected. Actions containing proposals that are close to the last received proposal 

are given a higher score than those that are further away by this scoring function. 

• Acceptable actions 

This function gives a higher score for actions that would directly lead to an accept

able state, such as accepting a proposal already received. This function addition

ally gives a higher score for an action that would reuse an existing commitment. 

It favours actions that complete the negotiation earlier, and those that incur less 

cost by reusing an existing commitment. 

• Path least recently chosen 

In the early stages of a negotiation, there may be no reason to score the forwarding 

of a proposal upstream any differently to sending a proposal downstream. This 

could lead to the situation where the negotiation does not proceed because no 

messages are ever forwarded upstream. Considering the two directions in which to 

negotiate, this function gives a higher score for the direction least recently used. 

For example, if the last message was sent upstream, downstream actions get a 

higher score. If the last five messages were sent upstream, downstream actions get 

a significantly higher score from this function. The scoring function can also be 

used to bias a middleman into favouring one side of a negotiation. For example, it 

may be configured to do as much of the negotiation as possible without involving 

the client, which could be on a low-power device or connected via an unreliable or 

slow connection. 

Actions are evaluated using a weighted average of all of the configured scoring functions. 

5.2.3.4 Negotiation Algorithm 

The significant part of chained negotiation occurs when a message is received by a 

middleman, which generates a set of possible actions (each including a message to be 

sent), and then executes the best action, as shown in Algorithm 3. 

Initially, the most recently received message from each side is collected. The middleman 

looks for a commitment that can satisfy the last message from downstream using a 

proximity function, as described above. If one is found, or if an accept message from 

upstream has been received matching the downstream message, an action is generated 
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Algorithm 3 Processing Propose and Accept messages 

msgd =getLastDownstreamMessageO 
msgu =getLastUpstreamMessageO 
msg =mostRecentMessage(msgd, msgu ) 

if remainingTime = 0 then terminateWithFailureO 
if findCommit(msgd) or hasUpstreamAccept(msgd) then 

actions.add(makeAction(ACCEPT, down, msgd)) 
end if 
if t rem 2:: (dist D + 2 * distu) then 

actions.add(makeAction(PROPOSE, up, msgd)) 
end if 
if msgu != null then 

actions.add(makeAction(PROPOSE, down, msgu )) 

end if 
a =selectBestAction (actions) 
execu teAction ( a) 
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to accept the downstream message. Otherwise, proposals from upstream are passed 

downstream, and from downstream to upstream. Note that messages will only be sent 

upstream if there is time for a reply to reach the client. The middleman may modify 

a proposal at this point (to make a profit) but this is omitted from the algorithm for 

clarity of presentation. Finally, the best action is selected and executed. 

5.3 Experimental Evaluation 

In the previous chapter, we presented an experimental evaluation of DiNE, our direct 

negotiation engine. This evaluation focused on core elements of the negotiation which 

would be present in any negotiations using DiNE. In this section, we evaluate the per

formance and behaviour of ChaNE, repeating the experiments in the previous chapter 

to examine any differences in behaviour, so that the implications of using chained nego

tiation can be determined. 

In addition to the experiments performed previously, we examine behaviour traits spe

cific to chained negotiation, such as the effect of middlemen taking a cut from negoti

ations. To evaluate the behaviour of ChaNE, we present four experiments: in the first 

experiment we vary the amount of time available in which to negotiate to observe the 

impact of chained negotiation; in the second experiment the number of middlemen is var

ied; in the third experiment we observe how chained negotiation behaves with multiple 

negotiation issues; and in the final experiment we examine the effect of the middleman 

making a profit by taking a cut of the proposals. 
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5.3.1 Experiment Setup 

The experiments in this section all share the same basic structure as described in Section 

4.3.1, where all variables controlling the outcome of a negotiation, such as the time 

available in which to negotiate, and the preferences of the parties involved, are grouped 

into an environment. Both the end NCs (the client and the supplier) use the same set 

of tactics described earlier (Boulware, linear and conceder polynomial time-dependent 

tactics). In each experiment, every tactic is run against every other tactic (including 

itself) . 

In a negotiation, clients and suppliers usually try to maximise their utility. Middlemen 

can exist to benefit the community they serve, or to make a profit by reselling items. We 

expect that when reusing existing commitments, clients receive a higher utility because 

of chained negotiation, as a favourable commitment may already be in place, instead of 

having to negotiate again with the supplier, whose preferences may have changed since 

the first agreement. However, it is harder to measure the benefit to the utility of the 

supplier, since it requires the assignment of utility to the case in which another client 

is satisfied without the supplier having to do anything. Instead, it is better to consider 

benefit in terms of being able to satisfy more clients and, consequently, we concentrate 

on client utility in these experiments. Comparisons are drawn again to the optimal 

utilities, calculated as described previously in Section 4.3.1.1. 

5.3.2 Hypotheses and Results 

5.3.2.1 Variable Negotiation Deadline 

When an agreement must be in place by a certain time, deadlines are specified by which 

a negotiation must have completed. In direct negotiation, it was shown that a longer 

deadline leads to outcomes closer to the optimal utilities for each party, and shorter 

deadlines give a greater difference between the utility of the client and supplier. Shorter 

deadlines also increase the chance of a negotiation failing to make a deal. 

In chained and forwarded negotiation, a single middleman is used for this experiment. 

Here, the amount of time taken for a message to be sent from the client to the publisher 

at the end of the chain is higher than in direct negotiation, which could lead to differing 

behaviour as deadlines are varied. In this experiment, we examine the behaviour of 

negotiation over a number of environments as the deadline is varied between 1 and 100 

messages. We also record the amount of time taken in each negotiation. 

Hypothesis: With longer deadlines, chained negotiation produces utilities closer to the 

optimal set of values. As the deadline increases, chained negot'iation completes in less 

time than forwarded and direct negotiation. 
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Figure 5.7 shows the behaviour t hat results. First , direct negotiation increases above 

the optimal utility as soon as the deadline is long enough for a single negotiation. Then, 

it converges towards a level slightly lower than the optimal line in an oscillating manner , 

which is explained below. Forwarded negotiation follows a similar pattern , except that 

the period of the oscillation is greater, and convergence takes longer. Chained negotia

tion also oscillates, but t his converges towards a significantly higher ut ility than direct 

and forwarded negotiations . This is because once a good commitment has been found, 

it can be reused for many subsequent negotiations. From Figure 5.8, it can be seen 

that the number of negotiations matched to existing commitments is very high, reusing 

commi tments for most negotiations (over 95%). 
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The oscillations in the utility of the consumer and supplier occur in each type of nego

tiation. To explain this effect, consider direct negotiation, where messages take a fixed 

amount of time to be transmitted (one period). Assuming that each party replies as 

soon as possible, it is possible to calculate which party is able to send the last message, 

as the deadline is measured in periods. This party will always be the one who offers 

their reservation value (the limit of the concessions they are prepared to make) if the 

negotiation has not completed by this point, indicating that they will receive the lowest 

possible utility for that deal. Thus, in direct negotiation, if the deadline is increased 

by 1, the two parties will swap over and the other will become the one to make the 

final concession, so that they receive the lower utility, causing the oscillations in the 

graph. Because in chained negotiation the time taken to send a message from client 

to supplier increases, the period of the oscillations is greater (twice the amount of time 

taken to send a message from client to supplier). The curves converge because where 

the negotiations complete before the deadline, more time in which to negotiate means 

that a mutually acceptable value closer to the ideal value can be found. For both direct 

and forwarded negotiations, if the supplier utility curve is plotted on the same graph, it 

oscillates at the same period, but out of phase with the client utility, as an increase in 

client utility comes at the expense of supplier utility. This behaviour was also seen in 

direct negotiation (Section 4.3.2.1). 

Figure 5.9 shows the number of messages used in the negotiations in this experiment. 

On average, for any instance, direct negotiation and forwarded negotiation exchange the 

same number of proposals, linearly related to the deadline. Chained negotiation uses 

significantly fewer messages on average since, when an existing commitment is suitable, 

it is identified quickly. Thus we can conclude that once chained negotiation makes some 

initial commitments, further negotiations will take less time than direct and forwarded 

negotiations. 

5.3.2.2 Number of Middlemen 

The previous experiment examined the behaviour of the three types of negotiation as 

the deadline was increased, but using only a single middleman. Chained negotiation 

is likely to involve multiple middlemen, so we also need to examine behaviour as more 

middlemen are introduced. 

Hypothesis: As more middlemen are introduced, the utilities seen by the client and 

supplier will be further from the optimal. Additionally, the oscillations in utility will be 

larger due to the increased transmission times. 

Figure 5.10 shows that as the number of middlemen increases, the shape of the curve 

for the client utility with an increasing deadline does not change. However, the period 

of the oscillations of each curve increases as the number of middlemen is increased. 
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T his is due to t he increased time it takes to send a proposal between the consumer and 

the supplier. However, with a larger number of middlemen, the client utili ty converges 

towards t he same high value as with a single middleman, as in chained negotiation , 

existing commitments will be used where possible, and these are matched by the closest 

possible middleman. 
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5.3.2.3 Variable Number of Issues 

When using a single issue, it is easy to match a new negotiation to an existing com

mitment. As more issues are introduced, the negotiation must find a proposal where all 

issues are satisfied by an existing commitment to avoid having to make a new one. In 

this experiment, we vary the number of issues in a proposal and determine how it affects 

the level of re-used commitments and utility received. A single middleman is used for 

forwarded and chained negotiation. 

Hypothesis: As the number of issues increases, chained negotiation satisfies fewer ne

gotiations with existing commitments, but utility remains largely unaffected. Forwarded 

negotiation is not affected by the number of issues 
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FIGURE 5.11: Amount of matched negotiations with variable number of issues 

Figure 5.11 shows that in chained negotiation, as the number of issues is increased, 

the number of negotiations that can be satisfied using existing commitments decreases. 

Since matched negotiations generally have a higher client utility than unmatched ones, 

client utility decreases, but only converging towards the levels of forwarded and direct 

negotiation (as seen in Figure 5.12). If all issues are independent and concessions are 

made on each of them simultaneously, forwarded and direct negotiation are not affected 

by the number of issues. This is because the negotiation is constrained by the most 

restrictive issue rather than a combination of all issues. 

Figure 5.12 also shows that as it gets harder for proposals to be matched by an existing 

commitment (i.e. as the number of issues increases), the performance of chained nego

tiation drops to the level of forwarded negotiation. From this , we can say that chained 

negotiation always performs at least as well as forwarded negotiation in this experiment. 

Chained negotiation will always perform at least as well as forwarded negotiation when 
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attempting to match to existing commitments using the strategies we have described in 

this chapter . 

5.3.2.4 Middleman profit rate 

In both forwarded and chained negotiation, the middleman is able to modify a proposal 

before passing it onto the supplier, enabling the middleman to add a profit onto any 

cost issue in the proposal. However, if a middleman is making a profit, it becomes 

harder for the client and supplier to reach an agreement , and negotiations may fail. 

In this experiment , we examine the effect of a single middleman adding a profi t to a 

proposal on forwarded negotiation. The proposals contain an issue representing the 

amount charged for the item. 

Hypothesis: As the middleman adds more profit, more negotiations will fail to reach 

an agreem ent. Additionally, the client utility and supplier utility will fall . 

Figure 5.13 shows that as t he middleman adds an increasing amount onto a proposal as 

profit, the utility seen by both the client and the supplier decreases. As t he profit rate 

reaches 60%, both utilit ies are very low. Not shown on the graph is the success rate -

the percentage of negotiations that complete successfully, which decreases in the same 

way as utility, reaching 0 at 70% profit . This means that as the profi t rate is increased , 

more negotiations will not reach an agreement , which is bad for all concerned. Also 

shown on the graph is the average profit made by t he middleman per negotiat ion. Up 

to about 25%, this increases steadily. However , above 30%, too many negotiations fail , 

bringing the profit rate back down again . 
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It is possible to combine these utility curves with the profit made by the middleman to 

calculate a ut ility to t he system as a whole. To do this, we normalise the utilities of the 

client and supplier , so that their utility (Uc and Us) with no profit taken is 1, and create 

a utility function for the middleman 

U
m 

= prof 
profmax 

where prof is the total amount of profit made by the middleman for that cut rate, and 

profmax is the maximum value of prof. We then combine these using a weighting w 

(0 <= w <= 0.5) to form an additive utility function U: 

U = (1 - 2w)Um + 2wUc 

Values of w close to 0 favour the utility of the middleman, and values closer to 0.5 

favour the utilities of t he client and supplier. F igure 5.14 shows additive utility curves 

for different values of w, and indicates that for all weightings, overall utility drops with a 

profit rate of above 30%. When favouring the utility of the middleman more, a profit rate 

of 20-30% gives a high overall utility. However, it can be seen than with any weighting, 

as t he profit rate is set too high (above 40%), utility for the whole system begins to drop 

rapidly. 

5.4 Sharing of Notifications 

Chained negotiation in the context of a distributed notification service can reduce the 

degree of redundancy required in sending notifications, thereby increasing the number 
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FIGURE 5. 14: Additive Utilities with different weightings 

of consumers a single publisher can serve. To show how this might happen, we set up 

a simulation shown in Figure 5.15, where 4 NSs are connected together in a chain , with 

the end of the chain being connected to a publisher. A large number of consumers are 

then spread evenly between the NSs and begin to request subscript ions with different 

parameters . Additionally, the publisher and each NS are assumed to be able to make 

a maximum of 500 commitments downstream, which leads to a theoretical optimum of 

1997 consumers served (ns1,2,3 serving 499 consumers and 1 middleman each , and ns4 

serving 500 consumers), with t he publisher only having made a single commit ment. This 

case is then contrasted with the case where all of the consumers communicate directly 

with the publisher. We then compare the number of consumers satisfied in each case. 

p 

c c c c 

FIGURE 5.1 5: Consumers (c) connected via notification services (ns) to publishers (p) 

As the publisher can only support 500 commitments, the case of direct negotiation 

showed that only 500 consumers could be supported. However , when the clients used 

t heir individual NSs using chained negotiations, many of the requests could be satisfied 

using existing subscriptions, sharing t he notifications between consumers with similar 

requests . Here, 1911 consumers were satisfied before each NS reached their commit

ment limit , as shown in Figure 5.16. At this point, the publisher had only made 31 
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commitments, and was still able to satisfy many more consumers. 
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FIG URE 5.16 : Consumers served and publisher 's subscriptions with and without 
chained negotiation 
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The experiment was extended to allow middlemen to be arranged different ly in a t ree 

pattern , rather than the linear chain above. The arrangement was controlled by two 

parameters , d and w . These are illustrated in Figure 5.17. The depth of the t ree 

is limited by the parameter d, the length of the chain between the provider and the 

furthest middlemen, and w limits the width of each node in t he t ree (the number of 

middlemen connected downstream of any given middleman). The provider and each of 

the middlemen were limited to making 100 commitments. The clients and providers used 

linear time-dependent tactics , and were run through 150,000 environments . The number 

of successful negotiations was counted and used as the metric fo r this experiment. 

d=3, w=1 

D provider 

o middleman 

d=2, w=3 

FIGU RE 5.17: Examples of arrangement of middlemen 

The comparison for this experiment is again the case where clients negotiate directly 
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with the provider, in this case only allowing 100 negotiations to complete successfully. 

With the middlemen arranged in a tree pattern, many more negotiations completed 

successfully. Figure 5. 18 shows the number of consumers satisfied using different numbers 

of notification services acting as middlemen. As the number of middlemen at each node 

of the tree is increased, t he number of successful negotiations increases. With d = 1, this 

increase is linear as each middleman only satisfies its own clients - each middleman 

makes the maximum amount of downstream commitments, while only requiring the 

publisher to make a small number of commitments , as shown in Figure 5.19. As the 

depth of the tree is increased , the increase in number of satisfied consumers becomes 

exponential as the number of child NSs at each parent NS increases . The number of 

commitments made by the publisher reaches its maximum with a lower number of child 

NSs per parent as the depth of the tree increases, while still allowing a large number of 

consumers to be satisfied. 
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FIGURE 5.18 : Consumers served with NS tree 

However, as the number of overall middlemen in the system increases, a point is reached 

where the number of clients served starts to decrease, due to middlemen on the path 

to the supplier reaching their commitment limit. Chained negotiation works well when 

there are a large number of negotiations to form good commitments for other clients. 

When the number of middlemen is increased too far, the clients are spread around the 

tree too thinly to make and reuse good commitments efficiently. We checked this by 

repeating the experiment with a lower commitment level, restricting the middlemen and 

provider to 25 commitments . As shown in Figure 5.20, the decrease in number of clients 

served occurred with lower numbers of middlemen, proving this explanation. 

Using negotiation in this scenario enables a single provider to serve significantly more 

consumers through middlemen than if they subscribing directly to the provider. The 

amount of increase in the number of consumers is controlled by the configuration of 
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FIGURE 5.20: Consumers served with NS tree using lower capacity limit (25) 

middlemen - a tree pattern gives the largest increase, but if the number of middlemen 

becomes significantly large, some clients may be precluded from making deals due to 

commitment limits being reached upstream of them. 

5.5 Summary 

In this chapter , we have presented the design of ChaNE, a Chained Negotiation Engine. 

This system represents an evolution of DiNE, the Direct Negotiation Engine presented 

in Chapter 4, and enables services to be made available with the possibility of being 
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redistributed or resold. The use of ChaNE in a notification service allows the services 

provided (i.e. notifications on a particular topic) to be shared amongst multiple con

sumers, sharing subscriptions between groups of consumers with similar interests, and 

enabling the NS to share notifications between then when a notification arrives. 

We presented an evaluation of the behaviour of chained negotiation to determine its 

impact in comparison to direct negotiation. Chained negotiation introduces extra steps 

to the process of negotiation, so an evaluation demonstrating that the benefits of using 

chained negotiation outweigh the costs involved shows that it is a useful technique. These 

evaluations focused on three types of negotiation: direct negotiation (with no middle

men involved), forwarded negotiation (in which middlemen forward proposals without 

matching to existing commitments) and chained negotiation (in which middlemen for

ward proposals after attempting to match them to existing commitments). From the 

evaluation, we can make the following claims about chained negotiation: 

• In all three types of negotiation, the outcomes are more predictable with a longer 

deadline than with shorter deadlines. When chained negotiation makes use of 

existing commitments, the results are significantly better for the client than direct 

and forwarded negotiation. 

• Negotiations are always given deadlines by which to finish. With direct and for

warded negotiation, negotiations tend to use most of the time they have available. 

In chained negotiation, if an existing commitment can be reused, this is typically 

determined very quickly, so that chained negotiations take significantly less time 

to complete than direct or forwarded negotiations. 

• Chained negotiation can in principle use an infinite number of middlemen. As 

the number of middlemen in a negotiation is increased, the costs of using chained 

negotiation also increase. With more middlemen, the minimum amount of time 

required for a forwarded negotiation is increased. Additionally, the utilities of the 

client and supplier differ more for a given deadline as more middlemen are used, 

and take more time to converge. 

• Negotiations typically involve more than a single issue. Chained negotiation works 

best with a single issue. With few issues, chained negotiation still provides an 

increase in client utility. As the number of issues increases further, the amount of 

benefit decreases. However, even as the number of issues increases further, chained 

negotiation never gives a worse outcome than forwarded negotiation, which is not 

affected by the number of issues. Forwarded negotiation gives slightly poorer 

results than direct negotiation. 

• If the middlemen in a negotiation make a profit by taking some of the cost issue 

in a proposal, this reduces the number of successful negotiations, and reduces 

the utility seen by both the client and supplier. If the profit margin is increased 
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too much, negotiations generally fail and nobody gains. Hence, a compromise 

is required between profit made by a middleman, and utility to the system as a 

whole. 

ChaNE was designed for the context of a distributed notification service, where noti

fication services attempt to share subscriptions to notifications on a particular topic 

between multiple consumers. To show the benefit of using chained negotiation in such 

a system, our simulation of the scenario showed that a significantly higher number of 

consumers could be served by the same provider using chained negotiation than with 

each of them making a subscription to the provider directly. 

In summary, ChaNE enables services to be provided using chained negotiation, enabling 

the items of the service to be shared, redistributed or resold for the benefit of society as 

a whole, or for the benefit of the middlemen reselling the services. 

The contributions in this chapter are the presentation of chained negotiation, and the 

evaluation of the chained negotiation engine. The chained negotiation model is novel as 

existing negotiation models do not incorporate input from intermediaries between a client 

and supplier. The evaluation of this model shows the behaviour of chained negotiation, 

and shows that by using such a model, a service provider can allow the redistribution 

or reselling of items enabling more clients to be served, and without imposing too much 

load on the service provider itself. 

In the next chapter, we will describe the integration of ChaNE with a distributed notifi

cation service, creating an architecture in which a service provider can deliver its service 

through a notification service, negotiating with consumers over the QoS to provide the 

service, and having notification services share subscriptions to its content. We will show 

the benefit of the system by applying it to a practical application. 



Chapter 6 

QoS Negotiation in a Federated 

Notification Service 

In Chapter 4, we showed that direct negotiation can enable a service provider to reduce 

the load placed on itself by finding a compromise between Quality of Service (QoS) 

requested by a client, and more manageable levels the service provider can maintain. 

Then in Chapter 5 we extended this negotiation model to develop chained negotiation, 

capable of negotiating between intermediaries who can also fulfil the negotiation by 

reselling or redistributing an item they have obtained from a previous commitment. In 

this chapter, we take ChaNE, the chained negotiation engine developed in Chapter 5 and 

integrate it with the myGrid notification service (MGNS), creating a new architecture 

where a service provider can support negotiation over QoS conditions for a service that is 

delivered using a distributed notification service. We then evaluate the benefits received 

by a real application adapted to this architecture. 

6.1 Introduction 

When a service provider allows a client to request a service with a particular set of 

QoS constraints, it is possible that a small number of clients requesting the service at a 

high QoS can place enough load on the service provider to prevent it from serving more 

clients. Different optimisation techniques can mitigate this effect: negotiation can be 

used to find a compromise between the levels of QoS a client requests and the levels a 

service provider considers manageable for a large number of clients, and sharing of the 

service output between clients asking for the same thing. A notification service achieves 

this by sharing subscriptions to a topic between all consumers connected to it that are 

interested in the same topic at the same levels of QoS. When a notification arrives on 

that particular topic, it is is shared between subscribed consumers. 

102 
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QoS negotiation and sharing of subscriptions have both been examined separately in 

other work - QoS negotiation is commonplace in real-time and multimedia systems 

(Li and Ravindran, 2004; Rothermel et al., 1997), and existing distributed notifications 

reduce the number of redundant messages transmitted between NS instances, sharing 

subscriptions (Krishna et al., 2004; Pallickara and Fox, 2004a; Banavar et al., 1999a). 

In the previous chapter, we showed how chained negotiation could be used to combine 

the two optimisations, enabling consumers to negotiate over QoS conditions while still 

attempting to share subscriptions to notifications as much as possible, reducing the 

number of redundant messages sent in a distributed notification service. 

Our contributions in this chapter are a presentation of a new architecture supporting 

quality of service negotiation with a service provider for services delivered over a distrib

uted notification service, and the evaluation of the benefits provided a real application 

adapted to work in this architecture. 

In this chapter, we present our approach to creating a negotiation-capable distributed 

notification service by integrating the chained negotiation engine into a notification 

service. In Section 2.6.1 we discuss our choice of notification services, then choose 

MGNS and explain that its current method for sharing notifications is not suitable for 

negotiation in Section 6.2.2. We then present our negotiation-capable version of MGNS 

in Section 6.2.3. In Section 6.3.1, we outline an application that can benefit from our 

NS, and adapt this to our architecture in Section 6.3.2. We then present experimental 

data in Section 6.3.3 to show the benefits this application received from the NS. Finally, 

we present a summary and conclusions in Section 6.4. 

6.2 A Chained Negotiation-enabled Notification Service 

6.2.1 Notification Services 

In Section 2.6, we reviewed existing notification services, examining which of them em

ployed subscription and notification sharing already, so that we may build on this to 

support QoS negotiation and sharing of notifications. Two of the NSs reviewed there, 

MGNS and NaradaBrokering, both seem to be suited to enabling negotiation over QoS 

while sharing subscriptions. In MGNS, when a consumer subscribes to a federated topic, 

the notification services set up subscriptions to each other to receive the notifications. 

Using negotiation, it would be possible for subscriptions to be set up only to those 

sources that are providing the relevant information at the desired QoS. In NaradaBro

kering, the individual brokers in the network also set up subscriptions between each 

other to satisfy a consumer's subscription. However, due to the fact that NaradaBroker

ing allows a consumer to disconnect from one broker and reconnect to another broker 

at any point, setting up subscriptions based on a negotiated QoS would be harder to 
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efficiently maintain. For example, if a number of consumers all subscribe to the same 

topic at one location, so that only a single subscription is shared between them, they 

could then each move to different locations in the network. This means that each new 

broker must be subscribed to the topic, reducing the benefit from negotiating to get a 

similar level of QoS. Because of this additional complexity, MGNS has been chosen as a 

notification service to integrate with a negotiation mechanism. 

In Elvin, the basic model is to flood the network with shared notifications and then send 

quench messages where these are not needed. This has been shown not to scale very 

well (Segall et al., 2000), so is not suitable for consideration here. Gryphon focuses on 

applying filters to notifications as far away from groups of consumers as possible, sending 

only the minimal amount of messages required. This technique provides an interesting 

opportunity to integrate with negotiation, but we choose to focus on resolving difference 

in QoS preferences instead of persuading clients to change their filtering preferences. 

The technique of multicasting notifications close to groups of consumers while filtering 

them as close to the source is also used in Siena. 

6.2.2 Federated Topics in the myGrid notification service 

The standard configuration of MGNS is a standalone notification service, with no facil

ities for interacting with other MGNS instances. However, MGNS can also be deployed 

as a distributed NS, in which it handles the distribution of messages between NS in

stances by using federated topics (Krishna et al., 2004). Normal topics in MGNS are 

unique within the scope of a single NS - publishers and consumers connect to the same 

NS in order to publish or consume messages on a specific topic. In a distributed deploy

ment of MGNS, each NS instance operates independently of the others, continuing to 

use locally-scoped topics. 

A federated topic is created using local topics at each NS. A local topic is created, 

and assigned some metadata giving the topic some semantic meaning. When semantic 

metadata is assigned to a local topic in a MGNS instance, the NS contacts a topic registry 

(Miles et al., 2003). A virtual topic record is then added to the registry, with a pointer to 

the local topic at a particular NS. When subsequent NSs have local topics created with 

the same semantic markup, they too register with the registry, adding their local topic 

as a member topic to the virtual topic record. Figure 6.1 shows a deployment of four 

MGNS instances, each having registered their local topics with the topic registry. In 

this example, NS-D is behind a firewall and cannot be contacted except through NS-C, 

so the topic registry also reflects this routing information. 

In order for a consumer to subscribe to a virtual topic, the member topic at their local 

topic is looked up from the topic registry. The consumer then subscribes to this topic. 

The MGNS instance recognises that this is part of a virtual topic, and retrieves the 
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FIGURE 6.1: Federation of MGNS instances 
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virtual topic record from the topic registry. The MGNS instance then subscribes to 

the local member topics on each NS registered as part of the virtual topic, so that 

if a message is published on the virtual topic at a remote NS, every other NS will 

receive a copy of this notification and forward it to their consumers accordingly. In the 

example shown in Figure 6.1, the virtual topic record contains routing information to 

reach NS-D through NS-C. If a publisher publishes a message on this topic to NS-A, 

it knows that to forward this to NS-D it has to send the notification to NS-C, which 

will then forward on the notification. When messages are published on a virtual topic, 

the NS they are published to forwards the notification onto every other NS that has 

subscribed to the virtual topic. Message filters are used to prevent messages that have 

already been forwarded from being sent further (to avoid messages continuously being 

forwarded between the NSs). 

This federated NS deployment enables consumers and publishers to be connected to 

different instances of MGNS in a network, and have notifications routed between them 

accordingly. A major disadvantage of this approach is that when there are more than two 

NSs participating in a virtual topic, the network is flooded by notifications whenever 

a message is published. Each NS pushes the NS received to every other NS, which 
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represents a potential scaling problem in a large-scale deployment. A solution where 

notifications are routed via intermediate notification services (similar to the sharing of 

su bscriptions discussed previously in this thesis) could provide greater efficiency. 

In its current form, the distributed version of MGNS is not suitable for integration with 

ChaNE for the following reasons: 

• In MGNS federated topics, publishers can connect to any NS and publish messages. 

In chained negotiation, a consumer negotiates QoS conditions with the publisher. 

Chained negotiation is also used by intermediate NSs to set up shared subscriptions 

when multiple consumers subscribe to the same topic . 

• MGNS only provides limited support for routing of notifications through interme

diate NSs. Chained negotiation supports complex routes between publishers and 

consumers through a number of intermediate NSs, forming an efficient distribution 

network for publishing notifications. 

For these reasons, we decided to base our integration of ChaNE into MGNS on a mod

ified architecture for sharing of subscriptions between consumers rather than the ex

isting federated topics. This architecture, which we refer to as ChaNNSe (Chained 

Negotiation-enabled Notification Service), is described in the following section. 

6.2.3 Integration of ChaNE and MGNS 

To develop ChaNNSe, the method of sharing subscriptions between multiple consumers 

was replaced with a subscription proxy, which runs inside a MGNS instance. A sub

scription proxy subscribes to a topic on a remote NS, then republishes every notification 

received on that topic to the local NS, creating a proxied topic. Any number of consumers 

can be connected to the proxied topic, and they will all share a single subscription to the 

source of the notifications. The NS will share any notifications on that topic between 

them automatically. Figure 6.2a shows the notifications that are sent from NS-1 (where 

the message was published) to all other NSs participating in the virtual topic. In Figure 

6.2b, the NSs use subscription proxies to limit the number of notifications sent between 

NSs. Consumers at NS-3 are subscribed via NS-2, so notifications are forwarded from 

NS-1 by NS-2, rather than an extra subscription being required. In this example, NS-4 

has no interested consumers so is not receiving any notifications. 

Figure 6.3 shows the components in a chained negotiation-enabled MGNS. Negotiation 

abilities are provided by a Neg'otiation Component (NC, described in Chapter 5), which 

has a communication module to implement communication between negotiation compo

nents via SOAP. When a consumer requests a service, it begins negotiating with the NC 

in the NS (1). The NC examines the commitment store to see if there are any existing 
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a) b) 

FIGURE 6.2: Sharing of subscriptions with a) Federated Topics, b) Subscription Proxy 

subscriptions which will satisfy the request of the new consumer. If not, negotiation 

continues upstream (away from the consumer): either to another NS (2), or to a known 

service provider, which contains a NC, and a wrapper for the service it is providing. 

When a negotiation is successful with a service provider, the provider registers a topic 

with the nearest NS in the chain that it will use for delivering the results of the service. 

The NS then passes details of this topic back downstream. Any intermediate NSs add a 

proxied topic to their subscription proxy so that the results are fetched from the pub

lisher's NS (4). The consumer then subscribes to the proxied topic at its local NS (5), 

and begins to receive results via the distributed NS (6). If any of the NSs in the nego

tiation chain are able to use an existing subscription, this is done instead of continuing 

to negotiate upstream. 

Using this architecture, a service provider makes available a serVIce with a variable 

level of QoS. A client interested in the service negotiates over the QoS via a number 

of intermediate NSs, which all attempt to provide the service the client is interested in 

without making additional subscriptions to the service provider. If the client and service 

provider reach an agreement on a set of conditions under which the service should be 

supplied, subscriptions are set up between NSs as needed to get the results of the service 

to the client. Notifications as a result of the service are shared between any clients with 

similar interests at the same NS if they can agree to use the same QoS levels already 

being provided by existing subscriptions. Otherwise, notifications cannot be shared. 

In the next section, we describe an application suited to deployment in this architecture, 

and show how we adapt it to use ChaNNSe. 



Chapter 6 QoS Negotiation in a Federated Notification Service 

6. notify 

Service Provider 

Service 

6. notify 2. negotiate 
r---~"-........,+ 3. register topic 

MGNS Instance 

Other 
MGNS 

Instances 

6. notify 

2. negotiate 
4. subscribe 

. negotiate 
+ 5. subscribe 

NS Interactions 

-- Negotiation Interactions 

FIGURE 6.3: Components in ChaNNSe 

6.3 Application and Evaluation of ChaNNSe 

6.3.1 A Protein Compressibility Analysis application 

108 

Very large scale computations are now becoming routinely used as a methodology to 

undertake scientific research, examples of which can be found in many different fields. 

In Bioinformatics, a particular application of such an experiment is a protein compress

ibility analysis application, which uses a mixture of brute-force computation, statistical 

methods and guesswork in order to study the structure of protein sequences. The pro

tein compressibility analysis application uses compression techniques to attempt to find 

patterns in protein sequences, and was designed by Zauner (Groth et al., 2005). 

Proteins are the essential function components of all known forms of life; they are linear 

chains of typically a few hundred building blocks. Protein sequences are assembled 

following a code sequence represented by another polymer (mature mRNA) , which is 

produced by splicing certain pieces of a molecular copy of the coding region of a gene on 

the DNA, while discarding other pieces of the copy. During the assembly, the protein 

curls up and forms a 3D shape, which determines its function. 

The linear structure of a protein sequence is of interest for predicting which sections of 

DNA encode for proteins and for predicting and designing their 3D shape. For com

parative studies of the structure present in a protein sequence, it is useful to determine 
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the textual compressibility of the sequence, as compression algorithms exploit context

dependent correlations within a sequence. The fraction of its original length to which 

a sequence can be compressed is an indication of the structure present in the sequence, 

but in general, no practical compression method can discover all of the structure in a 

sequence. Actual compression of a sequence can only yield a lower bound on its com

pressibility. For the same reason, compressibility values are also relative to the applied 

compression method. Methods that are good at discovering structure are computation

ally expensive; it is difficult to discover structure in protein sequences, although more 

progress has been made by grouping amino-acids: if the compression of the sequences is 

only for determining the structure, the sequences can be recoded with a reduced alpha

bet. For example, each amino acid symbol is replaced by a symbol representing a group 

of amino acids, and compression is then applied to the recoded sequence. The results 

of this analysis can then be used to determine the amino acid groupings that maximise 

compressibility. 

This protein compressibility experiment is expressed as a workflow, as shown in Figure 

6.4. A protein sequence sample is selected, potentially from several individual samples 

(Collate Sample). This is then recoded with a given group coding (Encode by Groups). 

The recoded sequence is then compressed with different compression algorithms (e.g. 

gzip, bzip2, ppmz) to obtain the length of the compressed sequence. Random permuta

tions of the sequence (Shuffie) are also compressed to provide a standard for comparison, 

removing the influence of two factors from the calculation of compressibility: the data 

encoding used to represent the groups, and the non-uniform frequency of groups. From 

these results, a compressibility value is obtained for the sample sequence that is relative 

to both the compression method and group coding employed. The variability in the com

pressed length of the permuted sequences leads to a distribution of compressibility values 

(collate sizes). The workflow entails a sufficient number of compressions of permuted 

sequences to estimate the standard deviation for the compressibility (Average). 

The measure step from Figure 6.4 is expanded and shown in Figure 6.5, where each sam

ple is compressed using different compression algorithms, and the size of the compressed 

sample is measured. The size data from all of the measure steps is collated into a single 

table. 

6.3.2 Adaptation of application for evaluation 

To use the protein compressibility analysis application within ChaNNSe, the workflow 

shown in Figure 6.4 is run as the service in the service provider. In this scenario, scientists 

run the experiment repeatedly. The number of permutations used is considered a QoS 

condition, as a higher number of permutations gives a more accurate result. Hence the 

service is available with two QoS conditions: 
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• Frequency - The number of seconds between each consecutive run of the service 

for a particular client . 

• Permutations - The number of permutations the input sequence is shuffled into 

during the experiment. 

To be able to share notifications of the service running, consumers have to request the 

service with the same frequency and number of permutations. Every time the service is 

run, the output data is delivered to the consumer via the notification service. In this 

application, a commitment represents an accepted request to run the service with the 

specified intervals and the specified number of permutations. Each notification service 

involved in an accepted negotiation will subsequently hold one of these commitments 

which can be used for future requests. 

6.3.3 Evaluation Process 

ChaNNSe is intended to enable consumers and service providers to find a mutually 

acceptable QoS level under which a service can be provided, with the aim of reducing the 
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FIGURE 6.5: Protein Compressibility Measure Subworkfiow 

load on the service provider and enabling more consumers to be served by it. Through 

the sharing of notifications in the distributed notification service, more consumers can 

be served without even involving the service provider. 

To determine how effective chained negotiation is in providing these benefits, we created 

a number of scenarios under which we could measure the load imposed by a number of 

consumers, and determine how many consumers can be served before the service provider 

is overwhelmed by the load. In each scenario, a single service provider is started with 

no existing commitments, and consumers request services from the provider until it is 

too busy handling existing commitments to accept new requests. 

We examine the following scenarios, taking the same measurements for each: 

l. No negotiation, no shared subscriptions - consumers request the experiment be 

run, supplying their ideal values for the frequency and number of permutations. 

The service provider accepts this request, without attempting to negotiate over 

the QoS levels. 

2. Negotiation, no shared subscriptions - consumers request the experiment be run, 

and the service provider negotiates over the QoS. When a mutually acceptable 

set of conditions is found, the service is delivered to the consumers. Consumers 

cannot share subscriptions to the service. 

3. Negotiation, single NS sharing subscriptions - the consumer and service provider 

negotiate over QoS as in the previous scenario, but the NS delivering the notifica

tions allows consumers to share subscriptions, enabling multiple consumers with 

the same interest to only require a single subscription to the service provider. 

4. Negotiation, distributed NS sharing subscriptions - as in the previous scenario, 
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negotiation and sharing of subscriptions are supported. However, multiple NSs are 

deployed in this scenario with consumers being spread between them. 

In the experiments, we give the service provider a static set of preferences for both the 

number of permutations and the frequency with which to run the experiment. These 

preferences are shown in Table 6.1. The negotiation component for the service provider 

uses a single linear time-dependent tactic, as we would not expect such a detail to be 

varied on a service provider once running. The consumers will use either a Boulware, 

linear or conceder time-dependent tactic to represent different negotiation behaviour. 

Values for the deadline were chosen between 10 and 60 messages. 

Issue Ideal Value Reservation Value 
Frequency 43200 1800 
Permutations 10 500 

TABLE 6.1: Service Provider Preferences 

For each scenario described above, the experiment comprises clients continually trying 

to subscribe to the service until the service provider, or a critical notification service on 

the path to the service provider, have reached their capacity. To determine the capacity 

of the service provider and notification services, we measure the CPU time taken to 

perform their relevant tasks and use this data in the experiment. 

6.3.3.1 Service Provider Capacity 

To determine the number of commitments a service provider can handle, the protein 

compressibility analysis application was run and timed. Due to the nature of the ex

periment, the number of permutations is the controlling factor in the amount of time 

the experiment takes to run. Hence, we measured the execution time of the application 

with values for the number of permutations between 50 and 1000. These measurements 

were run on an Intel Pentium 4 1.5GHz with 1Gb RAM running Debian Linux and Sun 

JDK 1.4.2. 

Figure 6.6 shows that the time taken to run the protein compressibility analysis ex

periment increases approximately linearly. Hence, we model the relationship between 

permutations and execution time as: 

CPUTime = Permutations * 0.174 

As there are two variable factors for each request from a consumer, it is impossible to 

give an absolute limit on the number of jobs a service provider can handle. Instead, it is 

determined by the amount of CPU time that is used by the service provider executing the 

experiment the required amount in a day. As a simplification, we allow 80,000 seconds 
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FIGURE 6.6 : Execution time for Protein Compressibility Analysis application 
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of CPU time in one day, allowing the remainder for other t asks. The service provider 

can accept no more jobs when the following condition becomes true: 

(M sgPer Day * AvP ermutations * 0.174) > 80000 

where M sgP er Day is the number of messages that is required per day if a notification 

is sent out at the requested frequency for every consumer , and AvPermutations is the 

average number of permutations for the jobs over the whole day. 

6 .3.3.2 Notification Service Capacity 

To determine the limit a notification service can handle, we measured the time taken 

on MGNS for messages to be published and for them to be distributed to consumers . 

These measurements were taken using the same hardware as in the previous section. 

We found that publishing a message took an average of 60ms, and consumers pulling 

waiting messages l took 975ms. Both times were averaged over 100 iterations. 

The limit that a notification service can handle is determined by the number of messages 

that it is sending and receiving. Hence, it is only affected by the number of consumers 

and the frequency with which they are receiving notifications. The notification service 

can no longer accept new requests when the following condit ion becomes true: 

(UpstreamMsgPerDay * 0.06) + (DownstreamMsgPerDay * 0.975) > 80000 

where UpstreamM sgPer D ay is t he number of messages t hat are received from the NS 

1 Although we have used a pull model for consumers receiving notifications, a push model would be 
equally valid here. 
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or provider upstream, and DownstreamA1 sgPer Day is the number of messages that 

are distributed to consumers or other notification services downstream. 

It should be noted that the performance data for the NS may not be optimum, but this 

does not detract from the value of this experiment. Indeed, higher performance from 

the NS would only result in any benefit from using this architecture being magnified. 

6.3.4 Results 

For the consumers, their preferences were varied. These were calculated by randomly 

selecting a reservation value between the limits of the service provider's preferences, and 

choosing an ideal value in a range outside of service provider's preferences. This has the 

effect that for every negotiation it is possible to find a mutually acceptable set of QoS 

values, but every negotiation requires some negotiation in order to find this set. 

For each scenario, we reset any commitments held by the service providers and NSs if 

applicable, then ran negotiations using a number of different consumers until either the 

service provider or a critical NS reached their capacity. In this context, a critical NS 

is one between a consumer and the provider in a chain - if a critical NS has reached 

capacity and a new subscription is required, the negotiation will faiL In each case, we 

measured the number of consumers served in total, the numher of messages the service 

provider needs to send per day and the average value for the numher of permutations 

that are used. 

From the results in Table 6.2, we can see that in our reference case of no negotiation 

where a consumer is provided with the service at the QoS conditions they request, only 2 

consumers could be served before the load they had placed on the service provider would 

prevent further commitments being made. When negotiation was used to determine 

more suitable QoS values, the number of consumers served increased significantly to 128. 

It can also be seen than in the case with negotiation, the service provider runs twice 

as many jobs as without negotiation, and that the number of permutations requested 

for each job is significantly lower, meaning that the amount of work required per job is 

lower. 

Scenarioj Consumers Provider Average Provider 
Topology Served MsgjDay Permutations Load 
1 j 2 659 610.2 87.5% 
2 j 128 1296 347.3 97.9% 
3 j - 2434 1143 399.7 99.4% 
4 j Linear 1977 1044 437.0 99.2% 
4 j Tree 1030 1076 427.0 99.9% 

TABLE 6.2: Consumers served and service provider capacity 

When shared subscriptions are introduced, the number of consumers satisfied by the 



Chapter 6 QoS Negotiation in a Federated Notification Service 115 

service provider increases dramatically. However, the number of messages sent per day 

by the service provider and the average number of permutations does not change signif

icantly from the case where negotiation is used without sharing of subscriptions. This 

is because the additional consumers are served using a shared subscription at a NS, not 

requiring any additional intervention from the service provider. However, this scenario 

would place additional load on the NS. To check this, we measured the number of mes

sages being received from upstream and being sent downstream by the NS. The results 

shown in Table 6.3 show that for the two scenarios without sharing of subscriptions, 

the NS handles a small number of messages, hence the load on it is very small. For 

the scenario using shared subscriptions, the NS sends nearly 10 times as many messages 

downstream as it receives from upstream. The load on the NS for this scenario is 63.3%, 

indicating that it is still possible for it to serve more consumers. 

Scenario Msgs Up Msgs Down Load 
1 659 659 0.85% 
2 1296 1296 1.68% 
3 1155 50567 63.3% 

TABLE 6.3: Messages sent by Notification Service for Scenarios 1-3 

In the fourth scenario, chained negotiation using a distributed NS potentially enables a 

much larger number of consumers to be satisfied. Efficient distribution of notifications 

from the service provider could enable a very large number of consumers. In theory, if 

each NS runs at full load, the number of potential consumers that could be supported 

is determined only by the topology of the distributed NS. To show this, we compare the 

results from the topologies shown in Figure 6.7. 

linear chain 

I 
I 
I 
I 
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FIGURE 6.7: Topolgies in distributes NS for Scenario 4 

The results from running the experiment for the different toplogies in Scenario 4 are 
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given in Table 6.4, along with a comparison result for Scenario 3. From this data, we 

can see that the distributed NS topologies serve fewer consumers in total than when 

using a single NS. In each case the service provider has reached full capacity. 

Scenario/ Consumers Provider Average Provider 
Topology Served Msg/Day Permutations Load 

3 / - 2434 1143 399.7 99.4% 
4/ Linear 1977 1044 437.0 99.2% 
4/ Tree 1030 1076 427.0 99.9% 

TABLE 6.4: Consumers served and service provider capacity for Scenarios 3-4 

Table 6.5 shows the number of messages sent by each NS in the toplogy and the load 

on each. Comparing this to the load on the single NS in Scenario 3, which received 

1155 messages from upstream, sent 50567 downstream and ran at a capacity of 63.3%, 

we can see that the load has been distributed evenly around multiple NSs. In this 

example, there is no advantage to using a distributed topology in terms of numbers 

of consumers served. It does, however, distribute the load between NSs more evenly. 

From the results in Chapter 5, it might be expected that more consumers would be 

served using existing subscriptions. However, we showed in Section 5.3.2.3 that with 

more issues under negotiation, matching new requests to existing commitments becomes 

more difficult. This also explains the reason the tree topology serves fewer consumers 

than the linear one - as fewer consumers are going via each NS in the chain, the 

potential for matching to existing subscriptions is reduced. To show this more clearly, 

we ran the experiment again, using a fixed value for the number of permutations (we 

used 400, the average from Scenario 3), and only negotiating over the frequency. Table 

6.6 shows that when only a single issue is used, the distributed NSs are able to serve 

many more consumers without having to place load on the service provider. In every 

case where subscriptions are shared, the service provider is not running at capacity and 

the experiment terminates because an NS has reached capacity. Table 6.7 shows the 

capacities of the NSs in Scenario 4, and shows that when deployed in a tree topology, the 

number of consumers that are satisfied is significantly higher than without a distributed 

NS, or with a linear topology of NSs. 

Topology Linear Tree 
Middleman US DS Load US DS Load 

0 1204 7302 8.99% 1078 4254 5.27% 
1 1287 7073 8.72% 711 3633 4.48% 
2 1288 8429 10.4% 757 3883 4.79% 
3 1153 7943 9.77% 364 3024 3.71% 
4 932 7986 9.80% 475 3222 3.96% 
5 673 7188 8.81% 336 3006 3.68% 
6 494 6789 8.31% 410 2947 3.62% 

TABLE 6.5: Messages upstream (US), downstream (DS) and NS Capacities (Load) for 
Scenario 4 
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Scenario/ Consumers Provider Average Provider 
Topology Served Msg/Day Permutations Load 

1 / - 6 1124 400 97.8% 
2 / - 125 1146 400 99.7% 
3/- 2956 137 400 11.9% 
4 / Linear 2749 179 400 15.5% 
4/ Tree 20488 519 400 45.2% 

TABLE 6.6: Consumers served and service provider capacity (Single Issue only) 

Topology Linear Tree 
Middleman US DS Load US DS Load 

0 184 12099 14.8% 519 82019 100% 
1 176 12177 14.9% 338 82029 100% 
2 223 10895 13.3% 395 80760 98.5% 
3 20 1152 1.41% 241 82036 100% 
4 22 3392 4.14% 233 82036 100% 
5 77293 77293 100% 315 78674 95.9% 
6 58758 58758 76.0% 173 82040 100% 

TABLE 6.7: Messages upstream (US), downstream (DS) and NS Capacities (Load) for 
Scenario 4 (Single Issue only) 

6.4 Summary 
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In this chapter, we have described ChaNNSe, an architecture for QoS-aware service 

providers to deliver their services through a distributed notification service. We imple

mented this by integrating ChaNE, the chained negotiation engine described in Chapter 

5 with the myGrid notification service. We adapted an application using a protein com

pressibility analysis to be used in this architecture, and presented an evaluation of the 

performance benefits received from using it. 

From the evaluation of ChaNNSe presented in this chapter, we can make the following 

statements about the use of chained negotiation in a distributed notification service: 

• A service provider allowing QoS to be selected by its clients risks running itself to 

full capacity for just a few clients if it does not attempt to negotiate the QoS level 

with the client. However, by supporting negotiation, the number of clients it can 

support increases significantly. 

• If a service provider is likely to be offering the same service to multiple clients, it is 

a waste of time to do the same job twice. By using a notification service to deliver 

the service to consumers requesting the same service, the service provider only 

need carry out the job once. This significantly increases the number of consumers 

that can be served. 

• A notification service itself can reach capacity by having many consumers request-
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ing a service through it. To combat this, distributed notification services are used, 

with consumers able to connect to different instances of a NS. Using chained ne

gotiation and the distributed NS, they can share subscriptions to a service with 

other consumers at the same NS without imposing additional load on the service 

provider. Notifications are then shared between the consumers whenever one is 

received on the shared subscription. Different choices of distributed NS topology 

allow the load to be spread between multiple NSs, removing potential bottlenecks. 

In summary, using chained negotiation in a distributed notification service enables a 

service provider to serve more clients than by dealing with them directly. This is due to 

two reasons - chained negotiation is used to determine QoS conditions acceptable to 

both the service provider and the client, and the distributed notification service shares 

subscriptions to the service provider between as many consumers with similar interests 

as possible. This results in an efficient distribution system for the service provided by 

the service provider. 

The contributions in this chapter are the presentation of a new architecture supporting 

quality of service negotiation with a service provider for services delivered over a distrib

uted notification service, and the evaluation of the benefits provided a real application 

adapted to work in this architecture. 



Chapter 7 

Conclusions & Future Work 

7.1 Summary 

In this thesis, we have presented an architecture enabling service providers to make their 

service available through a distributed notification service (NS), efficiently delivering no

tifications to consumers by sharing subscriptions to notifications between consumers with 

similar interests. Consumers and service providers negotiate to find mutually acceptable 

quality of service (QoS) levels under which the service can be provided - high enough 

to satisfy the consumer, without placing unnecessary load on the service provider. 

In more detail, we have reviewed existing work in the field of notification services, paying 

attention to how distributed notification services share subscriptions and notifications 

amongst multiple consumers with similar interests. A NS shared subscriptions to a topic 

when multiple consumers request the same topic with the same QoS conditions. Notifi

cations are shared between them when one is received on that topic. We then reviewed 

work in the field of automated negotiation, examining different negotiation mechanisms 

used both in automated and non-computational negotiation. After examining different 

automated negotiation techniques, we selected a heuristic-based approach upon which 

to base our negotiation engines. 

We presented DiNE, the first evolution of our negotiation engine, supporting direct ne

gotiation (between two parties only). We evaluated the behaviour of DiNE in performing 

direct negotiations to determine the effect of different deadlines and different numbers 

of issues under negotiation. 

We then discussed the need for a new type of negotiation involving intermediaries, 

and introduced chained negotiation for this task. ChaNE, the next evolution of our 

negotiation engine which supported chained negotiation was presented along with an 

evaluation of its behaviour, showing the benefits that chained negotiation can offer. 

119 
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To validate the application of chained negotiation to a distributed NS, we have devel

oped ChaNNSe, a chained negotiation-enabled NS based on ChaNE and MGNS. This 

enables a service provider to allow consumers to request QoS conditions for a service, 

without placing unnecessary burden on the service provider. It also enables the efficient 

delivery of notifications for the service by sharing subscriptions to notifications between 

consumers at a NS with similar interests, further helping to reduce the load on a service 

provider. 

7.2 Research Contributions and Publications 

The contributions of this thesis have been: 

1. We have shown that by using negotiation, a service provider can enable a client to 

request a service with a specific Quality of Service that is high enough to satisfy 

the client, and manageable enough so that it will not place an unnecessary load 

on the service provider, enabling it to support a large number of clients. We 

created a direct negotiation engine and showed through simulations that it would 

allow QoS levels to be requested along with a subscription in a notification service. 

Existing notification services allow QoS conditions to be specified, but make no 

attempt to resolve differences between the preferences of the client and supplier. 

Our empirical evaluation of our negotiation engine has shown the behaviour of the 

system independent of external influences. 

2. As direct negotiation is unsuitable for negotiation through intermediaries, we de

veloped chained negotiation, a new form of negotiation that involves the client and 

supplier as well as any number of intermediaries between them. Intermediaries 

can fulfil a client's request using an existing commitment they have made on be

half of an existing client, redistributing or potentially reselling the item. We have 

used this as the basis for ChaNE, a chained negotiation engine. The evaluation of 

ChaNE shows the benefits that can be obtained by using chained negotiation in a 

distributed notification service. Chained negotiation is a novel form of negotiation 

- existing forms of negotiation only involve clients and suppliers. 

3. We have taken our chained negotiation engine and integrated it with an existing 

notification service, creating ChaNNSe, a novel architecture for supplying services 

over a distributed notification service while enabling negotiation over QoS to re

solve differences between the consumer and service provider. We have used a 

real application from the field of Bioinformatics to show the benefits offered by 

this architecture. As stated earlier, existing notification services do not support 

negotiation over QoS conditions. Hence, this represents a novel contribution. 
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The work on direct negotiation was presented at the Ninth International EUROPAR 

conference (EURO-PAR '03) in Klagenfurt, Austria (Lawley et al., 2003a) and published 

in a special issue of Parallel Processing Letters (Lawley et al., 2003b). 

Chained negotiation was presented at two different conferences: the second UK e

Science All Hands Meeting (AHM '04) in Nottingham (Lawley et al., 2004); and the 

IEEE/WIC / ACM International conference on Web Intelligence (WI '05) in Compiegne, 

France (Lawley et al., 2005). 

7.3 Conclusions 

When a service provider enables clients to request certain QoS conditions under which 

a service should be provided, there may be differences between levels of QoS the client 

desires, and levels a service provider can maintain for a large number of clients. Ne

gotiation can be used to resolve these differences, finding a compromise between the 

preferences of both parties that is mutually acceptable. DiNE, our direct negotiation 

engine, enables automatically finding this compromise. Through our evaluations, we 

have identified the following behavioural characteristics of DiNE: 

• Negotiations are often given a deadline by which to complete, in order to ensure a 

service is delivered when it is needed. When short deadlines are used, the outcome 

of the negotiation is harder to predict than with a longer deadline. Concessions 

must be made rapidly in order to reach an agreement before the deadline expires, 

hence the outcome tends to be further from an optimal solution for both parties. 

• A negotiation usually involves multiple issues, potentially trading one issue off 

against another to find a mutually acceptable solution. A large number of issues 

makes no significant difference to the outcome of negotiations, assuming each issue 

is independent from the others. 

• If it is possible to predict the message transmission times, it may be possible for 

a client to choose a deadline such that it can force the supplier to offer the final 

proposal in the negotiation, typically causing it to offer its reservation value. The 

supplier's reservation value represents the lowest possible utility it can receive, and 

the highest possible utility the client can receive. However, it would be difficult in 

a real implementation to accurately predict this message transmission time. 

Direct negotiation, however, does not enable intermediaries between a client and a sup

plier to provide input to the negotiation process. In a distributed NS, intermediate NSs 

may be able to fulfil a consumer's request by offering to share an existing subscription 

created for another consumer. Chained negotiation enables intermediaries to participate 
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in the negotiation, allowing the reselling or redistribution of items to clients. We devel

oped ChaNE to support chained negotiation, and through its evaluation we can make 

the following statements about chained negotiation: 

• As with direct negotiation, longer negotiation deadlines give results closer to the 

optimal solutions when no existing commitments are available. However, once 

favourable commitments have been made by a middleman, clients that can make 

use of them complete negotiations very quickly, getting a higher utility than con

tinuing to negotiate with the supplier and not requiring the supplier to do any 

additional work. 

• As chained negotiation increases message transmission times, it has the effect of 

reducing the amount of time available in a negotiation. As more intermediaries 

are used, this effect is magnified, increasing the minimum amount of time required 

for a negotiation and making negotiations take longer to converge. 

• As the number of issues in a negotiation is increased, it gets harder for a middleman 

to match a new request to existing commitments, as it must match on all issues. 

Hence as the number of issues is increased, the benefits of chained negotiation are 

decreased, eventually falling to the same level as if existing commitments were not 

available. 

• Intermediaries m a chained negotiation can make a profit by adjusting a cost 

element within proposals in order to take a portion of the reward for supplying 

a service. However, this process makes it more likely that the negotiation will 

fail to find a mutually acceptable set of conditions under which the service can 

be supplied. If an intermediary tries to make a large enough profit, very few 

negotiations will succeed and all participants lose out. 

The objective of this thesis has been to enable a service provider to make its service 

available to consumers who can request levels of QoS, while still enabling the efficient 

delivery of the service to consumers and allowing the service provider to support as many 

clients as possible. Our solution to this problem was to integrate chained negotiation into 

a distributed NS, allowing consumer and service provider to negotiate over QoS levels 

for a service, and allowing the distributed NS to share subscriptions to notifications from 

the service to be shared amongst consumers with similar interests. From evaluating this 

system, we can make the following statements: 

• Chained negotiation enables a consumer and publisher to find a mutually accept

able set of conditions under which a service can be supplied, while still enabling a 

NS to share subscriptions to the service. 
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• By supporting negotiation between the consumer and service provider, the con

sumers do not always get the high QoS they would ideally like, but do get a level 

they are prepared to accept that will not place unnecessary burden on the ser

vice provider, which could prevent the service provider from being available to 

subsequent consumers. 

• By sharing subscriptions to notifications from the service, the distributed NS fur

ther reduces the load placed on a service provider by supporting additional con

sumers without any extra burden being placed on the supplier. This also reduces 

the load placed on the distributed NS itself, as fewer notifications have to be sent 

between the individual NSs. 

• As the number of instances in a distributed NS is increased, the number of po

tential consumers that can be satisfied by a single service provider can increase 

dramatically. Different topologies of a distributed NS can offer even better results 

- for example a tree-style topology enables a higher potential number of con

sumers than a linear topology. However, as the distance between consumer and 

service provider increases, the performance of chained negotiation deteriorates. As 

more issues are negotiated over, it becomes harder to match a new request to an 

existing commitment (thereby reusing a shared subscription). Hence, a balance 

must be found between the topology of a distributed NS and the different benefits 

it offers. 

Overall, we can say that by using chained negotiation in a distributed notification ser

vice, a service provider can enable clients to request services with a specified QoS and 

have differences between the preferences of the client and provider resolved, while still 

enabling the distributed notification service to share subscriptions to the service, sharing 

notifications between groups of consumers with similar interests. 

7.4 Limitations 

Although we have demonstrated in this thesis that chained negotiation can provide a 

benefit to a service provider by enabling it to negotiate over QoS with a client, and share 

subscriptions to its service through a distributed notification service, we recognise that 

there are a number of limitations: 

• In both direct and chained negotiation, the negotiation issues must be independent. 

In a real life implementation, it is likely that at least some issues will be dependent 

on others, for example if a service is going to be run with a higher priority, the 

service provider would expect to be able to charge more for it. Dependent issues 

are more complex to model, and lead to the notion of trading one issue off against 
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another. Due to the complexity of dependent issues, adding support for them 

would have required a significant effort, and was hence considered beyond the 

scope of this work. 

• The evaluations of both direct and chained negotiation have used a single tactic for 

proposal generation, and single linear utility functions for proposal evaluation. In 

a real implementation, it is highly likely that multiple tactics would be used, and 

potentially more complex utility functions. However, it was important to evaluate 

these parts of the system independently of external influences to determine their 

behaviour. As resource-dependent tactics are domain-specific in nature, it would 

have been impossible to evaluate them independently of a specific domain. The 

evaluations also used an interval-based model of time where exactly one message 

is sent in each interval, rather than a real-time based model. Using real time 

would have meant that additional variables, such as the amount of time required 

to compose and send a message (which will most likely not be constant) must be 

introd uced. 

• The integration of chained negotiation into a distributed notification service has 

focussed on the context of a service provider delivering its service through a notifi

cation service, rather than a general notification service environment where there 

can be multiple publishers and multiple consumers all attached to the same topic. 

• In some distributed notification service (e.g. N aradaBrokering), consumers may 

disconnect from a broker and reconnect to another point in the network, and still 

have notifications routed to them. ChaNNSe does not support this relocation as 

chained negotiation sets up subscriptions for notifications to be delivered along 

a fixed route, but it may be possible to dynamically change the subscriptions to 

follow the consumer. 

7.5 Future Work 

While we have demonstrated that chained negotiation can provide significant benefits 

to the provision of services in a distributed notification service, we have also identified 

a number of areas for potential improvement and for further future work. 

7.5.1 Real-time Deadlines 

Both DiNE and ChaNE used deadlines based on the number of messages that can be 

transmitted during the negotiation. This approach enables chained negotiation compo

nents to accurately determine whether they have enough time to negotiate upstream, 

a crucial part of chained negotiation. In a real implementation, it may sometimes be 
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desirable to specify a deadline in terms of an absolute time, rather than how many mes

sages can be sent in the negotiation. This would be needed in a real-time application 

where a client is negotiating for provision of a time-critical service. 

To convert the negotiation engines to use real-time, some issues must be overcome. The 

most important issue is that a mechanism must be created to enable each negotiation 

component to determine whether it has enough remaining time for a negotiation to pro

ceed upstream. If it cannot accurately determine this, a message may be sent upstream 

without enough time for the reply to reach the client before the negotiation deadline 

expires, causing the negotiation to fail outright. One possible method for doing this 

would be to measure the average time taken for a message to be sent over the course 

of each negotiation, and use this average to determine the number of messages that can 

be sent in the remaining time. Problems such as network latency and irregular traffic 

might cause these numbers to become distorted. 

When using real time, the problem of potentially predicting which party will make the 

final proposal in a negotiation (discussed in Section 4.3.2.1 on Page 61) will be reduced. 

As message transmission time is likely to be variable, it may be impossible to accurately 

predict which party will make the final concession. 

7.5.2 Parallel Negotiations 

Chained negotiation can be seen as a chain of individual negotiations. A middleman is a 

participant in two negotiations at once, upstream (towards the supplier) and downstream 

(towards the client). In our implementation of ChaNE, negotiation proceeds in one 

direction at a time. It may be possible to conclude negotiations quicker if a middleman 

is able to negotiate in both directions simultaneously, making concessions with both 

sides of the negotiation. 

Additionally, a middleman may be able to recognise that two clients are requesting the 

same item at the same time, and can attempt to combine the two before they complete, 

potentially getting a better deal from the supplier than if it were negotiating for one 

client only. 

7.5.3 Renegotiation of existing commitments and combining of com

mitments 

With the current implementation of ChaNNSe, a NS will attempt to share a subscription 

to a consumer that requests a similar set of QoS conditions. However, if the consumer 

requests a higher or incompatible set of conditions, it will be impossible to share the 

subscription and a new one may be made. In this situation, it would be possible to 

examine the current set of subscriptions and determine if any of them are unnecessary. 
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For example, in a service providing stock quote updates with a specified frequency, 

consumer A may request updates for a particular stock every 2 hours. If consumer B 

then requests updates for the same stock, but every hour, the NS could cancel the initial 

subscription and use the 1 hour subscription to satisfy both clients - it could forward 

the notifications immediately to consumer B, and store alternate notifications to deliver 

a combined notification to consumer A. 

Similarly, a NS could learn the common interests of its consumers, and factor this 

information in when making subscriptions. For example, if one service proves very 

popular with many consumers, the NS could negotiate with a service provider for a 

higher QoS, justifying it by saying it will support multiple consumers using the provided 

subscription. The NS can also do extra work to translate or filter the data provided by 

the publisher in order to satisfy multiple consumers - taking a single subscription that 

has enough content to satisfy all of its consumers and doing additional translations 

or filtering as appropriate to each consumer. Muhl (2002) describes a similar idea 

applicable to content-based publish/subscribe systems where the content of notifications 

is determined by filters specified by consumers - NSs can share a subscription by 

using algorithms to combine filters, requesting a single subscription from the publisher 

containing enough information to satisfy multiple consumers. 

A third related possibility is to enable middlemen to use multiple existing commitments 

to satisfy a new request. For example, if consumer A has requested notifications every 

2 hours (odd numbered hours), consumer B has requested notifications every 2 hours 

(even numbered hours), when consumer C requests hourly notifications, a NS could use 

the commitments held for both consumer A and B in order to satisfy C. 

7.5.4 Protocol compliance and agreement monitoring 

A negotiation protocol specifies the rules which a participant in a negotiation should 

adhere to. However, it is possible for a malicious agent to break some of the rules in 

chained negotiation to get a better outcome at the expense of its opponent. For example, 

messages in chained negotiation contain a field indicating the number of hops from each 

end of the negotiation. By falsely setting one of these values, it would be possible for 

an agent to convince its opponent that it should prematurely offer its reservation value. 

This would cause the agent offering the reservation value to get the minimum possible 

utility for that negotiation, while the malicious agent gets the maximum utility. It is also 

possible for middlemen to accept proposals from clients without actually having made 

arrangements to supply the item. A malicious middleman would take payments for a 

service and then not supply it. It would be desirable for some checking or enforcement of 

the rules in the protocol so that it becomes harder or impossible to break them without 

being detected. 
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Approaches using cryptographic techniques could be used to ensure the number of hops 

in the message is accurate. Alternatively, random checks could be carried out where 

the client makes direct contact with the supplier to determine if protocol rules have 

been broken by an intermediary. If an agent is found to have broken the protocol 

rules, a negative reputation could be left. We believe that a trust model or reputation 

mechanism, such as those presented in (Patel et al., 2005) and (Zacharia et al., 1999) 

would be of use in this situation. 

Related to the area of protocol compliance monitoring is agreement monitoring. In 

ChaNNSe, consumers can request a particular quality of service when they request a 

service. Especially in cases where the consumer has paid for the service, it is desirable to 

have a mechanism for monitoring the quality of service actually received by the consumer. 

The WS-Agreement specification provides an interface for monitoring of agreements, and 

(Ludwig et al., 2004) details an implementation of this work. Monitoring of agreements 

using such techniques would be of benefit to the ChaNNSe architecture. 

7.5.5 Further negotiation techniques 

ChaNE uses a heuristic-based approach to automated negotiation. However, we believe 

that some additional negotiation techniques may be of use in improving the performance 

or providing additional functionality. For example, the use of argumentation-based 

negotiation may be helpful to the extra work on renegotiation suggested earlier - a 

middleman can negotiate for higher QoS than would normally be received from a supplier 

by justifying the need for the higher quality of service as being required to support 

multiple clients. It may also help improve the performance of chained negotiation -

if a supplier can make no further commitments, a middleman may suggest an existing 

commitment and inform the client that this is being suggested because the supplier 

cannot satisfy the request directly. 

7.5.6 Compliance with Industry Standards 

ChaNNSe is based upon an automated negotiation engine and a notification service. 

Both of these fields have active development of a web standard - WS-Agreement for 

negotiation and WS-Notification for notification services. At the time of writing, neither 

of these standards had made it to a final version, so building in support for them was 

considered unnecessary. However, the system has been designed with these standards in 

mind, and is hence compatible with both. Once the standards reach a final version, it 

could be beneficial for ChaNNSe to become compliant with these standards, potentially 

enabling it to interoperate with other standards-compliant systems. 
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7.6 Concluding Remarks 

As computing in service-oriented architectures increases in popularity, more and more 

services will depend on other services. We believe that quality of service will be an 

important factor in selecting service providers, and that it should be possible for clients 

and service providers to come to an agreement over the QoS that they will receive, 

especially when the service is being paid for. We also believe that when multiple clients 

have similar interests, they should be able to benefit from their common interest, in the 

same way that group buy schemes are often organised between interest groups. This is 

especially so when it also benefits the service provider by not imposing as much load 

as serving each client separately. The ideas presented in this thesis go some way to 

progressing this field in this respect. 
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