UNIVERSITY OF SOUTHAMPTON

Adaptive Resource Management in

Large Scale Distributed Systems

by
Vijay K. Dialani

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering and Applied Science
School of Electronics and Computer Science

25th November 2005

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Vijay K. Dialani

An emergent trend in large scale distributed systems enables collaboration between
large numbers of independent resource providers. Grid computing and peer-to-peer
computing are part of this trend. Resource management in such systems is inherently
different from that found in traditional distributed systems, the key difference being
that the new classes of systems are primarily designed to operate under inconsistent
system information and temporally varying operating environments. Although primarily
used to enable collaboration of computational resources, these systems have also found
application in the field of distributed data management. Although the principles of
grid computing and peer-to-peer computing have found many applications, little effort
has been made to abstract the common requirements, in order to provide a conceptual
resource framework. This thesis investigates the alleviation of such common requirements
through investigations in the field of online scheduling, information dissemination in

peer-to-peer networks, and query processing in distributed stream processing systems.

A survey of system types is provided to highlight the new trends observed. A top down
approach to developing a unifying model seems inapplicable and the range of problems
encountered in these system types can only be addressed by identifying common trends
and addressing them individually. Consequently, three application domains have been
identified in the respective fields of online scheduling, data dissemination and stream
query processing. Each of these application class is investigated individually. For each
application domain, a review of the state-of-the-art is followed by a precise definition
of the problem addressed in the application domain and the solutions developed are
substantiated with experimental evaluation. Findings from individual applications have

been summarized to generalize the observations towards an overall hypothesis.

il

The initial discussion of online scheduling requirements in computational grids is used to
develop an online guaranteed resource provisioning mechanism. This helps investigate
adaptive behavior in systems with centralized control and simple resource descriptions.
The investigation also highlighted information management requirements in online scheduling
systems. Similar requirements were identified in the field of open hypermedia systems
and pervasive computing environments, and a common approach was used to address
the problems in these domains. The collective set of requirements is addressed in
the generalized context of information dissemination in large scale systems. Adaptive
behaviour is investigated in the context of a large number of autonomous resources and
the self organizational behaviour of such networks. The self organizational behaviour
discussed in the context of information dissemination highlights the fact that adaptive
behaviour follows the principal of duality. The findings demonstrate that self-organization
can be achieved either by improving the provisioning of resources or by manipulating
the workload. It highlighted the fact that QoS definitions will play an important part in
future distributed systems. The concept of QoS and adaptive behaviour is investigated in
the context of a distributed stream processing system. This investigation has led to the
development of a stream query processing architecture with the capability to support
multiple query optimizations. A novel query processing language, a query planning
technique, an operator scheduling algorithm and an SPJ operator are described in the
context of the data stream management system. While maintaining the focus on the
overall hypothesis, the thesis provides original contributions in each of the application

domains.

Contents

Nomenclature

Acknowledgements

I Introduction

1 Introduction

1.1 Adaptive systems
1.2 Classification of adaptive systems
1.3 Application domains L
1.4 Contributions
1.5 Structure of the thesis
1.6 Suggested order for reading L 0

2 Adaptive Resource Management in Large Scale Systems

2.1 Ad hoc Resource Groups
2.1.1 Discussion
2.2 Resource management in ad hoc resource groups
2.2.1 Resource description and resource monitoring
2.3 Modelling the ad hoc resource groups
2.4 Relation to applicationso
24.1 Motivation
242 Objectives e e
243 Focusofthework
2.4.4 Application level goals
245 Discussion e
2.5 Alternative systems viewo

II Online Scheduling in Grid Systems

3 Online Scheduling

3.1 Imtroduction
3.1.1 Discussiono e e e e e e e
3.2 General definitions and review L L0 0o
3.2.1 Definitions
3.2.2 Review

iil

xil

xiii

12
13
15
17
19
19
21
22
22
22
23
23
24

27

6.3.1 Request to join the overlay

CONTENTS iv
3.3 Problem definitiono 34
3.4 The semantics of job allocation 35

3.4.1 State transition representation of job status 35
3.5 Algorithm - Best Fit Interval Scheduling (BFIS) 36
3.5.1 Anmalysis 38
3.6 Summary 39

4 Evaluation of the Online Scheduling Algorithm 41

4.1 Experimental settings 41
4.1.1 Job generator e 41
4.1.2 Scope of the evaluation 42
413 Analysis 42
4.1.4 Discussion L e 44

4.2 Description of Information exchange between Grid schedulers 44

4.3 SUmMMATY . .« . . e e e e e e e e 45

IIT Information Dissemination in peer-to-peer systems 47

5 Resource Management in P2P environments 48
5.1 Peer-to-Peer computing L o 49
5.2 P2P systems 49

5.2.1 Unstructured P2P systems 50
5.2.2 Structured P2P systemso Lo 50

5.3 Related algorithms and systems 52

5.3.1 Distance Vector and Link State based algorithms as applied to ad

hoc computing L 52
5.3.2 Domain Name System (DNS) 52
5.3.3 Coalition formation in Agent-based systems 53

5.4 Discussion e e 54

5.5 Additional application scenarios. oo 55
5.5.1 Peer-to-Peer Open Hyper Media Systems 55
5.5.2 Collaborative service discovery in Services Oriented Architecture . 56

5.6 Search requirements e 57
5.6.1 RDF representation of a queryin P2P OHS 57

5.7 Discussion e 59

5.8 Adaptive overlay formation Lo 59
5.8.1 Formal description oo 61

5.9 Summary 62

6 P2P Coalition Formation and Search Algorithm 64
6.1 Imtroduction 64

6.1.1 Peer architectureo 67

6.2 Notation e e 68
6.2.1 Query structure and routing semantics 68

6.3 Algorithm and message types 70

71

CONTENTS v
6.3.2 Processing the query responses for (Qrandom) from Each Peer in

Prandom « « « « « v e e e e e e e 71

6.3.3 Request for processing query 71

6.3.3.1 Query processing at Peer P, 72

6.3.4 Request for resource description 72

6.3.5 Notification of change in resources 72

6.4 Search mechanism 72

6.5 Overlay reorganisation L 73

6.6 Observations 74

6.6.1 Limitations of the approach 75

6.7 SUIMINATY o v v e e e e e e e e e e e e e 76

7 Evaluation of the Search Algorithm 77

7.1 Introduction Lo 7

7.2 Experimental evaluation oo 78

7.2.1 Gemneralsetup L L 79

7.2.1.1 Resource distribution 79

7.2.2 Input data sets and data distribution. L. 80

7.2.3 Comparison with respect to an optimal topology 80

7.2.4 Experiments 82

7.2.4.1 Query routing strategies. 32

7.2.4.2 Effects of variation in link state table on routing costs . . 85

7.3 Conclusion e e 88

IV Query Processing in data stream management systems 92

8 Query Optimisation 93

8.1 Background 94

8.1.1 Query processing in relational database systems 95

8.1.1.1 Query planningo 95

8.1.1.2 Cost metrics and estimation techniques 96

8.1.1.3 Query planning techniques 96

8.1.1.4 Query re-optimisation 97

8.1.2 Summary e e 98

8.2 Query processing for streams Lo oL 98

8.2.1 Motivation 98

8.2.2 Stream data management L L. 99

8.2.3 Window semantics and specifications 102

8.2.4 Continuously Adaptive Continuous Queries (CACQ) 104

8.2.5 Adaptive join operators oo oo 105

8.2.6 Join semanticso Lo e 106

8.3 Problem Definitiono oL 107

8.3.1 Selection and projection filter 109

8.3.2 Complex queries oo 109

8.3.2.1 Pipelinequery 0. 110

8.3.2.2 Starqueries. oo 111

8.3.2.3 Cyclicqueries o 111

CONTENTS vi
8.3.24 Crossproducts 111

8.3.3 Bursts of data arrivalo 0L 112

8.3.4 Costmetrics 112

8.4 Query optimisation L 114
8.4.1 Plan generation and re-optimisation 115

8.4.2 Query re-optimisation 117

8.4.2.1 A sgspecial case of n-way join. 121

8.4.2.2 Reductions for chain query 121

8.5 Application to distributed DSMS 122
8.5.1 Selection operator 123

8.5.1.1 Data structure associated with the operator 124

8.5.2 Algorithms for select and project operators 126

8.5.2.1 Cost of processing the query with this probe 127

8.5.3 Multi-way join operator 127

8.5.4 Operator scheduling 129

8.5.5 Statistical information collected 130

8.6 Example 131
8.7 SUMMATY e e e e e e e e 134

9 DSMS - Implementation, Evaluation and Analysis 137
9.1 Implementation details 137
9.1.1 Architecture e 138

9.1.2 Illustration memory management and scheduling 139

0.2 Experiments. e e e 140
9.2.1 Select project operator analysis 140

9.2.2 Query planning under variable data rates 141

9.2.3 Operator scheduling analysis 143

9.3 Summary 145
9.3.1 Contributions 146

V Conclusions and Appendices 148
10 Conclusions 149
10.1 Concluding remarks 149
10.1.1 Online scheduling o 0. 150

10.1.2 Information dissemination 151

10.1.3 DSMS - Query processing oo e e 151

10.2 Future Work 151
A Appendix: Continuous Query Semantics 153
B Appendix: Survey of Large Scale Distributed Systems 155
B.1 Examples of Large Scale Systems 155
B.1.1 Services Oriented Architecture 156

B.1.2 Grid computing 157

B.1.2.1 Compute Centric Grids 157

B.1.2.2 Data Centric Grids (DCG) 158

CONTENTS vii
B.1.3 Peer-to-Peer computing (P2P) 158

B.1.4 Ad hocnetwork systems 159

B.1.4.1 Sensor networks 160

B.1.5 Agent-based computing economies 160

B.1.6 Discussion 161

B.2 Common characteristics 162
B.3 Summary e 162

C Appendix: PSQL - Extended Query Language for Streams 163
C.1 Stream query language (PSQL) 163
C.1.1 Similarity featuresof PSQL 166

C.2 Comparison with other languages 166
C21 CQL e e 166

C.22 ATLaS. e 167

C.2.3 Tapestry. e 167

C.3 Language - yacc representation 168
C4d Query examples Lo 176

D Appendix: Related Work 178
D.1 Publications 178
Bibliography 180

List of Figures

1.1
1.2

1.3
1.4

—
[}

to
o

9.1
5.2
9.3

6.1

6.2

6.3
6.4

7.2

7.3

7.4

An online scheduling system with resource migration. 4
Adaptive systems with dynamic resources. 5
Adaptive systems with evolving topologies. 5
Adaptive systems with QoS adaptation with load variance, under fixed

TESOUTCES. .+« v v v e e e e e e e e e e e D
Organisation of thesis. L 11
Distributed data stream management systems. 25
State transition of a job in a Grid scheduling system. 36
Online resource allocation with admission control to provide notifications

at release time oL 40
Simulating resource scheduling with failures. 43
Comparison of BFIS, EXF and off-line scheduling strategy. 43
A linkbase expressed in RDF Syntax, taken from our publication 58
A typical query specification, taken from our research group’s publication 58
Continual reorganisation through coalition re-evaluation 63

Peer Network, (A) An overlay showing disconnected sub-graphs clustered
over a single attribute, (B) An ideal overlay with a connected graph
clustered over a single attribute. oo o000 66
Overlay Selection - (A) A peer that selects the neighbours based on
maximum resource overlap (B) A peer that selects neighbours to maximize

the resources based on overlap and query routing history. 66
Peer architectureo e 67
Schematic representation of query routing 70
A zipF resource distribution.o 0oL Lo 80
Query throughput using the probabilistic routing algorithm for zipF resource
distribution and variable radius r, 1 < r < 3, Number of peers = 20. . . . 83
Query throughput using the broadcast routing algorithin for zipF resource
distribution and variable radius r, 1 < r < 3, Number of peers = 20. . . . 83

Query throughput using the random walk routing algorithm for zipF
resource distribution and variable radius r, 1 < r < 3, Number of peers
=20, . 84
Comparative query throughput between probabilistic, broadcast and random
walk routing algorithms for zipF resource distribution and variable radius

r, 1 <r <3, Numberofpeers=20. 84

viil

LIST OF FIGURES ix

7.6

7.7

7.8

7.9

7.11

3.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

9.1
9.2
9.3
9.4

Transmission costs for the probabilistic routing algorithm for zipF resource

distribution and variable radius r, 1 < < 3, Number of peers = 20. . . . 85
Transmission costs for the broadcast routing algorithm for zipF resource
distribution and variable radius r, 1 < r < 3, Number of peers = 20. . . . 86
Transmission costs for the random walk routing algorithm for zipF resource
distribution and variable radius r, 1 < r < 3. Number of peers = 20. . . . 86

Comparative transmission costs for the probabilistic, broadcast and random
walk routing algorithm for zipF resource distribution and variable radius

r,1 <r <3, Number of peers =20. 87
Effect of variation in radius on effectiveness of the probabilistic routing
algorithm for zipF resource distribution and variable radius r, Number of
peers = 200, . . . L L e e e 88
Effect of variation in radii on effectiveness of the broadcast routing algorithm

for zipF resource distribution and variable radius r, Nwumber of peers =

200. Note: Points in the graph overlap, the three curves are similar. . . . 89
Cost for r=1 using the probabilistic routing algorithim for zipF resource
distribution, Number of peers =200. 89
Cost for r=2 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers =200. 90
Cost for r=3 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200. 90

Cost for r=1, r=2, r=3 using the broadcast routing algorithm for zipF

resource distribution, Number of peers is 200. Note: Curves in the graph

overlap Lo e e 91
Window t¥pes L e 103
Different Query Types e 110
A typical query tree 116
A typical query plan L Lo 117
Reductions for different query types.o 119
A typical operator flow generated by the planning algorithm. 120
Reductions for chain query. o000 122
Sparsification based query planning applied to distributed query planning

systeml. .. oL oL e 123
Selection with modified IBS Tree L. 125
A pipelined symmetric hash join with monitoring information 132
Example Queries L 133
Logical plan for a single query.o L 133
Logical plan for a two queries. 134
Shared logical plan for three queries. 134
Execution plan for a single query. o000 135
Execution plan for a two queries.o oL 135
Execution plan for three queries, with parallelisation. 136
Block diagram: Query Processing Engine (QPE) 140
Effect of the IBS on time complexity. 142
SPJ individual query performance.o 142
Data arrival rates of various streams and sub streams. 144

LIST OF FIGURES X

9.5 Memory requirements of various streams and sub streams. 144
9.6 Delay Characteristics of various streams and sub streams. 145
9.7 Comparative memory performance of scheduling strategies. 146

List of Tables

4.1

6.1
6.2

7.1
7.2
7.3

8.1
8.2
8.3
8.4

9.1

Mapping application objectives to hypothesis 26
Simulation settings for evaluation of online scheduling algorithm. 42
Choosing neighbours for coalitions formation 65
Notation used for describing the algorithm. 69
Configurations used in P2P simulation 79
A simple topology. 81
Adjacency matrix and its graphical topology for a small network, connectivity

k=2 . e 81
Stream Query Processing - Tuple and Stream Instrumentation Details . . 131
Stream query processing - Operator instrumentation details 131
Parameter description and symbols L. 132
Stream query processing - example queries. L 133
Performance data of an IBS based SPJ operator 141

xi

Nomenclature

General

Gy < V4. By, Fy, Hy >
Vi

E;

Fi

H;

gt < vp, e fryhy >
v

€t

Tt

hy

Scheduling

Ji <1y piydip >

21

T

d;

R

FIFO

M

P2P Information Dissemination
P;

R,
C<PF.P,Ri,R; >
H,

Q@

Query Optimization
o

I1

B

A global dynamic graph

A time varying set of nodes in a dynamic graph G;
A time varying set of edges in a dynamic graph G;
A set of vectors to represent the capability of V4

A set of vectors to represent the capability of E}

A view of graph global graph G;

A set of nodes in the local graph ¢;

A set of edges in the local graph g

A set of local constraints on v;

A set of local constraints on e

Computation Job

Processing Time

Release Time

Deadline

Slack Ratio

First In First Out ordering in a queue operation

Set of Machines

ith peer in the P2P network

A set of resources with peer F;

A coalition between P, and P; based on R; and R;
Temporal trace of activities observed by F;

A query to describe the resources for discovery
Select Operator

Project Operator

Join Operator

xii

Acknowledgements

Every good thing comes to an end and this is no exception.

My odyssey through different research groups here at Southampton and in the UK in
general is finally ending in this thesis. A great learning experience in itself and rewarding
in every aspect, this has been a path full of testing times and ample rewards. Lessons
learnt in this phase of my life are invaluable and hopefully guiding beacons towards my
future destinations. Having reached this destination and getting ready for a new one, 1

can look back and say “It has been worth it”.

I am deeply endebted to Professor Anthony, J. G. HEY and Professor David DE ROURE,
for giving me a chance to complete this thesis and for maintaining a firm belief in me. In
this fast paced life, it is very rare that a student-advisor association has such a profound
impact. ITam endebted to my supervisors for not only having devoted time in broadening
my horizons of knowledge, but also for taking interest in shaping my outlook towards

science and life in general.

T am also grateful for the support of some of the marvellous people at the University who
have helped me in numerous ways that cannot be described in words. Eric Cooke has
been a pillar of strength and a wonderful mentor. Additionally, T would like to thank
friends like Jing Zhou, S D Ramchurn, Partha Dutta, Arouna Wokeu, Sanjay Vivek,
Victor Tan, Mark Thompson and all the other colleagues at IAM for providing such a

vibrant and intellectually simulating environment.

Last but not least, I would like to thank and express my gratitude to my parents and

my wondertul sister 'J’, for everyvthing.

x1ii

To ...
My Parents, my sister J and Eric Cooke

xiv

Part 1

Introduction

Chapter 1

Introduction

Non-adaptive computational systems capture only one view of the world, usually the
one that was defined at design time. They fail to take into consideration that modern
distributed systems by their very nature are non-deterministic and dynamically evolving
- a fact also supported by the recent advances in the field of pervasive computing
infrastructures. Consequently, non-adaptive systems tend to operate in sub-optimal
states. Although, in some cases exhaustive enumeration of all possible states of operation
allows application developers to impart adaptive behaviour to their applications, in most
cases it remains infeasible to ascertain all the possible operating states for applications
at design time. As suggested in the survey, presented in Appendix B, a set of common
characteristics exist for most such operating environments. At least two possible approaches
could be adopted to explore adaptive behaviour in such environments. The first is to
create a generic model and validate it for the given set of applications. The second is
to synthesize the hypothesis by addressing the research issues within the application
domains. As most of the concepts related to adaptive behaviour in distributed systeins
have not been exhaustively explored by the research community, the latter approach

happens to be more appropriate.

Research in distributed computing systems has been diverse and to the best of our
knowledge has almost exclusively addressed the part of the problems highlighted in
Appendix B. While most research has focused on isolated issues, it is believed that a
better understanding of the issues can be achieved if all of them are considered in the
context of an all encompassing pervasive computing infrastructure. Additionally, it is
believed that these explorations need to be carried out in the context of the generic
application scenarios that are applicable in a wide variety of systems, and therefore this

work was carried out in the context of three exemplar applications.

This chapter gives a short introduction to adaptive systems and enuinerates the characteristics
of the operating environments of interest. Then, the choice of application exemplars is

justified, along with the research problems that they address. The contributions and

2

Chapter 1 Introduction 3

the structure of the thesis conclude this chapter.

1.1 Adaptive systems

In general, adaptive behaviour is the ability of a system to modify its behaviour in
response to the prevailing operating environment. However, in the context of a large scale
systemn, it is uncommon for each of the system components to have a complete consistent
view of the prevailing operating conditions. In such cases, the adaptive behaviour of
the system is closely associated with its perceived operational conditions. A generic
non-adaptive system can be considered as one which does not allow any changes to its
perceived operating conditions and attempts to achieve a certain objective function,

given the prevailing operating conditions.

An adaptive systemn monitors and models its operating environments and either optimizes
it objective function or modifies it in accordance with the prevailing operating conditions.
Therefore an adaptive system is characterized by its ability to discover, model and utilize
the resources found in its operating environment. A number of complex interactions
may exist between the operating environments and the adaptive system components.
However, only a subset of these interactions will be applicable in the context of resource
management. Adaptive resource management techniques in large scale systems allow
the system resources to identify the subset of operating environment characteristics that
allow for better utilisation of its resources. For the purpose of resource management
in adaptive systems, important amongst these sets of interactions are the ones that
determine the characteristics of the operating enviromment and the influence of the
workload on the given resource. While an interaction set determines the ability of the
resource to collaborate with other resources, the workload influences the type of objective

functions and optimisation strategies adopted by the system.

Consider the example of an online scheduling system that receives a number of computation
job requests to be processed on a set of unreliable resources, as shown in Figure 1.1. It is
assume that the aim of the scheduling system is to maximize the usage of computational
resources. A non-adaptive scheduling system will be designed to maximize a given
objective function. However, a predetermined objective function may not be the best
choice, given the variations in availability of resources and the properties of the job
characteristics. An adaptive scheduling system could observe such variations, adapt its
behaviour and choose an appropriate objective function to attain the aforementioned

goal of maximizing resource utilisation.

The above simple example highlights the three important characteristics observed in

adaptive systems.

(1) Autonomy of actions. In the above example, each of the nodes was able to independently

Chapter 1 Introduction 4

Job Sequence Job Sequence
Jyd e oy g d g

Migrating Resource

Leave Join
Scheduler-1 Scheduler-2

Avg. Resource Utilization 30%. Avg. Resource Utilization 60%.

FIGURE 1.1: An online scheduling system with resource migration.

identify whether the resource should be placed under the control of the scheduler. At
the same time, the scheduler was autonomously able to determine, when to use the
resources. Autonomy of actions is central to this emerging class of systems, it allows
them to independently model the operating environments and alter it by cessation of

interactions with some parts of the system.

(2) Duality of resource management. The choice of the objective function highlights the
duality principle encountered in this class of systems. Abundance of resources translates
into a resource provisioning problem, while scarcity of resources leads to a quality of
service issue. For example, independent resource providers may cease to participate in
the context of the scheduling system if their individual objective functions are not met,
while limited resources may force the scheduler to adopt the objective functions which

provide a degraded quality of service warranties.

(3) Optimisation over an interval. Adaptive behaviour is instigated when the system
components are able to perceive a change in the operating environment. These observations
are not always based on observance of a single state change and require the system
to observe and model the operational conditions over a period of time. Constant
adaptations or too fast an adaptation may lead to instability and the systems need

to be able to identify such features.

The list of properties is non-exhaustive and will be strongly dictated by the notion
of adaptive systems behaviour. For the set of systems of interest, as described in
Appendix B, adaptive resource management is primarily concerned with two types
of resources, namely computational resources and information discovery in distributed
systems. Additionally, the effects of quality of service on resource management within

a single resource are of interest.

(1]

Chapter 1 Introduction

Operating Environment
Join

Leave

FiGURE 1.2: Adaptive systems with dynamic resources.

Operating Envirenment

Qperaling Environment
Topology-B. Objective Function-Hixj

Topology-A, Objective Function-F(x]
Topology
Moditications
as Objeclive
Changes

—

FIGURE 1.3: Adaptive systems with evolving topologies.
1.2 Classification of adaptive systems

Three common types of adaptive resource management scenarios are widely encountered

in the set of systems highlighted in Appendix B - namely Resource Adaptation, Topological
Adaptation and Quality of Service (QoS) Adaptation. In cooperative operating environments,
availability of resources influences task distribution between the available resource providers.
Applications capable of maximizing their objective function in response to the availability

of resources and ability to degrade gracefully when these resources are no longer available

are considered to be resource adaptive 1.2.

| Varying Job Sequence (J)

Varying Bounded QoS
B R
Workload (W) ounded Resource (R) FURW)

FIGURE 1.4: Adaptive systems with QoS adaptation with load variance, under fixed
resources.

Chapter 1 Introduction 6

Topological adaptation 1.3 refers to the capability of an application to modify its communication
behaviour in response to changes in the operating environment. The key difference
between resource adaptation and topological adaptation is that the latter approach
leads to the formation of a different cooperative structure in response to changes in the
environment. In the former type, the variations in resource availability are absorbed

within the structure.

Finally, the QoS Adaptive systems 1.4, represent a special case where the operating
environment has a finite set of resources. Unlike the previous two cases, where additional
resources within the cooperative structure augment the capability of the operating
environment, the QoS Adaptive systems try to absorb the variations in the workload
or the operating environments and adapt their internal behaviour to adhere to bounds

specified by QoS.

1.3 Application domains

Distinct properties are associated with each of the three types of adaptive system. These
include resource description and utilisation models, the ability of resources to adapt in
any given operating environment and the type of resource optimisation feasible within
the given context. In order to select an appropriate application exemplar to investigate
the resource management features of systems with the characteristics described in Appendix
B.2, common resource definition and adaptation scenarios were considered. To investigate
the resource adaptive systems, an online scheduling system capable of providing performance
warranties on a set of networks of workstations was considered. Detailed problem
definition about the application domain can be found in Chapter 2. Although this
exemplar application presents the simple case of computational resource adaptation,
most similar systems have not considered the support for objective functions; instead
they rely on best effort approximations. The challenge therefore is to devise adequate

resource manageiment capability to support objective function, such as warranted completion.

Topological adaptation is widely applicable in the context of sensor networks and application
overlay systems. The key feature of these environments is their ability to choose the
appropriate members of the overlay in response to the variations of the overlay structure.
Although, to date structured and unstructured overlays have been widely employed
for this purpose, none of the techniques allows the applications to evolve a topology
given the operating constraints. Topological adaptation has been investigated in the
context of Peer-to-Peer (P2P) information dissemination systems. However, none of the
existing approaches takes into account the resource capabilities of individual peers, or
the self-evolution and self organizing aspects of overlay systems. A detailed description
of the challenges can be found in section 5.1. Findings from this study are widely

applicable in query routing in sensor networks and resource management in P2P system

Chapter 1 Introduction 7

environments.

Investigation into the properties of the QoS based adaptation was carried out in the
context of Data Stream Management Systems (DSMS). Processing over the 'append
only’ data streams specified in terms of continuously executing queries provides an ideal
scenario for a static workload, while the variations in the properties of the incoming
streams allow simulation of the variations in the operating environment. Finite memory
and computational resources provide a resource bound operating environment, one of the
key assumptions when investigating QoS. Although, a number of approaches have been
advocated in the field of data stream query processing, none of the current approaches
investigates the potential resource sharing between concurrent evaluations of queries on
data streams. This approach investigates resource sharing and the resultant concurrency
control issues in the context of multi-query continual optimisation over data streams. A
detailed description of the problem domain and the scope of our work are presented in
section 8.3. Findings from this exemplar have helped further state-of-the-art in DSMS
query processing, and can be generalized to be applicable to QoS aware systems with

bounded resources.

The choice of application exemplars provides a dual opportunity to further the state-of-the-art
in application domains, while contributing to generic investigations in the area of adaptive
systems. A significant degree of overlap between basic properties like autonomy of
actions, incremental access to input data, partial visibility of state information and the
temporal nature of the operating environments help to enforce some common behaviour
across applications. The following section describes the problems in individual application
areas, along with pointers to the seminal work in these fields, which is further extended

by the current investigations, and summarizes the contribution of this thesis.

1.4 Contributions

The contributions of this thesis can be divided into two distinct categories: contributions
to individual application domains and generic contribution to an overall hypothesis.
The hypothesis proposes a model for dynamic graph based representation of large scale
systems. The contributions to the application domain are further classified into the

following three categories:

Online Scheduling An online scheduling model for Grid environments is proposed as
an extension to the original scheduling theory discussed in (Leung 2004). Online
scheduling assumes that their is a continually varying demand for resources and
jobs. The aim is to determine the feasibility of an optimal planning strategy under
the time-varying demand and supply of resources and jobs, and to minimize the

cost of optimisation in case a strategy exists. The program allows job migration

Chapter 1 Introduction 8

between multiple resource providers, and there are penalties on commissioning and
decommissioning of resources within a resource provider. In order to minimize
resource penalties and forecast the usage of any spare resources, the individual
resource providers form coalitions to outline the cooperative strategy between
various resource providers. The initial motivation of the application domain and
the application are described in Chapter 3, the generalized optimisation scenario
is described in Chapter 2 and further developed in Chapter 3. The algorithmic

contributions are:

1. An online planning algorithm for online scheduling on multiple machines, as
described in Chapter 3.

2. The experimental evaluation of the algorithm as provided in chapter 4

Information Dissemination Information dissemination focuses on information management
in an ad hoc network environment. The motivating applications are described
in Chapter 5 and in the information discovery and management techniques in
Peer-to-Peer environments (Stoica, Morris, Liben-Nowell, Karger, Kaashoek, Dabek,
and Balakrishnan 2003; Zhao, Kubiatowicz, and Joseph 2001; Rowstron and Druschel
2001). The approach for this thesis uses the characteristics of the information
and its demand and supply characteristics to create an overlay. The overlay is
optimised for probabilistic routing mechanisms, also known as search mechanisins.
An empirical evaluation of the approach is presented for a finite number of system

nodes. The algorithmic contributions for this are as follows:

1. A distance based similarity search algorithm is described in Chapter 5

2. A self-organizing overlay mechanism is described in Chapter 5

Query Optimisation The problem of query planning and processing in a data stream
management system are described in (Babcock, Babu, Datar, Motwani, and Widom
2002). This scenario is used to examine the complexity of the combinatorial
optimisation in dynamic environiments and use dynamic graph techniques to address
a multiple optimisation problem. A dynamic graph based data structure is used
to represent a query planning scenario that needs to produce an optimal operator
ordering to reduce the cumulative resource utilisation across multiple queries.
The motivating examples, related database literature and query planning and
processing algorithms are described in Chapter 8. The algorithmic contributions

presented in Chapter 8 are:

1. A dynamic programming based query planning algorithm for queries on data

streains

o

An interval search tree-based select, project join operator.

3. An algorithm for concurrency control of multiple query processing for stream

data management systems.

Chapter 1 Introduction 9

4. PSQL, an extension to SQL, for specifying queries over streaming data.

1.5 Structure of the thesis

The literature review for each of the application domains is presented in the chapters
that are directly related to the discussion sections and is distributed across chapters to
closely associate it with the new contributions. The next chapter describes the general
theoretical basis for the work presented in the three application domains. The rest of

the thesis is organized as follows.

Chapter 2 : Adaptive Systems This chapter additionally outlines the characteristics
of adaptive systems and proposes an ad hoc resource group (AHG) based model for
representing large scale distributed systems. The AHG’s are modelled as dynamic
graphs which capture the characteristics of autonomy and partial information
visibility. The properties of the model are then defined as verified by the application

exemplars.

Chapter 3 : Online Scheduling Online scheduling techniques are investigated for
computational resource sharing over a set of federated and autonomous resources.
The algorithms for admission control are presented in online job Grid scheduling

systems and analysis is provided for the case of finite time horizons.

Chapter 4 : Evaluation of Online Scheduling This chapter presents the empirical
evaluation of the algorithms described in Chapter 3 and provides comparison with
the Earliest eXpiry First (EXF) algorithm. It considers the case of uniform and
variable jobs and evaluates the algorithm for various values of slack k, for k=0,
k > 1 and k < 1, and for variable job arrival rates. It then describes the use of
resource advertisement as a means of developing an overlay of online scheduling

systems, the information needs for which are further explored in the next chapter.

Chapter 5 : Resource Management in P2P Systems This chapter introduces the
adaptive overlay formation and maintenance for resource management in peer-to-peer
networks. A brief review and application domain description is followed by a
comparison of the existing overlay management techniques. Modifications to these
techniques and a generic model for probabilistic overlay creation and maintenance

are described.

Chapter 6 : P2P Coalition Formation and Search Algorithm This chapter discusses

the application of the generic algorithm described in Chapter 5, to the domain
of Peer-to-Peer Open Hyper-media Systems (OHS). It introduces the application

scenario and presents a formal description of the search algorithim.

Chapter 1 Introduction 10

Chapter 7 : Evaluation of the Search Algorithm This chapter provides empirical

evaluation of the algorithin developed in chapter 6.

Chapter 8 : Query Optimisation This chapter begins with a description of query
processing in data streams and states the relevance of the application domain to
adaptive systems. The model used to describe data streams provides an analogy
for the infinite sequences of data items that are evaluated for a set of queries. This
is followed by a description of a dvnamic graph-based query processing algorithm.
An IBS-SPJ operator is presented for shared range predicate evaluation. Query
re-optimisation techniques and operator scheduling techniques for efficient evaluation

conclude the chapter.

Chapter 9: DSMS - Implementation, Evaluation and Analysis This chapter presents
the architectural details of the DSMS implementation and the experimental evaluation
and analysis of the query optimisation algorithm, the IBS Operator and the

Operator Scheduling algorithm.

Chapter 10 : Conclusions This chapter correlates the observations in the various
chapters and summarizes the contributions of the thesis. It is followed by a
discussion of the potential for future work and directions arising from the above

work.

1.6 Suggested order for reading

A legend presented in figure 1.5, is provided to allow easy navigation through this text.
It is suggested that all readers familiarize themselves with Part I, which outlines the
objectives and scope of the work presented in other parts of the thesis. Part 1I, Part III
and Part IV can be read independently of each other, and are complete pieces of work
in their own right. Relevant sections of Part V may be read to see how each of the Parts
II, III and IV relate to the initial discussion in Part I. Tt is hoped that the organisation

diagram helps navigation through this complex text.

Chapter 1 Introduction 11

Chapter 1)
Introduction
Chapter 2
Adaptive Resource Management

Chapter 3 Chapter 5 Chapter 8
Online Scheduling Resource Management in Query Optimization in
System P2P environments. DSMS

Chapter 9

Chapter 4 Chapter 6 DSMS -
Evaluation of Online P2P Coalition Formation lmp_Igme__nt_atlon,
Scheduling Algorithm and Search Algorithm. Evaluation and
Analysis.

Chapter 7
Evaluation of Search
Algorithm.

Chapter 10
Conclusions

FIGURE 1.5: Organisation of thesis.

Chapter 2

Adaptive Resource Management

in Large Scale Systems

The World Wide Web (WWW), Grid Computing, Peer-to-Peer (P2P) systems and
Semantic Web represent emerging technologies employed to develop large scale computing
systems. Almost all of them are enabled by cooperative resource sharing between
multiple autonomous resource-providers. While the web represents one of the most
scalable implementations of distributed system for sharing data/information content, it
primarily remains a client-server system with content providers in exclusive control of the
resources. Recent advances in the above mentioned technologies such as Grid Computing
and P2P, attempt to achieve a higher level of resource integration by incorporating
coordinated use of computational and data resources across multiple resource providers/consumers,
with decentralized control. However, unlike the simple data content resource sharing
on WWW_ the coordinated use of computational resources and data presents greater
challenges of synchronisation, management and utilisation of resources, as is summarized
in Appendix B, which presents a review of these open issues and summarizes the

state-of-the art in the above mentioned technologies.

From current trends in these emerging technologies, one could safely infer that future
systems may use a common representation based on “virtual organisations (VOs)” to
represent a dynamically associated set of resource providers and consumers. A virtual
organisation is synonymous to an ad hoc resource group created solely for the purpose
of sharing computational and data resources amongst its participant members. 'To
date, VOs have been represented as a loosely connected set of resources and very
few investigations have focused on the management of resources within the VOs, and
interactions between multiple VOs. This study presents a VO based representation of
large scale distributed systems, for this purpose. A VO is created by dynainic association
of resource providers and consumers, and the association may evolve over a period of time

as the resource providers and consumers join and leave the VO. During its lifetime, a VO

12

Chapter 2 Adaptive Resource Management in Large Scale Systems 13

needs to provide the necessary mechanisms to facilitate collaborative resource usage and
management mechanisms. This chapter investigates the resource management features

in these organisations and describes their usage in different application scenarios.

The rest of the chapter is organized as follows: Section 2.1, introduces ad hoc resource
groups (AHG’s) as generic VO’s and enuinerates its characteristics. Section 2.2, describes
the resource management requirements in AHG’s and describe the open issues in managing
resources in them. Section 2.3 describes the generic model for description and management
of resources in this thesis; it also describes how the work will be developed in the following
chapters. Section 2.4 describes the rationale for choosing application scenarios in the
investigation. Section 2.5 provides an alternate view of how advances in these application

scenarios can be used to develop a distributed stream management systeim.

2.1 Ad hoc Resource Groups

Increasingly large scale systems are being formed by dynamic online association of
computational and data resources. Electronic market places, virtual organisations,
peer-to-peer computing and networks of workstations are examples of the emerging
type of structured/semi-structured AHG’s for managing a practically infinite number
of computational resources in online collaborations. Most such ad hoc resource groups
are created to provide a service to the members of the institution and are either based
on social, economic or utilitarian models. AHG’s assume a structure that is better
suited for accomplishing their objective function; examples include a market model for
environments with scarce resources and a cooperative model for partitioning the large
search space. These institutions may impose certain restrictions on the behaviour of the
participants - restrictions may assume forms of behavioural guidelines, online checks or
dominant strategies - to effectively manage the ad hoc resource group. Enforcement of
such restrictions may require monitoring of the communication between participants,
monitoring the state of each or some of the participants, and using a reward/penalty
mechanism. These rules, restrictions and behavioural patterns of the ad hoc resource

group are referred to as the “operating environment”.

Operating environments provided by an ad hoc resource group may be either centrally
managed or collectively managed by a set of distributed managers, or they may be
unmanaged - evolving from the collective behaviour of its participants. Most AHG's
facilitate interactions between its participants. However some AHG’s, for example,
auction sites may prohibit direct interaction between the participants. In cases where
AHG’s facilitate interaction between the participants, they need to provide additional
mechanism to coordinate and monitor such interactions. These constraints imposed by
the operating environment restrict the autonomy of the individual participant. Examples

of such restrictions include constraints on sharing of state information and management

Chapter 2 Adaptive Resource Management in Large Scale Systems 14

of resources. Constraints enforced by the operating environments determine the “visibility”
of the individual participants. In most large scale systems/AHG’s, no single participant
will have the complete knowledge of the entire state of the system. Each of the participants
observes a partial environmental state, which in turn determines the scope of its influence
on the operating environment and the behaviour of other participants. Considering that
all the participants in an AHG exhibit rational behaviour, the state visibility of the
participants will determine the sub-space in which they can affect the behaviour of the
system. Participants use this observed state information to autonomously determine

their “operational behaviour”.

It is presumed that the AHG’s are dynamic entities that evolve over a period of time. The
temporal nature of the observed state may require the participants to take into account
the historical evidence relevant to their future actions. In such dynamic environments,
an autonomic participant needs to determine its operational behaviour in terms of an
objective function on a partially observed temporal state. The temporal nature of the
environment and the variation in the observed state usually results in adopting multiple
objective functions for different observed conditions. A set of such objective functions is
referred to as a “policy”. In certain cases, the participants may use a single policy or may
consider re-evaluation of the policy during the lifetime of the AHG. Most AHG’s that
support use of dynamic policies impose constraints on the time period for the validity of
the policy, as the policy adopted by one of the participants may influence the behaviour

of the other participants.

Dynamic operating environments present a unique challenge. Tt is not possible to
envisage all the operating states at the design time. Consequently, participants need to
adapt to dynamic run time environments. As described above the adaptive behaviour
of the participant is constrained by the spatio-temporal data visibility of its operating

environment and the information they hold on the state of the other participants.

To summarize, no single participant will have knowledge of the complete state in most
large scale systems; consequently they need to be organized into groups of participants
under ad hoc resource groups (AHG’s). Interactions between the participants will
determine their ability to collaborate in order to share their resources to accomplish
their desired individual goals. Participants in such collaborations will exhibit autonomic
behaviour. The dynamic nature of the collaboration means that the participants will
need to adopt policies that allow them to accomplish their individual objectives under
the prevailing operating environment. Adaptive polices will need to be adapted in

temporally evolving operating enviromments.

Chapter 2 Adaptive Resource Management in Large Scale Systems 15

2.1.1 Discussion

Autonony plays an important part in resource management in most distributed systems.
For example, consider the case of WWW and Service Oriented Architecture (SOA). As
described in Appendix B, both these system types exhibit autonomous resource control.
Although autonomous resource control is crucial from the systems administration perspective,
it may be argued that it is also crucial for creating scalable distributed systems. The
failure of component based middleware systems is widely attributed to their inability
to provide wide area distributed resource management. Two approaches have been
proposed to address this issue: firstly, stateless Message Oriented Middleware (MOM),
and secondly, systems designed as collaborations of manageable hierarchies of resources.
Web Services are an example of the former class, while P2P and Semantic Web fall into
the latter class, while Grid Computing systems lie somewhere in the middle. This thesis

is concerned with the systems of latter type.

Given the premise that the large scale system is viewed as a collection of autonomous

resources, a few questions need to be answered.

Why are aggregations of resources referred to as AHG’s? Does this refer
to Electronic Institutions as defined in the artificial intelligence research

community?

Resources are aggregated to achieve some common objectives of the participant resources.
For example, an auction site is an Electronic Institution created to support a particular
mechanism for negotiations on goods and commodities and represent an ad hoc resource
group corresponding to a physical institution, such as the stock market. Similarly, if one
considers the aggregation of computing cycles and data resources, these aggregations
assume some form and semantics for collaborative usage of the resources. It may be
argued that the semantics of these aggregations can be classified and standardized to
reflect the standard usage pattern in systems, where each usage pattern reflects a type
of Electronic Institution (EI). For example, consider the case of SETIGHOME, the
system allows participants to allocate their computational resources to an EI. The EI
restricts the state of visibility of the system participants and prohibits direct interaction
between them. However, the central EI has a set objective to utilise the collective
resources by allocating computational jobs, in order to maximize the throughput. Thus
collections of resources are organized in a star topology, with a centralized server acting
as a central EI controller. As collaborative use of resources in such aggregations relies
on a well-defined overall objective, organisational structure and communication patterns

such aggregations are referred to as AHG's.

The notion of ET's as defined in the field of AT deals with the organisation of roles and
responsibilities in an agent’s community, along with the necessary restrictions in terms

of permitted and forbidden actions. However, as far as is known the notion of EI’s has

Chapter 2 Adaptive Resource Management in Large Scale Systems 16

never been applied to the development of large-scale systems. this thesis is the first to
propose such an extension. The extensions proposed are in some specific characteristics
of the AHG’s. The first step is to look into the self-organisational behaviour of the
participant’s, with a specific example of participants sharing computational cycles,
secondly, to look into the resource description and discovery support required by these
ad hoc resource groups, in the domain of the peer-to-peer service discovery, and thirdly,
to look into the effects of task definitions, and task profiles on the performance of a

single resource provider, with an example of a stream database management system.
How are AHG’s formed?

An AHG comes into existence when some self managing participants of a large scale
system form an aggregation that bounds the behaviour of these participants by means
of some norms on their behavioural pattern. These norms may be agreed upon at the
inception of the AHG or may evolve from the behavioural pattern of the participants.
The monitoring of such norms is enforced by the participants of the AHG by means of
a reward and penalties mechanism for AHG’s, in economic organisations, or by means
of reduced influence on the environment in case of social organisations. However, both
these organisational types assume that the AHG’s are able to enforce some desired
behaviour on the participants by means of local restrictions. It is envisaged that the
large scale systems can be built as an aggregation of numerous AHG’s. The restrictions

on behaviour of the AHG’s are imposed by means of enforcing appropriate policies.
What are the types of resources they share?

In general, AHG’s remain capable of trading any resources encapsulated by the participants.
For example, in an Electronic Market place, participants may transact goods and services
of all kinds. Considering the case of AHG for studying characteristics of the large scale
distributed systems: first of all the computational cycle sharing for high-throughput
computing, and secondly the effects of the organisation on information dissemination
within an AHG. Finally,there is a study on the effects of resources and task variations
on resource provisioning on a resource provider. These characteristics can be mapped

to Parts II, 111, and IV respectively.
What are the organisational models for AHG?

The Al definition of the AHG does not impose strict restrictions on the way the resources
are organized in an AHG. However, when applied to the case of distributed systems
the organisation of AHG may have to take into account the physical attributes of the
operating environment. For example, Part 111 describes the scenario for a sensor network,
where the participants need to form an appropriate overlay to capture the constraints
of the communication network. Such an organisation of the overlay can be captured
by means of an overlay network. As described in part TTI, there are two ways to form

an AHG, either using a predefined structure and restricting the objective functions

Chapter 2 Adaptive Resource Management in Large Scale Systems 17

appropriate to the structure or by using a set of objective functions to determine the
overlay structure. However, the second case is observed more frequently and is further

investigated in part IIT of the thesis.

Are there some common data structures and algorithms common to multiple
types of AHG’s?

In ad hoc resource groups, no entity has complete knowledge of the entire system state.
The participants need to monitor the operating environment for changes. These changes
assume the form of change in known participants, or relations with those participants,
over a period of time. These characteristics point to the need for a data structure capable
of handling spatio-temporal data. The use of dynamic graph structure to encapsulate
such information is considered. Details about the data structure and its use can be

found in Part II of the thesis.
What are the semantics of interaction between these AHG’s?

When considering a large scale system composed of a number of ad hoc resource groups,
it is imperative to allow the participants to discover other such ad hoc resource groups
and interact with them (and vice versa). Cases where the participants can autonomously
choose the AHG’s that they want to be part off require no specific interaction among
them. However, when the AHG's are responsible for the effective use of the participants
resources, they need to allow exchange of resources between the collaborating AHG’s. In
such cases, a hierarchical organisation of AHG’s may emerge, with a higher level overlay

forming between the AHG’s.

The above analogies can be applied to various scenarios in Grid computing and P2P
systems, where a number of participants form the “virtual organisations” or “peer
groups” respectively. Membership of such groups can either be obtained by the antonomous
actions of the independent participants or may emerge from interaction between the
groups. From the above discussion, one could envisage modelling a large scale system as
a collection of such interacting AHG’s. From the distributed systems perspective, one
needs to establish the effectiveness of such a model in developing distributed applications.
A number of different features have been associated with distributed applications, but
few are comimonly observed. Such common features include: sharing of computational
resources and data resources, and orthogonal to such goals are the issues related to the

discovery of resources in those systems.

2.2 Resource management in ad hoc resource groups

Ad hoc resource groups provide mechanisins for sharing resources between the various
O
participants and facilitate resource sharing between resource providers and consumers.

Resource providers and consumers in an AHG may deal in virtual resources such as

Chapter 2 Adaptive Resource Management in Large Scale Systems 18

stocks and commodities, but when applied to the computational infrastructure these
AHG’s are assumed to deal in computational resources, data resources or network
resources. The scope of this thesis is restricted to AHG’s used to manage resources
in distributed computing systems. Most distributed systems consider computational
or processor cycles as a default definition of a resource. However, a more generic
definition of resources is taken to include computational, data and network resources.
The term resource is defined as an entity whose state can be controlled and affected by
the operating environment. It is therefore natural to consider computing cycles as one of
the primary resources managed by AHG’s and has proven measures in terms of processor
speed, the cache, memory availability, which are quantifiable resource. Other resources
such as data remain more qualitative and difficult to describe and manage. Attributes

of data resources include provenance, data visibility and synchronisation requirements.

As described above, an AHG consists of resource providers and consumers, with AHG
providing the mechanism for maximizing the gain for both classes of participants. An
AHG needs to provide the mechanisms for resource providers to publish their set of
resources for subsequent discovery and consumption. On the other hand, the AHG
needs to provide a means for allowing consumers to be able to express their request
in terms of tasks, for which the publishers can provide resources. This matchmaking
process can be facilitated by means of a service discovery mechanism within the AHG.
Discovery services have been widely deployed in distributed systems to address problems
and related ones in resource discovery. However, distributed AHG’s may require multiple
such discovery services for publication and discovery of various resources, but supporting
such a service for an AHG with a practically infinite number of participants is unfeasible.
Thus resource providers and consumers need to be organized into groups of collaborating
participants- requiring mutual participation to discover the resources. The interaction
graph representing this collaboration can be considered as an overlay network for discovery

of resources.

Assuming that the participants in an AHG have the necessary discovery mechanisnis to
acquire the information about the resources of their choice, the use of such resources
may be autonomously controlled by each individual provider, or a number of providers
may coordinate the use of their collective resources. Coordinated use of resources may
be facilitated by the environment (by building it into environmental constraints) or the

participants may create ad hoc means to allow such coordination.

This thesis investigates these and related issues in the context of the resource sharing

using online scheduling in a Grid computing environment.

Chapter 2 Adaptive Resource Management in Large Scale Systems 19

2.2.1 Resource description and resource monitoring

In general, a resource can be represented using a set of attributes that define its properties.
Applications use relational, semi-structured or an RDF representation of the resources.
A resource description reflects the state information about the resource and enumerates
its properties. It may be used as an advertisement for resource matching in distributed

systens.

This thesis focuses on the structure of the ad hoc resource groups formed primarily
for sharing computational and data resources. Irrespective of the organisation of these
electronic institutions, a few common issues need to be managed in each, namely: 1.
Discovery of resources. 2. Managing computational resources. 3. Managing data

resources.

The above patterns of resource management in large scale systems are studies. First one
in which the tasks and their profiles are known, while the number or resources available
remains uncertain. The second case, studies the effects of collaboration where the task
is known, but cost is reduced by controlling the state visibility of the system. Finally, a
system where different task profiles need to be managed, given a definite set of resources

is presented.

2.3 Modelling the ad hoc resource groups

The notion of operating environments was introduced in section 2.1. However, to the
best of our knowledge their exists no generic model to describe an operating environment.
This section, presents a hypothetical model that allows to capture the notion of ad hoc

resource groups (AHG’s).

A dynamic graph based representation to model the infinite set of resources in an ad
hoc resource group is employed. The dynamic graph G; is used to represent the global
view of the entire state of interest. The graph G; is composed of nodes V; and edges E,
the capabilities of the node V; are described by a vector Fy, while the capabilities of the
edge are captured by the vector H;. The computational resources providers are mapped
as the nodes in the global network G;. The graph G, represents a completely connected
graph if all the nodes are able to communicate with each other. The communication
channels are represented by means of the edges of the dynamic graph !. A temporal
dynamic graph representation captures the temporal behaviour of the system dynamics.

In cases, where the graph G; is a subset of a completely connected graph and the edges

'"Wired networks like the ethernet allow a n-to-n connection, however physical factors constrain
communication in an ad hoc networks, which in turn rely on their neighbouring nodes to route the
message

Chapter 2 Adaptive Resource Management in Large Scale Systems 20

E; represent the point-to-point communication path between the nodes, the graph Gy

2
represents an overlay network ~.

The computational costs associated with the maintenance of such a dynamic graph
increase exponentially with graph size, making it unfeasible to maintain a centralized
system state. Distributed localized views can be used to maintain the global system
state. Synchronized maintenance of the localized views allows the system to maintain a
global view, suggesting the use of sparsification techniques (Eppstein, Galil, Italiano, and
Nissenzweig 1997) to construct the global graph properties from local graphs. However,
it is not always mandatory to maintain synchronised local views. Alternately, each node
can maintain its local view, hereafter referred to as the local view g;, which is composed
of nodes v; and edges e;. It should be noted that a local view may be maintained by an

individual node, or a group of nodes may maintain a shared local view.

It is assumed that each node maintains a local view of the graph in order to maximize
its objective function. Considering that the messaging costs are directly proportional to
the radius of the graph gy, the diameter of the graph will be restricted by the associated
state maintenance costs. Costs associated with maintenance of the localized view are
usually weighed against the benefit acquired by maintenance of such a state. The nature
of this association between the local view and the objective function is incumbent on
the requirements of the application domain, and cannot be generalised across the model.
However, the dvnamic graph model allows expression of such constraints in the form of

the vector functions associated with the nodes and the edges of the graph.

Constraints on the function vectors of the nodes and edges of the graph raise issues
related to the topology of the graph G;. The topological constraints remain crucial
to the systems ability to self-organize itself in the event of change. Using a temporal
representation of the graph allows capture of the evolutionary aspect of the AHG's.
Some applications may consider a time series representation of the graph parameters.
Standard time series inferencing techniques could be applied to monitor the behaviour

of the overlay network, using historical data to predict the changes in the AHG's.

The sharing of resources in AHG’s is a dynamic process, whereby the system state
changes dynamically over a period of time. Such changes may be modelled as changes
in the neighbourhood (by means of ¢;), changes in the availability of nodes (by means of
vy) and changes to the global properties (by means of f; and h;). Considering that the
AHG’s are primarily constructed to achieve some local or global objective function, these
changes will reflect on the applicability of the objective functions. The temporal nature
of the graph allows us to capture the notion of optimisation over a period of time. It is
envisaged that such temporal optimisations will be the norm in most complex systems, as
compared to the static optimisation techniques employed today. Optimisation overtime

introduces an important concept of time boundaries. Systems that optimize over a

A review of structured and unstructured overlay networks can be found in Part III of this thesis.

Chapter 2 Adaptive Resource Management in Large Scale Systems 21

fixed interval in time are referred to as finite-horizon, while the rest are classified to
optimize for infinite horizon systems, which can both be represented in this graph model.
Analogously, the objective function of the node also exhibits temporal behaviour.The
temporal nature of the system also applies to the availability of the information and is

orthogonal to online computing paradigms.

The above model is applicable to a class of problems, much beyond the scope of this
thesis. The emphasis of this thesis is to verify the above hypothesis in real application
domains. Consequently, it is restricted to a distinct class of problems details of which can
be found in the following section. If validated, the hypothesis can be used to formally
represent the characteristics of AHG’s in large scale distributed systems. A formal
representation of AHG’s will help in devising appropriate mechanisms for developing

applications in an AHG based environment.

2.4 Relation to applications

The above model for maintaining the AHG’s utilizes a graph based representation
Gy = (Wi, Ey. ly[], Hy[]), where each of the variables has a temporal dimension. The
model is based on the hypothesis that adaptive large-scale distributed systems can be
built as structured /unstructured AHG’s, under the constraints of partial state visibility,
temporal constraints, disparate resource definitions and resource management requirements.

It is envisaged that the study of AHG's will:

1. Help identify common resource management requirements across a class of systems.

N

Provide insights into the temporal behaviour of large-scale distributed systems.

3. Identify the effect of the operating environment on the self-organizing behaviour

of AHG's.

Consequently, one has chosen different application domains, namely online scheduling in
Grid systems, information dissemination in P2P systems, and multiple query optimisation

in stream database management systems. These applications have been chosen to
investigate the adaptive resource management aspects of large scale systems with disparate
resource definitions, objective functions and application models. It should be noted
that, in addition to attempting to prove the above hypothesis, the thesis advances the
state-of-the-art in all the application domains. The application level problem definition

and contributions to the application domain have been summarized in the parts corresponding

to the respective applications.

[o=]
o

Chapter 2 Adaptive Resource Management in Large Scale Systems

2.4.1 Motivation

While addressing the online scheduling problem for Grid systemms the issues related to
the node function V;, the collective objective function, the effect of partially available

information of the job profiles are investigated.

The second application - Information dissemination in P2P systems - investigates the
issues related to selecting a subset of edges e;, in order to satisfy the global objective
function of reduced communication costs, where communication costs are expressed in

terms of H;. The application also investigates the effects of changes in graph diameter.

The third and final application studies the effects of variation in task profiles in a stream
data management system. In this case the interest is to understand, how changes in task

profile affect the choice of the object function of the given application 7

2.4.2 Objectives

Table 2.1 summarizes the application-level objectives for the described application domains.

2.4.3 Focus of the work

Each part of this thesis (namely Part II, III, IV) focuses on its specific application

domain. This part, describes the focus of the research in each application domain .

Online Scheduling in Grid Systems: Stochastic and online scheduling techniques
have been widely studied under a wide variety of scheduling scenarios. Grid
Systems exhibit the characteristics of both these system types (for details refer
to Part II, Chapter 4, which also describes a Grid Scheduling System). While
stochastic scheduling provides mechanisms to formulate a scheduling policy, given
a job distribution and resource availability profile, online scheduling allows for
scheduling decisions to be performed in an online manner. Similar research issues
have also been highlighted by (Leung 2004). The focus of the work conducted in

this area has been:

1. To demonstrate the effects of organisation on the behaviour of network of
workstations.
2. To design admission control strategy for online scheduling systems in Grid

scheduling environments.

JAt the start and the end of each part, a brief summary is provided to map the application level
goals to the high level goals described in this section.

Chapter 2 Adaptive Resource Management in Large Scale Systems 23

Information Dissemination in P2P systems Structured and unstructured system
topologies used in peer-to-peer systems have been widely used to form ad hoc
peer groups. Part III of this thesis investigates the correlation between resource
distributions and topology structures in P2P systems. The primary objective of
the investigation is to ascertain the effects of change in information distribution

and workload on the characteristics of the overlay system.

DSMS - Query Optimisation Query processing in data stream management systems
represents a special case, in which a fixed set of resources need to be efficiently
managed in order to satisfy the demand on resources. Although, the research issues
in the field have been highlighted by (Babcock, Babu, Datar, Motwani, and Widom
2002), the issue of multiple query optimisation and time based optimisation has
not been addressed in the field of query processing in DSMS. Part IV of the thesis,
proposes multiple query planning and re-optimisation techniques, which take into

account the temporal behaviour of the input streams.

2.4.4 Application level goals

Most of the applications encountered have used static optimisation techniques and were
not designed to function in dynamic environments. Therefore, applications were chosen
from the well-understood application domains, and were examined under the setting
of adaptive resource availability. Each of the applications was studied under different
resource availability criteria and conditions, details of which can be found in Table 2.1. A
number of limitations of the applications were identified in the process of adapting these
applications. Such an exploration into the applications was put into the perspective of

the application level goals.

2.4.5 Discussion

In its base form, resource management represents a constraint satisfaction problem,
where applicable solutions maximize the objective function of the system components
and the system as a whole. Application to large scale systems with variable availability
of the resources poses an important challenge as to how to represent the collection of
resources and choose appropriate organisation, so that the topology of the organisation is
fit for the particular application. It is assumed that although the exact details of resource
management may vary across the system classes, there definitely exists some common
usage patterns across these classes. This thesis examines the resource management
features outlined in Table 2.1, further details of which can be found in the following
parts. A case that discusses the use of all the techniques in the context of a single

application scenario is presented in the following section.

Chapter 2 Adaptive Resource Management in Large Scale Systems 24

2.5 Alternative systems view

The thesis is organized into a number of parts, each of which discusses the techniques in
a specific application scenario. While the techniques remain specifically suitable for the
application scenarios in question, they can also be applied to develop similar systems.
This section describes a Distributed Stream Data Management System, which is based

primarily on the techniques discussed in the thesis.

Part IV of this thesis introduces a central Data Stream Management System (DSMS),
capable of supporting concurrent and continuous queries over streaming data. A DSMS
provides optimized performance over a multi-variable objective function, which consists
of time, memory and computational resource usage. The objective is maximized by
coordinating the use of computational and memory resources to achieve the desired level
of response. The details of this optimisation problem are discussed in chapter 8, which
assumes a single processor for execution of the query. The scheduling system of DSMS
operates on a sequence of unrelated operator schedules, and requires strict warranties
on tinmeliness of response. The DSMS scheduler requires a subset of the functionality of
the scheduling system discussed in Part IT of the thesis. The DSMS scheduler can be

modified to take the advantage of the techniques described in Part II.

The techniques developed in Part 11T of the thesis can also be integrated, if one considers
the Publish-Subscribe paradigm for access to continuous queries. The Pub/Sub model
for access to query processing on streaming data requires publishers of data streams
to allow discovery of their data resources. The information dissemination methods
discussed in part III, can be used to wrap the schema information as advertisements
of resources. The algorithmic principles developed in Part 111 can then be employed to

share the information between a number of DSMS.

Although, the approach adopted by the thesis is in line with the primary focus of
exploring the notion of adaptive resource management, the above example demonstrates

that the techniques can be combined and will find use in multiple systems.

Chapter 2 Adaptive Resource Management in Large Scale Systems 25

Fig. A. Distributed DSMS Nodes,
Edges represent schema exchanges
between nodes

Global Schema Manager Local DSMS Processor

Fig.B. Architecture of a Distributed DSMS

Fig. C. Local DSMS Processor VP Commuricaton Chamss (NS, Sockt

Command Interface

»

O/ Communication Channel {JMS, Sockel,
CORBA-Netification, HTTP)

FIGURE 2.1: Distributed data stream management systerns.

restricted visibility exists
between tlie Master and
Slave nodes in Master or

Slave configuration.

e Job iwformation is revealed
at release time; optimisation
can only be based on the
current information.

may obtain
imformation of
neighbours.

update on
additional

e PPcers have information on
the queries routed and the

routing path. Changes in

resource information are
propagated to iuterested
peers.

records of the
query routiug and resource
information may effect the
future decisions of the peers.

e IMistorical

| Properties Online Scheduling P2p Information | DSMS-Query Optimisation
Dissemination
Information Visibility
e P’ecers have no kunowledge e Pecrs have kuowledge of e Query processor has
of their subordinate peers, imniediate neighbour and limnited visibility of

streant characteristics and
absolutely no information
on tuple contents and arrival

rates.

o Future querics may not have
any kuowledge of cxisting
(fueries.

Temporal Characteristics

Task profile and resource profile
varies over time.

Coalition profile varies over a
period of time.

Resource utilisation of individual
query varies in accordance to
stream characteristics.

Optimisation Type

Moving finite horizou

optimisation.

Instantaneous optimisation based
in listorical data.

Coutinual optinlisation with finite
horizon.

Objective Function Types

Each peer tries to maximize its
individual objective function.

coordinate activities to
improve group objective function.

Peers

A DSMS ftries to optimize the
objective function of multiple
concurrent tasks.

TABLE 2.1: Mapping application objectives to hypothesis

Stre)sAS a[rag oSIeT Ul JUaUIISRUR]Y 201059y 2andepy g Io1dey)

9¢

Part 11

Online Scheduling in Grid
Systems

27

Chapter 3
Online Scheduling

this chapter introduces online scheduling algorithms for scheduling jobs on multiple
machines. This is followed by a thorough review of existing algorithmic techniques for
interval scheduling of independent jobs on multiple independent machines, for preemptive
and non-preemptive scheduling. The following section describes the existing admission
control mechanisms for allocating jobs on a single machine and subsequently introduces
the scheduling algorithm, which provides admission control for scheduling on multiple

related machines.

3.1 Introduction

Scheduling has been studied extensively in many varieties and from various viewpoints
for application to practical computer systems. The basic situation requires processing
a sequence of jobs on a set of machines. In the most basic problems, each job is
characterized by its running time and has to be scheduled for that time on one of
the machines. Other variants introduce additional restrictions and relaxations on the
schedules allowed. Most scheduling algorithms are designed to maximize an objective
function for a given sequence of jobs and the resultant schedule is considered appropriate
if it maximizes some objective function. The notion of an online algorithm is intended
to formalize the realistic scenario, where the algorithm does not have complete access
to the whole input instance. Instead, the algorithm learns of the input piece by piece

and has to react to new requests with only partial knowledge of the input sequence.

Most online scheduling problems are classified on the basis of which part of the problem
is given omline. Sgall (Sgall 1998) introduces one such classification which has been

repeated here. His paper introduces the following classification:

Scheduling jobs one by one. In this paradigm the jobs are ordered in some list and

are presented sequentially from this list. The scheduling algorithm assigns these

28

Chapter 3 Online Scheduling 29

jobs to some machine and time slot(s) before the next job can be seen. The
assignment needs to be consistent with other constraints given by the problem. It
is assumed that the job characteristics, including running time, are known at the
time the job is presented. It is allowed to assign the jobs to arbitrary time slot(s),
even if this incurs penalties. However, alteration of the schedule, subject to the

visibility of future jobs, is not permitted.

Unknown running time Unlike the previous case, this case assumes that the running
time of jobs is not known at the start time and that the total execution time
can only be calculated at the time of completion. However, at any time, all the
currently available jobs are at the disposal of the algoritlun; any one of them can

be started, preempted or delayed on any machine(s).

Jobs arrive over time In this paradigm the algorithm has the freedom to start, preempt
or delay any of the currently available jobs and, in addition, the running time of
each of the job is known at the time of submission. The only online feature is lack

of knowledge of the job’s arrival time.

Interval scheduling All the previous paradigms assume that a job may be delayed.
Contrary to that assumption, interval scheduling assumes that each job has to
be executed at a precisely given time interval. A job is rejected if it cannot be
executed within the specified interval. In this case, the length of the schedule
generated is essentially fixed; hence, tardiness, makespan and/or delay based
objective functions are not applicable in this case. Instead, measuring the weight

(or the number) of accepted jobs is generally applicable.

Most of the above-mentioned characteristics, such as, online arrival of jobs, interval
scheduling and scheduling jobs as they arrive are also observed in recent applications such
as Grid Scheduling and scheduling on a Network of Workstations (NOWS). SETI@home
(SETT), CONDOR (Litzkow, Livny, and M.W.Mukta 1990); they represent systems that
receive jobs in an online fashion. However, the objective is to maximize throughput in
these systems . Other objective functions, such as interval scheduling and co-scheduling
have been the focus of recent research in the field of Grid Computing (Foster and
Kesselmann 1999). This chapter proposes the use of online interval scheduling with
admission control for scheduling in a dynamic environment such as Grids. A case for the
applicability of online interval scheduling is presented in the section 3.1.1. The following
section, 3.2, introduces the relevant definitions and presents a formal description of an
online interval scheduling algorithm (Section 3.5). Section 3.5.1 presents proof that
the algorithm with admission control performs just as well as the Earliest eXpiry First

(EXF) algorithm, and Section 3.6 summarizes the chapter.

Chapter 3 Online Scheduling 30

3.1.1 Discussion

Most of the online scheduling algorithims have been studied in the context of real-time
scheduling systems. However, most of the above-mentioned properties that characterize
an online scheduling problem are also applicable to evolving computing paradigms such
as Grid computing (Foster and Kesselmann 1999). A characterisation of different types of
Grid systems was provided by Fox et.al. (Fran Berman (Editor) 2003), which introduces
a taxonomy for various types of Grid systems. Computational Grids represent one such
system type that facilitates sharing of computational resources between multiple resource
providers and consumers. Section 4.2, describes a scenario inspired by scheduling system
in computational Grids that schedules jobs on multiple independent machines. This
scenario is inspired by existing Grid applications such as those described by (Abramson,
Buyya, and Giddy 2002; Nabrzyski, M., and Jan 2004), where both producers and
consumers collaborate to provide a virtual computational resource. In each of these
applications the scheduling system learns about the job at its release time and needs
to schedule feasible jobs on a set of available resources. Various approaches have been
suggested, which include but are not limited to an economics based approach (Abramson,
Buyya, and Giddy 2002), a reservation based approach (Graham, E.L.Lawler, J.K.Lenstra,
and Kan 1979) and throughput maximisation based approach (Litzkow, Livny, and
M.W.Mukta 1990). While some of the Grid scheduling systems accept the jobs to
maximize there own objective function, the others derive their objective function from
the quality of service guarantees specified in the job description. The case of a former
type of scheduler is considered. It tries to maximize a given objective function and

accepts or rejects jobs according to its scheduling policy.

No Grid scheduling system has a prior knowledge of all the jobs to be scheduled by the
system, and needs to evaluate jobs on arrival. Some scheduling systems accept all the
incoming jobs and attempt to schedule them before the expiry of the job. In such cases,
the scheduling system does not reject the job unless the job can no longer be scheduled
to meet its processing requirements. The drawback of such scheduling systems is that
the job processing system does not provide any guarantee on the completion of the job.
However, rejection at expiry time may not be advisable in certain time critical systems
which require strict guarantees on the completion of the job. Specialized scheduling
systems that provide job completion guarantees have been investigated in the field of
online scheduling systems, and employ admission control systems to selectively accept
or reject jobs at release time. The following sections that precedes section 4.2, introduce
the definitions and a review the existing online scheduling algorithims, and suggest online

admission control for scheduling jobs on m related machines.

Chapter 3 Online Scheduling 31

3.2 General definitions and review

3.2.1 Definitions

Following the standard notation introduced by Graham et al. (Graham, E.L.Lawler,
J.K Lenstra, and Kan 1979), it is considered that all jobs are independent with no
precedence relationships between the jobs and no communications or synchronisation
requirements between the jobs. Jobs are revealed to a scheduler at their respective
release time r;. At release time, the scheduler learns about the processing time p;, and
the deadline for the job d;. The job J; has a slack s; = d; — p; — 7;, which represents the
amount of time between the arrival of the job and the last possible time at which it could
be started to meet its deadline, also known as its expiry time. The minimum slack ratio,
also known as the patience of the job scheduling problem, is defined as x = min;(s;/pi),
so that every job J; has a slack of at least s; > k- p;. A denotes the ratio of the largest
and smallest processing time of the jobs in the schedule o. The gain of the schedule o
on a instance I is defined as > Jico Pi- The gain of the schedule is maximized, subject
to the objective function for the schedule. Candidate object functions that have been
investigated include make-span optimisation (Graham, E.L.Lawler, J.K.Lenstra, and
Kan 1979; Albers 1997), weighted job optimisation (Lee 2003; DasGupta and Palis 2000).
While a non-preemptive job is considered to be successfully processed if it was allocated
the resources uninterruptedly for the duration p;, a preemptive job can be paused and
restarted any number of times and should be allocated resources for the cumulative
duration p;, where completion in both cases is subject to deadline d;. The scheduling
system is considered to be clairvoyant if the processing time of the job is known at

release time, while cases with unknown running time are referred to as non-clairvoyant

systems.

The scheduling algorithm A deals with allocation on single or multiple machines. In
either case, the performance of A is measured by comparing its gain with the gain of
an optimal (opt) off-line scheduling algorithim, which has complete prior knowledge of
the jobs when creating the schedule. Online algorithms are classified into deterministic
algorithms or randomized algorithm (Borodin and El-Yaniv 1998a). An online A deterministic
online algorithm A is ¢-competitive if gainey (1) < ¢ - gaina(I), for all input instances /.
When considering randomized online algorithms, the competitiveness compares the gain
of the optimal schedule to the ezpected gain of a randomized algorithm. Competitive
ratio ¢ is determined by determining the worst case input for an algorithm. For details
on the use of adversary based techniques used to determine the competitive analysis and
the adversary-algorithm(A) interaction models, refer to (Borodin and El-Yaniv 1998b).
Adversary based techniques (Lee 2004) create the worst case input sequence I and have

complete knowledge of algorithm A and utilize it to create the sequence I

An online scheduling algorithin can schedule any job J; before its expiry time e;. In order

Chapter 3 Online Scheduling 32

to maximize its gain a scheduler is not required to complete all the jobs and may reject
some of them. The notification of acceptance or rejection of the jobs can be deferred
until time e;. However, admission control mechanisms (Goldwasser 2003; Goldwasser
and Kerbikov 2003; Garay, Naor, Yener, and Zhao ; Goel, Meyerson, and Plotkin 2001)
have been suggested for cases where the notification for the acceptance or rejection of
the job needs to be provided before e;,. An admission control mechanism is not usually

required under underload conditions, but assumes prominence under overload conditions.

The above nomenclature and definitions are equally applicable to online scheduling on
single or multiple machines. However, following additional definitions introduced below
are specifically applicable to online scheduling on multiple machines. In the case of
multiple machines it is possible to co-allocate (Schwiegelshohn and Yahyapour 2004)
the job to more than one machines. However, the scope of this discussion is restricted

to the case where a job can be assigned only to a single machine at any given time.

At any given time, each job can only be assigned to one machine, in the set of available
machines Mj,. M, is considered to be a set of uniform machines if VA; € MM, = M;
for any ¢ and 5. At any given time #, a number of jobs may be available for scheduling.
A scheduling system may maintain all the jobs in a single queue or may allocate them
to separate queues on arrival. While a scheduling system that does not pre-allocate the
jobs usually maintains a single queue for all the jobs, multiple queues are maintained
in cases where the job allocation precedes the actual allocation of the job. A scheduler
is considered online if it processes the job in an exact FIFO order. However, in certain
cases, sorting and selection on the job gueue is permitted. For example, the algorithm
presented by (Lee 2003) is considered online. It describes a scheduler that sorts the
queue of available jobs and select the job with maximum length. In online scheduling
a job allocation cannot be subjected to any future changes. However, if the jobs once
allocated to the queue are reassigned, then the scheduler is considered to be semi-off-line

in nature.

In cases where a scheduler maintains a single queue for all the incoming jobs, each
individual queue is aware only of the currently executing jobs. In the case of non-preemptive
scheduling, the set consists of a single currently executing job. A job is feasible on a
machine if its allocation allows all the jobs to attain their deadlines. In some cases the
scheduling decision may be invoked on arrival of the job while in other cases the decision
may be invoked when a machine becomes available. If the scheduling decision is made
on the arrival of the job, it is likely that the job may be equally feasible on more than
one machine, also referred to as a tie. The performance of an online algorithms relies
crucially on the way it breaks ties; however it should be noted that some algorithms

break ties arbitrarily.

Chapter 3 Online Scheduling 33

3.2.2 Review

It is not possible within the scope of this section to provide a detailed review of online
scheduling algorithms. A detailed review of online scheduling algorithms can be found
in the (Borodin and El-Yaniv 1998a; Leung 2004). The scope of this section is limited
firstly of all to highlight the state of the art the online scheduling algorithms for multiple
machines and secondly, to summarizing the current admission control mechanism for
multiple machines. The review is not restricted to algorithms by the choice of a particular

objective function, but gives emphasis to interval scheduling.

Graham et.al. (Graham, E.L.Lawler, J.K.Lenstra, and Kan 1979) introduced the concept
of online scheduling and provide formal analysis of their algorithm, also known as the
List Scheduling Algorithm. It allocates an incoming job to the least loaded machine
and has a proven lower bound of (2+1/m) for makespan minimisation, where m being
the number of machines. Later, Albers (Albers 1997), provided an improved bound at
a competitive ratio of 1.92% for m > 2, this algorithm maintains two groups of lightly
loaded and heavily loaded machines; a job is allocated to lightly loaded machines only if
it cannot be scheduled to a heavily loaded machine. These online scheduling algorithms
represent the first studies in the case of online scheduling for makespan minimisation
on multiple machines. There have been a number of studies for scheduling on multiple

machines for different objective functions.

The general model of online scheduling was further refined by Lipton and Tomkins
(Lipton and Tomkins 1994), who also introduced the concept of online interval scheduling.
In interval scheduling all jobs request immediate use of resources and need to be completed
before a fixed interval. Their model (for a single resource) implicitly assumes that a
scheduler has no prior knowledge of the value of A. They prove the fact that, with jobs
of equal length, greedy interval scheduling is guaranteed to find an optimal schedule.
For jobs with two distinct lengths, the authors provide a randomized 2-competitive
algorithm, and, for jobs with arbitrary length the algorithm is O((logA) H'e) - competitive.
This result was improved upon by Goldwasser (Goldwasser 2003), to prove that the
competitive ratio for multiple machines is bounded by (2 + 1/x). This result for a
single resource was also proven to be valid for multiple resources (Kim and Chwa 2001).
However, all the results for interval scheduling on multiple resources rejected the job at
its expiry, and, as far as is known (Goldwasser and Kerbikov 2003) have written the only
paper to consider admission control for a single resource in the case of interval scheduling.
The work by Goldwasser et.al. (Goldwasser and Kerbikov 2003) remains the only
work to study the effect of resource admission control on the performance of an online
interval scheduling system. It makes three important contributions. First, it provides
a 4-competitive randomized algorithm capable of providing immediate notifications,
secondly, a 3 - competitive randomized algorithm with no notifications and thirdly,

it proves that no randomized algorithm which provides immediate notification can be

Chapter 3 Online Scheduling 34

better than 7/3-competitive. A few other alternative approaches for online interval
scheduling on multiple machines are Lee (Lee 2003) and Das (DasGupta and Palis
2000). For online mechanism design, Lee (Lee 2003) introduces a static classification
based randomized algorithm, for a specific case of £ < 1 and is an important result in
the field. The work by Das (DasGupta and Palis 2000), highlights the effects of online
scheduling with rejection and restart. The most recent results from mechanism design
deal with scheduling on a single machine under unreliable job information, and prove
that adequate mechanisms can be designed to provide performance guarantees on the

schedule generated by such collections of resources.

3.3 Problem definition

The problem of online allocation of clairvoyant jobs on a variable set of resources/nodes
is considered with the aim of developing an admission control system. Each node is
represented by a queue, and is autonomous in the sense that a node may join or leave
the collection of nodes. However, as a part of the system each node accepts jobs over a
finite horizon, each queue is considered as a possible candidate of the incoming job, if
it can process the job while retaining its prior commitments. The decision to allocate
a job to the queue is irrevocable, and jobs are reallocated only in the case of a queue
failure.

At any given time the queue holds a list of the current job and allocated jobs. The state
of each of the queues is completely visible to the scheduling system, which must decide
the allocation of the next job. Job acceptance by the scheduler is constrained by the finite
horizon imposed by each job in the queue. This finite horizon is always at a constant
distance from the current time instance. This continual time representation, when
analyzed at any instance in time, reduces to a bin packing problem, with constraints on

allocation strategy.
The basic scheduling system in this setting has to:
1. Maximize the competitive ratio of the scheduling of jobs on resources with equal
queue lengths.
2. Maximize the competitive ratio in case of unequal queue lengths.
3. Minimize the penalties in case of resource failures.

Associating resource costs and weighted jobs represent extensions to the existing basic

scheduler.

Chapter 3 Online Scheduling 35

3.4 The semantics of job allocation

Resources/nodes are represented as queues, where each resource in the scheduling system
exhibits autonomous behaviour. There are at least two possible ways of implementing
such a decentralized scheduling system. The first alternative is to assume a centralized
job queue, with the scheduler acting as a broker (also known as matchmaking), queues
competing with each other to provide the best possible allocation strategv for the
maximisation of the objective function. The second alternative involves a master-slave
configuration, where the queue relinquishes the control to a centralized scheduler, which
adopts appropriate job allocation strategy to maximize the objective function. As
demonstrated in experiments (refer to next chapter), the first strategy of matchmaking
results in disproportionate allocation of jobs, consequently resulting in a decrease in the
overall competitive ratio. The master-slave online scheduler and the admission control

system performed better and were used as the preferred architecture.

In a master-slave configuration, the central scheduler has complete knowledge of the state
of each of the queues. As the sequence of jobs is known at release time, the centralized
scheduler has to choose jobs that can be appropriately allocated to each of the queues.
When presented with a job the scheduler needs to ascertain if it should accept or reject
the job. If accepted, it needs to allocate the job to either of the queues. As described in
the previous section, once allocated to a queue the job cannot be reassigned. Therefore,
a scheduler may defer the actual allocation of the job, but accept it on the basis of the
feasibility criterion. By deferring the actual allocation of the job, the scheduler retains
the flexibility to reassign the jobs to an appropriate node and achieve higher competitive
ratio. However, the deferral process incurs additional processing costs of the complexity

O(n?), detailed discussion of which can be found in (Brucker 2001).

In order to maximize the competitive ratio of the online allocation, the scheduler should
ensure that no resource/node remains unallocated during any interval. Consequently, a
greedy strategy is adopted for allocation of resources. A greedy strategy allocates the
job to any idle queues. However, if each of the queues has a currently executing job,
the scheduler needs to assign the job to the most appropriate queue. Two prominent
strategies can be adopted. A scheduler may back fill the current queue before starting
to allocate the jobs to the next available queue; alternately it could try to ascertain the
best resource it can allocate the job to. The proof in section 3.5 demonstrates that the
best fit strategy performs better then the strategy of allocating jobs to the first available

queue, a fact also validated by experimental analysis presented in the next chapter.

3.4.1 State transition representation of job status

An online scheduling system processing a continuous stream of jobs classifies the jobs in

accordance to their state. Consider a scheduling system in which jobs can be maintained

Chapter 3 Online Scheduling 36

Available Accepted Allocated Running Completed

Feasible /_\ Queued m Execute

>

Executed

Resource Failure

Resource Failure

Infeasible
Resource Failure

Rejected
FIGURE 3.1: State transition of a job in a Grid scheduling system.

in either of the following states:

Available A job submitted for allocation is queued in this state.
Accepted If the job is feasible in any of the job queues it is classified as accepted.
Allocated A job assigned to a job queue is referred to as an allocated job.

Rejected A job is rejected either for being infeasible or having passed its expiry time

due to resource failure.
Running Jobs being executed at any of the queues are classified as running.

Completed Jobs successfully executed are marked completed. Only completed jobs

contribute towards the gain of the online algorithm.

The possible lists of transitions have heen represented in the following figure 3.1:

3.5 Algorithm - Best Fit Interval Scheduling (BFIS)

A cluster of resources is considered, where each resource is represented as a queue,
as introduced earlier. Theoretically, each of the resources can have infinite capacity.
However, as the cluster of resources has been formed by the dynamic association of the
resources, practical systems requirements introduce the bounds on warranties and only
limited queue sizes are considered. The length of the queue determines the finite horizon
- the point in time beyond which the queue ceases to accept allocations. Such a bound
can be expressed in terms of A and the maximum permissible slack Kpq,. The size of
the queue represents the maximal permissible interval allocation permissible and can be

considered synonymous to fixed bin size in the bin-packing problem.

In most practical scheduling systems of this type, Amqg, is determined by the average

lifetime of the resource’s participation in the cluster. While the maximum acceptable

Chapter 3 Online Scheduling 37

length of the job may be decided by the penalties introduced on the failure to process

the job.
At any given instance time f, the bin has a length, and the item can be shifted.

Best Fit is a greedy algorithm and is based on the following heuristics:

1. Allocate a job to empty queue.
2. For all allocations within a quene, use the EDF semantics for executing jobs.

3. On arrival of a job, consider its feasibility on the current set of machines. If feasible
on multiple machines, use the best fit criterion for breaking the tie for allocation

between multiple machines.

The following example illustrates the use of the above scheduling strategy for a sequence
of jobs J = {Ji, J2, J3, Js, J5} that are scheduled on a set of machines M = {Mi, Ms},
where each of the jobs is represented as:

Jh=<01,3>

Jp=<0,1,2>

o

Js=<0,1,2>

Ji=<0,1,2>

Js=<0,1,2>

On arrival of job Ji, both machines have an empty queue and are equally best fit, and
hence the tie is broken arbitrarily. For the sake of this example, consider that job Ji is
allocated to machine A;. On arrival of Js, the machine Ms is empty and it receives the
assignment of job Jo. The job J3 remains feasible on either of the machine and happens

to be best fit for My, while J4 and J; remain feasible on M7 alone.

Consider an optimal online scheduling strategy OPT. Let J represent the sequence of
jobs Jy,Jo, Js, ..., J, that are to be scheduled over a set of machines M. Let A represent
the best fit scheduling strategy used for allocating the jobs in a queue. Each job J; =<
75, Pi. d; >, to be scheduled on the set of machines, is made visible at the release time
r;. Depending on their release time, the jobs in the sequence J can be classified into two
distinct categories: those released during the busy interval and those released during
the free interval. An interval is considered free for the algorithm A if at least one of
the machine quenes is empty at the time. As A happens to be greedy, all jobs released

during the free interval are scheduled by both A and also by OPT.

Chapter 3 Online Scheduling 38

Let J' represent the set of jobs released during the free interval. As mentioned above,
both OPT and A process the set J'. Let J” be the set of jobs released during the
busy interval and let J/ and Jgpp represent the subsets of J” processed by A and

OPT respectively.

J+J
Competitive Ratiolc) — —> YA 3.1
ompetitive Ratio(c) T Jh o (3.1)
TN 1" 1"
J'+ Ty < S (3:2)

[1 1"
J +Jopr OPT

The above equations prove that the effects of admission control are evident only in case
of busy intervals and hold true in both the cases of preemptive and non-preemptive
job scheduling. Although, the use of preemptive techniques is a common occurrence,
non-preemptive scheduling has been considered in Grid scheduling. A non-preemptive
job allocation provides exclusive control of the resource - an advantage considering the

security and provenance requirements in a Grid environment.

An analysis of algorithm A for a non-preemptive scheduling strategy is presented in the

following section.

3.5.1 Analysis

Under the following conditions, algorithm A will reject the job while OPT will accept it.

Already executing a job As A uses a non-preemptive scheduling technique, it cannot
admit a job while executing a current job. However, OPT, with complete knowledge
of the input sequence will not start a new job (provided it is not tight) if it expects a
job to be released during the execution time of the already accepted job. Consider
A to be the ratio of the longest job to the shortest job and K, as the minimum
slack ratio required for the admission of the job. Considering that the longest
job Jy has been released at time t=0, the queue will start scheduling the job
on that machine. While executing .J,, algorithm A will not accept any jobs that
expire within the interval < 0, dy >, where dj, is the deadline for job J,. However,
OPT, with complete prior knowledge of the input job sequence J, will be able to
accommodate jobs within the slack of job J,. From the above discussion, under
worst case circumstances, the total gain of A is py, while the possible gain of the
algorithm OPT is 2 X pp, — Kymin X 1, Wwhere A = f;—’[". This derives from the fact that,
if any job is released during the interval (p, — fmin X p1 — €, pp|, algorithm A will be

able to accept the job. Hence the competitive ratio for the online non-preemptive

Chapter 3 Online Scheduling 39

case is given as:

Pn
c= 3.3
2xph_’{minxpl ()

c= 8 (3.4)

2x A — Kmin

Arbitrary allocation in case of a tie A processes the sequence of jobs in their order
of arrival. The incoming jobs are either immediately assigned to a queue or
rejected. At any given instance these jobs need to be bin packed into the available
queues. The order of packing determines the maximum moment available to the
jobs in each of the queues. Consequently, the scheduler may either assign the jobs
arbitrarily to a queue amongst the set of queues on which the job is feasible or it
can break the tie by use of an allocation strategy. First-Fit, End-Fit and Best-Fit
are the three most common strategies employed in the domain of bin-packing.
Amongst the three possible strategies, the Best-Fit Strategy retains maximum
moment between the allocation of the jobs, and therefore achieves the highest

packing density amongst the three, and was chosen to implement online scheduling.

Inadmissable Job Slack Lipton and Tomkins (Lipton and Tomkins 1994) introduced
the concept of interval scheduling under minimum slack requirements. However,
their (and the subsequent results in the field) impose no restrictions on maximum
admissible slack. This is primarily attributed to the fact that most of these
algorithms assume that resources will be available throughout the life-time of
the algorithm. However, practical operating scenarios, as described in the next
chapter, require the imposition of maximum slack. Hence, in cases where J consists
of the jobs with a slack ratio greater than x,,q., A is bound to reject the jobs and
hence perform poorly. As the two classes of algorithms differ significantly, in such

cases, the competitive ratio is indeterminable.

3.6 Summary

The motivation for computational resource sharing is described in Appendix B. This
chapter has proposed a queue based model to capture interval based resource scheduling
in Grids and similar environments. A best-fit online interval scheduling algorithm for
non-preemptive jobs was described and analyzed. The performance evaluation of the

algorithm can be found in the following chapter.

Chapter 3 Online Scheduling

40

1 EXFMNotify()
input : Queue of incoming jobs A, Set of Machines A,

output: An online schedule S

2 event job arrival invokes routine ProcessJob (job)

3 ProcessJob (job)

4 begin

5 if A =0 then

6 I Accept job and schedule on any random machine
7 end

8 else

9 M, —isFeasible(job, M});

10 if M, = 0 then Reject job ;
11 else BestFit (A4,,job)

12 end

13 end

14 event Continuous processing at each machine AZ; is the routine ExecJob(Q;)
15 ExecJob (Q;)

16 begin

17 Let Ji. € ; be the job with earliest deadline.

18 currentjob «— Jy;

19 nextidle — currenttime -+ py;

20 Q; — Qi — {Jr};

21 Allocate Resources to J;

22 if currenttime = nextidle then
23 | if Q; # () then ExecJob(Q;);
24 end

25 end

26 isFeasible(Jy,, M})
27 begin

28 for i — 1 to |M}.| do
29 Order all jobs of Q) by non-decreasing deadlines Jij, Jog, Jak, Jak, ---Jgk:

30 Calculate indezr «— possible location of the job.;
31 if e, > PreviousCommitments (index) then
32 continue

33 end

34 Calculate availableSlot «

PreviousCommitments (index)-FutureCommitments (indez);
35 if py, < availableSlot then

36 My, — My + M),
37 end

38 end

39 end

Figure 3.2: Online resource allocation with admission control to provide
notifications at release time

Chapter 4

Evaluation of the Online
Scheduling Algorithm

The first section of this chapter presents the experimental evaluation of the interval
scheduling with admission control. Tt uses the standard simulation techniques used
for evaluating scheduling systems (Kiran 1998) and compares the performance of the
algorithm for variable slack ratio, job length, arrival rate and resource failure rates.
The performance of the algorithm is compared against the EXF (Earliest eXpiry First)
algorithm - an online scheduling algorithm with the best known competitive ratio.
Section 4.2 describes the application of the above work in the context of an online Grid
scheduling system, and the subsequent section summarizes the work on online scheduling

systems.

4.1 Experimental settings

Experiments were conducted using a single source of job sequence that generates jobs
with a specified probability distribution for job length, rate of job arrival and resource
failure rates. Table 4.1 below summarizes the parameter values used for the experimental

evaluation.

4.1.1 Job generator

A job generator had been devised for generating a sequence of jobs used to analyze
the performance of the scheduling algorithm. The job generator creates instances of
jobs with the desired characteristics of execution time and slack. Each job instance has
three parameters: first, release time, r; - is determined in accordance to the stochastic

distribution of job arrival; second, the processing time, p; - is determined in accordance

41

Chapter 4 Evaluation of the Online Scheduling Algorithm 42

Parameter Description Parameter Value
Simulation interval 10000 jobs
Number of nodes used for simulation 100
Maximum Job length 1000
Job distribution type Poisson distribution, zip distribution
Job arrival rate Poisson distribution
Slack constant Constant for some experiments, varied from 1.1 to 12.0
Failure rate Gaussian distribution
Mean time to failure 0.75 of maximum job length

TABLE 4.1: Simulation settings for evaluation of online scheduling algorithm.

to the job length distribution. Candidate distributions include unit job lengths, uniform
job length, poisson distribution and zipf distribution. Thirdly, the deadline of the job is
calculated in accordance to the slack, where deadline of a job d; = r; + (k +1) x p;. A
finite sequence of jobs with the desired job and job arrival characteristics is generated
and is evaluated using an off-line scheduling algorithm, Earliest eXpiry First (EXF) and

the online-interval scheduling.

Only integer job lengths were considered for simulation. Integer job lengths were
considered for the relative ease of scheduling the jobs against a virtual time clock,
as it uses integer incremental time steps. Unit and uniform job lengths represent a
very specific case of workload observed in certain web server workloads, while the zipF
distribution represents the job lengths observed in super computing center workloads.
The Poisson distribution represents a generic distribution of random workload observed

in batch jobs. For job arrival distribution,Poisson distribution was considered.

4.1.2 Scope of the evaluation
The purpose of the evaluation is:

o To determine the effectiveness of the scheduling algorithm vis-a-vis the performance
of an off line scheduling algorithm, the EXF algorithm and the interval scheduling

algorithm with no notification.
o To evaluate the performance of the algorithm under varving load conditions.

e To compare the overhead associated with the admission control mechanism.

4.1.3 Analysis

The competitive ratio for the various algorithms is presented in figure 4.2. The figure

represents the relative performances of BFIS, EXF and the offline algorithm for a set

Chapter 4 Evaluation of the Online Scheduling Algorithm 43

Failure

/ |
:* |
| | l B =— aive

FIGURE 4.1: Simulating resource scheduling with failures.

Com petitive Ratio for N-Machine
Scheduling algorithms

Competitive Ratio

Number

Of 20 BXF Sc?lgiguele
Machines 30 Scheduling
Strategy
10 20 30
E BFIS 0.8177 0.8201 0.8166
B EXF 0.9362 0.9336 0.9308
O Offline Schecdlule 1 1 1

FIGURE 4.2: Comparison of BFIS, EXF and off-line scheduling strategy.

Chapter 4 Evaluation of the Online Scheduling Algorithim 44

of 10, 20 and 30 machines. The figure represents the average competitive ratio for K
> 1, randomly varying between the values of 1<k<10; the maximum bin size for each
machine was tmaey mazimum job length, for the case of BFIS. For EXF, the job queue
was sorted and the EXF was allowed to choose the longest job. The input job sequence
had at least one feasible schedule that would bin pack all the queues. It is assumed
that any off-line algorithm is able to detect the existence of one such ideal schedule.
The competitive ratios of BFIS and EXF demonstrate that the performance of both of
these algorithms is unaffected by the number of machines and is relatively resilient to
variations in slack factor. With a competitive ratio of approximately 0.8, the additional

overhead in BFIS (approximately 10 percent) is introduced by admission control.

4.1.4 Discussion

As NOWS assumes prominence, both the resource providers and consumers will require
mechanisims for managing the agreements for some a fore-mentioned finite horizon. The
BFIS algorithm presented in this section presents one such mechanism, which allows
the resource providers and consumers to dynamically reserve resources for an incoming
online sequence of jobs. Unlike other online scheduling algorithms, BFIS uses the concept
of finite horizon, and, unlike in random breaking of tie the best fit ensures that the
queles are filled to provide even distribution of jobs for the horizon dictated by each
of the incoming jobs. The approach is similar to online bin packing for a dynamic
horizon. The load distribution allows the scheduler to optimize the use of selected
resources and minimize the resource usage of others. Such segregation of resources
based on job sequence characteristics allows the scheduler to dynamically determine
the optimal number of resources required for the particular job distribution. The next
section describes an online scheduling system for Grid systems as a probable use case
for BFIS.

4.2 Description of Information exchange between Grid schedulers

Traditional resource management is commonly used to describe all aspects of the process
of locating various types of capabilities, arranging their use, utilizing them, monitoring
their state and providing traceable evidence/audit of their usage. As described in
Appendix B, Grid Systems (Foster and Kesselmann 1999) represent an emerging class
of systems that assume dynamic operating environments, which facilitate coordinated
use of distributed resources. Appendix B introduces computational Grids - a class of
Grid systems that allows coordinated use of computational resources. It is possible to
conceive a computational Grids existent under a single administrative domain and with

a centralized resource management system. However, in most cases, the a Grid based

Chapter 4 Evaluation of the Online Scheduling Algorithm 45

resource management system will operate over a set of unreliable resources spread across

multiple administrative domains.

Grid Schedulers, as described in (Nabrzyski, M., and Jan 2004), represent types of Grid
resource managers that, by their very definition, are involved with managing resources
across multiple administrative domains. Grid Scheduling can be applied to many tyvpes
of resources: a machine, disk space, a QoS network and so forth, although the rather
generic definition usually applies to the management of computational resources. In
(Nabrzyski, M., and Jan 2004) Nabrzyski et.al. describe the structure of a generic
Grid scheduling system and introduce the concept of hierarchical organisation of local
and higher level schedulers. Hierarchies of such schedulers use different job allocation
techniques to coordinate the allocation of resources. The scheduling systems try to
optimize the usage of resources in accordance with their respective objective functions.
(Nabrzyski, M., and Jan 2004) introduced guaranteed completion time of allocations as
one of the objective functions used in Grid scheduling systems. The interval scheduling
algorithm described in the previous chapter was conceived to operate under such Grid
scheduling systems. The queue based model of the algorithm allows it to mmap resource
allocations across multiple resource providers and can also be adapted (by changing the

feasibility test described in the algorithm) for use with autonomous queues.

The interval scheduling algorithm can be used to manage resources within the context of
a single resource manager. As a hierarchical Grid scheduler is reliant on the participation
of local schedulers, which in turn autonomously derive their objective functions, it is
imperative that local schedulers dynamically collaborate or cease to collaborate with
the schedulers at a higher level. In most cases, these changes are in response to changes
in resource and load characteristics. Information on such changes needs to be exchanged
between the instances of the Grid scheduling systems. Scheduling systems may use job
brokerage or resource brokerage as a means of resource management across multiple
scheduling systems. ClassAds (Litzkow, Livny, and M.W.Mukta 1990) used in CONDOR
represent one such system of job brokerage. Information exchange between scheduling
systems may happen along the established hierarchical topological order as used in
Globus Information Services. However, if one considers the relaxed model of peer-to-peer
systems, information exchange may influence the choice of topological ordering. The

next part describes the techniques for the creation of such overlay networks.

4.3 Summary

This part of the work (Part II) introduced and evaluated an interval based scheduling
system for dynamic environments. It was proven that online interval scheduling can be
used to provide guaranteed resource availability for computational resource allocations.

The queue based model takes into account the intermittent availability of resources

Chapter 4 Evaluation of the Online Scheduling Algorithm 46

and creates an adaptive schedule with a bounded competitive ratio. Subsequently
this chapter discussed a way of employing the above algorithm in the context of the
Grid scheduling system. The autonomic organisation capability can be sustained by
permitting information exchange between Grid scheduler instances. Topological organisation
of the nodes is discussed in Part 111, which introduces a mechanism to design a semi-structured

overlay network between resource providers.

Part 111

Information Dissemination in

peer-to-peer systems

Chapter 5

Resource Management in P2P

environments

The previous chapter, presented a use case of an online scheduling system that involved
potential collaboration between multiple resource providers. The multiple resource
providers used resource advertisements as a means of communicating resource information
between providers and consumers. The scenario presented in section 4.2 served as
motivation to investigate the issues of resource discovery in systems composed of autonomous
resource providers (referred to as peers when set in a P2P architecture). The scenario
4.2 considered one variant of resource discovery under a peer-to-peer (P2P) (Clark 2001)

system environment.

This part presents a framework that facilitates resource discovery in P2P systems. The
discussion spans three chapters. This chapter reviews discovery techniques used in a
peer-to-peer environment, elaborates the application scenarios and presents a generic
model for overlay construction and management in peer-to-peer(P2P) systems. This is
followed by the detailed description of the algorithm in Chapter 6 and an experimental
evaluation described in Chapter 7. The primary contributions of these chapters towards

the thesis are that they:

1. Outline the evolution of resource discovery in peer-to-peer systems and describe
their limitations when applied to the application domains of mobile services and

Open Hypermedia Systems;
2. Provide an algorithm for creation and maintenance of an adaptive overlay;

3. Present an experimental evaluation of the same.

Section 5.1 presents a general overview of P2P systems. Section 5.2 describes existing

search techniques and highlights their limitations. Motivating applications are the

48

Chapter 5 Resource Management in P2P environnients 49

subject of section 5.5, while resource definitions and search techniques are described in
section 5.6. This is followed by a description of a generic framework for the creation and
maintenance of an overlay network, in section 5.8. Section 5.7 discusses the characteristics

of the proposed overlay.

5.1 Peer-to-Peer computing

There is no definitive description of peer-to-peer systems (Oram 2001), but the system
characteristics are often used to describe this class of systems. P2P systems are typically
characterized by decentralisation of control, where each node plays the parts of the client
as well as server, often leading to the creation of ad hoc communities of collaborating
peers. This is exemplified by applications such as Napster and has also been widely
adopted by file sharing applications such as Gnutella (GNUTELLA), Freenet(Clarke.
Sandberg, Wiley, and Hong 2001), and OceanStore (Kubiatowicz, Bindel, Chen, Eaton,
Geels, Gummadi, Rhea, Weatherspoon, Weimer, Wells, and Zhao 2000). Most P2P file
sharing systems are classified as unstructured P2P systems; their topology evolves as
peers join in or leave the network. A large body of work has focused on developing
structured P2P computing networks. Examples include Tapestry(Zhao, Kubiatowicz,
and Joseph 2001), Chord (Stoica, Morris, Liben-Nowell, Karger, Kaashoek, Dabek, and
Balakrishnan 2003) and CAN (Ratnasamy, Francis, Handley, Karp, and Schenker 2001).

The P2P approach of creating ad hoc networks of collaborative peers has been applied
to various application domains, including, large scale distributed computing as Grids
(Buyya, Abramson, and Giddy 2001; SETT), file sharing (Clarke, Sandberg, Wiley,
and Hong 2001; GNUTELLA ; Kubiatowicz, Bindel, Chen, Eaton, Geels, Gummadi,
Rhea, Weatherspoon, Weimer, Wells, and Zhao 2000), and service oriented computing
platforms such as JXTA (Qu and Nejdl 2001). The following section provides a brief

overview of both structured and unstructured P2P systems.

5.2 P2P systems

Resource discovery techniques are central to both structured and unstructured P2P
systems. While the unstructured P2P systems utilize some sort of heuristics to guide
the search, the structured P2P systems use the properties of the overlay to selectively
propagate the search query to locate appropriate resources. The following section reviews

the search techniques for systems belonging to each of these two P2P system classes.

Chapter 5 Resource Management in P2P environments 50

5.2.1 Unstructured P2P systems

Freenet Freenet is a P2P file storage system in which peers share their available disk
space to create an internet-scale virtual file system. Each of the participating peers
is required to provide some storage space; in return Freenet provides the user with
a secure means of storing their files on the virtual file system. To add a new file
the user provides the file and a location-independent, globally unique identifier
(GUID) (also known as keys). A file addition results in the file being replicated

and stored at a number of locations.

In the Freenet system, every node maintains a routing table that lists the addresses
of the other nodes and the list of the keys it thinks that they hold. On receipt of
a query, the node finds its own store; and returns the file if it is found in the local
store, otherwise it forwards the request to the node with the numerically most
proximal key to the one requested. To prevent flooding of the network, Freenet
mandates that each query be associated with a Time To Live (TTL). In addition,
Freenet maintains the search paths for previous queries to train the routing table
sets. These trained sets are used to cluster the files with similar keys on the same
data store. The simulation studies on Freenet show that the path length grows

approximately logarithmically to network size.

Gnutella Gnutella is a file sharing application and relies on participant peers to form an
unstructured overlay network. A peer can join the Gnutella network by contacting
one of the participant peers, which leads to subsequent overlay formation amongst
the other participant peers. Once attached to the network, each of the Gnutella
nodes processes the incoming query requests. Early Gnutella algorithm relied
on broadcasts to propagate queries between neighbouring nodes. The range of the
query broadcast is restricted by the TTL associated with each of the query requests.
Subsequent changes to the algorithm have been proposed by (Lv, Cao, Cohen,
Li, and Shenker 2002), which substitute flooding by a set of random walkers.
The simulation based study described in (Lv, Cao, Cohen, Li, and Shenker 2002)
demonstrates marked improvement in performance. However, subsequent studies

(Ritter 2001)have demonstrated that the Gnutella approach remains non-scalable.

5.2.2 Structured P2P systems

Structured P2P techniques impose a set of topological constraints on the construction
of the overlay network. Most of the structural constraints were designed to organize the
overlay and facilitate efficient search algorithins. For example, CAN and Chord partition
the search space into a distributed hash structure, while Tapestry utilizes specific naming
mechanisms to create an overlay. The following is a description of three structured P2P

systems.

Chapter 5 Resource Management in P2P environments 51

Content Area Network (CAN): Content Area Network (CAN) (Ratnasamy, Francis,
Handley, Karp, and Schenker 2001) uses an internet scale hash table maintenance
technique to uniquely map a “key” onto “values”. Central to the algorithm is the
creation and maintenance of a d-dimensional co-ordinate space that allows hash
table equivalent functionalities such as insert, deletion and look-up of key value
pairs. The d-dimensional co-ordinate space is just a logical representation, and

nodes can be dynamically repartitioned amongst all the nodes at any time.

A typical CAN network consists of many nodes, each storing a part of the hash-table,
known as a “zone”, in addition to information about some adjacent zones. Each
node belongs to a unique zone and is neighbour to nodes that overlap with it in
at least d-1 dimensions. Each node maintains the state of its neighbours, with
the maximum number of neighbors limited to 2d. A typical query specifies the
destination co-ordinates. The query routing mechanisin of each node uses the
neighbor state to route the query along the d-dimensional space, to a node that
is the closest in the d-dimensional space. For a d-dimensional space with n-equal
partitions the average path length is (d/4)(n'/?), where the path length grows by
O(n'/?) by addition of the node.

CAN provides reliable mechanisms to recover from failed nodes. When a node
leaves CAN, it explicitly hands over the zone to one of its neighbors, which
thereafter maintains both zones. However, failure to communicate zone and neighbor
information with immediate neighbors is considered as a failure. A neighbor
detecting a failure starts the takeover mechanism. The first neighbor to successfully
complete the takeover mechanism informs neighbours about the completion of

takeover to all the neighbowrs of failed nodes.

Chord: Chord is a P2P protocol that results in the formation of a structured overlay.
The chord protocol is specifically designed to uniquely map the key to nodes. It
uses consistent hashing to allocate keys to nodes and arranges the space of an
m-bit identifier into a circle of modulo 2™ identifiers. In steady state each of the
nodes in chord maintains state about O(log(N)) nodes in a N-node system. The
chord maintains information about neighboring nodes as they join and leave the
system, with a very high probability that the reorganisation results in no more
than O(log?(N)) messages. Central to chord is the concept of creating a circular
identifier Space, where each node stores the information about the identifiers

between itself and the next node in a clockwise direction.

Each of the chord nodes maintains information about approximately O(log(N))
neighbors and uses collaborative replication to improve the resilience of the P2P
network. Each of the participant nodes is identified by the key obtained by hashing
its IP address. Each node stores information about the keys located between its
identifier and that of its immediate neighbor. Queries in Chord are processed by

passing them around to successive nodes with identifiers lower than the identifier

Chapter 5 Resource Management in P2P environments 52

being queried.

Tapestry: Tapestry is an application level P2P protocol that extends the unique naming
scheme introduced by Plaxton trees (Plaxton, Rajaraman, Andr, and Richa 1997).
The overlay organizes the 2" nodes into [levels, and nodes in each level maintain
their respective neighbor maps. In an [level tree, each node is identified by an
w=n/l bit identifier. A node with a label, say xyz, where x,v and z are the bit

digits, will have a routing table with

1. 2% entries of [* X X]
2. 2% entries of [x,* X]
3. 2% entries of [x,y,%

where * denotes every digit in 0,1,..., 2% — 1, and X denotes any digit in 0,1,...,
2% — 1.

Using the above routing state, a packet is forwarded towards the destination label
node by incrementally resolving the destination label from left to right. Each node
forwards the packet to a neighbor whose label matches the destination label in one
more digit than its own label. The average path length for a network of n nodes

is O(log(n)), and requires the system to maintain a state of O(log(n)) neighbors.

5.3 Related algorithms and systems

Similar resource discovery problems have also been identified in related research areas.

These involve maintenance of state tables as summarized below:

5.3.1 Distance Vector and Link State based algorithms as applied to

ad hoc computing

Distance Vector based and Link State based algorithms have been widely used for IP
routing in ad hoc computing environments. Examples include DSDV (Perkins and
Bhagwat 1994), AODV (Perkins and Royer 1999), ZRP (Haas and Pearlman 1998)
amongst others. These algorithms maintains partial knowledge of system topology in
order to route messages between mobile nodes in an ad hoc communication network. The
algorithms have a striking resemblance to structured P2P networks: both system types

maintain partial routing tables in order to propagate queries to their final destination.

5.3.2 Domain Name System (DNS)

A domain name system maintains a table that maps a unique name to its IP address,

and, in a sense provides a functional capability similar to that of Distributed Hash

Chapter 5 Resource Management in P2P environments 53

Techniques. For any group of computers partaking in the DNS naming scheme there is
likely to be a single definitive list of DNS names and associated IP addresses. The group
of computers included in this list is called a zone. A zone could be a top level national
domain or a university department. Within a zone, a DNS service for subsidiary zones
may be delegated along with a subsidiary domain. The computer that maintains the
master list for a zomne is said to have authority for that zone and will be the primary
name server for it; there will also be secondaries for that zone. The DNS server may be
able to resolve the request for name from its own local database/cache. If a DNS server
is unable to resolve the key, it solicits help from another DNS server higher up in the

hierarchy or one in the destination zomne.

5.3.3 Coalition formation in Agent-based systems

Coalition formation is an area of active research in the field of agent-based systems
(Wooldridge and Jennings 1995) and deals with the design of mechanisms where a
number of independent agents come together to act as a collective entity. Coalition
formation has been studied in the context of multi-agent systems and has been applied
to various fields, such as e-commerce (Tsvetovat and Sycara 2000) and Grid computing
(Foster and Kesselmann 1999). Coalition formation is based on the notion that the
collaborating agents are better off acting collectively rather than individually in a
multi-agent system. The coalition formation in multi-agent systems can be viewed as
being composed of three main activities (Sandholm, Larson, Andersson, Shehory, and

Tohm 1999), as follows:

Coalition structure generation Coalition structure describes the sets of collaborating
agents and determines the scope of interactions among coalitions. The process
usually involves partitioning the group of agents into smaller groups of collaborating
agents, such that the partitioning results in an exhaustive and disjointed set of
coalitions !. For a set n agents {p1,p2,pa,....pn}, there exist 2" — 1 possible
coalitions and 2 - n — 1 coalition structures. For example, for a set of three
agents {p1,p2,p3}, there exist {p1},{p2}.{pa}.{p1.p2}.,{p1.pa}{p2. p3}.{p1.p2. p3}
coalitions and {{p1}, {p2.ps}}{{p.pa}, {ps}}{{p1. ok {2}, {{pr.p2.pa}} amd
{m}: {p2}.{ps}} disjointed coalition structures.

Optimizing the value of individual coalitions The coalition structure can be optimized
to maximize a certain objective function, also known as the coalition value. Each
agent in the coalition pools its resources and associated tasks to maximize the
coalition value. An overall coalition structure is designed to maximize the cumulative

coalition values of the entire structure.

'Some research also considers the case of non-disjointed coalitions, where agents can simultaneously
belong to more than one coalition

Chapter 5 Resource Management in P2P environments 54

Pay-off distribution All agents in the coalition pool their resources to maximize the
coalition value function in expectation of a certain payoff. The payoftf can be
equally or proportionally divided amongst the members of the coalition. Payoff
distributions are common in agent-based e-commerce applications, where each
autonomous agent enters a coalition to maximize utility function in the process of

maximizing coalition value.

In this study coalition formation algorithms are classified into two distinct categories,
payofl maximizing coalitions and coalitions ‘value maximisation’. The classification
derives from the two prevalent approaches used in agent based systems, namely competing
agents and collaborating agents. In the former case of pay-off maximisation, each
agent enters a coalition with a sole purpose of maximizing its utility, and the coalition
structure formation assumes a lesser priority. However, in coalition value maximisation,
the collective utility of all the agents in a multi-agent system supersedes the pay-off
distribution objective. In such cases the coalition structure is used to measure the good

of the coalition formation process.

This research is interested in systems in the coalition structure formation process and
its application to the formation of overlay topologies in peer-to-peer networks. Previous
research in the field has focused on the formation of super-additive coalitions (Kahan and
Rapoport 1994), in which any two coalitions are better off by merging together. However,
super-additive coalitions are not appropriate for the coalition structure generation,
as a grand coalition comprising all the agents will be the most appropriate coalition
structure. Hence, the current focus is on exploring coalition structure formation for
non-super-additive environments. Coalition formation for non-super additive environments
has been considered by (Sandholm, Larson, Andersson, Shehory, and Tohm 1999; Dang
and Jennings 2004) who suggest algorithms and provide the worst case bounds for
the creation of coalition structures for multi-agent systems. The systems consider
multi-agent environments with a static set of agents and a fixed coalition value. Recently,
attention has been paid to more dynamic environments, where the coalition values are
not fixed and agents constantly join or leave a coalition (Klusch and Gerber 2002).
However, no performance bounds have been provided to represent the complexity of

coalition formation.

5.4 Discussion

The simplistic approach adopted by unstructured P2P computing systems leads to higher
average query path lengths and often results in unnecessary broadcasts of messages and
utilisation of network resources. Use of structured P2P systems provides bounds on
message path lengths and the amount of state held by the node. It should be noted that

the creation of a structured P2P overlay does not take into account physical network

o
(a2

Chapter 5 Resource Management in P2P environments

characteristics and results in longer than actual query paths. Certain structured P2P
overlays like Chord are also susceptible to uniform workloads resulting in over-utilisation

of certain peers.

Neither of the system types takes into account the characteristics or the specific requirements
of the application domain and they represent the extreme ends of a spectrum. While
the unstructured by its very nature does not impose an overlay structure, the structured
overlay seems to be too inflexible to be generically applicable. The next chapter introduces
the mechanism for the creation of an adaptive overlay that attempts to overcome
the limitations of the above two approaches. The following section introduces certain
application domains which were used as exemplars to verify the approach and are

presented here to highlight the specific requirements of the specific application domains.

5.5 Additional application scenarios

In addition to the application scenario described in section 4.2, the work is also applied
to the domain of P2P based Open Hypermedia Systems and is equally applicable in
collaborative service discovery in mobile environments. The initial work was carried
out in the context of Open Hypermedia Systems and was published in (Zhou, Dialani,
De Roure, and Hall 2003). This section provides a brief overview of the two application

domains and introduces resource definitions and the search criteria used in the field.

5.5.1 Peer-to-Peer Open Hyper Media Systems

Open Hypermedia (Wiil 1997) is a model that has been adopted by the hypertext
comimunity for many vears. It is principally characterized as having hypermedia link
information stored separately from the documents that it describes. The links are stored
in linkbases. This approach allows links to be managed and maintained separately from
the documents, and different sets of links can be applied to a set of documents, as

appropriate.

The development of the first Open Hypermedia System (“Microcosm”) (Fountain, Hall,
Heath, and Davis 1990)) predates the Web. The first implementation of the Microcosm
philosophy on the Web was the Distributed Link Service (DLS) (Carr, De Roure, Hall,
and Hill 1995), (De Roure, Walker, and Carr 2000). This was extended so that link
resolution was also distributed around the Web (De Roure, Carr, Hall, and Hill 1996),
and the service paradigm now extends to recent developments, such as ontology services
(Carr, Hall, Bechhofer, and Goble 2001). COHSE (Carr, Hall, Bechhofer, and Goble
2001) provides tools for the Semantic Web that builds upon the concept of the DLS and

ontologies.

Chapter 5 Resource Management in P2P environments 56

The Semantic Web (Berners-Lee, Hendler, and Lassila 2001) augments current Web
technologies by associating machine understandable annotations (also known as metadata)
with contents. Metadata provides an abstract representation of information and is
primarily produced to facilitate inference techniques to co-relate information from different
providers. Current search techniques used in Semantic Web technologies focus on
annotating static information, but fail to take into consideration dynamic and asynchronous
variation in content. Some may consider services based architectures like DAML-S
(Ankolekar 2001), which use Semantic Web technologies, to be a form of dynamic content
system. This research differs from (Sycara, Lu, Klusch, and Widoff 1999) and consider it
to be an application of the Semantic Web to active entities rather than dynamic entities.
In the proposed approach, the Semantic Web is considered to be dynamic, if it is created
spontaneously by a set of collaborating nodes, where each node can dynamically update
its published contents. While Semmantic Web technologies are generic in their application,
this scenario restricts their application to collaborative environments, which facilitate
resource sharing between dynamic collections of participants. As the participant can act
both as a resource provider and a resource consumer, a peer network is constituted by

collaborating entities.

These collaborative P2P-OHS publish and consuime resource descriptions usually expressed
in RDF (Miller 2004) format. Summarized metadata information in a link base known
as “topics vector” is advertised by each link base, and a list of similar topics is used
to create an overlay that binds the participant peers in the peer-network. Each of
the participating peer caches the “topic vectors” of its immediate neighbors and uses
the informational inferences from these “topic vectors” to route the query amongst its
neighbors. The search is expressed by means of an RDF query and is accomplished
by propagating the query among a number of participating peers. A typical search
expression is represented in section 5.6. Peers collaborate to maximize the number of

link bases searched with minimal query routing and processing overheads.

The following subsection presents the last of the application scenarios and then summarizes
the specific requirements of the application domain, and contrasting them with the

current capability of the peer-to-peer networks discussed above.

5.5.2 Collaborative service discovery in Services Oriented Architecture

Service discovery mechanisms are crucial to service architectures such as web services
and mobile services. Whether in a wired network environment or a wireless network
environment, the service providers need to publicize service descriptions for subsequent
discovery and utilisation by client applications. Discovery services such as UDDI (UDDI
2004), JINT (Kumaran and Kumaran 2001) and UPnP (Michael and Weast 2003) are

widely used to support the discovery of services in wired as well as mobile network

Chapter 5 Resource Management in P2P environments 57

environments?. While wired network environments can utilize a centrally located discovery
service such as UDDI, this is not the case for mobile environments. As no node has the
resources to maintain the complete state of the ad hoc system, individual nodes should

collaborate or form coalitions to discover resources in an ad hoc system.

(Chakraborty 2004), (Ratsimor, Chakraborty, Tolia, Khushraj, Kunjithapatham, Joshi,
Finin. and Yesha 2002), and (Chakraborty, Joshi, Finin, and Yesha 2004) present a
set of techniques and a framework for discovery and composition of services in ad
hoc computing environments. The limited storage capacity of the mobile nodes limits,
coupled with their mobility requirements introduces unique constraints on service discovery
in such mobile environments. As described in (Chakraborty 2004), service descriptions
and service compositions can be described in DAMIL-S. Each of the participating peers
caches the service descriptions and facilitates the search on these cached advertisements.
A service discovery request is expressed as a DAML-S search syntax and involves a
complex search criteria. Examples of these are presented below: 3.

Our research groups initial work on service discovery (Miles, Papay, Dialani, Luck,
Decker, Payne, and Moreau 2003a; Miles, Papay, Dialani, Luck, Decker, Payne, and
Moreau 2003b) also highlights similar complexities in service discovery. A peer network
consisting of such service providers needs to find an optimal way to disperse the service

advertisements and adequate query routing mechanisms to locate mobile services.

5.6 Search requirements

As demonstrated by both the above systems, the search criteria tend to be much more
complex, as compared to the standard identifier based search dictated by almost all the
current P2P systems. The above examples use an RDF representation to specify the
resource, and, correspondingly, the search criteria need to locate resources with similar
advertisements. In P2P systems, each search translates into the location of a single
unique identifier. However, most practical systems may be composed of resources that
cannot be guaranteed to be unique and one can not rule out the existence of multiple
resources with similar characteristics. Hence, this study proposes the use of a coalition

based search mechanism to locate the resources of interest.

5.6.1 RDF representation of a query in P2P OHS

The search criteria for P2P-OHS were presented in a paper by (Zhou, Dialani, De Roure,
and Hall 2003) and are repeated here as an example case (see figures 5.1 and 5.6.1).

A typical linkbase contains a list of topics. In this example the link base is capable

2The definition of wired and mobile networks, is described in the MANET documents
Includes the DAML-S service description and the DAML-S search criterion

Chapter 5 Resource Management in P2P environments 58

<7xml version=‘‘1.0’’ encocding=‘‘UTF-8’’ 7> <rdf:RDF
xmlns:rdf=http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
xmlns:rdfs=http://www.w3.0org/2000/01/rdf-schema#
xmlns:1b="‘http://www.semanticweb.com/rdf/linkbase-ns#’’>
<rdf :Description about=‘‘http://www.semanticweb.com/linkbase
/research/linkbase.xml’’>
<rdf:type resource=‘‘http:// www.semanticweb.com/rdf
/linkbase-ns#Linkbase’’ />
<1lb:topic>theory</lb:topic>
</rdf:Description>
</rdf :RDF>

FI1GURE 5.1: A linkbase expressed in RDF Syntax, taken from our publication

<rdfq:rdfquery>
<rdfq:From eachResource=‘‘http://www.semanticweb.com/
collabrative_environment_x/peer_linkbase’’>
<rdfq:Select>
<rdfqg:Condition>
<rdfq:and>
<rdfsq:sequal>
<rdfq:Property name=°‘‘lb:topic?®’/>
<rdf:String>Theory</rdf:String>
</rdfsq:sequal>
<rdfsq:sequal>
<rdfq:Property name=°‘‘lb:topic’’/>
<rdf:String>Practice</rdf:String>
</rdfsqg:sequal>
</rdfq:and>
<rdfq:or>
<rdfsq:sequal>
<rdfq:Property name=‘‘lb:topic’’/>
<rdf :String>Thoughts</rdf:String>
</rdfsq:sequal>
</rdfq:or>
</rdfq:Condition>
</rdfq:Select>
</rdfq:From>
</rdfqg:rdfquery>

FIGURE 5.2: A typical query specification, taken from our research group’s publication

of providing information about a topic “theory” located within it. A typical query
expression ss expressed in attempts at locating the link bases that provide information
about such topics. For example the above query expresses interest in locating resources
that provide the information either about the topics “Theory and Practice” or about

“Theory and Thoughts”.

The above search expression involves conjunctive and disjunctive operations and such

Chapter 5 Resource Management in P2P environments 59

complex query expressions cannot be translated into a simple key location expression,

as mandated by structured P2P location techniques.

5.7 Discussion

From the above scenarios, it may be observed that:

1. It is not always possible to transform a search request into a unique identity

location problem.

[N

It is not always possible to cache the entire state of the neighbors and hence

resilience cannot be guaranteed.

3. Ttis not always beneficial to form a collaboration without ascertaining the associated

communication and processing costs.

The above reasons highlight the inadequacy of the existing techniques used to create P2P
overlay systems. In addition, structured P2Ps mandate the number of neighbors and the
amount of state information held by a peer. While structured overlay systems introduce
highly efficient mechanisms for locating identities, they overlook the crucial application
characteristics. Due to strong structural requirements, the structured overlay approach

constrains the autonomy of the participating peers.

This research considers an alternative approach, which relaxes the stringent structural
requirements of the structured P2P systems and allows collaborating peers to evolve
an appropriate overlay topology that caters for the specific needs of the application
domain. The approach described below considers each peer to be an autonomous entity
independently determining the number of neighbours, and visibility of state information
and suitability of its neighbors. However, to maintain certain structural properties,
some constraints on the autonomy of the peers are introduced. The prescribed approach

advocates the adaptive overlay formation described in the following sub-sections.

5.8 Adaptive overlay formation

An overlay structure captures topological information about interacting peers. The

topological structure affects:

interactions between immediate neighbors An overlay structure determines the
type of associations that a peer has with its neighbors. For example, in a P2P-OHS
the probable neighbors should be peers that either have similar resource profiles

or their shared resources are mutually beneficial to their neighbors. In this case,

Chapter 5 Resource Management in P2P environments 60

the structure of the overlay changes if either of the neighbors changes its resource
specification. Thus, the criterion used to define the overlay influences the type of

interactions between the participant peers.

constraints on communication mechanism between the immediate neighbors
An overlay may or may not depict the characteristics of the underlying communications

network.

the visibility of the state information between the systems An overlay is resilient
to the arrival and departure of peers. In order to achieve this resilience the
participating peers need to maintain adequate state information about their neighbors.

The nature of this state information varies between application domains.

the co-ordination mechanisms The overlay creation and maintenance mechanisms
determine the type of interactions required to allow the participation of new peers,
to overcome the failure of peers and to handle the semantics of any updates about

state information between the neighbors.

Most of the above requirements can be expressed as constraints on the behaviour of
an individual peer in the peer network. As described earlier, each peer in the network
has limited visibility of the entire system state and it uses this limited state visibility
to autonomously decide its set of neighbors. The criterion used to prioritize amnongst
a number of neighbors is referred to as relative utility. The relative utility function
determines whether two peers will form part of a coalition. A coalition can exist
only if both peers derive mutual benefit from its existence. For examiple, in the case
of P2P-OHS, a successful coalition can be formed with peers with similar resources.
Both peers mutually benefit from successfully routing the query and the savings in

communication costs justify the continual costs of maintaining the coalition.

It is considered that each peer autonomously evaluates the benefits derived from participating
in a coalition. It also assumes that each of the participating peers have a complete

knowledge of:

1. Its own resources.

2. Tts existing coalition(s).

3. The resources offered by the potential coalition partner.
It should be noted that the scope of information visibility is restricted to the resources
offered by the coalition partner and do not consider the cases where a coalition partner
provides the knowledge of its existing coalitions, which is also referred as “derived

coalition”. Derived coalition formation requires managing and mapping dependencies

between different coalitions and happens to be much more complex to model. Extending

Chapter 5 Resource Management in P2P environments 61

the current approach to include derived coalitions forms an important part of future

investigations.

It should be noted that each individual peer can simultaneously participate in a number
of multiple coalitions, where each of coalition results in acquiring a number of neighbors.
The resultant union graph of these multiple coalitions results in the formation of the
adaptive overlay network. The above mentioned approach was tested for the domain of

P2P-OHS, details of which can be found in chapter 6.

The peer-to-peer overlay formation algorithm is an event driven ongoing algorithm
based on the principle of the local constrained optimisation. As peers acquire greater
visibility of the state information, they periodically optimize their set of neighbors,
subject to local constraints on peers. Changes to the resource definitions of the peers
are communicated to immediate neighbors and may lead to re-evaluation of the coalition
between two peers. Variations in communication costs may also lead to re-evaluation
of the coalition and result in the reorganisation of neighbours. A peer iterates through
this communicate-optimize cycle indefinitely, after a random initialisation into the peer
network. It is assumed that, before a re-optimisation, a peer is aware of the changes
to the constraints and coalition variables. The overlay achieves its adaptivity from
continual local re-optimisations. If the set of variables that underpin the coalitions
stabilizes, it leads to the formation of a stable overlay. However, an unstable system
results if the variables change more frequently then the re-optimisation capability of the

peer network.

5.8.1 Formal description

Let G; be the graph representing the overlay at any given time instance ¢t. The graph
Gi = (B, E;), where P, is the set of peers in the peer network and E; represents the sets
of edges connecting the nodes in the overlay. The set E; = {E12, Er3,...E;; } represents
a set of edges at any given instance t. An edge Ej; exists between the two nodes F; and
P;, if and only if, the nodes F; and P; are involved in a coalition. It should also be noted
that graph Gy can only be constructed if a node has complete knowledge of all the other
nodes in the network. However, in the present case, each peer P; has partial knowledge

of the graph represented as G;. Refer to G; as the visible state of the node F;.

Each peer P; has a set of resources R; and is a member of coalitions C;. Each coalition,
C(P;, Pj,R.i, Rc;), such that C € Cj, strictly consists of two participating peers, in
this case F; and P;, where each participating peer contributes resources R, and R
respectively, such that R, € R; and R.; € R;. Each coalition partner is referred to as

a neighbor, and each neighbor can only be a part of a single coalition.

As per the semantics of the coalition, peer P; and peer P; notify each other of any

changes to the states of the resources R, and F.; respectively. Each peer derives some

Chapter 5 Resource Management in P2P environments 62

utility from being a part of the coalition and constantly re-evaluates its participation
in light of the other available coalition options. It should be noted that the maximum
number of coalitions for peer F; is restricted by the visibility G;. However, the visibility
of peer P, may increase with the number of coalitions it is involved. For example, in the
case of P2P-OHS, the visibility of the peer increases in the process of answering queries

originated by non-neighboring peers.

Let [t;,t;] be the last interval of observation of coalition between the participating peers.
During this interval, each of the peers observes the state of the resources provided by
the neighboring peer and re-evaluates the coalition to choose a set of partners from the

set ;. The coalition re-evaluation algorithm is presented in 5.8.1.

5.9 Summary

This chapter has reviewed the state-of-the-art of P2P systems. It was argued that the
current techniques for developing P2P systems fail to fulfil the requirements of complex
applications, such as service discovery, P2P-OHS and resource discovery in a network
of schedulers. For these specific application scenarios, an adaptive overlay formation
approach was proposed. The approach highlights the fact that each peer is completely

autonomous and should be allowed to describe its policies for:

1. choice of neighbours

2. number of neighbouring nodes

3. visibility of the application state, and

4. its co-ordination mechanism.
The approach advocates the formation of coalitions amongst peers and allows for a peer
to be a part of multiple coalitions. As each peer belongs to multiple coalitions, the
cumulative effect leads to the creation of an adaptive overlay. The structure of this

overlay changes. subject to the arrival and departure of peers and to temporal and

spatial changes to the distribution of resource distributions.

The next chapter presents one such prototypical system used to validate the approach

advocated in this chapter.

Chapter 5 Resource Management in P2P environments

63

N

© @ 9 O, o W

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24

input : Resources advertised by the peer - R;

A set of existing coalitions - C

A visibility graph to choose the probable neighbors from G;

Number of coalitions allowed &

Utility of Coalitions - H, valid for time [¢;, ;)

A utility function to compare two probable coalitions
CompareCoalition(H, C,, R;, P;) , returns a comparable value for selection of a
best probable neighbor, given existing coalitions C. and the availability of
resources R;, provided by this peer.

output: Modified list of Coalitions, C
New Visibility Graph G;
Listof Peers «— ListofNodes(G,);
Listof Peers «— Listof Peers + GetCoalitionPartners (C) /*ListofPeers
contains non duplicate entries of known peers */;
no_of_peers «— |Listofpeers!;
if no_of_peers < k then
| Listof Peers « Listof Peers -+ Broadcast
end
C — null;
while |C| < k do
temp «— null;
next «— null;
for j «— 1 to no_of_peers —|C| do
P; — ListofPeers|j|;
if temp < CompareCoalition(H,C,R;, P;) then
temp «— CompareCoalition(H,C, R;, P;);
/* Localized Hill Climbing with successive maximisation based on
local view,
refer to discussion for constraints on CompareCoalition function */;
next «— Pj;
end
end
C — C + next,;
Listof Peers «— Listof Peers — next;
end
G; — CreateVisbilityGraph(();
return C, G;

Figure 5.3: Continual reorganisation through coalition re-evaluation

Chapter 6

P2P Coalition Formation and
Search Algorithm

This chapter extends the P2P overlay creation mechanism described in the previous
chapter and describes its application in the context of a P2P Open Hypermedia System.
Though the work is described in the context of a P2P-OHS it is equally applicable to
all the previously described scenarios. This chapter is organized as follows: Section 6.1
describes the overlay creation process and introduces the software architecture of a peer
node. Section 6.2 provides the formal description of the relevant data structures and
query semantics. Section 6.3 describes the operations on the data structures introduced
in section 6.2. The search algorithm is described in section 6.4 and a formal description
of overlay reorganisation is given in section 6.5, which considers reorganisation under
failure of nodes and change in resources provided by peers. A few of observations are

made and some negative results are discussed in Section 6.6.

6.1 Introduction

This section describes the application of the generic algorithm described in section 5.8 to
the domain of P2P-OHS, of which our motivating application was described in section
5.5. As described in section 5.5, a P2P-OHS consists of a number of peers that host
link bases, which have been annotated in accordance to an application specific domain
ontology !. Annotated resource descriptions, also known as “topics”, represent the
resources provided by each peer. In terms of the notation described in section 5.8,
where each peer P, hosts a set of resources R;, the list of topics is referred to as R;.

Each peer enters a number of coalitions to maximize the discovery of its resources. The

!Domain ontology refers to the application domain ontology, for example ontology in the biomedical
domain

64

Chapter 6 P2P Coalition Formation and Search Algorithm 65

TABLE 6.1: Choosing neighbours for coalitions formation

R, ={T1.T5.T%}
Resource Type Overlap Degree of Overlap | Additional resources
Ry ={T1,T5.T5, Ty} {11} 1 {T2, T3, T4}
Ro = {T35,T4,T5} {Ts} 1 {T5.74}
Ry ={1.T5.T5.T77} | {11.T5.T%} 3 {T3}

relative utility of the probable coalition partners are selected to reduce the cumulative

communication costs incurred in routing the discovery queries across the peer network.

The cumulative routing costs are minimized using a simple cluster heuristic to create
coalition among peers with similar resources. Peers form coalitions with peers with high
degrees of overlap. For example, consider a peer P;, with a possibility to enter a coalition
with peers P;, P.. The tie will be broken in favour of P;, if |Rei [Rej| > {Rei () Rekl;
otherwise the tie is broken in favour of peer FP,. The query routing mechanism uses
this overlap information to route the queries to the resources with the similar resources,
please refer to section 6.2.1 for further details on query routing. The query throughput is
maximized and the communication costs for query routing are restricted to communication
costs with similar peers. However, in certain cases, peer P, may not be able to decide
on suitable candidates to whom to route the query, and in such cases resort to local

broadcasts to neighbours.

For example, figure 6.1(A) represents a probable outcome of the clustering process. In
this figure, the red dots and edges represent the peers that are part of a coalition on a
particular resource. Once a query is routed to any node in these subgraphs the query is
routed via the edges of the graph. However, to communicate between the sub-graphs,
the nodes may resort to local broadcasts. The query costs can be reduced to a theoretical
minimum if the all peers with a particular resource are clustered to form a connected

graph, a case depicted in figure 6.1(B).

At the time of entering future collaborations, each peer has a complete knowledge of
its existing collaborations, as described in section 5.8. Figure 6.2, represents one such
case, in which a peer needs to choose a maximum of two coalitions from a set of existing
coalitions. If the resources held by peer P; is R; = {T1.T5,77}, the overlap calculations
are as in table 6.1. Tt should be noted that if the peer chose candidates without prior
knowledge of existing coalitions, it would end up choosing both the resources of type
R3. However, after having chosen the first resource of type Rj3, the peer attempts to
maximize the resource types and chooses a resource of type R over a resource of type
Rs, maximizing the total resources known to peer F;. It should be stressed that peer F;

does not know about the existing coalitions of other peers.

Chapter 6 P2P Coalition Formation and Search Algorithm

66

F N V4
4 oo ¥—o-*
/ x\
L-O/._-. e
/ <«
¢
o

FIGURE 6.1: Peer Network, (A) An overlay showing disconnected sub-graphs clustered
over a single attribute, (B) An ideal overlay with a connected graph clustered over a

@

FIGURE 6.2: Overlay Selection - (A) A peer that selects the neighbours based on
maximum resource overlap (B) A peer that selects neighbours to maximize the resources

(A)

single attribute.

I
|
|
c

A

based on overlap and query routing history.

(B)

(B)

Chapter 6 P2P Coalition Formation and Search Algorithm 67

Application Application Application
Information Profiler Query Manager
>
= Query Router Overlay ReOrganizer | Resource Container
o
Overlay Manager

FIGURE 6.3: Peer architecture
6.1.1 Peer architecture

The overlay creation and formation process is based on a coalition formation and maintenance
protocol, the details of which are described in the following sections. The overlay network
does not necessitate adherence to any architecture, but is only limited to the semantics
and causality of the messages. However, to provide an insight into the state maintained
at each node and the implementation of the system, the peer architecture is described
in this section, the block diagram is presented in the figure 6.3. Each peer node consists

of the following building blocks:

Overlay Manager The overlay manager maintains the list of active coalitions and
monitors the changes to any parameters in any of the coalitions. It also maintains

state visibility information and manages the visibility graph G, for a peer F;.

Resource Container The resource container manages the list of resources made available

by P;. It uses the overlay manager interface to notify the members of the affected

coalitions of resource changes.

Overlay Reorganizer The overlay reorganizer determines the long term participation
of P in a coalition Cy;. It maintains statistics on communication costs and query

profiles and encapsulates the inferencing techniques for overlay reorganisation.

Query Router The query router implements the query routing heuristics and tries to
minimize the communication costs by choosing appropriate coalitions for routing
the query contents. It also implements logic to uniquely identify the query, process

queries in FIFO order and implement the query routing semantics.

Query Manager The query manager is responsible for creating and managing queries

generated by P, and provides an interface to the application logic.

Information Profiler The information profiler uses the graph G; and the inferences

from the overlay reorganizer to create a model used to select future coalitions.

Chapter 6 P2P Coalition Formation and Search Algorithm 68

Policy Manager The policy manager dictates how the local resources are utilized. The
candidate policies affect the size of the routing table and memory utilisation for

maintaining statistics on past queries.

6.2 Notation

Table 6.2, introduces the notation used to describe the algorithm. The general graph
Gy, is composed of a number of peers. Each peer P, provides a list of available resources
LT; and maintains a list of coalitions LFP;. While the resources are described by means
of their advertisements (Idypic)and possible state transitions (Stepic), the coalitions are
maintained in a separate table, also used for routing the query. A number of coalitions
are maintained in the table structure, which is used to maintain the coalitions, and is
also used to route the queries; hence it is also known as the routing table. Each row
in the table captures information about the neighbour (Idpeer), the list of resources
that it brings to the coalition (LT;esources), the similarity with the resources of this
peer (LT ommon) and topological information about the peer. As coalitions are treated
independently of each other and as each coalition involves only two peers, the number
of rows in the table equals the number of neighbours associated with the peer. The
size of the table is restricted by peer parameter k;. Each of the peers may maintain the
information of a peer that is more than a single hop away from the peer F,, the maximum
number of hops being limited by the radius. Thus the diameter of the visibility graph
is limited to twice that of the radius. Each peer incurs communication overheads for
maintaining the state of the neighbours, and the peer can adjust the communication

costs by varying the radius of the graph G;,.

6.2.1 Query structure and routing semantics

The overlay maintenance mandates that each peer maintain relevant information to route
the query to the appropriate resources. This requirement is simnilar to that imposed in
structured P2P systems where each peer maintains appropriate resource information,
in this case an identifier map, to successfully locate the resource. In our case, each
peer maintains the resource advertisement information for each of its neighbours and
constantly updates the information to reflect the current state of the resource. The
resource discovery request is expressed as a query on these advertisements. A query is
identified uniquely by its globally unique identifier (GUID). The node that creates the
resource discovery request formulates the query expression and associates its identifier
with the query. The query manager at the node determines the TTL/max hops that
determine the range of query propagation. The originating peer than evaluates the
query and forwards it to chosen list of neighbouring peers (please refer to section 6.2.1 for

further details on query evaluation). Each peer appends its path to the query description

Chapter 6 P2P Coalition Formation and Search Algorithm 69

TABLE 6.2: Notation used for describing the algorithm.

Gy

P, ev,

LT,
published

by

individual peer)

LP;

{List

(List of topics

the

of

neighbouring peers)

G(V..Ey)

Vi
Ey

Idpeer
LP;
LT;

Gi
radius

ks

T
1¢opic

Stopz’c

Idpeer

LTTSSO’UTCES

LT common
Qdist

,‘BdiTection

depth

time/size

timestamp

Q timestamp

did
Qdesc

TTL
hops
root

path

Overlay network topology at time
instance t

Set of nodes at instance t

Set of edges at instance t

Peer identifier

list of coalitions

list of topics

sub graph known to the peer
Determines the radial distance of the
peers known to F;
maximum number of
neighbours for peer P,

permitted

Resource Advertisement

List of possible resource states

Identifier of neighbouring peer for this
coalition

list of resources committed by the
neighbouring peer

common resources in the coalition
degree of overlap

direction of edge (only if directed
graph is permitted)

The radial distance of this peer from
the neighbour F;

Temporal records maintained for the
statistical inferencing, the list is either
time or size limited

timestamp when the item was added
to History

The description of the query processed
at the specified timestamp

universally unique query identifier
query statement {(e.g. XQuery
Expression, RDF query expression)
time to live

maximum number of hops

the originating node for the query Q
list of nodes visited by Q, in the order
visited starting with root

Chapter 6 P2P Coalition Formation and Search Algorithm 70

Query Originator- generating a
. query request for maximum
radius of 2 hops

Query Receiver and propagator
at level-1.

. Query Receiver at level-2

— Forward Propagation path
——— Return propagation path
—_—— Connected Neighbours

FIGURE 6.4: Schematic representation of query routing

and reduces the number of remaining hops before propagating the query to the next peer.
On receipt of the query each peer evaluates the resource discovery request against its local
list of resources, and, if an appropriate match is found, the query results are returned
to the route peer and are propagated along the path of the query propagation. If the
query has not expired and/or has not propagated to the desired diameter, the query is
recursively routed to the next probable list of neighbours. The schematic representation

is presented in the figure 6.4

6.3 Algorithm and message types

The above section introduced the notation and associated data structures. This section
defines the continuously re-optimizing event driven algorithm used to facilitate search
in P2P overlay networks. It should be noted that part of the algorithm executes in
response to the occurrence of certain events. These events may originate from changes
to the environment (i.e. changes in the state of the peer or the state of the neighbouring
peers) or may be internally generated by the peer in response to the changes in the
internal state. The following sub-sections presents the list of messages handled by the

peer and its subsequent processing.

There is no particular order associated with the occurrence of most of the events.
However, certain events assume precedence over other events, for example an initial

request to join the overlay.

Chapter 6 P2P Coalition Formation and Search Algorithm 71

6.3.1 Request to join the overlay

Each newly joining peer needs to be associated as a neighbour to at least one of the
peers that happens to be a member of the overlay. The newly joining peer F; publishes
a list of topics L'T; and generates queries for the peers with similar resources. The query
requests and responses are routed through the initially contacted peer and the visibility
of peer P, increases as the peer obtains further results. The peer F, tries to form a

coalition with the newly acquired list of related peers.

Variables: LT, := 0, LP; := 0, when P, joins graph G,

e Online := true
e Allow Queries := false

¢ Randomly generate a list of queries Q,gndom from the resource space and randomly

select a set of peers from the responses, denoted as Prgndom

6.3.2 Processing the query responses for (Qundom) from Each Peer in

Prandom

e For each received LT, ¢sponse from the randomly chosen peers,

— Calculate %3t ;= number of topics in LT esponse M LT new

— Add to LP,.,, the list of peers, distance, and the intersection set with g#rection
= true
— If received, Presponse already exists in LP e, select another set of peers

— If LT esponse [| LTnew = {}, store the information as a uni-directional set,
where LP,,.,, contains the list of peers at a? = null and the intersection set

with gdirection — false

6.3.3 Request for processing query

Any of the peer’s neighbours could invoke a request for query processing. As there may
exist a number of possible paths for query routing, duplicate processing is prevented by
uniquely identifying the query by its associated query identifier. Once the uniqueness of
the query has been established, the query processor selects the list of probable routing
targets to propagate the query. If it is unable to find any suitable coalitions that can be
delegated to the query, it resorts to a local broadcast, whereby it transmits the query

to all the neighbouring peers amongst all its coalitions.

Chapter 6 P2P Coalition Formation and Search Algorithm 72

6.3.3.1 Query processing at Peer P,

Let LT4yery represent the list of topics in the query. Let n represent the number of
topics in LT gyepy-

e If not already processed query.Idgyery

e begin

For each a®t in LP, > n,

— If LT query () LP; — LT = LT guery, propagate the query
— If LT guery () LP; — LT = {}, forward the query to all the neighbours in LP;

e end

6.3.4 Request for resource description

Each peer maintains an advertisement of the resources that form a part of its coalitions.
Depending upon the visibility information and the communication costs, a peer also
caches the information of the peers at a radial distance radius. In order to obtain the
information a peer raises a request for a resource description message. The message
enumerates the list of resources that the peer is interested in and the radial distance
of the intended recipients of the message. A peer uses this information to estimate the
resource availability in its immediate neighbourhood. It should be noted that the peer
does not enter into coalition with the peers at a hop distance greater than 1, but uses

the information solely for the purpose of query routing.

6.3.5 Notification of change in resources

Each coalition monitors a set of resources and the state of the resources. A push
monitoring mechanism is used, where each resource provider issues notifications for
any changes to the resource state. Each coalition partner subscribes to the notifications
requests of the resources contributed by its subordinate peer. Peers may monitor the
comimunication costs for the notifications messages and consider the associated overheads

while re-evaluating the coalition.

6.4 Search mechanism

Each search request to locate any particular combination of resources is formulated as

a resource discovery request. The peer that initiates the search matches determines the

Chapter 6 P2P Coalition Formation and Search Algorithm 73

upper bound on the total query propagation costs and specifies the time to live for the
query of a particular type. Each such search request is formulated as a query routing
request and incurs a cumulative communication cost across the peer network. This

communication cost is affected by:

1. The topological distribution of the resource providers and consumers.

[N

. The relative availability of similar resources.

3. The coalition preferences of the cumulative network.

The TTL determines the yield achieved by the query routing mechanism. Each originating
peer uses the TTL to specify the requests for a particular resource type as inferred from
its information model. The peer constructs this resource model by observing three states

of the systen:

1. The state of the coalitions.
2. The state from the historically routed queries.

3. The state from observing the state models of other peers.

Once a query request has been formulated it is routed by using the state table at each of
the routing peers. The query statistics capture the number of broadcasts and the relative
vield obtained from routing the query. Each peer maintains these statistics over a period
of time, also known as query history. The query history infers the probable distribution
of resources across the peer network and also estimates the probable availability of the
resources in such a network. This data can either be maintained for a fixed number of

query records or it may be maintained in accordance to temporal constraints.

6.5 Overlay reorganisation

The overlay is an abstract representation of a list of coalitions between a number of
participant peers. Each of the partners in the coalition autonomously decides on which
coalitions to retain or which coalitions to forfeit. Under static resource and query
distributions, the overlay would stabilize, and, under stable conditions, all the peers
would have settled for the best possible static topology. However, in most practical
cases the peers would not have complete knowledge of the system; hence, even temporal
changes will result in certain coalitions being regarded as inefficient, while certain others
will assume greater importance. In addition, certain unforseen conditions like the failure
of certain nodes will result in the recreation of the state and the reorganisation of the

overlay network.

Chapter 6 P2P Coalition Formation and Search Algorithm 74

The decision to prefer one coalition over another can either be made on the basis of a
short temporal observation or can be considered over a longer duration. The duration
over which the peer gauges the utility of the coalition depends upon the nature of
coalition. Peers that maximize the short term gain and are interested in re-evaluating

their strategy on the basis of short observations are preferred for the following reasons:

1. The frequency of changes to the system state may be too infrequent to take

advantage of any previous system state for long durations.

2. Considering a large scale network the costs involved in maintaining the resource

information at each of the peers may be more than the derived benefit.

Considering that a peer uses state inforimation observed over a finite interval, a peer will
be able to create the profile of the information held on the peer and the information
routed through the queries. The information is used to model the resource type and
distribution profile, known as the local model. A number of peers may share their model
of the environment and create a model based on the coalition. The shared model can
be used to create the approximate resource distribution, which can be used to choose

probable partners for future coalitions.

6.6 Observations

The coalition formation algorithim described above is based on a simple heuristic used
to form clusters of related resources. This intuitive approach reduces the query routing
costs, as the resources in a cluster share a common objective of routing queries for their
“similar” resources. However, participating in a coalition only reduces the routing costs
for the resources that form the basis of the coalition. As described earlier, a coalition
C < P, P;,R;. R; >, is based on the sharing of resources R;, R; between peers P; and
P;. Generally, a peer P, will have a set of resources R, such that R, € R, and is
likely to enter multiple coalitions with an upper bound on the number of coalitions a
peer could enter. As part of the cluster, each of the peers is obliged to cooperate in
routing the queries (or requests) sent by neighbours. A peer may either satisfy a request
and/or may propagate it to a neighbour that may satisfy such a request, resorting to
local broadcast when both the previous options are infeasible. Routing query requests
serves two purposes: First, the query routing details increase the visibility of the peer
P, by informing it of the existence of other peers. Secondly, query content allows the
peer to map the resource availability in its surroundings. Based on query routing and
overlay information, a peer maintains the model of its peers and classifies them into three
distinct categories, firstly, peers with complete overlap of resource information, secondly,
a peer set with partial overlaps, and finally, a set of peers with no resource overlap.

On the basis of the above information, a peer needs to determine the most suitable

~J
ot

Chapter 6 P2P Coalition Formation and Search Algorithm

candidates for coalition formation. During experimental evaluation, it was observed
that if the overlay is constructed solely on the basis of the resource overlap information,
the resultant cluster has a very high density of packing. High density clustering reduces
the query routing costs of the highly available resources, while pronouncing the costs of
the sparingly available resources. However, if the overlay formation is based on both the
resource information and the query routing information the resultant clusters consists of

resource neighbours from all three categories, namely with full, partial. and no overlap.

It should be noted that the clustering algorithm does not mandate adherence to any
particular topology. As the topology of the overlay evolves from the coalition formation
process, it is possible that the average communication costs for locating the resources
and throughput of the query will vary. The variation is attributed to two factors: First,
if a query originates outside the cluster of resources, it incurs local broadcast costs,
until it encounters at least one of the resources within the cluster, which subsequently
directs the query. However, if the TTL of the query exceeds the cluster size, the query is
diffused into the surrounding cluster for propagation through local broadcasts. Secondly,
as resources become scarce, the resultant clusters are few and far between, and additional

communication costs are incurred in locating the similar clusters.

6.6.1 Limitations of the approach
The following is a list of limitations of this approach:

Network Partitioning: As each peer in the overlay is individually responsible for
determining its immediate neighbourhood, it is impossible to rule out network
partitioning effects. Although a local broadcast used by the query routing mechanism
aids the reformation of the connected overlay, the chance of network partitioning

could not be eliminated.

Unstable Overlay: As each of the participant peers autonomically determines its
participation in individual coalitions, it is imperative that these reorganisations will
happen asynchronously. As described in the previous chapter, the reorganisation
mechanism requires a certain amount of time to attain an optimum solution.
However, frequent changes to the query profile or resources held at the peers result
in an unstable overlay. Such instability is also observed in the structure overlay

and is also attributed to frequent modifications to the peers.

Warranties on forming optimal topologies: The possibility of the coalition formation
resulting in a non-optimal solution was proven by Sandholm et.al (Sandholm,
Larson, Andersson, Shehory, and Tohm 1999). As the above work derives from
a similar approach, albeit in a more relaxed and distributed environment, the
observations by Sandholm et.al. remain equally applicable, and the process may

result in the formation of non-optimal topologies.

Chapter 6 P2P Coalition Formation and Search Algorithm 76

Local Optimum: The mechanism described in the previous chapter relies on the use
of the latest observations of the dynamically evolving network and attempts to
optimize the topology in what can be seen as a naive hill climbing technique.
However, such a technique may result in identification of the local optimal and with
no means to identify the global optimal, the algorithm may result in suboptimal

solutions.

6.7 Summary

Application of the coalition based overlay network as applied for content management
in P2P-OHS has been discussed in this chapter. The exemplar was used to route
the resource discovery requests using the overlay characteristics. Reorganisation of
the overlay to reflect the changes in the query distribution and resource distribution
was discussed as an extension to the original approach. Observations from the actual
implementation of the above have highlighted some limitations, as discussed in the
previous section. The experimental evaluation of the above approach is discussed in the

next chapter.

Chapter 7

Evaluation of the Search
Algorithm

This chapter presents the results of the experimental evaluation of the algorithm described
in the previous chapter. Section 7.1 provides the general overview of the simulation
environment and elaborates on experimental settings and experimental evaluations.
Experimental evaluations, results and analysis are presented in section 7.2, and the

findings are summarized in section 7.3

7.1 Introduction

The simulation requirements overlap with those of peer-to-peer systems and ad hoc
systems. However, as far as is known, there is no standard peer-to-peer simulation
environment. Though such environments exist in the field of ad hoc networking, most
of the ad hoc simulators are restricted to simulation of lower-level communication
protocols. For example, the use of Network Simulator 2 (NS2) and mobisim was
evaluated, *but considered inappropriate for simulation of an information based dynamic
overlay formation. Consequently, a new simulation environment was developed, referred

to as InfoSim.

InfoSim is a generic infrastructure to simulate query routing in a P2P environment.
Queries are represented, communicated and routed as messages. The messages are
declarative in nature and possess a context, including sender, receiver, send time, expiry
time and message path. The simulator uses a logical clock and provides capability for
scheduling a sequence of events. The events are cached at the recipient, for further

processing. However, on expiry, the messages are discarded from the recipient queues.

'References could not be provided as there exists no published article that describes the simulator’s
internals. The web reference for NS2 is http : //www.isi.edu/nsnam/ns/, November 2005.

77

Chapter 7 Evaluation of the Search Algorithm 78

7.2 Experimental evaluation

The results presented in this section can be classified into three main categories of

comparisons pertaining to:

1. Query Routing strategies;
2. Effects of variation in the link state table on routing costs;

3. Effects of topology on objective function.

Query Routing strategies: Three candidate query routing strategies are compared
to determine the effectiveness of the approach. The performance of the similarity based
query routing strategy is compared against the performance of random walk and the
broadcast mechanism 2. The set of experiments described in the latter sections were
conducted under exactly similar routing table and resource states across the P2P system.
All the routing strategies employed TTL based query expiry criteria and were compared
on the basis of routing efficiency, where routing efficiency is determined as the ratio
of resources discovered for the set of messages exchanged between the nodes. Further

details of the experiments can be found in section 7.2.4

Effects of variation in link state table on routing costs: Maintaining the link
state table incurs the messaging costs. This set of experiments investigate the effect of
variations in the size of the link table on the overall query routing performance of each
of the node in the network. Two situations are considered: the first set of experiments
presents the effect of changes in state table size on the query routing performace of the
system, and the second set of experiments presents the effects of changes in the spatial
radii of the state table. The results of this set of experiments are summarized in section

7.2.4.2.

The effects of topology on objective function: Each node in the P2P system
has a finite set of neighbours, and the combined set of neighbourhood information
describes the topology of the P2P system. The main aim of our clustering heuristics is to
create a topology to minimize the query routing costs. This set of experimental analysis
observes the behaviowr of the P2P overlay topology for a finite set of query distributions.
Snapshots of the topology are obtained at regular intervals and are compared against the
theoretically optimal topology. As there exists no comparative operators to determine
equivalence or quantify the topologies, the cumulative gain in objective function is used
as the measure of comparison. Details on how to obtain the theoretical optimal and

results can be found in section 7.2.4.2.

2Broadcast and guided random walk techniques have been widely used for comparing the query
routing strategies in unstructured P2P systems

Chapter 7 Evaluation of the Search Algorithm 79

Parameter Configuration - 1 | Configuration - 2 | Configuration - 3
Simulation time steps | 10000 10000 10000

Number of nodes 20 to 200 20 to 200 200 to 1000
Maximum number of | 3 to 50 3 to 50 3 to 50

coalition

Radii of topological | 1 to 3 1tob 1to 10

visibility

Frequency of queries 3/time step variable variable

Number of unique | 200 200 1000

resource definitions

Maximum Resources | 100 variable 10 to 100 variable 10 to 100
per node

Resource Distribution | zipf zipt zipf

type

TaBLE 7.1: Configurations used in P2P simulation

7.2.1 General setup

An initial P2P network topology is assumed to represent the sets of neighbors for each
of the participant peers. A global resource distribution is used to populate the list of
resources hosted at each individual peer. An instigating peer is chosen at random to
initiate a query and determine the appropriate radii of query propagation. The query
contents are derived from a known resource distribution. Each peer autonomously routes
the query and also helps in propagating responses to the queries. The radii of query
propagation and frequency of query propagation are uniformly distributed over a range

of values. The experiments were carried out with the configurations shown in table 7.1.

7.2.1.1 Resource distribution

Each peer hosts a set of resource descriptions also known as content descriptions. Our
experiments consider two such resource distribution parameters, known as the global
resource type distribution and the local resource distribution. While the global resource
type distribution indicates the relative availability of a resource across the system, local
distribution indicates the availability of resources at a particular node. It is observed
that peers that host largest variety of contents derive higher values of resource discovery
due to their ability to satisfy a relatively larger number of queries then that compared
to peers with lower number of content definitions. Hence, local distribution has an effect
on the choice of objective function by the peer. While a peer with higher content types
can maximize its utility by satisfying queries, the other types of peer can maximize their

utility by choosing an appropriate set of neighbors to route their contents to.

Chapter 7 Evaluation of the Search Algorithm 80

zipF d'istribution' +

09 r -

0.4

Resource Identifier
(e}
w
T
+
|

0.3

0.1 | ta -

+
+ o+
+
s,
e

0 i t 1 LS i L]
0 5 10 15 20 25 30 35 40 45 50

Relative Population

++++-‘+++++T++++T++++

FIGURE 7.1: A zipF resource distribution.
7.2.2 Input data sets and data distribution

Both real and synthetic input data sets were used to validate the hypothesis, as the
use of them was predominant. They were selected to reflect the application domain
characteristics. For example, the application domains described in the previous chapter
exhibit a zipF distribution of resources. A zipF distribution was used to represent the
cumulative resource distribution across all the participant nodes, although individual
resource distributions differed across peers. A uniform distribution was used to allocate
variable sets of resources to each of the participating peers, while adhering to the
overall resource distribution. In addition, uniform and poisson distributions were used
to generate queries over a given set of resources. Independent resource and query
distribution were used to reflect a real-life scenario, where resource availability and
demand for resources are usunally independent of each other. Finally, a uniform probability

was used to randomly select the node that instigates the query.

7.2.3 Comparison with respect to an optimal topology

Given the resource distribution and the query profile distribution, an optimal topology
can be ascertained on the basis of the mean path length required for query propagation.
An optimal topology minimizes the mean path for discovering the maximum number of
resources that satisfy the query. Consider the above example, the nodes are labelled 1

to 6 and their resource distribution is given as:

Chapter 7 Evaluation of the Search Algorithm 81

1 00101 TaBLE 7.2: A simple topology.
01 1 001
AdjacencyMatriz(A) = (1) (1) (1) (1) 1 8
001110
110001

TABLE 7.3: Adjacency matrix and its graphical topology for a small network,
connectivity k = 2

Node 1: { A,B,C,D}
Node 2: { E,F,JK}
Node 3: { E;HM.I}
Node 4: { G.F,C.D}
Node 5: { F.HK.I}
Node 6: { A.B.ILJ}

From the above resource distribution, it can be easily inferred that Node I can benefit
the most by forming a coalition with Node 4 and Node 6. Under uniform distribution
of queried resources, both these nodes provide resources that minimize the broadcast
costs incurred by Node 1. The same is also applicable to the topology formed by other
resources. An optimal topology for a simple network of six nodes and its adjacency
matrix for a maximum number of neighbor connectivity of & = 2 is represented in the

figure.

In the above example, each of the nodes is restricted to entering a maximum of two
coalitions, where, as previously described, a coalition exists between a set of peers. The
value of the coalition is determined by taking into account the query profile distribution.
A uniform query profile means that maximizing the information of the resource types

leads to maximisation of the utility function.

Possible coalitions for Node 1 and their respective utility values for uniformly queried
resources is given as follows:
Coalition(1,2): Utility = 0
1,3): Utility = 0
1,4): Utility = 2
1,5): Utility = 0
1,6): Utility = 2

Coalition
Coalition

Coalition

—_ — = =

Coalition

One could similarly calculate the coalition values of the remaining pairs of nodes, as the

coalition is commutative: Coalition(i,j)=Coulition(j,1); one can select coalitions that

Chapter 7 Evaluation of the Search Algorithm 82

result in cumulative maximum utility. The cumulative coalitions are considered subject
to the constraints on maximum number of neighbors & and the connectivity constraints

on the graph.

The theoretically maximal coalition value determines the probable candidates for optimal
topologies. However, it is not guaranteed that the heuristics discussed in the previous
chapter will always converge to the formation of the exact optimal topology. In such
cases, the ratio of the cumulative gain values, subject to connectivity constraints, are

used to compare the effectiveness of the approach.

7.2.4 Experiments

As described in section 7.2, the experimental evaluation is divided into the above
mentioned three categories. The following sub-sections summarize the results in each of

these categories:

7.2.4.1 Query routing strategies

Three candidate query routing strategies are considered, firstly, the probabilistic query
routing (described in the previous chapter), secondly the broadcast strategy and finally
the random walk strategy. The performance of the query routing strategy is compared
on the basis of the net throughput of the query and the average transmission costs for
locating the resources. By its very definition, a broadcast mechanism should provide
the highest throughput and should be able to discover all the resources within the
TTL radius of the instigating node. The above fact was validated with the results
described in figure 7.3, which plots the query throughput for the increased resource
availability. As described in section 7.2.2, the cumulative resource distribution follows a
zipF pattern; consequently the resource types with higher availability are more likely to
occur then resource types with the least probability. Asshown in figure 7.3, the resources
with higher availability result in higher throughput and the throughput decreases with
relative availability of the resources. The inverse zipF nature of the output verifies the
fact that the overlay organisation results in a structure of radii < T'T'L for the query and
the majority of the resources are discovered by the broadcast mechanism. In terms of
throughput, the probabilistic query routing mechanism provides throughput comparable
to the broadcast routing strategy, as demonstrated by the plot in figure 7.2. However,
the random walk strategy resulted in the worst possible query throughput, as shown in
the figure 7.4. The comparative graph for the query throughput for each of the three
strategies can be found in figure 7.5. It should be noted that the probabilistic routing
strategy and broadcast strategy provide nearly the same throughput. The cost analysis

of the three strategies can be found in figures 7.6, 7.7, 7.8 and 7.9.

Chapter 7 Evaluation of the Search Algorithm

25 T T T T
Probablistic +

Number of Reources Discovered

1 £ i ‘ + | ‘[r t
1 2 3 4 5
Increasing Relative Availability

FIGURE 7.2: Query throughput using the probabilistic routing algorithm for zipF
resource distribution and variable radius r, 1 < r < 3, Number of peers = 20.

25 T T T T
Broadcast +

Number of Reources Discovered

U1 1 A

1 2 3 4 5
Increasing Relative Availability

FIGURE 7.3: Query throughput using the broadcast routing algorithm for zipF resource
distribution and variable radius r, 1 < r < 3, Number of peers = 20.

84

Chapter 7 Evaluation of the Search Algorithm

+

Random

25

20 |

10

|
w
-

PaIaA02sIg S92IN0BY JO JIBqUINN -

Increasing Relative Availability

FIGURE 7.4: Query throughput using the random walk routing algorithm for zipF

20.

Number of peers =

<r<3,

resource distribution and variable radius r, 1

T

Broadcast ---*-—--
Random Walk -

Probabilistic ——

25

20

15
10
5

PaIBADISIQ $80IN0BY JO JaqUINN

Increasing Relative Availability

FIGURE 7.5: Comparative query throughput between probabilistic, broadcast and
random walk routing algorithms for zipF resource distribution and variable radius r,

umber of peers = 20.

J

1<r <3, !

o)
ot

Chapter 7 Evaluation of the Search Algorithm

50 T T T —T
Probabilistic +

40 - .
w
c
°©
w
@
€
2 30 N
<
[t
3
4]
o
5
Zz 20 J
[0)
o
o
()
>
<

it ik i P A
1 2 3 5
Increasing Relative Availability)

FIGURE 7.6: Transmission costs for the probabilistic routing algorithm for zipF resource
distribution and variable radius r, 1 < r < 3, Number of peers = 20.

As demonstrated by figure 7.7, the relative transmission costs of the resource discovery
increases as the resources become scarcely available. The same trend is observed for the
random walk strategy, as shown in figure 7.8. However, the routing costs for probabilistic
routing are nearly constant and show little variation in the face of changing resource
availability. As shown in figure 7.6, the query costs for the highly available resources
and scarcely available resources is nearly the same. This demonstrates that probabilistic
routing is effective in detecting neighbours that have a higher possibility of providing
resource information. With an average transmission cost of 2.5 and a tightly-bounded
theoretical transmission cost of 1.0, the probabilistic routing algorithm performs better

than the broadcast and the random walk mechanism.

It should be noted that both the transmission costs and the throughput plots reflect the
fact that each point in the graph is measured for a randomly generated query initiated
from a randomly chosen point in the network. The variation in the throughput is because
the clusters of resources are at a greater distance from the origin of the query, therefore

also attracting higher broadcast costs.

7.2.4.2 Effects of variation in link state table on routing costs

It should be noted that one objective is to develop a technique that is equally applicable
for both wired and wireless networks. Unlike wired networks, wireless networks, such as
sensor networks, consist of nodes with limited resources. The next set of results shown

in figure 7.10 demonstrate the effect of changes in radii on the overall performance of

Chapter 7 Evaluation of the Search Algorithm

86

50

40 §

Average Number of Transmissions

FiGURE

50

40

30

20

Average Number of Transmissions

10

30 |

T
Broadcast +

|

fir i e g, 11k

Increasing Relative Availability

4 5

7.7: Transmission costs for the broadcast routing algorithm for zipF resource
distribution and variable radius r, 1 <7 < 3, Number of peers = 20.

' Random +

e |

YN T T T
1 2 3
Increasing Relative Availability

4 5

FIGURE 7.8: Transmission costs for the random walk routing algorithm for zipF
resource distribution and variable radius r, 1 < r < 3, Number of peers = 20.

Chapter 7 Evaluation of the Search Algorithm 87

T
Probabilistic
Broadcast -------
Random Walk --------

Average Number of Transmissions

Increasing Relative Availability

FIGURE 7.9: Comparative transmission costs for the probabilistic, broadcast and
random walk routing algorithm for zipF resource distribution and variable radius r,
1 <7 <3, Number of peers = 20.

the probabilistic routing strategy. As shown in figure 7.10, the query throughput shows
a remarkable increase with increase in radius. Initial increments obtained by increase in
radius outperform the further increases obtained. The above property can be exploited
by the wireless networks to determine the appropriate radius for dissemination of their

resource information.

Some performance observations about the routing algorithm are made in figure 7.10:
Firstly, the proportional gain in throughput is higher for the initial increase in radius.
Secondly, the variations in query performance reduce significantly as the radius of
the graph is increased. As all the above experiments were conducted under similar
operating environments except for the state information used for routing the query, it
is inferred that the algorithin is able to provide better performance for an increased
state information. However, a comparison of the increase in performance with the
proportionate cost increments is needed, which have been highlighted in the figures

7.12, 7.13, and 7.14

The transmission cost indicators for the three radius indicate the following trends.
Firstly, the clustering strategy initially allows lower transmission costs for the scarcely
available resources, while the cost for highly available resources is fairly constant. Secondly,
as the radius is increased the cost for query processing of the scarcely available resources
increases. In figure 7.13, it is approximately constant for all query types, while it
increases beyond the cost of highly available resources in the case of figure 7.14. This

indicates that the cluster size has a direct impact on transmission costs, and this effect

Chapter 7 Evaluation of the Search Algorithm 88

100 : : , ‘
radius=1 ——
radius=2 -------
radius=3 ------

80 r |

3 60 |
=y

[=2

=

[

S i V/V“'\‘ o »,4“‘.;_.:‘:‘:;1; *’i- "r:;:;_"':::‘l'7;-_»:_’:_’:;:'_-_;-_;‘.':;:;:'_:;1'
§ A Y\ I

3 Ry i i \‘\i ,! i I

s r ; ! A\l 4

1 W
0 | . ‘

Increasing Relative Availability

FiGure 7.10: Effect of variation in radius on effectiveness of the probabilistic routing
algorithm for zipF resource distribution and variable radius r, Number of peers = 200.

is more pronounced for scarcely available resources.

Similar studies were carried out for the broadcast strategy, and it verified the theoretical
case that a change in the radius of the information has no impact on the throughput

and the transmission costs. The experimental verification of the results can be found in

sections 7.11 and 7.15 respectively.

7.3 Conclusion

The experimental evaluation presented in this chapter presented the generic trends
observed in the construction of a coalition based overlay network. It was observed that
probabilistic routing provides a comparable throughput to the broadcast mechanism but
at a comparatively reduced cost. Additionally, the transmission costs of probabilistic
routing remains the lowest and is constant across the resource distribution. The results
also demonstrate that the increase in radius improves the performance of the probabilistic
routing. However, such improvements need to be weighed against the associated costs
for state maintenance. The above investigation focused on the case for which the
transmission costs are linearly proportional to the amount of state being maintained.
The overlay characteristics were validated with the individual peers autonomically choosing
the radius of their state maintenance and coalition formation. The above results validate
the assumption that coalition formation is robust in developing overlay networks for

content distribution and information dissemination.

Chapter 7 Evaluation of the Search Algorithm

100 T T T L
radius=1
radius=2 -------
radius=3 -------
80 ~ -
3 6o |
=
(=2
=
o
=
=
2
g .l i
a
I
20 - m‘ ‘ e
‘ |
0 dﬂw . I L] 1
0 1 2 3 4 5

Increasing Relative Availability

F1GUurReE 7.11: Effect of variation in radii on effectiveness of the broadcast routing
algorithm for zipF resource distribution and variable radius r, Number of peers =
200. Note: Points in the graph overlap, the three curves are similar.

5 T T T 1
radius=1 +
4 - u
&
o 3 -
8 i
c +
.g + +
8 T4 . ¥
£ i ko +3 $ +
@ + * +
g I . i
= E3 4 F oo
+ o+ F &
*+
"
0 I i 1 3
0 1 2 3 4 5

Increasing Relative Availability

FIGURE 7.12: Cost for r=1 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200.

Chapter 7 Evaluation of the Search Algorithm

90

Transmission Costs

M
HiH-

+ o+

-

i+

+
+

L -

HHH

3

+

T
radius=2 +

++

2 3
Increasing Relative Availability

F1GURE 7.13: Cost for r=2 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200.

Transmission Costs

[radius=3 +

Increasing Relative Availability

T +
thoamd 5‘%1 PO T -
: +ﬁi‘*¢$¢++¢ + +% $¢+
N FERTE T +§f $¢; I .
238 I o N + By %4. +
TR v AT AT . .
[
+
+
" |
i 13
0 2 3 5

FI1GURE 7.14: Cost for r=3 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200.

Chapter 7 Evaluation of the Search Algorithm

91

T T T
' radius=1 ——
radiug=2 -------
radiug=3 ------
2 -
[9]
Q
&}
=
L2
% 4
2
E
2]
c
e
= -
le
i 1 i 1
1 2 3 4 5

Increasing Relative Availability

F1Gure 7.15: Cost for r=1, r=2, r=3 using the broadcast routing algorithm for zipF
resource distribution, Number of peers is 200. Note: Curves in the graph overlap

Part IV

Query Processing in data stream

management systems

92

Chapter 8
Query Optimisation

Chapter 2 introduced adaptive query processing systems for streaming data and the
related motivating applications. This was followed by a detailed description of a model
for adaptive information management in chapter 5. This chapter continues the thread
of discussion on adaptive information management, albeit with an exclusive focus on
the particular application domain - query processing over streaming data. It should be
noted that the choice of this particular application domain was influenced by some of

its following characteristics, as follows:

Time varying behaviour Query processing over streaming data provides an ideal case
for optimisation over time. In a streaming database, data arrival rates happen
to be infrequent. Time varying behaviour, coupled with constraints on memory
utilisation, computational resources, and the online nature of processing, facilitate
the evaluation of our assumptions of optimisation over time in a real application

domain.

Distributed and partially visible information The online processing requirements
of stream data management restrict the number of parses of incoming information.
The system needs to adapt on the basis of a small number of actual observations,

and most often these observations are not shared across multiple streams.

A reduction from a fully connected graph to a partially connected graph One
of the important operator employed for query processing of multiple streams
is a n-way join operator. Traditionally, a query plan for such an operator is
represented by a tree, derived from an n-way fully connected graph. This allows
us to explore the possibility of representing the scenario using a dynamic graph
formulation. Section 8.4 describes a dynamic graph based approach to multiple

query optimisation.

A combinatorial cost representation Query processing in streams is constrained,

and usually represented by a combinatorial cost formulation described in terms

93

Chapter 8 Querv Optimisation 94

of memory utilisation, computational costs timeliness of response. Usually a cost
expression is usually associated with an individual query, but typically a system
processes multiple queries over multiple streams. Therefore the application domain
is well suited to exploring the relation between graph theoretical representation

and combinatorial optimisation.

At the time of writing this thesis, query processing over streams is an emerging area
of research in the database community. The theoretical contributions in this chapter
are two-fold. Firstly, the hypothesis presented in chapter 2 should be ratified in terms
of solving a combinatorial optimisation using graph theoretical techniques in a domain
varying with respect to time. Secondly, a new approach is proposed for query planning on
streaming data. This part of the thesis consists of two chapters. Chapter 8 describes the
problem domain and the proposed solution and chapter 9 describes the implementation
and evaluation of the proposed approach. This chapter begins with a brief introduction
to query processing for relational data model, as described in section 8.1. However. it
should be noted that with such a large number of approaches and techniques developed
for query processing, means that it is impossible to provide a comprehensive summary
of the whole area of the research. Instead, section 8.1 introduces important concepts
and definitions to help understanding of the problem domain. Section 8.2, highlights the
differences between traditional query processing and query processing for streams, using
a relational data model. Section 8.3 describes the scope of the approach and its relevance
to the actual application domain. A set of theoretical solutions to the problems described
in section 8.3 are described in section 8.4. The next chapter, provides an architectural
overview of the implementation used to verify the hypothesis described in section 8.4.
The experimental results and their interpretation are provided in section 9.2. Section
9.3 provides the usual two part summary relating the findings to the application domain

and the overall hypothesis.

8.1 Background

Relational data representation (Codd 1970) is a widely used one that allows flexible
manipulation of encapsulated data. A part of its success is attributed to the well defined
relational algebra (Date 1995), is used to represent the data definition and manipulations.
Usually a declarative language - in most cases SQL (9075 1992) - is used to syntactically
represent the actual list of intended operations. Most commercial database systems allow
concurrent access to the underlying resources by allowing execution of simultaneous
queries. These systems convert the syntactical representation into a query plan for
execution by the underlying system. Query planning remains central to resource utilisation
in relational data management systems. To discuss the specifics of resource management,
tlie rest of the section discusses the query planning techniques in relational database

systems.

Chapter 8 Query Optimisation 95

8.1.1 Query processing in relational database systems

Query processing in relational database systems is usually a multi-staged process. Most
query processing systems use a parser to create a query plan from the syntactical
representation of the query statement. Initial plans are further optimized by the query
optimizer. A query optimizer applies a number of transformations to generate a list of
alternative feasible plans (also known as search space). A search mechanism is used to
select a most suitable query plan from the list of plans - usually one with minimal costs
for a given cost model. A query plan with lowest cost implications is executed by the task
management system of the database. Most traditional databases generate a query plan
at the start of query processing, while some perform re-optimisations of the query plan
during execution. The planning process is usually based on the statistical information
gathered from currently available tuples. A query plan with re-optimisation is well suited
for query processing in dynamic environments. Such query plans are usually employed
in multi-database systems where the unpredictable processing environment necessitates
the use of dynamic planning. Re-optimisation of the query plan is not usually employed

in single database systems.

Amongst the important aspects of relational query processing are cost estimation and
operator scheduling mechanisms, which tend to have a huge impact on optimisation.
A seminal paper by Selinger et. al. (Selinger, Astrahan, Chamberlin, Lorie, and Price
1979a) introduced System-R and a widely used formulation for generating query plans.
Most database systems extend this model to create a specialized query processing system.
System-R accepts a SQL statement and generates an access plan for single selection or
join relationship. The cost estimates in System-R are taken into account, the access
cost being based on the index information and the join operator algorithm. The generic
framework proposed by System-R provides a means to calculate query costs in terms of
access and operator costs. Similar cost metrics have been widely adopted in numerous
RDBMSs.

The following few subsections discuss some of the important components of a query

processing system:

8.1.1.1 Query planning

Query planning is a process by which a declarative data manipulation statement is
translated into an execution plan for evaluation by the database system. A typical
query planning system translates the declarative statement into a series of operations
and sub-operations to express the task as a series of atomic tasks that can be quantified
to ascertain the exact resource usage for the task. A query plan is usually expressed as a
directed edge graph, which associates data with the operators. A query tree is the most

usual representation of the query plan. A query tree is usually composed of a collection

Chapter 8 Query Optimisation 96

of data nodes and operator nodes. It can be expressed as a collection of sub-plans where
the output of the internal plan is merged as the input of the higher level plan. The
data nodes represent the table space or the tuple being accessed and a number of access
operators and join operators form a part of the higher level plan and are used to execute
the underlying sub-plans. In some cases, the sub-plans may not be expanded at the
compile time and the actual planning process may be accomplished at the run time.
Multiple database optimizer represent one such class of query optimizer that evaluate
the query plan at the run-time or delegate the task of evaluating the sub-expression to

an independent autonomous optimizer.

8.1.1.2 Cost metrics and estimation techniques

The cost of query processing is usually expressed in terms of three important parameters -
memory usage (also known as memory utilisation), computational resource uage (represents
the computational cost) and the time to response. As a standard case, each of the
algorithms used for scan or join operations has a known complexity. For example,
a hash join (Date 1995; Luo, Ellmann, Haas, and Naughton 2002), an index scan
(Date 1995) and a clustered index scan (Date 1995) each has a different complexity.
As most of the algorithms used for query processing exhibit deterministic behaviour,
it is possible to calculate the approximate resource requirements for the evaluation of
the individual query. The cost of query processing is usually a proportionate mix of
the three parameter cost metrics. The exact inter-relations between the cost function
depend upon the implementation of database system. As a representative example of
cost calculation in database systems, the cost calculation formulae of System-R are
repeated. The representation is purely to aid the comparison with the cost metrics for

streaming databases, introduced in section 8.4

8.1.1.3 Query planning techniques

An optimizer needs to produce a sufficiently large number of alternate plans so that
it can locate a plan with the minimal costs for processing. An optimizer needs to
tradeoff the cost of optimisation of a query plan and the time to execution of the actual
query. Consequently, the algorithms can be classified into three primary categories
(Swami 1989) namely, the ezhaustive search, randomized search and heuristic guided
search algorithms. A brief overview of each of these types is given. A more complete
and detailed discussion can be found in Steinbrunn et. al.(Steinburnn, Moerkette, and

Kemper 1997)

Exhaustive Search The number of possible query plans for an n-way join increases

exponentially with the number of tuples. Consequently algorithms that iterate

Chapter 8 Query Optimisation 97

through these exponentially increasing search spaces exhibit similar complexity in
time and space. Examples of this type of algorithms appear in (Selinger, Astrahan,
Chamberlin, Lorie, and Price 1979b; Lohman and ONO 1990; Kemper, Moerkotte,
and Peithner 1993).

Randomized Search Randomized algorithms are well suited for optimisation in space.
However, this has a negative impact on optimisation in time. By their very
definition, randomized algorithms are indeterministic in nature, and are likely to
have higher time overheads. These algorithms perform better than the exhaustive
or heuristic search algorithms for simple queries, but tend to be more appropriate
for larger queries, due to lower planning costs and fixed complexity in space.
Various variants of the randomized search algorithm can be found in (Ioanndis
and Kang 1990; Swami and A.Gupta 1988; Steinburnn, Moerkette, and Kemper
1997)

Heuristic Search This class of algorithms tends to exhibit polynomial complexity in
time and space and generally produces query plans that are orders of magnitude
more expensive than those produced by the exhaustive search mechanisms. Common
examples of this type of algorithms include the “minimum selectivity” algorithm

and greedy algorithms (Swami 1989; Steinburnn, Moerkette, and Kemper 1997).

As far as is known, most query optimisation algorithms fall into either of the three above
mentioned categories. The algorithm presented in section 8.4 uses dynamic programming
techniques that can be classified as a modified exhaustive search algorithm. The actual

differences are highlighted in section 8.4.

8.1.1.4 Query re-optimisation

Query re-optimisation is employed to iteratively optimize the query at run-time. A few

of the many reasons for run-time optimisation of the query plan include:

Lower confidence in cost estimates. For very large queries, sampling techniques
are employed to reduce the scan costs for generation of the initial cost estimates.
Additionally, some estimators may only sample a part of the entire dataset to
provide a cost estimate. The accuracy of any such estimate depends on the choice
of the sampling technique. A number of runtime optimizers (Ng, Wang, Muntz,
and Nittel 1999; Ozcan, Nural, Koksal, Evrendilek, and Dogac 1997) adopt a
strategy to evaluate a part of the result to verify the estimates and re-optimize in

the required cases.

Frequent changes in operational conditions In a number of conditions, the projected

estimates may be invalidated by the operational characteristics of the systems. For

Chapter 8 Query Optimisation 98

example, consider an equi-join operation between two tuples, where one tuple is
resident in memory and the other tuple is being retrieved from the disk. At
runtime, increased disk activity may result in delays in the processing of the join
operators. A re-optimisation of query plan in general and operator ordering in
specific may be required to reduce the overall space requirements of the query.
Another example, consider a multiple autonomous database query involving a
multiple database join operation. A central query processor decomposes the query
into sub-queries on the participating databases. Each of the autonomous database
systems independently feed the join operation. A re-optimisation of the query in
light of such changes in the operating conditions is advantageous. An example

approach of query scrambling can be found in (Getta 2000).

Parallel query processing Concurrent execution of the operators can either be determined
at design time or can be imbibed at runtinie. Adaptive query processing on parallel

machines necessitates replanning to obtain better optimisation.

Multiple Query Optimisation A multiple query optimisation reduces operational
costs by utilizing the resource sharing between queries. The possibility of resource
sharing between the queries can only be ascertained at runtime and may require

re-optimisation of the query plan.

8.1.2 Summary

The above section provided a brief introduction to query processing in database systems
and highlighted some of the important characteristics of query processing systems.
It is acknowledged that the above description is by no means an exhaustive one or
representative of the enormous complexity of the rich field of query processing in database
systems. However, as stated earlier, introduction of some of the important terms will
help the discussion in the latter sections. Query planning, the costing model, query
optimisation techniques, and query re-optimisation in traditional databases have been

presented to contrast them with those used in query processing over streaming data.

8.2 Query processing for streams

8.2.1 Motivation

The online processing requirements of most applications in pervasive environments -
for example, network traffic monitoring, fraud detection in telephone networks, sensor
networks, data feeds from stock exchanges, online instruments in a Grid environment,
and publish/subscribe notification models for Grid environments - necessitate query

processing on data streams. For all practical purpose a stream represents an infinite

Chapter 8 Query Optimisation 99

source of data. The large volume of data and the online nature of the applications
make it imperative for the applications to process the information in an online fashion.
These systems view data as a dynamic commodity, which needs to be made available
at the desired locality, at appropriate times and with the desired characteristics of
delivery. The traditional notion of the centralized processing of managed data is no
longer applicable in such environments. Traditional data processing involves processing
on relatively static data on immobile processing nodes. In pervasive environments, data
needs to be processed while in a transitory state and the data processing system needs

to adapt to variations in the availability of the computing and network resources.

A typical feature of the query processing in data streaimn systems is the association of
multiple long running continual queries with a stream of data. Manipulations on multiple
data streams are specified using relational algebra, although the operator semantics
and characteristics for data streams are significantly different from their relational
counterparts. Query processing in these systems can be expressed as a pipeline join
operation between multiple streams interconnected through database operators. As the
streams are bound to experience variations in data arrival rates, the resource allocations
at each of the operators are bound to fluctuate. As a result, query plans are frequently
executed in the conditions that are significantly different from those for which the query
plan was generated. Continual re-optimisation of the query plan is also necessitated
by continuous fluctuations in data arrival rates (Amsaleg, Franklin, and Tomasic 1998;
Urhan, Franklin, and Amsaleg 1998) and changes in the characteristics of the data
itself (Avnur and Hellerstein 2000; Madden, Shah, Hellerstein, and Raman 2002). Our
aim is to develop a query processing system that adapts to the variant nature of the
data streams. Near online processing requirements necessitate that any adaptation of
the query plan for the prevailing execution environment should be efficient in time and
posses minimal reorganisation overheads. To expedite query reorganisation, an approach
is adopted that maintains statistical information for a list of viable query plans and
minimizes the query processing cost for a three-variable cost metrics - based on data

flow requirements, processing requirements and delay characteristics.

Distributed processing on multiple data streams is similar to multi-database query
processing. Query processing in relational database systems exploits the similarity
between query sub-expressions to optimize the processing cost over multiple queries.
Here is proposed a multi-query optimisation in a data stream system that forms an

overlay to reduce resource consumption across multiple queries.

8.2.2 Stream data management

A stream represents a infinite source of append only data. However, practical constraints
on memory space imply that it is not possible to archive the stream in its entirety, and

the scope of any query evaluation needs to be limited to a subset of the streaming tuples.

Chapter 8 Query Optimisation 100

One of the most frequently used methods is to use a window definition to restrict the
scope of evaluation to selected subsets of tuples. Most of the windows use temporal

constraints to identify the subset of contiguous tuples in a stream.

A stream S contains a set of tuples specified by an associated relational schema R,
where R is an schema with attributes Xy, X, X3, X. The attribute space of R is
defined by the function att(R) and the function O: N — att(R) specifies an ordering
of R. A sequence S(R, O;) represents a stream with ordered tuples of schema R. A
stream maintains a number of tuples N, where 0 <= N < oo is determined by the
window specifications of the set queries () associated with the stream. Details of window
specifications on memory requirements and the number of tuples retained by the query
are provided later in this section. However, in some cases, the memory utilisation may
increase with an increase in window size. Two alternative approaches have been adopted;
first, to maintain a synopsis of the previous data, and second, to provide approximate
answers to the queries. In this case it is assumed that all the tuples arriving at the
stream are processed. An exact description of query semantics can be found in section

3.2.6.

A stream data processing system defines a set of operators to define and implement
a query processing system. These operators can either by unary, binary or n-way
operators. A generic unary streamn operator Os), accepts a single input Sj;, and produces
an output Sy, While a multiple stream operator Oy, accepts multiple inputs S, = {
S;, 1 € I }. The memory utilisation of the operator depends upon the actual semantics
of its implementations. However, it should be noted that each stream operator produces
an output stream and the characteristics of output stream are influenced by both the

operator as well input streamn characteristics.

A query is specified as a relational operation on a set of streams. However, unlike
in a relational model, the additional requirements to represent the characteristics of
the streams necessitate extensions to the relational algebra. The relational algebra
is extended to capture the additional semantics. The approach is very common and
is adopted by almost all the current stream processing systems that use relational
algebra to capture the database’s equivalent operations. In this approach, the query
is primarily composed of two separate parts, first the data manipulation part, which
specifies a SQL equivalent of query, while the second part consists of specific extensions.
The additional semantics reflect how the data are used to specify the mechanism for
extracting data from the stream and its buffers, and to define the lifetime of the
query. (Guha, Koudas, and Shim 2001) introduce the concept of windows for specifying
the buffer. The window refers to the stream tuples that can form a part of current
join evaluation. In (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong,
Krishnamurthy, Madden, Reiss, and Shah 2003) the authors extend this definition and
consequently four types of queries have been identified, a snapshot query, a landmark

query, a sliding query and a temporal band join. The semantics of windows heavily

Chapter 8 Query Optimisation 101

impact on the persistence mechanism and the execution of the query. The same query
semantics is used in this study as proposed by (Chandrasekaran, Cooper, Deshpande,
Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Reiss, and Shah 2003), and a

sample query for a single stream is represented as:

Select temperature,timestamp

from furnace_Monitor

where furnace_charge <= 20 for(t=ST; t<ST+30; t+ =1){
Windowls(Temperature, t-5, t)

}

The above expression translates to select the temperature and the time-stamp for a
furnace where the furnace was loaded with some charge. Select the values for the past
6 days and keep the query alive for 30 days. The actual number of tuples that end up
populating the window over the period of last 6 days depends upon the data arrival
rate. A number of such expressions can be queued on a stream and need to be evaluated
simultaneously. The evaluation of a query can occur at the time of the arrival of data
or at predefined intervals or at the time of queuing the query or at the time when the
data is being invalidated or overwritten due to some window overflow criterion. All such
attributes should ideally form part of the scheduling operation. However, almost all the
query-processing applications currently available fail to provide any extensions for the
scheduling operations. The definition of the above specification is therefore extended to
include scheduling options as part of query specification. The actual event that triggers

the evaluation of a query is referred to as the evaluation event.

The query specification has the following logical structure.

Select | Tuple specification|

FROM |[Tuples]

WHERE [JOIN — RANGE CRITERION]

FOR [Query period]

WINDOW SPECIFICATION

ON

Scheduling criterion such as DATA ARRIVAL | PERIODIC | SNAPSHOT |
OVERFLOW | QUERY ARRIVAL

The scheduling options are important in determining the overall quality of service for
evaluation of query results, while the window specifications are important in determining
the semantics of the result set generated from the query evaluation. The query specifications
and the stream characteristics identified in this section are described in the next sections

on window semantics and join operation semantics.

Chapter 8 Query Optimisation 102

8.2.3 Window semantics and specifications

As far as is known, operational semantics for join operators for stream data processing
are not as well defined as in the case of the relational database svstem - this is primarily
attributed to different window definitions and the different result set semantics prevalent
in the field. A number of different window types have been defined in individual
research projects. The most widely accepted types of query semantics were described
by Chandrashekar et.al. (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein,
Hong, Krishnamurthy, Madden, Reiss, and Shah 2003). Chandrashekar et.al describe
four query types namely - Snapshot query, Landmark Query, Sliding Query and Temporal
band Join. Each of the four types imposes significantly different requirements on the
design of the query processing system. For example, the query evaluation event for a
snapshot query is evaluated exactly once per window. A join operation in the case of a
snap shot query between streamns evaluates in response to an event on the input window
of one of the related streams. Similarly, in the case of a landmark query, sliding window
and temporal band join, either a temporal event or arrival of data at a stream could
result in the evaluation of the join. In addition, the query results may be generated
out of order and guarantees may be provided on the eventual correctness rather than
immediate correctness at each evaluation step. In this case, the proposed approach
considers that the results are correct at each evaluation step. The out of order arrival

of tuples from data sources is not permitted.

Consider the stream S(R,, O;) and an associated query ¢ with a window specification
W. Let 4 represent the number of tuples in the sequence represented by the stream, and
let N be the number of tuples currently held in the stream at a given time #;,stance. Let
t; denote the time at which the tuple i was added to the sequence, i.e. arrival time of

Si is t7;.

A snapshot query is evaluated against the contents of the stream at a particular instance
in time. It should be noted that a snapshot query does not maintain an active window
on the data stream; instead it utilizes the current contents of the stream S. It Proj(S, W)
is defined as the scan of window W predicated on stream S, where if W, represents the

list of windows associated with the stream, then a snapshot of stream S is given by

n
Snapshot(S) = Proj(S,Ws) = Unique(z Proj(5,W;)), whereW; € W,
i=1

A landmark query evaluates the query for all rows of the selected streams beyond a
particular landmark. Hence, Wy, represents a valid landmark window if and only if the
landmark [satisfies the condition Sy.tg < ! < Sy.ty all the records where [< 5; forms a
part of the window. Also, any records added to the S at time £ > tipstance are also added

to the scope of the landmark window specification. A landmark window can also specify

Chapter 8 Query Optimisation 103

A Iy
2
sl — :
£ i 2 J
5 2
= o
4 5
z £ = &
é’ An E &
2 £ -
o E J 2
§ v 3 .é “é
w g —g ;m
& ol
= o V5
BRI g °
E 2 =
z = x
puiy [
S £
A ¥ 2
§ 5
2
Stream at time instance t1 2
z
©
5
jal
£
| & \

Stream at time instance t2, t2>t1
FI1GURE 8.1: Window types

the rules for automatic traversal of the landmark on each evaluation. Theoretically,
landmarks may either be specified using temporal properties or derived from the data

content properties of the tuples, as in the following restricted case.

Landmark(S, W) = scan(9,S.t > W.t)

A sliding window over streams is represented by a set of landmarks - an upper bound
and a lower bound. A scan on stream S for a query evaluation with a sliding window
specification returns the tuples between these two landmarks. A scan for sliding window

Wq with a set of associated landmarks W.L,pper and W.Ljoye, is represented by:

Sliding (S, Wy) = scan(S, W.Lipyer > St > W.Lypper)

As defined earlier, landmark window scan evaluates to records from a given landmark;
thus one end of the window is clamped, while the other slides as new data items are
appended to the stream. A temporal band join is a reverse phenomenon, with a fixed
endpoint and a variable start point. A temporal band window retains a fixed number of

items and slides as the data items are appended to the streamn.

Temporal (S, W;) = Scan(S, |S;| — tr << S; << |Si]), (8.1)

Chapter 8 Query Optimisation 104

where t;. is the window size.

It is assumed that streams are ‘append only’ containers; therefore each of the operators
can process the data on arrival. However, in certain cases, streams may be allowed
to modify the data within a window. In such cases the operator requires an explicit
invocation of the query evaluation event. These two different semantics have varying
effects on the way in which the queries are processed by the system. However, the

following discussion considers ‘append only’ data streams.

8.2.4 Continuously Adaptive Continuous Queries (CACQ)

Query processing over streaming data can either follow snapshot semantics, thereby
evaluating the query expression over the current states of the stream, or otherwise allow
a continuous evaluation as new data items are appended to the stream (also known as
continuous queries). A continuous query expression is scheduled in accordance to the
window specifications of the query. Continual query processing requires maintenance
of some intermediate state between subsequent evaluation of the query expression.
Unlike their traditional counterparts, data operators for stream data management need
to maintain an intermediate state to minimize the cost of regenerating the state at
each query evaluation. The continual query paradigm necessitates the use of pipelined

operators.

Traditional query plan evaluation generates an intermediate state during the query
evaluation and discards the state on completion of the query. A continual query creates,
maintains and modifies the state with respect to the changes in the environment. Candidate
examples for such data operators include a flexible hash join (Shah, Hellerstein, Chandrasekaran,
and Franklin 2003), a ripple join (Haas and Hellerstein 1999) or an eddy operator (Avnur

and Hellerstein 2000). Modified versions of these operators have been used to provide

CACQ capabilities in stream management systems.

Flexible data operators were designed to adapt to the variations in availability of resources
used for query evaluation. Consider a query Q = A; < As bt Az b1 Ay D4 As... pa Ay,
an n-way join between the tuples Ai, Ao, ..., An. A sequential n-way join operator will
block until the data is available for each of the tuples. A flexible operator performs
the incremental joins between the data tuples as and when they become available, it
also optimizes join performance by reordering the join ordering of the tuples. While
sampling the relationship in an n-way join, the join operator scans a single relationship

for changes and evaluates the incremental results.

Assume that a join has been evaluated for the initial scans on the relationship, such

that:
Q:S] NSQN53N54NS5...DQSH (82)

Chapter 8 Query Optimisation 105

If the sampling of the relationship indicates that the new tuples .S 1 have arrived for the

schemas 57, the incremental result

Q1 = (S, US)) >x So 11 S50 8 > Ss... <1 Sy, (8.3)

Q1 = (S > 8o > S350 Sy b S5... 04 S,) U (S]] b Sy > S3 < Sy 01 Ss... < Sy)
(AUB)xC=(A=<C)U(Bx=CO)

Q1= QU (S 5508305 6 S5... >4 S)y) (8.4)

Q1 = QUJ, where § = (51, > So b1 S3 >4 .Sy 4 S5... < Sy) represents the incremental
processing for S,'. A scan of the tuples in the relationships results in an incremental
result set generated at a minimal cost while retaining the state of the previous evaluation.
CACQ operators are most suitable for query over stream data as the incremental
tuples arriving at each of the stream window can be continually evaluated resulting
in a consistent result set, where the increments can be managed by manipulating the
increments in the input tuples. The join semantics of CACQ provide an incremental
result set for the join operation and are well suited for ‘append only’ join processing,
i.e. landmark windows. The effects of CACQ on sliding window queries are discussed

in the section 8.2.6, which is preceded by a brief discussion on adaptive join operators.

8.2.5 Adaptive join operators

In the case of query processing over streams an n-way join operator provides improved
space and computational usage compared to a series of binary joins. A typical n-way join
operator does not retain any intermediate results, while an n-way join implemented as a
series of binary joins needs to maintain and may need to re-index the intermediate results
to improve the join efficiency of the intermediate joins. A number of adaptive n-way
join operators have been proposed in the literature , for example, (Avnur and Hellerstein
2000), (Haas and Hellerstein 1999). An n-way join operator centralizes the operator state
for the n-way join facilitating easy optimisation. It reduces the co-ordination costs for
adaptive query planning. For example, an eddy (Avnur and Hellerstein 2000) operator
creates individual stems (Raman, Deshpande, and Hellerstein 2003) for each of the
participating tuples. The tuples are sampled for new data items and the n-way join is
accomplished by routing the tuples through appropriate stems. An eddy minimizes the
intermediate state, thereby allowing flexibility to adopt an individual routing policy for
a given set of tuples. The StreamDB illustrates a list of alternate query routing policies.
In their paper, Madden et al. (Madden, Shah, Hellerstein, and Raman 2002) discuss a
ticket based routing mechanism to circumvent the problem of selectivity estimation. An

alternative approach is suggested by the same (Madden, Shah, Hellerstein, and Raman

Chapter 8 Query Optimisation 106

2002) that uses the random routing policy to route the tuples between the operators.
Similar approaches have also been discussed by (FengTian and Witt 2003). For SPJ,
the authors provide a nested loop implementation of an adaptive operator that adopts

to changes in the data arrival rates and operator selectivity.

An adaptive join operator for streaming data needs to optimize the usage of three
different types of resources, memory space, computational resources and response tiine.
Alternative approaches to formulating the memory constraints are highlighted by two
very distinct approaches. The first, is PSoup (Chandrasekaran and Franklin 2003)in
which the authors describe a mechanism to reduce response time by an early and lazy
materialisation of the result set, while (Arasu and Widom 2004) Arasu et al. explore a
different problem of identifving the set of queries that can be executed under memory
resource constraints. The approach highlighted in section 8.4 in a way extends Arasu and
Widom’s approach for defining the resource constraints in an adaptive data operator. As
a typical query plan consists of a number of such operators, they need to be scheduled
on scarce computational resources. A number of scheduling options for optimizing
computational costs and improving response time have been suggested in the operator
scheduling strategies of (Babcock, Babu, Motwani, and Datar 2003; Hammad, Franklin,

Aref, and Elmagarmid 2003).

In general, n-way adaptive join operators can be compared on the hasis of their adaptivity
in solving a three-parameter cost metrics of memory usage, computational resource usage
and responsiveness. Section 8.3 provides description of the combinatorial problem and

the solution in section 8.4.

8.2.6 Join semantics

Relational algebra provides a de facto definition of join operations. It introduces inner
join, outer join and equi-join semantics. However, relational algebra was defined for
static data items, and is equally applicable to window joins over streams. However, as
defined in section 8.2.4, different window types generate different types of scan objects
for query evaluation. If the windows hop from one set of intervals to another, then
the overall semantics of the join over the period of time are maintained and are similar
to the results of the non windowed join. However, in the case of a sliding window
join, subsequent window joins may share a set of tuples. A union of all the result
sets generated during each of the evaluations may contain duplicate data items. The

cumulative result is that the actual semantics of the join are not maintained.

Chapter 8 Query Optimisation 107

8.3 Problem Definition

There are at least three different types of optimisation scenario a figure prominently in
query optimisation over streams, first, a very basic type of optimisation that aims at
reducing the computational cost of an individual query, secondly, optimising utilisation
of system resources over multiple queries, given that a number of simultaneously executing
queries over a set of streams provide a potential for resource sharing, and finally,
scheduling the queries so that effective utilisation is minimized for both the individual

and the group of queries.

Consider a set of streams S = {51,.52.53,.....5,}, where each stream is expressed as
S(Rs, Oy), as introduced in section 8.2.3. A list of queries Q ={Q1, Q2,Qs3, ..., @} are
queued for execution over the set of streams. FEach query ; is represented as a set
of operations on a set of streams Sg,, such that S, € S. Suppose that the query
operation @; represents a multiple join operation, it can be expressed as, (; = Sg, X<
S0, D¢ S0,... > Sg,, where k = |Sg,|. Each of the streams in Sg, has an associated
rate of data arrival dg,, where dg, = oRg,, where Rg, represents the average rate of
data arrival at stream S;, and o represents the selectivity of Query @Q; over stream .S;

for attribute R; € R;.

Each of the data streams Sg, receives a set of tuples through constant evaluation of the
query @; over S;. Though the collective selectivity of the query is constant, processing
for the overall join operation is minimized by using appropriate join ordering. On the
other hand, the join operator scheduling aims at reducing the memory utilisation of the
query and to minimize join operator costs. The query processing is characterized by the

following:

1. Query routing allows the join to be either individually evaluated for each of the

tuples or it can be evaluated for a group of tuples.

bo

As discussed in section 8.2.4, at any given instance, a ripple join process can only
progress in one dimension. While the query is evaluating tuples from a single
stream, the memory utilisation at other streams increases as the new tuples are
queued at those streams. The utilisation cost during the processing is directly
proportional to the data arrival rates at the waiting streams. Hence, the choice
of a stream to be processed needs to be optimized against the costs accrued by

memory utilisation at the blocking streams.

(%)

Each subsequent operator ordering should result in a reduced result set. This
implies that operator reordering needs to follow selectivity estimates. Selectivity
at any given join execution is directly related to the current contents of the stream
windows. If a statistical tool is used for calculating join estimates, it needs to
reduce computational costs by avoiding the re-estimation of costs for each window

hop.

Chapter 8 Query Optimisation 108

4. The process of continuous optimisation has its own control costs (such as recalculating

the hash tables and recreating the intermediate results), which need to be minimized.

5. The response time of the query is directly proportional to the delays introduced
by the individual join operators. The response time delays can be minimized
by maximizing the parallelisation of the query evaluation. Note, parallelisation
necessitates the creation of a more bushy query plans, and may have higher

synchronisation overheads.

6. The ripple join calculates the results in terms of the previous query results. A
query can reduce the cost of re-optimisation if it can identify a subset of the
previous results, which can retain between subsequent re-evaluations of the query.
It should be noted that the retention of intermediate results is constrained by the

size of the cache.

The above mentioned constraints are applicable to a single query optimisation scenario.
In this case, techniques to achieve the local minima for memory, processing and delay

are considered effective.

Multiple queries continuously executing on a common set of streamns provide possibilities
of resource sharing between multiple query evaluations. The simplest form of resource
sharing can be applied at the level of select and project operators, whereby a single filter
is used to scan the data for each of the selection and projection operations. The design

of one such operator is discussed later in this section.

An alternative form of resource sharing relies on sharing of intermediate results. Although,
resource sharing between queries has traditionally relied on identification of common
sub-expressions between a set of queries, it is equally applicable to query processing on
streaming data. Query processing over streams provides an added advantage of routing
the tuples in such a way that multiple evaluations can be simultaneously carried out by
the multi-stream operators. In addition to the identification of the sub-expression, the
queries have to be evaluated for window semantics, as the two queries with a shared set
of tuples in their window definitions are bound to have reduced cost if they share the
costs of processing. The shared expression can be used to select the appropriate order
for routing of the tuples, such that the combined processing costs of routing the tuples

are minimized.

The third and final type of optimisation relates to resource consumption by the individual
queries. Data items queued at each of the streams occupy memory resources. In certain
cases, for example the sliding window, memory resource utilisation can be optimized
by appropriate prioritisation of the order in which the streams are processed. The
optimisation problem can be summarized as generating the appropriate schedules and

identifying the appropriate sets of queries that can share this atomic set of operations.

Chapter 8 Query Optimisation 109

To address all the above mentioned concerns three algorithms are devised in the following
sections. The following sub-sections, provide further refinements on the above-mentioned

set of problems.

8.3.1 Selection and projection filter

A selection and projection operation over a data stream differs from the selection and
projection over a relational database table, in that the scope of selection and projection
in a streaming data processing system is limited to the scope of the current window. A
number of queries may involve selection and projection over the stream data, thereby
providing ample opportunities for sharing selection and projection costs, by maximizing

the co-evaluation of the selection and projection operation.

A select and project operator results in the creation of intermediate result sets for each
of the queries. The size of the result sets can be reduced by maintaining the references
to the rows of data and not replicating the actual tuples. These references are used
to create a scan for further evaluation of the query. The queries may share the actual
scan or may proceed independently. The processing costs of shared evaluation can
only be sustained if the resulting costs accrued for maintaining the result sets are less
then an independent evaluation. However, the select project filter should be capable of
simultaneously evaluating multiple queries and should be able to tradeoff the costs of

maintaining the results against the cost of evaluating multiple evaluations.

In order to decide such a trade-off the operator should be capable of estimating the
sizes of the resultant datasets and also the estimated costs of maintaining the result set.
The size estimates can be obtained by using the histograms for range queries. However,
the dynamic contents of the stream data render the regular techniques for histogram

evaluation ineffective.

8.3.2 Complex queries

A set of database operators defined for relational algebra can be found in (Date 1995).
The scope of this discussion is limited to a set of select, project, join, logical and
cross product operators. The list is restricted to keep the discussion focused. Most
of the observations detailed for these operators are equally applicable to other database
operators with minor or no modifications. Combinations of the select, project and join
operators comprise a query expression. Evaluating the strategy against a number of
query types provides an opportunity to determine the efficacy of the approach under

extreme query types.

Some of the examples derived from the previous work in the field are described below.
The paper by Gouda and Dayal (Gouda and Dayal 1981) introduces three distinct query

Chapter 8 Query Optimisation 110

(b) Simple
Query

Multiple
Join

Query e

FicURrE 8.2: Different Query Types

types, namely a tree query, a simple query and a chain query. A tree query represents
a multi-way join between a number of tuples. The join criterion assumes that any tuple
in a tree query participates in only one join operation. A simple query is a special case
of a tree query, such that a common joining attribute in one of the tuples across the
joins operations. Similarly, a chain query is a special case of a tree query in which each
tuple has at most two join attributes and participates in two join operations. Figure 8.2
provides graph representation of the tree join, simple query and chain query. In addition
to these three query types, a fourth query type. a multi-join, was introduced in a paper
by Lee et al. (Lee, Shih, and Chen 2001). This is a generalized case of multiple join

operations in a query, and with multiple join ordering combinations.

8.3.2.1 Pipeline query

A pipeline query is composed of a hierarchically arranged series of join operators. A
typical pipeline query operation can be expressed in the form R, <, Sy b1 >gU. A
query plan for the evaluation of the pipeline join operation can be represented as a left
depth tree, and optimisation is achieved by reordering the join operators. An n-way

pipeline join can be evaluated by using a single n-way join operator or by a series

Chapter 8 Query Optimisation 111

of binary operators. A series of binary operators may require multiple scans on the
intermediate results, where the indexing costs increase the total cost of query evaluation.
It is also important in the case of query evaluations, where producing initial results early
is important. It also provides an ideal case for evaluation of non-blocking algorithms,

which do not stage the data either on the disk or in the memory.

A CACQ expressed as a pipeline join over the streams is the most simplistic query type

and has been studied in other projects (Chen, DeWitt, Tian, and Wang 2000).

8.3.2.2 Star queries

A star query is represented as a join with a single attribute in one of the participating
tuples. A typical star query can be expressed as (Rq >pS) ((Rg >:T) ((Ra >qU). A
star query representation is well suited for single hash join operators. A single shared
attribute across the joins results in reduced indexing costs across the join operators. A
star query also reduces the scan and indexing costs between subsequent join evaluations
sharing a tuple. The star query representation is of particular importance to the study
of n-way stream operators, as it presents unique challenges for an operator scheduling

system.

8.3.2.3 Cyclic queries

Cyclic queries represent a special class of queries, where the query graph between the
join operators assumes a cyclic order. Figure 8.2 (d) represents one such example of a
cvclic query operation. The join ordering in a cyclic query evaluation needs to ascertain

the ordering of the joins and the concurrency of the join evaluation.

8.3.2.4 Cross products

In addition to the join operators, query plans are also expressed in terms of logical
operations between the tuples. Considering that all the possible logical operations can be
expressed as a combination of conjunctive, disjunctive and negation logic (AND-OR-NOT
logic), the discussion is restricted to these three primary types. A logical operator differs
significantly from a join operator in terms of computation and memory utilisation, and

hence is included in the present investigations.

The above sections introduced the breadth of different query types that will be used to
evaluate the effectiveness of the approach introduced in this study. The different query
types presented in this section are representative of the wide variety of query types
that are frequently encountered in relational query processing. However, it should be

pointed out that most of the investigations in the area of streamm data processing have

Chapter 8 Query Optimisation 112

been limited to the pipeline query evaluation. Thus, the comparative studies presented

in the following chapter primarily focuses on this particular query type.

8.3.3 Bursts of data arrival

A stream represents an infinite sequence of data items that are evaluated as and when
they arrive. The actual rate of arrival of the data items determines the contents of
the query windows activated on the stream. The cumulative memory utilisation of the
streams is directly proportional to the difference between the arrival and departure rates
of the data items. If the cost of a query evaluation is directly proportional to memory
utilisation, prioritized processing of the streams with higher data rates will result in
reduced query processing costs. In addition, the cumulative delay in response to data
arrival at a stream can be reduced if the tuples are served in order of arrival and at a
rate comparative to the arrival rate of the data items. The query processing between
subsequent evaluations can also benefit from the partial caching of the intermediate
results. The above three desired characteristics can be achieved by processing the

streams in increasing order of data arrival rates.

A way to ascertain the bursts in the arrival of data is to use self similarity techniques
to predict arrival rate similarities and attempt to reduce the costs by using historically

effective techniques.

8.3.4 Cost metrics

The effectiveness of query optimisation is adjudged according to its capability to reduce
certain costs against particular cost metrics. Traditionally, the performance of a query
processing system is compared on the basis of memory utilisation, computational resource
utilisation and response time. However, in most cases, the query evaluation lasts for a
finite amount of time, and, as variations in the underlying processing environment are
limited, it allows the approximate costs of the query plan to be estimated in advance. In
case of query processing for streains, the total resource utilisation is accumulated over
a period of time and it is necessary to calculate the costs of replanning and migration

to an alternative query plan.

One can use the traditional definition of memory utilisation and represent it as the
measure of the storage space required by the query evaluator. However, streams differ
significantly. In this case, the memory utilisation increases on arrival of additional data
items. As a result, a modified measure is used that represents memory utilisation as a
cross product of memory utilisation x time. The modified definition implies that memory

utilisation increases linearly on the arrival of data items.

Chapter 8 Query Optimisation 113

Consider a query Q, that represents an n-way join between streams in the set § =
{51,852, 53, Sp}. Let each of the streams S; contain a number of data items |S;|,
where the delay of each processing item is ¢;. The cumulative memory utilisation of the

query is given by the following equation:

n |5

memoryutilisation(Q) = Z Z S;6;

i=0 j=0

Note, in the case of multiple query optimisation, the memory utilisation is reduced by

proportionally sharing the cost of retaining a tuple across multiple queries.

While the computational resource usage of the query evaluator is calculated as the
utilisation of the individual query operators, the average response time is calculated
as the average delay between the input and output of the data items from the stream
operator. Computational resource usage is directly related to the choice of the join
algorithm and the concurrency of the various join operators. The details of computational
resource usage are discussed in section 8.4, here represented as computational cost. The

objective function of the query optimizer is thus represented as:

Optimize(Q) = Min(memoryutilisation, Computationalcost, Cumulativedelay)

As the overall optimisation is expressed as an explicit function of a time varying parameter,
namely memory utilisation, the optimisation equation represents a time varying entity,
and needs to be optimized over an interval. As discussed in Chapter 2, the above
equation for optimisation is solved for the finite and infinite horizon; the trade-offs are

explained in section 8.4.

The above formulation summarizes the constraint resolution problem for the case of
an individual query optimisation and can be used to compare the effectiveness of the
approach against a theoretical optimal. However, most practical systems are designed
to perform simultaneous evaluations for a number of queries. These systems operate
under certain resource constraints. The optimisation in this case needs to maximize the
cumulative processing of a number of queries. In the previous case, the effectiveness
of the approach can easily be determined for the cases where the theoretical optimal is
known. However, in most practical cases, calculating the theoretical optimal will have
additional cost implications. An alternate way to measure the effectiveness of various
approaches is to cousider resource utilisation on a fixed set of resources. Hence, the
above constraint resolution problem can be expressed as an optimization problem, that
given a fixed amount of memory and computational resources maximize the number of

concurrent query evaluations.

Let Qs = {Q1,Q2,Qs,....,Qp} represent the set of queries that are allocated to a

Chapter 8§ Query Optimisation 114

scheduler. with a fixed amount of computational resources. In this case consider the
design of a scheduler that can ascertain the cost of additional queries and the effect on

the cumulative quality of servicel.

A set of refined requirements on individual system components were described in the
above section. The following sections, start with a description of the query optimisation
algorithm and proceed to describe the developed SPJ algorithm and scheduling and

monitoring infrastructure.

8.4 Query optimisation

The query processor for the data streams, as designed for the system, consists of following
stages of processing: query plan logical generation, a physical plan generation, the query
scheduling and query monitoring. These stages describe the overall processing cycle for
processing the query over multiple streams. A planning approach is used for optimizing
query evaluation for streaming data. The queries submitted in the format expressed
in section 8.2.4, are translated to a query graph, composed of data nodes, as the leaf
nodes and non-data nodes, representing the operators. Initially there is no optimal
solution, but the query evaluation performance is gradually improved over a period of
time. The query plan starts with an initial state and an optimal solution is formulated
as a transition from the present state to the new desired state. A dynamic programming
teclmique utilizing the statistical information from the query evaluations is used to

determine transition to the alternate state of the query plan.

The logical plan generator accepts the query string and creates an access plan that
happens to be the dynamic graph. The graph representation of the query plan has been
used in various previous formulations. There are two predominant forms of graphical
representation of the query plan. The first is a representation proposed by (Avnur and
Hellerstein 2000) in which the data tuples and the operators act as the nodes. All the
data tuples are leaf nodes of the query tree, while the relational operator forms the
higher-level nodes of the query tree. A second representation proposed by (Lee, Shih,
and Chen 2001) represents the joins as the nodes in a query tree and the inter-operator
communications are labels along the edges. The former representation of the query plan
is used to help create a dynamic graph. For the purpose of clarity, cost metrics are
not immediately introduced, nor the statistical information available for the individual
streams. Instead the focus is on the data structure used by the logical plan generator
to communicate a list of feasible plans to the physical plan generator. In the case of
relational systems, the query plan generator usually selects a single most likely plan,
estimated to give the best performance. However, in the case of the streaming data, the

weights associated with the nodes and edges of the graph change so infrequently that it

Need to provide an appropriate mathematical representation of the problem

Chapter 8 Query Optimisation 115

is not feasible to recalculate the entire optimisation space for each cycle of optimisation.
In this case, the entire set of solutions that are technically feasible and yield the desired
output are retained irrespective of the current cost of calculating and implementing
the execution plan. A dynamic graph representation is made where some of the edges
and/or nodes may be conditionally connected to each other. The dynamic graph allows
a perfect representation to capture the time varying nature of the associated edge and
node weights. An example of how such a graph is created from a query string and how it
is maintained is explained in section 8.4. The discussion of graph generation is preceded

with a short description of the query types that our algorithm seeks to address.

8.4.1 Plan generation and re-optimisation

Rather than starting with a description of a fully-fledged graph representation of the
query graph, a phased approach is used to introduce the process of creating a query
graph. It starts with the description of a query tree and introduces the relevant set of
notations, operations and constraints, gradually developing the notation to include the

representation of the optimisation space.

A query tree is composed of two tvpes of nodes, data nodes and operator nodes. The
data nodes represent the actual tuples or, to be specific, in our case a number a streams
of data. Each data node has at least one parent node. A data node has no child node,
which implies that all the data nodes represent leaf nodes of a query graph. Each
operator node has at least one child node and may or may not have a parent node.
Although, an operator node can have multiple child nodes, an edge connecting a node
to its child node is referred to as the input and the edge connecting a node to its parent
is referred as the output of the node. An operator node can have multiple inputs, but
it. can only have one output. All the edges are directional. For example, for any given
node, an input edge is an incoming edge and an output edge is an outgoing edge. A

directional edge graph for one such query is represented in figure 8.3.

A query tree represents one of the many logical query plans. Alternate query plans
can be obtained by modifying the query plan to either make it less or more bushy. A
list of valid query tree transformations have also been discussed by Getta (Getta 2000).
Similar operations are equally applicable to the query tree, though the specific technique
of reduction of data tuples may not be applicable to streams which encounter bursts of

data.

Nodes and edges in the query tree are labelled with statistical, relational and performance
observations at each of the nodes. For the purpose of brevity, the discussion of the labels
is deferred to section 8.5.5. By the definitions of certain operators, a few transformations
are uniquely applicable to the streaming data. For example, the structure of the probes

for a streaming database allows close association between the data operator and the

Chapter 8 Query Optimisation 116

= == = Operator Node -Logical

Figure: A Directed Graph for a tree Operator

query after view reduction

Operator Node - Join
. Operator

-
~ \ /.

Data Nodes with local
views- merged Projection
and Selection operators

FIGURE 8.3: A typical query tree

selection operation. In this case, rather than describing selection and projection as a
separate operator, merger of the two nodes is allowed and the resultant node has modified
labels to reflect the merger of the two nodes. The resultant node is still considered to
be a data node, though its tuple output is superseded by the local view, constructed on

the basis of selection or projection.

Considering that the scope of stream operators is limited to the select, project, join,
and logical operations. A query tree for this restricted set of operations has leaf nodes
represented by the local views that are described as by transformation of the stream and
the select project operators, while the non-leaf nodes represent the join and the logical

operators. A transformed query tree is shown in figure 8.4.

A logical query plan forms the basis for generation of the physical query execution plan.
At this point, it may be pointed out that the optimisation of a query plan is a continual
process throughout the lifetime of the query. As an example, consider a simple graph
that involves a join operation between two streams. The output of the join operation
acts as the input to its parent operator. Figure 8.5 represents the logical plan and the
possible physical plans. Edges of similar colour are dependent, and can only exist in
pairs. The graph represents three possible locations of the join operator. The operator
can be collocated with either of the tuples or at the parent node of the join operator.

The figure represents three feasible plans that ensure that the output tuple of the logical

Chapter 8 Query Optimisation 117

o == Operator Node -
Logical Operator

Figure: A Directed Graph
for a tree query alter view
reduction

Operator Node -
Jpin Operator

Operator Node

”
b

Select/
project
operator

Select/
project
operator

Select/
project
operator

Select/
project
operator

Data Nodes

FIGURE 8.4: A typical query plan

plan remains unaffected, due to the selection of either of the physical plans. In addition
to the operator semantics, the choice of either of the plans will in turn depend on the
objective function of the query evaluation, the rate of data arrival at the tuples and the

rate of data that need to be transferred between the tuples.

8.4.2 Query re-optimisation

The above subsection restricted the discussion to a most primitive query tree. This
subsection uses induction to prove that the same result can be applied to the entire
query graph. This subsection steps through the algorithm as per our discussions in
previous section and begins with the tree query example. Figure 8.4 shows a logical
query plan generated by the query parser. It use a physical transformation to generate
a list of access plans for the query tree. The hints in the query specification are used as

a policy to improve the responsiveness of the query executor.

The algorithm uses a depth first search technique to identify the operator at the highest
level. The local optimisation problem is solved in accordance with the process described
in the previous subsection. A virtual node replaces the sub graph in the parent graph
and the attributes and subsequent labels are calculated for the virtual nodes. Each

virtual node in turn acts as a virtual data node to the higher levels, as the tree is

Chapter 8 Query Optimisation 118

gradually reduced by successive application of sparsification (Eppstein, Galil, Italiano,
and Nissenzweig 1997). During sparsification, at each stage, the tree is further optimized
for performance characteristics. The type of transformations applicable after each
reduction are discussed in subsection 8.4.2 and 8.4.2.2. The technique of sparsification
produces a number of nested certificates that can then be monitored individually to
determine the extent of the re-organisation required in response to change in the dynamic
behaviour of the operators. The aim of introducing a tree of sparse certificate is to
reduce the amount of reorganisation that may be required in response to bursts of data
streams. When the data rate at an operator changes, the operator invokes a certificate
recalculation. In response, the local optimal is recalculated and the request is propagated
higher in the sparse tree. The propagation of the sparse certificate is terminated if the
change in the lower level certificates does not result in significant changes at the higher

level of the query tree.

Though the above reduction was discussed in the context of operators capable of processing
two streams, the approach is equally applicable to multiple join operators. M-Join and
Eddy are two such operators for join operations on multiple streams. There are two
ways to incorporate the join operator, either in the logical query plan or during the
reduction of the physical query plan. Introduction of a multiple join operator in the
query plan increases the combination of the query plans applicable in the reduction. A
plan diagram for one such case of 3 way join is represented in Figure 8.5 below. As in
the case of the two way join operator, reduction of the multiple join operator results in

a single virtual node in the reduced graph.

The selection of a multiple join operator in a physical query will be equivalent to selecting
query plan 3, as represented in Figure 8.5A. A physical plan based reduction makes use
of statistical information to estimate whether there is an effective advantage of using the
multiple join operator. Query plan 3 is selected when the join selectivity is greater that
unity. However, in certain cases, where a multiple join operator may exist, an optimum
choice is to select query plan 3 irrespective of the join selectivity. If operator selectivity is
lower than unity, the choice of either Plan 1 or Plan 2 reduces the overall flow. However,
when the certificate is calculated, the overall memory requirements and the delay are
bound to increase. While an increase in memory requirements is attributed to the fact
that a queue is maintained at two different operator locations, the introduction of an
additional processing element increases the overall delay of processing the query. The
trade-off with the cost is the determining factor for selection of a multiple join operator
or a two-way join operator. Subsequent to the selection of a operator, the sub-tree is

subjected to flow optimisation within the sub-tree.

Recursive application of the sparsification based algorithm leads to the formation of a
physical access plan. At this point, some properties of the logical and physical plan
are highlighted. In both the logical and the physical plan, the edges are directional.

In a logical plan, the edges are from a child point to a parent node, and there are no

Chapter 8 Query Optimisation 119

Physical Routing Plan-1,
— Operator located at A

Physical Routing Plan-2,
——eel Operator located at B

Physical Routing Plan-3,

— Operator located at parent

node

Figure: A simple reduction

‘ e Virtual node - after

reductions
e,

(a) Simple Query without reductions (b) Simple Query after first simple reduction

’ e Virtual node - after

reductions
(%) '
1]

(a) Simple Query with multi join operator (b) Reduced Query after first simple reduction

FIGURE 8.5: Reductions for different query types.

Chapter 8 Query Optimisation 120

O/P to other systAems

FIGURE 8.6: A typical operator flow generated by the planning algorithm.

edges from the parent node to the child node. However, in a physical plan, the edge
direction is not restricted. A directed edge can connect a node to its parent node or to
its sibling at the same level. While in a logical plan all the edges are static, the edges
in the physical plan are dynamic and are interdependent. Unlike the pure dynamic
graph, where all the edges can coexist, the edges in the physical query plan are related
by the principle of mutual exclusion. In the above figure, only one of the three sets of
plans can be selected. This implies that, if a dynamic graph structure is maintained
to represent the above scenario, the graph algorithms should be able to support insert,
update and delete operations for multiple edges. The dependency between the edges
necessitates modifications to a dynamic graph MST maintenance algorithm to allow

conditional selection of the nodes as the edges are considered.

Chapter 8 Query Optimisation 121

8.4.2.1 A special case of n-way join

The previous section described the algorithin that generates an initial plan for enacting
the query. Execution of a physical plan involves translation into sub-queries on individual
streams and appropriate allocation of the operators. This sub-section assumes the
existence of a physical plan for a simple logical query and discusses the process of
re-optimisation of query. Consider the following figure, which represents the join between
three streams. Figure 8.5 shows the initial location of the operators, their selectivity
estimates and the rate of arrival of data. It is assumed that the operators are located at
nodes A and C. It is also assumed that the plan was generated under the conditions that
rateB < rateA] and that [rate(AB) < rateC]. Consider that at some time instance
[rate(AB) > rateC] is consistently true. Hence the flow diagram for the certificate at
level 1 is represented in Figure 8.5. As a result of the change in the characteristics of
stream C, plan 2 is considered to be a better option at level-1, which means that the
flow of data into the virtual node is considered optimal. The level 1 is thus optimized
to select plan 2, with a request to recalculate the stream at level 0. The re-organisation
means that level 1 requests the operator to be placed at one of the stream locations at
level 0. If node A supports a multi-join operator, the node merges the join operation, or
else the flow from the two streams B and C is directed to streamm A. At some time step
after the reorganisation, assume that the [rateA < rateB] condition materializes. The
change will result in reorganisation at level 0 and may require shifting of both the level

0 operator and the virtual operator to node B.

8.4.2.2 Reductions for chain query

In all the above examples being considered a simple query tree that involved a join on
a single join attribute and in which the query tree structure allowed easy selection of
the sub-tree for sparsification. In the special case of chain query, also known as the
pipelined query selection of a sparse is not as straightforward. In a chain query, each of
the data streams can be simultaneously part of two sparse certificates. As each stream
is the subject of selection in calculation of either of the sparse certificates, the reduction
technique is modified to represent this specific case. Figure 8.7 is a representation of the
reduction for such a specific case. The algorithm starts the reduction from one of the
end nodes of the chain query. In general the following reduction can be applied to any
case where a data node has more than one parent node and where the tuple join criteria
for the two edges of the node are dissimilar. As one of the input tuple forms a part of
more than one data operator the reduction process involves a combinatorial operation
involving a mutually exclusive set of nodes. As shown in figure 8.7, the operator edges
are distinguished into two edge groups, with only one of them being able to form a part
of the final physical plan. The initial certificates were created using a similar process

as described above. The first step in reduction involves the calculation of the probable

Chapter 8 Query Optimisation 122

Virtual node - C and B

Partial view of a Chain query

Figure: Chain Query- simple reduction for a 3
elements in a chain
Note: The figure depicts two mutually exclusive
physical plans

FIGURE 8.7: Reductions for chain query.

certificates with the two mutually exclusive sub-graphs. The reduction aids in comparing
the relative merit of either of the two combinations and leads to the selection of one of
the two candidate solutions. On selection, a second step of reduction, one similar to
the adaptive simple query reduction as described above, generates a physical plan for

directed flow between the streams. The process can then be recursively applied to the

chain of queries.

8.5 Application to distributed DSMS

The above mentioned query planning techniques can be applied in the context of both

centralized and distributed data management systems, for the following reasons:

Using sparse certificates allows partitioning of the query plan Each operator sees
either a data node or a virtual node. A certificate represents the characteristics of
the virtual node and shields the operator from the underlying complexity. These
certificates can also be used as partitioning points, thereby allowing the certificates
to be hosted on different machines in a distributed setting. The partitions allow
independent modifications to the subtree of the query plan owned by each of the

certificates.

Incorporation of the monitoring parameters without modifications The monitoring
mechanism does not assume any processing architecture for any of the data processing
nodes. Operator and architecture independence allows the use of the algorithm in

a heterogeneous data management system.

Chapter 8 Query Optimisation 123

Feed A

Query QIP

bd FeedB

[5=5) Stream C
T

Stream A Stream B Feed D

Feed C

FI1GURE 8.8: Sparsification based query planning applied to distributed query planning
system.

Stream properties are exploited to create overlays The common sub-expressions
represented by the certificates can be advertised for consumption by other nodes in
the system. Use of certificates enables potential sharing of sub-expression between

numerous data management systems in a distributed DSMS, as depicted in the

figure 8.8.

8.5.1 Selection operator

The above specification allows the system to prioritize the order of query processing. For
the purpose of clarity, it is assumed that a join over multiple streams can be scheduled

with the same scheduling policy across all relevant databases.

On arrival, each query is added to the stack of queries valid for the current scheme.
All the queries on the stream can be reduced to a selection, projection or self-join
operation. In case of queries across streams, the query is broken down into one of
the above sub-query types for ease of evaluation. The range of queries are stored in
a predicate tree. On the occurrence of an evaluation event, the value is compared
against that held in the predicate tree to calculate the range of the queries affected. The
affected queries are notified of the data arrival and the resultant dataset after the query
evaluation has been maintained by a bit-array. A termination of the query results in
removal of the row, while invalidation of the data results in column elimination. The
results are shipped in accordance with the operator scheduling and are maintained in a
separate result structure. In certain cases the evaluation of the query may not be able
to be able to cope with the amount of data that arrives in a particular stream, thereby
necessitating that certain data items go unprocessed. A number of such techniques for
selective probing of the incoming data have been suggested. The data is sampled in
accordance with the sampling criteria, dominated by the distribution of the variable
being sampled. However, in this study the sampling is not enforced and the tuples are

not eliminated unless the query processor explicitly enforces the policy.

Chapter 8 Query Optimisation 124

8.5.1.1 Data structure associated with the operator

In a regular database each of the query is processed individually and the selection of
multiple attributes of the same tuple can be performed simultaneously. It is definitely
possible to process the queries on a stream in sequential fashion. However, that would
lead to increased cost, and may lead to significant memory overheads if the tuple
arrival rate i1s too frequent as compared to the processing rate of the operator. A
partial reduction in processing time can be achieved by maintaining predicate trees to
manage the ‘range queries’. The approach adopted provides considerable improvements
in performance of queries when a single variable is considered. However, the predicate
trees cannot be used to manage the ‘range queries’ for multiple predicates and a separate
tree is maintained for each of the query attributes for a query involving a selection for
multiple predicates. The probe selection can thus perform the search on each of the

predicate trees to ascertain the queries that are satisfied by the appended tuples.

In most cases, the total number of attributes in a tuple normally exceeds those used
as selection attributes across queries. Maintaining a separate predicate tree for each of
the tuple attributes is not a viable option. The predicate tree for a particular attribute
is created if and only if there exists at least one query that specifies the tuple in its
selection criterion. To facilitate the mapping of queries with multiple attributes and to
minimize the number of accesses required to predicate trees, a data structure is used that
maintains the relationship between the queries and also prioritizes the order of attribute

based selection.

The manipulations on the above data structure are described for the arrival of data and
the queuing/removal of queries. When a query is queued with the probe, it is analyzed
to represent the list of AND OR and NOT operators. For each logical AND expression
in the query a row is inserted in the data structure and the process is repeated for
the blocks connected by a logical OR operation. The rows in the data structure are
sorted by the query ID. The attributes that need to be accessed to evaluate the query
are set in the bit array, and the predicate tree of the attributes is appended to capture
the relationship between the query and the attribute value. The attribute count (the
k-value) is incremented for the attributes affected by the query. On removal of the query,

all the rows corresponding to the query identifier are removed from the data structure.

On arrival of the data, the incoming tuple is loaded into the select operator, with the
attribute k-value. The predicate tree of the attribute is accessed to ascertain the list
of successful queries. For each query that is not satisfied the attribute condition is
removed from the query list by reducing the data structure with respect to the list of
queries returned by the index predicate search. The reduction only effects the queries
that had the bit mask set for the query attribute being evaluated. The reduction does not
eliminate the queries that are not dependent on the attribute. Successive reductions are

carried out using a similar method, until no more queries remain or no more attributes

Chapter 8 Query Optimisation

< Q1. Q3

<= Q4

Q1

Q5

Q2

R.a (ka=6) R.b (kb=0)

R.c (kc =4)

R.d (kd=6)

R.e (ke=3)

@]

Q1

Q2

Q5

Q6

Q4

Qs

o|lo|lo]| o

o|lo|lo|j]o| o

Q7

o
oOlo|Oo|lOo|lOo|lolo|lo | o

Qs

FIGURE 8.9: Selection with modified IBS Tree

with predicate trees are detected. The final reduction set refers to the queries that are

satisfied by the incoming data tuple. Creating this type of probe structure allows the

system to express any query and join as a composition of the probes on multiple tuples.

The reduction technique uses the attribute with the highest k-value to achieve maximuin

reduction in the early stages of processing.

Chapter 8 Query Optimisation 126

8.5.2 Algorithms for select and project operators

The probe sets the bit flags for the tuples that are selected by a query. On occurrence
of the evaluation event, the data items are selected from the stream and the data is sent
to the selected into the output array. The cost of selection and projection is bounded
by the following cost equations. Let R be the tuple with attributes R;, in this particular
example R<a,b,c.d,e,f>>. Associated with each tuple is a list of queries that are stored
in @r. Each query has a range constraint on a number of attributes of R. The query
may have a number of combinatorial constraints on the same tuple, which are converted
to AND, OR and NOT logical operators.

The following algorithm is used to process the queries on the
On Query queuing

This method is invoked when the query is added to a stream.

1. Add the query to the data structure.
2. Modify the k-values of the attributes affected by the query.
3. Update the query predicate trees for each of the affected attribute.

4. Modify the result data structure to add the query to the bit array.

On Query remove

This method is invoked on removal of the query from the stream.

1. Modify the result bit array structure to remove the column representing the query.
2. Modify the query data structure and remove all the rows for the query.

3. Modify the k-values of the attributes in the query data structure and destroy the

predicate tree, if the count is zero.

4. Modify the predicate trees to remove the query entries and prune the tree.

On Data process

This method is invoked to process every incoming data tuple, with the result that the

data structure is modified to reflect selection of the tuple.

1. Select the attribute with highest k-value.

Chapter 8 Query Optimisation 127

2. While the query map is not null, perform reductions
Use the attribute value to obtain the list of affected queries.
Perform reduction of the query list.
If query list is exhausted, then terminate the processing, the row will not
appear in the result bit array.

Select the next attribute with the highest k-value.

3. Append the result bit array for all the queries existent in the query list.

8.5.2.1 Cost of processing the query with this probe

Only the computational and memory costs need to be considered, as all the data
structures and stream are considered to reside locally. Assuming that all the data is
maintained in the main memory, the I/O costs will be of negligible significance, and the

entire complexity of processing will be due to computational complexity.

Cousider that the queries are processed sequentially without any attribute based reduction.

The cost of processing a single tuple for all the queries can be given by:
Summation (log(n) * no. of attributes accessed) for all the queries. = k*q*log(n)

Considering the reduction based technique the cost of processing the query can be given

as
Summation(log(n) * no. of queries remaining) for number of iterations < k*¢*log(n).

The overall complexity in both cases is of the form nlogn, but in the latter case the
reduction leads to lower complexity; the worst-case complexity may be equal to the

complexity of the first case.

8.5.3 Multi-way join operator

Multi-way join operators provide increased memory utilisation by eliminating the need
to maintain intermediate results, and may also reduce the computational costs in the
case of non-blocking data stream processing. A multi-way join operator processes the
incoming data items on individual streams. As illustrated in section 8.2.4, a stream
operator can schedule the order of routing the tuples through the individual joins, in
order to reduce memory and computational costs. The cumulative memory utilisation

of the query being processed by the multi-way join operator is given by the equation:

n |Si

memoryutilisation(Q) = Z Z S;0; (8.5)

i=0 j=0

Chapter 8 Query Optimisation 128

where Q is the query represented by the join operator, and the streams are represented
by the set S. In addition to the memory utilisation of the incoming streams the Multi-way
join operator may also exhibit some additional memory utilisation, due to the caching of
the intermediate state and results. The previous sub-section illustrated a sparsification
and iterative dynamic programming based approach to determine the next feasible

minimal state for query evaluation, which is extended here.

Consider a query Q that represents a multi-way join between streams S. Assuiming that
there are no intermediate states, then each tuple arriving at any of the streams needs to
be routed through |S| — 1 other streams. Let us represent the route of each of the tuples
arriving at stream S; with a directed graph G;. As G; is the ordered graph representing
tuple routing and as there exists no parallel execution, the graph G; is acyclic, and each
node in the graph has at most one incoming and at most one outgoing edge. The nodes
in the graph are ordered to minimize the flow of number of tuples at each hop in G;. The
ordering of the nodes in G;, each ordered graph G, is selected on the basis of selectivity
estimates. S; is by default the first node of graph G;. The second node is chosen from
a list of the nodes (|S| — 1), the third is chosen from the list of (|.S] — 2), and so on.
The objective function used to iteratively select these nodes in graph G; is given by the
formula:

O—(A’T) = m'innodes(iS|—j)atstaye(j+1) {U(\S\—j)} (86)

Here N represents the next node to be added to graph G;, and the process is repeated
for (|S] — 1) times.

Let G represent the union of all graphs G;, such that G = {Gi1.G2,Gs,...,G;} and
|S| = |G|. Graph G is a directed graph with |G| directed spanning trees. The limitation
of the previous join operator was that only one tuple could be allowed to advance its
scan in order to maintain the consistency of the ripple join operation. Using this graph
formulation could introduce concurrent execution of various scans by selectively locking

the routing paths.

Consider that query Q selects a scan on item S;. As the scan is on stream |S;| locks
the tree rooted at stream S;. The multi-way join operator selects a list of alternate
streams that need to be scanned at the completion of the current routing path. All such
candidate streams are queued for execution. For the join operations in progress, the
streams are routed through the path represented by the spanning tree. As the items are
routed from node N; to node Nj, such that e; ; exists in G;, the lock on the node N; is
released. Thus the candidate node N; is available for the scan of its tuples and advances
in its direction are permitted. Selection of this second node allows it to lock the other

nodes in accordance with its query graph G;.

Chapter 8 Query Optimisation 129

8.5.4 Operator scheduling

Query processing for streams is represented as a set of graph flows, which represents the
order in which the data from the streams is processed. The last sub-section introduced
a mechanism for concurrent execution of scans from multiple streams. However, the
data items should not be considered as individual tuples processed on arrival; instead
they are considered as blocks of tuples processed as blocks of memory units. The block
size and ordering of the stream scan are selected in order to reduce cumulative memory
utilisation. Here it may be pointed out that the memory utilisation of the stream is not
dependent on the execution of the simple query, but is intertwined with the operations
of the other query. Operator scheduling has two distinct objectives - first, to reduce the
cost of individual query evaluation and secondly, to dynamically arrange the ordering

so that the global costs introduced on the data items are also minimized.

A number of strategies can be adopted in ordering the scans on the streams of an
individual query. The approach of cost based reduction is investigated. The memory
utilisation of a particular query Q was described in equation 12.5. Assume that the
query processor can evaluate the tuples that occupy size M. The reduction achieved in

the complexity of the query is as follows:

n—1 ng ‘gn
memoryutilisation(Q Z Z S;0; + Z S;0; (8.7)
i=0 7=0

The scan on S, should be maximized in order to reduce the overall memory utilisation

of the query. The objective function in that case is given by

|Sn|

F=Maz{)_ S;6;} (8.8)
=0

In cases where the query manages to process all the data items pending in the streamn
the resultant memory utilisation is given by
n—1 lSii
memoryutilisation(Q) = Z Z S;6; (8.9)

i=0 j=0

while in cases where partial processing has occurred, the resultant is given by

n—1 |5;] [Sn1l
memoryutilisation(Q ZZ Sj0; + Z S;6; (8.10)
1=0 j=0

where (n1 < n). The formulation presented in equation 8.8 represents the objective
function of the operator scheduler. Adoption of the cost based scheduling strategy

usually is liable to the starvation effect. However in this study, the objective function

Chapter 8 Query Optimisation 130

has a temporal component, due to which the resultant costs increase with the passage
of time, there by necessitating the evaluation of all the streams and eliminating any

chances of starvation.

Here it should be pointed out that temporal costs of query evaluation are liable to
occur in the streams that experience arrival of new data items and in the windows that
roll-over the data. The temporal costs are inapplicable to data items once they have
been processed. Thus, streams with lower data rates as well as static tables do not incur

additional costs for retaining the data items collected as a result of the previous scans.

Multiple queries share the cost of maintaining the data in the stream. This cost of
data items is shared between multiple data queries. As the scope of the queries is
limited to the scope of the window, a window moment may invalidate the requirement
of maintaining certain data items within the stream. A resultant window moment results
in spreading the cost of the data item between the remaining queries. Such a resource
management feature is required to allow variable cost mechanisms for various window
mechanism. The actual cost function can be adjusted in accordance with the memory
management policy. The policy will affect the way in which queries are evaluated. Thus,
if considered, an equi-cost representation for evaluation of the memory costs, it can be
proven that the landmark window functions are penalized as compared to the sliding
window or the clamped window functions. The aim in that case is to reduce the cost of
the query function; thereby, certain queries will receive higher prominence in the order
of processing. The effects of operator scheduling and related effects on cumulative query

processing are studied in section 9.2.

8.5.5 Statistical information collected

To determine the appropriate ordering of data operators, and prioritize the queries, a
DSMS maintains statistical information about the intermediate data items. To assure
the extensibility of the statistical monitoring environment, it is required that the monitoring
of the data operators is independent of operator characteristics, an objective achieved

by the use of a black box model to denote operators.

The model collects fine grained information on the flow and size of tuples, as they happen
to govern the amount of memory required at each operator. It inferences meta-level delay
information based on tuple and flow characteristics. The flow information can also be
used to infer selectivity information on the historic data flows observed by the operator.
In addition, the instrumentation monitors resource sharing between multiple queries,

being enabled by the operator.

The following tables provide details about the statistical information collected.

Chapter 8 Query Optimisation

131

TABLE 8.1: Stream Query Processing - Tuple and Stream Instrumentation Details

Parameter Namne

Description

Arrival time
Selection time

Shipping time

Arrival rate
Maximum cache size

Local views

Scheduling
Window type
Tuple structure
Tuple size

Syvmbol | Cardinality
T, Data tuple
T Data tuple
Ten Data tuple
S, Stream
M, Stream
N Stream
S Stream
Wi Stream
T Stream
Ty Stream

A timestamp to capture time on arrival

A timestamp for the tuple after it has been
processed.

A timestamp to indicate when a tuple was
shipped to the next operator.

Number of tuples arriving per second.
Average memory requirements for storing the
data in the stream.

Total number of select/project queries being
supported by the probe on the stream.

Type of operator scheduling at the stream.
Used to specify the semantics of the window.
Used to specify the schema of the stream.
Size of a row in the stream.

TABLE 8.2: Stream query processing - Operator instrumentation details

Parameter Name | Symbol Cardinality Description
Input tuples Qs Per input @ node | The number of tuples that have
arrived since the last landmark.
Output tuples Q1o Per output @ node | The number of tuples that have been
transferred from the last landmark.
Input tuple size Irs Operator The combined size of all the input
tuples.
Output tuple size Ors Operator The size of the output tuple.
Input tuple rate Irgr Per input @ node | The rate at which the tuples have
arrived in at each of the inputs.
Output tuple rate Orr Per output @ node | The rate at which the output tuples
have been collected from the operator.
Cache size Qq Operator The cache available at the operator
location.
Selectivity Sa Operator The selectivity of the query

operator,calculated as the (no. of
output tuples) / (Cartesian product
of input tuples) .

8.6 Example

A schematic representation in the following section uses an example to describe various

optimisation scenarios encountered during the query processing in DSMS. The previous

section introduced an IBS-SPJ operator, which provides range predicate sharing between

multiple queries. This section describes the multiple query optimisation using pipelined
join operators and IBS-SPJ operators. A modified join operator is represented in figure

8.10. The non-blocking join operator is augmented with statistical capability, ability

to register its intermediate results as temporary streams, tuple dropping and sparse

Chapter 8 Queryv Optimisation

TABLE 8.3: Parameter description and symbols

Parameter name

Symbol

Cardinality

description

Tuple structure
Tuple size
Flow rate

Edge group

Edge
Edge
Edge

Edge

The structure of the tuple that is being
transferred over the link.

The size of a single tuple that is being
transported through the edge.

The rate at which the tuples are being
transported.

The group of edges that need to be
simultaneously inserted or deleted from the
solution graph.

Intermediate Schema, Operator
Statistics and Sparse Certificate

A

Memory Buffer and Tuple Droping

Join Result
— A

X, -

Source (A)

Source (B)

Hash Table A

Hash Table B

nlhll
AV

I|||||I||
Y A

(1) Probe (A) |
(2) Hash (B)

(2) Hash (A)

(1) Probe (B)

Hash (B}

Hash (A)
|
Source (A) Source (B)

FI1GURE 8.10: A pipelined symmetric hash join with monitoring information

certificate capability. The certificates specify the goals for each of the operators and

are usually allocated by the parent operators to their child operators. The result of

the join operators on multiple input streams is a single output stream, registered as an

intermediary table for continual optimisation in conjunction with logical plans.

For this example, consider the case of the following three queries:

Chapter 8 Query Optimisation 133

TABLE 8.4: Stream query processing - example queries.
Query 1 (Q1) | Select * from A, B, C, D where A.a = Bb AND Bb = Cc
AND C.c = D.d AND A.a = 10 AND B.b =20 [Window
Specifications:
Query 2 (Q2) | Select * from A, B, C, E where A.a = B.b AND Bb = C.c
AND C.c = E.e AND Ala =10 AND B.b = 20 AND Ee =
90 [Window Specifications];
Query 3 (Q3) | Select * from A, B, G, H where A.a = B.b AND Bb = G.g
AND G.g = H.h AND A.a = 50 AND B.b = 60 AND G.g =
60 AND H.h = 7 [Window Specifications|;

()) (>
ONOEENONONENNO
O O GO
ONOENONONNONO

FIGURE 8.11: Example Queries

The individual query plans for each of the queries is represented in figure 8.11. As
query Q1, 2, Q3 are added to the system the logical plan is modified as depicted in
figures 8.12, 8.13 and 8.14. The self-referencing edges represent the range predicate
selections and are translated into expressions on IBS-SPJ operators, while the edges
between the nodes are translated into join operators. An optimizer collocates a common
join operator for streams that share expressions and have similar consumption rates
and window specifications. The execution plans that share operators are represented in
figures 8.15 and 8.16, while figure 8.17 represents the case where the execution engine

partitions the resources so that a different quality of services can be met.

‘0‘0 (O~

FIGURE &.12: Logical plan for a single query.

Chapter 8 Query Optimisation 134

Q2

O 0005

FIGURE 8.13: Logical plan for a two queries.

Qs

FIGURE 8.14: Shared logical plan for three queries.
8.7 Summary

Query optimizing in data streaming systems has been the focus of many recent projects,
for example, StreamDB (Arasu, Babcock, Babu, Datar, Ito, Motwani, Nishizawa, Srivastava,
Thomas, Varma, and Widom 2003), TelegraphCQ (Chandrasekaran, Cooper, Deshpande,
Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Reiss, and Shah 2003) and NaigaraCQ
(Chen, DeWitt, Tian, and Wang 2000). Three distinct query optimisation techniques
have been proposed: first, a tuple routing approach used by Eddy (Avnur and Hellerstein
2000), secondly, a rate-based query optimizing technique (Viglas and Naughton 2002).
Thirdly, an operator ordering based query optimisation (Babcock, Babu, Motwani,
and Datar 2003). The above techniques adapt to streamn characteristics and optimize
memory utilisation by reducing the state information maintained at each stage of query

processing. However, the above techniques have limited applicability due to the following

reasSons:

Limited context - single query All of the above techniques attempt to minimize
resource utilisation in the context of a single query. Optimizing the queries

individually does not guarantee the optimal strategy for the DSMS, which typically

Chapter 8 Query Optimisation

135

F1GURE 8.15: Execution plan for a single query.

Q2

F1GURE 8.16: Execution plan for a two queries.

Q1

IBS(B)
K=1

Q1

IBS(B)
K=1

Chapter 8 Query Optimisation 136

Processing Block 1 Processing Block 2

Q1

7

IBS(G)
K=1

IBS(D)
K=0

1BS(H;
K=1 IBS(C)

K=0

Shared Memory Cosi Processing Block

IBS(A} 1BS(B)
K=2 Ke2

FIGURE 8.17: Execution plan for three queries, with parallelisation.

executes multiple queries at any give time. Unlike the queries in traditional
databases the queries in stream databases happen to be continuous, and need

to be executed over a period of time.

One dimensional optimisation Query optimisations for DSMSs have focused exclusively
on either minimizing memory utilisation or improving the throughput of query
evaluations. However, query optimisation needs to be based on a complex Quality
of Service (QoS), based on memory utilisation, throughput and the computational
resources required for evaluation. Guaranteeing a complex QoS requires multivariate

optimisation an issue that has not been addressed so far.

The approach described in this chapter is the first approach to multiple query optimisation
for DSMSs that overcomes both of the above-mentioned limitations. The sparsification
based technique described in this chapter is the first such query processing technique that
considers resource sharing between multiple queries. Resource sharing between multiple
queries is detected from the query semantics specified in PSQL 2. Resource sharing has
been extended to the query planning and query execution stages. It remains the only
known approach that tries to exploit the correlation between the memory utilisation,
computational resource utilisation and throughput. In addition, it is the only known
approach that considers re-optimisation of query plans as the integral part of query

processing in DSMS.

While this chapter concentrated on the theoretical aspects of query optimisation, the
more detailed implementation and practical aspects are discussed in the next chapter,

which also provides a detailed evaluation of the techniques described in this chapter.

2PSQL was developed specifically for identifying resource sharing between query definitions in DSMS.
(For details refer to Appendix C)

Chapter 9

DSMS — Implementation,

Evaluation and Analysis

This chapter describes the DSMS implementation and experiments carried out to evaluate
its performance. Section 9.1 describes the DSMS implementation which supports PSQL
(described in Appendix C) and implements the algorithms described in Chapter 8.
Section 9.2 describes the experiments conducted to evaluate performance. A summary
of the findings can be found in section 9.3, which also summarizes the contribution to the
application domain and correlates the application level findings and overall hypothesis

from the Chapter 2

9.1 Implementation details

A DSMS was implemented for the sole purpose of evaluating the performance of the
algorithms described Chapter 8. A DSMS implementation could have been developed
as an extension to the open source relational database. For example TelegraphCQ
(Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy, Madden,
Reiss, and Shah 2003) extends the PostGres database system. An alternative was to

develop a dedicated implementation of a DSMS. The following considerations influenced

the choice of the latter:

Support for streams Most relational database systems support standard containers
such as tables and views. These systemns provide very little support for in-memory
representation of the containers such as streams. Temporary in-memory relational
tables present the most suitable data structure to represent streams. However,
most such implementations use secondary storage (or disk space) to swap table
space, which, as discussed in the previous chapter, is not recommended for the

manipulation of streams. Also, when temporary tables were used to capture the

137

Chapter 9 DSMS — Implementation, Evaluation and Analysis 138

sequence-like semantics of streams, additional processing costs were incurred in
removing the items from temporary storage. Automatic removal of data tuples
is the significant difference between tables and streams. Data tuples in a stream
expire, if not processed within a bounded interval. Such temporal characteristics
are also observed by relational operators, where the resultant tuples are assigned
a time-stamp derived from the time-stamps of the input tuples at an operator.
The significant difference in container properties entails modifications to access
mechanisms and memory management to support streams in a relational database

system.

Support for PSQL PSQL extends the SQL standards supported by most relational
database implementations. Incorporation of PSQL support will require modification
to the syntax and the semantic parsers of the relational database system. Incorporation
of PSQL is crucial in validating our tuple based resource sharing approach from
an end-to-end systems perspective. Also, PSQL introduces an important notion
of considering both table-spaces and streams as datasets, window operations and
scheduling characteristics. Verification of the capability of the PSQL in identifying
the similarity between the queries on streaming data was confirmed by a system

implementation.

Unique monitoring requirements Uncertain data arrival patterns and variations in
data characteristics have a significant impact on the estimation capability of the
query processing system. Cost based query processing in stream data management
systems requires a capability to analyze and predict the behaviour of a time varying
dataset. Standard relational database systems do not provide such a monitoring
system. Any attempt to incorporate such a capability in a standard database

requires modifications to the query processing system.

Continual Query Optimisation A DSMS provides support for a continual query
execution, while most database systems provide support only for evaluating a
query instance. Optimal continual query evaluation requires support replanning
and changes to the physical query plan. Such changes require additional functional

capabilities to be incorporated into the query planning system.

As described above, implementing a DSMS using an existing relational data management
system requires significant modification to a wide range of system components. To
overcome this limitation, a new DSMS implementation was developed. The architecture

of the implementation is described in the following section.

9.1.1 Architecture

Figure 9.1 depicts the architecture of the DSMS implementation. The input to the DSMS

is composed of two different blocks the data definition block and the query processing

Chapter 9 DSMS — Implementation. Evaluation and Analysis 139

block. The DDL (Data Definition Language) block deals with the creation, deletion
and modification of the data schemas and data containers. The Data Manipulation
Language (DML), which is also a part of the SQL specification, provides constructs for
manipulation of data in standard containers such as tables and adapters are associated
with the stream data containers. The implementation provisions data adapters for
consumption of data from Java Messaging Service (JMS), socket based communication
and synthetic data generators, with the possibility for supporting additional adapters
for communication services such as CORBA Notification and HTTP communication
protocol. Only those data items that conform to the specified schema are accepted from
these incoming communication channels. Temporary storage is provided for staging
the data items, which are subsequently evaluated for a list of continuous queries. The
query processing block processes the query statements and appropriately determines the
physical and the logical query plans. The query plans determine the resource sharing
between multiple queries and are used to derive the schema and memory requirements of
the intermediate results. The query plans are used to determine the operator scheduling
for subsequent evaluation of the queries. Online statistics are maintained for the data
items encountered by the queries. Our implementation provides the possibility to collect
the semantics both before and after the actual query processing. The semantics allows
refinements of the estimates and the query plans derived from these estimates. The
output generated from the data streams also happens to be streams, and the resultant
data streams are propagated using the various communication channels specified by the

query semantics.

9.1.2 Tllustration memory management and scheduling

As described in the previous sections a query statement is translated into a logical query
plan, which in turn is translated into a physical query plan. Figure illustrates one such
query graph that is formed by addition of multiple queries to the query graph. At the
bottom of the graph are the selection operators that provide tuple level resource sharing
between the query plans, while the output of the queries is obtained at the top of the
query plan. The intermediate graph is determined on the basis of the shared query sub
expressions. The cost of the shared subexpressions is shared between the queries that
share the expression. In simple terms, the cost of the subtree is shared by the queries
that receive the fan out from the subtree. The shared cost concept allows the operator
scheduling mechanism to determine the net effect of scheduling the chains of operations

within the graph.

Associated with the each node of the graph is the queue that retains the operator state.
Assuming the familiar case of the sliding windows, the state maintained at the base of
the graph is relatively static. However, efficiency of query evaluation depends on the

ability of the scheduler to allocate an appropriate amount of memory at each of the

Chapter 9 DSMS - Implementation, Evaluation and Analysis 140

VP Communication Channels (JMS, Socket,
CORBA-Naolification, HTTP)

Communicaticn

Adapters

Command
Interface Storage Managers

and ical

» Analyzer
Stream Query

Processor

L Stalistical Feedback

O/P Communication Channel {JMS, Socket,
CORBA-Notification, HTTP)

F1GURE 9.1: Block diagram: Query Processing Engine (QPE)

subexpression queues. The mechanism was described in the previous chapter and the

evaluation of the same can be found in the following section.

9.2 Experiments

The experimental evaluation of DSMS presented in this section covers important individual
components and proceeds to provide the evaluation of the complete DSMS. The evaluation
focuses on the IBS-SPJ operator, the memory evaluation, and the operator scheduling.
These experimental evaluations were conducted using a synthetic data workload, details

of which (schemas and their distribution) can be found in Appendix C.

9.2.1 Select project operator analysis

Select project operators belong to the group of stateless operators which do not maintain
any state information to evaluate the query expression. Hence, unlike join operators,
these operators remain unaffected by the use of different window types. The schema used

for evaluating the data operator is presented in the following Table 9.1. It evaluates

Chapter 9 DSMS — Implementation, Evaluation and Analvsis 141

[Schema of the Stream: B
Create Stream IT (ID INT. Name CHAR(200),
PanNo INT, Income REAL, Ideal INT);
Depth of IBS filter tree
Number of Tuples (k=1 k=3 k=5 [k=7 [k=8k=9[k=11 |k =13
10000 65.5 27.4 21.866 16.8 13.76 | 12.566 9.3571J 9.187
20000 112.6 67.1 43.233 | 35.175 28.76 | 25.733 | 22.771 [19.525
30000 170.1 | 93.05 | 69.233 53.9 40.02 37.5 34.142 | 30.262
40000 223.4 133.6 &9.1 72.3 56.22 | 48.466 | 45.328 39.85
50000 293.8 157 108.833 | 85.925 67.18 | 63.016 | 55.157 | 49.8125
60000 334.5 | 186.75 134.4 107.375 | 81.88 73.15 66.7 58.975
70000 389 222.65 152.6 123.1 94.66 | 87.516 | 81.271 71.662
80000 448.5 253.1 | 183.866 | 142.175 | 110.96 | 98.166 | 37.057 | 79.1125
90000 017.3 279.7 200.5 155.075 | 123.12 | 110.65 | 102.242 | 90.2375

TABLE 9.1: Performance data of an IBS based SPJ operator

the performance of the operator as a number of queries are added to the operator.
The queries are either conjunctive or disjunctive or predicate range expressions. The
expressions are evaluated for an increasing number of tuples. The evaluation time for
the queries was averaged for 10 runs of the data with varying selectivity. Figure 9.2,
represents the query processing time for varying number of queries being simultaneously
evaluated by the operator. The query processing time increases linearly (see figure 9.3)
with the increase in the number of tuples being processed. However, the time per query
decreases as the number of queries increases. Hence, for a large number of queries the
cumulative gains obtained by the use of this operator increases linearly with an increase
of query expressions. Figure 9.3, which presents an alternative view, highlights the fact
that the cumulative average processing time reduces due to the tuple sharing enabled

by the operator.

9.2.2 Query planning under variable data rates

Adaptive query processing allows the query evaluators to be able to adapt their resource
usage in response to changes in the data rates. The aim of these experiments is to
demonstrate the capability of the algorithm to detect, restructure and schedule the
query operators in response to variations in the data rates. The experimments compare
the algorithm against the cost-based non-adaptive query planning algorithm, to show

that it remains capable of adapting to variations in resource availability.

To evaluate the performance, a candidate query consisting of three streams and two
join operators is used to compare the performance of the query planning algorithms.
The selection and projections being stateless operators, they were not considered for
performance comparison. Performance is compared on the basis of cumulative memory

and processing requirements. Historical statistics maintained on the container were used

Chapter 9 DSMS — Implementation, Evaluation and Analysis

Processing Time in milli-seconds

Processing Time in milli-seconds

600
500
400

300

100 F

1
n=10000 —
n=20000

Number of Nodes in Predicate Tree

F1GURE 9.2: Effect of the IBS on time complexity.

600

500

400

300

200

100

1 L 1 1 Il 1 1

20000 30000 40000 50000 60000 70000 80000
Number of Tuples Processed

FiGgURrE 9.3: SPJ individual query performance.

90000

100000

Chapter 9 DSMS — Implementation, Evaluation and Analysis 143

to construct the static query plan, which was used to evaluate the continuous query to
its completion. The performance was compared against the dynamic query planning
algorithm. To provide a fair comparison between the planning algorithms a round robin
operator scheduling policy was used to execute the query. Figure 9.5 illustrates the use
of the algorithm for two categories of change in the stream data processing: variations
in the data rate and variations in the selectivity of the join operators. Synthetic data

sets and streams were used to simulate the behaviour of the algorithm.

Figures 77 illustrate the cumulative memory and computational resource usage in case
of variations in data rate. The data arrival rates at streams A,B,C are given in the
following figure 9.4. Stream A is a blocking/unblocking stream, with data airriving at
constant speed for a fixed interval, while the data arrival rates at streams B and C
follow triangular and gaussian distributions respectively. In the absence of any known
benchmark for comparing the performance of the various stream processing systems,
these three patterns were arbitrarily selected from the stream characteristics observed
in real systems. A bounded number of tuples were used to perform the evaluation.
Considerable care was taken to evaluate the system exclusively in the main memory and
idle resources were provisioned so that the algorithm’s performances are not effected by

the resource constraints imposed by the system.

Figure 9.5 shows the variation in the total queue sizes over time for the two algorithms.
It was observed that the static query planning algorithm incurs considerable penalties,
because of its inability to adapt to variations in the resource requirements of the data
streains, while the adaptive algorithm minimized the memory requirements of the query

processor.

Figure 9.6, shows the variation in throughput in the face of variations in the join

selectivity algorithm.

9.2.3 Operator scheduling analysis

This sub-section provides evaluation of the operator scheduling algorithm described
in the previous chapter. Evaluation of the algorithm is carried out in two scenarios:
operator scheduling for memory minimisation for a single query and Operator scheduling
for multiple queries. In case of the single query optimisation, a comparison is made
against FIFO, Greedy and Chain Strategy. Chain is excluded from comparison in
the case of multiple query processing, as chain scheduling for multiple queries remains

undefined.

As can be observed from the following figure the chain strategy and adaptive scheduling
algorithms outperform FIFO and greedy scheduling algorithms. As both chain and
adaptive scheduling rely on an information push mechanism, the performance comparison

highlights the adaptive scheduling algorithm’s ability to allow concurrent evaluation of

Chapter 9 DSMS - Implementation, Evaluation and Analysis

144

Rate of Arrival (Tuples/sec)

Memory Allocated in KB

200 T T T T
Stream A ——
Stream B ---x---
Stream C ---%---
150 |- B

60000
Time (msec)

FIGURE 9.4: Data arrival rates of various streams and sub streams.

100000

400 T T T T
Static Plan (A,B,C) ——
Dynamic Plan (A,B,C} ---x---
350 -
300 -
250 | * .

200 o
150 1
X
100 _
50 ,", i ,x'l \ N
3
0 I - N
0 20000 40000 60000 80000

Time (msec)

FIGURE 9.5: Memory requirements of various streams and sub streams.

100000

Chapter 9 DSMS - Implementation, Evaluation and Analvsis 145

40 T T T

Static Plén (A,B,C}y —+—

Dynamic Plan (A,B,C) ------
35 |
30 -]

N
[9)]

T
-

20

-
[9)]

Avg. Delay per Tuple (mirco-seconds)

-
o

i 40000 60000 80000 100000
Execution Time (msec)

F1GURE 9.6: Delay Characteristics of various streams and sub streams.

parallel paths, unlike Chain, which allows data to be propagated through a direct chain
from leaf to root node of the query plan. Memory usage and computational resource

usage are depicted in the following graphs.

In the case of multiple queries, the FIFO and Greedy algorithms fail to optimize the
amount of state held in operators shared across multiple queries. This results in disproportionate
states being held at the operators. However, the adaptive scheduling algorithin adopts
a back filling strategy, which allows it to reduce memory utilisation by associating
dynamic bounds on computational resource usage. Figure 9.7 illustrates the memory and

computational performance of adaptive vis-a-vis FIFO and Greedy scheduling strategies.

9.3 Summary

A DSMS systeimns consists of four distinct phases of processing: the logical query planning

phase, the physical query planning phase, the operator selection phase and the scheduling

phase, strictly in that order. An adaptive DSMS system can be constructed by incorporating
adaptive behaviour at any stage of processing. In such a scheme, the decision made

at the higher stages affects the decision made in subsequent phases. To date, two

distinct approaches have emerged in the field: a block-based query processing approach
advocated by Aurora (Carney, etintemel, Cherniack, Convey, Lee, Seidiman, Stonebraker,

Tatbul, and Zdonik 2002) an a individual query optimisation approach advocated by
TelegraphCQ (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy,

Chapter 9 DSMS - Implementation, Evaluation and Analvsis 146

300 T T —T T
Graph Scheduler ——
Chain Scheduler ---x---
FIFO Scheduler ------
Greedy Scheduler -+ -
250 - 4
*
200 St .
e =y
¥4 b .
— A N ¢ Y *
g 150 - S o E R
s ,:";3() rfi
100 - "F x |

—

40000 60000 80000 100000
Execution Time (msec)

FIGURE 9.7: Comparative memory performance of scheduling strategies.

Madden, Reiss, and Shah 2003) and StreamDB (Arasu, Babcock, Babu, Datar, Ito,
Motwani, Nishizawa, Srivastava, Thomas, Varma, and Widom 2003). Aurora adopts the
multiple query processing approach of producing all the necessary tuple combinations
required by the queries and applies late filtering to produce the required tuples, while
the rest of the systems ignore the case of multiple query processing. While Aurora
does address the issue of multiple query processing, it does not incorporate the notion
of adapting the logical/physical plan in accordance with runtime query statistics. On
the other hand, systems like TelegraphCQ adopt the tuple routing strategies, which
introduces adaptive behaviour at planning and the operator level. For example, the
Eddy operator used in TelegraphCQ makes localized optimisation decisions. To date
our approach remains the only approach that tries to integrate the different phases
of adaptive behaviour in query processing systems. It is the only approach that allows
adaptive behaviour at the query level and can also impose global restrictions to optimize

query performance across the system.

The performance evaluation in this section showed that the use of a combined planning
and scheduling strategy results in a better performance than the approaches that adopt

independent planning and execution architecture.

9.3.1 Contributions

A number of novel techniques for developing DSMS were introduced in the previous

chapter, and their evaluation was presented above. The specific contribution of the

Chapter 9 DSMS — Implementation, Evaluation and Analysis 147

above approach are:

—

. The incorporation of multiple query optimisation approach for DSMS, which allows

differential QOS to be supported for individual queries.

3]

. The incorporation of a novel query planning and operator scheduling algorithm.

3. The Proposal for PSQL to be used as a query language for stream systems.

Part V

Conclusions and Appendices

148

Chapter 10

Conclusions

10.1 Concluding remarks

Dynamic aggregation of resources has become a common trend in an emerging class of
distributed systems. This thesis presented investigations related to adaptive resource
management for three exemplar applications. Based on the limited experiences of
these investigations, it is concluded that there exists at least two sub-categories of
adaptive systems in large scale distributed systems, provisioning systems and quality
management systems. A provisioning system retains a common policy throughout
execution; it uses resource augmentation to adapt to variations in operating conditions.
Scheduling systems and P2P systems (presented in the previous parts) fall under the
provisioning systems category. The stream query processing system is classified as
a quality management system. An important characteristic of guality management
systems is their ability to adapt their operational characteristics in response to the
operating environment. Not every aspect of these two classes of adaptive systems was
discussed, but a brief discussion of observations that apply to adaptive systems in general

is provided below.

It was observed that, unlike most distributed system properties, adaptive system behaviour
cannot be expressed without explicit incorporation of the temporal dimension. However,
the way the notion of time is captured may vary with respect to the system characteristics.
For example, our example of online scheduling uses a shifting finite horizon, while the
information dissemination example addresses the issue by using a continual representation
of time, and finally, the tuple structure in the DSMS example explicitly incorporates the
notion of time. The notion of time provides a convenient way to represent that the system
has moved from one optimal state to another. In retrospect, this was also observed in our
applications with a moving finite horizon in online scheduling, with optimisation cycles
in a dissemination scenario and with changes to query plan in DSMS indicating such

state transitions. From the observations made in developing these systems it is concluded

149

Chapter 10 Conclusions 150

that adaptive behaviour manifests itself in various different ways. However, in order to
achieve adaptive behaviour it remains crucial that systems are able to determine the
existence of a more optimal state and identify some means to transition to that state.
For example, the addition of time slots to a queue in online scheduling indicates that
additional resources are present, that current packing may soon become non-optimal,
and the system then attempts to optimise its objective function. Similar parallels can

be observed in the other two exemplars.

When a system becomes capable of identifying the transition to an optimal state with
respect to its current state, it can be augmented with a capability to explore the
transitions to these states of interest. While online scheduling provides a limited means
to explore this space, ample scenarios have been provided in the remaining exemplars.
In the cases studied, the state transition scenarios were translated into an optimisation
problem. For example, in information dissemination, “Which neighbor to choose?”
represents the optimisation problem that was solved to provide adaptive behaviour in
a peer network. However, it was found that in some specific cases, adaptive behaviour
can be accomplished by exploring the search space, while in some other cases it can
be achieved by refining the search space. For example, a query processor could exhibit
adaptive behaviour by modifying either the logical plan, physical plan, operator behaviour
or schedule, exclusively by exploring the search space in each of these layers, or it could
refine the search space by accomplishing adaptive behaviour by optimisation across the

layers.

Our investigations into adaptive systems also highlighted their limitation in autonomic
management of resources. All our system prototypes required a set of policies that
defined their objective function and restrictions on their optimisation space. Whether
considering utilisation maximisation in online scheduling, search cost minimisation in
information dissemination or query optimisation in DSMS, these systems had a predefined
set of objective functions. Our future work on adaptive systems would be to design
systems that determine their objective function on the basis of operational characteristics
and policy statements. The interaction of policies with operational environment and the
verification of policies will be an important research aspect of such systems. It will
be interesting to see if these systems incorporate the notion of stability. The next few

sections present conclusions for each of the application types.

10.1.1 Online scheduling

The investigations into computational resource aggregation systems are convincing in
that, unlike the resource reservation schemes, online scheduling schemes are bound
to dominate scheduling in the Grid environment. Low scheduling overheads, ability
to maintain autonomous control of resources and provide probabilistic guarantees on

resource utilisation are definite advantages of this approach. On the negative side, it is

Chapter 10 Conclusions 151

not clear how communication models between jobs will affect the scheduling of jobs. It
is bound to be the case that the incorporation of communication patterns will increase
the system’s sensitivity to failures of resources and necessary redundancies will have to

be incorporated to increase the robustness of the system.

10.1.2 Information dissemination

The investigations into these system types reinforce the assumption that overlay networks
will be commonplace for describing the context for resources involved in adaptive resource
management. Adaptive overlays can be effectively used to incorporate the notion of
partial visibility of state information and to enforce localized policies. However, although
a graph theoretical approach is proposed to capture the dynamic behaviour of the
individual resources, it is the system dynamics and the choice of the objective function
that predominantly determine the suitability of the overlay structure. It was observed
that a mismatch between the structure of the overlay network and the objective function

leads to frequent reorganisation, leading inturn to an unstable system.

10.1.3 DSMS - Query processing

Data Stream Management Systems represent a unique class of application systems, which
highlight the case that, under limited resources, adaptive systems can be designed to
provide variable quality of service guarantees. In addition, the approach in this thesis
provides a query planning mechanism that has the unique capability of adapting to a
distributed system setting with no additional modifications. To date, this remains the
only approach to provide such a sophisticated level of control on resource utilisation
for such problems. However, with exclusive focus on adaptive query processing, the
approach fails to take into account the additional complexity introduced by schema
modifications in streams and differential QoS. Tt will be interesting to see how such

features can be incorporated into future editions of the system.

10.2 Future Work

The end of each part of the thesis indicated how had been extended the state of the art
in each of the application areas. A viable approach will be to continue to investigate the
issues in each of the application domains, while continuing to conceptualize a model to
capture adaptive behaviour in large scale systems. Although the above approach was
used during the investigations of this thesis, it has some limitations. At times, there was
insufficient overlap between the application areas and the general theoretical approach.
As part of future work two separate areas of investigations are identified, which will

separate the theoretical aspects and the application aspects.

Chapter 10 Conclusions 152

The future plan is to investigate two research directions to address the above problem,
first, the theoretical modelling of adaptive behaviour in distributed systems. Although
a generic hypothesis has been presented in the thesis, formal specification to capture
the concept of adaptivity needs to be further refined. The current hypothesis remains
the proof of the concept of the initial investigations, but this will have to be further
validated to include models for policy driven adaptive behaviour. At the same time,
it will be required to equip the model with the notion of comparison between adaptive
behaviours. Such a feature will aid the classification and comparison of adaptive systems.
As pointed out in previous sections, the temporal dimension will necessarily be part of
any such model. At some point during the investigations, possible directions in the field
of time series representation or in semi Markov decision processes were considered, as
possible means to capture the temporal aspect in large scale distributed systems. This

seems to be an approach that requires further investigation.

Second, by considering the development of a distributed DSMS, as mentioned in the
chapter 2 of this thesis, the emergence of sensor networks and content based routing
systems has highlighted the need for DSMS combined with semantic overlay. Gryphon
(Strom et al. 1998) and INFO-Dissemination (Dialani, Gawlick, Madsen, Malaika, and
Mishra 2005) represent the emerging class of systems that perform in network processing
on structured and semi structured data. It will be interesting to see how the various
algorithms developed for this thesis can be combined to provide a distributed DSMS
system capable of processing the data streams flowing between various nodes in the
overlay network. It is presumed that the semantic overlay technique developed in part
11T of the thesis can be used to provide schema location and matching services. While the
query planning techniques described in part IV will be employed for distributed query
processing, the scheduling model can be employed to prioritize operator scheduling in

cases where multiple computing resources are available.

Appendix A

Appendix: Continuous Query

Semantics

Consider a query Q such that the join criterion is defined as Q = T1 b T pa Tz ..

T}, representing a pipeline join between a set of tuples T = { Ty, T», T3,...,T¢ }.

Let QP represent all possible query plans for evaluation of the join operation, such that:
|QP| = 2%k —2)!/(k—2)! (A.1)

Only an exhaustive search based optimisation technique will iterate through the entire
set of possible query plans; most other optimisation mechanisms will reduce the search

space to minimize the optimisation costs. An optimal plan, namely:

Qe:Qeer

minimizes costs for given characteristics of T. However, any change in the characteristics
of T may result in Q. being a non-optimal solution. Selection of an alternative optimal

plan necessities a new search through the space.

The following is a list of probable reasons that may result in a given optimal query plan

being rendered non-optimal:

1. Each stream in a query plan represents a list of rows in its active window. The
addition of new rows, passage of time and other external events are likely to result
in change in the number of rows involved in a join operation. A change in the
number of rows participating in a join operation is reflected in the access plan cost

and operator costs.

2. The correlation between the join parameters may change with respect to time,

rendering previous selectivity estimates to be inaccurate.

153

Appendix A Appendix: Continuous Query Semantics 154

3. A change in the arrival rate of the tuples at individual streams increases the

indexing and maintenance costs of the individual tuples.

Two possible alternatives for re-optimising the query plan include either optimnising a
sub-plan from the original query plan or recreating the optimisation search space and
recalculating the solution. Chapter 8 proposed an approach for recalculating the new

optimal query plan from an existing query plan.

It is assumed that continuous queries are used to implement the DSMS and incremental

changes to the resultant result set are calculated on the basis of the following equation:

Here, §Q represents the incremental tuples generated in response to the addition of
tuples 6T, to the stream 7). The query semantics assume that the state maintained by
window operations on each of the streams is adequate to produce a semantically correct

answer, and that the window moments are synchronized across the streams.

Ideally, an output tuple should be generated when a tuple is appended to either of
the streams. SQLY99 describes similar semantics for windowing functions. However,
the same semantics has not found acceptance in DSMS systems. Overload conditions
and unordered tuple arrivals in DSMS systems led to the adoption of additional query

semantics.

Tuple Dropping Strategy Under overload conditions, the DSMS may not be able to
process the high volume of incoming tuples with acceptable delays. Such systems
adopt a tuple dropping strategy and hence the results during overload conditions

may not be semantically consistent.

Compensating Tuples Out of order arrival of tuples may lead to generation of an
inconsistent result set. As the result set cannot be corrected through re-evaluation,

some DSMS provide compensating tuples to rectify the resultant result set.

The above described semantics affect the ways in which the results are generated and
the optimisation strategies adopted by the stream management systems. The query

semantics were sumimarized to highlight the differences in DSMS implementations.

Appendix B

Appendix: Survey of Large Scale
Distributed Systems

This appendix presents a survey of the emerging class of large scale distributed systems.
It outlines the common trends observed in applications of these large scale distributed

computing infrastructures and explores the adaptive behaviour exhibited in them.

B.1 Examples of Large Scale Systems

The hypothesis is that the current trend in large scale computing systems is being
driven by two complementary advances, firstly, the notion of providing computing as
a utility, and secondly the notion of the pervasive nature of such an infrastructure.
The notion of providing computational and data services in the form of utilities has
been partly inspired by the success of the World Wide Web (WWW). WWW has
provided the impetus for exploring the sharing of various types of computational and
data resources across institutional boundaries (Foster and Kesselmann 1999; Foster,
Kesselman, Nick, and Tuecke 2002; Tsvetovat and Sycara 2000). It is a commonly held
belief that the advances in the field of web technologies, which have allowed asynchronous
content delivery, can be extended to provide integrated access to data resources and
computational resources across institutional boundaries. At the same time, advances in
hardware (specifically sensor technologies) have provided the impetus to the pervasive
aspect of the computing infrastructure. A number of research ideas are being pursued to
create infrastructure where data and computational resources are seamlessly integrated
to form a pervasive computational infrastructure. The set of systems described in this
survey were selected for their support of pervasive environments and is applicable to
a large set of applications. The following subsections review a subset of the relevant

technological /research approaches followed in developing large scale systems. The review

-

155

Appendix B Appendix: Survey of Large Scale Distributed Systems 156

is not exhaustive and is primarily focused on highlighting the commonalities, rather than

differences between the surveved approaches.

B.1.1 Services Oriented Architecture

Services Oriented Architecture (Graham, Davis, Simeonov, Boubez, Neyama, and Nakamura
2001) has been proposed as an important paradigm to support the development of
distributed applications in a heterogeneous computing environment. Most service oriented
architectures use a platform neutral messaging specification to describe the basic communication
protocols. For example, the use of SOAP, XML are used to describe the messages for
web services communication. Service Oriented Architecture allow system components

to be accessed through a set of methods, with the aide of message types defined for the
system components. Service advertisements contain the descriptions of the messages
and the various port types. These advertisements are published in discovery services
such as UDDI, which can aid the discovery of services across the system. At times,
the service advertisement is augmented with semantic information associated with the
service definitions to allow complex patterns in the discovery process, work (Miles,
Papay, Dialani, Luck, Decker, Payne, and Moreau 2003a; Miles, Papay, Dialani, Luck,
Decker, Payne, and Moreau 2003b), which the author of this thesis has been involved

in present one such extension to UDDI and enables metadata assisted service discovery.

A number of services may be composed with the aide of workflow technologies. The
workflow may use fault-tolerant web service implementations (Dialani, Miles, Moreau,

De Roure, and Luck 2002), or may use dynamic rebinding to compose reliable services.

Service QOriented Architecture (SOA) based software implementations such as .NET,
J2EE, OGSA(Foster, Kesselman, Nick, and Tuecke 2002) provide software platforms for
developing web service implementations and are designed to operate in a heterogeneous
resource environment, while maintaining compatibility at the messaging level. Dynamic
compositional capability coupled with the ability to operate in heterogeneous environments
have enabled the use of Web Services to develop applications that support dynamic

integration of data and computational resources.

SOA enables adaptive behaviour by allowing applications to dynamically rebind to
services that support identical interfaces, where identical services are identified according
to their syntax and semantic properties. To support this adaptive behaviour, the
applications need to be able to share the service advertisements in a scalable fashion.
These advertisements may be shared between the applications using a centralized service
such as UDDI or can be cached using an adaptive overlay network. An adaptive overlay
is particularly useful in cases where centralized registries could not be supported, for

example, mobile services environments.

Appendix B Appendix: Survey of Large Scale Distributed Systems 157

B.1.2 Grid computing

The Grid computing paradigm has evolved around the notion of the virtual organisation.
Virtual organisations are described as dynamically created associations between users
and resources across various administrative domains and institutional boundaries. A
number of alternative approaches have been suggested for the management of such
virtual organisations. Examples include economics-based resource allocation (Abramson,
Buyya, and Giddy 2002), structural organisation (Litzkow, Livny, and M.W.Mukta
1990; Foster and Kesselmann 1999), unstructured organisation of resources (SETI) and
Services based systems (Foster, Kesselman, Nick, and Tuecke 2002). The theoretical
aspects of the virtual organisations have been discussed in (Dang and Jennings 2004;
Norman, Preece, Chalmers, Jennings, Luck, Dang, Nguyen, Deora, Shao, Gray, and
Fiddian 2003). An important aspect of Grid computing is its dual focus on the co-allocation
of data and computational resources, in an dynamic computational environment composed

of unreliable resources.

Grids have been used for a wide variety of applications, which include but are not
limited to data integration (Atkinson, Chervenak, Kunst, Narang, Paton, Pearson,
Shoshani, and Watson 2004), high throughput computing (Frey, Tannenbawm, Livny,
Foster, and Tuecke 2001), biomedical applications (Goble, Pettifer, and Stevens 2004)
and sensor networks (Hill, Szewczyk, Woo, Hollar, Culler, and Pister 2000). Though
the Grid applications vary in their software architectures, they exhibit some common
characteristics, which are: first, resource discovery, second, by dynamic/run-time composition
of software services, and thirdly, orchestration of distributed data and computational
resources. These applications provide virtual organisations either for direct access to
data and computational resources or through application service encapsulating these

resources.

A classification of various types of Grid Systems has been suggested by Fox (Fran
Berman (Editor) 2003), prominent amongst which are Compute Centric Grids and Data

Centric Grid Systems, which are described here in some detail:

B.1.2.1 Compute Centric Grids

Grid infrastructures, primarily utilizing computational cycles across the virtual organisations,
are referred to as computational Grids. SETTGHOME, GLOBUS and CONDOR-G are
examples. Most computational Grids provide job submission, monitoring and scheduling
facilities as a means of access to the remote computational resources. A computational
Grid may be formed by the resources owned by the resource provider (e.g. PBS combined
with GLOBUS installation) or alternatively it may be formed by the free interaction
between resource providers and consumers, for example SETIG@HOME. There are many

interesting open research issues in both types of computational Grids. While in the

Appendix B Appendix: Survey of Large Scale Distributed Systems : 158

former types the issues pertaining to secured access and co-allocation have dominated the
agenda, the latter have focused on creating computational economies and the mechanisins

to design a self-sustaining computational infrastructure.

Traditionally, job submission on a distributed set of resources does not provide strict
guarantees on the performance of the jobs being handled by the service. For example,
both CONDOR and SETT have relied on providing the best effort scheduling capabilities.
However, as is evident from recent studies (Nabrzyski, M., and Jan 2004), it is possible
to statistically guarantee adherence to a multitude of objective functions for scheduling

on a set of distributed resources.

B.1.2.2 Data Centric Grids (DCG)

Data Centric Grids provide the infrastructure for accessing, disseminating, archiving
and provenance tracking over a set of distributed data resources. Most DCGs provide
the means to discover, summarize data (metadata) and create access and transport
mechanisms between data resources. An application may access multiple data resources
may interact independently with each of the data resources. Alternately, an application
may orchestrate the services provided by each of the data resources and in turn allow
workflow optimisers to achieve data flow optimisation between data resources. Publish/subscribe
based data resource management represents a data Grid system type which is relevant
to the scope of this thesis. As a part of dataflow optimisation, resources in a data
centric Grid may form a self-managing overlay network to reduce the data transport
and management costs. The formation of such an overlay cannot be conceived by the
designer of any one data resource provider and overlay will evolve from the complex

interaction between data resources.

B.1.3 Peer-to-Peer computing (P2P)

P2P computing provides a novel distributed computing architecture and is characterized
by its decentralisation of control. Each of the participating resources in the network is
referred to as peer. In an ideal P2P system, each of the participating peers are considered
to be uniform. Early P2P computing systems, like FreeNet (Clarke, Sandberg, Wiley,
and Hong 2001) and Gnutella (GNUTELLA) were centralized repositories that aided
discovery of resources between peers using a flooding protocol. Subsequently, a number
of structured P2P overlay creation techniques were proposed, for example, Distributed
Hash Techniques (DHT), to provide bounded average discovery paths, and resilient
system performance in face of failure/recovery of peers. The various P2P approaches
can be divided into three primary categories: firstly, structured P2P systems like CAN
(Ratnasamy, Francis, Handley, Karp, and Schenker 2001), Tapestry (Zhao, Kubiatowicz,
and Joseph 2001) and Chord (Stoica, Morris, Liben-Nowell, Karger, Kaashoek, Dabek,

Appendix B Appendix: Survey of Large Scale Distributed Svstems 159

and Balakrishnan 2003); secondly, unstructured P2P systems like FreeNet (Clarke,
Sandberg, Wiley, and Hong 2001), and Gnutella (GNUTELLA) and thirdly, semi
structured P2P systems like JXTA (Qu and Nejdl 2001).

Most. P2P system use messaging based communication protocols to allow operation on
a set of heterogeneous resources. State-of-the-art P2P systems use dynamic resource
discovery and binding to allow creation of peer-groups which are very similar to the
concept of the virtual organisation illustrated in Grid computing environments. Software
architecture for developing P2P computing systems has been the primary research focus
of most P2P computing systems. Additionally, research has also focused on how to
develop P2P systems that guarantee that resource providers and consumers have equal

benefits from their mutual association and the means to develop trust between them.

B.1.4 Ad hoc network systems

Advances in mobile communications have enabled the creation of ad hoc networks,
characterised by their ability to adapt to availability of resources. In ad hoc networks,
wireless and/or mobile resources (also known as mobile nodes) are able to communicate
with each other in the absence of a fixed communication infrastructure, in the absence of
any centralized control. Multi-hop communication is achieved as nodes route packets on
behalf of other nodes. The dynamic creation of a mobile communication infrastructure
introduces many challenges in the areas of network management and data communication.
Problems encountered in the network layer of ad hoc networks include topology control,
data communication, and service access. Topology control problems include discovering
neighbours, identifying position, determining transmission radius, establishing links
to neighbors, scheduling node sleep and active periods, clustering, constructing the
dominating set (each node either belongs to or has a neighbor from the dominating
set), and maintaining the selected structure. Service access problems include Internet
access, cellular network access, data or service replication upon detection or expectation

of network partition, and unique 1P addressing in merge or split-network scenarios.

Data comimunication problems include:

1. routing- sending a message from a source to a destination node,

[Sv]

broadcasting- flooding a message from a source to all other nodes in the network,
3. multicasting- sending a message from a source to a set of desirable destinations,

4. geocasting- sending a message from a source to all nodes inside a geographic region,

and

location updating- maintaining reasonably accurate information about the location

oy

of other nodes.

Appendix B Appendix: Survey of Large Scale Distributed Systems 160

For a state-of-the-art description of ad hoc systems and related issues, readers are advised
to refer to the book by Perkins (Perkins 2001), who provides a detailed description of

ad hoc routing protocols.

Analogies can be drawn between ad hoc networks and P2P networks, as both network
types operate without any central co-ordinating authority, and in both cases, the nodes
(peers) autonomously choose appropriate information and communication systems to
interact with their sub-ordinate nodes (peers). The prime distinguishing features between
P2P and ad hoc networks are: that ad hoc networks are limited to wireless communication
networks, and, while P2P systems can impose a fixed topological structure such restrictions
cannot be imposed on the mobility of nodes in an ad hoc network. These distinguishing
characteristics impact the design methodologies and the resource management objectives
in the two system types. While P2P systems are evaluated on the basis of their
communication costs, the cost metrics for ad hoc networks also includes computational

and energy costs.

B.1.4.1 Sensor networks

Sensor networks (Hill, Szewczyk, Woo, Hollar, Culler, and Pister 2000) are an emerging
application area in ad hoc networks. Most sensor networks are designed to operate
autonomously without any centralized control. While some sensor networks systems are
designed to operate under a static environment, with complete knowledge of associated
sensors and patterns of communication, most systems tend to require dynamic reconfiguration
of network topology for efficient communication and data dissemination across sensor
networks, in the situation of failing and intermittently available nodes. For a detailed

description on sensor networks, refer to (llyas and Mahgoub).

B.1.5 Agent-based computing economies

Large scale distributed systems have been modelled as interactions between independent
autonomous components capable of operating in dynamically-changing operating environments.
Agent based systems can be modelled in various ways; most such models describes agent

systems as consisting of three main constituent components:

1. Agents represent encapsulated computer systems and are capable of flexible and

autonomous actions in their operating environments in order to meet design objectives.

o

Interactions: Agents will invariably use appropriate communication channels to
interact with other agents and manage their inter-dependencies. These interactions

may lead to co-operative, competitive or co-ordination based problem solvers.

Appendix B Appendix: Survey of Large Scale Distributed Svstems 161

3. Organisations: Agent interactions take place in some form of organisational context

(e.g. a marketplace, an electronic institution).

Agent-based Computational Economies (ACE) represent an organisational model for
agent-based systems and derive from artificial intelligence and economic theory. State-of-the-art
techniques and the description of research issues in the field of ACEs can be found in
(Tesfatsion 2002). In ACEs, agents represent the buyers and sellers of resources traded
in electronic market places. Agents learn about the behaviour of other agents and
the general behaviour of the market place and initiate appropriate actions in order to
maximize objective functions. Agent economies have been shown to be self-organizing

and self sustaining under varying market conditions.

The application of market based resource management for developing large scale distributed
systems has been explored by (Abramson, Buyya, and Giddy 2002), and (7). ACEs
present an approach towards developing self-managing computational infrastructure

because of their ability to adapt to time varying operating conditions.

B.1.6 Discussion

A number of different paradigms for developing large scale computing systems were
described in the preceding sections and provide specialized solutions for their target
application domains. Increasingly, applications derive from the properties of one or
more paradigms to create complex computing systems. The adoption of Services based
architecture by Grid computing and P2P computing, Agent-based computational Economies
for Grid computing, the merger of P2P techniques and ad hoc networks represents
the trend for an evolving complex computational infrastructure. It may be argued
that, over a period of time, these paradigms will merge to form a pervasive, adaptive
computing infrastructure that will augment current WWW capabilities, to provide

seamless integration of data and computational resources.

Instead of adopting a technology or the paradigm aligned approach an approach that
investigates the common requirements across the above mentioned system types is
advocated. As described above, almost all the above mentioned system types consist of
resource providers that collaborate to share computational resources. The overwhelming
requirement of scheduling computational resources in an online fashion needs further
investigation. Additionally, as in most systems a resource is required to collaborate
with a set of resources within the network, the choice of the subset and its relation
to the objective functions needs further investigation. Additionally, when considering
sensor networks and ad hoc networks the interplay with the network topology assumes
prominence. In addition to the above two problem types, one other significant trend is
the use of a single resource to provide support for multiple service requests. Usually,

multiple service requests are supported on a limited resource. Concurrency of tasks

Appendix B Appendix: Survey of Large Scale Distributed Systems 162

introduces potential resource sharing. Adaptive system resource management with
QoS warranties needs to be investigated. In addition, the above three trends in a
fore-mentioned systems need to be investigated for the case of applications that have

the common characteristics stated below.

B.2 Common characteristics

Common characteristics across systems:

1. Decentralisation of control.

[

. Partial and varying visibility of system state.
3. Different operating conditions than those perceived at design time.
4. Online nature of the environment.

5. Continual re-optimisation.

B.3 Summary

Evolving systems have further refined the definition of resource management. While
traditional resource management deals with allocation, utilisation and management of

resources, recent advances have introduced the concept of self organisation and overlay.

Appendix C

Appendix: PSQL - Extended

Query Language for Streams

An expressive query specification language enables a database management system to
determine the common subexpressions between multiple query definitions. Such sub
expressions are commonly used to identify possible resource sharing between multiple
queries. Multi-query optimisation based on sub-expressions is common in relational
databases (Date 1995). A similar sub-expression based resource sharing can also be
applied to queries in stream data management systems. However, to date the language
extensions to SQL - for example, CQL (Arasu, Babu, and Widom 2003) and ATLaS
(Wang and Zaniolo 2003) - used to specify the queries in a stream management system
do not incorporate the notion of similarity. Although CQL incorporates the notion of
equality between queries it remains short of supporting similarity (see section C.1.1 for
details). This appendix, introduces an extension to the SQL, known as PSQL, which

incorporates the notion of similarity for definition in a stream management system.

The remainder of this appendix is organized as follows: The next section describes
the language constructs. Subsequently, it describes object-relational mapping between
the various constructs of the language and provides a representation of the same. It

concludes with a list of examples that describe the capability of the language extensions.

C.1 Stream query language (PSQL)

The PSQL language extends SQL constructs and consists of an additional data type
(“stream”). The stream data type is defined using a relational schema and consists of
an ordered set of tuples. Each tuple has an associated timestamp, which determines its
temporal validity. Theoretically, a stream represents an infinite set of tuples, however

the scope of the tuples is determined by the window.

163

Appendix C Appendix: PSQL - Extended Query Language for Streams 164

Definition: Every stream 'S’ has a schema Rs and contains an ordered set of tuples Os
adhering to the relational schema Rs. The stream °S’ follows "append only’ semantics.
Each tuple in the stream is associated with a timestamp, which represents the time the
tuple was appended to the stream. A stream represents a temporal stream if the set of

tuples (Os) is ordered in accordance to its associated time stamp.

Definition: A query Q is defined in terms of relational operators on a set of streams.
A query has access to unbounded but finite items of the stream. The bounds on number
of data items accessed by a query Q are described by means of a window operation on

individual streams.

A stream data management system may maintain the entire historical record of all the
data items ever encountered by the stream. However, limited main memory and the
higher latency costs of accessing secondary memory requires prioritized access to the
limited memory resources. Sliding window specifications on streams provide preliminary
estimates on the amount of memory required by each of the query definitions. Cumulative
memory requirements need to be ascertained from a set of active continuous queries. The
query language needs to be descriptive to provide necessary information to determine
the number of data tuples that should be maintained in DSMS main memory for each
of the streams. Such cumulative memory requirements can be determined if the window
specifications support similarity and subsuming operators. It should be noted that most
present implementations of DSMS do not consider tuple sharing between multiple queries
and have therefore not built the language constructs to represent the subsuming of the

streamm windows.

Data management systems may choose to maintain additional tuples either in the main
memory or in secondary storage or a combination of the two. Alternatively, it may
maintain synopsis on the historical data tuples that are out of the scope of the union of
window specifications. However, for the scope of the experiments discussed in this thesis
considered that DSMS maintains the streams exclusively in the main memory. However,

the PSQL allows storage attributes at the time of the creation of the stream.

PSQL supports relational operators over streaming data and relation data. It supports
traditional data storage types like tables and views, while the streaming data is stored
in the stream data container. A typical query expression may associate the query
operations between the streaming data and data held in traditional data containers
like tables and views. PSQL does not distinguish between various data containers
while specifying the relational operators. The only notable difference is that the query
referencing the stream container specifies the scope of the query by means of the windowing
operations. The query language does not impose any restrictions on the type of operations
performed by the operators, but necessitates that the operators that allow streains as
input produce a stream as an output. That is to say that if either of the inputs to the

operator is a stream, the output of the operator is considered to be a stream. However,

Appendix C Appendix: PSQL - Extended Query Language for Streams 165

the operators that exclusively operate on a static data container produce static outputs
and are considered to be static datasets. The classification was carried out with the aim
of allowing independent optimisation of the static and dynamic parts of the query. In
some specific cases, the query scrambling techniques may result in two distinet parts of

the query tree, where the root node evaluates the static and stream relations.
As the PSQL distinguishes between the streamns and static relations on the basis of the
windowing operations, the query executable plans are produced in order to:
1. Use the relational semantics to specify the operations between the data streams
and data tables.

Produce plans that reduce computational costs by evaluating static relations for

[N

minimal number of times and cache the static result set for operation against with

the streaming data.
3. Produce query plans that can be represented as a series of operator executions.
4. Reduce the computational costs from updates to static relational data tables.
5. Allow the use of standard join operations and multiple join operations.

6. Identify tuple-level resource sharing and permit sharing of intermediate results

between multiple queries where possible. The resource sharing may require modifications

to query scheduling and the language should allow identification of such correlation

between query specifications.

The above streamn execution strategy allows us to specify the continuous queries. A
continuously executing query is valid for some temporal interval during which the streams
are monitored and the query results evaluated, and therefore associating the temporal
constraints with each of the query specifications. The temporal constraints are normally
specified in terms of the wall clock time, but could also be signalled by means of
events. The temporal constraints on the query execution remain optional. DSMS like
StreamDB(Arasu, Babcock, Babu, Datar, Ito, Motwani, Nishizawa, Srivastava, Thomas,
Varma, and Widom 2003) and TelegraphCQ (Chandrasekaran, Cooper, Deshpande,
Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Raman, Reiss, and Shah 2003)

assume the queries to be valid from the time of submission to time of deletion.

There is a number of performance criteria for optimizing the query performance in
a DSMS. For examiple, certain queries may require strict warranties on timeliness of
query response and permit partial evaluation of the query. Alternatively some queries
may require complete evaluation at the cost of permissible delays. While the DSMS
maintains ultimate control in determining the exact order of query evaluations, PSQL

allows queries to specify the performance optimisations.

Appendix C Appendix: PSQL - Extended Query Language for Streams 166

C.1.1 Similarity features of PSQL

A sequence of data items representing the stream can be compared on the basis of the
schema and their temporal characteristics, while those in the static tables need only be
equated on the basis of their schema. To enable tuple level sharing between queries in
stream management systems, the system needs to identity the overlaps between the data
sets used by each query. Consider that each shared data item is represented by a stream
Ss, and is shared between the number of queries. S has a schema R, and sequence of
O;. The shared data items can be used by queries that have a schema S; = [[S, and the
window moments generate a stream such that each item in the stream Oy € O, and in the
same causal ordering. For example, considering the two window specification Window-1
([STOCKWINDOW ROW(100)ONDATAARRIV AL|, and Window-2 [STOCKWINDOW ROW (5(
on stream “STOCK”. In this case, if the schema of Window-1 and Window-2 are equal,
the window specifications allow tuple sharing between the streams. In the above example

Window-2 can be subsumed by the Window-1.

PSQL allows identification of such similarity expressions as it takes into account both the
data schema and window moment semantics. Additionally, the optional temporal clause
coupled with scheduling hints, such as periodic, allow for synchronizing the window

moments across the queries.

C.2 Comparison with other languages

One of the main distinguishing features of the PSQL is that it does not distinguish
between the streaming and the non-streaming datasets. It considers each of the datasets
and the intermediate results as a snapshot of the state at a particular time. A state
that remains unaltered over an interval becomes a potential candidate for retention in
the limited cache space. The language allows the data management system to uniquely

identify and specify such states and the temporal ordering in which they are evaluated.

C.2.1 CQL

Continuous Query Language (CQL) (Arasu, Babu, and Widom 2003) was developed for
StreamDB a stream data management system based on two classes of operators, the
stream operators and the relation operators. In CQL terminology - a streain represents
an unbounded bag of tuples with ’append only’ semantics, while a relation is defined
as time varying bag of updatable tuples. CQL primarily converts the stream into
relations to take advantage of the standard relational operators, and finally converts
the relation into the stream for continuous query semantics. The current specification

of the CQL relies on time based sliding windows, whereas PSQL provides a wider range

Appendix C Appendix: PSQL - Extended Query Language for Streams 167

of sliding window semantics. CQL has ability to detect equivalence between the sliding
windows can be exploited to detect common components between multiple queries and
is not designed to consider tuple sharing between multiple queries. The CQL model to
create the relation from streams prohibits it from detecting tuple level sharing between
multiple queries. PSQL on the other hand does not distinguish between data containers,
but instead depends on the datasets. This extended capability of PSQL allows it to
incorporate the semantics of both SQL and CQL. In addition, PSQL contains explicit
scheduling hints that determine the liveliness of the query, a feature that is not catered
for in CQL.

C.2.2 ATLaS

ATLaS (Wang and Zaniolo 2003) adds to SQL the ability to define new User Defined
Aggregates (UDA) and table functions for data mining applications, which accept stream
inputs and produce output in the form of data streams. ATLaS provides semantics for
expressing UDAs with both traditional blocking aggregates and non-blocking aggregates
- such as online aggregates and the continuous aggregates used for time series - in
a syntactic framework that makes it easy to identify non-blocking aggregates. ATLaS
defines SQL extensions, and describes three distinct blocks, namely initialisation, aggregate
definition and the termination block. The initialisation block is executed immediately
at query submission, while the iterate block is executed for each of the query evaluation
and the termination block is executed at the end of the query interval. The ATLaS
structure imposes strict scheduling constraints on the responsiveness of the query, which
makes it unsuitable for direct application in DSMS, which usually control the operator
scheduling characteristics. The iterate block is evaluated for each execution step and
needs to be appropriately described to restrict its evaluation to newly arrived data items
in the stream. Also, the presence of the initialisation and termination blocks provides
possibilities of maintaining state information while executing the query. Maintaining
state information on an individual query basis is bound to either restrict the capability
of the query engine or increase the complexity of sub-expression matching in a query

optimizer.

C.2.3 Tapestry

Tapestry queries (Terry, Goldberg, Nichols, and Oki 1992) are expressed using SQL
syntax. At time ¢, the result of a Tapestry query Q contains the set of tuples logically
obtained by executing Q as a relational SQL query at every instant t < t and taking
the set union of the results. The semantics for Q is equivalent to the CQL query
operations on relations. Tapestry does not support sliding windows over streams or any

relation-to-stream operators.

Appendix C Appendix: PSQL - Extended Query Language for Streams 168

CQL remains the most closely related language to PSQL, which was inspired by the
former. PSQL extends the capability of CQL to allow the possibilities of incorporation
of tuple sharing between the query plans. It departs from CQL’s notion of streams
and relations and is based on the notion of temporal datasets instead. However, PSQL
adopts the basic window specification semantics of CQL and extends it to associate the
scheduling criteria with the window specifications. It also supports additional window

definitions like landmark and snapshot windows.

C.3 Language - yacc representation

The following is the listing of the yacc implementation of PSQL. The yacc representation
is provided as an alternative to BNF form of the language representation, the keywords

appearing in CAPITALS represent tokens.

start
: psqlcommand ’;’ {parse_tree = $1; YYACCEPT;}
psglcommand
: ddl
{$$ = dd1($1);}
| dml
{$$ = am1($1);}
ddl
createstreanm
{3 = $1;%
| dropstream
{3$ = $1;%
| modifystream
{$% = $1;}
createstream

: KW_CREATE KW_STREAM DV_STRING ’(° type_attribute_list ’)’
{$$ = create($3, $5, 0);1%

| KW_CREATE KW_STREAM °(’ storage_type ’)’ DV_STRING °>(’ type_attribute_list
{$$ = createspecificstorage($6, $4, $8, 0);}

| KW_CREATE KW_TABLE DV_STRING ’(° type_attribute_list ’)’

Appendix C Appendix: PSQL - Extended Query Language for Streams 169

{$$ = create($3, $5, 1);}
| KW_CREATE KW_TABLE > (’ storage_type ’)’ DV_STRING ’(’ type_attribute_list ’
{$$ = createspecificstorage($6, $4, $8, 1);}

dropstream
: KW_DROP KW_STREAM DV_STRING
{$$ = drop($3);}
| KW_DROP KW_TABLE DV_STRING
{$$ = drop($3);}

modifystream

: KW_MODIFY KW_STREAM DV_STRING KW_ADD °(’type_attribute_list’)’
{$$ = modify($3,%$6, true);?

| KW_MODIFY KW_STREAM DV_STRING KW_DELETE ’ (’ type_attribute_list’)’
{$$ = modify($3,$6, false);}

| KW_MODIFY KW_TABLE DV_STRING KW_ADD ’(’type_attribute_list’)’
{$$ = modify($3,$6, true);}

| KW_MODIFY KW_TABLE DV_STRING KW_DELETE ’(’ type_attribute_list’)’
{$%$ = modify($3,$6, false);}

storage_type
: ST_PRIMARY
{$$ = ST_PRIMARY;}
| ST_HYBRID
{$$ = ST_HYBRID;}
| ST_SECONDARY
{$$ = ST_SECONDARY;}

type_attribute_list
: attribute_spec ’,’ type_attribute_list
{$$ = schema($1, $3);}
| attribute_spec

{8% = $1;}

attribute_spec
: DV_STRING D_INTEGER
{$$ = defineInt($1);}

Appendix C Appendix: PSQL - Extended Query Language for Streams 170

| DV_STRING D_FLOAT
{$$ = defineFloat($1);}
| DV_STRING D_CHAR ° [’ DV_INT °]°
{$$ = defineString($1, $4);}
| DV_STRING D_BYTE °[’ DV_INT °’]°
{$$ = defineByte($1, $4);}
| DV_STRING D_TIME
{$$ = defineTime($1) ;7

dml
! query
{$$ = query($1);}
query
selectfromwhere
{3$ = $1;}
selectfromwhere
selectclause fromclause optionalwhereclause optionalgroupbyclause optionalo
{$$ = selectnode($1, $2, $3, $4, $5, $6, $7);}
selectclause
: KW_SELECT KW_DISTINCT nonmd_projterms_list
{$$ = selectclause(true, $3);}
| KW_SELECT nonmd_projterms_list
{$$ = selectclause(false, $2);}
| KW_SELECT KW_DISTINCT ’x’
{$$ = selectclause(true, 0);}
| KW_SELECT ’x*°
{$$ = selectclause(false, 0);}
fromclause

: KW_FROM nonmd_relation_list
{8 = $2;1

Appendix C Appendix: PSQL - Extended Querv Language for Streams 171

optionalwhereclause
: KW_WHERE nonmd_condition_list
{8% = $2;}
| nothing

3

optionalgroupbyclause
: KW_GROUP KW_BY nonmd_attribute_list
{$% = $3;2
| nothing

3

optionalorderbyclause
: KW_ORDER KW_BY nonmd_attribute_list
{8$ = $3;}
| nothing

y

validityclause
KW_FOR timeclause
{$$ = valid($2);}
| nothing

b

windowlist
>[’ windowclause ’]’
{$$ = $2; 3}
| nothing
{$$ = 0;2

windowclause
: windowspecification KW_ON schedulingcriterion ’,’ windowclause
{$$ = windowlist(window($1,$3),$5);}
| windowspecification KW_ON schedulingcriterion
{$$ = window($1,$3);}
| windowspecification ’,’ windowclause
{$$ = windowlist (window($1,0),$3);}

| windowspecification

Appendix C Appendix: PSQL - Extended Query Language for Streams 172

{8% = $1;}

windowspecification

: DV_STRING KW_WINDOW WT_ROWS ’>(’ DV_INT ’)°
{$$ = windowrows($1,$5);}

| DV_STRING KW_WINDOW WT_TIME ’(’> DV_STRING ’,’ DV_STRING ’)°
{$$ = 0;}

| DV_STRING KW_WINDOW WT_LANDMARK ’(’ datetimestamp ')’
{$$ = windowlandmark($1, $5);}

| DV_STRING KW_WINDOW WT_SNAPSHOT
{$$ = windowsnapshot ($1);3}

| DV_STRING KW_WINDOW WT_NOW
{$$ = windownow($1);}

| DV_STRING KW_WINDOW WT_UNBOUNDED
{$$ = windowunbounded($1);}

schedulingcriterion
: SC_DATAARRIVAL
{$$ = schedule(SC_DATAARRIVAL);Z}
| SC_SNAPSHOT
{$$ = schedule(SC_SNAPSHOT);}
| SC_PERIODIC
{$$ = schedule(SC_PERIODIC);}
| SC_OVERFLOW
{$$ = schedule(SC_OVERFLOW);}

timestamp
: DV_INT ’::’ DV_INT ’::’> DV_INT
{$$ = time($1, $3, $5);}
| DV_INT T_HOUR DV_INT T_MIN DV_INT T_SECONDS
{$$ = time($1, $3, $5);}

datetimestamp
DV_INT °/’ DV_INT >/’ DV_INT ’,’ timestamp
{$$ = datetime($1,$3,$5,87);}

Appendix C Appendix: PSQL - Extended Query Language for Streams 173

timeclause
1 assignment_operation ’;’ condition ’;’ arithmetic_operation ’)°

assignment_operation
: D_TIME DV_STRING C_EQ DV_STRING

nonmd_projterms_list
: projectionterm ’,’ nonmd_projterms_list
{$$ = projectlist($1, $3);}
| projectionterm
{$%= $1;}
| nothing

H

projectionterm

: arithmetic_operation

{3$ = $1;2
| aggregation_operator
{36 = $1;}

aggregation_operator
: FN_MIN °(’ attribute ’)’
{$$ = function(MIN, $3);}
| FN_MAX ’(’ attribute ’)’
{$$ = function(MAX, $3);}
| FN_COUNT ’(’ attribute ’)’
{$$ = function(COUNT, $3);}
| FN_COUNT > (> % °)?
{$$ = function(COUNT, 0);}
| FN_SUM ’(’ attribute ’)’
{$$ = function(SUM, $3);}
| FN_SD ’(’ attribute ’)’
{$$ = function(SD, $3);}
| FN_MEAN ’(° attribute ’)°’
{$$ = function(MEAN, $3);}

Appendix C Appendix: PSQL - Extended Query Language for Streams

174

arithmetic_operation

attribute
{8%= $1;}
constant
{8$ = 812
datetimestamp
{8% = $1;}
arithmetic_operation ’+’ arithmetic_operation
{$$ = arithOp(aDD, $1, $3);3
arithmetic_operation ’-’ arithmetic_operation
{$$ = arithOp(SUB, $1, $3);}
arithmetic_operation ’*’ arithmetic_operation
{$$ = arithOp(MUL, $1, $3);3
arithmetic_operation ’/’ arithmetic_operation
{$$ = arithop(DIV, $1, $3);3
»(’ arithmetic_operation ’)’

{88 = $2;}

nonmd_relation_list

: relation ’,’ nonmd_relation_list

{$$ = relationlist($1, $3);}
relation

{8% = $1}

nonmd_condition_list

>(’ nonmd_condition_list ’)’
condition KW_AND nonmd_condition_list
{$$ = conditionlist(AND, $1, $3);}
condition KW_OR nonmd_condition_list
{$$ = conditionlist(OR, $1, $3);}
condition KW_NOT nonmd_condition_list
{$$ = conditionlist(NOT, $1, $3);}
condition

{$$ = $1;%

Appendix C Appendix: PSQL - Extended Query Language for Streams

=~

(4]

nonmd_attribute_list

: attribute ’,’ nonmd_attribute_list
{$$ = attribtolist($1, $3):}
| attribute

{$$ = attriblist($1);}

relation
: DV_STRING
{$$ = relationnode($1);2}
| DV_STRING KW_AS DV_STRING
{$$ = relation($1, $3);3}

condition

arithmetic_operation C_LT arithmetic_operation
{ $$ = condition(CO_LT, $1, $3);2}

| arithmetic_operation C_LE arithmetic_operation
{ $$ = condition(CO_LE, $1, $3);}

| arithmetic_operation C_EQ arithmetic_operation
{ $$ = condition(CO_EQ, $1, $3);}

| arithmetic_operation C_NE arithmetic_operation
{ $$ = condition(CO_NE, $1, $3);}

| arithmetic_operation C_GE arithmetic_operation
{ $$ = condition(CO_GE, $1, $3);2}

| arithmetic_operation C_GT arithmetic_operation
{ $$ = condition(CO_GT, $1, $3);}

attribute
: DV_STRING °’.’ DV_STRING
{$$ = attributenclass($1, $3);2
| DV_STRING

{$$ = attribute($1);}

constant
: DV_QSTRING
{$$ = constantstring($1);}
| DV_INT

Appendix C Appendix: PSQL - Extended Query Language for Streams 176

{$$ = constantint($1);}
| DV_FLDAT
{$$ = constantfloat($1);}

nothing

C.4 Query examples

PSQL specifies the semantics for creation, modification and deletion of data containers.

It implements a restricted type system that consists of following data types:
INTEGER Integer data type, the size of 'int’ data type in C

REAL Real data type, the size of 'float’ data type in C

CHAR A single char data type, is also implemented as CHAR[| arrays.

BYTE An array of bytes.

TIME A time data type with a fixed format dd/mm/yyyy, HH::MM::SS.

Consider a stream application for data management in a sensor network system used
for monitoring the stocks in a supermarket. The stock stream is obtained from items
appended to the stream on addition /withdrawal of an item from the shelf. The type of
possible items that can be stacked on the shelf are stored in a static table. Additionally,

the sensor network periodically generates a temperature log. The following set of

commands defines the procedure to create the streams and static tables.

CREATE STREAM STOCK (Shelfld INT, Barcode INT, ItemTypeld INT, ItemDesc
CHAR|[255], expiry DATETIMESTAMP);

CREATE TABLE TYPE (Shelfld INT, ItemTypeld INT, ItemTypeDesc CHAR[255],
MaxTemperature INT};

CREATE STREAM TEMPLOG (Shelfld INT, Temperature INT);

A very brief list of probable queries are illustrated below:

Query 1: Monitor temperature within a range, for an unbounded time, translates to :

Select * from TEMPLOG where Temperature > 5 and Temperature < -2;

Appendix C Appendix: PSQL - Extended Query Language for Streams 177

Query 2: Strictly monitor the temperature for ice cream shelf for next two days, report
every 30 seconds, is represented as:

Select * from TEMPLOG where Temperature > 5 and Temperature < -2 FOR(t
= NOW: t < NOW + 02/00/0000,00::00::00; t = t + 00/00/0000,00::00::30):

Query 3: Produce the list of items stocked in a shelf since yesterday, translates to:

Select * from STOCK where Shelfld = 3 [STOCK window Landmark(NOW-1)]

Query 4: Monitor Stock for wrongly placed items and report only for last 100 items,
is formulated as:
Select 5.Shelfld, S.BarCode, S.ItemTyvpeDesc from STOCK AS S, TYPE AS T
where S.ItemTypeld = T.ItemTypeld AND S.Shelfld = T.Shelfld [S WINDOW
ROWS(100) ON DATAARRIVAL};

The PSQL query language allows an extensive list of query expressions. The added

advantage of defining the query delivery specification allows the PSQL to determine the

intervals at which the result sets need to be created and delivered.

Appendix D

Appendix: Related Work

D.1 Publications

Zhou, J., Hall, W., De Roure, D. and Dialani, V. (2005) Supporting Collaborative
Resource Sharing on the Web: A Peer-to-Peer Approach to Hypermedia Link

Services. Submitted to ACM Transactions on Internet Technology.

Zhou, J., Dialani, V., De Roure, D. and Hall, W, (2003) A Distance-based Semantic
Search Algorithm for Peer-to-Peer Open Hypermedia Systems. In Proceedings
of The Fourth International Conference on Parallel and Distributed Computing,

Applications and Technologies, pp. 7-11, Chengdu, China.

Zhou, J., Dialani, V., De Roure, D. and Hall, W. (2003) A Semantic Search Algorithm
for Peer-to-Peer Open Hypermedia Systems. In Proceedings of The First Workshop
on Semantics in Peer-to-Peer and Grid Computing, pp. 43-54, Budapest, Hungary.

Moreau, L., Miles, S., Goble, C., Greenwood, M., Dialani, V., Addis, M.,et.al. (2003)
On the Use of Agents in a Biolnformatics Grid. In Proceedings of Proceedings of
the Third IEEE/ACM CCGRID’2003 Workshop on Agent Based Cluster and Grid
Computing, pp. 653-661, Tokyo, Japan. Lee, S., Sekguchi, S., Matsuoka, S. and
Sato, M., Eds.

Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T. and Moreau, L.
Personalised Grid Service Discovery. In Proceedings of 19th Annual UK Performance
Engineering Workshop (UKPEW’03), pp. 131-140, University of Warwick, Coventry,
England.

Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T. and Moreau, L.
Personalised Grid Service Discovery. IEE Proceedings Software: Special Issue on

Performance Engineering 150(4):pp. 252-256.

178

Appendix D Appendix: Related Work 179

Moreau, L., Avila-Rosas, A., Dialani, V., Miles, S. and Liu, X. (2002) Agents
for the Grid: A Comparison with Web Services (part 1I: Service Discovery). In
Proceedings of Workshop on Challenges in Open Agent Systems -(-}, pp. 52-56,
Bologna, Italy.

Moreau, L., Miles, S., Goble, C., Greenwood, M., Dialani, V., et.al(2002) On
the Use of Agents in a Biolnformatics Grid. In Proceedings of Network Tools
and Applications in Biology (NETTAB’2002) — Agents in Bioinformatics -(-},
Bologna, Italy.

Dialani, V., Miles, S., Moreau, L., De Roure, D. and Luck, M. (2002) Transparent

fault tolerance for web services based architectures. In Proceedings of 8th International
Europar Conference (EURO-PAR’02) 2400(-), pp. 889-898, Paderborn, Germany.

References

9075, ISO/IEC (1992, 11). Database language sql, international standard iso/iec
9075:1992. American National Standard X3.135-1992, American National
Standards Institute, New York, NY 10036.

Abramson, David, Rajkumar Buyya, and Jonathan Giddy (2002). A computational
economy for grid computing and its implementation in the nimrod-g resource
broker. Future Gener. Comput. Syst. 18(8), 1061-1074.

Albers, Susanne (1997). Better bounds for online scheduling. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pp. 130-139. ACM

Press.

Amsaleg, Laurent, Michael J. Franklin, and Anthony Tomasic (1998). Dynamic query
operator scheduling for wide-area remote access. Distrib. Parallel Databases 6(3),
217-246.

Ankolekar, A. et.al. (2001). Daml-s: Semantic markup for web services. In Proceedings

of the International Semantic Web Working Symposium (SWWS).
Arasu, Arvind, Brian Babcock, Shivnath Babu, Mayur Datar, Keith o, Rajeev

Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit Varma, and
Jennifer Widom (2003). Stream: The stanford stream data manager. IEEE Data
Eng. Bull. 26(1), 19-26.

Arasu, Arvind, Shivnath Babu, and Jennifer Widom (2003, October). The cql
continuous query language: Semantic foundations and query execution. Technical
Report http://newdbpubs.stanford.edu/pub/2003-67, Stanford University.

Arasu, Arvind and Jennifer Widom (2004). Resource sharing in continuous
sliding-window aggregates. pp. 336-347. Morgan Kaufmann.

Atkinson, Malcolm, Ann Chervenak, Peter Kunst, Inderpal Narang, Norman Paton,
Dave Pearson, Arie Shoshani, and Paul Watson (2004). The Grid: Blue Print for
a New Computing Infrastructure (Second ed.)., Chapter Data Access Integration
and Management. Morgan Kauffmann.

Avnur, Ron and Joseph M. Hellerstein (2000). Eddies: continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pp. 261-272. ACM Press.

180

REFERENCES 181

Babcock, Brian, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom
(2002). Models and issues in data stream systems. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp- 1-16. ACM Press.

Babcock, Brian, Shivnath Babu, Rajeev Motwani, and Mayur Datar (2003).
Chain: operator scheduling for memory minimization in data stream systems. In
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pp. 253-264. ACM Press.

Berners-Lee, T., J. Hendler, and O. Lassila (2001). Scientific American. Scientific

American.

Borodin, Allan and Ran El-Yaniv (1998a, April). Online Computation and
Competitive Analysis (1 ed.)., Chapter 2.Introduction to Randomized Algorithims,
pp- 432. Cambridge University Press.

Borodin, Allan and Ran ElYaniv (1998b, April). Online Computation and
Competitive Analysis (1 ed.).. Chapter 7. Request-Answer Games, pp. 432.

Cambridge University Press.

Brucker, Peter (2001). Scheduling Algorithms, Chapter 5. Parallel Machines, Section
5.1. Springer-Verlag New York, Inc.

Buyya, Rajkumar, David Abramson, and Jonathan Giddy (2001). Nimrod-g resource

broker for service-oriented grid computing. IEEE Distributed Systems 2(7).

Carney, D., U. C etintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik (2002, August). Monitoring streams - a
new class of data management applications. In In Proc. of 28th VLDB Conference,
pp- 84-89.

Carr, L. A., D. C. De Roure, W. Hall, and G. J. Hill (1995). The distributed
link service: A tool for publishers,authors and readers. In Proceedings of the
Fourth International World Wide Web Conference: The Web Revolution, Boston,
Massachusetts, pp. 647—656.

Carr, L. A., W. Hall, S. Bechhofer, and C. A. Goble (2001). Conceptual linking:
Ontology-based open hypermedia. In Proceedings of the Tenth International World
Wide Web Conference, Hong Kong, pp. 334-342.

Chakraborty, Dipanjan (2004, June). Service Discovery and Compsition in Pervasive

Environments. Ph. D. thesis, University of Maryland, Baltimore County.

Chakraborty, Dipanjan, Anupam Joshi, Tim Finin, and Yelena Yesha (2004, July).
Towards Distributed Service Discovery in Pervasive Computing Environments.

IEEE Transactions on Mobile Computing.

Chandrasekaran, Sirish, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,

REFERENCES 182

Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah (2003). Telegraphcq:

Continuous dataflow processing for an uncertain world. In CIDR.

Chandrasekaran, Sirish, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred
Reiss, and Mehul A. Shah (2003). Telegraphcq: continuous dataflow processing. In
Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pp. 668—668. ACM Press.

Chandrasekaran, Sirish and Michael J. Franklin (2003). Psoup: a system for streaming
queries over streaming data. The VLDB Journal 12(2), 140-156.

Chen, Jianjun, David J. DeWitt, Feng Tian, and Yuan Wang (2000). Niagaracq: a
scalable continuous query system for internet databases. SIGMOD Rec. 29(2),
379-390.

Clark, David (2001). Face-to-face with peer-to-peer networking. Computer 34(1),
18-21.

Clarke, lan, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong (2001). Freenet:
A Distributed Anonymous Information Storage and Retrieval System. Lecture
Notes in Computer Science 2009, 46+.

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun.
ACM 13(6), 377-387.

Dang, Viet Dung and Nicholas R. Jennings (2004). Generating coalition structures
with finite bound from the optimal guarantees. In AAMAS ’04: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 564-571. IEEE Computer Society.

DasGupta, Bhaskar and Michael A. Palis (2000). Online real-time preemptive
scheduling of jobs with deadlines. In Proceedings of the Third International
Workshop on Approzimation Algorithms for Combinatorial Optimization, pp.
96-107. Springer-Verlag.

Date, C. J. (1995). An introduction to database systems (6 ed.), Volume xxiii of
Addison-Wesley systems programming series. Addison-Wesley Pub. Co.

De Roure, D., N. Walker, and L. Carr (2000). Investigating link service infrastructures.
In Proceedings of ACM Hypertext 2000, pp. 67-76.

De Roure, D. C., L. A. Carr, W. Hall, and G. J. Hill (1996). A distributed hypermedia
link service. In Proceedings of the Third International Workshop on Services in
Distributed and Networked Environments (SDNE96), pp. 156-161.

Dialani, Vijay, Dieter Gawlick, Cecile Madsen, Susan Malaika, and Shailendra Mishra
(2005). Information dissemination in the grid environment. pp. 1-54.

Dialani, V., S. Miles, L. Moreau, D. De Roure, and M. Luck (2002). Transparent
fault tolerance for web services based architectures. Lecture Notes in Computer
Sciences, EUROPAR(2002) 2400, 889-898.

REFERENCES 183

Eppstein, David, Zvi Galil, Giuseppe F. ITtaliano, and Amnon Nissenzweig (1997).
Sparsification - a technique for speeding up dynamic graph algorithms. Journal of
ACM 44(5), 669-G96.

FengTian and David J. De Witt (2003). Tuple routing strategies for distributed eddies.
In Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J.
Carey, Patricia G. Selinger, and Andreas Heuer (Eds.), VLDB 2003, Proceedings of
29th International Conference on Very Large Data Bases, September 9-12, 2003,
Berlin, Germany, pp. 333-344. Morgan Kautmann.

Foster, Tan, Carl Kesselman, Jeff Nick, and Steve Tuecke (2002). Grid services for
distributed systems integration. 35(6), 37--46.

Foster, Ian and Carl Kesselmann (1999). The grid. In Tan Foster and Carl Kesselimann

(Eds.), Blueprint for a new computing infrastructure. Morgan Kauffmann.

Fountain, Andrew M., Wendy Hall, Tan Heath, and Hugh Davis (1990).
MICROCOSM: An Open Model for Hypermedia with Dynamic Linking. In
European Conference on Hypertext, pp. 298-311.

Fran Berman (Editor), Geoffrey Fox (Editor), Anthony J.G. Hey (Editor) (2003,

April). Grid Computing: Making the Global Infrastructure a Reality (First ed.).
Wiley Publishers.

Frey, James, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke (2001).
Condor-g: A computation management agent for multi-institutional grids. In
HPDC °01: Proceedings of the 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10°01), pp. 55. IEEE Computer
Society.

Garay, Juan A., Joseph (Seffi) Naor, Bulent Yener, and Peng Zhao. On-line Admission
Control and Packet Scheduling with Interleaving.

Getta, J. R. (2000). Query scrambling in distributed multidatabase systems. In
Proceedings of the 11th International Workshop on Database and Expert Systems
Applications, pp. 647. IEEE Computer Society.

GNUTELLA. Gnutella. “http://gnutella.wego.com ”.

Goble, Carole, Steve Pettifer, and Robert Stevens (2004). The Grid: Blue Print for a
New Computing Infrastructure (Second ed.)., Chapter Knowledge Integration: In
Silico experiments in bioinformatics. Morgan Kauffmann.

Goel, Ashish, Adam Meyerson, and Serge Plotkin (2001). Distributed admission
control, scheduling, and routing with stale information. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, pp. 611-619.
Society for Industrial and Applied Mathematics.

Goldwasser, Michael H. (2003). Patience is a virtue: the effect of slack on

competitiveness for admission control. J. of Scheduling 6(2), 183-211.

REFERENCES 184

Goldwasser, Michael H. and Boris Kerbikov (2003). Admission control with immediate
notification. J. of Scheduling 6(3), 269-285.

Gouda, Mohamed G. and Umeshwar Dayal (1981). Optimal semijoin schedules for
query processing in local distributed database systems. In Proceedings of the 1981
ACM SIGMOD international conference on Management of data, pp. 164-175.
ACM Press.

Graham, R, E.L.Lawler, J.I{.Lenstra, and A.Rinnooy Kan (1979). Optimization and
approximation in deterministic sequencing and scheduling: A survey. In Discrete
Optimization 11, Volume 5 of Anals of Discrete Mathematics, pp. 287-326.

Graham, Steve, Doug Davis, Simeon Simeonov, Toufic Boubez, Ryo Neyama, and

Yuichi Nakamura (2001). Building Web Services with Java: Making Sense of Xml,
Soap, Wsdl, and Uddi. Indianapolis, IN, USA: Sams.

Guha, Sudipto, Nick Koudas, and Kyuseok Shim (2001). Data-streams and
histograms. In ACM Symposium on Theory of Computing, pp. 471-475.

Haas, Peter J. and Joseph M. Hellerstein (1999). Ripple joins for online aggregation.
In SIGMOD °99: Proceedings of the 1999 ACM SIGMOD international conference
on Management of data, pp. 287-298. ACM Press.

Haas, Z. and M. Pearlman (1998). The zone routing protocol (zrp) for ad hoc networks.

Hammad, Moustafa A., Michael J. Franklin, Walid G. Aref, and Ahmed K.
Elmagarmid (2003). Scheduling for shared window joins over data streams. In
Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J.
Carey, Patricia G. Selinger, and Andreas Heuer (Eds.), VL DB 2003, Proceedings of
29th International Conference on Very Large Data Bases, September 9-12, 2003,
Berlin, Germany, pp. 297-308. Morgan Kaufmann.

Hill, Jason, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer
Pister (2000). System architecture directions for networked sensors. SIGOPS Oper.
Syst. Rev. 34(5), 93-104.

Ilyas, Mohammad and Imad Mahgoub. Handbook of Sensor Networks. CRC Press.
lelectronic resource| (Engnetbase) This is a record with electronic access and is
only available through the Library’s Web catalogue or through the Internet. Mode
of access: Internet.

Ioanndis, Y.E. and Y.C. Kang (1990, May). Randomized algorithms for optimizing
large join queries. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, San Francisco, CA. ACM.

Kahan, J. P. and A. Rapoport (1994). Theories of Coalition Formation. Hillsdale,NJ:
Lawrence Erlbaum Associates.

Kemper, A, G Moerkotte, and K Peithner (1993, August). A blackboard architecture

for query optimization in object databases. In In the proceedings of the Conference

on Very Large Data Bases, pp. 543-554. Morgan Kaufmann Publishers Inc.

REFERENCES 185

Kiran, Ali S (1998). Chapter 21: Simulation and Scheduling, in Handbook of
Simulation: Principles, Methodology, Advances, Applications and Practice (1 ed.),

Volume 1. John Wiley and Sons Inc.

Klusch, Matthias and Andreas Gerber (2002). Dynamic coalition formation among
rational agents. JEEE Intelligent Systems 17(3), 42-47.

Kubiatowicz, J., D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao (2000, Nov). Oceanstore: An
architecture for global-scale persistent storage. In Proceedings of ACM ASPLOS.

Kumaran, Ilango Ilango and S. Ilango Kumaran (2001, November). Jini Technology:
An Overview. Pearson Education.

Lee, Chiang, Chi-Sheng Shih, and Yaw-Huei Chen (2001). Optimizing Large Join
Queries Using A Graph-Based Approach. Knowledge and Data Engineering 13(2),
208-315.

Lee, Jae-Ha (2003). Online deadline scheduling: multiple machines and
randomization. In Proceedings of the fifteenth annual ACM symposium on Parallel

algorithms and architectures, pp. 19-23. ACM Press.

Lee, Jae-Ha (2004). Online deadline scheduling: Team adversary and restart. In Klaus
Jansen and Roberto Solis-Oba (Eds.), Approzimation and Online Algorithms,
First International Workshop, WAQOA 2003, Budapest, Hungary, September 16-18,
2003, Revised Papers, Volume 2909 of Lecture Notes in Computer Science.
Springer.

Leung, Joseph Y-T. (2004, July). Handbook of Scheduling, Volume 1 of Computer and

Information Science Series. Chapman and Hall.

Lipton, Richard J. and Andrew Tomkins (1994). Ouline interval scheduling. In SODA:
ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and
Ezxperimental Analysis of Discrete Algorithms). ACM Press.

Litzkow, M.J., Miron Livny, and M.W.Mukta (1990). Condor - a hunter of
idle workstations. In In Proceedings of the IEEE Workshop on Experimental
Distributed Systems.

Lohman, G. and K. ONO (1990, August). Measuring the complexity of join
enumeration in query optimization. In Proceedings of the 16th International
Conference on Very Large Databases, Brisbane, Australia, pp. 149-159. VLDB
Endowment, Berkeley, CA.

Luo, Gang, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton (2002). A
scalable hash ripple join algorithm. In SIGMOD °02: Proceedings of the 2002
ACM SIGMOD international conference on Management of data, pp. 252-262.
ACM Press.

Lv, Qin, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker (2002). Search and

REFERENCES 186

replication in unstructured peer-to-peer networks. In Proceedings of the 16th

international conference on Supercomputing, pp. 84-95. ACM Press.

Madden, Samuel. Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman
(2002). Continuously adaptive continuous queries over streams. In Proceedings of
the 2002 ACM SIGMOD international conference on Management of data, pp.
49-60. ACM Press.

Michael and Jack Weast (2003, May). UPnP Design by Ezample: A Software
Developer’s Guide to Universal Plug and Play. Intel Press.

Miles, S., J. Papay, V. Dialani. M. Luck, K. Decker, T. Payne, and L. Moreau (2003a).
Personalised grid service discovery. In Proceedings of 19th Annual UK Performance
Engineering Workshop (UKPEW’03), 131-140.

Miles, S., J. Papay. V. Dialani. M. Luck, K. Decker, T. Payne, and L. Moreau (2003Db).
Personalised grid service discovery. IEE Proceedings Software: Special Issue on
Performance Engineering 150(4), 252-256.

Miller, Eric (2004). Weaving Meaning : An Overview of The Semantic Web. Presented
at the University of Michigan, Ann Arbor, Michigan USA.

Nabrzyski, Jarek, Schopf Jennifer M., and Weglarz Jan (2004). Grid Resource
Management - State of the Art and Future Trends, Volume 1 of International

Series in Operations Research and Management Science. Kluwer Academic Press.

Ng, Kenneth W., Zhenghao Wang, Richard R. Muntz, and Silvia Nittel (1999).
Dynamic query re-optimization. In SSDBM '99: Proceedings of the 11th
International Conference on Scientific on Scientific and Statistical Database
Management, pp. 264. IEEE Computer Society.

Norman, T J, A Preece, S Chalmers, N R Jennings, M Luck, V D Dang, T DD Nguyen,
V Deora, J Shao, W A Gray, and N J Fiddian (2003). Conoise: Agent-based
formation of virtual organisations. In Proceedings of 23rd SGAI International

Conference on Innovative Techniques and Applications of Al pp. 353-366.

Oram, Andy (2001). Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology
(1 ed.). OReilly Associates.

Ozcan, Fatma, Sena Nural, Pinar Koksal, Cem Evrendilek, and Asuman Dogac (1997).
Dynamic query optimization in multidatabases. JEEE Data Eng. Bull. 20(3),
38-45.

Perkins, Charles E. (2001). Ad hoc networking: an introduction. Addison-Wesley
Longman Publishing Co., Inc.

Perkins, Charles E. and Pravin Bhagwat (1994). Highly dynamic
destination-sequenced distance-vector routing (dsdv) for mobile computers.
In SIGCOMM, pp. 234-244.

REFERENCES 187

Perkins, Charles E. and Elizabeth M. Royer (1999). Ad-hoc on-demand distance vector
routing. In WMCSA °99: Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, pp. 90. IEEE Computer Society.

Plaxton, C. Greg, Rajmohan Rajaraman, Andr, and W. Richa (1997). Accessing
nearby copies of replicated objects in a distributed environment. In Proceedings of
the ninth annual ACM symposium on Parallel algorithms and architectures, pp.
311-320. ACM Press.

Qu, Changtao and Wolfgang Nejdl (2001). Exploring JXTASearch for P2P Learning

Resource Discovery.

Raman, V., A. Deshpande, and J. Hellerstein (2003, March). Using state modules for
adaptive query processing. In 19th International Conference on Data Engineering,
pp- 353-367.

Ratnasamy, Sylvia, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker
(2001). A scalable content-addressable network. In Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer

communications, pp. 161-172. ACM Press.

Ratsimor, Olga Vladi, Dipanjan Chakraborty, Sovrin Tolia, Deepali Khushraj,
Anugeetha Kunjithapatham, Anupam Joshi, Tim Finin, and Yelena Yesha (2002,
September). Allia: Alliance-based Service Discovery for Ad-Hoc Environments. In

ACM Mobile Commerce Workshop.
Ritter, Jordan (2001). Why Gnutella Cant Scale. No, Really.

Rowstron, A. and P. Druschel (2001, November). Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), 329-350.

Sandholm, Tuomas, Kate Larson, Martin Andersson, Onn Shehory, and Fernando
Tohm (1999). Coalition structure generation with worst case guarantees. Artif.
Intell. 111(1-2), 209-238.

Schwiegelshohn, Uwe and Ramin Yahyapour (2004). Grid Resource Management -
State of the Art and Future Trends, Volume 1 of International Series in Operations
Research and Management Science, Chapter Attributes for communication

between grid scheduling instances. Kluwer Academic Press.

Selinger, Patricia G., Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price (1979a). Access path selection in a relational
database management system. In Philip A. Bernstein (Ed.), Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, Boston,
Massachusetts, May 30 - June 1, pp. 23-34. ACM.

Selinger, P. Griffiths, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price

(1979b). Access path selection in a relational database management system. In

REFERENCES 188

Proceedings of the 1979 ACM SIGMOD international conference on Management
of data, pp. 23-34. ACM Press.

SETI. Seti@home. “http://setiathome.ssl.berkelev.edu”.

Sgall, Jiri (1998). Online scheduling — a survey, online algorithms: The state of the

art. Lecture notes in Computer Science (1442), 196-231.
Shah, Mehul A., Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J.

Franklin (2003). Flux: An adaptive partitioning operator for continuous query
systems. In ICDE, pp. 25-36.

Steinburnn, M, G Moerkette, and A Kemper (1997, August). Heuristic and
randomized optimization for the join ordering problem. Very Large Data Bases
Journal 6(3), 191-208.

Stoica, Ion, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan (2003). Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17-32.

Strom, Robert et al. (1998). Gryphon: An Information Flow Based
Approach to Message Brokering. Technical report, IBM TJ Watson
Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532, USA.
http://http://www.research.ibm.com /gryphon/issre98 /ext-abstract.html.

Swami, A. and A.Gupta (1988, June). Optimization of large join queries. In the
proceedings of the ACM SIGMOD conference on Management of Data, Chicago,
IL, pp. 8-17.

Swami, Arun N. (1989). Optimization of large join queries: Combining heuristic
and combinatorial techniques. In James Clifford, Bruce G. Lindsay, and David
Maier (Eds.), Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data, Portland, Oregon, May 31 - June 2, 1989, pp. 367-376.
ACM Press.

Sycara, K., J. Lu, M. Klusch, and S. Widoff (1999). Dynamic service matchmaking
among agents in open information environments. In Journal ACM SIGMOD
Record, Special Issue on Semantic Interoperability in Global Information Systems,
Ouksel, A., Sheth, A.(ed.).

Terry, Douglas, David Goldberg, David Nichols, and Brian Oki (1992). Continuous
queries over append-only databases. In SIGMOD ’92: Proceedings of the 1992
ACM SIGMOD international conference on Management of data, pp. 321-330.
ACM Press.

Tesfatsion, Leigh (2002). Agent-based computational economics (ACE): Growing
economies from the bottom up. In Artificial Life, Volume 8, pp. 55-82. The MIT

Press.

Tsvetovat, Maksim and Katia Sycara (2000). Customer coalitions in the electronic

REFERENCES 189

marketplace. In AGENTS "00: Proceedings of the fourth international conference
on Autonomous agents, pp. 263-264. ACM Press.

UDDI (2004). UDDI Specifications. Published by Oasis Working Group.

Urhan, Tolga, Michael J. Franklin, and Laurent Amsaleg (1998). Cost-based query
scrambling for initial delays. In SIGMOD ’98: Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, pp. 130-141. ACM
Press.

Viglas, Stratis D. and Jeffrey F. Naughton (2002). Rate-based query optimization
for streaming information sources. In SIGMOD 02: Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, pp. 37-48. ACM Press.

Wang, Haixun and Carlo Zaniolo (2003). Atlas: A native extension of sql for data
mining. In STAM Data Management.

Wang, Jie (Ed.) (2001). On-Line Deadline Scheduling on Multiple Resources, Volume
2108 of Lecture Notes in Computer Science. Springer.

Wiil, U. K. (1997). Open hypermedia: Systems, interoperability and standards.
Journal of Digital information 1(2).

Wooldridge, M. and N. R. Jennings (1995). Intelligent agents: Theory and practice.
Knowledge Engineering Review 10(2), 115-152.

Zhao, B. Y., J. D. Kubiatowicz, and A. D. Joseph (2001, April). Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing. Technical
Report UCB/CSD-01-1141, UC Berkeley.

Zhou, J., Vijay Dialani, D. De Roure, and W. Hall (2003). Parallel and distributed
computing, applications and technologies, 2003. In Proceedings of the Fourth

International Conference on Parallel and Distributed Computing, Applications and
Technologies, 2003, pp. 7T-11.

