
UNIVERSITY OF SOUTHAMPTON

Adaptive Resource Managelnent in

Large Scale Distributed Systems

by

Vijay K. Dialani

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

School of Electronics and Computer Science

25th November 2005

U:\IVERSITY OF SOUTHAMPTO~

ABSTRACT

FACULTY OF ENGINEERIKG AND APPLIED SCIEl\CE

SCHOOL OF ELECTRONICS AND COl\1PUTER SCIEl\CE

Doctor of Philosophy

by Vijay K. Dialani

An emergent trend in large scale distributed systems enables collaboration between

large numbers of independent resource providers. Grid computing and peer-to-peer

computing are part of this trend. Resource management in such systems is inherently

different from that found in traditional distributed systems, the key difference being

that the new classes of systems are primarily designed to operate under inconsistent

system information and temporally varying operating environments. Although primarily

used to enable collaboration of computational resources, these systems have also found

application in the field of distributed data management. Although the principles of

grid computing and peer-to-peer computing have found many applications, little effort

has been made to abstract the common requirements, in order to provide a conceptual

resource framework. This thesis investigates the alleviation of such common requirements

through investigations in the field of online scheduling, information dissemination in

peer-to-peer networks, and query processing in distributed stream processing systems.

A survey of system types is provided to highlight the new trends observed. A top dmvn

approach to developing a unifying model seems inapplicable and the range of problems

encountered in these system types can only be addressed by identifying common trends

and addressing them individually. Consequently, three application domains have been

identified in the respective fields of online scheduling, data dissemination and stream

query processing. Each of these application class is investigated individually. For each

application domain, a review of the state-of-the-art is followed by a precise definition

of the problem addressed in the application domain and the solutions developed are

substantiated with experimental evaluation. Findings from individual applications have

been summarized to generalize the observations towards an overall hypothesis.

11

The i11itial discussion of online scheduling requirements in computational grids is used to

develop an online guaranteed resource provisioning mechanism. This helps investigate

adaptive behavior in systems with centralized control and simple resource descriptions.

The investigation also highlighted information management requirements in online scheduling

systems. Similar requirements were identified in the field of open hypermedia systems

and pervasive computing environments, and a common approach was used to address

the problems in these domains. The collective set of requirements is addressed in

the generalized context of information dissemination in large scale systems. Adaptive

behaviour is investigated in the context of a large number of autonomous resources and

the self organizational behaviour of such networks. The self organizational behaviour

discussed in the context of information dissemination highlights the fact that adaptive

behaviour follows the principal of duality. The findings demonstrate that self-organization

can be achieved either by improving the provisioning of resources or by manipulating

the workload. It highlighted the fact that QoS definitions will play an important part in

future distributed systems. The concept of QoS and adaptive behaviour is investigated in

the context of a distributed stream processing system. This investigation has led to the

development of a stream query processing architecture with the capability to support

multiple query optimizations. A novel query processing language, a query planning

technique, an operator scheduling algorithm and an SP J operator are described in the

context of the data stream management system. \Vhile maintaining the focus on the

overall hypothesis, the thesis provides original contributions in each of the application

domains.

Contents

N om.enclat ure

Acknowledgements

I Introduction

1 Introduction
1.1 Adaptive systems

1.2 Classification of adaptive syst.ems
1.3 Application domains .
1.4 Contributions........
1.5 Structure of the thesis . . .
1.6 Suggested order for reading

2 Adaptive Resource Management in Large Scale Systems

II

3

2.1 Ad hoc Resource Groups.
2.1.1 Discussion

2.2 Resource management in ad hoc resource groups ..
2.2.1 Resource description and resource monitoring

2.3 Modelling the ad hoc resource groups
2.4 Relation to applications

2.4.1 Motivation ..
2.4.2 Objectives

2.4.3 Focus of the work
2.4.4 Application level goals
2.4.5 Discussion.....

2.5 Alternative systems view ...

Online Scheduling in Grid Systems

Online Scheduling
3.1 Introduction ..

3.1.1 Discussion ...
3.2 General definitions and review

3.2.1 Definitions

3.2.2 Review

iii

xii

xiii

1

2

3
5

6

7

9

10

12

13
15
17
19
19
21
22
22

22
23
23
24

27

28
28

30
31
31

33

COS TENTS

3.3 Problem definition
3.4 The semantics of job allocation

3.4.1 State transition representation of job status
3.5 Algorithm - Best Fit Interyal Scheduling (BFIS)

3.5.1 Analysis

3.6 Summary

4 Evaluation of the Online Scheduling Algorithrn
4.1 Experimental settings

4.l.1 Job generator
4.l.2 Scope of the eyaluation

4.l.3 Analysis ..
4.1.4 Discussion........

4.2 Description of Information exchange between Grid schedulers
4.3 Summary .

III Infonnation Dissemination in peer-to-peer systems

5 Resource Management in P2P environments
5.1 Peer-to-Peer computing
5.2 P2P systems

5.2.1 Unstructured P2P systems
5.2.2 Structured P2P systems ..

iv

34

35
35

36
38
39

41
41

41
42
42

44
44
45

47

48
49

49
50
50

5.3 Related algorithms and systems . . 52
5.3.1 Distance Vector and Link State based algorithms as applied to ad

5.3.2
5.3.3

hoc computing

Domain Kame System (DNS)
Coalition formation in Agent-based systems

5.4 Discussion.......

52
52

53
54

5.5 Additional application scenarios. 55
5.5.1 Peer-to-Peer Open Hyper Media Systems . 55
5.5.2 Collaborative service discovery in Services Oriented Architecture 56

5.6 Search requirements. 57

5.6.1 RDF representation of a query in P2P OHS 57
5.7 Discussion..... 59

5.8 Adaptive overlay formation 59
5.8.1 Formal description 61

5.9 Summary 62

6 P2P Coalition Formation and Search Algorithm
6.1 Introduction

6.l.1 Peer architecture
6.2 Notation.

6.2.1 Query structure and routing semantics
6.3 Algorithm and message types ...

6.3.1 Request to join the overlay

64
64
67

68
68

70

71

CONTENTS v

6.3.2 Processing the query responses for (Qrandom) hom Each Peer in
Prandom

6.3.3 Request for processing query .. .
6.3.3.1 Query processing at Peer Pi

6.3.4 Request for resource description

6.3.5 Notification of change in resources

6.4 Search mechanism ..
6.5 Overlay reorganisation
6.6 Observations

6.6.1 Limitations of the approach
6.7 Summary

7 Evaluation of the Search Algorithm
7.1 Introduction
7.2 Experimental evaluation

7.2.1 General setup
7.2.l.1 Resource distribution

7.2.2 Input data sets and data distribution.

71
71

72

72
72

72

73
74

75
76

77
77
78

79
79
80

7.2.3 Comparison with respect to an optimal topology 80
7.2.4 Experiments 82

7.2.4.1 Query routing strategies. 82
7.2.4.2 Effects of variation in link state table on routing costs 85

7.3 Conclusion

IV Query Processing in data stream management systems

8 Query Optimisation
8.1 Background.........

8.2

8.3

8.l.1 Query processing in relational database system.s
8.l.l.1 Query planning

8.l.l.2 Cost metrics and estimation techniques
8.l.l.3 Query planning techniques
8.l.l.4 Query re-optimisation

8.l.2 Summary

Query processing for streams . .
8.2.1 Motivation
8.2.2 Stream data management

8.2.3 '''indow semantics and specifications
8.2.4 Continuously Adaptive Continuous Queries (CACQ)
8.2.5 Adaptive join operators
8.2.6 Join semantics

Problem Definition
8.3.1 Selection and projection filter

8.3.2 Complex queries . .
8.3.2.1 Pipeline query

8.3.2.2 Star queries. .
8.3.2.3 Cyclic queries

88

92

93
94

95
95
96
96
97

98
98
98
99

.102

.104

· 105
.106

· 107
.109

.109

.110

· 111
.111

CONTENTS

8.3.2.4 Cross products
8.3.3 Bursts of data arriyal
8.3.4 Cost metrics

8.4 Query optimisation

8.4.1 Plan generation and re-optimisation
8.4.2 Query re-optimisation

8.4.2.1 A special case of n-way join.
8.4.2.2 Reductions for chain query

8.5 Application to distributed DSlvIS . . , . , . .
8,5.1 Selection operator

8.5.1.1 Data structure associated with the operator

8.5.2 Algorithms for select and project operators
8.5.2.1 Cost of processing the query with this probe

8.5.3 ?l1ulti-way join operator
8.5.4 Operator scheduling . , . , .. .
8,5.5 Statistical information collected,

8.6 Example.
8.7 Summary , . , . , , ,

9 DSMS - Implementation, Evaluation and Analysis
9.1 Implementation details ... , .", .. ,., ...

9.1.1 Architecture ,.,., .", .. "
9.1.2 Illustration memory management and scheduling

9.2 Experiments, .. "..... ., ,.
9.2,1 Select project operator analysis , ,

9.2.2 Query planning under variable data rates
9.2.3 Operator scheduling analysis

9.3 Summary . ,
9.3.1 Contributions., ...

V Conclusions and Appendices

10 Conclusions
10.1 Concluding remarks ,.,

10,1.1 Online scheduling, , .

10.1.2 Information dissemination
10.1.3 DSMS - Query processing

10.2 Future 'Work

A Appendix: Continuous Query Semantics

B Appendix: Survey of Large Scale Distributed Systems
B.1 Examples of Large Scale Systems

B.1.1 Services Oriented Architecture .
B.1.2 Grid computing ... ,

B,1.2.1 Compute Centric Grids
B.1.2,2 Data Centric Grids (DCG)

vi

· 111
.112
.112
.114
.115
.117

· 121
· 121
· 122

· 123
.124

· 126

· 127
· 127
· 129

· 130
, 131

.134

137

· 137
· 138
· 139
.140
.140

· 141
.143

· 145
.146

148

149

.149

· 150

· 151
· 151
· 151

153

155

· 155
· 156

· 157
.157

· 158

CONTENTS

B.1.3 Peer-to-Peer computing (P2P)
B.1.4 Ad hoc network systems

B.1.4.1 Sensor networks .. .
B.1.5 Agent-based computing economies
B.1.6 Discussion

B.2 Common characteristics
B.3 Summary

C Appendix: PSQL - Extended Query Language for Stream.s
C.1 Stream query language (PSQL) ..

C.1.1 Similarity features of PSQL
C.2 Comparison with other languages

C.2.1 CQL ...
C.2.2 ATLaS........ . .
C.2.3 Tapestry

C.3 Language - yacc representation
C.4 Query examples.

D Appendix: Related Work
D.1 Publications.

Bibliography

Vll

· 158
· 159
· 160
· 160
· 161
· 162
· 162

163

· 163
· 166
· 166
· 166
· 167
· 167
· 168
· 176

178
.178

180

List of Figures

1.1 An online scheduling system with resource migration. 4
1.2 Adaptive systems with dynamic resources. 5
1.3 Adaptive systems with evolying topologies. 5

1.4 Adaptive systems with QoS adaptation with load variance, under fixed
resources.

1.5 Organisation of thesis.

5
11

2.1 Distributed data streal11 111ana.ge111ent systen1s. 25

3.1 State transition of a job in a Grid scheduling system. 36

3.2 Online resource allocation with admission control to provide notifications
at release time 40

4.1 Simulating resource scheduling with failures.. 43
4.2 Comparison of BFIS, EXF and off-line scheduling strategy. 43

5.1 A linkbase expressed in RDF Syntax, taken from our publication 58
5.2 A typical query specification, taken from our research group's publication 58
5.3 Continual reorganisation through coalition re-evaluation 63

6.1 Peer Network, (A) An overlay showing disconnected sub-graphs clustered
over a single attribute, (B) An ideal overlay 'with a connected graph
clustered over a single attribute. 66

6.2 Overlay Selection - (A) A peer that selects the neighbours based on
maximum resource overlap (B) A peer that selects neighbours to maximize
the resources based on overlap and query routing history. 66

6.3 Peer architecture 67

6.4 Schematic representation of query routing 70

7.1 A zipF resource distribution. , , 80
7.2 Query throughput using the probabilistic routing algorithm for zipF resource

distribution and variable radius 1', 1 :S T :S 3, ;\'umber of peers = 20. ., 83
7.3 Query throughput using the broadcast routing algorithm. for zipF resource

distribution and variable radius 1', 1 :S T :S 3, Number of peers = 20. .. 83
7.4 Query throughput using the random walk routing algorithm for zipF

resource distribution and variable radius r, 1 :S T :S 3, Number of peers
= 20. , 84

7.5 Comparative query throughput between probabilistic, broadcast and random
walk routing algorithms for zipF resource distribution and variable radius
r, 1 :S T :S 3, Number of peers = 20. , 84

viii

LIST OF FIGURES IX

7.6 Transmission costs for the probabilistic routing algorithm for zipF resource
distribution and variable radius r, 1 ~ T ~ 3, Number of peers = 20. .. 85

7.7 Transmission costs for the broadcast routing algorithm for zipF resource
distribution and variable radius L 1 ~ T ~ 3, ~umber of peers = 20. .. 86

7.8 Transmission costs for the random walk routing algorithm for zipF resource
distribution and variable radius r, 1 ~ T ~ 3, N"umber of peers = 20. . . . 86

7.9 Comparative transmission costs for the probabilistic, broadcast and random
'walk routing algorithm for zipF resource distribution and variable radius
r, 1 ~ T ~ 3, Number of peers = 20. 87

7.10 Effect of variation in radius on effectiveness of the probabilistic routing
algorithm for zipF resource distribution and variable radius r, Number of
peers = 200. 88

7.11 Effect of variation in radii on effectiveness ofthe broadcast routing algorithm
for zipF resource distribution and variable radius r, Number of peers =
200. Note: Points in the graph overlap, the three curves are similaL .. 89

7.12 Cost for r=l using the probabilistic routing algorithm for zipF resource
distribution, N"umber of peers = 200. 89

7.13 Cost for r=2 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200. 90

7.14 Cost for r=3 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200. 90

7.15 Cost for 1'=1 r=2, r=3 using the broadcast routing algorithm for zipF
resource distribution, N"umber of' peers is 200. Note: Curves in the graph

8.1

8.2
8.3

8.4
8.5
8.6
8.7
8.8

overlap

\Vindow types .

Different Query Types
A typical query tree .
A typical query plan .
Reductions for different query types.
A typical operator flow generated by the planning algorithm.
Reductions for chain query.
Sparsification based query planning applied to distributed query planning
system.

8.9 Selection with modified IBS Tree .
8.10 A pipelined symmetric hash join with monitoring information

8.11 Example Queries ...
8.12 Logical plan for a single query.

8.13 Logical plan for a tvm queries ..
8.14 Shared logical plan for three queries.
8.15 Execution plan for a single query ..

8.16 Execution plan for a two queries ..
8.17 Execution plan for three queries, with parallelisation.

9.1 Block diagram: Query Processing Engine (QPE)
9.2 Effect of the IBS on time complexity
9.3 SP J individual query performance.

9.4 Data arrival rates of various streams and sub strean1.s.

· 91

.103

.110

.116

.117
119

· 120
· 122

· 123
· 125
· 132

· 133
· 133
· 134
.134

· 135
· 135
.136

· 140
· 142
.142

.144

LIST OF FIGURES

9.5 J\{emory requirements of various streams and sub streams ..
9.6 Delay Characteristics of various streams and sub streams. .

9.7 Comparative memory performance of scheduling strategies.

x

.144

. 145

. 146

List of Tables

2.1 Mapping application objectives to hypothesis 26

4.1 Simulation settings for eyaluation of online scheduling algorithm. 42

6.1 Choosing neighbours for coalitions formation 65
6.2 Kotation used for describing the algorithm. 69

7.1
7.2
7.3

Configurations used in P2P simulation
A simple topology.

......... 79

. 81

Adjacency matrix and its graphical topology for a small network, connectivity
k = 2 81

8.1 Stream Query Processing - Tuple and Stream Instrumentation Details . 131
8.2 Stream query processing - Operator instrumentation details . 131
8.3 Parameter description and symbols 132
8.4 Stream query processing - example queries. 133

9.1 Performance data of an IBS based SP J operator . 141

xi

Nomenclature

General

Gt < vt: Et , Ft , Ht >

vt
E t

Ft

H t

gt < Vt: et: ft, ht >
Vt

It
ht

Scheduling

Ji < ri:pi: di >

Pi

ri

FIFO

1\1

P2P Information Dissemination

Ri

C < ~,Pj, R i , Rj >

Hi

Q
Query Optimization

II

A global dynamic graph

A time varying set of nodes in a dynamic graph Gt

A time varying set of edges in a dynamic graph G t

A set of vectors to represent the capability of vt
A set of vectors to represent the capability of E t

A view of graph global graph Gt

A set of nodes in the local graph gt

A set of edges in the local graph gt

A set of local constraints on Vt

A set of local constraints on et

Computation Job

Processing Time

Release Time

Deadline

Slack Ratio

First In First Out ordering in a queue operation

Set of Machines

ith peer in the P2P network

A set of resources with peer Pi

A coalition between Pi and Pj based on Ri and Rj

Temporal trace of activities observed by Pi

A query to describe the resources for discovery

Select Operator

Project Operator

Join Operator

XII

Acknow ledgements

Every good thing comes to an end and this is no exception.

IVIy odyssey through different research groups here at Southampton and in the UK in

general is finally ending in this thesis. A great learning experience in itself and rewarding

in every aspect, this has been a path full of testing times and ample rewards. Lessons

learnt in this phase of my life are invaluable and hopefully guiding beacons towards my

future destinations. Having reached this destination and getting ready for a new one, I

can look back and say "It has been worth it" .

I am deeply endebted to Professor Anthony, J. G. HEY and Professor David DE ROURE,

for giving me a chance to complete this thesis and for maintaining a finn belief in me. In

this fast paced life, it is very rare that a student-advisor association has such a profound

impact. I am endebted to my supervisors for not only having devoted time in broadening

my horizons of knowledge, but also for taking interest in shaping my outlook towards

science and life in general.

I am also grateful for the support of some of the marvellous people at the University v,ho

have helped me in numerous ways that cannot be described in words. Eric Cooke has

been a pillar of strength and a wonderful mentor. Additionally, I would like to thank

friends like Jing Zhou, S D Ramchurn, Partha Dutta, Arouna \Vokeu, Sanjay Vivek,

Victor Tan, Mark Thompson and all the other colleagues at lAM for providing such a

vibrant and intellectually simulating environment.

Last but not least, I would like to thank and express my gratitude to my parents and

my wonderful sister 'J', for everything.

Xlll

To ...
1\1y PaTents, my sisteT J and ETic Cooke

xiv

Part I

Introduction

1

Chapter 1

Introduction

Non-adaptive computational systems capture only one view of the world, usually the

one that ,vas defined at design time. They fail to take into consideration that modern

distributed systems by their very nature are non-deterministic and dynamically evolving

- a fact also supported by the recent advances in the field of pervasive computing

infrastructures. Consequently, non-adaptive systems tend to operate in sub-optimal

states. Although, in some cases exhaustive enumeration of all possible states of operation

allows application developers to impart adaptive behaviour to their applications, in most

cases it remains infeasible to ascertain all the possible operating states for applications

at design time. As suggested in the survey, presented in Appendix B, a set of common

characteristics exist for most such operating environments. At least two possible approaches

could be adopted to explore adaptive behaviour in such environments. The first is to

create a generic model and validate it for the given set of applications. The second is

to synthesize the hypothesis by addressing the research issues within the application

domains. As most of the concepts related to adaptive behaviour in distributed systems

have not been exhaustively explored by the research community, the latter approach

happens to be more appropriate.

Research in distributed computing systems has been diverse and to the best of our

knowledge has almost exclusively addressed the part of the problems highlighted in

Appendix B. "While most research has focused on isolated issues, it is believed that a

better understanding of the issues can be achieved if all of them are considered in the

context of an all encompassing pervasive computing infrastructure. Additionally, it is

believed that these explorations need to be carried out in the context of the generic

application scenarios that are applicable in a wide variety of systems, and therefore this

work was carried out in the context of three exemplar applications.

This chapter gives a short introduction to adaptive systems and enumerates the characteristics

of the operating environments of interest. Then, the choice of application exemplars is

justified, along with the research problems that they address. The contributions and

2

Chapter 1 Introduction 3

the structure of the thesis conclude this chapter.

1.1 Adaptive systems

In general, adaptive behaviour is the ability of a system to modify its behaviour in

response to the prevailing operating environment. However, in the context of a large scale

system, it is uncommon for each of the system components to have a complete consistent

view of the prevailing operating conditions. In such cases, the adaptive behaviour of

the system is closely associated with its perceived operational conditions. A generic

non-adaptive system can be considered as one which does not allow any changes to its

perceived operating conditions and attempts to achieve a certain objective function,

given the prevailing operating conditions.

An adaptive system monitors and models its operating environments and either optimizes

it objective function or modifies it in accordance with the prevailing operating conditions.

Therefore an adaptive system is characterized by its ability to discover, model and utilize

the resources found in its operating environment. A number of complex interactions

may exist between the operating environments and the adaptive system components.

However, only a subset of these interactions will be applicable in the context of resource

management. Adaptive resource management techniques in large scale systems allow

the system resources to identify the subset of operating environment characteristics that

allow for better utilisation of its resources. For the purpose of resource management

in adaptive systems, important amongst these sets of interactions are the ones that

determine the characteristics of the operating environment and the influence of the

workload on the given resource. \Vhile an interaction set determines the ability of the

resource to collaborate with other resources, the workload influences the type of objective

functions and optimisation strategies adopted by the system.

Consider the example of an online scheduling system that receives a number of computation

job requests to be processed on a set of unreliable resources, as shown in Figure 1.1. It is

assume that the aim of the scheduling system is to maximize the usage of computational

resources. A non-adaptive scheduling system will be designed to maximize a given

objective function. However, a predetermined objective function may not be the best

choice, given the variations in availability of resources and the properties of the job

characteristics. An adaptive scheduling system could observe such variations, adapt its

behaviour and choose an appropriate objective function to attain the aforementioned

goal of maximizing resource utilisation.

The above simple example highlights the three important characteristics observed in

adaptive systems.

(1) Autonomy of actions. In the above example, each of the nodes was able to independently

Chapter 1 Introduction

Job Sequence

J"'J'2'·····, J'N

Scheduler-l
Avg. Resource Utilization 30%.

Migrating Resource

Leave Join

Job Sequence

J2, 'J 22 '· ' J 2M

Scheduler-2

4

Avg. Resource Utilization 60%.

FIGURE 1.1: An online scheduling system with resource migration.

identify whether the resource should be placed under the control of the scheduler. At

the same time, the scheduler was autonomously able to determine, when to use the

resources. Autonomy of actions is central to this emerging class of systems, it allows

them to independently model the operating environments and alter it by cessation of

interactions with some parts of the system.

(2) Duality of resource management. The choice of the objective function highlights the

duality principle encountered in this class of systems. Abundance of resources translates

into a resource provisioning problem, while scarcity of resources leads to a quality of

service issue. For example, independent resource providers IIlay cease to participate in

the context of the scheduling system if their individual objective functions are not met,

while limited resources may force the scheduler to adopt the objective functions which

provide a degraded quality of service warranties.

(3) Optimisation over an interval. Adaptive behaviour is instigated when the system

components are able to perceive a change in the operating environment. These observations

are not always based on observance of a single state change and require the system

to observe and model the operational conditions over a period of time. Constant

adaptations or too fast an adaptation may lead to instability and the systems need

to be able to identify such features.

The list of properties is non-exhaustive and will be strongly dictated by the notion

of adaptive systems behaviour. For the set of systems of interest, as described in

Appendix B, adaptive resource management is primarily concerned with two types

of resources, namely computational resources and information discovery in distributed

systems. Additionally, the effects of quality of service on resource management within

a single resource are of interest.

Chapter 1 Introduction

Operating Environment

8
88

8 8

Join

Lea

FIGURE 1.2: Adaptive systems ''lith dynamic resources.

Operating EnVIronment
Topology-A, Objective Functlon-F(x)

Topology
Modlftcatlons

as ObJeCl1ve
Changes

Operating EnVIronment
Topology-a, Objective Function·H(x)

FIGURE 1 3: Adaptive systems with evolving topologies.

1.2 Classification of adaptive systems

5

Three common types of adaptive resource management scenarios are widely encountered

in the set of systems highlighted in Appendix B - namely Resource Adaptation, Topological

Adaptation and Quality of Service (QoS) Adaptation. In cooperative operating environments,

availability of resources influences task distribution between the available resource providers.

Applications capable of maximizing their objective function in response to the availability

of resources and ability to degrade gracefully when these resources are no longer available

are considered to be resource adaptive 1.2.

Varying
Workload (W)

Bounded Resource (R)
Bounded ODS

F(J,R,W)

FIGURE 1.4: Adaptive systems with QoS adaptation with load variance, under fixed
resources.

Chapter 1 Introduction 6

Topological adaptation 1.3 refers to the capability of an application to modify its communication

behaviour in response to changes in the operating environrrlent. The key difference

between resource adaptation and topological adaptation is that the latter approach

leads to the formation of a different cooperative structure in response to changes in the

environment. In the former type, the variations in resource availability are absorbed

\vithin the structure.

Finally, the QoS Adaptive systems 1.4, represent a special case where the operating

environment has a finite set of resources. Unlike the previous two cases, where additional

resources within the cooperative structure augment the capability of the operating

environment, the QoS Adaptive systems try to absorb the variations in the workload

or the operating environments and adapt their internal behaviour to adhere to bounds

specified by QoS.

1.3 Application domains

Distinct properties are associated with each of the three types of adaptive system. These

include resource description and utilisation models, the ability of resources to adapt in

any given operating environment and the type of resource optimisation feasible within

the given context. In order to select an appropriate application exemplar to investigate

the resource management features of systems with the characteristics described in Appendix

B.2, common resource definition and adaptation scenarios were considered. To investigate

the resource adaptive systems, an online scheduling system capable of providing performance

warranties on a set of networks of workstations was considered. Detailed problem

definition about the application domain can be found in Chapter 2. Although this

exemplar application presents the simple case of computational resource adaptation,

most similar systems have not considered the support for objective functions; instead

they rely on best effort approximations. The challenge therefore is to devise adequate

resource management capability to support objective function, such as warranted completion.

Topological adaptation is widely applicable in the context of sensor networks and application

overlay systems. The key feature of these environments is their ability to choose the

appropriate members of the overlay in response to the variations of the overlay structure.

Although, to date structured and unstructured overlays have been widely employed

for this purpose, none of the techniques allows the applications to evolve a topology

given the operating constraints. Topological adaptation has been investigated in the

context of Peer-to-Peer (P2P) information dissemination systems. However, none of the

existing approaches takes into account the resource capabilities of individual peers, or

the self-evolution and self organizing aspects of overlay systems. A detailed description

of the challenges can be found in section 5.1. Findings from this study are widely

applicable in query routing in sensor networks and resource management in P2P system

Cha.pter 1 Introduction 7

environments.

Investigation into the properties of the QoS based adaptation was carried out in the

context of Data Stream Management Systems (DSMS). Processing over the 'append

only' data streams specified in terms of continuously executing queries provides an ideal

scenario for a static workload, while the variations in the properties of the incoming

streams allow simulation of the variations in the operating environment. Finite memory

and computational resources provide a resource bound operating environment, one of the

key assumptions when investigating QoS. Although, a number of approaches have been

advocated in the field of data stream query processing, none of the current approaches

investigates the potential resource sharing between concurrent evaluations of queries on

data streams. This approach investigates resource sharing and the resultant concurrency

control issues in the context of multi-query continual optimisation over data streams. A

detailed description of the problem domain and the scope of our work are presented in

section 8.3. Findings from this exemplar have helped further state-of-the-art in DS:VlS

query processing, and can be generalized to be applicable to QoS aware systems with

bounded resources.

The choice of application exemplars provides a dual opportunity to further the state-of-the-art

in application domains, while contributing to generic investigations in the area of adaptive

systems. A significant degree of overlap between basic properties like autonomy of

actions, incremental access to input data, partial visibility of state information and the

temporal nature of the operating environments help to enforce some common behaviour

across applications, The following section describes the problems in individual application

areas, along with pointers to the seminal work in these fields, which is further extended

by the current investigations, and summarizes the contribution of this thesis.

1.4 Contributions

The contributions of this thesis can be divided into two distinct categories: contributions

to individual application domains and generic contribution to an overall hypothesis.

The hypothesis proposes a model for dynamic graph based representation of large scale

systems. The contributions to the application domain are further classified into the

following three categories:

Online Scheduling An online scheduling model for Grid environments is proposed as

an extension to the original scheduling theory discussed in (Leung 2004). Online

scheduling assumes that their is a continually varying demand for resources and

jobs. The aim is to determine the feasibility of an optimal planning strategy under

the time-varying demand and supply of resources and jobs, and to minimize the

cost of optimisation in case a strategy exists, The program allows job migration

Chapter 1 Introduction 8

between multiple resource providers, and there are penalties on commissioning and

decommissioning of resources within a resource provider. In order to minimize

resource penalties and forecast the usage of any spare resources, the individual

resource providers form coalitions to outline the cooperative strategy between

various resource providers. The initial motivation of the application domain and

the application are described in Chapter 3, the generalized optimisation scenario

is described in Chapter 2 and further developed in Chapter 3. The algorithmic

contributions are:

1. An online planning algorithm for online scheduling on multiple machines, as

described in Chapter 3.

2. The experimental evaluation of the algorithm as provided in chapter 4

Infonnation Disselnination Information dissemination focuses on information management

in an ad hoc network environment. The motivating applications are described

in Chapter 5 and in the information discovery and management techniques in

Peer-to-Peer environments (Stoica, Morris, Liben-Nowell, Karger, Kaashoek, Dabek,

and Balakrishnan 2003; Zhao, Kubiatmvicz, and Joseph 2001; Rowstron and Druschel

2001). The approach for this thesis uses the characteristics of the information

and its demand and supply characteristics to create an overlay. The overlay is

optimised for probabilistic routing mechanisms, also known as search mechanisms.

An empirical evaluation of the approach is presented for a finite number of system

nodes. The algorithmic contributions for this are as follows:

1. A distance based similarity search algorithm is described in Chapter 5

2. A self-organizing overlay mechanism is described in Chapter 5

Query Optimisation The problem of query planning and processing in a data stream

management system are described in (Babcock, Babu, Datal', Motwani, and Widom

2002). This scenario is used to examine the complexity of the combinatorial

optimisation in dynamic environments and use dynamic graph techniques to address

a multiple optimisation problem. A dynamic graph based data structure is used

to represent a query planning scenario that needs to produce an optimal operator

ordering to reduce the cumulative resource utilisation across multiple queries.

The motivating examples, related database literature and query planning and

processing algorithms are described in Chapter 8. The algorithmic contributions

presented in Chapter 8 are:

1. A dynamic programming based query planning algorithm for queries on data

streams

2. An interval search tree-based select, project join operator.

3. An algorithm for concurrency control of multiple query processing for stream

data management systems.

C1Japter 1 Introduction 9

4. PSQL, an extension to SQL, for specifying queries over streaming data.

1.5 Structure of the thesis

The literature review for each of the application domains is presented in the chapters

that are directly related to the discussion sections and is distributed across chapters to

closely associate it with the new contributions. The next chapter describes the general

theoretical basis for the work presented in the three application domains. The rest of

the thesis is organized as follov.'s.

Chapter 2 : Adaptive Systems This chapter additionally outlines the characteristics

of adaptive systems and proposes an ad hoc resource group (AHG) based model for

representing large scale distributed systems. The AHG's are modelled as dynamic

graphs which capture the characteristics of autonomy and partial information

visibility. The properties of the model are then defined as verified by the application

exemplars.

Chapter 3 : Online Scheduling Online scheduling techniques are investigated for

computational resource sharing over a set of federated and autonomous resources.

The algorithms for admission control are presented in online job Grid scheduling

systems and analysis is provided for the case of finite time horizons.

Chapter 4 : Evaluation of Online Scheduling This chapter presents the empirical

evaluation of the algorithms described in Chapter 3 and provides comparison with

the Earliest eXpiry First (EXF) algorithm. It considers the case of uniform and

variable jobs and evaluates the algorithm for various values of slack k, for k=O,

k 2: 1 and k ~ 1, and for variable job arrival rates. It then describes the use of

resource advertisement as a means of developing an overlay of online scheduling

systems, the information needs for which are further explored in the next chapter.

Chapter 5 : Resource Management in P2P Systems This chapter introduces the

adaptive overlay formation and maintenance for resource management in peer-to-peer

networks. A brief review and application domain description is followed by a

comparison of the existing overlay management techniques. Modifications to these

techniques and a generic model for probabilistic overlay creation and maintenance

are described.

Chapter 6 : P2P Coalition Formation and Search Algorithm This chapter discusses

the application of the generic algorithm described in Chapter 5, to the domain

of Peer-to-Peer Open Hyper-media Systems (OHS). It introduces the application

scenario and presents a formal description of the search algorithm.

Chapter 1 Introduction 10

Chapter 7 : Evaluation of the Search Algorithm This chapter provides empirical

evaluation of the algorithm developed in chapter 6.

Chapter 8 : Query Optimisation This chapter begins with a description of query

processing in data streams and states the relevance of the application domain to

adaptive systems. The model used to describe data streams provides an analogy

for the infinite sequences of data items that are evaluated for a set of queries. This

is followed by a description of a dynamic graph-based query processing algorithm.

An IBS-SP J operator is presented for shared range predicate evaluation. Query

re-optimisation techniques and operator scheduling techniques for efficient evaluation

conclude the chapter.

Chapter 9: DSMS - Implementation, Evaluation and Analysis This chapter presents

the architectural details of the DS.:\i[S implementation and the experimental evaluation

and analysis of the query optimisation algorithm, the IBS Operator and the

Operator Scheduling algorithm.

Chapter 10 : Conclusions This chapter correlates the observations in the various

chapters and summarizes the contributions of the thesis. It is followed by a

discussion of the potential for future work and directions arising from the above

work.

1.6 Suggested order for reading

A legend presented in figure l.5, is provided to allow easy navigation through this text.

It is suggested that all readers familiarize themselves with Part I, which outlines the

objectives and scope of the work presented in other parts of the thesis. Part II, Part III

and Part IV can be read independently of each other, and are complete pieces of work

in their own right. Releyant sections of Part V may be read to see how each of the Parts

II, III and IV relate to the initial discussion in Part 1. It is hoped that the organisation

diagram helps navigation through this complex text.

Chapter 1 Introduction 11

Chapter 2
Adaptive Resource Management

FIGURE 1.5: Organisation of thesis.

Chapter 2

Adaptive Resource Management

in Large Scale Systems

The \Vorld Wide \Veb (WWW), Grid Computing, Peer-to-Peer (P2P) systems and

Semantic \Veb represent emerging technologies employed to develop large scale computing

systems. Almost all of them are enabled by cooperative resource sharing between

multiple autonomous resource-providers. \Vhile the web represents one of the most

scalable implementations of distributed system for sharing data/information content, it

primarily remains a client-server system with content providers in exclusive control of the

resources. Recent adyances in the above mentioned technologies such as Grid Computing

and P2P, attempt to achieve a higher level of resource integration by incorporating

coordinated use of computational and data resources across multiple resource providers/consumers,

with decentralized control. However, unlike the simple data content resource sharing

on \V\V\V, the coordinated use of computational resources and data presents greater

challenges of synchronisation, management and utilisation of resources, as is sumrnarized

in Appendix B, which presents a review of these open issues and summarizes the

state-of-the art in the above mentioned technologies.

From current trends in these emerging technologies, one could safely infer that future

systems may use a common representation based on "virtual organisations (VOs)" to

represent a dynamically associated set of resource providers and consumers. A virtual

organisation is synonymous to an ad hoc resource group created solely for the purpose

of sharing computational and data resources amongst its participant members. To

date, VOs have been represented as a loosely connected set of resources and very

few investigations have focused on the management of resources within the VOs, and

interactions between multiple VOs. This study presents a VO based representation of

large scale distributed systems, for this purpose. A VO is created by dynamic association

of resource providers and consumers, and the association may evolve over a period of time

as the resource providers and consumers join and leave the VO. During its lifetime, a VO

12

Chapter 2 Adaptive Resource Alanagement in Large Scale Systems 13

needs to provide the necessary mechanisms to facilitate collaborative resource usage and

management mechanisms. This chapter investigates the resource management features

in these organisations and describes their usage in different application scenarios.

The rest of the chapter is organized as follows: Section 2.1, introduces ad hoc resource

groups (ARG's) as generic VO's and enumerates its characteristics. Section 2.2, describes

the resource management requirements in ARG's and describe the open issues in managing

resources in them. Section 2.3 describes the generic model for description and management

of resources in this thesis: it also describes how the work will be developed in the following

chapters. Section 2.4 describes the rationale for choosing application scenarios in the

investigation. Section 2.5 provides an alternate view of hmv advances in these application

scenarios can be used to develop a distributed stream managem.ent system.

2.1 Ad hoc Resource Groups

Increasingly large scale systems are being formed by dynamic online association of

computational and data resources. Electronic market places, virtual organisations,

peer-to-peer computing and networks of workstations are examples of the emerging

type of structured/semi-structured ARG's for managing a practically infinite number

of computational resources in online collaborations. lVlost such ad hoc resource groups

are created to provide a service to the members of the institution and are either based

on social, economic or utilitarian models. ARG's assume a structure that is better

suited for accomplishing their objective function; examples include a market model for

environments with scarce resources and a cooperative model for partitioning the large

search space. These institutions may impose certain restrictions on the behaviour of the

participants - restrictions may assume forms of behavioural guidelines, online checks or

dominant strategies - to effectively manage the ad hoc resource group. Enforcement of

such restrictions may require monitoring of the communication between participants,

monitoring the state of each or some of the participants, and using a reward/penalty

mechanism. These rules, restrictions and behavioural patterns of the ad hoc resource

group are referred to as the "operating environment" .

Operating environments provided by an ad hoc resource group may be either centrally

managed or collectively managed by a set of distributed managers, or they may be

unmanaged - evolving from the collective behaviour of its participants. Most ARG's

facilitate interactions between its participants. Rowever some ARG's, for example,

auction sites may prohibit direct interaction between the participants. In cases where

ARG's facilitate interaction between the participants, they need to provide additional

mechanism to coordinate and monitor such interactions. These constraints imposed by

the operating environment restrict the autonomy of the individual participant. Examples

of such restrictions include constraints on sharing of state information and management

Chapter 2 Adaptive Resource "'1anagement in Large Scale Systems 14

of resources. Constraints enforced by the operating environments determine the "visibility"

of the individual participants. In most large scale systems/ AHG's, no single participant

will have the complete knowledge of the entire state of the system. Each of the participants

observes a partial environmental state, which in turn determines the scope ofits influence

on the operating environment and the behaviour of other participants. Considering that

all the participants in an ARG exhibit rational behaviour, the state visibility of the

participants will determine the sub-space in which they can affect the behaviour of the

system. Participants use this observed state information to autonomously determine

their "operational behaviour" .

It is presumed that the ARG's are dynamic entities that evolve over a period of time. The

temporal nature of the observed state may require the participants to take into account

the historical evidence relevant to their future actions. In such dynamic environments,

an autonomic participant needs to determine its operational behaviour in terms of an

objective function on a partially observed temporal state. The temporal nature of the

environment and the variation in the observed state usually results in adopting multiple

objective functions for different observed conditions. A set of such objective functions is

referred to as a "policy". In certain cases, the participants may use a single policy or may

consider re-evaluation of the policy during the lifetime of the ARG. Most ARG's that

support use of dynamic policies impose constraints on the tiule period for the validity of

the policy, as the policy adopted by one of the participants may influence the behaviour

of the other participants.

Dynamic operating environments present a unique challenge. It is not possible to

envisage all the operating states at the design time. Consequently, participants need to

adapt to dynamic run time environments. As described above the adaptive behaviour

of the participant is constrained by the spatio-temporal data visibility of its operating

environment and the information they hold on the state of the other participants.

To summarize, no single participant will have knowledge of the complete state in most

large scale systems; consequently they need to be organized into groups of participants

under ad hoc resource groups (ARG's). Interactions between the participants will

determine their ability to collaborate in order to share their resources to accomplish

their desired individual goals. Participants in such collaborations will exhibit autonomic

behaviour. The dynamic: nature of the collaboration means that the participants will

need to adopt policies that allow them to accomplish their individual objectives under

the prevailing operating environment. Adaptive polices will need to be adapted in

temporally evolving operating environments.

Chapter 2 Adaptive Resource J\lanagement in Large Scale Systems 15

2.1.1 Discussion

Autonomy plays an important part in resource management in most distributed systems.

For example, consider the case of W\V\V and Service Oriented Architecture (SOA). As

described in Appendix B, both these system types exhibit autonomous resource control.

Although autonomous resource control is crucial from the systenls administration perspective,

it may be argued that it is also crucial for creating scalable distributed systems. The

failure of component based middle'ware s~'stems is widely attributed to their inability

to provide wide area distributed resource management. Two approaches have been

proposed to address this issue: firstly, stateless Message Oriented Middleware (MOM),

and secondly, systems designed as collaborations of manageable hierarchies of resources.

\Veb Services are an example of the former class, while P2P and Semantic \iVeb fall into

the latter class, while Grid Computing systems lie somevdlere in the middle. This thesis

is concerned with the systems of latter type.

Given the premise that the large scale system is viewed as a collection of autonomous

resources, a few questions need to be answered.

Why are aggregations of resources referred to as AHG's? Does this refer

to Electronic Institutions as defined in the artificial intelligence research

community?

Resources are aggregated to achieve some common objectives of the participant resources.

For example, an auction site is an Electronic Institution created to support a particular

mechanism for negotiations on goods and commodities and represent an ad hoc resource

group corresponding to a physical institution, such as the stock 111.arket. Similarly, if one

considers the aggregation of computing cycles and data resources, these aggregations

assume some form and semantics for collaborative usage of the resources. It may be

argued that the semantics of these aggregations can be classified and standardized to

reflect the standard usage pattern in systems, where each usage pattern reflects a type

of Electronic Institution (EI). For example, consider the case of SETI@HOI\1E, the

system allows participants to allocate their computational resources to an EI. The EI

restricts the state of visibility of the system participants and prohibits direct interaction

between them. However, the central EI has a set objective to utilise the collective

resources by allocating computational jobs, in order to maximize the throughput. Thus

collections of resources are organized in a star topology, vvith a centralized server acting

as a central EI controller. As collaborative use of resources in such aggregations relies

on a well-defined overall objective, organisational structure and communication patterns

such aggregations are referred to as AHG's.

The notion of Ers as defined in the field of AI deals with the organisation of roles and

responsibilities in an agent's community, along with the necessary restrictions in terms

of permitted and forbidden actions. However, as far as is known the notion of Ers has

Chapter 2 Adaptive Resource N[anagement in Large Scale S,rstems 16

never been applied to the development of large-scale systems, this thesis is the first to

propose such an extension, The extensions proposed are in some specific characteristics

of the AHG's. The first step is to look into the self-organisational behaviour of the

participant's, ·with a specific example of participants sharing computational cycles,

secondly, to look into the resource description and discovery support required by these

ad hoc resource groups, in the domain of the peer-to-peer service discovery, and thirdly,

to look into the effects of task definitions, and task profiles on the performance of a

single resource provider, with an example of a stream database management system.

How are AHG's formed?

An AHG comes into existence when some self managing participants of a large scale

system form an aggregation that bounds the behaviour of these participants by means

of some norms on their behavioural pattern. These norms may be agreed upon at the

inception of the AHG or may evolve from the behavioural pattern of the participants,

The monitoring of such norms is enforced by the participants of the AHG by means of

a reward and penalties mechanism for AHG's, in economic organisations, or by means

of reduced influence on the environment in case of social organisations. However, both

these organisational types assume that the AH G 's are able to enforce some desired

behaviour on the participants by means of local restrictions. It is envisaged that the

large scale systems can be built as an aggregation of numerous AHG's. The restrictions

on behaviour of the AHG's are imposed by means of enforcing appropriate policies.

What are the types of resources they share?

In general, AHG's remain capable of trading any resources encapsulated by the participants.

For example, in an Electronic Market place, participants may transact goods and services

of all kinds. Considering the case of AHG for studying characteristics of the large scale

distributed systems: first of all the computational cycle sharing for high-throughput

computing, and secondly the effects of the organisation on information dissemination

within an AHG. Finally,there is a study on the effects of resources and task variations

on resource provisioning on a resource provider. These characteristics can be mapped

to Parts II, III, and IV respectively.

What are the organisational models for AHG?

The AI definition of the AHG does not impose strict restrictions on the way the resources

are organized in an AHG. However, when applied to the case of distributed systems

the organisation of AHG may have to take into account the physical attributes of the

operating environment, For example, Part III describes the scenario for a sensor network,

where the participants need to form an appropriate overlay to capture the constraints

of the communication network. Such an organisation of the overlay can be captured

by means of an overlay network. As described in part III, there are two ways to form

an AHG, either using a predefined structure and restricting the objective functions

Chapter 2 A.daptii'e Resource Alanagement in Large Scale Systems 17

appropriate to the structure or by using a set of objective functions to determine the

overlay structure. However, the second case is observed more frequently and is further

investigated in part III of the thesis.

Are there some common data structures and algorithms common to multiple

types of AHG's?

In ad hoc resource groups, no entity has complete knowledge of the entire system state.

The participants need to monitor the operating environment for changes. These changes

assume the form of change in known participants, or relations with those participants,

over a period of time. These characteristics point to the need for a data structure capable

of handling spatio-temporal data. The use of dynamic graph structure to encapsulate

such information is considered. Details about the data structure and its use can be

found in Part II of the thesis.

What are the semantics of interaction between these AHG's?

\Vhen considering a large scale system composed of a number of ad hoc resource groups,

it is imperative to allow the participants to discover other such ad hoc resource groups

and interact with them (and vice versa). Cases where the participants can autonomously

choose the AHG's that they want to be part off require no specific interaction among

them. However, when the AHG's are responsible for the effective use of the participants

resources, they need to allow exchange of resources between the collaborating AHG's. In

such cases, a hierarchical organisation of AHG's may emerge, with a higher level overlay

forming between the AHG's.

The above analogies can be applied to yarious scenarios in Grid computing and P2P

systems, where a number of participants form the "virtual organisations" or "peer

groups" respectively. Membership of such groups can either be obtained by the autonomous

actions of the independent participants or may emerge from interaction between the

groups. From the above discussion, one could envisage modelling a large scale system as

a collection of such interacting AHG's. From the distributed systems perspective, one

needs to establish the effectiveness of such a model in developing distributed applications.

A number of different features have been associated with distributed applications, but

few are commonly observed. Such common features include: sharing of computational

resources and data resources, and orthogonal to such goals are the issues related to the

discovery of resources in those systems.

2.2 Resource management In ad hoc resource groups

Ad hoc resource groups provide mechanisms for sharing resources between the various

participants and facilitate resource sharing between resource providers and consumers.

Resource providers and consumers in an AHG may deal in virtual resources such as

Chapter 2 Adaptive Resource Ivlanagement ill Large Scale Systems 18

stocks and commodities, but when applied to the computational infrastructure these

AHG's are assumed to deal in computational resources, data resources or network

resources. The scope of this thesis is restricted to AH G . s used to manage resources

in distributed computing systems. Most distributed systems consider computational

or processor cycles as a default definition of a resource. However, a more generic

definition of resources is taken to include computational, data and network resources.

The term resource is defined as an entity whose state can be controlled and affected by

the operating environment. It is therefore natural to consider computing cycles as one of

the primary resources managed by AHG's and has proven measures in terms of processor

speed, the cache, memory availability, which are quantifiable resource. Other resources

such as data remain more qualitative and difficult to describe and manage. Attributes

of data resources include provenance, data visibility and synchronisation requirements.

As described above, an AHG consists of resource providers and consumers, with AHG

providing the mechanism for maximizing the gain for both classes of participants. An

AHG needs to provide the mechanisms for resource providers to publish their set of

resources for subsequent discovery and consumption. On the other hand, the AHG

needs to provide a means for allowing consumers to be able to express their request

in terms of tasks, for which the publishers can provide resources. This matchmaking

process can be facilitated by means of a service discovery mechanism within the AHG.

Discovery services have been widely deployed in distributed systems to address problems

and related ones in resource discovery. However, distributed AHG's may require multiple

such discovery services for publication and discovery of various resources, but supporting

such a service for an AHG with a practically infinite number of participants is unfeasible.

Thus resource providers and consumers need to be organized into groups of collaborating

participants- requiring mutual participation to discover the resources. The interaction

graph representing this collaboration can be considered as an overlay network for discovery

of resources.

Assuming that the participants in an AHG have the necessary discovery mechanisms to

acquire the information about the resources of their choice, the use of such resources

may be autonomously controlled by each individual provider, or a number of providers

may coordinate the use of their collective resources. Coordinated use of resources may

be facilitated by the environment (by building it into environmental constraints) or the

participants may create ad hoc means to allow such coordination.

This thesis investigates these and related issues in the context of the resource sharing

using online scheduling in a Grid computing environment.

Chapter 2 Adaptive Resource A1anagement in Large Scale Systems 19

2.2.1 Resource description and resource monitoring

In general, a resource can be represented using a set of attributes that define its properties.

Applications use relational, semi-structured or an RDF representation of the resources.

A resource description reflects the state information about the resource and enumerates

its properties. It may be used as an advertisement for resource matching in distributed

systems.

This thesis focuses on the structure of the ad hoc resource groups formed primarily

for sharing computational and data resources. Irrespective of the organisation of these

electronic institutions, a few common issues need to be managed in each, namely: 1.

Discovery of resources. 2. ~1anaging computational resources. 3. rVlanaging data

resources.

The above patterns of resource management in large scale systems are studies. First one

in which the tasks and their profiles are known, while the number or resources available

remains uncertain. The second case, studies the effects of collaboration where the task

is known, but cost is reduced by controlling the state visibility of the system. Finally, a

system where different task profiles need to be managed, given a definite set of resources

is presented.

2.3 Modelling the ad hoc resource groups

The notion of operating environments was introduced in section 2.1. However, to the

best of our knowledge their exists no generic model to describe an operating environment.

This section, presents a hypothetical model that alluws to capture the notion of ad hoc

resource groups (AHG's).

A dynamic graph based representation to model the infinite set of resources in an ad

hoc resource group is employed. The dynamic graph Gt is used to represent the global

view of the entire state of interest. The graph Gt is composed of nodes Vi and edges Et ,

the capabilities of the node Vi are described by a vector Ft , while the capabilities of the

edge are captured by the vector H t . The computational resources providers are mapped

as the nodes in the global network Gt . The graph Gt represents a completely connected

graph if all the nodes are able to communicate with each other. The communication

channels are represented by means of the edges of the dynamic graph 1. A temporal

dynamic graph representation captures the temporal behaviour of the system dynamics.

In cases, where the graph Gt is a subset of a completely connected graph and the edges

1 \\Tired networks like the ethernet allow a n-to-n connection, however physical factors constrain
communication in an ad hoc networks, which in turn rely on their neighbouring nodes to route the
message

Chapter 2 Adaptive Resource ~l1anagement in Large Scale Systems 20

E t represent the point-to-point communication path between the nodes, the graph Gt

represents an overlay network 2.

The computational costs associated with the maintenance of such a dynamic graph

increase exponentially with graph size, making it unfeasible to maintain a centralized

system state. Distributed localized views can be used to maintain the global system

state. Synchronized maintenance of the localized views allows the system to maintain a

global vie"w, suggesting the use of sparsification techniques (Eppstein, Galil, Italiano, and

Kissenzweig 1997) to construct the global graph properties from local graphs. However,

it is not always mandatory to maintain synchronised local views. Alternately, each node

can maintain its local view, hereafter referred to as the local view gt, which is composed

of nodes Vt and edges et. It should be noted that a local view n1.ay be maintained by an

indiyidual node, or a group of nodes may maintain a shared local view.

It is assumed that each node maintains a local view of the graph in order to maximize

its objective function. Considering that the messaging costs are directly proportional to

the radius of the graph gi, the diameter of the graph ,yill be restricted by the associated

state maintenance costs. Costs associated with maintenance of the localized view are

usually weighed against the benefit acquired by maintenance of such a state. The nature

of this association between the local view and the objective function is incumbent on

the requirements of the application domain, and cannot be generalised across the model.

However, the dynamic graph model allows expression of such constraints in the form of

the vector functions associated with the nodes and the edges of the graph.

Constraints on the function vectors of the nodes and edges of the graph raise issues

related to the topology of the graph Gt . The topological constraints remain crucial

to the systems ability to self-organize itself in the event of change. Using a temporal

representation of the graph allows capture of the evolutionary aspect of the AHG's.

Some applications may consider a time series representation of the graph parameters.

Standard time series inferencing techniques could be applied to monitor the behaviour

of the overlay network, using historical data to predict the changes in the AHG's.

The sharing of resources in AHG's is a dynamic process, whereby the system state

changes dynamically over a period of time. Such changes may be modelled as changes

in the neighbourhood (by means of et), changes in the availability of nodes (by means of

Vt) and changes to the global properties (by means of It and hi)' Considering that the

AHG's are primarily constructed to achieve some local or global objective function, these

changes will reflect on the applicability of the objective functions. The temporal nature

of the graph allows us to capture the notion of optimisation over a period of time. It is

envisaged that such temporal optimisations will be the norm in most complex systems, as

compared to the static optimisation techniques employed today. Optimisation overtime

introduces an important concept of time boundaries. Systems that optimize over a

2 A review of structured and unstructured overlay networks can be found in Part III of this thesis.

Chapter 2 Adaptive Resource Ilianagement in Large Scale Systems 21

fixed interval in time are referred to as finite-horizon, "'hile the rest are classified to

optimize for infinite horizon systems, which can both be represented in this graph model.

Analogously, the objective function of the node also exhibits temporal behaviour. The

temporal nature of the system also applies to the availability of the information and is

orthogonal to online computing paradigms.

The above model is applicable to a class of problems, much beyond the scope of this

thesis. The emphasis of this thesis is to verify the above hypothesis in real application

domains. Consequently, it is restricted to a distinct class of problems details of which can

be found in the following section. If validated, the hypothesis can be used to formally

represent the characteristics of ARG's in large scale distributed systems. A formal

representation of ARG's will help in devising appropriate mechanisms for developing

applications in an ARG based environment.

2.4 Relation to applications

The above model for maintaining the ARG's utilizes a graph based representation

Gt = (Vi, Et; FtlL Hd]), where each of the variables has a temporal dimension. The

model is based on the hypothesis that adaptive large-scale distributed systems can be

built as structured/unstructured ARG's, under the constraints of partial state visibility,

temporal constraints, disparate resource definitions and resource management requirements.

It is envisaged that the study of ARG's will:

1. Relp identify common resource management requirements across a class of systems.

2. Provide insights into the temporal behaviour of large-scale distributed systems.

3. Identify the effect of the operating environment on the self-organizing behaviour

of ARG's.

Consequently, one has chosen different application domains, namely online scheduling in

Grid systems, information dissemination in P2P systems, and multiple query optimisation

in stream database management systems. These applications have been chosen to

investigate the adaptive resource management aspects of large scale systems with disparate

resource definitions, objective functions and application lTlOdels. It should be noted

that, in addition to attempting to prove the above hypothesis, the thesis advances the

state-of-the-art in all the application domains. The application level problem definition

and contributions to the application domain have been summarized in the parts corresponding

to the respective applications.

Chapter 2 Adaptive Resource]\I[anagement in Large Scale Systems 22

2.4.1 Motivation

\Vhile addressing the online scheduling problem for Grid system.s the issues related to

the node function \It, the collective objective function, the effect of partially available

information of the job profiles are investigated.

The second application - Information dissemination in P2P systems - investigates the

issues related to selecting a subset of edges et, in order to satisfy the global objective

function of reduced communication costs, where communication costs are expressed in

terms of Ht . The application also investigates the effects of changes in graph diameter.

The third and final application studies the effects of variation in task profiles in a stream

data management system. In this case the interest is to understand, how changes in task

profile affect the choice of the object function of the given application?

2.4.2 Objectives

Table 2.1 summarizes the application-level objectives for the described application domains.

2.4.3 Focus of the work

Each part of this thesis (namely Part II, III, IV) focuses on its specific application

domain. This part, describes the focus of the research in each application domain 3.

Online Scheduling in Grid Systems: Stochastic and online scheduling techniques

have been "videly studied under a wide variety of scheduling scenarios. Grid

Systems exhibit the characteristics of both these system types (for details refer

to Part II, Chapter 4, which also describes a Grid Scheduling System). While

stochastic scheduling provides mechanisms to formulate a scheduling policy, given

a job distribution and resource availability profile, online scheduling allows for

scheduling decisions to be performed in an online manner. Similar research issues

have also been highlighted by (Leung 2004). The focus of the work conducted in

this area has been:

1. To demonstrate the effects of organisation on the behaviour of network of

workstations.

2. To design admission control strategy for online scheduling systems in Grid

scheduling environments.

3 At the start and the end of each part, a brief summary is provided to map the application level
goals to the high level goals described in this section.

Chapter 2 Adaptil"e Resource 1\lanagement in Large Scale Systems 23

Information Dissernination in P2P systems Structured and unstructured system

topologies used in peer-to-peer systems have been widely used to form ad hoc

peer groups. Part III of this thesis investigates the correlation between resource

distributions and topology structures in P2P systems. The primary objective of

the investigation is to ascertain the effects of change in information distribution

and workload on the characteristics of the overlay system.

DSMS - Query Optimisation Query processing in data stream management systems

represents a special case, in which a fixed set of resources need to be efficiently

managed in order to satisfy the demand on resources. Although, the research issues

in the field have been highlighted by (Babcock, Babu, Datar, Motwani, and \iVidom

2002), the issue of multiple query optimisation and time based optimisation has

not been addressed in the field of query processing in DSMS. Part IV of the thesis,

proposes multiple query planning and re-optimisation techniques, which take into

account the temporal behaviour of the input streams.

2.4.4 Application level goals

l\lost of the applications encountered have used static optimisation techniques and vvere

not designed to function in dynamic environments. Therefore, applications were chosen

from the well-understood application domains, and were examined under the setting

of adaptive resource availability. Each of the applications was studied under different

resource availability criteria and conditions, details of which can be found in Table 2.1. A

number of limitations of the applications were identified in the process of adapting these

applications. Such an exploration into the applications was put into the perspective of

the application level goals.

2.4.5 Discussion

In its base form, resource management represents a constraint satisfaction problem,

where applicable solutions maximize the objective function of the system components

and the system as a whole. Application to large scale systems with variable availability

of the resources poses an important challenge as to how to represent the collection of

resources and choose appropriate organisation, so that the topology of the organisation is

fit for the particular application. It is assumed that although the exact details of resource

management may vary across the system classes, there definitely exists some common

usage patterns across these classes. This thesis examines the resource management

features outlined in Table 2.1, further details of which can be found in the following

parts. A case that discusses the use of all the techniques in the context of a single

application scenario is presented in the following section.

Chapter 2 Adaptive Resource .Uanagement in Large Scale Systems 24

2.5 Alternative systeuls VIew

The thesis is organized into a number of parts, each of which discusses the techniques in

a specific application scenario. "chile the techniques remain specifically suitable for the

application scenarios in question, they can also be applied to develop similar systems.

This section describes a Distributed Stream Data :\1anagement System, which is based

primarily on the techniques discussed in the thesis.

Part IV of this thesis introduces a central Data Stream :\lanagement System (DSMS),

capable of supporting concurrent and continuous queries over streaming data. A DSl\IS

provides optimized performance over a multi-variable objective function, which consists

of time, memory and computational resource usage. The objective is maximized by

coordinating the use of computational and memory resources to achieve the desired level

of response. The details of this optimisation problem are discussed in chapter 8, which

assumes a single processor for execution of the query. The scheduling system of DSMS

operates on a sequence of unrelated operator schedules, and requires strict warranties

on timeliness of response. The DSMS scheduler requires a subset of the functionality of

the scheduling system discussed in Part II of the thesis. The DSMS scheduler can be

modified to take the advantage of the techniques described in Part II.

The techniques developed in Part III of the thesis can also be integrated, if one considers

the Publish-Subscribe paradigm for access to continuous queries. The Pub/Sub model

for access to query processing on streaming data requires publishers of data streams

to allow discovery of their data resources. The information dissemination methods

discussed in part III, can be used to wrap the schema information as advertisements

of resources. The algorithmic principles developed in Part III can then be employed to

share the information between a number of DSMS.

Although, the approach adopted by the thesis is in line with the primary focus of

exploring the notion of adaptive resource management, the above example demonstrates

that the techniques can be combined and will find use in multiple systems.

Chapter 2 Adaptive Resource Management in Large Scale Systems

Fig. A. Distributed DSMS Nodes,
Edges represent schema exchanges

between nodes

Global Schema Manager Local DSMS Processor

Distributed Data Stream Management System (Distributed DSMS)

Fig.B. Architecture of a Distributed DSMS

Fig. C. Local DSMS Processor

Command Interface

lIP Communication Channels (JMS, Socket,
CORBA·Notification, HTIP)

Communication
Adapters

Statistical Feedback

DIP Communication Channel (JMS. Socket,
CORBA-Notification, HTTP)

FIG URE 2.1: Distributed data stream management systems.

25

Properties

Information Visibility

Temporal Characteristics

Optimisation Type

Objective Function Types

Online Scheduling

• Peers have no knowledge
of their subordinate peers,
restricted visibility exists
between the :t\Iaster and
Slave nodes in Master or
Slave confignration.

• .Job information is revealed
at release time; optimisation
can only be based on the
current information.

Task profile and resource profile

varies over time.

Moving finite horizon
optimisation.
Each peer tries to maximize its
individual objective function.

P2P
Dissemination

Information

• Peers have knowledge of
immediate neighbour and
lllay obtain update on
information of additional
neighbo1lrs.

• Peers have information on
the queries routed and the
routing path. Changes in
resource information are
propagated to interested
peers.

• Historical records of the
query routing and resource
information may effect the
future decisions of the peers.

Coalition profile varies over a

period of time.

Instantaneous optimisation based
in historical data.
Peers coordinate activities to
improve group objective function.

TABLE 2.1: l\Iapping applical.ion ohj(x:l.ives to hypothesis

DSMS-Query Optimisation

• Query
limited

processor
visibility

has
of

stream characteristics and
absolutely no information
on tuple contents and arrival
rates.

• Fllt1ll'e qneries may not have
any knowledge of existing
queries.

Resource utilisation of individual

(ltlery varies ill accordance to

stream characteristics.
Continual optimisation with finite
horizon.
A DSMS tries to optimize the
objective function of multiple
COnC1llTent tasks.

Q
:g
N-

~
~

~
Q.

>§
M
~.

rt;

~
C1l
Vl o
c: ...,
@
~

~
~

~
::::
§
N-

5'
t-;
\l) ...,

Cfq
C1l

U'J
(')
\l)
'-
C1l

U'J
~
tIl
N-

8 ...,
cr:

tv
0>

Part II

Online Scheduling in Grid

Systems

27

Chapter 3

Online Scheduling

this chapter introduces online scheduling algorithms for scheduling jobs on multiple

machines. This is followed by a thorough review of existing algorithmic techniques for

interval scheduling of independent jobs on multiple independent machines, for preemptive

and non-preemptive scheduling. The following section describes the existing admission

control mechanisms for allocating jobs on a single machine and subsequently introduces

the scheduling algorithm, which provides admission control for scheduling on multiple

related machines.

3.1 Introduction

Scheduling has been studied extensively in many varieties and from various viewpoints

for application to practical computer systems. The basic situation requires processing

a sequence of jobs on a set of machines. In the most basic problems, each job is

characterized by its running time and has to be scheduled for that time on one of

the machines. Other variants introduce additional restrictions and relaxations on the

schedules allowed. :'iost scheduling algorithms are designed to maximize an objective

function for a given sequence of jobs and the resultant schedule is considered appropriate

if it maximizes some objective function. The notion of an online algorithm is intended

to formalize the realistic scenario, where the algorithm does not have complete access

to the whole input instance. Instead, the algorithm learns of the input piece by piece

and has to react to new requests with only partial knowledge of the input sequence.

Most online scheduling problems are classified on the basis of which part of the problem

is given online. Sgall (Sgall 1998) introduces one such classification which has been

repeated here. His paper introduces the following classification:

Scheduling jobs one by one. In this paradigm the jobs are ordered in some list and

are presented sequentially from this list. The scheduling algorithm assigns these

28

Cl18.pter 3 Online Scheduling 29

jobs to some machine and time slot(s) before the next job can be seen. The

assignment needs to be consistent with other constraints given by the problem. It

is assumed that the job characteristics, including running time, are known at the

time the job is presented. It is allowed to assign the jobs to arbitrary time slot(s),

even if this incurs penalties. However, alteration of the schedule, subject to the

visibility of future jobs, is not permitted.

Unknown running time Unlike the previous ease, this case assumes that the running

time of jobs is not known at the start time and that the total execution time

can only be calculated at the time of completion. However, at any time, all the

currently available jobs are at the disposal of the algorithm; anyone of them can

be started, preempted or delayed on any machine(s).

Jobs arrive over time In this paradigm the algorithm has the freedom to start, preempt

or delay any of the currently available jobs and, in addition, the running time of

each of the job is known at the time of submission. The only online feature is lack

of knowledge of the job's arrival time.

Interval scheduling All the previous paradigms assume that a job may be delayed.

Contrary to that assumption, interval scheduling assumes that each job has to

be executed at a precisely given time interval. A job is rejected if it cannot be

executed within the specified interval. In this case, the length of the schedule

generated is essentially fixed; hence, tardiness, makespan and/or delay based

objective functions are not applicable in this case. Instead, measuring the weight

(or the number) of accepted jobs is generally applicable.

Most of the above-mentioned characteristics, such as, online arrival of jobs, interval

scheduling and scheduling jobs as they arrive are also observed in recent applications such

as Grid Scheduling and scheduling on a T\etwork of Workstations (NOWS). SETI@home

(SETI), COT\DOR (Litzkow, Livny, and M.W.Mukta 1990); they represent systems that

receive jobs in an online fashion. Huwever, the objective is to maximize throughput in

these systems. Other objective functions, such as interval scheduling and co-scheduling

have been the focus of recent research in the field of Grid Computing (Foster and

Kesselmann 1999). This chapter proposes the use of online interval scheduling with

admission control for scheduling in a dynamic environment such as Grids. A case for the

applicability of online interval scheduling is presented in the section 3.1.1. The following

section, 3.2, introduces the relevant definitions and presents a formal description of an

online interval scheduling algorithm (Section 3.5). Section 3.5.1 presents proof that

the algorithm with admission control performs just as well as the Earliest eXpiry First

(EXF) algorithm, and Section 3.6 summarizes the chapter,

Chapter 3 Online Sc11eduling 30

3.1.1 Discussion

::\lost of the online scheduling algorithms have been studied in the context of real-time

scheduling systems. However, most of the above-mentioned properties that characterize

an online scheduling problem are also applicable to evolving computing paradigms such

as Grid computing (Foster and Kesselmann 1999). A characterisation of different types of

Grid systems was provided by Fox et.al. (Fran Berman (Editor) 2003), which introduces

a taxonomy for various types of Grid systems. Computational Grids represent one such

system type that facilitates sharing of computational resources between multiple resource

providers and consumers. Section 4.2, describes a scenario inspired by scheduling system

in computational Grids that schedules jobs on multiple independent machines. This

scenario is inspired by existing Grid applications such as those described by (Abramson,

Buyya, and Giddy 2002; Nabrzyski, ::\1., and Jan 2004), where both producers and

consumers collaborate to provide a virtual computational resource. In each of these

applications the scheduling system learns about the job at its release time and needs

to schedule feasible jobs on a set of available resources. Various approaches have been

suggested, which include but are not limited to an economics based approach (Abramson,

Buyya, and Giddy 2002), a reservation based approach (Graham, E.L.Lawler, J.K.Lenstra,

and Kan 1979) and throughput maximisation based approach (Litzkow, Livny, and

M.W.IVlukta 1990). While some of the Grid scheduling systenls accept the jobs to

maximize there own objective function, the others derive their objective function from

the quality of service guarantees specified in the job description. The case of a fonner

type of scheduler is considered. It tries to maximize a given objective function and

accepts or rejects jobs according to its scheduling policy.

No Grid scheduling system has a prior knowledge of all the jobs to be scheduled by the

system, and needs to evaluate jobs on arrival. Some scheduling systems accept all the

incoming jobs and attempt to schedule them before the expiry of the job. In such cases,

the scheduling system does not reject the job unless the job can no longer be scheduled

to meet its processing requirements. The drawback of such scheduling systems is that

the job processing system does not provide any guarantee on the completion of the job.

However, rejection at expiry time may not be advisable in certain time critical systems

which require strict guarantees on the completion of the job. Specialized scheduling

systems that provide job completion guarantees have been investigated in the field of

online scheduling systems, and employ admission control systems to selectively accept

or reject jobs at release time. The following sections that precedes section 4.2, introduce

the definitions and a review the existing online scheduling algorithms, and suggest online

admission control for scheduling jobs on m related machines.

Chapter 3 Online Scheduling 31

3.2 General definitions and reVIew

3.2.1 Definitions

Following the standard notation introduced by Graham et al. (Graham, E.L.Lawler,

J.K.Lenstra, and Kan 1979), it is considered that all jobs are independent with no

precedence relationships bet-ween the jobs and no communications or synchronisation

requirements between the jobs. Jobs are revealed to a scheduler at their respective

release time ri. At release time, the scheduler learns about the processing time Pi, and

the deadline for the job di . The job Ji has a slack Si = di - Pi - ri, 'which represents the

amount of time between the arrival of the job and the last possible time at which it could

be started to meet its deadline, also known as its e:r:piry time. The minimum slack ratio,

also known as the patience of the job scheduling problem, is defined as '" = mini(si/Pi),

so that every job Ji has a slack of at least Si ::::: '" . Pi. 6. denotes the ratio of the largest

and smallest processing time of the jobs in the schedule (J". The gain of the schedule (J"

on a instance 1 is defined as LJiEUPi. The gain of the schedule is maximized, subject

to the objective function for the schedule. Candidate object functions that have been

investigated include make-span optimisation (Graham, E.L.Lmvler, J.K.Lenstra, and

Kan 1979; Albers 1997), weighted job optimisation (Lee 2003; DasGupta and Palis 2000).

'While a non-preemptive job is considered to be successfully processed if it was allocated

the resources uninterruptedly for the duration Pi, a preemptive job can be paused and

restarted any number of times and should be allocated resources for the cumulative

duration Pi, where completion in both cases is subject to deadline di . The scheduling

system is considered to be clairvoyant if the processing time of the job is known at

release time, while cases with unknown running time are referred to as non-clairvoyant

systems.

The scheduling algorithm A deals with allocation on single or multiple machines. In

either case, the performance of A is measured by comparing its gain with the gain of

an optimal (opt) off-line scheduling algorithm, which has complete prior knowledge of

the jobs when creating the schedule. Online algorithms are classified into deterministic

algorithms or randomized algorithm (Borodin and El-Yaniv 1998a). An online A deterministic

online algorithm A is c-competitive if gainopt (1) :::; c . gainA (1), for all input instances 1.

\Vhen considering randomized online algorithms, the competitiveness compares the gain

of the optimal schedule to the expected gain of a randomized algorithm. Competitive

ratio c is determined by determining the worst case input for an algorithm. For details

on the use of adversary based techniques used to determine the competitive analysis and

the adversary-algorithm(A) interaction models, refer to (Borodin and El-Yaniv 1998b).

Adversary based techniques (Lee 2004) create the worst case input sequence 1 and have

complete knowledge of algorithm A and utilize it to create the sequence 1.

An online scheduling algorithm can schedule any job Ji before its expiry time ei. In order

Chapter .3 Online Scheduling 32

to maximize its gain a scheduler is not required to complete all the jobs and may reject

some of them. The notification of acceptance or rejection of the jobs can be defened

until time ei. However, admission control mechanisms (Goldwasser 2003; Gold'wasser

and Kerbikov 2003: Garay, }\'"aor, Yener, and Zhao: GoeL ~1eyerson, and Plotkin 2001)

have been suggested for cases where the notification for the acceptance or rejection of

the job needs to be provided before ei. An admission control mechanism is not usually

required under underload conditions, but assumes prominence under overload conditions.

The above nomenclature and definitions are equally applicable to online scheduling on

single or multiple machines. However, following additional definitions introduced below

are specifically applicable to online scheduling on multiple machines. In the case of

multiple machines it is possible to co-allocate (Sch.viegelshohn and Yahyapour 2004)

the job to more than one machines. However, the scope of this discussion is restricted

to the case where a job can be assigned only to a single machine at any given time.

At any given time, each job can only be assigned to one machine, in the set of available

machines .Mk' J'vh, is considered to be a set of uniform machines if \/1-.1i E .~lkIMi = M j

for any i and j. At any given time t, a number of jobs may be available for scheduling.

A scheduling system may maintain all the jobs in a single queue or may allocate them

to separate queues on arrivaL While a scheduling system that does not pre-allocate the

jobs usually maintains a single queue for all the jobs, multiple queues are maintained

in cases where the job allocation precedes the actual allocation of the job. A scheduler

is considered online if it processes the job in an exact FIFO order. However, in certain

cases, sorting and selection on the job queue is permitted. For example, the algorithm

presented by (Lee 2003) is considered online. It describes a scheduler that sorts the

queue of available jobs and select the job with maximum length. In online scheduling

a job allocation cannot be subjected to any future changes. However, if the jobs once

allocated to the queue are reassigned, then the scheduler is considered to be semi-off-line

in nature.

In cases where a scheduler maintains a single queue for all the incoming jobs, each

individual queue is aware only of the currently executing jobs. In the case of non-preemptive

scheduling, the set consists of a single currently executing job. A job is feasible on a

machine if its allocation allows all the jobs to attain their deadlines. In some cases the

scheduling decision may be invoked on arrival of the job while in other cases the decision

may be invoked when a machine becomes available. If the scheduling decision is made

on the arrival of the job, it is likely that the job may be equally feasible on more than

one machine, also referred to as a tie. The performance of an online algorithms relies

crucially on the way it breaks ties; however it should be noted that some algorithms

break ties arbitrarily.

Cl18pter 3 Online Scheduling 33

3.2.2 Review

It is not possible within the scope of this section to provide a detailed review of online

scheduling algorithms. A detailed review of online scheduling algorithms can be found

in the (Eorodin and El-Yaniv 1998a; Leung 2004). The scope of this section is limited

firstly of all to highlight the state of the art the online scheduling algorithms for multiple

machines and secondly, to summarizing the current admission control mechanism for

multiple machines. The review is not restricted to algorithms by the choice of a particular

objective function, but gives emphasis to interval scheduling.

Graham et.al. (Graham, E.L.Lavvler, J.K.Lenstra, and Kan 1979) introduced the concept

of online scheduling and provide formal analysis of their algorithm, also known as the

List Scheduling Algorithm. It allocates an incoming job to the least loaded machine

and has a proven lower bound of (2+1/m) for makespan minim.isation, where m being

the number of machines. Later, Albers (Albers 1997), provided an improved bound at

a competitive ratio of 1.923 for rn 2': 2, this algorithm maintains two groups of lightly

loaded and heavily loaded machines: a job is allocated to lightly loaded machines only if

it cannot be scheduled to a heavily loaded machine. These online scheduling algorithms

represent the first studies in the case of online scheduling for makespan minimisation

on multiple machines. There have been a number of studies for scheduling on multiple

machines for different objective functions.

The general model of online scheduling was further refined by Lipton and Tomkins

(Lipton and Tomkins 1994), who also introduced the concept of online interval scheduling.

In interval scheduling all jobs request immediate use of resources and need to be completed

before a fixed interval. Their model (for a single resource) implicitly assumes that a

scheduler has no prior knowledge of the value of 6. They prove the fact that, with jobs

of equal length, greedy interval scheduling is guaranteed to find an optimal schedule.

For jobs with two distinct lengths, the authors provide a randomized 2-competitive

algorithm, and, for jobs with arbitrary length the algorithm is O((log6)1+E) - competitive.

This result was improved upon by Goldwasser (Goldwasser 2003), to prove that the

competitive ratio for multiple machines is bounded by (2 + 1 / K:). This result for a

single resource was also proven to be valid for multiple resources (Kim and Chwa 200l).

However, all the results for interval scheduling on multiple resources rejected the job at

its expiry, and, as far as is known (Goldwasser and Kerbikov 2003) have ''vTitten the only

paper to consider admission control for a single resource in the case of interval scheduling.

The work by Goldwasser et.al. (Goldwasser and Kerbikov 2003) remains the only

work to study the effect of resource admission control on the performance of an online

interval scheduling system. It makes three important contributions. First, it provides

a 4-competitive randomized algorithm capable of providing immediate notifications,

secondly, a 3 - competitive randomized algorithm with no notifications and thirdly,

it proves that no randomized algorithm which provides immediate notification can be

Chapter 3 Online Scheduling 34

better than 7/3-competitive. A few other alternative approaches for online interval

scheduling on multiple machines are Lee (Lee 2003) and Das (DasGupta and Palis

2000). For online mechanism design, Lee (Lee 2003) introduces a static classification

based randomized algorithm, for a specific case of k < 1 and is an important result in

the field. The work by Das (DasGupta and Palis 2000), highlights the effects of online

scheduling with rejection and restart. The most recent results from mechanism design

deal with scheduling on a single machine under unreliable job information, and prove

that adequate mechanisms can be designed to provide performance guarantees on the

schedule generated by such collections of resources.

3.3 Problen1 definition

The problem of online allocation of clairvoyant jobs on a variable set of resources/nodes

is considered with the aim of developing an admission control system. Each node is

represented by a queue, and is autonomous in the sense that a node may join or leave

the collection of nodes. However, as a part of the system each node accepts jobs over a

finite horizon, each queue is considered as a possible candidate of the incoming job, if

it can process the job ,:vhile retaining its prior commitments. The decision to allocate

a job to the queue is irrevocable, and jobs are reallocated only in the case of a queue

failure.

At any given time the queue holds a list of the current job and allocated jobs. The state

of each of the queues is completely visible to the scheduling system, which must decide

the allocation of the next job. Job acceptance by the scheduler is constrained by the finite

horizon imposed by each job in the queue. This finite horizon is always at a constant

distance from the current time instance. This continual time representation, when

analyzed at any instance in time, reduces to a bin packing problem, with constraints on

allocation strategy.

The basic scheduling system in this setting has to:

1. I\1aximize the competitive ratio of the scheduling of jobs on resources with equal

queue lengths.

2. Maximize the competitive ratio in case of unequal queue lengths.

3. Minimize the penalties in case of resource failures.

Associating resource costs and weighted jobs represent extensions to the existing basic

scheduler.

Cilapter 3 Online Scileduling 35

3.4 The selnantics of job allocation

Resources/nodes are represented as queues, where each resource in the scheduling system

exhibits autonomous behaviour. There are at least two possible ways of implementing

such a decentralized scheduling system. The first alternative is to assume a centralized

job queue, with the scheduler acting as a broker (also knovvn as matchmaking), queues

competing with each other to provide the best possible allocation strategy for the

maximisation of the objective function. The second alternative involves a master-slave

configuration, where the queue relinquishes the control to a centralized scheduler, which

adopts appropriate job allocation strategy to maximize the objective function. As

demonstrated in experiments (refer to next chapter), the first strategy of matchmaking

results in disproportionate allocation of jobs, consequently resulting in a decrease in the

overall competitive ratio. The master-slave online scheduler and the admission control

system performed better and were used as the preferred architecture.

In a master-slave configuration, the central scheduler has complete knowledge of the state

of each of the queues. As the sequence of jobs is knuwn at release time, the centralized

scheduler has to choose jobs that can be appropriately allocated to each of the queues.

'\Then presented with a job the scheduler needs to ascertain if it should accept or reject

the job. If accepted, it needs to allocate the job to either of the queues. As described in

the previous section, once allocated to a queue the job cannot be reassigned. Therefore,

a scheduler may defer the actual allocation of the job, but accept it on the basis of the

feasibility criterion. By deferring the actual allocation of the job, the scheduler retains

the flexibility to reassign the jobs to an appropriate node and achieve higher competitive

ratio. However, the deferral process incurs additional processing costs of the complexity

O(n3), detailed discussion of which can be found in (Brucker 2001).

In order to maximize the competitive ratio of the online allocation, the scheduler should

ensure that no resource/node remains unallocated during any interval. Consequently, a

greedy strategy is adopted for allocation of resources. A greedy strategy allocates the

job to any idle queues. However, if each of the queues has a currently executing job,

the scheduler needs to assign the job to the most appropriate queue. Two prominent

strategies can be adopted. A scheduler may back fill the current queue before starting

to allocate the jobs to the next available queue; alternately it could try to ascertain the

best resource it can allocate the job to. The proof in section 3.5 demonstrates that the

best fit strategy performs better then the strategy of allocating jobs to the first available

queue, a fact also validated by experimental analysis presented in the next chapter.

3.4.1 State transition representation of job status

An online scheduling system processing a continuous stream of jobs classifies the jobs in

accordance to their state. Consider a scheduling system in which jobs can be maintained

Cl1apter 3 Online Scheduhng 36

Available Accepted Allocated Running Completed

Executed

Resource Failure

Rejected

FIGURE 3.1: State transition of a job in a Grid scheduling system.

in either of the following states:

A vailable A job submitted for allocation is queued in this state.

Accepted If the job is feasible in any of the job queues it is classified as accepted.

Allocated A job assigned to a job queue is referred to as an allocated job.

Rejected A job is rejected either for being infeasible or having passed its expiry time

due to resource failure.

Running Jobs being executed at any of the queues are classified as running.

Completed Jobs successfully executed are marked completed. Only completed jobs

contribute towards the gain of the online algorithm.

The possible lists of transitions have been represented in the following figure 3.1:

3.5 Algorithrn - Best Fit Interval Scheduling (BFIS)

A cluster of resources is considered, where each resource is represented as a queue,

as introduced earlier. Theoretically, each of the resources can have infinite capacity.

However, as the cluster of resources has been formed by the dynamic association of the

resources, practical systems requirements introduce the bounds on warranties and only

limited queue sizes are considered. The length of the queue determines the finite horizon

- the point in time beyond which the queue ceases to accept allocations. Such a bound

can be expressed in terms of b. and the maximum permissible slack "'max. The size of

the queue represents the maximal permissible interval allocation permissible and can be

considered synonymous to fixed bin size in the bin-packing problem.

In most practical scheduling systems of this type, "'max is determined by the average

lifetime of the resource's participation in the cluster. 'While the maximum acceptable

Chapter;) Online Scheduling 37

length of the job may be decided by the penalties introduced on the failure to process

the job.

At any given instance time t, the bin has a length, and the item can be shifted.

Best Fit is a greedy algorithm and is based on the following heuristics:

1. Allocate a job to empty queue.

2. For all allocations within a queue, use the EDF semantics for executing jobs.

3. On arrival of a job, consider its feasibility on the current set of machines. If feasible

on multiple machines, use the best fit criterion for breaking the tie for allocation

between multiple machines.

The following example illustrates the use of the above scheduling strategy for a sequence

of jobs J = {J1, h, J3, J4, J5} that are scheduled on a set of machines 1'1 = {1I11 , Ah},

where each of the jobs is represented as:

J1 = < 0, 1,3 >

h = < 0, 1,2 >

J3 = < 0, 1,2 >

J4 = < 0, 1,2 >

J5 = < 0, 1,2 >

On arrival of job J1 , both machines have an empty queue and are equally best fit, and

hence the tie is broken arbitrarily. For the sake of this example, consider that job J1 is

allocated to machine 1111. On arrival of J2, the machine A12 is empty and it receives the

assignment of job h. The job J3 remains feasible on either of the machine and happens

to be best fit for 1112 , while J4 and J5 remain feasible on 1111 alone.

Consider an optimal online scheduling strategy OPT. Let J represent the sequence of

jobs J1 , J2 , h, ... , I n that are to be scheduled over a set of machines M. Let A represent

the best fit scheduling strategy used for allocating the jobs in a queue. Each job Ji =<
ri, Pi, di >, to be scheduled on the set of machines, is made visible at the release time

rio Depending on their release time, the jobs in the sequence J can be classified into two

distinct categories: those released during the busy interval and those released during

the free interval. An interval is considered free for the algorithm A if at least one of

the machine queues is empty at the time. As A happens to be greedy, all jobs released

during the free interval are scheduled by both A and also by OPT.

Chapter 3 Online Scheduling 38

Let J' represent the set of jobs released during the free interval. As mentioned above,

both OPT and A process the set J'. Let J" be the set of jobs released during the

busy interval and let J~ and J~PT represent the subsets of J" processed by A and

OPT respectiyely.

J'+J"
C ornpetitiveRatio(c) = A

J' + J~PT
(3.1)

J' + J" J" __ ---."..-0..:.4_ < _._4_

J' + J~PT - J~PT
(3.2)

The aboye equations prove that the effects of admission control are evident only in case

of busy intervals and hold true in both the cases of preemptive and non-preemptive

job scheduling. Although, the use of preemptive techniques is a common occurrence,

non-preemptive scheduling has been considered in Grid scheduling. A non-preemptiye

job allocation provides exclusive control of the resource - an advantage considering the

security and provenance requirements in a Grid environment.

An analysis of algorithm A for a non-preemptive scheduling strategy is presented in the

following section.

3.5.1 Analysis

Under the following conditions, algorithm A will reject the job while OPT will accept it.

Already executing a job As A uses a non-preemptive scheduling technique, it cannot

admit a job while executing a current job. However, OPT, with complete knowledge

of the input sequence will not start a new job (provided it is not tight) if it expects a

job to be released during the execution time of the already accepted job. Consider

b. to be the ratio of the longest job to the shortest job and K,min as the minimum

slack ratio required for the admission of the job. Considering that the longest

job Jh has been released at time t=O, the queue will start scheduling the job

on that machine. \iVhile executing Jh , algorithm A will not accept any jobs that

expire within the interval < 0, dh >, where dh is the deadline for job h. However,

OPT, 'with complete prior knowledge of the input job sequence J, will be able to

accommodate jobs within the slack of job Jh. From the above discussion, under

worst case circumstances, the total gain of A is Ph, while the possible gain of the

algorithm OPT is 2 x Ph K,min X Pz, where b. = ~~" This derives from the fact that,

if any job is released during the interval (Ph - K,min X pz- E, Ph]' algorithm A will be

able to accept the job. Hence the competitive ratio for the online non-preemptive

Chapter 3 Online Scheduling 39

case is given as:

Ph
C = ------~~------

2 X Ph - ""min X PZ
(3.3)

~
c = ----------

2 X ~ - ""min
(3.4)

Arbitrary allocation in case of a tie A processes the sequence of jobs in their order

of arrival. The incoming jobs are either immediately assigned to a queue or

rejected. At any given instance these jobs need to be bin packed into the available

queues. The order of packing determines the maximum moment available to the

jobs in each of the queues. Consequently, the scheduler m.ay either assign the jobs

arbitrarily to a queue amongst the set of queues on which the job is feasible or it

can break the tie by use of an allocation strategy. First-Fit, End-Fit and Best-Fit

are the three most common strategies employed in the domain of bin-packing.

Amongst the three possible strategies, the Best-Fit Strategy retains maximum

moment between the allocation of the jobs, and therefore achieves the highest

packing density amongst the three, and was chosen to implement online scheduling.

Inadmissable Job Slack Lipton and Tomkins (Lipton and Tomkins 1994) introduced

the concept of interval scheduling under minimum slack requirements. However,

their (and the subsequent results in the field) impose no restrictions on maximum

admissible slack. This is primarily attributed to the fact that most of these

algorithms assume that resources will be available throughout the life-time of

the algorithm. However, practical operating scenarios, as described in the next

chapter, require the imposition of n:mximum slack. Hence, in cases where J consists

of the jobs with a slack ratio greater than ""max, A is bound to reject the jobs and

hence perform poorly. As the two classes of algorithms differ significantly, in such

cases, the competitive ratio is indeterminable.

3.6 Summary

The motivation for computational resource sharing is described in Appendix B. This

chapter has proposed a queue based model to capture interval based resource scheduling

in Grids and similar environments. A best-fit online interval scheduling algorithm for

non-preemptive jobs was described and analyzed. The performance evaluation of the

algorithm can be found in the following chapter,

Chapter 3 Online Scheduling

1 EXFMNotifyO

input : Queue of incoming jobs A, Set of .Machines Mk

output: An online schedule S

2 event job arrival invokes routine ProcessJob (job)

3 ProcessJ ob (job)
4 begin
5 if A = 0 then
6 I Accept job and schedule on any random machine
7 end
8 else
9 1~1p +-isFeasible (job, ~~h);

10 if Mp = 0 then Reject job;
11 else BestFi t (Mp,Job)
12 end
13 end

14 event Continuous processing at each machine "Hi is the routine ExecJ ob (Qi)

15 ExecJob(Qi)

16 begin

17 Let Jk E Qi be the job with earliest deadline.

18 current job +- Jk;
19 nextidle +- currentiirne + Pk;

20 Qi +- Qi - {Jd;
21 Allocate Resources to Jb
22 if CUTTenttirne = nextidle then
23 I ifQi=!=0then ExecJob(Qi);
24 end
25 end

26 isFeasible CJh, Mk)

27 begin

28 for i +-- 1 to l11hl do
29 Order all jobs of Qk by non-decreasing deadlines JIb hb J3k, J4k, ... Jqk;
30 Calculate inde.T +-- possible location of the job.;
31 if eh > PreviousCommitments{index) then
32 I continue
33 end
34 Calculate availableSlot +--

PreviousCommi tments (index) -FutureCommi tments (index) ;

35 if Ph ::; availableSlot then
36 I ll1p +-- Mp + Mk
37 end
38 end
39 end

Figure 3.2: Online resource allocation with admission control to provide
notifications at release time

40

Chapter 4

Evaluation of the Online

Scheduling Algorithm

The first section of this chapter presents the experimental evaluation of the interval

scheduling with admission control. It uses the standard simulation techniques used

for evaluating scheduling systems (Kiran 1998) and compares the performance of the

algorithm for variable slack ratio, job length, arrival rate and resource failure rates.

The performance of the algorithm is compared against the EXF (Earliest eXpiry First)

algorithm - an online scheduling algorithm with the best known competitive ratio.

Section 4.2 describes the application of the above work in the context of an online Grid

scheduling system, and the subsequent section summarizes the work on online scheduling

systems.

4.1 Experimental settings

Experiments were conducted using a single source of job sequence that generates jobs

with a specified probability distribution for job length, rate of job arrival and resource

failure rates. Table 4.1 below summarizes the parameter values used for the experimental

evaluation.

4.1.1 Job generator

A job generator had been devised for generating a sequence of jobs used to analyze

the performance of the scheduling algorithm. The job generator creates instances of

jobs with the desired characteristics of execution time and slack. Each job instance has

three parameters: first, release time, ri - is determined in accordance to the stochastic

distribution of job arrival; second, the processing time, Pi - is determined in accordance

41

Chapter -4 Evaluation of the Online Scheduling Algorithm 42

Parameter Description ParaIneter Value
Simulation interval 10000 jobs

Xumber of nodes used for simulation 100
Ma..-ximum Job length 1000
Job distribution type Poisson distribution, zip distribution

Job arrival rate Poisson distribution
Slack constant Constant for some experiments, varied from 1.1 to 12.0

Failure rate Gaussian distribution
l\fean time to failure 0.75 of n1.aximum job length

TABLE 4.1: Simulation settings for evaluation of online scheduling algorithm.

to the job length distribution. Candidate distributions include unit job lengths, uniform

job length, poisson distribution and zipf distribution. Thirdly, the deadline of the job is

calculated in accordance to the slack, where deadline of a job di = ri + (n, + 1) X Pi. A

finite sequence of jobs with the desired job and job arrival characteristics is generated

and is evaluated using an off-line scheduling algorithm, Earliest eXpiry First (EXF) and

the online-interval scheduling.

Only integer job lengths were considered for simulation. Integer job lengths were

considered for the relative ease of scheduling the jobs against a virtual time clock,

as it uses integer incremental time steps. Unit and uniform job lengths represent a

very specific case of workload observed in certain web server workloads, while the zipF

distribution represents the job lengths observed in super computing center workloads.

The Poisson distribution represents a generic distribution of random workload observed

in batch jobs. For job arrival distribution,Poisson distribution was considered.

4.1.2 Scope of the evaluation

The purpose of the evaluation is:

• To determine the effectiveness of the scheduling algorithm vis-a-vis the performance

of an off line scheduling algorithm, the EXF algorithm and the interval scheduling

algorithm with no notification.

• To evaluate the performance of the algorithm under varying load conditions.

• To compare the overhead associated 'with the admission control mechanism.

4.1.3 Analysis

The competitive ratio for the various algorithms is presented in figure 4.2. The figure

represents the relative performances of BFIS, EXF and the offline algorithm for a set

Chapter 4 Evaluation of the Online Scheduling Algorithm

Failure

Failure

FIGURE 4 .1: Simulating resource scheduling with failures.

Com petitive Ratio for N-Machine
Scheduling algorithm s

Number
of

Machines

K8 BFIS

- EXF
o Offline Schedule

30

10

0.8177

0.9362

1

20

0.8201

0.9336

1

o
i
D::
Q,)

> ;:

i c.
E o o

Scheduling
Strategy

30

0.8166

0.9308

1

F IGURE 4.2 : Comparison of BFIS, EXF and off-line scheduling strategy.

43

Chapter 4 Evaluation of the Online Scheduling Algorithm 44

of 10, 20 and 30 machines. The figure represents the average competitive ratio for K

> 1, randomly varying between the values of 1<k<10: the maximum bin size for each

machine ,vas "'max maximum job length, for the case of BFIS. For EXF, the job queue

was sorted and the EXF was allowed to choose the longest job. The input job sequence

had at least one feasible schedule that 'would bin pack all the queues. It is assumed

that any off-line algorithm is able to detect the existence of one such ideal schedule.

The competitive ratios of BFIS and EXF demonstrate that the performance of both of

these algorithms is unaffected by the number of machines and is relatively resilient to

\'ariations in slack factor. \Vith a competitive ratio of approximately 0.8, the additional

overhead in BFIS (approximately 10 percent) is introduced by admission control.

4.1.4 Discussion

As NO\VS assumes prominence, both the resource proyiders and consumers will require

mechanisms for managing the agreements for some a fore-mentioned finite horizon. The

BFIS algorithm presented in this section presents one such mechanism, which allows

the resource providers and consumers to dynamically reserve resources for an incoming

online sequence of jobs. Unlike other online scheduling algorithms, BFIS uses the concept

of finite horizon, and, unlike in random breaking of tie the best fit ensures that the

queues are filled to provide even distribution of jobs for the horizon dictated by each

of the incoming jobs. The approach is similar to online bin packing for a dynamic

horizon. The load distribution allows the scheduler to optimize the use of selected

resources and minimize the resource usage of others. Such segregation of resources

based on job sequence characteristics allows the scheduler to dynamically determine

the optimal number of resources required for the particular job distribution. The next

section describes an online scheduling system for Grid systems as a probable use case

for BFIS.

4.2 Description of Information exchange between Grid schedulers

Traditional resource management is commonly used to describe all aspects of the process

of locating various types of capabilities, arranging their use, utilizing them, monitoring

their state and providing traceable evidence/audit of their usage. As described in

Appendix B, Grid Systems (Foster and Kesselmann 1999) represent an emerging class

of systems that assume dynamic operating environments, which facilitate coordinated

use of distributed resources. Appendix B introduces computational Grids - a class of

Grid systems that allows coordinated use of computational resources. It is possible to

conceive a computational Grids existent under a single administrative domain and with

a centralized resource management system. However, in most cases, the a Grid based

Chapter 4 Evaluation of the Online Scheduling Algorithm 45

resource management system 'will operate over a set of unreliable resources spread across

multiple administrative domains.

Grid Schedulers, as described in C'\abrzyski, M., and Jan 2004), represent types of Grid

resource managers that, by their very definition, are involved with managing resources

across multiple administrative domains. Grid Scheduling can be applied to many types

of resources: a machine, disk space, a QoS network and so forth, although the rather

generic definition usually applies to the management of computational resources. In

(Nabrzyski, M., and Jan 2004) I\abrzyski et.al. describe the structure of a generic

Grid scheduling system and introduce the concept of hierarchical organisation of local

and higher level schedulers. Hierarchies of such schedulers use different job allocation

techniques to coordinate the allocation of resources. The scheduling systems try to

optimize the usage of resources in accordance with their respective objective functions.

O'\abrzyski, ~1., and Jan 2004) introduced guaranteed completion time of allocations as

one of the objective functions used in Grid scheduling systems. The interval scheduling

algorithm described in the previous chapter was conceived to operate under such Grid

scheduling systems. The queue based model of the algorithm allows it to map resource

allocations across multiple resource providers and can also be adapted (by changing the

feasibility test described in the algorithm) for use with autonomous queues.

The interval scheduling algorithm can be used to manage resources within the context of

a single resource manager. As a hierarchical Grid scheduler is reliant on the participation

of local schedulers, which in turn autonomously derive their objective functions, it is

imperative that local schedulers dynamically collaborate or cease to collaborate with

the schedulers at a higher level. In most cases, these changes are in response to changes

in resource and load characteristics. Information on such changes needs to be exchanged

between the instances of the Grid scheduling systems. Scheduling systems may use job

brokerage or resource brokerage as a means of resource management across multiple

scheduling systems. ClassAds (Litzkow, Livny, and M.W.Mukta 1990) used in CONDOR

represent one such system of job brokerage. Information exchange between scheduling

systems may happen along the established hierarchical topological order as used in

Globus Information Services. However. if one considers the relaxed model of peer-to-peer

systems, information exchange may influence the choice of topological ordering. The

next part describes the techniques for the creation of such overlay networks.

4.3 Summary

This part of the work (Part II) introduced and evaluated an interval based scheduling

system for dynamic environments. It was proven that online interval scheduling can be

used to provide guaranteed resource availability for computational resource allocations.

The queue based model takes into account the intermittent availability of resources

Chapter 4 Ei"aluation of the Online Scheduling Algorit11111 46

and creates an adaptive schedule with a bounded competitive ratio. Subsequently

this chapter discussed a way of employing the above algorithm in the context of the

Grid scheduling system. The autonomic organisation capability can be sustained by

permitting information exchange between Grid scheduler instances. Topological organisation

of the nodes is discussed in Part III, which introduces a mechanism to design a semi-structured

overlay network between resource providers.

Part III

Information Dissemination in

peer-to-peer systems

47

Chapter 5

Resource Management • P2P In

environments

The previous chapter, presented a use case of an online scheduling system that involved

potential collaboration between multiple resource providers. The multiple resource

providers used resource advertisements as a means of communicating resource information

between providers and consumers. The scenario presented in section 4.2 served as

motivation to investigate the issues of resource discovery in systems composed of autonomous

resource providers (referred to as peers when set in a P2P architecture). The scenario

4.2 considered one variant of"resource discovery under a peer-to-peer (P2P) (Clark 2001)

system environment.

This part presents a framework that facilitates resource discovery in P2P systems. The

discussion spans three chapters. This chapter reviews discovery techniques used in a

peer-to-peer environment, elaborates the application scenarios and presents a generic

model for overlay construction and management in peer-to-peer(P2P) systems. This is

followed by the detailed description of the algorithm in Chapter 6 and an experimental

evaluation described in Chapter 7. The primary contributions of these chapters towards

the thesis are that they:

1. Outline the evolution of resource discovery in peer-to-peer systems and describe

their limitations when applied to the application domains of mobile services and

Open Hypermedia Systems;

2. Provide an algorithm for creation and maintenance of an adaptive overlay;

3. Present an experimental evaluation of the same.

Section 5.1 presents a general overview of P2P systems. Section 5.2 describes existing

search techniques and highlights their limitations. Motivating applications are the

48

Chapter 5 Resource 1\lanagement in P2P environments 49

subject of section 5.5, while resource definitions and search techniques are described in

section 5.6. This is followed by a description of a generic framework for the creation and

maintenance of an overlay network, in section 5.S. Section 5.7 discusses the characteristics

of the proposed overlay.

5.1 Peer-to-Peer con1puting

There is no definitive description of peer-to-peer systems (Oram 2001), but the system

characteristics are often used to describe this class of systems. P2P systems are typically

characterized by decentralisation of control, where each node plays the parts of the client

as well as server, often leading to the creation of ad hoc communities of collaborating

peers. This is exemplified by applications such as ::\apster and has also been widely

adopted by file sharing applications such as Gnutella (GNUTELLA), Freenet(Clarke,

Sandberg, \7v"iley, and Hong 2001), and OceanStore (Kubiatowicz, Bindel, Chen, Eaton,

Geels, Gummadi, Rhea, \Veatherspoon,W~eimer, \Vells. and Zhao 2000). l\10st P2P file

sharing systems are classified as unstructured P2P systems; their topology evolves as

peers join in or leave the network. A large body of work has focused on developing

structured P2P computing networks. Examples include Tapestry(Zhao, Kubiatowicz,

and Joseph 2001), Chord (Stoica, Morris, Liben-Kowell, Karger, Kaashoek, Dabek, and

Balakrishnan 2003) and CA::\ (Ratnasamy, Francis, Handley, Karp, and Schenker 2001).

The P2P approach of creating ad hoc networks of collaborative peers has been applied

to various application domains, including, large scale distributed computing as Grids

(Buyya, Abramson, and Giddy 2001; SETI), file sharing (Clarke, Sandberg, Wiley,

and Hong 2001; GNUTELLA ; Kubiatowicz, Bindel, Chen, Eaton, Geels, Gummadi,

Rhea, \Veatherspoon, \Veimer, \Vells, and Zhao 2000), and service oriented computing

platforms such as JXTA (Qu and N ejdl 2001). The following section provides a brief

overview of both structured and unstructured P2P systems.

5.2 P2P systems

Resource discovery techniques are central to both structured and unstructured P2P

systems. \Vhile the unstructured P2P systems utilize some sort of heuristics to guide

the search, the structured P2P systems use the properties of the overlay to selectively

propagate the search query to locate appropriate resources. The following section reviews

the search techniques for systems belonging to each of these two P2P system classes.

Chapter 5 Resource IV[anagement in P2P environments 50

5.2.1 Unstructured P2P systems

Freenet Freenet is a P2P file storage system in which peers share their available disk

space to create an internet-scale virtual file system. Each of the participating peers

is required to provide some storage space: in return Freenet provides the user with

a secure means of storing their files on the virtual file system. To add a new file

the user provides the file and a location-independent, globally unique identifier

(G UID) (also known as keys). A file addition results in the file being replicated

and stored at a number of locations.

In the Freenet system, every node maintains a routing table that lists the addresses

of the other nodes and the list of the keys it thinks that they hold. On receipt of

a query, the node finds its own store: and returns the file if it is found in the local

store, otherwise it forwards the request to the node with the numerically most

proximal key to the one requested. To prevent flooding of the network, Freenet

mandates that each query be associated with a Time To Live (TTL). In addition,

Freenet maintains the search paths for preyious queries to train the routing table

sets. These trained sets are used to cluster the files with similar keys on the same

data store. The simulation studies on Freenet show that the path length grows

approximately logarithmically to network size.

Gnutella Gnutella is a file sharing application and relies on participant peers to form an

unstructured overlay network. A peer can join the Gnutella network by contacting

one of the participant peers, \vhich leads to subsequent overlay formation amongst

the other participant peers. Once attached to the network, each of the Gnutella

nodes processes the incoming query requests. Early Gnutella algorithm relied

on broadcasts to propagate queries between neighbouring nodes. The range of the

query broadcast is restricted by the TTL associated with each of the query requests.

Subsequent changes to the algorithm have been proposed by (Lv, Cao, Cohen,

Li, and Shenker 2002), which substitute flooding by a set of random walkers.

The simulation based study described in (Lv, Cao, Cohen, Li, and Shenker 2002)

demonstrates marked improvement in performance. However, subsequent studies

(Ritter 2001) have demonstrated that the Gnutella approach remains non-scalable.

5.2.2 Structured P2P systems

Structured P2P techniques impose a set of topological constraints on the construction

of the overlay network. Most of the structural constraints were designed to organize the

overlay and facilitate efficient search algorithms. For example, CAN and Chord partition

the search space into a distributed hash structure, while Tapestry utilizes specific naming

mechanisms to create an overlay. The following is a description of three structured P2P

systems.

Chapter 5 Resource 2\1anagement in P2P enrironments 51

Content Area Network (CAN): Content Area N"etwork (CAN) (Ratnasamy, Francis,

Handley, Karp, and Schenker 2001) uses an internet scale hash table maintenance

technique to uniquely map a "key" onto "values". Central to the algorithm is the

creation and maintenance of a d-dimensional co-ordinate space that allows hash

table equivalent functionalities such as insert, deletion and look-up of key yalue

pairs. The d-dimensional co-ordinate space is just a logical representation, and

nodes can be dynamically repartitioned amongst all the nodes at any time.

A typical CAN" network consists of many nodes, each storing a part of the hash-table,

known as a "zone", in addition to information about some adjacent zones. Each

node belongs to a unique zone and is neighbour to nodes that overlap with it in

at least d-l dimensions. Each node maintains the state of its neighbours, with

the maximum number of neighbors limited to 2d. A typical query specifies the

destination co-ordinates. The query routing mechanism of each node uses the

neighbor state to route the query along the d-dimensional space, to a node that

is the closest in the d-dimensional space. For a d-dimensional space 'with n-equal

partitions the average path length is (d/4)(nl / d), where the path length gwws by

O(n1/ d) by addition of the node.

CA~ provides reliable mechanisms to recover from failed nodes. \iVhen a node

leaves CAN, it explicitly hands over the zone to one of its neighbors, which

thereafter maintains both zones. However, failure to communicate zone and neighbor

information with immediate neighbors is considered as a failure. A neighbor

detecting a failure starts the takeoyer mechanism. The first neighbor to successfully

complete the takeover mechanism informs neighbours about the completion of

takeover to all the neighbours of failed nodes.

Chord: Chord is a P2P protocol that results in the formation of a structured overlay.

The chord protocol is specifically designed to uniquely map the key to nodes. It

uses consistent hashing to allocate keys to nodes and arranges the space of an

m-bit identifier into a circle of modulo 2m identifiers. In steady state each of the

nodes in chord maintains state about O(1og(N)) nodes in a N-node system. The

chord maintains information about neighboring nodes as they join and leave the

system, with a very high probability that the reorganisation results in no more

than O(log2(N)) messages. Central to chord is the concept of creating a circular

identifier space, where each node stores the information about the identifiers

between itself and the next node in a clockwise direction.

Each of the chord nodes maintains information about approximately O(log(N))

neighbors and uses collaborative replication to improve the resilience of the P2P

network. Each of the participant nodes is identified by the key obtained by hashing

its IP address. Each node stores information about the keys located between its

identifier and that of its immediate neighbor. Queries in Chord are processed by

passing them around to successive nodes vvith identifiers lower than the identifier

Chapter 5 Resource JH.anagement in P2P environments 52

being queried.

Tapestry: Tapestry is an application level P2P protocol that extends the unique naming

scheme introduced by Plaxton trees (Plaxton, Rajaraman, Andr, and Richa 1997).

The overlay organizes the 2n nodes into l levels, and nodes in each level maintain

their respective neighbor maps. In an l level tree, each node is identified by an

w=n/l bit identifier. A node vvith a label, say xyz, where X,y and z are the bit

digits, will have a routing table with

l. 2w entries of [* ,X,X]

2. 2w entries of [x,*,X]

3. 2w entries of [x,y, *]

where * denotes every digit in 0,1, ... , 2w - 1, and X denotes any digit in 0,1, ... ,

2w l.

Using the above routing state, a packet is forwarded towards the destination label

node by incrementally resolving the destination label from left to right. Each node

forwards the packet to a neighbor whose label matches the destination label in one

more digit than its own label. The average path length for a netvmrk of n nodes

is O(log(n)), and requires the system to maintain a state of O(1og(n)) neighbors.

5.3 Related algorithms and systems

Similar resource discovery problems have also been identified in related research areas.

These involve maintenance of state tables as summarized below:

5.3.1 Distance Vector and Link State based algorithms as applied to

ad hoc computing

Distance Vector based and Link State based algorithms have been widely used for IP

routing in ad hoc computing environments. Examples include DSDV (Perkins and

Bhagwat 1994), AODV (Perkins and Royer 1999), ZRP (Haas and Pearlman 1998)

amongst others. These algorithms maintains partial knowledge of system topology in

order to route messages between mobile nodes in an ad hoc COlTllllUnication network. The

algorithms have a striking resemblance to structured P2P networks: both system types

maintain partial routing tables in order to propagate queries to their final destination.

5.3.2 Domain Name System (DNS)

A domain name system maintains a table that maps a unique name to its IP address,

and, in a sense provides a functional capability similar to that of Distributed Hash

Chapter 5 Resource 1\fanagement in P2P environments 53

Techniques. For any group of computers partaking in the DNS naming scheme there is

likely to be a single definitive list of DNS names and associated IF addresses. The group

of computers included in this list is called a zone. A zone could be a top level national

domain or a university department. \iVithin a zone, a DNS service for subsidiary zones

may be delegated along with a subsidiary domain. The computer that maintains the

master list for a zone is said to have authority for that zone and will be the primary

name server for it: there will also be secondaries for that zone. The DNS server may be

able to resolve the request for name from its own local database/cache. If a DNS server

is unable to resolve the key, it solicits help from another DNS server higher up in the

hierarchy or one in the destination zone.

5.3.3 Coalition fonnation in Agent-based systems

Coalition formation is an area of active research in the field of agent-based systems

(\iVooldridge and Jennings 1995) and deals with the design of mechanisms where a

number of independent agents come together to act as a collective entity. Coalition

formation has been studied in the context of multi-agent systems and has been applied

to various fields, such as e-commerce (Tsvetovat and Sycara 2000) and Grid computing

(Foster and Kesselmann 1999). Coalition formation is based on the notion that the

collaborating agents are better off acting collectively rather than indi,oidually in a

multi-agent system. The coalition formation in multi-agent systems can be viewed as

being composed of three main activities (Sandholm, Larson, Andersson, Shehory, and

Tohm 1999), as follows:

Coalition structure generation Coalition structure describes the sets of collaborating

agents and determines the scope of interactions among coalitions. The process

usually involves partitioning the group of agents into smaller groups of collaborating

agents, such that the partitioning results in an exhaustive and disjointed set of

coalitions I For a set n agents {PI,P2,P3, Pn}, there exist 2n - 1 possible

coalitions and 2 . n - 1 coalition structures. For example, for a set of three

agents {PI, P2, P3}, there exist {PI},{P2} ,{P3}, {PI, P2},{PI, P3} ,{P2, P3},{PI ,P2, P3}

coalitions and {{pI}, {P2,P3} },{ {Pl,P2}, {P3} },{ {PI,P3}, {P2}}, {{PI,P2,P3}} and

{{pI}, {P2}, {P3}} disjointed coalition structures.

Optimizing the value of individual coalitions The coalition structure can be optimized

to maximize a certain objective function, also known as the coalition value. Each

agent in the coalition pools its resources and associated tasks to maximize the

coalition value. An overall coalition structure is designed to maximize the cumulative

coalition values of the entire structure.

lSome research also considers the case of non-disjointed coalitions, where agents can simultaneously
belong to more than one coalition

Chapter 5 Resource Nfanagement in P2P environments 54

Pay-off distribution All agents in the coalition pool their resources to maximize the

coalition value function in expectation of a certain payoff. The payoff can be

equally or proportionally divided amongst the members of the coalition. Payoff

distributions are common in agent-based e-commerce applications, where each

autonomous agent enters a coalition to maximize utility function in the process of

maximizing coalition value.

In this study coalition formation algorithms are classified into tvvo distinct categories,

payoff maximizing coalitions and coalitions 'value maximisation'. The classification

derives from the two prevalent approaches used in agent based systems, namely competing

agents and collaborating agents. In the former case of pay-off maximisation, each

agent enters a coalition with a sole purpose of maximizing its utility, and the coalition

structure formation assumes a lesser priority. However, in coalition value maximisation,

the collective utility of all the agents in a multi-agent system supersedes the pay-off

distribution objective. In such cases the coalition structure is used to measure the good

of the coalition formation process.

This research is interested in systems in the coalition structure formation process and

its application to the formation of overlay topologies in peer-to-peer networks. Previous

research in the field has focused on the formation of super-additive coalitions (Kahan and

Rapoport 1994), in which any two coalitions are better off by merging together. However,

super-additive coalitions are not appropriate for the coalition structure generation,

as a grand coalition comprising all the agents will be the most appropriate coalition

structure. Hence, the current focus is on exploring coalition structure formation for

non-super-additive environments. Coalition formation for non-super additive environments

has been considered by (Sandholm, Larson, Andersson, Shehory, and Tohm 1999; Dang

and Jennings 2004) who suggest algorithms and provide the worst case bounds for

the creation of coalition structures for multi-agent systems. The systems consider

multi-agent environments with a static set of agents and a fixed coalition value. Recently,

attention has been paid to more dynamic environments, where the coalition values are

not fixed and agents constantly join or leave a coalition (Klusch and Gerber 2002).

However, no performance bounds have been provided to represent the complexity of

coalition formation.

5.4 Discussion

The simplistic approach adopted by unstructured P2P computing systems leads to higher

average query path lengths and often results in unnecessary broadcasts of messages and

utilisation of network resources. Use of structured P2P systems provides bounds on

message path lengths and the amount of state held by the node. It should be noted that

the creation of a structured P2P overlay does not take into account physical network

Chapter 5 Resollrce }\1anagement in P2P environments 55

characteristics and results in longer than actual query paths. Certain structured P2P

overlays like Chord are also susceptible to uniform workloads reSUlting in over-utilisation

of certain peers.

l';either ofthe system types takes into account the characteristics or the specific requirements

of the application domain and they represent the extreme ends of a spectrum. "While

the unstructured by its very nature does not impose an overlay structure, the structured

overlay seems to be too inflexible to be generically applicable. The next chapter introduces

the mechanism for the creation of an adaptive overlay that attempts to overcome

the limitations of the above two approaches. The following section introduces certain

application domains which were used as exemplars to verify the approach and are

presented here to highlight the specific requirements of the specific application domains.

5.5 Additional application scenariOS

In addition to the application scenario described in section 4.2, the work is also applied

to the domain of P2P based Open Hypermedia Systems and is equally applicable in

collaborative service discovery in mobile environments. The initial work ,'vas carried

out in the context of Open Hypermedia Systems and was published in (Zhou, Dialani,

De Roure, and Hall 2003). This section provides a brief overview of the two application

domains and introduces resource definitions and the search criteria used in the field.

5.5.1 Peer-to-Peer Open Hyper Media Systems

Open Hypermedia (Wiil 1997) is a model that has been adopted by the hypertext

community for many years. It is principally characterized as having hypermedia link

information stored separately from the documents that it describes. The links are stored

in linkbases. This approach allows links to be managed and maintained separately from

the documents, and different sets of links can be applied to a set of documents, as

appropriate.

The development of the first Open Hypermedia System ("1'v1icrocosm") (Fountain, Hall,

Heath, and Davis 1990)) predates the \Veb. The first implementation of the Microcosm

philosophy on the \Veb was the Distributed Link Service (DLS) (Carr, De Roure, Hall,

and Hill 1995), (De Roure, Walker, and Carr 2000). This was extended so that link

resolution was also distributed around the \Veb (De Roure, Carr, Hall, and Hill 1996),

and the service paradigm now extends to recent developments, such as ontology services

(Carr, Hall, Bechhofer, and Goble 2001). COHSE (Carr, Hall, Bechhofer, and Goble

2001) provides tools for the Semantic Web that builds upon the concept of the DLS and

ontologies.

Chapter 5 Resource lVlanagement in P2P em"ironments 56

The Semantic Vveb (Berners-Lee, Hendler, and Lassila 2001) augments current \:Y"eb

technologies by associating machine understandable annotations (also known as metadata)

\vith contents. ~!Ietadata provides an abstract representation of information and is

primarily produced to facilitate inference techniques to co-relate information from different

providers. Current search techniques used in Semantic '''Teb technologies focus on

annotating static information, but fail to take into consideration dynamic and asynchronous

variation in content. Some may consider services based architectures like DAI'vlL-S

(Ankolekar 2001), which use Semantic \Veb technologies, to be a form of dynamic content

system. This research differs from (Sycara, Lu, Klusch, and \Vidoff 1999) and consider it

to be an application of the Semantic Web to active entities rather than dynamic entities.

In the proposed approach, the Semantic \Veb is considered to be dynamic, if it is created

spontaneously by a set of collaborating nodes, where each node can dynamically update

its published contents. While Semantic \Veb technologies are generic in their application,

this scenario restricts their application to collaborative environments, which facilitate

resource sharing between dynamic collections of participants. As the participant can act

both as a resource provider and a resource consumer, a peer network is constituted by

collaborating entities.

These collaborative P2P-OHS publish and consume resource descriptions usually expressed

in RDF (~!Iiller 2004) format. Summarized metadata information in a link base known

as "topics vector" is advertised by each link base, and a list of similar topics is used

to create an overlay that binds the participant peers in the peer-network. Each of

the participating peer caches the "topic vectors" of its imn"lediate neighbors and uses

the informational inferences from these "topic vectors" to route the query amongst its

neighbors. The search is expressed by means of an RDF query and is accomplished

by propagating the query among a number of participating peers. A typical search

expression is represented in section 5.6. Peers collaborate to maximize the number of

link bases searched with minimal query routing and processing overheads.

The following subsection presents the last ofthe application scenarios and then summarizes

the specific requirements of the application domain, and contrasting them \vith the

current capability of the peer-to-peer networks discussed above.

5.5.2 Collaborative service discovery in Services Oriented Architecture

Service discovery mechanisms are crucial to service architectures such as web services

and mobile services. \Vhether in a wired network environment or a wireless network

environment, the service providers need to publicize service descriptions for subsequent

discovery and utilisation by client applications. Discovery services such as UDDI (UDDI

2004), JINI (Kumaran and Kumaran 2001) and UPnP (Michael and Weast 2003) are

widely used to support the discovery of services in wired as well as mobile network

Chapter 5 Resource 1\!{anagement in P2P enFironments 57

environments2 . \Vhile wired network enyironments can utilize a centrally located discovery

service such as UDDI, this is not the case for mobile environments. As no node has the

resources to maintain the complete state of the ad hoc system, individual nodes should

collaborate or form coalitions to discover resources in an ad hoc system.

(Chakraborty 2004), (Ratsimor, Chakraborty, Tolia, Khushraj, Kunjithapatham, Joshi,

Finin, and Yesha 2002), and (Chakraborty, Joshi, Finin, and Yesha 2004) present a

set of techniques and a fi.'amework for discovery and composition of services in ad

hoc computing environments. The limited storage capacity of the mobile nodes limits,

coupled with their mobility requirements introduces unique constraints on service discoyery

in such mobile environments. As described in (Chakraborty 2004), service descriptions

and seryice compositions can be described in DA~lL-S. Each of the participating peers

caches the service descriptions and facilitates the search on these cached advertisements.

A service discovery request is expressed as a DAML-S search syntax and involves a

complex search criteria. Examples of these are presented below: 3.

Our research groups initial \vork on service discovery (Miles, Papay, Dialani, Luck,

Decker, Payne, and Moreau 2003a; Miles, Papay, Dialani, Luck, Decker, Payne, and

Moreau 2003b) also highlights similar complexities in service discovery. A peer netvvork

consisting of such service providers needs to find an optimal way to disperse the service

advertisements and adequate query routing mechanisms to locate mobile services.

5.6 Search requirements

As demonstrated by both the above systems, the search criteria tend to be much more

complex, as compared to the standard identifier based search dictated by almost all the

current P2P systems. The above examples use an RDF representation to specify the

resource, and, correspondingly, the search criteria need to locate resources with similar

advertisements. In P2P systems, each search translates into the location of a single

unique identifier. However, most practical systems may be composed of resources that

cannot be guaranteed to be unique and one can not rule out the existence of multiple

resources with similar characteristics. Hence, this study proposes the use of a coalition

based search mechanism to locate the resources of interest.

5.6.1 RDF representation of a query in P2P OHS

The search criteria for P2P-OHS were presented in a paper by (Zhou, Dialani, De Roure,

and Hall 2003) and are repeated here as an example case (see figures 5.1 and 5.6.1).

A typical linkbase contains a list of topics. In this example the link base is capable

2The definition of wired and mobile networks. is described in the IVIANET documents
3Includes the DAML-S service description and the DAML-S search criterion

Chapter 5 Resource 1I.1anagement in P2P environments

<?xml version="1.0" encoding="UTF-8" ?> <rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#
xmlns:lb= •• http://www.semanticweb.com/rdf/linkbase-ns#.,>
<rdf:Description about= •• http://www.semanticweb.com/linkbase

/research/linkbase.xml' ,>
<rdf:type resource= •• http://www.semanticweb.com/rdf

/linkbase-ns#Linkbase" />
<lb:topic>theory</lb:topic>

</rdf:Description>
</rdf:RDF>

FIGURE 5.1: A linkbase expressed in RDF Syntax, taken from our publication

<rdfq:rdfquery>
<rdfq:From eachResource= •• http://www.semanticweb.com/

collabrative_environment_x/peer_linkbase">
<rdfq:Select>

<rdfq:Condition>
<rdfq:and>

<rdfsq:sequal>
<rdfq:Property name="lb:topic"/>
<rdf:String>Theory</rdf:String>

</rdfsq:sequal>
<rdfsq:sequal>

<rdfq:Property name=' 'lb:topic"/>
<rdf:String>Practice</rdf:String>

</rdfsq:sequal>
</rdfq:and>
<rdfq:or>

<rdf sq: sequal>
<rdfq:Property name="lb:topic"/>
<rdf:String>Thoughts</rdf:String>

</rdfsq:sequal>
</rdfq:or>

</rdfq:Condition>
</rdfq:Select>

</rdfq:From>
</rdfq:rdfquery>

FIGURE 5.2: A typical query specification, taken from our research group's publication

58

of providing information about a topic "theory" located within it. A typical query

expression ss expressed in attempts at locating the link bases that provide information

about such topics. For example the above query expresses interest in locating resources

that provide the information either about the topics "Theory and Practice" or about

"Theory and Thoughts".

The above search expression involves conjunctive and disjunctive operations and such

Chapter 5 ResoUI'ce l\ianagement in P2P environments 59

complex query expressions cannot be translated into a simple key location expression,

as mandated by structured P2P location techniques.

5.7 Discussion

From the above scenarios, it may be observed that:

1. It is not always possible to transform a search request into a unique identity

location problem.

2. It is not always possible to cache the entire state of the neighbors and hence

resilience cannot be guaranteed.

3. It is not ab,ays beneficial to form a collaboration ,,"ithout ascertaining the associated

communication and processing costs.

The above reasons highlight the inadequacy of the existing techniques used to create P2P

overlay systems. In addition, structured P2Ps mandate the number of neighbors and the

amount of state information held by a peer. \Vhile structured overlay systems introduce

highly efficient mechanisms for locating identities, they overlook the crucial application

characteristics. Due to strong structural requirements, the structured overlay approach

constrains the autonomy of the participating peers.

This research considers an alternative approach, which relaxes the stringent structural

requirements of the structured P2P systems and allows collaborating peers to evolve

an appropriate overlay topology that caters for the specific needs of the application

domain. The approach described below considers each peer to be an autonomous entity

independently determining the number of neighbours, and visibility of state information

and suitability of its neighbors. However, to maintain certain structural properties,

some constraints on the autonomy of the peers are introduced. The prescribed approach

advocates the adaptive overlay formation described in the following sub-sections.

5.8 Adaptive overlay formation

An overlay structure captures topological information about interacting peers. The

topological structure affects:

interactions between immediate neighbors An overlay structure determines the

type of associations that a peer has with its neighbors. For example, in a P2P-OHS

the probable neighbors should be peers that either have similar resource profiles

or their shared resources are mutually beneficial to their neighbors. In this case,

Chapter 5 Resource ~\Ianagement in P2P environments 60

the structure of the overlay changes if either of the neighbors changes its resource

specification. Thus, the criterion used to define the overlay influences the type of

interactions between the participant peers.

constraints on communication mechanism between the immediate neighbors

An overlay mayor may not depict the characteristics of the underlying communications

network.

the visibility of the state information between the systenl.s An overlay is resilient

to the arrival and departure of peers. In order to achieve this resilience the

participating peers need to maintain adequate state information about their neighbors.

The nature of this state information varies between application domains.

the co-ordination mechanisms The overlay creation and maintenance mechanisms

determine the type of interactions required to allow the participation of new peers,

to overcome the failure of peers and to handle the semantics of any updates about

state information between the neighbors.

;\1ost of the above requirements can be expressed as constraints on the behaviour of

an individual peer in the peer network. As described earlier, each peer in the network

has limited visibility of the entire system state and it uses this limited state visibility

to autonomously decide its set of neighbors. The criterion used to prioritize amongst

a number of neighbors is referred to as relative utility. The relative utility function

determines \,.,hether two peers will form part of a coalition. A coalition can exist

only if both peers derive mutual benefit from its existence. For example, in the case

of P2P-OHS, a successful coalition can be formed with peers with similar resources.

Both peers mutually benefit from successfully routing the query and the savings in

communication costs justify the continual costs of maintaining the coalition.

It is considered that each peer autonomously evaluates the benefits derived fi:om participating

in a coalition. It also assumes that each of the participating peers have a complete

know ledge of:

1. Its own resources.

2. Its existing coalition(s).

3. The resources offered by the potential coalition partner.

It should be noted that the scope of information visibility is restricted to the resources

offered by the coalition partner and do not consider the cases where a coalition partner

provides the knowledge of its existing coalitions, which is also referred as "derived

coalition". Derived coalition formation requires managing and mapping dependencies

between different coalitions and happens to be much more complex to model. Extending

Chapter 5 Resource .~1anagement in P2P environments 61

the current approach to include derived coalitions forms an important part of future

investigations.

It should be noted that each individual peer can simultaneously participate in a number

of multiple coalitions, where each of coalition results in acquiring a number of neighbors.

The resultant union graph of these multiple coalitions results in the formation of the

adaptive overlay network. The above mentioned approach was tested for the domain of

P2P-OHS, details of which can be found in chapter 6.

The peer-to-peer overlay formation algorithm is an event driven ongoing algorithm

based on the principle of the local constrained optimisation. As peers acquire greater

visibility of the state information, they periodically optin'lize their set of neighbors,

subject to local constraints on peers. Changes to the resource definitions of the peers

are communicated to immediate neighbors and may lead to re-evaluation of the coalition

betvveen two peers. Variations in communication costs may also lead to re-evaluation

of the coalition and result in the reorganisation of neighbours. A peer iterates through

this communicate-optimize cycle indefinitely, after a random initialisation into the peer

network. It is assumed that, before a re-optimisation, a peer is aware of the changes

to the constraints and coalition variables. The overlay achieves its adaptivity from

continual local re-optimisations. If the set of variables that underpin the coalitions

stabilizes, it leads to the formation of a stable overlay. However, an unstable system

results if the variables change more frequently then the re-optimisation capability of the

peer network.

5.8.1 Formal description

Let Gt be the graph representing the overlay at any given time instance t. The graph

Gt = (Pi, Et), where Pt is the set of peers in the peer network and Et represents the sets

of edges connecting the nodes in the overlay. The set E t = {E12, E 13 , .. . E ij } represents

a set of edges at any given instance t. An edge Eij exists between the two nodes Pi and

Pj , if and only if, the nodes Pi and Pj are involved in a coalition. It should also be noted

that graph G t can only be constructed if a node has complete knowledge of all the other

nodes in the network. However, in the present case, each peer ~ has partial knowledge

of the graph represented as G i . Refer to Gi as the visible state of the node Pi.

Each peer Pi has a set of resources Ri and is a member of coalitions Gi. Each coalition,

G(Pi , Pj , Rei, R ej), such that G E Gi , strictly consists of two participating peers, in

this case Pi and Pj , where each participating peer contributes resources Rei and Rcj

respectively, such that Rci E Ri and Rcj E R j . Each coalition partner is referred to as

a neighbor, and each neighbor can only be a part of a single coalition.

As per the semantics of the coalition, peer Pi and peer P j notify each other of any

changes to the states of the resources Rci and Rej respectively. Each peer derives some

Chapter 5 Resource .~1anagement in P2P em'ironments 62

utility from being a part of the coalition and constantly re-evaluates its participation

in light of the other available coalition options. It should be noted that the maximum

number of coalitions for peer P; is restricted by the visibility G i . However, the visibility

of peer Pi may increase with the number of coalitions it is involved. For exan1ple, in the

case of P2P-OHS, the visibility of the peer increases in the process of answering queries

originated by non-neighboring peers.

Let [ti,tj] be the last interval of observation of coalition between the participating peers.

During this interval. each of the peers observes the state of the resources provided by

the neighboring peer and re-evaluates the coalition to choose a set of partners from the

set Gi. The coalition re-evaluation algorithm is presented in 5.8.1.

5.9 SUlnmary

This chapter has reviewed the state-of-the-art of P2P systems. It was argued that the

current techniques for developing P2P systems fail to fulfil the requirements of complex

applications, such as service discovery, P2P-OHS and resource discovery in a network

of schedulers. For these specific application scenarios, an adaptive overlay formation

approach ,yas proposed. The approach highlights the fact that each peer is completely

autonomous and should be allowed to describe its policies for:

1. choice of neighbours

2. number of neighbouring nodes

3. visibility of the application state, and

4. its co-ordination mechanism.

The approach advocates the formation of coalitions amongst peers and allows for a peer

to be a part of multiple coalitions. As each peer belongs to multiple coalitions, the

cumulative effect leads to the creation of an adaptive overlay. The structure of this

overlay changes, subject to the arrival and departure of peers and to temporal and

spatial changes to the distribution of resource distributions.

The next chapter presents one such prototypical system used to validate the approach

advocated in this chapter.

Chapter 5 Resource 1I1anagement in P2P environments

input : Resources advertised by the peer - Ri
A set of existing coalitions - C
A visibility graph to choose the probable neighbors from Gi

Kumber of coalitions allowed k

Utility of Coalitions - H, valid for time [ti' tj)
A utility function to compare two probable coalitions

CompaTeCoalition(H, Ce , R i , P j) , returns a comparable value for selection of a
best probable neighbor, given existing coalitions Ce and the availability of
resources Ri , provided by this peer,

output: Modified list of Coalitions, C
Ne,,' Visibility Graph Gi

1 Listof PeeTS +- ListofNodes (Gi);

2 Listof Peers +- ListofPeers + GetCoali tionPartners (C) j*ListofPeers
contains non duplicate entries of known peers * /:

3 no_of _peeTS +- iListofpeeTsi;
4 if no_of _peeTS < k then
5 I Listof PeeTS +- Listof Peers Broadcast
6 end
7 C +- null;
8 while ICI :::: k do
9 temp +- null;

10 next +- null;
11 for j +- 1 to no_of _peers - ICI do
12 Pj f- Listof PeeTs[j];

13 if temp:::: CompareCoaLition(H,C, Ri,Pj) then
14 temp +- CompareCoalition(H, C, R i , P j);

15 j* Localized Hill Climbing vvith successive maximisation based on
local view,

16 refer to discussion for constraints on CompareCoalition function * /;
17 next f- Pj ;

18 end
19 end
20 C f- C + next;
21 Listof Peers ListofPeers - next;
22 end
23 Gi +- Create VisbilityGraph (C);

24 return C, G i

Figure 5.3: Continual reorganisation through coalition re-evaluation

63

Chapter 6

P2P Coalition Formation and

Search Algorithm

This chapter extends the P2P overlay creation mechanism described in the previous

chapter and describes its application in the context of a P2P Open Hypermedia System.

Though the work is described in the context of a P2P-OHS it is equally applicable to

all the previously described scenarios. This chapter is organized as follows: Section 6.1

describes the overlay creation process and introduces the software architecture of a peer

node. Section 6.2 provides the formal description of the relevant data structures and

query semantics. Section 6.3 describes the operations on the data structures introduced

in section 6.2. The search algorithm is described in section 6.4 and a formal description

of overlay reorganisation is given in section 6.5, which considers reorganisation under

failure of nodes and change in resources provided by peers. A few of observations are

made and some negative results are discussed in Section 6.6.

6.1 Introduction

This section describes the application of the generic algorithm described in section 5.8 to

the domain of P2P-OHS, of which our motivating application was described in section

5.5. As described in section 5.5, a P2P-OHS consists of a number of peers that host

link bases, which have been annotated in accordance to an application specific domain

ontology 1. Annotated resource descriptions, also knmvn as "topics", represent the

resources provided by each peer. In terms of the notation described in section 5.8,

where each peer Pi hosts a set of resources ni , the list of topics is referred to as R i ·

Each peer enters a number of coalitions to maximize the discovery of its resources. The

IDomain ontology refers to the application domain ontology, for example ontology in the biomedical
domain

64

Chapter 6 P2P Coalition Formation and Seard1 Algorithm 65

TABLE 6.1: Choosing neighbours for coalitions formation

Ri = {TI : T5: Td
Resource Type Overlap Degree of Overlap Additional resources

R I = {TI: T2, T3, T4} {Td 1 {T2, T3, T4}
R2 = {T3, T4, T5 } {T5} 1 {T3: T4}

R3 = {TIl T3, T5 · T i } {Tl, T5 , T7 } 3 {T3}

relative utility of the probable coalition partners are selected to reduce the cumulative

communication costs incurred in routing the discovery queries across the peer network.

The cumulative routing costs are minimized using a simple cluster heuristic to create

coalition among peers with similar resources. Peers form coalitions with peers with high

degrees of overlap. For example, consider a peer Pi, with a possibility to enter a coalition

with peers Pj , Pk. The tie will be broken in favour of Pj , if I Rei n Rcj I > I Rci n Rck I;
otherwise the tie is broken in favour of peer P", The query routing mechanism uses

this overlap information to route the queries to the resources with the similar resources,

please refer to section 6.2.1 for further details on query routing. The query throughput is

maximized and the communication costs for query routing are restricted to communication

costs with similar peers. However, in certain cases, peer Pi may not be able to decide

on suitable candidates to whom to route the query: and in such cases resort to local

broadcasts to neighbours.

For example, figure 6.1(A) represents a probable outcome of the clustering process. In

this figure, the red dots and edges represent the peers that are part of a coalition on a

particular resource. Once a query is routed to any node in these subgraphs the query is

routed via the edges of the graph. However, to communicate between the sub-graphs,

the nodes may resort to local broadcasts. The query costs can be reduced to a theoretical

minimum if the all peers with a particular resource are clustered to form a connected

graph, a case depicted in figure 6.1(B).

At the time of entering future collaborations, each peer has a complete knowledge of

its existing collaborations, as described in section 5.8. Figure 6.2, represents one such

case, in which a peer needs to choose a maximum of two coalitions from a set of existing

coalitions. If the resources held by peer Pi is Ri = {TI' Ts, T7 }, the overlap calculations

are as in table 6.1. It should be noted that if the peer chose candidates without prior

knowledge of existing coalitions, it would end up choosing both the resources of type

R 3 . However, after having chosen the first resource of type R 3) the peer attempts to

maximize the resource types and chooses a resource of type RI over a resource of type

R2, maximizing the total resources known to peer Pi. It should be stressed that peer Pi

does not know about the existing coalitions of other peers.

A

Chapter 6 P2P Coalition Formation and Search Algorithm

(A) (8)

FIGURE 6.1: Peer Network, (A) An overlay showing disconnected sub-graphs clustered
over a single attribute, (B) An ideal overlay with a connected graph clustered over a

single attribute.

A A

C
C 8 - • , , ,

"\ • . . _._._ .• A
C

A 0
8 8 • • C c

(A) (8)

FIGURE 6.2: Overlay Selection - (A) A peer that selects the neighbours based on
maximum resource overlap (B) A peer that selects neighbours to maximize the resources

based on overlap and query routing history.

66

8

• C

A

Chapter 6 P2P Coalition Formation and Search Algorithm 67

Application Application Application

Information Profiler I Query Manager

>.
.:; Query Router Overlay ReOrganizer Resource Container
0

CL

Overlay Manager

FIGURE 6.3: Peer architecture

6.1.1 Peer architecture

The overlay creation and formation process is based on a coalition formation and maintenance

protocol, the details of which are described in the following sections. The overlay network

does not necessitate adherence to any architecture, but is only limited to the semantics

and causality of the messages. However, to provide an insight into the state maintained

at each node and the implementation of the system, the peer architecture is described

in this section, the block diagram is presented in the figure 6.3. Each peer node consists

of the following building blocks:

Overlay Manager The overlay manager maintains the list of active coalitions and

monitors the changes to any parameters in any of the coalitions. It also maintains

state visibility information and manages the visibility graph Gi for a peer Pi'

Resource Container The resource container manages the list of resources made available

by Pi. It uses the overlay manager interface to notify the members of the affected

coalitions of resource changes.

Overlay Reorganizer The overlay reorganizer determines the long term participation

of Pi in a coalition Gij . It maintains statistics on communication costs and query

profiles and encapsulates the inferencing techniques for overlay reorganisation.

Query Router The query router implements the query routing heuristics and tries to

minimize the communication costs by choosing appropriate coalitions for routing

the query contents. It also implements logic to uniquely identify the query, process

queries in FIFO order and implement the query routing semantics.

Query Manager The query manager is responsible for creating and managing queries

generated by Pi and provides an interface to the application logic:.

Information Profiler The information profiler uses the graph Gi and the inferences

from the overlay reorganizer to create a model used to select future coalitions.

Chapter 6 P2P Coalition Formation and Search Algoritl1111 68

Policy Manager The policy manager dictates how the local resources are utilized. The

candidate policies affect the size of the routing table and memory utilisation for

maintaining statistics on past queries.

6.2 Notation

Table 6.2, introduces the notation used to describe the algorithm. The general graph

Gt , is composed of a number of peers. Each peer Pi provides a list of available resources

L~ and maintains a list of coalitions LPi . \\Thile the resources are described b~T means

of their advertisements (Idtopic)and possible state transitions (Stopic), the coalitions are

maintained in a separate table, also used for routing the query. A number of coalitions

are maintained in the table structure, which is used to maintain the coalitions, and is

also used to route the queries: hence it is also known as the routing table. Each row

in the table captures information about the neighbour (I dpcer), the list of resources

that it brings to the coalition (LTresources) , the similarity with the resources of this

peer (LTcommon) and topological information about the peer. As coalitions are treated

independently of each other and as each coalition involves only two peers, the number

of rmvs in the table equals the number of neighbours associated with the peer. The

size of the table is restricted by peer parameter ki . Each of the peers may maintain the

information of a peer that is more than a single hop away from the peer Pi, the maximum

number of hops being limited by the radius. Thus the diameter of the visibility graph

is limited to twice that of the radius. Each peer incurs communication overheads for

maintaining the state of the neighbours, and the peer can adjust the communication

costs by varying the radius of the graph G i .

6.2.1 Query structure and routing semantics

The overlay maintenance mandates that each peer maintain relevant information to route

the query to the appropriate resources. This requirement is similar to that imposed in

structured P2P systems where each peer maintains appropriate resource information,

in this case an identifier map, to successfully locate the resource. In our case, each

peer maintains the resource advertisement information for each of its neighbours and

constantly updates the information to reflect the current state of the resource. The

resource discovery request is expressed as a query on these advertisements. A query is

identified uniquely by its globally unique identifier (GUID). The node that creates the

resource discovery request formulates the query expression and associates its identifier

with the query. The query manager at the node determines the TTL/max hops that

determine the range of query propagation. The originating peer than evaluates the

query and forwards it to chosen list of neighbouring peers (please refer to section 6.2.1 for

further details on query evaluation). Each peer appends its path to the query description

Chapter 6 P2P Coalition Formation and Search Algorithm

TABLE 6.2: I\'otation used for describing the algorithm.

Idpeer

LPi

L~

Gi

Tad'ius

k ,

LTi (List of topics Idtopic
published by the
individual peer)

Stopic

LP i (List of IdpeeT

neighbouring peers)

Q

LT resources

LTcom.mon

CXdist

,6direction

depth

time/ size

timestamp

Qtimestamp

qid

Qdesc

TTL
hops
root
path

Overlay network topology at time
instance t
Set of nodes at instance t
Set of edges at instance t

Peer identifier
list of coalitions
list of topics
sub graph known to the peer
Determines the radial distance of the
peers known to Pi
maximum number of permitted
neighbours for peer ~

Resource Advertisement

List of possible resource states

Identifier of neighbouring peer for this
coalition
list of resources committed by the
neighbouring peer
common resources in the coalition
degree of overlap
direction of edge (only if directed
graph is permitted)
The radial distance of this peer from
the neighbour Pi

Temporal records maintained for the
statistical inferencing, the list is either
time or size limited
timestamp when the item was added
to History
The description of the query processed
at the specified timestamp

universally unique query identifier
query statement (e.g. XQuery
Expression, RDF query expression)
time to live
maximum number of hops
the originating node for the query Q
list of nodes visited by Q, in the order
visited starting with root

69

Chapter 6 P2P Coalition Formation and Search Algorithm

Q
........

o
\
\
\

" 0----

•
•
•
~---

70

Query Originator- generating a
query request for maximum

radius of 2 hops

Query Receiver and propagator
at level-1.

Query Receiver at level-2

Forward Propagation path

Return propagation path

Connected Neighbours

FIGURE 6.4: Schematic representation of query rout ing

and reduces the number of remaining hops before propagating the query to the next peer.

On receipt of the query each peer evaluates the resource discovery request against its local

list of resources, and, if an appropriate match is found, the query results are returned

to the route peer and are propagated along the path of the query propagation. If the

query has not expired and/or has not propagated to the desired diameter, the query is

recursively routed to the next probable list of neighbours. The schematic representation

is presented in the figure 6.4

6.3 Algorithm and message types

The above section introduced the notation and associated data structures . This section

defines the continuously re-optimizing event driven algorithm used to facilitate search

in P2P overlay networks. It should be noted that part of the algorithm executes in

response to the occurrence of certain events. These events may originate from changes

to the environment (i.e. changes in the state of the peer or the state of the neighbouring

peers) or may be internally generated by the peer in response to the changes in the

internal state. The following sub-sections presents t he list of messages handled by the

peer and its subsequent processing.

There is no particular order associated with the occurrence of most of t he events.

However , certain events assume precedence over other events , for example an initial

request to join the overlay.

Chapter 6 P2P Coalition Formation and Search Algorithm 71

6.3.1 Request to join the overlay

Each ne"wly joining peer needs to be associated as a neighbour to at least one of the

peers that happens to be a member of the overlay. The newly joining peer Pi publishes

a list of topics LTi and generates queries for the peers with similar resources. The query

requests and responses are routed through the initially contacted peer and the visibility

of peer Pi increases as the peer obtains further results. The peer n tries to form a

coalition with the newly acquired list of related peers.

Variables: LTi := 0, LP i := 0, when Pnew joins graph G,

• Online := true

• Allow Queries := false

• Randomly generate a list of queries Qrandom from the resource space and randomly

select a set of peers from the responses, denoted as Pmndom

6.3.2 Processing the query responses for (Qmndom) from Each Peer in

Prandom

• For each received LTresponse from the randomly chosen peers,

Calculate o:dist := number of topics in LTresponse n LTnew

Add to LP new the list of peers, distance, and the intersection set with f3direction

:= true

If received, P response already exists in LP new, select another set of peers

If LTresponse n LTnew = {}, store the information as a uni-directional set,

\\'here LP new contains the list of peers at o:dist = null and the intersection set

with (3direction = false

6.3.3 Request for processing query

Any of the peer's neighbours could invoke a request for query processing. As there may

exist a number of possible paths for query routing, duplicate processing is prevented by

uniquely identifying the query by its associated query identifier. Once the uniqueness of

the query has been established, the query processor selects the list of probable routing

targets to propagate the query. If it is unable to find any suitable coalitions that can be

delegated to the query, it resorts to a local broadcast, whereby it transmits the query

to all the neighbouring peers amongst all its coalitions.

Chapter 6 P2P Coalition Formation and SearciJ Algorithm 72

6.3.3.1 Query processing at Peer Pi

Let LT queTy represent the list of topics in the query. Let n represent the number of

topics in LTqueTY'

• If not already processed query. I dqueTY

• begin

• For each o:dist in LP i ::: n,

If LT query n LP i -+ LT = LT queTY, propagate the query

If LTquery n LP'i -+ LT = {}, forward the query to all the neighbours in LP i

• end

6.3.4 Request for resource description

Each peer maintains an advertisement of the resources that form a part of its coalitions.

Depending upon the visibility information and the communication costs, a peer also

caches the information of the peers at a radial distance radius. In order to obtain the

information a peer raises a request for a resource description message. The message

enumerates the list of resources that the peer is interested in and the radial distance

of the intended recipients of the message. A peer uses this information to estimate the

resource availability in its immediate neighbourhood. It should be noted that the peer

does not enter into coalition with the peers at a hop distance greater than 1, but uses

the information solely for the purpose of query routing.

6.3.5 Notification of change in resources

Each coalition monitors a set of resources and the state of the resources. A push

monitoring mechanism is used, where each resource provider issues notifications for

any changes to the resource state. Each coalition partner subscribes to the notifications

requests of the resources contributed by its subordinate peer. Peers may monitor the

communication costs for the notifications messages and consider the associated overheads

while re-evaluating the coalition.

6.4 Search Inechanism

Each search request to locate any particular combination of resources is formulated as

a resource discovery request. The peer that initiates the search matches determines the

Chapter 6 P2P Coalition Formation and Search Algorithm 73

upper bound on the total query propagation costs and specifies the time to live for the

query of a particular type. Each such search request is formulated as a query routing

request and incurs a cumulative communication cost across the peer network. This

communication cost is affected by:

1. The topological distribution of the resource providers and consumers.

2. The relative availability of similar resources.

3. The coalition preferences of the cumulative network.

The TTL determines the yield achieved by the query routing mechanism. Each originating

peer uses the TTL to specify the requests for a particular resource type as inferred from

its information model. The peer constructs this resource model by observing three states

of the system:

1. The state of the coalitions.

2. The state from the historically routed queries.

3. The state from observing the state models of other peers.

Once a query request has been formulated it is routed by using the state table at each of

the routing peers. The query statistics capture the number of broadcasts and the relative

yield obtained from routing the query. Each peer maintains these statistics over a period

of time, also known as query history. The query history infers the probable distribution

of resources across the peer network and also estimates the probable availability of the

resources in such a network. This data can either be maintained for a fixed number of

query records or it may be maintained in accordance to temporal constraints.

6.5 Overlay reorganisation

The overlay is an abstract representation of a list of coalitions between a number of

participant peers. Each of the partners in the coalition autonomously decides on which

coalitions to retain or which coalitions to forfeit. Under static resource and query

distributions, the overlay would stabilize, and, under stable conditions, all the peers

would have settled for the best possible static topology, However, in most practical

cases the peers would not have complete knowledge of the system; hence, even temporal

changes will result in certain coalitions being regarded as inefficient, while certain others

will assume greater importance. In addition, certain unforseen conditions like the failure

of certain nodes will result in the recreation of the state and the reorganisation of the

overlay network.

Chapter 6 P2P Coalition Formation and Search Algorithm 74

The decision to prefer one coalition over another can either be made on the basis of a

short temporal observation or can be considered over a longer duration. The duration

over which the peer gauges the utility of the coalition depends upon the nature of

coalition. Peers that maximize the short term gain and are interested in re-evaluating

their strategy on the basis of short observations are preferred for the following reasons:

1. The frequency of changes to the system state may be too infrequent to take

advantage of any previous system state for long durations.

2. Considering a large scale network the costs involved in maintaining the resource

information at each of the peers may be more than the derived benefit.

Considering that a peer uses state information observed over a finite interval, a peer vvill

be able to create the profile of the information held on the peer and the information

routed through the queries. The information is used to model the resource type and

distribution profile, known as the local model. A number of peers may share their model

of the environment and create a model based on the coalition. The shared model can

be used to create the approximate resource distribution, which can be used to choose

probable partners for future coalitions.

6.6 Observations

The coalition formation algorithm described above is based on a simple heuristic used

to form clusters of related resources. This intuitive approach reduces the query routing

costs, as the resources in a cluster share a common objective of routing queries for their

"similar" resources. However, participating in a coalition only reduces the routing costs

for the resources that form the basis of the coalition. As described earlier, a coalition

C < Pi, Pj , Ri , Rj >, is based on the sharing of resources R i , R j between peers Pi and

Pj' Generally, a peer P;" will have a set of resources R, such that Ri E R, and is

likely to enter multiple coalitions \\'ith an upper bound on the number of coalitions a

peer could enter. As part of the cluster, each of the peers is obliged to cooperate in

routing the queries (or requests) sent by neighbours. A peer may either satisfy a request

and/or may propagate it to a neighbour that may satisfy such a request, resorting to

local broadcast when both the previous options are infeasible. Routing query requests

serves two purposes: First, the query routing details increase the visibility of the peer

Pi by informing it of the existence of other peers. Secondly, query content allows the

peer to map the resource availability in its surroundings. Based on query routing and

overlay information, a peer maintains the model of its peers and classifies them into three

distinct categories, firstly, peers with complete overlap of resource information, secondly,

a peer set with partial overlaps, and finally, a set of peers with no resource overlap.

On the basis of the above information, a peer needs to determine the most suitable

Chapter 6 P2P Coalition Formation and Search Algorithm 75

candidates for coalition formation. During experimental evaluation, it was observed

that if the overlay is constructed solely on the basis of the resource overlap information,

the resultant cluster has a yery high density of packing. High density clustering reduces

the query routing costs of the highly available resources, while pronouncing the costs of

the sparingly available resources. However, if the overlay formation is based on both the

resource information and the query routing information the resultant clusters consists of

resource neighbours from all three categories, namely with fulL partiaL and no overlap.

It should be noted that the clustering algorithm does not mandate adherence to any

particular topology. As the topology of the overlay evolves from the coalition formation

process, it is possible that the average communication costs for locating the resources

and throughput of the query 'will vary. The variation is attributed to two factors: First,

if a query originates outside the cluster of resources, it incurs local broadcast costs,

until it encounters at least one of the resources within the cluster, which subsequently

directs the query. However, if the TTL of the query exceeds the cluster size, the query is

diffused into the surrounding cluster for propagation through local broadcasts. Secondly,

as resources become scarce, the resultant clusters are few and far between, and additional

communication costs are incurred in locating the similar clusters.

6.6.1 Limitations of the approach

The following is a list of limitations of this approach:

Network Partitioning: As each peer in the overlay is indiyidually responsible for

determining its immediate neighbourhood, it is impossible to rule out network

partitioning effects. Although a local broadcast used by the query routing mechanism

aids the reformation of the connected overlay, the chance of network partitioning

could not be eliminated.

Unstable Overlay: As each of the participant peers autonomically determines its

participation in individual coalitions, it is imperative that these reorganisations will

happen asynchronously. As described in the previous chapter, the reorganisation

mechanism requires a certain amount of time to attain an optimum solution.

However, frequent changes to the query profile or resources held at the peers result

in an unstable overlay. Such instability is also observed in the structure overlay

and is also attributed to frequent modifications to the peers.

Warranties on forming optimal topologies: The possibility of the coalition formation

resulting in a non-optimal solution was proven by Sandholm et.al (Sandholm,

Larson, Andersson, Shehory, and Tohm 1999). As the above work derives from

a similar approach, albeit in a more relaxed and distributed environment, the

observations by Sandholm et.al. remain equally applicable, and the process may

result in the formation of non-optimal topologies.

Chapter 6 P2P Coalition Formation and Search Algorithm 76

Local Optimum: The mechanism described in the previous chapter relies on the use

of the latest observations of the dynamically evolving network and attempts to

optimize the topology in what can be seen as a naive hill climbing technique.

However. such a technique may result in identification of the local optimal and with

no means to identify the global optimal, the algorithm may result in suboptimal

solutions.

6.7 S ununary

Application of the coalition based overlay network as applied for content management

in P2P-OHS has been discussed in this chapter. The exemplar was used to route

the resource discovery requests using the overlay characteristics. Reorganisation of

the overlay to reflect the changes in the query distribution and resource distribution

was discussed as an extension to the original approach. Observations from the actual

implementation of the above have highlighted some limitations, as discussed in the

previous section. The experimental evaluation of the above approach is discussed in the

next chapter.

Cllapter 7

Evaluation of the Search

Algorithm

This chapter presents the results of the experimental evaluation of the algorithm described

in the previous chapter. Section 7.1 provides the general overview of the simulation

environment and elaborates on experimental settings and experimental evaluations.

Experimental evaluations, results and analysis are presented in section 7.2, and the

findings are summarized in section 7.3

7.1 Introduction

The simulation requirements overlap with those of peer-to-peer systems and ad hoc

systems. However. as far as is known, there is no standard peer-to-peer simulation

environment. Though such environments exist in the field of ad hoc networking, most

of the ad hoc simulators are restricted to simulation of lower-level communication

protocols. For example, the use of Ketwork Simulator 2 (NS2) and mobisim was

evaluated, 1 but considered inappropriate for simulation of an information based dynamic

overlay formation. Consequently, a new simulation environment was developed, referred

to as InfoSim.

InfoSim is a generic infrastructure to simulate query routing in a P2P environment.

Queries are represented, communicated and routed as messages. The messages are

declarative in nature and possess a context, including sender, receiver, send time, expiry

time and message path. The simulator uses a logical clock and provides capability for

scheduling a sequence of events. The events are cached at the recipient, for further

processing. However, on expiry, the messages are discarded from the recipient queues.

1 References could not be provided as there exists no published article that describes the simulator's
internals. The web reference for NS2 is http://www.isi.edu/nsnam/ns/. November 2005.

77

Chapter 7 Evaluation of the Search Algorithm 78

7.2 Experimental evaluation

The results presented in this section can be classified into three main categories of

comparisons pertaining to:

1. Query Routing strategies;

2. Effects of variation in the link state table on routing costs;

3. Effects of topology on objective function.

Query Routing strategies: Three candidate query routing strategies are compared

to determine the effectiveness of the approach. The performance of the similarity based

query routing strategy is compared against the performance of random walk and the

broadcast mechanism 2. The set of experiments described in the latter sections were

conducted under exactly similar routing table and resource states across the P2P system.

All the routing strategies employed TTL based query expiry criteria and were compared

on the basis of routing efficiency, where routing efficiency is determined as the ratio

of resources discovered for the set of messages exchanged between the nodes. Further

details of the experiments can be found in section 7.2.4

Effects of variation in link state table on routing costs: Maintaining the link

state table incurs the messaging costs. This set of experiments investigate the effect of

variations in the size of the link table on the overall query routing performance of each

of the node in the network. Two situations are considered: the first set of experiments

presents the effect of changes in state table size on the query routing performance of the

system, and the second set of experiments presents the effects of changes in the spatial

radii of the state table. The results of this set of experiments are summarized in section

7.2.4.2.

The effects of topology on objective function: Each node in the P2P system

has a finite set of neighbours, and the combined set of neighbourhood information

describes the topology of the P2P system. The main aim of our clustering heuristics is to

create a topology to minimize the query routing costs. This set of experimental analysis

observes the behaviour of the P2P overlay topology for a finite set of query distributions.

Snapshots of the topology are obtained at regular intervals and are compared against the

theoretically optimal topology. As there exists no comparative operators to determine

equivalence or quantify the topologies, the cumulative gain in objective function is used

as the measure of comparison. Details on how to obtain the theoretical optimal and

results can be found in section 7.2.4.2.

2Broadcast and guided random walk techniques have been widely used for comparing the query
routing strategies in unstructured P2P systems

Chapter 7 Evaluation of the Search A.lgorithm 79

Parameter Configuration - 1 Configuration - 2 Configuration - 3
Simulation time steps 10000 10000 10000
Number of nodes 20 to 200 20 to 200 200 to 1000
~1aximum number of 3 to 50 3 to 50 3 to 50
coalition
Radii of topological 1 to 3 1 to 5 1 to 10
visibility
Frequency of queries 3/ time step variable yariable
Number of unique 200 200 1000
resource definitions
Maximum Resources 100 variable 10 to 100 variable 10 to 100
per node
Resource Distribution zipf zipf zipf
type

TABLE 7.1: Configurations used in P2P simulation

7.2.1 General setup

An initial P2P network topology is assumed to represent the sets of neighbors for each

of the participant peers. A global resource distribution is used to populate the list of

resources hosted at each individual peer An instigating peer is chosen at random to

initiate a query and determine the appropriate radii of query propagation. The query

contents are derived from a knovnl resource distribution. Each peer autonomously routes

the query and also helps in propagating responses to the queries. The radii of query

propagation and frequency of query propagation are uniformly distributed over a range

of values. The experiments were carried out with the configurations shown in table 7.1.

7.2.1.1 Resource distribution

Each peer hosts a set of resource descriptions also known as content descriptions. Our

experiments consider two such resource distribution parameters, known as the global

resource type distribution and the local resource distribution. \iVhile the global resource

type distribution indicates the relative availability of a resource across the system, local

distribution indicates the availability of resources at a particular node. It is observed

that peers that host largest variety of contents derive higher values of resource discovery

due to their ability to satisfy a relatively larger number of queries then that compared

to peers with lower number of content definitions. Hence, local distribution has an effect

on the choice of objective function by the peer. \iVhile a peer with higher content types

can maximize its utility by satisfying queries, the other types of peer can maximize their

utility by choosing an appropriate set of neighbors to route their contents to.

Chapter 7 Eraillation of tile Search Algorithm 80

~
C
CD
:2

CD
~
:0
0
(f)

CD
a:

0.9

0.8

0.7

0.6

O.S +

0.4

0.3

+

0.2

0.1

+
+

+
+

++++

zipF distribution +

+++++++++++++
++++++++++++++++++++++++ OL-__ ~ ____ ~ ____ -L ____ ~ ____ ~ ____ L-__ ~L-__ ~L-__ ~ ____ ~

o 5 10 15 20 25 30 35 40 45 SO

Relative Population

FIGURE '{.1: A zipF resource distribution.

7.2.2 Input data sets and data distribution

Both real and synthetic input data sets were used to validate the hypothesis, as the

use of them was predominant. They were selected to reflect the application domain

characteristics. For example, the application domains described in the previous chapter

exhibit a zipF distribution of resources. A zipF distribution was used to represent the

cumulative resource distribution across all the participant nodes, although individual

resource distributions differed across peers. A uniform distribution was used to allocate

variable sets of resources to each of the participating peers, while adhering to the

overall resource distribution. In addition, uniform and poisson distributions were used

to generate queries over a given set of resources. Independent resource and query

distribution were used to reflect a real-life scenario, where resource availability and

demand for resources are usually independent of each other. Finally, a uniform probability

was used to randomly select the node that instigates the query.

7.2.3 Comparison with respect to an optimal topology

Given the resource distribution and the query profile distribution, an optimal topology

can be ascertained on the basis of the mean path length required for query propagation.

An optimal topology minimizes the mean path for discovering the maximum number of

resources that satisfy the query. Consider the above example, the nodes are labelled 1

to 6 and their resource distribution is given as:

Chapter 7 Evaluation of the Search Algorithm 81

1 0 0 1 0 1 TABLE 7.2: A simple topology.
0 1 1 0 0 1

Adj acency Matrix (A)
0 1 1 0 1 0
1 0 0 1 1 0
0 0 1 1 1 0
1 1 0 0 0 1

TABLE 7.3: Adjacency matrix and its graphical topology for a small network,
connectivity k = 2

l\ode 1: { A,B,C,D}

l\ode 2: { E,F,J,K}

:\'ode 3: { E,H,M,I}

Node 4: { G,F,C,D}

Node 5: { F,H,KI}

l\ode 6: { A,B'!)}

From the above resource distribution, it can be easily inferred that Node 1 can benefit

the most by forming a coalition with Node 4 and Node 6. Under uniform distribution

of queried resources, both these nodes provide resources that minimize the broadcast

costs incurred by Node 1. The same is also applicable to the topology formed by other

resources. An optimal topology for a simple network of six nodes and its adjacency

matrix for a maximum number of neighbor connectivity of k = 2 is represented in the

figure.

In the above example, each of the nodes is restricted to entering a maximum of two

coalitions, where, as previously described, a coalition exists between a set of peers. The

value of the coalition is determined by taking into account the query profile distribution.

A uniform query profile means that maximizing the information of the resource types

leads to maximisation of the utility function.

Possible coalitions for Node 1 and their respective utility values for uniformly queried

resources is given as follows:

Coalition(1,2): Utility = 0

Coalition(1,3): Utility = 0

Coalition(1,4): Utility = 2

Coalition(1,5): Utility = 0

Coalition(1,6): Utility = 2

One could similarly calculate the coalition values of the remaining pairs of nodes, as the

coalition is commutative: Coalition(i,j)=Coalition(j, i); one can select coalitions that

Chapter 7 Evaluation of the Search A.lgoritlll11 82

result in cumulative maximum utility. The cumulative coalitions are considered subject

to the constraints on maximum number of neighbors k and the connectivity constraints

on the graph.

The theoretically maximal coalition value determines the probable candidates for optimal

topologies. However, it is not guaranteed that the heuristics discussed in the previous

chapter will always converge to the formation of the exact optimal topology. In such

cases, the ratio of the cumulative gain values, subject to connectivity constraints, are

used to compare the effectiveness of the approach.

7.2.4 Experiments

As described in section 7.2, the experimental evaluation is divided into the above

mentioned three categories. The following sub-sections summarize the results in each of

these categories:

7.2.4.1 Query routing strategies

Three candidate query routing strategies are considered, firstly, the probabilistic query

routing (described in the previous chapter), secondly the broadcast strategy and finally

the random walk strategy. The performance of the query routing strategy is compared

on the basis of the net throughput of the query and the average transmission costs for

locating the resources. By its very definition, a broadcast mechanism should provide

the highest throughput and should be able to discover all the resources within the

TTL radius of the instigating node. The above fact was validated with the results

described in figure 7.3, which plots the query throughput for the increased resource

availability. As described in section 7.2.2, the cumulative resource distribution follows a

zipF pattern; consequently the resource types with higher availability are more likely to

occur then resource types with the least probability. As shown in figure 7.3, the resources

with higher availability result in higher throughput and the throughput decreases with

relative availability of the resources. The inverse zipF nature of the output verifies the

fact that the overlay organisation results in a structure of radii < TTL for the query and

the majority of the resources are discovered by the broadcast mechanism. In terms of

throughput, the probabilistic query routing mechanism provides throughput comparable

to the broadcast routing strategy, as demonstrated by the plot in figure 7.2. However,

the random walk strategy resulted in the worst possible query throughput, as shown in

the figure 7.4. The comparative graph for the query throughput for each of the three

strategies can be found in figure 7.5. It should be noted that the probabilistic routing

strategy and broadcast strategy provide nearly the same throughput. The cost analysis

of the three strategies can be found in figures 7.6, 7.7, 7.8 and 7.9.

Chapter 7 Evaluation of tlJe Search Algorithm

25
Probablistic +

20 T
"0
Q)

ill
>
0
u
<J)

0
<J)
Q)

~
:::J
0
Q)

0:
'0 10
ill
.0
E
:::J
Z

5

2 3 4 5

Increasing Relative Availability

FIGURE 7.2: Query throughput using the probabilistic routing algorithm for zipF
resource distribution and variable radius r, 1 :S r :S 3, Number of peers = 20.

25 r-----------.-----------.-----------.-----------~----------~
+

20

"0
Q)

ill
>
0
u
.!!l 15
0
<J)
Q)

~
:::J
0
Q)

0:
'0 10
ill

.Cl
E
:::J
Z

5

2 3 4 5

Increasing Relative Availability

FIGURE 7.3: Query throughput using the broadcast routing algorithm for zipF resource
distribution and variable radius r, 1 :S r :S 3, Number of peers = 20.

83

Chapter 7 Evaluation of the Search Algorithm

25
Random +

20

"0
ill
ill
>
0
u
<f) 15 is

1i
t 1

t 1 ., ,

~,
I I

I ,

<f)

ill
[!
:::J
0
ill
a:
'0 10
ill
.0
E
:::J
Z

I ~ , t{ I I I

ITt
t It I !

ftf t ITt ,
IIII !i : ~ I :

5

o
o 2 3 4 5

Increasing Relative Availability

FIGURE 7.4: Query throughput using the random walk routing a1gorithm for zipF
resource distribution and variable radius r, 1 ::::: r ::::: 3, l\umber of peers = 20.

"0
ill
ill
>
0
u
<f)

is
<f)

ill
u
:;
0
ill
a:
'0
ill
.0
E
:::J
Z

25 r-----------,-----------,-----------,-----------,-----------,
Probabilistic --+-­

Broadcast ---x--­
Random Walk ... -l< ••

10

5

5

Increasing Relative Availability

FIGURE 7.5: Comparative query throughput between probabilistic, broadcast and
random walk routing algorithms for zipF resource distribution and variable radius r,

1 ::::: r ::::: 3, Number of peers = 20.

84

Chapter 7 E,'aluatioll of the Search AJgorithm

50r----------,-----------,----------,-----------,----------,
Probabilistic +

40

(f)
c
0
'w
(f)

'E
(f)

30 c
<1l

f::
'0
(jj

.D
E
:::>

20 z
OJ
Ol
IE
OJ
> «

10

5

Increasing Relative Availability

FIGURE 7.6: Transmission costs for the probabilistic routing algorithm for zipF resource
distribution and variable radius r, 1 S r S 3,]'\umber of peers = 20.

S.)

As demonstrated by figure 7.7, the relative transmission costs of the resource discovery

increases as the resources become scarcely available. The same trend is observed for the

random walk strategy, as shovm in figure 7.8. However, the routing costs for probabilistic

routing are nearly constant and show little variation in the face of changing resource

availability. As shown in figure 7.6, the query costs for the highly available resources

and scarcely available resources is nearly the same. This demonstrates that probabilistic

routing is effective in detecting neighbours that have a higher possibility of providing

resource information. \Vith an average transmission cost of 2.5 and a tightly-bounded

theoretical transmission cost of 1.0, the probabilistic routing algorithm performs better

than the broadcast and the random walk mechanism.

It should be noted that both the transmission costs and the throughput plots reflect the

fact that each point in the graph is measured for a randomly generated query initiated

from a randomly chosen point in the network. The variation in the throughput is because

the clusters of resources are at a greater distance from the origin of the query, therefore

also attracting higher broadcast costs.

7.2.4.2 Effects of variation in link state table on routing costs

It should be noted that one objective is to develop a technique that is equally applicable

for both wired and wireless networks. Unlike wired networks, wireless networks, such as

sensor networks, consist of nodes with limited resources. The next set of results shown

in figure 7.10 demonstrate the effect of changes in radii on the overall performance of

Chapter 7 Evaluation of tile Search Algorithm

50 ,-----------,-----------,-----------,-----------,-----------,
+

40

'" c
0

'OJ

'" E
'" 30 c
to

t=
'0
ill
.0
E
::l

20 z
OJ
Ol e
OJ
>
<l:

10

2 3 4 5

Increasing Relative Availability

FIGURE 7.7: Transmission costs for t.he broadcast routing aJgorithm for zipF resource
distribution and yariable radius r, 1 :::: r :::: 3, l\'umber of peers = 20.

50 r-----------,------------,------------r------------.----------~
Random +

40

'" c
0

'OJ

'" E
'" 30 c

~
'0
ill
.0
E
::l

20 z
OJ
Ol e
OJ
>
<l:

10

5

Increasing Relative Availability

FIGURE 7.8: Transmission costs for the random walk routing algorithm for zipF
resource distribution and variable radius r, 1 :::: r :::: 3, Number of peers = 20.

86

Chapter 7 Evaluation of the Search Algorithm

en
c
0
·til
en
E
en
c

'" ~
'0
Q;
£J
E
'" z
Q)
OJ

'" Q;
>
<{

20~------,--.-----------.----------,-----------.----------.

15

10

5

Increasing Relative Availability

Probabilistic -­
Broadcast -------

Random Walk

5

FIGURE 7.9: Comparative transmission costs for the probabilistic, broadcast and
random walk routing algorithm for zipF resource distribution and variable radius r,

1 :::: r :::: 3, Number of peers = 20.

87

the probabilistic routing strategy. As shown in figure 7.10, the query throughput shows

a remarkable increase with increase in radius. Initial increments obtained by increase in

radius outperform the further increases obtained. The above property can be exploited

by the wireless networks to determine the appropriate radius for dissemination of their

resource information.

Some performance observations about the routing algorithm are made in figure 7.10:

Firstly, the proportional gain in throughput is higher for the initial increase in radius.

Secondly, the variations in query performance reduce significantly as the radius of

the graph is increased. As all the above experiments were conducted under similar

operating environments except for the state information used for routing the query, it

is inferred that the algorithm is able to provide better performance for an increased

state information. However, a comparison of the increase in performance with the

proportionate cost increments is needed, which have been highlighted in the figures

7.12, 7.13, and 7.14

The transmission cost indicators for the three radius indicate the following trends.

Firstly, the clustering strategy initially allows lower transmission costs for the scarcely

available resources, while the cost for highly available resources is fairly constant. Secondly,

as the radius is increased the cost for query processing of the scarcely available resources

increases. In figure 7.13, it is approximately constant for all query types, while it

increases beyond the cost of highly available resources in the case of figure 7.14. This

indicates that the cluster size has a direct impact on transmission costs, and this effect

Chapter 7 Evaluation of the Search Algorit11111

100r----------.----------,-----------r-----------r---------~

80

60

40

20

2 3

Increasing Relative Availability

4

radius=1 -­
radius=2 ------­
radius=3 -------

5

FIGURE 7.10: Effect of variation in radius on effectiveness of the probabilistic routing
algorithm for zipF resource distribution and yariable radius r, Number of peers = 200.

is more pronounced for scarcely available resources.

88

Similar studies were carried out for the broadcast strategy, and it verified the theoretical

case that a change in the radius of the information has no impact on the throughput

and the transmission costs. The experimental verification of the results can be found in

sections 7.11 and 7.15 respectively.

7.3 Conclusion

The experimental evaluation presented in this chapter presented the generic trends

observed in the construction of a coalition based overlay network. It was observed that

probabilistic routing provides a comparable throughput to the broadcast mechanism but

at a comparatively reduced cost. Additionally, the transmission costs of probabilistic

routing remains the lowest and is constant across the resource distribution. The results

also demonstrate that the increase in radius improves the performance of the probabilistic

routing. However, such improvements need to be weighed against the associated costs

for state maintenance. The above investigation focused on the case for which the

transmission costs are linearly proportional to the amount of state being maintained.

The overlay characteristics were validated with the individual peers autonomically choosing

the radius of their state maintenance and coalition formation. The above results validate

the assumption that coalition formation is robust in developing overlay networks for

content distribution and information dissemination.

Chapter 7 Eraluation of the Search A.lgoritlll11

100
radius=1 --
radius=2 -------
radius=3 -"-"-"-

80

60

Ii"r r
~!\j :

f
I

,

~! I
I "' I , I

40

20

l~(
!

I II I
o

o 2 3 4 5

Increasing Relative Availability

FIGLJRE 7.11: Effect of yariation in radii on effectiveness of the broadcast routing
algorithm for zipF resource distribution and variable radius L Kumber of peers =

200. Note: Points in the graph overlap, the three curyes are similar,

5 r---~------.-----------r---------.----------'----------'

4

2
~ 3
u
c:
o

"Cij
"~
E
<f)
c:

~ 2

+++
+++ + +

-it!ItH--!t*++ + + ;- + +

+
+

$
+

+
+ + +

+

radius=1 +

+

+

*

O~~~~~--~~--------L----------~----------~---------"
o 2 3 4 5

Increasing Relative Availability

FIGURE 7.12: Cost for r= 1 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200.

89

Chapter 7 Evaluation of tile Search Algorithm

J!l
en
0
()

c
0

"00
en
"E
en
c

'" t=

5r----------.-----------,-----------,-----------,----------,

4

3 +
+

2

-#- + + +

o l'1III111
o

l+,f ,ij+ * + + i ! +i 4'~* ;j; ! '*' L + 'i$.,. + + + + '" + 'I'

+ +

+

2 3
Increasing Relative Availability

radius=2 +

:j:

i ~
+
*

+

4 5

FIGURE 7.13: Cost for r=2 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200.

5 r_-----------r-----------.~----------,_------------r_----------~
radius=3 +

4

+
+

en
u; 3 0 + ()

'" '" .". + '" '" "it + * c ~*tH
+ + + + +

0

~i '" *
+$ $ *+ "iii

en ~~ ,~+ ,,'" + :j:
E ++

-1'+* $ " f +
en "1'+ '"

J:j:$
+ :j:+ + + c

2 * $:j:+! + $ + +:j: l!' +
f-

+ +

+

o~----------L---------~----------~----------~----------~
o 2 3 4 5

Increasing Relative Availability

FIGURE 7.14: Cost for r=3 using the probabilistic routing algorithm for zipF resource
distribution, Number of peers = 200.

90

Chapter 7 Evalua.tion of the Search Algorithm

40

35

30

(f) 25 1ii
0
0
c
0
'iii 20
(f)

'E
(f)

c
~

15 r-

10

~N~, 5

jj 1. /T1IA AUL
.~ 'V 'v'

0
0 2 3

Increasing Relative Availability

v

4

radius=1 -­
radius=2 ------­
radius=3 ------

5

FIGURE 7.15: Cost for r=l, r=2, r=3 using the broadcast routing algorithm for zipF
resource distribution, Number of peers is 200. Note: Curves in the graph oyerlap

91

Part IV

Query Processing in data stream

management systems

92

Chapter 8

Query Optimisation

Chapter 2 introduced adaptive query processing systems for streaming data and the

related motiYating applications. This vvas followed by a detailed description of a model

for adaptive information management in chapter 5. This chapter continues the thread

of discussion on adaptive information management, albeit with an exclusive focus on

the particular application domain - query processing over streaming data. It should be

noted that the choice of this particular application domain was influenced by some of

its following characteristics, as follows:

Time varying behaviour Query processing over streaming data provides an ideal case

for optimisation over time. In a streaming database, data arrival rates happen

to be infrequent. Time varying behaviour, coupled with constraints on memory

utilisation, computational resources, and the online nature of processing, facilitate

the evaluation of our assumptions of optimisation over tilne in a real application

domain.

Distributed and partially visible information The online processing requirements

of stream data management restrict the number of parses of incoming information.

The system needs to adapt on the basis of a small number of actual observations,

and most often these observations are not shared across multiple streams.

A reduction from a fully connected graph to a partially connected graph One

of the important operator employed for query processing of multiple streams

is a n-way join operator. TI-aditionally, a query plan for such an operator is

represented by a tree, derived from an n-way fully connected graph. This allows

us to explore the possibility of representing the scenario using a dynamic graph

formulation. Section 8.4 describes a dynamic graph based approach to multiple

query optimisation.

A combinatorial cost representation Query processing in streams is constrained,

and usually represented by a combinatorial cost formulation described in terms

93

Chapter 8 Query Optimisation 94

of memory utilisation, computational costs timeliness of response. Usually a cost

expression is usually associated with an individual query, but typically a system

processes multiple queries over multiple streams. Therefore the application domain

is well suited to exploring the relation between graph theoretical representation

and combinatorial optimisation.

At the time of writing this thesis, query processing over streams IS an emerging area

of research in the database community. The theoretical contributions in this chapter

are two-fold. Firstly, the hypothesis presented in chapter 2 should be ratified in terms

of solving a combinatorial optimisation using graph theoretical techniques in a domain

varying with respect to time. Secondly, a new approach is proposed for query planning on

streaming data. This part of the thesis consists of two chapters. Chapter 8 describes the

problem domain and the proposed solution and chapter 9 describes the implementation

and evaluation of the proposed approach. This chapter begins with a brief introduction

to query processing for relational data model, as described in section 8.1. However, it

should be noted that with such a large number of approaches and techniques developed

for query processing, means that it is impossible to provide a comprehensive summary

of the whole area of the research. Instead, section 8.1 introduces important concepts

and definitions to help understanding of the problem domain. Section 8.2, highlights the

differences between traditional query processing and query processing for streams, using

a relational data model. Section 8.3 describes the scope of the approach and its relevance

to the actual application domain. A set of theoretical solutions to the problems described

in section 8.3 are described in section 8.4. The next chapter, provides an architectural

overview of the implementation used to verify the hypothesis described in section 8.4.

The experimental results and their interpretation are provided in section 9.2. Section

9.3 provides the usual two part summary relating the findings to the application domain

and the overall hypothesis.

8.1 Background

Relational data representation (Codd 1970) is a widely used one that allows flexible

manipulation of encapsulated data. A part of its success is attributed to the well defined

relational algebra (Date 1995), is used to represent the data definition and manipulations.

Usually a declarative language - in most cases SQL (9075 1992) - is used to syntactically

represent the actual list of intended operations. ~10st commercial database systems allow

concurrent access to the underlying resources by allowing execution of simultaneous

queries. These systems convert the syntactical representation into a query plan for

execution by the underlying system. Query planning remains central to resource utilisation

in relational data management systems. To discuss the specifics of resource management,

the rest of the section discusses the query planning techniques in relational database

systems.

Chapter 8 Query Optimisation 95

8.1.1 Query processing in relational database systerns

Query processing in relational database systems is usually a multi-staged process. lVIost

query processing systems use a parser to create a query plan from the syntactical

representation of the query statement. Initial plans are further optimized by the query

optimizer. A query optimizer applies a number of transformations to generate a list of

alternative feasible plans (also known as search space). A search mechanism is used to

select a most suitable query plan from the list of plans - usually one with minimal costs

for a given cost model. A query plan with lowest cost implications is executed by the task

management system of the database. Most traditional databases generate a query plan

at the start of query processing, ·while some perform re-optimisations of the query plan

during execution. The planning process is usually based on the statistical information

gathered from currently available tuples. A query plan with re-optimisation is well suited

for query processing in dynamic environments. Such query plans are usually employed

in multi-database systems where the unpredictable processing environment necessitates

the use of dynamic planning. Re-optimisation of the query plan is not usually employed

in single database systems.

Amongst the important aspects of relational query processing are cost estimation and

operator scheduling mechanisms, which tend to have a huge impact on optimisation.

A seminal paper by Selinger et. a1. (Selinger, Astrahan, Chamberlin, Lorie, and Price

1979a) introduced System-R and a widely used formulation for generating query plans.

Most database systems extend this model to create a specialized query processing system.

System-R accepts a SQL statement and generates an access plan for single selection or

join relationship. The cost estimates in System-R are taken into account, the access

cost being based on the index information and the join operator algorithm. The generic

framework proposed by System-R provides a means to calculate query costs in terms of

access and operator costs. Similar cost metrics have been widely adopted in numerous

RDBMSs.

The following few subsections discuss some of the important components of a query

processing system:

8.1.1.1 Query planning

Query planning is a process by which a declarative data manipulation statement is

translated into an execution plan for evaluation by the database system. A typical

query planning system translates the declarative statement into a series of operations

and sub-operations to express the task as a series of atomic tasks that can be quantified

to ascertain the exact resource usage for the task. A query plan is usually expressed as a

directed edge graph, vvhich associates data with the operators. A query tree is the most

usual representation of the query plan. A query tree is usually composed of a collection

Chapter 8 Query Optimisation 96

of data nodes and operator nodes. It can be expressed as a collection of sub-plans where

the output of the internal plan is merged as the input of the higher level plan. The

data nodes represent the table space or the tuple being accessed and a number of access

operators and join operators form a part of the higher level plan and are used to execute

the underlying sub-plans. In some cases, the sub-plans may not be expanded at the

compile time and the actual planning process may be accomplished at the run time.

Multiple database optimizer represent one such class of query optimizer that evaluate

the query plan at the run-time or delegate the task of evaluating the sub-expression to

an independent autonomous optimizer.

8.1.1.2 Cost metrics and estimation techniques

The cost of query processing is usually expressed in terms of three important parameters -

memory usage (also known as memory utilisation), computational resource uage (represents

the computational cost) and the time to response. As a standard case, each of the

algorithms used for scan or Jom operations has a knmvn complexity. For example,

a hash join (Date 1995; Luo, E11mann, Haas, and Naughton 2002), an index scan

(Date 1995) and a clustered index scan (Date 1995) each has a different complexity.

As most of the algorithms used for query processing exhibit deterministic behaviour,

it is possible to calculate the approximate resource requirenlents for the evaluation of

the individual query. The cost of query processing is usually a proportionate mix of

the three parameter cost metrics. The exact inter-relations between the cost function

depend upon the implementation of database system. As a representative example of

cost calculation in database systems, the cost calculation formulae of System-R are

repeated. The representation is purely to aid the comparison with the cost metrics for

streaming databases, introduced in section 8.4

8.1.1.3 Query planning techniques

An optimizer needs to produce a sufficiently large number of alternate plans so that

it can locate a plan vvith the minimal costs for processing. An optimizer needs to

tradeoff the cost of optimisation of a query plan and the time to execution of the actual

query. Consequently, the algorithms can be classified into three primary categories

(Swami 1989) namely, the exhaustive search, randomized search and he'uristic guided

search algorithms. A brief overview of each of these types is given. A more complete

and detailed discussion can be found in Steinbrunn et. aL(Steinburnn, Moerkette, and

Kemper 1997)

Exhaustive Search The number of possible query plans for an n-way join increases

exponentially with the number of tuples. Consequently algorithms that iterate

Chapter 8 Query Optimisation 97

through these exponentially increasing search spaces exhibit similar complexity in

time and space. Examples of this type of algorithms appear in (Selinger, Astrahan,

Chamberlin, Lorie, and Price 1979b: Lohman and O~O 1990; Kemper, I'vioerkotte,

and Peithner 1993).

Randomized Search Randomized algorithms are well suited for optimisation in space.

However, this has a negative impact on optimisation in time. By their very

definition, randomized algorithms are indeterministic in nature, and are likely to

have higher time overheads. These algorithms perform better than the exhaustive

or heuristic search algorithms for simple queries, but tend to be more appropriate

for larger queries, due to lower planning costs and fixed complexity in space.

Various variants of the randomized search algorithm can be found in (Ioanndis

and Kang 1990: S'wami and A.Gupta 1988; Steinburnn, J\10erkette, and Kemper

1997)

Heuristic Search This class of algorithms tends to exhibit polynomial complexity in

time and space and generally produces query plans that are orders of magnitude

more expensive than those produced by the exhaustive search mechanisms. Common

examples of this type of algorithms include the "minimum selectivity" algorithm

and greedy algorithms (Swami 1989; Steinburnn, Moerkette, and Kemper 1997).

As far as is known, most query optimisation algorithms fall into either of the three above

mentioned categories. The algorithm presented in section 8.4 uses dynamic programming

techniques that can be classified as a modified exhaustive search algorithm. The actual

differences are highlighted in section 8.4.

8.1.1.4 Query re-optimisation

Query re-optimisation is employed to iteratively optimize the query at run-time. A few

of the many reasons for run-time optimisation of the query plan include:

Lower confidence in cost estimates. For very large queries, sampling techniques

are employed to reduce the scan costs for generation of the initial cost estimates.

Additionally, some estimators may only sample a part of the entire dataset to

provide a cost estimate. The accuracy of any such estimate depends on the choice

of the sampling technique. A number of runtime optimizers (Ng, Wang, Muntz,

and Nittel 1999; Ozcan, Nural, Koksal, Evrendilek, and Dogac 1997) adopt a

strategy to evaluate a part of the result to verify the estimates and re-optimize in

the required cases.

Frequent changes in operational conditions In a number of conditions, the projected

estimates may be invalidated by the operational characteristics of the systems. For

Chapter 8 Query Optimisation 98

example, consider an equi-join operation between two tuples, where one tuple is

resident in memory and the other tuple is being retrieved from the disk. At

runtime, increased disk activity may result in delays in the processing of the join

operators. A re-optimisation of query plan in general and operator ordering in

specific may be required to reduce the overall space requirements of the query.

Another example, consider a multiple autonomous database query involving a

multiple database join operation. A central query processor decomposes the query

into sub-queries on the participating databases. Each of the autonomous database

systems independently feed the join operation. A re-optimisation of the query in

light of such changes in the operating conditions is advantageous. An example

approach of query scrambling can be found in (Getta 2000).

Parallel query processing Concurrent execution of the operators can either be determined

at design time or can be imbibed at runtime. Adaptive query processing on parallel

machines necessitates replanning to obtain better optimisation.

Multiple Query Optimisation A multiple query optimisation reduces operational

costs by utilizing the resource sharing between queries. The possibility of resource

sharing between the queries can only be ascertained at runtime and may require

re-optimisation of the query plan.

8.1.2 Summary

The above section provided a brief introduction to query processing in database systems

and highlighted some of the important characteristics of query processing systems.

It is acknowledged that the above description is by no means an exhaustive one or

representative of the enormous complexity of the rich field of query processing in database

systems. However, as stated earlier, introduction of some of the important terms will

help the discussion in the latter sections. Query planning, the costing model, query

optimisation techniques, and query re-optimisation in traditional databases have been

presented to contrast them ,vith those used in query processing over streaming data.

8.2 Query processing for streams

8.2.1 Motivation

The online processing requirements of most applications in pervasive environments -

for example, network traffic monitoring, fraud detection in telephone networks, sensor

networks, data feeds from stock exchanges, online instruments in a Grid environment,

and publish/subscribe notification models for Grid environments - necessitate query

processing on data streams. For all practical purpose a stream represents an infinite

Chapter 8 Query Optimisation 99

source of data. The large volume of data and the online nature of the applications

make it imperative for the applications to process the information in an online fashion.

These systems view data as a dynamic commodity, which needs to be made available

at the desired locality, at appropriate times and with the desired characteristics of

delivery. The traditional notion of the centralized processing of managed data is no

longer applicable in such environments. Traditional data processing involves processing

on relatively static data on immobile processing nodes. In pervasive environments, data

needs to be processed while in a transitory state and the data processing system needs

to adapt to variations in the availability of the computing and network resources.

A typical feature of the query processing in data stream systems is the association of

multiple long running continual queries with a stream of data. :Manipulations on multiple

data streams are specified using relational algebra, although the operator semantics

and characteristics for data streams are significantly different from their relational

counterparts. Query processing in these systems can be expressed as a pipeline join

operation between multiple streams interconnected through database operators. As the

streams are bound to experience variations in data arrival rates, the resource allocations

at each of the operators are bound to fluctuate. As a result, query plans are frequently

executed in the conditions that are significantly different from those for which the query

plan was generated. Continual re-optimisation of the query plan is also necessitated

by continuous fluctuations in data arrival rates (Amsaleg, Franklin, and Tomasic 1998;

Urhan, Franklin, and Amsaleg 1998) and changes in the characteristics of the data

itself (Avnur and Hellerstein 2000; Madden, Shah, Hellerstein, and Raman 2002). Our

aim is to develop a query processing system that adapts to the variant nature of the

data streams. Near online processing requirements necessitate that any adaptation of

the query plan for the prevailing execution environment should be efficient in time and

posses minimal reorganisation overheads. To expedite query reorganisation, an approach

is adopted that maintains statistical information for a list of viable query plans and

minimizes the query processing cost for a three-variable cost m.etrics - based on data

flow requirements, processing requirements and delay characteristics.

Distributed processing on multiple data streams is similar to multi-database query

processing. Query processing in relational database systems exploits the similarity

between query sub-expressions to optimize the processing cost over multiple queries.

Here is proposed a multi-query optimisation in a data stream system that forms an

overlay to reduce resource consumption across multiple queries.

8.2.2 Stream data management

A stream represents a infinite source of append only data. However, practical constraints

on memory space imply that it is not possible to archive the stream in its entirety, and

the scope of any query evaluation needs to be limited to a subset of the streaming tuples.

Chapter 8 Query Optimisation 100

One of the most frequently used methods is to use a window definition to restrict the

scope of evaluation to selected subsets of tuples. f.-10st of the windows use temporal

constraints to identify the subset of contiguous tuples in a stream.

A stream S contains a set of tuples specified by an associated relational schema R,

where R is an schema with attributes Xl, X2, X 3 , , Xk. The attribute space of R is

defined by the function att(R) and the function 0: 1'1 -7 att(R) specifies an ordering

of R. A sequence S(Rs, Os) represents a stream with ordered tuples of schema R. A

stream maintains a number of tuples 1'1, ,ovhere 0 <=]V < 00 is determined by the

window specifications of the set queries Q associated with the stream. Details of window

specifications on memory requirements and the number of tuples retained by the query

are provided later in this section. However, in some cases, the memory utilisation may

increase with an increase in window size. Two alternative approaches have been adopted;

first, to maintain a synopsis of the preyious data, and second, to proyide approximate

answers to the queries. In this case it is assumed that all the tuples arriving at the

stream are processed. An exact description of query semantics can be found in section

8.2.6.

A stream data processing system defines a set of operators to define and implement

a query processing system. These operators can either by unary, binary or n-way

operators. A generic unary stream operator Osp accepts a single input Sin and produces

an output Souto \Vhile a multiple stream operator Omp accepts multiple inputs Sin = {

Si, i E 1 }. The memory utilisation of the operator depends upon the actual semantics

of its implementations. Huwever, it should be noted that each stream operator produces

an output stream and the characteristics of output stream are influenced by both the

operator as well input stream characteristics.

A query is specified as a relational operation on a set of streams. However, unlike

in a relational model, the additional requirements to represent the characteristics of

the streams necessitate extensions to the relational algebra. The relational algebra

is extended to capture the additional semantics. The approach is very common and

is adopted by almost all the current stream processing systems that use relational

algebra to capture the database's equivalent operations. In this approach, the query

is primarily composed of two separate parts, first the data manipulation part, which

specifies a SQL equivalent of query, while the second part consists of specific extensions.

The additional semantics reflect how the data are used to specify the mechanism for

extracting data from the stream and its buffers, and to define the lifetime of the

query. (Guha, Koudas, and Shim 2001) introduce the concept of windows for specifying

the buffer. The window refers to the stream tuples that can form a part of current

join evaluation. In (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong,

Krishnamurthy, Madden, Reiss, and Shah 2003) the authors extend this definition and

consequently four types of queries have been identified, a snapshot query, a landmark

query, a sliding query and a temporal band join. The semantics of windows heavily

Chapter 8 Query Optimisation 101

impact on the persistence mechanism and the execution of the query. The same query

semantics is used in this study as proposed by (Chandrasekaran, Cooper, Deshpande,

Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Reiss, and Shah 2003), and a

sample query for a single stream is represented as:

Select temperature, timestamp

from jurnace_Jl.{ ondor

where jurnacccharge <= 20 for(t=ST; t<ST+30: t+ =1){

WindoVJls(Temperature, t-5, t)

}

The above expression translates to select the temperature and the time-stamp for a

furnace where the furnace was loaded with some charge. Select the values for the past

6 days and keep the query alive for 30 days. The actual number of tuples that end up

populating the window over the period of last 6 days depends upon the data arrival

rate. A number of such expressions can be queued on a stream and need to be evaluated

simultaneously. The evaluation of a query can occur at the time of the arrival of data

or at predefined intervals or at the time of queuing the query or at the time when the

data is being invalidated or overwritten due to some window overflow criterion. All such

attributes should ideally form part of the scheduling operation. However, almost all the

query-processing applications currently available fail to provide any extensions for the

scheduling operations. The definition of the above specification is therefore extended to

include scheduling options as part of query specification. The actual event that triggers

the evaluation of a query is referred to as the evaluation event.

The query specification has the following logical structure.

Select [Tuple specification]

FROM [Tuples]

WHERE [JOI~ ~ RANGE CRITERION]

FOR [Query period]

WINDOW SPECIFICATION

ON

Scheduling criterion such as DATA ARRIVAL I PERIODIC I SNAPSHOT I
OVERFLOW I QUERY ARRIVAL

The scheduling options are important in determining the overall quality of service for

evaluation of query results, while the window specifications are important in determining

the semantics of the result set generated from the query evaluation. The query specifications

and the stream characteristics identified in this section are described in the next sections

on window semantics and join operation semantics.

Chapter 8 Query Optimisation 102

8.2.3 Window semantics and specifications

As far as is known, operational semantics for join operators for stream data processing

are not as well defined as in the case of the relational database system - this is primarily

attributed to different \vindow definitions and the different result set semantics prevalent

in the field. A number of different 'window types have been defined in individual

research projects. The most widely accepted types of query semantics \vere described

by Chandrashekar et.a1. (Chandrasekaran, Cooper, Deshpande, Fl'anklin. Hellerstein,

Hong, Krishnamurthy, Madden, Reiss, and Shah 2003). Chandrashekar et.al describe

four query types namely - Snapshot query, Landmark Query, Sliding Query and Temporal

band Join. Each of the four types imposes significantly different requirements on the

design of the query processing system. For example, the query evaluation event for a

snapshot query is evaluated exactly once per window. A join operation in the case of a

snap shot query between streams evaluates in response to an event on the input window

of one of the related streams. Similarly, in the case of a landmark query, sliding window

and temporal band join, either a temporal event or arrival of data at a stream could

result in the evaluation of the join. In addition, the query results may be generated

out of order and guarantees may be provided on the eventual correctness rather than

immediate correctness at each evaluation step. In this case, the proposed approach

considers that the results are correct at each evaluation step. The out of order arrival

of tuples from data sources is not permitted.

Consider the stream S(R" Os) and an associated query Q with a window specification

W. Let i represent the number of tuples in the sequence represented by the stream, and

let N be the number of tuples currently held in the stream at a given time tinsta.nce' Let

ti denote the time at which the tuple i was added to the sequence, i.e. arrival time of

Si is ti·

A snapshot query is evaluated against the contents of the stream at a particular instance

in time. It should be noted that a snapshot query does not maintain an active window

on the data stream; instead it utilizes the current contents of the stream S. If Proj(S, W)

is defined as the scan of window W predicated on stream S, where if W~s represents the

list of windows associated with the stream, then a snapshot of stream S is given by

n

Snapshot(S) = Proj(S, Ws) = Uniqve(~ Proj(S, l11i)) , whereWi E VVs
;=1

A landmark query evaluates the query for all rows of the selected streams beyond a

particular landmark. Hence, TV L represents a valid landmark window if and only if the

landmark 1 satisfies the condition So.to < 1 < SN.tN all the records where 1 < Si forms a

part of the window. Also, any records added to the S at time t > tinsta.nce are also added

to the scope of the landmark window specification. A landmark window can also specify

Chapter 8 QuelJ' Optimisation

;::
0

"0
c::

-,--

~
0
.c::
Cfl

"-
'" ~

(jj II
~

n;
E
"0
c::

.!!!

~
"0
c::

~
-" g
"0
c::

'" -'

Stream at time instance t1

;::
0

"0
S

0

e
'" c::

UJ

;::
0

"0
~ .s

5
~
0
"-
E
Q)

!-

-"

t
'" E

"0
c::

.!!!

0
"0
.s
5
-"
~
E
"0
c::
j

U -'--

103

;::
o

"0
c::
~
OJ
c::
:g
UJ

Stream at time instance t2, t2>t1

FIGURE 8.1: Window types

the rules for automatic traversal of the landmark on each evaluation. Theoretically,

landmarks may either be specified using temporal properties or derived hom the data

content properties of the tuples, as in the following restricted case.

LandrnaTk(S, Hi) = scan(S, S.t > Hi.t)

A sliding window over streams is represented by a set of landmarks - an upper bound

and a lower bound. A scan on stream S for a query evaluation with a sliding window

specification returns the tuples between these two landmarks. A scan for sliding window

1V5z with a set of associated landmarks TV.Ll1pper and VV.Lzower is represented by:

Sliding(S, Hisz) = scan(S, WLzower > S.t > H(Ll1pper)

As defined earlier, landmark window scan evaluates to records from a given landmark;

thus one end of the window is clamped, while the other slides as new data items are

appended to the stream. A temporal band join is a reverse phenomenon, with a fixed

endpoint and a variable start point. A temporal band window retains a fixed number of

items and slides as the data items are appended to the stream.

(8.1)

Chapter 8 QLler.y Optimisation 104

where tk is the window size.

It is assumed that streams are 'append only' containers; therefore each of the operators

can process the data on arrival. However, in certain cases, streams may be allm\'ed

to modify the data within a window. In such cases the operator requires an explicit

invocation of the query evaluation event. These two different semantics have varying

effects on the way in which the queries are processed by the system. However, the

following discussion considers 'append only' data streams.

8.2.4 Continuously Adaptive Continuous Queries (CACQ)

Query processing over streaming data can either follow snapshot semantics, thereby

evaluating the query expression over the current states of the stream, or otherwise allow

a continuous evaluation as new data items are appended to the stream (also knovvn as

continuous queries). A continuous query expression is scheduled in accordance to the

viindow specifications of the query. Continual query processing requires maintenance

of some intermediate state between subsequent evaluation of the query expression.

Unlike their traditional counterparts, data operators for stream data management need

to maintain an intermediate state to minimize the cost of regenerating the state at

each query evaluation. The continual query paradigm necessitates the use of pipelined

operators.

Traditional query plan evaluation generates an intermediate state during the query

evaluation and discards the state on completion of the query. A continual query creates,

maintains and modifies the state with respect to the changes in the environment. Candidate

examples for such data operators include a flexible hash join (Shah, Hellerstein, Chandrasekaran,

and Franklin 2003), a ripple join (Haas and Hellerstein 1999) or an eddy operator (Avnur

and Hellerstein 2000). Modified versions of these operators have been used to provide

CACQ capabilities in stream management systems.

Flexible data operators were designed to adapt to the variations in availability of resources

used for query evaluation. Consider a query Q = Al I><l A2 !Xl A3 I><l A4 I><l A 5 .. · I><l Arn

an n-way join between the tuples AI, A2, ... , An. A sequential n-way join operator will

block until the data is available for each of the tuples. A flexible operator performs

the incremental joins between the data tuples as and when they become available, it

also optimizes join performance by reordering the join ordering of the tuples. 'While

sampling the relationship in an n-way join, the join operator scans a single relationship

for changes and evaluates the incremental results.

Assume that a join has been evaluated for the initial scans on the relationship, such

that:

(8.2)

Chapter 8 Query Optimisation 105

If the sampling of the relationship indicates that the new tuples 51' have arrived for the

schemas 51, the incremental result

(8.3)

Ql = (51 i><l 52 CXl 53 CXl 54 CXl 55 ... CXl 5n) U (51' CXl 52 tx:J 53 CXl 54 CXl 55'" CXl 5n)

... (A U B) CXl C = (A CXl C) U (B CXl C)

(8.4)

Q1 = QU 6, where 6 = (5/ CXl 52 CXl 53 CXl 54 CXl 55 ... CXl 5n) represents the incremental

processing for 51'. A scan of the tuples in the relationships results in an incremental

result set generated at a minimal cost while retaining the state of the previous evaluation.

CACQ operators are most suitable for query over streanl data as the incremental

tuples arriving at each of the stream window can be continually evaluated resulting

in a consistent result set, where the increments can be managed by manipulating the

increments in the input tuples. The join semantics of CACQ provide an incremental

result set for the join operation and are well suited for 'append only' join processing,

i.e. landmark windows. The effects of CACQ on sliding window queries are discussed

in the section 8.2.6, which is preceded by a brief discussion on adaptive join operators.

8.2.5 Adaptive join operators

In the case of query processing over streams an n-way join operator provides improved

space and computational usage compared to a series of binary joins. A typical n-way join

operator does not retain any intermediate results, while an n-way join implemented as a

series of binary joins needs to maintain and may need to re-index the intermediate results

to improve the join efficiency of the intermediate joins. A number of adaptive n-way

join operators have been proposed in the literature, for example, (Avnur and Hellerstein

2000), (Haas and Hellerstein 1999). An n-way join operator centralizes the operator state

for the n-way join facilitating easy optimisation. It reduces the co-ordination costs for

adaptive query planning. For example, an eddy (Avnur and Hellerstein 2000) operator

creates individual stems (Raman, Deshpande, and Hellerstein 2003) for each of the

participating tuples. The tuples are sampled for new data items and the n-vvay join is

accomplished by routing the tuples through appropriate stems. An eddy minimizes the

intermediate state, thereby allowing flexibility to adopt an individual routing policy for

a given set of tuples. The StreamDB illustrates a list of alternate query routing policies.

In their paper, Madden et a1. (Madden, Shah, Hellerstein, and Raman 2002) discuss a

ticket based routing mechanism to circumvent the problem of selectivity estimation. An

alternative approach is suggested by the same (Madden, Shah, Hellerstein, and Raman

Chapter 8 Query Optimisation 106

2002) that uses the random routing policy to route the tuples between the operators.

Similar approaches have also been discussed by (FengTian and \Vitt 2003). For SP J,

the authors provide a nested loop implementation of an adaptive operator that adopts

to changes in the data arrival rates and operator selectivity.

An adaptive join operator for streaming data needs to optimize the usage of three

different types of resources, memory space, computational resources and response time.

Alternative approaches to formulating the memory constraints are highlighted by two

very distinct approaches. The first, is PSoup (Chandrasekaran and Franklin 2003)in

which the authors describe a mechanism to reduce response time by an early and lazy

materialisation of the result set, while (Arasu and \Vidom 2004) Arasu et al. explore a

different problem of identifying the set of queries that can be executed under memory

resource constraints. The approach highlighted in section 8.4 in a way extends Arasu and

\Vidom's approach for defining the resource constraints in an adaptive data operator. As

a typical query plan consists of a number of such operators, they need to be scheduled

on scarce computational resources. A number of scheduling options for optimizing

computational costs and improving response time have been suggested in the operator

scheduling strategies of (Babcock, Babu, Motwani, and Datar 2003; Hammad, Franklin,

Aref, and Elmagarmid 2003).

In general, n-way adaptive join operators can be compared on the basis of their adaptivity

in solving a three-parameter cost metrics of memory usage, computational resource usage

and responsiveness. Section 8.3 provides description of the combinatorial problem and

the solution in section 8.4.

8.2.6 Join semantics

Relational algebra provides a de facto definition of join operations. It introduces inner

join, outer join and equi-join semantics. However, relational algebra was defined for

static data items, and is equally applicable to window joins over streams. However, as

defined in section 8.2.4, different window types generate different types of scan objects

for query evaluation. If the 'windows hop from one set of intervals to another, then

the overall semantics of the join over the period of time are maintained and are similar

to the results of the non windowed join. However, in the case of a sliding window

join, subsequent window joins may share a set of tuples. A union of all the result

sets generated during each of the evaluations may contain duplicate data items. The

cumulative result is that the actual semantics of the join are not maintained.

Chapter 8 Query Optimisation 107

8.3 Problem Definition

There are at least three different types of optimisation scenario a figure prominently in

query optimisation over streams, first, a very basic type of optimisation that aims at

reducing the computational cost of an individual query, secondly, optimising utilisation

of system resources over multiple queries, given that a number of simultaneously executing

queries over a set of streams provide a potential for resource sharing, and finally,

scheduling the queries so that effective utilisation is minimized for both the individual

and the group of queries.

Consider a set of streams S = {S 1, S2, S3, ... , Sn}, where each stream is expressed as

S(Rs, Os), as introduced in section 8.2.3. A list of queries Q ={Ql, Q2, Q3, ... , Qm} are

queued for execution over the set of streams. Each query Qi is represented as a set

of operations on a set of streams SQi' such that SQi E S. Suppose that the query

operation Qi represents a multiple join operation, it can be expressed as, Qi = SQl I><J

SQ2 I><J SQ3··· I><J SQk' where k = I SQ;!. Each of the streams in SQ; has an associated

rate of data arrival dQi , where dQ; = (J Rs;, where RSi represents the average rate of

data arrival at stream Si, and (J represents the selectivity of Query Qi over stream Si

for attribute R j E Rs.

Each of the data streams SQ; receives a set of tuples through constant evaluation of the

query Qi over Si. Though the collective selectivity of the query is constant, processing

for the overall join operation is minimized by using appropriate join ordering. On the

other hand, the join operator scheduling aims at reducing the memory utilisation of the

query and to minimize join operator costs. The query processing is characterized by the

following:

1. Query routing allows the join to be either individually evaluated for each of the

tuples or it can be evaluated for a group of tuples.

2. As discussed in section 8.2.4, at any given instance, a ripple join process can only

progress in one dimension. 'While the query is evaluating tuples from a single

stream, the memory utilisation at other streams increases as the new tuples are

queued at those streams. The utilisation cost during the processing is directly

proportional to the data arrival rates at the waiting streams. Hence, the choice

of a stream to be processed needs to be optimized against the costs accrued by

memory utilisation at the blocking streams.

3. Each subsequent operator ordering should result in a reduced result set. This

implies that operator reordering needs to follow selectivity estimates. Selectivity

at any given join execution is directly related to the current contents of the stream

windows. If a statistical tool is used for calculating join estimates, it needs to

reduce computational costs by avoiding the re-estimation of costs for each window

hop.

Chapter 8 QueI','" Optimisation 108

4. The process of continuous optimisation has its uwn control costs (such as recalculating

the hash tables and recreating the intermediate results), which need to be minimized.

5. The response time of the query is directly proportional to the delays introduced

by the individual join operators. The response time delays can be minimized

by maximizing the parallelisation of the query evaluation. Note, parallelisation

necessitates the creation of a more bushy query plans, and may have higher

synchronisation overheads.

6. The ripple join calculates the results in terms of the previous query results. A

query can reduce the cost of re-optimisation if it can identify a subset of the

previous results, which can retain between subsequent re-evaluations of the query.

It should be noted that the retention of intermediate results is constrained by the

size of the cache.

The above mentioned constraints are applicable to a single query optimisation scenario.

In this case, techniques to achieve the local minima for mem.ory, processing and delay

are considered effective.

Multiple queries continuously executing on a common set of streams provide possibilities

of resource sharing between multiple query evaluations. The simplest form of resource

sharing can be applied at the level of select and project operators, whereby a single filter

is used to scan the data for each of the selection and projection operations. The design

of one such operator is discussed later in this section.

An alternative form of resource sharing relies on sharing of intermediate results. Although,

resource sharing between queries has traditionally relied on identification of common

sub-expressions between a set of queries, it is equally applicable to query processing on

streaming data. Query processing over streams provides an added advantage of routing

the tuples in such a way that multiple evaluations can be simultaneously carried out by

the multi-stream operators. In addition to the identification of the sub-expression, the

queries have to be evaluated for window semantics, as the t,vo queries with a shared set

of tuples in their window definitions are bound to have reduced cost if they share the

costs of processing. The shared expression can be used to select the appropriate order

for routing of the tuples, such that the combined processing costs of routing the tuples

are minimized.

The third and final type of optimisation relates to resource consumption by the individual

queries. Data items queued at each of the streams occupy memory resources. In certain

cases, for example the sliding window, memory resource utilisation can be optimized

by appropriate prioritisation of the order in which the streams are processed. The

optimisation problem can be summarized as generating the appropriate schedules and

identifying the appropriate sets of queries that can share this atomic set of operations.

Chapter 8 Query Optimisation 109

To address all the above mentioned concerns three algorithms are devised in the following

sections. The following sub-sections, provide further refinements on the above-mentioned

set of problems.

8.3.1 Selection and projection filter

A selection and projection operation over a data stream differs from the selection and

projection over a relational database table, in that the scope of selection and projection

in a streaming data processing system is limited to the scope of the current window. A

number of queries may involve selection and projection over the stream data, thereby

providing ample opportunities for sharing selection and projection costs, by maximizing

the co-evaluation of the selection and projection operation.

A select and project operator results in the creation of intermediate result sets for each

of the queries. The size of the result sets can be reduced by maintaining the references

to the rows of data and not replicating the actual tuples. These references are used

to create a scan for further evaluation of the query. The queries may share the actual

scan or may proceed independently. The processing costs of shared evaluation can

only be sustained if the resulting costs accrued for maintaining the result sets are less

then an independent evaluation. However, the select project filter should be capable of

simultaneously evaluating multiple queries and should be able to tradeoff the costs of

maintaining the results against the cost of evaluating multiple evaluations.

In order to decide such a trade-off the operator should be capable of estimating the

sizes of the resultant datasets and also the estimated costs of maintaining the result set.

The size estimates can be obtained by using the histograms for range queries. However,

the dynamic contents of the stream data render the regular techniques for histogram

evaluation ineffective.

8.3.2 Complex queries

A set of database operators defined for relational algebra can be found in (Date 1995).

The scope of this discussion is limited to a set of select, project, join, logical and

cross product operators. The list is restricted to keep the discussion focused. Most

of the observations detailed for these operators are equally applicable to other database

operators with minor or no modifications. Combinations of the select, project and join

operators comprise a query expression. Evaluating the strategy against a number of

query types provides an opportunity to determine the efficacy of the approach under

extreme query types.

Some of the examples derived from the previous work in the field are described below.

The paper by Gouda and Dayal (Gouda and Dayal 1981) introduces three distinct query

Chapter 8 Query Optimisation

(a) Query

(d)
Multiple

Join
Query

FIGURE 8.2: Different Query Types

(b) Simple
Query

110

types, namely a tree query, a simple query and a chain query. A tree query represents

a multi-way join between a number of tuples. The join criterion assumes that any tuple

in a tree query participates in only one join operation. A simple query is a special case

of a tree query, such that a common joining attribute in one of the tuples across the

joins operations. Similarly, a chain query is a special case of a tree query in which each

tuple has at most two join attributes and participates in two join operations. Figure 8.2

provides graph representation of the tree join, simple query and chain query. In addition

to these three query types, a fourth query type, a multi-join, was introduced in a paper

by Lee et a1. (Lee, Shih, and Chen 2001). This is a generalized case of multiple join

operations in a query, and with multiple join ordering combinations.

8.3.2.1 Pipeline query

A pipeline query is composed of a hierarchically arranged series of join operators. A

typical pipeline query operation can be expressed in the form Ra rxJbSb rxJcT c rxJdU. A

query plan for the evaluation of the pipeline join operation can be represented as a left

depth tree, and optimisation is achieved by reordering the join operators. An n-way

pipeline join can be evaluated by using a single n-way join operator or by a series

Chapter 8 Query Optimisation 111

of binary operators. A series of binary operators may require multiple scans on the

intermediate results, where the indexing costs increase the total cost of query evaluation.

It is also important in the case of query evaluations, where producing initial results early

is important. It also provides an ideal case for evaluation of non-blocking algorithms,

which do not stage the data either on the disk or in the mem.ory.

A CACQ expressed as a pipeline join over the streams is the nlOst simplistic query type

and has been studied in other projects (Chen, DeViitt, Tian, and Wang 2000).

8.3.2.2 Star queries

A star query is represented as a join with a single attribute in one of the participating

tuples. A typical star query can be expressed as (Ra IXlbS) n(Ra lXleT) n(Ra IXldU). A

star query representation is well suited for single hash join operators. A single shared

attribute across the joins results in reduced indexing costs across the join operators. A

star query also reduces the scan and indexing costs between subsequent join evaluations

sharing a tuple. The star query representation is of particular importance to the study

of n-way stream operators, as it presents unique challenges for an operator scheduling

system.

8.3.2.3 Cyclic queries

Cyclic queries represent a special class of queries, where the query graph between the

join operators assumes a cyclic order. Figure 8.2 (d) represents one such example of a

cyclic query operation. The join ordering in a cyclic query evaluation needs to ascertain

the ordering of the joins and the concurrency of the join evaluation.

8.3.2.4 Cross products

In addition to the join operators, query plans are also expressed in terms of logical

operations between the tuples. Considering that all the possible logical operations can be

expressed as a combination of conjunctive, disjunctive and negation logic (AND-OR-NOT

logic), the discussion is restricted to these three primary types. A logical operator differs

significantly from a join operator in terms of computation and memory utilisation, and

hence is included in the present investigations.

The above sections introduced the breadth of different query types that will be used to

evaluate the effectiveness of the approach introduced in this study. The different query

types presented in this section are representative of the wide variety of query types

that are frequently encountered in relational query processing. However, it should be

pointed out that most of the investigations in the area of stream data processing have

Chapter 8 Query Optjmjsatjon 112

been limited to the pipeline query evaluation. Thus, the comparative studies presented

in the following chapter primarily focuses on this particular query type.

8.3.3 Bursts of data arrival

A stream represents an infinite sequence of data items that are evaluated as and \vhen

they arrive. The actual rate of arrival of the data items determines the contents of

the query windows activated on the stream. The cumulative memory utilisation of the

streams is directly proportional to the difference between the arrival and departure rates

of the data items. If the cost of a query evaluation is directly proportional to memory

utilisation, prioritized processing of the streams with higher data rates will result in

reduced query processing costs. In addition, the cumulative delay in response to data

arrival at a stream can be reduced if the tuples are served in order of arrival and at a

rate comparative to the arrival rate of the data items. The query processing between

subsequent evaluations can also benefit from the partial caching of the intermediate

results. The above three desired characteristics can be achieved by processing the

streams in increasing order of data arrival rates.

A way to ascertain the bursts in the arrival of data is to use self similarity techniques

to predict arrival rate similarities and attempt to reduce the costs by using historically

effective techniques.

8.3.4 Cost metrics

The effectiveness of query optimisation is adjudged according to its capability to reduce

certain costs against particular cost metrics. Traditionally, the performance of a query

processing system is compared on the basis of memory utilisation, computational resource

utilisation and response time. However, in most cases, the query evaluation lasts for a

finite amount of time, and, as variations in the underlying processing environment are

limited, it allows the approximate costs of the query plan to be estimated in advance. In

case of query processing for streams, the total resource utilisation is accumulated over

a period of time and it is necessary to calculate the costs of replanning and migration

to an alternative query plan.

One can use the traditional definition of memory utilisation and represent it as the

measure of the storage space required by the query evaluator. However, streams differ

significantly. In this case, the memory utilisation increases on arrival of additional data

items. As a result, a modified measure is used that represents memory utilisation as a

cross product of memory utilisation x time. The modified definition implies that memory

utilisation increases linearly on the arrival of data items.

Chapter 8 Quer.\' Optimisation 113

Consider a query Q, that represents an n-way Jom betvveen streams in the set S =

{Sl, S2, S3, ... , SrJ. Let each of the streams Si contain a number of data items ISil,
w here the delay of each processing item is 5j . The cumulative rnemory utilisation of the

query is given by the follovving equation:

T1 ISil
rnernoryv.t·ilisation(Q) = L L Sj5j

i=O j=O

Note, in the case of multiple query optimisation, the memory utilisation is reduced by

proportionally sharing the cost of retaining a tuple across multiple queries.

\Vhile the computational resource usage of the query evaluator is calculated as the

utilisation of the individual query operators, the average response time is calculated

as the average delay between the input and output of the data items from the stream

operator. Computational resource usage is directly related to the choice of the join

algorithm and the concurrency of the various join operators. The details of computational

resource usage are discussed in section 8.4, here represented as compv.tational cost. The

objective function of the query optimizer is thus represented as:

Optirn.ize(Q) = Min(rnernoryv.t'ilisation, Cornpv.tationalcost, Cv.rnv.lativedelay)

As the overall optimisation is expressed as an explicit function of a time varying parameter,

namely memory utilisation, the optimisation equation represents a time varying entity,

and needs to be optimized over an interval. As discussed in Chapter 2, the above

equation for optimisation is solved for the finite and infinite horizon; the trade-offs are

explained in section 8.4.

The above formulation summarizes the constraint resolution problem for the case of

an individual query optimisation and can be used to compare the effectiveness of the

approach against a theoretical optimal. However, most practical systems are designed

to perform simultaneous evaluations for a number of queries. These systems operate

under certain resource constraints. The optimisation in this case needs to maximize the

cumulative processing of a number of queries. In the previous case, the effectiveness

of the approach can easily be determined for the cases "vhere the theoretical optimal is

known. However, in most practical cases, calculating the theoretical optimal will have

additional cost implications. An alternate way to measure the effectiveness of various

approaches is to consider resource utilisation on a fixed set of resources. Hence, the

above constraint resolution problem can be expressed as an optimization problem, that

given a fixed amount of memory and computational resources maximize the number of

concurrent query evaluations.

Let Qs = {Q1, Q2, Q3, , Qp} represent the set of queries that are allocated to a

Chapter 8 Query Optimisation 114

scheduler. with a fixed amount of computational resources. In this case consider the

design of a scheduler that can ascertain the cost of additional queries and the effect on

the cumulative quality of service1 .

A set of refined requirements on individual system components were described in the

above section. The following sections, start with a description of the query optimisation

algorithm and proceed to describe the developed SPJ algorithm and scheduling and

monitoring infrastructure.

8.4 Query optimisation

The query processor for the data streams, as designed for the system, consists of following

stages of processing: query plan logical generation, a physical plan generation, the query

scheduling and query monitoring. These stages describe the overall processing cycle for

processing the query over multiple streams. A planning approach is used for optimizing

query evaluation for streaming data. The queries submitted in the format expressed

in section 8.2.4, are translated to a query graph, composed of data nodes, as the leaf

nodes and non-data nodes, representing the operators. Initially there is no optimal

solution, but the query evaluation performance is gradually improved over a period of

time. The query plan starts with an initial state and an optimal solution is formulated

as a transition from the present state to the new desired state. A dynamic programming

technique utilizing the statistical information from the query evaluations is used to

determine transition to the alternate state of the query plan.

The logical plan generator accepts the query string and creates an access plan that

happens to be the dynamic graph. The graph representation of the query plan has been

used in various previous formulations. There are two predominant forms of graphical

representation of the query plan. The first is a representation proposed by (Avnur and

Hellerstein 2000) in which the data tuples and the operators act as the nodes. All the

data tuples are leaf nodes of the query tree, while the relational operator forms the

higher-level nodes of the query tree. A second representation proposed by (Lee, Shih,

and Chen 2001) represents the joins as the nodes in a query tree and the inter-operator

communications are labels along the edges. The former representation of the query plan

is used to help create a dynamic graph. For the purpose of clarity, cost metrics are

not immediately introduced, nor the statistical information available for the individual

streams. Instead the focus is on the data structure used by the logical plan generator

to communicate a list of feasible plans to the physical plan generator. In the case of

relational systems, the query plan generator usually selects a single most likely plan,

estimated to give the best performance. However, in the case of the streaming data, the

weights associated with the nodes and edges of the graph change so infrequently that it

INeed to provide an appropriate mathematical representation of the problem

Chapter 8 Query Optimisation 115

is not feasible to recalculate the entire optimisation space for each cycle of optimisation.

In this case, the entire set of solutions that are technically feasible and yield the desired

output are retained irrespective of the current cost of calculating and implementing

the execution plan. A dynamic graph representation is made where some of the edges

and/or nodes may be conditionally connected to each other. The dynamic graph allows

a perfect representation to capture the time varying nature of the associated edge and

node weights. An example of how such a graph is created from a query string and how it

is maintained is explained in section 8.4. The discussion of graph generation is preceded

with a short description of the query types that our algorithm seeks to address.

8.4.1 Plan generation and re-optimisation

Rather than starting with a description of a fully-fledged graph representation of the

query graph, a phased approach is used to introduce the process of creating a query

graph. It starts with the description of a query tree and introduces the relevant set of

notations, operations and constraints, gradually developing the notation to include the

representation of the optimisation space.

A query tree is composed of two types of nodes, data nodes and operator nodes. The

data nodes represent the actual tuples or, to be specific, in our case a number a streams

of data. Each data node has at least one parent node. A data node has no child node,

which implies that all the data nodes represent leaf nodes of a query graph. Each

operator node has at least one child node and mayor may not have a parent node.

Although, an operator node can have multiple child nodes, an edge connecting a node

to its child node is referred to as the input and the edge connecting a node to its parent

is referred as the output of the node. An operator node can have multiple inputs, but

it can only have one output. All the edges are directional. For example, for any given

node, an input edge is an incoming edge and an output edge is an outgoing edge. A

directional edge graph for one such query is represented in figure 8.3.

A query tree represents one of the many logical query plans. Alternate query plans

can be obtained by modifying the query plan to either make it less or more bushy. A

list of valid query tree transformations have also been discussed by Getta (Getta 2000).

Similar operations are equally applicable to the query tree, though the specific technique

of reduction of data tuples may not be applicable to streams which encounter bursts of

data.

Nodes and edges in the query tree are labelled with statistical, relational and performance

observations at each of the nodes. For the purpose of brevity, the discussion of the labels

is deferred to section 8.5.5. By the definitions of certain operators, a few transformations

are uniquely applicable to the streaming data. For example, the structure of the probes

for a streaming database allows close association between the data operator and the

Chapter 8 Query Optimisation

Figure: A Directed Graph for a tree
query after view reduction

- - - Operator Node -Logical
Operator

,

Operator Node - Join
_ Operator

, ".,.,...-
.... \ ' .,"" " I,."

, \ I ""~ , \ I,.
" \ I,."
Data Nodes with local

views- merged Projection
and Selection operators

FIGURE 8.3: A typical query tree

116

selection operation. In this case, rather than describing selection and projection as a

separate operator, merger of the two nodes is allowed and the resultant node has modified

labels to reflect the merger of the two nodes. The resultant node is still considered to

be a data node, though its tuple output is superseded by the local view, constructed on

the basis of selection or projection.

Considering that the scope of stream operators is limited to the select, project, join,

and logical operations. A query tree for this restricted set of operations has leaf nodes

represented by the local views that are described as by transformation of the stream and

the select project operators, while the non-leaf nodes represent the join and the logical

operators. A transformed query tree is shown in figure 8.4.

A logical query plan forms the basis for generation of the physical query execution plan.

At this point, it may be pointed out that the optimisation of a query plan is a continual

process throughout the lifetime of the query. As an example, consider a simple graph

that involves a join operation between two streams. The output of the join operation

acts as the input to its parent operator. Figure 8.5 represents the logical plan and the

possible physical plans. Edges of similar colour are dependent, and can only exist in

pairs. The graph represents three possible locations of the join operator. The operator

can be collocated with either of the tuples or at the parent node of the join operator.

The figure represents three feasible plans that ensure that the output tuple of the logical

Chapter 8 Query Optimisation

Figure: A Directed Graph
for a tree query after view

reduction

__ Operator Node -

Logical Operator

Operator Node -
,JJ;iin Operator

.,,-­, ~~

I ~

Operator Node

".."

I "'~
1',. ,.

Data Nodes

FIGURE 8.4: A t~'pical query plan

117

plan remains unaflected, due to the selection of either of the physical plans. In addition

to the operator semantics, the choice of either of the plans will in turn depend on the

objective function of the query evaluation, the rate of data arrival at the tuples and the

rate of data that need to be transferred between the tuples.

8.4.2 Query re-optimisation

The above subsection restricted the discussion to a most primitive query tree. This

subsection uses induction to prove that the same result can be applied to the entire

query graph. This subsection steps through the algorithm as per our discussions in

previous section and begins \vith the tree query example. Figure 8.4 shows a logical

query plan generated by the query parser. It use a physical transformation to generate

a list of access plans for the query tree. The hints in the query specification are used as

a policy to improve the responsiveness of the query executor.

The algorithm uses a depth first search technique to identify the operator at the highest

level. The local optimisation problem is solved in accordance with the process described

in the previous subsection. A virtual node replaces the sub graph in the parent graph

and the attributes and subsequent labels are calculated for the virtual nodes. Each

virtual node in turn acts as a virtual data node to the higher levels, as the tree is

Chapter 8 Quer,v Optimisation 118

gradually reduced by successive application of sparsification (Eppstein, Galil, Italiano,

and Nissenzweig 1997), During sparsification, at each stage, the tree is further optimized

for performance characteristics. The type of transformations applicable after each

reduction are discussed in subsection 8.4.2 and 8.4.2.2. The technique of sparsification

produces a number of nested certificates that can then be nlOnitored individually to

determine the extent of the re-organisation required in response to change in the dynamic

behaviour of the operators. The aim of introducing a tree of sparse certificate is to

reduce the amount of reorganisation that may be required in response to bursts of data

streams. \Vhen the data rate at an operator changes, the operator invokes a certificate

recalculation. In response, the local optimal is recalculated and the request is propagated

higher in the sparse tree. The propagation of the sparse certificate is terminated if the

change in the lower level certificates does not result in significant changes at the higher

level of the query tree.

Though the above reduction was discussed in the context of operators capable of processing

two streams, the approach is equally applicable to multiple join operators. ':\1-Join and

Eddy are two such operators for join operations on multiple streams. There are two

ways to incorporate the join operatoI', either in the logical query plan or during the

reduction of the physical query plan. Introduction of a multiple join operator in the

query plan increases the combination of the query plans applicable in the reduction. A

plan diagram for one such case of 3 way join is represented in Figure 8.5 below, As in

the case of the two way join operator, reduction of the multiple join operator results in

a single virtual node in the reduced graph.

The selection of a multiple join operator in a physical query will be equivalent to selecting

query plan 3, as represented in Figure 8.5A. A physical plan based reduction makes use

of statistical information to estimate whether there is an effective advantage of using the

multiple join operatoI', Query plan 3 is selected when the join selectivity is greater that

unity. However, in certain cases, where a multiple join operator may exist, an optimum

choice is to select query plan 3 irrespective of the join selectivity. If operator selectivity is

lower than unity, the choice of either Plan 1 or Plan 2 reduces the overall flow. However,

when the certificate is calculated, the overall memory requirements and the delay are

bound to increase. 'While an increase in memory requirements is attributed to the fact

that a queue is maintained at two different operator locations, the introduction of an

additional processing element increases the overall delay of processing the query. The

trade-off with the cost is the determining factor for selection of a multiple join operator

or a two-way join operatoI', Subsequent to the selection of a operator, the sub-tree is

subjected to flow optimisation within the sub-tree.

Recursive application of the sparsification based algorithm leads to the formation of a

physical access plan, At this point, some properties of the logical and physical plan

are highlighted. In both the logical and the physical plan, the edges are directional.

In a logical plan, the edges are from a child point to a parent node, and there are no

Chapter 8 Query Optimisation

.I

I
I

(a) Simple Query without reductions

(a) Simple Query with multi join operator

-.-. Physical Routing Plan-1 ,
Operator located at A

Physical Routing Plan-2,
Operator located at B

Physical Routing Plan-3,
Operator located at parent

node

Figure: A simple reduction

Virtual node - after
reductions

,

(b) Simple Query after first simple reduction

Virtual node - after
reductions

(b) Reduced Query after first simple reduction

FIGURE 8_5: Reductions for different query types_

119

Chapter 8 Query Optimisation

O/P to other systems

Shared Query
--- Sub-Expression

FIGURE 8.6: A typical operator flow generated by the planning algorithm.

120

edges from the parent node to the child node. However, in a physical plan, the edge

direction is not restricted. A directed edge can connect a node to its parent node or to

its sibling at the same level. While in a logical plan all the edges are static, the edges

in the physical plan are dynamic and are interdependent . Unlike the pure dynamic

graph, where all the edges can coexist , the edges in the physical query plan are related

by the principle of mutual exclusion. In the above figure, only one of the three sets of

plans can be selected. This implies that, if a dynamic graph structure is maintained

to represent the above scenario, the graph algorithms should be able to support insert ,

update and delete operations for multiple edges. The dependency between the edges

necessitates modifications to a dynamic graph MST maintenance algorithm to allow

conditional selection of the nodes as the edges are considered.

Chapter 8 Query Optimisation 121

8.4.2.1 A special case of n-way join

The previous section described the algorithm that generates an initial plan for enacting

the query. Execution of a physical plan involves translation into sub-queries on individual

streams and appropriate allocation of the operators. This sub-section assumes the

existence of a physical plan for a simple logical query and discusses the process of

re-optimisation of query. Consider the following figure, which represents the join between

three streams. Figure 8.5 shows the initial location of the operators, their selectivity

estimates and the rate of arrival of data. It is assumed that the operators are located at

nodes A and C. It is also assumed that the plan was generated under the conditions that

[rateB < rateA] and that [rate(AB) < rateC]. Consider that at some time instance

[rate(AB) > rateC] is consistently true. Hence the flow diagram for the certificate at

level 1 is represented in Figure 8.5. As a result of the change in the characteristics of

stream C, plan 2 is considered to be a better option at level-I, which means that the

flow of data into the virtual node is considered optimal. The level 1 is thus optimized

to select plan 2, with a request to recalculate the stream at level O. The re-organisation

rneans that level 1 requests the operator to be placed at one of the stream locations at

levelO. If node A supports a multi-join operator, the node merges the join operation, or

else the flow from the two streams Band C is directed to stream A. At some time step

after the reorganisation, assume that the [rateA < rateB] condition materializes. The

change will result in reorganisation at level 0 and may require shifting of both the level

o operator and the virtual operator to node B.

8.4.2.2 Reductions for chain query

In all the above examples being considered a simple query tree that involved a join on

a single join attribute and in which the query tree structure allowed easy selection of

the sub-tree for sparsification. In the special case of chain query, also known as the

pipelined query selection of a sparse is not as straightforward. In a chain query, each of

the data streams can be simultaneously part of two sparse certificates. As each stream

is the subject of selection in calculation of either of the sparse certificates, the reduction

technique is modified to represent this specific case. Figure 8.7 is a representation of the

reduction for such a specific case. The algorithm starts the reduction from one of the

end nodes of the chain query. In general the following reduction can be applied to any

case where a data node has more than one parent node and where the tuple join criteria

for the two edges of the node are dissimilar. As one of the input tuple forms a part of

more than one data operator the reduction process involves a combinatorial operation

involving a mutually exclusive set of nodes. As shown in figure 8.7, the operator edges

are distinguished into two edge groups, with only one of them being able to form a part

of the final physical plan. The initial certificates were created using a similar process

as described above. The first step in reduction involves the calculation of the probable

Chapter 8 Query Optimisation

(A \ B i C I

Partial view of a Chain query

Virtual node - C and B

Virtual node - A and B

Figure: Chain Query- simple reduction for a 3
elements in a chain

Note: The figure depicts two mutually exclusive
physical plans

FIGURE 8.7: Reductions for chain query.

122

certificates with the two mutually exclusive sub-graphs. The reduction aids in comparing

the relative merit of either of the two combinations and leads to the selection of one of

the two candidate solutions. On selection, a second step of reduction, one similar to

the adaptive simple query reduction as described above, generates a physical plan for

directed flow between the streams. The process can then be recursively applied to the

chain of queries.

8.5 Application to distributed DSMS

The above mentioned query planning techniques can be applied in the context of both

centralized and distributed data management systems, for the following reasons:

Using sparse certificates allows partitioning of the query plan Each operator sees

either a data node or a virtual node. A certificate represents the characteristics of

the virtual node and shields the operator from the underlying complexity. These

certificates can also be used as partitioning points, thereby allowing the certificates

to be hosted on different machines in a distributed setting. The partitions allow

independent modifications to the subtree of the query plan owned by each of the

certificates.

Incorporation of the monitoring parameters without modifications The monitoring

mechanism does not assume any processing architecture for any of the data processing

nodes. Operator and architecture independence allows the use of the algorithm in

a heterogeneous data management system.

Chapter 8 Query Optimisation

Feed A

Query O/P

Feed B

Stream C

Feed C

Feed 0

FIGURE 8.8: Sparsification based query planning applied to distributed query planning
system.

123

Stream properties are exploited to create overlays The common sub-expressions

represented by the certificates can be advertised for consumption by other nodes in

the system. Use of certificates enables potential sharing of sub-expression between

numerous data management systems in a distributed DSMS, as depicted in the

figure 8.8 .

8.5.1 Selection operator

The above specification allows the system to prioritize the order of query processing. For

the purpose of clarity, it is assumed that a join over multiple streams can be scheduled

with the same scheduling policy across all relevant databases.

On arrival, each query is added to the stack of queries valid for the current scheme.

All the queries on the stream can be reduced to a selection, projection or self-join

operation. In case of queries across streams, the query is broken down into one of

the above sub-query types for ease of evaluation. The range of queries are stored in

a predicate tree. On the occurrence of an evaluation event, the value is compared

against that held in the predicate tree to calculate the range of the queries affected. The

affected queries are notified of the data arrival and the resultant dataset after the query

evaluation has been maintained by a bit-array. A termination of the query results in

removal of the row, while invalidation of the data results in column elimination. The

results are shipped in accordance with the operator scheduling and are maintained in a

separate result structure. In certain cases the evaluation of the query may not be able

to be able to cope with the amount of data that arrives in a particular stream, thereby

necessitating that certain data items go unprocessed. A number of such techniques for

selective probing of the incoming data have been suggested. The data is sampled in

accordance with the sampling criteria, dominated by the distribution of the variable

being sampled. However, in this study the sampling is not enforced and the tuples are

not eliminated unless the query processor explicitly enforces the policy.

Chapter 8 Query Optimisation 124

8.5.1.1 Data structure associated with the operator

In a regular database each of the query is processed individually and the selection of

multiple attributes of the same tuple can be performed simultaneously. It is definitely

possible to process the queries on a stream in sequential fashion. However, that would

lead to increased cost, and may lead to significant memory overheads if the tuple

arrival rate is too frequent as compared to the processing rate of the operator. A

partial reduction in processing time can be achieved by maintaining predicate trees to

manage the 'range queries'. The approach adopted provides considerable improvements

in performance of queries when a single variable is considered. However, the predicate

trees cannot be used to manage the 'range queries' for multiple predicates and a separate

tree is maintained for each of the query attributes for a query involving a selection for

multiple predicates. The probe selection can thus perform the search on each of the

predicate trees to ascertain the queries that are satisfied by the appended tuples.

In most cases, the total number of attributes in a tuple normally exceeds those used

as selection attributes across queries. Maintaining a separate predicate tree for each of

the tuple attributes is not a viable option. The predicate tree for a particular attribute

is created if and only if there exists at least one query that specifies the tuple in its

selection criterion. To facilitate the mapping of queries with nmltiple attributes and to

minimize the number of accesses required to predicate trees, a data structure is used that

maintains the relationship between the queries and also prioritizes the order of attribute

based selection.

The manipulations on the above data structure are described for the arrival of data and

the queuing/removal of queries. \Vhen a query is queued with the probe, it is analyzed

to represent the list of AKD OR and NOT operators. For each logical AKD expression

in the query a row is inserted in the data structure and the process is repeated for

the blocks connected by a logical OR operation. The rows in the data structure are

sorted by the query ID. The attributes that need to be accessed to evaluate the query

are set in the bit array, and the predicate tree of the attributes is appended to capture

the relationship between the query and the attribute value. The attribute count (the

k-value) is incremented for the attributes affected by the query. On removal of the query,

all the rows corresponding to the query identifier are removed from the data structure.

On arrival of the data, the incoming tuple is loaded into the select operator, with the

attribute k-value. The predicate tree of the attribute is accessed to ascertain the list

of successful queries. For each query that is not satisfied the attribute condition is

removed from the query list by reducing the data structure with respect to the list of

queries returned by the index predicate search. The reduction only effects the queries

that had the bit mask set for the query attribute being evaluated. The reduction does not

eliminate the queries that are not dependent on the attribute. Successive reductions are

carried out using a similar method, until no more queries remain or no more attributes

Chapter 8 Query Optimisation 125

Q1

Q5

<

< Q1. Q3 <=

<= Q4 Q2

>=

>= >

>

R.a (ka=6) R.b (kb=O) R.c (kc =4) R.d (kd=6) R.e (ke=3)

1 0 1 1 1 Q1

0 0 1 0 0 Q1

1 0 0 1 1 Q2

1 0 1 1 0 Q5

0 0 0 0 0 Q6

1 0 0 1 0 Q4

0 0 0 0 0 Q3

1 0 0 1 0 Q7

1 0 1 1 1 Q8

FIGURE 8.9: Selection with modified IBS Tree

with predicate trees are detected. The final reduction set refers to the queries that are

satisfied by the incoming data tuple. Creating this type of probe structure allows the

system to express any query and join as a composition of the probes on multiple tuples.

The reduction technique uses the attribute with the highest k-value to achieve maximum

reduction in the early stages of processing.

Chapter 8 Query Optimisation 126

8.5.2 Algorithms for select and project operators

The probe sets the bit flags for the tuples that are selected by a query. On occurrence

of the evaluation event, the data items are selected from the stream and the data is sent

to the selected into the output array. The cost of selection and projection is bounded

by the following cost equations. Let R be the tuple with attributes Ri , in this particular

example R<a,b,c,d,e,f>. Associated with each tuple is a list of queries that are stored

in QL. Each query has a range constraint on a number of attributes of R The query

may have a number of combinatorial constraints on the same tuple, which are converted

to AND, OR and ~OT logical operators.

The following algorithm is used to process the queries on the

On Query queuing

This method is invoked when the query is added to a stream.

1. Add the query to the data structure.

2. IVlodify the k-values of the attributes aflected by the query.

3. Update the query predicate trees for each of the affected attribute.

4. Modify the result data structure to add the query to the bit array.

On Query remove

This method is invoked on removal of the query from the stream.

1. I'vlodify the result bit array structure to remove the column representing the query.

2. :Modify the query data structure and remove all the rows for the query.

3. Modify the k-values of the attributes in the query data structure and destroy the

predicate tree, if the count is zero.

4. Modify the predicate trees to remove the query entries and prune the tree.

On Data process

This method is invoked to process every incoming data tuple, with the result that the

data structure is modified to reflect selection of the tuple.

1. Select the attribute with highest k-value.

Chapter 8 Quer.\' Optimisation 127

2. "While the query map is not null, perform reductions

Use the attribute value to obtain the list of affected queries.

Perform reduction of the query list.

If query list is exhausted, then terminate the processing, the row will not

appear in the result bit array.

Select the next attribute with the highest k-value.

3. Append the result bit array for all the queries existent in the query list.

8.5.2.1 Cost of processing the query with this probe

Only the computational and memory costs need to be considered, as all the data

structures and stream are considered to reside locally. Assuming that all the data is

maintained in the main memory, the I/O costs will be of negligible significance, and the

entire complexity of processing will be due to computational complexity.

Consider that the queries are processed sequentially without any attribute based reduction.

The cost of processing a single tuple for all the queries can be given by:

Summation (log(n) * no. of attributes accessed) for all the queries. = k*q*log(n)

Considering the reduction based technique the cost of processing the query can be given

as

Summation(log(n) * no. of queries remaining) for number of iterations < k*q*log(n).

The overall complexity in both cases is of the form nlogn, but in the latter case the

reduction leads to lower complexity; the worst-case complexity may be equal to the

complexity of the first case.

8.5.3 Multi-way join operator

:'1ulti-way join operators provide increased memory utilisation by eliminating the need

to maintain intermediate results, and may also reduce the computational costs in the

case of non-blocking data stream processing. A multi-way join operator processes the

incoming data items on individual streams. As illustrated in section 8.2.4, a stream

operator can schedule the order of routing the tuples through the individual joins, in

order to reduce memory and computational costs. The cumulative memory utilisation

of the query being processed by the multi-way join operator is given by the equation:

n ISil
rnernoryutilisation(Q) = L L Sj6j

i=O j=O
(8.5)

Chapter 8 Query Optimisation 128

where Q is the query represented by the join operator, and the streams are represented

by the set S. In addition to the memory utilisation of the incoming streams the Multi-way

join operator may also exhibit some additional memory utilisation, due to the caching of

the intermediate state and results. The previous sub-section illustrated a sparsification

and iterative dynamic programming based approach to determine the next feasible

minimal state for query evaluation, which is extended here.

Consider a query Q that represents a multi-way join between streams S. Assuming that

there are no intermediate states, then each tuple arriving at any of the streams needs to

be routed through 151- 1 other streams. Let us represent the route of each of the tuples

arriving at stream Si with a directed graph Gi . As G i is the ordered graph representing

tuple routing and as there exists no parallel execution, the graph Gi is acyclic, and each

node in the graph has at most one incoming and at most one outgoing edge. The nodes

in the graph are ordered to minimize the flow of number of tuples at each hop in G i . The

ordering of the nodes in G;, each ordered graph Gi is selected on the basis of selectivity

estimates. Si is by default the first node of graph Gi . The second node is chosen from

a list of the nodes (151 - 1), the third is chosen from the list of (151 2), and so on.

The objective function used to iteratively select these nodes in graph Gi is given by the

formula:

O"(N) = minnodes(ISI-j)atstage(j+l) {O"(lsl-j)} (8.6)

Here N represents the next node to be added to graph G;, and the process is repeated

for (151 1) times.

Let G represent the union of all graphs G i , such that G = {G1 ,G2,G3 , ... ,G;} and

151 = IGI· Graph G is a directed graph with iGI directed spanning trees. The limitation

of the previous join operator was that only one tuple could be allowed to advance its

scan in order to maintain the consistency of the ripple join operation. Using this graph

formulation could introduce concurrent execution of various scans by selectively locking

the routing paths.

Consider that query Q selects a scan on item Si. As the scan is on stream lSi I locks

the tree rooted at stream Si. The multi-way join operator selects a list of alternate

streams that need to be scanned at the completion of the current routing path. All such

candidate streams are queued for execution. For the join operations in progress, the

streams are routed through the path represented by the spanning tree. As the items are

routed from node Ni to node N j , such that ei,j exists in G i , the lock on the node Ni is

released. Thus the candidate node Ni is available for the scan of its tuples and advances

in its direction are permitted. Selection of this second node allows it to lock the other

nodes in accordance with its query graph Gi.

Chapter 8 Query Optimisation 129

8.5.4 Operator scheduling

Query processing for streams is represented as a set of graph flows, which represents the

order in which the data from the streams is processed. The last sub-section introduced

a mechanism for concurrent execution of scans from multiple streams. However, the

data items should not be considered as individual tnples processed on arrival; instead

they are considered as blocks of tuples processed as blocks of memory units. The block

size and ordering of the stream scan are selected in order to red uce cumulative memory

utilisation. Here it may be pointed out that the memory utilisation of the stream is not

dependent on the execution of the simple query, but is intertwined with the operations

of the other query. Operator scheduling has two distinct objectives - first, to reduce the

cost of individual query evaluation and secondly, to dynamically arrange the ordering

so that the global costs introduced on the data items are also minimized.

A number of strategies can be adopted in ordering the scans on the streams of an

individual query. The approach of cost based reduction is investigated. The memory

utilisation of a particular query Q was described in equation 12.5. Assume that the

query processor can evaluate the tuples that occupy size ::\lI. The reduction achieved in

the complexity of the query is as follows:

n-l 15,1 IS" I
memoryutilisation(Q) = L L Sj6j + L Sj6j (8.7)

'i=O j=O j=O

The scan on Sn should be maximized in order to reduce the overall memory utilisation

of the query. The objective function in that case is given by

15,,1
F = Max{LSj6j}

j=O
(8.8)

In cases where the query manages to process all the data items pending in the stream

the resultant memory utilisation is given by

n-llSil
memoryutilisation(Q) = L L Sj6j

i=O j=O

while in cases where partial processing has occurred, the resultant is given by

n-llSil ISn11

memoryutilisation(Q) = L L Sj6j + L SjOj
i=O j=O j=O

(8.9)

(8.10)

where (n1 < n). The formulation presented in equation 8.8 represents the objective

function of the operator scheduler. Adoption of the cost based scheduling strategy

usually is liable to the starvation effect. However in this study, the objective function

Chapter 8 Query Optimisation 130

has a temporal component, due to which the resultant costs increase ·with the passage

of time, there by necessitating the evaluation of all the streal11.s and eliminating any

chances of starvation.

Here it should be pointed out that temporal costs of query evaluation are liable to

occur in the streams that experience arrival of new data items and in the ,,,rindmvs that

roll-over the data. The temporal costs are inapplicable to data items once they have

been processed. Thus, streams with lower data rates as well as static tables do not incur

additional costs for retaining the data items collected as a result of the previous scans.

lVlultiple queries share the cost of maintaining the data in the stream. This cost of

data items is shared between multiple data queries. As the scope of the queries is

limited to the scope of the window, a window moment may invalidate the requirement

of maintaining certain data items within the stream. A resultant window moment results

in spreading the cost of the data item between the remaining queries. Such a resource

management feature is required to allow variable cost mechanisms for various window

mechanism. The actual cost function can be adjusted in accordance with the memory

management policy. The policy will affect the way in which queries are evaluated. Thus,

if considered, an equi-cost representation for evaluation of the memory costs, it can be

proven that the landmark window functions are penalized as compared to the sliding

window or the clamped window functions. The aim in that case is to reduce the cost of

the query function; thereby, certain queries ,,,ill receive higher prominence in the order

of processing. The effects of operator scheduling and related effects on cumulative query

processing are studied in section 9.2.

8.5.5 Statistical information collected

To determine the appropriate ordering of data operators, and prioritize the queries, a

DSMS maintains statistical information about the intermediate data items. To assure

the extensibility of the statistical monitoring environment, it is required that the monitoring

of the data operators is independent of operator characteristics, an objective achieved

by the use of a black box model to denote operators.

The model collects fine grained information on the flow and size of tuples, as they happen

to govern the amount of memory required at each operator. It inferences meta-level delay

information based on tuple and flow characteristics. The flow information can also be

used to infer selectivity information on the historic data flows observed by the operator.

In addition, the instrumentation monitors resource sharing between multiple queries,

being enabled by the operator.

The following tables provide details about the statistical information collected.

Chapter 8 Query Optimisation 131

TABLE 8.1: Stream Querv Processing - Tuple and Stream Instrumentation Details
Parameter 1'\ ame Symbol Cardinality Description

Arrival time To Data tuple A timestamp to capture time on arrival
Selection time Ts Data tuple A timestamp for the tuple after it has been

processed.
Shipping time Tsh Data tuple A timestamp to indicate when a tuple was

shipped to the next operator.
Arrival rate Sa Stream Number of tuples arriving per second.

Maximum cache size Ma Stream Average memory requirements for storing the
data in the stream.

Local views NL Stream Total number of select/project queries being
supported by the probe on the stream.

Scheduling Sc Stream Type of operator scheduling at the stream.
\\lindow type Hft Stream Used to specify the semantics of the window.

Tuple structure Ts Stream Used to specify the schema of the stream.
Tuple size T s?, Stream Size of a row in the stream.

TA.BLE 8 2' Stream query processing - Operator instrumentation details
Parameter 1'\ ame Symbol

Input tuples

Output tuples Qto

Input tuple size hs

Output tuple size OTS
Input tuple rate hR

Output tuple rate OTR

Cache size Qo

Selectivity So

8.6 Example

Cardinality
Per input @ node

Per output @ node

Operator

Operator
Per input @ node

Per output @ node

Operator

Operator

Description
The num.ber of tuples that have
arrived since the last landmark.
The number of tuples that have been
transferred from the last landmark.
The con1.bined size of all the input
tuples.
The size of the output tuple.
The rate at which the tuples have
arrived in at each of the inputs.
The rate at which the output tuples
have been collected from the operator.
The cache available at the operator
location.
The selectivity of the query
operator,calc:ulated as the (no. of
output tuples) / (Cartesian product
of input tuples) .

A schematic representation in the following section uses an example to describe various

optimisation scenarios encountered during the query processing in DSMS. The previous

section introduced an IBS-SP J operator, which provides range predicate sharing between

multiple queries. This section describes the multiple query optimisation using pipelined

join operators and IBS-SP J operators. A modified join operator is represented in figure

8.10. The non-blocking join operator is augmented with statistical capability, ability

to register its intermediate results as temporary streams, tuple dropping and sparse

Chapter 8 Query Optimisation 132

TABLE 8.3: Parameter description and svmbols
Parameter name Symbol Cardinality description
Tuple structure Ts Edge The structure of the tuple that is being

transferred over the link.
Tuple size Tsi Edge The size of a single tuple that IS being

transported through the edge.
Flow rate Fz Edge The rate at which the tuples are being

transported.
Edge group Id Edge The group of edges that need to be

simultaneously inserted or deleted fi'om the

Source (A) Source (B)

solution graph.

Intermediate Schema, Operator
Statistics and Sparse Certificate

-- -}.---

Memory Buffer and Tuple Droping

Join Result

Hash Table A Hash Table B

(2) Hash (A) (1) Probe (A)
: (2) Hash (B)

(1) Probe (B)

Hash (A) Hash (B)

----!--

Source (A) Source (B)

FIGURE 8.10: A pipelined symmetric hash join with monitoring information

certificate capability. The certificates specify the goals for each of the operators and

are usually allocated by the parent operators to their child operators. The result of

the join operators on multiple input streams is a single output stream, registered as an

intermediary table for continual optimisation in conjunction with logical plans.

For this example, consider the case of the following three queries:

Chapter 8 Qtler:\" Optimisation 133

TABLE 8.4: Stream query processing - example queries
Query 1 (Q1) Select * from A, B, C, D ,,,here A.a = B.b AND B.b = C.c

AND C.c = D.d AND A.a = 10 AND B.b =20 [Window
Specifications l:

Query 2 (Q2) Select * £i'om A, B, C, E where A.a = B.b AND B.b = C.c
AND C.c = E.e AND A.a = 10 AND B.b = 20 AND E.e =
90 [Window Specifications]:

Query 3 (Q3) Select * from A, B, G, H where A.a = B.b AND B.b = G.g
AND G.g = H.h AND A.a = 50 AND B.b = 60 AND G.g =

60 AND H.h = 7 [\\lindow Specifications]:

Q1

FIGURE 8.11: Example Queries

The individual query plans for each of the queries is represented in figure 8.11. As

query Q1, Q2, Q3 are added to the system the logical plan is modified as depicted in

figures 8.12, 8.13 and 8.14. The self-referencing edges represent the range predicate

selections and are translated into expressions on IBS-SP J operators, while the edges

between the nodes are translated into join operators. An optimizer collocates a common

join operator for streams that share expressions and have similar consumption rates

and window specifications. The execution plans that share operators are represented in

figures 8.15 and 8.16, while figure 8.17 represents the case where the execution engine

partitions the resources so that a different quality of services can be met.

FIGURE 8.12: Logical plan for a single query.

Chapter 8 Query Optimisation 134

FIGURE 8.13: Logical plan for a tv,'O queries.

FIGURE 8.14: Shared logical plan for three queries.

8.7 Summary

Query optimizing in data streaming systems has been the focus of many recent projects,

for example, StreamDB (Arasu, Babcock, Babu, Datar, Ito, ~1otwani, Nishizawa, Srivastava,

Thomas, Varma, and \Vidom 2003), TelegraphCQ (Chandrasekaran, Cooper, Deshpande,

Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Reiss, and Shah 2003) and NaigaraCQ

(Chen, De\Vitt, Tian, and Wang 2000). Three distinct query optimisation techniques

have been proposed: first, a tuple routing approach used by Eddy (Avnur and Hellerstein

2000), secondly, a rate-based query optimizing technique (Viglas and Naughton 2002).

Thirdly, an operator ordering based query optimisation (Babcock, Babu, MotwanL

and Datar 2003). The above techniques adapt to stream characteristics and optimize

memory utilisation by reducing the state information maintained at each stage of query

processing. However, the above techniques have limited applicability due to the following

reasons:

Limited context - single query All of the above techniques attempt to minimize

resource utilisation in the context of a single query. Optimizing the queries

individually does not guarantee the optimal strategy for the DSMS, which typically

Chapter 8 Query Optimisation

ISS(A)
K=1

ISS(E)
K=1

ISS(A)
K=1

ISS(B)
1<=1

01

ISS(C)
K=O

FIGURE 8.15: Execution plan for a single query.

02

ISS(S)

K=1

01

ISS (e)
K=O

FIGURE 8.16: Execution plan for a two queries.

ISS(D)

K=O

ISS(D)

K=O

135

Chapter 8 Query Optimisation

Processing Block 1

03

IBS(H)
K=l

Shared Memory Cost Processing Block

Processing Block 2

02 01

FIGURE 8.17: Execution plan for three queries, with parallelisation.

136

executes multiple queries at any give time. Unlike the queries in traditional

databases the queries in stream databases happen to be continuous, and need

to be executed over a period of time.

One dimensional optimisation Query optimisations for DSMSs have focused exclusively

on either minimizing memory utilisation or improving the throughput of query

evaluations. However, query optimisation needs to be based on a cornplex Quality

of Service (QoS), based on memory utilisation, throughput and the computational

resources required for evaluation. Guaranteeing a complex QoS requires multivariate

optimisation an issue that has not been addressed so far.

The approach described in this chapter is the first approach to n1.Ultiple query optimisation

for DS:rVISs that overcomes both of the above-mentioned limitations. The sparsification

based technique described in this chapter is the first such query processing technique that

considers resource sharing between multiple queries. Resource sharing between multiple

queries is detected from the query semantics specified in PSQL 2. Resource sharing has

been extended to the query planning and query execution stages. It remains the only

known approach that tries to exploit the correlation between the memory utilisation,

computational resource utilisation and throughput. In addition, it is the only known

approach that considers re-optimisation of query plans as the integral part of query

processing in DSMS.

\Vhile this chapter concentrated on the theoretical aspects of query optimisation, the

more detailed implementation and practical aspects are discussed in the next chapter,

which also provides a detailed evaluation of the techniques described in this chapter.

2PSQL was developed specifically for identifying resource sharing between query definitions in DSMS.
(For details refer to Appendix C)

Chapter 9

DSMS - Implementation,

Evaluation and Analysis

This chapter describes the DSMS implementation and experiments carried out to evaluate

its performance. Section 9.1 describes the DSJVIS implementation which supports PSQL

(described in Appendix C) and implements the algorithms described in Chapter 8.

Section 9.2 describes the experirnents conducted to evaluate performance. A summary

of the findings can be found in section 9.3, which also summarizes the contribution to the

application domain and correlates the application level findings and overall hypothesis

from the Chapter 2

9.1 Impleluentation details

A DSMS was implemented for the sole purpose of evaluating the performance of the

algorithms described Chapter 8. A DSMS implementation could have been developed

as an extension to the open source relational database. For example TelegraphCQ

(Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy, Madden,

Reiss, and Shah 2003) extends the PostGres database system. An alternative ,vas to

develop a dedicated implementation of a DSMS. The following considerations influenced

the choice of the latter:

Support for streams Most relational database systems support standard containers

such as tables and views. These systems provide very little support for in-memory

representation of the containers such as streams. Temporary in-memory relational

tables present the most suitable data structure to represent streams. However,

most such implementations use secondary storage (or disk space) to swap table

space, which, as discussed in the previous chapter, is not recommended for the

manipulation of streams. Also, when temporary tables were used to capture the

137

Chapter 9 DS.MS - Implementation, Evaluation and Anal.rsis 138

sequence-like semantics of streams, additional processing costs were incurred in

removing the items from temporar? storage. Automatic removal of data tuples

is the significant difference between tables and streams. Data tuples in a stream

expire, if not processed within a bounded interval. Such temporal characteristics

are also observed b? relational operators, where the resultant tuples are assigned

a time-stamp derived from the time-stamps of the input tuples at an operator.

The significant difference in container properties entails modifications to access

mechanisms and memory management to support streams in a relational database

system.

Support for PSQL PSQL extends the SQL standards supported by most relational

database implementations. Incorporation of PSQL support 'will require modification

to the syntax and the semantic parsers of the relational database system. Incorporation

of PSQL is crucial in validating our tuple based resource sharing approach from

an end-to-end systems perspective. Also, PSQL introduces an important notion

of considering both table-spaces and streams as datasets, window operations and

scheduling characteristics. Verification of the capability of the PSQL in identifying

the similarity between the queries on streaming data was confirmed by a system

implementation.

Unique monitoring requirernents Uncertain data arrival patterns and variations in

data characteristics have a significant impact on the estimation capability of the

query processing system. Cost based query processing in stream data management

systems requires a capability to analyze and predict the behaviour of a time varying

dataset. Standard relational database systems do not provide such a monitoring

system. Any attempt to incorporate such a capability in a standard database

requires modifications to the query processing system.

Continual Query Optimisation A DSMS provides support for a continual query

execution, while most database systems provide support only for evaluating a

query instance. Optimal continual query evaluation requires support replanning

and changes to the physical query plan. Such changes require additional functional

capabilities to be incorporated into the query planning system.

As described above, implementing a DSMS using an existing relational data management

system requires significant modification to a wide range of system components. To

overcome this limitation, a new DSMS implementation was developed. The architecture

of the implementation is described in the following section.

9.1.1 Architecture

Figure 9.1 depicts the architecture ofthe DSMS implementation. The input to the DSMS

is composed of two different blocks the data definition block and the query processing

Chapter 9 DSM:S Implementation. Eyaluation and Analysis 139

block. The DDL (Data Definition Language) block deals with the creation, deletion

and modification of the data schemas and data containers. The Data ::'Iianipulation

Language (DML), which is also a part of the SQL specification, provides constructs for

manipulation of data in standard containers such as tables and adapters are associated

with the stream data containers. The implementation provisions data adapters for

consumption of data from Java ~1essaging Service (J~1S), socket based communication

and synthetic data generators, 'Nith the possibility for supporting additional adapters

for communication services such as COREA ~otification and HTTP communication

protocol. Only those data items that conform to the specified schema are accepted from

these incoming communication channels. Temporary storage is provided for staging

the data items, which are subsequently evaluated for a list of continuous queries. The

query processing block processes the query statements and appropriately determines the

physical and the logical query plans. The query plans determine the resource sharing

between multiple queries and are used to derive the schema and memory requirements of

the intermediate results. The query plans are used to determine the operator scheduling

for subsequent evaluation of the queries. Online statistics are maintained for the data

items encountered by the queries. Our implementation provides the possibility to collect

the semantics both before and after the actual query processing. The semantics allows

refinements of the estimates and the query plans derived from~ these estimates. The

output generated from the data streams also happens to be streams, and the resultant

data streams are propagated using the various communication channels specified by the

query semantics.

9.1.2 Illustration memory management and scheduling

As described in the previous sections a query statement is translated into a logical query

plan, which in turn is translated into a physical query plan. Figure illustrates one such

query graph that is formed by addition of multiple queries to the query graph. At the

bottom of the graph are the selection operators that provide tuple level resource sharing

between the query plans, while the output of the queries is obtained at the top of the

query plan. The intermediate graph is determined on the basis of the shared query sub

expressions. The cost of the shared subexpressions is shared between the queries that

share the expression. In simple terms, the cost of the subtree is shared by the queries

that receive the fan out from the subtree. The shared cost concept allows the operator

scheduling mechanism to determine the net effect of scheduling the chains of operations

within the graph.

Associated with the each node of the graph is the queue that retains the operator state.

Assuming the familiar case of the sliding windows, the state maintained at the base of

the graph is relatively static. However, efficiency of query evaluation depends on the

ability of the scheduler to allocate an appropriate amount of memory at each of the

Chapter 9 DSMS - Implementation, Evaluation and Analysis

Command
Interface

liP Communication Channels (JMS, Socket,

CORBA·Notification, HTTP)

Communication
Adapters

I
Storage Managers

and Statistical

Stream Query
Processor

Statistical Feedback

O/P Communication Channel (JMS, Socket,
CORBA·Notification, HTTP)

FIGURE 9.1: Block diagram: Query Processing Engine (QPE)

140

sub expression queues. The mechanism was described in the previous chapter and the

evaluation of the same can be found in the following section.

9.2 Experiments

The experimental evaluation of DSMS presented in this section covers important individual

components and proceeds to provide the evaluation of the complete DSMS. The evaluation

focuses on the IBS-SPJ operator, the memory evaluation, and the operator scheduling.

These experimental evaluations were conducted using a synthetic data workload, details

of which (schemas and their distribution) can be found in Appendix C.

9.2.1 Select project operator analysis

Select project operators belong to the group of stateless operators which do not maintain

any state information to evaluate the query expression. Hence, unlike join operators,

these operators remain unaffected by the use of different window types. The schema used

for evaluating the data operator is presented in the following Table 9. L It evaluates

Chapter 9 DS!l.1S - Implementation, Evaluation and A.nal.1,'sis 141

Schema of the Stream:
Create Stream IT (ID INT, ;\ame CHAR(200),

PanKo INT, Income REAL, Ideal INT):
Depth of IBS filter tree

Number of Tuples k=l k=3 k=5 k=7 k=8 k=9 k = 11
10000 65.5 27.4 21.866 16.8 13.76 12.566 9.3571
20000 112.6 67.1 43.233 35.175 28.76 25.733 22.771
30000 170.1 93.05 69.233 53.9 40.02 37.5 34.142
40000 223.4 133.6 89.1 72.3 56.22 48.466 45.328
50000 293.8 157 108.833 85.925 67.18 63.016 55.157
60000 334.5 186.75 134.4 107.375 81.88 73.15 66.7
70000 389 222.65 152.6 123.1 94.66 87.516 81.271
80000 448.5 253.1 183.866 142.175 110.96 98.166 87.057
90000 517.3 279.7 200.5 155.075 123.12 110.65 102.242

TABLE 9.1: Performance data of an IBS based SPJ operator

the performance of the operator as a number of queries are added to the operator.

The queries are either conjunctive or disjunctive or predicate range expressions. The

expressions are evaluated for an increasing number of tuples. The evaluation time for

the queries was averaged for 10 runs of the data with varying selectivity. Figure 9.2,

represents the query processing time for varying number of queries being simultaneously

evaluated by the operator. The query processing time increases linearly (see figure 9.3)

with the increase in the number of tuples being processed. However, the time per query

decreases as the number of queries increases. Hence, for a large number of queries the

cumulative gains obtained by the use of this operator increases linearly with an increase

of query expressions. Figure 9.3, which presents an alternative vie"w, highlights the fact

that the cumulative average processing time reduces due to the tuple sharing enabled

by the operator.

9.2.2 Query planning under variable data rates

Adaptive query processing allows the query evaluators to be able to adapt their resource

usage in response to changes in the data rates. The aim of these experiments is to

demonstrate the capability of the algorithm to detect, restructure and schedule the

query operators in response to variations in the data rates. The experiments compare

the algorithm against the cost-based non-adaptive query planning algorithm, to show

that it remains capable of adapting to variations in resource availability.

To evaluate the performance, a candidate query consisting of three streams and two

join operators is used to compare the performance of the query planning algorithms.

The selection and projections being stateless operators, they were not considered for

performance comparison. Performance is compared on the basis of cumulative memory

and processing requirements. Historical statistics maintained on the container were used

k = 13
9.187

19.525
30.262
39.85

49.8125
58.975
71.662

79.1125
90.2375

Chapter 9 DS1\IS Implementation, EWlluation and Anal,Ysis

"' "0
C
o
u
OJ

~
E

.S::
OJ
E
F
Ol
c

'en
"' OJ
U
o
0:

"' "0
c
0
u
OJ

~
-E
.S::
OJ
E
F
Ol
c

'en
"' OJ
u e
0..

600 r----,---------,----------r---------,----------,---------,----,

500

2

600

500

400

300

200

100

4 6 8

Number of Nodes in Predicate Tree

10

n=10000 ---­
n=20000 ------­
n=30000 -
n=40000 ------­
n=50000 --­
n=60000 •••••••
n=70000
n=80000 ,.,.,.,
n=90000 ---

12

FIGL'RE 9.2: Effect of the IBS on time complexity.

k=1 ---­
k=3 ------­
k=5 -
k=7 ------­
-8--

k=9 ---••••
k=11 ...•....
k=13 •.•.•.•

o L_ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ______ L_ ____ ~ ____ _L ____ ~

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of Tuples Processed

FIGL'RE 9.3: SPJ individual query performance.

142

Chapter 9 DS2\IS - Implementation, Emluation and Analysis 143

to construct the static query plan, which was used to evaluate the continuous query to

its completion. The performance was compared against the dynamic query planning

algorithm. To provide a fair comparison between the planning algorithms a round robin

operator scheduling policy was used to execute the query. Figure 9.5 illustrates the use

of the algorithm for two categories of change in the stream data processing: variations

in the data rate and variations in the selectivity of the join operators. Synthetic data

sets and streams ",vere used to simulate the behaviour of the algorithm.

Figures ?? illustrate the cumulative memory and computational resource usage in case

of variations in data rate. The data arrival rates at stream.s A,RC are given in the

following figure 9.4. Stream A is a blocking/unblocking stream, with data arriving at

constant speed for a fixed interval, while the data arrival rates at streams Band C

follow triangular and gaussian distributions respectively. In the absence of any known

benchmark for comparing the performance of the various stream processing systems,

these three patterns were arbitrarily selected from the stream characteristics observed

in real systems. A bounded number of tuples were used to perform the evaluation.

Considerable care was taken to evaluate the system exclusively in the main memory and

idle resources were provisioned so that the algorithm's performances are not effected by

the resource constraints imposed by the system.

Figure 9.5 shows the variation in the total queue sizes over time for the two algorithms.

It was observed that the static query planning algorithm incurs considerable penalties,

because of its inability to adapt to variations in the resource requirements of the data

streams, while the adaptive algorithm minimized the memory requirements of the query

processor.

Figure 9.6, shows the variation in throughput in the face of variations in the join

selectivity algorithm.

9.2.3 Operator scheduling analysis

This sub-section provides evaluation of the operator scheduling algorithm described

in the previous chapter. Evaluation of the algorithm is carried out in two scenarios:

operator scheduling for memory minimisation for a single query and Operator scheduling

for multiple queries. In case of the single query optimisation, a comparison is made

against FIFO, Greedy and Chain Strategy. Chain is excluded from comparison in

the case of multiple query processing, as chain scheduling for multiple queries remains

undefined.

As can be observed from the following figure the chain strategy and adaptive scheduling

algorithms outperform FIFO and greedy scheduling algorithms. As both chain and

adaptive scheduling rely on an information push mechanism, the performance comparison

highlights the adaptive scheduling algorithm's ability to allow concurrent evaluation of

Chapter 9 DS111S - Implementation, Evaluation and Analysis

c:;-
Ol

~
Ol
0.
" t::.

Cii
> .;::

.d:
'0
.2<
<1l

IT:

CD :.::
.S
"0
Ol
10
'-'

.Q
;;;:
C
0
E
Ol
:2

200 r-----------.------------.-----------.------------.-----------~

150

100

50

Stream A ---t­
Stream B ---x--­
Stream C···.,.···

o L---________ J--4 __ ~--~-+--+__+--4_~------------~----~--~_+

400

350

300

250

200

150

100

50

0

o 20000 40000 60000 80000 100000
Time (msec)

FIGCRE 9.4: Data arrival rates of various streams and sub streams.

0 20000 40000
Time (msec)

Static Plan (A,B,C) ---t­
Dynamic Plan (A,B,C) ---x---

,l\ , , , , , ,
// \,

x ____ i \,
, ' , ' , ' , ' , ' , ,

// \

60000 80000 100000

FIGURE 9.5: Memory requirements of various streams and sub streams.

144

Chapter 9 DSl'l,I[S - Implementation, E,raluation and Analysis

UJ
1:l
C
0

" Q)
<Jl

6
2
I
Q)

D-
=>
I-
m
0-
>-co
"iii
0

en
>
<{

40

35

30

25

20

15

10

5

0
0 20000 40000 60000

Execution Time (msec)

Static Plan (A,B,C) ----+-­
Dynamic Plan (A,B,C) ---x---

80000 100000

FIGURE 9.6: Delay Characteristics of various streams and sub streams.

145

parallel paths, unlike Chain, which allows data to be propagated through a direct chain

from leaf to root node of the query plan. Memory usage and computational resource

usage are depicted in the following graphs.

In the case of multiple queries, the FIFO and Greedy algorithms fail to optimize the

amount of state held in operators shared across multiple queries. This results in disproportionate

states being held at the operators. However, the adaptive scheduling algorithm adopts

a back filling strategy, which allows it to reduce memory utilisation by associating

dynamic bounds on computational resource usage. Figure 9.7 illustrates the memory and

computational performance of adaptive vis-a-vis FIFO and Greedy scheduling strategies.

9.3 Summary

A DSNIS systems consists of four distinct phases of processing: the logical query planning

phase, the physical query planning phase, the operator selection phase and the scheduling

phase, strictly in that order. An adaptive DSMS system can be constructed by incorporating

adaptive behaviour at any stage of processing. In such a scheme, the decision made

at the higher stages affects the decision made in subsequent phases. To date, two

distinct approaches have emerged in the field: a block-based query processing approach

advocated by Aurora (Carney, etintemel, Cherniack, Convey, Lee, Seidman, Stonebraker,

Tatbul, and Zdonik 2002) an a individual query optimisation approach advocated by

TelegraphCQ (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy,

Chapter 9 DSMS Implementation, Evaluation and Anal.rsis

iil
?!S
2:-
0
E
Q)
:;;

300r---------~-----------r----------,_----------r_--------_.

250

200

~

150 ~.* ",., r:;
0.'
¥ ,

.f;-.-
100)!l

i

50

0
0 20000

.
" <.

"

,
(,
~,

(,

I x---­
I·

//
/.

/1

40000 60000
Execution Time (msec)

Graph Scheduler --t­
Chain Scheduler ---)(--­
FIFO Scheduler,. ...

Greedy SCheduler --EJ--

" ,w

80000 100000

FIGURE 9.7: Comparative memory performance of scheduling strategies.

146

Madden, Reiss, and Shah 2003) and StreamDB (Arasu, Babcock, Babu, Datar, Ito,

Motwani, Nishizawa, Srivastava, Thomas, Varma, and \Vidom 2003). Aurora adopts the

multiple query processing approach of producing all the necessary tuple combinations

required by the queries and applies late filtering to produce the required tuples, while

the rest of the systems ignore the case of multiple query processing. While Aurora

does address the issue of multiple query processing, it does not incorporate the notion

of adapting the logical/physical plan in accordance with runtime query statistics. On

the other hand, systems like TelegraphCQ adopt the tuple routing strategies, which

introduces adaptive behaviour at planning and the operator level. For example, the

Eddy operator used in TelegraphCQ makes localized optimisation decisions. To date

our approach remains the only approach that tries to integrate the different phases

of adaptive behaviour in query processing systems. It is the only approach that allows

adaptive behaviour at the query level and can also impose global restrictions to optimize

query performance across the system.

The performance evaluation in this section showed that the use of a combined planning

and scheduling strategy results in a better performance than the approaches that adopt

independent planning and execution architecture.

9.3.1 Contributions

A number of novel techniques for developing DSMS were introduced in the previous

chapter, and their evaluation was presented above. The specific contribution of the

Chapter 9 DS111S - Implementatiol1, Evaluation and Analysis 147

above approach are:

1. The incorporation of multiple query optimisation approach for DS!'I1S, which allows

differential QOS to be supported for individual queries.

2. The incorporation of a novel query planning and operator scheduling algorithm.

3. The Proposal for PSQL to be used as a query language for stream systems.

Part V

Conclusions and Appendices

148

Chapter 10

Conclusions

10.1 Concluding relnarks

Dynamic aggregation of resources has become a common trend in an emerging class of

distributed systems> This thesis presented investigations related to adaptive resource

management for three exemplar applications> Based on the limited experiences of

these investigations, it is concluded that there exists at least two sub-categories of

adaptive systems in large scale distributed systems, provisioning systems and quality

management systems> A provisioning system retains a common policy throughout

execution; it uses resource augmentation to adapt to variations in operating conditions.

Scheduling systems and P2P systems (presented in the previous parts) fall under the

provisioning systems category. The stream query processing system is classified as

a quality management system. An important characteristic of quality management

systems is their ability to adapt their operational characteristics in response to the

operating environment. Not every aspect of these two classes of adaptive systems was

discussed, but a brief discussion of observations that apply to adaptive systems in general

is provided below.

It was observed that, unlike most distributed system properties, adaptive system behaviour

cannot be expressed without explicit incorporation ofthe temporal dimension. However,

the way the notion of time is captured may vary with respect to the system characteristics.

For example, our example of online scheduling uses a shifting finite horizon, while the

information dissemination example addresses the issue by using a continual representation

of time, and finally, the tuple structure in the DSMS example explicitly incorporates the

notion of time. The notion of time provides a convenient way to represent that the system

has moved from one optimal state to another. In retrospect, this was also observed in our

applications with a moving finite horizon in online scheduling, with optimisation cycles

in a dissemination scenario and with changes to query plan in DSMS indicating such

state transitions. From the observations made in developing these systems it is concluded

149

Chapter 10 Conclusions 150

that adaptive behaviour manifests itself in various different ways. However, in order to

achieve adaptive behaviour it remains crucial that systems are able to determine the

existence of a more optimal state and identify some means to transition to that state.

For example, the addition of time slots to a queue in online scheduling indicates that

additional resources are present, that current packing may soon become non-optimal,

and the system then attempts to optimise its objective function. Similar parallels can

be observed in the other two exemplars.

\Vhen a system becomes capable of identifying the transition to an optimal state with

respect to its current state, it can be augmented with a capability to explore the

transitions to these states of interest. \Vhile online scheduling provides a limited means

to explore this space, ample scenarios have been provided in the remaining exemplars.

In the cases studied, the state transition scenarios were translated into an optimisation

problem. For example, in information dissemination, "\Vhich neighbor to choose?"

represents the optimisation problem that was solved to provide adaptive behaviour in

a peer network. However, it was found that in some specific cases, adaptive behaviour

can be accomplished by exploring the search space, while in some other cases it can

be achieved by refining the search space. For example, a query processor could exhibit

adaptive behaviour by modifying either the logical plan, physical plan, operator behaviour

or schedule, exclusively by exploring the search space in each of these layers, or it could

refine the search space by accomplishing adaptive behaviour by optimisation across the

layers.

Our investigations into adaptive systems also highlighted their limitation in autonomic

management of resources. All our system prototypes required a set of policies that

defined their objective function and restrictions on their optimisation space. Whether

considering utilisation maximisation in online scheduling, search cost minimisation in

information dissemination or query optimisation in DSMS, these systems had a predefined

set of objective functions. Our future work on adaptive systems would be to design

systems that determine their objective function on the basis of operational characteristics

and policy statements. The interaction of policies with operational environment and the

verification of policies will be an important research aspect of such systems. It will

be interesting to see if these systems incorporate the notion of stability. The next few

sections present conclusions for each of the application types.

10.L1 Online scheduling

The investigations into computational resource aggregation systems are convincing in

that, unlike the resource reservation schemes, online scheduling schemes are bound

to dominate scheduling in the Grid environment. Low scheduling overheads, ability

to maintain autonomous control of resources and provide probabilistic guarantees on

resource utilisation are definite advantages of this approach. On the negative side, it is

Chapter 10 Conclusions 151

not clear how communication models between jobs will affect the scheduling of jobs. It

is bound to be the case that the incorporation of communication patterns 'will increase

the system's sensitivity to failures of resources and necessary redundancies will have to

be incorporated to increase the robustness of the system.

10.1.2 Information dissemination

The investigations into these system types reinforce the assumption that overlay networks

will be commonplace for describing the context for resources involved in adaptive resource

management. Adaptive overlays can be effectively used to incorporate the notion of

partial visibility of state information and to enforce localized policies. However, although

a graph theoretical approach is proposed to capture the dynamic behaviour of the

individual resources, it is the system dynamics and the choice of the objective function

that predominantly determine the suitability of the overlay structure. It was observed

that a mismatch between the structure of the overlay network and the objective function

leads to frequent reorganisation, leading inturn to an unstable system.

10.1.3 DSMS - Query processing

Data Stream Management Systems represent a unique class of application systems, which

highlight the case that, under limited resources, adaptive systems can be designed to

provide variable quality of service guarantees. In addition, the approach in this thesis

provides a query planning mechanism that has the unique capability of adapting to a

distributed system setting with no additional modifications. To date, this remains the

only approach to provide such a sophisticated level of control on resource utilisation

for such problems. However, with exclusive focus on adaptive query processing, the

approach fails to take into account the additional complexity introduced by schema

modifications in streams and differential QoS. It will be interesting to see how such

features can be incorporated into future editions of the system.

10.2 Future Work

The end of each part of the thesis indicated how had been extended the state of the art

in each of the application areas. A viable approach will be to continue to investigate the

issues in each of the application domains, while continuing to conceptualize a model to

capture adaptive behaviour in large scale systems. Although the above approach was

used during the investigations of this thesis, it has some limitations. At times, there was

insufficient overlap betvveen the application areas and the general theoretical approach.

As part of future work two separate areas of investigations are identified, which will

separate the theoretical aspects and the application aspects.

Chapter 10 Conclusions 152

The future plan is to investigate two research directions to address the above problem,

first, the theoretical modelling of adaptive behaviour in distributed systems. Although

a generic hypothesis has been presented in the thesis, formal specification to capture

the concept of adaptivity needs to be further refined. The current hypothesis remains

the proof of the concept of the initial investigations, but this will have to be further

validated to include models for policy driven adaptive behaviour. At the same time,

it will be required to equip the model with the notion of comparison between adaptive

behaviours. Such a feature will aid the classification and comparison of adaptive systems.

As pointed out in previous sections, the temporal dimension will necessarily be part of

any such model. At some point during the investigations, possible directions in the field

of time series representation or in semi Markov decision processes were considered, as

possible means to capture the temporal aspect in large scale distributed systems. This

seems to be an approach that requires further investigation.

Second, by considering the development of a distributed DS~1S, as mentioned in the

chapter 2 of this thesis, the emergence of sensor networks and content based ronting

systems has highlighted the need for DSMS combined with semantic overlay. Gryphon

(Strom et al. 1998) and Il\FO-Dissemination (Dialani, Gawlick, Madsen, Malaika, and

Mishra 2005) represent the emerging class of systems that perform in network processing

on structured and semi structured data. It will be interesting to see how the various

algorithms developed for this thesis can be combined to provide a distributed DS~1S

system capable of processing the data streams flowing between various nodes in the

overlay network. It is presumed that the semantic overlay technique developed in part

III of the thesis can be used to provide schema location and matching services. \Vhile the

query planning techniques described in part IV will be employed for distributed query

processing, the scheduling model can be employed to prioritize operator scheduling in

cases where multiple computing resources are available.

Appendix A

Appendix: Continuous Query

Semantics

Consider a query Q such that the join criterion is defined as Q = TI txl T2 txl T3 txl ... txl

Tkl representing a pipeline join between a set of tuples T = { TIl T 2, T3, ... ,Tk }.

Let QP represent all possible query plans for evaluation of the join operation, such that:

IQPI = (2 * k - 2)!j(k - 2)! (A.l)

Only an exhaustive search based optimisation technique "Vvill iterate through the entire

set of possible query plans; most other optimisation mechanisms will reduce the search

space to minimize the optimisation costs. An optimal plan, namely:

minimizes costs for given characteristics of T. However, any change in the characteristics

of T may result in Qe being a non-optimal solution. Selection of an alternative optimal

plan necessities a new search through the space.

The following is a list of probable reasons that may result in a given optimal query plan

being rendered non-optimal:

1. Each stream in a query plan represents a list of rows in its active window. The

addition of new rows, passage of time and other external events are likely to result

in change in the number of rmvs involved in a join operation. A change in the

number of rows participating in a join operation is reflected in the access plan cost

and operator costs.

2. The correlation between the join parameters may change with respect to time,

rendering previous selectivity estimates to be inaccurate.

153

Appendix A Appendix: Continllolls Query Semantics 154

3. A change in the arrival rate of the tuples at individual streams increases the

indexing and maintenance costs of the individual tuples.

Two possible alternatives for re-optimising the query plan include either optimising a

sub-plan from the original query plan or recreating the optimisation search space and

recalculating the solution. Chapter 8 proposed an approach for recalculating the new

optimal query plan from an existing query plan.

It is assumed that continuous queries are used to implement the DSMS and incremental

changes to the resultant result set are calculated on the basis of the following equation:

Here, 5Q represents the incremental tuples generated in response to the addition of

tuples 5T1 , to the stream T1 . The query semantics assume that the state maintained by

window operations on each of the streams is adequate to produce a semantically correct

answer, and that the window moments are synchronized across the streams.

Ideally, an output tuple should be generated when a tuple is appended to either of

the streams. SQL99 describes similar semantics for windul','ing functions. However,

the same semantics has not found acceptance in DSMS system.s. Overload conditions

and unordered tuple arrivals in DSMS systems led to the adoption of additional query

semantics.

Tuple Dropping Strategy Under overload conditions, the DSl'viS may not be able to

process the high volume of incoming tuples with acceptable delays. Such systems

adopt a tuple dropping strategy and hence the results during overload conditions

may not be semantically consistent.

Compensating Tuples Out of order arrival of tuples may lead to generation of an

inconsistent result set. As the result set cannot be corrected through re-evaluation,

some DS]\IS provide compensating tuples to rectify the resultant result set.

The above described semantics affect the ways in which the results are generated and

the optimisation strategies adopted by the stream management systems. The query

semantics were smmnarized to highlight the differences in DSl\1S implementations.

Appendix B

Appendix: Survey of Large Scale

Distributed Systems

This appendix presents a survey of the emerging class of large scale distributed systems.

It outlines the common trends observed in applications of these large scale distributed

computing infrastructures and explores the adaptive behaviour exhibited in them.

B.1 Examples of Large Scale Systems

The hypothesis is that the current trend in large scale computing systems is being

driven by two complementary advances, firstly, the notion of providing computing as

a utility, and secondly the notion of the pervasive nature of such an infrastructure.

The notion of providing computational and data services in the form of utilities has

been partly inspired by the success of the World Wide Web (WWW). WWW has

provided the impetus for exploring the sharing of various types of computational and

data resources across institutional boundaries (Foster and Kesselmann 1999; Foster,

Kesselman, Nick, and Tuecke 2002; Tsvetovat and Sycara 2000). It is a commonly held

belief that the advances in the field of web technologies, which have allowed asynchronous

content delivery, can be extended to provide integrated access to data resources and

computational resources across institutional boundaries. At the same time, advances in

hardware (specifically sensor technologies) have provided the im.petus to the pervasive

aspect of the computing infrastructure. A number of research ideas are being pursued to

create infrastructure where data and computational resources are seamlessly integrated

to form a pervasive computational infi-astructure. The set of systems described in this

survey were selected for their support of pervasive environm.ents and is applicable to

a large set of applications. The following subsections review a subset of the relevant

technological/research approaches followed in developing large scale systems. The review

155

Appendix B Appendix: Survey of Large Scale DistTibuted S,1'stems 156

is not exhaustive and is primarily focused on highlighting the commonalities, rather than

differences between the surveyed approaches.

B.1.l Services Oriented Architecture

Services Oriented Architecture (Graham, Davis, Simeonov, Boubez, ~eyama; and ~akamura

2001) has been proposed as an important paradigm to support the development of

distributed applications in a heterogeneous computing environment. Most service oriented

architectures use a platform neutral messaging specification to describe the basic communication

protocols. For example, the use of SOAP, XML are used to describe the messages for

web services communication. Service Oriented Architecture allow system components

to be accessed through a set of methods, with the aide of message types defined for the

system components. Service advertisements contain the descriptions of the messages

and the various port types. These advertisements are published in discovery selTices

such as UDDI, which can aid the discoyery of seryices across the system. At times,

the service advertisement is augmented with semantic information associated ""ith the

service definitions to allow complex patterns in the discovery process, work (Miles,

Papay, Dialani, Luck, Decker, Payne, and ;\1oreau 2003a; Miles, Papay, Dialani, Luck,

Decker, Payne, and Moreau 2003b), which the author of this thesis has been involved

in present one such extension to UDDI and enables metadata assisted service discoyery.

A number of services may be composed with the aide of workflow technologies. The

workflow may use fault-tolerant web service implementations (Dialani, Miles, Moreau,

De Roure, and Luck 2002), or may use dynamic rebinding to compose reliable services.

Service Oriented Architecture (SOA) based software implenlentations such as .J'\ET,

J2EE, OGSA(Foster, Kesselman, ~ick, and Tuecke 2002) provide software platforms for

developing web service implementations and are designed to operate in a heterogeneous

resource environment, while maintaining compatibility at the messaging level. Dynamic

compositional capability coupled with the ability to operate in heterogeneous environments

have enabled the use of v.,'eb Services to develop applications that support dynamic

integration of data and computational resources.

SOA enables adaptive behaviour by allowing applications to dynamically rebind to

services that support identical interfaces, where identical services are identified according

to their syntax and semantic properties. To support this adaptive behaviour, the

applications need to be able to share the service advertisements in a scalable fashion.

These advertisements may be shared between the applications using a centralized service

such as UDDI or can be cached using an adaptive overlay network. An adaptive overlay

is particularly useful in cases where centralized registries could not be supported, for

example, mobile services environments.

A.ppendix B A.ppendix: Survey of Large Scale Distributed Systems 157

B.1.2 Grid computing

The Grid computing paradigm has evolved around the notion of the virtual organisation.

Virtual organisations are described as dynamically created associations between users

and resources across various administrative domains and institutional boundaries. A

number of alternative approaches have been suggested for the management of such

virtual organisations. Examples include economics-based resource allocation (Abramson,

Buyya, and Giddy 2002), structural organisation (Litzkow, Livny, and M.\V.Mukta

1990; Foster and Kesselmann 1999), unstructured organisation of resources (SETI) and

Services based systems (Foster, Kesselman, :;,\ick, and 1\lecke 2002). The theoretical

aspects of the virtual organisations have been discussed in (Dang and Jennings 2004:

Korman, Preece, Chalmers, Jennings, Luck, Dang, Nguyen, Deora, Shao, Gray, and

Fiddian 2003). An important aspect of Grid computing is its dual focus on the co-allocation

of data and computational resources, in an dynamic computational environment composed

of unreliable resources.

Grids have been used for a wide variety of applications, which include but are not

limited to data integration (Atkinson, Chervenak, Kunst, :;'\arang, Paton, Pearson,

Shoshani, and \Vatson 2004), high throughput computing (Frey, Tannenbaum, Livny,

Foster, and Tuecke 2001), biomedical applications (Goble, Pettifer, and Stevens 2004)

and sensor networks (Hill, Szewczyk Woo, Hollar, Culler, and Pister 2000). Though

the Grid applications vary in their software architectures, they exhibit some common

characteristics, \\'hich are: first, resource discovery, second, by dynamic/run-time composition

of software services, and thirdly, orchestration of distributed data and computational

resources. These applications provide virtual organisations either for direct access to

data and computational resources or through application service encapsulating these

resources.

A classification of various types of Grid Systems has been suggested by Fox (Fran

Berman (Editor) 2003), prominent amongst which are Compute Centric Grids and Data

Centric Grid Systems, which are described here in some detail:

B.1.2.1 Compute Centric Grids

Grid infrastructures, primarily utilizing computational cycles across the virtual organisations,

are referred to as computational Grids. SETI@HOME, GLOBUS and CONDOR-G are

examples. Most computational Grids provide job submission, monitoring and scheduling

facilities as a means of access to the remote computational resources. A computational

Grid may be formed by the resources owned by the resource provider (e.g. PBS combined

with GLOBUS installation) or alternatively it may be formed by the free interaction

between resource providers and consumers, for example SETI@HOME. There are many

interesting open research issues in both types of computational Grids. While in the

Appendix B Appendix: Survey of Large Scale Distributed Systems 158

former types the issues pertaining to secured access and co-allocation have dominated the

agenda, the latter have focused on creating computational economies and the mechanisms

to design a self-sustaining computational infrastructure.

Traditionally, job submission on a distributed set of resources does not provide strict

guarantees on the performance of the jobs being handled by the service. For example,

both COl'\DOR and SETI have relied on providing the best effort scheduling capabilities.

However. as is evident from recent studies (l'\abrzyski, ::\1., and Jan 2004), it is possible

to statistically guarantee adherence to a multitude of objective functions for scheduling

on a set of distributed resources.

B.1.2.2 Data Centric Grids (DCG)

Data Centric Grids provide the infrastructure for accessing, disseminating, archiving

and provenance tracking over a set of distributed data resources. Most DCGs provide

the means to discover, summarize data (metadata) and create access and transport

mechanisms between data resources. An application may access multiple data resources

may interact independently with each of the data resources. Alternately, an application

may orchestrate the services provided by each of the data resources and in turn allow

workflow optimisers to achieve data flow optimisation between data resources. Publish/subscribe

based data resource management represents a data Grid system type which is relevant

to the scope of this thesis. As a part of dataflow optimisation, resources in a data

centric Grid may form a self-managing overlay network to reduce the data transport

and management costs. The formation of such an overlay cannot be conceived by the

designer of anyone data resource provider and overlay ''''ill evolve from the complex

interaction between data resources.

B.1.3 Peer-to-Peer computing (P2P)

P2P computing provides a novel distributed computing architecture and is characterized

by its decentralisation of control. Each of the participating resources in the network is

referred to as peer. In an ideal P2P system, each of the participating peers are considered

to be uniform. Early P2P computing systems, like FreeNet (Clarke, Sandberg, Wiley,

and Hong 2001) and Gnutella (GNUTELLA) were centralized repositories that aided

discovery of resources between peers using a flooding protocoL Subsequently, a number

of structured P2P overlay creation techniques were proposed, for example, Distributed

Hash Techniques (DHT), to provide bounded average discovery paths, and resilient

system performance in face of failure/recovery of peers. The various P2P approaches

can be divided into three primary categories: firstly, structured P2P systems like CAN

(Ratnasamy, Francis, Handley, Karp, and Schenker 2001), Tapestry (Zhao, Kubiatowicz,

and Joseph 2001) and Chord (Stoica, :Morris, Liben-Nowell, Karger, Kaashoek, Dabek,

Appendix B Appendix: SmTey of Large Scale Distributed Systems 159

and Balakrishnan 2003): secondly, unstructured P2P systems like FreeNet (Clarke,

Sandberg, Wiley, and Hong 2001), and Gnutella (G~UTELLA) and thirdly, semi

structured P2P systems like JXTA (Qu and Nejdl 2001).

Most P2P system use messaging based communication protocols to allovv operation on

a set of heterogeneous resources. State-of-the-art P2P systemB use dynamic resource

discovery and binding to allmv creation of peer-groups which are very similar to the

concept of the virtual organisation illustrated in Grid computing environments. Software

architecture for developing P2P computing systems has been the primary research focus

of most P2P cornputing systems. Additionally, research has also focused on how to

develop P2P systems that guarantee that resource providers and consumers have equal

benefits from their mutual association and the means to develop trust between them.

B.1.4 Ad hoc network systems

Advances in mobile communications have enabled the creation of ad hoc networks,

characterised by their ability to adapt to availability of resources. In ad hoc networks,

wireless and/or mobile resources (also known as mobile nodes) are able to communicate

with each other in the absence of a fixed communication infrastructure, in the absence of

any centralized control. Multi-hop communication is achieved as nodes route packets on

behalf of other nodes. The dynamic creation of a mobile communication infrastructure

introduces many challenges in the areas of network management and data communication.

Problems encountered in the network layer of ad hoc networks include topology control,

data communication, and service access. Topology control problems include discovering

neighbours, identifying position, determining transmission radius, establishing links

to neighbors, scheduling node sleep and active periods, clustering, constructing the

dominating set (each node either belongs to or has a neighbor from the dominating

set), and maintaining the selected structure. Service access problems include Internet

access, cellular network access, data or service replication upon detection or expectation

of network partition, and unique IP addressing in merge or split-network scenarios.

Data communication problems include:

1. routing- sending a message from a source to a destination node,

2. broadcasting- flooding a message from a source to all other nodes in the network,

3. multicasting- sending a message from a source to a set of desirable destinations,

4. geocasting- sending a message from a source to all nodes inside a geographic region,

and

5. location updating- maintaining reasonably accurate information about the location

of other nodes.

A.ppendix B A.ppendix: Survey of Large Scale Distributed S:vstems 160

For a state-of-the-art description of ad hoc systems and related issues, readers are advised

to refer to the book by Perkins (Perkins 2001), who provides a detailed description of

ad hoc routing protocols.

Analogies can be drawn between ad hoc networks and P2P networks, as both network

types operate without any central co-ordinating authority, and in both cases, the nodes

(peers) autonomously choose appropriate information and cOl11.munication systems to

interact with their sub-ordinate nodes (peers). The prime distinguishing features between

P2P and ad hoc networks are: that ad hoc networks are limited to wireless communication

networks, and, while P2P systems can impose a fixed topological structure such restrictions

cannot be imposed on the mobility of nodes in an ad hoc network. These distinguishing

characteristics impact the design methodologies and the resource management objectives

in the two system types. \Vhile P2P systems are evaluated on the basis of their

communication costs, the cost metrics for ad hoc networks also includes computational

and energy costs.

B.1.4.1 Sensor networks

Sensor networks (Hill, Szewczyk, \Voo, Hollar, Culler, and Pister 2000) are an emerging

application area in ad hoc networks. Most sensor networks are designed to operate

autonomously without any centralized control. \\Thile some sensor networks systems are

designed to operate under a static environment, with complete knowledge of associated

sensors and patterns of communication, most systems tend to require dynamic reconfiguration

of network topology for efficient communication and data dissemination across sensor

networks, in the situation of failing and intermittently available nodes. For a detailed

description on sensor networks, refer to (Ilyas and Mahgoub).

B.1.5 Agent-based computing economies

Large scale distributed systems have been modelled as interactions between independent

autonomous components capable of operating in dynamically-changing operating environments.

Agent based systems can be modelled in various ways; most such models describes agent

systems as consisting of three main constituent components:

l. Agents represent encapsulated computer systems and are capable of flexible and

autonomous actions in their operating environments in order to meet design objectives.

2. Interactions: Agents will invariably use appropriate communication channels to

interact with other agents and manage their inter-dependencies. These interactions

may lead to co-operative, competitive or co-ordination based problem solvers.

Appendix B Appendix: Survey of Large Scale Distributed Systems 161

3. Organisations: Agent interactions take place in some form of organisational context

(e.g. a marketplace, an electronic institution).

Agent-based Computational Economies (ACE) represent an organisational model for

agent-based systems and derive from artificial intelligence and economic theory. State-of-the-art

techniques and the description of research issues in the field of ACEs can be found in

(Tesfatsion 2002). In ACEs, agents represent the buyers and sellers of resources traded

in electronic market places. Agents learn about the beha\'iour of other agents and

the general behaviour of the market place and initiate appropriate actions in order to

maximize objective functions. Agent economies have been shown to be self-organizing

and self sustaining under varying market conditions.

The application of market based resource management for developing large scale distributed

systems has been explored by (Abramson, Buyya, and Giddy 2002), and (?). ACEs

present an approach towards developing self-managing computational infi'astructure

because of their ability to adapt to time varying operating conditions.

B.1.6 Discussion

A number of different paradigms for developing large scale computing systems were

described in the preceding sections and provide specialized solutions for their target

application domains. Increasingly, applications derive fi'OlTl the properties of one or

more paradigms to create complex computing systems. The adoption of Services based

architecture by Grid computing and P2P computing, Agent-based computational Economies

for Grid computing, the merger of P2P techniques and ad hoc networks represents

the trend for an evolving complex computational infrastructure, It may be argued

that, over a period of time, these paradigms will merge to form a pervasive, adaptive

computing infrastructure that will augment current ';YT,V'V capabilities, to provide

seamless integration of data and computational resources.

Instead of adopting a technology or the paradigm aligned approach an approach that

investigates the common requirements across the above mentioned system types is

advocated. As described above, almost all the above mentioned system types consist of

resource providers that collaborate to share computational resources. The overwhelming

requirement of scheduling computational resources in an online fashion needs further

investigation. Additionally, as in most systems a resource is required to collaborate

with a set of resources within the network, the choice of the subset and its relation

to the objective functions needs further investigation. Additionally, when considering

sensor networks and ad hoc networks the interplay with the network topology assumes

prominence. In addition to the above two problem types, one other significant trend is

the use of a single resource to provide support for multiple service requests. Usually,

multiple service requests are supported on a limited resource. Concurrency of tasks

Appendix B Appendix: Survey of Large Scale Distributed Systems 162

introduces potential resource sharing. Adaptive system resource management with

QoS warranties needs to be investigated. In addition, the above three trends in a

fore-mentioned systems need to be investigated for the case of applications that have

the common characteristics stated below.

B.2 Common characteristics

Common characteristics across systems:

1. Decentralisation of control.

2. Partial and varying visibility of system state.

3. Different operating conditions than those perceived at design time.

4. Online nature of the environment.

5. Continual re-optimisation.

B.3 Summary

Evolving systems have further refined the definition of resource management. While

traditional resource management deals with allocation, utilisation and management of

resources, recent advances have introduced the concept of self organisation and overlay.

Appendix C

Appendix: PSQL - Extended

Query Language for Streams

An expressive query specification language enables a database management system to

determine the common subexpressions between multiple query definitions. Such sub

expressions are commonly used to identify possible resource sharing between multiple

queries. Multi-query optimisation based on sub-expressions is common in relational

databases (Date 1995). A similar sub-expression based resource sharing can also be

applied to queries in stream data management systems. However, to date the language

extensions to SQL - for example, CQL (Arasu, Babu, and VJidom 2003) and ATLaS

(\\Tang and Zaniolo 2003) - used to specify the queries in a stream management system

do not incorporate the notion of similarity. Although CQL incorporates the notion of

equality between queries it remains short of supporting similarity (see section C.l.l for

details). This appendix, introduces an extension to the SQL, known as PSQL, which

incorporates the notion of similarity for definition in a stream management system.

The remainder of this appendix is organized as follows: The next section describes

the language constructs. Subsequently, it describes object-relational mapping between

the various constructs of the language and provides a representation of the same. It

concludes with a list of examples that describe the capability of the language extensions.

C.l Stream query language (PSQL)

The PSQL language extends SQL constructs and consists of an additional data type

("stream"). The stream data type is defined using a relational schema and consists of

an ordered set of tuples. Each tuple has an associated timestamp, which determines its

temporal validity. Theoretically, a stream represents an infinite set of tuples, however

the scope of the tuples is determined by the vvindow.

163

Appendix C Appendix: PSQL - Extended Query Language for Streams 164

Definition: Every stream'S' has a schema Rs and contains an ordered set of tuples Os

adhering to the relational schema Rs. The stream'S' follows 'append only' semantics.

Each tuple in the stream is associated with a timestamp, ,vhich represents the time the

tuple \vas appended to the stream. A stream represents a temporal stream if the set of

tuples (Os) is ordered in accordance to its associated time stamp.

Definition: A query Q is defined in terms of relational operators on a set of streams.

A query has access to unbounded but finite items of the stream. The bounds on number

of data items accessed by a query Q are described by means of a window operation on

individual streams.

A stream data management system may maintain the entire historical record of all the

data items ever encountered by the stream. However, limited main memory and the

higher latency costs of accessing secondary memory requires prioritized access to the

limited memory resources. Sliding window specifications on streams provide preliminary

estimates on the amount of memory required by each of the query definitions. Cumulative

memory requirements need to be ascertained from a set of active continuous queries. The

query language needs to be descriptive to provide necessary information to determine

the number of data tuples that should be maintained in DSMS main memory for each

of the streams. Such cumulative memory requirements can be determined if the window

specifications support similarity and subsuming operators. It should be noted that most

present implementations of DSMS do not consider tuple sharing between multiple queries

and have therefore not built the language constructs to represent the subsuming of the

stream windows.

Data management systems may choose to maintain additional tuples either in the main

memory or in secondary storage or a combination of the two. Alternatively, it may

maintain synopsis on the historical data tuples that are out of the scope of the union of

window specifications. However, for the scope of the experiments discussed in this thesis

considered that DSMS maintains the streams exclusively in the main memory. However,

the PSQL allows storage attributes at the time of the creation of the stream.

PSQL supports relational operators over streaming data and relation data. It supports

traditional data storage types like tables and views, while the streaming data is stored

in the stream data container. A typical query expression nlay associate the query

operations between the streaming data and data held in traditional data containers

like tables and views. PSQL does not distinguish between various data containers

while specifying the relational operators. The only notable difference is that the query

referencing the stream container specifies the scope of the query by means of the windowing

operations. The query language does not impose any restrictions on the type of operations

performed by the operators, but necessitates that the operators that allow streams as

input produce a stream as an output. That is to say that if either of the inputs to the

operator is a stream, the output of the operator is considered to be a stream. However,

Appendix C Appendix: PSQL - Extended Query La.nguage for Strea.ms 165

the operators that exclusively operate on a static data container produce static outputs

and are considered to be static datasets. The classification was carried out with the aim

of allowing independent optimisation of the static and dynamic parts of the query. In

some specific cases, the query scrambling techniques may result in two distinct parts of

the query tree, where the root node evaluates the static and stream relations.

As the PSQL distinguishes between the streams and static relations on the basis of the

windowing operations, the query executable plans are produced in order to:

1. Use the relational semantics to specify the operations between the data streams

and data tables.

2. Produce plans that reduce computational costs by evaluating static relations for

minimal number of times and cache the static result set for operation against with

the streaming data.

3. Produce query plans that can be represented as a series of operator executions.

4. Reduce the computational costs from updates to static relational data tables.

5. Allow the use of standard join operations and multiple join operations.

6. Identify tuple-level resource sharing and permit sharing of intermediate results

between multiple queries where possible. The resource sharing may require modifications

to query scheduling and the language should allow identification of such correlation

between query specifications.

The above stream execution strategy allows us to specify the continuous queries. A

continuously executing query is valid for some temporal interval during which the streams

are monitored and the query results evaluated, and therefore associating the temporal

constraints with each of the query specifications. The temporal constraints are normally

specified in terms of the wall clock time, but could also be signalled by means of

events. The temporal constraints on the query execution remain optional. DS~1S like

StreamDB(Arasu, Babcock, Babu, Datal', Ito, Motwani, l\ishizawa, Srivastava, Thomas,

Varma, and "\iVidom 2003) and TelegraphCQ (Chandrasekaran, Cooper, Deshpande,

Franklin, Hellerstein, Hong, Krislmamurthy, Madden, Raman, Reiss, and Shah 2003)

assume the queries to be valid from the time of submission to time of deletion.

There is a number of performance criteria for optimizing the query performance in

a DSMS. For example, certain queries may require strict warranties on timeliness of

query response and permit partial evaluation of the query. Alternatively some queries

may require complete evaluation at the cost of permissible delays. "\iVhile the DSMS

maintains ultimate control in determining the exact order of quel)' evaluations, PSQL

allows queries to specify the performance optimisations.

Appendix C Appendix: PSQL - Extended Quer:\' Language for Streams 166

C.l.1 Similarity features of PSQL

A sequence of data items representing the stream can be cOITlpared on the basis of the

schema and their temporal characteristics, while those in the static tables need only be

equated on the basis of their schema. To enable tuple level sharing between queries in

stream management systems, the system needs to identify the overlaps between the data

sets used by each query. Consider that each shared data item is represented by a stream

5s , and is shared between the number of queries. 5 s has a schema Rs and sequence of

Os. The shared data items can be used by queries that have a schema 5 i = TI 55 and the

window moments generate a stream such that each item in the stream Oy E Os and in the

same causal ordering. For example, considering the two window specification Vvindow-1

[5TOCKWINDOH1ROW(100)ONDATAARRIVAL], and \i\Tindow-2 [5TOCKWINDOWROW(5(

on stream "STOCK". In this case, if the schema of \Vindovv'-l and \Vindow-2 are equal,

the window specifications allow tuple sharing between the streams. In the above example

\Vindow-2 can be subsumed by the \Vindow-l.

PSQL allows identification of such similarity expressions as it takes into account both the

data schema and window moment semantics. Additionally, the optional temporal clause

coupled with scheduling hints, such as periodic, allow for synchronizing the window

moments across the queries.

C.2 Comparison with other languages

One of the main distinguishing features of the PSQL is that it does not distinguish

between the streaming and the non-streaming datasets. It considers each of the datasets

and the intermediate results as a snapshot of the state at a particular time. A state

that remains unaltered over an interval becomes a potential candidate for retention in

the limited cache space. The language allows the data management system to uniquely

identify and specify such states and the temporal ordering in which they are evaluated.

C.2.1 CQL

Continuous Query Language (CQL) (Arasu, Babu, and Widom 2003) was developed for

StreamDB a stream data management system based on two classes of operators, the

stream operators and the relation operators. In CQL terminology - a stream represents

an unbounded bag of tuples with 'append only' semantics, while a relation is defined

as time varying bag of updatable tuples. CQL primarily converts the stream into

relations to take advantage of the standard relational operators, and finally converts

the relation into the stream for continuous query semantics. The current specification

of the CQL relies on time based sliding windows, whereas PSQL provides a wider range

Appendix C Appendix: PSQL - Extended Query Language for Streams 167

of sliding window semantics. CQL has ability to detect equivalence between the sliding

v,indows can be exploited to detect common components between multiple queries and

is not designed to consider tuple sharing between multiple queries. The CQL model to

create the relation from streams prohibits it from detecting tuple level sharing between

multiple queries. PSQL on the other hand does not distinguish between data containers,

but instead depends on the datasets. This extended capability of PSQL allmvs it to

incorporate the semantics of both SQL and CQL. In addition, PSQL contains explicit

scheduling hints that determine the liveliness of the query, a feature that is not catered

for in CQL.

C.2.2 ATLaS

ATLaS (Wang and Zaniolo 2003) adds to SQL the ability to define new User Defined

Aggregates (UDA) and table functions for data mining applications, which accept stream

inputs and produce output in the form of data streams. ATLaS provides semantics for

expressing UDAs with both traditional blocking aggregates and non-blocking aggregates

- such as online aggregates and the continuous aggregates used for time series - in

a syntactic framework that makes it easy to identify non-blocking aggregates. ATLaS

defines SQL extensions, and describes three distinct blocks, nam.ely initialisation, aggregate

definition and the termination block. The initialisation block is executed immediately

at query submission, while the iterate block is executed for each of the query evaluation

and the termination block is executed at the end of the query interval. The ATLaS

structure imposes strict scheduling constraints on the responsiveness of the query, which

makes it unsuitable for direct application in DSMS, \vhich usually control the operator

scheduling characteristics. The iterate block is evaluated for each execution step and

needs to be appropriately described to restrict its evaluation to newly arrived data items

in the stream. Also, the presence of the initialisation and termination blocks provides

possibilities of maintaining state information while executing the query. Maintaining

state information on an individual query basis is bound to either restrict the capability

of the query engine or increase the complexity of sub-expression matching in a query

optimizer.

C.2.3 Tapestry

Tapestry queries (Terry, Goldberg, Nichols, and Oki 1992) are expressed using SQL

syntax. At time t, the result of a Tapestry query Q contains the set of tuples logically

obtained by executing Q as a relational SQL query at every instant t
f

< t and taking

the set union of the results. The semantics for Q is equivalent to the CQL query

operations on relations. Tapestry does not support sliding windows over streams or any

relation-to-stream operators.

Appendix C Appendix: PSQL - Extended Query Language for Streams 168

CQL remains the most closely related language to PSQL, which was inspired by the

former. PSQL extends the capability of CQL to allow the possibilities of incorporation

of tuple sharing between the query plans. It departs from CQL's notion of streams

and relations and is based on the notion of temporal datasets instead. However, PSQL

adopts the basic window specification semantics of CQL and extends it to associate the

scheduling criteria with the window specifications. It also supports additional vvindow

definitions like landmark and snapshot \\Oindows.

C.3 Language - yacc representation

The following is the listing of the yacc implementation of PSQL. The yacc representation

is provided as an alternative to BKF form of the language representation, the keywords

appearing in CAPITALS represent tokens.

start

psqlcommand ,. , , {parse_tree $1; YYACCEPT;}

psqlcommand

ddl

ddl

{$$ ddl($l) ;}

dml

{$$ dml($l);}

create stream

{$$ = $1;}

dropstream

{$$ = $1;}

modifystream

{$$ = $1;}

createstream

KW_CREATE KW_STREAM DV_STRING '(' type_attribute_list ')'

{$$ = create($3, $5, a);}

KW_CREATE KW_STREAM ,(' storage_type ,)' DV_STRING '(, type_attribute_list

{$$ = createspecificstorage($6, $4, $8, a);}

KW_CREATE KW_TABLE DV_STRING '(, type_attribute_list ')'

Appendix C Appendix: PSQL - Extended Query Language for Streams 169

{$$ = createC$3, $5, 1);}

KW_CREATE KW_TABLE 'C' storage_type ,)' DV_STRING 'C' type_attribute_list '

{$$ = createspecificstorageC$6, $4, $8, 1);}

drop stream

KW DROP KW STREAM DV STRING

{$$ = dropC$3);}

KW_DROP KW_TABLE DV_STRING

{$$ = dropC$3);}

modifystream

KW MODIFY KW_STREAM DV_STRING KW_ADD 'C'type_attribute_list'),

{$$ = modifyC$3,$6, true);}

KW_MODIFY KW_STREAM DV_STRING KW_DELETE 'C' type_attribute_list'),

{$$ = modifyC$3,$6, false);}

KW_MODIFY KW_TABLE DV_STRING KW_ADD 'C'type_attribute_list'),

{$$ = modifyC$3,$6, true);}

KW_MODIFY KW_TABLE DV_STRING KW_DELETE 'C' type_attribute_list'),

{$$ = modifyC$3,$6, false);}

storage_type

ST_PRIMARY

{$$ = ST_PRIMARY;}

ST_HYBRID

{$$ = ST_HYBRID;}

ST_SECONDARY

{$$ = ST_SECONDARY;}

type_attribute_list

attribute_spec ',' type_attribute_list

{$$ = schemaC$l, $3);}

attribute_spec

{$$ = $1;}

attribute_spec

DV_STRING D INTEGER

{$$ = defineIntC$l);}

Appendix C Appendix: PSQL - Extended Query Language for Streams

dml

query

DV_STRING D_FLOAT

{$$ = defineFloat($l);}

DV_STRING D_CHAR ,[, DV_INT 'J'
{$$ = defineString($l, $4);}

DV_STRING D_BYTE ,[, DV_INT 'J'

{$$ = defineByte($l, $4);}

DV_STRING D_TIME

{$$ = defineTime($l);}

query

{$$ query($l);}

selectfromwhere

{$$ = $1;}

selectfromwhere

170

selectclause fromclause optionalwhereclause optionalgroupbyclause op"tionalo

{$$ = selectnode($l, $2, $3, $4, $5, $6, $7);}

selectclause

KW_SELECT KW_DISTINCT nonmd_projterms_list

{$$ = selectclause (true , $3);}

KW_SELECT nonmd_projterms_list

{$$ = selectclause(false, $2);}

KW_SELECT KW_DISTINCT '*'

{$$ = selectclause (true , G);}

KW_SELECT '*'

{$$ = selectclause(false, a);}

fromclause

KW_FROM nonmd_relation_list

{$$ = $2;}

Appendix C Appendix: PSQL - Extended Quel"." Language for Streams 171

optional where clause

KW_WHERE nonmd_condition_list

{$$ = $2;}

nothing

optionalgroupbyclause

KW_GROUP KW_BY nonmd_attribute_list

{$$ = $3;}

nothing

optionalorderbyclause

KW_ORDER KW_BY nonmd_attribute list

{$$ = $3;}

nothing

validityclause

KW_FOR timeclause

{$$ = valid($2);}

nothing

windowlist

'[' windowclause 'J'
{$$ = $2; }

nothing

{$$ = O;}

windowclause

windowspecification KW_ON schedulingcriterion

{$$ = windowlist(window($1,$3),$5);}

windowspecification KW_ON schedulingcriterion

{$$ = window($1,$3);}

windowspecification ',' windowclause

{$$ = windowlist(window($1,O),$3);}

windowspecification

, , , windowclause

Appendix C Appendix: PSQL - Extended Query Language for Streams

{$$ = $1;}

windowspecification

DV STRING KW WINDOW WT_ROWS '(' DV_INT '),

{$$ = windowrows($1,$5);}

DV_STRING KW_WINDOW WT_TIME ,(, DV_STRING ',' DV_STRING ')'

{$$ = O;}

DV_STRING KW_WINDOW WT_LANDMARK '(, datetimestamp ,)'

{$$ = windowlandmark($1, $5);}

DV_STRING KW_WINDOW WT_SNAPSHOT

{$$ = windowsnapshot($1);}

DV_STRING KW_WINDOW WT_NOW

{$$ = windownow($1);}

DV_STRING KW_WINDOW WT_UNBOUNDED

{$$ = windowunbounded($1);}

schedulingcriterion

SCDATAARRIVAL

{$$ = schedule(SC_DATAARRIVAL);}

SC_SNAPSHOT

{$$ = schedule(SC_SNAPSHOT);}

SC_PERIODIC

{$$ = schedule(SC_PERIODIC);}

SC_OVERFLOW

{$$ = schedule(SC_OVERFLOW);}

timestamp

DV_INT '::' DV_INT '::' DV_INT

{$$ = time($1, $3, $5);}

DV_INT T_HOUR DV_INT T_MIN DV INT T_SECONDS

{$$ = time($1, $3, $5);}

datetimestamp

DV_INT 'I' DV_INT 'I' DV_INT ',' timestamp

{$$ = datetime($1,$3,$5,$7);}

172

Appendix C Appendix: PSQL - Extended Query Language for Streams 173

timeclause

,(, assignment_operation

assignment_operation

,. , , condition

D_TIME DV_STRING C_EQ DV_STRING

nonmd_projterms_list

projectionterm ',' nonmd_projterms_list

{$$ = projectlist($1, $3);}

projectionterm

{$$= $1;}

nothing

projectionterm

arithmetic_operation

{$$ = $1;}

aggregation_operator

{$$ = $1;}

aggregation_operator

FN_MIN '(' attribute ')'

{$$ = function(MIN, $3);}

FN_MAX '(' attribute ,),

{$$ = function(MAX, $3);}

FN_COUNT '(' attribute '),

{$$ = function(COUNT, $3);}

FN_COUNT '(' '*' '),

{$$ = function(COUNT, a);}

FN_SUM '(' attribute ')'

{$$ = function(SUM, $3);}

FN_SD '(, attribute ,)'

{$$ function(SD, $3);}

FN_MEAN '(' attribute ')'

{$$ = function (MEAN , $3);}

,. , , arithmetic_operation '),

A.ppendix C A.ppendix: P8QL - Extended Query Languagl? for Streams

arithmetic_operation

attribute

{$$= $1;}

constant

{$$ = $1;}

datetimestamp

{$$ = $1;}

arithmetic_operation '+' arithmetic_operation

{$$ = arithOpCADD, $1, $3);}

arithmetic_operation '-' arithmetic_operation

{$$ = arithOpCSUB, $1, $3);}

arithmetic_operation '*' arithmetic_operation

{$$ = arithOpCMUL, $1, $3);}

arithmetic_operation 'j' arithmetic_operation

{$$ = arithOpCDIV, $1, $3);}

'C' arithmetic_operation ')'

{$$ = $2;}

nonmd_relation_list

relation ',' nonmd_relation_list

{$$ = relationlistC$1, $3);}

relation

{$$ = $1}

nonmd_condition_list

'C' nonmd_condition_list ,)'

condition KW_AND nonmd_condition_list

{$$ = conditionlistCAND, $1, $3);}

condition KW_OR nonmd_condition_list

{$$ = conditionlistCOR, $1, $3);}

condition KW_NOT nonmd_condition_list

{$$ = conditionlistCNOT, $1, $3);}

condition

{$$ = $1;}

174

Appendix C Appendix: PSQL - Extended Query Language for Streams

nonmd_attribute_list

attribute ',' nonmd_attribute_list

{$$ = attribtolist($1, $3);}

attribute

{$$ = attriblist($1);}

relation

DV STRING

{$$ = relationnode($1);}

DV_STRING KW_AS DV_STRING

{$$ = relation($1, $3);}

condition

arithmetic_operation C LT arithmetic_operation

{ $$ = condition(CO_LT, $1, $3);}

arithmetic_operation C_LE arithmetic_operation

{ $$ = condition(CO_LE, $1, $3);}

arithmetic_operation C_EQ arithmetic_operation

{ $$ = condition(CO_EQ, $1, $3);}

arithmetic_operation C_NE arithmetic_operation

{ $$ = condition(CO_NE, $1, $3);}

arithmetic_operation C_GE arithmetic_operation

{ $$ = condition(CO_GE, $1, $3);}

arithmetic_operation C_GT arithmetic_operation

{ $$ = condition(CO_GT, $1, $3);}

attribute

DV_STRING '.' DV_STRING

{$$ = attributenclass($1, $3);}

DV_STRING

{$$ = attribute($1);}

constant

DV_QSTRING

{$$ = constantstring($1);}

DV_INT

175

Appendix C Appendix: PSQL - Extended Quer'y Language for Streams

{$$ = constantint($l);}

DVJLOAT

{$$ = constantfloat($l);}

nothing

C.4 Query examples

176

PSQL specifies the semantics for creation, modification and deletion of data containers.

It implements a restricted type system that consists of follmving data types:

INTEGER Integer data type, the size of 'int' data type in C

REAL Real data type, the size of 'float' data type in C

CHAR A single char data type, is also implemented as CHAR[] arrays.

BYTE An array of bytes.

TIME A time data type with a fixed format dd/mm/yyyy, HH::MJVI::SS.

Consider a stream application for data management in a sensor network system used

for monitoring the stocks in a supermarket. The stock stream is obtained from items

appended to the stream on addition/withdrawal of an item from the shelf. The type of

possible items that can be stacked on the shelf are stored in a static table. Additionally,

the sensor network periodically generates a temperature log. The following set of

commands defines the procedure to create the streams and static tables.

CREATE STREAM STOCK (Shelfld INT, Barcode INT, ItemTypeId INT, ItemDesc

CHAR[255]' expiry DATETIMESTA~i[P);

CREATE TABLE TYPE (Shelfld INT, ItemTypeld INT, Item.TypeDesc CHAR[255]'

MaxTemperature INT);

CREATE STREAM TEMPLOG (Shelfld INT, Temperature INT);

A very brief list of probable queries are illustrated below:

Query 1: Monitor temperature within a range, for an unbounded time, translates to :

Select * from TEMPLOG where Temperature> 5 and Ternperature < -2;

Appendix C Appendix: PSQL - Extended Querjr Language for Streams 177

Query 2: Strictly monitor the temperature for ice cream shelf for next t,O\'o days, report

every 30 seconds, is represented as:

Select * from TEMPLOG where Temperature> 5 and Temperature < -2 FOR(t

= ::'\O\V; t < NOW + 02/00/0000,00::00::00; t = t + 00/00/0000,00::00::30);

Query 3: Produce the list of items stocked in a shelf since yesterday, translates to:

Select * from STOCK where Shelfld = 3 [STOCK window Landmark(NO\V-1)]

Query 4: l\10nitor Stock for wrongly placed items and report only for last 100 items,

is formulated as:

Select S.Shelfld, S.BarCode, S.ItemTypeDesc from STOCK AS S, TYPE AS T

where S.ItemTypeId = T.ItemTypeId A::,\D S.Shelfld = T.Shelfld [S WINDOW

ROWS(100) ON DATAARRIVAL];

The PSQL query language allows an extensive list of query expressions. The added

advantage of defining the query delivery specification allows the PSQL to determine the

intervals at which the result sets need to be created and delivered.

Appendix D

Appendix: Related Work

D.l Publications

Zhou, J., Hall, W., De Roure, D. and Dialani, V. (2005) Supporting Collaborative

Resource Sharing on the \iVeb: A Peer-to-Peer Approach to Hypermedia Link

Services. Submitted to ACIVI Transactions on Internet Technology.

Zhou, J., Dialani, V., De Roure, D. and Hall, W. (2003) A Distance-based Semantic

Search Algorithm for Peer-to-Peer Open Hypermedia Systems. In Proceedings

of The Fourth International Conference on Parallel and Distributed Computing,

Applications and Technologies, pp. 7-11, Chengdu, China.

Zhou, J., Dialani, V., De Roure, D. and Hall, W. (2003) A Semantic Search Algorithm

for Peer-to-Peer Open Hypermedia Systems. In Proceedings of The First \iVorkshop

on Semantics in Peer-to-Peer and Grid Computing, pp. 43-54, Budapest, Hungary.

Moreau, L., l\1iles, S., Goble, C., Greenwood, M., Dialani, V., Addis, M.,et.al. (2003)

On the Use of Agents in a Biolnformatics Grid. In Proceedings of Proceedings of

the Third IEEEjACI\l CCGRID'2003 \iVorkshop on Agent Based Cluster and Grid

Computing, pp. 653-661, Tokyo, Japan. Lee, S., Sekguchi, S., Matsuoka, S. and

Sato, M., Eds.

Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T. and Moreau, L.

Personalised Grid Service Discovery. In Proceedings of 19th Annual UK Performance

Engineering \iVorkshop (UKPE\iV'03), pp. 131-140, University of\iVarwick, Coventry,

England.

Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T. and Moreau, L.

Personalised Grid Service Discovery. lEE Proceedings Software: Special Issue on

Performance Engineering 150(4):pp. 252-256.

178

Appendix D Appendix: Related Work 179

Moreau, L., Avila-Rosas, A., Dialani, V., Miles, S. and Liu, X. (2002) Agents

for the Grid: A Comparison with \Veb Services (part II: Service Discovery). In

Proceedings of ·Workshop on Challenges in Open Agent Systems -(-), pp. 52-56,

Bologna, Italy.

Moreau, L., Miles, S., Goble, C., Greenwood, M., Dialani, V., et.al(2002) On

the Use of Agents in a BioInfonnatics Grid. In Proceedings of Network Tools

and Applications in Biology (NETTAB'2002) - Agents in Bioinformatics -(-),

Bologna, Italy.

Dialani, V., 1\1iles, S., Moreau, L., De Roure, D. and Luck, 1\1. (2002) Transparent

fault tolerance for web services based architectures. In Proceedings of 8th International

Europar Conference (EURO-PAR'02) 2400(-), pp. 889-898, Paderborn, Germany.

References

9075, ISO/IEC (1992, 11). Database language sql, international standard iso/iec

9075:1992. American National Standard X3.135-1992, American ::\'ational

Standards Institute, New York, l'\Y 10036.

Abramson, David, Rajkumar Buyya, and Jonathan Giddy (2002). A computational

economy for grid computing and its implementation in the nimrod-g resource

broker. Future Gener. Comput. Syst. 18(8), 1061-1074.

Albers, Susanne (1997). Better bounds for online scheduling. In Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, pp. 130-139. ACl\1

Press.

Amsaleg, Laurent, Michael J. Franklin, and Anthony Tomasic (1998). Dynamic query

operator scheduling for wide-area remote access. Distrib. Parallel Databases 6(3),

217-246.

Ankolekar, A. et.al. (2001). Daml-s: Semantic markup for web services. In Proceedings

of the International Semantic Web Working Symposium (SWWS).

Arasu, Arvind, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev

Motwani, Itaru l'\ishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit Varma, and

Jennifer \Vidom (2003). Stream: The stanford stream data manager. IEEE Data

Eng. Bull. 26(1), 19-26.

Arasu, An'ind, Shivnath Babu, and Jennifer \Vidom (2003, October). The cql

continuous query language: Semantic foundations and query execution. Technical

Report http://newdbpubs.stanford.edu/pub/2003-67, Stanford University.

Arasu, Arvind and Jennifer \Vidom (2004). Resource sharing in continuous

sliding-window aggregates. pp. 336-347. Morgan Kaufmann.

Atkinson, l\1alcolm, Ann Chervenak, Peter Kunst, Inderpal Narang, Norman Paton,

Dave Pearson, Arie Shoshani, and Paul Watson (2004). The Grid: Blue Print for

a New Computing Infrastructure (Second ed.)., Chapter Data Access Integration

and Management. Morgan Kauffmann.

Avnur, Ron and Joseph 1\1. Hellerstein (2000). Eddies: continuously adaptive query

processing. In Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, pp. 261-272. ACM Press.

180

REFERENCES 181

Babcock, Brian, Shivnath Babu, Mayur Datar, Rajeev ::VIotwani, and Jennifer \Vidom

(2002). Models and issues in data stream systems. In Proceedings of the twenty-first

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pp. 1-16. ACM Press.

Babcock, Brian, Shivnath Babu, Rajeev :\1otwani, and ::\!Jayur Datar (2003).

Chain: operator scheduling for memory minimization in data stream systems. In

Proceedings of the 2003 ACM SIGMOD international conference on Management

of data, pp. 253-264. ACM Press.

Berners-Lee, T, J. Hendler, and O. Lassila (2001). Scientific American. Scientific

American.

Borodin, Allan and Ran EI-Yaniv (1998a, April). Online Computation and

Competitive Analysis (1 ed.)., Chapter 2Jntroduction to Randomized Algorithms,

pp. 432. Cambridge University Press.

Borodin, Allan and Ran EI-Yaniv (1998b, April). Online Computation and

Competitive Analysis (1 ed.)., Chapter 7. Request-Answer Games, pp. 432.

Cambridge University Press.

Brucker, Peter (2001). Sched'uling Algorithms, Chapter 5. Parallel :\/Iachines, Section

5.1. Springer-Verlag New York Inc.

Buyya, Rajkumar, David Abramson, and Jonathan Giddy (2001). Kimrod-g resource

broker for service-oriented grid computing. IEEE Distributed Systems 2(7).

Carney, D., U. C etintemel, l\1. Cherniack, C. Convey, S. Lee, G. Seidman,

M. Stonebraker, K Tatbul, and S. Zdonik (2002, August). Monitoring streams - a

new class of data management applications. In In Proc. of 28th VLDB Conference,

pp.84-89.

Carr, L. A., D. C. De Roure, W. Hall, and G. J. Hill (1995). The distributed

link service: A tool for publishers, authors and readers. In Proceedings of the

Fourth International World Wide Web Conference: The Web Revolution, Boston,

Massachusetts, pp. 647-656.

Carr, L. A, W. Hall, S. Bechhofer, and C. A. Goble (2001). Conceptual linking:

Ontology-based open hypermedia. In Proceedings of the Tenth International World

Wide Web Conference, Hong Kong, pp. 334-342.

Chakraborty, Dipanjan (2004, June). Service Discovery and Compsition in Pervasive

Environments. Ph. D. thesis, University of Maryland, Baltimore County.

Chakraborty, Dipanjan, Anupam Joshi, Tim Finin, and Yelena Yesha (2004, July).

Towards Distributed Service Discovery in Pervasive Computing Environments.

IEEE Transactions on Mobile Computing.

Chandrasekaran, Sirish, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, \Vei Hong, Sailesh Krishnamurthy, Samuel Madden,

REFERENCES 182

Vijayshankar Raman, Frederick Reiss, and ~Vlehul A. Shah (2003). Telegraphcq:

Continuous dataflow processing for an uncertain world. In CIDR.

Chandrasekaran, Sirish, Owen Cooper, Amol Deshpande, I\lichael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred

Reiss, and Mehul A. Shah (2003). Telegraphcq: continuous dataflow processing. In

Proceedings of the 2003 ACM SIGMOD intemational conference on Management

of data, pp. 668-668. AC~l Press.

Chandrasekaran, Sirish and Michael J. Franklin (2003). Psoup: a system for streaming

queries over streaming data. The VLDB Joumal 12(2), 140-156.

Chen, Jianjun, David J. De\Vitt, Feng Tian, and Yuan \Vang (2000). Niagaracq: a

scalable continuous query system for internet databases. SIGMOD Rec. 29(2),

379-390.

Clark, David (2001). Face-to-face with peer-to-peer networking. Computer 34 (1),

18-21.

Clarke, Ian, Oskar Sandberg, Brandon \Viley, and Theodore \\T. Hong (2001). Freenet:

A Distributed Anonymous Information Storage and Retrieval System. Lecture

Notes in Computer Science 2009, 46+.

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun.

ACM 13(6), 377-387.

Dang, Viet Dung and Kicholas R. Jennings (2004). Generating coalition structures

with finite bound from the optimal guarantees. In AAMAS '04: Proceedings of

the Third Intemational Joint Conference on Autonomous Agents and Multiagent

Systems, pp. 564-571. IEEE Computer Society.

DasGupta, Bhaskar and Michael A. Palis (2000). Online real-time preemptive

scheduling of jobs with deadlines. In Proceedings of the Third Intemational

Workshop on Approximation Algorithms for Combinatorial Optimization, pp.

96-107. Springer-Verlag.

Date, C. J. (1995) An introduction to database systems (6 ed.), Volume xxiii of

Addison- Wesley systems programming series. Addison-\Vesley Pub. Co.

De Roure, D., N. \\Talker, and L. Carr (2000). Investigating link service infrastructures.

In Proceedings of ACM Hypertext 2000, pp. 67-76.

De Rome, D. C., L. A. Carr, W. Hall, and G. J. Hill (1996). A distributed hypermedia

link service. In Proceedings of the Third Intemational Workshop on Services in

Distributed and Networked Environments (SDNE96) , pp. 156-161.

Dialani, Vijay, Dieter Gawlick, Cecile Madsen, Susan Malaika, and Shailendra Mishra

(2005). Information dissemination in the grid environment. pp. 1-54.

Dialani, V., S. Miles, L. Moreau, D. De Rome, and M. Luck (2002). Transparent

fault tolerance for web services based architectures. Lecture Notes in Computer

Sciences, EUROPAR(2002) 2400, 889-898.

REFERENCES 183

Eppstein, David, Zvi Galil, Giuseppe F. Italiano, and AlTmon Nissenz\veig (1997).

Sparsification - a technique for speeding up dynamic graph algorithms. Journal of

ACM 44 (5), 669-696.

FengTian and David J. De Witt (2003). Tuple routing strategies for distributed eddies.

In Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J.

Carey, Patricia G. Selinger, and Andreas Heuer (Eds.), VLDB 2003, Proceedings of

29th International Conference on Very Large Data Bases, September 9-12, 2003,

Berlin, Germany, pp. 333-344. Morgan Kaufmann.

Foster, Ian, Carl Kesselman, Jeff Kick, and Steve Tuecke (2002). Grid services for

distributed systems integration. 35(6), 37-46.

Foster, Ian and Carl Kesselmann (1999). The grid. In Ian Foster and Carl Kesselmann

(Eds.), Blueprint for a new computing infrastructure. Morgan Kauffmann.

Fountain, Andre"v M., \Vendy Hall, Ian Heath, and Hugh Davis (1990).

MICROCOSNI: An Open Model for Hypermedia with Dynamic Linking. In

European Conference on Hypertext, pp. 298-311.

Fran Berman (Editor), Geoffrey Fox (Editor), Anthony J.G. Hey (Editor) (2003,

April). Grid Computing: Making the Global Infrastructure a Reality (First ed.).

Wiley Publishers.

Frey, James, Todd Tannenbaum, ·Miron Livny, Ian Foster, and Steven Tuecke (2001).

Condor-g: A computation management agent for l11.ulti-institutional grids. In

HPDC '01: Proceedings of the 10th IEEE International Symposium on High

Performance Distributed Computing (HPDC-l0'01), pp. 55. IEEE Computer

Society.

Garay, Juan A., Joseph (Seffi) Naor, Bulent Yener, and Peng Zhao. On-line Admission

Control and Packet Scheduling with Interleaving.

Getta, J. R. (2000). Query scrambling in distributed l11ultidatabase systems. In

Proceedings of the 11th International Workshop on Database and Expert Systems

Applications, pp. 647. IEEE Computer Society.

GNUTELLA. Gnutella. ''http://gnutella.wego.com ".

Goble, Carole, Steve Pettifer, and Robert Stevens (2004). The Grid: Blue Print for a

New Computing Infrastructure (Second ed.)., Chapter Knowledge Integration: In

Silico experiments in bioinformatics. l\10rgan Kauffmann.

Goel, Ashish, Adam Meyerson, and Serge Plotkin (2001). Distributed admission

control, scheduling, and routing with stale information. In Proceedings of the

twelfth annual ACM-SIAM symposium on Discrete algorithms, pp. 611-619.

Society for Industrial and Applied IVIathematics.

Goldwasser, Michael H. (2003). Patience is a virtue: the effect of slack on

competitiveness for admission control, J. of Scheduling 6(2), 183-211.

REFERENCES 184

Gold,vasser, Michael H. and Boris Kerbikov (2003). Admission control with immediate

notification. 1. of Scheduling 6(3),269-285.

Gouda, lVlohamed G. and Umeshwar Dayal (1981). Optim.al semijoin schedules for

query processing in local distributed database systems. In Proceedings af the 1981

ACM SIGMOD international conference an Management af data, pp. 164-175.

ACl\1 Press.

Graham, R, E.L.Lawler, J.K.Lenstra, and A.Rinnooy Kan (1979). Optimization and

approximation in deterministic sequencing and scheduling: A survey. In Discrete

Optimization II, Volume 5 of Anals of Discrete Mathematics, pp. 287-326.

Graham, Steve, Doug Davis, Simeon Simeonov, Toufic Boubez, Ryo Neyama, and

Yuichi N"akamura (2001). Building Web Services with Java: Making Sense of Xml,

Soap, li1sdl, and Uddi. Indianapolis, IN, USA: Sams.

Guha, Sudipto, Nick Koudas, and Kyuseok Shim (2001). Data-streams and

histograms. In ACM Symposium on Theory of Computing, pp. 471-475.

Haas, Peter J. and Joseph M. Hellerstein (1999). Ripple joins for online aggregation.

In SIGMOD '99: Proceedings afthe 1999 ACM SIGMOD international conjerence

on Management oj data, pp. 287-298. AG:VI Press.

Haas, Z. and 1\1. Pearlman (1998). The zone routing protocol (zrp) for ad hoc networks.

Hammad, Moustafa A., Michael J. Franklin, \Valid G. Aref, and Ahmed K.

Elmagannid (2003). Scheduling for shared window joins over data streams. In

Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul, :Michael J.

Carey, Patricia G. Selinger, and Andreas Heuer (Eds.), VLDB 2003, Proceedings af

29th International Conjerence on Very Large Data Bases, September 9-12, 2003,

Berlin, Germany, pp. 297-308. Morgan Kaufmann.

Hill, Jason, Robert Szewczyk, Alec \Voo, Seth Hollar, David Culler, and Kristofer

Pister (2000). System architecture directions for networked sensors. SIGOPS Oper.

Syst. Rev. 34 (5),93-104.

Ilyas, Mohammad and Imad Mahgoub. Handbook oj Sensor Networks. CRC Press.

[electronic resource] (Engnetbase) This is a record with electronic access and is

only available through the Library's \Veb catalogue or through the Internet. Mode

of access: Internet.

Ioanndis, Y.E. and Y.C. Kang (1990, May). Randomized algorithms for optimizing

large join queries. In Proceedings of the 1990 AC1VI SIGMOD International

Conference on Management of Data, San Francisco, CA. ACM.

Kahan, J. P. and A. Rapoport (1994). Theories of Coalition Formation. Hillsdale,NJ:

Lawrence Erlbaum Associates.

Kemper, A, G Moerkotte, and K Peithner (1993, August). A blackboard architecture

for query optimization in object databases. In In the proceedings oj the Conjerence

on Very Large Data Bases, pp. 543-554. Morgan Kaufmann Publishers Inc.

REFERESCES 185

Kiran, Ali S (1998). Chapter 21: Simulation and Scheduling, in Handbook of

Simulation: Principles,Methodology,Advances,Applications and Practice (1 ed.),

Volume 1. John Wiley and Sons Inc.

Klusch, Matthias and Andreas Gerber (2002). Dynamic coalition formation among

rational agents. IEEE Intelligent Systems 17(3),42-47.

Kubiatowicz, J., D. Bindel, Y. Chen, P. Eaton, D. Geels, R.. Gummadi, S. Rhea,

H. Vv"eatherspoon, \V. \Veimer, C. \VeHs, and B. Zhao (2000, Nov). Oceanstore: An

architecture for global-scale persistent storage. In Proceedings of ACM ASPLOS.

Kumaran, Ilango Ilango and S. Ilango Kumaran (2001. Xovember). Jini Technology:

An Overview. Pearson Education.

Lee, Chiang, Chi-Sheng Shih, and Yaw-Huei Chen (2001). Optimizing Large Join

Queries Using A Graph-Based Approach. Knowledge and Data Engineering 13(2),

298-315.

Lee, Jae-Ha (2003). Online deadline scheduling: n1.l1ltiple 111acllines and

randomization. In Proceedings of the fifteenth annual A eM symposium on Parallel

algorithms and architectures, pp. 19-23. ACM Press.

Lee, Jae-Ha (2004). Online deadline scheduling: Team adversary and restart. In Klaus

Jansen and Roberto Solis-Oba (Eds.), Approximation and Online Algorithms,

First International Workshop, lVAOA 2003, Budapest, Hungary, September 16-18,

2003, Revised Papers, Volume 2909 of Lecture Notes in Computer Science.

Springer.

Leung, Joseph Y-T. (2004, July). Handbook of Scheduling, Volume 1 of Computer and

Information Science Series. Chapman and Hall.

Lipton, Richard J. and Andrew Tomkins (1994). Online interval scheduling. In SODA:

A CM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and

Experimental Analysis of Discrete Algorithms). ACM Press.

Litzkow, ;\1.J., Miron Livny, and M.W.Mukta (1990). Condor - a hunter of

idle workstations. In In Proceedings af the IEEE lVorkshap an Experimental

Distributed Systems.

Lohman, G. and K 0:\0 (1990, August). Measuring the complexity of join

enumeration in query optimization. In Proceedings of the 16th International

Conference on Very Large Databases, Brisbane, Australia, pp. 149--159. VLDB

Endowment, Berkeley, CA.

Luo, Gang, Curt J. EHmann, Peter J. Haas, and Jeffrey F. Naughton (2002). A

scalable hash ripple join algorithm. In SIGMOD '02: Proceedings af the 2002

ACM SIGMOD internatianal canference an Management af data, pp. 252-262.

ACM Press.

Lv, Qin, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker (2002). Search and

REFERENCES 186

replication in unstructured peer-to-peer networks. In Proceedings of the 16th

international conference on Supercomputing, pp. 84-95. ACM Press.

Madden, SamueL Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman

(2002). Continuously adaptive continuous queries over streams. In Proceedings of

the 2002 ACM SIGMOD international conference on Management of data, pp.

49-60. ACVl Press.

Michael and Jack Weast (2003, May). UPnP Design by Example: A Software

DevelopeT's Guide to Universal Plug and Play. Intel Press.

:\1iles, S., J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne, and L. Moreau (2003a).

Personalised grid service discovery. In Proceedings of 19th Annual UK PeTfoTmance

Engineering Workshop (UKPEW'03) , 131-140.

:\1iles, S., J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne, and 1. Moreau (2003b).

Personalised grid service discovery. lEE Pmceedings Software: Special Issue on

Performance Engineering 150(4),252-256.

Miller, Eric (2004). \Veaving Meaning: An Overview of The Semantic \Veb. Presented

at the University of Michigan, Ann Arbor, Michigan USA.

I\abrzyskL Jarek, Schopf Jennifer M., and Weglarz Jan (2004). Grid Resource

Management - State of the Art and Future Trends, Volume 1 of International

Series 'in Operations Research and A1anagement Science. Kluwer Academic Press.

Ng, Kenneth W., Zhenghao Wang, Richard R. Muntz, and Silvia Nittel (1999),

Dynamic query re-optimization. In SSDBM '99: Proceedings of the 11th

International Conference on Scientific on Scientific and Statistical Database

Management, pp. 264. IEEE Computer Society.

Norman, T J, A Preece, S Chalmers, N R Jennings, M Luck, V D Dang, T D Nguyen,

V Deora, J Shao, W A Gray, and N J Fiddian (2003). Conoise: Agent-based

formation of virtual organisations. In Proceedings of 23rd SGAI International

Conference on Innovative Techniques and Applications of AI, pp. 353-366.

Oram, Andy (2001). Peer-to-PeeT: Harnessing the Benefits of a Disruptive Technology

(1 ed.). OReilly Associates.

Ozcan, Fatma, Sena Nural, Pinal' Koksal, Cem Evrendilek, and Asuman Dogac (1997).

Dynamic query optimization in multidatabases. IEEE Data Eng. Bull. 20(3),

38-45.

Perkins, Charles E. (2001). Ad hoc networking: an introduction. Addison-\Vesley

Longman Publishing Co., Inc.

Perkins, Charles E. and Pravin Bhagwat (1994). Highly dynamic

destination-sequenced distance-vector routing (dsdv) for mobile computers.

In SIGCOMM, pp. 234-244.

REFERENCES 187

Perkins, Charles E. and Elizabeth ~'1. Royer (1999). Ad-hoc on-demand distance vector

routing. In WMCSA '99: Proceedings of the Second IEEE Workshop on Mobile

Computer Systems and Applications, pp. 90. IEEE Computer Society.

Plaxton, C. Greg, Rajmohan Rajaraman, Andr, and 'V. Richa (1997). Accessing

nearby copies of replicated objects in a distributed environment. In Proceedings of

the ninth annual ACM symposium on Parallel algorithms and architectures, pp.

311-320. ACM Press.

Qu, Changtao and Wolfgang 1\ejdl (2001). Exploring JXTASearch for P2P Learning

Resource Discovery.

Raman, V., A. Deshpande, and J. Hellerstein (2003, March). Using state modules for

adaptive query processing. In 19th International Conference on Data Engineering,

pp. 353-367.

Ratnasamy, Sylvia, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker

(2001). A scalable content-addressable network. In Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

communications, pp. 161-172. ACM Press.

Ratsimor, Olga Vladi, Dipanjan Chakraborty, Sovrin Tolia, Deepali Khushraj,

Anugeetha Kunjithapatham, Anupam Joshi, Tim Finin, and Yelena Yesha (2002,

September). Allia: Alliance-based Service Discovery for Ad-Hoc Environments. In

ACM Mobile Commerce Workshop.

Ritter, Jordan (2001). 'Vhy Gnutella Cant Scale. 1\0, Really.

Rowstron, A. and P. Druschel (2001, November). Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. IFIP / A C.M International

Conference on Distributed Systems Platforms (Middleware), 329-350.

Sandholm, Tuomas, Kate Larson, Martin Andersson, Onn Shehory, and Fernando

Tohm (1999). Coalition structure generation with worst case guarantees. Artij.

Intell. 111(1-2),209-238.

Schwiegelshohn, Uwe and Ramin Yahyapour (2004). Grid Resource Management -

State of the Art and Future Trends, Volume 1 of International Series in Operations

Research and Management Science, Chapter Attributes for communication

between grid scheduling instances. Kluwer Academic Press.

Selinger, Patricia G., Morton M. Astrahan, Donald D. Chamberlin, Raymond A.

Lorie, and Thomas G. Price (1979a). Access path selection in a relational

database management system. In Philip A. Bernstein (Ed.), Proceedings of the

1979 ACM SIGMOD International Conference on Management of Data, Boston,

Massachusetts, May 30 - June 1, pp. 23-34. ACM.

Selinger, P. Griffiths, lVL M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price

(1979b). Access path selection in a relational database management system. In

REFERENCES 188

Proceedings of the 1979 ACM SIGMOD international conference on Management

of data, pp. 23-34. AGM Press.

SET!. Seti@home. ''http://setiathome.ssl.berkeley.edu'' .

Sgall, Jiri (1998). Online scheduling - a survey, online algorithms: The state of the

art. Lecture notes in Computer Science (1442), 196-23l.

Shah, Mehul A., Joseph 1',11. Hellerstein, Sirish Chandrasekaran, and Michael J.

Franklin (2003). Flux: An adaptive partitioning operator for continuous query

systems. In ICDE, pp. 25-36.

Steinburnn, :M, G :-1oerkette, and A Kemper (1997, August). Heuristic and

randomized optimization for the join ordering problem. Very Large Data Bases

Journal 6(3), 191-208.

Stoica, Ion, Robert Morris, David Liben-Kowell, David R. Karger, M. Frans Kaashoek,

Frank Dabek, and Hari Balakrishnan (2003). Chord: a scalable peer-to-peer lookup

protocol for internet applications. IEEE/ACM Trans. Netw. 11 (1), 17-32.

Strom, Robert et al. (1998). Gryphon: An Information Flow Based

Approach to Message Brokering. Technical report, IBJVI TJ \iVatson

Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532, USA.

http: / /http://www.research.ibm.com/gryphon / issre98 / ext-abstract .html.

Swami, A. and A.Gupta (1988, June). Optimization of large join queries. In the

proceedings of the ACM SIGMOD conference on Management of Data, Chicago,

IL, pp. 8-17.

Swami, Arun N (1989). Optimization of large join queries: Combining heuristic

and combinatorial techniques. In James Clifford, Bruce G. Lindsay, and David

Maier (Eds.), Proceedings of the 1989 ACM SIGMOD International Conference

on Management of Data, Portland, Oregon, May 31 - June 2, 1989, pp. 367-376.

AC:r-.1 Press.

Sycara, K, J. Lu, :-1. Kluseh, and S. \iVidoff (1999). Dynamic service matchmaking

among agents in open information environments. In Journal ACM SIGMOD

Record, Special Issue on Semantic Interoperability in Global Information Systems,

Ouksel, A., Sheth, A. (ed.).

Terry, Douglas, David Goldberg, David Nichols, and Brian Oki (1992). Continuous

queries over append-only databases. In SIGMOD '92: Proceedings of the 1992

ACM SIGMOD international conference on Management of data, pp. 321-330.

ACM Press.

Tesfatsion, Leigh (2002). Agent-based computational economics (ACE): Growing

economies from the bottom up. In Artificial Life, Volume 8, pp. 55-82. The MIT

Press.

Tsvetovat, Maksim and Katia Sycara (2000). Customer coalitions in the electronic

REFERENCES 189

marketplace. In AGENTS '00: Proceedings of the f01Lrth international conference

on A1Ltonomo1Ls agents, pp. 263-264. ACM Press.

UDDI (2004). UDDI Specifications. Published by Oasis \\forking Group.

Urhan, Tolga, lVIichael J. Franklin, and Laurent Amsaleg (1998). Cost-based query

scrambling for initial delays. In SIGMOD '98: Proceedings of the 1998 ACM

SIGMOD international conference on Management of data, pp. 130-141. ACM

Press.

Viglas, Stratis D. and Jeffrey F. Kaughton (2002) Rate-based query optimization

for streaming information sources. In SIGMOD '02: Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pp. 37-48. AC:~Vl Press.

\Vang, Haixun and Carlo Zaniolo (2003). Atlas: A native extension of sql for data

mining. In SIAM Data Management.

\\Tang, Jie (Ed.) (2001). On-Line Deadline Sched1Lling on M1Lltiple Reso1Lrces, Volume

2108 of Leci1Lre Notes in Comp1Lter Science. Springer.

\Viil, U. K. (1997). Open hypermedia: Systems, interoperability and standards.

J01Lrnal of Digital information 1 (2)

Wooldridge, :!\1. and N. R. Jennings (1995). Intelligent agents: Theory and practice.

Knowledge Engineering Review 10(2), 115-152.

Zhao, B. Y., J. D. Kubiatowicz, and A. D. Joseph (2001, April). Tapestry: An

Infrastructure for Fault-tolerant \Vide-area Location and Routing. Technical

Report UCB/CSD-01-1141, UC Berkeley.

Zhou, J., Vijay Dialani, D. De Roure, and W. Hall (2003). Parallel and distributed

computing, applications and technologies, 2003. In Proceedings of the F01Lrth

International Conference on Parallel and Distrib1Lted Comp1Lting, Applications and

Technologies, 2003, pp. 7-11.

