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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

Digital Beamforming Employing Subband Techniques 

by Wei Liu 

In this thesis, we propose some different methods to reduce the computational complexity of a 

broadband beamformer based on the generalised sidelobe canceller (GSC) structure. 

A GSC is an alternative implementation of the linearly constrained minimum variance 

beamformer and relys on well-known adaptive filtering algorithms to perform unconstrained 

adaptive optimisation. Due to the low computational complexity of subband adaptive filtering 

techniques, we embed the subband adaptive algorithms into the adaptive part of the GSC 

and propose a new subband adaptive GSC structure. In addition to its lower computational 

complexity than those previously suggested subband beamforming structures, it achieves a 

faster convergence rate than the traditional fullband adaptive GSC due to its pre-whitening 

effect. 

By studying the input-output relationship of the blocking matrix of a GSC, we also propose a 

specific construction of the blocking matrix, in which the impulse responses hosted by its column 

vectors constitute those of a series of bandpass filters. These filters select signals with specific 

directions of arrival and frequencies and result in bandlimited spectra of its outputs. This 

spatially/temporally subband-selective blocking matrix can be applied to the subband adaptive 

GSC or the transform-domain GSC to reduce their computational complexities due to the 

discarding of some of the subbands or frequency bin outputs prior to the following adaptation. 

Since an overlap and finite transition band between the bandpass filters in the blocking matrix 

have to be permitted, a better design quality can be attained by reducing the output dimension 

of the blocking matrix, which yields a partially adaptive beamformer with further reduction of 

the computational complexity. Because of its combined spatial/temporal decorrelation effect, 

a faster convergence speed is also achieved, as demonstrated in the corresponding simulations. 

Moreover, based on one of the traditional blocking matrices, we propose a spatially/tempora-

lly subband-selective transformation matrix, which can be regarded as another implementation 

of the subband-selective blocking matrix, because it has the same effect as the subband-selective 

blocking matrix, when combined with the traditional blocking matrix. The advantage of this 

method is that it simplifies the design of the subband-selective blocking matrix into a general 

filter design problem and can be implemented efficiently by cosine modulation. 

iii 



Contents 

Abstract iii 

List of Publications viii 

List of Figures ix 

List of Tables xiii 

Acknowledgements xv 

1 Introduction 1 

1.1 Introduction 1 

1.2 Original Contributions 2 

1.3 Thesis Outline 4 

2 Beamforming 5 

2.1 Wave Propagation 5 

2.2 General Beamforming 7 

2.2.1 Beamforming Structures 7 

2.2.2 Beamformer Response and Beampattern 9 

2.3 Linearly Constrained Minimum Variance Beamforming 11 

2.3.1 Formulation of Constraints 13 

2.3.2 Optimum Solution to the LCMV Problem 16 

2.3.3 Frost's Algorithm for LCMV Beamforming 16 

2.4 Generalised Sidelobe Canceller 17 

IV 



2.4.1 GSC Structure 17 

2.4.2 GSC with Tapped-Delay Lines 20 

2.4.3 Blocking Matrix Design 24 

2.5 Adaptive Algorithms for GSC Structure 26 

2.5.1 Least Mean Square Algorithm 27 

2.5.2 Normalized Least Mean Square Algorithm 29 

2.5.3 Recursive Least Squares Algorithm 30 

2.5.4 Comparison of Computational Complexities 31 

2.5.4.1 Real Input Signal 31 

2.5.4.2 Complex Input Signal 32 

2.5.5 Frequency-domain and Subband Adaptive Algorithms 33 

2.6 Summary 33 

3 Subband Adaptive Generalised Sidelobe Canceller 35 

3.1 Fundamentals of Filter Banks 35 

3.1.1 Basic Multirate Operations 36 

3.1.1.1 Decimation and Interpolation 36 

3.1.1.2 Multirate Identities 38 

3.1.1.3 Polyphase Decomposition 38 

3.1.2 Perfect Reconstruction Condition for Filter Banks 40 

3.1.3 Oversampled Modulated Filter Banks 42 

3.2 Subband Adaptive Filtering 44 

3.3 Subband Adaptive Generalised Sidelobe Canceller 49 

3.3.1 Structure 50 

3.3.2 Analysis of the Computational Complexity 51 

Example 52 

3.3.3 Reconstruction of Fullband Beamformer 54 

3.4 Simulations and Results 55 

3.4.1 Proposed Method versus the Method of Fig. 3.12 55 



3.4.2 Proposed Method versus Fullband Method 56 

3.5 Summary 60 

4 GSC Employing a Subband-selective Blocking Matrix 63 

4.1 Partially Adaptive GSC 63 

4.2 Spatially/Temporally Subband-selective Blocking 

Matrix 65 

4.2.1 Blocking Matrix with Spatial/Temporal Subband-selectivity 65 

Example 67 

4.2.2 Full Design of the Blocking Matrix 69 

4.2.3 Design Based on Prototype Modulation 73 

4.3 Spatially / Temp orally Subband-selective Transformation Matrix 75 

4.3.1 Transformation Matrix with Spatial/Temporal Subband-selectivity . . . . 75 

4.3.2 Design of the Transformation Matrix 77 

4.4 Application to Subband Adaptive GSC 78 

4.4.1 Structure 79 

4.4.2 Computational Complexity 80 

4.4.3 Simulations and Results 81 

4.4.3.1 Simulation I (full design of B) 81 

4.4.3.2 Simulation II (Cosine-modulated design of B) 86 

4.4.3.3 Simulation III (By Transformation Matrix T) 86 

4.4.3.4 Discussions 88 

4.5 Application to Transform-domain GSC 89 

4.5.1 Transform-domain GSC 90 

4.5.2 Subband-selective TGSC 95 

4.5.3 Simulations and Results 96 

4.6 Summary 99 

5 Conclusions and Future Work 100 

5.1 Conclusions 100 

VI 



5.2 Future Work 102 

Appendix 104 

Glossary 111 

Bibliography 118 

vu 



List of Publ icat ions 

1. W. Liu, S. Weiss and L. Hanzo, "A Subband-selective Broadband GSC with Cosine-

modulated Blocking Matrix", IEEE Trans. Antennas and Propagation, to appear in 

April, 2003. 

2. W. Liu, S. Weiss and L. Hanzo, "A Novel Method for Partially Adaptive Broadband 

Beamforming", Journal of VLSI Signal Processing, vol. 33, issue 3, March, 2003, pp.337-

344. 

3. Wei Liu, S. Weiss, and L. Hanzo, "A subband-selective Transform-domain GSC with low-

computational complexity", Proceedings of the 2003 Postgraduate Research Conference in 

Electronics, Photonics, Communications and Software (PREP), Exeter University, April 

14-16, 2003, pp.31-32. 

4. S. Weiss, R.W. Stewart and W. Liu, "A Broadband Adaptive Beamformer in Subbands 

with Scaled Aperture", Proceedings of the 36th Asilomar Conference on Signals, Systems, 

and Computers, Pacific Grove, CA, USA, November 2002, pp.1298-1302. 

5. W. Liu, S. Weiss and L. Hanzo, "Low-complexity Frequency-domain GSC for Broadband 

Beamforming", Proceedings of the 2002 International Conference on Signal Processing 

(ICSP), Beijing, China, August, 2002, pp.386-389. 

6. W. Liu, S. Weiss and L. Hanzo, "Partially Adaptive Broadband Beamforming with a 

Subband-selective Tranformation Matrix", Proceedings of the 2002 IEEE Workshop on 

Sensor Array and Multichannel Signal Processing (SAM), Virginia, USA, August, 2002, 

pp.43-47. 

7. W. Liu, S. Weiss, and L. Hanzo, "Subband-selective Partially Adaptive Broadband Beam-

forming with Cosine-modulated Blocking Matrix", Proceedings of the 2002 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), Orlando, 

Florida, USA, Vol. 3, May, 2002, pp.2913-1916. 

8. W. Liu, S. Weiss, and L. Hanzo, "A Novel Method for Partially Adaptive Broadband 

Beamforming", Proceedings of the 2001 Workshop on Signal Processing Systems (SIPS), 

Antwerp, Belgium, September, 2001, pp.361-372. 

9. W. Liu, S. Weiss, and L. Hanzo, "Subband Adaptive Generalized Sidelobe Canceller for 

Broadband Beamforming", Proceedings of the 11th IEEE Workshop on Statistical Signal 

Processing (SSP), Singapore, August, 2001, pp.591-594. 

Vlll 



10. W. Liu, S. Weiss, and L. Hanzo, "A Novel Subband Adaptive Beamforming Architecture 

Based on the Generalized Sidelobe Canceller", Proceedings of the 2001 Postgraduate 

Research Conference in Electronics, Photonics, Communications and Software (PREP), 

University of Keele, April, 2001, pp.23-24. 

11. S. Weiss, W. Liu, R. W. Stewart, and L K. Proudler, "A Generalised Sidelobe Canceller 

Architecture Based on Oversampled Subband Decompositions", Proceedings of the Fifth 

International Conference on Mathematics in Signal Processing (IMA), Warwick, Decem-

ber, 2000. 

IX 



List of Figures 

1.1 A uniformly spaced linear array 1 

2.1 A Cartesian coordinate system 5 

2.2 A general structure for narrowband beamforming 7 

2.3 A general structure for broadband beamforming 8 

2.4 A directivity pattern example of a linear array with M = 5 and J = 3 12 

2.5 The equivalent processor for a signal arriving from broadside 13 

2.6 From the LCMV problem to the unconstrained GSC beamformer: (a) LCMV 

beamformer; (b) separation of constraint output; (c) unconstrained GSC problem 

by projection of the data into the nullspace of the Hermitian constraint matrix [1]. 18 

2.7 A generalised sidelobe canceller with tapped-delay lines 23 

2.8 A GSC for MVDR beamforming 24 

2.9 Blocking matrix obatained by S cascaded columns of differencing 25 

2.10 (a) Standard generic adaptive filter setup and (b) the adaptive part of a GSC. . 26 

2.11 Mean square error cost function ^ for the case of a weight vector w with 2 

coefficients 27 

3.1 General structure of a i^-channel filter bank with a decimation factor of A .̂ . . 36 

3.2 Decimation operation by a factor of N: (a) anti-aliasing filter and downsampler; 

(b) example for a downsampling operation by jV = 3 37 

3.3 Interpolation operation by a factor of N: (a) upsampler and interpolation filter; 

(b) example for a upsampling operation by AA = 3 37 

3.4 Equivalent structures for (a) upsampling and (b) downsampling, where H{z) is 

the ^-transform of a filter 39 

3.5 Polyphase representation of Fig. 3.1 41 

X 



3.6 Polyphase representation using multirate identities 41 

3.7 Equivalent structure of Fig. 3.6 with P(z) = R(z) • E(z) 42 

3.8 Frequency response of a prototype filter with length Ip = 448 designed by the 

iterative least-squares method in [2] (ii' = 16, = 14) 44 

3.9 A general SAF setup; the subband splitting and fullband error reconstruction is 

performed by filter banks 45 

3.10 An oversampled SAF system with adaptive filters working independently in K 

decimated subbands 46 

3.11 A qualitative description of the computational complexities of fullband and sub-

band adaptive methods for (a) LMS and (b) RLS adaptation 47 

3.12 A subband beamforming structure based on the GSC as proposed in [1,3,4]. . . 49 

3.13 Subband adaptive GSC structure with analysis (A) and synthesis (S) filter banks. 50 

3.14 Frequency response of a iiT = 8 channel filter bank decimated by TV = 6 54 

3.15 An example of the computational complexities for different GSC structures. . . 54 

3.16 Reconstruction of the mth equivalent fullband beamformer branch from the 

subband adaptive structure 55 

3.17 Learning curves of the two subband methods based on CCD (S=l) 56 

3.18 Learning curves of the two subband methods based on SVD (S=l) 57 

3.19 Learning curves of the two subband methods based on CCD (S=2) 57 

3.20 Learning curves of the two subband methods based on SVD (S=2) 58 

3.21 Comparison of learning curves based on SVD method (step size/io=0.06). . . . 59 

3.22 Comparison of learning curves based on SVD method (step size /xo=0.10). . . . 59 

3.23 Comparison of learning curves based on CCD method (step size /io=0.15). . . . 60 

3.24 Comparison of learning curves based on CCD method (step size /io=0.20). . . . 61 

3.25 Comparison of learning curves based on SVD method (step size /io=0.3) 62 

3.26 Comparison of learning curves based on CCD method (step size /zo=0.4) . . . . 62 

4.1 A general structure of partially adaptive GSC 65 

4.2 Characteristics of the L column vectors contained in B 66 

4.3 Temporal filtering effect of the /th spatial filter in B 67 

XI 



4.4 Frequency response of a bandpass filter as an example for the column vectors of 

B 68 

4.5 Three-dimensional response of a bandpass filter to signals with different frequen-

cies and DOAs 69 

4.6 Response of a bandpass filter with respect to signals with different frequencies 

as a column vector of the blocking matrix B 70 

4.7 A design example for a 16 x 8 blocking matrix with first-order derivative con-

straints based on constrained optimisation 71 

4.8 Characteristics of the 16 x 8 blocking matrix columns using a GA design with 

SOPOT representation 73 

4.9 A design example for a 28 x 11 blocking matrix 74 

4.10 A partially adaptive GSC with a transformation matrix 75 

4.11 Arrangement of the L column vectors in T 77 

4.12 Temporal filtering efi'ect of the /th spatial filter in T 77 

4.13 A design example for a 11 x 16 transformation matrix 78 

4.14 Subband decomposition applied to the output of the subband-selective blocking 

matrix 79 

4.15 Frequency responses of a — 12 channel filter bank decimated by = 10. . . 83 

4.16 Channels discarded in each MCAF block for simulation 1 83 

4.17 Learning curves for simulation I (step size=0.30) 84 

4.18 3-D beampattern for the subband-selective GSC in simulation 1 84 

4.19 2-D beampattern for the subband-selective GSC in simulation I over the band 

— [0.257r; 0 .757r] 8 5 

4.20 Comparison of learning curves before and after channel discarding 85 

4.21 Frequency responses of the 21 x 10 blocking matrix 86 

4.22 Channels discarded in each MCAF block for simulation II 87 

4.23 Learning curves for simulation II (step size=0.3) 87 

4.24 Comparison of learning curves before and after channel discarding 88 

4.25 3-D beampattern for the subband-selective GSC in simulation II 89 

4.26 Response of the subband-selective GSC in simulation II over the band [G.SOTT; 0.707r]. 
90 

xu 



4.27 Channels discarded in each MCAF block for simulation III 91 

4.28 Learning curves for simulation III (step size=0.35) 91 

4.29 Comparison of learning curves before and after channel discarding 92 

4.30 3-D beampattern for the subband-selective GSC in simulation III 92 

4.31 Response of the subband-selective GSC in simulation III over the band Q = 

93 

4.32 A frequency-domain GSC structure 93 

4.33 Frequency responses of a 32-tap window function 96 

4.34 Frequency responses of the row vectors in a 16 x 16 transformation matrix. . . 98 

4.35 Learning curves for the GSC, TGSC and our STGSC 98 

1 Block diagram of a Genetic Algorithm 105 

2 Block diagram of a Genetic Algorithm 106 

3 Single-point crossover (• is the crossover point) 107 

4 Multi-point crossover (• is the crossover point) 108 

xm 



List of Tables 

2.1 Computational complexities for real input signal: 32 

2.2 Computational complexities for complex input signal: 33 

3.1 Computational complexities for fullband and subband GSCs: 53 

4.1 SOPOT coefficients for the 16 x 8 blocking matrix B: 72 

4.2 Computational complexity for the subband adaptive GSC employing subband-

selective blocking matrix: 81 

4.3 Part of the parameters in simulation I, II, and III: 82 

4.4 Computational complexities for our STGSC and the old TGSC: 95 

4.5 Frequency bin outputs discarded in the proposed STGSC in the simulation of 

Sec. 4.5.3 97 

XIV 



Acknowledgements 

I would like to take this opportunity to express my deepest gratitude to my supervisors 

Dr. Stephan Weiss and Prof. Lajos Hanzo for their persistent support and guidance, and the 

freedom they gave me to develop and follow my research interests. 

I am very grateful to Dr. Sheng Chen for his thoughtful comments and suggestions. Thanks 

also go to our group secretary Mrs. Denise Harvey and all my colleagues in the Communications 

Research Group, for their support and help during the past years. 

Finally, I would like to thank my family in China and my wife Yan for their love and support 

during my study here, which is beyond any word. Especially, I would like to dedicate this thesis 

to my mother Su-Yan Wang, as a memory of her, forever! 

XV 



Chapter 1 

Introduction 

1.1 I n t r o d u c t i o n 

Beamforming has found many applications in various areas ranging from sonar and radar to 

wireless communications [5-7]. It is a signal processing technique to form beams in order to 

receive signals illuminating an array from specific directions, whilst attenuating signals from 

other directions. In the presence of interfering signals, linear temporal filtering cannot be used to 

separate a desired signal occupying the same frequency band. However, these signal components 

usually originate from different spatial locations. This spatial separation can be exploited to 

separate the desired signals from interfering signals by an array of sensors. These sensors can 

be positioned in space according to different patterns, e.g. along a line, around a circle, or 

on a plane. Such arrangements lead to linear arrays, circular arrays and planar arrays [7-9], 

respectively. For the time being, our discussion is limited to the family of uniformly spaced 

linear arrays, which are shown in Fig. 1.1. Specifically, each sampled sensor signal Xm[n] is 

processed by a dedicated filter w^ , m = 0,1, • • • , M —1 . The wavefront of signals impinging 

e[n] 

/AT 

Wo 

Fig. 1.1: A uniformly spaced linear array. 

from a direction of arrival (DOA) 9 arrives delayed by integer multiples of A r at these M 



1.2. Original Contributions 

sensors. The impulse response (IR) duration of each attached filter varies according to the 

specific applications concerned. 

To process narrowband signals [10], we can sample the propagating wave field in space 

and linearly combine the data of M sensors, i.e. we only need one IR coefficient for each 

filter Wm [11]. For beamforming of broadband signals [12], we sample the wave field in both 

temporal and spatial domains, and typically a higher number of coefficients are employed for 

Wm- The filter coefficients can be designed for maintaining a fixed specified response for all 

signal/interference scenarios, which leads to the concept of a data independent beamformer [13]. 

Alternatively, they can be chosen based on the statistics of the array data for optimising the 

array's response, which forms a statistically optimum beamformer [13]. Since the statistics of 

the array data are often not known or may change over time, adaptive algorithms may be used 

to determine these coefficients. 

To perform adaptive broadband beamforming with high interference rejection and angular 

resolution, arrays with a large number of sensors and filter coefficients have to be employed. 

Reducing the resultant high computational complexity has stimulated intensive research in 

the community. Numerous solutions have been suggested. In partially adaptive beamform-

ing [14-18], only a fraction of available degrees of freedom is exploited at the expense of a 

reduced performance. In dynamic selective beamforming, the multi-beam outputs, as found 

in beamspace beamforming [18-20], or frequency bin outputs, as found in transform-domain 

or frequency-domain beamforming [21-23], are monitored and the specific outputs having a 

power below some threshold will be omitted from subsequent processing. In subband beam-

forming [1,3,4,24-28], the received sensor signals are first split into decimated frequency bands 

("subbands"), prior to applying an independent beamformer to each subband. 

In this thesis, based on the generalized sidelobe canceller (GSC) structure [29,30], which 

is an alternative, but efficient implementation of the linearly constrained minimum variance 

(LCMV) beamformer [31], a range of novel methods is proposed for reducing the computational 

complexity of broadband beamforming. In addition to their lower computational complexity, 

all these methods promise a convergence speed faster than traditional implementations of least 

mean square (LMS) type adaptive algorithms. In the next section, we will list a number of effi-

cient adaptive broadband beamforming realisations, which constitute the original contribution 

of this thesis. 

1.2 Original Con t r i bu t i ons 

To combat the computational complexity of high-resolution broadband beamforming, we pro-

pose several methods employing subband techniques: 



1.2. Original Contributions 

» A Subband Adaptive Generalized Sidelobe Canceller [32, 33] 

In this structure, we employ the subband adaptive filtering technique to decompose the 

input signals to the adaptive part of the GSC into subbands and perform unconstrained 

adaptive minimisation in each subband. This new subband adaptive system is capable 

of achieving a lower computational complexity than previously suggested subband beam-

forming structures. Further, we can reason and demonstrate that it can achieve a faster 

convergence rate than the traditional fullband adaptive GSC due to its pre-whitening 

effect. 

• A Spatial ly/Temporally Subband-selective Blocking Matrix 

By studying the input-output relationship of the blocking matrix of a GSC, we propose a 

specific construction of this matrix, in which the impulse responses hosted by its column 

vectors constitute a series of bandpass filters. These filters select signals with specific 

DOAs and frequencies and result in the blocking matrix outputs having bandlimited 

spectra. Since an overlap and finite transition band between the bandpass filters in the 

blocking matrix have to be permitted, a better design quality can be attained by reducing 

the output dimension of the blocking matrix, yielding a partially adaptive beamformer. 

This scheme finds applications in two areas; 

- application to subband adaptive GSC [34-37] 

In this case, the subband decomposition of the bandlimited spectra will result in some 

subbands containing signals of almost zero energy, which can then be discarded in 

the following subband adaptation. By partial adaptivity, subband discarding and 

subband adaptation, the computational complexity of the system can be significantly 

reduced. 

— application to transform-domain GSC [38] 

Here, we apply the discrete Fourier transform (DFT) to the outputs of the blocking 

matrix. Because of the bandlimited spectra of these outputs, some of the frequency-

bin outputs of the DFT will be approximately zero and can be omitted from the 

following adaptive processing. To enhance the bandlimitation, a window function 

needs to be applied before performing the DFT. 

A Spatial ly/Temporally Subband-selective Transformation Matrix [39,40] 

This can be regarded as an alternative implementation of the subband-selective blocking 

matrix, because it has the same effect as the subband-selective blocking matrix, when 

combined with one of the traditional blocking matrices. The advantage of this method is 

that it simplifies the design of the subband-selective blocking matrix into a general filter 

design problem and can be efficiently implemented by a cosine modulation. 



1.3. Thesis Outline 

1.3 Thesis Out l ine 

The outhne of this thesis is as follows: 

In Chapter 2, we first give an introduction to the basic ideas of beamforming and then focus 

on the LCMV beamforming technique and the GSC structure, which transforms the LCMV's 

constrained optimization problem into an unconstrained one. Various problems related to 

LCMV beamforming and GSC are briefly discussed, such as the formulation of constraints, the 

optimum mean square error solution, Frost's algorithm, and the blocking matrix design. Espe-

cially, the simplified GSC with tapped-delay lines is described. Adaptive algorithms commonly 

used for the optimisation of the beamformer's parameters are introduced, with an emphasis on 

their respective computational complexities. 

In Chapter 3, we give a brief overview on the fundamentals of filter banks and the subband 

adaptive filtering (SAF) technique. Employing the SAF technique to the fullband adaptive 

part of a GSC, we propose a novel subband adaptive GSC. We will show that compared with 

traditional fullband adaptive GSC and previously proposed subband beamforming structures, 

this new subband adaptive system can attain a lower computational complexity. In addition, 

it achieves a convergence speed faster than the fullband adaptive GSC due to its pre-whitening 

effect, as demonstrated in simulations based on different signal environments and different 

formations of the blocking matrix. 

In Chapter 4, the architecture of a partially adaptive GSC structure is reviewed. Based on 

this we propose a GSC with a novel spatially/temporally subband-selective blocking matrix. 

Two design methods are suggested in order to construct this matrix, comprising a constrained 

full design and a cosine-modulated design based on the decomposition of the prototype vector. 

Moreover, we develop a subband-selective transformation matrix which has the same effect as 

the subband-selective blocking matrix, but offers simplifications in design and implementation. 

The joint application of such blocking and transformation matrices to the subband adaptive 

GSC and the transform-domain GSC are then studied to reduce the computational complexity 

of the system. The effectiveness and benefits of the subband-selective systems are shown by an 

extensive number of simulations. 

Finally, conclusions and an outlook on possible future work are given in Chapter 5. 



Chapter 2 

Beamforming 

This section reviews the basic ideas of beamforming and focuses on the linearly constrained 

minimum variance beamforming technique as well as on its alternative implementation - the 

generalised sidelobe canceller, which transforms the constrained optimisation problem of the 

beamformer's parameters into an unconstrained one. Subsequently, we review various widely 

used standard adaptive algorithms, which can be employed in the resulting unconstrained 

optimisation. 

2.1 Wave P r o p a g a t i o n 

Whenever a driving force is coupled to an open medium, travelling waves are generated. They 

propagate from the source of the excitation transporting energy in a specific form, e.g. acoustic 

or electro-magnetic, which depends on the physical nature of the driving force. In the far field, 

namely at a large distance away from the source, the waves become essentially planar. In our 

study, we assume that the signals impinging on the sensor array are always plane waves. 

' z 
plane z=constant 

/ 

k 
V ' " ^ y 

A 
z 

X 

Fig. 2.1: A Cartesian coordinate system. 



2.1. Wave Propagation 6 

Consider a plane wave propagating in the direction of the unit vector z, along the z—axis 

of the Cartesian coordinate system as shown in Fig. 2.1. At the plane defined by z = constant, 

the wave function can be expressed as 

s{t, z) = A COS{27Vft — kz) , ( 2 . 1 ) 

where A is the amplitude, / the frequency, and t the time. The parameter k is referred to as 

the wavenumber [11] and defined as 

k = - = Y , (2.2) 
c A 

where w is the (temporal) angular frequency, c denotes the speed of propagation in the specific 

medium and A is the wavelength. Similar to to, which means that in a temporal interval t 

the phase accumulates to ojt, the physical interpretation of the wavenumber k is that over a 

distance z, measured along the propagation direction z, the phase accumulates to kz radians 

and we can hence refer to k as the spatial frequency [41]. A specific difference between the 

spatial and temporal frequencies k and w is their dimension. As time has only one dimension, 

the corresponding frequency is also one-dimensional. However, spatial quantities like k stretch, 

in general, over all three spatial dimensions, denoted either by the set of Cartesian variables 

[x, y, z] or, in polar notation, by [6, (j), p] using the azimuth 9, elevation (j), and radius p. It is 

important to point out that k is characteristic of a monochromatic plane wave, in other words, 

the spatial and temporal frequencies are coupled and cannot be chosen independently. 

Let the vector r denote a point in space, which is specified in terms of its coordinates with 

respect to the origin of the Cartesian coordinate system. Then the plane z = constant is 

described by z = z^ - r = constant, which is shown in Fig. 2.1. Thus we can express the 

quantity kz in (2.1) as 

kz = k{z^ • r) = • r , (2.3) 

where 

k = k{z) . (2.4) 

We refer to k as the wavenumber vector, which points in the direction of propagation z. 

The argument of the sinusoidal wave function in (2.1) is referred to as the phase (j)(t,z). 

Using this new notation, the phase can be expressed as 

(j)(t, r) = 2%ft — k^ • r . (2.5) 

At a fixed time instant t, the points associated with the same phase (j) are referred to as a 



2.2. General Beamforming 

array sensors 

Fig. 2.2: A general structure for narrowband beamforming. 

wavefront and are defined by 

= 0 = 27r/ • dr (2.6) 

= 2-k Q — • dv (2.7) 

= —• dr . (2.8) 

In tangible physical terms, at a fixed time instance t, the phase has the same value at all points 

reached by adding up the vectors dr that are perpendicular to the wavenumber vector k. All 

these points constitute the plane associated with z =constant. It is for this reason that such a 

wave is referred to as a plane wave. 

2.2 Gene ra l B e a m f o r m i n g 

2.2.1 Beamforming S t ruc tu res 

In beamforming, we estimate the signal arriving from desired directions in the presence of 

noise and interfering signals with the aid of an array of sensors in order to provide a versatile 

form of spatial filtering. These sensors are located at different spatial positions and sample 

the propagating wave in space. The collected spatial samples are then processed in order to 

spatially extract the desired signal. Fig. 2.2 and Fig. 2.3 show two difi^erent beamforming 

structures. 

Specifically, in Fig. 2.2 the M linearly equispaced sensors sample the wave field spatially 

and the output e[n] at time n is given by a linear combination of these spatial samples as 

M-l 
. (2-9) 

m=0 

The beamformer associated with this structure is only useful for sinusoidal or narrowband 



2.2.1. Beamforming Structures 

XQIH] 
o »-o-

xi[n\ 

array sensors 

A 

/ * 
^0.0 

A 

w 1,0 

I • 
A 

I 

(X) * 
T ^ o i i 

A 

• © -

A 

I ' " I 

( x ) * f x ) 

T 

m — 

0 , 7 - 1 

M-l,/-l 

Fig. 2.3: A general structure for broadband beamforming. 

signals, where "there is essentially no decorrelation between signals received on opposite ends 

of the array" [42] and hence it is termed a narrowband beamformer. 

When signals with significant frequency extent, i.e. broadband signals, are of interest, rather 

than applying a single coefficient as in the case of narrowband beamforming, we apply a 

tapped-delay line at the output of each sensor [12] as shown in Fig. 2.3. These tapped-delay 

lines form a finite impulse response (FIR) filter at the output of each sensor. The beamformer 

obeying this architecture samples the propagating wave field in both space and time and it 

is suitable for broadband beamforming. The output of such a broadband beamformer can be 

expressed as 

M-L J-1 

i] 
m = 0 j=0 

W. (2.10) 

where J — 1 is the number of delay elements associated with each of the M sensor channels in 

Fig. 2.3. 

For convenience, we develop notations for treating both kinds of beamformers. Let us 

consider a system having M sensors and J taps per sensor, where J = 1 for narrowband 

beamforming. We rewrite the array output e[n] in Fig. 2.2 and Fig. 2.3 as 

e[n] = w ^ x . (2.11) 



2.2.2. Beamformer Response and Beampattern 

The weight vector w G holds all M J sensor coefficients with 

Wo 

Wi 
w = 

Wj_i 

(2.12) 

where each vector Wj, j = 0,1, • • • , J —1, contains the M complex conjugate coefficients found 

at the jth tap position of the M filters, which is expressed as 

Wj = [woj Wij - - - . 

Similarly, the input data are also accumulated in a vectorial form x as follows 

(2.13) 

X = 

X N 

x[n — 1] 
(2.14) 

x[?T. — J" + 1] 

where x[n — j], j = 0,1, • • • , J—1, holds the jih data slice corresponding to the j t h coefficient 

vector w 0 

An-j]^ [xo[n-j] xi[n-j] XM-I[n-j]\ (2.15) 

Recall that this notation incorporates the narrowband beamformer with the special case of 

J = 1. 

In our notation, we generally use lowercase bold letters for vector valued quantities, while 

uppercase bold letters symbolise a matrix. The operators and represent transpose 

and Hermitian transpose operations, respectively. 

2.2.2 Beamfo rmer Response and B e a m p a t t e r n 

Let us now analyse the array's response to an impinging complex plane wave having a 

frequency w and direction of arrival (DOA) 6, where the angle 9 is measured with respect 

to the broadside of the linear array. For convenience, let the phase be zero at the first sen-

sor, which implies XQ[n] = and Xm[N] = m = 0,1, • • • , M —1, where T{9) = 

27rdsm6/{uX) = dsinO/c with wave speed c and the distance d between adjacent sensors. As-

suming furthermore that the tap delay period is T seconds, then Xmin — i] = 

m = 0, • • • , M —1, ^ — 0, - - - , J—1. Therefore the array output is given by 

M - l J - 1 

e[n] = E E ^ 
m=0 1=0 

-iw(mr(e)+2r) _ 

r(g, W (2.16) 
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where r{p,uj) is the beamformer's angle and frequency-dependent response, which can be ex-

pressed in vectorial form as 

r{9,Lo) — d{9,uj) . (2.17) 

The elements of d{9,uj) correspond to the complex exponentials general 

we have 

where tq{9) = 0 and r„(0), n — 1, 2, • • • , MJ — 1, are the time delays due to wave propagation 

and tap delays spanning the interval measured from the zero phase reference to the point at 

which the nth coefficient is applied. We refer to d{9,uj) as the array response vector, which is 

also known as the steering vector or direction vector [13]. 

Based on the response vector, we briefly discuss the spatial aliasing problem encountered 

in array processing [13]. In conventional temporal sampling, aliasing implies ambiguity in 

temporal frequencies, i.e. signals with different frequencies have the same discrete-time sample 

series. Similarly, spatial aliasing corresponds to an ambiguity in spatial locations of the source 

signals. The implication of this spatial ambiguity is that sources at different locations have the 

same array response vector. For signals having the same frequency Wo, but different DOAs 9i 

and 02 satisfying the condition of 9i, 92 G [—7r/2,7r/2], aliasing implies that we have d(0i, Wq) = 

d(6'2. Wo), i.e. 

g-jcJoT(0i) _ g-jwo-r(02) 

g-j27r(sin0i)d/Ao _ g-j27r(sin02)d/Ao 2̂ 19) 

In order to be able to avoid aliasing, the condition of |27r(sin^)d/Ao|g=gi,g2 < n has to be 

satisfied. Then we have |d/Ao sin0| < 1/2. Since | sin ^ 1, this requires that the array 

distance d should be less than Ao/2. In the following, we will always set d = Ao/2, with the 

assumption that the signal frequencies fulfil u G [0; Wo]. 

To describe the sensitivity of the array with respect to signals arriving from different spa-

tial directions and with different frequencies, we use its beampattern, which is the amplitude 

response \r{9,u)) \ of the beamformer with respect to both the angle of incidence and frequency 

of an impinging waveform. Suppose the array spacing d is set to be Ao/2, where Aq is the 

wavelength of the maximum frequency component, and the temporal sampling frequency is 

twice the maximum frequency. Then the sampling period becomes T = XQ/2c = d/c and thus 

we have T(9) = Tsin6'. Substituting Q = uT, where Q is the normalised angular frequency, 
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from (2.16), we obtain 

^m.i 

M-1 J-1 

r(g,w) = 
771=0 1=0 

M-1 J-1 

r(g, g-jmnsine ̂  

771=0 i=0 
M-1 

= (2.20) 

m—O 

where Wm{e^^) is the Fourier transform of the tapped-delay line attached to the m-th 

sensor. 

To draw the three-dimensional graph of the response with respect to frequency and DOA, 

we need to sample the continuous function | r (0 ,n) | according to different discrete values of 

9 and fi. To calculate the beampattern for Ng number of discrete DOA values and for NQ 

discrete temporal frequencies, an Ng x NQ matrix is obtained holding the response samples on 

the defined DOA/frequency coordinates. As a simple example, consider an array having M = 5 

sensors and a tapped-delay line length of J=3. Suppose the weight vector is given as 

w [0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0]^. (2.21) 

The beampattern of such an array is shown in Fig. 2.4 for NQ — 50 and Ng = 60, where the 

gain is displayed on a logarithmic scale as 20log^o |r(0,il)| . 

In the example of Fig. 2.4, the weight coefficients were given fixed values and the resultant 

beamformer will maintain a fixed response independent of the signal/interference scenarios. In 

statistically optimum beamforming, the weight coefficients need to be updated based on the 

statistics of the array data. When the data statistics are unknown or time varying, adaptive 

optimisation is required. According to different signal environments and applicational require-

ments, different beamforming techniques may be employed such as the linearly constrained 

minimum variance beamformer [31] and the multiple sidelobe canceller [43], or we may invoke 

a reference signal [44] and the SNR maximisation [45] at the beamformer's output for adjusting 

the array weights. In this study the LCMV beamforming technique is of particular interest and 

will be further discussed in the next section. 

2.3 Linear ly Cons t r a ined M i n i m u m Var i ance B e a m f o r m -

ing 

In linearly constrained minimum variance (LCMV) beamforming [31], the basic idea is to 

constrain the response of the beamformer such that the desired signals impinging on the array 
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0 3 - 5 0 

DOA angle 

Fig. 2.4: A directivity pattern example of a linear array with M = 5 and J=3. 

from a specific direction pass with a specified gain and phase, while the variance or power of the 

output signal is minimised. As a result, the desired signals are preserved subject to a specified 

controlled response, while the contributions due to interfering signals and noise arriving from 

other directions are attenuated. 

We have seen that the beamformer's response to a signal having a frequency co and DOA 

9 can be expressed as in (2.17). In order to ensure that any signal having a frequency LUQ and 

DOA 9o passes the beamformer with a specified response G, where G is a complex constant, 

we set this constraint to w^d(0o, <̂ o) — G. Noting that the expected value of the output power 

or variance is given by [31] 

E{\e[n]f} = (2.22) 

where £{•} is the expectation operator and is the observed array data's correlation matrix, 

which is assumed to be positive definite and given in the form of 

Rzz = 6 '{xx^} , 

the LCMV problem of optimising the array weights can be formulated as 

w = a r g m i n s u b j e c t to d^(6'o,<^o)w = G* . 

(2.23) 

(2.24) 
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Fig. 2.5: The equivalent processor for a signal arriving from broadside. 

The problem formulated in (2.24) obeys a single constraint. However, it can be generalised 

to multiple linear constraints for attaining an enhanced control over the beamformer's response, 

for example, by specifying more DOA angles and frequencies. If there are r < M J number 

of linearly independent constraints imposed on w, we can formulate the constraints in matrix 

form as 

= f , (SLSK)) 

where the MJ x r dimensional matrix C is termed as the constraint matrix, while the r 

dimensional vector f is the so called response vector. In the next section we will discuss a 

special class of constraints in the broadband beamforming case, which is assumed throughout 

this thesis. 

2.3.1 Formulat ion of Cons t ra in t s 

The constraints imposed on the LCMV beamformer ensure that the beamformer has the re-

quired response to signals arriving from specified angles and at given frequencies, no matter 

what values are assigned to the weights. In different applications, there are different constraints, 

one of which is that for a prescribed direction, the response of the array is maintained con-

stant. The resultant beamformer is referred to as the minimum variance distortionless response 

(MVDR) beamformer [46,47]. All our simulations throughout this thesis are based on this type 

of beamformer. The application of such constraints is based on a simple relation between the 

response in look direction and the weights in the array. Based on Fig. 2.3, in the following we 

will briefly introduce this approach. 

Assume that the signal of interest arrives from broadside, 9 = 0, i.e. the signal of interest 

impinges perpendicular to the line of sensors. If this is not the case, the array can be steered 

either mechanically or electrically by imposing appropriate time delays, or phase shifts in the 

narrowband beamforming scenario, immediately after each sensor output, such that the signals 

incident on the array from directions of interest other than broadside appear as identical replicas 

of one another at the outputs of the steering delay elements. With this pre-steering, the 

signal of interest can be treated as if it had arrived from broadside. Thus, identical signal 
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components appear at the sensors simultaneously and pass in parallel through the tapped-

delay lines following the sensors. Hence, the FIR filters seen in Fig. 2.3 appear to be driven 

by a common input. As far as the signal of interest is concerned, the array processor is 

equivalent to a single tapped-delay line in which each weight is equal to the sum of weights in 

the corresponding vertical column, as indicated in Fig. 2.5 [31], where we have 

M-l 

m=0 

(2.26) 

J-1. with j = 0,1, • 

These summed weights in the equivalent tapped-delay line form a temporal filter, specifying 

the frequency response of the beamformer to the signal incident from the broadside and must 

be selected appropriately to give the desired response characteristic in the look direction. In 

the MVDR beamforming case, this response is a pure integer delay, i.e. one of the taps f*[j], 

j = 0,1, • • • , J—1 will be 1 and all the others are zero. 

Thus, the broadside constraint can be formulated in the following way 

where 

C"w = f , 

m 
/[I] 

(2.27) 

(2.28) 

and 

C = 

Co 

0 

0 

Co 

e C i M J x J (2.29) 

with 

Co [ 1 1 • • • 1]^ G C iMxl (2.30) 

Note that the response vector f is defined to contain the complex conjugate of a desired gain. 

Adaptive arrays obeying this broadside constraint can efficiently suppress sources of interfer-

ence from other directions and achieve the maximum attainable signal-to-interference-plus-noise 

ratio (SINK) [42]. If, however, the desired signal does not appear exactly in phase at the out-

puts of the steering delays due to an error in the steering angle, the array will tend to null out 

the desired signal as if it were an interfering signal. A remedy to this problem is to impose 
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derivative constraints on the main beam of the array [30,43,48,49]. Derivative constraints set 

the derivatives of the array's response with respect to the DO A in the desired direction to zero. 

The higher the order of the derivative constraints, the broader will be the beam pointing to the 

desired direction. 

According to [48], the first-order derivative constraint formulated for a uniformly spaced 

linear array can be expressed as 

c f w j = 0, i = 0,1, • • • , J - 1 , 

where Ci is the M-dimensional vector given by 

c, = [ci[0] Ci[l] ••• 

with 

c i [ m ] = m — nQ, m = 0,1, • • • , M —1 , 

(2.31) 

(2.32) 

(2.33) 

where no is the phase origin point. If we choose the middle point along the array line as the 

reference point and set the signal phase at this point to be zero, then we have no = 

The (5"—l)-order derivative constraint is 

c f - i W j = 0 , J = 0,1, • • • , J - 1 , (2.34) 

where Cg_i is given by 

cs - i = [cs'_i[0] C5_i[l] C5'_i[M —1]]^ G (2.35) 

with 

C5_i[m] = (m — no)'^~\ rn = 0,1, • • • , M —1 . (2.36) 

In this context, we can consider the constraint in (2.27) to (2.30) as zero-order derivative 

constraint. Combining (2.30), (2.32) and (2.35) together, we obtain the general formulation in 

the following when we impose derivative constraints of zero until 5 — 1 orders on the beamformer 

C^w = f , (2.37) 

where 

C = C o . . . C^'-i e C iMJxSJ with Ci = 

0 

6 e iMJxJ (2.38) 

and 

f = [ / [0 ] /[I] --- 0 0 . . . 0]:̂  E C (2.39) 
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2.3.2 O p t i m u m Solution t o t h e L C M V P r o b l e m 

The solution to the general LCMV problem in (2.24) and (2.25) can be obtained by the method 

of Lagrange multipliers [11], which is outlined here. 

The Lagrangian is formed by the objective function = w^Hxx^ , plus the real 

part of the constraint function of C ^ w — f, weighted elementwise by the r-dimensional vector 

of undetermined Lagrange multipliers A, which is given by 

+ A^(C^w - f) + A^(C^w* - r ) . (2.40) 

Note that the gradient of the constraint function constituted by the second and third terms of 

(2.40) must be linearly independent of each other for the Lagrange multipliers to hold, i.e. the 

columns of C must have full rank [50]. Differentiating the function in (2.40) with respect to 

w*, we have 

IRLssTV . (2XL1) 

Setting this result equal to zero, we obtain the optimal weight vector Wopt in terms of the 

Lagrange multipliers as follows 

W o p t = - R - i C A . (2.42) 

Since the optimal weight vector must satisfy (2.25), we have 

= : f . (2x13) 

Solving this equation for A and finally substituting A into (2.42) yields 

W o p t = R ; j C ( C ^ R ; ; C ) - ' f , (2.44) 

which represents the solution to the constrained optimisation problem in (2.24) and (2.25) [11]. 

2.3.3 Fros t ' s Algor i thm for L C M V B e a m f o r m i n g 

From (2.44), we know that for the LCMV beamformer the optimum solution Wopt is based on 

the statistics of the array data. However, in numerous applications the second order statistics of 

the array data required in the correlation matrix (2.23) are unknown or may change over time. 

In this case, constrained adaptive algorithms can be employed for determining the coefficients 

in w. One such approach is given by Frost's algorithm as proposed in [31], which we will briefly 

review in the following. 

At the beginning, we set the weight vector to w[0] = C(C-^C)~^f for initialisation, which 

satisfies the constraint in (2.25). At each iteration, the vector w is updated in the direction of 
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the negative gradient expressed in (2.41) by a step proportional to a scaling factor fi according 

to 

w[ri-l-l] = w[n] — + CA[n]) . (2.45) 

Since w[n + l] must satisfy the constraint in (2.25), we can substitute (2.45) into (2.25) and 

solve for the Lagrange multipliers A[n]. Then we substitute A[n] into the iteration equation 

(2.45) and arrive at 

w[n-l-l] = w[n] — /i(l — C(C^C)~^C'^)Ra;a;w[ri] + C(C^C)~^(f — C^w[n]) . (2.46) 

Upon defining the short-hand of P = I—C(C'^C)~^C-®^, the algorithm in (2.46) can be rewritten 

as 

w [ n + l ] = C(C-^C)'"^f + P(w[n] — yuRa:a;w[n]) . (2.47) 

Not knowing the true second order statistics Hxx, the correlation matrix can be replaced 

by its simple approximation = x x ^ . This results in the minimisation of the instantaneous 

square error rather than the mean square error, and leads to the so-called stochastic constrained 

algorithm 

+ 1] = C(C^C)"^ f + P(w[n] — iJ,e*[n]x[n]) , (2.48) 

which is also known as the Frost's algorithm. 

Instead of using the constrained adaptive algorithm of (2.48), Griffith [29,30] proposed an 

alternative, but efficient implementation of the LCMV problem, which is referred to as the 

generalised sidelobe canceller (GSC) [29,30]. The GSC employs an unconstrained adaptive 

algorithm and is presented in the next section. 

2.4 Genera l i sed Sidelobe Cancel ler 

2.4.1 GSC S t r u c t u r e 

The GSC can be viewed as a scheme designed for transforming the constrained minimisation 

problem of (2.24) into an unconstrained form. The evolution of the GSC structure from the 

LCMV problem is illustrated in Fig. 2.6(a)-(c). The resultant unconstrained problem can then 

be readily solved using well-known standard adaptive algorithms, such as the least mean square 

or recursive least squares algorithms [51] . 

The basic philosophy of the GSC is to decompose the array weight vector w, which is the 

quantity to be optimised in the LCMV problem of Fig. 2.6(a), into two orthogonal components 
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(a) 
e[n] 

w 
e[n] 

w 

( f w = f 

e[n\ 
w. 

(c) d[n\ + e[n] 

y[n\ 

Fig. 2.6: From the LCMV problem to the unconstrained GSC beamformer: (a) LCMV beam-

former; (b) separation of constraint output; (c) unconstrained GSC problem by projection of 

the data into the nullspace of the Hermitian constraint matrix [1]. 

Wq and —V defined in the context of w = Wg — v, as seen in Fig. 2.6(b). The vector Wg lies 

in the range of the matrix C^, while the component v is contained in the null space of C ^ , 

i.e. the space of all v fulfilling C^v = 0. Together the range and null space of a matrix span 

the entire space [50], so this decomposition can be used to represent any w. The vector w , is 

obtained by solving the constraint equation in (2.25) using the pseudo-inverse of [52,53] as 

follows 

Wg = (C^)tf = C(C^C)-^ f , (2.49) 

where indicates the pseudo-inverse. The resultant structure is shown in Fig. 2.6(b). In a 

quiet environment (quiescent condition), for which the received signal consists of white noise 

only, Wq will be the optimum solution of (2.44) as the correlation matrix where cr̂  

is the noise variance and I is the identity matrix. For this reason Wg has been named "quiescent 

vector". 

The vector v can be expressed as a linear combination of basis vectors of the null space of 

. If the columns of a matrix B G £MJXMJ^ form such a basis, i.e., if we have 

C ^ B = 0 , (2.50) 

then we can write v = Bw^, where r is the number of linearly independent constraints in C as 

mentioned in Sec. 2.3 and Wg is the vector to linearly combine the basis vectors in B to form 

V. The matrix B can be obtained from C using orthogonalisation methods such as the QR 

decomposition [52,54], We note that the most widely used methods in the context of the GSC 
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are the cascaded columns of difference (CCD) method [55] and the singular value decomposition 

(SVD) method [30,54], which will be reviewed in Sec. 2.4.3. The structure with the described 

factorization of v is given in Fig. 2.6(c), where 

y[n] = w f u . (2.51) 

Since w , is determined by the constrained specifications, the LCMV problem reduces to 

that of finding the weights Wg. The choice for w , and B implies that the constraints are 

satisfied independently of w^. Note that we can substitute w = Wg — Bwa into (2.24). Since 

the constraint has been fulfilled by this factorization, the optimisation is not subject to the 

constraints any more. Thus, a modified LCMV formulation is obtained as 

Wa = argmin[wg - Bwa]'^R3:z[wg - Bw^] . (2.52) 
Wo 

The solution to (2.52) can be obtained by (2.44). As Wopt = Wg — Bw^^opt, we have 

Bw„,opt = w, - R;jC(C'^R;jC)-'f . (2,53) 

Multiplying the two sides of (2.53) by B^R^.^., respectively and also noting that B ^ C = 0, we 

can get 

B^Ra;2;Bwa,opt = B^R^^^^Wg - 0 . (2.54) 

Further multiplying the two sides of (2.54) by the inverse of B^R^^^B, the final solution to 

(2.52) [11,13] is given by 

Wa,opt = (B^R^^B)'^B^R^^Wg . (2.55) 

If the constraints are designed to present a specified response to signals impinging on the 

antenna array from a set of directions and at different frequencies, then the columns of B will 

block those directions and frequencies. This concept leads to the term "blocking matrix" often 

used for describing B. Those signals are only processed by w , in the upper branch of the GSC in 

Fig. 2.6(c). Since w , is designed to satisfy the specified constraints, the desired signals will pass 

through the beamformer with a desired gain and phase independent of w^, while the interfering 

signals and noise pass through the upper branch of the GSC with a response determined by Wg. 

In the lower branch, since the desired signals are blocked, only the interfering signals and the 

noise can pass. When adapting the scheme will tend to cancel the interference and noise 

component in the upper path, while minimising the variance or power of the output signal e[n]. 

In Fig. 2.6(c), the upper branch output d[n] is obtained by d[n] = w ^ x . For the lower 

branch, u = B ^ x and y[n] = w^u. To calculate the blocking matrix output u, MJ{MJ — r) 

multiplications are required every sampling period, which represents a considerable burden for 
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large values of M and J . Based on the constraint formulations in Sec. 2.3.1, we will circumvent 

this potential problem by simplification of the blocking matrix and introducing the GSC with 

tapped-delay lines in Sec. 2.4.2. 

2.4.2 G S C wi th Tapped-Delay Lines 

Recall from Sec. 2.3.1, that when imposing derivative constraints of zero up to an order of 

5" — 1 on the beamformer, the constraint matrix and the corresponding response vector can be 

expressed as 

C Co • • • C ^ - i G C iMJxSJ with C,- = 

0 

0 

Ci 

G C (2.56) 

and 

T ^ fT tSJx l f = [/[o] / | l ] • • • / [ J - 1) 0 0 • • • 0]' e C (2.67) 

As the blocking matrix B is composed of the basis vectors of the null space of C, we have 

B G _ Assume that B has the following block diagonal form; 

B 

B 0 . . . 0 

0 B . . . 

0 0 . . . B 

(2.58) 

where B is an M x (M — 6')-dimensional matrix. The condition for the blocking matrix B in 

(2.50) can then be expressed as 

C ^ B = 

C f B 

C f B 

C f _ i B 

= 0 (2.59) 

where the rows C ^ B , i = 0,1, - • • , 5"—1, simplify to 

c f B 0 

C f B = 
0 c f B . . . 

0 

0 

0 . . . c f B 

(2.60) 
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Then, as long as B fullfills 

C B — 0 where C = [cq • • • , 

the original blocking matrix B will automatically satisfy (2.50). 

Under this construction, the blocking matrix output u = B ^ x becomes 

B'^x[n] 

B^x[n - 1] 
u = 

B^x[n - J + 1] 

(2.61) 

(2.62) 

Assume that we have u[n] = [mqN, • • • = B^x[n]. Then we see that the input 

signal u to the adaptive block is a series of tapped-delays of the vectorial signal u[n], i.e. 

u = 

u[nj 

u[n - 1] 

u[n — J + 1] 

(2.63) 

Thus, it is possible to apply a smaller blocking matrix B straight to the sensor signal vector 

x[n], rather than applying the fullsize matrix B. As a result, the output vector u[n] from B is 

fed into M — S tapped-delay lines of length J , which will be shown later as a block diagram in 

Fig. 2.7. 

Considering the quiescent vector, the sparse nature of C allows us to rearrange (2.49) and 

obtain a simplified form for w , [30] in the following; 

Wg = f w, Q ' 
(2.64) 

where the operator denotes the Kronecker product operator [56], and 

f = 

m 

m 

f [ j -1] 

(2.65) 

w , = C ( C ^ C ) - ^ e (2.66) 

with e = [1 ,0 , . . . , 0]^ being an S" x 1-dimensional vector. We derive the formulation for the 
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quiescent vector w , in (2.64) by first permutating C to obtain a new constraint matrix 

C = 

C 0 . . . 0 

0 c . . . 

0 0 . . . c 
MJxSJ 

Correspondingly, the constraint of Equation (2.37) becomes 

C^w = f I 

for the sake of keeping the (5"—1) order derivative constraints unchanged. 

From (2.49), we have 

w , = C ( C ^ C ) - : ( f ( g ) e ) 

= C 

C ^ C 0 . . . 0 

0 c ^ c . . . 

0 0 . . . c ^ c 

C(C^C)-^ 0 

0 C(C#C^-1 

• ( f 0 -

0 

C(C^C) - 1 

( f 0 . 

Now we arrive at 

w„ 

/ [0 ]C(C^C)- :e /[0]wg 

f [ j - l]Wg 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

which leads to (2.64). As we have d[n] = w^x , with this simplification of w , we can express 

d[n\ as 

d[n] = f H 
w^x[n - 1] 

w¥x.[n — J + 1] 

(2.71) 
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x[n] d{n] 
2-1 -7-1 7-1 

x l / [ 0 ] 

7-1 Z"1 7-1 Z"1 

Z"1 Z"1 Z"! Z"1 Z"1 Z"! 

Fig. 2.7: A generalised sidelobe canceller with tapped-delay lines. 

if we use the representation d[n] = w^x[n], Equation (2.71) can be further simplified, yielding 

d[n] = f H 

d[n] 

d\Tl — 1] 

d\n — t/ + 1] 

/*[0] • d[n] + f[l]-din-!] + ••• + f [ J -l]-d[n-J + l] (2.72) 

Now we can introduce the simplified GSC structure with tapped-delay lines as shown in 

Fig. 2.7. The output of the vector Wg is processed by an FIR filter with coefificients held in f, 

while the adaptive part of the GSC after B becomes a multi-channel adaptive filtering (MCAF) 

system, which will form the basis for our subband adaptive GSC proposed in Chapter 3. In 

this simplified structure, we still refer to w , and B as the quiescent vector and blocking matrix, 

respectively. 

For MVDR beamformers, only one coefiicient of f is unity and all the others are zero (see 

Sec. 2.3.1); thus the FIR filter in the upper branch of Fig. 2.7 becomes a pure delay line as 

shown in Fig. 2.8. Without loss of generality, we can set f = [1 0 0 • • • 0]^. In this case the 

delay in Fig. 2.8 will be zero. 
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x[n] 

e{n] 

MCAF 
u[n] 

M - S - 1 

delay 

Fig. 2.8: A GSC for MVDR beamforming. 

2.4.3 Blocking M a t r i x Design 

In the GSC structure, we have to find the proper blocking matrix B, which can fulfil the 

requirement formulated in (2.50). By the rearrangement outlined in Sec. 2.4.2, this problem is 

reduced to a suitable blocking matrix B. As mentioned in Sec. 2.4.1, such a blocking matrix 

can be obtained by invoking CCD [55] or SVD methods [30,54], which we briefly review under 

the constraints specified in Sec. 2.3.1. We will find later in Chap. 4 of this thesis, that the 

blocking matrix could be constructed quite differently from the approach of these two methods 

with the aim of satisfying certain specific characteristics, which can be exploited for reducing 

the complexity of the subband adaptive GSC [32,33] and the transform-domain GSC [21]. 

Cascaded Columns of Differencing 

The CCD method was first proposed in [29] and then systematically derived in [55]. The 

blocking matrix obtained by this method is formed by S cascaded columns of differencing to 

fulfil the derivative constraints in (2.37) as shown in Fig. 2.9. 

In matrix form, the blocking matrix can be formulated as [55] 

B — 'Qm • Bm-1 • • • BM-5 + 1 (2.73) 

where we have 

B,; = 

1 - 1 
-1 T 

E C lixz—1 (2.74) 

0 1 - 1 

with i = M,M — — S + 1. It is intuitively clear from Fig. 2.9 that no signal from 
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Xo[«] 

xi[n\ 

+ 

s 

+ 

I . 

Z\, + 

1 ) ^ , 

u[n] 

Fig. 2.9: Blocking matrix obatained by S cascaded columns of differencing. 

broadside can pass through the blocking matrix for 5" = 1. For 5' > 1, the width of the 

mainlobe, centered at broadside, will be widened with increasing S. 

Singular Value Decomposit ion 

The singular value decomposition theorem [50,51,53] states that, given a matrix A, there 

exist two unitary matrices U and V, such that we have 

U ^ A V = 
S 0 

0 0 
(2.75) 

or 

A = U 
S 0 

0 0 
v ^ . (2.76) 

where S is an r x r diagonal matrix containing the ordered positive definite singular values of 

A. The variable r is the rank of A and represents the number of linearly independent columns 

in this matrix A. 

Let us separate matrix U into two parts as follows 

U = U^Ur (2.77) 
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Ca) 

d\n\ +^e\_n\ 

(b) 

Fig. 2.10: (a) Standard generic adaptive filter setup and (b) the adaptive part of a GSC. 

where Uj. holds the first r columns of the matrix U, whereas holds the remaining columns 

of U, then it is easy to see that 

U f A = 0 , (2.78) 

i.e. JJr forms a basis for the null space of [50,53]. If we replace the matrix A by the 

constraint matrix C or C in the SVD decomposition, the resultant will be our desired 

blocking matrix B or B. 

Compared to the CCD method [55], the SVD approach [30,54] constitutes a more general 

way of obtaining the blocking matrix, because it can be applied not only to the broadside 

constraint of (2.37), but also to the general constraint of (2.25). 

2.5 A d a p t i v e Algor i thms for G S C S t r u c t u r e 

As mentioned in Sec. 2.4, the GSC structure enables us to apply standard adaptive filtering 

algorithms to the optimisation of the weight vector. In Fig. 2.10, the adaptive part of the GSC 

is compared to the generic setup of an adaptive filter [51,57], where the weight vector of the 

GSC corresponds to the weight vector w of the general adaptive filter, and the blocking matrix 

output u in (2.63) formed by the tapped delays of the multichannel signal u[ri] corresponds to 

the general adaptive filter's input vector x. The output signal y[n] = w ^ x or w ^ u is compared 

to the desired signal d[n], resulting in an error signal e[n] = d[n] — y[n\, which can be used for 

adjusting the weights w according to some criterion. Usually, this criterion is to minimise the 

error in a mean square or weighted sum of squares sense [51]. 

In the following, based on the standard generic adaptive filter setup in Fig. 2.10, the least 

mean square (LMS), the normalised LMS (NLMS) as well as the recursive least squares (RLS) 

algorithms will be briefly reviewed. Note that here x is a general input signal vector and w a 

general weight vector not to be confused with the definitions of x and w in (2.11) as the array 
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nun 

Fig. 2.11: Mean square error cost function ^ for the case of a weight vector w with 2 coefficients. 

input signal and beamformer weights, respectively. We will include the time index n and use 

x[n] and w[n] to indicate their values at the time instant n in our following discussions. 

2.5.1 Least M e a n Square Algor i thm 

The LMS algorithm is a stochastic gradient technique based on the particular shape of the cost 

function employed. This cost function which is constituted by the mean square error (MSE), 

can be formulated as 

^ = 6 '{eW.e*W} 

= £^{d[n] - w[n]^x[n]) • [d[n] -
H 

= 0-. dd - w[n]-^p - p'"w[n] + w[n]'"R^a;w[' Hi n 

where , P = £{:^[n]d[n]*} and = £^{x[n]x-^[n]}. The operator { }* denotes 

complex conjugation. 

Method of Steepest Descent 

The MSE ^(w) is dependent on the elements of the tap-weight vector and — provided that the 

covariance matrix 'R.xx has full rank — has the shape of a hyperparabola with a unique global 

minimum r̂nin , as illustrated for the 2-dimensional case in Fig.2.11. Hence, gradient techniques 

can be successfully employed in order to search for this minimum. This can be achieved by an 
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update rule involving successive corrections of the tap-weight vector w[n] from an initial vector 

in the direction of the negative gradient of the MSE, which can be expressed as 

w [n+ l ] = w[n] — /iV(^[n]) . (2.79) 

The factor /i is a positive real-valued constant weighting the amount of innovation applied at 

each update. The variable V(^[n]) denotes the value of the gradient vector at time n, which is 

formulated as 

V?(«l = ^ . (2.80) 

Using Wirtinger's calculus [58], the gradient vector can be evaluated as 

V(^W) = - p 4- Riiw[n] . (2.81) 

Thus, the updated value of the tap-weight vector for the standard filter configuration can be 

computed as 

= w[n] + iJ,{p — . (2.82) 

The parameter /i controls the size of the correction at each iteration step and is referred to as 

the step-size parameter. 

Stochastic Gradient Technique 

A simplification of the method of steepest descent in (2.82) is to replace the expectation values, 

as used for the covariance matrix and the cross-correlation vector p, by appropriate esti-

mates. The use of single sample estimates leads directly to the least mean square algorithm, 

where Hxx and p are replaced by 

= x[n]x'^[n] and p = x[n](i*[n] . (2.83) 

These are instantaneous estimates based on the input vector x[n] and the desired signal d[n]. 

Substituting the estimate in the steepest-descent algorithm of (2.82) results in the simplified 

formula of 

w[n -1-1] = w[n] 4- iJ.(d*[n] — x^ [n ]v i^ [n ] )x [n ] 

= vî [n] 4- fj,e*[n]x.[n\ (2.84) 

with the relation e[n] = d[n\ — w^[n]x.[n]. Equation (2.84) is the well-known LMS update. 

The convergence and stability of the LMS algorithm depend on the correct choice of the 

step size parameter /i [51,57]. A large step-size parameter fj, results in a fast convergence speed 

but also in a large excess mean-squared error after adaptation, i.e. the algorithm is not very 
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precise in reaching and staying at the exact minimum of the cost function If /i is chosen 

small, the adaptation is slow but the excess mean-squared error after adaptation is small, thus 

a trade-off exists and usually a compromise has to be made. Standard analysis evaluating the 

algorithm's behaviour in terms of the mean and the mean-square (i.e. checking for bias and 

consistency of the achieved solution) requires for ji to fulfil 

0 < ^ (2.85) 
^max 

where Amax is the maximum eigenvalue of the correlation matrix Hxx- Since has a Toeplitz 

structure and hence is positive semidefinite, an approximation gives 

^ ^ = la ' , (2.86) 
1 = 0 

where L is the dimension of x, Aj the eigenvalues of R^^;, tr{-} the trace of the matrix argument, 

and is the variance of input signal. This yields 

" < ' (2.87) 

as an upper convergence limit for ji. When exceeding this limit, yU is likely to cause the LMS 

algorithm to be unstable. 

2.5.2 Normal ized Least M e a n Square A l g o r i t h m 

In the LMS algorithm, the convergence coefficient has to be selected such that the step size 

factor ji never exceeds its upper bound in (2.87). In non-stationary environments or where 

is not known a priori, the worst case has to be assumed, which means that at most times a 

rather slow convergence may arise. Therefore, a normalization of the step size can ensure, that 

an approximately constant rate of adaptation is achieved at all times. Based on an estimate of 

(2.86) by 

, (Z88) 

the normalization of the step size is given by 

Substituting (2.89) into the LMS update yields a constant convergence speed independent of 

the power of the input signal x. 
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2.5.3 Recursive Least Squares Algor i thm 

The recursive least squares algorithm differs from the LMS-type algorithms reviewed in Sec. 2.5.1 

and 2.5.2 by trying to minimize a sum of squared error values as cost function: 

^LsW = ^I3' ' \e[n]\^ = ^I3 ' ' \d [n] - w^[n-z^]x[n-i/] |^ . (2.90) 
i/=0 z/=0 

The factor /3, (0 < /5 < 1) is called forgetting factor and ensures that recent data is given 

higher consideration and past errors are "forgotten" according to an exponential weighting. 

The minimization of the cost function is performed by solving 

\7(4:Ls[n]) = 0 , (2L()1) 

which in some analogy to (2.81) leads to 

= PW • (2.92) 

This step is based on the generic adaptive filter structure in Fig. 2.10(a), where the quantities 

R-rciN and p[n] are now defined as 

R x i N = ^ /5 ' ' x [n -z / ]x '^ [n -z / ] (2.93) 
U—0 
a 

p[n] = ^ —z/]x[n —;/] . (2.94) 
Z/=:0 

A recursive formulation for the quantities (2.93) and (2.94) is given by 

'^xx[n] = (5Iixx[n-l]+yi[n\yi^[n] (2.95) 

p[n] = ;Sp[n—1] + (i*[n]x[n] . (2.96) 

Based on these recursions, the update equation for the tap weights w could be calculated by 

solving (2.92) at each time instance n, involving a matrix inversion of Ra;a;[n]. In practice, such 

an inversion operation can be quite time consuming, especially for a large value of la-

However, by exploiting the matrix inversion lemma [51] 

(A + BCD)-^ = A-^ - A-^B(C-^ + D A - ^ B ) - ^ D A - ^ (2.97) 

and identifying A = 1], B = x[n], C = 1, and D = x-^[n], the inversion can be 

circumvented. Assuming that initial conditions have been chosen to ensure that Ra;a;[0] is not 

singular and denoting S[n] = R~3^[n], this results in 

S[n\ = ^ (S[n-1] - G[n]x[ri]x^[n]S[n—1]) , (2.98) 
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with 

" /3 + x ^ H S [ n - l ] x [ n ] • 

By rearranging (2.99), we can find that G[n] = S[n]. Inserting (2.95) and (2.98) into w[n+l] = 

R~^^[n]p[n] leads to 

w[n+l] = w[n] + S[n]x[n] [d[n] — w ^ [ n ] x [ n ] ] * 

= w[n] + S[n]x[n]e*[n] . (2.100) 

The new tap weight vector is computed by updating its old value by the product of the 

estimation error e'^[n], the input vector x[n] and the inverse of the correlation matrix of x[n], 

which is also updated at each step. 

From (2.100), we can see that the main difference between the LMS and RLS algorithm is in 

replacing the step size /i in the LMS algorithm by S[n] in the RLS case. By this modification, 

the convergence speed of the RLS algorithm is independent of the eigenvalue distribution of the 

correlation matrix and typically an order of magnitude faster than that of the LMS algorithm. 

For a detailed discussion of the RLS's properties and its recent developments, please refer 

to [51,58,59]. 

2.5.4 Compar i son of Computa t iona l Complexi t ies 

In our context, the computational complexity of the adaptive algorithm employed in the GSC 

is of great concern and our primary aim is to find low-complexity implementations of the adap-

tive algorithm in the GSC environment. As the computational complexity of an algorithm 

is also dependent on the processors we use, e.g. fix-point processors or floating-point proces-

sors, we here only consider the number of multiplications in each step as an indication of the 

computational complexity of an adaptive algorithm. Since the computational complexities for 

real-valued and complex-valued signals are different, we will discuss them separately. More-

over, for single-channel and multi-channel adaptive filters, as in the GSC case, the input signal 

vector X has different signal structures, which can also afi'ect the computational complexity. 

In the following discussion, la is the total number of adaptive weights for both the single and 

multi-channel cases. 

2.5.4.1 Real Input Signal 

For the LMS algorithm, la multiplications are required to calculate the output e[n], one multi-

plication for the product of e[n] and /i, and la multiplications for the final multiplication with 

x[n], totaling to 2/^ + 1 multiplications. 
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The NLMS needs 2 additional multiplications to update the value in (2.89) for a single-

channel system and L + 1 multiplications for an L-channel system. In total this yields 21^ + 3 

and 2la + L + 2 multiplications for single and multichannel realisations, respectively. 

For the RLS algorithm, la multiplications are required to calculate the output e[n], 21^ + 

multiplications to calculate S[n] according to (2.99), and ll + la multiplications for the weight 

update in (2.100). In total, its computational complexity will be 3/^ + 3la multiplications. 

For convenience, we summarize these results in Tab. 2.1. 

2.5.4.2 Complex Input Signal 

For the LMS algorithm, we needs Ala real multiplications to calculate the output e[n], two real 

multiplications for the product between e[n] and n, and 4la real multiplications for the final 

multiplication with x[rz]. So, it totals to 8la + 2 real multiplications. 

The NLMS needs an additional three real multiplications in the single-channel case and 

2L + 1 in the L-channel case to update /i in (2.89), and the total computational complexity 

will be 8la + 5 or 8la + 2L + 3 real multiplications. 

For the RLS algorithm, it requires Ala real multiplications to calculate the output e[n], 

All + 4L real multiplications to calculate the complex result of /3 + x-^[n]S[n —l]x[n] of (2.99), 

additional 4/^ + 4 real multiplications to get S[ri], and 4/^+4/^ real multiplications for the weight 

update in (2.100). In total, its computational complexity is 12/^ + 12/^ -f- 4 multiplications. 

These complexities are also given in Tab. 2.2. 

As shown in Tabs. 2.1 and 2.2, the RLS algorithm has a much higher computational com-

plexity than the LMS-type algorithms. Although recently a fast stable RLS algorithm has been 

introduced with a computational complexity of order 0{la) [59], it is still more costly than 

LMS-type algorithms. Therefore, in our simulations we will only use the LMS-type algorithms, 

especially the normalised LMS algorithm. 

Tab. 2.1: Computational complexities for real input signal: 

adaptive algorithms real multiplications (single-channel) real multiplications (L-channel) 

LMS 2la + 1 2la + 1 

NLMS 2la + 3 2la -\- L 2 

RLS + 3la 31^ + 3la 
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Tab. 2.2: Computat ional complexit ies for c o m p l e x input signal: 

adaptive algorithms real multiplications (single-channel) real multiplications (L-channel) 

LMS 8la + 2 8la + 2 

NLMS 8la + 5 8la ~l~ 2-Zj 3 

RLS 12/g 12/a -f- 4 12Zg + 12/(j 4- 4 

2.5.5 Frequency-domain and Subband A d a p t i v e Algor i thms 

Tab. 2.1 and Tab. 2.2 show that the computational complexities of an adaptive algorithm are in 

general of the order of 0{la) for LMS-type or 0{ll) for RLS-type algorithms , which increases 

dramatically with the length of the adaptive filter. To reduce the large computational com-

plexity imposed by using long adaptive filters, we can use frequency-domain adaptive filtering 

(FDAF) algorithms [60,61], which are based on block by block updat ing strategies whereby the 

filter convolution and the gradient correlation can be performed efficiently using fast Fourier 

transformation (FFT) algorithms [62]. Since the output and weight update are computed only 

after a large block of data has been accumulated, the computational complexity can be signif-

icantly reduced. Moreover, due to the approximately uncorrelated output signals of the FFT, 

difi'erent stepsizes can be used for difi'erent frequency bin outputs. As a result, the convergence 

speed of the algorithm may be improved. 

The DFT, as employed in frequency-domain adaptive algorithms, can be viewed as a filter 

bank with maximal decimation [63,64]. Because of its relatively poor frequency resolution, 

the DFT filter bank has a large degree of spectral overlap between the adjacent frequency 

band, which can lead to severe aliasing distortion and may cause a problem when the input 

data do not exactly lie on a frequency bin [65]. As an alternative, subband adaptive filtering 

algorithms have been developed [58,61,66-69], which are capable of achieving a reduced spectral 

overlap. We will use subband adaptive filtering algorithms in our GSC structure for reducing 

its computational complexity. The corresponding details will be discussed in the next chapter. 

2.6 S u m m a r y 

In this chapter, we have provided an introduction to the basic ideas of beamforming, specif-

ically focusing on the GSC structure, which constitutes an alternative implementation of the 

linearly constrained minimum variance beamforming. The GSC transforms the constrained 

optimization problem into an unconstrained one, which can be solved by standard adaptive al-
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gorithms. Various problems relating to the LCMV beamformer and the GSC have been briefly 

discussed, such as the formulation of the constraints, the optimum solution, and the blocking 

matrix design. Especially, a simplified GSC with tapped-delay lines after the quiescent vector 

and blocking matrix has been detailed. Commonly used adaptive algorithms for optimising 

the GSC's coefficients are also introduced, and their computational complexity is analysed . 

To reduce the computational complexity of a broadband GSC system, we will employ subband 

adaptive algorithms in its adaptive part in the next chapter, which will lead to the proposition 

of a novel subband adaptive GSC. 



Chapter 3 

Subband Adaptive Generalised 

Sidelobe Canceller 

In this chapter, based on the generalised sidelobe canceller structure in Fig. 2.7, we employ 

subband adaptive filtering techniques in the unconstrained adaptive part and propose a novel 

subband adaptive GSC structure for broadband beamforming [32,33]. Amongst other ad-

vantages, the proposed scheme aims to be computationally less complex than the algorithms 

outlined in Section 2.5. First, we give a brief overview of the fundamentals of filter banks in 

Section 3.1 and subband adaptive filtering techniques in Section 3.2. In Section 3.3 the struc-

ture of our proposed subband adaptive GSC is presented. Simulation results will be discussed 

in Section 3.4 to demonstrate the benefits of the proposed method. 

3.1 F u n d a m e n t a l s of Fi l ter B a n k s 

Filter banks [58, 63, 64, 70, 71] constitute a set of filters designed for signal decomposition, 

reconstruction and processing. Since typically different sampling rates are employed in different 

parts of the system, they are sometimes referred to as multirate filter banks. The basic idea 

behind it is to split the signal spectrum into reduced-width subbands, which can be sampled at 

a lower rate due to the reduced bandwidth. Individual bands then may be treated separately 

during further processing such as audio coding [72-76], image coding [77-80] and adaptation [58, 

61,66,67,81,82]. After processing, these subband signals can be reconstructed using a synthesis 

filter bank to obtain a system output at the original sampling rate. Fig 3.1 shows the general 

structure of a ii'-channel filter bank using a decimation factor N, where the input signal x[n] is 

decomposed into K subbands by an analysis filter bank and hence each subband is decimated 

by a factor of N < K. After upsampling, these subbands are recombined by a synthesis filter 

bank to yield the fullband output signal x[n]. In general, we consider systems that are of perfect 

35 
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hoin] 

x[n] x[n] h^[n] 

: 
h^Jn] 

Ey 

n 

8oln] 

analysis filter bank synthesis filter bank 

Fig. 3.1: General structure of a jT-channel filter bank with a decimation factor of N. 

reconstruction (PR) [83,84], where the output signal x[n] will be identical to the input x[n] 

except for a time delay. 

In the following, we will first give an introduction to the basic operations in multirate signal 

processing and then analyse the PR conditions of filter banks. Finally, we will briefly discuss 

the design and implementation of a family of oversampled generalised DFT (GDFT) [85] filter 

banks [58], which will be used in our subband adaptive GSC. 

3.1.1 Basic M u l t i r a t e Ope ra t ions 

3.1.1.1 Decimation and Interpolation 

Decimation and interpolation [63, 64] are the operations used to alter the sampling rate in a 

system and are represented as shown in Fig. 3.2 and Fig. 3.3, respectively. 

Decimation is the process of reducing the sampling rate of a signal by an integer factor N, 

where the fullband signal x[n] is first passed through an anti-aliasing filter h[n\, typically with 

a low-pass characteristic, and then downsampled to a lower sampling rate. 

A downsampler is also referred to as a subsampler and represented by a circle with | N 

inside. This operation retains only every Â -̂th sample of its input and then relabels the index 

axis. An example of a downsampling process by # = 3 is shown in Fig. 3.2(b). 

In time domain, the downsampling operation can be expressed as 

y[n] = x[Nn] . 

Its frequency-domain equivalence is 

N-L 
JC-

(3.1) 

(3.2) 

n=0 

where X{e^^) and Y{e^^) are the Fourier transforms of the input and output signals of the 

downsampler, respectively. 
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(a) x[n] 
h[n] 

x[n] y[n] 

(b) 

0 1 2 3 4 5 6 7 8 9 1 0 n 

y[n] 

3 n 

Fig. 3.2: Decimation operation by a factor of N: (a) anti-aliasing filter and downsampler; (b) 

example for a downsampling operation by TV = 3. 

(a) 
• ( g ) 

y[n] 
g[n] 

y[n] 

y[n] 

3 n 

0 1 2 3 4 5 6 7 8 9 1 0 n 

Fig. 3.3: Interpolation operation by a factor of N: (a) upsampler and interpolation filter; (b) 

example for a upsampling operation by N = 3. 



3.1.1. Basic Multirate Operations 38 

It can be seen from (3.2) that downsampling creates — 1 aliased terms, 

n 7̂  0 in its output Therefore, it can lead to loss of information, known as aliasing, 

if aliased terms overlap in frequency. To avoid aliasing, the bandwidth of the input signal has 

to be appropriately limited, e.g. to a lowpass signal having a bandwidth lower than ir/N. For 

this purpose, an anti-aliasing filter h[n] is often employed prior to downsampling. 

Interpolation is the process of increasing the sampling rate of a signal, and is achieved by 

the combination of an upsampler and a lowpass filter as shown in Fig. 3.3 (a). An upsampler 

is also referred to as an expander, and upsampling by an integer factor of N is achieved by 

inserting N — 1 zeros in between successive samples of the original signal. In the time domain, 

upsampling is represented by 

: " = 0 .±iV,±2]V, . . . (3,3) 

[ 0 : otherwise 

An example for an upsampling process by a factor of A" = 3 is shown in Fig. 3.3 (b). 

In frequency domain, upsampling is denoted as 

7(6^'") = , (3.4) 

which means that the output spectrum Y{e^^) is related to the input spectrum by a compression 

by a factor of N. 

Finally, the time-domain representations for decimation and interpolation operations, which 

include the filtering in Fig. 3.2 (a) and Fig. 3.3 (a), are given by 

Decimation: y[n] = h[Nn — k] x[k] ; 

Interpolation: y[n\ = Y^j^g[n — A'A:] x[k] . (3.5) 

3.1.1.2 Multirate Identities 

There are several multirate identities, also known as Noble identities [63,64], which are equiv-

alent structures of multirate building blocks. In particular. Noble identities can be applied to 

simplify the derivation of the perfect reconstruction condition of filter banks and the manip-

ulation of multirate building blocks. Fig. 3.4 shows two useful multirate identities that are 

commonly used [63,64]. 

3.1.1.3 Polyphase Decomposit ion 

Polyphase decomposition [86, 87] is an important tool in multirate signal processing and can 

greatly simplify the analysis and implementation of filter banks. In order to derive the PR 



3.1.1. Basic Multirate Operations 39 
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H(z) 
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fb) 

Fig. 3.4: Equivalent structures for (a) upsampling and (b) downsampling, where H{z) is the 

z-transform of a filter. 

condition of filter banks in matrix form, we need to decompose the analysis and synthesis 

filters into their polyphase components. In the following, we review two different types of 

polyphase decompositions. 

For any sequence h[n], we can always define a series of subsequences hi[n] as follows 

hi[n] = h[Nn + i], i = 0,1, • • • , N — 1 . 

The z-transform Hi(z) of a subsequence hi[n] is given by 

= AM + + 27V]z-^ + . 

Then the z-transform of h[n], namely H{z), can be expressed as 

(3.60 

(3/0 

N-l 

(3.8) 
1 = 0 

We refer to (3.8) as the Type-I polyphase decomposition of H{z) and Hi{z), z = 0,1, • • • , 1, 

are the N Type-I polyphase components of H{z). 

A similar decomposition to (3.8), referred to as the Type-II decomposition, is given by 

W — h\N'iii + Â  — 1 — %\, i — 0 , 1 , - - - , N — 1 , (3.9) 

and 

N-l 

B-(z) = (3.10) 
1 = 0 

where Hi{z) is the z-transform of hi[n]. Therefore, the polyphase components Hi{z) and Hi{z) 

are related by 

Hi{z) = Fjv-i-i(z) . (3.11) 
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3.1.2 Per fec t Recons t ruc t ion Condi t ion for F i l t e r Banks 

Let us now study the PR condition of the K'-channel filter banks with a decimation factor 

of N as shown in Fig. 3.1. When N = K, the corresponding scheme is referred to as a 

critically decimated filter bank, whereas when N < K, it becomes an oversampled system. The 

PR condition discussed here is applicable to both the oversampled and critically decimated 

systems. 

First we express the z-transforms of the analysis filters hk[n] and synthesis filters gk[n], 

k = 0,1, • • • , K ~1, in vectorial form as follows 

h(z) = [77o(z) j f i (z) . . . (3.12) 

g W = [GoW G i W . . . G j r - i W r . (3.13) 

Then we decompose the analysis filters into their type-1 polyphase components 

N-l 

k.n 
^N\ (3.14) 

n = 0 

and the synthesis filters into their type-II polyphase components 

N-l 

(3.15) 
n = 0 

where Hk^n{z) and Gk,n{z) are the n-th polyphase components of the k-th analysis filter and 

synthesis filter, respectively. Now the vectors h(z) and g(z) can be expressed in their polyphase 

form as 

h{z) = 
(z") 

z 

1 

-(jV-1) 

= E(z^) .e ;v , (3.16) 

B(z^) EPF 

and 

g^(z) = [z = ^-(^-2) . . . !]• 

ejv 

(?o,o(^^) Gifi{z^) 

(?0,l(.2^^) (?l,l(^^) 

Gjir-i,o(^^) 

GAr-i,i(^^) 

Gk-I,N-I{z^) 

e ^ . R ( z ^ ) . (3.17) 

The matrix B(z) in (3.16) is referred to as polyphase analysis matrix, while R(2:) in (3.17) is 

its dual, a so called polyphase synthesis matrix. 
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Fig. 3.5: Polyphase representation of Fig. 3.1. 

x[n] 

Z-: 

Z-: 

z-^ x[n] 

Fig. 3.6: Polyphase representation using multirate identities. 

Using (3.16) and (3.17), we can redraw Fig 3.1 in its polyphase representation, as shown 

in Fig 3.5. Using Noble identities as introduced in Sec. 3.1.1.2, we can shift the downsamplers 

to the left-hand side of the analysis polyphase matrix and replace by z in the argument of 

B(z^). Similarly, we can shift the upsamplers to the right-hand side of the synthesis polyphase 

matrix and obtain the structure shown in Fig 3.6, which can be further simplified to the form 

shown in Fig. 3.7 with P(z) = R(z) • E(^). 

It is shown in [88] that the general PR condition is given by 

P W cz 
0 lAT-r 

Z^^Ir 0 
(3.18) 

where c is a nonzero constant, and a and r are integers with 0 < r < [N — 1). Under this 

condition the input-output relationship becomes 

x[n] = cx[n — no] , 

where no = Na + r -|- A/' — 1 is the delay of the overall system. 

A useful sufficient condition is 

P(z) = z - ' ' . I,v , 

(3.19) 

(3.20) 
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Fig. 3.7: Equivalent structure of Fig. 3.6 with P(z) = R(z) • E(z). 

which corresponds to the case where r = 0. The equivalent form in the time domain for (3.20) 

is given by [89] 

^ 0 < 2,; < - 1 , (3.21) 

where S[l] is the Kronecker delta function. By this condition, the system in Fig. 3.6 reduces to 

a multiplexer and a demultiplexer in the analysis and synthesis banks, and we get 

x[n] = x[n — no] with no = Na N — 1 . 

3.1.3 Oversampled Modu la t ed Fi l ter Banks 

(3.22) 

In the /T-channel filter banks shown in Fig. 3.1, the filters hk[n] and Qkln], ̂  = 0,1, • • • ,K — 1, 

may differ from each other and need to be correctly designed to satisfy the PR condition. In 

order to reduce the design and implementation complexity, we can use modulated filter banks, 

where both the analysis filters hk[n] and the synthesis filters gk[n] are derived from a prototype 

lowpass filter by some suitable modulation. Popular modulations for this purpose include 

cosine modulation [90], extended lapped transforms [91] and the discrete Fourier transform 

(DFT) [85,92]. By modulation, the design of the PR filter banks is reduced to the design 

of the prototype filter and the implementation can be realized by the coefficients of prototype 

filter and the modulation block. Here we focus on a class of oversampled modulated filter banks 

with N < K, which are referred to as generalised DFT filter banks [85]. In such filter banks, 

the analysis filters are derived from a real valued lowpass prototype FIR filter p[n] of length Ip 

by a generalised discrete Fourier transform (GDFT) [85] according to 

hk[n] = k — 0,1, • • • ,K — 1 and n = 0,1, • • • , /j, — 1 . (3.23) 

The term GDFT as defined in [85] stems from the offsets ko and no introduced into the frequency 

and time indices of the DFT, which will be justified below. According to (3.23), the spectrum 
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of the resultant analysis filters hk[n] are spectrally shifted versions of the prototype filter p[n] 

along the frequency axis by 2Tx{k + ko)/K. Specifically, in conjunction with ko = 1/2, for a 

real-valued input signal x[n] it is sufficient to only process t he first i^/2 subbands covering 

the frequency interval [0; tt] as the remaining subbands are the complex conjugate versions of 

these subbands. For the full effect of the frequency offset ko, please refer to [85]. In some 

applications such as image coding [77-80], maintaining a linear phase is required, which can be 

fulfilled by choosing 

lio = (3.24) 

along with a real-valued linear phase prototype filter p[n] of even length. 

If the prototype filter is designed such that the polyphase analysis matrix B(z) is parauni-

tary, i.e. 

E^(z-^)E(z) = c l , (3.25) 

then we can simply choose the polyphase synthesis matrix as R ( z ) — {z^^) in order to 

comply with the PR requirement of (3.20). In this case, the impulse responses of the analysis 

and synthesis filters are time-reversed, complex conjugate versions of each other 

gk[n] = hl[lp — 1 — n] . (3.26) 

If the analysis filters are linear in phase, (3.26) will become 

gk[n] = hk[n], n = 0,1, • • • , /p - 1 . (3.27) 

The modulation approach allows for both low memory consumption for storing filter coeffi-

cients and an efficient polyphase implementation. The latter even works for non-integer over-

sampling ratios K/N, and allows a factorisation of the filter bank into a real-valued polyphase 

network only depending on the prototype filter [58,93]. The output of this network is rotated 

by a GDFT transform [85] , which can be mainly implemented using an FFT. According to [94], 

the number of real multiplications required to implement the G D F T filter banks is 

C S ' f t = + log! K + 4K) (3.28) 

for a real-valued input signal and 

ex 

N 
== i;? (aZp 'Uf lofSs-R: 4- sjsr) (21.29) 

for a complex-valued input signal. 

Furthermore, the filter bank design reduces to an appropriate choice of the prototype filter, 

which has to satisfy two criteria. Firstly, its attenuation in the stopband, O G [7r/7V;7r], has to 
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Fig. 3.8: Frequency response of a prototype filter with length Ip = 448 designed by the iterative 

least-squares method in [2] [K = 16, = 14). 

be sufficiently large. Every frequency of the input signal x[n] lying within the interval [n/N] tt] 

will be aliased into the baseband after filtering and downsampling and hence will cause a 

distortion of the subband signal. A second constraint on the design is the PR condition. If the 

stopband attenuation of the prototype filter is sufficiently high for suppressing aliasing, this 

condition reduces to the consideration of inaccuracies in power complementarity [64], 

K-L 

= 1 , V Q . (3.30) 
k=0 

A prototype filter approximating these constraints can be constructed by, for example, 

iterative least-squares methods [2,95] or dyadically iterated halfband filters [58,96,97]. Fig. 3.8 

shows a prototype filter with length of Ip = 448 designed by an iterative least-squares method 

according to [2] for a, K = 16 channel GDFT filter bank with a decimation factor of = 14. 

3.2 S u b b a n d A d a p t i v e F i l te r ing 

The subband adaptive filtering (SAF) technique [58,61,66,68,69] has been widely applied to 

problems such as acoustic echo cancellation (AEG) [67,81,98], identification of room acous-

tics [99], or equalisation [100-102], where a large number of adaptive parameters have to be 

adjusted and as a result, the computational complexity can be very high and the convergence 

rate of the adaptive filter can be slow using standard techniques. Similar problems arise in 



3.2. S u b b a n d Adap t i ve Fi l te r ing 45 

A n a l y s i s f i l t e r b a n k 

d e s i r e d s i g n a l 

i n p u t e r r o r 

A n a l y s i s f i l t e r b a n k S y n t h e s i s f i l t e r b a n k 

S u b b a n d 

a d a p t i v e 

f i l t e r s 

Fig. 3.9: A general SAF setup; the subband splitting and fullband error reconstruction is 

performed by filter banks. 

broadband beamforming where arrays with a large number of sensors and filter coefficients 

have to be employed to perform beamforming with high interference rejection and resolution. 

Therefore general fullband adaptive systems, and in particular beamforming algorithms, can 

be computationally very costly to implement. A reduction in complexity can be achieved by 

processing in decimated subbands. Furthermore, the separation into frequency bands can bring 

additional advantages such as parallelisation of processing tasks and reduced spectral dynam-

ics [67]. 

A general SAF system is shown in Fig. 3.9. There, both the input signal and the desired 

signal are split into decimated subbands by analysis filter banks, then the subband adaptive 

filters, which run at a lower, decimated sampling rate compared to the original fullband system 

as illustrated in Fig. 2.10(a), are employed to estimate the subband desired signals using the 

subband input signals. The resultant subband error signals are then reconstructed into a 

fullband error signal by a synthesis filter bank. 

Depending on the filter banks employed, the subband adaptive filters can have different 

structures. In the case of critically decimated filter banks, where the decimation ratio N equals 

the number of uniform subbands K, we need either cross-terms at least between adjacent 

frequency bands [67], which compensate for the information loss in the region of spectral overlap, 

or gap filter banks [68,103], which introduce spectral loss to avoid problems with aliasing. The 
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Fig. 3.10: An oversampled SAP system with adaptive filters working independently in K 

decimated subbands. 

drawbacks are, that the inclusion of cross-terms requires multichannel adaptive algorithms with 

generally slower convergence and increased computational cost, while the distortion incurred 

through the application of gap-filter banks may not be acceptable. 

Oversampled SAP systems with a decimation ratio N < K are designed such that after 

decimation the alias level within the subbands is kept sufficiently low. Therefore, an inde-

pendent subband adaptive filter can be operated in each of the corresponding subbands as 

shown in Fig. 3.10. Differences arise for the decimation of complex or real valued frequency 

bands. The decimation of real valued bandpass signals is generally complicated, and real val-

ued signals have to be either modulated into the baseband prior to decimation by, for example, 

single sideband modulation (SSB) [85,95], or their bandwidth and decimation ratio have to be 

chosen in accordance with the bandpass sampling theorem [104], leading to non-uniform filter 

banks [105-107]. In contrast, the decimation of complex valued bandpass signals with any 

integer factor N < K is straightforward. Therefore, in our following work employing subband 

adaptive filtering techniques, we focus on SAP systems that are based on oversampled GDPT 

filter banks, performing a particular type of complex-valued subband decomposition. In gen-

eral, complex-valued filter banks can be shown to be at least as efficient to implement as their 

real-valued counterparts 

In SAP, the adaptive filter length in each subband can be selected shorter compared to a 

fullband adaptive filter in accordance with the sampling rate reduction by a factor oi N < K. 
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Fig. 3.11: A qualitative description of the computational complexities of fullband and subband 

adaptive methods for (a) LMS and (b) RLS adaptation. 

The precise adaptive filter length Igub in each subband with similar modelling capabilities as a 

fullband adaptive filter of length If^ii is however not only determined by the decimation rate N , 

but also requires an offset term introduced by transients caused by the filter banks [58,67,108]. 

There is dispute about the exact length of Isub and we here only give the heuristic but still 

conservative result [58] 

^ J-full ~l~ 

N 
(3.31) 

where Ip is the length of the prototype filter used in the analysis filter bank. If we consider a 

large adaptive system, in general Ip <C Ifuii and hence the approximation Isub = arises. For 

(3.31) being conservative [58] and for sake of simplicity, we will always assume Isub = 

Performing adaptive filtering in decimated subbands has three main advantages, which are 

detailed below: 

1. Reduction in Computational Complexity 

Firstly, as mentioned, the adaptive filter length required in each subband can be shortened 

approximately by a factor of < AT compared to a fullband adaptive filter. Secondly, 

the updating of the adaptive filters is carried out at a lower sampling rate. Following the 

approach of [95,109], we only consider the computational complexity of the subband adap-

tive part, i.e. do not include the extra computational overhead involved in the subband 

decomposition operation carried out by filter banks. Under this assumption, performing 

adaptation in the subbands yields a reduction in the computational complexity. Specif-

ically, the complexity is reduced by a factor of 0{K/N'^) for LMS-type algorithms and 
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0{K/N^) for RLS algorithms. Therefore, it is advantageous in terms of computational 

cost to keep the oversampling ratio K/N close to unity, i.e. choose a non-integer oversam-

pling ratio. However, considering the subband decomposition and adaptation as a whole, 

the SAF method does not necessarily save computations. If the adaptive filter is of a 

relatively short length, the extra computational load of the filter banks is likely to exceed 

any reduction of computational complexity achieved in the subband adaptive part. In 

this case, the SAF method may need a higher number of arithmetic operations than its 

fullband equivalent. With the increase of the adaptive filter length, the reduction of the 

computational complexity achieved by the subband adaptive part will become more sub-

stantial. Since the complexity of the filter banks is fixed, the overall SAF system will have 

a lower computational complexity than the fullband adaptive system. When the length 

of the adaptive filter is sufficiently high, the computations involved in the filter banks 

can be ignored and the reduction ratio for the whole subband adaptive system will be 

approximately 0{K/N^) for LMS-type algorithms and 0(K/N^) for RLS algorithms. A 

qualitative discription of the computational complexity of both the subband and fullband 

methods is provided in Fig. 3.11. 

2. Spectral Prewhitening 

For LMS-type algorithms, the convergence speed is governed by the eigenvalue spread, 

which is linked to the spectral dynamics of the input to the adaptive filter [51]. As a result, 

coloured input signals with a non-uniform spectral distribution, such as speech signals, 

cause slow convergence for such fullband algorithms. The separation of the spectrum into 

spectral intervals as performed by the subband decomposition results in reduced spectral 

dynamics in each of the subbands with respect to the fullband and therefore can enable 

faster adaptation. 

3. Parallelisation 

The structure of the subband adaptive system of Fig. 3.10 presents a natural paral-

lelisation of the fullband processing task, that can be exploited by processing separate 

subband tasks on different processors [67]. This can be useful in cases where the subband 

approach alone does not give the required complexity reduction in order to implement a 

given problem in real-time on a given processor. 

In the next section, we will applying the subband adaptive filtering techniques to broadband 

digital beamforming and propose a subband adaptive generalised sidelobe canceller. 
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Fig. 3.12: A subband beamforming structure based on the GSC as proposed in [1,3,4]. 

3.3 S u b b a n d A d a p t i v e Genera l i sed S ide lobe Canceller 

In the past, the application of subband methods to adaptive beamforming such as microphone 

or antenna arrays has been studied by a number of researchers [1,3,4,24-26,110-112]. The 

basic idea is to first split each of the received sensor signals into subbands and then operate an 

independent beamformer in each of the subbands, whereby the subband beamformer is selected 

according to the specific applications. In LCMV beamforming, subband based methods are 

employed to reduce the computational complexity and improve the convergence speed of a 

broadband beamformer [1,3,4], whereby the received sensor signals are split into decimated 

frequency bands ("subbands"). An independent beamformer, such as a generalised sidelobe 

canceller [29] can be applied to each of these subbands as shown in Fig. 3.12, where M is the 

number of sensors and K is the number of channels in the employed filter banks. In this method, 

we are restricted to use the same number of analysis filter banks as the sensor number M, and 

also the same number of GSCs as the subband number K, because we have to split each of the 

sensor signals into subbands and apply a GSC to each of the corresponding subbands. When 

the number of sensors and subbands is high, these operations will impose a high computational 

load on the system. Moreover, in this method, the fullband constraints of the beamformer and 

in particular the response vector f, have to be decomposed into subband-based constraints in 

order to construct the GSC for each of the subbands [3]. This projection can incur inaccuracies 

because of the non-perfect reconstruction property of the filter banks and the limited number 

of weights to represent the constraints in each of the subbands. 

To overcome these problems, we propose a different subband adaptive structure based on 
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Fig. 3.13: Subband adaptive GSC structure with analysis (A) and synthesis (S) filter banks. 

the GSC [33]. In contrast to Fig. 3.12, the sensor signals are directly fed into the GSC, and the 

outputs of the GSC's blocking matrix are split into subbands, in which independent adaptation 

is performed. By this approach, we use a single GSC and apply it to the fullband sensor 

signals directly, thus bypassing any decomposition of constraints. In addition, the number 

of analysis filter banks used is the same as the number of blocking matrix outputs, which 

can be considerably lower than the sensor number, especially for partially adaptive GSCs [14, 

15]. Therefore, the computational complexity of our method is reduced further than in the 

previous methods reviewed above. Starting from the fullband beamformer in Fig. 2.7, we first 

introduce our proposed subband adaptive GSC in Sec. 3.3.1 and its computational complexity 

in Sec. 3.3.2. Sec. 3.3.3 discusses how an equivalent fullband beamformer is derived from the 

subband adaptive GSC in order to e.g. calculate a beam pattern. Simulations and results are 

given in Sec. 3.4. 

3.3.1 S t r u c t u r e 

Considering the multichannel characteristics of the GSC adaptation, when applying SAF tech-

niques to the MCAF in the GSC structure in Fig. 2.7, the subband setup as shown in Fig. 3.13 

arises, where the blocks labelled 'A' are analysis filter banks, splitting each of their inputs 

into K decimated frequency bands. Both the blocking matrix output signals Um[n\, m = 

0,1, • • • ,M—S— 1 and the upper path output d[n] = • x[n] are split into subbands by 

analysis filter banks and in each corresponding subband, an MCAF system is set up to perform 

an unconstrained optimisation based on the subband error signal ek[n], k = 0,1, •••, K — 1. 

These subband error signals are then reconstructed to a fullband beamformer output e[n] by 
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the synthesis filter bank, labelled 'S' in Fig. 3.13. 

The above adaptation operating in subbands requires considerably less coefficients in the 

temporal dimension than a fullband beamformer. As a rule of thumb, the reduction in filter 

length is approximately N, where N is the decimation factor employed in the filter bank. This 

is particularly useful if the fullband beamformer in Fig. 2.3 has long filters J 3> 1, as is required 

for high resolution broadband beamforming. 

In the structure of Fig. 3.12, each GSC has an MCAF block, which will be the same as 

the one in Fig. 3.13 as long as the constraints are decomposed into each subband without any 

error. In MVDR beamforming, when the delay imposed by the response vector f, i.e. the 

position of the element 1 in f, is an integer multiple of the decimation ratio N of the filter 

banks, such decomposition will be perfect [67,108]. Since f is set to be f — [1 0 0 • • • 0]^ in 

our simulations, it can be expected that almost no performance difference will be observed in 

this case between the methods in Fig. 3,12 and Fig. 3.13, which will be shown in our simulation. 

3.3.2 Analysis of t h e Computa t iona l Complex i ty 

In Chap. 2, we have shown that the dimension of the blocking matrix B is M x (M — S) when 

S"—1 order derivative constraints are imposed. However, we will see later in Chap. 4 that B can 

be an M X L-dimensional matrix with L < M — S, where the case of L < M ~ S corresponds 

to a partially adaptive GSC [14,15], whereas L = M — S is the fully adaptive scenario. To 

make our discussion general, we will assume the dimension of B to be M x L, and its L output 

signals will be Um[n], m = 0,1, • • • ,L — 1. 

For the fullband GSC, its adaptive part is an L-channel adaptive system with a complexity 

as given in Tab. 2.1 and Tab. 2.2, where the total number of the adaptive filter coefficients 

is la = L • J. Moreover, because both B and Wg are real-valued, they will need a total of 

{ML + M) or 2(ML + M) real multiplications for real or complex input signals, respectively. 

For our proposed subband adaptive GSC, the quiescent vector and the blocking matrix 

require the same number of multiplications as the fullband GSC. The subband adaptive part 

of the structure is composed of the filter banks and the adaptive part, which will be analysed 

separately in the following. 

For the filter banks, there are a total of L + 1 analysis filter banks and one synthesis 

filter bank. Let us assume that we employ oversampled GDFT filter banks with a prototype 

filter of length Ip. Then for each filter bank {Ip 4- logg A" + real multiplications 

are necessitated for a real-valued input and ^ {2lp + 4:K logg K + 8K) real multiplications are 

required for a complex-valued input, as given in Equations (3.28) and (3.29). Thus, the total 

number of real multiplications required for the filter banks is [Ip 4- 4jiT logg + 4jiT) or 
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(2lp + 4Klog2K + 8K) for real or complex-valued input, respectively. 

For the adaptive part, in general, it yields a reduction in computational complexity by a 

factor of 0{K/N'^) for LMS-type algorithms and 0{K/N^) for RLS algorithms, as mentioned 

earlier. More specifically, in the real-valued input case, it requires ^ { 8 L J / N -f 2) (LMS), 

^(8Z:j/7V + 21, + 3) (NLMS) or 4- 4) (RLS) real multiplications, 

because the number of adaptive filter coefficients required for each of the subband MCAF is 

LJ/N and only K/2 number of complex subbands decimated hy N < K have to be pro-

cessed. If the array input signals are complex-valued, then the computational complexity will 

be ^(8Z,J/Ar + 2) (LMS), ^(8i:j /Ar+2I, + 3) (NLMS) or ^(12( i ; j /# )2 -H2i ; j /7V+4) (RLS) 

because we have to process all of the K subband MCAFs. 

The above computational complexities are summarised in Tab. 3.1. To compare our method 

with the one in [1,3], Tab. 3.1 also includes the computational complexity of the system in 

Fig. 3.12. As its adaptive part is the same as that in our proposed method, it has the same com-

putational complexity for that part. However, there are a total of M -t- 1 filter banks involved, 

which have a complexity of {Ip -f- AK logg K + 4K) and {2lp + iK logg K -I- 8K) real 

multiplications for real-valued and complex-valued sensor signals, respectively. For the quies-

cent vectors and blocking matrices, y • 2(ML -t- M) or K • 2 (ML + M) real multiplications are 

required in the context of real or complex sensor signals. 

Example. In order to characterise the achievable computational complexity reduction, we 

give an example for a beamformer having M — 12 sensors, each with a variable number of J 

coefficients. The first-order derivative constraint {S = 2) is applied, hence we have L—M — 2. 

By employing the oversampled GDFT filter banks [94] having K = 8 channels as characterised 

in Fig. 3.14 with near perfect reconstruction and a decimation factor of jV = 6, J/N number of 

coefficients are used in each channel of the subband MCAF block. The prototype filter for the 

GDFT filter banks has a length of Ip = 96. Then for a real input sensor signal, the number of 

real multiplications required for the fullband adaptive GSC, for the subband GSC of Fig. 3.12 

and for our proposed subband adaptive GSC expressed as a function of the adaptive filter 

length J using the NLMS algorithm can be shown in Fig. 3.15. 

Note that the results shown in Tab. 3.1 are based on the most general case of the blocking 

matrix. If B is formed by the CCD method, then there will be no multiplications in the blocking 

matrix, and the term (ML + M) seen in Tab. 3.1 accounting for the operations in the quiescent 

vector and the blocking matrix is reduced to M. 
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Tab. 3.1: Computat ional complexit ies for fullband and subband GSCs: 

GSC structure real multiplications (real-valued sensor signal) 

fullband GSC 

LMS (Mi; + M) -k (2Z,J-H) 

N L M S (^ML Af) -t- (2LJ 4- 2Li -t- 2) 

RLS (MZ; -H M) -k (31,^ 3i: J) 

G S C (Fig. 3.12) 

LMS + M) + ^ (Zp + 47nog2 jiT + 4Ar) ^ ( 8 ^ -k 2) 

NLMS K(^ML 1 M) 1 jv ' 4]^ logg 1 ' 2Ar(®7\r ' 1" 3) 

RLS + M) + ^ (Zp + 4Xiog2 + 4 j r ) 4- # ( 1 2 % ^ + 1 2 ^ + 4) 

proposed GSC 

LMS (Mi: + M) + (Zp -k 4]^log2 7^ + 4]^) + ^ ( 8 ^ + 2) 

N L M S {ML + M) -f {Ip 4- 47^logg K -f- 4i^) 4- ^ ( 8 ^ -I- 2L -I- 3) 

RLS ( M Z , + M ) + ^ (Zp + 47nog2 AT + 4jr) + # ( 1 2 % ! -H 1 2 ^ + 4) 

GSC structure real multiplications (complex-valued sensor signal) 

fullband GSC 

LMS 2(Mi: + M) + (8Z,J4-2) 

N L M S 2{ML -|- Af) -f- (%IJJ -|- 2-L -t- 3) 

RLS 2(Mi; 4- M) -k (12i;^ -H 12i; J 4- 4) 

G S C (Fig. 3.12) 

LMS 2jr(MZ, -H M) 4- ^ (2/p -H 4̂ ^̂  logg + gjT) + ^ ( 8 ^ 4- 2) 

N L M S 2jr(Mj: 4- M) -k (2Zp 4- 4 ; n o g 2 4 - 8 ^ ) -k ^ ( 8 ^ + 2i: + 3) 

RLS 2j;r(Mi; + M) + ^ (2Ẑ  + 4A: log^ 4- 8]^:) -h # ( 1 2 ^ + 1 2 ^ + 4) 

proposed GSC 

L M S 2{ML -|- M) 4- (2Zp 4- 4A'log2 K 4- SK) 4- ^{8^ 4- 2) 

N L M S 2(Mi: 4- M) + (2Zp + 4Ariog2 4- 8jr) 4- ^ ( 8 ^ 4 - 2 1 + 3) 

RLS 2(MZ, + M) + (2/p + 4j;nog2 K + 8]r) 4- ^ ( 1 2 % ^ + 1 2 ^ 4- 4) 
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Fig. 3.14: Frequency response of a K = 8 channel filter bank decimated by = 6. 
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Fig. 3.15: An example of the computational complexities for different GSC structures. 

3.3.3 Recons t ruc t ion of Ful lband B e a m f o r m e r 

When the subband adaptive system reaches its steady state, we may want to calculate the 

fullband beamformer equivalent to the subband-structured beamformer in order to operate the 

beamformer in the fullband or to calculate its directivity pattern. Here, we use a procedure 

similar to [1] to determine the equivalent fullband model of our subband adaptive GSC. By 

this, each of the M branches of the beamforming structure in Fig. 2.3 has to be reconstructed 

separately according to the flow graph shown in Fig. 3.16. To yield the mth branch filter, the 

mth sensor signal is excited by the Kronecker delta function 5[n\^ while all other M—1 sensors 

receive a zero input. Assuming perfect adaptation of the subband components, the measured 

impulse response at the output of the subband adaptive GSC is a convolution of the mth filter 

of the equivalent fullband beamformer as shown in Fig. 1.1 and the distortion function t[n\. 
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Fig. 3.16: Reconstruction of the mth equivalent fullband beamformer branch from the 

subband adaptive structure. 

This procedure is equivalent to the method described for the determination of an equivalent 

fullband model for a general subband adaptive system [58]. 

The distortion function t[n] ideally only represents a delay. However, if the filter banks 

possess only a near perfect reconstruction property, t[n] generally carries a small amplitude and 

phase distortion. As in the case for general SAF systems [58], this limitation can be quantified 

a priori from the filter bank prototype by measuring its deviation from power complementarity. 

3.4 Simula t ions a n d Resu l t s 

In this part, we will first make a comparison of the performances between our proposed subband 

adaptive GSC and the subband GSC structure in Fig. 3.12 by a set of simulations to show their 

similarity in performance. To demonstrate the effectiveness of our subband-based method 

in relation to the fullband approach, another two sets of simulations are provided, whereby 

narrowband and broadband interfering signals are to be suppressed. 

3.4.1 P roposed M e t h o d versus t h e M e t h o d of Fig. 3.12 

We employ the same array as in the example specified in Sec. 3.3.2 with the subband decom-

position as given in Fig. 3.14. The filter length is set to J = 96. Our aim is to receive a white 

Gaussian signal of interest from broadside (0 — 0°) and to adaptively suppress a broadband in-

terfering signal covering the frequency interval Q, = [0.27r; 0.87r] arriving from a DO A oi 9 — 30° 

at a signal-to-interference ratio (SIR) of — 20 dB. Additionally, the sensor signals are corrupted 
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Fig. 3.17: Learning curves of the two subband methods based on CCD (8=1). 

by independent white noise resulting in a signal-to-noise ratio (SNR) of 20 dB. A normalised 

LMS algorithm with a step size of 0.3 is used in all cases. 

To assess the convergence of the two different beamformers, we consider the ensemble mean 

square value of the residual error, which is defined as the difference between the array output e[n] 

and the appropriately delayed desired signal from broadside. Fig. 3.17 and Fig. 3.19 compare 

the ensemble mean square residual errors of these two subband beamformers based on the CCD 

method employed for forming the blocking matrix, whereas Figs. 3.18 and 3.20 are based on the 

SVD method. In either case, these two subband beamformers have a fairly similar performance 

in terms of convergence speed and steady state error, as we have pointed out earlier in Sec. 3.3.1, 

while the computational complexities of the proposed scheme are only about 90% and 60% of 

those for the structure in Fig. 3.12 based on the CCD and SVD approaches, respectively. 

3.4.2 P roposed M e t h o d versus Ful lband M e t h o d 

In the following, the proposed subband method is compared to the fullband method in narrow-

band and broadband scenarios, respectively. 

Narrowband Interference 

In this simulation, we use a beamformer with M = 10 sensors and J = 60 coefficients for each 

attached filter. The system is constrained to receive a signal of interest from broadside, which 

is white Gaussian with unit variance and corrupted by additive Gaussian noise at an SNR of 

20 dB. The beamformer aims to adaptively suppress an interfering signal coming from a DOA 
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Fig. 3.18: Learning curves of the two subband methods based on SVD (S=l). 
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Fig. 3.20: Learning curves of the two subband methods based on SVD (8—2). 

of 0 = 20°, which is composed of three sinusoidal signals with normalised frequencies of O.ITT, 

O.STT and O.Qvr, respectively. The SIR is —24 dB and no derivative constraints are imposed 

{S = 1). The subband GSC is based on the same 8-channel filter banks as in Sec. 3.4.1 and 

J/N = 10 coefficients are used for each subband MCAF channel. The MCAFs for both the 

fullband and subband cases are updated by a normalised LMS algorithm. 

Because the interference is narrowband, in principle, we do not really need a broadband 

beamformer with tapped-delay lines to suppress it. The aim of this set of simulation is mainly 

to show the significant improvement in convergence speed by the subband method when the 

input signal is highly colored. Four simulation results with different step sizes and different 

forms of the blocking matrix are shown in Figs. 3.21 to 3.24. Comparing Fig. 3.21 with Fig. 3.22 

and Fig. 3.23 with Fig. 3.24, we can see that with increasing s tep size, both the fullband and 

subband adaptive beamformers converge faster, at the expense of an increased steady-state 

error. This conforms with standard results on adaptive filtering [51,57], however the impact of 

the stepsize on the system's performance is particularly severe in the GSC case. One possible 

explanation is that the error signal employed for adaptation in the GSC includes the signal of 

interest, which could be much stronger than the error signal found in a standard adaptive filter. 

Thus, the impact of the step size is amplified in the GSC case. Moreover, all the results clearly 

show that the subband method converges much faster than the fullband method because of its 

pre-whitening effect. 

Broadband Interference 

In this simulation, the beamformer has M = 12 sensors, each with J = 96 coefficients for the 
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Fig. 3.23: Comparison of learning curves based on CCD method (step size /io=0.15). 

fullband case. No derivative constraints are imposed (S = 1). The beamformer is intended 

to receive the same signal of interest from the broadside (0 = 0°) as in the narrowband case, 

and to adaptively suppress two broadband interfering signals covering the frequency intervals 

Q = [0.27r; O.STT] and Q = [O.STT; O.STT], respectively, with DOAs of 9 = 30° and 9 = 60°. The 

SIR and SNR are respectively —24 dB and 20 dB. In the subband adaptive GSC, we use the 

same filter banks as in the previous simulation and J/N = 16 coefficients are employed for each 

subband MCAF channel. 

Figs. 3.25 and 3.26 show two representative simulation results, where the subband adaptive 

method exhibits a clear advantage in terms of a faster convergence speed due to the pre-

whitening effect. Moreover, the subband method reaches a lower steady-state error at the 

specified stepsizes. We can expect that the fullband method will be even slower if it has the 

same steady-state error as the subband method. As for the computational complexity, the 

number of real multiplications required in the subband system is only about 69% of that of 

the fullband system in the SVD case and 67% in the CCD case. With its lower computational 

complexity and faster convergence, the proposed subband adaptive GSC clearly outperforms 

the traditional fullband implementation. 

3.5 S u m m a r y 

In this chapter, we have briefly reviewed the subband adaptive filtering techniques and the 

related theory of filter banks, which are employed for the subband decomposition of both the 
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Fig. 3.24: Comparison of learning curves based on CCD method (step size /Xo=0-20). 

desired and input signals in an adaptive filter. Its advantages of low computational complexity 

and increased convergence speed for the LMS-type adaptive algorithms motivate the applica-

tion of SAF techniques to broadband adaptive beamforming. By combining SAF techniques 

with the multichannel adaptive filter in a GSC with derivative constraints, we have obtained a 

novel subband adaptive GSC structure. Compared with the traditional fullband adaptive GSC 

and a previously proposed subband beamforming structure, this new subband adaptive beam-

former outperforms those methods with a lower computational complexity. Additionally, it also 

achieves a faster convergence speed than the fullband adaptive GSC owing to its pre-whitening 

effect, as demonstrated by our simulation results based on different signal environments and 

different formations of the blocking matrix. In the next chapter, we will see that the computa-

tional complexity of such a subband adaptive GSC can be reduced even further by contriving 

a specific arrangement for the blocking matrix. 
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Chapter 4 

GSC Employing a Subband-selective 

Blocking Matrix 

In this chapter, we propose a class of GSCs employing a novel spatially/temporally subband-

selective blocking matrix for partially adaptive beamforming, in which the blocking matrix 

is constructed such that the impulse responses hosted by its columns constitute a series of 

bandpass filters. These filters select signals with specific DOAs and frequencies and result in 

bandlimited spectra of the blocking matrix outputs. When we apply such a blocking matrix 

to the subband adaptive GSC proposed in Chap. 3 or the transform-domain GSC as proposed 

in [21], the system complexity may be reduced. Moreover, due to its combined decorrelation in 

both spatial and temporal domains, a faster convergence rate can also be achieved. 

In Sec. 4.1 we will give a brief introduction to partially adaptive beamforming based on the 

GSC structure. Thereafter we focus on the role of the blocking matrix and its proposed con-

struction exploiting spatial/temporal filtering properties in Sec. 4.2. In Sec. 4.3, an alternative 

formation of this blocking matrix by a subband-selective transformation matrix is provided. The 

application of our novel blocking matrix to the subband adaptive GSC and transform-domain 

GSC is given in Sees. 4.4 and 4.5, respectively, where simulations underlining the benefits of 

the proposed method are discussed. 

4.1 Par t i a l ly A d a p t i v e G S C 

As mentioned in Sec. 1.1, to perform beamforming with high interference rejection and reso-

lution, arrays with a large number of sensors and filter coefficients have to be employed and 

the computational burden of a fully adaptive processor thus becomes considerable. One way to 

reduce the computational complexity is partially adaptive beamforming, which employs only a 

63 
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subset of available degrees of freedom (DOFs) in the weight update process at the expense of 

a somewhat reduced performance [14]. 

Partially adaptive techniques have been studied widely in the past, especially in the narrow-

band beamforming area. Chapman [14] performed one of the earliest works, which reduces the 

number of adaptive channels by means of a transformation. In [15], a fixed transformation was 

applied to achieve a weight reduction by minimising the output power over a set of interference 

scenarios. A "power-space method", which uses a singular value decomposition to obtain the 

rank-reducing transformation was developed by Yang et al [17]. In broadband beamforming, 

the wavelet-based beamformer introduced by Wang et al [18,113] reduces the dimension of the 

blocking matrix by utilising a set of wavelet filters, which are considered as a series of spatial 

filters. Thereafter, a dynamic selection of the blocking matrix outputs is performed by a pre-

scribed statistical hypothesis test. The main problem with [18,113] is that the design of wavelet 

filters with good band-selection is difficult and such filters will sacrifice too many DOFs and 

tend to make their application in a beamformer rather unpractical. 

For a brief description of partially adaptive beamforming based on the GSC structure, we 

consider the simplified system shown in Figs. 2.7 and 2.8. There the only constraint imposed 

on the blocking matrix B is equation (2.61). For convenience, we recall 

C ^ B = 0 where C = [cq - - - Cg_i] , (4.1) 

with C £ and B e , However, the column dimension of B is not restricted to 

be L = M — iS", which is only the maximum possible value. Assume B G 

B = [bo bi . . . b ^ i ] and (4.2) 

bf = [&i[0] bi[l] ... bi[M — l]]^ , (4.3) 

where / = 0,1, • • • ,L — 1. With this new definition, we redraw the simplified GSC for MVDR 

beamforming in Fig. 4.1, where the output signal of the blocking matrix u[?7.] is obtained by 

u[n] = B^x[n] with 

u[n] = [uo[n] ui[n] ••• U]^i[n]f , 

x[n] = [xo[n] xi[n] ••• XM-i[n]f . (4.4) 

Since C is an M x 5" matrix, the dimension L can be selected arbitrarily with L < M — S. 

The maximum value M — S corresponds to the fully adaptive GSC. When a large number of 

sensors are employed, we can take a smaller value for L, i.e. L < M ~ S, resulting in a partially 

adaptive GSC [15,113]. By partial adaptivity, the number of DOFs, i.e. the number of adaptive 

weights, is reduced and it offers reduced complexity traded off against a potentially somewhat 

inferior performance. In the next section, we will trade the loss of DOFs against a specific 

design of the blocking matrix. 
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Fig. 4.1: A general structure of partially adaptive GSC. 

4.2 Spa t i a l ly /Tempora l ly Subband-se lec t ive Blocking 

M a t r i x 

4.2.1 Blocking M a t r i x wi th Spa t i a l /Tempora l Subband-select ivi ty 

To attain an interpretation of spatially and temporally subband-selective filters constituting 

the blocking matrix, consider a unity amplitude complex input wave with angular frequency w 

and DOA 9. Referring to Fig. 1.1, the waveform impinges with a time delay A r on adjacent 

sensors separated by in a medium with propagation speed c. The received phase vector at 

the sensor array, x, is 

d 
sin 6* (4.5) 

Assume that the array sensors are spaced by a half wavelength of the maximum signal frequency 

and the temporal sampling frequency ojg is twice the maximum signal frequency, i.e.. 

d — Xg — cTg , 

where Tg is the temporal sampling period. Then, we get 

A r = Ts sin 9 . 

(4.6) 

(4.7) 

Noting LOTS = f], where Q is the normalised angular frequency of the signal, the phase vector 

can be written as 

X r= [̂ 1 g-j^sinS . . . g-i(M-l)nsin0j^ (4.8) 

Using the substitution ^ H sin 9, the /th output of the blocking matrix, u;[n], / = 0,1, • • • , L — 

1, can be denoted as 

M-l 
. X . ^ (4.9) 

m = 0 
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Fig. 4.2: Characteristics of the L column vectors contained in B 

with •—o hi[m] being a Fourier transform pair. 

According to (4.9), the columns of the blocking matrix B can be regarded as a set of spatial 

filters. If the beamformer is constrained to receive the signal of interest from broadside, then 

the blocking matrix has to suppress any component impinging from 0 = 0. Therefore, at = 0 

the response of any column vector b( has to be zero. Now we arrange the design of the b; to 

yield spatial bandpass filters on the interval G [0; TT] as shown in Fig. 4.2, whereby ideally 

0 

for ^ E lower) upper] i 

otherwise . 
(4.10) 

In the arrangement of Fig. 4.2, all values of ^ 6 (0; TT] except = 0 have to be covered by 

the filters to ensure that the lower path of the GSC contains all possible interference signals. 

If the interference signals impinge only from a certain set of angles with a certain bandwidth, 

then the appeal is that only some outputs of the blocking matrix and therefore some branches 

of the subsequent multichannel adaptive filter will contain significant contributions. Hence, a 

design of the blocking matrix columns according to Fig. 4.2 will lead to a spatial decomposition 

or decorrelation of the array data. 

To avoid redundancy in the blocking matrix outputs, we would like the column vectors 

of B to be linearly independent, i.e. none of them can be expressed as a linear combination 

of the others. It can be proven that these column vectors b; are orthogonal under the ideal 

arrangement of Fig. 4.2. If an overlap between neighbouring bands in Fig. 4.2 exists, these 

column vectors b^ can also be proven to be at least linearly independent [114]. To prove this, 

we consider the linear combination of all these vectors in the following form 

0 — Qfobo + cvibx + • • • + (4T1) 

where a^, • • •, ai^i are scalars to be found for this equation to hold. Taking the Hermitian trans-

pose of both sides and then multiplying the equation with the vector [l 

we arrive at 

(4.12) 
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Fig. 4.3: Temporal filtering effect of the /th spatial filter in B. 

As it should hold for all values of we choose the middle point of each of the passbands 

of the column vectors. Since at these points only one of the L Fourier transforms Bi(e^^), 

I = 0,1, - • • ,L — 1, has a value of unity and all the others are zero, we find that all the scalars 

ao, • • •, ai^i must be zero for (4.11) to hold, i.e. the column vectors are linearly independent 

and hence the proof is complete. From the above proof we can see that as long as every vector 

has at least one point, where its Fourier transform has a nonzero value and coincides with 

zeros of all the other vectors' Fourier transforms, these vectors will be linearly independent. A 

practical test to check any design of B is to ensure that the blocking matrix has fuh column 

rank. 

We now focus on the temporal filtering effect of the arrangement in (4.10). Consider the 

range Q 6 [0;7r]. As |sin(9| 6 [0; 1] when 0 € ^], the possible maximum frequency 

component of the /th output Ui[n] is Q = vr, which corresponds to | sin0| = , while the 

possible minimum frequency component is lower, which corresponds to | sin0| = 1. Then 

we have the response of as a function of 11 = sin0, 

i ^ k r G [Wf,lower; 7r] ^ ^ 

[ 0 otherwise 

This temporal filtering characteristic of the /th column vector of B is shown in Fig. 4.3. If the 

interfering signals have components with > TT, then as long as they appear in the directions 

of I sin01 E they will be received by the /th column vector. However, with the 

assumption that the sampling rate is twice the maximum signal frequency, there will be no 

signal existing with > TT. 

Example. To demonstrate this temporal filtering effect, we give a simple example. Fig. 4.4 

displays the magnitude response of a 30-tap bandpass filter designed by the MATLAB function 

remez [115]. If the filter coefficients are employed as a column vector in B, then a gain 

response or beampattern to signals with different frequencies and DOAs can be calculated as 

shown in Fig. 4.5. To see its highpass filtering effect more clearly, the figure can be rotated and 

inspected in terms of its frequency dependence only. The resultant two-dimensional response 
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Fig. 4.4: Frequency response of a bandpass filter as an example for the column vectors of B. 

with respect to different frequencies is drawn in Fig. 4.6, and clearly exhibits the noted highpass 

characteristic. 

Thus, the blocking matrix is capable of decomposing the received signals and interferences 

not only in the spatial domain, but also in the temporal domain, i.e. the column vectors 

simultaneously perform a spatial selection and a temporal highpass filtering operation. With 

increasing I, these filters are associated with tighter and tighter highpass spectra until the last 

output UL-i[n] only contains the ultimate highpass component. 

In reality, the bandpass filters cannot be ideal and hence an overlap and finite 

transition bands have to be permitted. However, a better design quality can be attained by 

reducing the number of columns, L, below the limit of M —S', thus yielding a partially adaptive 

beamformer by sacrificing some DOFs. As the blocking matrix covers all possible interfering 

signals, it can still suppress any incoming interferences, but the achievable maximum SINR can 

potentially be lower than a fully adaptive beamformer. Due to the loss of ideal responses as 

specified in Fig. 4.2, the linear independence of the column vectors of B has to be inspected 

after design. 

As the blocking matrix plays a central role in our following applications, a column vector 

design with a good band-selective property is of great importance. We will deal with this issue 

in Sees. 4.2.2 and 4.2.3, where a full design and a cosine-modulated design of the blocking 

matrix will be described, respectively. 
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CD-50 

DOA angle £2/71 

Fig. 4.5: Three-dimensional response of a bandpass filter to signals with different frequencies 

and DOAs. 

4.2.2 Full Design of t h e Blocking M a t r i x 

From (2.61), when considering 5' — 1 order derivative constraints with no = 0, we can express 

the constraints to be fulfilled by the /th column vector of the blocking matrix as 

M-l 
• 6;[m] = 0 , for z = 0,1, • • • , 5"—1, / = 0,1, • • • , L —1 . (4.14) 

m = 0 

Subject to the constraints in (4.14), the objective function to be minimised for the /th 

column vector is 

lower TT 

/ l i a r e ' n i i W . 

upper 

(4^5) 

The design problem of the blocking matrix B can then be formulated as the following con-

strained optimisation: 

b; = argmin$; subject to (4.14), / = 0, 1, • • • ,-L —1 . 
b; 

(4.16) 
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Fig. 4.6: Response of a bandpass filter with respect to signals with different frequencies as a 

column vector of the blocking matrix B. 

Various methods exist to solve linearly constrained optimisation problem such as in (4.16). 

Here the minimisation of is accomplished using the subroutines LCONF/DLCONF, a nonlin-

ear optimisation software package in the IMSL library [116]. A design example for the blocking 

matrix with M = 16 sensors, first-order constraints {S = 2) and L = 8 column filters is given 

in Fig. 4.7. Displayed are the frequency responses I = 0,1,--- ,7, which exhibit a 

reasonably good bandpass characteristic. 

If (4.14) is used to express the first S parameters in each by the remaining M — S vector 

elements, an unconstrained optimisation can be performed over those remaining parameters, 

for example by means of a genetic algorithm (GA) [117,118]. Using a GA, we can obtain 

a result with all elements in B in the form of sums of power of two (SOPOT) [119-121]. By 

SOPOT representation, the arithmetic for B can be implemented by simple shifts and additions 

to further reduce its computational complexity [122,123]. 

For a brief introduction to GA, the reader is referred to the Appendix. Here, as an example, 

let us consider the case of first order derivative constraints, S = 2, whereby the first two elements 
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Fig. 4.7: A design example for a 16 x 8 blocking matrix with first-order derivative constraints 

based on constrained optimisation. 

of b; are fixed in dependency on the remaining coefficients, 

M-l 
bi[0] = -^bi[m\ for i = 0, 

m=l 
M-l 

bi[l] = -^Y^m-bi[m] for i = l . 

(4.17) 

(4.18) 
m=2 

Note that the optimisation problem has been transformed into an unconstrained optimisation 

over the remaining coefficients bi[2], - • • , bi[M—l], which is straightforward to solve by means of 

a GA. In the optimisation process of a GA yielding SOPOT parameters, each of the coefficients 

bi[m], m = 2, 3, • • • , M — 1 is represented as 

bi[m] = ^ ai[l,m] • with 
i=0 

ai[/, m] G {—1; 1}, E {Qi, -j- 1, - - - , Qg — 1, Qg} , (4.19) 

where P[l, m] is a limit for the number of SOPOT terms, and Qi and Q2 are integers determined 

by the range of the corresponding variable. Normally, P[l, m] is limited to a small number. With 

the same parameters as those of the example shown in Fig. 4.7, Tab. 4.1 gives the GA design 

results in SOPOT notation with P[l, m] = 3, Qi = —9 and Q2 = 0. Its frequency response is 

depicted in Fig. 4.8. 
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Tab. 4.1: SOPOT coefficients for the 16 x 8 blocking matrix B: 

b o b i b 2 b a 

2 2 - 2 _|_ 2 - 8 - 2 - 9 - 2 - 2 - 2 - 4 + 2 - 9 - 2 - 1 - 2 - 7 

3 2 - 4 _|_ 2 - 5 _ 2 - 8 2 - 2 2 - 5 - 2 - 2 + 2 - 7 - 2 - 7 - 2 - 7 

4 _ 2 - 3 _ 2 - G 2 - 1 - 2 - 5 + 2 - ® 2 - 2 + 2 - 5 2 - 1 + 2 - 3 - 2 - 6 

5 _ 2 - i + 2 - 4 2 - 1 - 2 - 4 2 - 1 4 - 2 - 5 - 2 - 9 - 2 - 3 4 . 2 - 5 + 2 - 8 

6 _ 2 - i _ 2 - 4 - 2 - 7 2 - 4 + 2 - 7 4 - 2 - 9 - 2 - 1 - 2 - 2 - 2 - 8 

7 - 2 - 1 + 2 " ^ + 2 " ® - 2 - 1 + 2 - 3 4 - 2~® - 2 - 1 - 2 - 4 2 - 3 4 - 2 - 6 

8 _ 2 - 2 _ 2 - 5 _ 2 - 6 - 2 - 1 4 - 2 - 6 4 - 2~® - 2 - 1 4 - 2 - 7 2 - 1 + 2 - 3 - 2 - 5 

9 - 2 - 6 _ 2 - 2 _ 2 - 8 - 2 - 9 2 - 2 _ 2 - 4 4 - 2 - 6 - 2 - 3 - 2 - 6 

1 0 2 - 2 - 2 - 5 2 - 5 __ 2 - 9 2 - 1 + 2 - 5 - 2 - 1 

1 1 2 - 2 + 2 - ^ + 2 - ^ 2 - 2 _ 2 - 8 - 2 - 9 2 - 2 _ 2 - 4 2 - 3 + 2 - 4 + 2 - 8 

1 2 2 - 2 + 2 - 6 + 2 - f 2 - 2 4H 2 - ? — 2 - 2 — 2 - 6 — 2 - 8 2 - 1 - - 2 - 3 - 2 - 5 

1 3 2 - 3 - ^ 2 - 5 2 - 5 - 2 - 2 - 2 - 9 2 - 1 2 - 3 - 2 - 5 

1 4 2 - 6 4 - 2 ? - 2 - 5 2 - 5 - 2 - 9 - 2 - 3 - 2 - 6 

1 5 _ 2 - 6 _ _ 2 - f - 2 - 2 -H 2 - 3 - 2 - 9 2 - 3 + 2 - 8 2 - 3 - 2 - 7 

m b 4 b s b e b ? 

2 2 - 2 2 - 2 __ 2 - 4 2 - 1 - 2 - 4 2 - 3 + 2 - 4 + 2 - 8 

3 - 2 - 1 - 2 - ^ 2 - 3 4 ^ 2 - 5 4 - 2 - 6 - 2 - 2 - 2 - 5 - 2 - 6 - 2 - 2 + 2 - 7 

4 2 - 3 4 - 2 - 5 4 - 2 - 6 - 2 - 1 - 2 - 3 - 2 - 5 2 - 3 - 2 - 6 2 - 2 __ 2 - 6 

5 2 - 1 2 - 6 2 - 1 + 2 - 2 - 2 - 7 2 - 2 _ 2 - 5 _ 2 - 6 - 2 - 2 - 2 - 5 - 2 - 7 

6 - 2 - 1 - 2 - 5 - 2% - 2 - 2 - 2 - 4 - 2 - 6 - 2 - 1 - 2 - 3 2 - 2 4 - 2 - 6 4 - 2 - 8 

7 - 2 - 5 - 2 - 2 - 2 - 7 2-1 + 2 - 4 + 2 - 4 - 2 - 2 - 2 - 4 + 2 - 6 

8 2 - 1 4 - 2 - 4 2 - 1 4 - 2 - 4 - 2 - 1 - 2 - 2 + 2 - 6 2 - 2 + 2 - 8 

9 _ 2 - 2 _ 2 - 4 + 2 - * - 2 - 1 - 2 - 4 - 2 - 8 2 - 1 + 2 - 5 - 2 - 5 - 2 - 6 

1 0 - 2 - 2 2 - 2 - - 2 - 5 4 - 2 - 8 2 - 4 + 2 - 7 2 - 2 + 2 - 9 

1 1 2 - 1 - 2 - 3 + 2 - 5 2 - 2 _ 2 - 4 _ 2 - 6 - 2 - 3 - 2 - 4 + 2 - 6 - 2 - 3 - 2 - 7 - 2 - 9 

1 2 - 2 - 3 _ 2 - ? - 2 - 2 - 2 - 6 2 - 1 _ 2 - 6 - 2 - 7 2 - 3 ^ . 2 - 6 - 2 - 8 

1 3 - 2 - 2 + 2 - 4 - 2 - ^ 2 - 3 4 - 2 - 5 4 - 2 - 6 - 2 - 1 + 2 - 5 — 2 - 7 - 2 - 3 + 2 - 8 

1 4 2 - 4 4 - 2 6 - 2 - 8 2 - 2 ^ 2 - 4 + 2 - 7 2 - 3 - 2 - 5 - 2 - 7 

1 5 2 - 5 - 2 - ' ^ - 2 - 6 - 2 - 2 + 2 - 5 - 2 - 5 
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Fig. 4.8: Characteristics of the 16 x 8 blocking matrix columns using a GA design with SOPOT 

representation. 

4.2.3 Design Based on P r o t o t y p e M o d u l a t i o n 

In order to reduce the design and implementation complexity of the blocking matrix, different 

from the overall design as discussed in Section 4.2.2, the column vectors of B can also be derived 

from a prototype vector by modulation. We here propose a cosine modulation in the design of 

B, whereby the broadside constraint is guaranteed by imposing spectral zeros appropriately on 

the prototype vector. 

Assume the prototype vector is m = 0,1,--- ,M—1. Based on h[m\, we employ a 

DCT-IV modulation [64] to obtain the Ith column vector bi[m], I = 0,1, - • • ,L —1, 

M - 1, 
bi[m] = h[m] • cos TT 

2L + 2 
{21 + 3){m ( - D ' i (4.20) 

In the frequency domain, this modulation creates two copies of the prototype vector's frequency 

response shifted along the frequency axis by '̂2̂ +2 — '̂̂ 2l+2 ' respectively and adds them 

together. To comply with the zero-order broadside constraint Bi{e^^)\^=o = 0, the frequency 

response H{z) of h[m\ should have one spectral zero at each frequency point = d= ̂ 21!+2̂ , 

/ = 0,1, • • • , L —1. If we factorize H{z) into two parts 

H{z) = P(z)Q(z) , with 
L-l 

1=0 

(4.21) 



4.2.3. Design Based on Prototype Modulation 74 

(0 - 2 0 

Q) - 2 5 

& 3 & 4 0 . 5 & 6 0 7 

normalized angular frequency % 

Fig. 4.9: A design example for a 28 x 11 blocking matrix. 

then the broadside constraint will be automatically satisfied by Q{z) for all the column vectors 

and the free parameters contained in P{z) can be used to optimise its frequency response. By 

this factorisation, the design of the blocking matrix becomes an unconstrained optimisation 

problem of the prototype vector. The objective function we minimise is 

(4.22) 

where Qg is the stopband cutoff frequency. To solve this unconstrained optimisation problem, 

we here employ the subroutines BCONF/DBCONF in the IMSL library used earlier [116] . A 

design example for the blocking matrix with M = 28 sensors, and L = 11 column vectors is 

given in Fig. 4.9. 

Note that the length of the filter Q{z) is 2L + 1 and the minimum length of P{z) is 1, thus 

we have 

M - 1 
L < (4.23) 

i.e., the maximum value of the output dimension L achieved by this prototype modulation 

method is instead of the theoretical value M ~ S as indicated in (2.61). For iS — 1 order 

derivative constraints, we can replace Q{z) in (4.21) by Q{z)^ and the maximum value of L 

achieved will be which will sacrifice a considerable number of DOFs for 5" > 1 and thus 

a satisfying performance may not be achieved for small-scale arrays. This reduction in DOFs 

presents a limitation of this design method. 
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Fig. 4.10: A partially adaptive GSC with a transformation matrix. 

4.3 Spa t ia l ly /Temp or ally Subband-select ive Transforma-

t ion Ma t r i x 

In the partially adaptive GSC introduced in Sec. 4.1, the blocking matrix plays two different 

roles: the first aim is to block the signal of interest from broadside, while the other is to reduce 

the dimension of its output from M — S to L < M — S ioi partial adaptivity. A blocking matrix 

designed according to these specifications can be decomposed into the product of two matrices, 

an M X (M — 5")-dimensional blocking matrix B for a fully adaptive GSC, which is set to block 

the broadside signal of interest, followed by an [M — S) x L-dimensional transformation matrix 

T, which can reduce the output dimension according to some specific requirements. A partially 

adaptive GSC following this approach has been introduced in [15,17] and is shown in Fig. 4.10. 

In this section, we will propose a spatially/temporally subband-selective transformation matrix. 

When this matrix is cascaded with a standard blocking matrix, they exhibit characteristics 

similar to the subband-selective blocking matrix proposed in Sec. 4.2. 

4.3.1 Trans fo rmat ion M a t r i x wi th S p a t i a l / T e m p o r a l Subband-selec-

t ivi ty 

As shown in Fig. 4.10, the dimension of the blocking matrix output vector u[n] = B''^x[n] is 

{M—S) X 1, After passing through the transformation matrix T e ^ the data vector's 

dimension is further reduced to L x 1 by u[n] = Tu[n], where u[n] is the final input to the 

following multi-channel adaptive filtering process and 

T = [to t i . . . , (4.24) 

= [ii[0] ^̂ [1] tilM — S — l ] ^ (4.25) 

with / = 0,1, • • • , L — \. 

Consider the same signal environment and parameters as those in Sec. 4.2.1. Using the 
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substitution ^ H sin d, the received phase vector at the sensor array is 

x = [ l 

If the blocking matrix B is constructed by the CCD method [55] as described in Sec. 2.4.3, i.e. 

B = • Bm-1 • • • Bjvf-5+i , (4.27) 

where 

Bi = 

1 - 1 0 

lixi—l (4.28) 

0 1 - 1 

with i = M, M - l , - • • , M ~ S + 1, then the output of the blocking matrix can be expressed as 

u[n] = (1 — e [1 (4.29) 

We see that the blocking matrix has a zero response to the signal from broadside as required. 

For a general blocking matrix B, from (4.9) its output vector follows as 

u[n] = B. ie '" ) • • • • (4.30) 

Since any blocking matrix must have the desired zeros for the broadside signal of interest, n[n] 

can be decomposed into the product of (1 — and a vector with polynomials in . Such 

a vector with polynomials in can be further decomposed into a product of a real-valued 

matrix and the vector [1 Therefore we can say that any blocking 

matrix for broadside constraints can be regarded as a product of the blocking matrix obtained 

by the CCD method and some other matrix, i.e. the CCD method provides the simplest way 

and the resultant blocking matrix forms the basis of any other blocking matrices for broadside 

constraints. 

The /th output of the transformation matrix, ui[n], I = 0,1, • • • , L — 1, can be denoted as 

ui[n] = tj-u[n] 
M-S~L 

- (1 -
m=0 

= (1 - e-:'^)^ . 7](e^^) - , (4.31) 

with Ti{e^^) •—o ti[m] being a Fourier transform pair. Similar to Sec. 4.2, we arrange Ti{e^^), 

I = 0, • • • , L — 1, on the interval ^ G [0; TT] as shown in Fig. 4.11, such that 

1 for ^ G lower I upper] i 
|7](e;'^)| = 

0 otherwise . 
(4.32) 
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Fig. 4.11: Arrangement of the L column vectors in T. 

j i2 sinG 
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Fig. 4.12: Temporal filtering effect of the /th spatial filter in T. 

As I sin E [0; 1] when 6 6 [~f ; f]) the possible maximum frequency component of the 

/th output Ui[n] is = TT, which corresponds to |sin0| = , while the possible minimum 

frequency component is = W;_iower, which corresponds to | sin 01 = 1. Therefore we have the 

same result as in Sec. 4.2, 

1 for Q G lower; Tf] 

0 otherwise 
\/e (4.33) 

as shown in Fig. 4.12. 

Obviously, if we consider the blocking matrix B jointly with the transformation matrix 

T, a characteristic similar to that of the blocking matrix proposed in Sec. 4.2 is attained. 

Alternatively, the resultant matrix could simply be regarded as a new realization of the method 

presented in the previous section. In the following applications, we will not treat the two 

approaches separately and just consider the concatenation of the blocking matrix and the 

subband-selective transformation matrix as one kind of the general subband-selective blocking 

matrix proposed in Sec. 4.2. 

4.3.2 Design of t h e Trans format ion M a t r i x 

The subband-selective transformation matrix introduced in the previous section does not have 

to fulfil any constraints other than the band selectivity requirement. The design problem of 

the transformation matrix is therefore that of a series of general filter designs having cutoff 

frequencies specified by (4.32). However, to reduce the design and implementation complexity 

of the transformation matrix, again a cosine-modulated version is proposed. 
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Fig. 4.13: A design example for a 11 x 16 transformation matrix. 

Assume that the prototype vector contains the elements h[m], m = 0,1, • • • , M—S—1. Then 

the rows of the transformation matrix ti[m], / = 0,1, • • • , L —1, can be obtained by [90] 

ti [m\ = h[m\cos (4.34) 

Thus, the design problem of the transformation matrix is simplified to the unconstrained de-

sign of a low-pass prototype filter h[m], which can be readily solved by standard filter design 

algorithms, such as the remez function in MATLAB [115]. Many of these standard filter de-

sign routines are for obtaining linear phase filters. This however is not a requirement for the 

transformation matrix and ties down available DOFs. Here we opt for a less restrictive method, 

based again on the IMSL library [116]. A result obtained by the subroutine BCONF of the 

IMSL library for a 11 x 16 transformation matrix is shown in Fig. 4.13. 

4.4 Applicat ion to Subband Adap t ive GSC 

In this section, we will apply the subband-selective blocking matrix including the transformation 

method of Sec. 4.3, to the subband adaptive GSC proposed in Chap. 3 in order to reduce the 

computational complexity of the system. 
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Fig. 4.14: Subband decomposition applied to the output of the subband-selective blocking 

matrix. 

4.4.1 S t r u c t u r e 

The previous Sees. 4.2 and 4.3 have introduced a variety of blocking matrices which permit a 

joint spatial/temporal filtering of the sensor signals. Noting the bandlimited spectra of blocking 

matrix outputs ui[n], I = 0,1, • • • , L — 1, a further spectral decomposition is applied to these L 

outputs to remove the sampling redundancy due to their bandlimitness and perform adaptive 

processing in subbands, as shown in Fig. 4.14. 

The subband setup proposed in Fig. 4.14 is the same as the one of Fig. 3.13 in Sec. 3.3, so 

it can be regarded as an application of our subband-selective blocking matrix to the subband 

adaptive GSC. Because ui[n], / = 0,1, • • • ,L —1, is a highpass signal, the subband signals in 

the corresponding lowpass subbands at each MCAF will be zero and can be omitted from the 

subband adaptive processing. Therefore both the filter length and the number of channels are 

reduced, which together with the decreased update rates and the lower output dimension of B 

results in a substantial reduction of the system's computational complexity. Another advantage 

of this combination is that the subbands discarded in the adaptation can be determined a 

priori and are independent of the array signals because both the blocking matrix and the filter 

banks are selected without the knowledge of the operating environment. Additionally a further 

reduction of computational complexity can be achieved by monitoring the remaining subbands 

and dynamically discarding the processing in those subbands whose signal power falls below a 

given threshold [113]. 
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4.4.2 Compu ta t i ona l Complexi ty 

Now we quantify the achievable computational complexity reduction introduced by our pro-

posed spatially/temporally subband-selective blocking matrix. 

Assume that we employ the oversampled GDFT filter banks in the subband decomposition. 

A total of 1/ + 1 analysis filter banks and one synthesis filter bank are employed, such that 

the number of multiplications needed by the filter banks will be {Ip + iK logg K + 4K) 

for real-valued input signals or {2lp + 4 l o g g K + &K) for complex-valued input signals, 

according to Sec. 3.3.2. 

Let us now consider the remaining part of the subband-selective GSC. Compared to the 

fully adaptive fullband GSC, there are three contributions towards the reduction of the compu-

tational complexity. First, the dimension of the blocking matrix output is reduced from M — S 

to L by partial rather than full adaptivity, yielding a reduction factor of L/ (M — S). Secondly, 

for the subband adaptive filtering part, the approximate complexity reduction achieved is by a 

factor of 2K/N'^ (for LMS) or 2K/N^ (for RLS) for real-valued input signals, and K/N"^ (for 

LMS) or K/N^ (for RLS) for complex-valued signals, as seen in Sec. 3.3.2. Thirdly, by dis-

carding the corresponding lowpass subbands, which contain negligible signal power in each of 

the MCAFs, we achieve a further complexity reduction. Assuming that a sufficiently selective 

column vectors b; can be designed, the first MCAF indexed as A; = 0 would be a single-channel 

adaptive filter, drawing its low frequency input solely from the first branch of B. The second 

{k = 1) MCAF block in Fig. 4.14 will only cover some of the lower outputs of B, while finally 

only the last MCAF [K~l) consists of L non-sparse channels. Thus, a channel reduction in the 

MCAFs is achieved, yielding a considerably reduced complexity. This characteristic underlines 

the advantage of a combined spatial/temporal subband selection by subband processing in both 

the spatial and temporal domain. Under ideal conditions, the dimension of the MCAFs can 

almost be halved, with a proportional decrease in computational complexity. 

By these three steps, the complexity reduction ratio ^complexity between the computational 

complexity Cgeiect of the new subband-selective GSC, excluding the computations required by 

the filter banks, and the complexity of the standard fully adaptive fullband GSC Qtandard 

becomes 

n _ ^select _ J {M-S)N'^ LMS ; 
for RLS ' ' 

for real-valued input signals and 

_ Qelect _ f 2{M-S)N-̂  ' (A 35) 
^ a — ' 1 for RLS * ' 

for complex-valued input signals. 
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Tab. 4.2: Computational complexity for the subband adaptive GSC employing 

subband-selective blocking matrix: 

algorithms real multiplications (real-valued sensor signals) 

LMS 

NLMS 

RLS 

(Mi: + M) + ^ (Ẑ  + iog2 -h 47^) + ^ ( 2 ^ + 1 ) 

{ML + M) H- [Ip -j- 4_R"logg K + AK) -t- ^ ( 4 ^ ^ + + 3) 

(Mi, + M) + ^ ( Z p -H 4jnog2jir + 4jr) + (2jr-H3 + ; l ) ^ + ^ + ^ 

algorithms real multiplications (complex-valued sensor signals) 

LMS 

NLMS 

RLS 

2(Mi: + M) + ^ (2/p + 4;inog2 A: + gjir) -t- ^ ( 4 ^ + 2) 

2(MZ, + M) -H ^ (2/p + 4j;nog2 + ^ ( 4 ^ + + 3) 

2(Mi, + M) + ^ ( 2 Z ^ + 4Klog2;r-k8jr) + (2jr + 3 + ^ ) ^ + ^ + ^ 

As an example, consider a broadband beamformer with M = 16 sensors and zero-order 

constraints. If we employ a 16 x 8-dimensional (L = 8) blocking matrix and a, K = 8 channel 

GDFT filter bank with decimation ratio TV = 6 in our subband-selective GSC using an LMS, 

the reduction ratio Complexity is approximately 1/8 for real-valued input signals, under the 

ideal assumption of discarding half of the channels of the subband MCAFs! The corresponding 

complexity reduction achieved in case of the RLS algorithm is approximately 1/50. 

Referring to Tab. 3.1, the detailed computational complexity figures derived under the ideal 

assumption are shown in Tab. 4.2 for our subband adaptive GSC employing the subband-

selective blocking matrix. 

4.4.3 Simulat ions and Resul ts 

The proposed structures have been extensively simulated and tested. In this part, we provide 

three sets of representative simulations based on the full design, the cosine-modulated design of 

the blocking matrix and the transformation method, respectively. These will be compared to 

traditional fullband fully adaptive beamformers, whereby two popular designs of the blocking 

matrix, the CCD [55] and SVD methods [30], are implemented. The most important parameters 

for these three simulations are listed in Tab. 4.3. 

4.4.3.1 Simulation I (full design of B) 

In the first simulation, the blocking matrix of the proposed subband-selective GSC is designed 

using the method of Sec. 4.2.2. The dimension of B is 16 x 8 (L = 8), and the magnitude 
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Tab. 4.3: Part of the parameters in simulation I, II, and III: 

parameters simulation I simulation II simulation III 

sensor number M 16 21 17 

TDL length J 70 90 90 

derivative constraint S 2 1 1 

signal DOA 9 0° 0° 0° 

interference sources 1 2 2 

interference DOA 9 20° 20° 4; -40° 30° Jk -60° 

SIR - 2 4 dB - 3 0 dB - 2 4 dB 

SNR 20 dB 20 dB 20 dB 

interference bandwidth n = [0.257r; 0.757r] Q = [0.37r; 0.77r] = [O.Stt; O.STT] 

adaptation algorithm NLMS NLMS NLMS 

stepsize 0.40 0.30 0.35 

responses of its column vectors are shown in Fig. 4.7. Each of the blocking matrix outputs 

and the reference signal d[n] are divided into K = 12 subbands by oversampled GDFT filter 

banks [2,94] with decimation ratio N = 10. The length of the prototype filter is 240 and the 

frequency responses of the analysis filter bank are shown in Fig. 4.15. The length of the adaptive 

filter operating in each channel of the subband MCAFs is J/N — 7. In each MCAF block, the 

channels with negligible output are discarded according to (4.13), whereby the processed inputs 

to the MCAFs are shown in Fig. 4.16. Fig. 4.17 displays the residual mean square error of the 

system, employing the adaptation by a normalised LMS algorithm with a step size of 0.35. 

Clearly, the proposed subband system converges systematically faster and has a lower steady-

state mean square residual error. The gain response of the adapted subband system with 

respect to frequency Q and DOA 9 is given in Fig. 4.18. The attenuation at the interferer's 

position of 0 = 20° is clearly visible, and can be inspected quantitatively in Fig. 4.19, where 

the beamformer's response is only shown over the frequency band Q = [0.257r; 0.757r], in which 

the interferer is active. 

To show the effect of channel discarding according to Fig. 4.16 , we also give a comparison 

of the learning curves before and after the channel discarding, which is shown in Fig. 4.20. The 

steady state ensemble mean square residual error with and without discarding is —1.42dB and 

— 1.44dB, respectively, and hence virtually identical. 
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Fig. 4.21: Frequency responses of the 21 x 10 blocking matrix. 

4.4.3.2 Simulation II (Cosine-modulated design of B) 

In a second simulation, the blocking matrix of the proposed subband-selective GSC is obtained 

by cosine modulation. Its dimension is 21 x 10 with the frequency responses of the column 

vectors shown in Fig. 4.21. Note how the broadside constraint is enforced by regularly spaced 

spectral zeros. We employ the same filter bank for subband decomposition as in Sec. 4.4.3.1. 

Due to the characteristics of the blocking matrix B and the filter bank, a number of channels 

in the various subband MCAFs can be discarded according to Fig. 4.22. Learning curves for 

an NLMS algorithm using a step size of //Q = 0.30 for adaptation are shown in Fig. 4.23. A 

comparison of the learning curves with and without the channel discarding is given in Fig. 4.24 

with the same steady state ensemble mean square residual error of —3.21dB in both cases . 

The gain response of the adapted subband GSC is displayed in Fig. 4.25 , and plotted over the 

frequency range Q = [0.307r; G.TOvr] of the interferers in Fig. 4.26. As evident, nulls have been 

correctly placed in the directions of these interfering sources. 

4.4.3.3 Simulation III (By Transformation Matrix T) 

In this third simulation, we employ the subband-selective transformation matrix introduced in 

Sec. 4.3 and compare the performance of this method with that of a fully adaptive fullband 

GSC using the CCD method. The transformation matrix of dimension 11 x 16 is obtained by 

cosine modulation and contains the frequency responses shown in Fig. 4.13. The subband setup 

is the same as that used for Simulation II, resulting in the pattern for discarding channels in 



4.4.3. S imula t ions and Resu l t s 87 

fel] 

# 
ixik:::-:):::/: 

lalffln ;jx I0N# 
1 2 3 4 5 6 7 8 9 10 

Subband M C A F block number(f i l led squares are kept in processing) . 

Fig. 4.22: Channels discarded in each MCAF block for simulation II. 

10 

- 2 

' ' " CCD method 
- - SVD method 
— Subband-select. 

10 12 14 
iterations X 10 

Fig. 4.23: Learning curves for simulation II (step size=0.3). 



4.4.3. Simulations and Results 88 

10 

m 
g ^ 
a> 6 
1 
e 4 

i 
FFL 
XI 
E 

' " ' wiltiout discarding 
— witti discarding 

- 2 

10 
iterations X 10 

15 
4 

Fig. 4.24: Comparison of learning curves before and after channel discarding. 

each MCAF block as given in Fig. 4.27. Learning curves of the beamformers using the NLMS 

adaptive algorithm with a normalised step size of 0.35 are shown in Fig. 4.28. The learning 

curves of the subband-selective GSC both with and without channel discarding are presented 

in Fig. 4.29, demonstrating that there is no penalty incurred in neglecting the low power 

channels of the subband MCAFs. Fig. 4.30 gives the three-dimensional beampattern for the 

subband-selective GSC, while Fig. 4.31 displays the response over the interferers' frequency 

band [0.307r; O.SOTT], indicating that the beamformer has placed nulls in the desired directions. 

4.4.3.4 Discussions 

The beampatterns for the three sets of simulations clearly show that the subband-selective 

GSC can suppress the interference effectively by forming corresponding nulls in the directions 

of interference. From the learning curves, we see that under different step sizes, different orders 

of constraints, and different signal environments, the proposed subband-selective method always 

achieves a higher convergence speed than the standard fully adaptive fullband GSCs due to the 

combined decorrelation effect in both spatial and spectral domains by both the blocking matrix 

and the analysis filter banks, and the shortened adaptive filter length within each channel. 

Because of the band-selectivity of the blocking matrix, there is almost no difference between 

the learning curves with and without channel discarding. As to the computational complexity, 

when the blocking matrix of the fullband GSC is formed by the CCD method, the proposed 

novel subband-selective GSC only needs about 31% multiplications of the fullband GSC in 

simulation I, 23% of that in simulation II, and 32% of that in simulation III according to their 

channel-discarding patterns and adaptation in subbands; for the SVD method, the reductions 
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Fig. 4.25: 3-D beampattern for the subband-selective GSC in simulation II. 

are 29% in simulation I and 22% in simulation II. 

4.5 Applicat ion to Transform-domain G S C 

In Sec. 2.4 we introduced the GSC structure proposed in [29], which can be regarded as a time-

domain GSC. As LMS-type algorithms suffer from a low convergence rate when the condition 

number of the input correlation matrix increases [51], a transform-domain GSC (TGSC) was 

proposed by Chen and Fang [21]. In their work, a one-dimensional discrete Fourier transform 

is used on each of the tap-delay lines at the output of the blocking matrix. Thereafter, an 

LMS algorithm with self-orthogonalising property is applied. Following the work of [21], a two-

dimensional transformation is introduced to the GSC [22], which can improve the convergence 

rate further due to the approximate estimation of both the spatial and temporal correlation. 

With the advantage of higher convergence speed, the transform-domain GSC however poses 

the problem of high computational complexity. 

In this section, a new realisation of the TGSC equipped with our subband-selective blocking 
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Fig. 4 . 2 6 : Response of the subband-selective G S C in simulation II over the band [O.SOTT; O.TOTT]. 

matrix will be proposed to reduce its computational complexity. In this subband-selective 

TGSC (STGSC), when applying the DFT to the outputs of the blocking matrix with band 

selectivity, some of the frequency-bin outputs of the DFT will be approximately zero and can 

be omitted from the following adaptive processing. Because of the finite-duration effect of the 

DFT [124], it is advantageous to apply a window function [124] with narrow bandwidth to 

the blocking matrix outputs before performing the DFT, which is not part of the TGSC as 

originally proposed. 

4.5.1 Transform-domain GSC 

The structure of a transform-domain GSC is shown in Fig. 4.32, where the blocking matrix 

output u[n] = \uQ[n] Ui[n\.. .nj>_i[n]]^ is obtained by u[n] = B'^x[M] and L = M — S* for a 

fully adaptive GSC. A J-point DFT is applied to each of the tapped-delay line vectors U;[n], 
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Fig. 4.27: Channels discarded in each MCAF block for simulation III. 
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/ = 0,1, • • • , L—l, where 

Ui[n] = [ui[n] ui[n-l] ... ui[n - J + 1]]^ . (4.37) 

The output of the Ith DFT block is 

== , (4.(38) 

where Vi[n] = [vifi[n] vi^i[n] . . . vi^j-i[n]f. 

Stacking the DFT outputs as 

v[n] = [vo[n]^ -vi[nf . . . , (4.39) 

we can formulate y[n\ = w^v[n], where w is the weight vector including all the corresponding 

weights in the transform-domain LMS algorithm. These weights w are updated continually 

to minimise the power of the error signal e[n] = d[n] — y[n] by a self-orthogonalising LMS 

algorithm [125], 

w[n + 1] = w[?7.] + 27e*[n]R~Jv[n] , (4.40) 

where 

= £'{v[?T,]v-^[n]} (4.41) 

and 0 < 7 < to ensure convergence of the algorithm. The role of is to reduce the 

eigenvalue spread of the matrix governing the adaptation process. 

Note that R^ ,̂ is unknown in practice and we here use the following approach to approximate 

it by a diagonal matrix R„„ [22,126], 

liyy = diag [ro,o, • • • , , rz,-i,o, • • • , rL-i , j- i] , (4.42) 

where 

^ = 0) 1) • • • , ^ - 1 , i = 0,1, • • • , J - 1 , (4.43) 

is the power of the corresponding frequency bin output of the DFT. The diagonal elements 

in turn can be recursively estimated at time instance n through the following equation 

- ! ] + ( ! - , (4.44) 

where 0 ^ ^ 1 is a forgetting factor. Then the estimate R ^ of R~J- is given by 

= diag . - - , - - - , - - - , , (4.45) 
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Tab. 4.4: Computational complexities for our S T G S C and the old TGSC: 

GSC realisations complex multiplications per cycle (LMS) 

TGSC (M - Jlog2 J+3.5(M - 6") J 

STGSC LJlogjJ-l-l.TSLJ 

and we get the new update equation 

w[n + 1] = w[n] + 27e*[n]R7jv[n] . (4.46) 

Although the TGSC accelerates the convergence speed, it also increases the computational 

complexity of the system. In the next section, we sacrifice some DOFs of the system by 

introducing the prevously proposed subband-selective blocking matrix in order to achieve a 

lower computational complexity. 

4.5.2 Subband-select ive T G S C 

The introduction of the subband-selective TGSC is straightforward. The standard blocking 

matrix in Fig. 4.32 is replaced by our subband-selective blocking matrix. As noted before, its 

outputs ui[n], I — 0, - • • ,L—1 contain signals with tighter and tighter highpass spectra, as the 

index I increases. If we apply a DFT to the output signal Ui[n], some of the frequency bins will 

possess negligible energy and can be omitted from the following adaptive process. In order to 

best exploit this property, we need to select a suitable window function with good frequency 

selectivity, which will be multiplied with the time-domain signals prior to applying the DFT. 

Now we analyse the computational complexity of the system. Since for a fully adaptive 

GSC the output dimension of the blocking matrix is L = M — S, the total number of weights 

in a partially adaptive system is reduced by L/{M — S). Concerning the DFT and adaptive 

part under ideal conditions, i.e. if sufficiently selective column vectors b; and a good window 

function can be designed, the last DFT output v^_i will have only approximately two non-zero 

frequency bins for real-valued signals (or one for complex-valued signals), and v^_2 has four 

(or two for complex-valued signals), and so on. Finally, only VQ does not have any negligible 

frequency bins. Thus, under ideal conditions, the total number of weights to be updated will be 

further halved. Considering the overall subband-selective TGSC, its computational complexity 

is summarised in Table 4.4, which also provides a comparison with the TGSC proposed in [21]. 
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Fig. 4.33: Frequency responses of a 32-tap window function. 

4.5.3 Simulat ions and Resul ts 

Simulations are conducted in order to demonstrate and compare the performances of a GSC, 

TGSC and STGSC, which are based on a setup with M = 17 sensors and zero-order derivative 

constraint {S = 1). The length of the tapped-delay line is J = 32 and the signal of interest 

comes from broadside at an SIR of —24 dB and SNR of 20 dB. There are two interfering 

signals, which cover the frequency intervals [O.ISTT; 0.457r] and [O.SSTT; O.SSvr], with D O A angles 

of 20° and —60°, respectively. A 32-point DFT with a Hamming window function [124] is 

applied in the STGSC, whereby the frequency response of the window function is shown in 

Fig. 4.33. The dimension of the blocking matrix is 17 x 16 (L = 16), which is obtained by our 

transformation method. The frequency responses of this transformation matrix T are shown 

in Fig. 4.34. As L = M — S, our STGSC is a fully adaptive beamformer. The frequency bins 

discarded in our simulation are shown in Tab. 4.5, where the elements with zero value mean 

that the corresponding frequency bin outputs are discarded, while those having a unity value 

are retained. We compare the performances of the STGSC with the TGSC and the general 

GSC based on the design of B using the CCD method. The corresponding step size parameters 

7 used for the STGSC, TGSC, GSC are respectively 6.42 x 10"^, 4.88 x 10"^ and 6.18 x 10^^, 

which have been chosen empirically to achieve similar steady state mean square residual error 

values. 

From the simulation results shown in Fig. 4.35, we can see tha t the TGSC converges faster 

than the time-domain GSC because of the temporal decorrelation effect of the DFT, whereas our 

new method is slightly faster than the TGSC due to its combined spatial/temporal decorrelation 
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Tab. 4.5: Frequency bin outputs discarded in the proposed STGSC in the simula-

tion of Sec. 4.5.3. 
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Fig. 4.34: Frequency responses of the row vectors in a 16 x 16 transformation matrix. 
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effect. In addition, although the computational complexity of the proposed STGSC is about 

3.7 times that of the time-domain GSC, it is only about 90% of the complexity required for the 

TGSC in the considered example. 

4.6 S u m m a r y 

In this chapter, a class of GSCs equipped with a spatially/temporally subband-selective block-

ing matrix has been proposed. The column vectors of such a blocking matrix constitute a 

series of bandpass filters, which select signals with specific DOAs and frequencies and result 

in bandlimited spectra of the blocking matrix outputs. Three different methods to obtain the 

blocking matrix having such properties have been suggested. Firstly, we can design the col-

umn vectors of this so-called subband-selective blocking matrix directly with the constraints 

embedded. Secondly, based on a prototype vector with specifically designed constraints the 

desired blocking matrix can be formed by cosine modulation. The cosine modulation simplifies 

the design of the blocking matrix. However, as a drawback, the prototype filter must possess 

regular spectral zeros in order to fulfil the broadside constraint, which affects both the design 

freedom of the prototype filter and the number of column vectors achievable. Therefore, alter-

natively, we regard the subband-selective blocking matrix as the product of a standard blocking 

matrix formed by the CCD method and a transformation matrix. The transformation matrix 

is then optimised for achieving the best possible band-selectivity without any further con-

straints. The subband-selective blocking matrix can be applied to the subband adaptive GSC 

or the transform-domain GSC to reduce their computational complexities, which is achieved 

by discarding some of the subbands or frequency bin outputs prior to the following adaptation. 

Because of its combined spatial/temporal decorrelation effect, generally a faster convergence 

speed is achieved, as demonstrated in the corresponding simulations. 



Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

This thesis has reviewed some of the basics of digital beamforming, in both narrowband and 

broadband scenarios. We then focused on the linearly constrained minimum variance beam-

former, where linear constraints are imposed on the weight vector to ensure that signals from 

directions of interest can pass through the beamformer with a specified gain and phase while 

minimising the variance or power of the beamformer's output. Various problems related to 

LCMV beamforming have been treated, such as the formulation of the constraints, the op-

timum solution to LCMV beamforming, and Frost's constrained adaptive algorithm. As an 

alternative but efficient implementation of the LCMV beamformer, the generalized sidelobe 

canceller transforms the constrained adaptation problem into an unconstrained one, which can 

be readily solved by standard adaptive algorithms such as the LMS or RLS algorithms. Because 

the GSC structure forms the basis of the work reported in this thesis, a detailed description 

of a number of issues has been given, including two design methods for the blocking matrix -

the cascaded columns of differencing (CCD) method and an SVD based method - as well as 

the simplification of the GSC from a block-based adaptation to tapped-delay lines. Commonly 

used adaptive algorithms have been introduced and analysed, in particular with respect to their 

computational complexity. 

In order to achieve high spatial resolution and interference rejection, a large number of 

sensors and filter coefficients are required, rendering the broadband beamforming problem very 

computationally costly. Additionally, adaptive algorithms with a large number of coefficients 

require longer adaptation time. Hence the aim of this research has been to develop methods 

that can lower the computational cost and increase the convergence speed. 

Subband Adapt ive G S C 

100 
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Motivated by the reduction in computational cost and increase in convergence speed achieved 

by the subband adaptive filtering scheme, we have proposed a subband adaptive generalized 

sidelobe canceller for broadband beamforming in Sec. 3.3. In this scheme both the upper path 

signal after the quiescent vector and the lower path signals after the blocking matrix in Fig. 2.7 

are split into decimated subbands by a series of analysis filter banks and minimization of the 

output power or variance is then performed in each subband. Thereafter, the subband error 

signals are upsampled and reconstructed to a desired fullband output signal. This new subband 

adaptive system outperforms the standard fullband adaptive GSC and a previously proposed 

subband beamforming structure with a lower computational complexity. In addition, when 

relying on LMS-type algorithms for adaptation, it also achieves a faster convergence speed 

than the fullband adaptive GSC due to its pre-whitening effect, as demonstrated by the simu-

lation results in Sec. 3.4 based on different signal environments and different blocking matrix 

constitutions. 

G S C Employ ing t h e Subband-se lect ive Blocking M a t r i x 

In order to further reduce the computational complexity, a partially adaptive array has 

been reviewed as an effective choice. There, only a subset of the available degrees of freedom 

is used for the array adaptation, although at the expense of a potentially somewhat reduced 

performance. Combining the subband method and the partially adaptive array techniques 

together, we have proposed a new construction for the blocking matrix in Sec. 4.2, where the 

columns of the blocking matrix constitute a series of bandpass filters. These filters select signals 

with specific DOAs and frequencies and result in bandlimited spectrum for the blocking matrix 

outputs. Such a subband-selective blocking matrix can be exploited in two ways: 

Firstly, we can apply the subband-selective blocking matrix to the subband adaptive GSC, 

as shown in Sec. 4.4. The subband decomposition of the bandlimited spectra will result in 

some subbands with near-zero power output signals, which can be discarded from the succes-

sive subband adaptation. Since a finite transition bandwidth and hence an overlap between 

the bandpass filters in the blocking matrix has to be permitted, a better design quality can 

be attained by reducing the output dimension of the blocking matrix, yielding a partially 

adaptive beamformer. By partial adaptivity, subband discarding and subband adaptation, 

the computational complexity of the system is considerably reduced. Because of its combined 

spatial/temporal decorrelation effect, a higher convergence speed can be achieved. 

Secondly, in Sec. 4.5, the subband-selective blocking matrix is also applied to a specific 

transform-domain GSC, where a one-dimensional DFT is used on each of the tap-delay lines 

at the output of the blocking matrix and an LMS algorithm with self-orthogonalising property 

is employed. The advantage of this combination results from the fact that when applying the 

DFT to the outputs of the blocking matrix with band selectivity, some of the frequency-bin 
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outputs of the DFT will be negligible in power and can be omitted from the following adaptation 

process. Because of the finite-duration effect of this DFT, we need to apply a window function 

with narrow bandwidth to the blocking matrix outputs before performing the DFT. Obviously, 

discarding the frequency bins before performing the adaptation leads to a reduced system 

complexity. With the same reason, a higher convergence speed can also be attained. 

As the blocking matrix plays a central role in the subband-selective system, its design was 

dealt with in more detail. We can design the column vectors of the blocking matrix separately 

obeying their own constraints. Alternatively, a prototype vector with specific constraints can 

be designed first and the desired blocking matrix are formed by cosine modulation, as shown in 

Sees. 4.2.2 and 4.2.3, respectively. We have also proposed a subband-selective transformation 

matrix in Sec. 4.3, which, from another point of view with the standard blocking matrix formed 

by the CCD method, can be regarded as an alternative implementation of the subband-selective 

blocking matrix. Then the problem of designing the blocking matrix is transformed to the 

design of the transformation matrix without any constraints other than the band-selectivity 

requirement, which can be regarded as a general filter design problem. 

The effectiveness and advantages of the subband-selective blocking matrix have been demon-

strated in a series of simulations in Sec. 4.4.3 and Sec. 4.5.3 based on different signal environ-

ments and beamforming structures. 

5.2 Fu tu re Work 

Based on the findings persented in this thesis, the following topics are of interest for future 

in-depth research: 

• Orthogonal Transformation Matr ix w i t h Subband Se lec t iv i ty 

In the subband-selective blocking matrix proposed in Chap. 4, the linear independence 

of the column vectors cannot be guaranteed, because they are not ideal bandpass filters 

in practice. As a result, we need to check their linear independence after the design. If 

they are not linearly independent, we have to redesign the related vector or make a small 

change to the coefficients of the vector under the condition that such change will not 

influence its band-selectivity too much. Another solution is to consider the linear inde-

pendence requirement during the design process. Therefore an orthogonal transformation 

matrix with subband selectivity may be used. The column vectors of this transformation 

matrix are formed by the analysis filters and their temporally shifted versions (shifted by 

nK, where n is an integer and K the channel number of the filter banks) of i^-channel 

maximally decimated paraunitary PR filter banks, as such filters and their shifted versions 
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are orthogonal to one another [63,64], Such an orthogonal transformation matrix can be 

used as a replacement of the transformation matrix T as proposed in Sec. 4.3. More-

over, it can also be applied directly to the received broadband array signals, followed by 

subband decomposition by a series of analysis filter banks. An independent beamformer, 

e.g. a GSC, can be operated within each decimated subband. Thereafter, the subband 

beamformer outputs are combined together by a synthesis filter bank to produce a full-

band output. Because of the temporal highpass operation of the transformation matrix, 

there will be no low-frequency signal components in certain subbands after the subband 

decomposition by filter banks and such subbands can be discarded prior to applying the 

subband beamformers. 

• E x t e n s i o n of the Subband-se lect ive Matr ix from Linear t o Planar Arrays 

The whole work of this thesis is based on linear arrays. But the associated idea could 

potentially be extended to planar arrays [7-9]. In the case of using the subband-selective 

blocking matrix, the planar scenario implies that we have to design a series of two-

dimensional filters [127,128] exhibiting band-selectivity in order to form the two-dimensional 

subband-selective blocking matrix. The design of such a tv^o-dimensional filter is a com-

plicated issue and one possible solution may be to design a one-dimensional filter first 

and then obtain a two-dimensional filter by means of a suitable transformation [129]. 



Appendix: Genetic Algorithm 

The first genetic algorithm (GA) was introduced by Holland [130] in 1975 and has since then 

been extensively explored as a technique of performing optimisation [117,118], including the 

design of filters and filter banks with sum-of-powers-of-two (SOPOT) coefficients [121,131,132]. 

In this appendix, we will give a brief introduction to the GA. For more details, please refer 

to [117,118,121] 

A . l In t roduc t ion 

The GA is based on the law of natural selection. It assumes that the potential solution 

to any problem can be represented by a set of parameters. These parameters are regarded as 

the genes of a chromosome and can be structured by a string of values. Each chromosome 

has a fitness value, which indicates its closeness to the final solution. A GA consists of three 

processes: selection, genetic operation and replacement. The first group of chromosomes (the 

first generation) can be generated randomly or from some initial results provided by other 

methods or algorithms. In the selection process, the "parents" are selected according to their 

fitness values. The chromosome with a larger fitness value should have a greater chance to 

be selected. Then the genetic operation is applied to the chosen "parents", which includes 

crossover and mutation. Crossover exchanges parts of the genes of the parental chromosomes, 

while mutation changes the values of some genes in one chromosome randomly. Based on 

some replacement strategy, the chromosomes in the first group are then replaced by the newly 

generated chromosomes - the offspring. The whole process is shown in Fig. 1 and repeated, 

until we find the desired chromosome, which gives the desired solution. 

104 
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old population 
(chromosomes) 

new population 
(chromosomes) 

old population 
(chromosomes) 

new population 
(chromosomes) 

selection 

fitness 
evaluation 

fitness 
evaluation 

selection 

genetic operation 
(crossover and mutation) 

Fig. 1: Block diagram of a Genetic Algorithm. 

The philosophy of a GA can be summarized as follows: 

1. Initialize the iteration index n to 0; 

2. Generate the initial population P[n\ = {XQ[n], Ax[n], • • • , where M is the size 

of the population and Xm[n], m = - , M — 1 are the chromosomes; 

3. Compute the fitness value F[Xm[n]) of each chromosome Am[n] in the current population 

P[n]] 

4. Choose "parents" from P[n] according to their fitness value F{Xm[n])\ 

5. Mate the "parents" by crossover and mutation, then generate the new chromosomes -

the "offspring"; calculate their fitness values; 

6. Insert the "offspring" in P[n]] at the same time delete the inappropriate one according 

to their fitness value; 

7. n = n + 1; if the termination test is not satisfied, go to step 4, or else stop and choose 

the best chromosome as the solution. 

Next, we will discuss six fundamental issues of the GA. 
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chromosome: gene0-genel-gene2 

gene: 100110 ••• or 2.4354 - or ABEDF • • 

Fig. 2: Block diagram of a Genetic Algorithm. 

A.2 Fundamen ta l issues of GA 

According to [133], the use of a genetic algorithm requires the determination of six fun-

damental issues: the chromosome representation (encoding scheme), the selection function, 

the genetic operators making up the reproduction function, i.e. crossover and mutation, the 

creation of the initial population, the termination criteria, and the fitness evaluation. 

A.2 .1 Solut ion representat ion 

The representation scheme is a key issue for any GA. It determines how the problem is 

structured and what operators are used. Each chromosome X^[n] represents a trial solution to 

the problem and is constructed of a string of variables, i.e. genes. The variables can be binary 

digits (0 and 1), real numbers, or other forms such as symbols {A, B,C, • • •), matrices, etc, 

which are determined by the problem specified. Examples for the structure of a chromosome 

and its genes are shown in Fig. 2. 

Bit-string representation is the most classic representation scheme, which was first proposed 

by Holland [130]. However, recent research shows that a more natural representation may be 

more efficient and produce better result. For example, in function optimization problems, 

floating point representation is more efficient in terms of CPU time than a bit-string based 

representation [134]. For the design of SOPOT filters considered in this thesis, the bit-string 

representation is preferred, because the SOPOT solutions are points in a discrete domain. 

A.2 .2 Parent se lect ion 

The selection process emulates the survival-of-the-fittest mechanism in nature, where stronger 

individuals are likely to become the winners in a competitive environment. This means that the 

chromosomes having higher fitness values have a better chance of survival by being selected to 

produce offspring. According to the intrinsic fiexibility and freedom of this selection in nature, 

we often perform a probabilistic selection. Generally better chromosomes, i.e., chromosomes 

with higher fitness values, have a better chance. The first selection method "Roulette Wheel 

Selection" was proposed by Holland [130]. 

In Roulette Wheel Selection, we first assign a probability of selection pm to each chromosome 
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chromosome 1: 

chromosome!: 

Fig. 3: Single-point crossover (• is the crossover point). 

Xm[n], which is defined by 

E . = o ' f ( x . W ) • 

Then a random number e is generated between 0 and 1 and compared with the cumulative 

probability Pm = If Pm-i < e < Pm, then Xm[n] is selected. 

In addition to the Roulette Wheel Selection, there are many other selection methods, such 

as ranking, tournament, and proportionate scheme [118]. 

A.2 .3 Genet ic operat ion 

The choice of the genetic operation determines how the "parents" produce their "offspring". 

In nature, the term genetic operation refers to the recombination of different chromosomes 

after crossover and mutation. Because here all the information is represented in only one 

chromosome, the recombination is realized by crossover between the corresponding genes of the 

parental chromosomes, during which mutation, the process of sudden change of some genes in 

a chromosome, might happen. 

For crossover, we should choose one or more crossover points in the parental chromosomes. 

These points can be generated from a number generator with a value between 1 and the length 

of the chromosome. Crossover can be further divided into single-point crossover and multi-point 

crossover. 

1. Single-point crossover 

A single crossover point is chosen randomly, which divides each of the two chromosomes 

into two parts. These are recombined to generate two new chromosomes, according to 

the example shown in Fig. 3. 

2. Multi-point crossover 

In this case, we can randomly choose more than one crossover point. An example is given 

in Fig. 4. A simple way of generating the crossover points is to create a random binary 

string constructed of Is and Os. The length of the string matches the number of genes in 

a chromosome. The changes in binary values within this string determine the positions 

of the crossover points. 
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chromosome 1: 

chromosome!: . . . . . . * -

Fig. 4: Multi-point crossover (• is the crossover point). 

A mutation introduces a new variation into the chromosome. Randomly, this can involve a 

change of value of one, more, or even all genes of a chromosome. Such a mutation will occur with 

a specified probability. Which genes are going to mutate can be determined in a fashion similar 

to the determination of crossover points as described previously. The range of mutation, i.e. 

the range of a gene's value, has to be chosen according to the specified optimisation problem. 

In the scenario where the solution is represented by binary digits, having determined the 

variables to mutate, we can randomly choose one or more bits in the variable to mutate and 

replace them by randomly generated binary values. Another commonly used standard mutation 

is flipping bits, where 1 is replaced by 0 and 0 is replaced by 1, if the probability test used for 

mutation is passed. 

A.2 .4 Init ial ization, f i tness evaluation, and t erminat ion 

The initialization of a GA is to generate the initial population or first generation of chromo-

somes P[n] = {Xo[n], Xi[n\, • • • , %M-iW}|n=o for the given problem. There are two commonly 

used methods in practice. One is to randomly generate the chromosomes. Thus, most of them 

may be far away from the optimal solution, which will result in a larger number of iterations to 

converge to the optimum. If other methods are available to determine an approximation or ini-

tial guess to the problem, then, it is advantageous to include this approximation or initial guess 

in the first population. There are at least two situations where this method is recommended. 

First, as it might be difiicult to analytically derive the globally optimal solution to some com-

binatorial or nonlinear problems, we can therefore combine these approximate solutions and 

a GA together to search for an improved solution. Secondly, in the design of multiplier-less 

filters and filter banks with SOPOT representation, optimal or sub-optimal real-valued results 

are available for some problems and these results can be used to aid the GA to search for the 

solution in the discrete domain. 

Fitness evaluation is the starting point of the selection process, and is also the only link 

between the GA process and the optimisation problem. It measures the fitness of each chro-

mosome according to their performances in the system. The range of the fitness value varies 

from problem to problem. To maintain uniformity, we need to map the performance to a 

proper value. There are many methods to perform this mapping. The simplest one is linear 

normalization: 
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The chromosomes are ranked in descending or ascending order of fitness values 

depending on whether the objective function is to be maximized or minimized. 

Assign the best chromosome a value of ao, and the worst chromosome the value 

a u - i , where aM-i < CKo, then the fitness value of the ^-th chromosome in the 

ordered list is 

= (2) 

To terminate the iteration, an ending or termination test has to be devised. A most com-

monly used termination criterion is to stop the iteration when the maximal number of gen-

erations is reached. Another method is to measure the deviation in the fitness values among 

the members of one generation. If the deviation reduces below some threshold value, then 

the process will be stopped. Yet another method is to stop once the best chromosome in one 

generation reaches a predefined fitness value. Further methods can be devised by combining 

these methods together in various ways. 
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A.3 Design of t h e example in Sec. 4.2.2 

In the design of the blocking matrix in Sec. 4.2.2, each of the coefficients bi[m\, m = 

2, 3, • • • , M —1 is represented as 

P[l,m] — 1 

ki'm] = ^ ai[/,m] • with 
i=0 

ai[l, m] E {—1; 1}, Li[l, m] E {Qi, Qi + 1, • • • , Q2 — 1,02} , (3) 

where P[l, m] is a limit for the number of SOPOT terms, and Qi and Q2 are integers determined 

by the range of the corresponding variable. Normally, P[l, m] is limited to a small number. 

Thus, the whole process will be kept in the discrete domain and good result in the SOPOT 

form can be obtained. Any of the mutation and crossover techniques introduced in the previous 

section can be employed. In this design, we use the single-point crossover and randomly create 

a number to decide the crossover point. A mutation is set to occur with a probability of 0.5 in 

a chromosome, whereby within the chromosome each gene has a uniform probability for being 

affected by this mutation. The stopband attenuation is assigned to each of the chromosomes 

as its fitness value and Roulette Wheel Selection is employed to select the appropriate parents. 

The initial population is generated randomly and the whole optimisation process is terminated 

when a specified maximum number of generations is reached. Tab. 4.1 gives the GA design 

results in SOPOT notation. 



Glossary 

Abbreviations 

AEC acoustic echo cancellation 

CCD cascaded columns of differencing 

DFT discrete Fourier transform 

DOA direction of arrival 

DOF degree of freedom 

FDAF frequency-domain adaptive filtering 

FFT fast Fourier transform 

FIR finite impulse response 

GA genetic algorithm 

GDFT generalised DFT 

GSC generalised sidelobe canceller 

IR impulse response 

LCMV linearly constrained minimum variance 

LMS least mean square 

MCAF multi-channel adaptive filtering 

MSE minimum square error 

MVDR minimum variance distortionless response 

NLMS normalised LMS 

PR perfect reconstruction 

RLS recursive least squares 

SAF subband adaptive filtering 

SINR signal to interference plus noise ratio 

SIR signal to interference ratio 

SNR signal to noise ratio 

SOPOT sum of power of two 

STGSC subband-selective TGSC 

SVD singular value decomposition 
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TGSC transform-domain GSC 

General Notations 

h scalar quantity 

h vector quantity 

H matrix quantity 

h{t) function of a continuous variable t 

h[n] function of a discrete variable n 

Relations and Operators 

\H 

complex conjugate 

Hermitian (conjugate transpose) 

(•)^ transpose 

(-)t pseudo-inverse 

8{-} estimation operator 

V gradient operator 

Kronecker product operator 

null{A} nullspace of A: {x : Ax = 0} 

ran{A} range of A: {b : Ax = b} 

rank{ A} rank of A (number of linearly independent rows) 

tr{A} trace of A 

Symbols and Variables 

A forgetting factor, RLS algorithm 

also: wavelength 

also: eigenvalue of covariance matrix R 

A vector of the Lagarange multipliers 

5[n\ Kronecker delta function 

Aj zth eigenvalue of R ;̂̂  

/i step-size parameter in a general adaptive algorithm 

also: a scaling factor in Frost's algorithm 

/io step size in the NLMS algorithm 

J1 normalized step-size parameter, NLMS algorithm 
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6 angle of incident 

also: azimuth 

r delay / lag 

^ cost function 

00 (angular) frequency 

n normalized (angular) frequency Q = with sampling period 

z 

Qi the /th spectral zero point of the prototype vector in the cosine-

modulated design of B 
rZg stopband cutoff frequency in the cosine-modulated design of B 

a an integer in the PR condition of filter banks 

Qfo, CKi, • • • scalars in the linear combination of vectors 

also: the fitness values assigned to the chromosomes in a GA 

13 forgeting factor 

e a random number generated in a GA 

7 stepsize in the self-orthogonising LMS algorithm 

(f) phase of plane wave 

also: elevation 

$ the objective function in the cosine-modulated design of B 

the Z-th objective function in the full design of B 

a substitute to Q sin 9 

p radius 

a is the variance of the white noise 

is the variance of the input signal x 

E r X r diagonal matrix 

ai[Z, m] the coefiicient of the ith SOPOT term for the m, I element in B 

A amplitude of a wave 

A a general matrix in the SVD theorem and the matrix inversion 

lemma 

b; the Z-th column vector of the simplified blocking matrix 

hi[m] the m-th element of the vector b; 

B blocking matrix 

also: a general matrix in the matrix inversion lemma 

B simplified blocking matrix 

Fourier transform of the column vector b; 

c wave speed in some media 

also: speed of light 

also: a constant in the PR condition of filter banks 
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C computational complexity 

C constraint matrix 

also: a general matrix in the matrix inversion lemma 

Ci the sub-vector for z-order derivative constraint on the beamformer 

Cj the sub-matrix for %-order derivative constraint on the beamformer 

C the matrix holding all the sub-vectors Cj of derivative constraints 

with ? = 0, • • • , -S* — 1 
d array distance 

D a general matrix in the matrix inversion lemma 

d{uj,6) steering vector 

d[n] upper branch output of a GSC 

d[n] output of the quiescent vector w, 

e a vector with dimension 6" x 1 and its first element as 1 and the 

remaining as zero 
e[n] beamformer out, adaptive filter error signal 

ek[n] the A:th subband adaptive filter error signal 

e^r a column vector holding [1, • • • , 

BAT a column vector holding • • • ,1] 

E(z) polyphase analysis matrix 

/ (temporal) frequency 

f response vector 

f vector holding the first J elements of the response vector f 

f*[j] the j-th tap of the equivalent array processor for signal from 

broadside 

F{Xm[n]) the fitness value of the chromosome Xm[n\ in a GA 

g{z) vector containing the z-transforms of the synthesis filters 

gk[n] the /c-th filter in the synthesis filter bank 

G beamformer's response to a specified signal 

h[n] a sequence or a filter or a prototype vector 

hk[n] the /c-th filter in the analysis filter bank 

also: the k-th subsequence of h[n] 

hk[n\ the k-th subsequence of h[n] obtained in a difi'erent way 

H(z) ^-transform of h[n] 

Hi{z) z-transform of hi[n] 

Hi{z) ^-transform of hi[n] 

i index number 

I identity matrix 

j index number 
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J filter length attached to each sensor 

k wavenumber for continuous signal 

also: index number 

k vector of wavenumber (or spatial frequency) 

K number of subbands 

I index number 

la adaptive filter length 

I full fullband adaptive filter length 

Ip prototype filter length 

Isub subband adaptive filter length 

L number of columns of B (partially adaptive) 

also: number of rows of T 

Li[l, m] the exponent of the ith SOPOT term for the (m, I) element of B 

m index number 

M number of sensors 

also: size of the polulation in a GA 

n index number 

no system delay of the PR filter banks 

also: phase origin point of an array 

N decimation factor 

NQ, number of samples in frequency to draw a beampattern 

Ne number of samples in DOA to draw a beampattern 

p cross-correlation vector 

p estimate of the cross-correlation vector p 

Pm the probability of selection of the chromosome in a GA 

pm the m-th cumulative probability in the Roulette Wheel Selection 

of a GA 
p[n] prototype filter of the filter banks 

P the limit for the number of SOPOT terms in the GA design 

P[l, m] the limit for the number of SOPOT terms for the (m, I) element 

of B 

P[n] the set of population at the n-th generation in a GA 

P{z) a factor in the decomposition of the prototype vector H{z) 

P(z) the product of the polyphase matrices 

Q(z) a factor in the decomposition of the prototype vector H{z) 

Qi the lower limit for the exponent in the SOPOT design of B 

Q2 the upper limit for the exponent in the SOPOT design of B 

r number of linearly independent constraints 
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also: an integer in the PR condition of filter banks 

also: rank of A in the SVD theorem 

r i j the power of the j—th output of the /—th DFT in an FGSC 

r vector representing a point in a Cartesian coordinate system 

f i j power estimation of the th output of the /—th DFT in an FGSC 

R reduction ratio of the computational complexity 

Ra;a; correlation matrix of x 

Ilxx estimate of R .̂̂ . 

R(z) polyphase synthesis matrix 

R^^ correlation matrix of the DFT output in an FGSC 

R„„ estimate of R^^ 

5" S' — 1 equals the order of derivative constraints on the beamformer 

t time 

t[n] distortion function 

t; the /—th row vector of the transformation matrix T 

t;[m] the m-th element of the vector t; 

T transformation matrix 

Ts temporal sampling period 

Ti{e^^) Fourier transform of the row vector t/ 

u output vector of the blocking matrix B 

u[n] output vector of the simplified blocking matrix B 

Ui[vb\ the /-th output of the simplified blocking matrix at time n 

Ui[n] the /-th tapped-delay line vector of the blocking matrix output 

U matrix holding the left singular vectors of A 

Ti[n] blocking matrix output in the partially adaptive GSC by trans-

formation 

Ur matrix holding the first r left singular vectors of A 

Ur matrix holding the remaining left singular vectors of A except 

those held in 
V the null space of the constraint matrix C 
V matrix holding the right singular vectors of A 

v[n] Vector holding all the DFT outputs at time n in the FGSC 

vi[n] Vector holding the outputs of the /—th DFT at time n in the 

FGSC 

vij[n\ the th output of the /—th DFT at time n in the FGSC 

w adaptive filter weight vector 

also: weight vector of a linear array 

w Adaptive weight vector of an FGSC 
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Wq weight vector in the adaptive part of a GSC 

Wa.opt optimum weight vector in the adaptive part of a GSC 

Wm,j the j-th tap of the m-th sensor filter 

Wg quiescent vector 

Wq simplified quiescent vector 

Wopt optimum weight vector for a linear array 

Wrn the filter attached to the m-th sensor 

Fourier transform of the m-th tapped-delay line of an array 

X X coordinate of the Cartesian coordinate system 

X signal vector holding the tapped-delay line signals of an array 

also; input signal vector of an adaptive filter 

X received phase vector at the array 

x[n] input signal of the filter banks 

x[n] sensor signal vector at time n 

x[n] output signal of the filter banks 

x[n] input signal of the antialiasing filter 

Xi[n] received signal by the z-th sensor at time n 

X{e^^) Fourier transform of x[n] 

Xjn[n] the m-th chromosome in a population set P[n] of a GA 

y y coordinate of the Cartesian coordinate system 

y[n\ adaptive filter output 

y[n] output of the interpolation process 

Y{e^^) Fourier transform of y[n] 

z z coordinate of the Cartesian coordinate system 

z unit vector along the z-axis the Cartesian coordinate system 
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