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An emergent trend in large scale distributed systems enables collaboration between 

large numbers of independent resource providers. Grid computing and peer-to-peer 

computing are part of this trend. Resource management in such systems is inherently 

different from that found in traditional distributed systems, the key difference being 

that the new classes of systems are primarily designed to operate under inconsistent 

system information and temporally varying operating environments. Although primarily 

used to enable collaboration of computational resources, these systems have also found 

application in the field of distributed data management. Although the principles of 

grid computing and peer-to-peer computing have found many applications, little effort 

has been made to abstract the common requirements, in order to provide a conceptual 

resource framework. This thesis investigates the alleviation of such common requirements 

through investigations in the field of online scheduling, information dissemination in 

peer-to-peer networks, and query processing in distributed stream processing systems. 

A survey of system types is provided to highlight the new trends observed. A top dmvn 

approach to developing a unifying model seems inapplicable and the range of problems 

encountered in these system types can only be addressed by identifying common trends 

and addressing them individually. Consequently, three application domains have been 

identified in the respective fields of online scheduling, data dissemination and stream 

query processing. Each of these application class is investigated individually. For each 

application domain, a review of the state-of-the-art is followed by a precise definition 

of the problem addressed in the application domain and the solutions developed are 

substantiated with experimental evaluation. Findings from individual applications have 

been summarized to generalize the observations towards an overall hypothesis. 
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The i11itial discussion of online scheduling requirements in computational grids is used to 

develop an online guaranteed resource provisioning mechanism. This helps investigate 

adaptive behavior in systems with centralized control and simple resource descriptions. 

The investigation also highlighted information management requirements in online scheduling 

systems. Similar requirements were identified in the field of open hypermedia systems 

and pervasive computing environments, and a common approach was used to address 

the problems in these domains. The collective set of requirements is addressed in 

the generalized context of information dissemination in large scale systems. Adaptive 

behaviour is investigated in the context of a large number of autonomous resources and 

the self organizational behaviour of such networks. The self organizational behaviour 

discussed in the context of information dissemination highlights the fact that adaptive 

behaviour follows the principal of duality. The findings demonstrate that self-organization 

can be achieved either by improving the provisioning of resources or by manipulating 

the workload. It highlighted the fact that QoS definitions will play an important part in 

future distributed systems. The concept of QoS and adaptive behaviour is investigated in 

the context of a distributed stream processing system. This investigation has led to the 

development of a stream query processing architecture with the capability to support 

multiple query optimizations. A novel query processing language, a query planning 

technique, an operator scheduling algorithm and an SP J operator are described in the 

context of the data stream management system. \Vhile maintaining the focus on the 

overall hypothesis, the thesis provides original contributions in each of the application 

domains. 
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Chapter 1 

Introduction 

Non-adaptive computational systems capture only one view of the world, usually the 

one that ,vas defined at design time. They fail to take into consideration that modern 

distributed systems by their very nature are non-deterministic and dynamically evolving 

- a fact also supported by the recent advances in the field of pervasive computing 

infrastructures. Consequently, non-adaptive systems tend to operate in sub-optimal 

states. Although, in some cases exhaustive enumeration of all possible states of operation 

allows application developers to impart adaptive behaviour to their applications, in most 

cases it remains infeasible to ascertain all the possible operating states for applications 

at design time. As suggested in the survey, presented in Appendix B, a set of common 

characteristics exist for most such operating environments. At least two possible approaches 

could be adopted to explore adaptive behaviour in such environments. The first is to 

create a generic model and validate it for the given set of applications. The second is 

to synthesize the hypothesis by addressing the research issues within the application 

domains. As most of the concepts related to adaptive behaviour in distributed systems 

have not been exhaustively explored by the research community, the latter approach 

happens to be more appropriate. 

Research in distributed computing systems has been diverse and to the best of our 

knowledge has almost exclusively addressed the part of the problems highlighted in 

Appendix B. "While most research has focused on isolated issues, it is believed that a 

better understanding of the issues can be achieved if all of them are considered in the 

context of an all encompassing pervasive computing infrastructure. Additionally, it is 

believed that these explorations need to be carried out in the context of the generic 

application scenarios that are applicable in a wide variety of systems, and therefore this 

work was carried out in the context of three exemplar applications. 

This chapter gives a short introduction to adaptive systems and enumerates the characteristics 

of the operating environments of interest. Then, the choice of application exemplars is 

justified, along with the research problems that they address. The contributions and 

2 



Chapter 1 Introduction 3 

the structure of the thesis conclude this chapter. 

1.1 Adaptive systems 

In general, adaptive behaviour is the ability of a system to modify its behaviour in 

response to the prevailing operating environment. However, in the context of a large scale 

system, it is uncommon for each of the system components to have a complete consistent 

view of the prevailing operating conditions. In such cases, the adaptive behaviour of 

the system is closely associated with its perceived operational conditions. A generic 

non-adaptive system can be considered as one which does not allow any changes to its 

perceived operating conditions and attempts to achieve a certain objective function, 

given the prevailing operating conditions. 

An adaptive system monitors and models its operating environments and either optimizes 

it objective function or modifies it in accordance with the prevailing operating conditions. 

Therefore an adaptive system is characterized by its ability to discover, model and utilize 

the resources found in its operating environment. A number of complex interactions 

may exist between the operating environments and the adaptive system components. 

However, only a subset of these interactions will be applicable in the context of resource 

management. Adaptive resource management techniques in large scale systems allow 

the system resources to identify the subset of operating environment characteristics that 

allow for better utilisation of its resources. For the purpose of resource management 

in adaptive systems, important amongst these sets of interactions are the ones that 

determine the characteristics of the operating environment and the influence of the 

workload on the given resource. \Vhile an interaction set determines the ability of the 

resource to collaborate with other resources, the workload influences the type of objective 

functions and optimisation strategies adopted by the system. 

Consider the example of an online scheduling system that receives a number of computation 

job requests to be processed on a set of unreliable resources, as shown in Figure 1.1. It is 

assume that the aim of the scheduling system is to maximize the usage of computational 

resources. A non-adaptive scheduling system will be designed to maximize a given 

objective function. However, a predetermined objective function may not be the best 

choice, given the variations in availability of resources and the properties of the job 

characteristics. An adaptive scheduling system could observe such variations, adapt its 

behaviour and choose an appropriate objective function to attain the aforementioned 

goal of maximizing resource utilisation. 

The above simple example highlights the three important characteristics observed in 

adaptive systems. 

(1) Autonomy of actions. In the above example, each of the nodes was able to independently 
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Job Sequence 

J"'J'2'·····, J'N 

Scheduler-l 
Avg. Resource Utilization 30%. 

Migrating Resource 

Leave Join 

Job Sequence 

J2, 'J 22 '· .... ' J 2M 

Scheduler-2 

4 

Avg. Resource Utilization 60%. 

FIGURE 1.1: An online scheduling system with resource migration. 

identify whether the resource should be placed under the control of the scheduler. At 

the same time, the scheduler was autonomously able to determine, when to use the 

resources. Autonomy of actions is central to this emerging class of systems, it allows 

them to independently model the operating environments and alter it by cessation of 

interactions with some parts of the system. 

(2) Duality of resource management. The choice of the objective function highlights the 

duality principle encountered in this class of systems. Abundance of resources translates 

into a resource provisioning problem, while scarcity of resources leads to a quality of 

service issue. For example, independent resource providers IIlay cease to participate in 

the context of the scheduling system if their individual objective functions are not met, 

while limited resources may force the scheduler to adopt the objective functions which 

provide a degraded quality of service warranties. 

(3) Optimisation over an interval. Adaptive behaviour is instigated when the system 

components are able to perceive a change in the operating environment. These observations 

are not always based on observance of a single state change and require the system 

to observe and model the operational conditions over a period of time. Constant 

adaptations or too fast an adaptation may lead to instability and the systems need 

to be able to identify such features. 

The list of properties is non-exhaustive and will be strongly dictated by the notion 

of adaptive systems behaviour. For the set of systems of interest, as described in 

Appendix B, adaptive resource management is primarily concerned with two types 

of resources, namely computational resources and information discovery in distributed 

systems. Additionally, the effects of quality of service on resource management within 

a single resource are of interest. 
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Operating Environment 

8 
88 

8 8 

Join 

Lea 

FIGURE 1.2: Adaptive systems ''lith dynamic resources. 

Operating EnVIronment 
Topology-A, Objective Functlon-F(x) 

Topology 
Modlftcatlons 

as ObJeCl1ve 
Changes 

Operating EnVIronment 
Topology-a, Objective Function·H(x) 

FIGURE 1 3: Adaptive systems with evolving topologies. 

1.2 Classification of adaptive systems 

5 

Three common types of adaptive resource management scenarios are widely encountered 

in the set of systems highlighted in Appendix B - namely Resource Adaptation, Topological 

Adaptation and Quality of Service (QoS) Adaptation. In cooperative operating environments, 

availability of resources influences task distribution between the available resource providers. 

Applications capable of maximizing their objective function in response to the availability 

of resources and ability to degrade gracefully when these resources are no longer available 

are considered to be resource adaptive 1.2. 

Varying 
Workload (W) 

Bounded Resource (R) 
Bounded ODS 

F(J,R,W) 

FIGURE 1.4: Adaptive systems with QoS adaptation with load variance, under fixed 
resources. 
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Topological adaptation 1.3 refers to the capability of an application to modify its communication 

behaviour in response to changes in the operating environrrlent. The key difference 

between resource adaptation and topological adaptation is that the latter approach 

leads to the formation of a different cooperative structure in response to changes in the 

environment. In the former type, the variations in resource availability are absorbed 

\vithin the structure. 

Finally, the QoS Adaptive systems 1.4, represent a special case where the operating 

environment has a finite set of resources. Unlike the previous two cases, where additional 

resources within the cooperative structure augment the capability of the operating 

environment, the QoS Adaptive systems try to absorb the variations in the workload 

or the operating environments and adapt their internal behaviour to adhere to bounds 

specified by QoS. 

1.3 Application domains 

Distinct properties are associated with each of the three types of adaptive system. These 

include resource description and utilisation models, the ability of resources to adapt in 

any given operating environment and the type of resource optimisation feasible within 

the given context. In order to select an appropriate application exemplar to investigate 

the resource management features of systems with the characteristics described in Appendix 

B.2, common resource definition and adaptation scenarios were considered. To investigate 

the resource adaptive systems, an online scheduling system capable of providing performance 

warranties on a set of networks of workstations was considered. Detailed problem 

definition about the application domain can be found in Chapter 2. Although this 

exemplar application presents the simple case of computational resource adaptation, 

most similar systems have not considered the support for objective functions; instead 

they rely on best effort approximations. The challenge therefore is to devise adequate 

resource management capability to support objective function, such as warranted completion. 

Topological adaptation is widely applicable in the context of sensor networks and application 

overlay systems. The key feature of these environments is their ability to choose the 

appropriate members of the overlay in response to the variations of the overlay structure. 

Although, to date structured and unstructured overlays have been widely employed 

for this purpose, none of the techniques allows the applications to evolve a topology 

given the operating constraints. Topological adaptation has been investigated in the 

context of Peer-to-Peer (P2P) information dissemination systems. However, none of the 

existing approaches takes into account the resource capabilities of individual peers, or 

the self-evolution and self organizing aspects of overlay systems. A detailed description 

of the challenges can be found in section 5.1. Findings from this study are widely 

applicable in query routing in sensor networks and resource management in P2P system 
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environments. 

Investigation into the properties of the QoS based adaptation was carried out in the 

context of Data Stream Management Systems (DSMS). Processing over the 'append 

only' data streams specified in terms of continuously executing queries provides an ideal 

scenario for a static workload, while the variations in the properties of the incoming 

streams allow simulation of the variations in the operating environment. Finite memory 

and computational resources provide a resource bound operating environment, one of the 

key assumptions when investigating QoS. Although, a number of approaches have been 

advocated in the field of data stream query processing, none of the current approaches 

investigates the potential resource sharing between concurrent evaluations of queries on 

data streams. This approach investigates resource sharing and the resultant concurrency 

control issues in the context of multi-query continual optimisation over data streams. A 

detailed description of the problem domain and the scope of our work are presented in 

section 8.3. Findings from this exemplar have helped further state-of-the-art in DS:VlS 

query processing, and can be generalized to be applicable to QoS aware systems with 

bounded resources. 

The choice of application exemplars provides a dual opportunity to further the state-of-the-art 

in application domains, while contributing to generic investigations in the area of adaptive 

systems. A significant degree of overlap between basic properties like autonomy of 

actions, incremental access to input data, partial visibility of state information and the 

temporal nature of the operating environments help to enforce some common behaviour 

across applications, The following section describes the problems in individual application 

areas, along with pointers to the seminal work in these fields, which is further extended 

by the current investigations, and summarizes the contribution of this thesis. 

1.4 Contributions 

The contributions of this thesis can be divided into two distinct categories: contributions 

to individual application domains and generic contribution to an overall hypothesis. 

The hypothesis proposes a model for dynamic graph based representation of large scale 

systems. The contributions to the application domain are further classified into the 

following three categories: 

Online Scheduling An online scheduling model for Grid environments is proposed as 

an extension to the original scheduling theory discussed in (Leung 2004). Online 

scheduling assumes that their is a continually varying demand for resources and 

jobs. The aim is to determine the feasibility of an optimal planning strategy under 

the time-varying demand and supply of resources and jobs, and to minimize the 

cost of optimisation in case a strategy exists, The program allows job migration 
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between multiple resource providers, and there are penalties on commissioning and 

decommissioning of resources within a resource provider. In order to minimize 

resource penalties and forecast the usage of any spare resources, the individual 

resource providers form coalitions to outline the cooperative strategy between 

various resource providers. The initial motivation of the application domain and 

the application are described in Chapter 3, the generalized optimisation scenario 

is described in Chapter 2 and further developed in Chapter 3. The algorithmic 

contributions are: 

1. An online planning algorithm for online scheduling on multiple machines, as 

described in Chapter 3. 

2. The experimental evaluation of the algorithm as provided in chapter 4 

Infonnation Disselnination Information dissemination focuses on information management 

in an ad hoc network environment. The motivating applications are described 

in Chapter 5 and in the information discovery and management techniques in 

Peer-to-Peer environments (Stoica, Morris, Liben-Nowell, Karger, Kaashoek, Dabek, 

and Balakrishnan 2003; Zhao, Kubiatmvicz, and Joseph 2001; Rowstron and Druschel 

2001). The approach for this thesis uses the characteristics of the information 

and its demand and supply characteristics to create an overlay. The overlay is 

optimised for probabilistic routing mechanisms, also known as search mechanisms. 

An empirical evaluation of the approach is presented for a finite number of system 

nodes. The algorithmic contributions for this are as follows: 

1. A distance based similarity search algorithm is described in Chapter 5 

2. A self-organizing overlay mechanism is described in Chapter 5 

Query Optimisation The problem of query planning and processing in a data stream 

management system are described in (Babcock, Babu, Datal', Motwani, and Widom 

2002). This scenario is used to examine the complexity of the combinatorial 

optimisation in dynamic environments and use dynamic graph techniques to address 

a multiple optimisation problem. A dynamic graph based data structure is used 

to represent a query planning scenario that needs to produce an optimal operator 

ordering to reduce the cumulative resource utilisation across multiple queries. 

The motivating examples, related database literature and query planning and 

processing algorithms are described in Chapter 8. The algorithmic contributions 

presented in Chapter 8 are: 

1. A dynamic programming based query planning algorithm for queries on data 

streams 

2. An interval search tree-based select, project join operator. 

3. An algorithm for concurrency control of multiple query processing for stream 

data management systems. 
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4. PSQL, an extension to SQL, for specifying queries over streaming data. 

1.5 Structure of the thesis 

The literature review for each of the application domains is presented in the chapters 

that are directly related to the discussion sections and is distributed across chapters to 

closely associate it with the new contributions. The next chapter describes the general 

theoretical basis for the work presented in the three application domains. The rest of 

the thesis is organized as follov.'s. 

Chapter 2 : Adaptive Systems This chapter additionally outlines the characteristics 

of adaptive systems and proposes an ad hoc resource group (AHG) based model for 

representing large scale distributed systems. The AHG's are modelled as dynamic 

graphs which capture the characteristics of autonomy and partial information 

visibility. The properties of the model are then defined as verified by the application 

exemplars. 

Chapter 3 : Online Scheduling Online scheduling techniques are investigated for 

computational resource sharing over a set of federated and autonomous resources. 

The algorithms for admission control are presented in online job Grid scheduling 

systems and analysis is provided for the case of finite time horizons. 

Chapter 4 : Evaluation of Online Scheduling This chapter presents the empirical 

evaluation of the algorithms described in Chapter 3 and provides comparison with 

the Earliest eXpiry First (EXF) algorithm. It considers the case of uniform and 

variable jobs and evaluates the algorithm for various values of slack k, for k=O, 

k 2: 1 and k ~ 1, and for variable job arrival rates. It then describes the use of 

resource advertisement as a means of developing an overlay of online scheduling 

systems, the information needs for which are further explored in the next chapter. 

Chapter 5 : Resource Management in P2P Systems This chapter introduces the 

adaptive overlay formation and maintenance for resource management in peer-to-peer 

networks. A brief review and application domain description is followed by a 

comparison of the existing overlay management techniques. Modifications to these 

techniques and a generic model for probabilistic overlay creation and maintenance 

are described. 

Chapter 6 : P2P Coalition Formation and Search Algorithm This chapter discusses 

the application of the generic algorithm described in Chapter 5, to the domain 

of Peer-to-Peer Open Hyper-media Systems (OHS). It introduces the application 

scenario and presents a formal description of the search algorithm. 



Chapter 1 Introduction 10 

Chapter 7 : Evaluation of the Search Algorithm This chapter provides empirical 

evaluation of the algorithm developed in chapter 6. 

Chapter 8 : Query Optimisation This chapter begins with a description of query 

processing in data streams and states the relevance of the application domain to 

adaptive systems. The model used to describe data streams provides an analogy 

for the infinite sequences of data items that are evaluated for a set of queries. This 

is followed by a description of a dynamic graph-based query processing algorithm. 

An IBS-SP J operator is presented for shared range predicate evaluation. Query 

re-optimisation techniques and operator scheduling techniques for efficient evaluation 

conclude the chapter. 

Chapter 9: DSMS - Implementation, Evaluation and Analysis This chapter presents 

the architectural details of the DS.:\i[S implementation and the experimental evaluation 

and analysis of the query optimisation algorithm, the IBS Operator and the 

Operator Scheduling algorithm. 

Chapter 10 : Conclusions This chapter correlates the observations in the various 

chapters and summarizes the contributions of the thesis. It is followed by a 

discussion of the potential for future work and directions arising from the above 

work. 

1.6 Suggested order for reading 

A legend presented in figure l.5, is provided to allow easy navigation through this text. 

It is suggested that all readers familiarize themselves with Part I, which outlines the 

objectives and scope of the work presented in other parts of the thesis. Part II, Part III 

and Part IV can be read independently of each other, and are complete pieces of work 

in their own right. Releyant sections of Part V may be read to see how each of the Parts 

II, III and IV relate to the initial discussion in Part 1. It is hoped that the organisation 

diagram helps navigation through this complex text. 
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Chapter 2 
Adaptive Resource Management 

FIGURE 1.5: Organisation of thesis. 



Chapter 2 

Adaptive Resource Management 

in Large Scale Systems 

The \Vorld Wide \Veb (WWW), Grid Computing, Peer-to-Peer (P2P) systems and 

Semantic \Veb represent emerging technologies employed to develop large scale computing 

systems. Almost all of them are enabled by cooperative resource sharing between 

multiple autonomous resource-providers. \Vhile the web represents one of the most 

scalable implementations of distributed system for sharing data/information content, it 

primarily remains a client-server system with content providers in exclusive control of the 

resources. Recent adyances in the above mentioned technologies such as Grid Computing 

and P2P, attempt to achieve a higher level of resource integration by incorporating 

coordinated use of computational and data resources across multiple resource providers/consumers, 

with decentralized control. However, unlike the simple data content resource sharing 

on \V\V\V, the coordinated use of computational resources and data presents greater 

challenges of synchronisation, management and utilisation of resources, as is sumrnarized 

in Appendix B, which presents a review of these open issues and summarizes the 

state-of-the art in the above mentioned technologies. 

From current trends in these emerging technologies, one could safely infer that future 

systems may use a common representation based on "virtual organisations (VOs)" to 

represent a dynamically associated set of resource providers and consumers. A virtual 

organisation is synonymous to an ad hoc resource group created solely for the purpose 

of sharing computational and data resources amongst its participant members. To 

date, VOs have been represented as a loosely connected set of resources and very 

few investigations have focused on the management of resources within the VOs, and 

interactions between multiple VOs. This study presents a VO based representation of 

large scale distributed systems, for this purpose. A VO is created by dynamic association 

of resource providers and consumers, and the association may evolve over a period of time 

as the resource providers and consumers join and leave the VO. During its lifetime, a VO 

12 
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needs to provide the necessary mechanisms to facilitate collaborative resource usage and 

management mechanisms. This chapter investigates the resource management features 

in these organisations and describes their usage in different application scenarios. 

The rest of the chapter is organized as follows: Section 2.1, introduces ad hoc resource 

groups (ARG's) as generic VO's and enumerates its characteristics. Section 2.2, describes 

the resource management requirements in ARG's and describe the open issues in managing 

resources in them. Section 2.3 describes the generic model for description and management 

of resources in this thesis: it also describes how the work will be developed in the following 

chapters. Section 2.4 describes the rationale for choosing application scenarios in the 

investigation. Section 2.5 provides an alternate view of hmv advances in these application 

scenarios can be used to develop a distributed stream managem.ent system. 

2.1 Ad hoc Resource Groups 

Increasingly large scale systems are being formed by dynamic online association of 

computational and data resources. Electronic market places, virtual organisations, 

peer-to-peer computing and networks of workstations are examples of the emerging 

type of structured/semi-structured ARG's for managing a practically infinite number 

of computational resources in online collaborations. lVlost such ad hoc resource groups 

are created to provide a service to the members of the institution and are either based 

on social, economic or utilitarian models. ARG's assume a structure that is better 

suited for accomplishing their objective function; examples include a market model for 

environments with scarce resources and a cooperative model for partitioning the large 

search space. These institutions may impose certain restrictions on the behaviour of the 

participants - restrictions may assume forms of behavioural guidelines, online checks or 

dominant strategies - to effectively manage the ad hoc resource group. Enforcement of 

such restrictions may require monitoring of the communication between participants, 

monitoring the state of each or some of the participants, and using a reward/penalty 

mechanism. These rules, restrictions and behavioural patterns of the ad hoc resource 

group are referred to as the "operating environment" . 

Operating environments provided by an ad hoc resource group may be either centrally 

managed or collectively managed by a set of distributed managers, or they may be 

unmanaged - evolving from the collective behaviour of its participants. Most ARG's 

facilitate interactions between its participants. Rowever some ARG's, for example, 

auction sites may prohibit direct interaction between the participants. In cases where 

ARG's facilitate interaction between the participants, they need to provide additional 

mechanism to coordinate and monitor such interactions. These constraints imposed by 

the operating environment restrict the autonomy of the individual participant. Examples 

of such restrictions include constraints on sharing of state information and management 
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of resources. Constraints enforced by the operating environments determine the "visibility" 

of the individual participants. In most large scale systems/ AHG's, no single participant 

will have the complete knowledge of the entire state of the system. Each of the participants 

observes a partial environmental state, which in turn determines the scope ofits influence 

on the operating environment and the behaviour of other participants. Considering that 

all the participants in an ARG exhibit rational behaviour, the state visibility of the 

participants will determine the sub-space in which they can affect the behaviour of the 

system. Participants use this observed state information to autonomously determine 

their "operational behaviour" . 

It is presumed that the ARG's are dynamic entities that evolve over a period of time. The 

temporal nature of the observed state may require the participants to take into account 

the historical evidence relevant to their future actions. In such dynamic environments, 

an autonomic participant needs to determine its operational behaviour in terms of an 

objective function on a partially observed temporal state. The temporal nature of the 

environment and the variation in the observed state usually results in adopting multiple 

objective functions for different observed conditions. A set of such objective functions is 

referred to as a "policy". In certain cases, the participants may use a single policy or may 

consider re-evaluation of the policy during the lifetime of the ARG. Most ARG's that 

support use of dynamic policies impose constraints on the tiule period for the validity of 

the policy, as the policy adopted by one of the participants may influence the behaviour 

of the other participants. 

Dynamic operating environments present a unique challenge. It is not possible to 

envisage all the operating states at the design time. Consequently, participants need to 

adapt to dynamic run time environments. As described above the adaptive behaviour 

of the participant is constrained by the spatio-temporal data visibility of its operating 

environment and the information they hold on the state of the other participants. 

To summarize, no single participant will have knowledge of the complete state in most 

large scale systems; consequently they need to be organized into groups of participants 

under ad hoc resource groups (ARG's). Interactions between the participants will 

determine their ability to collaborate in order to share their resources to accomplish 

their desired individual goals. Participants in such collaborations will exhibit autonomic 

behaviour. The dynamic: nature of the collaboration means that the participants will 

need to adopt policies that allow them to accomplish their individual objectives under 

the prevailing operating environment. Adaptive polices will need to be adapted in 

temporally evolving operating environments. 
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2.1.1 Discussion 

Autonomy plays an important part in resource management in most distributed systems. 

For example, consider the case of W\V\V and Service Oriented Architecture (SOA). As 

described in Appendix B, both these system types exhibit autonomous resource control. 

Although autonomous resource control is crucial from the systenls administration perspective, 

it may be argued that it is also crucial for creating scalable distributed systems. The 

failure of component based middle'ware s~'stems is widely attributed to their inability 

to provide wide area distributed resource management. Two approaches have been 

proposed to address this issue: firstly, stateless Message Oriented Middleware (MOM), 

and secondly, systems designed as collaborations of manageable hierarchies of resources. 

\Veb Services are an example of the former class, while P2P and Semantic \iVeb fall into 

the latter class, while Grid Computing systems lie somevdlere in the middle. This thesis 

is concerned with the systems of latter type. 

Given the premise that the large scale system is viewed as a collection of autonomous 

resources, a few questions need to be answered. 

Why are aggregations of resources referred to as AHG's? Does this refer 

to Electronic Institutions as defined in the artificial intelligence research 

community? 

Resources are aggregated to achieve some common objectives of the participant resources. 

For example, an auction site is an Electronic Institution created to support a particular 

mechanism for negotiations on goods and commodities and represent an ad hoc resource 

group corresponding to a physical institution, such as the stock 111.arket. Similarly, if one 

considers the aggregation of computing cycles and data resources, these aggregations 

assume some form and semantics for collaborative usage of the resources. It may be 

argued that the semantics of these aggregations can be classified and standardized to 

reflect the standard usage pattern in systems, where each usage pattern reflects a type 

of Electronic Institution (EI). For example, consider the case of SETI@HOI\1E, the 

system allows participants to allocate their computational resources to an EI. The EI 

restricts the state of visibility of the system participants and prohibits direct interaction 

between them. However, the central EI has a set objective to utilise the collective 

resources by allocating computational jobs, in order to maximize the throughput. Thus 

collections of resources are organized in a star topology, vvith a centralized server acting 

as a central EI controller. As collaborative use of resources in such aggregations relies 

on a well-defined overall objective, organisational structure and communication patterns 

such aggregations are referred to as AHG's. 

The notion of Ers as defined in the field of AI deals with the organisation of roles and 

responsibilities in an agent's community, along with the necessary restrictions in terms 

of permitted and forbidden actions. However, as far as is known the notion of Ers has 
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never been applied to the development of large-scale systems, this thesis is the first to 

propose such an extension, The extensions proposed are in some specific characteristics 

of the AHG's. The first step is to look into the self-organisational behaviour of the 

participant's, ·with a specific example of participants sharing computational cycles, 

secondly, to look into the resource description and discovery support required by these 

ad hoc resource groups, in the domain of the peer-to-peer service discovery, and thirdly, 

to look into the effects of task definitions, and task profiles on the performance of a 

single resource provider, with an example of a stream database management system. 

How are AHG's formed? 

An AHG comes into existence when some self managing participants of a large scale 

system form an aggregation that bounds the behaviour of these participants by means 

of some norms on their behavioural pattern. These norms may be agreed upon at the 

inception of the AHG or may evolve from the behavioural pattern of the participants, 

The monitoring of such norms is enforced by the participants of the AHG by means of 

a reward and penalties mechanism for AHG's, in economic organisations, or by means 

of reduced influence on the environment in case of social organisations. However, both 

these organisational types assume that the AH G 's are able to enforce some desired 

behaviour on the participants by means of local restrictions. It is envisaged that the 

large scale systems can be built as an aggregation of numerous AHG's. The restrictions 

on behaviour of the AHG's are imposed by means of enforcing appropriate policies. 

What are the types of resources they share? 

In general, AHG's remain capable of trading any resources encapsulated by the participants. 

For example, in an Electronic Market place, participants may transact goods and services 

of all kinds. Considering the case of AHG for studying characteristics of the large scale 

distributed systems: first of all the computational cycle sharing for high-throughput 

computing, and secondly the effects of the organisation on information dissemination 

within an AHG. Finally,there is a study on the effects of resources and task variations 

on resource provisioning on a resource provider. These characteristics can be mapped 

to Parts II, III, and IV respectively. 

What are the organisational models for AHG? 

The AI definition of the AHG does not impose strict restrictions on the way the resources 

are organized in an AHG. However, when applied to the case of distributed systems 

the organisation of AHG may have to take into account the physical attributes of the 

operating environment, For example, Part III describes the scenario for a sensor network, 

where the participants need to form an appropriate overlay to capture the constraints 

of the communication network. Such an organisation of the overlay can be captured 

by means of an overlay network. As described in part III, there are two ways to form 

an AHG, either using a predefined structure and restricting the objective functions 
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appropriate to the structure or by using a set of objective functions to determine the 

overlay structure. However, the second case is observed more frequently and is further 

investigated in part III of the thesis. 

Are there some common data structures and algorithms common to multiple 

types of AHG's? 

In ad hoc resource groups, no entity has complete knowledge of the entire system state. 

The participants need to monitor the operating environment for changes. These changes 

assume the form of change in known participants, or relations with those participants, 

over a period of time. These characteristics point to the need for a data structure capable 

of handling spatio-temporal data. The use of dynamic graph structure to encapsulate 

such information is considered. Details about the data structure and its use can be 

found in Part II of the thesis. 

What are the semantics of interaction between these AHG's? 

\Vhen considering a large scale system composed of a number of ad hoc resource groups, 

it is imperative to allow the participants to discover other such ad hoc resource groups 

and interact with them (and vice versa). Cases where the participants can autonomously 

choose the AHG's that they want to be part off require no specific interaction among 

them. However, when the AHG's are responsible for the effective use of the participants 

resources, they need to allow exchange of resources between the collaborating AHG's. In 

such cases, a hierarchical organisation of AHG's may emerge, with a higher level overlay 

forming between the AHG's. 

The above analogies can be applied to yarious scenarios in Grid computing and P2P 

systems, where a number of participants form the "virtual organisations" or "peer 

groups" respectively. Membership of such groups can either be obtained by the autonomous 

actions of the independent participants or may emerge from interaction between the 

groups. From the above discussion, one could envisage modelling a large scale system as 

a collection of such interacting AHG's. From the distributed systems perspective, one 

needs to establish the effectiveness of such a model in developing distributed applications. 

A number of different features have been associated with distributed applications, but 

few are commonly observed. Such common features include: sharing of computational 

resources and data resources, and orthogonal to such goals are the issues related to the 

discovery of resources in those systems. 

2.2 Resource management In ad hoc resource groups 

Ad hoc resource groups provide mechanisms for sharing resources between the various 

participants and facilitate resource sharing between resource providers and consumers. 

Resource providers and consumers in an AHG may deal in virtual resources such as 
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stocks and commodities, but when applied to the computational infrastructure these 

AHG's are assumed to deal in computational resources, data resources or network 

resources. The scope of this thesis is restricted to AH G . s used to manage resources 

in distributed computing systems. Most distributed systems consider computational 

or processor cycles as a default definition of a resource. However, a more generic 

definition of resources is taken to include computational, data and network resources. 

The term resource is defined as an entity whose state can be controlled and affected by 

the operating environment. It is therefore natural to consider computing cycles as one of 

the primary resources managed by AHG's and has proven measures in terms of processor 

speed, the cache, memory availability, which are quantifiable resource. Other resources 

such as data remain more qualitative and difficult to describe and manage. Attributes 

of data resources include provenance, data visibility and synchronisation requirements. 

As described above, an AHG consists of resource providers and consumers, with AHG 

providing the mechanism for maximizing the gain for both classes of participants. An 

AHG needs to provide the mechanisms for resource providers to publish their set of 

resources for subsequent discovery and consumption. On the other hand, the AHG 

needs to provide a means for allowing consumers to be able to express their request 

in terms of tasks, for which the publishers can provide resources. This matchmaking 

process can be facilitated by means of a service discovery mechanism within the AHG. 

Discovery services have been widely deployed in distributed systems to address problems 

and related ones in resource discovery. However, distributed AHG's may require multiple 

such discovery services for publication and discovery of various resources, but supporting 

such a service for an AHG with a practically infinite number of participants is unfeasible. 

Thus resource providers and consumers need to be organized into groups of collaborating 

participants- requiring mutual participation to discover the resources. The interaction 

graph representing this collaboration can be considered as an overlay network for discovery 

of resources. 

Assuming that the participants in an AHG have the necessary discovery mechanisms to 

acquire the information about the resources of their choice, the use of such resources 

may be autonomously controlled by each individual provider, or a number of providers 

may coordinate the use of their collective resources. Coordinated use of resources may 

be facilitated by the environment (by building it into environmental constraints) or the 

participants may create ad hoc means to allow such coordination. 

This thesis investigates these and related issues in the context of the resource sharing 

using online scheduling in a Grid computing environment. 
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2.2.1 Resource description and resource monitoring 

In general, a resource can be represented using a set of attributes that define its properties. 

Applications use relational, semi-structured or an RDF representation of the resources. 

A resource description reflects the state information about the resource and enumerates 

its properties. It may be used as an advertisement for resource matching in distributed 

systems. 

This thesis focuses on the structure of the ad hoc resource groups formed primarily 

for sharing computational and data resources. Irrespective of the organisation of these 

electronic institutions, a few common issues need to be managed in each, namely: 1. 

Discovery of resources. 2. ~1anaging computational resources. 3. rVlanaging data 

resources. 

The above patterns of resource management in large scale systems are studies. First one 

in which the tasks and their profiles are known, while the number or resources available 

remains uncertain. The second case, studies the effects of collaboration where the task 

is known, but cost is reduced by controlling the state visibility of the system. Finally, a 

system where different task profiles need to be managed, given a definite set of resources 

is presented. 

2.3 Modelling the ad hoc resource groups 

The notion of operating environments was introduced in section 2.1. However, to the 

best of our knowledge their exists no generic model to describe an operating environment. 

This section, presents a hypothetical model that alluws to capture the notion of ad hoc 

resource groups (AHG's). 

A dynamic graph based representation to model the infinite set of resources in an ad 

hoc resource group is employed. The dynamic graph Gt is used to represent the global 

view of the entire state of interest. The graph Gt is composed of nodes Vi and edges Et , 

the capabilities of the node Vi are described by a vector Ft , while the capabilities of the 

edge are captured by the vector H t . The computational resources providers are mapped 

as the nodes in the global network Gt . The graph Gt represents a completely connected 

graph if all the nodes are able to communicate with each other. The communication 

channels are represented by means of the edges of the dynamic graph 1. A temporal 

dynamic graph representation captures the temporal behaviour of the system dynamics. 

In cases, where the graph Gt is a subset of a completely connected graph and the edges 

1 \\Tired networks like the ethernet allow a n-to-n connection, however physical factors constrain 
communication in an ad hoc networks, which in turn rely on their neighbouring nodes to route the 
message 
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E t represent the point-to-point communication path between the nodes, the graph Gt 

represents an overlay network 2. 

The computational costs associated with the maintenance of such a dynamic graph 

increase exponentially with graph size, making it unfeasible to maintain a centralized 

system state. Distributed localized views can be used to maintain the global system 

state. Synchronized maintenance of the localized views allows the system to maintain a 

global vie"w, suggesting the use of sparsification techniques (Eppstein, Galil, Italiano, and 

Kissenzweig 1997) to construct the global graph properties from local graphs. However, 

it is not always mandatory to maintain synchronised local views. Alternately, each node 

can maintain its local view, hereafter referred to as the local view gt, which is composed 

of nodes Vt and edges et. It should be noted that a local view n1.ay be maintained by an 

indiyidual node, or a group of nodes may maintain a shared local view. 

It is assumed that each node maintains a local view of the graph in order to maximize 

its objective function. Considering that the messaging costs are directly proportional to 

the radius of the graph gi, the diameter of the graph ,yill be restricted by the associated 

state maintenance costs. Costs associated with maintenance of the localized view are 

usually weighed against the benefit acquired by maintenance of such a state. The nature 

of this association between the local view and the objective function is incumbent on 

the requirements of the application domain, and cannot be generalised across the model. 

However, the dynamic graph model allows expression of such constraints in the form of 

the vector functions associated with the nodes and the edges of the graph. 

Constraints on the function vectors of the nodes and edges of the graph raise issues 

related to the topology of the graph Gt . The topological constraints remain crucial 

to the systems ability to self-organize itself in the event of change. Using a temporal 

representation of the graph allows capture of the evolutionary aspect of the AHG's. 

Some applications may consider a time series representation of the graph parameters. 

Standard time series inferencing techniques could be applied to monitor the behaviour 

of the overlay network, using historical data to predict the changes in the AHG's. 

The sharing of resources in AHG's is a dynamic process, whereby the system state 

changes dynamically over a period of time. Such changes may be modelled as changes 

in the neighbourhood (by means of et), changes in the availability of nodes (by means of 

Vt) and changes to the global properties (by means of It and hi)' Considering that the 

AHG's are primarily constructed to achieve some local or global objective function, these 

changes will reflect on the applicability of the objective functions. The temporal nature 

of the graph allows us to capture the notion of optimisation over a period of time. It is 

envisaged that such temporal optimisations will be the norm in most complex systems, as 

compared to the static optimisation techniques employed today. Optimisation overtime 

introduces an important concept of time boundaries. Systems that optimize over a 

2 A review of structured and unstructured overlay networks can be found in Part III of this thesis. 
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fixed interval in time are referred to as finite-horizon, "'hile the rest are classified to 

optimize for infinite horizon systems, which can both be represented in this graph model. 

Analogously, the objective function of the node also exhibits temporal behaviour. The 

temporal nature of the system also applies to the availability of the information and is 

orthogonal to online computing paradigms. 

The above model is applicable to a class of problems, much beyond the scope of this 

thesis. The emphasis of this thesis is to verify the above hypothesis in real application 

domains. Consequently, it is restricted to a distinct class of problems details of which can 

be found in the following section. If validated, the hypothesis can be used to formally 

represent the characteristics of ARG's in large scale distributed systems. A formal 

representation of ARG's will help in devising appropriate mechanisms for developing 

applications in an ARG based environment. 

2.4 Relation to applications 

The above model for maintaining the ARG's utilizes a graph based representation 

Gt = (Vi, Et; FtlL Hd]), where each of the variables has a temporal dimension. The 

model is based on the hypothesis that adaptive large-scale distributed systems can be 

built as structured/unstructured ARG's, under the constraints of partial state visibility, 

temporal constraints, disparate resource definitions and resource management requirements. 

It is envisaged that the study of ARG's will: 

1. Relp identify common resource management requirements across a class of systems. 

2. Provide insights into the temporal behaviour of large-scale distributed systems. 

3. Identify the effect of the operating environment on the self-organizing behaviour 

of ARG's. 

Consequently, one has chosen different application domains, namely online scheduling in 

Grid systems, information dissemination in P2P systems, and multiple query optimisation 

in stream database management systems. These applications have been chosen to 

investigate the adaptive resource management aspects of large scale systems with disparate 

resource definitions, objective functions and application lTlOdels. It should be noted 

that, in addition to attempting to prove the above hypothesis, the thesis advances the 

state-of-the-art in all the application domains. The application level problem definition 

and contributions to the application domain have been summarized in the parts corresponding 

to the respective applications. 
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2.4.1 Motivation 

\Vhile addressing the online scheduling problem for Grid system.s the issues related to 

the node function \It, the collective objective function, the effect of partially available 

information of the job profiles are investigated. 

The second application - Information dissemination in P2P systems - investigates the 

issues related to selecting a subset of edges et, in order to satisfy the global objective 

function of reduced communication costs, where communication costs are expressed in 

terms of Ht . The application also investigates the effects of changes in graph diameter. 

The third and final application studies the effects of variation in task profiles in a stream 

data management system. In this case the interest is to understand, how changes in task 

profile affect the choice of the object function of the given application? 

2.4.2 Objectives 

Table 2.1 summarizes the application-level objectives for the described application domains. 

2.4.3 Focus of the work 

Each part of this thesis (namely Part II, III, IV) focuses on its specific application 

domain. This part, describes the focus of the research in each application domain 3. 

Online Scheduling in Grid Systems: Stochastic and online scheduling techniques 

have been "videly studied under a wide variety of scheduling scenarios. Grid 

Systems exhibit the characteristics of both these system types (for details refer 

to Part II, Chapter 4, which also describes a Grid Scheduling System). While 

stochastic scheduling provides mechanisms to formulate a scheduling policy, given 

a job distribution and resource availability profile, online scheduling allows for 

scheduling decisions to be performed in an online manner. Similar research issues 

have also been highlighted by (Leung 2004). The focus of the work conducted in 

this area has been: 

1. To demonstrate the effects of organisation on the behaviour of network of 

workstations. 

2. To design admission control strategy for online scheduling systems in Grid 

scheduling environments. 

3 At the start and the end of each part, a brief summary is provided to map the application level 
goals to the high level goals described in this section. 
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Information Dissernination in P2P systems Structured and unstructured system 

topologies used in peer-to-peer systems have been widely used to form ad hoc 

peer groups. Part III of this thesis investigates the correlation between resource 

distributions and topology structures in P2P systems. The primary objective of 

the investigation is to ascertain the effects of change in information distribution 

and workload on the characteristics of the overlay system. 

DSMS - Query Optimisation Query processing in data stream management systems 

represents a special case, in which a fixed set of resources need to be efficiently 

managed in order to satisfy the demand on resources. Although, the research issues 

in the field have been highlighted by (Babcock, Babu, Datar, Motwani, and \iVidom 

2002), the issue of multiple query optimisation and time based optimisation has 

not been addressed in the field of query processing in DSMS. Part IV of the thesis, 

proposes multiple query planning and re-optimisation techniques, which take into 

account the temporal behaviour of the input streams. 

2.4.4 Application level goals 

l\lost of the applications encountered have used static optimisation techniques and vvere 

not designed to function in dynamic environments. Therefore, applications were chosen 

from the well-understood application domains, and were examined under the setting 

of adaptive resource availability. Each of the applications was studied under different 

resource availability criteria and conditions, details of which can be found in Table 2.1. A 

number of limitations of the applications were identified in the process of adapting these 

applications. Such an exploration into the applications was put into the perspective of 

the application level goals. 

2.4.5 Discussion 

In its base form, resource management represents a constraint satisfaction problem, 

where applicable solutions maximize the objective function of the system components 

and the system as a whole. Application to large scale systems with variable availability 

of the resources poses an important challenge as to how to represent the collection of 

resources and choose appropriate organisation, so that the topology of the organisation is 

fit for the particular application. It is assumed that although the exact details of resource 

management may vary across the system classes, there definitely exists some common 

usage patterns across these classes. This thesis examines the resource management 

features outlined in Table 2.1, further details of which can be found in the following 

parts. A case that discusses the use of all the techniques in the context of a single 

application scenario is presented in the following section. 
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2.5 Alternative systeuls VIew 

The thesis is organized into a number of parts, each of which discusses the techniques in 

a specific application scenario. "chile the techniques remain specifically suitable for the 

application scenarios in question, they can also be applied to develop similar systems. 

This section describes a Distributed Stream Data :\1anagement System, which is based 

primarily on the techniques discussed in the thesis. 

Part IV of this thesis introduces a central Data Stream :\lanagement System (DSMS), 

capable of supporting concurrent and continuous queries over streaming data. A DSl\IS 

provides optimized performance over a multi-variable objective function, which consists 

of time, memory and computational resource usage. The objective is maximized by 

coordinating the use of computational and memory resources to achieve the desired level 

of response. The details of this optimisation problem are discussed in chapter 8, which 

assumes a single processor for execution of the query. The scheduling system of DSMS 

operates on a sequence of unrelated operator schedules, and requires strict warranties 

on timeliness of response. The DSMS scheduler requires a subset of the functionality of 

the scheduling system discussed in Part II of the thesis. The DSMS scheduler can be 

modified to take the advantage of the techniques described in Part II. 

The techniques developed in Part III of the thesis can also be integrated, if one considers 

the Publish-Subscribe paradigm for access to continuous queries. The Pub/Sub model 

for access to query processing on streaming data requires publishers of data streams 

to allow discovery of their data resources. The information dissemination methods 

discussed in part III, can be used to wrap the schema information as advertisements 

of resources. The algorithmic principles developed in Part III can then be employed to 

share the information between a number of DSMS. 

Although, the approach adopted by the thesis is in line with the primary focus of 

exploring the notion of adaptive resource management, the above example demonstrates 

that the techniques can be combined and will find use in multiple systems. 



Chapter 2 Adaptive Resource Management in Large Scale Systems 

Fig. A. Distributed DSMS Nodes, 
Edges represent schema exchanges 

between nodes 

Global Schema Manager Local DSMS Processor 

Distributed Data Stream Management System (Distributed DSMS) 

Fig.B. Architecture of a Distributed DSMS 

Fig. C. Local DSMS Processor 

Command Interface 

lIP Communication Channels (JMS, Socket, 
CORBA·Notification, HTIP) 

Communication 
Adapters 

Statistical Feedback 

DIP Communication Channel (JMS. Socket, 
CORBA-Notification, HTTP) 

FIG URE 2.1: Distributed data stream management systems. 
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Properties 

Information Visibility 

Temporal Characteristics 

Optimisation Type 

Objective Function Types 

Online Scheduling 

• Peers have no knowledge 
of their subordinate peers, 
restricted visibility exists 
between the :t\Iaster and 
Slave nodes in Master or 
Slave confignration. 

• .Job information is revealed 
at release time; optimisation 
can only be based on the 
current information. 

Task profile and resource profile 

varies over time. 

Moving finite horizon 
optimisation. 
Each peer tries to maximize its 
individual objective function. 

P2P 
Dissemination 

Information 

• Peers have knowledge of 
immediate neighbour and 
lllay obtain update on 
information of additional 
neighbo1lrs. 

• Peers have information on 
the queries routed and the 
routing path. Changes in 
resource information are 
propagated to interested 
peers. 

• Historical records of the 
query routing and resource 
information may effect the 
future decisions of the peers. 

Coalition profile varies over a 

period of time. 

Instantaneous optimisation based 
in historical data. 
Peers coordinate activities to 
improve group objective function. 

TABLE 2.1: l\Iapping applical.ion ohj(x:l.ives to hypothesis 

DSMS-Query Optimisation 

• Query 
limited 

processor 
visibility 

has 
of 

stream characteristics and 
absolutely no information 
on tuple contents and arrival 
rates. 

• Fllt1ll'e qneries may not have 
any knowledge of existing 
queries. 

Resource utilisation of individual 

(ltlery varies ill accordance to 

stream characteristics. 
Continual optimisation with finite 
horizon. 
A DSMS tries to optimize the 
objective function of multiple 
COnC1llTent tasks. 

Q 
:g 
N-

~ 
~ 

~ 
Q. 

>§ 
M 
~. 

rt; 

~ 
C1l 
Vl o 
c: ..., 
@ 
~ 

~ 
~ 

~ 
:::: 
§ 
N-

5' 
t-; 
\l) ..., 

Cfq 
C1l 

U'J 
(') 
\l) 
'-
C1l 

U'J 
~ 
tIl 
N-

8 ..., 
cr: 

tv 
0> 



Part II 

Online Scheduling in Grid 

Systems 
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Chapter 3 

Online Scheduling 

this chapter introduces online scheduling algorithms for scheduling jobs on multiple 

machines. This is followed by a thorough review of existing algorithmic techniques for 

interval scheduling of independent jobs on multiple independent machines, for preemptive 

and non-preemptive scheduling. The following section describes the existing admission 

control mechanisms for allocating jobs on a single machine and subsequently introduces 

the scheduling algorithm, which provides admission control for scheduling on multiple 

related machines. 

3.1 Introduction 

Scheduling has been studied extensively in many varieties and from various viewpoints 

for application to practical computer systems. The basic situation requires processing 

a sequence of jobs on a set of machines. In the most basic problems, each job is 

characterized by its running time and has to be scheduled for that time on one of 

the machines. Other variants introduce additional restrictions and relaxations on the 

schedules allowed. :'iost scheduling algorithms are designed to maximize an objective 

function for a given sequence of jobs and the resultant schedule is considered appropriate 

if it maximizes some objective function. The notion of an online algorithm is intended 

to formalize the realistic scenario, where the algorithm does not have complete access 

to the whole input instance. Instead, the algorithm learns of the input piece by piece 

and has to react to new requests with only partial knowledge of the input sequence. 

Most online scheduling problems are classified on the basis of which part of the problem 

is given online. Sgall (Sgall 1998) introduces one such classification which has been 

repeated here. His paper introduces the following classification: 

Scheduling jobs one by one. In this paradigm the jobs are ordered in some list and 

are presented sequentially from this list. The scheduling algorithm assigns these 

28 
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jobs to some machine and time slot(s) before the next job can be seen. The 

assignment needs to be consistent with other constraints given by the problem. It 

is assumed that the job characteristics, including running time, are known at the 

time the job is presented. It is allowed to assign the jobs to arbitrary time slot(s), 

even if this incurs penalties. However, alteration of the schedule, subject to the 

visibility of future jobs, is not permitted. 

Unknown running time Unlike the previous ease, this case assumes that the running 

time of jobs is not known at the start time and that the total execution time 

can only be calculated at the time of completion. However, at any time, all the 

currently available jobs are at the disposal of the algorithm; anyone of them can 

be started, preempted or delayed on any machine( s). 

Jobs arrive over time In this paradigm the algorithm has the freedom to start, preempt 

or delay any of the currently available jobs and, in addition, the running time of 

each of the job is known at the time of submission. The only online feature is lack 

of knowledge of the job's arrival time. 

Interval scheduling All the previous paradigms assume that a job may be delayed. 

Contrary to that assumption, interval scheduling assumes that each job has to 

be executed at a precisely given time interval. A job is rejected if it cannot be 

executed within the specified interval. In this case, the length of the schedule 

generated is essentially fixed; hence, tardiness, makespan and/or delay based 

objective functions are not applicable in this case. Instead, measuring the weight 

(or the number) of accepted jobs is generally applicable. 

Most of the above-mentioned characteristics, such as, online arrival of jobs, interval 

scheduling and scheduling jobs as they arrive are also observed in recent applications such 

as Grid Scheduling and scheduling on a T\etwork of Workstations (NOWS). SETI@home 

(SETI), COT\DOR (Litzkow, Livny, and M.W.Mukta 1990); they represent systems that 

receive jobs in an online fashion. Huwever, the objective is to maximize throughput in 

these systems. Other objective functions, such as interval scheduling and co-scheduling 

have been the focus of recent research in the field of Grid Computing (Foster and 

Kesselmann 1999). This chapter proposes the use of online interval scheduling with 

admission control for scheduling in a dynamic environment such as Grids. A case for the 

applicability of online interval scheduling is presented in the section 3.1.1. The following 

section, 3.2, introduces the relevant definitions and presents a formal description of an 

online interval scheduling algorithm (Section 3.5). Section 3.5.1 presents proof that 

the algorithm with admission control performs just as well as the Earliest eXpiry First 

(EXF) algorithm, and Section 3.6 summarizes the chapter, 
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3.1.1 Discussion 

::\lost of the online scheduling algorithms have been studied in the context of real-time 

scheduling systems. However, most of the above-mentioned properties that characterize 

an online scheduling problem are also applicable to evolving computing paradigms such 

as Grid computing (Foster and Kesselmann 1999). A characterisation of different types of 

Grid systems was provided by Fox et.al. (Fran Berman (Editor) 2003), which introduces 

a taxonomy for various types of Grid systems. Computational Grids represent one such 

system type that facilitates sharing of computational resources between multiple resource 

providers and consumers. Section 4.2, describes a scenario inspired by scheduling system 

in computational Grids that schedules jobs on multiple independent machines. This 

scenario is inspired by existing Grid applications such as those described by (Abramson, 

Buyya, and Giddy 2002; Nabrzyski, ::\1., and Jan 2004), where both producers and 

consumers collaborate to provide a virtual computational resource. In each of these 

applications the scheduling system learns about the job at its release time and needs 

to schedule feasible jobs on a set of available resources. Various approaches have been 

suggested, which include but are not limited to an economics based approach (Abramson, 

Buyya, and Giddy 2002), a reservation based approach (Graham, E.L.Lawler, J.K.Lenstra, 

and Kan 1979) and throughput maximisation based approach (Litzkow, Livny, and 

M.W.IVlukta 1990). While some of the Grid scheduling systenls accept the jobs to 

maximize there own objective function, the others derive their objective function from 

the quality of service guarantees specified in the job description. The case of a fonner 

type of scheduler is considered. It tries to maximize a given objective function and 

accepts or rejects jobs according to its scheduling policy. 

No Grid scheduling system has a prior knowledge of all the jobs to be scheduled by the 

system, and needs to evaluate jobs on arrival. Some scheduling systems accept all the 

incoming jobs and attempt to schedule them before the expiry of the job. In such cases, 

the scheduling system does not reject the job unless the job can no longer be scheduled 

to meet its processing requirements. The drawback of such scheduling systems is that 

the job processing system does not provide any guarantee on the completion of the job. 

However, rejection at expiry time may not be advisable in certain time critical systems 

which require strict guarantees on the completion of the job. Specialized scheduling 

systems that provide job completion guarantees have been investigated in the field of 

online scheduling systems, and employ admission control systems to selectively accept 

or reject jobs at release time. The following sections that precedes section 4.2, introduce 

the definitions and a review the existing online scheduling algorithms, and suggest online 

admission control for scheduling jobs on m related machines. 
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3.2 General definitions and reVIew 

3.2.1 Definitions 

Following the standard notation introduced by Graham et al. (Graham, E.L.Lawler, 

J.K.Lenstra, and Kan 1979), it is considered that all jobs are independent with no 

precedence relationships bet-ween the jobs and no communications or synchronisation 

requirements between the jobs. Jobs are revealed to a scheduler at their respective 

release time ri. At release time, the scheduler learns about the processing time Pi, and 

the deadline for the job di . The job Ji has a slack Si = di - Pi - ri, 'which represents the 

amount of time between the arrival of the job and the last possible time at which it could 

be started to meet its deadline, also known as its e:r:piry time. The minimum slack ratio, 

also known as the patience of the job scheduling problem, is defined as '" = mini(si/Pi), 

so that every job Ji has a slack of at least Si ::::: '" . Pi. 6. denotes the ratio of the largest 

and smallest processing time of the jobs in the schedule (J". The gain of the schedule (J" 

on a instance 1 is defined as LJiEUPi. The gain of the schedule is maximized, subject 

to the objective function for the schedule. Candidate object functions that have been 

investigated include make-span optimisation (Graham, E.L.Lmvler, J.K.Lenstra, and 

Kan 1979; Albers 1997), weighted job optimisation (Lee 2003; DasGupta and Palis 2000). 

'While a non-preemptive job is considered to be successfully processed if it was allocated 

the resources uninterruptedly for the duration Pi, a preemptive job can be paused and 

restarted any number of times and should be allocated resources for the cumulative 

duration Pi, where completion in both cases is subject to deadline di . The scheduling 

system is considered to be clairvoyant if the processing time of the job is known at 

release time, while cases with unknown running time are referred to as non-clairvoyant 

systems. 

The scheduling algorithm A deals with allocation on single or multiple machines. In 

either case, the performance of A is measured by comparing its gain with the gain of 

an optimal (opt) off-line scheduling algorithm, which has complete prior knowledge of 

the jobs when creating the schedule. Online algorithms are classified into deterministic 

algorithms or randomized algorithm (Borodin and El-Yaniv 1998a). An online A deterministic 

online algorithm A is c-competitive if gainopt (1) :::; c . gainA (1), for all input instances 1. 

\Vhen considering randomized online algorithms, the competitiveness compares the gain 

of the optimal schedule to the expected gain of a randomized algorithm. Competitive 

ratio c is determined by determining the worst case input for an algorithm. For details 

on the use of adversary based techniques used to determine the competitive analysis and 

the adversary-algorithm(A) interaction models, refer to (Borodin and El-Yaniv 1998b). 

Adversary based techniques (Lee 2004) create the worst case input sequence 1 and have 

complete knowledge of algorithm A and utilize it to create the sequence 1. 

An online scheduling algorithm can schedule any job Ji before its expiry time ei. In order 
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to maximize its gain a scheduler is not required to complete all the jobs and may reject 

some of them. The notification of acceptance or rejection of the jobs can be defened 

until time ei. However, admission control mechanisms (Goldwasser 2003; Gold'wasser 

and Kerbikov 2003: Garay, }\'"aor, Yener, and Zhao: GoeL ~1eyerson, and Plotkin 2001) 

have been suggested for cases where the notification for the acceptance or rejection of 

the job needs to be provided before ei. An admission control mechanism is not usually 

required under underload conditions, but assumes prominence under overload conditions. 

The above nomenclature and definitions are equally applicable to online scheduling on 

single or multiple machines. However, following additional definitions introduced below 

are specifically applicable to online scheduling on multiple machines. In the case of 

multiple machines it is possible to co-allocate (Sch.viegelshohn and Yahyapour 2004) 

the job to more than one machines. However, the scope of this discussion is restricted 

to the case where a job can be assigned only to a single machine at any given time. 

At any given time, each job can only be assigned to one machine, in the set of available 

machines .Mk' J'vh, is considered to be a set of uniform machines if \/1-.1i E .~lkIMi = M j 

for any i and j. At any given time t, a number of jobs may be available for scheduling. 

A scheduling system may maintain all the jobs in a single queue or may allocate them 

to separate queues on arrivaL While a scheduling system that does not pre-allocate the 

jobs usually maintains a single queue for all the jobs, multiple queues are maintained 

in cases where the job allocation precedes the actual allocation of the job. A scheduler 

is considered online if it processes the job in an exact FIFO order. However, in certain 

cases, sorting and selection on the job queue is permitted. For example, the algorithm 

presented by (Lee 2003) is considered online. It describes a scheduler that sorts the 

queue of available jobs and select the job with maximum length. In online scheduling 

a job allocation cannot be subjected to any future changes. However, if the jobs once 

allocated to the queue are reassigned, then the scheduler is considered to be semi-off-line 

in nature. 

In cases where a scheduler maintains a single queue for all the incoming jobs, each 

individual queue is aware only of the currently executing jobs. In the case of non-preemptive 

scheduling, the set consists of a single currently executing job. A job is feasible on a 

machine if its allocation allows all the jobs to attain their deadlines. In some cases the 

scheduling decision may be invoked on arrival of the job while in other cases the decision 

may be invoked when a machine becomes available. If the scheduling decision is made 

on the arrival of the job, it is likely that the job may be equally feasible on more than 

one machine, also referred to as a tie. The performance of an online algorithms relies 

crucially on the way it breaks ties; however it should be noted that some algorithms 

break ties arbitrarily. 
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3.2.2 Review 

It is not possible within the scope of this section to provide a detailed review of online 

scheduling algorithms. A detailed review of online scheduling algorithms can be found 

in the (Eorodin and El-Yaniv 1998a; Leung 2004). The scope of this section is limited 

firstly of all to highlight the state of the art the online scheduling algorithms for multiple 

machines and secondly, to summarizing the current admission control mechanism for 

multiple machines. The review is not restricted to algorithms by the choice of a particular 

objective function, but gives emphasis to interval scheduling. 

Graham et.al. (Graham, E.L.Lavvler, J.K.Lenstra, and Kan 1979) introduced the concept 

of online scheduling and provide formal analysis of their algorithm, also known as the 

List Scheduling Algorithm. It allocates an incoming job to the least loaded machine 

and has a proven lower bound of (2+1/m) for makespan minim.isation, where m being 

the number of machines. Later, Albers (Albers 1997), provided an improved bound at 

a competitive ratio of 1.923 for rn 2': 2, this algorithm maintains two groups of lightly 

loaded and heavily loaded machines: a job is allocated to lightly loaded machines only if 

it cannot be scheduled to a heavily loaded machine. These online scheduling algorithms 

represent the first studies in the case of online scheduling for makespan minimisation 

on multiple machines. There have been a number of studies for scheduling on multiple 

machines for different objective functions. 

The general model of online scheduling was further refined by Lipton and Tomkins 

(Lipton and Tomkins 1994), who also introduced the concept of online interval scheduling. 

In interval scheduling all jobs request immediate use of resources and need to be completed 

before a fixed interval. Their model (for a single resource) implicitly assumes that a 

scheduler has no prior knowledge of the value of 6. They prove the fact that, with jobs 

of equal length, greedy interval scheduling is guaranteed to find an optimal schedule. 

For jobs with two distinct lengths, the authors provide a randomized 2-competitive 

algorithm, and, for jobs with arbitrary length the algorithm is O((log6)1+E) - competitive. 

This result was improved upon by Goldwasser (Goldwasser 2003), to prove that the 

competitive ratio for multiple machines is bounded by (2 + 1 / K:). This result for a 

single resource was also proven to be valid for multiple resources (Kim and Chwa 200l). 

However, all the results for interval scheduling on multiple resources rejected the job at 

its expiry, and, as far as is known (Goldwasser and Kerbikov 2003) have ''vTitten the only 

paper to consider admission control for a single resource in the case of interval scheduling. 

The work by Goldwasser et.al. (Goldwasser and Kerbikov 2003) remains the only 

work to study the effect of resource admission control on the performance of an online 

interval scheduling system. It makes three important contributions. First, it provides 

a 4-competitive randomized algorithm capable of providing immediate notifications, 

secondly, a 3 - competitive randomized algorithm with no notifications and thirdly, 

it proves that no randomized algorithm which provides immediate notification can be 
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better than 7/3-competitive. A few other alternative approaches for online interval 

scheduling on multiple machines are Lee (Lee 2003) and Das (DasGupta and Palis 

2000). For online mechanism design, Lee (Lee 2003) introduces a static classification 

based randomized algorithm, for a specific case of k < 1 and is an important result in 

the field. The work by Das (DasGupta and Palis 2000), highlights the effects of online 

scheduling with rejection and restart. The most recent results from mechanism design 

deal with scheduling on a single machine under unreliable job information, and prove 

that adequate mechanisms can be designed to provide performance guarantees on the 

schedule generated by such collections of resources. 

3.3 Problen1 definition 

The problem of online allocation of clairvoyant jobs on a variable set of resources/nodes 

is considered with the aim of developing an admission control system. Each node is 

represented by a queue, and is autonomous in the sense that a node may join or leave 

the collection of nodes. However, as a part of the system each node accepts jobs over a 

finite horizon, each queue is considered as a possible candidate of the incoming job, if 

it can process the job ,:vhile retaining its prior commitments. The decision to allocate 

a job to the queue is irrevocable, and jobs are reallocated only in the case of a queue 

failure. 

At any given time the queue holds a list of the current job and allocated jobs. The state 

of each of the queues is completely visible to the scheduling system, which must decide 

the allocation of the next job. Job acceptance by the scheduler is constrained by the finite 

horizon imposed by each job in the queue. This finite horizon is always at a constant 

distance from the current time instance. This continual time representation, when 

analyzed at any instance in time, reduces to a bin packing problem, with constraints on 

allocation strategy. 

The basic scheduling system in this setting has to: 

1. I\1aximize the competitive ratio of the scheduling of jobs on resources with equal 

queue lengths. 

2. Maximize the competitive ratio in case of unequal queue lengths. 

3. Minimize the penalties in case of resource failures. 

Associating resource costs and weighted jobs represent extensions to the existing basic 

scheduler. 
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3.4 The selnantics of job allocation 

Resources/nodes are represented as queues, where each resource in the scheduling system 

exhibits autonomous behaviour. There are at least two possible ways of implementing 

such a decentralized scheduling system. The first alternative is to assume a centralized 

job queue, with the scheduler acting as a broker (also knovvn as matchmaking), queues 

competing with each other to provide the best possible allocation strategy for the 

maximisation of the objective function. The second alternative involves a master-slave 

configuration, where the queue relinquishes the control to a centralized scheduler, which 

adopts appropriate job allocation strategy to maximize the objective function. As 

demonstrated in experiments (refer to next chapter), the first strategy of matchmaking 

results in disproportionate allocation of jobs, consequently resulting in a decrease in the 

overall competitive ratio. The master-slave online scheduler and the admission control 

system performed better and were used as the preferred architecture. 

In a master-slave configuration, the central scheduler has complete knowledge of the state 

of each of the queues. As the sequence of jobs is knuwn at release time, the centralized 

scheduler has to choose jobs that can be appropriately allocated to each of the queues. 

'\Then presented with a job the scheduler needs to ascertain if it should accept or reject 

the job. If accepted, it needs to allocate the job to either of the queues. As described in 

the previous section, once allocated to a queue the job cannot be reassigned. Therefore, 

a scheduler may defer the actual allocation of the job, but accept it on the basis of the 

feasibility criterion. By deferring the actual allocation of the job, the scheduler retains 

the flexibility to reassign the jobs to an appropriate node and achieve higher competitive 

ratio. However, the deferral process incurs additional processing costs of the complexity 

O(n3), detailed discussion of which can be found in (Brucker 2001). 

In order to maximize the competitive ratio of the online allocation, the scheduler should 

ensure that no resource/node remains unallocated during any interval. Consequently, a 

greedy strategy is adopted for allocation of resources. A greedy strategy allocates the 

job to any idle queues. However, if each of the queues has a currently executing job, 

the scheduler needs to assign the job to the most appropriate queue. Two prominent 

strategies can be adopted. A scheduler may back fill the current queue before starting 

to allocate the jobs to the next available queue; alternately it could try to ascertain the 

best resource it can allocate the job to. The proof in section 3.5 demonstrates that the 

best fit strategy performs better then the strategy of allocating jobs to the first available 

queue, a fact also validated by experimental analysis presented in the next chapter. 

3.4.1 State transition representation of job status 

An online scheduling system processing a continuous stream of jobs classifies the jobs in 

accordance to their state. Consider a scheduling system in which jobs can be maintained 
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Available Accepted Allocated Running Completed 

Executed 

Resource Failure 

Rejected 

FIGURE 3.1: State transition of a job in a Grid scheduling system. 

in either of the following states: 

A vailable A job submitted for allocation is queued in this state. 

Accepted If the job is feasible in any of the job queues it is classified as accepted. 

Allocated A job assigned to a job queue is referred to as an allocated job. 

Rejected A job is rejected either for being infeasible or having passed its expiry time 

due to resource failure. 

Running Jobs being executed at any of the queues are classified as running. 

Completed Jobs successfully executed are marked completed. Only completed jobs 

contribute towards the gain of the online algorithm. 

The possible lists of transitions have been represented in the following figure 3.1: 

3.5 Algorithrn - Best Fit Interval Scheduling (BFIS) 

A cluster of resources is considered, where each resource is represented as a queue, 

as introduced earlier. Theoretically, each of the resources can have infinite capacity. 

However, as the cluster of resources has been formed by the dynamic association of the 

resources, practical systems requirements introduce the bounds on warranties and only 

limited queue sizes are considered. The length of the queue determines the finite horizon 

- the point in time beyond which the queue ceases to accept allocations. Such a bound 

can be expressed in terms of b. and the maximum permissible slack "'max. The size of 

the queue represents the maximal permissible interval allocation permissible and can be 

considered synonymous to fixed bin size in the bin-packing problem. 

In most practical scheduling systems of this type, "'max is determined by the average 

lifetime of the resource's participation in the cluster. 'While the maximum acceptable 
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length of the job may be decided by the penalties introduced on the failure to process 

the job. 

At any given instance time t, the bin has a length, and the item can be shifted. 

Best Fit is a greedy algorithm and is based on the following heuristics: 

1. Allocate a job to empty queue. 

2. For all allocations within a queue, use the EDF semantics for executing jobs. 

3. On arrival of a job, consider its feasibility on the current set of machines. If feasible 

on multiple machines, use the best fit criterion for breaking the tie for allocation 

between multiple machines. 

The following example illustrates the use of the above scheduling strategy for a sequence 

of jobs J = {J1, h, J3, J4, J5} that are scheduled on a set of machines 1'1 = {1I11 , Ah}, 

where each of the jobs is represented as: 

J1 = < 0, 1,3 > 

h = < 0, 1,2 > 

J3 = < 0, 1,2 > 

J4 = < 0, 1,2 > 

J5 = < 0, 1,2 > 

On arrival of job J1 , both machines have an empty queue and are equally best fit, and 

hence the tie is broken arbitrarily. For the sake of this example, consider that job J1 is 

allocated to machine 1111. On arrival of J2, the machine A12 is empty and it receives the 

assignment of job h. The job J3 remains feasible on either of the machine and happens 

to be best fit for 1112 , while J4 and J5 remain feasible on 1111 alone. 

Consider an optimal online scheduling strategy OPT. Let J represent the sequence of 

jobs J1 , J2 , h, ... , I n that are to be scheduled over a set of machines M. Let A represent 

the best fit scheduling strategy used for allocating the jobs in a queue. Each job Ji =< 
ri, Pi, di >, to be scheduled on the set of machines, is made visible at the release time 

rio Depending on their release time, the jobs in the sequence J can be classified into two 

distinct categories: those released during the busy interval and those released during 

the free interval. An interval is considered free for the algorithm A if at least one of 

the machine queues is empty at the time. As A happens to be greedy, all jobs released 

during the free interval are scheduled by both A and also by OPT. 
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Let J' represent the set of jobs released during the free interval. As mentioned above, 

both OPT and A process the set J'. Let J" be the set of jobs released during the 

busy interval and let J~ and J~PT represent the subsets of J" processed by A and 

OPT respectiyely. 

J'+J" 
C ornpetitiveRatio( c) = A 

J' + J~PT 
(3.1) 

J' + J" J" __ ---."..-0..:.4_ < _._4_ 

J' + J~PT - J~PT 
(3.2) 

The aboye equations prove that the effects of admission control are evident only in case 

of busy intervals and hold true in both the cases of preemptive and non-preemptive 

job scheduling. Although, the use of preemptive techniques is a common occurrence, 

non-preemptive scheduling has been considered in Grid scheduling. A non-preemptiye 

job allocation provides exclusive control of the resource - an advantage considering the 

security and provenance requirements in a Grid environment. 

An analysis of algorithm A for a non-preemptive scheduling strategy is presented in the 

following section. 

3.5.1 Analysis 

Under the following conditions, algorithm A will reject the job while OPT will accept it. 

Already executing a job As A uses a non-preemptive scheduling technique, it cannot 

admit a job while executing a current job. However, OPT, with complete knowledge 

of the input sequence will not start a new job (provided it is not tight) if it expects a 

job to be released during the execution time of the already accepted job. Consider 

b. to be the ratio of the longest job to the shortest job and K,min as the minimum 

slack ratio required for the admission of the job. Considering that the longest 

job Jh has been released at time t=O, the queue will start scheduling the job 

on that machine. \iVhile executing Jh , algorithm A will not accept any jobs that 

expire within the interval < 0, dh >, where dh is the deadline for job h. However, 

OPT, 'with complete prior knowledge of the input job sequence J, will be able to 

accommodate jobs within the slack of job Jh. From the above discussion, under 

worst case circumstances, the total gain of A is Ph, while the possible gain of the 

algorithm OPT is 2 x Ph K,min X Pz, where b. = ~~" This derives from the fact that, 

if any job is released during the interval (Ph - K,min X pz- E, Ph]' algorithm A will be 

able to accept the job. Hence the competitive ratio for the online non-preemptive 
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case is given as: 

Ph 
C = ------~~------

2 X Ph - ""min X PZ 
(3.3) 

~ 
c = ----------

2 X ~ - ""min 
(3.4) 

Arbitrary allocation in case of a tie A processes the sequence of jobs in their order 

of arrival. The incoming jobs are either immediately assigned to a queue or 

rejected. At any given instance these jobs need to be bin packed into the available 

queues. The order of packing determines the maximum moment available to the 

jobs in each of the queues. Consequently, the scheduler m.ay either assign the jobs 

arbitrarily to a queue amongst the set of queues on which the job is feasible or it 

can break the tie by use of an allocation strategy. First-Fit, End-Fit and Best-Fit 

are the three most common strategies employed in the domain of bin-packing. 

Amongst the three possible strategies, the Best-Fit Strategy retains maximum 

moment between the allocation of the jobs, and therefore achieves the highest 

packing density amongst the three, and was chosen to implement online scheduling. 

Inadmissable Job Slack Lipton and Tomkins (Lipton and Tomkins 1994) introduced 

the concept of interval scheduling under minimum slack requirements. However, 

their (and the subsequent results in the field) impose no restrictions on maximum 

admissible slack. This is primarily attributed to the fact that most of these 

algorithms assume that resources will be available throughout the life-time of 

the algorithm. However, practical operating scenarios, as described in the next 

chapter, require the imposition of n:mximum slack. Hence, in cases where J consists 

of the jobs with a slack ratio greater than ""max, A is bound to reject the jobs and 

hence perform poorly. As the two classes of algorithms differ significantly, in such 

cases, the competitive ratio is indeterminable. 

3.6 Summary 

The motivation for computational resource sharing is described in Appendix B. This 

chapter has proposed a queue based model to capture interval based resource scheduling 

in Grids and similar environments. A best-fit online interval scheduling algorithm for 

non-preemptive jobs was described and analyzed. The performance evaluation of the 

algorithm can be found in the following chapter, 
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1 EXFMNotifyO 

input : Queue of incoming jobs A, Set of .Machines Mk 

output: An online schedule S 

2 event job arrival invokes routine ProcessJob (job) 

3 ProcessJ ob (job) 
4 begin 
5 if A = 0 then 
6 I Accept job and schedule on any random machine 
7 end 
8 else 
9 1~1p +-isFeasible (job, ~~h); 

10 if Mp = 0 then Reject job; 
11 else BestFi t (Mp,Job) 
12 end 
13 end 

14 event Continuous processing at each machine "Hi is the routine ExecJ ob (Qi) 

15 ExecJob(Qi) 

16 begin 

17 Let Jk E Qi be the job with earliest deadline. 

18 current job +- Jk; 
19 nextidle +- currentiirne + Pk; 

20 Qi +- Qi - {Jd; 
21 Allocate Resources to Jb 
22 if CUTTenttirne = nextidle then 
23 I ifQi=!=0then ExecJob(Qi); 
24 end 
25 end 

26 isFeasible CJh, Mk) 

27 begin 

28 for i +-- 1 to l11hl do 
29 Order all jobs of Qk by non-decreasing deadlines JIb hb J3k, J4k, ... Jqk; 
30 Calculate inde.T +-- possible location of the job.; 
31 if eh > PreviousCommitments{index) then 
32 I continue 
33 end 
34 Calculate availableSlot +--

PreviousCommi tments (index) -FutureCommi tments (index) ; 

35 if Ph ::; availableSlot then 
36 I ll1p +-- Mp + Mk 
37 end 
38 end 
39 end 

Figure 3.2: Online resource allocation with admission control to provide 
notifications at release time 
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Chapter 4 

Evaluation of the Online 

Scheduling Algorithm 

The first section of this chapter presents the experimental evaluation of the interval 

scheduling with admission control. It uses the standard simulation techniques used 

for evaluating scheduling systems (Kiran 1998) and compares the performance of the 

algorithm for variable slack ratio, job length, arrival rate and resource failure rates. 

The performance of the algorithm is compared against the EXF (Earliest eXpiry First) 

algorithm - an online scheduling algorithm with the best known competitive ratio. 

Section 4.2 describes the application of the above work in the context of an online Grid 

scheduling system, and the subsequent section summarizes the work on online scheduling 

systems. 

4.1 Experimental settings 

Experiments were conducted using a single source of job sequence that generates jobs 

with a specified probability distribution for job length, rate of job arrival and resource 

failure rates. Table 4.1 below summarizes the parameter values used for the experimental 

evaluation. 

4.1.1 Job generator 

A job generator had been devised for generating a sequence of jobs used to analyze 

the performance of the scheduling algorithm. The job generator creates instances of 

jobs with the desired characteristics of execution time and slack. Each job instance has 

three parameters: first, release time, ri - is determined in accordance to the stochastic 

distribution of job arrival; second, the processing time, Pi - is determined in accordance 

41 
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Parameter Description ParaIneter Value 
Simulation interval 10000 jobs 

Xumber of nodes used for simulation 100 
Ma..-ximum Job length 1000 
Job distribution type Poisson distribution, zip distribution 

Job arrival rate Poisson distribution 
Slack constant Constant for some experiments, varied from 1.1 to 12.0 

Failure rate Gaussian distribution 
l\fean time to failure 0.75 of n1.aximum job length 

TABLE 4.1: Simulation settings for evaluation of online scheduling algorithm. 

to the job length distribution. Candidate distributions include unit job lengths, uniform 

job length, poisson distribution and zipf distribution. Thirdly, the deadline of the job is 

calculated in accordance to the slack, where deadline of a job di = ri + (n, + 1) X Pi. A 

finite sequence of jobs with the desired job and job arrival characteristics is generated 

and is evaluated using an off-line scheduling algorithm, Earliest eXpiry First (EXF) and 

the online-interval scheduling. 

Only integer job lengths were considered for simulation. Integer job lengths were 

considered for the relative ease of scheduling the jobs against a virtual time clock, 

as it uses integer incremental time steps. Unit and uniform job lengths represent a 

very specific case of workload observed in certain web server workloads, while the zipF 

distribution represents the job lengths observed in super computing center workloads. 

The Poisson distribution represents a generic distribution of random workload observed 

in batch jobs. For job arrival distribution,Poisson distribution was considered. 

4.1.2 Scope of the evaluation 

The purpose of the evaluation is: 

• To determine the effectiveness of the scheduling algorithm vis-a-vis the performance 

of an off line scheduling algorithm, the EXF algorithm and the interval scheduling 

algorithm with no notification. 

• To evaluate the performance of the algorithm under varying load conditions. 

• To compare the overhead associated 'with the admission control mechanism. 

4.1.3 Analysis 

The competitive ratio for the various algorithms is presented in figure 4.2. The figure 

represents the relative performances of BFIS, EXF and the offline algorithm for a set 
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Failure 

Failure 

FIGURE 4 .1: Simulating resource scheduling with failures. 
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F IGURE 4.2 : Comparison of BFIS, EXF and off-line scheduling strategy. 
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of 10, 20 and 30 machines. The figure represents the average competitive ratio for K 

> 1, randomly varying between the values of 1<k<10: the maximum bin size for each 

machine ,vas "'max maximum job length, for the case of BFIS. For EXF, the job queue 

was sorted and the EXF was allowed to choose the longest job. The input job sequence 

had at least one feasible schedule that 'would bin pack all the queues. It is assumed 

that any off-line algorithm is able to detect the existence of one such ideal schedule. 

The competitive ratios of BFIS and EXF demonstrate that the performance of both of 

these algorithms is unaffected by the number of machines and is relatively resilient to 

\'ariations in slack factor. \Vith a competitive ratio of approximately 0.8, the additional 

overhead in BFIS (approximately 10 percent) is introduced by admission control. 

4.1.4 Discussion 

As NO\VS assumes prominence, both the resource proyiders and consumers will require 

mechanisms for managing the agreements for some a fore-mentioned finite horizon. The 

BFIS algorithm presented in this section presents one such mechanism, which allows 

the resource providers and consumers to dynamically reserve resources for an incoming 

online sequence of jobs. Unlike other online scheduling algorithms, BFIS uses the concept 

of finite horizon, and, unlike in random breaking of tie the best fit ensures that the 

queues are filled to provide even distribution of jobs for the horizon dictated by each 

of the incoming jobs. The approach is similar to online bin packing for a dynamic 

horizon. The load distribution allows the scheduler to optimize the use of selected 

resources and minimize the resource usage of others. Such segregation of resources 

based on job sequence characteristics allows the scheduler to dynamically determine 

the optimal number of resources required for the particular job distribution. The next 

section describes an online scheduling system for Grid systems as a probable use case 

for BFIS. 

4.2 Description of Information exchange between Grid schedulers 

Traditional resource management is commonly used to describe all aspects of the process 

of locating various types of capabilities, arranging their use, utilizing them, monitoring 

their state and providing traceable evidence/audit of their usage. As described in 

Appendix B, Grid Systems (Foster and Kesselmann 1999) represent an emerging class 

of systems that assume dynamic operating environments, which facilitate coordinated 

use of distributed resources. Appendix B introduces computational Grids - a class of 

Grid systems that allows coordinated use of computational resources. It is possible to 

conceive a computational Grids existent under a single administrative domain and with 

a centralized resource management system. However, in most cases, the a Grid based 
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resource management system 'will operate over a set of unreliable resources spread across 

multiple administrative domains. 

Grid Schedulers, as described in C'\abrzyski, M., and Jan 2004), represent types of Grid 

resource managers that, by their very definition, are involved with managing resources 

across multiple administrative domains. Grid Scheduling can be applied to many types 

of resources: a machine, disk space, a QoS network and so forth, although the rather 

generic definition usually applies to the management of computational resources. In 

(Nabrzyski, M., and Jan 2004) I\abrzyski et.al. describe the structure of a generic 

Grid scheduling system and introduce the concept of hierarchical organisation of local 

and higher level schedulers. Hierarchies of such schedulers use different job allocation 

techniques to coordinate the allocation of resources. The scheduling systems try to 

optimize the usage of resources in accordance with their respective objective functions. 

O'\abrzyski, ~1., and Jan 2004) introduced guaranteed completion time of allocations as 

one of the objective functions used in Grid scheduling systems. The interval scheduling 

algorithm described in the previous chapter was conceived to operate under such Grid 

scheduling systems. The queue based model of the algorithm allows it to map resource 

allocations across multiple resource providers and can also be adapted (by changing the 

feasibility test described in the algorithm) for use with autonomous queues. 

The interval scheduling algorithm can be used to manage resources within the context of 

a single resource manager. As a hierarchical Grid scheduler is reliant on the participation 

of local schedulers, which in turn autonomously derive their objective functions, it is 

imperative that local schedulers dynamically collaborate or cease to collaborate with 

the schedulers at a higher level. In most cases, these changes are in response to changes 

in resource and load characteristics. Information on such changes needs to be exchanged 

between the instances of the Grid scheduling systems. Scheduling systems may use job 

brokerage or resource brokerage as a means of resource management across multiple 

scheduling systems. ClassAds (Litzkow, Livny, and M.W.Mukta 1990) used in CONDOR 

represent one such system of job brokerage. Information exchange between scheduling 

systems may happen along the established hierarchical topological order as used in 

Globus Information Services. However. if one considers the relaxed model of peer-to-peer 

systems, information exchange may influence the choice of topological ordering. The 

next part describes the techniques for the creation of such overlay networks. 

4.3 Summary 

This part of the work (Part II) introduced and evaluated an interval based scheduling 

system for dynamic environments. It was proven that online interval scheduling can be 

used to provide guaranteed resource availability for computational resource allocations. 

The queue based model takes into account the intermittent availability of resources 
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and creates an adaptive schedule with a bounded competitive ratio. Subsequently 

this chapter discussed a way of employing the above algorithm in the context of the 

Grid scheduling system. The autonomic organisation capability can be sustained by 

permitting information exchange between Grid scheduler instances. Topological organisation 

of the nodes is discussed in Part III, which introduces a mechanism to design a semi-structured 

overlay network between resource providers. 



Part III 

Information Dissemination in 

peer-to-peer systems 
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Chapter 5 

Resource Management • P2P In 

environments 

The previous chapter, presented a use case of an online scheduling system that involved 

potential collaboration between multiple resource providers. The multiple resource 

providers used resource advertisements as a means of communicating resource information 

between providers and consumers. The scenario presented in section 4.2 served as 

motivation to investigate the issues of resource discovery in systems composed of autonomous 

resource providers (referred to as peers when set in a P2P architecture). The scenario 

4.2 considered one variant of"resource discovery under a peer-to-peer (P2P) (Clark 2001) 

system environment. 

This part presents a framework that facilitates resource discovery in P2P systems. The 

discussion spans three chapters. This chapter reviews discovery techniques used in a 

peer-to-peer environment, elaborates the application scenarios and presents a generic 

model for overlay construction and management in peer-to-peer(P2P) systems. This is 

followed by the detailed description of the algorithm in Chapter 6 and an experimental 

evaluation described in Chapter 7. The primary contributions of these chapters towards 

the thesis are that they: 

1. Outline the evolution of resource discovery in peer-to-peer systems and describe 

their limitations when applied to the application domains of mobile services and 

Open Hypermedia Systems; 

2. Provide an algorithm for creation and maintenance of an adaptive overlay; 

3. Present an experimental evaluation of the same. 

Section 5.1 presents a general overview of P2P systems. Section 5.2 describes existing 

search techniques and highlights their limitations. Motivating applications are the 
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subject of section 5.5, while resource definitions and search techniques are described in 

section 5.6. This is followed by a description of a generic framework for the creation and 

maintenance of an overlay network, in section 5.S. Section 5.7 discusses the characteristics 

of the proposed overlay. 

5.1 Peer-to-Peer con1puting 

There is no definitive description of peer-to-peer systems (Oram 2001), but the system 

characteristics are often used to describe this class of systems. P2P systems are typically 

characterized by decentralisation of control, where each node plays the parts of the client 

as well as server, often leading to the creation of ad hoc communities of collaborating 

peers. This is exemplified by applications such as ::\apster and has also been widely 

adopted by file sharing applications such as Gnutella (GNUTELLA ), Freenet(Clarke, 

Sandberg, \7v"iley, and Hong 2001), and OceanStore (Kubiatowicz, Bindel, Chen, Eaton, 

Geels, Gummadi, Rhea, \Veatherspoon,W~eimer, \Vells. and Zhao 2000). l\10st P2P file 

sharing systems are classified as unstructured P2P systems; their topology evolves as 

peers join in or leave the network. A large body of work has focused on developing 

structured P2P computing networks. Examples include Tapestry(Zhao, Kubiatowicz, 

and Joseph 2001), Chord (Stoica, Morris, Liben-Kowell, Karger, Kaashoek, Dabek, and 

Balakrishnan 2003) and CA::\ (Ratnasamy, Francis, Handley, Karp, and Schenker 2001). 

The P2P approach of creating ad hoc networks of collaborative peers has been applied 

to various application domains, including, large scale distributed computing as Grids 

(Buyya, Abramson, and Giddy 2001; SETI ), file sharing (Clarke, Sandberg, Wiley, 

and Hong 2001; GNUTELLA ; Kubiatowicz, Bindel, Chen, Eaton, Geels, Gummadi, 

Rhea, \Veatherspoon, \Veimer, \Vells, and Zhao 2000), and service oriented computing 

platforms such as JXTA (Qu and N ejdl 2001). The following section provides a brief 

overview of both structured and unstructured P2P systems. 

5.2 P2P systems 

Resource discovery techniques are central to both structured and unstructured P2P 

systems. \Vhile the unstructured P2P systems utilize some sort of heuristics to guide 

the search, the structured P2P systems use the properties of the overlay to selectively 

propagate the search query to locate appropriate resources. The following section reviews 

the search techniques for systems belonging to each of these two P2P system classes. 
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5.2.1 Unstructured P2P systems 

Freenet Freenet is a P2P file storage system in which peers share their available disk 

space to create an internet-scale virtual file system. Each of the participating peers 

is required to provide some storage space: in return Freenet provides the user with 

a secure means of storing their files on the virtual file system. To add a new file 

the user provides the file and a location-independent, globally unique identifier 

(G UID) (also known as keys). A file addition results in the file being replicated 

and stored at a number of locations. 

In the Freenet system, every node maintains a routing table that lists the addresses 

of the other nodes and the list of the keys it thinks that they hold. On receipt of 

a query, the node finds its own store: and returns the file if it is found in the local 

store, otherwise it forwards the request to the node with the numerically most 

proximal key to the one requested. To prevent flooding of the network, Freenet 

mandates that each query be associated with a Time To Live (TTL). In addition, 

Freenet maintains the search paths for preyious queries to train the routing table 

sets. These trained sets are used to cluster the files with similar keys on the same 

data store. The simulation studies on Freenet show that the path length grows 

approximately logarithmically to network size. 

Gnutella Gnutella is a file sharing application and relies on participant peers to form an 

unstructured overlay network. A peer can join the Gnutella network by contacting 

one of the participant peers, \vhich leads to subsequent overlay formation amongst 

the other participant peers. Once attached to the network, each of the Gnutella 

nodes processes the incoming query requests. Early Gnutella algorithm relied 

on broadcasts to propagate queries between neighbouring nodes. The range of the 

query broadcast is restricted by the TTL associated with each of the query requests. 

Subsequent changes to the algorithm have been proposed by (Lv, Cao, Cohen, 

Li, and Shenker 2002), which substitute flooding by a set of random walkers. 

The simulation based study described in (Lv, Cao, Cohen, Li, and Shenker 2002) 

demonstrates marked improvement in performance. However, subsequent studies 

(Ritter 2001 ) have demonstrated that the Gnutella approach remains non-scalable. 

5.2.2 Structured P2P systems 

Structured P2P techniques impose a set of topological constraints on the construction 

of the overlay network. Most of the structural constraints were designed to organize the 

overlay and facilitate efficient search algorithms. For example, CAN and Chord partition 

the search space into a distributed hash structure, while Tapestry utilizes specific naming 

mechanisms to create an overlay. The following is a description of three structured P2P 

systems. 
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Content Area Network (CAN): Content Area N"etwork (CAN) (Ratnasamy, Francis, 

Handley, Karp, and Schenker 2001) uses an internet scale hash table maintenance 

technique to uniquely map a "key" onto "values". Central to the algorithm is the 

creation and maintenance of a d-dimensional co-ordinate space that allows hash 

table equivalent functionalities such as insert, deletion and look-up of key yalue 

pairs. The d-dimensional co-ordinate space is just a logical representation, and 

nodes can be dynamically repartitioned amongst all the nodes at any time. 

A typical CAN" network consists of many nodes, each storing a part of the hash-table, 

known as a "zone", in addition to information about some adjacent zones. Each 

node belongs to a unique zone and is neighbour to nodes that overlap with it in 

at least d-l dimensions. Each node maintains the state of its neighbours, with 

the maximum number of neighbors limited to 2d. A typical query specifies the 

destination co-ordinates. The query routing mechanism of each node uses the 

neighbor state to route the query along the d-dimensional space, to a node that 

is the closest in the d-dimensional space. For a d-dimensional space 'with n-equal 

partitions the average path length is (d/4)(nl / d ), where the path length gwws by 

O(n1/ d ) by addition of the node. 

CA~ provides reliable mechanisms to recover from failed nodes. \iVhen a node 

leaves CAN, it explicitly hands over the zone to one of its neighbors, which 

thereafter maintains both zones. However, failure to communicate zone and neighbor 

information with immediate neighbors is considered as a failure. A neighbor 

detecting a failure starts the takeoyer mechanism. The first neighbor to successfully 

complete the takeover mechanism informs neighbours about the completion of 

takeover to all the neighbours of failed nodes. 

Chord: Chord is a P2P protocol that results in the formation of a structured overlay. 

The chord protocol is specifically designed to uniquely map the key to nodes. It 

uses consistent hashing to allocate keys to nodes and arranges the space of an 

m-bit identifier into a circle of modulo 2m identifiers. In steady state each of the 

nodes in chord maintains state about O(1og(N)) nodes in a N-node system. The 

chord maintains information about neighboring nodes as they join and leave the 

system, with a very high probability that the reorganisation results in no more 

than O(log2(N)) messages. Central to chord is the concept of creating a circular 

identifier space, where each node stores the information about the identifiers 

between itself and the next node in a clockwise direction. 

Each of the chord nodes maintains information about approximately O(log(N)) 

neighbors and uses collaborative replication to improve the resilience of the P2P 

network. Each of the participant nodes is identified by the key obtained by hashing 

its IP address. Each node stores information about the keys located between its 

identifier and that of its immediate neighbor. Queries in Chord are processed by 

passing them around to successive nodes vvith identifiers lower than the identifier 
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being queried. 

Tapestry: Tapestry is an application level P2P protocol that extends the unique naming 

scheme introduced by Plaxton trees (Plaxton, Rajaraman, Andr, and Richa 1997). 

The overlay organizes the 2n nodes into l levels, and nodes in each level maintain 

their respective neighbor maps. In an l level tree, each node is identified by an 

w=n/l bit identifier. A node vvith a label, say xyz, where X,y and z are the bit 

digits, will have a routing table with 

l. 2w entries of [* ,X,X] 

2. 2w entries of [x,*,X] 

3. 2w entries of [x,y, *] 

where * denotes every digit in 0,1, ... , 2w - 1, and X denotes any digit in 0,1, ... , 

2w l. 

Using the above routing state, a packet is forwarded towards the destination label 

node by incrementally resolving the destination label from left to right. Each node 

forwards the packet to a neighbor whose label matches the destination label in one 

more digit than its own label. The average path length for a netvmrk of n nodes 

is O(log(n)), and requires the system to maintain a state of O(1og(n)) neighbors. 

5.3 Related algorithms and systems 

Similar resource discovery problems have also been identified in related research areas. 

These involve maintenance of state tables as summarized below: 

5.3.1 Distance Vector and Link State based algorithms as applied to 

ad hoc computing 

Distance Vector based and Link State based algorithms have been widely used for IP 

routing in ad hoc computing environments. Examples include DSDV (Perkins and 

Bhagwat 1994), AODV (Perkins and Royer 1999), ZRP (Haas and Pearlman 1998) 

amongst others. These algorithms maintains partial knowledge of system topology in 

order to route messages between mobile nodes in an ad hoc COlTllllUnication network. The 

algorithms have a striking resemblance to structured P2P networks: both system types 

maintain partial routing tables in order to propagate queries to their final destination. 

5.3.2 Domain Name System (DNS) 

A domain name system maintains a table that maps a unique name to its IP address, 

and, in a sense provides a functional capability similar to that of Distributed Hash 
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Techniques. For any group of computers partaking in the DNS naming scheme there is 

likely to be a single definitive list of DNS names and associated IF addresses. The group 

of computers included in this list is called a zone. A zone could be a top level national 

domain or a university department. \iVithin a zone, a DNS service for subsidiary zones 

may be delegated along with a subsidiary domain. The computer that maintains the 

master list for a zone is said to have authority for that zone and will be the primary 

name server for it: there will also be secondaries for that zone. The DNS server may be 

able to resolve the request for name from its own local database/cache. If a DNS server 

is unable to resolve the key, it solicits help from another DNS server higher up in the 

hierarchy or one in the destination zone. 

5.3.3 Coalition fonnation in Agent-based systems 

Coalition formation is an area of active research in the field of agent-based systems 

(\iVooldridge and Jennings 1995) and deals with the design of mechanisms where a 

number of independent agents come together to act as a collective entity. Coalition 

formation has been studied in the context of multi-agent systems and has been applied 

to various fields, such as e-commerce (Tsvetovat and Sycara 2000) and Grid computing 

(Foster and Kesselmann 1999). Coalition formation is based on the notion that the 

collaborating agents are better off acting collectively rather than indi,oidually in a 

multi-agent system. The coalition formation in multi-agent systems can be viewed as 

being composed of three main activities (Sandholm, Larson, Andersson, Shehory, and 

Tohm 1999), as follows: 

Coalition structure generation Coalition structure describes the sets of collaborating 

agents and determines the scope of interactions among coalitions. The process 

usually involves partitioning the group of agents into smaller groups of collaborating 

agents, such that the partitioning results in an exhaustive and disjointed set of 

coalitions I For a set n agents {PI,P2,P3, .... Pn}, there exist 2n - 1 possible 

coalitions and 2 . n - 1 coalition structures. For example, for a set of three 

agents {PI, P2, P3}, there exist {PI},{P2} ,{P3}, {PI, P2},{PI, P3} ,{P2, P3},{PI ,P2, P3} 

coalitions and {{pI}, {P2,P3} },{ {Pl,P2}, {P3} },{ {PI,P3}, {P2}}, {{PI,P2,P3}} and 

{{pI}, {P2}, {P3}} disjointed coalition structures. 

Optimizing the value of individual coalitions The coalition structure can be optimized 

to maximize a certain objective function, also known as the coalition value. Each 

agent in the coalition pools its resources and associated tasks to maximize the 

coalition value. An overall coalition structure is designed to maximize the cumulative 

coalition values of the entire structure. 

lSome research also considers the case of non-disjointed coalitions, where agents can simultaneously 
belong to more than one coalition 
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Pay-off distribution All agents in the coalition pool their resources to maximize the 

coalition value function in expectation of a certain payoff. The payoff can be 

equally or proportionally divided amongst the members of the coalition. Payoff 

distributions are common in agent-based e-commerce applications, where each 

autonomous agent enters a coalition to maximize utility function in the process of 

maximizing coalition value. 

In this study coalition formation algorithms are classified into tvvo distinct categories, 

payoff maximizing coalitions and coalitions 'value maximisation'. The classification 

derives from the two prevalent approaches used in agent based systems, namely competing 

agents and collaborating agents. In the former case of pay-off maximisation, each 

agent enters a coalition with a sole purpose of maximizing its utility, and the coalition 

structure formation assumes a lesser priority. However, in coalition value maximisation, 

the collective utility of all the agents in a multi-agent system supersedes the pay-off 

distribution objective. In such cases the coalition structure is used to measure the good 

of the coalition formation process. 

This research is interested in systems in the coalition structure formation process and 

its application to the formation of overlay topologies in peer-to-peer networks. Previous 

research in the field has focused on the formation of super-additive coalitions (Kahan and 

Rapoport 1994), in which any two coalitions are better off by merging together. However, 

super-additive coalitions are not appropriate for the coalition structure generation, 

as a grand coalition comprising all the agents will be the most appropriate coalition 

structure. Hence, the current focus is on exploring coalition structure formation for 

non-super-additive environments. Coalition formation for non-super additive environments 

has been considered by (Sandholm, Larson, Andersson, Shehory, and Tohm 1999; Dang 

and Jennings 2004) who suggest algorithms and provide the worst case bounds for 

the creation of coalition structures for multi-agent systems. The systems consider 

multi-agent environments with a static set of agents and a fixed coalition value. Recently, 

attention has been paid to more dynamic environments, where the coalition values are 

not fixed and agents constantly join or leave a coalition (Klusch and Gerber 2002). 

However, no performance bounds have been provided to represent the complexity of 

coalition formation. 

5.4 Discussion 

The simplistic approach adopted by unstructured P2P computing systems leads to higher 

average query path lengths and often results in unnecessary broadcasts of messages and 

utilisation of network resources. Use of structured P2P systems provides bounds on 

message path lengths and the amount of state held by the node. It should be noted that 

the creation of a structured P2P overlay does not take into account physical network 
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characteristics and results in longer than actual query paths. Certain structured P2P 

overlays like Chord are also susceptible to uniform workloads reSUlting in over-utilisation 

of certain peers. 

l';either ofthe system types takes into account the characteristics or the specific requirements 

of the application domain and they represent the extreme ends of a spectrum. "While 

the unstructured by its very nature does not impose an overlay structure, the structured 

overlay seems to be too inflexible to be generically applicable. The next chapter introduces 

the mechanism for the creation of an adaptive overlay that attempts to overcome 

the limitations of the above two approaches. The following section introduces certain 

application domains which were used as exemplars to verify the approach and are 

presented here to highlight the specific requirements of the specific application domains. 

5.5 Additional application scenariOS 

In addition to the application scenario described in section 4.2, the work is also applied 

to the domain of P2P based Open Hypermedia Systems and is equally applicable in 

collaborative service discovery in mobile environments. The initial work ,'vas carried 

out in the context of Open Hypermedia Systems and was published in (Zhou, Dialani, 

De Roure, and Hall 2003). This section provides a brief overview of the two application 

domains and introduces resource definitions and the search criteria used in the field. 

5.5.1 Peer-to-Peer Open Hyper Media Systems 

Open Hypermedia (Wiil 1997) is a model that has been adopted by the hypertext 

community for many years. It is principally characterized as having hypermedia link 

information stored separately from the documents that it describes. The links are stored 

in linkbases. This approach allows links to be managed and maintained separately from 

the documents, and different sets of links can be applied to a set of documents, as 

appropriate. 

The development of the first Open Hypermedia System ("1'v1icrocosm") (Fountain, Hall, 

Heath, and Davis 1990)) predates the \Veb. The first implementation of the Microcosm 

philosophy on the \Veb was the Distributed Link Service (DLS) (Carr, De Roure, Hall, 

and Hill 1995), (De Roure, Walker, and Carr 2000). This was extended so that link 

resolution was also distributed around the \Veb (De Roure, Carr, Hall, and Hill 1996), 

and the service paradigm now extends to recent developments, such as ontology services 

(Carr, Hall, Bechhofer, and Goble 2001). COHSE (Carr, Hall, Bechhofer, and Goble 

2001) provides tools for the Semantic Web that builds upon the concept of the DLS and 

ontologies. 
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The Semantic Vveb (Berners-Lee, Hendler, and Lassila 2001) augments current \:Y"eb 

technologies by associating machine understandable annotations (also known as metadata) 

\vith contents. ~!Ietadata provides an abstract representation of information and is 

primarily produced to facilitate inference techniques to co-relate information from different 

providers. Current search techniques used in Semantic '''Teb technologies focus on 

annotating static information, but fail to take into consideration dynamic and asynchronous 

variation in content. Some may consider services based architectures like DAI'vlL-S 

(Ankolekar 2001), which use Semantic \Veb technologies, to be a form of dynamic content 

system. This research differs from (Sycara, Lu, Klusch, and \Vidoff 1999) and consider it 

to be an application of the Semantic Web to active entities rather than dynamic entities. 

In the proposed approach, the Semantic \Veb is considered to be dynamic, if it is created 

spontaneously by a set of collaborating nodes, where each node can dynamically update 

its published contents. While Semantic \Veb technologies are generic in their application, 

this scenario restricts their application to collaborative environments, which facilitate 

resource sharing between dynamic collections of participants. As the participant can act 

both as a resource provider and a resource consumer, a peer network is constituted by 

collaborating entities. 

These collaborative P2P-OHS publish and consume resource descriptions usually expressed 

in RDF (~!Iiller 2004) format. Summarized metadata information in a link base known 

as "topics vector" is advertised by each link base, and a list of similar topics is used 

to create an overlay that binds the participant peers in the peer-network. Each of 

the participating peer caches the "topic vectors" of its imn"lediate neighbors and uses 

the informational inferences from these "topic vectors" to route the query amongst its 

neighbors. The search is expressed by means of an RDF query and is accomplished 

by propagating the query among a number of participating peers. A typical search 

expression is represented in section 5.6. Peers collaborate to maximize the number of 

link bases searched with minimal query routing and processing overheads. 

The following subsection presents the last ofthe application scenarios and then summarizes 

the specific requirements of the application domain, and contrasting them \vith the 

current capability of the peer-to-peer networks discussed above. 

5.5.2 Collaborative service discovery in Services Oriented Architecture 

Service discovery mechanisms are crucial to service architectures such as web services 

and mobile services. \Vhether in a wired network environment or a wireless network 

environment, the service providers need to publicize service descriptions for subsequent 

discovery and utilisation by client applications. Discovery services such as UDDI (UDDI 

2004), JINI (Kumaran and Kumaran 2001) and UPnP (Michael and Weast 2003) are 

widely used to support the discovery of services in wired as well as mobile network 
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environments2 . \Vhile wired network enyironments can utilize a centrally located discovery 

service such as UDDI, this is not the case for mobile environments. As no node has the 

resources to maintain the complete state of the ad hoc system, individual nodes should 

collaborate or form coalitions to discover resources in an ad hoc system. 

(Chakraborty 2004), (Ratsimor, Chakraborty, Tolia, Khushraj, Kunjithapatham, Joshi, 

Finin, and Yesha 2002), and (Chakraborty, Joshi, Finin, and Yesha 2004) present a 

set of techniques and a fi.'amework for discovery and composition of services in ad 

hoc computing environments. The limited storage capacity of the mobile nodes limits, 

coupled with their mobility requirements introduces unique constraints on service discoyery 

in such mobile environments. As described in (Chakraborty 2004), service descriptions 

and seryice compositions can be described in DA~lL-S. Each of the participating peers 

caches the service descriptions and facilitates the search on these cached advertisements. 

A service discovery request is expressed as a DAML-S search syntax and involves a 

complex search criteria. Examples of these are presented below: 3. 

Our research groups initial \vork on service discovery (Miles, Papay, Dialani, Luck, 

Decker, Payne, and Moreau 2003a; Miles, Papay, Dialani, Luck, Decker, Payne, and 

Moreau 2003b) also highlights similar complexities in service discovery. A peer netvvork 

consisting of such service providers needs to find an optimal way to disperse the service 

advertisements and adequate query routing mechanisms to locate mobile services. 

5.6 Search requirements 

As demonstrated by both the above systems, the search criteria tend to be much more 

complex, as compared to the standard identifier based search dictated by almost all the 

current P2P systems. The above examples use an RDF representation to specify the 

resource, and, correspondingly, the search criteria need to locate resources with similar 

advertisements. In P2P systems, each search translates into the location of a single 

unique identifier. However, most practical systems may be composed of resources that 

cannot be guaranteed to be unique and one can not rule out the existence of multiple 

resources with similar characteristics. Hence, this study proposes the use of a coalition 

based search mechanism to locate the resources of interest. 

5.6.1 RDF representation of a query in P2P OHS 

The search criteria for P2P-OHS were presented in a paper by (Zhou, Dialani, De Roure, 

and Hall 2003) and are repeated here as an example case (see figures 5.1 and 5.6.1). 

A typical linkbase contains a list of topics. In this example the link base is capable 

2The definition of wired and mobile networks. is described in the IVIANET documents 
3Includes the DAML-S service description and the DAML-S search criterion 



Chapter 5 Resource 1I.1anagement in P2P environments 

<?xml version="1.0" encoding="UTF-8" ?> <rdf:RDF 
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns# 

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema# 
xmlns:lb= •• http://www.semanticweb.com/rdf/linkbase-ns#.,> 
<rdf:Description about= •• http://www.semanticweb.com/linkbase 

/research/linkbase.xml' ,> 
<rdf:type resource= •• http://www.semanticweb.com/rdf 

/linkbase-ns#Linkbase" /> 
<lb:topic>theory</lb:topic> 

</rdf:Description> 
</rdf:RDF> 

FIGURE 5.1: A linkbase expressed in RDF Syntax, taken from our publication 

<rdfq:rdfquery> 
<rdfq:From eachResource= •• http://www.semanticweb.com/ 

collabrative_environment_x/peer_linkbase"> 
<rdfq:Select> 

<rdfq:Condition> 
<rdfq:and> 

<rdfsq:sequal> 
<rdfq:Property name="lb:topic"/> 
<rdf:String>Theory</rdf:String> 

</rdfsq:sequal> 
<rdfsq:sequal> 

<rdfq:Property name=' 'lb:topic"/> 
<rdf:String>Practice</rdf:String> 

</rdfsq:sequal> 
</rdfq:and> 
<rdfq:or> 

<rdf sq: sequal> 
<rdfq:Property name="lb:topic"/> 
<rdf:String>Thoughts</rdf:String> 

</rdfsq:sequal> 
</rdfq:or> 

</rdfq:Condition> 
</rdfq:Select> 

</rdfq:From> 
</rdfq:rdfquery> 

FIGURE 5.2: A typical query specification, taken from our research group's publication 
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of providing information about a topic "theory" located within it. A typical query 

expression ss expressed in attempts at locating the link bases that provide information 

about such topics. For example the above query expresses interest in locating resources 

that provide the information either about the topics "Theory and Practice" or about 

"Theory and Thoughts". 

The above search expression involves conjunctive and disjunctive operations and such 
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complex query expressions cannot be translated into a simple key location expression, 

as mandated by structured P2P location techniques. 

5.7 Discussion 

From the above scenarios, it may be observed that: 

1. It is not always possible to transform a search request into a unique identity 

location problem. 

2. It is not always possible to cache the entire state of the neighbors and hence 

resilience cannot be guaranteed. 

3. It is not ab,ays beneficial to form a collaboration ,,"ithout ascertaining the associated 

communication and processing costs. 

The above reasons highlight the inadequacy of the existing techniques used to create P2P 

overlay systems. In addition, structured P2Ps mandate the number of neighbors and the 

amount of state information held by a peer. \Vhile structured overlay systems introduce 

highly efficient mechanisms for locating identities, they overlook the crucial application 

characteristics. Due to strong structural requirements, the structured overlay approach 

constrains the autonomy of the participating peers. 

This research considers an alternative approach, which relaxes the stringent structural 

requirements of the structured P2P systems and allows collaborating peers to evolve 

an appropriate overlay topology that caters for the specific needs of the application 

domain. The approach described below considers each peer to be an autonomous entity 

independently determining the number of neighbours, and visibility of state information 

and suitability of its neighbors. However, to maintain certain structural properties, 

some constraints on the autonomy of the peers are introduced. The prescribed approach 

advocates the adaptive overlay formation described in the following sub-sections. 

5.8 Adaptive overlay formation 

An overlay structure captures topological information about interacting peers. The 

topological structure affects: 

interactions between immediate neighbors An overlay structure determines the 

type of associations that a peer has with its neighbors. For example, in a P2P-OHS 

the probable neighbors should be peers that either have similar resource profiles 

or their shared resources are mutually beneficial to their neighbors. In this case, 
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the structure of the overlay changes if either of the neighbors changes its resource 

specification. Thus, the criterion used to define the overlay influences the type of 

interactions between the participant peers. 

constraints on communication mechanism between the immediate neighbors 

An overlay mayor may not depict the characteristics of the underlying communications 

network. 

the visibility of the state information between the systenl.s An overlay is resilient 

to the arrival and departure of peers. In order to achieve this resilience the 

participating peers need to maintain adequate state information about their neighbors. 

The nature of this state information varies between application domains. 

the co-ordination mechanisms The overlay creation and maintenance mechanisms 

determine the type of interactions required to allow the participation of new peers, 

to overcome the failure of peers and to handle the semantics of any updates about 

state information between the neighbors. 

;\1ost of the above requirements can be expressed as constraints on the behaviour of 

an individual peer in the peer network. As described earlier, each peer in the network 

has limited visibility of the entire system state and it uses this limited state visibility 

to autonomously decide its set of neighbors. The criterion used to prioritize amongst 

a number of neighbors is referred to as relative utility. The relative utility function 

determines \,.,hether two peers will form part of a coalition. A coalition can exist 

only if both peers derive mutual benefit from its existence. For example, in the case 

of P2P-OHS, a successful coalition can be formed with peers with similar resources. 

Both peers mutually benefit from successfully routing the query and the savings in 

communication costs justify the continual costs of maintaining the coalition. 

It is considered that each peer autonomously evaluates the benefits derived fi:om participating 

in a coalition. It also assumes that each of the participating peers have a complete 

know ledge of: 

1. Its own resources. 

2. Its existing coalition(s). 

3. The resources offered by the potential coalition partner. 

It should be noted that the scope of information visibility is restricted to the resources 

offered by the coalition partner and do not consider the cases where a coalition partner 

provides the knowledge of its existing coalitions, which is also referred as "derived 

coalition". Derived coalition formation requires managing and mapping dependencies 

between different coalitions and happens to be much more complex to model. Extending 
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the current approach to include derived coalitions forms an important part of future 

investigations. 

It should be noted that each individual peer can simultaneously participate in a number 

of multiple coalitions, where each of coalition results in acquiring a number of neighbors. 

The resultant union graph of these multiple coalitions results in the formation of the 

adaptive overlay network. The above mentioned approach was tested for the domain of 

P2P-OHS, details of which can be found in chapter 6. 

The peer-to-peer overlay formation algorithm is an event driven ongoing algorithm 

based on the principle of the local constrained optimisation. As peers acquire greater 

visibility of the state information, they periodically optin'lize their set of neighbors, 

subject to local constraints on peers. Changes to the resource definitions of the peers 

are communicated to immediate neighbors and may lead to re-evaluation of the coalition 

betvveen two peers. Variations in communication costs may also lead to re-evaluation 

of the coalition and result in the reorganisation of neighbours. A peer iterates through 

this communicate-optimize cycle indefinitely, after a random initialisation into the peer 

network. It is assumed that, before a re-optimisation, a peer is aware of the changes 

to the constraints and coalition variables. The overlay achieves its adaptivity from 

continual local re-optimisations. If the set of variables that underpin the coalitions 

stabilizes, it leads to the formation of a stable overlay. However, an unstable system 

results if the variables change more frequently then the re-optimisation capability of the 

peer network. 

5.8.1 Formal description 

Let Gt be the graph representing the overlay at any given time instance t. The graph 

Gt = (Pi, Et ), where Pt is the set of peers in the peer network and Et represents the sets 

of edges connecting the nodes in the overlay. The set E t = {E12, E 13 , .. . E ij } represents 

a set of edges at any given instance t. An edge Eij exists between the two nodes Pi and 

Pj , if and only if, the nodes Pi and Pj are involved in a coalition. It should also be noted 

that graph G t can only be constructed if a node has complete knowledge of all the other 

nodes in the network. However, in the present case, each peer ~ has partial knowledge 

of the graph represented as G i . Refer to Gi as the visible state of the node Pi. 

Each peer Pi has a set of resources Ri and is a member of coalitions Gi. Each coalition, 

G(Pi , Pj , Rei, R ej ), such that G E Gi , strictly consists of two participating peers, in 

this case Pi and Pj , where each participating peer contributes resources Rei and Rcj 

respectively, such that Rci E Ri and Rcj E R j . Each coalition partner is referred to as 

a neighbor, and each neighbor can only be a part of a single coalition. 

As per the semantics of the coalition, peer Pi and peer P j notify each other of any 

changes to the states of the resources Rci and Rej respectively. Each peer derives some 
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utility from being a part of the coalition and constantly re-evaluates its participation 

in light of the other available coalition options. It should be noted that the maximum 

number of coalitions for peer P; is restricted by the visibility G i . However, the visibility 

of peer Pi may increase with the number of coalitions it is involved. For exan1ple, in the 

case of P2P-OHS, the visibility of the peer increases in the process of answering queries 

originated by non-neighboring peers. 

Let [ti,tj] be the last interval of observation of coalition between the participating peers. 

During this interval. each of the peers observes the state of the resources provided by 

the neighboring peer and re-evaluates the coalition to choose a set of partners from the 

set Gi. The coalition re-evaluation algorithm is presented in 5.8.1. 

5.9 SUlnmary 

This chapter has reviewed the state-of-the-art of P2P systems. It was argued that the 

current techniques for developing P2P systems fail to fulfil the requirements of complex 

applications, such as service discovery, P2P-OHS and resource discovery in a network 

of schedulers. For these specific application scenarios, an adaptive overlay formation 

approach ,yas proposed. The approach highlights the fact that each peer is completely 

autonomous and should be allowed to describe its policies for: 

1. choice of neighbours 

2. number of neighbouring nodes 

3. visibility of the application state, and 

4. its co-ordination mechanism. 

The approach advocates the formation of coalitions amongst peers and allows for a peer 

to be a part of multiple coalitions. As each peer belongs to multiple coalitions, the 

cumulative effect leads to the creation of an adaptive overlay. The structure of this 

overlay changes, subject to the arrival and departure of peers and to temporal and 

spatial changes to the distribution of resource distributions. 

The next chapter presents one such prototypical system used to validate the approach 

advocated in this chapter. 
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input : Resources advertised by the peer - Ri 
A set of existing coalitions - C 
A visibility graph to choose the probable neighbors from Gi 

Kumber of coalitions allowed k 

Utility of Coalitions - H, valid for time [ti' tj) 
A utility function to compare two probable coalitions 

CompaTeCoalition(H, Ce , R i , P j ) , returns a comparable value for selection of a 
best probable neighbor, given existing coalitions Ce and the availability of 
resources Ri , provided by this peer, 

output: Modified list of Coalitions, C 
Ne,,' Visibility Graph Gi 

1 Listof PeeTS +- ListofNodes (Gi ); 

2 Listof Peers +- ListofPeers + GetCoali tionPartners (C) j*ListofPeers 
contains non duplicate entries of known peers * /: 

3 no_of _peeTS +- iListofpeeTsi; 
4 if no_of _peeTS < k then 
5 I Listof PeeTS +- Listof Peers Broadcast 
6 end 
7 C +- null; 
8 while ICI :::: k do 
9 temp +- null; 

10 next +- null; 
11 for j +- 1 to no_of _peers - ICI do 
12 Pj f- Listof PeeTs[j]; 

13 if temp:::: CompareCoaLition(H,C, Ri,Pj ) then 
14 temp +- CompareCoalition(H, C, R i , P j ); 

15 j* Localized Hill Climbing vvith successive maximisation based on 
local view, 

16 refer to discussion for constraints on CompareCoalition function * /; 
17 next f- Pj ; 

18 end 
19 end 
20 C f- C + next; 
21 Listof Peers ListofPeers - next; 
22 end 
23 Gi +- Create VisbilityGraph (C); 

24 return C, G i 

Figure 5.3: Continual reorganisation through coalition re-evaluation 
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Chapter 6 

P2P Coalition Formation and 

Search Algorithm 

This chapter extends the P2P overlay creation mechanism described in the previous 

chapter and describes its application in the context of a P2P Open Hypermedia System. 

Though the work is described in the context of a P2P-OHS it is equally applicable to 

all the previously described scenarios. This chapter is organized as follows: Section 6.1 

describes the overlay creation process and introduces the software architecture of a peer 

node. Section 6.2 provides the formal description of the relevant data structures and 

query semantics. Section 6.3 describes the operations on the data structures introduced 

in section 6.2. The search algorithm is described in section 6.4 and a formal description 

of overlay reorganisation is given in section 6.5, which considers reorganisation under 

failure of nodes and change in resources provided by peers. A few of observations are 

made and some negative results are discussed in Section 6.6. 

6.1 Introduction 

This section describes the application of the generic algorithm described in section 5.8 to 

the domain of P2P-OHS, of which our motivating application was described in section 

5.5. As described in section 5.5, a P2P-OHS consists of a number of peers that host 

link bases, which have been annotated in accordance to an application specific domain 

ontology 1. Annotated resource descriptions, also knmvn as "topics", represent the 

resources provided by each peer. In terms of the notation described in section 5.8, 

where each peer Pi hosts a set of resources ni , the list of topics is referred to as R i · 

Each peer enters a number of coalitions to maximize the discovery of its resources. The 

IDomain ontology refers to the application domain ontology, for example ontology in the biomedical 
domain 
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TABLE 6.1: Choosing neighbours for coalitions formation 

Ri = {TI : T5: Td 
Resource Type Overlap Degree of Overlap Additional resources 

R I = {TI: T2, T3, T4} {Td 1 {T2, T3, T4} 
R2 = {T3, T4, T5 } {T5} 1 {T3: T4} 

R3 = {TIl T3, T5 · T i } {Tl, T5 , T7 } 3 {T3} 

relative utility of the probable coalition partners are selected to reduce the cumulative 

communication costs incurred in routing the discovery queries across the peer network. 

The cumulative routing costs are minimized using a simple cluster heuristic to create 

coalition among peers with similar resources. Peers form coalitions with peers with high 

degrees of overlap. For example, consider a peer Pi, with a possibility to enter a coalition 

with peers Pj , Pk. The tie will be broken in favour of Pj , if I Rei n Rcj I > I Rci n Rck I; 
otherwise the tie is broken in favour of peer P", The query routing mechanism uses 

this overlap information to route the queries to the resources with the similar resources, 

please refer to section 6.2.1 for further details on query routing. The query throughput is 

maximized and the communication costs for query routing are restricted to communication 

costs with similar peers. However, in certain cases, peer Pi may not be able to decide 

on suitable candidates to whom to route the query: and in such cases resort to local 

broadcasts to neighbours. 

For example, figure 6.1(A) represents a probable outcome of the clustering process. In 

this figure, the red dots and edges represent the peers that are part of a coalition on a 

particular resource. Once a query is routed to any node in these subgraphs the query is 

routed via the edges of the graph. However, to communicate between the sub-graphs, 

the nodes may resort to local broadcasts. The query costs can be reduced to a theoretical 

minimum if the all peers with a particular resource are clustered to form a connected 

graph, a case depicted in figure 6.1(B). 

At the time of entering future collaborations, each peer has a complete knowledge of 

its existing collaborations, as described in section 5.8. Figure 6.2, represents one such 

case, in which a peer needs to choose a maximum of two coalitions from a set of existing 

coalitions. If the resources held by peer Pi is Ri = {TI' Ts, T7 }, the overlap calculations 

are as in table 6.1. It should be noted that if the peer chose candidates without prior 

knowledge of existing coalitions, it would end up choosing both the resources of type 

R 3 . However, after having chosen the first resource of type R 3 ) the peer attempts to 

maximize the resource types and chooses a resource of type RI over a resource of type 

R2, maximizing the total resources known to peer Pi. It should be stressed that peer Pi 

does not know about the existing coalitions of other peers. 
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(A) (8) 

FIGURE 6.1: Peer Network, (A) An overlay showing disconnected sub-graphs clustered 
over a single attribute, (B) An ideal overlay with a connected graph clustered over a 

single attribute. 
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FIGURE 6.2: Overlay Selection - (A) A peer that selects the neighbours based on 
maximum resource overlap (B) A peer that selects neighbours to maximize the resources 

based on overlap and query routing history. 
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FIGURE 6.3: Peer architecture 

6.1.1 Peer architecture 

The overlay creation and formation process is based on a coalition formation and maintenance 

protocol, the details of which are described in the following sections. The overlay network 

does not necessitate adherence to any architecture, but is only limited to the semantics 

and causality of the messages. However, to provide an insight into the state maintained 

at each node and the implementation of the system, the peer architecture is described 

in this section, the block diagram is presented in the figure 6.3. Each peer node consists 

of the following building blocks: 

Overlay Manager The overlay manager maintains the list of active coalitions and 

monitors the changes to any parameters in any of the coalitions. It also maintains 

state visibility information and manages the visibility graph Gi for a peer Pi' 

Resource Container The resource container manages the list of resources made available 

by Pi. It uses the overlay manager interface to notify the members of the affected 

coalitions of resource changes. 

Overlay Reorganizer The overlay reorganizer determines the long term participation 

of Pi in a coalition Gij . It maintains statistics on communication costs and query 

profiles and encapsulates the inferencing techniques for overlay reorganisation. 

Query Router The query router implements the query routing heuristics and tries to 

minimize the communication costs by choosing appropriate coalitions for routing 

the query contents. It also implements logic to uniquely identify the query, process 

queries in FIFO order and implement the query routing semantics. 

Query Manager The query manager is responsible for creating and managing queries 

generated by Pi and provides an interface to the application logic:. 

Information Profiler The information profiler uses the graph Gi and the inferences 

from the overlay reorganizer to create a model used to select future coalitions. 
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Policy Manager The policy manager dictates how the local resources are utilized. The 

candidate policies affect the size of the routing table and memory utilisation for 

maintaining statistics on past queries. 

6.2 Notation 

Table 6.2, introduces the notation used to describe the algorithm. The general graph 

Gt , is composed of a number of peers. Each peer Pi provides a list of available resources 

L~ and maintains a list of coalitions LPi . \\Thile the resources are described b~T means 

of their advertisements (Idtopic)and possible state transitions (Stopic), the coalitions are 

maintained in a separate table, also used for routing the query. A number of coalitions 

are maintained in the table structure, which is used to maintain the coalitions, and is 

also used to route the queries: hence it is also known as the routing table. Each row 

in the table captures information about the neighbour (I dpcer ), the list of resources 

that it brings to the coalition (LTresources) , the similarity with the resources of this 

peer (LTcommon) and topological information about the peer. As coalitions are treated 

independently of each other and as each coalition involves only two peers, the number 

of rmvs in the table equals the number of neighbours associated with the peer. The 

size of the table is restricted by peer parameter ki . Each of the peers may maintain the 

information of a peer that is more than a single hop away from the peer Pi, the maximum 

number of hops being limited by the radius. Thus the diameter of the visibility graph 

is limited to twice that of the radius. Each peer incurs communication overheads for 

maintaining the state of the neighbours, and the peer can adjust the communication 

costs by varying the radius of the graph G i . 

6.2.1 Query structure and routing semantics 

The overlay maintenance mandates that each peer maintain relevant information to route 

the query to the appropriate resources. This requirement is similar to that imposed in 

structured P2P systems where each peer maintains appropriate resource information, 

in this case an identifier map, to successfully locate the resource. In our case, each 

peer maintains the resource advertisement information for each of its neighbours and 

constantly updates the information to reflect the current state of the resource. The 

resource discovery request is expressed as a query on these advertisements. A query is 

identified uniquely by its globally unique identifier (GUID). The node that creates the 

resource discovery request formulates the query expression and associates its identifier 

with the query. The query manager at the node determines the TTL/max hops that 

determine the range of query propagation. The originating peer than evaluates the 

query and forwards it to chosen list of neighbouring peers (please refer to section 6.2.1 for 

further details on query evaluation). Each peer appends its path to the query description 
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TABLE 6.2: I\'otation used for describing the algorithm. 

Idpeer 

LPi 

L~ 

Gi 

Tad'ius 

k , 

LTi (List of topics Idtopic 
published by the 
individual peer) 

Stopic 

LP i (List of IdpeeT 

neighbouring peers) 

Q 

LT resources 

LTcom.mon 

CXdist 

,6direction 

depth 

time/ size 

timestamp 

Qtimestamp 

qid 

Qdesc 

TTL 
hops 
root 
path 

Overlay network topology at time 
instance t 
Set of nodes at instance t 
Set of edges at instance t 

Peer identifier 
list of coalitions 
list of topics 
sub graph known to the peer 
Determines the radial distance of the 
peers known to Pi 
maximum number of permitted 
neighbours for peer ~ 

Resource Advertisement 

List of possible resource states 

Identifier of neighbouring peer for this 
coalition 
list of resources committed by the 
neighbouring peer 
common resources in the coalition 
degree of overlap 
direction of edge (only if directed 
graph is permitted) 
The radial distance of this peer from 
the neighbour Pi 

Temporal records maintained for the 
statistical inferencing, the list is either 
time or size limited 
timestamp when the item was added 
to History 
The description of the query processed 
at the specified timestamp 

universally unique query identifier 
query statement (e.g. XQuery 
Expression, RDF query expression) 
time to live 
maximum number of hops 
the originating node for the query Q 
list of nodes visited by Q, in the order 
visited starting with root 
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Query Originator- generating a 
query request for maximum 

radius of 2 hops 

Query Receiver and propagator 
at level-1. 

Query Receiver at level-2 

Forward Propagation path 

Return propagation path 

Connected Neighbours 

FIGURE 6.4: Schematic representation of query rout ing 

and reduces the number of remaining hops before propagating the query to the next peer. 

On receipt of the query each peer evaluates the resource discovery request against its local 

list of resources, and, if an appropriate match is found, the query results are returned 

to the route peer and are propagated along the path of the query propagation. If the 

query has not expired and/or has not propagated to the desired diameter, the query is 

recursively routed to the next probable list of neighbours. The schematic representation 

is presented in the figure 6.4 

6.3 Algorithm and message types 

The above section introduced the notation and associated data structures . This section 

defines the continuously re-optimizing event driven algorithm used to facilitate search 

in P2P overlay networks. It should be noted that part of the algorithm executes in 

response to the occurrence of certain events. These events may originate from changes 

to the environment (i.e. changes in the state of the peer or the state of the neighbouring 

peers) or may be internally generated by the peer in response to the changes in the 

internal state. The following sub-sections presents t he list of messages handled by the 

peer and its subsequent processing. 

There is no particular order associated with the occurrence of most of t he events. 

However , certain events assume precedence over other events , for example an initial 

request to join the overlay. 
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6.3.1 Request to join the overlay 

Each ne"wly joining peer needs to be associated as a neighbour to at least one of the 

peers that happens to be a member of the overlay. The newly joining peer Pi publishes 

a list of topics LTi and generates queries for the peers with similar resources. The query 

requests and responses are routed through the initially contacted peer and the visibility 

of peer Pi increases as the peer obtains further results. The peer n tries to form a 

coalition with the newly acquired list of related peers. 

Variables: LTi := 0, LP i := 0, when Pnew joins graph G, 

• Online := true 

• Allow Queries := false 

• Randomly generate a list of queries Qrandom from the resource space and randomly 

select a set of peers from the responses, denoted as Pmndom 

6.3.2 Processing the query responses for (Qmndom) from Each Peer in 

Prandom 

• For each received LTresponse from the randomly chosen peers, 

Calculate o:dist := number of topics in LTresponse n LTnew 

Add to LP new the list of peers, distance, and the intersection set with f3direction 

:= true 

If received, P response already exists in LP new, select another set of peers 

If LTresponse n LTnew = {}, store the information as a uni-directional set, 

\\'here LP new contains the list of peers at o:dist = null and the intersection set 

with (3direction = false 

6.3.3 Request for processing query 

Any of the peer's neighbours could invoke a request for query processing. As there may 

exist a number of possible paths for query routing, duplicate processing is prevented by 

uniquely identifying the query by its associated query identifier. Once the uniqueness of 

the query has been established, the query processor selects the list of probable routing 

targets to propagate the query. If it is unable to find any suitable coalitions that can be 

delegated to the query, it resorts to a local broadcast, whereby it transmits the query 

to all the neighbouring peers amongst all its coalitions. 
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6.3.3.1 Query processing at Peer Pi 

Let LT queTy represent the list of topics in the query. Let n represent the number of 

topics in LTqueTY' 

• If not already processed query. I dqueTY 

• begin 

• For each o:dist in LP i ::: n, 

If LT query n LP i -+ LT = LT queTY, propagate the query 

If LTquery n LP'i -+ LT = {}, forward the query to all the neighbours in LP i 

• end 

6.3.4 Request for resource description 

Each peer maintains an advertisement of the resources that form a part of its coalitions. 

Depending upon the visibility information and the communication costs, a peer also 

caches the information of the peers at a radial distance radius. In order to obtain the 

information a peer raises a request for a resource description message. The message 

enumerates the list of resources that the peer is interested in and the radial distance 

of the intended recipients of the message. A peer uses this information to estimate the 

resource availability in its immediate neighbourhood. It should be noted that the peer 

does not enter into coalition with the peers at a hop distance greater than 1, but uses 

the information solely for the purpose of query routing. 

6.3.5 Notification of change in resources 

Each coalition monitors a set of resources and the state of the resources. A push 

monitoring mechanism is used, where each resource provider issues notifications for 

any changes to the resource state. Each coalition partner subscribes to the notifications 

requests of the resources contributed by its subordinate peer. Peers may monitor the 

communication costs for the notifications messages and consider the associated overheads 

while re-evaluating the coalition. 

6.4 Search Inechanism 

Each search request to locate any particular combination of resources is formulated as 

a resource discovery request. The peer that initiates the search matches determines the 
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upper bound on the total query propagation costs and specifies the time to live for the 

query of a particular type. Each such search request is formulated as a query routing 

request and incurs a cumulative communication cost across the peer network. This 

communication cost is affected by: 

1. The topological distribution of the resource providers and consumers. 

2. The relative availability of similar resources. 

3. The coalition preferences of the cumulative network. 

The TTL determines the yield achieved by the query routing mechanism. Each originating 

peer uses the TTL to specify the requests for a particular resource type as inferred from 

its information model. The peer constructs this resource model by observing three states 

of the system: 

1. The state of the coalitions. 

2. The state from the historically routed queries. 

3. The state from observing the state models of other peers. 

Once a query request has been formulated it is routed by using the state table at each of 

the routing peers. The query statistics capture the number of broadcasts and the relative 

yield obtained from routing the query. Each peer maintains these statistics over a period 

of time, also known as query history. The query history infers the probable distribution 

of resources across the peer network and also estimates the probable availability of the 

resources in such a network. This data can either be maintained for a fixed number of 

query records or it may be maintained in accordance to temporal constraints. 

6.5 Overlay reorganisation 

The overlay is an abstract representation of a list of coalitions between a number of 

participant peers. Each of the partners in the coalition autonomously decides on which 

coalitions to retain or which coalitions to forfeit. Under static resource and query 

distributions, the overlay would stabilize, and, under stable conditions, all the peers 

would have settled for the best possible static topology, However, in most practical 

cases the peers would not have complete knowledge of the system; hence, even temporal 

changes will result in certain coalitions being regarded as inefficient, while certain others 

will assume greater importance. In addition, certain unforseen conditions like the failure 

of certain nodes will result in the recreation of the state and the reorganisation of the 

overlay network. 
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The decision to prefer one coalition over another can either be made on the basis of a 

short temporal observation or can be considered over a longer duration. The duration 

over which the peer gauges the utility of the coalition depends upon the nature of 

coalition. Peers that maximize the short term gain and are interested in re-evaluating 

their strategy on the basis of short observations are preferred for the following reasons: 

1. The frequency of changes to the system state may be too infrequent to take 

advantage of any previous system state for long durations. 

2. Considering a large scale network the costs involved in maintaining the resource 

information at each of the peers may be more than the derived benefit. 

Considering that a peer uses state information observed over a finite interval, a peer vvill 

be able to create the profile of the information held on the peer and the information 

routed through the queries. The information is used to model the resource type and 

distribution profile, known as the local model. A number of peers may share their model 

of the environment and create a model based on the coalition. The shared model can 

be used to create the approximate resource distribution, which can be used to choose 

probable partners for future coalitions. 

6.6 Observations 

The coalition formation algorithm described above is based on a simple heuristic used 

to form clusters of related resources. This intuitive approach reduces the query routing 

costs, as the resources in a cluster share a common objective of routing queries for their 

"similar" resources. However, participating in a coalition only reduces the routing costs 

for the resources that form the basis of the coalition. As described earlier, a coalition 

C < Pi, Pj , Ri , Rj >, is based on the sharing of resources R i , R j between peers Pi and 

Pj' Generally, a peer P;" will have a set of resources R, such that Ri E R, and is 

likely to enter multiple coalitions \\'ith an upper bound on the number of coalitions a 

peer could enter. As part of the cluster, each of the peers is obliged to cooperate in 

routing the queries (or requests) sent by neighbours. A peer may either satisfy a request 

and/or may propagate it to a neighbour that may satisfy such a request, resorting to 

local broadcast when both the previous options are infeasible. Routing query requests 

serves two purposes: First, the query routing details increase the visibility of the peer 

Pi by informing it of the existence of other peers. Secondly, query content allows the 

peer to map the resource availability in its surroundings. Based on query routing and 

overlay information, a peer maintains the model of its peers and classifies them into three 

distinct categories, firstly, peers with complete overlap of resource information, secondly, 

a peer set with partial overlaps, and finally, a set of peers with no resource overlap. 

On the basis of the above information, a peer needs to determine the most suitable 
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candidates for coalition formation. During experimental evaluation, it was observed 

that if the overlay is constructed solely on the basis of the resource overlap information, 

the resultant cluster has a yery high density of packing. High density clustering reduces 

the query routing costs of the highly available resources, while pronouncing the costs of 

the sparingly available resources. However, if the overlay formation is based on both the 

resource information and the query routing information the resultant clusters consists of 

resource neighbours from all three categories, namely with fulL partiaL and no overlap. 

It should be noted that the clustering algorithm does not mandate adherence to any 

particular topology. As the topology of the overlay evolves from the coalition formation 

process, it is possible that the average communication costs for locating the resources 

and throughput of the query 'will vary. The variation is attributed to two factors: First, 

if a query originates outside the cluster of resources, it incurs local broadcast costs, 

until it encounters at least one of the resources within the cluster, which subsequently 

directs the query. However, if the TTL of the query exceeds the cluster size, the query is 

diffused into the surrounding cluster for propagation through local broadcasts. Secondly, 

as resources become scarce, the resultant clusters are few and far between, and additional 

communication costs are incurred in locating the similar clusters. 

6.6.1 Limitations of the approach 

The following is a list of limitations of this approach: 

Network Partitioning: As each peer in the overlay is indiyidually responsible for 

determining its immediate neighbourhood, it is impossible to rule out network 

partitioning effects. Although a local broadcast used by the query routing mechanism 

aids the reformation of the connected overlay, the chance of network partitioning 

could not be eliminated. 

Unstable Overlay: As each of the participant peers autonomically determines its 

participation in individual coalitions, it is imperative that these reorganisations will 

happen asynchronously. As described in the previous chapter, the reorganisation 

mechanism requires a certain amount of time to attain an optimum solution. 

However, frequent changes to the query profile or resources held at the peers result 

in an unstable overlay. Such instability is also observed in the structure overlay 

and is also attributed to frequent modifications to the peers. 

Warranties on forming optimal topologies: The possibility of the coalition formation 

resulting in a non-optimal solution was proven by Sandholm et.al (Sandholm, 

Larson, Andersson, Shehory, and Tohm 1999). As the above work derives from 

a similar approach, albeit in a more relaxed and distributed environment, the 

observations by Sandholm et.al. remain equally applicable, and the process may 

result in the formation of non-optimal topologies. 
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Local Optimum: The mechanism described in the previous chapter relies on the use 

of the latest observations of the dynamically evolving network and attempts to 

optimize the topology in what can be seen as a naive hill climbing technique. 

However. such a technique may result in identification of the local optimal and with 

no means to identify the global optimal, the algorithm may result in suboptimal 

solutions. 

6.7 S ununary 

Application of the coalition based overlay network as applied for content management 

in P2P-OHS has been discussed in this chapter. The exemplar was used to route 

the resource discovery requests using the overlay characteristics. Reorganisation of 

the overlay to reflect the changes in the query distribution and resource distribution 

was discussed as an extension to the original approach. Observations from the actual 

implementation of the above have highlighted some limitations, as discussed in the 

previous section. The experimental evaluation of the above approach is discussed in the 

next chapter. 
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Evaluation of the Search 

Algorithm 

This chapter presents the results of the experimental evaluation of the algorithm described 

in the previous chapter. Section 7.1 provides the general overview of the simulation 

environment and elaborates on experimental settings and experimental evaluations. 

Experimental evaluations, results and analysis are presented in section 7.2, and the 

findings are summarized in section 7.3 

7.1 Introduction 

The simulation requirements overlap with those of peer-to-peer systems and ad hoc 

systems. However. as far as is known, there is no standard peer-to-peer simulation 

environment. Though such environments exist in the field of ad hoc networking, most 

of the ad hoc simulators are restricted to simulation of lower-level communication 

protocols. For example, the use of Ketwork Simulator 2 (NS2) and mobisim was 

evaluated, 1 but considered inappropriate for simulation of an information based dynamic 

overlay formation. Consequently, a new simulation environment was developed, referred 

to as InfoSim. 

InfoSim is a generic infrastructure to simulate query routing in a P2P environment. 

Queries are represented, communicated and routed as messages. The messages are 

declarative in nature and possess a context, including sender, receiver, send time, expiry 

time and message path. The simulator uses a logical clock and provides capability for 

scheduling a sequence of events. The events are cached at the recipient, for further 

processing. However, on expiry, the messages are discarded from the recipient queues. 

1 References could not be provided as there exists no published article that describes the simulator's 
internals. The web reference for NS2 is http://www.isi.edu/nsnam/ns/. November 2005. 
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7.2 Experimental evaluation 

The results presented in this section can be classified into three main categories of 

comparisons pertaining to: 

1. Query Routing strategies; 

2. Effects of variation in the link state table on routing costs; 

3. Effects of topology on objective function. 

Query Routing strategies: Three candidate query routing strategies are compared 

to determine the effectiveness of the approach. The performance of the similarity based 

query routing strategy is compared against the performance of random walk and the 

broadcast mechanism 2. The set of experiments described in the latter sections were 

conducted under exactly similar routing table and resource states across the P2P system. 

All the routing strategies employed TTL based query expiry criteria and were compared 

on the basis of routing efficiency, where routing efficiency is determined as the ratio 

of resources discovered for the set of messages exchanged between the nodes. Further 

details of the experiments can be found in section 7.2.4 

Effects of variation in link state table on routing costs: Maintaining the link 

state table incurs the messaging costs. This set of experiments investigate the effect of 

variations in the size of the link table on the overall query routing performance of each 

of the node in the network. Two situations are considered: the first set of experiments 

presents the effect of changes in state table size on the query routing performance of the 

system, and the second set of experiments presents the effects of changes in the spatial 

radii of the state table. The results of this set of experiments are summarized in section 

7.2.4.2. 

The effects of topology on objective function: Each node in the P2P system 

has a finite set of neighbours, and the combined set of neighbourhood information 

describes the topology of the P2P system. The main aim of our clustering heuristics is to 

create a topology to minimize the query routing costs. This set of experimental analysis 

observes the behaviour of the P2P overlay topology for a finite set of query distributions. 

Snapshots of the topology are obtained at regular intervals and are compared against the 

theoretically optimal topology. As there exists no comparative operators to determine 

equivalence or quantify the topologies, the cumulative gain in objective function is used 

as the measure of comparison. Details on how to obtain the theoretical optimal and 

results can be found in section 7.2.4.2. 

2Broadcast and guided random walk techniques have been widely used for comparing the query 
routing strategies in unstructured P2P systems 
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Parameter Configuration - 1 Configuration - 2 Configuration - 3 
Simulation time steps 10000 10000 10000 
Number of nodes 20 to 200 20 to 200 200 to 1000 
~1aximum number of 3 to 50 3 to 50 3 to 50 
coalition 
Radii of topological 1 to 3 1 to 5 1 to 10 
visibility 
Frequency of queries 3/ time step variable yariable 
Number of unique 200 200 1000 
resource definitions 
Maximum Resources 100 variable 10 to 100 variable 10 to 100 
per node 
Resource Distribution zipf zipf zipf 
type 

TABLE 7.1: Configurations used in P2P simulation 

7.2.1 General setup 

An initial P2P network topology is assumed to represent the sets of neighbors for each 

of the participant peers. A global resource distribution is used to populate the list of 

resources hosted at each individual peer An instigating peer is chosen at random to 

initiate a query and determine the appropriate radii of query propagation. The query 

contents are derived from a knovnl resource distribution. Each peer autonomously routes 

the query and also helps in propagating responses to the queries. The radii of query 

propagation and frequency of query propagation are uniformly distributed over a range 

of values. The experiments were carried out with the configurations shown in table 7.1. 

7.2.1.1 Resource distribution 

Each peer hosts a set of resource descriptions also known as content descriptions. Our 

experiments consider two such resource distribution parameters, known as the global 

resource type distribution and the local resource distribution. \iVhile the global resource 

type distribution indicates the relative availability of a resource across the system, local 

distribution indicates the availability of resources at a particular node. It is observed 

that peers that host largest variety of contents derive higher values of resource discovery 

due to their ability to satisfy a relatively larger number of queries then that compared 

to peers with lower number of content definitions. Hence, local distribution has an effect 

on the choice of objective function by the peer. \iVhile a peer with higher content types 

can maximize its utility by satisfying queries, the other types of peer can maximize their 

utility by choosing an appropriate set of neighbors to route their contents to. 
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FIGURE '{.1: A zipF resource distribution. 

7.2.2 Input data sets and data distribution 

Both real and synthetic input data sets were used to validate the hypothesis, as the 

use of them was predominant. They were selected to reflect the application domain 

characteristics. For example, the application domains described in the previous chapter 

exhibit a zipF distribution of resources. A zipF distribution was used to represent the 

cumulative resource distribution across all the participant nodes, although individual 

resource distributions differed across peers. A uniform distribution was used to allocate 

variable sets of resources to each of the participating peers, while adhering to the 

overall resource distribution. In addition, uniform and poisson distributions were used 

to generate queries over a given set of resources. Independent resource and query 

distribution were used to reflect a real-life scenario, where resource availability and 

demand for resources are usually independent of each other. Finally, a uniform probability 

was used to randomly select the node that instigates the query. 

7.2.3 Comparison with respect to an optimal topology 

Given the resource distribution and the query profile distribution, an optimal topology 

can be ascertained on the basis of the mean path length required for query propagation. 

An optimal topology minimizes the mean path for discovering the maximum number of 

resources that satisfy the query. Consider the above example, the nodes are labelled 1 

to 6 and their resource distribution is given as: 
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1 0 0 1 0 1 TABLE 7.2: A simple topology. 
0 1 1 0 0 1 

Adj acency Matrix (A) 
0 1 1 0 1 0 
1 0 0 1 1 0 
0 0 1 1 1 0 
1 1 0 0 0 1 

TABLE 7.3: Adjacency matrix and its graphical topology for a small network, 
connectivity k = 2 

l\ode 1: { A,B,C,D} 

l\ode 2: { E,F,J,K} 

:\'ode 3: { E,H,M,I} 

Node 4: { G,F,C,D} 

Node 5: { F,H,KI} 

l\ode 6: { A,B'!)} 

From the above resource distribution, it can be easily inferred that Node 1 can benefit 

the most by forming a coalition with Node 4 and Node 6. Under uniform distribution 

of queried resources, both these nodes provide resources that minimize the broadcast 

costs incurred by Node 1. The same is also applicable to the topology formed by other 

resources. An optimal topology for a simple network of six nodes and its adjacency 

matrix for a maximum number of neighbor connectivity of k = 2 is represented in the 

figure. 

In the above example, each of the nodes is restricted to entering a maximum of two 

coalitions, where, as previously described, a coalition exists between a set of peers. The 

value of the coalition is determined by taking into account the query profile distribution. 

A uniform query profile means that maximizing the information of the resource types 

leads to maximisation of the utility function. 

Possible coalitions for Node 1 and their respective utility values for uniformly queried 

resources is given as follows: 

Coalition(1,2): Utility = 0 

Coalition(1,3): Utility = 0 

Coalition(1,4): Utility = 2 

Coalition(1,5): Utility = 0 

Coalition(1,6): Utility = 2 

One could similarly calculate the coalition values of the remaining pairs of nodes, as the 

coalition is commutative: Coalition(i,j)=Coalition(j, i); one can select coalitions that 
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result in cumulative maximum utility. The cumulative coalitions are considered subject 

to the constraints on maximum number of neighbors k and the connectivity constraints 

on the graph. 

The theoretically maximal coalition value determines the probable candidates for optimal 

topologies. However, it is not guaranteed that the heuristics discussed in the previous 

chapter will always converge to the formation of the exact optimal topology. In such 

cases, the ratio of the cumulative gain values, subject to connectivity constraints, are 

used to compare the effectiveness of the approach. 

7.2.4 Experiments 

As described in section 7.2, the experimental evaluation is divided into the above 

mentioned three categories. The following sub-sections summarize the results in each of 

these categories: 

7.2.4.1 Query routing strategies 

Three candidate query routing strategies are considered, firstly, the probabilistic query 

routing (described in the previous chapter), secondly the broadcast strategy and finally 

the random walk strategy. The performance of the query routing strategy is compared 

on the basis of the net throughput of the query and the average transmission costs for 

locating the resources. By its very definition, a broadcast mechanism should provide 

the highest throughput and should be able to discover all the resources within the 

TTL radius of the instigating node. The above fact was validated with the results 

described in figure 7.3, which plots the query throughput for the increased resource 

availability. As described in section 7.2.2, the cumulative resource distribution follows a 

zipF pattern; consequently the resource types with higher availability are more likely to 

occur then resource types with the least probability. As shown in figure 7.3, the resources 

with higher availability result in higher throughput and the throughput decreases with 

relative availability of the resources. The inverse zipF nature of the output verifies the 

fact that the overlay organisation results in a structure of radii < TTL for the query and 

the majority of the resources are discovered by the broadcast mechanism. In terms of 

throughput, the probabilistic query routing mechanism provides throughput comparable 

to the broadcast routing strategy, as demonstrated by the plot in figure 7.2. However, 

the random walk strategy resulted in the worst possible query throughput, as shown in 

the figure 7.4. The comparative graph for the query throughput for each of the three 

strategies can be found in figure 7.5. It should be noted that the probabilistic routing 

strategy and broadcast strategy provide nearly the same throughput. The cost analysis 

of the three strategies can be found in figures 7.6, 7.7, 7.8 and 7.9. 
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FIGURE 7.2: Query throughput using the probabilistic routing algorithm for zipF 
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FIGURE 7.3: Query throughput using the broadcast routing algorithm for zipF resource 
distribution and variable radius r, 1 :S r :S 3, Number of peers = 20. 
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FIGURE 7.4: Query throughput using the random walk routing a1gorithm for zipF 
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As demonstrated by figure 7.7, the relative transmission costs of the resource discovery 

increases as the resources become scarcely available. The same trend is observed for the 

random walk strategy, as shovm in figure 7.8. However, the routing costs for probabilistic 

routing are nearly constant and show little variation in the face of changing resource 

availability. As shown in figure 7.6, the query costs for the highly available resources 

and scarcely available resources is nearly the same. This demonstrates that probabilistic 

routing is effective in detecting neighbours that have a higher possibility of providing 

resource information. \Vith an average transmission cost of 2.5 and a tightly-bounded 

theoretical transmission cost of 1.0, the probabilistic routing algorithm performs better 

than the broadcast and the random walk mechanism. 

It should be noted that both the transmission costs and the throughput plots reflect the 

fact that each point in the graph is measured for a randomly generated query initiated 

from a randomly chosen point in the network. The variation in the throughput is because 

the clusters of resources are at a greater distance from the origin of the query, therefore 

also attracting higher broadcast costs. 

7.2.4.2 Effects of variation in link state table on routing costs 

It should be noted that one objective is to develop a technique that is equally applicable 

for both wired and wireless networks. Unlike wired networks, wireless networks, such as 

sensor networks, consist of nodes with limited resources. The next set of results shown 

in figure 7.10 demonstrate the effect of changes in radii on the overall performance of 
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the probabilistic routing strategy. As shown in figure 7.10, the query throughput shows 

a remarkable increase with increase in radius. Initial increments obtained by increase in 

radius outperform the further increases obtained. The above property can be exploited 

by the wireless networks to determine the appropriate radius for dissemination of their 

resource information. 

Some performance observations about the routing algorithm are made in figure 7.10: 

Firstly, the proportional gain in throughput is higher for the initial increase in radius. 

Secondly, the variations in query performance reduce significantly as the radius of 

the graph is increased. As all the above experiments were conducted under similar 

operating environments except for the state information used for routing the query, it 

is inferred that the algorithm is able to provide better performance for an increased 

state information. However, a comparison of the increase in performance with the 

proportionate cost increments is needed, which have been highlighted in the figures 

7.12, 7.13, and 7.14 

The transmission cost indicators for the three radius indicate the following trends. 

Firstly, the clustering strategy initially allows lower transmission costs for the scarcely 

available resources, while the cost for highly available resources is fairly constant. Secondly, 

as the radius is increased the cost for query processing of the scarcely available resources 

increases. In figure 7.13, it is approximately constant for all query types, while it 

increases beyond the cost of highly available resources in the case of figure 7.14. This 

indicates that the cluster size has a direct impact on transmission costs, and this effect 
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is more pronounced for scarcely available resources. 
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Similar studies were carried out for the broadcast strategy, and it verified the theoretical 

case that a change in the radius of the information has no impact on the throughput 

and the transmission costs. The experimental verification of the results can be found in 

sections 7.11 and 7.15 respectively. 

7.3 Conclusion 

The experimental evaluation presented in this chapter presented the generic trends 

observed in the construction of a coalition based overlay network. It was observed that 

probabilistic routing provides a comparable throughput to the broadcast mechanism but 

at a comparatively reduced cost. Additionally, the transmission costs of probabilistic 

routing remains the lowest and is constant across the resource distribution. The results 

also demonstrate that the increase in radius improves the performance of the probabilistic 

routing. However, such improvements need to be weighed against the associated costs 

for state maintenance. The above investigation focused on the case for which the 

transmission costs are linearly proportional to the amount of state being maintained. 

The overlay characteristics were validated with the individual peers autonomically choosing 

the radius of their state maintenance and coalition formation. The above results validate 

the assumption that coalition formation is robust in developing overlay networks for 

content distribution and information dissemination. 
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Chapter 8 

Query Optimisation 

Chapter 2 introduced adaptive query processing systems for streaming data and the 

related motiYating applications. This vvas followed by a detailed description of a model 

for adaptive information management in chapter 5. This chapter continues the thread 

of discussion on adaptive information management, albeit with an exclusive focus on 

the particular application domain - query processing over streaming data. It should be 

noted that the choice of this particular application domain was influenced by some of 

its following characteristics, as follows: 

Time varying behaviour Query processing over streaming data provides an ideal case 

for optimisation over time. In a streaming database, data arrival rates happen 

to be infrequent. Time varying behaviour, coupled with constraints on memory 

utilisation, computational resources, and the online nature of processing, facilitate 

the evaluation of our assumptions of optimisation over tilne in a real application 

domain. 

Distributed and partially visible information The online processing requirements 

of stream data management restrict the number of parses of incoming information. 

The system needs to adapt on the basis of a small number of actual observations, 

and most often these observations are not shared across multiple streams. 

A reduction from a fully connected graph to a partially connected graph One 

of the important operator employed for query processing of multiple streams 

is a n-way join operator. TI-aditionally, a query plan for such an operator is 

represented by a tree, derived from an n-way fully connected graph. This allows 

us to explore the possibility of representing the scenario using a dynamic graph 

formulation. Section 8.4 describes a dynamic graph based approach to multiple 

query optimisation. 

A combinatorial cost representation Query processing in streams is constrained, 

and usually represented by a combinatorial cost formulation described in terms 
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of memory utilisation, computational costs timeliness of response. Usually a cost 

expression is usually associated with an individual query, but typically a system 

processes multiple queries over multiple streams. Therefore the application domain 

is well suited to exploring the relation between graph theoretical representation 

and combinatorial optimisation. 

At the time of writing this thesis, query processing over streams IS an emerging area 

of research in the database community. The theoretical contributions in this chapter 

are two-fold. Firstly, the hypothesis presented in chapter 2 should be ratified in terms 

of solving a combinatorial optimisation using graph theoretical techniques in a domain 

varying with respect to time. Secondly, a new approach is proposed for query planning on 

streaming data. This part of the thesis consists of two chapters. Chapter 8 describes the 

problem domain and the proposed solution and chapter 9 describes the implementation 

and evaluation of the proposed approach. This chapter begins with a brief introduction 

to query processing for relational data model, as described in section 8.1. However, it 

should be noted that with such a large number of approaches and techniques developed 

for query processing, means that it is impossible to provide a comprehensive summary 

of the whole area of the research. Instead, section 8.1 introduces important concepts 

and definitions to help understanding of the problem domain. Section 8.2, highlights the 

differences between traditional query processing and query processing for streams, using 

a relational data model. Section 8.3 describes the scope of the approach and its relevance 

to the actual application domain. A set of theoretical solutions to the problems described 

in section 8.3 are described in section 8.4. The next chapter, provides an architectural 

overview of the implementation used to verify the hypothesis described in section 8.4. 

The experimental results and their interpretation are provided in section 9.2. Section 

9.3 provides the usual two part summary relating the findings to the application domain 

and the overall hypothesis. 

8.1 Background 

Relational data representation (Codd 1970) is a widely used one that allows flexible 

manipulation of encapsulated data. A part of its success is attributed to the well defined 

relational algebra (Date 1995), is used to represent the data definition and manipulations. 

Usually a declarative language - in most cases SQL (9075 1992) - is used to syntactically 

represent the actual list of intended operations. ~10st commercial database systems allow 

concurrent access to the underlying resources by allowing execution of simultaneous 

queries. These systems convert the syntactical representation into a query plan for 

execution by the underlying system. Query planning remains central to resource utilisation 

in relational data management systems. To discuss the specifics of resource management, 

the rest of the section discusses the query planning techniques in relational database 

systems. 
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8.1.1 Query processing in relational database systerns 

Query processing in relational database systems is usually a multi-staged process. lVIost 

query processing systems use a parser to create a query plan from the syntactical 

representation of the query statement. Initial plans are further optimized by the query 

optimizer. A query optimizer applies a number of transformations to generate a list of 

alternative feasible plans (also known as search space). A search mechanism is used to 

select a most suitable query plan from the list of plans - usually one with minimal costs 

for a given cost model. A query plan with lowest cost implications is executed by the task 

management system of the database. Most traditional databases generate a query plan 

at the start of query processing, ·while some perform re-optimisations of the query plan 

during execution. The planning process is usually based on the statistical information 

gathered from currently available tuples. A query plan with re-optimisation is well suited 

for query processing in dynamic environments. Such query plans are usually employed 

in multi-database systems where the unpredictable processing environment necessitates 

the use of dynamic planning. Re-optimisation of the query plan is not usually employed 

in single database systems. 

Amongst the important aspects of relational query processing are cost estimation and 

operator scheduling mechanisms, which tend to have a huge impact on optimisation. 

A seminal paper by Selinger et. a1. (Selinger, Astrahan, Chamberlin, Lorie, and Price 

1979a) introduced System-R and a widely used formulation for generating query plans. 

Most database systems extend this model to create a specialized query processing system. 

System-R accepts a SQL statement and generates an access plan for single selection or 

join relationship. The cost estimates in System-R are taken into account, the access 

cost being based on the index information and the join operator algorithm. The generic 

framework proposed by System-R provides a means to calculate query costs in terms of 

access and operator costs. Similar cost metrics have been widely adopted in numerous 

RDBMSs. 

The following few subsections discuss some of the important components of a query 

processing system: 

8.1.1.1 Query planning 

Query planning is a process by which a declarative data manipulation statement is 

translated into an execution plan for evaluation by the database system. A typical 

query planning system translates the declarative statement into a series of operations 

and sub-operations to express the task as a series of atomic tasks that can be quantified 

to ascertain the exact resource usage for the task. A query plan is usually expressed as a 

directed edge graph, vvhich associates data with the operators. A query tree is the most 

usual representation of the query plan. A query tree is usually composed of a collection 



Chapter 8 Query Optimisation 96 

of data nodes and operator nodes. It can be expressed as a collection of sub-plans where 

the output of the internal plan is merged as the input of the higher level plan. The 

data nodes represent the table space or the tuple being accessed and a number of access 

operators and join operators form a part of the higher level plan and are used to execute 

the underlying sub-plans. In some cases, the sub-plans may not be expanded at the 

compile time and the actual planning process may be accomplished at the run time. 

Multiple database optimizer represent one such class of query optimizer that evaluate 

the query plan at the run-time or delegate the task of evaluating the sub-expression to 

an independent autonomous optimizer. 

8.1.1.2 Cost metrics and estimation techniques 

The cost of query processing is usually expressed in terms of three important parameters -

memory usage (also known as memory utilisation), computational resource uage (represents 

the computational cost) and the time to response. As a standard case, each of the 

algorithms used for scan or Jom operations has a knmvn complexity. For example, 

a hash join (Date 1995; Luo, E11mann, Haas, and Naughton 2002), an index scan 

(Date 1995) and a clustered index scan (Date 1995) each has a different complexity. 

As most of the algorithms used for query processing exhibit deterministic behaviour, 

it is possible to calculate the approximate resource requirenlents for the evaluation of 

the individual query. The cost of query processing is usually a proportionate mix of 

the three parameter cost metrics. The exact inter-relations between the cost function 

depend upon the implementation of database system. As a representative example of 

cost calculation in database systems, the cost calculation formulae of System-R are 

repeated. The representation is purely to aid the comparison with the cost metrics for 

streaming databases, introduced in section 8.4 

8.1.1.3 Query planning techniques 

An optimizer needs to produce a sufficiently large number of alternate plans so that 

it can locate a plan vvith the minimal costs for processing. An optimizer needs to 

tradeoff the cost of optimisation of a query plan and the time to execution of the actual 

query. Consequently, the algorithms can be classified into three primary categories 

(Swami 1989) namely, the exhaustive search, randomized search and he'uristic guided 

search algorithms. A brief overview of each of these types is given. A more complete 

and detailed discussion can be found in Steinbrunn et. aL(Steinburnn, Moerkette, and 

Kemper 1997) 

Exhaustive Search The number of possible query plans for an n-way join increases 

exponentially with the number of tuples. Consequently algorithms that iterate 
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through these exponentially increasing search spaces exhibit similar complexity in 

time and space. Examples of this type of algorithms appear in (Selinger, Astrahan, 

Chamberlin, Lorie, and Price 1979b: Lohman and O~O 1990; Kemper, I'vioerkotte, 

and Peithner 1993). 

Randomized Search Randomized algorithms are well suited for optimisation in space. 

However, this has a negative impact on optimisation in time. By their very 

definition, randomized algorithms are indeterministic in nature, and are likely to 

have higher time overheads. These algorithms perform better than the exhaustive 

or heuristic search algorithms for simple queries, but tend to be more appropriate 

for larger queries, due to lower planning costs and fixed complexity in space. 

Various variants of the randomized search algorithm can be found in (Ioanndis 

and Kang 1990: S'wami and A.Gupta 1988; Steinburnn, J\10erkette, and Kemper 

1997) 

Heuristic Search This class of algorithms tends to exhibit polynomial complexity in 

time and space and generally produces query plans that are orders of magnitude 

more expensive than those produced by the exhaustive search mechanisms. Common 

examples of this type of algorithms include the "minimum selectivity" algorithm 

and greedy algorithms (Swami 1989; Steinburnn, Moerkette, and Kemper 1997). 

As far as is known, most query optimisation algorithms fall into either of the three above 

mentioned categories. The algorithm presented in section 8.4 uses dynamic programming 

techniques that can be classified as a modified exhaustive search algorithm. The actual 

differences are highlighted in section 8.4. 

8.1.1.4 Query re-optimisation 

Query re-optimisation is employed to iteratively optimize the query at run-time. A few 

of the many reasons for run-time optimisation of the query plan include: 

Lower confidence in cost estimates. For very large queries, sampling techniques 

are employed to reduce the scan costs for generation of the initial cost estimates. 

Additionally, some estimators may only sample a part of the entire dataset to 

provide a cost estimate. The accuracy of any such estimate depends on the choice 

of the sampling technique. A number of runtime optimizers (Ng, Wang, Muntz, 

and Nittel 1999; Ozcan, Nural, Koksal, Evrendilek, and Dogac 1997) adopt a 

strategy to evaluate a part of the result to verify the estimates and re-optimize in 

the required cases. 

Frequent changes in operational conditions In a number of conditions, the projected 

estimates may be invalidated by the operational characteristics of the systems. For 
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example, consider an equi-join operation between two tuples, where one tuple is 

resident in memory and the other tuple is being retrieved from the disk. At 

runtime, increased disk activity may result in delays in the processing of the join 

operators. A re-optimisation of query plan in general and operator ordering in 

specific may be required to reduce the overall space requirements of the query. 

Another example, consider a multiple autonomous database query involving a 

multiple database join operation. A central query processor decomposes the query 

into sub-queries on the participating databases. Each of the autonomous database 

systems independently feed the join operation. A re-optimisation of the query in 

light of such changes in the operating conditions is advantageous. An example 

approach of query scrambling can be found in (Getta 2000). 

Parallel query processing Concurrent execution of the operators can either be determined 

at design time or can be imbibed at runtime. Adaptive query processing on parallel 

machines necessitates replanning to obtain better optimisation. 

Multiple Query Optimisation A multiple query optimisation reduces operational 

costs by utilizing the resource sharing between queries. The possibility of resource 

sharing between the queries can only be ascertained at runtime and may require 

re-optimisation of the query plan. 

8.1.2 Summary 

The above section provided a brief introduction to query processing in database systems 

and highlighted some of the important characteristics of query processing systems. 

It is acknowledged that the above description is by no means an exhaustive one or 

representative of the enormous complexity of the rich field of query processing in database 

systems. However, as stated earlier, introduction of some of the important terms will 

help the discussion in the latter sections. Query planning, the costing model, query 

optimisation techniques, and query re-optimisation in traditional databases have been 

presented to contrast them ,vith those used in query processing over streaming data. 

8.2 Query processing for streams 

8.2.1 Motivation 

The online processing requirements of most applications in pervasive environments -

for example, network traffic monitoring, fraud detection in telephone networks, sensor 

networks, data feeds from stock exchanges, online instruments in a Grid environment, 

and publish/subscribe notification models for Grid environments - necessitate query 

processing on data streams. For all practical purpose a stream represents an infinite 
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source of data. The large volume of data and the online nature of the applications 

make it imperative for the applications to process the information in an online fashion. 

These systems view data as a dynamic commodity, which needs to be made available 

at the desired locality, at appropriate times and with the desired characteristics of 

delivery. The traditional notion of the centralized processing of managed data is no 

longer applicable in such environments. Traditional data processing involves processing 

on relatively static data on immobile processing nodes. In pervasive environments, data 

needs to be processed while in a transitory state and the data processing system needs 

to adapt to variations in the availability of the computing and network resources. 

A typical feature of the query processing in data stream systems is the association of 

multiple long running continual queries with a stream of data. :Manipulations on multiple 

data streams are specified using relational algebra, although the operator semantics 

and characteristics for data streams are significantly different from their relational 

counterparts. Query processing in these systems can be expressed as a pipeline join 

operation between multiple streams interconnected through database operators. As the 

streams are bound to experience variations in data arrival rates, the resource allocations 

at each of the operators are bound to fluctuate. As a result, query plans are frequently 

executed in the conditions that are significantly different from those for which the query 

plan was generated. Continual re-optimisation of the query plan is also necessitated 

by continuous fluctuations in data arrival rates (Amsaleg, Franklin, and Tomasic 1998; 

Urhan, Franklin, and Amsaleg 1998) and changes in the characteristics of the data 

itself (Avnur and Hellerstein 2000; Madden, Shah, Hellerstein, and Raman 2002). Our 

aim is to develop a query processing system that adapts to the variant nature of the 

data streams. Near online processing requirements necessitate that any adaptation of 

the query plan for the prevailing execution environment should be efficient in time and 

posses minimal reorganisation overheads. To expedite query reorganisation, an approach 

is adopted that maintains statistical information for a list of viable query plans and 

minimizes the query processing cost for a three-variable cost m.etrics - based on data 

flow requirements, processing requirements and delay characteristics. 

Distributed processing on multiple data streams is similar to multi-database query 

processing. Query processing in relational database systems exploits the similarity 

between query sub-expressions to optimize the processing cost over multiple queries. 

Here is proposed a multi-query optimisation in a data stream system that forms an 

overlay to reduce resource consumption across multiple queries. 

8.2.2 Stream data management 

A stream represents a infinite source of append only data. However, practical constraints 

on memory space imply that it is not possible to archive the stream in its entirety, and 

the scope of any query evaluation needs to be limited to a subset of the streaming tuples. 
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One of the most frequently used methods is to use a window definition to restrict the 

scope of evaluation to selected subsets of tuples. f.-10st of the windows use temporal 

constraints to identify the subset of contiguous tuples in a stream. 

A stream S contains a set of tuples specified by an associated relational schema R, 

where R is an schema with attributes Xl, X2, X 3 , .... , Xk. The attribute space of R is 

defined by the function att(R) and the function 0: 1'1 -7 att(R) specifies an ordering 

of R. A sequence S(Rs, Os) represents a stream with ordered tuples of schema R. A 

stream maintains a number of tuples 1'1, ,ovhere 0 <= ]V < 00 is determined by the 

window specifications of the set queries Q associated with the stream. Details of window 

specifications on memory requirements and the number of tuples retained by the query 

are provided later in this section. However, in some cases, the memory utilisation may 

increase with an increase in window size. Two alternative approaches have been adopted; 

first, to maintain a synopsis of the preyious data, and second, to proyide approximate 

answers to the queries. In this case it is assumed that all the tuples arriving at the 

stream are processed. An exact description of query semantics can be found in section 

8.2.6. 

A stream data processing system defines a set of operators to define and implement 

a query processing system. These operators can either by unary, binary or n-way 

operators. A generic unary stream operator Osp accepts a single input Sin and produces 

an output Souto \Vhile a multiple stream operator Omp accepts multiple inputs Sin = { 

Si, i E 1 }. The memory utilisation of the operator depends upon the actual semantics 

of its implementations. Huwever, it should be noted that each stream operator produces 

an output stream and the characteristics of output stream are influenced by both the 

operator as well input stream characteristics. 

A query is specified as a relational operation on a set of streams. However, unlike 

in a relational model, the additional requirements to represent the characteristics of 

the streams necessitate extensions to the relational algebra. The relational algebra 

is extended to capture the additional semantics. The approach is very common and 

is adopted by almost all the current stream processing systems that use relational 

algebra to capture the database's equivalent operations. In this approach, the query 

is primarily composed of two separate parts, first the data manipulation part, which 

specifies a SQL equivalent of query, while the second part consists of specific extensions. 

The additional semantics reflect how the data are used to specify the mechanism for 

extracting data from the stream and its buffers, and to define the lifetime of the 

query. (Guha, Koudas, and Shim 2001) introduce the concept of windows for specifying 

the buffer. The window refers to the stream tuples that can form a part of current 

join evaluation. In (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, 

Krishnamurthy, Madden, Reiss, and Shah 2003) the authors extend this definition and 

consequently four types of queries have been identified, a snapshot query, a landmark 

query, a sliding query and a temporal band join. The semantics of windows heavily 
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impact on the persistence mechanism and the execution of the query. The same query 

semantics is used in this study as proposed by (Chandrasekaran, Cooper, Deshpande, 

Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Reiss, and Shah 2003), and a 

sample query for a single stream is represented as: 

Select temperature, timestamp 

from jurnace_Jl.{ ondor 

where jurnacccharge <= 20 for(t=ST; t<ST+30: t+ =1){ 

WindoVJls( Temperature, t-5, t) 

} 

The above expression translates to select the temperature and the time-stamp for a 

furnace where the furnace was loaded with some charge. Select the values for the past 

6 days and keep the query alive for 30 days. The actual number of tuples that end up 

populating the window over the period of last 6 days depends upon the data arrival 

rate. A number of such expressions can be queued on a stream and need to be evaluated 

simultaneously. The evaluation of a query can occur at the time of the arrival of data 

or at predefined intervals or at the time of queuing the query or at the time when the 

data is being invalidated or overwritten due to some window overflow criterion. All such 

attributes should ideally form part of the scheduling operation. However, almost all the 

query-processing applications currently available fail to provide any extensions for the 

scheduling operations. The definition of the above specification is therefore extended to 

include scheduling options as part of query specification. The actual event that triggers 

the evaluation of a query is referred to as the evaluation event. 

The query specification has the following logical structure. 

Select [ Tuple specification] 

FROM [Tuples] 

WHERE [JOI~ ~ RANGE CRITERION] 

FOR [Query period] 

WINDOW SPECIFICATION 

ON 

Scheduling criterion such as DATA ARRIVAL I PERIODIC I SNAPSHOT I 
OVERFLOW I QUERY ARRIVAL 

The scheduling options are important in determining the overall quality of service for 

evaluation of query results, while the window specifications are important in determining 

the semantics of the result set generated from the query evaluation. The query specifications 

and the stream characteristics identified in this section are described in the next sections 

on window semantics and join operation semantics. 
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8.2.3 Window semantics and specifications 

As far as is known, operational semantics for join operators for stream data processing 

are not as well defined as in the case of the relational database system - this is primarily 

attributed to different \vindow definitions and the different result set semantics prevalent 

in the field. A number of different 'window types have been defined in individual 

research projects. The most widely accepted types of query semantics \vere described 

by Chandrashekar et.a1. (Chandrasekaran, Cooper, Deshpande, Fl'anklin. Hellerstein, 

Hong, Krishnamurthy, Madden, Reiss, and Shah 2003). Chandrashekar et.al describe 

four query types namely - Snapshot query, Landmark Query, Sliding Query and Temporal 

band Join. Each of the four types imposes significantly different requirements on the 

design of the query processing system. For example, the query evaluation event for a 

snapshot query is evaluated exactly once per window. A join operation in the case of a 

snap shot query between streams evaluates in response to an event on the input window 

of one of the related streams. Similarly, in the case of a landmark query, sliding window 

and temporal band join, either a temporal event or arrival of data at a stream could 

result in the evaluation of the join. In addition, the query results may be generated 

out of order and guarantees may be provided on the eventual correctness rather than 

immediate correctness at each evaluation step. In this case, the proposed approach 

considers that the results are correct at each evaluation step. The out of order arrival 

of tuples from data sources is not permitted. 

Consider the stream S(R" Os) and an associated query Q with a window specification 

W. Let i represent the number of tuples in the sequence represented by the stream, and 

let N be the number of tuples currently held in the stream at a given time tinsta.nce' Let 

ti denote the time at which the tuple i was added to the sequence, i.e. arrival time of 

Si is ti· 

A snapshot query is evaluated against the contents of the stream at a particular instance 

in time. It should be noted that a snapshot query does not maintain an active window 

on the data stream; instead it utilizes the current contents of the stream S. If Proj(S, W) 

is defined as the scan of window W predicated on stream S, where if W~s represents the 

list of windows associated with the stream, then a snapshot of stream S is given by 

n 

Snapshot(S) = Proj(S, Ws) = Uniqve(~ Proj(S, l11i )) , whereWi E VVs 
;=1 

A landmark query evaluates the query for all rows of the selected streams beyond a 

particular landmark. Hence, TV L represents a valid landmark window if and only if the 

landmark 1 satisfies the condition So.to < 1 < SN.tN all the records where 1 < Si forms a 

part of the window. Also, any records added to the S at time t > tinsta.nce are also added 

to the scope of the landmark window specification. A landmark window can also specify 



Chapter 8 QuelJ' Optimisation 

;:: 
0 

"0 
c:: 

-,--

~ 
0 
.c:: 
Cfl 

"-
'" ~ 

(jj II 
~ 

n; 
E 
"0 
c:: 

.!!! 

~ 
"0 
c:: 

~ 
-" g 
"0 
c:: 

'" -' 

Stream at time instance t1 

;:: 
0 

"0 
S 

0 

e 
'" c:: 

UJ 

;:: 
0 

"0 
~ .s 

5 
~ 
0 
"-
E 
Q) 

!-

-" 

t 
'" E 

"0 
c:: 

.!!! 

0 
"0 
.s 
5 
-" 
~ 
E 
"0 
c:: 
j 

U -'--

103 

;:: 
o 

"0 
c:: 
~ 
OJ 
c:: 
:g 
UJ 

Stream at time instance t2, t2>t1 

FIGURE 8.1: Window types 

the rules for automatic traversal of the landmark on each evaluation. Theoretically, 

landmarks may either be specified using temporal properties or derived hom the data 

content properties of the tuples, as in the following restricted case. 

LandrnaTk(S, Hi) = scan(S, S.t > Hi.t) 

A sliding window over streams is represented by a set of landmarks - an upper bound 

and a lower bound. A scan on stream S for a query evaluation with a sliding window 

specification returns the tuples between these two landmarks. A scan for sliding window 

1V5z with a set of associated landmarks TV.Ll1pper and VV.Lzower is represented by: 

Sliding(S, Hisz) = scan(S, WLzower > S.t > H(Ll1pper) 

As defined earlier, landmark window scan evaluates to records from a given landmark; 

thus one end of the window is clamped, while the other slides as new data items are 

appended to the stream. A temporal band join is a reverse phenomenon, with a fixed 

endpoint and a variable start point. A temporal band window retains a fixed number of 

items and slides as the data items are appended to the stream. 

(8.1) 
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where tk is the window size. 

It is assumed that streams are 'append only' containers; therefore each of the operators 

can process the data on arrival. However, in certain cases, streams may be allm\'ed 

to modify the data within a window. In such cases the operator requires an explicit 

invocation of the query evaluation event. These two different semantics have varying 

effects on the way in which the queries are processed by the system. However, the 

following discussion considers 'append only' data streams. 

8.2.4 Continuously Adaptive Continuous Queries (CACQ) 

Query processing over streaming data can either follow snapshot semantics, thereby 

evaluating the query expression over the current states of the stream, or otherwise allow 

a continuous evaluation as new data items are appended to the stream (also knovvn as 

continuous queries). A continuous query expression is scheduled in accordance to the 

viindow specifications of the query. Continual query processing requires maintenance 

of some intermediate state between subsequent evaluation of the query expression. 

Unlike their traditional counterparts, data operators for stream data management need 

to maintain an intermediate state to minimize the cost of regenerating the state at 

each query evaluation. The continual query paradigm necessitates the use of pipelined 

operators. 

Traditional query plan evaluation generates an intermediate state during the query 

evaluation and discards the state on completion of the query. A continual query creates, 

maintains and modifies the state with respect to the changes in the environment. Candidate 

examples for such data operators include a flexible hash join (Shah, Hellerstein, Chandrasekaran, 

and Franklin 2003), a ripple join (Haas and Hellerstein 1999) or an eddy operator (Avnur 

and Hellerstein 2000). Modified versions of these operators have been used to provide 

CACQ capabilities in stream management systems. 

Flexible data operators were designed to adapt to the variations in availability of resources 

used for query evaluation. Consider a query Q = Al I><l A2 !Xl A3 I><l A4 I><l A 5 .. · I><l Arn 

an n-way join between the tuples AI, A2, ... , An. A sequential n-way join operator will 

block until the data is available for each of the tuples. A flexible operator performs 

the incremental joins between the data tuples as and when they become available, it 

also optimizes join performance by reordering the join ordering of the tuples. 'While 

sampling the relationship in an n-way join, the join operator scans a single relationship 

for changes and evaluates the incremental results. 

Assume that a join has been evaluated for the initial scans on the relationship, such 

that: 

(8.2) 
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If the sampling of the relationship indicates that the new tuples 51' have arrived for the 

schemas 51, the incremental result 

(8.3) 

Ql = (51 i><l 52 CXl 53 CXl 54 CXl 55 ... CXl 5n ) U (51' CXl 52 tx:J 53 CXl 54 CXl 55'" CXl 5n ) 

... (A U B) CXl C = (A CXl C) U (B CXl C) 

(8.4) 

Q1 = QU 6, where 6 = (5/ CXl 52 CXl 53 CXl 54 CXl 55 ... CXl 5n ) represents the incremental 

processing for 51'. A scan of the tuples in the relationships results in an incremental 

result set generated at a minimal cost while retaining the state of the previous evaluation. 

CACQ operators are most suitable for query over streanl data as the incremental 

tuples arriving at each of the stream window can be continually evaluated resulting 

in a consistent result set, where the increments can be managed by manipulating the 

increments in the input tuples. The join semantics of CACQ provide an incremental 

result set for the join operation and are well suited for 'append only' join processing, 

i.e. landmark windows. The effects of CACQ on sliding window queries are discussed 

in the section 8.2.6, which is preceded by a brief discussion on adaptive join operators. 

8.2.5 Adaptive join operators 

In the case of query processing over streams an n-way join operator provides improved 

space and computational usage compared to a series of binary joins. A typical n-way join 

operator does not retain any intermediate results, while an n-way join implemented as a 

series of binary joins needs to maintain and may need to re-index the intermediate results 

to improve the join efficiency of the intermediate joins. A number of adaptive n-way 

join operators have been proposed in the literature, for example, (Avnur and Hellerstein 

2000), (Haas and Hellerstein 1999). An n-way join operator centralizes the operator state 

for the n-way join facilitating easy optimisation. It reduces the co-ordination costs for 

adaptive query planning. For example, an eddy (Avnur and Hellerstein 2000) operator 

creates individual stems (Raman, Deshpande, and Hellerstein 2003) for each of the 

participating tuples. The tuples are sampled for new data items and the n-vvay join is 

accomplished by routing the tuples through appropriate stems. An eddy minimizes the 

intermediate state, thereby allowing flexibility to adopt an individual routing policy for 

a given set of tuples. The StreamDB illustrates a list of alternate query routing policies. 

In their paper, Madden et a1. (Madden, Shah, Hellerstein, and Raman 2002) discuss a 

ticket based routing mechanism to circumvent the problem of selectivity estimation. An 

alternative approach is suggested by the same (Madden, Shah, Hellerstein, and Raman 
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2002) that uses the random routing policy to route the tuples between the operators. 

Similar approaches have also been discussed by (FengTian and \Vitt 2003). For SP J, 

the authors provide a nested loop implementation of an adaptive operator that adopts 

to changes in the data arrival rates and operator selectivity. 

An adaptive join operator for streaming data needs to optimize the usage of three 

different types of resources, memory space, computational resources and response time. 

Alternative approaches to formulating the memory constraints are highlighted by two 

very distinct approaches. The first, is PSoup (Chandrasekaran and Franklin 2003)in 

which the authors describe a mechanism to reduce response time by an early and lazy 

materialisation of the result set, while (Arasu and \Vidom 2004) Arasu et al. explore a 

different problem of identifying the set of queries that can be executed under memory 

resource constraints. The approach highlighted in section 8.4 in a way extends Arasu and 

\Vidom's approach for defining the resource constraints in an adaptive data operator. As 

a typical query plan consists of a number of such operators, they need to be scheduled 

on scarce computational resources. A number of scheduling options for optimizing 

computational costs and improving response time have been suggested in the operator 

scheduling strategies of (Babcock, Babu, Motwani, and Datar 2003; Hammad, Franklin, 

Aref, and Elmagarmid 2003). 

In general, n-way adaptive join operators can be compared on the basis of their adaptivity 

in solving a three-parameter cost metrics of memory usage, computational resource usage 

and responsiveness. Section 8.3 provides description of the combinatorial problem and 

the solution in section 8.4. 

8.2.6 Join semantics 

Relational algebra provides a de facto definition of join operations. It introduces inner 

join, outer join and equi-join semantics. However, relational algebra was defined for 

static data items, and is equally applicable to window joins over streams. However, as 

defined in section 8.2.4, different window types generate different types of scan objects 

for query evaluation. If the 'windows hop from one set of intervals to another, then 

the overall semantics of the join over the period of time are maintained and are similar 

to the results of the non windowed join. However, in the case of a sliding window 

join, subsequent window joins may share a set of tuples. A union of all the result 

sets generated during each of the evaluations may contain duplicate data items. The 

cumulative result is that the actual semantics of the join are not maintained. 
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8.3 Problem Definition 

There are at least three different types of optimisation scenario a figure prominently in 

query optimisation over streams, first, a very basic type of optimisation that aims at 

reducing the computational cost of an individual query, secondly, optimising utilisation 

of system resources over multiple queries, given that a number of simultaneously executing 

queries over a set of streams provide a potential for resource sharing, and finally, 

scheduling the queries so that effective utilisation is minimized for both the individual 

and the group of queries. 

Consider a set of streams S = {S 1, S2, S3, ... , Sn}, where each stream is expressed as 

S(Rs, Os), as introduced in section 8.2.3. A list of queries Q ={Ql, Q2, Q3, ... , Qm} are 

queued for execution over the set of streams. Each query Qi is represented as a set 

of operations on a set of streams SQi' such that SQi E S. Suppose that the query 

operation Qi represents a multiple join operation, it can be expressed as, Qi = SQl I><J 

SQ2 I><J SQ3··· I><J SQk' where k = I SQ;!. Each of the streams in SQ; has an associated 

rate of data arrival dQi , where dQ; = (J Rs;, where RSi represents the average rate of 

data arrival at stream Si, and (J represents the selectivity of Query Qi over stream Si 

for attribute R j E Rs. 

Each of the data streams SQ; receives a set of tuples through constant evaluation of the 

query Qi over Si. Though the collective selectivity of the query is constant, processing 

for the overall join operation is minimized by using appropriate join ordering. On the 

other hand, the join operator scheduling aims at reducing the memory utilisation of the 

query and to minimize join operator costs. The query processing is characterized by the 

following: 

1. Query routing allows the join to be either individually evaluated for each of the 

tuples or it can be evaluated for a group of tuples. 

2. As discussed in section 8.2.4, at any given instance, a ripple join process can only 

progress in one dimension. 'While the query is evaluating tuples from a single 

stream, the memory utilisation at other streams increases as the new tuples are 

queued at those streams. The utilisation cost during the processing is directly 

proportional to the data arrival rates at the waiting streams. Hence, the choice 

of a stream to be processed needs to be optimized against the costs accrued by 

memory utilisation at the blocking streams. 

3. Each subsequent operator ordering should result in a reduced result set. This 

implies that operator reordering needs to follow selectivity estimates. Selectivity 

at any given join execution is directly related to the current contents of the stream 

windows. If a statistical tool is used for calculating join estimates, it needs to 

reduce computational costs by avoiding the re-estimation of costs for each window 

hop. 
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4. The process of continuous optimisation has its uwn control costs (such as recalculating 

the hash tables and recreating the intermediate results), which need to be minimized. 

5. The response time of the query is directly proportional to the delays introduced 

by the individual join operators. The response time delays can be minimized 

by maximizing the parallelisation of the query evaluation. Note, parallelisation 

necessitates the creation of a more bushy query plans, and may have higher 

synchronisation overheads. 

6. The ripple join calculates the results in terms of the previous query results. A 

query can reduce the cost of re-optimisation if it can identify a subset of the 

previous results, which can retain between subsequent re-evaluations of the query. 

It should be noted that the retention of intermediate results is constrained by the 

size of the cache. 

The above mentioned constraints are applicable to a single query optimisation scenario. 

In this case, techniques to achieve the local minima for mem.ory, processing and delay 

are considered effective. 

Multiple queries continuously executing on a common set of streams provide possibilities 

of resource sharing between multiple query evaluations. The simplest form of resource 

sharing can be applied at the level of select and project operators, whereby a single filter 

is used to scan the data for each of the selection and projection operations. The design 

of one such operator is discussed later in this section. 

An alternative form of resource sharing relies on sharing of intermediate results. Although, 

resource sharing between queries has traditionally relied on identification of common 

sub-expressions between a set of queries, it is equally applicable to query processing on 

streaming data. Query processing over streams provides an added advantage of routing 

the tuples in such a way that multiple evaluations can be simultaneously carried out by 

the multi-stream operators. In addition to the identification of the sub-expression, the 

queries have to be evaluated for window semantics, as the t,vo queries with a shared set 

of tuples in their window definitions are bound to have reduced cost if they share the 

costs of processing. The shared expression can be used to select the appropriate order 

for routing of the tuples, such that the combined processing costs of routing the tuples 

are minimized. 

The third and final type of optimisation relates to resource consumption by the individual 

queries. Data items queued at each of the streams occupy memory resources. In certain 

cases, for example the sliding window, memory resource utilisation can be optimized 

by appropriate prioritisation of the order in which the streams are processed. The 

optimisation problem can be summarized as generating the appropriate schedules and 

identifying the appropriate sets of queries that can share this atomic set of operations. 
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To address all the above mentioned concerns three algorithms are devised in the following 

sections. The following sub-sections, provide further refinements on the above-mentioned 

set of problems. 

8.3.1 Selection and projection filter 

A selection and projection operation over a data stream differs from the selection and 

projection over a relational database table, in that the scope of selection and projection 

in a streaming data processing system is limited to the scope of the current window. A 

number of queries may involve selection and projection over the stream data, thereby 

providing ample opportunities for sharing selection and projection costs, by maximizing 

the co-evaluation of the selection and projection operation. 

A select and project operator results in the creation of intermediate result sets for each 

of the queries. The size of the result sets can be reduced by maintaining the references 

to the rows of data and not replicating the actual tuples. These references are used 

to create a scan for further evaluation of the query. The queries may share the actual 

scan or may proceed independently. The processing costs of shared evaluation can 

only be sustained if the resulting costs accrued for maintaining the result sets are less 

then an independent evaluation. However, the select project filter should be capable of 

simultaneously evaluating multiple queries and should be able to tradeoff the costs of 

maintaining the results against the cost of evaluating multiple evaluations. 

In order to decide such a trade-off the operator should be capable of estimating the 

sizes of the resultant datasets and also the estimated costs of maintaining the result set. 

The size estimates can be obtained by using the histograms for range queries. However, 

the dynamic contents of the stream data render the regular techniques for histogram 

evaluation ineffective. 

8.3.2 Complex queries 

A set of database operators defined for relational algebra can be found in (Date 1995). 

The scope of this discussion is limited to a set of select, project, join, logical and 

cross product operators. The list is restricted to keep the discussion focused. Most 

of the observations detailed for these operators are equally applicable to other database 

operators with minor or no modifications. Combinations of the select, project and join 

operators comprise a query expression. Evaluating the strategy against a number of 

query types provides an opportunity to determine the efficacy of the approach under 

extreme query types. 

Some of the examples derived from the previous work in the field are described below. 

The paper by Gouda and Dayal (Gouda and Dayal 1981) introduces three distinct query 
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types, namely a tree query, a simple query and a chain query. A tree query represents 

a multi-way join between a number of tuples. The join criterion assumes that any tuple 

in a tree query participates in only one join operation. A simple query is a special case 

of a tree query, such that a common joining attribute in one of the tuples across the 

joins operations. Similarly, a chain query is a special case of a tree query in which each 

tuple has at most two join attributes and participates in two join operations. Figure 8.2 

provides graph representation of the tree join, simple query and chain query. In addition 

to these three query types, a fourth query type, a multi-join, was introduced in a paper 

by Lee et a1. (Lee, Shih, and Chen 2001). This is a generalized case of multiple join 

operations in a query, and with multiple join ordering combinations. 

8.3.2.1 Pipeline query 

A pipeline query is composed of a hierarchically arranged series of join operators. A 

typical pipeline query operation can be expressed in the form Ra rxJbSb rxJcT c rxJdU. A 

query plan for the evaluation of the pipeline join operation can be represented as a left 

depth tree, and optimisation is achieved by reordering the join operators. An n-way 

pipeline join can be evaluated by using a single n-way join operator or by a series 
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of binary operators. A series of binary operators may require multiple scans on the 

intermediate results, where the indexing costs increase the total cost of query evaluation. 

It is also important in the case of query evaluations, where producing initial results early 

is important. It also provides an ideal case for evaluation of non-blocking algorithms, 

which do not stage the data either on the disk or in the mem.ory. 

A CACQ expressed as a pipeline join over the streams is the nlOst simplistic query type 

and has been studied in other projects (Chen, DeViitt, Tian, and Wang 2000). 

8.3.2.2 Star queries 

A star query is represented as a join with a single attribute in one of the participating 

tuples. A typical star query can be expressed as (Ra IXlbS) n(Ra lXleT) n(Ra IXldU). A 

star query representation is well suited for single hash join operators. A single shared 

attribute across the joins results in reduced indexing costs across the join operators. A 

star query also reduces the scan and indexing costs between subsequent join evaluations 

sharing a tuple. The star query representation is of particular importance to the study 

of n-way stream operators, as it presents unique challenges for an operator scheduling 

system. 

8.3.2.3 Cyclic queries 

Cyclic queries represent a special class of queries, where the query graph between the 

join operators assumes a cyclic order. Figure 8.2 (d) represents one such example of a 

cyclic query operation. The join ordering in a cyclic query evaluation needs to ascertain 

the ordering of the joins and the concurrency of the join evaluation. 

8.3.2.4 Cross products 

In addition to the join operators, query plans are also expressed in terms of logical 

operations between the tuples. Considering that all the possible logical operations can be 

expressed as a combination of conjunctive, disjunctive and negation logic (AND-OR-NOT 

logic), the discussion is restricted to these three primary types. A logical operator differs 

significantly from a join operator in terms of computation and memory utilisation, and 

hence is included in the present investigations. 

The above sections introduced the breadth of different query types that will be used to 

evaluate the effectiveness of the approach introduced in this study. The different query 

types presented in this section are representative of the wide variety of query types 

that are frequently encountered in relational query processing. However, it should be 

pointed out that most of the investigations in the area of stream data processing have 
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been limited to the pipeline query evaluation. Thus, the comparative studies presented 

in the following chapter primarily focuses on this particular query type. 

8.3.3 Bursts of data arrival 

A stream represents an infinite sequence of data items that are evaluated as and \vhen 

they arrive. The actual rate of arrival of the data items determines the contents of 

the query windows activated on the stream. The cumulative memory utilisation of the 

streams is directly proportional to the difference between the arrival and departure rates 

of the data items. If the cost of a query evaluation is directly proportional to memory 

utilisation, prioritized processing of the streams with higher data rates will result in 

reduced query processing costs. In addition, the cumulative delay in response to data 

arrival at a stream can be reduced if the tuples are served in order of arrival and at a 

rate comparative to the arrival rate of the data items. The query processing between 

subsequent evaluations can also benefit from the partial caching of the intermediate 

results. The above three desired characteristics can be achieved by processing the 

streams in increasing order of data arrival rates. 

A way to ascertain the bursts in the arrival of data is to use self similarity techniques 

to predict arrival rate similarities and attempt to reduce the costs by using historically 

effective techniques. 

8.3.4 Cost metrics 

The effectiveness of query optimisation is adjudged according to its capability to reduce 

certain costs against particular cost metrics. Traditionally, the performance of a query 

processing system is compared on the basis of memory utilisation, computational resource 

utilisation and response time. However, in most cases, the query evaluation lasts for a 

finite amount of time, and, as variations in the underlying processing environment are 

limited, it allows the approximate costs of the query plan to be estimated in advance. In 

case of query processing for streams, the total resource utilisation is accumulated over 

a period of time and it is necessary to calculate the costs of replanning and migration 

to an alternative query plan. 

One can use the traditional definition of memory utilisation and represent it as the 

measure of the storage space required by the query evaluator. However, streams differ 

significantly. In this case, the memory utilisation increases on arrival of additional data 

items. As a result, a modified measure is used that represents memory utilisation as a 

cross product of memory utilisation x time. The modified definition implies that memory 

utilisation increases linearly on the arrival of data items. 
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Consider a query Q, that represents an n-way Jom betvveen streams in the set S = 

{Sl, S2, S3, ... , SrJ. Let each of the streams Si contain a number of data items ISil, 
w here the delay of each processing item is 5j . The cumulative rnemory utilisation of the 

query is given by the follovving equation: 

T1 ISil 
rnernoryv.t·ilisation(Q) = L L Sj5j 

i=O j=O 

Note, in the case of multiple query optimisation, the memory utilisation is reduced by 

proportionally sharing the cost of retaining a tuple across multiple queries. 

\Vhile the computational resource usage of the query evaluator is calculated as the 

utilisation of the individual query operators, the average response time is calculated 

as the average delay between the input and output of the data items from the stream 

operator. Computational resource usage is directly related to the choice of the join 

algorithm and the concurrency of the various join operators. The details of computational 

resource usage are discussed in section 8.4, here represented as compv.tational cost. The 

objective function of the query optimizer is thus represented as: 

Optirn.ize( Q) = Min( rnernoryv.t'ilisation, Cornpv.tationalcost, Cv.rnv.lativedelay) 

As the overall optimisation is expressed as an explicit function of a time varying parameter, 

namely memory utilisation, the optimisation equation represents a time varying entity, 

and needs to be optimized over an interval. As discussed in Chapter 2, the above 

equation for optimisation is solved for the finite and infinite horizon; the trade-offs are 

explained in section 8.4. 

The above formulation summarizes the constraint resolution problem for the case of 

an individual query optimisation and can be used to compare the effectiveness of the 

approach against a theoretical optimal. However, most practical systems are designed 

to perform simultaneous evaluations for a number of queries. These systems operate 

under certain resource constraints. The optimisation in this case needs to maximize the 

cumulative processing of a number of queries. In the previous case, the effectiveness 

of the approach can easily be determined for the cases "vhere the theoretical optimal is 

known. However, in most practical cases, calculating the theoretical optimal will have 

additional cost implications. An alternate way to measure the effectiveness of various 

approaches is to consider resource utilisation on a fixed set of resources. Hence, the 

above constraint resolution problem can be expressed as an optimization problem, that 

given a fixed amount of memory and computational resources maximize the number of 

concurrent query evaluations. 

Let Qs = {Q1, Q2, Q3, .... , Qp} represent the set of queries that are allocated to a 
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scheduler. with a fixed amount of computational resources. In this case consider the 

design of a scheduler that can ascertain the cost of additional queries and the effect on 

the cumulative quality of service1 . 

A set of refined requirements on individual system components were described in the 

above section. The following sections, start with a description of the query optimisation 

algorithm and proceed to describe the developed SPJ algorithm and scheduling and 

monitoring infrastructure. 

8.4 Query optimisation 

The query processor for the data streams, as designed for the system, consists of following 

stages of processing: query plan logical generation, a physical plan generation, the query 

scheduling and query monitoring. These stages describe the overall processing cycle for 

processing the query over multiple streams. A planning approach is used for optimizing 

query evaluation for streaming data. The queries submitted in the format expressed 

in section 8.2.4, are translated to a query graph, composed of data nodes, as the leaf 

nodes and non-data nodes, representing the operators. Initially there is no optimal 

solution, but the query evaluation performance is gradually improved over a period of 

time. The query plan starts with an initial state and an optimal solution is formulated 

as a transition from the present state to the new desired state. A dynamic programming 

technique utilizing the statistical information from the query evaluations is used to 

determine transition to the alternate state of the query plan. 

The logical plan generator accepts the query string and creates an access plan that 

happens to be the dynamic graph. The graph representation of the query plan has been 

used in various previous formulations. There are two predominant forms of graphical 

representation of the query plan. The first is a representation proposed by (Avnur and 

Hellerstein 2000) in which the data tuples and the operators act as the nodes. All the 

data tuples are leaf nodes of the query tree, while the relational operator forms the 

higher-level nodes of the query tree. A second representation proposed by (Lee, Shih, 

and Chen 2001) represents the joins as the nodes in a query tree and the inter-operator 

communications are labels along the edges. The former representation of the query plan 

is used to help create a dynamic graph. For the purpose of clarity, cost metrics are 

not immediately introduced, nor the statistical information available for the individual 

streams. Instead the focus is on the data structure used by the logical plan generator 

to communicate a list of feasible plans to the physical plan generator. In the case of 

relational systems, the query plan generator usually selects a single most likely plan, 

estimated to give the best performance. However, in the case of the streaming data, the 

weights associated with the nodes and edges of the graph change so infrequently that it 

INeed to provide an appropriate mathematical representation of the problem 
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is not feasible to recalculate the entire optimisation space for each cycle of optimisation. 

In this case, the entire set of solutions that are technically feasible and yield the desired 

output are retained irrespective of the current cost of calculating and implementing 

the execution plan. A dynamic graph representation is made where some of the edges 

and/or nodes may be conditionally connected to each other. The dynamic graph allows 

a perfect representation to capture the time varying nature of the associated edge and 

node weights. An example of how such a graph is created from a query string and how it 

is maintained is explained in section 8.4. The discussion of graph generation is preceded 

with a short description of the query types that our algorithm seeks to address. 

8.4.1 Plan generation and re-optimisation 

Rather than starting with a description of a fully-fledged graph representation of the 

query graph, a phased approach is used to introduce the process of creating a query 

graph. It starts with the description of a query tree and introduces the relevant set of 

notations, operations and constraints, gradually developing the notation to include the 

representation of the optimisation space. 

A query tree is composed of two types of nodes, data nodes and operator nodes. The 

data nodes represent the actual tuples or, to be specific, in our case a number a streams 

of data. Each data node has at least one parent node. A data node has no child node, 

which implies that all the data nodes represent leaf nodes of a query graph. Each 

operator node has at least one child node and mayor may not have a parent node. 

Although, an operator node can have multiple child nodes, an edge connecting a node 

to its child node is referred to as the input and the edge connecting a node to its parent 

is referred as the output of the node. An operator node can have multiple inputs, but 

it can only have one output. All the edges are directional. For example, for any given 

node, an input edge is an incoming edge and an output edge is an outgoing edge. A 

directional edge graph for one such query is represented in figure 8.3. 

A query tree represents one of the many logical query plans. Alternate query plans 

can be obtained by modifying the query plan to either make it less or more bushy. A 

list of valid query tree transformations have also been discussed by Getta (Getta 2000). 

Similar operations are equally applicable to the query tree, though the specific technique 

of reduction of data tuples may not be applicable to streams which encounter bursts of 

data. 

Nodes and edges in the query tree are labelled with statistical, relational and performance 

observations at each of the nodes. For the purpose of brevity, the discussion of the labels 

is deferred to section 8.5.5. By the definitions of certain operators, a few transformations 

are uniquely applicable to the streaming data. For example, the structure of the probes 

for a streaming database allows close association between the data operator and the 
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selection operation. In this case, rather than describing selection and projection as a 

separate operator, merger of the two nodes is allowed and the resultant node has modified 

labels to reflect the merger of the two nodes. The resultant node is still considered to 

be a data node, though its tuple output is superseded by the local view, constructed on 

the basis of selection or projection. 

Considering that the scope of stream operators is limited to the select, project, join, 

and logical operations. A query tree for this restricted set of operations has leaf nodes 

represented by the local views that are described as by transformation of the stream and 

the select project operators, while the non-leaf nodes represent the join and the logical 

operators. A transformed query tree is shown in figure 8.4. 

A logical query plan forms the basis for generation of the physical query execution plan. 

At this point, it may be pointed out that the optimisation of a query plan is a continual 

process throughout the lifetime of the query. As an example, consider a simple graph 

that involves a join operation between two streams. The output of the join operation 

acts as the input to its parent operator. Figure 8.5 represents the logical plan and the 

possible physical plans. Edges of similar colour are dependent, and can only exist in 

pairs. The graph represents three possible locations of the join operator. The operator 

can be collocated with either of the tuples or at the parent node of the join operator. 

The figure represents three feasible plans that ensure that the output tuple of the logical 
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plan remains unaflected, due to the selection of either of the physical plans. In addition 

to the operator semantics, the choice of either of the plans will in turn depend on the 

objective function of the query evaluation, the rate of data arrival at the tuples and the 

rate of data that need to be transferred between the tuples. 

8.4.2 Query re-optimisation 

The above subsection restricted the discussion to a most primitive query tree. This 

subsection uses induction to prove that the same result can be applied to the entire 

query graph. This subsection steps through the algorithm as per our discussions in 

previous section and begins \vith the tree query example. Figure 8.4 shows a logical 

query plan generated by the query parser. It use a physical transformation to generate 

a list of access plans for the query tree. The hints in the query specification are used as 

a policy to improve the responsiveness of the query executor. 

The algorithm uses a depth first search technique to identify the operator at the highest 

level. The local optimisation problem is solved in accordance with the process described 

in the previous subsection. A virtual node replaces the sub graph in the parent graph 

and the attributes and subsequent labels are calculated for the virtual nodes. Each 

virtual node in turn acts as a virtual data node to the higher levels, as the tree is 
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gradually reduced by successive application of sparsification (Eppstein, Galil, Italiano, 

and Nissenzweig 1997), During sparsification, at each stage, the tree is further optimized 

for performance characteristics. The type of transformations applicable after each 

reduction are discussed in subsection 8.4.2 and 8.4.2.2. The technique of sparsification 

produces a number of nested certificates that can then be nlOnitored individually to 

determine the extent of the re-organisation required in response to change in the dynamic 

behaviour of the operators. The aim of introducing a tree of sparse certificate is to 

reduce the amount of reorganisation that may be required in response to bursts of data 

streams. \Vhen the data rate at an operator changes, the operator invokes a certificate 

recalculation. In response, the local optimal is recalculated and the request is propagated 

higher in the sparse tree. The propagation of the sparse certificate is terminated if the 

change in the lower level certificates does not result in significant changes at the higher 

level of the query tree. 

Though the above reduction was discussed in the context of operators capable of processing 

two streams, the approach is equally applicable to multiple join operators. ':\1-Join and 

Eddy are two such operators for join operations on multiple streams. There are two 

ways to incorporate the join operatoI', either in the logical query plan or during the 

reduction of the physical query plan. Introduction of a multiple join operator in the 

query plan increases the combination of the query plans applicable in the reduction. A 

plan diagram for one such case of 3 way join is represented in Figure 8.5 below, As in 

the case of the two way join operator, reduction of the multiple join operator results in 

a single virtual node in the reduced graph. 

The selection of a multiple join operator in a physical query will be equivalent to selecting 

query plan 3, as represented in Figure 8.5A. A physical plan based reduction makes use 

of statistical information to estimate whether there is an effective advantage of using the 

multiple join operatoI', Query plan 3 is selected when the join selectivity is greater that 

unity. However, in certain cases, where a multiple join operator may exist, an optimum 

choice is to select query plan 3 irrespective of the join selectivity. If operator selectivity is 

lower than unity, the choice of either Plan 1 or Plan 2 reduces the overall flow. However, 

when the certificate is calculated, the overall memory requirements and the delay are 

bound to increase. 'While an increase in memory requirements is attributed to the fact 

that a queue is maintained at two different operator locations, the introduction of an 

additional processing element increases the overall delay of processing the query. The 

trade-off with the cost is the determining factor for selection of a multiple join operator 

or a two-way join operatoI', Subsequent to the selection of a operator, the sub-tree is 

subjected to flow optimisation within the sub-tree. 

Recursive application of the sparsification based algorithm leads to the formation of a 

physical access plan, At this point, some properties of the logical and physical plan 

are highlighted. In both the logical and the physical plan, the edges are directional. 

In a logical plan, the edges are from a child point to a parent node, and there are no 
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edges from the parent node to the child node. However, in a physical plan, the edge 

direction is not restricted. A directed edge can connect a node to its parent node or to 

its sibling at the same level. While in a logical plan all the edges are static, the edges 

in the physical plan are dynamic and are interdependent . Unlike the pure dynamic 

graph, where all the edges can coexist , the edges in the physical query plan are related 

by the principle of mutual exclusion. In the above figure, only one of the three sets of 

plans can be selected. This implies that, if a dynamic graph structure is maintained 

to represent the above scenario, the graph algorithms should be able to support insert , 

update and delete operations for multiple edges. The dependency between the edges 

necessitates modifications to a dynamic graph MST maintenance algorithm to allow 

conditional selection of the nodes as the edges are considered. 
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8.4.2.1 A special case of n-way join 

The previous section described the algorithm that generates an initial plan for enacting 

the query. Execution of a physical plan involves translation into sub-queries on individual 

streams and appropriate allocation of the operators. This sub-section assumes the 

existence of a physical plan for a simple logical query and discusses the process of 

re-optimisation of query. Consider the following figure, which represents the join between 

three streams. Figure 8.5 shows the initial location of the operators, their selectivity 

estimates and the rate of arrival of data. It is assumed that the operators are located at 

nodes A and C. It is also assumed that the plan was generated under the conditions that 

[rateB < rateA] and that [rate(AB) < rateC]. Consider that at some time instance 

[rate(AB) > rateC] is consistently true. Hence the flow diagram for the certificate at 

level 1 is represented in Figure 8.5. As a result of the change in the characteristics of 

stream C, plan 2 is considered to be a better option at level-I, which means that the 

flow of data into the virtual node is considered optimal. The level 1 is thus optimized 

to select plan 2, with a request to recalculate the stream at level O. The re-organisation 

rneans that level 1 requests the operator to be placed at one of the stream locations at 

levelO. If node A supports a multi-join operator, the node merges the join operation, or 

else the flow from the two streams Band C is directed to stream A. At some time step 

after the reorganisation, assume that the [rateA < rateB] condition materializes. The 

change will result in reorganisation at level 0 and may require shifting of both the level 

o operator and the virtual operator to node B. 

8.4.2.2 Reductions for chain query 

In all the above examples being considered a simple query tree that involved a join on 

a single join attribute and in which the query tree structure allowed easy selection of 

the sub-tree for sparsification. In the special case of chain query, also known as the 

pipelined query selection of a sparse is not as straightforward. In a chain query, each of 

the data streams can be simultaneously part of two sparse certificates. As each stream 

is the subject of selection in calculation of either of the sparse certificates, the reduction 

technique is modified to represent this specific case. Figure 8.7 is a representation of the 

reduction for such a specific case. The algorithm starts the reduction from one of the 

end nodes of the chain query. In general the following reduction can be applied to any 

case where a data node has more than one parent node and where the tuple join criteria 

for the two edges of the node are dissimilar. As one of the input tuple forms a part of 

more than one data operator the reduction process involves a combinatorial operation 

involving a mutually exclusive set of nodes. As shown in figure 8.7, the operator edges 

are distinguished into two edge groups, with only one of them being able to form a part 

of the final physical plan. The initial certificates were created using a similar process 

as described above. The first step in reduction involves the calculation of the probable 
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certificates with the two mutually exclusive sub-graphs. The reduction aids in comparing 

the relative merit of either of the two combinations and leads to the selection of one of 

the two candidate solutions. On selection, a second step of reduction, one similar to 

the adaptive simple query reduction as described above, generates a physical plan for 

directed flow between the streams. The process can then be recursively applied to the 

chain of queries. 

8.5 Application to distributed DSMS 

The above mentioned query planning techniques can be applied in the context of both 

centralized and distributed data management systems, for the following reasons: 

Using sparse certificates allows partitioning of the query plan Each operator sees 

either a data node or a virtual node. A certificate represents the characteristics of 

the virtual node and shields the operator from the underlying complexity. These 

certificates can also be used as partitioning points, thereby allowing the certificates 

to be hosted on different machines in a distributed setting. The partitions allow 

independent modifications to the subtree of the query plan owned by each of the 

certificates. 

Incorporation of the monitoring parameters without modifications The monitoring 

mechanism does not assume any processing architecture for any of the data processing 

nodes. Operator and architecture independence allows the use of the algorithm in 

a heterogeneous data management system. 
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Stream properties are exploited to create overlays The common sub-expressions 

represented by the certificates can be advertised for consumption by other nodes in 

the system. Use of certificates enables potential sharing of sub-expression between 

numerous data management systems in a distributed DSMS, as depicted in the 

figure 8.8 . 

8.5.1 Selection operator 

The above specification allows the system to prioritize the order of query processing. For 

the purpose of clarity, it is assumed that a join over multiple streams can be scheduled 

with the same scheduling policy across all relevant databases. 

On arrival, each query is added to the stack of queries valid for the current scheme. 

All the queries on the stream can be reduced to a selection, projection or self-join 

operation. In case of queries across streams, the query is broken down into one of 

the above sub-query types for ease of evaluation. The range of queries are stored in 

a predicate tree. On the occurrence of an evaluation event, the value is compared 

against that held in the predicate tree to calculate the range of the queries affected. The 

affected queries are notified of the data arrival and the resultant dataset after the query 

evaluation has been maintained by a bit-array. A termination of the query results in 

removal of the row, while invalidation of the data results in column elimination. The 

results are shipped in accordance with the operator scheduling and are maintained in a 

separate result structure. In certain cases the evaluation of the query may not be able 

to be able to cope with the amount of data that arrives in a particular stream, thereby 

necessitating that certain data items go unprocessed. A number of such techniques for 

selective probing of the incoming data have been suggested. The data is sampled in 

accordance with the sampling criteria, dominated by the distribution of the variable 

being sampled. However, in this study the sampling is not enforced and the tuples are 

not eliminated unless the query processor explicitly enforces the policy. 
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8.5.1.1 Data structure associated with the operator 

In a regular database each of the query is processed individually and the selection of 

multiple attributes of the same tuple can be performed simultaneously. It is definitely 

possible to process the queries on a stream in sequential fashion. However, that would 

lead to increased cost, and may lead to significant memory overheads if the tuple 

arrival rate is too frequent as compared to the processing rate of the operator. A 

partial reduction in processing time can be achieved by maintaining predicate trees to 

manage the 'range queries'. The approach adopted provides considerable improvements 

in performance of queries when a single variable is considered. However, the predicate 

trees cannot be used to manage the 'range queries' for multiple predicates and a separate 

tree is maintained for each of the query attributes for a query involving a selection for 

multiple predicates. The probe selection can thus perform the search on each of the 

predicate trees to ascertain the queries that are satisfied by the appended tuples. 

In most cases, the total number of attributes in a tuple normally exceeds those used 

as selection attributes across queries. Maintaining a separate predicate tree for each of 

the tuple attributes is not a viable option. The predicate tree for a particular attribute 

is created if and only if there exists at least one query that specifies the tuple in its 

selection criterion. To facilitate the mapping of queries with nmltiple attributes and to 

minimize the number of accesses required to predicate trees, a data structure is used that 

maintains the relationship between the queries and also prioritizes the order of attribute 

based selection. 

The manipulations on the above data structure are described for the arrival of data and 

the queuing/removal of queries. \Vhen a query is queued with the probe, it is analyzed 

to represent the list of AKD OR and NOT operators. For each logical AKD expression 

in the query a row is inserted in the data structure and the process is repeated for 

the blocks connected by a logical OR operation. The rows in the data structure are 

sorted by the query ID. The attributes that need to be accessed to evaluate the query 

are set in the bit array, and the predicate tree of the attributes is appended to capture 

the relationship between the query and the attribute value. The attribute count (the 

k-value) is incremented for the attributes affected by the query. On removal of the query, 

all the rows corresponding to the query identifier are removed from the data structure. 

On arrival of the data, the incoming tuple is loaded into the select operator, with the 

attribute k-value. The predicate tree of the attribute is accessed to ascertain the list 

of successful queries. For each query that is not satisfied the attribute condition is 

removed from the query list by reducing the data structure with respect to the list of 

queries returned by the index predicate search. The reduction only effects the queries 

that had the bit mask set for the query attribute being evaluated. The reduction does not 

eliminate the queries that are not dependent on the attribute. Successive reductions are 

carried out using a similar method, until no more queries remain or no more attributes 
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with predicate trees are detected. The final reduction set refers to the queries that are 

satisfied by the incoming data tuple. Creating this type of probe structure allows the 

system to express any query and join as a composition of the probes on multiple tuples. 

The reduction technique uses the attribute with the highest k-value to achieve maximum 

reduction in the early stages of processing. 
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8.5.2 Algorithms for select and project operators 

The probe sets the bit flags for the tuples that are selected by a query. On occurrence 

of the evaluation event, the data items are selected from the stream and the data is sent 

to the selected into the output array. The cost of selection and projection is bounded 

by the following cost equations. Let R be the tuple with attributes Ri , in this particular 

example R<a,b,c,d,e,f>. Associated with each tuple is a list of queries that are stored 

in QL. Each query has a range constraint on a number of attributes of R The query 

may have a number of combinatorial constraints on the same tuple, which are converted 

to AND, OR and ~OT logical operators. 

The following algorithm is used to process the queries on the 

On Query queuing 

This method is invoked when the query is added to a stream. 

1. Add the query to the data structure. 

2. IVlodify the k-values of the attributes aflected by the query. 

3. Update the query predicate trees for each of the affected attribute. 

4. Modify the result data structure to add the query to the bit array. 

On Query remove 

This method is invoked on removal of the query from the stream. 

1. I'vlodify the result bit array structure to remove the column representing the query. 

2. :Modify the query data structure and remove all the rows for the query. 

3. Modify the k-values of the attributes in the query data structure and destroy the 

predicate tree, if the count is zero. 

4. Modify the predicate trees to remove the query entries and prune the tree. 

On Data process 

This method is invoked to process every incoming data tuple, with the result that the 

data structure is modified to reflect selection of the tuple. 

1. Select the attribute with highest k-value. 
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2. "While the query map is not null, perform reductions 

Use the attribute value to obtain the list of affected queries. 

Perform reduction of the query list. 

If query list is exhausted, then terminate the processing, the row will not 

appear in the result bit array. 

Select the next attribute with the highest k-value. 

3. Append the result bit array for all the queries existent in the query list. 

8.5.2.1 Cost of processing the query with this probe 

Only the computational and memory costs need to be considered, as all the data 

structures and stream are considered to reside locally. Assuming that all the data is 

maintained in the main memory, the I/O costs will be of negligible significance, and the 

entire complexity of processing will be due to computational complexity. 

Consider that the queries are processed sequentially without any attribute based reduction. 

The cost of processing a single tuple for all the queries can be given by: 

Summation ( log(n) * no. of attributes accessed) for all the queries. = k*q*log(n) 

Considering the reduction based technique the cost of processing the query can be given 

as 

Summation( log(n) * no. of queries remaining) for number of iterations < k*q*log(n). 

The overall complexity in both cases is of the form nlogn, but in the latter case the 

reduction leads to lower complexity; the worst-case complexity may be equal to the 

complexity of the first case. 

8.5.3 Multi-way join operator 

:'1ulti-way join operators provide increased memory utilisation by eliminating the need 

to maintain intermediate results, and may also reduce the computational costs in the 

case of non-blocking data stream processing. A multi-way join operator processes the 

incoming data items on individual streams. As illustrated in section 8.2.4, a stream 

operator can schedule the order of routing the tuples through the individual joins, in 

order to reduce memory and computational costs. The cumulative memory utilisation 

of the query being processed by the multi-way join operator is given by the equation: 

n ISil 
rnernoryutilisation(Q) = L L Sj6j 

i=O j=O 
(8.5) 
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where Q is the query represented by the join operator, and the streams are represented 

by the set S. In addition to the memory utilisation of the incoming streams the Multi-way 

join operator may also exhibit some additional memory utilisation, due to the caching of 

the intermediate state and results. The previous sub-section illustrated a sparsification 

and iterative dynamic programming based approach to determine the next feasible 

minimal state for query evaluation, which is extended here. 

Consider a query Q that represents a multi-way join between streams S. Assuming that 

there are no intermediate states, then each tuple arriving at any of the streams needs to 

be routed through 151- 1 other streams. Let us represent the route of each of the tuples 

arriving at stream Si with a directed graph Gi . As G i is the ordered graph representing 

tuple routing and as there exists no parallel execution, the graph Gi is acyclic, and each 

node in the graph has at most one incoming and at most one outgoing edge. The nodes 

in the graph are ordered to minimize the flow of number of tuples at each hop in G i . The 

ordering of the nodes in G;, each ordered graph Gi is selected on the basis of selectivity 

estimates. Si is by default the first node of graph Gi . The second node is chosen from 

a list of the nodes (151 - 1), the third is chosen from the list of (151 2), and so on. 

The objective function used to iteratively select these nodes in graph Gi is given by the 

formula: 

O"(N) = minnodes(ISI-j)atstage(j+l) {O"(lsl-j)} (8.6) 

Here N represents the next node to be added to graph G;, and the process is repeated 

for (151 1) times. 

Let G represent the union of all graphs G i , such that G = {G1 ,G2,G3 , ... ,G;} and 

151 = IGI· Graph G is a directed graph with iGI directed spanning trees. The limitation 

of the previous join operator was that only one tuple could be allowed to advance its 

scan in order to maintain the consistency of the ripple join operation. Using this graph 

formulation could introduce concurrent execution of various scans by selectively locking 

the routing paths. 

Consider that query Q selects a scan on item Si. As the scan is on stream lSi I locks 

the tree rooted at stream Si. The multi-way join operator selects a list of alternate 

streams that need to be scanned at the completion of the current routing path. All such 

candidate streams are queued for execution. For the join operations in progress, the 

streams are routed through the path represented by the spanning tree. As the items are 

routed from node Ni to node N j , such that ei,j exists in G i , the lock on the node Ni is 

released. Thus the candidate node Ni is available for the scan of its tuples and advances 

in its direction are permitted. Selection of this second node allows it to lock the other 

nodes in accordance with its query graph Gi. 



Chapter 8 Query Optimisation 129 

8.5.4 Operator scheduling 

Query processing for streams is represented as a set of graph flows, which represents the 

order in which the data from the streams is processed. The last sub-section introduced 

a mechanism for concurrent execution of scans from multiple streams. However, the 

data items should not be considered as individual tnples processed on arrival; instead 

they are considered as blocks of tuples processed as blocks of memory units. The block 

size and ordering of the stream scan are selected in order to red uce cumulative memory 

utilisation. Here it may be pointed out that the memory utilisation of the stream is not 

dependent on the execution of the simple query, but is intertwined with the operations 

of the other query. Operator scheduling has two distinct objectives - first, to reduce the 

cost of individual query evaluation and secondly, to dynamically arrange the ordering 

so that the global costs introduced on the data items are also minimized. 

A number of strategies can be adopted in ordering the scans on the streams of an 

individual query. The approach of cost based reduction is investigated. The memory 

utilisation of a particular query Q was described in equation 12.5. Assume that the 

query processor can evaluate the tuples that occupy size ::\lI. The reduction achieved in 

the complexity of the query is as follows: 

n-l 15,1 IS" I 
memoryutilisation(Q) = L L Sj6j + L Sj6j (8.7) 

'i=O j=O j=O 

The scan on Sn should be maximized in order to reduce the overall memory utilisation 

of the query. The objective function in that case is given by 

15,,1 
F = Max{LSj6j} 

j=O 
(8.8) 

In cases where the query manages to process all the data items pending in the stream 

the resultant memory utilisation is given by 

n-llSil 
memoryutilisation( Q) = L L Sj6j 

i=O j=O 

while in cases where partial processing has occurred, the resultant is given by 

n-llSil ISn11 

memoryutilisation(Q) = L L Sj6j + L SjOj 
i=O j=O j=O 

(8.9) 

(8.10) 

where (n1 < n). The formulation presented in equation 8.8 represents the objective 

function of the operator scheduler. Adoption of the cost based scheduling strategy 

usually is liable to the starvation effect. However in this study, the objective function 
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has a temporal component, due to which the resultant costs increase ·with the passage 

of time, there by necessitating the evaluation of all the streal11.s and eliminating any 

chances of starvation. 

Here it should be pointed out that temporal costs of query evaluation are liable to 

occur in the streams that experience arrival of new data items and in the ,,,rindmvs that 

roll-over the data. The temporal costs are inapplicable to data items once they have 

been processed. Thus, streams with lower data rates as well as static tables do not incur 

additional costs for retaining the data items collected as a result of the previous scans. 

lVlultiple queries share the cost of maintaining the data in the stream. This cost of 

data items is shared between multiple data queries. As the scope of the queries is 

limited to the scope of the window, a window moment may invalidate the requirement 

of maintaining certain data items within the stream. A resultant window moment results 

in spreading the cost of the data item between the remaining queries. Such a resource 

management feature is required to allow variable cost mechanisms for various window 

mechanism. The actual cost function can be adjusted in accordance with the memory 

management policy. The policy will affect the way in which queries are evaluated. Thus, 

if considered, an equi-cost representation for evaluation of the memory costs, it can be 

proven that the landmark window functions are penalized as compared to the sliding 

window or the clamped window functions. The aim in that case is to reduce the cost of 

the query function; thereby, certain queries ,,,ill receive higher prominence in the order 

of processing. The effects of operator scheduling and related effects on cumulative query 

processing are studied in section 9.2. 

8.5.5 Statistical information collected 

To determine the appropriate ordering of data operators, and prioritize the queries, a 

DSMS maintains statistical information about the intermediate data items. To assure 

the extensibility of the statistical monitoring environment, it is required that the monitoring 

of the data operators is independent of operator characteristics, an objective achieved 

by the use of a black box model to denote operators. 

The model collects fine grained information on the flow and size of tuples, as they happen 

to govern the amount of memory required at each operator. It inferences meta-level delay 

information based on tuple and flow characteristics. The flow information can also be 

used to infer selectivity information on the historic data flows observed by the operator. 

In addition, the instrumentation monitors resource sharing between multiple queries, 

being enabled by the operator. 

The following tables provide details about the statistical information collected. 
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TABLE 8.1: Stream Querv Processing - Tuple and Stream Instrumentation Details 
Parameter 1'\ ame Symbol Cardinality Description 

Arrival time To Data tuple A timestamp to capture time on arrival 
Selection time Ts Data tuple A timestamp for the tuple after it has been 

processed. 
Shipping time Tsh Data tuple A timestamp to indicate when a tuple was 

shipped to the next operator. 
Arrival rate Sa Stream Number of tuples arriving per second. 

Maximum cache size Ma Stream Average memory requirements for storing the 
data in the stream. 

Local views NL Stream Total number of select/project queries being 
supported by the probe on the stream. 

Scheduling Sc Stream Type of operator scheduling at the stream. 
\\lindow type Hft Stream Used to specify the semantics of the window. 

Tuple structure Ts Stream Used to specify the schema of the stream. 
Tuple size T s?, Stream Size of a row in the stream. 

TA.BLE 8 2' Stream query processing - Operator instrumentation details 
Parameter 1'\ ame Symbol 

Input tuples 

Output tuples Qto 

Input tuple size hs 

Output tuple size OTS 
Input tuple rate hR 

Output tuple rate OTR 

Cache size Qo 

Selectivity So 

8.6 Example 

Cardinality 
Per input @ node 

Per output @ node 

Operator 

Operator 
Per input @ node 

Per output @ node 

Operator 

Operator 

Description 
The num.ber of tuples that have 
arrived since the last landmark. 
The number of tuples that have been 
transferred from the last landmark. 
The con1.bined size of all the input 
tuples. 
The size of the output tuple. 
The rate at which the tuples have 
arrived in at each of the inputs. 
The rate at which the output tuples 
have been collected from the operator. 
The cache available at the operator 
location. 
The selectivity of the query 
operator,calc:ulated as the (no. of 
output tuples) / (Cartesian product 
of input tuples) . 

A schematic representation in the following section uses an example to describe various 

optimisation scenarios encountered during the query processing in DSMS. The previous 

section introduced an IBS-SP J operator, which provides range predicate sharing between 

multiple queries. This section describes the multiple query optimisation using pipelined 

join operators and IBS-SP J operators. A modified join operator is represented in figure 

8.10. The non-blocking join operator is augmented with statistical capability, ability 

to register its intermediate results as temporary streams, tuple dropping and sparse 
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TABLE 8.3: Parameter description and svmbols 
Parameter name Symbol Cardinality description 
Tuple structure Ts Edge The structure of the tuple that is being 

transferred over the link. 
Tuple size Tsi Edge The size of a single tuple that IS being 

transported through the edge. 
Flow rate Fz Edge The rate at which the tuples are being 

transported. 
Edge group Id Edge The group of edges that need to be 

simultaneously inserted or deleted fi'om the 

Source (A) Source (B) 

solution graph. 

Intermediate Schema, Operator 
Statistics and Sparse Certificate 

-- -}.---

Memory Buffer and Tuple Droping 

Join Result 

Hash Table A Hash Table B 

(2) Hash (A) (1) Probe (A) 
: (2) Hash (B) 

(1) Probe (B) 

Hash (A) Hash (B) 

----!--

Source (A) Source (B) 

FIGURE 8.10: A pipelined symmetric hash join with monitoring information 

certificate capability. The certificates specify the goals for each of the operators and 

are usually allocated by the parent operators to their child operators. The result of 

the join operators on multiple input streams is a single output stream, registered as an 

intermediary table for continual optimisation in conjunction with logical plans. 

For this example, consider the case of the following three queries: 
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TABLE 8.4: Stream query processing - example queries 
Query 1 (Q1) Select * from A, B, C, D ,,,here A.a = B.b AND B.b = C.c 

AND C.c = D.d AND A.a = 10 AND B.b =20 [Window 
Specifications l: 

Query 2 (Q2) Select * £i'om A, B, C, E where A.a = B.b AND B.b = C.c 
AND C.c = E.e AND A.a = 10 AND B.b = 20 AND E.e = 
90 [Window Specifications]: 

Query 3 (Q3) Select * from A, B, G, H where A.a = B.b AND B.b = G.g 
AND G.g = H.h AND A.a = 50 AND B.b = 60 AND G.g = 

60 AND H.h = 7 [\\lindow Specifications]: 

Q1 

FIGURE 8.11: Example Queries 

The individual query plans for each of the queries is represented in figure 8.11. As 

query Q1, Q2, Q3 are added to the system the logical plan is modified as depicted in 

figures 8.12, 8.13 and 8.14. The self-referencing edges represent the range predicate 

selections and are translated into expressions on IBS-SP J operators, while the edges 

between the nodes are translated into join operators. An optimizer collocates a common 

join operator for streams that share expressions and have similar consumption rates 

and window specifications. The execution plans that share operators are represented in 

figures 8.15 and 8.16, while figure 8.17 represents the case where the execution engine 

partitions the resources so that a different quality of services can be met. 

FIGURE 8.12: Logical plan for a single query. 
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FIGURE 8.13: Logical plan for a tv,'O queries. 

FIGURE 8.14: Shared logical plan for three queries. 

8.7 Summary 

Query optimizing in data streaming systems has been the focus of many recent projects, 

for example, StreamDB (Arasu, Babcock, Babu, Datar, Ito, ~1otwani, Nishizawa, Srivastava, 

Thomas, Varma, and \Vidom 2003), TelegraphCQ (Chandrasekaran, Cooper, Deshpande, 

Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Reiss, and Shah 2003) and NaigaraCQ 

(Chen, De\Vitt, Tian, and Wang 2000). Three distinct query optimisation techniques 

have been proposed: first, a tuple routing approach used by Eddy (Avnur and Hellerstein 

2000), secondly, a rate-based query optimizing technique (Viglas and Naughton 2002). 

Thirdly, an operator ordering based query optimisation (Babcock, Babu, MotwanL 

and Datar 2003). The above techniques adapt to stream characteristics and optimize 

memory utilisation by reducing the state information maintained at each stage of query 

processing. However, the above techniques have limited applicability due to the following 

reasons: 

Limited context - single query All of the above techniques attempt to minimize 

resource utilisation in the context of a single query. Optimizing the queries 

individually does not guarantee the optimal strategy for the DSMS, which typically 
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ISS(A) 
K=1 

ISS(E) 
K=1 

ISS(A) 
K=1 

ISS(B) 
1<=1 

01 

ISS(C) 
K=O 

FIGURE 8.15: Execution plan for a single query. 

02 

ISS(S) 

K=1 

01 

ISS (e) 
K=O 

FIGURE 8.16: Execution plan for a two queries. 

ISS(D) 

K=O 

ISS(D) 

K=O 
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Processing Block 1 

03 

IBS(H) 
K=l 

Shared Memory Cost Processing Block 

Processing Block 2 

02 01 

FIGURE 8.17: Execution plan for three queries, with parallelisation. 
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executes multiple queries at any give time. Unlike the queries in traditional 

databases the queries in stream databases happen to be continuous, and need 

to be executed over a period of time. 

One dimensional optimisation Query optimisations for DSMSs have focused exclusively 

on either minimizing memory utilisation or improving the throughput of query 

evaluations. However, query optimisation needs to be based on a cornplex Quality 

of Service (QoS), based on memory utilisation, throughput and the computational 

resources required for evaluation. Guaranteeing a complex QoS requires multivariate 

optimisation an issue that has not been addressed so far. 

The approach described in this chapter is the first approach to n1.Ultiple query optimisation 

for DS:rVISs that overcomes both of the above-mentioned limitations. The sparsification 

based technique described in this chapter is the first such query processing technique that 

considers resource sharing between multiple queries. Resource sharing between multiple 

queries is detected from the query semantics specified in PSQL 2. Resource sharing has 

been extended to the query planning and query execution stages. It remains the only 

known approach that tries to exploit the correlation between the memory utilisation, 

computational resource utilisation and throughput. In addition, it is the only known 

approach that considers re-optimisation of query plans as the integral part of query 

processing in DSMS. 

\Vhile this chapter concentrated on the theoretical aspects of query optimisation, the 

more detailed implementation and practical aspects are discussed in the next chapter, 

which also provides a detailed evaluation of the techniques described in this chapter. 

2PSQL was developed specifically for identifying resource sharing between query definitions in DSMS. 
(For details refer to Appendix C) 
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DSMS - Implementation, 

Evaluation and Analysis 

This chapter describes the DSMS implementation and experiments carried out to evaluate 

its performance. Section 9.1 describes the DSJVIS implementation which supports PSQL 

(described in Appendix C) and implements the algorithms described in Chapter 8. 

Section 9.2 describes the experirnents conducted to evaluate performance. A summary 

of the findings can be found in section 9.3, which also summarizes the contribution to the 

application domain and correlates the application level findings and overall hypothesis 

from the Chapter 2 

9.1 Impleluentation details 

A DSMS was implemented for the sole purpose of evaluating the performance of the 

algorithms described Chapter 8. A DSMS implementation could have been developed 

as an extension to the open source relational database. For example TelegraphCQ 

(Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy, Madden, 

Reiss, and Shah 2003) extends the PostGres database system. An alternative ,vas to 

develop a dedicated implementation of a DSMS. The following considerations influenced 

the choice of the latter: 

Support for streams Most relational database systems support standard containers 

such as tables and views. These systems provide very little support for in-memory 

representation of the containers such as streams. Temporary in-memory relational 

tables present the most suitable data structure to represent streams. However, 

most such implementations use secondary storage (or disk space) to swap table 

space, which, as discussed in the previous chapter, is not recommended for the 

manipulation of streams. Also, when temporary tables were used to capture the 

137 
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sequence-like semantics of streams, additional processing costs were incurred in 

removing the items from temporar? storage. Automatic removal of data tuples 

is the significant difference between tables and streams. Data tuples in a stream 

expire, if not processed within a bounded interval. Such temporal characteristics 

are also observed b? relational operators, where the resultant tuples are assigned 

a time-stamp derived from the time-stamps of the input tuples at an operator. 

The significant difference in container properties entails modifications to access 

mechanisms and memory management to support streams in a relational database 

system. 

Support for PSQL PSQL extends the SQL standards supported by most relational 

database implementations. Incorporation of PSQL support 'will require modification 

to the syntax and the semantic parsers of the relational database system. Incorporation 

of PSQL is crucial in validating our tuple based resource sharing approach from 

an end-to-end systems perspective. Also, PSQL introduces an important notion 

of considering both table-spaces and streams as datasets, window operations and 

scheduling characteristics. Verification of the capability of the PSQL in identifying 

the similarity between the queries on streaming data was confirmed by a system 

implementation. 

Unique monitoring requirernents Uncertain data arrival patterns and variations in 

data characteristics have a significant impact on the estimation capability of the 

query processing system. Cost based query processing in stream data management 

systems requires a capability to analyze and predict the behaviour of a time varying 

dataset. Standard relational database systems do not provide such a monitoring 

system. Any attempt to incorporate such a capability in a standard database 

requires modifications to the query processing system. 

Continual Query Optimisation A DSMS provides support for a continual query 

execution, while most database systems provide support only for evaluating a 

query instance. Optimal continual query evaluation requires support replanning 

and changes to the physical query plan. Such changes require additional functional 

capabilities to be incorporated into the query planning system. 

As described above, implementing a DSMS using an existing relational data management 

system requires significant modification to a wide range of system components. To 

overcome this limitation, a new DSMS implementation was developed. The architecture 

of the implementation is described in the following section. 

9.1.1 Architecture 

Figure 9.1 depicts the architecture ofthe DSMS implementation. The input to the DSMS 

is composed of two different blocks the data definition block and the query processing 
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block. The DDL (Data Definition Language) block deals with the creation, deletion 

and modification of the data schemas and data containers. The Data ::'Iianipulation 

Language (DML), which is also a part of the SQL specification, provides constructs for 

manipulation of data in standard containers such as tables and adapters are associated 

with the stream data containers. The implementation provisions data adapters for 

consumption of data from Java ~1essaging Service (J~1S), socket based communication 

and synthetic data generators, 'Nith the possibility for supporting additional adapters 

for communication services such as COREA ~otification and HTTP communication 

protocol. Only those data items that conform to the specified schema are accepted from 

these incoming communication channels. Temporary storage is provided for staging 

the data items, which are subsequently evaluated for a list of continuous queries. The 

query processing block processes the query statements and appropriately determines the 

physical and the logical query plans. The query plans determine the resource sharing 

between multiple queries and are used to derive the schema and memory requirements of 

the intermediate results. The query plans are used to determine the operator scheduling 

for subsequent evaluation of the queries. Online statistics are maintained for the data 

items encountered by the queries. Our implementation provides the possibility to collect 

the semantics both before and after the actual query processing. The semantics allows 

refinements of the estimates and the query plans derived from~ these estimates. The 

output generated from the data streams also happens to be streams, and the resultant 

data streams are propagated using the various communication channels specified by the 

query semantics. 

9.1.2 Illustration memory management and scheduling 

As described in the previous sections a query statement is translated into a logical query 

plan, which in turn is translated into a physical query plan. Figure illustrates one such 

query graph that is formed by addition of multiple queries to the query graph. At the 

bottom of the graph are the selection operators that provide tuple level resource sharing 

between the query plans, while the output of the queries is obtained at the top of the 

query plan. The intermediate graph is determined on the basis of the shared query sub 

expressions. The cost of the shared subexpressions is shared between the queries that 

share the expression. In simple terms, the cost of the subtree is shared by the queries 

that receive the fan out from the subtree. The shared cost concept allows the operator 

scheduling mechanism to determine the net effect of scheduling the chains of operations 

within the graph. 

Associated with the each node of the graph is the queue that retains the operator state. 

Assuming the familiar case of the sliding windows, the state maintained at the base of 

the graph is relatively static. However, efficiency of query evaluation depends on the 

ability of the scheduler to allocate an appropriate amount of memory at each of the 
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FIGURE 9.1: Block diagram: Query Processing Engine (QPE) 
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sub expression queues. The mechanism was described in the previous chapter and the 

evaluation of the same can be found in the following section. 

9.2 Experiments 

The experimental evaluation of DSMS presented in this section covers important individual 

components and proceeds to provide the evaluation of the complete DSMS. The evaluation 

focuses on the IBS-SPJ operator, the memory evaluation, and the operator scheduling. 

These experimental evaluations were conducted using a synthetic data workload, details 

of which (schemas and their distribution) can be found in Appendix C. 

9.2.1 Select project operator analysis 

Select project operators belong to the group of stateless operators which do not maintain 

any state information to evaluate the query expression. Hence, unlike join operators, 

these operators remain unaffected by the use of different window types. The schema used 

for evaluating the data operator is presented in the following Table 9. L It evaluates 
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Schema of the Stream: 
Create Stream IT (ID INT, ;\ame CHAR(200), 

PanKo INT, Income REAL, Ideal INT): 
Depth of IBS filter tree 

Number of Tuples k=l k=3 k=5 k=7 k=8 k=9 k = 11 
10000 65.5 27.4 21.866 16.8 13.76 12.566 9.3571 
20000 112.6 67.1 43.233 35.175 28.76 25.733 22.771 
30000 170.1 93.05 69.233 53.9 40.02 37.5 34.142 
40000 223.4 133.6 89.1 72.3 56.22 48.466 45.328 
50000 293.8 157 108.833 85.925 67.18 63.016 55.157 
60000 334.5 186.75 134.4 107.375 81.88 73.15 66.7 
70000 389 222.65 152.6 123.1 94.66 87.516 81.271 
80000 448.5 253.1 183.866 142.175 110.96 98.166 87.057 
90000 517.3 279.7 200.5 155.075 123.12 110.65 102.242 

TABLE 9.1: Performance data of an IBS based SPJ operator 

the performance of the operator as a number of queries are added to the operator. 

The queries are either conjunctive or disjunctive or predicate range expressions. The 

expressions are evaluated for an increasing number of tuples. The evaluation time for 

the queries was averaged for 10 runs of the data with varying selectivity. Figure 9.2, 

represents the query processing time for varying number of queries being simultaneously 

evaluated by the operator. The query processing time increases linearly (see figure 9.3) 

with the increase in the number of tuples being processed. However, the time per query 

decreases as the number of queries increases. Hence, for a large number of queries the 

cumulative gains obtained by the use of this operator increases linearly with an increase 

of query expressions. Figure 9.3, which presents an alternative vie"w, highlights the fact 

that the cumulative average processing time reduces due to the tuple sharing enabled 

by the operator. 

9.2.2 Query planning under variable data rates 

Adaptive query processing allows the query evaluators to be able to adapt their resource 

usage in response to changes in the data rates. The aim of these experiments is to 

demonstrate the capability of the algorithm to detect, restructure and schedule the 

query operators in response to variations in the data rates. The experiments compare 

the algorithm against the cost-based non-adaptive query planning algorithm, to show 

that it remains capable of adapting to variations in resource availability. 

To evaluate the performance, a candidate query consisting of three streams and two 

join operators is used to compare the performance of the query planning algorithms. 

The selection and projections being stateless operators, they were not considered for 

performance comparison. Performance is compared on the basis of cumulative memory 

and processing requirements. Historical statistics maintained on the container were used 

k = 13 
9.187 
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to construct the static query plan, which was used to evaluate the continuous query to 

its completion. The performance was compared against the dynamic query planning 

algorithm. To provide a fair comparison between the planning algorithms a round robin 

operator scheduling policy was used to execute the query. Figure 9.5 illustrates the use 

of the algorithm for two categories of change in the stream data processing: variations 

in the data rate and variations in the selectivity of the join operators. Synthetic data 

sets and streams ",vere used to simulate the behaviour of the algorithm. 

Figures ?? illustrate the cumulative memory and computational resource usage in case 

of variations in data rate. The data arrival rates at stream.s A,RC are given in the 

following figure 9.4. Stream A is a blocking/unblocking stream, with data arriving at 

constant speed for a fixed interval, while the data arrival rates at streams Band C 

follow triangular and gaussian distributions respectively. In the absence of any known 

benchmark for comparing the performance of the various stream processing systems, 

these three patterns were arbitrarily selected from the stream characteristics observed 

in real systems. A bounded number of tuples were used to perform the evaluation. 

Considerable care was taken to evaluate the system exclusively in the main memory and 

idle resources were provisioned so that the algorithm's performances are not effected by 

the resource constraints imposed by the system. 

Figure 9.5 shows the variation in the total queue sizes over time for the two algorithms. 

It was observed that the static query planning algorithm incurs considerable penalties, 

because of its inability to adapt to variations in the resource requirements of the data 

streams, while the adaptive algorithm minimized the memory requirements of the query 

processor. 

Figure 9.6, shows the variation in throughput in the face of variations in the join 

selectivity algorithm. 

9.2.3 Operator scheduling analysis 

This sub-section provides evaluation of the operator scheduling algorithm described 

in the previous chapter. Evaluation of the algorithm is carried out in two scenarios: 

operator scheduling for memory minimisation for a single query and Operator scheduling 

for multiple queries. In case of the single query optimisation, a comparison is made 

against FIFO, Greedy and Chain Strategy. Chain is excluded from comparison in 

the case of multiple query processing, as chain scheduling for multiple queries remains 

undefined. 

As can be observed from the following figure the chain strategy and adaptive scheduling 

algorithms outperform FIFO and greedy scheduling algorithms. As both chain and 

adaptive scheduling rely on an information push mechanism, the performance comparison 

highlights the adaptive scheduling algorithm's ability to allow concurrent evaluation of 
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parallel paths, unlike Chain, which allows data to be propagated through a direct chain 

from leaf to root node of the query plan. Memory usage and computational resource 

usage are depicted in the following graphs. 

In the case of multiple queries, the FIFO and Greedy algorithms fail to optimize the 

amount of state held in operators shared across multiple queries. This results in disproportionate 

states being held at the operators. However, the adaptive scheduling algorithm adopts 

a back filling strategy, which allows it to reduce memory utilisation by associating 

dynamic bounds on computational resource usage. Figure 9.7 illustrates the memory and 

computational performance of adaptive vis-a-vis FIFO and Greedy scheduling strategies. 

9.3 Summary 

A DSNIS systems consists of four distinct phases of processing: the logical query planning 

phase, the physical query planning phase, the operator selection phase and the scheduling 

phase, strictly in that order. An adaptive DSMS system can be constructed by incorporating 

adaptive behaviour at any stage of processing. In such a scheme, the decision made 

at the higher stages affects the decision made in subsequent phases. To date, two 

distinct approaches have emerged in the field: a block-based query processing approach 

advocated by Aurora (Carney, etintemel, Cherniack, Convey, Lee, Seidman, Stonebraker, 

Tatbul, and Zdonik 2002) an a individual query optimisation approach advocated by 

TelegraphCQ (Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy, 
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Madden, Reiss, and Shah 2003) and StreamDB (Arasu, Babcock, Babu, Datar, Ito, 

Motwani, Nishizawa, Srivastava, Thomas, Varma, and \Vidom 2003). Aurora adopts the 

multiple query processing approach of producing all the necessary tuple combinations 

required by the queries and applies late filtering to produce the required tuples, while 

the rest of the systems ignore the case of multiple query processing. While Aurora 

does address the issue of multiple query processing, it does not incorporate the notion 

of adapting the logical/physical plan in accordance with runtime query statistics. On 

the other hand, systems like TelegraphCQ adopt the tuple routing strategies, which 

introduces adaptive behaviour at planning and the operator level. For example, the 

Eddy operator used in TelegraphCQ makes localized optimisation decisions. To date 

our approach remains the only approach that tries to integrate the different phases 

of adaptive behaviour in query processing systems. It is the only approach that allows 

adaptive behaviour at the query level and can also impose global restrictions to optimize 

query performance across the system. 

The performance evaluation in this section showed that the use of a combined planning 

and scheduling strategy results in a better performance than the approaches that adopt 

independent planning and execution architecture. 

9.3.1 Contributions 

A number of novel techniques for developing DSMS were introduced in the previous 

chapter, and their evaluation was presented above. The specific contribution of the 
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above approach are: 

1. The incorporation of multiple query optimisation approach for DS!'I1S, which allows 

differential QOS to be supported for individual queries. 

2. The incorporation of a novel query planning and operator scheduling algorithm. 

3. The Proposal for PSQL to be used as a query language for stream systems. 
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Conclusions and Appendices 
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Chapter 10 

Conclusions 

10.1 Concluding relnarks 

Dynamic aggregation of resources has become a common trend in an emerging class of 

distributed systems> This thesis presented investigations related to adaptive resource 

management for three exemplar applications> Based on the limited experiences of 

these investigations, it is concluded that there exists at least two sub-categories of 

adaptive systems in large scale distributed systems, provisioning systems and quality 

management systems> A provisioning system retains a common policy throughout 

execution; it uses resource augmentation to adapt to variations in operating conditions. 

Scheduling systems and P2P systems (presented in the previous parts) fall under the 

provisioning systems category. The stream query processing system is classified as 

a quality management system. An important characteristic of quality management 

systems is their ability to adapt their operational characteristics in response to the 

operating environment. Not every aspect of these two classes of adaptive systems was 

discussed, but a brief discussion of observations that apply to adaptive systems in general 

is provided below. 

It was observed that, unlike most distributed system properties, adaptive system behaviour 

cannot be expressed without explicit incorporation ofthe temporal dimension. However, 

the way the notion of time is captured may vary with respect to the system characteristics. 

For example, our example of online scheduling uses a shifting finite horizon, while the 

information dissemination example addresses the issue by using a continual representation 

of time, and finally, the tuple structure in the DSMS example explicitly incorporates the 

notion of time. The notion of time provides a convenient way to represent that the system 

has moved from one optimal state to another. In retrospect, this was also observed in our 

applications with a moving finite horizon in online scheduling, with optimisation cycles 

in a dissemination scenario and with changes to query plan in DSMS indicating such 

state transitions. From the observations made in developing these systems it is concluded 
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that adaptive behaviour manifests itself in various different ways. However, in order to 

achieve adaptive behaviour it remains crucial that systems are able to determine the 

existence of a more optimal state and identify some means to transition to that state. 

For example, the addition of time slots to a queue in online scheduling indicates that 

additional resources are present, that current packing may soon become non-optimal, 

and the system then attempts to optimise its objective function. Similar parallels can 

be observed in the other two exemplars. 

\Vhen a system becomes capable of identifying the transition to an optimal state with 

respect to its current state, it can be augmented with a capability to explore the 

transitions to these states of interest. \Vhile online scheduling provides a limited means 

to explore this space, ample scenarios have been provided in the remaining exemplars. 

In the cases studied, the state transition scenarios were translated into an optimisation 

problem. For example, in information dissemination, "\Vhich neighbor to choose?" 

represents the optimisation problem that was solved to provide adaptive behaviour in 

a peer network. However, it was found that in some specific cases, adaptive behaviour 

can be accomplished by exploring the search space, while in some other cases it can 

be achieved by refining the search space. For example, a query processor could exhibit 

adaptive behaviour by modifying either the logical plan, physical plan, operator behaviour 

or schedule, exclusively by exploring the search space in each of these layers, or it could 

refine the search space by accomplishing adaptive behaviour by optimisation across the 

layers. 

Our investigations into adaptive systems also highlighted their limitation in autonomic 

management of resources. All our system prototypes required a set of policies that 

defined their objective function and restrictions on their optimisation space. Whether 

considering utilisation maximisation in online scheduling, search cost minimisation in 

information dissemination or query optimisation in DSMS, these systems had a predefined 

set of objective functions. Our future work on adaptive systems would be to design 

systems that determine their objective function on the basis of operational characteristics 

and policy statements. The interaction of policies with operational environment and the 

verification of policies will be an important research aspect of such systems. It will 

be interesting to see if these systems incorporate the notion of stability. The next few 

sections present conclusions for each of the application types. 

10.L1 Online scheduling 

The investigations into computational resource aggregation systems are convincing in 

that, unlike the resource reservation schemes, online scheduling schemes are bound 

to dominate scheduling in the Grid environment. Low scheduling overheads, ability 

to maintain autonomous control of resources and provide probabilistic guarantees on 

resource utilisation are definite advantages of this approach. On the negative side, it is 
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not clear how communication models between jobs will affect the scheduling of jobs. It 

is bound to be the case that the incorporation of communication patterns 'will increase 

the system's sensitivity to failures of resources and necessary redundancies will have to 

be incorporated to increase the robustness of the system. 

10.1.2 Information dissemination 

The investigations into these system types reinforce the assumption that overlay networks 

will be commonplace for describing the context for resources involved in adaptive resource 

management. Adaptive overlays can be effectively used to incorporate the notion of 

partial visibility of state information and to enforce localized policies. However, although 

a graph theoretical approach is proposed to capture the dynamic behaviour of the 

individual resources, it is the system dynamics and the choice of the objective function 

that predominantly determine the suitability of the overlay structure. It was observed 

that a mismatch between the structure of the overlay network and the objective function 

leads to frequent reorganisation, leading inturn to an unstable system. 

10.1.3 DSMS - Query processing 

Data Stream Management Systems represent a unique class of application systems, which 

highlight the case that, under limited resources, adaptive systems can be designed to 

provide variable quality of service guarantees. In addition, the approach in this thesis 

provides a query planning mechanism that has the unique capability of adapting to a 

distributed system setting with no additional modifications. To date, this remains the 

only approach to provide such a sophisticated level of control on resource utilisation 

for such problems. However, with exclusive focus on adaptive query processing, the 

approach fails to take into account the additional complexity introduced by schema 

modifications in streams and differential QoS. It will be interesting to see how such 

features can be incorporated into future editions of the system. 

10.2 Future Work 

The end of each part of the thesis indicated how had been extended the state of the art 

in each of the application areas. A viable approach will be to continue to investigate the 

issues in each of the application domains, while continuing to conceptualize a model to 

capture adaptive behaviour in large scale systems. Although the above approach was 

used during the investigations of this thesis, it has some limitations. At times, there was 

insufficient overlap betvveen the application areas and the general theoretical approach. 

As part of future work two separate areas of investigations are identified, which will 

separate the theoretical aspects and the application aspects. 
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The future plan is to investigate two research directions to address the above problem, 

first, the theoretical modelling of adaptive behaviour in distributed systems. Although 

a generic hypothesis has been presented in the thesis, formal specification to capture 

the concept of adaptivity needs to be further refined. The current hypothesis remains 

the proof of the concept of the initial investigations, but this will have to be further 

validated to include models for policy driven adaptive behaviour. At the same time, 

it will be required to equip the model with the notion of comparison between adaptive 

behaviours. Such a feature will aid the classification and comparison of adaptive systems. 

As pointed out in previous sections, the temporal dimension will necessarily be part of 

any such model. At some point during the investigations, possible directions in the field 

of time series representation or in semi Markov decision processes were considered, as 

possible means to capture the temporal aspect in large scale distributed systems. This 

seems to be an approach that requires further investigation. 

Second, by considering the development of a distributed DS~1S, as mentioned in the 

chapter 2 of this thesis, the emergence of sensor networks and content based ronting 

systems has highlighted the need for DSMS combined with semantic overlay. Gryphon 

(Strom et al. 1998) and Il\FO-Dissemination (Dialani, Gawlick, Madsen, Malaika, and 

Mishra 2005) represent the emerging class of systems that perform in network processing 

on structured and semi structured data. It will be interesting to see how the various 

algorithms developed for this thesis can be combined to provide a distributed DS~1S 

system capable of processing the data streams flowing between various nodes in the 

overlay network. It is presumed that the semantic overlay technique developed in part 

III of the thesis can be used to provide schema location and matching services. \Vhile the 

query planning techniques described in part IV will be employed for distributed query 

processing, the scheduling model can be employed to prioritize operator scheduling in 

cases where multiple computing resources are available. 



Appendix A 

Appendix: Continuous Query 

Semantics 

Consider a query Q such that the join criterion is defined as Q = TI txl T2 txl T3 txl ... txl 

Tkl representing a pipeline join between a set of tuples T = { TIl T 2, T3, ... ,Tk }. 

Let QP represent all possible query plans for evaluation of the join operation, such that: 

IQPI = (2 * k - 2)!j(k - 2)! (A.l) 

Only an exhaustive search based optimisation technique "Vvill iterate through the entire 

set of possible query plans; most other optimisation mechanisms will reduce the search 

space to minimize the optimisation costs. An optimal plan, namely: 

minimizes costs for given characteristics of T. However, any change in the characteristics 

of T may result in Qe being a non-optimal solution. Selection of an alternative optimal 

plan necessities a new search through the space. 

The following is a list of probable reasons that may result in a given optimal query plan 

being rendered non-optimal: 

1. Each stream in a query plan represents a list of rows in its active window. The 

addition of new rows, passage of time and other external events are likely to result 

in change in the number of rmvs involved in a join operation. A change in the 

number of rows participating in a join operation is reflected in the access plan cost 

and operator costs. 

2. The correlation between the join parameters may change with respect to time, 

rendering previous selectivity estimates to be inaccurate. 

153 



Appendix A Appendix: Continllolls Query Semantics 154 

3. A change in the arrival rate of the tuples at individual streams increases the 

indexing and maintenance costs of the individual tuples. 

Two possible alternatives for re-optimising the query plan include either optimising a 

sub-plan from the original query plan or recreating the optimisation search space and 

recalculating the solution. Chapter 8 proposed an approach for recalculating the new 

optimal query plan from an existing query plan. 

It is assumed that continuous queries are used to implement the DSMS and incremental 

changes to the resultant result set are calculated on the basis of the following equation: 

Here, 5Q represents the incremental tuples generated in response to the addition of 

tuples 5T1 , to the stream T1 . The query semantics assume that the state maintained by 

window operations on each of the streams is adequate to produce a semantically correct 

answer, and that the window moments are synchronized across the streams. 

Ideally, an output tuple should be generated when a tuple is appended to either of 

the streams. SQL99 describes similar semantics for windul','ing functions. However, 

the same semantics has not found acceptance in DSMS system.s. Overload conditions 

and unordered tuple arrivals in DSMS systems led to the adoption of additional query 

semantics. 

Tuple Dropping Strategy Under overload conditions, the DSl'viS may not be able to 

process the high volume of incoming tuples with acceptable delays. Such systems 

adopt a tuple dropping strategy and hence the results during overload conditions 

may not be semantically consistent. 

Compensating Tuples Out of order arrival of tuples may lead to generation of an 

inconsistent result set. As the result set cannot be corrected through re-evaluation, 

some DS]\IS provide compensating tuples to rectify the resultant result set. 

The above described semantics affect the ways in which the results are generated and 

the optimisation strategies adopted by the stream management systems. The query 

semantics were smmnarized to highlight the differences in DSl\1S implementations. 
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Appendix: Survey of Large Scale 

Distributed Systems 

This appendix presents a survey of the emerging class of large scale distributed systems. 

It outlines the common trends observed in applications of these large scale distributed 

computing infrastructures and explores the adaptive behaviour exhibited in them. 

B.1 Examples of Large Scale Systems 

The hypothesis is that the current trend in large scale computing systems is being 

driven by two complementary advances, firstly, the notion of providing computing as 

a utility, and secondly the notion of the pervasive nature of such an infrastructure. 

The notion of providing computational and data services in the form of utilities has 

been partly inspired by the success of the World Wide Web (WWW). WWW has 

provided the impetus for exploring the sharing of various types of computational and 

data resources across institutional boundaries (Foster and Kesselmann 1999; Foster, 

Kesselman, Nick, and Tuecke 2002; Tsvetovat and Sycara 2000). It is a commonly held 

belief that the advances in the field of web technologies, which have allowed asynchronous 

content delivery, can be extended to provide integrated access to data resources and 

computational resources across institutional boundaries. At the same time, advances in 

hardware (specifically sensor technologies) have provided the im.petus to the pervasive 

aspect of the computing infrastructure. A number of research ideas are being pursued to 

create infrastructure where data and computational resources are seamlessly integrated 

to form a pervasive computational infi-astructure. The set of systems described in this 

survey were selected for their support of pervasive environm.ents and is applicable to 

a large set of applications. The following subsections review a subset of the relevant 

technological/research approaches followed in developing large scale systems. The review 
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is not exhaustive and is primarily focused on highlighting the commonalities, rather than 

differences between the surveyed approaches. 

B.1.l Services Oriented Architecture 

Services Oriented Architecture (Graham, Davis, Simeonov, Boubez, ~eyama; and ~akamura 

2001) has been proposed as an important paradigm to support the development of 

distributed applications in a heterogeneous computing environment. Most service oriented 

architectures use a platform neutral messaging specification to describe the basic communication 

protocols. For example, the use of SOAP, XML are used to describe the messages for 

web services communication. Service Oriented Architecture allow system components 

to be accessed through a set of methods, with the aide of message types defined for the 

system components. Service advertisements contain the descriptions of the messages 

and the various port types. These advertisements are published in discovery selTices 

such as UDDI, which can aid the discoyery of seryices across the system. At times, 

the service advertisement is augmented with semantic information associated ""ith the 

service definitions to allow complex patterns in the discovery process, work (Miles, 

Papay, Dialani, Luck, Decker, Payne, and ;\1oreau 2003a; Miles, Papay, Dialani, Luck, 

Decker, Payne, and Moreau 2003b), which the author of this thesis has been involved 

in present one such extension to UDDI and enables metadata assisted service discoyery. 

A number of services may be composed with the aide of workflow technologies. The 

workflow may use fault-tolerant web service implementations (Dialani, Miles, Moreau, 

De Roure, and Luck 2002), or may use dynamic rebinding to compose reliable services. 

Service Oriented Architecture (SOA) based software implenlentations such as .J'\ET, 

J2EE, OGSA(Foster, Kesselman, ~ick, and Tuecke 2002) provide software platforms for 

developing web service implementations and are designed to operate in a heterogeneous 

resource environment, while maintaining compatibility at the messaging level. Dynamic 

compositional capability coupled with the ability to operate in heterogeneous environments 

have enabled the use of v.,'eb Services to develop applications that support dynamic 

integration of data and computational resources. 

SOA enables adaptive behaviour by allowing applications to dynamically rebind to 

services that support identical interfaces, where identical services are identified according 

to their syntax and semantic properties. To support this adaptive behaviour, the 

applications need to be able to share the service advertisements in a scalable fashion. 

These advertisements may be shared between the applications using a centralized service 

such as UDDI or can be cached using an adaptive overlay network. An adaptive overlay 

is particularly useful in cases where centralized registries could not be supported, for 

example, mobile services environments. 
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B.1.2 Grid computing 

The Grid computing paradigm has evolved around the notion of the virtual organisation. 

Virtual organisations are described as dynamically created associations between users 

and resources across various administrative domains and institutional boundaries. A 

number of alternative approaches have been suggested for the management of such 

virtual organisations. Examples include economics-based resource allocation (Abramson, 

Buyya, and Giddy 2002), structural organisation (Litzkow, Livny, and M.\V.Mukta 

1990; Foster and Kesselmann 1999), unstructured organisation of resources (SETI ) and 

Services based systems (Foster, Kesselman, :;,\ick, and 1\lecke 2002). The theoretical 

aspects of the virtual organisations have been discussed in (Dang and Jennings 2004: 

Korman, Preece, Chalmers, Jennings, Luck, Dang, Nguyen, Deora, Shao, Gray, and 

Fiddian 2003). An important aspect of Grid computing is its dual focus on the co-allocation 

of data and computational resources, in an dynamic computational environment composed 

of unreliable resources. 

Grids have been used for a wide variety of applications, which include but are not 

limited to data integration (Atkinson, Chervenak, Kunst, :;'\arang, Paton, Pearson, 

Shoshani, and \Vatson 2004), high throughput computing (Frey, Tannenbaum, Livny, 

Foster, and Tuecke 2001), biomedical applications (Goble, Pettifer, and Stevens 2004) 

and sensor networks (Hill, Szewczyk Woo, Hollar, Culler, and Pister 2000). Though 

the Grid applications vary in their software architectures, they exhibit some common 

characteristics, \\'hich are: first, resource discovery, second, by dynamic/run-time composition 

of software services, and thirdly, orchestration of distributed data and computational 

resources. These applications provide virtual organisations either for direct access to 

data and computational resources or through application service encapsulating these 

resources. 

A classification of various types of Grid Systems has been suggested by Fox (Fran 

Berman (Editor) 2003), prominent amongst which are Compute Centric Grids and Data 

Centric Grid Systems, which are described here in some detail: 

B.1.2.1 Compute Centric Grids 

Grid infrastructures, primarily utilizing computational cycles across the virtual organisations, 

are referred to as computational Grids. SETI@HOME, GLOBUS and CONDOR-G are 

examples. Most computational Grids provide job submission, monitoring and scheduling 

facilities as a means of access to the remote computational resources. A computational 

Grid may be formed by the resources owned by the resource provider (e.g. PBS combined 

with GLOBUS installation) or alternatively it may be formed by the free interaction 

between resource providers and consumers, for example SETI@HOME. There are many 

interesting open research issues in both types of computational Grids. While in the 



Appendix B Appendix: Survey of Large Scale Distributed Systems 158 

former types the issues pertaining to secured access and co-allocation have dominated the 

agenda, the latter have focused on creating computational economies and the mechanisms 

to design a self-sustaining computational infrastructure. 

Traditionally, job submission on a distributed set of resources does not provide strict 

guarantees on the performance of the jobs being handled by the service. For example, 

both COl'\DOR and SETI have relied on providing the best effort scheduling capabilities. 

However. as is evident from recent studies (l'\abrzyski, ::\1., and Jan 2004), it is possible 

to statistically guarantee adherence to a multitude of objective functions for scheduling 

on a set of distributed resources. 

B.1.2.2 Data Centric Grids (DCG) 

Data Centric Grids provide the infrastructure for accessing, disseminating, archiving 

and provenance tracking over a set of distributed data resources. Most DCGs provide 

the means to discover, summarize data (metadata) and create access and transport 

mechanisms between data resources. An application may access multiple data resources 

may interact independently with each of the data resources. Alternately, an application 

may orchestrate the services provided by each of the data resources and in turn allow 

workflow optimisers to achieve data flow optimisation between data resources. Publish/subscribe 

based data resource management represents a data Grid system type which is relevant 

to the scope of this thesis. As a part of dataflow optimisation, resources in a data 

centric Grid may form a self-managing overlay network to reduce the data transport 

and management costs. The formation of such an overlay cannot be conceived by the 

designer of anyone data resource provider and overlay ''''ill evolve from the complex 

interaction between data resources. 

B.1.3 Peer-to-Peer computing (P2P) 

P2P computing provides a novel distributed computing architecture and is characterized 

by its decentralisation of control. Each of the participating resources in the network is 

referred to as peer. In an ideal P2P system, each of the participating peers are considered 

to be uniform. Early P2P computing systems, like FreeNet (Clarke, Sandberg, Wiley, 

and Hong 2001) and Gnutella (GNUTELLA ) were centralized repositories that aided 

discovery of resources between peers using a flooding protocoL Subsequently, a number 

of structured P2P overlay creation techniques were proposed, for example, Distributed 

Hash Techniques (DHT), to provide bounded average discovery paths, and resilient 

system performance in face of failure/recovery of peers. The various P2P approaches 

can be divided into three primary categories: firstly, structured P2P systems like CAN 

(Ratnasamy, Francis, Handley, Karp, and Schenker 2001), Tapestry (Zhao, Kubiatowicz, 

and Joseph 2001) and Chord (Stoica, :Morris, Liben-Nowell, Karger, Kaashoek, Dabek, 
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and Balakrishnan 2003): secondly, unstructured P2P systems like FreeNet (Clarke, 

Sandberg, Wiley, and Hong 2001), and Gnutella (G~UTELLA ) and thirdly, semi 

structured P2P systems like JXTA (Qu and Nejdl 2001). 

Most P2P system use messaging based communication protocols to allovv operation on 

a set of heterogeneous resources. State-of-the-art P2P systemB use dynamic resource 

discovery and binding to allmv creation of peer-groups which are very similar to the 

concept of the virtual organisation illustrated in Grid computing environments. Software 

architecture for developing P2P computing systems has been the primary research focus 

of most P2P cornputing systems. Additionally, research has also focused on how to 

develop P2P systems that guarantee that resource providers and consumers have equal 

benefits from their mutual association and the means to develop trust between them. 

B.1.4 Ad hoc network systems 

Advances in mobile communications have enabled the creation of ad hoc networks, 

characterised by their ability to adapt to availability of resources. In ad hoc networks, 

wireless and/or mobile resources (also known as mobile nodes) are able to communicate 

with each other in the absence of a fixed communication infrastructure, in the absence of 

any centralized control. Multi-hop communication is achieved as nodes route packets on 

behalf of other nodes. The dynamic creation of a mobile communication infrastructure 

introduces many challenges in the areas of network management and data communication. 

Problems encountered in the network layer of ad hoc networks include topology control, 

data communication, and service access. Topology control problems include discovering 

neighbours, identifying position, determining transmission radius, establishing links 

to neighbors, scheduling node sleep and active periods, clustering, constructing the 

dominating set (each node either belongs to or has a neighbor from the dominating 

set), and maintaining the selected structure. Service access problems include Internet 

access, cellular network access, data or service replication upon detection or expectation 

of network partition, and unique IP addressing in merge or split-network scenarios. 

Data communication problems include: 

1. routing- sending a message from a source to a destination node, 

2. broadcasting- flooding a message from a source to all other nodes in the network, 

3. multicasting- sending a message from a source to a set of desirable destinations, 

4. geocasting- sending a message from a source to all nodes inside a geographic region, 

and 

5. location updating- maintaining reasonably accurate information about the location 

of other nodes. 
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For a state-of-the-art description of ad hoc systems and related issues, readers are advised 

to refer to the book by Perkins (Perkins 2001), who provides a detailed description of 

ad hoc routing protocols. 

Analogies can be drawn between ad hoc networks and P2P networks, as both network 

types operate without any central co-ordinating authority, and in both cases, the nodes 

(peers) autonomously choose appropriate information and cOl11.munication systems to 

interact with their sub-ordinate nodes (peers). The prime distinguishing features between 

P2P and ad hoc networks are: that ad hoc networks are limited to wireless communication 

networks, and, while P2P systems can impose a fixed topological structure such restrictions 

cannot be imposed on the mobility of nodes in an ad hoc network. These distinguishing 

characteristics impact the design methodologies and the resource management objectives 

in the two system types. \Vhile P2P systems are evaluated on the basis of their 

communication costs, the cost metrics for ad hoc networks also includes computational 

and energy costs. 

B.1.4.1 Sensor networks 

Sensor networks (Hill, Szewczyk, \Voo, Hollar, Culler, and Pister 2000) are an emerging 

application area in ad hoc networks. Most sensor networks are designed to operate 

autonomously without any centralized control. \\Thile some sensor networks systems are 

designed to operate under a static environment, with complete knowledge of associated 

sensors and patterns of communication, most systems tend to require dynamic reconfiguration 

of network topology for efficient communication and data dissemination across sensor 

networks, in the situation of failing and intermittently available nodes. For a detailed 

description on sensor networks, refer to (Ilyas and Mahgoub ). 

B.1.5 Agent-based computing economies 

Large scale distributed systems have been modelled as interactions between independent 

autonomous components capable of operating in dynamically-changing operating environments. 

Agent based systems can be modelled in various ways; most such models describes agent 

systems as consisting of three main constituent components: 

l. Agents represent encapsulated computer systems and are capable of flexible and 

autonomous actions in their operating environments in order to meet design objectives. 

2. Interactions: Agents will invariably use appropriate communication channels to 

interact with other agents and manage their inter-dependencies. These interactions 

may lead to co-operative, competitive or co-ordination based problem solvers. 
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3. Organisations: Agent interactions take place in some form of organisational context 

(e.g. a marketplace, an electronic institution). 

Agent-based Computational Economies (ACE) represent an organisational model for 

agent-based systems and derive from artificial intelligence and economic theory. State-of-the-art 

techniques and the description of research issues in the field of ACEs can be found in 

(Tesfatsion 2002). In ACEs, agents represent the buyers and sellers of resources traded 

in electronic market places. Agents learn about the beha\'iour of other agents and 

the general behaviour of the market place and initiate appropriate actions in order to 

maximize objective functions. Agent economies have been shown to be self-organizing 

and self sustaining under varying market conditions. 

The application of market based resource management for developing large scale distributed 

systems has been explored by (Abramson, Buyya, and Giddy 2002), and (?). ACEs 

present an approach towards developing self-managing computational infi'astructure 

because of their ability to adapt to time varying operating conditions. 

B.1.6 Discussion 

A number of different paradigms for developing large scale computing systems were 

described in the preceding sections and provide specialized solutions for their target 

application domains. Increasingly, applications derive fi'OlTl the properties of one or 

more paradigms to create complex computing systems. The adoption of Services based 

architecture by Grid computing and P2P computing, Agent-based computational Economies 

for Grid computing, the merger of P2P techniques and ad hoc networks represents 

the trend for an evolving complex computational infrastructure, It may be argued 

that, over a period of time, these paradigms will merge to form a pervasive, adaptive 

computing infrastructure that will augment current ';YT,V'V capabilities, to provide 

seamless integration of data and computational resources. 

Instead of adopting a technology or the paradigm aligned approach an approach that 

investigates the common requirements across the above mentioned system types is 

advocated. As described above, almost all the above mentioned system types consist of 

resource providers that collaborate to share computational resources. The overwhelming 

requirement of scheduling computational resources in an online fashion needs further 

investigation. Additionally, as in most systems a resource is required to collaborate 

with a set of resources within the network, the choice of the subset and its relation 

to the objective functions needs further investigation. Additionally, when considering 

sensor networks and ad hoc networks the interplay with the network topology assumes 

prominence. In addition to the above two problem types, one other significant trend is 

the use of a single resource to provide support for multiple service requests. Usually, 

multiple service requests are supported on a limited resource. Concurrency of tasks 
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introduces potential resource sharing. Adaptive system resource management with 

QoS warranties needs to be investigated. In addition, the above three trends in a 

fore-mentioned systems need to be investigated for the case of applications that have 

the common characteristics stated below. 

B.2 Common characteristics 

Common characteristics across systems: 

1. Decentralisation of control. 

2. Partial and varying visibility of system state. 

3. Different operating conditions than those perceived at design time. 

4. Online nature of the environment. 

5. Continual re-optimisation. 

B.3 Summary 

Evolving systems have further refined the definition of resource management. While 

traditional resource management deals with allocation, utilisation and management of 

resources, recent advances have introduced the concept of self organisation and overlay. 
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Query Language for Streams 

An expressive query specification language enables a database management system to 

determine the common subexpressions between multiple query definitions. Such sub 

expressions are commonly used to identify possible resource sharing between multiple 

queries. Multi-query optimisation based on sub-expressions is common in relational 

databases (Date 1995). A similar sub-expression based resource sharing can also be 

applied to queries in stream data management systems. However, to date the language 

extensions to SQL - for example, CQL (Arasu, Babu, and VJidom 2003) and ATLaS 

(\\Tang and Zaniolo 2003) - used to specify the queries in a stream management system 

do not incorporate the notion of similarity. Although CQL incorporates the notion of 

equality between queries it remains short of supporting similarity (see section C.l.l for 

details). This appendix, introduces an extension to the SQL, known as PSQL, which 

incorporates the notion of similarity for definition in a stream management system. 

The remainder of this appendix is organized as follows: The next section describes 

the language constructs. Subsequently, it describes object-relational mapping between 

the various constructs of the language and provides a representation of the same. It 

concludes with a list of examples that describe the capability of the language extensions. 

C.l Stream query language (PSQL) 

The PSQL language extends SQL constructs and consists of an additional data type 

( "stream"). The stream data type is defined using a relational schema and consists of 

an ordered set of tuples. Each tuple has an associated timestamp, which determines its 

temporal validity. Theoretically, a stream represents an infinite set of tuples, however 

the scope of the tuples is determined by the vvindow. 
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Definition: Every stream'S' has a schema Rs and contains an ordered set of tuples Os 

adhering to the relational schema Rs. The stream'S' follows 'append only' semantics. 

Each tuple in the stream is associated with a timestamp, ,vhich represents the time the 

tuple \vas appended to the stream. A stream represents a temporal stream if the set of 

tuples (Os) is ordered in accordance to its associated time stamp. 

Definition: A query Q is defined in terms of relational operators on a set of streams. 

A query has access to unbounded but finite items of the stream. The bounds on number 

of data items accessed by a query Q are described by means of a window operation on 

individual streams. 

A stream data management system may maintain the entire historical record of all the 

data items ever encountered by the stream. However, limited main memory and the 

higher latency costs of accessing secondary memory requires prioritized access to the 

limited memory resources. Sliding window specifications on streams provide preliminary 

estimates on the amount of memory required by each of the query definitions. Cumulative 

memory requirements need to be ascertained from a set of active continuous queries. The 

query language needs to be descriptive to provide necessary information to determine 

the number of data tuples that should be maintained in DSMS main memory for each 

of the streams. Such cumulative memory requirements can be determined if the window 

specifications support similarity and subsuming operators. It should be noted that most 

present implementations of DSMS do not consider tuple sharing between multiple queries 

and have therefore not built the language constructs to represent the subsuming of the 

stream windows. 

Data management systems may choose to maintain additional tuples either in the main 

memory or in secondary storage or a combination of the two. Alternatively, it may 

maintain synopsis on the historical data tuples that are out of the scope of the union of 

window specifications. However, for the scope of the experiments discussed in this thesis 

considered that DSMS maintains the streams exclusively in the main memory. However, 

the PSQL allows storage attributes at the time of the creation of the stream. 

PSQL supports relational operators over streaming data and relation data. It supports 

traditional data storage types like tables and views, while the streaming data is stored 

in the stream data container. A typical query expression nlay associate the query 

operations between the streaming data and data held in traditional data containers 

like tables and views. PSQL does not distinguish between various data containers 

while specifying the relational operators. The only notable difference is that the query 

referencing the stream container specifies the scope of the query by means of the windowing 

operations. The query language does not impose any restrictions on the type of operations 

performed by the operators, but necessitates that the operators that allow streams as 

input produce a stream as an output. That is to say that if either of the inputs to the 

operator is a stream, the output of the operator is considered to be a stream. However, 
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the operators that exclusively operate on a static data container produce static outputs 

and are considered to be static datasets. The classification was carried out with the aim 

of allowing independent optimisation of the static and dynamic parts of the query. In 

some specific cases, the query scrambling techniques may result in two distinct parts of 

the query tree, where the root node evaluates the static and stream relations. 

As the PSQL distinguishes between the streams and static relations on the basis of the 

windowing operations, the query executable plans are produced in order to: 

1. Use the relational semantics to specify the operations between the data streams 

and data tables. 

2. Produce plans that reduce computational costs by evaluating static relations for 

minimal number of times and cache the static result set for operation against with 

the streaming data. 

3. Produce query plans that can be represented as a series of operator executions. 

4. Reduce the computational costs from updates to static relational data tables. 

5. Allow the use of standard join operations and multiple join operations. 

6. Identify tuple-level resource sharing and permit sharing of intermediate results 

between multiple queries where possible. The resource sharing may require modifications 

to query scheduling and the language should allow identification of such correlation 

between query specifications. 

The above stream execution strategy allows us to specify the continuous queries. A 

continuously executing query is valid for some temporal interval during which the streams 

are monitored and the query results evaluated, and therefore associating the temporal 

constraints with each of the query specifications. The temporal constraints are normally 

specified in terms of the wall clock time, but could also be signalled by means of 

events. The temporal constraints on the query execution remain optional. DS~1S like 

StreamDB(Arasu, Babcock, Babu, Datal', Ito, Motwani, l\ishizawa, Srivastava, Thomas, 

Varma, and "\iVidom 2003) and TelegraphCQ (Chandrasekaran, Cooper, Deshpande, 

Franklin, Hellerstein, Hong, Krislmamurthy, Madden, Raman, Reiss, and Shah 2003) 

assume the queries to be valid from the time of submission to time of deletion. 

There is a number of performance criteria for optimizing the query performance in 

a DSMS. For example, certain queries may require strict warranties on timeliness of 

query response and permit partial evaluation of the query. Alternatively some queries 

may require complete evaluation at the cost of permissible delays. "\iVhile the DSMS 

maintains ultimate control in determining the exact order of quel)' evaluations, PSQL 

allows queries to specify the performance optimisations. 
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C.l.1 Similarity features of PSQL 

A sequence of data items representing the stream can be cOITlpared on the basis of the 

schema and their temporal characteristics, while those in the static tables need only be 

equated on the basis of their schema. To enable tuple level sharing between queries in 

stream management systems, the system needs to identify the overlaps between the data 

sets used by each query. Consider that each shared data item is represented by a stream 

5s , and is shared between the number of queries. 5 s has a schema Rs and sequence of 

Os. The shared data items can be used by queries that have a schema 5 i = TI 55 and the 

window moments generate a stream such that each item in the stream Oy E Os and in the 

same causal ordering. For example, considering the two window specification Vvindow-1 

[5TOCKWINDOH1ROW(100)ONDATAARRIVAL], and \i\Tindow-2 [5TOCKWINDOWROW(5( 

on stream "STOCK". In this case, if the schema of \Vindovv'-l and \Vindow-2 are equal, 

the window specifications allow tuple sharing between the streams. In the above example 

\Vindow-2 can be subsumed by the \Vindow-l. 

PSQL allows identification of such similarity expressions as it takes into account both the 

data schema and window moment semantics. Additionally, the optional temporal clause 

coupled with scheduling hints, such as periodic, allow for synchronizing the window 

moments across the queries. 

C.2 Comparison with other languages 

One of the main distinguishing features of the PSQL is that it does not distinguish 

between the streaming and the non-streaming datasets. It considers each of the datasets 

and the intermediate results as a snapshot of the state at a particular time. A state 

that remains unaltered over an interval becomes a potential candidate for retention in 

the limited cache space. The language allows the data management system to uniquely 

identify and specify such states and the temporal ordering in which they are evaluated. 

C.2.1 CQL 

Continuous Query Language (CQL) (Arasu, Babu, and Widom 2003) was developed for 

StreamDB a stream data management system based on two classes of operators, the 

stream operators and the relation operators. In CQL terminology - a stream represents 

an unbounded bag of tuples with 'append only' semantics, while a relation is defined 

as time varying bag of updatable tuples. CQL primarily converts the stream into 

relations to take advantage of the standard relational operators, and finally converts 

the relation into the stream for continuous query semantics. The current specification 

of the CQL relies on time based sliding windows, whereas PSQL provides a wider range 
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of sliding window semantics. CQL has ability to detect equivalence between the sliding 

v,indows can be exploited to detect common components between multiple queries and 

is not designed to consider tuple sharing between multiple queries. The CQL model to 

create the relation from streams prohibits it from detecting tuple level sharing between 

multiple queries. PSQL on the other hand does not distinguish between data containers, 

but instead depends on the datasets. This extended capability of PSQL allmvs it to 

incorporate the semantics of both SQL and CQL. In addition, PSQL contains explicit 

scheduling hints that determine the liveliness of the query, a feature that is not catered 

for in CQL. 

C.2.2 ATLaS 

ATLaS (Wang and Zaniolo 2003) adds to SQL the ability to define new User Defined 

Aggregates (UDA) and table functions for data mining applications, which accept stream 

inputs and produce output in the form of data streams. ATLaS provides semantics for 

expressing UDAs with both traditional blocking aggregates and non-blocking aggregates 

- such as online aggregates and the continuous aggregates used for time series - in 

a syntactic framework that makes it easy to identify non-blocking aggregates. ATLaS 

defines SQL extensions, and describes three distinct blocks, nam.ely initialisation, aggregate 

definition and the termination block. The initialisation block is executed immediately 

at query submission, while the iterate block is executed for each of the query evaluation 

and the termination block is executed at the end of the query interval. The ATLaS 

structure imposes strict scheduling constraints on the responsiveness of the query, which 

makes it unsuitable for direct application in DSMS, \vhich usually control the operator 

scheduling characteristics. The iterate block is evaluated for each execution step and 

needs to be appropriately described to restrict its evaluation to newly arrived data items 

in the stream. Also, the presence of the initialisation and termination blocks provides 

possibilities of maintaining state information while executing the query. Maintaining 

state information on an individual query basis is bound to either restrict the capability 

of the query engine or increase the complexity of sub-expression matching in a query 

optimizer. 

C.2.3 Tapestry 

Tapestry queries (Terry, Goldberg, Nichols, and Oki 1992) are expressed using SQL 

syntax. At time t, the result of a Tapestry query Q contains the set of tuples logically 

obtained by executing Q as a relational SQL query at every instant t
f 

< t and taking 

the set union of the results. The semantics for Q is equivalent to the CQL query 

operations on relations. Tapestry does not support sliding windows over streams or any 

relation-to-stream operators. 
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CQL remains the most closely related language to PSQL, which was inspired by the 

former. PSQL extends the capability of CQL to allow the possibilities of incorporation 

of tuple sharing between the query plans. It departs from CQL's notion of streams 

and relations and is based on the notion of temporal datasets instead. However, PSQL 

adopts the basic window specification semantics of CQL and extends it to associate the 

scheduling criteria with the window specifications. It also supports additional vvindow 

definitions like landmark and snapshot \\Oindows. 

C.3 Language - yacc representation 

The following is the listing of the yacc implementation of PSQL. The yacc representation 

is provided as an alternative to BKF form of the language representation, the keywords 

appearing in CAPITALS represent tokens. 

start 

psqlcommand ,. , , {parse_tree $1; YYACCEPT;} 

psqlcommand 

ddl 

ddl 

{$$ ddl($l) ;} 

dml 

{$$ dml($l);} 

create stream 

{$$ = $1;} 

dropstream 

{$$ = $1;} 

modifystream 

{$$ = $1;} 

createstream 

KW_CREATE KW_STREAM DV_STRING '(' type_attribute_list ')' 

{$$ = create($3, $5, a);} 

KW_CREATE KW_STREAM ,(' storage_type ,)' DV_STRING '(, type_attribute_list 

{$$ = createspecificstorage($6, $4, $8, a);} 

KW_CREATE KW_TABLE DV_STRING '(, type_attribute_list ')' 
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{$$ = createC$3, $5, 1);} 

KW_CREATE KW_TABLE 'C' storage_type ,)' DV_STRING 'C' type_attribute_list ' 

{$$ = createspecificstorageC$6, $4, $8, 1);} 

drop stream 

KW DROP KW STREAM DV STRING 

{$$ = dropC$3);} 

KW_DROP KW_TABLE DV_STRING 

{$$ = dropC$3);} 

modifystream 

KW MODIFY KW_STREAM DV_STRING KW_ADD 'C'type_attribute_list'), 

{$$ = modifyC$3,$6, true);} 

KW_MODIFY KW_STREAM DV_STRING KW_DELETE 'C' type_attribute_list'), 

{$$ = modifyC$3,$6, false);} 

KW_MODIFY KW_TABLE DV_STRING KW_ADD 'C'type_attribute_list'), 

{$$ = modifyC$3,$6, true);} 

KW_MODIFY KW_TABLE DV_STRING KW_DELETE 'C' type_attribute_list'), 

{$$ = modifyC$3,$6, false);} 

storage_type 

ST_PRIMARY 

{$$ = ST_PRIMARY;} 

ST_HYBRID 

{$$ = ST_HYBRID;} 

ST_SECONDARY 

{$$ = ST_SECONDARY;} 

type_attribute_list 

attribute_spec ',' type_attribute_list 

{$$ = schemaC$l, $3);} 

attribute_spec 

{$$ = $1;} 

attribute_spec 

DV_STRING D INTEGER 

{$$ = defineIntC$l);} 
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dml 

query 

DV_STRING D_FLOAT 

{$$ = defineFloat($l);} 

DV_STRING D_CHAR ,[, DV_INT 'J' 
{$$ = defineString($l, $4);} 

DV_STRING D_BYTE ,[, DV_INT 'J' 

{$$ = defineByte($l, $4);} 

DV_STRING D_TIME 

{$$ = defineTime($l);} 

query 

{$$ query($l);} 

selectfromwhere 

{$$ = $1;} 

selectfromwhere 
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selectclause fromclause optionalwhereclause optionalgroupbyclause op"tionalo 

{$$ = selectnode($l, $2, $3, $4, $5, $6, $7);} 

selectclause 

KW_SELECT KW_DISTINCT nonmd_projterms_list 

{$$ = selectclause (true , $3);} 

KW_SELECT nonmd_projterms_list 

{$$ = selectclause(false, $2);} 

KW_SELECT KW_DISTINCT '*' 

{$$ = selectclause (true , G);} 

KW_SELECT '*' 

{$$ = selectclause(false, a);} 

fromclause 

KW_FROM nonmd_relation_list 

{$$ = $2;} 
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optional where clause 

KW_WHERE nonmd_condition_list 

{$$ = $2;} 

nothing 

optionalgroupbyclause 

KW_GROUP KW_BY nonmd_attribute_list 

{$$ = $3;} 

nothing 

optionalorderbyclause 

KW_ORDER KW_BY nonmd_attribute list 

{$$ = $3;} 

nothing 

validityclause 

KW_FOR timeclause 

{$$ = valid($2);} 

nothing 

windowlist 

'[' windowclause 'J' 
{$$ = $2; } 

nothing 

{$$ = O;} 

windowclause 

windowspecification KW_ON schedulingcriterion 

{$$ = windowlist(window($1,$3),$5);} 

windowspecification KW_ON schedulingcriterion 

{$$ = window($1,$3);} 

windowspecification ',' windowclause 

{$$ = windowlist(window($1,O),$3);} 

windowspecification 

, , , windowclause 
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{$$ = $1;} 

windowspecification 

DV STRING KW WINDOW WT_ROWS '(' DV_INT '), 

{$$ = windowrows($1,$5);} 

DV_STRING KW_WINDOW WT_TIME ,(, DV_STRING ',' DV_STRING ')' 

{$$ = O;} 

DV_STRING KW_WINDOW WT_LANDMARK '(, datetimestamp ,)' 

{$$ = windowlandmark($1, $5);} 

DV_STRING KW_WINDOW WT_SNAPSHOT 

{$$ = windowsnapshot($1);} 

DV_STRING KW_WINDOW WT_NOW 

{$$ = windownow($1);} 

DV_STRING KW_WINDOW WT_UNBOUNDED 

{$$ = windowunbounded($1);} 

schedulingcriterion 

SCDATAARRIVAL 

{$$ = schedule(SC_DATAARRIVAL);} 

SC_SNAPSHOT 

{$$ = schedule(SC_SNAPSHOT);} 

SC_PERIODIC 

{$$ = schedule(SC_PERIODIC);} 

SC_OVERFLOW 

{$$ = schedule(SC_OVERFLOW);} 

timestamp 

DV_INT '::' DV_INT '::' DV_INT 

{$$ = time($1, $3, $5);} 

DV_INT T_HOUR DV_INT T_MIN DV INT T_SECONDS 

{$$ = time($1, $3, $5);} 

datetimestamp 

DV_INT 'I' DV_INT 'I' DV_INT ',' timestamp 

{$$ = datetime($1,$3,$5,$7);} 
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timeclause 

,(, assignment_operation 

assignment_operation 

,. , , condition 

D_TIME DV_STRING C_EQ DV_STRING 

nonmd_projterms_list 

projectionterm ',' nonmd_projterms_list 

{$$ = projectlist($1, $3);} 

projectionterm 

{$$= $1;} 

nothing 

projectionterm 

arithmetic_operation 

{$$ = $1;} 

aggregation_operator 

{$$ = $1;} 

aggregation_operator 

FN_MIN '(' attribute ')' 

{$$ = function(MIN, $3);} 

FN_MAX '(' attribute ,), 

{$$ = function(MAX, $3);} 

FN_COUNT '(' attribute '), 

{$$ = function(COUNT, $3);} 

FN_COUNT '(' '*' '), 

{$$ = function(COUNT, a);} 

FN_SUM '(' attribute ')' 

{$$ = function(SUM, $3);} 

FN_SD '(, attribute ,)' 

{$$ function(SD, $3);} 

FN_MEAN '(' attribute ')' 

{$$ = function (MEAN , $3);} 

,. , , arithmetic_operation '), 



A.ppendix C A.ppendix: P8QL - Extended Query Languagl? for Streams 

arithmetic_operation 

attribute 

{$$= $1;} 

constant 

{$$ = $1;} 

datetimestamp 

{$$ = $1;} 

arithmetic_operation '+' arithmetic_operation 

{$$ = arithOpCADD, $1, $3);} 

arithmetic_operation '-' arithmetic_operation 

{$$ = arithOpCSUB, $1, $3);} 

arithmetic_operation '*' arithmetic_operation 

{$$ = arithOpCMUL, $1, $3);} 

arithmetic_operation 'j' arithmetic_operation 

{$$ = arithOpCDIV, $1, $3);} 

'C' arithmetic_operation ')' 

{$$ = $2;} 

nonmd_relation_list 

relation ',' nonmd_relation_list 

{$$ = relationlistC$1, $3);} 

relation 

{$$ = $1} 

nonmd_condition_list 

'C' nonmd_condition_list ,)' 

condition KW_AND nonmd_condition_list 

{$$ = conditionlistCAND, $1, $3);} 

condition KW_OR nonmd_condition_list 

{$$ = conditionlistCOR, $1, $3);} 

condition KW_NOT nonmd_condition_list 

{$$ = conditionlistCNOT, $1, $3);} 

condition 

{$$ = $1;} 
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nonmd_attribute_list 

attribute ',' nonmd_attribute_list 

{$$ = attribtolist($1, $3);} 

attribute 

{$$ = attriblist($1);} 

relation 

DV STRING 

{$$ = relationnode($1);} 

DV_STRING KW_AS DV_STRING 

{$$ = relation($1, $3);} 

condition 

arithmetic_operation C LT arithmetic_operation 

{ $$ = condition(CO_LT, $1, $3);} 

arithmetic_operation C_LE arithmetic_operation 

{ $$ = condition(CO_LE, $1, $3);} 

arithmetic_operation C_EQ arithmetic_operation 

{ $$ = condition(CO_EQ, $1, $3);} 

arithmetic_operation C_NE arithmetic_operation 

{ $$ = condition(CO_NE, $1, $3);} 

arithmetic_operation C_GE arithmetic_operation 

{ $$ = condition(CO_GE, $1, $3);} 

arithmetic_operation C_GT arithmetic_operation 

{ $$ = condition(CO_GT, $1, $3);} 

attribute 

DV_STRING '.' DV_STRING 

{$$ = attributenclass($1, $3);} 

DV_STRING 

{$$ = attribute($1);} 

constant 

DV_QSTRING 

{$$ = constantstring($1);} 

DV_INT 
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{$$ = constantint($l);} 

DVJLOAT 

{$$ = constantfloat($l);} 

nothing 

C.4 Query examples 
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PSQL specifies the semantics for creation, modification and deletion of data containers. 

It implements a restricted type system that consists of follmving data types: 

INTEGER Integer data type, the size of 'int' data type in C 

REAL Real data type, the size of 'float' data type in C 

CHAR A single char data type, is also implemented as CHAR[] arrays. 

BYTE An array of bytes. 

TIME A time data type with a fixed format dd/mm/yyyy, HH::MJVI::SS. 

Consider a stream application for data management in a sensor network system used 

for monitoring the stocks in a supermarket. The stock stream is obtained from items 

appended to the stream on addition/withdrawal of an item from the shelf. The type of 

possible items that can be stacked on the shelf are stored in a static table. Additionally, 

the sensor network periodically generates a temperature log. The following set of 

commands defines the procedure to create the streams and static tables. 

CREATE STREAM STOCK (Shelfld INT, Barcode INT, ItemTypeId INT, ItemDesc 

CHAR[255]' expiry DATETIMESTA~i[P); 

CREATE TABLE TYPE (Shelfld INT, ItemTypeld INT, Item.TypeDesc CHAR[255]' 

MaxTemperature INT); 

CREATE STREAM TEMPLOG (Shelfld INT, Temperature INT); 

A very brief list of probable queries are illustrated below: 

Query 1: Monitor temperature within a range, for an unbounded time, translates to : 

Select * from TEMPLOG where Temperature> 5 and Ternperature < -2; 
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Query 2: Strictly monitor the temperature for ice cream shelf for next t,O\'o days, report 

every 30 seconds, is represented as: 

Select * from TEMPLOG where Temperature> 5 and Temperature < -2 FOR( t 

= ::'\O\V; t < NOW + 02/00/0000,00::00::00; t = t + 00/00/0000,00::00::30); 

Query 3: Produce the list of items stocked in a shelf since yesterday, translates to: 

Select * from STOCK where Shelfld = 3 [STOCK window Landmark(NO\V-1)] 

Query 4: l\10nitor Stock for wrongly placed items and report only for last 100 items, 

is formulated as: 

Select S.Shelfld, S.BarCode, S.ItemTypeDesc from STOCK AS S, TYPE AS T 

where S.ItemTypeId = T.ItemTypeId A::,\D S.Shelfld = T.Shelfld [S WINDOW 

ROWS(100) ON DATAARRIVAL]; 

The PSQL query language allows an extensive list of query expressions. The added 

advantage of defining the query delivery specification allows the PSQL to determine the 

intervals at which the result sets need to be created and delivered. 
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