DIGITAL BEAMFORMING
EMPLOYING SUBBAND TECHNIQUES

PHD THESIS

BY

WEI LIU
AUGUST 2003

UNIVERSITY OF SOUTHAMPTON



University of Southampton
Faculty of Engineering and Applied Science
5 Department of Electronics and Computer Science

Digital Beamforming
Employing Subband Techniques
by

Wei LIU
B.Sc, L.L.B, M.Phil

A doctoral thesis submitted in partial fulfilment
of the requirements for the award of

Doctor of Philosophy

August 2003

Supervisors:
Dr. Stephan Weiss
and

Prof. Lajos Hanzo



© Wei Liu 2003



This thesis is dedicated to
my mother Su Yan Wang,

as a memory of her, forever!

ii



UNIVERSITY OF SOUTHAMPTON
ABSTRACT
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Doctor of Philosophy

Digital Beamforming Employing Subband Techniques
by Wei Liu

In this thesis, we propose some different methods to reduce the computational complexity of a

broadband beamformer based on the generalised sidelobe canceller (GSC) structure.

A GSC is an alternative implementation of the linearly constrained minimum variance
beamformer and relys on well-known adaptive filtering algorithms to perform unconstrained
adaptive optimisation. Due to the low computational complexity of subband adaptive filtering
techniques, we embed the subband adaptive algorithms into the adaptive part of the GSC
and propose a new subband adaptive GSC structure. In addition to its lower computational
complexity than those previously suggested subband beamforming structures, it achieves a

faster convergence rate than the traditional fullband adaptive GSC due to its pre-whitening

effect.

By studying the input-output relationship of the blocking matrix of a GSC, we also propose a
specific construction of the blocking matrix, in which the impulse responses hosted by its column
vectors constitute those of a series of bandpass filters. These filters select signals with specific
directions of arrival and frequencies and result in bandlimited spectra of its outputs. This
spatially /temporally subband-selective blocking matrix can be applied to the subband adaptive
GSC or the transform-domain GSC to reduce their computational complexities due to the
discarding of some of the subbands or frequency bin outputs prior to the following adaptation.
Since an overlap and finite transition band between the bandpass filters in the blocking matrix
have to be permitted, a better design quality can be attained by reducing the output dimension
of the blocking matrix, which yields a partially adaptive beamformer with further reduction of
the computational complexity. Because of its combined spatial /temporal decorrelation effect,

a faster convergence speed is also achieved, as demonstrated in the corresponding simulations.

Moreover, based on one of the traditional blocking matrices, we propose a spatially/tempora-
lly subband-selective transformation matrix, which can be regarded as another implementation
of the subband-selective blocking matrix, because it has the same effect as the subband-selective
blocking matrix, when combined with the traditional blocking matrix. The advantage of this
method is that it simplifies the design of the subband-selective blocking matrix into a general

filter design problem and can be implemented efficiently by cosine modulation.
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Chapter 1

Introduction

1.1 Introduction

Beamforming has found many applications in various areas ranging from sonar and radar to
wireless communications [5-7]. It is a signal processing technique to form beams in order to
receive signals illuminating an array from specific directions, whilst attenuating signals from
other directions. In the presence of interfering signals, linear temporal filtering cannot be used to
separate a desired signal occupying the same frequency band. However, these signal components
usually originate from different spatial locations. This spatial separation can be exploited to
separate the desired signals from interfering signals by an array of sensors. These sensors can
be positioned in space according to different patterns, e.g. along a line, around a circle, or
on a plane. Such arrangements lead to linear arrays, circular arrays and planar arrays [7-9],
respectively. For the time being, our discussion is limited to the family of uniformly spaced
linear arrays, which are shown in Fig. 1.1. Specifically, each sampled sensor signal z,,[n] is

processed by a dedicated filter w,,, m = 0,1,--- , M —1 . The wavefront of signals impinging

\ xoln] ~

WM-1 /

Fig. 1.1: A uniformly spaced linear array.

/OI—>
Fxpmln]

from a direction of arrival (DOA) 6 arrives delayed by integer multiples of A7 at these M
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sensors. The impulse response (IR) duration of each attached filter varies according to the

specific applications concerned.

To process narrowband signals [10], we can sample the propagating wave field in space
and linearly combine the data of M sensors, i.e. we only need one IR coefficient for each
filter W, [11]. For beamforming of broadband signals [12], we sample the wave field in both
temporal and spatial domains, and typically a higher number of coeflicients are employed for
W The filter coefficients can be designed for maintaining a fixed specified response for all
signal/interference scenarios, which leads to the concept of a data independent beamformer [13].
Alternatively, they can be chosen based on the statistics of the array data for optimising the
array’s response, which forms a statistically optimum beamformer [13]. Since the statistics of
the array data are often not known or may change over time, adaptive algorithms may be used

to determine these coefficients.

To perform adaptive broadband beamforming with high interference rejection and angular
resolution, arrays with a large number of sensors and filter coefficients have to be employed.
Reducing the resultant high computational complexity has stimulated intensive research in
the community. Numerous solutions have been suggested. In partially adaptive beamform-
ing [14-18], only a fraction of available degrees of freedom is exploited at the expense of a
reduced performance. In dynamic selective beamforming, the multi-beam outputs, as found
in beamspace beamforming [18-20], or frequency bin outputs, as found in transform-domain
or frequency-domain beamforming [21-23], are monitored and the specific outputs having a
power below some threshold will be omitted from subsequent processing. In subband beam-
forming [1,3,4,24-28], the received sensor signals are first split into decimated frequency bands

(“subbands”), prior to applying an independent beamformer to each subband.

In this thesis, based on the generalized sidelobe canceller (GSC) structure [29,30], which
is an alternative, but efficient implementation of the linearly constrained minimum variance
(LCMV) beamformer [31], a range of novel methods is proposed for reducing the computational
complexity of broadband beamforming. In addition to their lower computational complexity,
all these methods promise a convergence speed faster than traditional implementations of least
mean square (LMS) type adaptive algorithms. In the next section, we will list a number of effi-
cient adaptive broadband beamforming realisations, which constitute the original contribution

of this thesis.

1.2 Original Contributions

To combat the computational complexity of high-resolution broadband beamforming, we pro-

pose several methods employing subband techniques:
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e A Subband Adaptive Generalized Sidelobe Canceller [32, 33]

In this structure, we employ the subband adaptive filtering technique to decompose the
input signals to the adaptive part of the GSC into subbands and perform unconstrained
adaptive minimisation in each subband. This new subband adaptive system is capable
of achieving a lower computational complexity than previously suggested subband beam-
forming structures. Further, we can reason and demonstrate that it can achieve a faster

convergence rate than the traditional fullband adaptive GSC due to its pre-whitening

effect.

e A Spatially/Temporally Subband-selective Blocking Matrix

By studying the input-output relationship of the blocking matrix of a GSC, we propose a
specific construction of this matrix, in which the impulse responses hosted by its column
vectors constitute a series of bandpass filters. These filters select signals with specific
DOAs and frequencies and result in the blocking matrix outputs having bandlimited
spectra. Since an overlap and finite transition band between the bandpass filters in the
blocking matrix have to be permitted, a better design quality can be attained by reducing
the output dimension of the blocking matrix, yielding a partially adaptive beamformer.

This scheme finds applications in two areas:

— application to subband adaptive GSC [34—37]
In this case, the subband decomposition of the bandlimited spectra will result in some
subbands containing signals of almost zero energy, which can then be discarded in
the following subband adaptation. By partial adaptivity, subband discarding and
subband adaptation, the computational complexity of the system can be significantly

reduced.

— application to transform-domain GSC [38]
Here, we apply the discrete Fourier transform (DFT) to the outputs of the blocking
matrix. Because of the bandlimited spectra of these outputs, some of the frequency-
bin outputs of the DFT will be approximately zero and can be omitted from the
following adaptive processing. To enhance the bandlimitation, a window function

needs to be applied before performing the DFT.

e A Spatially/Temporally Subband-selective Transformation Matrix [39,40]

This can be regarded as an alternative implementation of the subband-selective blocking
matrix, because it has the same effect as the subband-selective blocking matrix, when
combined with one of the traditional blocking matrices. The advantage of this method is
that it simplifies the design of the subband-selective blocking matrix into a general filter

design problem and can be efficiently implemented by a cosine modulation.



1.3. Thesis Outline 4

1.3 Thesis Outline

The outline of this thesis is as follows:

In Chapter 2, we first give an introduction to the basic ideas of beamforming and then focus
on the LCMV beamforming technique and the GSC structure, which transforms the LCMV’s
constrained optimization problem into an unconstrained one. Various problems related to
LCMYV beamforming and GSC are briefly discussed, such as the formulation of constraints, the
optimum mean square error solution, Frost’s algorithm, and the blocking matrix design. Espe-
cially, the simplified GSC with tapped-delay lines is described. Adaptive algorithms commonly
used for the optimisation of the beamformer’s parameters are introduced, with an emphasis on

their respective computational complexities.

In Chapter 3, we give a brief overview on the fundamentals of filter banks and the subband
adaptive filtering (SAF) technique. Employing the SAF technique to the fullband adaptive
part of a GSC, we propose a novel subband adaptive GSC. We will show that compared with
traditional fullband adaptive GSC and previously proposed subband beamforming structures,
this new subband adaptive system can attain a lower computational complexity. In addition,
it achieves a convergence speed faster than the fullband adaptive GSC due to its pre-whitening
effect, as demonstrated in simulations based on different signal environments and different

formations of the blocking matrix.

In Chapter 4, the architecture of a partially adaptive GSC structure is reviewed. Based on
this we propose a GSC with a novel spatially/temporally subband-selective blocking matrix.
Two design methods are suggested in order to construct this matrix, comprising a constrained
full design and a cosine-modulated design based on the decomposition of the prototype vector.
Moreover, we develop a subband-selective transformation matrix which has the same effect as
the subband-selective blocking matrix, but offers simplifications in design and implementation.
The joint application of such blocking and transformation matrices to the subband adaptive
GSC and the transform-domain GSC are then studied to reduce the computational complexity
of the system. The effectiveness and benefits of the subband-selective systems are shown by an

extensive number of simulations.

Finally, conclusions and an outlook on possible future work are given in Chapter 5.



Chapter 2

Beamforming

This section reviews the basic ideas of beamforming and focuses on the linearly constrained
minimum variance beamforming technique as well as on its alternative implementation — the
generalised sidelobe canceller, which transforms the constrained optimisation problem of the
beamformer’s parameters into an unconstrained one. Subsequently, we review various widely

used standard adaptive algorithms, which can be employed in the resulting unconstrained

optimisation.

2.1 Wave Propagation

Whenever a driving force is coupled to an open medium, travelling waves are generated. They
propagate from the source of the excitation transporting energy in a specific form, e.g. acoustic
or electro-magnetic, which depends on the physical nature of the driving force. In the far field,
namely at a large distance away from the source, the waves become essentially planar. In our

study, we assume that the signals impinging on the sensor array are always plane waves.

A
plane z=constant
/

/7 /
k!

A /T y
A
z

Fig. 2.1: A Cartesian coordinate system.
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Consider a plane wave propagating in the direction of the unit vector z, along the z—axis
of the Cartesian coordinate system as shown in Fig. 2.1. At the plane defined by z = constant,

the wave function can be expressed as
s(t,z) = Acos(2n ft — kz) , (2.1)

where A is the amplitude, f the frequency, and ¢ the time. The parameter k is referred to as

the wavenumber [11] and defined as

=Y 2m (2.2)

where w is the (temporal) angular frequency, ¢ denotes the speed of propagation in the specific
medium and A is the wavelength. Similar to w, which means that in a temporal interval ¢
the phase accumulates to wt, the physical interpretation of the wavenumber & is that over a
distance z, measured along the propagation direction z, the phase accumulates to kz radians
and we can hence refer to k as the spatial frequency [41]. A specific difference between the
spatial and temporal frequencies k£ and w is their dimension. As time has only one dimension,
the corresponding frequency is also one-dimensional. However, spatial quantities like k£ stretch,
in general, over all three spatial dimensions, denoted either by the set of Cartesian variables
[z,y, 2] or, in polar notation, by [0, @, p] using the azimuth 6, elevation ¢, and radius p. It is
important to point out that k is characteristic of a monochromatic plane wave, in other words,

the spatial and temporal frequencies are coupled and cannot be chosen independently.

Let the vector r denote a point in space, which is specified in terms of its coordinates with
respect to the origin of the Cartesian coordinate system. Then the plane z = constant is

described by z = 27 - r = constant, which is shown in Fig. 2.1. Thus we can express the

quantity kz in (2.1) as
kz =k -r)=k" -, (2.3)
where
k=Fk(z). (2.4)

We refer to k as the wavenumber vector, which points in the direction of propagation Z.

The argument of the sinusoidal wave function in (2.1) is referred to as the phase ¢(t, 2).

Using this new notation, the phase can be expressed as

d(t,r) =2nft —k* -r. (2.5)

At a fixed time instant ¢, the points associated with the same phase ¢ are referred to as a
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Fig. 2.2: A general structure for narrowband beamforming.

wavefront and are defined by

dp=0 = 2nf dt—Kk? -dr (2.6)
= 21 0—k7 -dr (2.7)
= k7 .dr. (2.8)

In tangible physical terms, at a fixed time instance ¢, the phase has the same value at all points
reached by adding up the vectors dr that are perpendicular to the wavenumber vector k. All
these points constitute the plane associated with z =constant. It is for this reason that such a

wave is referred to as a plane wave.

2.2 General Beamforming

2.2.1 Beamforming Structures

In beamforming, we estimate the signal arriving from desired directions in the presence of
noise and interfering signals with the aid of an array of sensors in order to provide a versatile
form of spatial filtering. These sensors are located at different spatial positions and sample
the propagating wave in space. The collected spatial samples are then processed in order to
spatially extract the desired signal. Fig. 2.2 and Fig. 2.3 show two different beamforming

structures.

Specifically, in Fig. 2.2 the M linearly equispaced sensors sample the wave field spatially

and the output e[n] at time n is given by a linear combination of these spatial samples as

e[n] = Z Tm[n] - wy, . (2.9)

The beamformer associated with this structure is only useful for sinusoidal or narrowband
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Fig. 2.3: A general structure for broadband beamforming.

signals, where “there is essentially no decorrelation between signals received on opposite ends

of the array” [42] and hence it is termed a narrowband beamformer.

When signals with significant frequency extent, i.e. broadband signals, are of interest, rather
than applying a single coefficient w?, as in the case of narrowband beamforming, we apply a
tapped-delay line at the output of each sensor [12] as shown in Fig. 2.3. These tapped-delay
lines form a finite impulse response (FIR) filter at the output of each sensor. The beamformer
obeying this architecture samples the propagating wave field in both space and time and it
is suitable for broadband beamforming. The output of such a broadband beamformer can be

expressed as

M-1J-1

] = 33 zln — 5wl (2.10)

m=0 7=0
where J — 1 is the number of delay elements associated with each of the M sensor channels in
Fig. 2.3.

For convenience, we develop notations for treating both kinds of beamformers. Let us
consider a system having M sensors and J taps per sensor, where J = 1 for narrowband

beamforming. We rewrite the array output e[n] in Fig. 2.2 and Fig. 2.3 as

e[n] = wix . (2.11)
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The weight vector w € C*/ holds all MJ sensor coefficients with

[ Wy
Wi
w = ' , (2.12)
| Wo-L |
where each vector w;, 7 =0,1,---,J—1, contains the M complez conjugate coefficients found

at the jth tap position of the M filters, which is expressed as
W; = [w()’j Wiy " wM_l,j]T " (213)

Similarly, the input data are also accumulated in a vectorial form x as follows

x[n]

x=| . ! , (2.14)

x[n —J+1]

where x[n — j], 7 =0,1,---,J—1, holds the jth data slice corresponding to the jth coefficient

vector w;
x[n—j] = [wo[n—j] m[n—j] - xM—l[n_jHT' (2.15)

Recall that this notation incorporates the narrowband beamformer with the special case of
f = 1.

In our notation, we generally use lowercase bold letters for vector valued quantities, while
uppercase bold letters symbolise a matrix. The operators {-}7 and {-}¥ represent transpose

and Hermitian transpose operations, respectively.

2.2.2 Beamformer Response and Beampattern

Let us now analyse the array’s response to an impinging complex plane wave €’“! having a
frequency w and direction of arrival (DOA) 6, where the angle 6 is measured with respect
to the broadside of the linear array. For convenience, let the phase be zero at the first sen-
sor, which implies zg[n] = e/t and z,,[n] = et=m7O) m = 0,1,---, M —1, where 7(0) =
2mdsin§/(wA) = dsin f/c with wave speed ¢ and the distance d between adjacent sensors. As-
suming furthermore that the tap delay period is T seconds, then z,[n — i] = gl (e (B)~iT)
m=0,---,M—1,1=0,---,J—1. Therefore the array output is given by

M-1J-1

e[n] — ejwt Z Ze—jw(mT(ﬁ)—HT) . w;u

m=0 =0

= e“.rh,w), (2.16)
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where r(6,w) is the beamformer’s angle and frequency-dependent response, which can be ex-

pressed in vectorial form as
r(0,w) = wid(,w) . (2.17)

The elements of d(#,w) correspond to the complex exponentials e 7«(m7(©)+T) and in general

we have

(2.18)

7

d(e, w) == [e_jLUTO(e) e_ijl(a) e e—ijMJ—l (9)]’[‘

where 75(0) = 0 and 7,(0), n =1,2,---, MJ—1, are the time delays due to wave propagation
and tap delays spanning the interval measured from the zero phase reference to the point at
which the nth coefficient is applied. We refer to d(f,w) as the array response vector, which is

also known as the steering vector or direction vector [13].

Based on the response vector, we briefly discuss the spatial aliasing problem encountered
in array processing [13]. In conventional temporal sampling, aliasing implies ambiguity in
temporal frequencies, i.e. signals with different frequencies have the same discrete-time sample
series. Similarly, spatial aliasing corresponds to an ambiguity in spatial locations of the source
signals. The implication of this spatial ambiguity is that sources at different locations have the
same array response vector. For signals having the same frequency wy, but different DOAs 6,
and 0, satisfying the condition of 6y, 6y € [—7/2, /2], aliasing implies that we have d(6;,wy) =
d(6s,wp), i.e.

eJwor(01) e—J'wo7'('92)7

—j2n(sin01)d/Xo 6—j27r(sin02)d//\o ) (219)

€

In order to be able to avoid aliasing, the condition of |27 (sin@)d/Xglg=g, 9, < 7 has to be
satisfied. Then we have |d/Agsinf| < 1/2. Since |sinf| < 1, this requires that the array
distance d should be less than \g/2. In the following, we will always set d = \¢/2, with the

assumption that the signal frequencies fulfil w € [0; wy].

To describe the sensitivity of the array with respect to signals arriving from different spa-
tial directions and with different frequencies, we use its beampattern, which is the amplitude
response |r(6,w)| of the beamformer with respect to both the angle of incidence and frequency
of an impinging waveform. Suppose the array spacing d is set to be \g/2, where )y is the
wavelength of the maximum frequency component, and the temporal sampling frequency is
twice the maximum frequency. Then the sampling period becomes T' = A¢/2¢ = d/c and thus

we have 7(0) = T'sinf. Substituting 2 = wT, where Q) is the normalised angular frequency,
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from (2.16), we obtain

M-1J-1
T,(g, LU) — e—]Q(ms1n0+z) . wy*n,i
m=0 =0
M—-1 J—1
7”(9, Q) — e—]szm& E :e~]2§2 N w:v,,i
m=0 =0
M-1
—jm§sin 6 19
= N emasing pp(032) (2.20)
m=0

where W,,(e’) is the Fourier transform of the tapped-delay line W,, attached to the m-th

Sensor.

To draw the three-dimensional graph of the response with respect to frequency and DOA,
we need to sample the continuous function |r(,Q)| according to different discrete values of
6 and 2. To calculate the beampattern for Ny number of discrete DOA values and for Ng
discrete temporal frequencies, an Ny x Ng matrix is obtained holding the response samples on
the defined DOA /frequency coordinates. As a simple example, consider an array having M=5

sensors and a tapped-delay line length of J=3. Suppose the weight vector is given as
w=[00000020202020200000]". (2.21)

The beampattern of such an array is shown in Fig. 2.4 for No = 50 and Ny = 60, where the
gain is displayed on a logarithmic scale as 20 log,, |7 (6, 2)|.

In the example of Fig. 2.4, the weight coefficients were given fixed values and the resultant
beamformer will maintain a fixed response independent of the signal/interference scenarios. In
statistically optimum beamforming, the weight coefficients need to be updated based on the
statistics of the array data. When the data statistics are unknown or time varying, adaptive
optimisation is required. According to different signal environments and applicational require-
ments, different beamforming techniques may be employed such as the linearly constrained
minimum variance beamformer [31] and the multiple sidelobe canceller [43], or we may invoke
a reference signal [44] and the SNR maximisation [45] at the beamformer’s output for adjusting
the array weights. In this study the LCMV beamforming technique is of particular interest and

will be further discussed in the next section.

2.3 Linearly Constrained Minimum Variance Beamform-
ing

In linearly constrained minimum variance (LCMV) beamforming [31], the basic idea is to

constrain the response of the beamformer such that the desired signals impinging on the array
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Fig. 2.4: A directivity pattern example of a linear array with M=5 and J=3.

from a specific direction pass with a specified gain and phase, while the variance or power of the
output signal is minimised. As a result, the desired signals are preserved subject to a specified
controlled response, while the contributions due to interfering signals and noise arriving from

other directions are attenuated.

We have seen that the beamformer’s response to a signal having a frequency w and DOA
6 can be expressed as in (2.17). In order to ensure that any signal having a frequency wy and
DOA 6, passes the beamformer with a specified response GG, where G is a complex constant,

we set this constraint to wd(fy,ws) = G. Noting that the expected value of the output power

or variance is given by [31]
E{le[n]]’} = wiR,,w, (2.22)

where £{-} is the expectation operator and R, is the observed array data’s correlation matrix,

which is assumed to be positive definite and given in the form of
Rz = 8{XXH} (2.23)
the LCMV problem of optimising the array weights can be formulated as

w = argmin wi R, w subject to d 6y, we)w = G* . (2.24)
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Fig. 2.5: The equivalent processor for a signal arriving from broadside.

The problem formulated in (2.24) obeys a single constraint. However, it can be generalised
to multiple linear constraints for attaining an enhanced control over the beamformer’s response,
for example, by specifying more DOA angles and frequencies. If there are r < MJ number

of linearly independent constraints imposed on w, we can formulate the constraints in matrix

form as
Ciw=f, (2.25)

where the MJ x r dimensional matrix C is termed as the constraint matrix, while the r
dimensional vector f is the so called response vector. In the next section we will discuss a
special class of constraints in the broadband beamforming case, which is assumed throughout

this thesis.

2.3.1 Formulation of Constraints

The constraints imposed on the LCMV beamformer ensure that the beamformer has the re-
quired response to signals arriving from specified angles and at given frequencies, no matter
what values are assigned to the weights. In different applications, there are different constraints,
one of which is that for a prescribed direction, the response of the array is maintained con-
stant. The resultant beamformer is referred to as the minimum variance distortionless response
(MVDR) beamformer [46,47]. All our simulations throughout this thesis are based on this type
of beamformer. The application of such constraints is based on a simple relation between the
response in look direction and the weights in the array. Based on Fig. 2.3, in the following we

will briefly introduce this approach.

Assume that the signal of interest arrives from broadside, & = 0, i.e. the signal of interest
impinges perpendicular to the line of sensors. If this is not the case, the array can be steered
either mechanically or electrically by imposing appropriate time delays, or phase shifts in the
narrowband beamforming scenario, immediately after each sensor output, such that the signals
incident on the array from directions of interest other than broadside appear as identical replicas
of one another at the outputs of the steering delay elements. With this pre-steering, the

signal of interest can be treated as if it had arrived from broadside. Thus, identical signal
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components appear at the sensors simultaneously and pass in parallel through the tapped-
delay lines following the sensors. Hence, the FIR filters seen in Fig. 2.3 appear to be driven
by a common input. As far as the signal of interest is concerned, the array processor is
equivalent to a single tapped-delay line in which each weight is equal to the sum of weights in

the corresponding vertical column, as indicated in Fig. 2.5 [31], where we have
M-1
FUl= D wh; (2.26)
m=0

with j =0,1,---,J—1.

These summed weights in the equivalent tapped-delay line form a temporal filter, specifying
the frequency response of the beamformer to the signal incident from the broadside and must
be selected appropriately to give the desired response characteristic in the look direction. In

the MVDR beamforming case, this response is a pure integer delay, i.e. one of the taps f*[j],

j=0,1,---,J—1 will be 1 and all the others are zero.

Thus, the broadside constraint can be formulated in the following way

Clw=f, (2.27)
where
sl
i | 7 [_1] (2.28)
| T -1] ]
and
Co 0
C= e CMIxJ (2.29)
0 Co
with
co=[11 --- 1]T e CM*? (2.30)

Note that the response vector f is defined to contain the complex conjugate of a desired gain.

Adaptive arrays obeying this broadside constraint can efficiently suppress sources of interfer-
ence from other directions and achieve the maximum attainable signal-to-interference-plus-noise
ratio (SINR) [42]. If, however, the desired signal does not appear exactly in phase at the out-
puts of the steering delays due to an error in the steering angle, the array will tend to null out

the desired signal as if it were an interfering signal. A remedy to this problem is to impose
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derivative constraints on the main beam of the array [30,43,48,49]. Derivative constraints set
the derivatives of the array’s response with respect to the DOA in the desired direction to zero.
The higher the order of the derivative constraints, the broader will be the beam pointing to the

desired direction.

According to [48], the first-order derivative constraint formulated for a uniformly spaced

linear array can be expressed as
cfw;, =0, j=0,1,---,J—-1, (2.31)

where c; is the M-dimensional vector given by

c; = [ci[0] ei1] -+ e[M—1]]F € CMX! (2.32)
with
cfml=m-nyg, m=0,1,--- ,M—1, (2.33)
where ng is the phase origin point. If we choose the middle point along the array line as the
reference point and set the signal phase at this point to be zero, then we have ng = M2;1
The (S—1)-order derivative constraint is
c# w;=0, j=0,1,---,J-1, (2.34)
where cg_; is given by
cs_1 = [cs_1]0] es_1[1] - esi[M—1]]F € CM*? (2.35)
with
cs_ifm] = (m—ne)>', m=0,1,--- , M—1. (2.36)

In this context, we can consider the constraint in (2.27) to (2.30) as zero-order derivative
constraint. Combining (2.30), (2.32) and (2.35) together, we obtain the general formulation in

the following when we impose derivative constraints of zero until S—1 orders on the beamformer
Clw =1, (2.37)

where

C= [éo...és_l] e CMI*ST  with ;= e CMIXJ (2.38)

and

f=[f[0] fl1] -~ f[J—1] 00 ---0F €C¥/*. (2.39)
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2.3.2 Optimum Solution to the LCMV Problem

The solution to the general LCMYV problem in (2.24) and (2.25) can be obtained by the method

of Lagrange multipliers [11], which is outlined here.

The Lagrangian is formed by the objective function &{|e[n]|*} = w#R,,w, plus the real
part of the constraint function of C#w — f, weighted elementwise by the r-dimensional vector

of undetermined Lagrange multipliers A, which is given by
wHR W + AT (CHlw — ) + AT(CTw* — 7). (2.40)

Note that the gradient of the constraint function constituted by the second and third terms of
(2.40) must be linearly independent of each other for the Lagrange multipliers to hold, i.e. the

columns of C must have full rank [50]. Differentiating the function in (2.40) with respect to

w*, we have
Ry;w + CA. (2.41)

Setting this result equal to zero, we obtain the optimal weight vector wopt in terms of the

Lagrange multipliers as follows
wopt = —R, CX . (2.42)
Since the optimal weight vector must satisfy (2.25), we have
~CARZICA=f. (2.43)
Solving this equation for A and finally substituting A into (2.42) yields
wopt = R,, C(C"R,,C)7'f (2.44)

which represents the solution to the constrained optimisation problem in (2.24) and (2.25) [11].

2.3.3 Frost’s Algorithm for LCMV Beamforming

From (2.44), we know that for the LCMV beamformer the optimum solution wopt is based on
the statistics of the array data. However, in numerous applications the second order statistics of
the array data required in the correlation matrix (2.23) are unknown or may change over time.
In this case, constrained adaptive algorithms can be employed for determining the coefficients
in w. One such approach is given by Frost’s algorithm as proposed in [31], which we will briefly

review in the following.

At the beginning, we set the weight vector to w[0] = C(CH# C)~!f for initialisation, which

satisfies the constraint in (2.25). At each iteration, the vector w is updated in the direction of
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the negative gradient expressed in (2.41) by a step proportional to a scaling factor p according

to
wn+1] = w[n] — u(Reew[n] + CA[n]) . (2.45)

Since w[n+1] must satisfy the constraint in (2.25), we can substitute (2.45) into (2.25) and
solve for the Lagrange multipliers A[n]. Then we substitute A[n] into the iteration equation

(2.45) and arrive at
wn+1] = wn] — u(I— C(C¥C)'C*)Ryew[n] + C(CFC) I (f — CHwin]) . (2.46)

Upon defining the short-hand of P = I-C(CH#C)~'C¥, the algorithm in (2.46) can be rewritten

as

wln+1] = C(C*C)~'f + P(w[n] — pRyw[n]) . (2.47)

Not knowing the true second order statistics R,,, the correlation matrix can be replaced
by its simple approximation R, = xx*. This results in the minimisation of the instantaneous
square error rather than the mean square error, and leads to the so-called stochastic constrained

algorithm
wln + 1] = C(C*C) ' + P(w[n] — pe*[n]x[n]) , (2.48)

which is also known as the Frost’s algorithm.

Instead of using the constrained adaptive algorithm of (2.48), Griffith [29,30] proposed an
alternative, but efficient implementation of the LCMV problem, which is referred to as the
generalised sidelobe canceller (GSC) [29,30]. The GSC employs an unconstrained adaptive

algorithm and is presented in the next section.

2.4 Generalised Sidelobe Canceller

2.4.1 GSC Structure

The GSC can be viewed as a scheme designed for transforming the constrained minimisation
problem of (2.24) into an unconstrained form. The evolution of the GSC structure from the
LCMYV problem is illustrated in Fig. 2.6(a)-(c). The resultant unconstrained problem can then
be readily solved using well-known standard adaptive algorithms, such as the least mean square

or recursive least squares algorithms [51] .

The basic philosophy of the GSC is to decompose the array weight vector w, which is the
quantity to be optimised in the LCMV problem of Fig. 2.6(a), into two orthogonal components
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Fig. 2.6: From the LCMV problem to the unconstrained GSC beamformer: (a) LCMV beam-

former; (b) separation of constraint output; (c) unconstrained GSC problem by projection of

the data into the nullspace of the Hermitian constraint matrix [1].

w, and —v defined in the context of w = w, — v, as seen in Fig. 2.6(b). The vector w, lies
in the range of the matrix C¥, while the component v is contained in the null space of C¥,
i.e. the space of all v fulfilling C¥v = 0. Together the range and null space of a matrix span
the entire space [50], so this decomposition can be used to represent any w. The vector w, is
obtained by solving the constraint equation in (2.25) using the pseudo-inverse of C¥ [52,53] as

follows
w, = (CH)If = c(CHC)™'f, (2.49)

where {-}' indicates the pseudo-inverse. The resultant structure is shown in Fig. 2.6(b). In a
quiet environment (quiescent condition), for which the received signal consists of white noise
only, w, will be the optimum solution of (2.44) as the correlation matrix Ry, = o1, where o?

is the noise variance and I is the identity matrix. For this reason w, has been named “quiescent

vector”.

The vector v can be expressed as a linear combination of basis vectors of the null space of

CH. If the columns of a matrix B € CM/*MJ~ form such a basis, i.e., if we have
cifB=o0, (2.50)

then we can write v. = Bw,, where r is the number of linearly independent constraints in C as
mentioned in Sec. 2.3 and w, is the vector to linearly combine the basis vectors in B to form
v. The matrix B can be obtained from C using orthogonalisation methods such as the QR

decomposition [52,54]. We note that the most widely used methods in the context of the GSC
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are the cascaded columns of difference (CCD) method [55] and the singular value decomposition
(SVD) method [30,54], which will be reviewed in Sec. 2.4.3. The structure with the described

factorization of v is given in Fig. 2.6(c), where

yln] = wia . (2.51)

Since w, is determined by the constrained specifications, the LCMV problem reduces to
that of finding the weights w,. The choice for w, and B implies that the constraints are
satisfied independently of w,. Note that we can substitute w = w, — Bw, into (2.24). Since
the constraint has been fulfilled by this factorization, the optimisation is not subject to the

constraints any more. Thus, a modified LCMV formulation is obtained as

w, = arg min[w, — Bw,|"Rg,[w, — Bw,] . (2.52)

The solution to (2.52) can be obtained by (2.44). As wopt = Wy — Bw, opt, we have
Bw, opt = W, — R,;C(C¥R,;C)7'f . (2.53)

Multiplying the two sides of (2.53) by B¥Ry,, respectively and also noting that BZC = 0, we

can get
BYR,,Bw, opt = BY/R,,w, — 0 . (2.54)

Further multiplying the two sides of (2.54) by the inverse of B#R,,B, the final solution to
(2.52) [11,13] is given by

Waopt = (B7RezB) "B Ropw, . (2.55)

If the constraints are designed to present a specified response to signals impinging on the
antenna array from a set of directions and at different frequencies, then the columns of B will
block those directions and frequencies. This concept leads to the term “blocking matrix” often
used for describing B. Those signals are only processed by w, in the upper branch of the GSC in
Fig. 2.6(c). Since w, is designed to satisfy the specified constraints, the desired signals will pass
through the beamformer with a desired gain and phase independent of w,, while the interfering
signals and noise pass through the upper branch of the GSC with a response determined by w,.
In the lower branch, since the desired signals are blocked, only the interfering signals and the
noise can pass. When adapting w,, the scheme will tend to cancel the interference and noise

component in the upper path, while minimising the variance or power of the output signal e[n].

In Fig. 2.6(c), the upper branch output d[n] is obtained by d[n] = wlx. For the lower
branch, u = Bx and y[n] = wHu. To calculate the blocking matrix output u, MJ(MJ — )

multiplications are required every sampling period, which represents a considerable burden for
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large values of M and J. Based on the constraint formulations in Sec. 2.3.1, we will circumvent
this potential problem by simplification of the blocking matrix and introducing the GSC with
tapped-delay lines in Sec. 2.4.2.

2.4.2 GSC with Tapped-Delay Lines

Recall from Sec. 2.3.1, that when imposing derivative constraints of zero up to an order of

S — 1 on the beamformer, the constraint matrix and the corresponding response vector can be

expressed as

C; 0
C= [éo‘..és_l] e CMIxST  with & = e CMIxJ (2.56)
0 C;
and
£f=[f[0] fl1] -~ f[J—1] 00 --- 0]F € C¥*x1, (2.57)

As the blocking matrix B is composed of the basis vectors of the null space of C, we have

B ¢ CM/*(M=5)J  Assume that B has the following block diagonal form:

B 0
0

B=|_ . |, (2.58)

0 ©

_O 0...BJ

where B is an M x (M — S)-dimensional matrix. The condition for the blocking matrix B in

(2.50) can then be expressed as

_ feg -
CIB
cip= | _o. (2.59)

CHZ B
where the rows Cle, 1=20,1,---,5—1, simplify to
( chB 0 c. 0

. 0 cB ...
erp=| - O | (2.60)
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Then, as long as B fullfills

CiB=0 where C=|[cy - -Cs4], (2.61)

the original blocking matrix B will automatically satisfy (2.50).

Under this construction, the blocking matrix output u = B”x becomes

B7x[n]
BPx[n — 1]
u= ) : (2.62)
Bx[n — J +1]
Assume that we have u[n] = [uo[n], ..., up—s_1[n]]T = B¥x[n]. Then we see that the input

signal u to the adaptive block w, is a series of tapped-delays of the vectorial signal u[n], i.e.

_ ] -
u= uln :_ 1 : (2.63)

un — J +1]

Thus, it is possible to apply a smaller blocking matrix B straight to the sensor signal vector
x[n], rather than applying the fullsize matrix B. As a result, the output vector u[n] from B is
fed into M — S tapped-delay lines of length J, which will be shown later as a block diagram in
Fig. 2.7.

Considering the quiescent vector, the sparse nature of C allows us to rearrange (2.49) and

obtain a simplified form for w, [30] in the following:
w, =1 Q) W, , (2.64)

where the operator ) denotes the Kronecker product operator [56], and

0]

i | M (2.65)
| Sl —1] ]

W, = C(CHC) e (2.66)

with e = [1,0,...,0]" being an S x 1-dimensional vector. We derive the formulation for the
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quiescent vector w, in (2.64) by first permutating C to obtain a new constraint matrix

e 0
0

Q)
I
o

0 0 ..C
L d MIxsJy

Correspondingly, the constraint of Equation (2.37) becomes

Clw =t Qe

for the sake of keeping the (S—1) order derivative constraints unchanged.

From (2.49), we have

w, = C(CTO)(tX)e)

(2.67)

(2.68)

(2.69)

(2.70)

_ 4 -1
| CHC 0 0
_ 0 C¥fC ’
= C . FXRe)
0 0 CHC |
[ &(CHE) 0 o |
0 O{oEC) = .
= | - (F ® e)
0 0 C(CHC)!
Now we arrive at
[ focCIe) e | [ slolw,
FHIEEHE) e Fl11%,
Wy = = )
flT—=1]C(CHC) e fIJ = 1], |
which leads to (2.64). As we have d[n] = wfx, with this simplification of w, we can express
d[n] as
[ wix[p]
" whx[n — 1]

(2.71)
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x[n] cNi[n] = 2l ezl
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/

Fig. 2.7: A generalised sidelobe canceller with tapped-delay lines.

if we use the representation d[n] = wlx([n], Equation (2.71) can be further simplified, yielding

~d[n]
dn] = B d[nz—l]
_J[n—J%—l]J
= f*0]-dn]+ f[1] -dln— 1]+ -+ f[J—1]-dln— T +1]. (2.72)

Now we can introduce the simplified GSC structure with tapped-delay lines as shown in
Fig. 2.7. The output of the vector W, is processed by an FIR filter with coeflicients held in f
while the adaptive part of the GSC after B becomes a multi-channel adaptive filtering (MCAF)
system, which will form the basis for our subband adaptive GSC proposed in Chapter 3. In
this simplified structure, we still refer to w, and B as the quiescent vector and blocking matrix,

respectively.

For MVDR beamformers, only one coefficient of f is unity and all the others are zero (see
Sec. 2.3.1); thus the FIR filter in the upper branch of Fig. 2.7 becomes a pure delay line as
shown in Fig. 2.8. Without loss of generality, we can set f =[1 0 0 --- 0]Z. In this case the
delay in Fig. 2.8 will be zero.
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L

Fig. 2.8: A GSC for MVDR beamforming.

2.4.3 Blocking Matrix Design

In the GSC structure, we have to find the proper blocking matrix B, which can fulfil the
requirement formulated in (2.50). By the rearrangement outlined in Sec. 2.4.2, this problem is
reduced to a suitable blocking matrix B. As mentioned in Sec. 2.4.1, such a blocking matrix
can be obtained by invoking CCD [55] or SVD methods [30,54], which we briefly review under
the constraints specified in Sec. 2.3.1. We will find later in Chap. 4 of this thesis, that the
blocking matrix could be constructed quite differently from the approach of these two methods
with the aim of satisfying certain specific characteristics, which can be exploited for reducing

the complexity of the subband adaptive GSC [32,33] and the transform-domain GSC [21].

Cascaded Columns of Differencing

The CCD method was first proposed in [29] and then systematically derived in [55]. The
blocking matrix obtained by this method is formed by S cascaded columns of differencing to

fulfil the derivative constraints in (2.37) as shown in Fig. 2.9.

In matrix form, the blocking matrix can be formulated as [55]
B=By By Bysi, (2.73)

where we have

1 -1 0
B; = .o e ¢t (2.74)

0 ]l —1

with i = M, M —1,--- ,M — S + 1. It is intuitively clear from Fig. 2.9 that no signal from
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Fig. 2.9: Blocking matrix obatained by S cascaded columns of differencing.

broadside can pass through the blocking matrix for S = 1. For S > 1, the width of the

mainlobe, centered at broadside, will be widened with increasing S.

Singular Value Decomposition

The singular value decomposition theorem [50,51,53] states that, given a matrix A, there

exist two unitary matrices U and V, such that we have

0
UZAV = (2.75)
0 0
or
>0
A=TU R (2.76)
0 0

where X is an r X r diagonal matrix containing the ordered positive definite singular values of

A. The variable r is the rank of A and represents the number of linearly independent columns

in this matrix A.

Let us separate matrix U into two parts as follows

u=[0,0], @)
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Fig. 2.10: (a) Standard generic adaptive filter setup and (b) the adaptive part of a GSC.

where U, holds the first 7 columns of the matrix U, whereas U, holds the remaining columns

of U, then it is easy to see that
UZA =0, (2.78)

i.e. U, forms a basis for the null space of A¥ [50,53]. If we replace the matrix A by the

constraint matrix C or C in the SVD decomposition, the resultant U, will be our desired

blocking matrix B or B.

Compared to the CCD method [55], the SVD approach [30, 54] constitutes a more general
way of obtaining the blocking matrix, because it can be applied not only to the broadside

constraint of (2.37), but also to the general constraint of (2.25).

2.5 Adaptive Algorithms for GSC Structure

As mentioned in Sec. 2.4, the GSC structure enables us to apply standard adaptive filtering
algorithms to the optimisation of the weight vector. In Fig. 2.10, the adaptive part of the GSC
is compared to the generic setup of an adaptive filter [51,57], where the weight vector w, of the
GSC corresponds to the weight vector w of the general adaptive filter, and the blocking matrix
output u in (2.63) formed by the tapped delays of the multichannel signal u[n] corresponds to
the general adaptive filter’s input vector x. The output signal y[n] = w#x or w/u is compared
to the desired signal d[n], resulting in an error signal e[n] = d[n] — y[n], which can be used for
adjusting the weights w according to some criterion. Usually, this criterion is to minimise the

error in a mean square or weighted sum of squares sense [51].

In the following, based on the standard generic adaptive filter setup in Fig. 2.10, the least
mean square (LMS), the normalised LMS (NLMS) as well as the recursive least squares (RLS)
algorithms will be briefly reviewed. Note that here x is a general input signal vector and w a

general weight vector not to be confused with the definitions of x and w in (2.11) as the array
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Fig. 2.11: Mean square error cost function £ for the case of a weight vector w with 2 coefficients.

input signal and beamformer weights, respectively. We will include the time index n and use

x[n] and w[n] to indicate their values at the time instant n in our following discussions.

2.5.1 Least Mean Square Algorithm

The LMS algorithm is a stochastic gradient technique based on the particular shape of the cost

function employed. This cost function &, which is constituted by the mean square error (MSE),

can be formulated as
¢ = Een ]' e*[n]}
- g{ winl#x[n]) - (dln] — win]"x[n])" }
= [ [#p — pHwln] + wn]"Reowin]

where 02, = £{|d[n]|*},p = £{x[n]d[n]*} and R,, = £{x[n]x"[n]}. The operator {-}* denotes

complex conjugation.

Method of Steepest Descent

The MSE &(w) is dependent on the elements of the tap-weight vector and — provided that the
covariance matrix R, has full rank — has the shape of a hyperparabola with a unique global
minimum &,,;, , as illustrated for the 2-dimensional case in Fig.2.11. Hence, gradient techniques

can be successfully employed in order to search for this minimum. This can be achieved by an
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update rule involving successive corrections of the tap-weight vector w{n] from an initial vector

in the direction of the negative gradient of the MSE, which can be expressed as
wn+1] = win] — uV(£[n]) . (2.79)

The factor u is a positive real-valued constant weighting the amount of innovation applied at

each update. The variable V(£[n]) denotes the value of the gradient vector at time n, which is

formulated as

Vel = 20 (2.80)

ow
Using Wirtinger’s calculus [58], the gradient vector can be evaluated as
V(¢[n]) = —=p + Ry wn] . (2.81)

Thus, the updated value of the tap-weight vector for the standard filter configuration can be

computed as
wn+1] = wln] + u(p — Rezw(n]) . (2.82)

The parameter u controls the size of the correction at each iteration step and is referred to as

the step-size parameter.

Stochastic Gradient Technique

A simplification of the method of steepest descent in (2.82) is to replace the expectation values,
as used for the covariance matrix R, and the cross-correlation vector p, by appropriate esti-
mates. The use of single sample estimates leads directly to the least mean square algorithm,

where R, and p are replaced by
Re.[n] = x[n]x"[n] and p = x[n]d*[n] . (2.83)

These are instantaneous estimates based on the input vector x[n] and the desired signal d[n)].

Substituting the estimate in the steepest-descent algorithm of (2.82) results in the simplified

formula of
win+1] = wln] + u(d[n] - x¥alwln])xfn]
= win| + pe*[n]x[n] (2.84)
with the relation e[n] = d[n] — w¥[n]x[n]. Equation (2.84) is the well-known LMS update.

The convergence and stability of the LMS algorithm depend on the correct choice of the
step size parameter p [51,57]. A large step-size parameter u results in a fast convergence speed

but also in a large excess mean-squared error after adaptation, i.e. the algorithm is not very
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precise in reaching and staying at the exact minimum of the cost function £. If u is chosen
small, the adaptation is slow but the excess mean-squared error after adaptation is small, thus
a trade-off exists and usually a compromise has to be made. Standard analysis evaluating the
algorithm’s behaviour in terms of the mean and the mean-square (i.e. checking for bias and

consistency of the achieved solution) requires for u to fulfil

! (2.85)

0 < u <

?
/\max

where Apax is the maximum eigenvalue of the correlation matrix R,,. Since R, has a Toeplitz

structure and hence is positive semidefinite, an approximation gives

la—1

/\max S Z /\z = tr{Rzz} = Za ' ng ) (286>
1=0

where [, is the dimension of x, A; the eigenvalues of R, tr{-} the trace of the matrix argument,

and o2, is the variance of input signal. This yields

1

2
bo~ Gls

(2.87)

po<

)

as an upper convergence limit for . When exceeding this limit, p is likely to cause the LMS

algorithm to be unstable.

2.5.2 Normalized Least Mean Square Algorithm

In the LMS algorithm, the convergence coefficient has to be selected such that the step size
factor 4 never exceeds its upper bound in (2.87). In non-stationary environments or where o2,
is not known a priori, the worst case has to be assumed, which means that at most times a
rather slow convergence may arise. Therefore, a normalization of the step size can ensure, that

an approximately constant rate of adaptation is achieved at all times. Based on an estimate of

(2.86) by

lo 02 =~ x[n]?-x[n], (2.88)
the normalization of the step size is given by
Ho
S RN - S 2.89
HE S x] (259

Substituting (2.89) into the LMS update yields a constant convergence speed independent of

the power of the input signal x.
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2.5.3 Recursive Least Squares Algorithm

The recursive least squares algorithm differs from the LMS-type algorithms reviewed in Sec. 2.5.1

and 2.5.2 by trying to minimize a sum of squared error values as cost function:
mn n
&sln] =Y B le[n]* =) B”[d[n] — wH [n—v]x[n—v]] . (2.90)
v=0 p=0

The factor f, (0 < f < 1) is called forgetting factor and ensures that recent data is given

higher consideration and past errors are “forgotten” according to an exponential weighting.

The minimization of the cost function is performed by solving
V(&sln]) =0, (2.91)
which in some analogy to (2.81) leads to
R..[n|w[n] = p[n] . (2.92)

This step is based on the generic adaptive filter structure in Fig. 2.10(a), where the quantities

R,.[n] and p[n] are now defined as

Rooln] = ) B"x[n—v]x"[n—v] (2.93)
pn] = Zﬁ”d*[n—y]x[n—y]. (2.94)

A recursive formulation for the quantities (2.93) and (2.94) is given by

R.:[n] = BRu[n—1] +x[n]x"[n] (2.95)
pln] = ppln—1]+d*[n]x[n] . (2.96)

Based on these recursions, the update equation for the tap weights w could be calculated by
solving (2.92) at each time instance n, involving a matrix inversion of R,;[n]. In practice, such

an inversion operation can be quite time consuming, especially for a large value of ,.

However, by exploiting the matrix inversion lemma [51]
(A+BCD)'=A"1'-A'B(C!'+DA'B)"'DA™ (2.97)

and identifying A = SRy ,[n—1], B = x[n], C = 1, and D = x¥[n], the inversion can be

circumvented. Assuming that initial conditions have been chosen to ensure that R,,[0] is not

singular and denoting S[n] = R} [n], this results in

S[n] = % (Si-1] — Gnlx[nlx" [n]S[n—1]) (2.98)
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with
_ S[n—1]
-~ B+ xI[n]S[n—1]x[n]

G[n] (2.99)

By rearranging (2.99), we can find that G[n] = S[n]. Inserting (2.95) and (2.98) into w[n+1] =
R_}[n]p[n] leads to

win+1] = win] + S[nlxfn] [d[n] - w [r]x[n]]"

= win]+ S[n|x[nle*[n] . (2.100)

The new tap weight vector is computed by updating its old value by the product of the
estimation error e*[n], the input vector x[n] and the inverse of the correlation matrix of x[n],

which is also updated at each step.

From (2.100), we can see that the main difference between the LMS and RLS algorithm is in
replacing the step size y in the LMS algorithm by S[n] in the RLS case. By this modification,
the convergence speed of the RLS algorithm is independent of the eigenvalue distribution of the
correlation matrix and typically an order of magnitude faster than that of the LMS algorithm.
For a detailed discussion of the RLS’s properties and its recent developments, please refer

to [51,58,59).

2.5.4 Comparison of Computational Complexities

In our context, the computational complexity of the adaptive algorithm employed in the GSC
is of great concern and our primary aim is to find low-complexity implementations of the adap-
tive algorithm in the GSC environment. As the computational complexity of an algorithm
is also dependent on the processors we use, e.g. fix-point processors or floating-point proces-
sors, we here only consider the number of multiplications in each step as an indication of the
computational complexity of an adaptive algorithm. Since the computational complexities for
real-valued and complex-valued signals are different, we will discuss them separately. More-
over, for single-channel and multi-channel adaptive filters, as in the GSC case, the input signal
vector x has different signal structures, which can also affect the computational complexity.

In the following discussion, [, is the total number of adaptive weights for both the single and

multi-channel cases.

2.5.4.1 Real Input Signal

For the LMS algorithm, [, multiplications are required to calculate the output e[n], one multi-
plication for the product of e[n] and p, and [, multiplications for the final multiplication with

x[n], totaling to 2/, + 1 multiplications.
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The NLMS needs 2 additional multiplications to update the value in (2.89) for a single-
channel system and L + 1 multiplications for an L-channel system. In total this yields 2[, + 3

and 2[, + L + 2 multiplications for single and multichannel realisations, respectively.

For the RLS algorithm, [, multiplications are required to calculate the output e[n], 22 + 1,
multiplications to calculate S[n] according to (2.99), and (2 + [, multiplications for the weight

update in (2.100). In total, its computational complexity will be 3/2 + 3/, multiplications.

For convenience, we summarize these results in Tab. 2.1.

2.5.4.2 Complex Input Signal

For the LMS algorithm, we needs 4/, real multiplications to calculate the output e[n], two real
multiplications for the product between e[n] and p, and 4[, real multiplications for the final

multiplication with x[n]. So, it totals to 8l, + 2 real multiplications.

The NLMS needs an additional three real multiplications in the single-channel case and
2L + 1 in the L-channel case to update y in (2.89), and the total computational complexity
will be 81, + 5 or 8{, + 2L + 3 real multiplications.

For the RLS algorithm, it requires 4l, real multiplications to calculate the output e[n],
412 + 41, real multiplications to calculate the complex result of 8 + x[n]S[n—1]x[n] of (2.99),
additional 4/2+4 real multiplications to get S[n], and 412 +4[, real multiplications for the weight
update in (2.100). In total, its computational complexity is 12{2 + 12, + 4 multiplications.

These complexities are also given in Tab. 2.2.

As shown in Tabs. 2.1 and 2.2, the RLS algorithm has a much higher computational com-
plexity than the LMS-type algorithms. Although recently a fast stable RLS algorithm has been
introduced with a computational complexity of order O(l,) [59], it is still more costly than
LMS-type algorithms. Therefore, in our simulations we will only use the LMS-type algorithms,
especially the normalised LMS algorithm.

Tab. 2.1: Computational complexities for real input signal:

adaptive algorithms | real multiplications (single-channel) | real multiplications (L-channel)
LMS 20, + 1 2, + 1

NLMS 2l,+3 20, +L+2

RLS 312 + 31, 312 4 31,
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Tab. 2.2: Computational complexities for complex input signal:

adaptive algorithms | real multiplications (single-channel) | real multiplications (L-channel)
LMS 8l +2 8lg + 2

NLMS 8l,+5 8la +2L+3

RLS 1202 + 121, + 4 1212 4121, + 4

2.5.5 Frequency-domain and Subband Adaptive Algorithms

Tab. 2.1 and Tab. 2.2 show that the computational complexities of an adaptive algorithm are in
general of the order of O(1l,) for LMS-type or O(l2) for RLS-type algorithms , which increases
dramatically with the length of the adaptive filter. To reduce the large computational com-
plexity imposed by using long adaptive filters, we can use frequency-domain adaptive filtering
(FDAF) algorithms [60,61], which are based on block by block updating strategies whereby the
filter convolution and the gradient correlation can be performed efficiently using fast Fourier
transformation (FFT) algorithms [62]. Since the output and weight update are computed only
after a large block of data has been accumulated, the computational complexity can be signif-
icantly reduced. Moreover, due to the approximately uncorrelated output signals of the FFT,
different stepsizes can be used for different frequency bin outputs. As a result, the convergence

speed of the algorithm may be improved.

The DFT, as employed in frequency-domain adaptive algorithms, can be viewed as a filter
bank with maximal decimation [63,64]. Because of its relatively poor frequency resolution,
the DFT filter bank has a large degree of spectral overlap between the adjacent frequency
band, which can lead to severe aliasing distortion and may cause a problem when the input
data do not exactly lie on a frequency bin [65]. As an alternative, subband adaptive filtering
algorithms have been developed [58,61,66-69], which are capable of achieving a reduced spectral
overlap. We will use subband adaptive filtering algorithms in our GSC structure for reducing

its computational complexity. The corresponding details will be discussed in the next chapter.

2.6 Summary

In this chapter, we have provided an introduction to the basic ideas of beamforming, specif-
ically focusing on the GSC structure, which constitutes an alternative implementation of the
linearly constrained minimum variance beamforming. The GSC transforms the constrained

optimization problem into an unconstrained one, which can be solved by standard adaptive al-



2.6. Summary 34

gorithms. Various problems relating to the LCMV beamformer and the GSC have been briefly
discussed, such as the formulation of the constraints, the optimum solution, and the blocking
matrix design. Especially, a simplified GSC with tapped-delay lines after the quiescent vector
and blocking matrix has been detailed. Commonly used adaptive algorithms for optimising
the GSC’s coefficients are also introduced, and their computational complexity is analysed .
To reduce the computational complexity of a broadband GSC system, we will employ subband
adaptive algorithms in its adaptive part in the next chapter, which will lead to the proposition

of a novel subband adaptive GSC.



Chapter 3

Subband Adaptive Generalised
Sidelobe Canceller

In this chapter, based on the generalised sidelobe canceller structure in Fig. 2.7, we employ
subband adaptive filtering techniques in the unconstrained adaptive part and propose a novel
subband adaptive GSC structure for broadband beamforming [32,33]. Amongst other ad-
vantages, the proposed scheme aims to be computationally less complex than the algorithms
outlined in Section 2.5. First, we give a brief overview of the fundamentals of filter banks in
Section 3.1 and subband adaptive filtering techniques in Section 3.2. In Section 3.3 the struc-
ture of our proposed subband adaptive GSC is presented. Simulation results will be discussed

in Section 3.4 to demonstrate the benefits of the proposed method.

3.1 Fundamentals of Filter Banks

Filter banks [58, 63,64, 70, 71] constitute a set of filters designed for signal decomposition,
reconstruction and processing. Since typically different sampling rates are employed in different
parts of the system, they are sometimes referred to as multirate filter banks. The basic idea
behind it is to split the signal spectrum into reduced-width subbands, which can be sampled at
a lower rate due to the reduced bandwidth. Individual bands then may be treated separately
during further processing such as audio coding [72-76], image coding [77-80] and adaptation [58,
61,66,67,81,82]. After processing, these subband signals can be reconstructed using a synthesis
filter bank to obtain a system output at the original sampling rate. Fig 3.1 shows the general
structure of a K-channel filter bank using a decimation factor IV, where the input signal z[n] is
decomposed into K subbands by an analysis filter bank and hence each subband is decimated
by a factor of N < K. After upsampling, these subbands are recombined by a synthesis filter

bank to yield the fullband output signal Z[n]. In general, we consider systems that are of perfect

35
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Fig. 3.1: General structure of a K-channel filter bank with a decimation factor of N.

reconstruction (PR) [83,84], where the output signal Z[n] will be identical to the input z[n]
except for a time delay.

In the following, we will first give an introduction to the basic operations in multirate signal
processing and then analyse the PR conditions of filter banks. Finally, we will briefly discuss
the design and implementation of a family of oversampled generalised DFT (GDFT) [85] filter
banks [58], which will be used in our subband adaptive GSC.

3.1.1 Basic Multirate Operations
3.1.1.1 Decimation and Interpolation

Decimation and interpolation [63,64] are the operations used to alter the sampling rate in a

system and are represented as shown in Fig. 3.2 and Fig. 3.3, respectively.

Decimation is the process of reducing the sampling rate of a signal by an integer factor N,
where the fullband signal Z[n] is first passed through an anti-aliasing filter h[n], typically with

a low-pass characteristic, and then downsampled to a lower sampling rate.

A downsampler is also referred to as a subsampler and represented by a circle with | N
inside. This operation retains only every N-th sample of its input and then relabels the index

axis. An example of a downsampling process by N = 3 is shown in Fig. 3.2(b).

In time domain, the downsampling operation can be expressed as

y[n] = z[Nn] . (3.1)
Its frequency-domain equivalence is
1 NZ“I 8
oy & ( —2n7r)
Y(ej ) - N £ X(e] N ) ) (3'2)

where X (e/?) and Y (/%) are the Fourier transforms of the input and output signals of the

downsampler, respectively.
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(a) X[n] x[n] y[n]
(b) 4 x[n]
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yml

Fig. 3.2: Decimation operation by a factor of NV: (a) anti-aliasing filter and downsampler; (b)

example for a downsampling operation by N = 3.

(@ Xl yinl y(n]
s\, L I

x[n]

(b)

01 2 3 4 5 6 7 8 9 10 n

Fig. 3.3: Interpolation operation by a factor of N: (a) upsampler and interpolation filter; (b)

example for a upsampling operation by N = 3.
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It can be seen from (3.2) that downsampling creates N — 1 aliased terms, X (eJ(Q_I\QfM)),

n # 0 in its output Y (e’}). Therefore, it can lead to loss of information, known as aliasing,
if aliased terms overlap in frequency. To avoid aliasing, the bandwidth of the input signal has
to be appropriately limited, e.g. to a lowpass signal having a bandwidth lower than 7/N. For

this purpose, an anti-aliasing filter hA[n] is often employed prior to downsampling.

Interpolation is the process of increasing the sampling rate of a signal, and is achieved by
the combination of an upsampler and a lowpass filter as shown in Fig. 3.3 (a). An upsampler
is also referred to as an expander, and upsampling by an integer factor of NN is achieved by
inserting N — 1 zeros in between successive samples of the original signal. In the time domain,

upsampling is represented by

z|Z| : n=0,£N,£2N,---
0 :  otherwise
An example for an upsampling process by a factor of N = 3 is shown in Fig. 3.3 (b).
In frequency domain, upsampling is denoted as
Y (59) = X (/) (3.4)

which means that the output spectrum Y (¢’?) is related to the input spectrum by a compression
by a factor of V.

Finally, the time-domain representations for decimation and interpolation operations, which

include the filtering in Fig. 3.2 (a) and Fig. 3.3 (a), are given by

S h[Nn — k] Z[k] ;

)

‘ Interpolation: gln) =3, gln — Nk] z[k] . (3.5)

—

Decimation: y[n]

3.1.1.2 Multirate Identities

There are several multirate identities, also known as Noble identities [63,64], which are equiv-
alent structures of multirate building blocks. In particular, Noble identities can be applied to
simplify the derivation of the perfect reconstruction condition of filter banks and the manip-
ulation of multirate building blocks. Fig. 3.4 shows two useful multirate identities that are

commonly used [63, 64].

3.1.1.3 Polyphase Decomposition

Polyphase decomposition [86,87] is an important tool in multirate signal processing and can

greatly simplify the analysis and implementation of filter banks. In order to derive the PR
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Fig. 3.4: Equivalent structures for (a) upsampling and (b) downsampling, where H(z) is the

z-transform of a filter.

condition of filter banks in matrix form, we need to decompose the analysis and synthesis
filters into their polyphase components. In the following, we review two different types of

polyphase decompositions.

For any sequence h[n|, we can always define a series of subsequences h;[n] as follows
hi[n] = h[Nn+1i], i=0,1,--- ,N—1. (3.6)
The z-transform H;(z) of a subsequence h;[n] is given by
Hi(z) = hli] + Ali + Nz~ + hli + 2N]z72 + - -+ . (3.7)

Then the z-transform of h[n|, namely H(z), can be expressed as
N-1
H(z) = z"'Hy(z"). (3.8)
i=0

We refer to (3.8) as the Type-I polyphase decomposition of H(z) and H;(z),4=0,1,--- ,N—1,
are the V Type-I polyphase components of H(z).

A similar decomposition to (3.8), referred to as the Type-II decomposition, is given by

hin)=h[Nn+N—-1-4], i=0,1,--- ,N—1, (3.9)

and

=

H(z) = ~ 7~ (N=1=0 f.(2N) (3.10)

1

Il
=}

where H;(z) is the z-transform of A;[n]. Therefore, the polyphase components H;(z) and Hi(2)
are related by

F[Z(Z) = HNﬁl_i(Z) y (311)
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3.1.2 Perfect Reconstruction Condition for Filter Banks

Let us now study the PR condition of the K-channel filter banks with a decimation factor
of N as shown in Fig. 3.1. When N = K, the corresponding scheme is referred to as a
critically decimated filter bank, whereas when IV < K, it becomes an oversampled system. The

PR condition discussed here is applicable to both the oversampled and critically decimated

systems.

First we express the z-transforms of the analysis filters hx[n] and synthesis filters gx[n],

k=0,1,---, K—1, in vectorial form as follows
h(z) = [Ho(2) Hi(2) -+ Higa(2)]", (3.12)
g(z) = [Go(z) Gi(2) -+ Gra(2)]" . (3.13)

Then we decompose the analysis filters into their type-I polyphase components
N-1
Hy(z) = ) 2 "Hin(2"), (3.14)
n=0
and the synthesis filters into their type-II polyphase components
N-1
Gi(z) =Y VMG, (2") (3.15)
n=0

where Hj,(z) and Gy, (z) are the n-th polyphase components of the k-th analysis filter and

synthesis filter, respectively. Now the vectors h(z) and g(z) can be expressed in their polyphase

form as
Hoo(2Y)  Hon(2V) Hon-1(2Y) 1
H N H N - Hi v (2N =
() = 1,0'(2 ) 1,1(2%) | 1N '1(z ) ' z' _B(") ey, (316)
| Hg_10(2 ) HK_1,1(ZN) HK—-I,N—l(Z ) N Z—(N-1) |
E(:) o
and
[ Goo(2¥)  Guo(zV) Gr_10(2")
N N N
§7(:) = [0 e g GG Gl Gr-1a(z")
i Gon-1(z") Gin-1(z") -+ Gg_in-1(2") |
R(zN)

The matrix E(z) in (3.16) is referred to as polyphase analysis matrix, while R(z) in (3.17) is

its dual, a so called polyphase synthesis matrix.
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Fig. 3.5: Polyphase representation of Fig. 3.1.
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Fig. 3.6: Polyphase representation using multirate identities.

Using (3.16) and (3.17), we can redraw Fig 3.1 in its polyphase representation, as shown
in Fig 3.5. Using Noble identities as introduced in Sec. 3.1.1.2, we can shift the downsamplers
to the left-hand side of the analysis polyphase matrix and replace 2" by z in the argument of
E(2"). Similarly, we can shift the upsamplers to the right-hand side of the synthesis polyphase
matrix and obtain the structure shown in Fig 3.6, which can be further simplified to the form

shown in Fig. 3.7 with P(z) = R(z) - E(2).

It is shown in [88] that the general PR condition is given by

0 INfr
Piz) =ez™ - , 3.18)
(=) Iiz_lIT 0 } (
NXxN

where ¢ is a nonzero constant, and « and r are integers with 0 < r < (N — 1). Under this

condition the input-output relationship becomes
2[n] = cz[n — ny) , (3.19)
where ng = Na +r + N — 1 is the delay of the overall system.

A useful sufficient condition is

P(Z) =g s IN 5 (320)



3.1.3. Oversampled Modulated Filter Banks 42

X[n]
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e
‘ . P(2) . z
;1 : : _.!'Z_l >’2[n]

Fig. 3.7: Equivalent structure of Fig. 3.6 with P(z) = R(2) - E(z).

which corresponds to the case where r = 0. The equivalent form in the time domain for (3.20)

is given by [89]

> hiln]g[-IN —n] =6[)6li — 4], 0<ij<K-1, (3.21)

where 6[l] is the Kronecker delta function. By this condition, the system in Fig. 3.6 reduces to

a multiplexer and a demultiplexer in the analysis and synthesis banks, and we get

Z[n] = z[n — ng] with ng = Na+N —1. (3.22)

3.1.3 Oversampled Modulated Filter Banks

In the K-channel filter banks shown in Fig. 3.1, the filters hi[n] and gx[n], £ =0,1,--- , K — 1,
may differ from each other and need to be correctly designed to satisfy the PR condition. In
order to reduce the design and implementation complexity, we can use modulated filter banks,
where both the analysis filters hx[n] and the synthesis filters gx[n] are derived from a prototype
lowpass filter by some suitable modulation. Popular modulations for this purpose include
cosine modulation [90], extended lapped transforms [91] and the discrete Fourier transform
(DFT) [85,92]. By modulation, the design of the PR filter banks is reduced to the design
of the prototype filter and the implementation can be realized by the coefficients of prototype
filter and the modulation block. Here we focus on a class of oversampled modulated filter banks
with N < K, which are referred to as generalised DFT filter banks [85]. In such filter banks,
the analysis filters are derived from a real valued lowpass prototype FIR filter p[n] of length [,
by a generalised discrete Fourier transform (GDFT) [85] according to

hiln] = e/ K FHho)mtno) o] with £ =0,1,---,K—1 and n=0,1,---,5,—1. (3.23)

The term GDFT as defined in [85] stems from the offsets kg and ng introduced into the frequency
and time indices of the DFT, which will be justified below. According to (3.23), the spectrum



3.1.3. Oversampled Modulated Filter Banks 43

of the resultant analysis filters hy[n] are spectrally shifted versions of the prototype filter p[n]
along the frequency axis by 2m(k + ko)/K. Specifically, in conjunction with kg = 1/2, for a
real-valued input signal z[n] it is sufficient to only process the first K/2 subbands covering
the frequency interval [0; 7] as the remaining subbands are the complex conjugate versions of
these subbands. For the full effect of the frequency offset ko, please refer to [85]. In some
applications such as image coding [77-80], maintaining a linear phase is required, which can be
fulfilled by choosing

I—1

. (3.24)

Ng = —

along with a real-valued linear phase prototype filter p[n] of even length.

If the prototype filter is designed such that the polyphase analysis matrix E(z) is parauni-

tary, i.e.
E7(z DE(z) =, (3.25)

then we can simply choose the polyphase synthesis matrix as R(z) = 2 *E#(z7!) in order to
comply with the PR requirement of (3.20). In this case, the impulse responses of the analysis

and synthesis filters are time-reversed, complex conjugate versions of each other
geln] = Byl — 1] . (3.26)
If the analysis filters are linear in phase, (3.26) will become

gk[n]:hk[n], TLZO,I,-" ,lp—l . (327)

The modulation approach allows for both low memory consumption for storing filter coeffi-
cients and an efficient polyphase implementation. The latter even works for non-integer over-
sampling ratios K/N, and allows a factorisation of the filter bank into a real-valued polyphase
network only depending on the prototype filter [58,93]. The output of this network is rotated
by a GDFT transform [85] , which can be mainly implemented using an FFT. According to [94],

the number of real multiplications required to implement the GDFT filter banks is

1
GE == 7 (I, + 4Klog, K +4K) (3.28)
for a real-valued input signal and
1
s ~ (2 + 4K log; K + 8K) (3.29)

for a complex-valued input signal.

Furthermore, the filter bank design reduces to an appropriate choice of the prototype filter,

which has to satisfy two criteria. Firstly, its attenuation in the stopband, Q € [7/N; ], has to
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Fig. 3.8: Frequency response of a prototype filter with length [, = 448 designed by the iterative
least-squares method in [2] (K =16, N = 14).

be sufficiently large. Every frequency of the input signal z[n] lying within the interval [7/N; 7]
will be aliased into the baseband after filtering and downsampling and hence will cause a
distortion of the subband signal. A second constraint on the design is the PR condition. If the
stopband attenuation of the prototype filter is sufficiently high for suppressing aliasing, this

condition reduces to the consideration of inaccuracies in power complementarity [64],

=

-1
|Ho(eM2=1,V0. (3.30)
0

b
Il

A prototype filter approximating these constraints can be constructed by, for example,
iterative least-squares methods [2,95] or dyadically iterated halfband filters [58,96,97]. Fig. 3.8
shows a prototype filter with length of [, = 448 designed by an iterative least-squares method
according to [2] for a K = 16 channel GDFT filter bank with a decimation factor of N = 14.

3.2 Subband Adaptive Filtering

The subband adaptive filtering (SAF) technique [58,61,66,68,69] has been widely applied to
problems such as acoustic echo cancellation (AEC) [67,81,98], identification of room acous-
tics [99], or equalisation [100-102], where a large number of adaptive parameters have to be
adjusted and as a result, the computational complexity can be very high and the convergence

rate of the adaptive filter can be slow using standard techniques. Similar problems arise in
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Fig. 3.9: A general SAF setup; the subband splitting and fullband error reconstruction is
performed by filter banks.

broadband beamforming where arrays with a large number of sensors and filter coefficients
have to be employed to perform beamforming with high interference rejection and resolution.
Therefore general fullband adaptive systems, and in particular beamforming algorithms, can
be computationally very costly to implement. A reduction in complexity can be achieved by
processing in decimated subbands. Furthermore, the separation into frequency bands can bring
additional advantages such as parallelisation of processing tasks and reduced spectral dynam-
ics [67].

A general SAF system is shown in Fig. 3.9. There, both the input signal and the desired
signal are split into decimated subbands by analysis filter banks, then the subband adaptive
filters, which run at a lower, decimated sampling rate compared to the original fullband system
as illustrated in Fig. 2.10(a), are employed to estimate the subband desired signals using the
subband input signals. The resultant subband error signals are then reconstructed into a

fullband error signal by a synthesis filter bank.

Depending on the filter banks employed, the subband adaptive filters can have different
structures. In the case of critically decimated filter banks, where the decimation ratio N equals
the number of uniform subbands K, we need either cross-terms at least between adjacent
frequency bands [67], which compensate for the information loss in the region of spectral overlap,

or gap filter banks [68,103], which introduce spectral loss to avoid problems with aliasing. The
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Fig. 3.10: An oversampled SAF system with adaptive filters working independently in K

decimated subbands.

drawbacks are, that the inclusion of cross-terms requires multichannel adaptive algorithms with
generally slower convergence and increased computational cost, while the distortion incurred

through the application of gap-filter banks may not be acceptable.

Oversampled SAF systems with a decimation ratio N < K are designed such that after
decimation the alias level within the subbands is kept sufficiently low. Therefore, an inde-
pendent subband adaptive filter can be operated in each of the corresponding subbands as
shown in Fig. 3.10. Differences arise for the decimation of complex or real valued frequency
bands. The decimation of real valued bandpass signals is generally complicated, and real val-
ued signals have to be either modulated into the baseband prior to decimation by, for example,
single sideband modulation (SSB) [85,95], or their bandwidth and decimation ratio have to be
chosen in accordance with the bandpass sampling theorem [104], leading to non-uniform filter
banks [105-107]. In contrast, the decimation of complex valued bandpass signals with any
integer factor N < K is straightforward. Therefore, in our following work employing subband
adaptive filtering techniques, we focus on SAF systems that are based on oversampled GDEF'T
filter banks, performing a particular type of complex-valued subband decomposition. In gen-
eral, complex-valued filter banks can be shown to be at least as efficient to implement as their

real-valued counterparts [58].

In SAF, the adaptive filter length in each subband can be selected shorter compared to a
fullband adaptive filter in accordance with the sampling rate reduction by a factor of N < K.
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Fig. 3.11: A qualitative description of the computational complexities of fullband and subband
adaptive methods for (a) LMS and (b) RLS adaptation.

The precise adaptive filter length [, in each subband with similar modelling capabilities as a
fullband adaptive filter of length I, is however not only determined by the decimation rate IV,
but also requires an offset term introduced by transients caused by the filter banks [58,67,108].
There is dispute about the exact length of [y, and we here only give the heuristic but still

conservative result [58]

lfull + l
Loy = T2, 3.1
sub N ( )

where [, is the length of the prototype filter used in the analysis filter bank. If we consider a

large adaptive system, in general [, < s, and hence the approximation ls; = 5% arises. For

(3.31) being conservative [58] and for sake of simplicity, we will always assume [y = l s,

Performing adaptive filtering in decimated subbands has three main advantages, which are

detailed below:

1. Reduction in Computational Complexity
Firstly, as mentioned, the adaptive filter length required in each subband can be shortened
approximately by a factor of N < K compared to a fullband adaptive filter. Secondly,
the updating of the adaptive filters is carried out at a lower sampling rate. Following the
approach of [95,109], we only consider the computational complexity of the subband adap-
tive part, i.e. do not include the extra computational overhead involved in the subband
decomposition operation carried out by filter banks. Under this assumption, performing
adaptation in the subbands yields a reduction in the computational complexity. Specif-

ically, the complexity is reduced by a factor of O(K/N?) for LMS-type algorithms and
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O(K/N?) for RLS algorithms. Therefore, it is advantageous in terms of computational
cost to keep the oversampling ratio K /N close to unity, i.e. choose a non-integer oversam-
pling ratio. However, considering the subband decomposition and adaptation as a whole,
the SAF method does not necessarily save computations. If the adaptive filter is of a
relatively short length, the extra computational load of the filter banks is likely to exceed
any reduction of computational complexity achieved in the subband adaptive part. In
this case, the SAF method may need a higher number of arithmetic operations than its
fullband equivalent. With the increase of the adaptive filter length, the reduction of the
computational complexity achieved by the subband adaptive part will become more sub-
stantial. Since the complexity of the filter banks is fixed, the overall SAF system will have
a lower computational complexity than the fullband adaptive system. When the length
of the adaptive filter is sufficiently high, the computations involved in the filter banks
can be ignored and the reduction ratio for the whole subband adaptive system will be
approximately O(K/N?) for LMS-type algorithms and O(K/N?) for RLS algorithms. A
qualitative discription of the computational complexity of both the subband and fullband
methods is provided in Fig. 3.11.

2. Spectral Prewhitening
For LMS-type algorithms, the convergence speed is governed by the eigenvalue spread,
which is linked to the spectral dynamics of the input to the adaptive filter [51]. As a result,
coloured input signals with a non-uniform spectral distribution, such as speech signals,
cause slow convergence for such fullband algorithms. The separation of the spectrum into
spectral intervals as performed by the subband decomposition results in reduced spectral

dynamics in each of the subbands with respect to the fullband and therefore can enable

faster adaptation.

3. Parallelisation
The structure of the subband adaptive system of Fig. 3.10 presents a natural paral-

lelisation of the fullband processing task, that can be exploited by processing separate
subband tasks on different processors [67]. This can be useful in cases where the subband
approach alone does not give the required complexity reduction in order to implement a

given problem in real-time on a given processor.

In the next section, we will applying the subband adaptive filtering techniques to broadband

digital beamforming and propose a subband adaptive generalised sidelobe canceller.
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Fig. 3.12: A subband beamforming structure based on the GSC as proposed in [1,3,4].

3.3 Subband Adaptive Generalised Sidelobe Canceller

In the past, the application of subband methods to adaptive beamforming such as microphone
or antenna arrays has been studied by a number of researchers [1,3,4,24-26,110-112]. The
basic idea is to first split each of the received sensor signals into subbands and then operate an
independent beamformer in each of the subbands, whereby the subband beamformer is selected
according to the specific applications. In LCMV beamforming, subband based methods are
employed to reduce the computational complexity and improve the convergence speed of a
broadband beamformer [1,3,4], whereby the received sensor signals are split into decimated
frequency bands (“subbands”). An independent beamformer, such as a generalised sidelobe
canceller [29] can be applied to each of these subbands as shown in Fig. 3.12, where M is the
number of sensors and K is the number of channels in the employed filter banks. In this method,
we are restricted to use the same number of analysis filter banks as the sensor number M, and
also the same number of GSCs as the subband number K, because we have to split each of the
sensor signals into subbands and apply a GSC to each of the corresponding subbands. When
the number of sensors and subbands is high, these operations will impose a high computational
load on the system. Moreover, in this method, the fullband constraints of the beamformer and
in particular the response vector f, have to be decomposed into subband-based constraints in
order to construct the GSC for each of the subbands [3]. This projection can incur inaccuracies
because of the non-perfect reconstruction property of the filter banks and the limited number

of weights to represent the constraints in each of the subbands.

To overcome these problems, we propose a different subband adaptive structure based on
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Fig. 3.13: Subband adaptive GSC structure with analysis (A) and synthesis (S) filter banks.

the GSC [33]. In contrast to Fig. 3.12, the sensor signals are directly fed into the GSC, and the
outputs of the GSC’s blocking matrix are split into subbands, in which independent adaptation
is performed. By this approach, we use a single GSC and apply it to the fullband sensor
signals directly, thus bypassing any decomposition of constraints. In addition, the number
of analysis filter banks used is the same as the number of blocking matrix outputs, which
can be considerably lower than the sensor number, especially for partially adaptive GSCs [14,
15]. Therefore, the computational complexity of our method is reduced further than in the
previous methods reviewed above. Starting from the fullband beamformer in Fig. 2.7, we first
introduce our proposed subband adaptive GSC in Sec. 3.3.1 and its computational complexity
in Sec. 3.3.2. Sec. 3.3.3 discusses how an equivalent fullband beamformer is derived from the
subband adaptive GSC in order to e.g. calculate a beam pattern. Simulations and results are

given in Sec. 3.4.

3.3.1 Structure

Considering the multichannel characteristics of the GSC adaptation, when applying SAF tech-
niques to the MCAF in the GSC structure in Fig. 2.7, the subband setup as shown in Fig. 3.13
arises, where the blocks labelled ’A’ are analysis filter banks, splitting each of their inputs
into K decimated frequency bands. Both the blocking matrix output signals u,[n], m =
0,1,--+,M —S—1 and the upper path output d[n] = WX - x[n] are split into subbands by
analysis filter banks and in each corresponding subband, an MCAF system is set up to perform
an unconstrained optimisation based on the subband error signal ex[n], k¥ = 0,1,--- , K — 1.

These subband error signals are then reconstructed to a fullband beamformer output e[n] by
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the synthesis filter bank, labelled ’S’ in Fig. 3.13.

The above adaptation operating in subbands requires considerably less coefficients in the
temporal dimension than a fullband beamformer. As a rule of thumb, the reduction in filter
length is approximately N, where N is the decimation factor employed in the filter bank. This
is particularly useful if the fullband beamformer in Fig. 2.3 has long filters J > 1, as is required

for high resolution broadband beamforming.

In the structure of Fig. 3.12, each GSC has an MCAF block, which will be the same as
the one in Fig. 3.13 as long as the constraints are decomposed into each subband without any
error. In MVDR beamforming, when the delay imposed by the response vector f, i.e. the
position of the element 1 in f, is an integer multiple of the decimation ratio N of the filter
banks, such decomposition will be perfect [67,108]. Since f is set to be f =[1 0 0 --- 07 in
our simulations, it can be expected that almost no performance difference will be observed in

this case between the methods in Fig. 3.12 and Fig. 3.13, which will be shown in our simulation.

3.3.2 Analysis of the Computational Complexity

In Chap. 2, we have shown that the dimension of the blocking matrix B is M x (M — S) when
S—1 order derivative constraints are imposed. However, we will see later in Chap. 4 that B can
be an M x L-dimensional matrix with L < M — S, where the case of L < M — S corresponds
to a partially adaptive GSC [14, 15], whereas L = M — S is the fully adaptive scenario. To
make our discussion general, we will assume the dimension of B to be M x L, and its L output

signals will be uy,[n], m=0,1,---, L — 1.

For the fullband GSC, its adaptive part is an L-channel adaptive system with a complexity
as given in Tab. 2.1 and Tab. 2.2, where the total number of the adaptive filter coefficients
is I, = L - J. Moreover, because both B and w, are real-valued, they will need a total of

(ML + M) or 2(ML + M) real multiplications for real or complex input signals, respectively.

For our proposed subband adaptive GSC, the quiescent vector and the blocking matrix
require the same number of multiplications as the fullband GSC. The subband adaptive part
of the structure is composed of the filter banks and the adaptive part, which will be analysed

separately in the following.

For the filter banks, there are a total of L + 1 analysis filter banks and one synthesis
filter bank. Let us assume that we employ oversampled GDFT filter banks with a prototype
filter of length ,. Then for each filter bank + (I, + 4K log, K + 4K) real multiplications
are necessitated for a real-valued input and + (2l, + 4K log, K + 8K) real multiplications are
required for a complex-valued input, as given in Equations (3.28) and (3.29). Thus, the total
number of real multiplications required for the filter banks is &2 (I, + 4K log, K + 4K) or
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Lt2 (21, + 4K log, K + 8K) for real or complex-valued input, respectively.

For the adaptive part, in general, it yields a reduction in computational complexity by a
factor of O(K/N?) for LMS-type algorithms and O(K/N?) for RLS algorithms, as mentioned
earlier. More specifically, in the real-valued input case, it requires & (8LJ/N + 2) (LMS),
X(8LJ/N + 2L + 3) (NLMS) or £ (12(LJ/N)* + 12LJ/N + 4) (RLS) real multiplications,
because the number of adaptive filter coefficients required for each of the subband MCAF is
LJ/N and only K/2 number of complex subbands decimated by N < K have to be pro-
cessed. If the array input signals are complex-valued, then the computational complexity will
be £(8LJ/N +2) (LMS), £(8LJ/N +2L+3) (NLMS) or £(12(LJ/N)*+12LJ/N +4) (RLS)
because we have to process all of the K subband MCAFs.

The above computational complexities are summarised in Tab. 3.1. To compare our method
with the one in [1, 3], Tab. 3.1 also includes the computational complexity of the system in
Fig. 3.12. As its adaptive part is the same as that in our proposed method, it has the same com-
putational complexity for that part. However, there are a total of M + 1 filter banks involved,
which have a complexity of 2£L (1, + 4K log, K + 4K) and 241 (21, + 4K log, K + 8K) real
multiplications for real-valued and complex-valued sensor signals, respectively. For the quies-
cent vectors and blocking matrices, £ - 2(ML + M) or K - 2(M L + M) real multiplications are

required in the context of real or complex sensor signals.

Example. In order to characterise the achievable computational complexity reduction, we
give an example for a beamformer having M = 12 sensors, each with a variable number of J
coefficients. The first-order derivative constraint (S = 2) is applied, hence we have L=M —2.
By employing the oversampled GDFT filter banks [94] having K = 8 channels as characterised
in Fig. 3.14 with near perfect reconstruction and a decimation factor of N = 6, J/N number of
coefficients are used in each channel of the subband MCAF block. The prototype filter for the
GDFT filter banks has a length of /, = 96. Then for a real input sensor signal, the number of
real multiplications required for the fullband adaptive GSC, for the subband GSC of Fig. 3.12
and for our proposed subband adaptive GSC expressed as a function of the adaptive filter

length J using the NLMS algorithm can be shown in Fig. 3.15.

Note that the results shown in Tab. 3.1 are based on the most general case of the blocking
matrix. If B is formed by the CCD method, then there will be no multiplications in the blocking
matrix, and the term (M L+ M) seen in Tab. 3.1 accounting for the operations in the quiescent

vector and the blocking matrix is reduced to M.
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Tab. 3.1: Computational complexities for fullband and subband GSCs:

GSC structure

real multiplications (real-valued sensor signal)

fullband GSC
LMS

NLMS

RLS

(ML+ M)+ (2LJ + 1)
(ML+ M)+ (2LJ + 2L +2)
(ML + M)+ (3L2J* + 3LJ)

GSC (Fig. 3.12)

LMS K(ML+ M)+ MT (I, + 4Klog, K +4K) + X (8% + 2)

NLMS K(ML+ M)+ M (1, + 4Klog, K +4K) + X (8% + 2L 4 3)
RLS K(ML+ M)+ ML, + 4Klog2K+4K)+W( 12887 1+ 124 4+ 4)
proposed GSC

LMS (ML+ M)+ 521, + 4Klog, K + 4K) + £ (8% + 2)

NLMS (ML+ M)+ 52 (1, + 4Klogy K + 4K) + £ (8% + 2L + 3)

RLS (ML+ M)+ L2 (1, + 4K log, K + 4K) + £ (128 + 1217 1 4)

GSC structure

real multiplications (complex-valued sensor signal)

fullband GSC

LMS 2(ML+ M)+ (8LJ +2)
NLMS 2(ML+ M)+ (8LJ + 2L + 3)

RLS 2(ML+ M)+ (12L2J* + 12LJ + 4)

GSC (Fig. 3.12)

LMS 2K(ML+ M) + £ (21, + 4K log, K + 8K) + £ (8% +2)

NLMS 2K(ML+ M)+ £ (21, + 4K log, K + 8K) + £(8%L + 2L + 3)
RLS 2K (ML + M) + M+ (2, + 4K log, K + 8K) + K(12L% + 12L& + 4)
proposed GSC

LMS 2(ML+ M)+ %2 (21, + 4K log, K + 8K) + £(8% + 2)

NLMS 2(ML+ M)+ 12 (21, + 4K log, K + 8K) + K (8% + 2L + 3)

RLS 2ML + M) + 2 (20, + 4Klog, K + 8K) + K (12" + 12L& + 4)
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Fig. 3.14: Frequency response of a K = 8 channel filter bank decimated by N = 6.
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Fig. 3.15: An example of the computational complexities for different GSC structures.
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3.3.3 Reconstruction of Fullband Beamformer

When the subband adaptive system reaches its steady state, we may want to calculate the

fullband beamformer equivalent to the subband-structured beamformer in order to operate the

beamformer in the fullband or to calculate its directivity pattern. Here, we use a procedure
similar to [1] to determine the equivalent fullband model of our subband adaptive GSC. By
this, each of the M branches of the beamforming structure in Fig. 2.3 has to be reconstructed
separately according to the flow graph shown in Fig. 3.16. To yield the mth branch filter, the

mth sensor signal is excited by the Kronecker delta function ¢[n], while all other M —1 sensors

receive a zero input. Assuming perfect adaptation of the subband components, the measured

impulse response at the output of the subband adaptive GSC is a convolution of the mth filter

of the equivalent fullband beamformer W,, as shown in Fig. 1.1 and the distortion function t[n].
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Fig. 3.16: Reconstruction of the mth equivalent fullband beamformer branch w,, from the

subband adaptive structure.

This procedure is equivalent to the method described for the determination of an equivalent

fullband model for a general subband adaptive system [58].

The distortion function ¢[n] ideally only represents a delay. However, if the filter banks
possess only a near perfect reconstruction property, ¢[n| generally carries a small amplitude and
phase distortion. As in the case for general SAF systems [58], this limitation can be quantified

a priori from the filter bank prototype by measuring its deviation from power complementarity.

3.4 Simulations and Results

In this part, we will first make a comparison of the performances between our proposed subband
adaptive GSC and the subband GSC structure in Fig. 3.12 by a set of simulations to show their
similarity in performance. To demonstrate the effectiveness of our subband-based method
in relation to the fullband approach, another two sets of simulations are provided, whereby

narrowband and broadband interfering signals are to be suppressed.

3.4.1 Proposed Method versus the Method of Fig. 3.12

We employ the same array as in the example specified in Sec. 3.3.2 with the subband decom-
position as given in Fig. 3.14. The filter length is set to J = 96. Our aim is to receive a white
Gaussian signal of interest from broadside (f = 0°) and to adaptively suppress a broadband in-
terfering signal covering the frequency interval = [0.27; 0.87] arriving from a DOA of 6 = 30°

at a signal-to-interference ratio (SIR) of —20 dB. Additionally, the sensor signals are corrupted
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Fig. 3.17: Learning curves of the two subband methods based on CCD (S=1).

by independent white noise resulting in a signal-to-noise ratio (SNR) of 20 dB. A normalised

LMS algorithm with a step size of 0.3 is used in all cases.

To assess the convergence of the two different beamformers, we consider the ensemble mean
square value of the residual error, which is defined as the difference between the array output e[n]
and the appropriately delayed desired signal from broadside. Fig. 3.17 and Fig. 3.19 compare
the ensemble mean square residual errors of these two subband beamformers based on the CCD
method employed for forming the blocking matrix, whereas Figs. 3.18 and 3.20 are based on the
SVD method. In either case, these two subband beamformers have a fairly similar performance
in terms of convergence speed and steady state error, as we have pointed out earlier in Sec. 3.3.1,
while the computational complexities of the proposed scheme are only about 90% and 60% of
those for the structure in Fig. 3.12 based on the CCD and SVD approaches, respectively.

3.4.2 Proposed Method versus Fullband Method

In the following, the proposed subband method is compared to the fullband method in narrow-

band and broadband scenarios, respectively.
Narrowband Interference

In this simulation, we use a beamformer with M = 10 sensors and J = 60 coefficients for each
attached filter. The system is constrained to receive a signal of interest from broadside, which
is white Gaussian with unit variance and corrupted by additive Gaussian noise at an SNR of

20 dB. The beamformer aims to adaptively suppress an interfering signal coming from a DOA



3.4.2. Proposed Method versus Fullband Method

57

6 T T T T T T
—— GSC(proposed)
— - GSC(Fig 3.12)
5] AU OO FSTRVISS SSRGS SRS o |
2 ............................................................................................. -1

o

|
N

ensemble mean square residual error/[dB]
1
H

I
2]

35
iterations x10*

o
o
()]
—_
—_
(6]
N
n
o
w

Fig. 3.18: Learning curves of the two subband methods based on SVD (S=1).
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Fig. 3.19: Learning curves of the two subband methods based on CCD (S=2).
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Fig. 3.20: Learning curves of the two subband methods based on SVD (S=2).

of § = 20°, which is composed of three sinusoidal signals with normalised frequencies of 0.1,
0.57 and 0.97, respectively. The SIR is —24 dB and no derivative constraints are imposed
(S = 1). The subband GSC is based on the same 8-channel filter banks as in Sec. 3.4.1 and
J/N = 10 coefficients are used for each subband MCAF channel. The MCAFs for both the
fullband and subband cases are updated by a normalised LMS algorithm.

Because the interference is narrowband, in principle, we do not really need a broadband
beamformer with tapped-delay lines to suppress it. The aim of this set of simulation is mainly
to show the significant improvement in convergence speed by the subband method when the
input signal is highly colored. Four simulation results with different step sizes and different
forms of the blocking matrix are shown in Figs. 3.21 to 3.24. Comparing Fig. 3.21 with Fig. 3.22
and Fig. 3.23 with Fig. 3.24, we can see that with increasing step size, both the fullband and
subband adaptive beamformers converge faster, at the expense of an increased steady-state
error. This conforms with standard results on adaptive filtering [51,57], however the impact of
the stepsize on the system’s performance is particularly severe in the GSC case. One possible
explanation is that the error signal employed for adaptation in the GSC includes the signal of
interest, which could be much stronger than the error signal found in a standard adaptive filter.
Thus, the impact of the step size is amplified in the GSC case. Moreover, all the results clearly

show that the subband method converges much faster than the fullband method because of its

pre-whitening effect.
Broadband Interference

In this simulation, the beamformer has M = 12 sensors, each with J = 96 coefficients for the
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Fig. 3.21: Comparison of learning curves based on SVD method (step size 110=0.06).
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Fig. 3.23: Comparison of learning curves based on CCD method (step size py=0.15).

fullband case. No derivative constraints are imposed (S = 1). The beamformer is intended
to receive the same signal of interest from the broadside (# = 0°) as in the narrowband case,
and to adaptively suppress two broadband interfering signals covering the frequency intervals
Q = [0.27;0.57] and Q = [0.57; 0.87], respectively, with DOAs of # = 30° and 6 = 60°. The
SIR and SNR are respectively —24 dB and 20 dB. In the subband adaptive GSC, we use the
same filter banks as in the previous simulation and J/N = 16 coefficients are employed for each

subband MCAF channel.

Figs. 3.25 and 3.26 show two representative simulation results, where the subband adaptive
method exhibits a clear advantage in terms of a faster convergence speed due to the pre-
whitening effect. Moreover, the subband method reaches a lower steady-state error at the
specified stepsizes. We can expect that the fullband method will be even slower if it has the
same steady-state error as the subband method. As for the computational complexity, the
number of real multiplications required in the subband system is only about 69% of that of
the fullband system in the SVD case and 67% in the CCD case. With its lower computational
complexity and faster convergence, the proposed subband adaptive GSC clearly outperforms

the traditional fullband implementation.

3.5 Summary

In this chapter, we have briefly reviewed the subband adaptive filtering techniques and the

related theory of filter banks, which are employed for the subband decomposition of both the



3.5. Summary 61

20 T T T T T
: : : : = = Fullband(CCD,S=1)
b : : : : = Subband(CCD,S=1)

15F

-5+ Ny

ensemble mean square residual error/[dB]

|
—_
o
o

500 1000 1500 2000 2500 3000
iterations

Fig. 3.24: Comparison of learning curves based on CCD method (step size 1=0.20).

desired and input signals in an adaptive filter. Its advantages of low computational complexity
and increased convergence speed for the LMS-type adaptive algorithms motivate the applica-
tion of SAF techniques to broadband adaptive beamforming. By combining SAF techniques
with the multichannel adaptive filter in a GSC with derivative constraints, we have obtained a
novel subband adaptive GSC structure. Compared with the traditional fullband adaptive GSC
and a previously proposed subband beamforming structure, this new subband adaptive beam-
former outperforms those methods with a lower computational complexity. Additionally, it also
achieves a faster convergence speed than the fullband adaptive GSC owing to its pre-whitening
effect, as demonstrated by our simulation results based on different signal environments and
different formations of the blocking matrix. In the next chapter, we will see that the computa-
tional complexity of such a subband adaptive GSC can be reduced even further by contriving

a specific arrangement for the blocking matrix.
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Chapter 4

GSC Employing a Subband-selective
Blocking Matrix

In this chapter, we propose a class of GSCs employing a novel spatially/temporally subband-
selective blocking matrix for partially adaptive beamforming, in which the blocking matrix
is constructed such that the impulse responses hosted by its columns constitute a series of
bandpass filters. These filters select signals with specific DOAs and frequencies and result in
bandlimited spectra of the blocking matrix outputs. When we apply such a blocking matrix
to the subband adaptive GSC proposed in Chap. 3 or the transform-domain GSC as proposed
in [21], the system complexity may be reduced. Moreover, due to its combined decorrelation in

both spatial and temporal domains, a faster convergence rate can also be achieved.

In Sec. 4.1 we will give a brief introduction to partially adaptive beamforming based on the
GSC structure. Thereafter we focus on the role of the blocking matrix and its proposed con-
struction exploiting spatial/temporal filtering properties in Sec. 4.2. In Sec. 4.3, an alternative
formation of this blocking matrix by a subband-selective transformation matrix is provided. The
application of our novel blocking matrix to the subband adaptive GSC and transform-domain
GSC is given in Secs. 4.4 and 4.5, respectively, where simulations underlining the benefits of

the proposed method are discussed.

4.1 Partially Adaptive GSC

As mentioned in Sec. 1.1, to perform beamforming with high interference rejection and reso-
lution, arrays with a large number of sensors and filter coefficients have to be employed and
the computational burden of a fully adaptive processor thus becomes considerable. One way to

reduce the computational complexity is partially adaptive beamforming, which employs only a

63
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subset of available degrees of freedom (DOFs) in the weight update process at the expense of

a somewhat reduced performance [14].

Partially adaptive techniques have been studied widely in the past, especially in the narrow-
band beamforming area. Chapman [14] performed one of the earliest works, which reduces the
number of adaptive channels by means of a transformation. In [15], a fixed transformation was
applied to achieve a weight reduction by minimising the output power over a set of interference
scenarios. A “power-space method”, which uses a singular value decomposition to obtain the
rank-reducing transformation was developed by Yang et al [17]. In broadband beamforming,
the wavelet-based beamformer introduced by Wang et al [18,113] reduces the dimension of the
blocking matrix by utilising a set of wavelet filters, which are considered as a series of spatial
filters. Thereafter, a dynamic selection of the blocking matrix outputs is performed by a pre-
scribed statistical hypothesis test. The main problem with [18,113] is that the design of wavelet
filters with good band-selection is difficult and such filters will sacrifice too many DOFs and

tend to make their application in a beamformer rather unpractical.

For a brief description of partially adaptive beamforming based on the GSC structure, we
consider the simplified system shown in Figs. 2.7 and 2.8. There the only constraint imposed

on the blocking matrix B is equation (2.61). For convenience, we recall

CHiB=0 where C=|[cy - Cgy], (4.1)

with C € CM*S and B € CM*M=S_ However, the column dimension of B is not restricted to

be L = M — S, which is only the maximum possible value. Assume B € CM* with

B = [bo bl bL—l] and (42)
b = [B[0] bl ... bM-1]7, (4.3)

where [ = 0,1,---,L—1. With this new definition, we redraw the simplified GSC for MVDR
beamforming in Fig. 4.1, where the output signal of the blocking matrix u[n] is obtained by

u[n] = B#x[n] with

uH[n]]T ,

uln] = [uo
To - zpa[n]]” (4.4)

x[n] = |

Since C is an M x S matrix, the dimension L can be selected arbitrarily with L < M — S.
The maximum value M — S corresponds to the fully adaptive GSC. When a large number of
sensors are employed, we can take a smaller value for L, i.e. L < M — S, resulting in a partially
adaptive GSC [15,113]. By partial adaptivity, the number of DOF's, i.e. the number of adaptive
weights, is reduced and it offers reduced complexity traded off against a potentially somewhat
inferior performance. In the next section, we will trade the loss of DOF's against a specific

design of the blocking matrix.
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Fig. 4.1: A general structure of partially adaptive GSC.

4.2 Spatially/Temporally Subband-selective Blocking
Matrix

4.2.1 Blocking Matrix with Spatial/Temporal Subband-selectivity

To attain an interpretation of spatially and temporally subband-selective filters constituting
the blocking matrix, consider a unity amplitude complex input wave with angular frequency w
and DOA 6. Referring to Fig. 1.1, the waveform impinges with a time delay A7 on adjacent
sensors separated by d in a medium with propagation speed c. The received phase vector at

the sensor array, x, is
—JwAT —jw(M-1)AT T : d .
zz[le] ceeoed ] with A7 = —sinf. (4.5)
c

Assume that the array sensors are spaced by a half wavelength of the maximum signal frequency

and the temporal sampling frequency w; is twice the maximum signal frequency, i.e.,

d =4 =el;, (4.6)
where T} is the temporal sampling period. Then, we get

AT =Tssinf . (4.7)

Noting wTs = §2, where § is the normalised angular frequency of the signal, the phase vector

can be written as

— [1 o—iQsing e—j(M—l)Qsin0:|T' (4.8)

Using the substitution ¥ = Qsin #, the [th output of the blocking matrix, wn],{ =0,1,---,L—

1, can be denoted as

M-1
wln] = b -x- " = sz eTImY L I — By (efY) - 9 (4.9)
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Fig. 4.2: Characteristics of the L column vectors contained in B

with B;(e’?) e—o b;[m] being a Fourier transform pair.

According to (4.9), the columns of the blocking matrix B can be regarded as a set of spatial
filters. If the beamformer is constrained to receive the signal of interest from broadside, then
the blocking matrix has to suppress any component impinging from ¢ = 0. Therefore, at ¥ = 0
the response of any column vector b; has to be zero. Now we arrange the design of the b; to

yield spatial bandpass filters on the interval ¥ € [0; 7] as shown in Fig. 4.2, whereby ideally

1 for Ve [\Ijl,lower; \Dl,upper] )

|Bi(e™)] = { (4.10)

0 otherwise .

In the arrangement of Fig. 4.2, all values of ¥ € (0; 7] except ¥ = 0 have to be covered by
the filters to ensure that the lower path of the GSC contains all possible interference signals.
If the interference signals impinge only from a certain set of angles with a certain bandwidth,
then the appeal is that only some outputs of the blocking matrix and therefore some branches
of the subsequent multichannel adaptive filter will contain significant contributions. Hence, a
design of the blocking matrix columns according to Fig. 4.2 will lead to a spatial decomposition

or decorrelation of the array data.

To avoid redundancy in the blocking matrix outputs, we would like the column vectors
of B to be linearly independent, i.e. none of them can be expressed as a linear combination
of the others. It can be proven that these column vectors b; are orthogonal under the ideal
arrangement of Fig. 4.2. If an overlap between neighbouring bands in Fig. 4.2 exists, these
column vectors b; can also be proven to be at least linearly independent [114]. To prove this,

we consider the linear combination of all these vectors in the following form
0 = agbg + ayby + -+ +aribry, (4.11)

where ay, - - -, a4 are scalars to be found for this equation to hold. Taking the Hermitian trans-
pose of both sides and then multiplying the equation with the vector [1 e/¥ e/ DY)

we arrive at

0= OloBo(ej‘P) + alBl(ej‘P) + - ot Oy Bpa (ejq’) : (4.12)
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As it should hold for all values of ¥, we choose the middle point of each of the passbands
of the column vectors. Since at these points only one of the L Fourier transforms B;(e’¥),
1=0,1,---,L—1, has a value of unity and all the others are zero, we find that all the scalars
ag, - -+, ar1 must be zero for (4.11) to hold, i.e. the column vectors are linearly independent
and hence the proof is complete. From the above proof we can see that as long as every vector
has at least one point, where its Fourier transform has a nonzero value and coincides with
zeros of all the other vectors’ Fourier transforms, these vectors will be linearly independent. A
practical test to check any design of B is to ensure that the blocking matrix has full column

rank.

We now focus on the temporal filtering effect of the arrangement in (4.10). Consider the
range Q € [0;7]. As |sinf| € [0;1] when # € [—F;7], the possible maximum frequency
component of the Ith output w;[n] is Q = 7, which corresponds to |sinf| = E“;Efﬂ, while the
possible minimum frequency component is = U} joyer, Which corresponds to |sin | = 1. Then

we have the response of B;(e’Y) as a function of Q = ¥/ sin#,

1 forQe [\Ijl,lower; 7T]

0 otherwise

| B (7450 | = { V. (4.13)
This temporal filtering characteristic of the [th column vector of B is shown in Fig. 4.3. If the
interfering signals have components with > 7, then as long as they appear in the directions
of |sinf| € [\I”—g‘”ﬂ, &‘g—p“], they will be received by the /th column vector. However, with the
assumption that the sampling rate is twice the maximum signal frequency, there will be no

signal existing with 2 > 7.

Example. To demonstrate this temporal filtering effect, we give a simple example. Fig. 4.4
displays the magnitude response of a 30-tap bandpass filter designed by the MATLAB function
remez [115]. If the filter coefficients are employed as a column vector in B, then a gain
response or beampattern to signals with different frequencies and DOAs can be calculated as
shown in Fig. 4.5. To see its highpass filtering effect more clearly, the figure can be rotated and

inspected in terms of its frequency dependence only. The resultant two-dimensional response
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Fig. 4.4: Frequency response of a bandpass filter as an example for the column vectors of B.

with respect to different frequencies is drawn in Fig. 4.6, and clearly exhibits the noted highpass

characteristic.

Thus, the blocking matrix is capable of decomposing the received signals and interferences
not only in the spatial domain, but also in the temporal domain, i.e. the column vectors
simultaneously perform a spatial selection and a temporal highpass filtering operation. With
increasing [, these filters are associated with tighter and tighter highpass spectra until the last

output uy_;[n] only contains the ultimate highpass component.

In reality, the bandpass filters Bj(e’Y) cannot be ideal and hence an overlap and finite
transition bands have to be permitted. However, a better design quality can be attained by
reducing the number of columns, L, below the limit of M — S, thus yielding a partially adaptive
beamformer by sacrificing some DOFs. As the blocking matrix covers all possible interfering
signals, it can still suppress any incoming interferences, but the achievable maximum SINR can
potentially be lower than a fully adaptive beamformer. Due to the loss of ideal responses as
specified in Fig. 4.2, the linear independence of the column vectors of B has to be inspected

after design.

As the blocking matrix plays a central role in our following applications, a column vector
design with a good band-selective property is of great importance. We will deal with this issue
in Secs. 4.2.2 and 4.2.3, where a full design and a cosine-modulated design of the blocking

matrix will be described, respectively.
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Fig. 4.5: Three-dimensional response of a bandpass filter to signals with different frequencies

and DOAs.
4.2.2 Full Design of the Blocking Matrix

From (2.61), when considering S — 1 order derivative constraints with ng = 0, we can express

the constraints to be fulfilled by the /th column vector of the blocking matrix as

M-1
> mi-bml=0, for i=0,1,---,5-1, 1=0,1,---,L-1. (4.14)

m=0
Subject to the constraints in (4.14), the objective function ®; to be minimised for the [th

column vector is

\Pl,lower ™
Bip ﬁ]Bl(ej‘I’)]|2d\I! o ﬁlBl(ej‘I’)HQd\D . (4.15)
0 ‘Ill,upper

The design problem of the blocking matrix B can then be formulated as the following con-

strained optimisation:

by = argrrll)in ®, subject to (4.14), (=0,1,---,L—1. (4.16)
l
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Fig. 4.6: Response of a bandpass filter with respect to signals with different frequencies as a

column vector of the blocking matrix B.

Various methods exist to solve linearly constrained optimisation problem such as in (4.16).
Here the minimisation of ®; is accomplished using the subroutines LCONF/DLCONF, a nonlin-
ear optimisation software package in the IMSL library [116]. A design example for the blocking
matrix with M = 16 sensors, first-order constraints (S = 2) and L = 8 column filters is given
in Fig. 4.7. Displayed are the frequency responses B;(e’Y), [ = 0,1,---,7, which exhibit a

reasonably good bandpass characteristic.

If (4.14) is used to express the first S parameters in each b; by the remaining M — S vector
elements, an unconstrained optimisation can be performed over those remaining parameters,
for example by means of a genetic algorithm (GA) [117,118]. Using a GA, we can obtain
a result with all elements in B in the form of sums of power of two (SOPOT) [119-121]. By
SOPOT representation, the arithmetic for B can be implemented by simple shifts and additions

to further reduce its computational complexity [122,123].

For a brief introduction to GA, the reader is referred to the Appendix. Here, as an example,

let us consider the case of first order derivative constraints, S = 2, whereby the first two elements



4.2.2. Full Design of the Blocking Matrix 71

-10

1 |
W N
o o

magnitude response /[dB]

|
N
o

0.3 0.4 0.5 0.6 0.7
normalized angular frequency ¥/n

Fig. 4.7: A design example for a 16 x 8 blocking matrix with first-order derivative constraints

based on constrained optimisation.

of b; are fixed in dependency on the remaining coefficients,

blo] = =) b[m] for i=0, (4.17)

bll] = =) m-bfm] for i=1. (4.18)

Note that the optimisation problem has been transformed into an unconstrained optimisation
over the remaining coefficients b;[2], - - - , b[M—1], which is straightforward to solve by means of

a GA. In the optimisation process of a GA yielding SOPOT parameters, each of the coefficients

bilm], m =2,3,---,M—1 is represented as
P[l,m]-1
bilm] = Z a;[l, m] - 2Lilbm] with
i=0
aill,m] € {-1;1}, Lil,m] € {Q1, Q1+ 1, - ,Q2—1,Q2}, (4.19)

where P[l,m] is a limit for the number of SOPOT terms, and @; and @ are integers determined
by the range of the corresponding variable. Normally, P[l, m] is limited to a small number. With
the same parameters as those of the example shown in Fig. 4.7, Tab. 4.1 gives the GA design
results in SOPOT notation with P[l,m] = 3, @; = —9 and Q2 = 0. Its frequency response is
depicted in Fig. 4.8.
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Tab. 4.1: SOPOT coefficients for the 16 x 8 blocking matrix B:

m by b, b, bs
2 2724278 —2-9 —272 274 4 979 —271 277
3| 27t+25-278 2724275 —2724277 — 27 —277
4 g8 . g8 gL g~ .. g8 9~2 |.9~5 Fhpg=s 8
5 —27 14274 2-1._ 94 27142599 | 97349275428
6 —2-1 -9 -277 274427429 | 2-1_972_2-8
7 -2"1+274+28| —271 42734278 -2l 24 2734276
gl =82 ~996_95| g1 98 9% —271 4277 91 42825
9 —276 —272._928_929) 2729244 96 —273 276
10 272 9273 25 ..9-9 2714275 —2-1
ILf| 22 +2%42°% | 223839 & — g4 984244278
12 272426427 22 L g T -2 C. 28| Fl_g=F_98
13 273 4275 9~b =GR = I9 21498 -9-5
14 276 427 —273 275 9279 —2-3% - 26
15 ~276 27 —2724273 279 2734278 2—3 27
m b, bs b by
2 & 272 9 27124 273 42744278
3 —g-1 97 9% L9098 | 92 _ 9896 —272 4 277
4| 23+254+276 | 27123275 2396 22276
5 2714276 g1422 97 | 9995 990 | 22099
| 231 —-95 9% | Pr2_g-¢_9% —g-1_ 9% 92 490 4.8
7 —27°5 —272 977 27142449274 | 2729744276
8 271 494 271494 —271 - 9724 976 2724278
9| -22-2*+28| 271274278 2714275 —9~5. 26
10 —2-2 92—~ 98 2% o 97 2724279
11 272 —2%4925 | 2-2..94_96 [_928_9%,496) 98 _9-7_pF
12 —2-3 97 —-272_276 129927 | 949928
1B —27242%-277| 273425426 | 2714975 277 —273 4278
14 24 4 26 —2-8 2249244277 | 27395277
15 B T -0 —2~2. 195 — G5
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Fig. 4.8: Characteristics of the 16 x 8 blocking matrix columns using a GA design with SOPOT

representation.
4.2.3 Design Based on Prototype Modulation

In order to reduce the design and implementation complexity of the blocking matrix, different
~ from the overall design as discussed in Section 4.2.2, the column vectors of B can also be derived
from a prototype vector by modulation. We here propose a cosine modulation in the design of

B, whereby the broadside constraint is guaranteed by imposing spectral zeros appropriately on

the prototype vector.

Assume the prototype vector is h[m], m = 0,1,--- , M —1. Based on h[m], we employ a
DCT-IV modulation [64] to obtain the [th column vector &[m], [ =0,1,---,L—1,

M-1 |
5 )—(—I)Z ; (4.20)

bi[m] = h[m] - cos (21 + 3)(m —

T
2L+ 2

In the frequency domain, this modulation creates two copies of the prototype vector’s frequency

response shifted along the frequency axis by (22—5"4‘?)7” and —(2;;3)2”, respectively and adds them
together. To comply with the zero-order broadside constraint B;(e’¥)|g—o = 0, the frequency

response H(z) of h[m] should have one spectral zero at each frequency point §; = j:(zlﬁ’%”,

l=0,1,---,L—1. If we factorize H(z) into two parts

H(z) = P(2)Q(z), with
L—-1
Qz) = J]( - &R )(1 — e itz (4.21)

=0
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Fig. 4.9: A design example for a 28 x 11 blocking matrix.

then the broadside constraint will be automatically satisfied by @(z) for all the column vectors
and the free parameters contained in P(z) can be used to optimise its frequency response. By
this factorisation, the design of the blocking matrix becomes an unconstrained optimisation

problem of the prototype vector. The objective function we minimise is
o= [ |mEY) e, (4.22)
Qs

where €, is the stopband cutoff frequency. To solve this unconstrained optimisation problem,
we here employ the subroutines BCONF/DBCONF in the IMSL library used earlier [116] . A
design example for the blocking matrix with M = 28 sensors, and L = 11 column vectors is

given in Fig. 4.9.

Note that the length of the filter Q(z) is 2L + 1 and the minimum length of P(z) is 1, thus
we have

M-1

G (4.23)

L<

i.e., the maximum value of the output dimension L achieved by this prototype modulation
method is 21, instead of the theoretical value M — S as indicated in (2.61). For S — 1 order
derivative constraints, we can replace Q(z) in (4.21) by Q(z)° and the maximum value of L
achieved will be %, which will sacrifice a considerable number of DOFs for S > 1 and thus
a satisfying performance may not be achieved for small-scale arrays. This reduction in DOF's

presents a limitation of this design method.
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Fig. 4.10: A partially adaptive GSC with a transformation matrix.

4.3 Spatially /Temporally Subband-selective Transforma-

tion Matrix

In the partially adaptive GSC introduced in Sec. 4.1, the blocking matrix plays two different
roles: the first aim is to block the signal of interest from broadside, while the other is to reduce
the dimension of its output from M — S to L < M — S for partial adaptivity. A blocking matrix
designed according to these specifications can be decomposed into the product of two matrices,
an M x (M — S)-dimensional blocking matrix B for a fully adaptive GSC, which is set to block
the broadside signal of interest, followed by an (M — S) x L-dimensional transformation matrix
T, which can reduce the output dimension according to some specific requirements. A partially
adaptive GSC following this approach has been introduced in [15,17] and is shown in Fig. 4.10.
In this section, we will propose a spatially /temporally subband-selective transformation matrix.
When this matrix is cascaded with a standard blocking matrix, they exhibit characteristics

similar to the subband-selective blocking matrix proposed in Sec. 4.2.

4.3.1 Transformation Matrix with Spatial/ Temporal Subband-selec-
tivity

As shown in Fig. 4.10, the dimension of the blocking matrix output vector i[n] = B¥x[n] is
(M—S) x 1. After passing through the transformation matrix T € CF*(M-5) the data vector’s
dimension is further reduced to L x 1 by u[n] = Ti[n], where u[n] is the final input to the
following multi-channel adaptive filtering process and

T = [to t; ... tpa]”
t, = [t[0] &[1] ... t[M-S-1]]" (4.25)

)

with [ =0,1,---,L—1.

Consider the same signal environment and parameters as those in Sec. 4.2.1. Using the
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substitution ¥ = ()sin @, the received phase vector at the sensor array is
- ; T
x= 1 eI ... e_J(M_I)‘I’] : (4.26)

If the blocking matrix B is constructed by the CCD method [55] as described in Sec. 2.4.3, i.e.

B:BM'BM—I"'BM—S+17 (427)
where
4T
1 1 0
B, = o € Cet (4.28)
K 1 -1 |

withi =M, M —1,--- ,M — S+1, then the output of the blocking matrix can be expressed as
ifn]=(1—ed¥)5.[1 ¥ ... ¢dM-SDIT im0 (4.29)

We see that the blocking matrix has a zero response to the signal from broadside as required.

For a general blocking matrix B, from (4.9) its output vector follows as
i[n] = [Bo(¢") Bi(€’¥) -+ Bu-s-a(¢¥)]" - (4.30)

Since any blocking matrix must have the desired zeros for the broadside signal of interest, @[n]
can be decomposed into the product of (1 —e %)% and a vector with polynomials in /. Such
a vector with polynomials in e/¥ can be further decomposed into a product of a real-valued
matrix and the vector [I e™7Y ... ¢ d(M=S—D¥IT  Therefore we can say that any blocking
matrix for broadside constraints can be regarded as a product of the blocking matrix obtained
by the CCD method and some other matrix, i.e. the CCD method provides the simplest way

and the resultant blocking matrix forms the basis of any other blocking matrices for broadside

constraints.
The [th output of the transformation matrix, w[n], l = 0,1,---,L—1, can be denoted as
wln] = t -iln]
M—5-1
— (1 . e—j\I/)S tl[m]e—jmweynﬂ
m=0
= (1—-eN5.Ty(Y) - ™ | (4.31)

with 7;(e?¥) e—o t,[m] being a Fourier transform pair. Similar to Sec. 4.2, we arrange T;(e’"),

[=0,---,L—1, on the interval ¥ € [0; 7] as shown in Fig. 4.11, such that

Ty (e7Y)] = {

1 for ¥ € [qjl,lower; \Ijl,upper] ;

0 otherwise .

(4.32)
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Fig. 4.11: Arrangement of the L column vectors in T.
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Fig. 4.12: Temporal filtering effect of the (th spatial filter in T.

As [sinf| € [0;1] when 6 € [—F; 7], the possible maximum frequency component of the
Ith output w[n] is Q@ = 7, which corresponds to |sinf| = Lﬁ"”‘, while the possible minimum
frequency component is Q = U joyer, which corresponds to |sin @] = 1. Therefore we have the

same result as in Sec. 4.2,

1 for Q € [¥, 1ower; 7]

0 otherwise

T (e7510)| = { Vo (4.33)

as shown in Fig. 4.12.

Obviously, if we consider the blocking matrix B jointly with the transformation matrix
T, a characteristic similar to that of the blocking matrix proposed in Sec. 4.2 is attained.
Alternatively, the resultant matrix could simply be regarded as a new realization of the method
presented in the previous section. In the following applications, we will not treat the two
approaches separately and just consider the concatenation of the blocking matrix and the
subband-selective transformation matrix as one kind of the general subband-selective blocking

matrix proposed in Sec. 4.2.

4.3.2 Design of the Transformation Matrix

The subband-selective transformation matrix introduced in the previous section does not have
to fulfil any constraints other than the band selectivity requirement. The design problem of
the transformation matrix is therefore that of a series of general filter designs having cutoff
frequencies specified by (4.32). However, to reduce the design and implementation complexity

of the transformation matrix, again a cosine-modulated version is proposed.
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Fig. 4.13: A design example for a 11 x 16 transformation matrix.

Assume that the prototype vector contains the elements h[m], m = 0,1, -+, M—=S—1. Then

the rows of the transformation matrix #;[m], [ =0,1,--- ,L—1, can be obtained by [90]
M-5-1
&y v = Ba]os %(%H)(m—TgH(—l)’% (4.34)

Thus, the design problem of the transformation matrix is simplified to the unconstrained de-
sign of a low-pass prototype filter h[m], which can be readily solved by standard filter design
algorithms, such as the remez function in MATLAB [115]. Many of these standard filter de-
sign routines are for obtaining linear phase filters. This however is not a requirement for the
transformation matrix and ties down available DOFs. Here we opt for a less restrictive method,
based again on the IMSL library [116]. A result obtained by the subroutine BCONF of the

IMSL library for a 11 x 16 transformation matrix is shown in Fig. 4.13.

4.4 Application to Subband Adaptive GSC

In this section, we will apply the subband-selective blocking matrix including the transformation
method of Sec. 4.3, to the subband adaptive GSC proposed in Chap. 3 in order to reduce the

computational complexity of the system.
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Fig. 4.14: Subband decomposition applied to the output of the subband-selective blocking

matrix.

4.4.1 Structure

The previous Secs. 4.2 and 4.3 have introduced a variety of blocking matrices which permit a
joint spatial /temporal filtering of the sensor signals. Noting the bandlimited spectra of blocking
matrix outputs w[n], { =0,1,---, L—1, a further spectral decomposition is applied to these L
outputs to remove the sampling redundancy due to their bandlimitness and perform adaptive

processing in subbands, as shown in Fig. 4.14.

The subband setup proposed in Fig. 4.14 is the same as the one of Fig. 3.13 in Sec. 3.3, so
it can be regarded as an application of our subband-selective blocking matrix to the subband
adaptive GSC. Because w[n], [ = 0,1,---,L—1, is a highpass signal, the subband signals in
the corresponding lowpass subbands at each MCAF will be zero and can be omitted from the
subband adaptive processing. Therefore both the filter length and the number of channels are
reduced, which together with the decreased update rates and the lower output dimension of B
results in a substantial reduction of the system’s computational complexity. Another advantage
of this combination is that the subbands discarded in the adaptation can be determined a
priori and are independent of the array signals because both the blocking matrix and the filter
banks are selected without the knowledge of the operating environment. Additionally a further
reduction of computational complexity can be achieved by monitoring the remaining subbands
and dynamically discarding the processing in those subbands whose signal power falls below a

given threshold [113].
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4.4.2 Computational Complexity

Now we quantify the achievable computational complexity reduction introduced by our pro-

posed spatially /temporally subband-selective blocking matrix.

Assume that we employ the oversampled GDFT filter banks in the subband decomposition.
A total of L + 1 analysis filter banks and one synthesis filter bank are employed, such that
the number of multiplications needed by the filter banks will be —L]‘V*—iz (I, + 4K log, K + 4K)
for real-valued input signals or % (21, + 4K log, K + 8K) for complex-valued input signals,
according to Sec. 3.3.2.

Let us now consider the remaining part of the subband-selective GSC. Compared to the
fully adaptive fullband GSC, there are three contributions towards the reduction of the compu-
tational complexity. First, the dimension of the blocking matrix output is reduced from M — .S
to L by partial rather than full adaptivity, yielding a reduction factor of L/(M — S). Secondly,
for the subband adaptive filtering part, the approximate complexity reduction achieved is by a
factor of 2K/N? (for LMS) or 2K /N? (for RLS) for real-valued input signals, and K/N? (for
LMS) or K/N? (for RLS) for complex-valued signals, as seen in Sec. 3.3.2. Thirdly, by dis-
carding the corresponding lowpass subbands, which contain negligible signal power in each of
the MCAFs, we achieve a further complexity reduction. Assuming that a sufficiently selective
column vectors b; can be designed, the first MCAF indexed as & = 0 would be a single-channel
adaptive filter, drawing its low frequency input solely from the first branch of B. The second
(k = 1) MCAF block in Fig. 4.14 will only cover some of the lower outputs of B, while finally
only the last MCAF (K —1) consists of L non-sparse channels. Thus, a channel reduction in the
MCAFs is achieved, yielding a considerably reduced complexity. This characteristic underlines
the advantage of a combined spatial /temporal subband selection by subband processing in both
the spatial and temporal domain. Under ideal conditions, the dimension of the MCAFs can

almost be halved, with a proportional decrease in computational complexity.

By these three steps, the complexity reduction ratio Rcompiexity between the computational
complexity Cseect Of the new subband-selective GSC, excluding the computations required by

the filter banks, and the complexity of the standard fully adaptive fullband GSC Cstandard

becomes
R _ C’select _ (Mfg)NQ for LMS ) (4 35)
complexity — C — LK 3
standard (]W——S)—Ng for RLS
for real-valued input signals and
o Cselect - Q(MI:IE)]W for LMS ) 4.36
Rcomplexity - C — LK ( s )
standard m for RLS

for complex-valued input signals.
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Tab. 4.2: Computational complexity for the subband adaptive GSC employing

subband-selective blocking matrix:

algorithms | real multiplications (real-valued sensor signals)

LMS (ML+ M)+ %21, + 4Klog, K +4K) + £(2&2 +1)

NLMS (ML+ M)+ 521, + 4K log, K + 4K) + £ (4% + L + 3)

RLS (ML + M) + L2 (I, + 4Klog, K +4K) + (2K + 3 + L)L 4 3KLJ | 2K
algorithms | real multiplications (complex-valued sensor signals)

LMS 2(ML+ M)+ 582 (2, + 4K log, K + 8K) + £ (4% 4 2)

NLMS 2(ML+ M)+ &2 (2, + 4Klog, K + 8K) + £ (442 1+ 2L + 3)

RLS 2ML + M) + B2 (21, + 4Klog, K +8K) + (2K + 3 + &) 2L 4 SKLJ 4 4K

As an example, consider a broadband beamformer with M = 16 sensors and zero-order
constraints. If we employ a 16 x 8-dimensional (L = 8) blocking matrix and a K = 8 channel
GDFT filter bank with decimation ratio N = 6 in our subband-selective GSC using an LMS,
the reduction ratio Recomplexity 1S approximately 1/8 for real-valued input signals, under the
ideal assumption of discarding half of the channels of the subband MCAFs! The corresponding

complexity reduction achieved in case of the RLS algorithm is approximately 1/50.

Referring to Tab. 3.1, the detailed computational complexity figures derived under the ideal
assumption are shown in Tab. 4.2 for our subband adaptive GSC employing the subband-

selective blocking matrix.

4.4.3 Simulations and Results

The proposed structures have been extensively simulated and tested. In this part, we provide
three sets of representative simulations based on the full design, the cosine-modulated design of
the blocking matrix and the transformation method, respectively. These will be compared to
traditional fullband fully adaptive beamformers, whereby two popular designs of the blocking
matrix, the CCD [55] and SVD methods [30], are implemented. The most important parameters

for these three simulations are listed in Tab. 4.3.

4.4.3.1 Simulation I (full design of B)

In the first simulation, the blocking matrix of the proposed subband-selective GSC is designed
using the method of Sec. 4.2.2. The dimension of B is 16 x 8 (L = 8), and the magnitude
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Tab. 4.3: Part of the parameters in simulation I, II, and III:

parameters simulation I simulation II simulation IIT
sensor number M 16 21 17
TDL length J 70 90 90
derivative constraint S 2 1 1
signal DOA 6 0° 0° 0°
interference sources 1 2 2
interference DOA 6 20° 20° & —40° 30° & —60°
SIR —24 dB —-30 dB —24 dB
SNR 20 dB 20 dB 20 dB
interference bandwidth | Q = [0.257; 0.757] | Q = [0.37; 0.77] | Q = [0.37;0.87]
adaptation algorithm NLMS NLMS NLMS
stepsize 0.40 0.30 0.35

responses of its column vectors are shown in Fig. 4.7. Each of the blocking matrix outputs
and the reference signal d[n] are divided into K = 12 subbands by oversampled GDFT filter
banks [2,94] with decimation ratio N = 10. The length of the prototype filter is 240 and the
frequency responses of the analysis filter bank are shown in Fig. 4.15. The length of the adaptive
filter operating in each channel of the subband MCAFs is J/N = 7. In each MCAF block, the
channels with negligible output are discarded according to (4.13), whereby the processed inputs
to the MCAFs are shown in Fig. 4.16. Fig. 4.17 displays the residual mean square error of the
system, employing the adaptation by a normalised LMS algorithm with a step size of 0.35.
Clearly, the proposed subband system converges systematically faster and has a lower steady-
state mean square residual error. The gain response of the adapted subband system with
respect to frequency Q and DOA 6 is given in Fig. 4.18. The attenuation at the interferer’s
position of @ = 20° is clearly visible, and can be inspected quantitatively in Fig. 4.19, where
the beamformer’s response is only shown over the frequency band Q = [0.257;0.757], in which

the interferer is active.

To show the effect of channel discarding according to Fig. 4.16 , we also give a comparison
of the learning curves before and after the channel discarding, which is shown in Fig. 4.20. The
steady state ensemble mean square residual error with and without discarding is —1.42dB and

—1.44dB, respectively, and hence virtually identical.
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Fig. 4.16: Channels discarded in each MCAF block for simulation I.
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Fig. 4.21: Frequency responses of the 21 x 10 blocking matrix.

4.4.3.2 Simulation IT (Cosine-modulated design of B)

In a second simulation, the blocking matrix of the proposed subband-selective GSC is obtained
by cosine modulation. Its dimension is 21 x 10 with the frequency responses of the column
vectors shown in Fig. 4.21. Note how the broadside constraint is enforced by regularly spaced
spectral zeros. We employ the same filter bank for subband decomposition as in Sec. 4.4.3.1.
Due to the characteristics of the blocking matrix B and the filter bank, a number of channels
in the various subband MCAFs can be discarded according to Fig. 4.22. Learning curves for
an NLMS algorithm using a step size of uy = 0.30 for adaptation are shown in Fig. 4.23. A
comparison of the learning curves with and without the channel discarding is given in Fig. 4.24
with the same steady state ensemble mean square residual error of —3.21dB in both cases .
The gain response of the adapted subband GSC is displayed in Fig. 4.25 , and plotted over the
frequency range Q = [0.307;0.707] of the interferers in Fig. 4.26. As evident, nulls have been

correctly placed in the directions of these interfering sources.

4.4.3.3 Simulation IIT (By Transformation Matrix T)

In this third simulation, we employ the subband-selective transformation matrix introduced in
Sec. 4.3 and compare the performance of this method with that of a fully adaptive fullband
GSC using the CCD method. The transformation matrix of dimension 11 x 16 is obtained by
cosine modulation and contains the frequency responses shown in Fig. 4.13. The subband setup

is the same as that used for Simulation II, resulting in the pattern for discarding channels in
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each MCAF block as given in Fig. 4.27. Learning curves of the beamformers using the NLMS
adaptive algorithm with a normalised step size of 0.35 are shown in Fig. 4.28. The learning
curves of the subband-selective GSC both with and without channel discarding are presented
in Fig. 4.29, demonstrating that there is no penalty incurred in neglecting the low power
channels of the subband MCAFs. Fig. 4.30 gives the three-dimensional beampattern for the
subband-selective GSC, while Fig. 4.31 displays the response over the interferers’ frequency

band [0.307; 0.807], indicating that the beamformer has placed nulls in the desired directions.

4.4.3.4 Discussions

The beampatterns for the three sets of simulations clearly show that the subband-selective
GSC can suppress the interference effectively by forming corresponding nulls in the directions
of interference. From the learning curves, we see that under different step sizes, different orders
of constraints, and different signal environments, the proposed subband-selective method always
achieves a higher convergence speed than the standard fully adaptive fullband GSCs due to the
combined decorrelation effect in both spatial and spectral domains by both the blocking matrix
and the analysis filter banks, and the shortened adaptive filter length within each channel.
Because of the band-selectivity of the blocking matrix, there is almost no difference between
the learning curves with and without channel discarding. As to the computational complexity,
when the blocking matrix of the fullband GSC is formed by the CCD method, the proposed
novel subband-selective GSC only needs about 31% multiplications of the fullband GSC in
simulation I, 23% of that in simulation II, and 32% of that in simulation III according to their

channel-discarding patterns and adaptation in subbands; for the SVD method, the reductions
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Fig. 4.25: 3-D beampattern for the subband-selective GSC in simulation II.

are 29% in simulation I and 22% in simulation II.

4.5 Application to Transform-domain GSC

In Sec. 2.4 we introduced the GSC structure proposed in [29], which can be regarded as a time-
domain GSC. As LMS-type algorithms suffer from a low convergence rate when the condition
number of the input correlation matrix increases [51], a transform-domain GSC (TGSC) was
proposed by Chen and Fang [21]. In their work, a one-dimensional discrete Fourier transform
is used on each of the tap-delay lines at the output of the blocking matrix. Thereafter, an
LMS algorithm with self-orthogonalising property is applied. Following the work of [21], a two-
dimensional transformation is introduced to the GSC [22], which can improve the convergence
rate further due to the approximate estimation of both the spatial and temporal correlation.
With the advantage of higher convergence speed, the transform-domain GSC however poses

the problem of high computational complexity.

In this section, a new realisation of the TGSC equipped with our subband-selective blocking
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Fig. 4.26: Response of the subband-selective GSC in simulation II over the band [0.307;0.707].

matrix will be proposed to reduce its computational complexity. In this subband-selective
TGSC (STGSC), when applying the DFT to the outputs of the blocking matrix with band
selectivity, some of the frequency-bin outputs of the DFT will be approximately zero and can
be omitted from the following adaptive processing. Because of the finite-duration effect of the
DFT [124], it is advantageous to apply a window function [124] with narrow bandwidth to
the blocking matrix outputs before performing the DFT, which is not part of the TGSC as
originally proposed.

4.5.1 Transform-domain GSC

The structure of a transform-domain GSC is shown in Fig. 4.32, where the blocking matrix
output ufn] = [ug[n] wi[n]...ur4[n]]" is obtained by u[n] = B¥x[n] and L = M — S for a
fully adaptive GSC. A J-point DFT is applied to each of the tapped-delay line vectors u[n],
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[=0,1,---,L—1, where
wn] = [wn] wn—1] ... wn—J+1]]" . (4.37)

The output of the /th DFT block is

vi[n] = DET{wn]}, (4.38)
where vi[n] = [vio[n] via[n] ... vis_1[n]]".
Stacking the DF'T outputs as
v[n] = [vo[n]” vi[n]T ... vL_l[n]T]T : (4.39)

we can formulate y[n] = WwHv[n], where W is the weight vector including all the corresponding
weights in the transform-domain LMS algorithm. These weights w are updated continually
to minimise the power of the error signal e[n] = d[n] — y[n] by a self-orthogonalising LMS

algorithm [125],
Wn + 1] = Wln] + 2ve*[RJR;1v[n] (4.40)
where
Ry, = E{v[n]v¥[n]} (4.41)

and 0 < 7y < gy to ensure convergence of the algorithm. The role of Ry, is to reduce the

eigenvalue spread of the matrix governing the adaptation process.

Note that R, is unknown in practice and we here use the following approach to approximate

it by a diagonal matrix Ry, [22,126],
Ry, = diag[roo, -+ ,T07-1, " »TL-10,""* sTL-1,7-1) » (4.42)
where
rg = E{lvylnl?}, 1=0,1,-..,L-1, §=0,1,---,J-1, (4.43)

is the power of the corresponding frequency bin output of the DFT. The diagonal elements 7y ;

in turn can be recursively estimated at time instance n through the following equation
7,5 = Brigln — 1]+ (1 = B)luyln]|* (4.44)

where 0 < f < 1 is a forgetting factor. Then the estimate f{;} of R;}! is given by

s ~—1 ~—1

-1 __ 3: ~—1 s—]
R,, = diag [To,o: BRI S5 PRk A Y T 7TL—1,J—1] , (4.45)
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Tab. 4.4: Computational complexities for our STGSC and the old TGSC:

GSC realisations | complex multiplications per cycle (LMS)
TGSC (M — S)JlogyJ+3.5(M — S)J
STGSC LJlog,J+1.75LJ

and we get the new update equation

Wwn + 1] = W[n] + 2ye*[n]R; . v[n] . (4.46)

Although the TGSC accelerates the convergence speed, it also increases the computational
complexity of the system. In the next section, we sacrifice some DOFs of the system by
introducing the prevously proposed subband-selective blocking matrix in order to achieve a

lower computational complexity.

4.5.2 Subband-selective TGSC

The introduction of the subband-selective TGSC is straightforward. The standard blocking
matrix in Fig. 4.32 is replaced by our subband-selective blocking matrix. As noted before, its
outputs wn], { =0,---, L—1 contain signals with tighter and tighter highpass spectra, as the
index [ increases. If we apply a DFT to the output signal u;[n], some of the frequency bins will
possess negligible energy and can be omitted from the following adaptive process. In order to
best exploit this property, we need to select a suitable window function with good frequency

selectivity, which will be multiplied with the time-domain signals prior to applying the DF'T.

Now we analyse the computational complexity of the system. Since for a fully adaptive
GSC the output dimension of the blocking matrix is L = M — S, the total number of weights
in a partially adaptive system is reduced by L/(M — S). Concerning the DFT and adaptive
part under ideal conditions, i.e. if sufficiently selective column vectors b; and a good window
function can be designed, the last DFT output v;_; will have only approximately two non-zero
frequency bins for real-valued signals (or one for complex-valued signals), and v;_o has four
(or two for complex-valued signals), and so on. Finally, only v, does not have any negligible
frequency bins. Thus, under ideal conditions, the total number of weights to be updated will be
further halved. Considering the overall subband-selective TGSC, its computational complexity

is summarised in Table 4.4, which also provides a comparison with the TGSC proposed in [21].
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Fig. 4.33: Frequency responses of a 32-tap window function.

4.5.3 Simulations and Results

Simulations are conducted in order to demonstrate and compare the performances of a GSC,
TGSC and STGSC, which are based on a setup with M = 17 sensors and zero-order derivative
constraint (S = 1). The length of the tapped-delay line is J = 32 and the signal of interest
comes from broadside at an SIR of —24 dB and SNR of 20 dB. There are two interfering
signals, which cover the frequency intervals [0.157;0.457] and [0.557; 0.857], with DOA angles
of 20° and —60°, respectively. A 32-point DFT with a Hamming window function [124] is
applied in the STGSC, whereby the frequency response of the window function is shown in
Fig. 4.33. The dimension of the blocking matrix is 17 x 16 (L = 16), which is obtained by our
transformation method. The frequency responses of this transformation matrix T are shown
in Fig. 4.34. As L = M — S, our STGSC is a fully adaptive beamformer. The frequency bins
discarded in our simulation are shown in Tab. 4.5, where the elements with zero value mean
that the corresponding frequency bin outputs are discarded, while those having a unity value
are retained. We compare the performances of the STGSC with the TGSC and the general
GSC based on the design of B using the CCD method. The corresponding step size parameters
~ used for the STGSC, TGSC, GSC are respectively 6.42 x 1074, 4.88 x 107 and 6.18 x 107*,
which have been chosen empirically to achieve similar steady state mean square residual error

values.

From the simulation results shown in Fig. 4.35, we can see that the TGSC converges faster
than the time-domain GSC because of the temporal decorrelation effect of the DFT, whereas our

new method is slightly faster than the TGSC due to its combined spatial /temporal decorrelation
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Tab. 4.5: Frequency bin outputs discarded in the proposed STGSC in the simula-

tion of Sec. 4.5.3.
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effect. In addition, although the computational complexity of the proposed STGSC is about
3.7 times that of the time-domain GSC, it is only about 90% of the complexity required for the
TGSC in the considered example.

4.6 Summary

In this chapter, a class of GSCs equipped with a spatially/temporally subband-selective block-
ing matrix has been proposed. The column vectors of such a blocking matrix constitute a
series of bandpass filters, which select signals with specific DOAs and frequencies and result
in bandlimited spectra of the blocking matrix outputs. Three different methods to obtain the
blocking matrix having such properties have been suggested. Firstly, we can design the col-
umn vectors of this so-called subband-selective blocking matrix directly with the constraints
embedded. Secondly, based on a prototype vector with specifically designed constraints the
desired blocking matrix can be formed by cosine modulation. The cosine modulation simplifies
the design of the blocking matrix. However, as a drawback, the prototype filter must possess
regular spectral zeros in order to fulfil the broadside constraint, which affects both the design
freedom of the prototype filter and the number of column vectors achievable. Therefore, alter-
natively, we regard the subband-selective blocking matrix as the product of a standard blocking
matrix formed by the CCD method and a transformation matrix. The transformation matrix
is then optimised for achieving the best possible band-selectivity without any further con-
straints. The subband-selective blocking matrix can be applied to the subband adaptive GSC
or the transform-domain GSC to reduce their computational complexities, which is achieved
by discarding some of the subbands or frequency bin outputs prior to the following adaptation.
Because of its combined spatial/temporal decorrelation effect, generally a faster convergence

speed is achieved, as demonstrated in the corresponding simulations.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has reviewed some of the basics of digital beamforming, in both narrowband and
broadband scenarios. We then focused on the linearly constrained minimum variance beam-
former, where linear constraints are imposed on the weight vector to ensure that signals from
directions of interest can pass through the beamformer with a specified gain and phase while
minimising the variance or power of the beamformer’s output. Various problems related to
LCMV beamforming have been treated, such as the formulation of the constraints, the op-
timum solution to LCMV beamforming, and Frost’s constrained adaptive algorithm. As an
alternative but efficient implementation of the LCMV beamformer, the generalized sidelobe
canceller transforms the constrained adaptation problem into an unconstrained one, which can
be readily solved by standard adaptive algorithms such as the LMS or RLS algorithms. Because
the GSC structure forms the basis of the work reported in this thesis, a detailed description
of a number of issues has been given, including two design methods for the blocking matrix —
the cascaded columns of differencing (CCD) method and an SVD based method — as well as
the simplification of the GSC from a block-based adaptation to tapped-delay lines. Commonly
used adaptive algorithms have been introduced and analysed, in particular with respect to their
computational complexity.

In order to achieve high spatial resolution and interference rejection, a large number of
sensors and filter coeflicients are required, rendering the broadband beamforming problem very
computationally costly. Additionally, adaptive algorithms with a large number of coefficients
require longer adaptation time. Hence the aim of this research has been to develop methods

that can lower the computational cost and increase the convergence speed.

Subband Adaptive GSC
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Motivated by the reduction in computational cost and increase in convergence speed achieved
by the subband adaptive filtering scheme, we have proposed a subband adaptive generalized
sidelobe canceller for broadband beamforming in Sec. 3.3. In this scheme both the upper path
signal after the quiescent vector and the lower path signals after the blocking matrix in Fig. 2.7
are split into decimated subbands by a series of analysis filter banks and minimization of the
output power or variance is then performed in each subband. Thereafter, the subband error
signals are upsampled and reconstructed to a desired fullband output signal. This new subband
adaptive system outperforms the standard fullband adaptive GSC and a previously proposed
subband beamforming structure with a lower computational complexity. In addition, when
relying on LMS-type algorithms for adaptation, it also achieves a faster convergence speed
than the fullband adaptive GSC due to its pre-whitening effect, as demonstrated by the simu-

lation results in Sec. 3.4 based on different signal environments and different blocking matrix

constitutions.

GSC Employing the Subband-selective Blocking Matrix

In order to further reduce the computational complexity, a partially adaptive array has
been reviewed as an effective choice. There, only a subset of the available degrees of freedom
is used for the array adaptation, although at the expense of a potentially somewhat reduced
performance. Combining the subband method and the partially adaptive array techniques
together, we have proposed a new construction for the blocking matrix in Sec. 4.2, where the
columns of the blocking matrix constitute a series of bandpass filters. These filters select signals
with specific DOAs and frequencies and result in bandlimited spectrum for the blocking matrix

outputs. Such a subband-selective blocking matrix can be exploited in two ways:

Firstly, we can apply the subband-selective blocking matrix to the subband adaptive GSC,
as shown in Sec. 4.4. The subband decomposition of the bandlimited spectra will result in
some subbands with near-zero power output signals, which can be discarded from the succes-
sive subband adaptation. Since a finite transition bandwidth and hence an overlap between
the bandpass filters in the blocking matrix has to be permitted, a better design quality can
be attained by reducing the output dimension of the blocking matrix, yielding a partially
adaptive beamformer. By partial adaptivity, subband discarding and subband adaptation,
the computational complexity of the system is considerably reduced. Because of its combined

spatial /temporal decorrelation effect, a higher convergence speed can be achieved.

Secondly, in Sec. 4.5, the subband-selective blocking matrix is also applied to a specific
transform-domain GSC, where a one-dimensional DFT is used on each of the tap-delay lines
at the output of the blocking matrix and an LMS algorithm with self-orthogonalising property
is employed. The advantage of this combination results from the fact that when applying the
DFT to the outputs of the blocking matrix with band selectivity, some of the frequency-bin
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outputs of the DFT will be negligible in power and can be omitted from the following adaptation
process. Because of the finite-duration effect of this DF'T, we need to apply a window function
with narrow bandwidth to the blocking matrix outputs before performing the DFT. Obviously,
discarding the frequency bins before performing the adaptation leads to a reduced system

complexity. With the same reason, a higher convergence speed can also be attained.

As the blocking matrix plays a central role in the subband-selective system, its design was
dealt with in more detail. We can design the column vectors of the blocking matrix separately
obeying their own constraints. Alternatively, a prototype vector with specific constraints can
be designed first and the desired blocking matrix are formed by cosine modulation, as shown in
Secs. 4.2.2 and 4.2.3, respectively. We have also proposed a subband-selective transformation
matrix in Sec. 4.3, which, from another point of view with the standard blocking matrix formed
by the CCD method, can be regarded as an alternative implementation of the subband-selective
blocking matrix. Then the problem of designing the blocking matrix is transformed to the
design of the transformation matrix without any constraints other than the band-selectivity

requirement, which can be regarded as a general filter design problem.

The effectiveness and advantages of the subband-selective blocking matrix have been demon-
strated in a series of simulations in Sec. 4.4.3 and Sec. 4.5.3 based on different signal environ-

ments and beamforming structures.

5.2 Future Work

Based on the findings persented in this thesis, the following topics are of interest for future

in-depth research:

e Orthogonal Transformation Matrix with Subband Selectivity

In the subband-selective blocking matrix proposed in Chap. 4, the linear independence
of the column vectors cannot be guaranteed, because they are not ideal bandpass filters
in practice. As a result, we need to check their linear independence after the design. If
they are not linearly independent, we have to redesign the related vector or make a small
change to the coefficients of the vector under the condition that such change will not
influence its band-selectivity too much. Another solution is to consider the linear inde-
pendence requirement during the design process. Therefore an orthogonal transformation
matrix with subband selectivity may be used. The column vectors of this transformation
matrix are formed by the analysis filters and their temporally shifted versions (shifted by
nK, where n is an integer and K the channel number of the filter banks) of K-channel

maximally decimated paraunitary PR filter banks, as such filters and their shifted versions
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are orthogonal to one another [63,64]. Such an orthogonal transformation matrix can be
used as a replacement of the transformation matrix T as proposed in Sec. 4.3. More-
over, it can also be applied directly to the received broadband array signals, followed by
subband decomposition by a series of analysis filter banks. An independent beamformer,
e.g. a GSC, can be operated within each decimated subband. Thereafter, the subband
beamformer outputs are combined together by a synthesis filter bank to produce a full-
band output. Because of the temporal highpass operation of the transformation matrix,
there will be no low-frequency signal components in certain subbands after the subband
decomposition by filter banks and such subbands can be discarded prior to applying the

subband beamformers.

e Extension of the Subband-selective Matrix from Linear to Planar Arrays

The whole work of this thesis is based on linear arrays, But the associated idea could
potentially be extended to planar arrays [7-9]. In the case of using the subband-selective
blocking matrix, the planar scenario implies that we have to design a series of two-
dimensional filters [127,128] exhibiting band-selectivity in order to form the two-dimensional
subband-selective blocking matrix. The design of such a two-dimensional filter is a com-
plicated issue and one possible solution may be to design a one-dimensional filter first

and then obtain a two-dimensional filter by means of a suitable transformation [129].



Appendix: Genetic Algorithm

The first genetic algorithm (GA) was introduced by Holland [130] in 1975 and has since then
been extensively explored as a technique of performing optimisation [117,118], including the
design of filters and filter banks with sum-of-powers-of-two (SOPOT) coefficients [121,131,132].
In this appendix, we will give a brief introduction to the GA. For more details, please refer

to [117,118,121]

A.1 Introduction

The GA is based on the law of natural selection. It assumes that the potential solution
to any problem can be represented by a set of parameters. These parameters are regarded as
the genes of a chromosome and can be structured by a string of values. Each chromosome
has a fitness value, which indicates its closeness to the final solution. A GA consists of three
processes: selection, genetic operation and replacement. The first group of chromosomes (the
first generation) can be generated randomly or from some initial results provided by other
methods or algorithms. In the selection process, the “parents” are selected according to their
fitness values. The chromosome with a larger fitness value should have a greater chance to
be selected. Then the genetic operation is applied to the chosen “parents”, which includes
crossover and mutation. Crossover exchanges parts of the genes of the parental chromosomes,
while mutation changes the values of some genes in one chromosome randomly. Based on
some replacement strategy, the chromosomes in the first group are then replaced by the newly
generated chromosomes — the offspring. The whole process is shown in Fig. 1 and repeated,

until we find the desired chromosome, which gives the desired solution.
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old population new population
(chromosomes) (chromosomes)
l selection T

fitness
evaluation

fitness
evaluation

selection

genetic operation
(crossover and mutation)

Fig. 1: Block diagram of a Genetic Algorithm.
The philosophy of a GA can be summarized as follows:

1. Initialize the iteration index n to 0;

2. Generate the initial population P[n] = {Xo[n], Xi[n|,--- , Xp—1[n]}, where M is the size

of the population and X,,[n], m =0,1,---, M — 1 are the chromosomes;

3. Compute the fitness value F'(X,,[n]) of each chromosome X,,[n] in the current population

P[n];
4. Choose “parents” from P[n] according to their fitness value F(X,,[n]);

5. Mate the “parents” by crossover and mutation, then generate the new chromosomes —

the “offspring”; calculate their fitness values;

6. Insert the “offspring” in P[n]; at the same time delete the inappropriate one according

to their fitness value;

7. n = n+ 1; if the termination test is not satisfied, go to step 4, or else stop and choose

the best chromosome as the solution.

Next, we will discuss six fundamental issues of the GA.
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chromosome: gene0—genel-gene2 =+ -- - -
gene: 100110 -+ or 24354 --+ or ABEDF +:-*, -+

Fig. 2: Block diagram of a Genetic Algorithm.

A.2 Fundamental issues of GA

According to [133], the use of a genetic algorithm requires the determination of six fun-
damental issues: the chromosome representation (encoding scheme), the selection function,
the genetic operators making up the reproduction function, i.e. crossover and mutation, the

creation of the initial population, the termination criteria, and the fitness evaluation.

A.2.1 Solution representation

The representation scheme is a key issue for any GA. It determines how the problem is
structured and what operators are used. Each chromosome X,,[n] represents a trial solution to
the problem and is constructed of a string of variables, i.e. genes. The variables can be binary
digits (0 and 1), real numbers, or other forms such as symbols (A4, B,C,---), matrices, etc,
which are determined by the problem specified. Examples for the structure of a chromosome

and its genes are shown in Fig. 2.

Bit-string representation is the most classic representation scheme, which was first proposed
by Holland [130]. However, recent research shows that a more natural representation may be
more efficient and produce better result. For example, in function optimization problems,
floating point representation is more efficient in terms of CPU time than a bit-string based
representation [134]. For the design of SOPOT filters considered in this thesis, the bit-string

representation is preferred, because the SOPOT solutions are points in a discrete domain.

A.2.2 Parent selection

The selection process emulates the survival-of-the-fittest mechanism in nature, where stronger
individuals are likely to become the winners in a competitive environment. This means that the
chromosomes having higher fitness values have a better chance of survival by being selected to
produce offspring. According to the intrinsic flexibility and freedom of this selection in nature,
we often perform a probabilistic selection. Generally better chromosomes, i.e., chromosomes

with higher fitness values, have a better chance. The first selection method “Roulette Wheel

Selection” was proposed by Holland [130].

In Roulette Wheel Selection, we first assign a probability of selection p,, to each chromosome
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Chromosomel: UL @ T DI @ m
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Fig. 3: Single-point crossover (e is the crossover point).

Xom[n], which is defined by
F(Xm[n])
Pm = = . (1)
Yity! F(Xiln))
Then a random number € is generated between 0 and 1 and compared with the cumulative

probability p, = > vy pi. If Py < € < Py, then X, [n] is selected.

In addition to the Roulette Wheel Selection, there are many other selection methods, such

as ranking, tournament, and proportionate scheme [118].

A.2.3 Genetic operation

The choice of the genetic operation determines how the “parents” produce their “offspring”.
In nature, the term genetic operation refers to the recombination of different chromosomes
after crossover and mutation. Because here all the information is represented in only one
chromosome, the recombination is realized by crossover between the corresponding genes of the
parental chromosomes, during which mutation, the process of sudden change of some genes in

a chromosome, might happen.

For crossover, we should choose one or more crossover points in the parental chromosomes.
These points can be generated from a number generator with a value between 1 and the length
of the chromosome. Crossover can be further divided into single-point crossover and multi-point

Crossover.

1. Single-point crossover
A single crossover point is chosen randomly, which divides each of the two chromosomes
into two parts. These are recombined to generate two new chromosomes, according to

the example shown in Fig. 3.

2. Multi-point crossover

In this case, we can randomly choose more than one crossover point. An example is given
in Fig. 4. A simple way of generating the crossover points is to create a random binary
string constructed of 1s and 0s. The length of the string matches the number of genes in
a chromosome. The changes in binary values within this string determine the positions

of the crossover points.
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Fig. 4: Multi-point crossover (e is the crossover point).

A mutation introduces a new variation into the chromosome. Randomly, this can involve a
change of value of one, more, or even all genes of a chromosome. Such a mutation will occur with
a specified probability. Which genes are going to mutate can be determined in a fashion similar
to the determination of crossover points as described previously. The range of mutation, i.e.

the range of a gene’s value, has to be chosen according to the specified optimisation problem.

In the scenario where the solution is represented by binary digits, having determined the
variables to mutate, we can randomly choose one or more bits in the variable to mutate and
replace them by randomly generated binary values. Another commonly used standard mutation
is flipping bits, where 1 is replaced by 0 and 0 is replaced by 1, if the probability test used for

mutation is passed.

A.2.4 Initialization, fitness evaluation, and termination

The initialization of a GA is to generate the initial population or first generation of chromo-
somes P[n] = {Xy[n], X1[n],- -+, Xar—1[n]}|n=o for the given problem. There are two commonly
used methods in practice. One is to randomly generate the chromosomes. Thus, most of them
may be far away from the optimal solution, which will result in a larger number of iterations to
converge to the optimum. If other methods are available to determine an approximation or ini-
tial guess to the problem, then, it is advantageous to include this approximation or initial guess
in the first population. There are at least two situations where this method is recommended.
First, as it might be difficult to analytically derive the globally optimal solution to some com-
binatorial or nonlinear problems, we can therefore combine these approximate solutions and
a GA together to search for an improved solution. Secondly, in the design of multiplier-less
filters and filter banks with SOPOT representation, optimal or sub-optimal real-valued results
are available for some problems and these results can be used to aid the GA to search for the

solution in the discrete domain.

Fitness evaluation is the starting point of the selection process, and is also the only link
between the GA process and the optimisation problem. It measures the fitness of each chro-
mosome according to their performances in the system. The range of the fitness value varies
from problem to problem. To maintain uniformity, we need to map the performance to a
proper value. There are many methods to perform this mapping. The simplest one is linear

normalization:
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The chromosomes are ranked in descending or ascending order of fitness values
depending on whether the objective function is to be maximized or minimized.
Assign the best chromosome a value of aq, and the worst chromosome the value
apr—1, where ajpr_1 < ap, then the fitness value of the i-th chromosome in the
ordered list is

Oy — Opr—1 (2)

OZZ':OZO—(?:—].)' M

To terminate the iteration, an ending or termination test has to be devised. A most com-
monly used termination criterion is to stop the iteration when the maximal number of gen-
erations is reached. Another method is to measure the deviation in the fitness values among
the members of one generation. If the deviation reduces below some threshold value, then
the process will be stopped. Yet another method is to stop once the best chromosome in one
generation reaches a predefined fitness value. Further methods can be devised by combining

these methods together in various ways.
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A.3 Design of the example in Sec. 4.2.2

In the design of the blocking matrix in Sec. 4.2.2, each of the coefficients b[m]|, m =

2,3,--+,M—1 is represented as

P[l,m]—-1
bim] = > afl,m]-25%b™ with
1=0
a’i[l’m] E{—l,l}, Lz[lym] E{Q17Q1+17"' ,Q2_1>Q2}a (3)

where P[l,m] is a limit for the number of SOPOT terms, and ¢, and @, are integers determined
by the range of the corresponding variable. Normally, P[l,m] is limited to a small number.
Thus, the whole process will be kept in the discrete domain and good result in the SOPOT
form can be obtained. Any of the mutation and crossover techniques introduced in the previous
section can be employed. In this design, we use the single-point crossover and randomly create
a number to decide the crossover point. A mutation is set to occur with a probability of 0.5 in
a chromosome, whereby within the chromosome each gene has a uniform probability for being
affected by this mutation. The stopband attenuation is assigned to each of the chromosomes
as its fitness value and Roulette Wheel Selection is employed to select the appropriate parents.
The initial population is generated randomly and the whole optimisation process is terminated
when a specified maximum number of generations is reached. Tab. 4.1 gives the GA design

results in SOPOT notation.



Glossary

Abbreviations

AEC
CCD
DFT
DOA
DOF
FDAF
FFT
FIR
GA
GDFT
GSC
IR
LCMV
LMS
MCAF
MSE
MVDR
NLMS
PR
RLS
SAF
SINR
SIR
SNR
SOPOT
STGSC
SVD

acoustic echo cancellation

cascaded columns of differencing
discrete Fourier transform

direction of arrival

degree of freedom

frequency-domain adaptive filtering
fast Fourier transform

finite impulse response

genetic algorithm

generalised DF'T

generalised sidelobe canceller
impulse response

linearly constrained minimum variance
least mean square

multi-channel adaptive filtering
minimum square error

minimum variance distortionless response
normalised LMS

perfect reconstruction

recursive least squares

subband adaptive filtering

signal to interference plus noise ratio
signal to interference ratio

signal to noise ratio

sum of power of two
subband-selective TGSC

singular value decomposition
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TGSC

transform-domain GSC

General Notations

scalar quantity

vector quantity

matrix quantity

function of a continuous variable ¢

function of a discrete variable n

Relations and Operators

)*
)H
)T
)t
{

'}

~ o~ o~ o~

95

\%

029
null{A}
ran{A}
rank{A}
tr{A}

complex conjugate

Hermitian (conjugate transpose)
transpose

pseudo-inverse

estimation operator

gradient operator

Kronecker product operator
nullspace of A: {x: Ax =0}
range of A: {b: Ax = b}

rank of A (number of linearly independent rows)

trace of A

Symbols and Variables

Ho

i

forgetting factor, RLS algorithm

also: wavelength

also: eigenvalue of covariance matrix R

vector of the Lagarange multipliers
Kronecker delta function

1th eigenvalue of R,

step-size parameter in a general adaptive algorithm

also: a scaling factor in Frost’s algorithm

step size in the NLMS algorithm

normalized step-size parameter, NLMS algorithm
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Glossary
6 angle of incident
also: azimuth
T delay / lag
& cost function
w (angular) frequency
Q normalized (angular) frequency Q = w7y, with sampling period
T
Q the [th spectral zero point of the prototype vector in the cosine-
modulated design of B )
Qs stopband cutoff frequency in the cosine-modulated design of B
o} an integer in the PR condition of filter banks
g, 01, scalars in the linear combination of vectors
also: the fitness values assigned to the chromosomes in a GA
B forgeting factor
€ a random number generated in a GA
y stepsize in the self-orthogonising LMS algorithm
0] phase of plane wave
also: elevation
) the objective function in the cosine-modulated design of B
P, the I-th objective function in the full design of B
v a substitute to {2sin @
P radius
o? is the variance of the white noise
To o2, is the variance of the input signal x
Y r X r diagonal matrix
a;[l, m] the coefficient of the ith SOPOT term for the m, [ element in B
A amplitude of a wave
A a general matrix in the SVD theorem and the matrix inversion
lemma
b, the [-th column vector of the simplified blocking matrix
b;[m)] the m-th element of the vector b,
B blocking matrix
also: a general matrix in the matrix inversion lemma
B simplified blocking matrix
By(e’?) Fourier transform of the column vector b;
& wave speed in some media

also: speed of light

also: a constant in the PR condition of filter banks
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C computational complexity

C constraint matrix
also: a general matrix in the matrix inversion lemma

C; the sub-vector for ¢-order derivative constraint on the beamformer

Ci the sub-matrix for z-order derivative constraint on the beamformer

C the matrix holding all the sub-vectors c; of derivative constraints
withi=0,---,5-1

d array distance

D a general matrix in the matrix inversion lemma

d(w, 0) steering vector

d[n] upper branch output of a GSC

d[n] output of the quiescent vector W,

e a vector with dimension S x 1 and its first element as 1 and the
remaining as zero

e[n] beamformer out, adaptive filter error signal

ex[n] the kth subband adaptive filter error signal

en a column vector holding [1, 271, -+, z=(N=1)]

én a column vector holding [z~(N—1) z=(N=2) ... 1]

E(z) polyphase analysis matrix
(temporal) frequency

f response vector

f vector holding the first J elements of the response vector f

f*] the j-th tap of the equivalent array processor for signal from
broadside

F(Xp[n]) the fitness value of the chromosome X,,[n] in a GA

g(z) vector containing the z-transforms of the synthesis filters

9k[n] the k-th filter in the synthesis filter bank

G beamformer’s response to a specified signal

h[n] a sequence or a filter or a prototype vector

hi[n] the k-th filter in the analysis filter bank
also: the k-th subsequence of h[n|

hi[n) the k-th subsequence of h[n] obtained in a different way

H(z) z-transform of h[n]

H;(2) z-transform of h;[n]

7;(2) z-transform of h;[n]

1 index number

I identity matrix

o index number
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Glossary
J filter length attached to each sensor
k wavenumber for continuous signal
also: index number
k vector of wavenumber (or spatial frequency)
K number of subbands
[ index number
ls adaptive filter length
Leunr fullband adaptive filter length
by prototype filter length
Lt subband adaptive filter length
L number of columns of B (partially adaptive)
also: number of rows of T
L;[l,m] the exponent of the ith SOPOT term for the (m,[) element of B
index number
M number of sensors
also: size of the polulation in a GA
n index number
ng system delay of the PR filter banks
also: phase origin point of an array
N decimation factor
Nq number of samples in frequency to draw a beampattern
Ny number of samples in DOA to draw a beampattern
P cross-correlation vector
P estimate of the cross-correlation vector p
D, the probability of selection of the chromosome X,,[n] in a GA
D the m-th cumulative probability in the Roulette Wheel Selection
of a GA
pln] prototype filter of the filter banks
P the limit for the number of SOPOT terms in the GA design
Pll,m] the limit for the number of SOPOT terms for the (m,[) element
of B )
PIn] the set of population at the n-th generation in a GA
P(2) a factor in the decomposition of the prototype vector H(z)
P(z) the product of the polyphase matrices
Q(z) a factor in the decomposition of the prototype vector H(z)
Q1 the lower limit for the exponent in the SOPOT design of B
Q- the upper limit for the exponent in the SOPOT design of B
T number of linearly independent constraints
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also: an integer in the PR condition of filter banks
also: rank of A in the SVD theorem

L the power of the j—th output of the [—th DFT in an FGSC

r vector representing a point in a Cartesian coordinate system

71,5 power estimation of the j—th output of the [—th DFT in an FGSC

R reduction ratio of the computational complexity

R correlation matrix of x

R,, estimate of R,

R(z) polyphase synthesis matrix

R correlation matrix of the DFT output in an FGSC

R,, estimate of R,

S S —1 equals the order of derivative constraints on the beamformer

t time

t[n] distortion function

t, the [—th row vector of the transformation matrix T

ty[m)] the m-th element of the vector t;

T transformation matrix

T temporal sampling period

T,(e’Y) Fourier transform of the row vector t;

u output vector of the blocking matrix B

u[n] output vector of the simplified blocking matrix B

w[n] the [-th output of the simplified blocking matrix at time n

w,[n] the [-th tapped-delay line vector of the blocking matrix output

U matrix holding the left singular vectors of A

u[n] blocking matrix output in the partially adaptive GSC by trans-
formation

U, matrix holding the first r left singular vectors of A

U, matrix holding the remaining left singular vectors of A except
those held in U,

v the null space of the constraint matrix C

\'% matrix holding the right singular vectors of A

v[n] Vector holding all the DFT outputs at time n in the FGSC

vi[n] Vector holding the outputs of the [—th DFT at time n in the
FGSC

v4[n] the j—th output of the [—th DFT at time n in the FGSC

w adaptive filter weight vector
also: weight vector of a linear array

W Adaptive weight vector of an FGSC
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W, weight vector in the adaptive part of a GSC
Wa,0pt optimum weight vector in the adaptive part of a GSC
Wy, J the j-th tap of the m-th sensor filter
Wy quiescent vector
W, simplified quiescent vector
Wopt optimum weight vector for a linear array
W, the filter attached to the m-th sensor

W (e’?)  Fourier transform of the m-th tapped-delay line of an array
x coordinate of the Cartesian coordinate system
X signal vector holding the tapped-delay line signals of an array

also: input signal vector of an adaptive filter

x received phase vector at the array

z[n] input signal of the filter banks

x[n] sensor signal vector at time n

E[n] output signal of the filter banks

Z[n| input signal of the antialiasing filter

zi[n] received signal by the i-th sensor at time n

X (e7?) Fourier transform of z[n]

Xm[n] the m-th chromosome in a population set P[n] of a GA
Y y coordinate of the Cartesian coordinate system
y[n] adaptive filter output

7[n] output of the interpolation process

Y (e'9) Fourier transform of y[n]

% z coordinate of the Cartesian coordinate system

v/ unit vector along the z-axis the Cartesian coordinate system
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