
University of Southampton
Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Architectural Synthesis of Analogue Filters from

Behavioural VHDL-AMS Descriptions

by

Fazrena Azlee Hamid

A thesis submitted for the degree of

Doctor of Philosophy

March 2004

1

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

ARCHITECTURAL SYNTHESIS OF ANALOGUE FILTERS FROM BEHAVIOURAL

VHDL-AMS DESCRIPTIONS

by Fazrena Azlee Hamid

There is an increasing need for efficient synthesis techniques to support mixed-signal application

specific integrated circuit (ASIC) designs. While digital synthesis from VHDL is already well

established the development of corresponding analogue and mixed-signal synthesis methodologies

is still lagging. An application area that would greatly benefit from such development is analogue

filtering, especially in integrated high-frequency implementations. Hence, the primary aim of this

research is to investigate and develop techniques for VHDL-AMS-based synthesis of analogue

filters suitable for use in mixed-signal ASICs where behavioural models are especially important.

Particular emphasis is put on architectural optimisation with the aim to identify the most suitable

circuit topologies.

The novel contributions can be briefly summarised as follows. New methods have been

presented to extract synthesisable VHDL-AMS constructs from behavioural filter models using

parse trees. They can be extended to support a more general, mixed-signal synthesis system based

on VHDL-AMS. An effective architectural optimisation engine for analogue filter synthesis has

been developed to minimise transfer function accuracy errors and power consumption. The engine

is based on three-tier architectural and parametric optimisation, in which a combination of heuristic

and systematic search algorithms provides a possibility of global optimisation. The parametric

optimiser relies on full HSPICE simulation to ensure accurate circuit performance evaluation.

The new methods are implemented in a demonstrator system named FIST (Filter Synthesis

Tool), and were successfully applied to several case studies of 1 GHz integrated analogue filter

circuits designed for implementation in a O.35)lm CMOS technology.

The method of using parse trees to extract circuit-level structures from high-level

descriptions proved to be effective. It was shown that parse trees allow for easy detection of

synthesisable constructs and support recursive static evaluations of expressions necessary in

calculation of filter parameters. This technique provides a groundwork from which more general

VHDL-AMS-based synthesis systems can be developed.

2

Contents

Contents .. 3

Acknowledgement .. 6

Ab breviations ... 7

1 Introduction ... 9

1.1 Research motivation and aims '" .. 10

1.2 Dissertation contents and organisation .. 11

2 State of the Art .. 12

2.1 Synthesis from analogue HDL. .. 13

2.1.1 KANDIS (1995) .. 14

2.1.2 VASE (1997) ... 15

2.1.3 NEUSYS (2002) '" ... '" .. 16

2.2 Analogue synthesis .. '" 17

2.2.1 Knowledge-based tools ... 21

2.2.2 Optimisation-based tools ... 24

2.3 Analogue filter synthesis ... 33

3 Behavioural Synthesis of Analogue Filters: from VHDL-AMS description to filter

information ... 35

3.1 VHDL-AMS .. 35

3.2 VHDL-AMS for synthesis ... 36

3.2.1 Features suitable for synthesis .. 36

3.3 Modelling synthesisable analogue filters using VHDL-AMS 38

3.3.1 Time-domain modelling with DAE construct.. ... 39

3.3.2 Frequency-domain modelling with LTF construct .. .40

3.4 VHDL-AMS parse tree .. 42

3.4.1 Parser ... 43

3.5 Software modules for behavioural synthesis of analogue filters from VHDL-AMS

parse trees .. 46

3.5.1 Synthesis syntax checker. .. 48

3

3.5.2 Static calculator ... 56

3.6 Concluding remarks ... 68

4 Behavioural Synthesis of Analogue Filters: from High-Level Filter Specification

to Filter Structure .. 70

4.1 Synthesis procedures .. 71

4.1.1 Root finding .. 73

4.1.2 Filter cell mapping .. 74

4.1.3 Cell realisability check .. 77

4.1.4 Construction of performance modeL .. 79

4.1.5 Topology selection .. 79

4.2 Comparative study between synthesis procedures ... 80

4.3 Architectural and parametric optimisation .. 85

4.3.1 Architectural optimisation ... 85

4.3.2 Parametric optimisation .. 86

4.3.3 Cost function formulation and evaluation ... 106

4.4 Concluding remarks ... 118

5 Three-tier Optimisation Algorithm ... 120

5.1 Stochastic search .. 120

5.2 Downhill simplex optimisation .. 121

5.3 HSPICE built-in optimiser ... 124

5.4 The three-tier algorithm ... 127

5.4.1 Downhill simplex function evaluation .. 127

5.4.2 Three-tier description .. 130

5.4.3 Three-tier optimisation versus one-tier algorithms ... 137

5.5 FIST - Filter synthesis tooL .. 138

5.5.1 Windows GUI environment .. 140

5.6 Concluding remarks ... 142

6 Practical Experiments with Two Case Studies ... 143

6.1 Case Study 3: Synthesis of an analogue fourth-order 1 GHz lowpass filter.. 144

6.1.1 Performance models .. 144

6.1.2 Fourth-order lowpass analogue filter candidates .. 146

6.1.3 Architectural optimisation for Case Study 3 ... 152

6.1.4 Results ... 154

6.2 Case Study 4: Synthesis of an analogue fourth-order 1 GHz bandpass filter.. 158

4

6.2.1 Performance model ... 158

6.2.2 Fourth-order bandpass analogue filter candidates ... 159

6.2.3 Architectural optimisation for Case Study 4 ... 163

6.2.4 Results ... 163

6.3 Application examples of topology Cascade 1.. .. 166

6.3.1 Example 1: Chebyshev 0.5 db ripple, cut off at 1 GHz (Gain=I) 167

6.3.2 Example 2: Chebyshev 3 db ripple, cut off at 0.5 GHz (Gain =1) 168

6.3.3 Example 3: Butterworth, cut off at 0.5 GHz (Gain = 1) 168

6.3.4 Experimental results .. 169

6.4 Concluding remarks ... 172

7 Conclusions and Future Work ... 173

Appendix A: Analogue filter netlists for Case Studies 3 and 4 176

A.l Cascade 1 ... 176

A.2 Cascade 2 ... 176

A.3 Cascade 3 ... 177

A.4 Cascade 4 ... 178

A.5 Cascade 5 .. ; .. 178

A.6 Cascade 6 ... 179

A.7 Coupled resonator .. 180

A.8 IFLFI ... 181

A.9 IFLF2 ... 181

A.I0 IFLF3 .. 182

A.ll LC-OTA-C ... 183

A.12 LFI ... 184

A.13 LF2 ... 184

A.14 LF3 ... 185

A.15 Vertical Cascode ... 186

Appendix B: Alcatel CMOS O.35Jlm BSIM 3v3 transistor models 187

B.l NMOS transistor model .. 187

B.2 PMOS transistor model ... 188

References ... 189

5

Acknowledgement

I wish to extend my deepest gratitude to my supervisor, Dr. Tom Kazmierski, for his guidance,

assistance and support during the long course of this research. I also appreciate the suggestions and

comments from Dr. Bashir Al-Hashimi who served on my MPhil to PhD transfer examination. To

my loving husband, Ahmad Kamsani and to my wonderful and precious sons, Hakeem and

Hamzah: I am truly blessed to have you in my life. I am also grateful to have such supportive and

inspiring friends; they are like my own brothers and sisters - you know who you are. My mother

and father have always been the strong pillars of my life; no words can describe my love and

appreciation to both of you. I would also like to dedicate a warm thank you to my siblings (I know

you can do it!), my mother and father in-laws and my other relatives. Above all, I humbly

acknowledge The All-Mighty Creator; all the good things in my life are due to His infinite Mercy

and Grace. Alhamdulillahirabbil 'aalamiin - all praises to Allah, the Lord of the worlds.

6

Abbreviations

(in)Q in-mode (input) Quantity

(out)Q output Quantity

AB Architecture Body

AD Attribute Designator

ADP Architecture Declarative Part

Ag. Aggregate cluster

AN Attribute Name

AS Architecture Statement

ASIC Application Specific Integrated Circuit

ASP Architecture Statement Part

BDI Block Declarative Item

CAD Computer-Aided Design

CD Constant Declaration

DAB Differential Algebraic Equation

EDA Electronic Design Automation

FIST FIlter Synthesis System

FPAA Field Programmable Analogue Array

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IFLF Inverse-Follow-the-Leader-Feedback

IL Identifier List

LF Leap Frog

LHS Left Hand Side

LRM Language Reference Manual

LTF Laplace Transfer Function

MEMS Micro-Electro-Mechanical Systems

OTA Operational Transconductance Amplifier

OTA-C Operational Transconductance Amplifier-Capacitor

PLL Phase Locked Loop

7

RHS

SE

SFG

SI

SN

SOC

SS

SSS

TM

VHDL

VHDL-AMS

Right Hand Side

Simple Expression

Signal Flow Graphs

Subtype Indicator

Simple Name

System-On-Chip

Simultaneous Statement

Simple Simultaneous Statement

Type Mark

VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

VHDL (extension to) Analogue and Mixed-Signal (informal name to IEEE

Standard 1076.1-1999)

8

1 Introduction

The need for new analogue synthesis techniques that would facilitate the development of mixed

signal CAD tools is increasing coupled with the advancement in semiconductor technology and the

demand from commerce, especially the wireless mobile communication industry. Although usually

comprising a small part of a mixed analogue-digital system, the analogue part of an application

specific integrated circuit (ASIC) often causes the bottleneck in design time and effort. The

development of appropriate synthesis methodologies to support mixed-signal ASIC designs is still

lagging. One of the obvious difficulties has been the absence of a mixed-signal high-level hardware

description language commonly accepted as a standard throughout the CAD industry. However, the

emergence ofVHDL-AMS [1] as a standardised description language for mixed-systems, provides

a stimulus for the development of analogue and mixed-signal design automation.

This research aims to narrow the gap between analogue and digital system design

automation by developing methods and tools for analogue synthesis, and by utilising VHDL-AMS

as the input specification. VHDL-AMS, a superset of VHDL, supports the modelling of analogue

systems, i.e. dynamic systems that exhibit continuous behaviour in both time and amplitude. The

ability to represent analogue systems on behavioural level is an important feature as the

behavioural model is the most abstract representation of a specification. Behavioural models offer

two main advantages in terms of automated synthesis. Firstly, the synthesis process is characterised

by a high degree of freedom to choose or generate the hardware that implements the specification.

Secondly, a top-down hierarchical design strategy may be applied to suit the needs of the complex

mixed-signal design process. Also, the wide use and acceptance of VHDL for digital synthesis

should stimulate the pursuit of new synthesis methods using VHDL-AMS for analogue synthesis,

so that both digital and analogue synthesis techniques could be combined and synergised in a

VHDL-AMS-based mixed-signal CAD environment. The use of VHDL-AMS for analogue

synthesis makes sense as a mixed-signal design suite would be built upon the strength and success

of its digital counterpart. VHDL-AMS-based synthesis - despite its potential in both analogue and

mixed-signal design - is still in its infancy. The need to investigate how this potential could be

explored becomes therefore the primary motivation for this research.

The techniques being investigated in this research are aimed at a very important class of

circuits used in mixed-signal ASICs, namely analogue filters. Since many high-performance

9

applications use analogue signal conditioning blocks, there is an increasing demand for high

frequency analogue filters embedded in large, mixed-signal designs. Analogue filters are

instrumental circuits in band-limiting and signal reconstruction applications that occur in typical

mixed-signal ASICs [2].

Therefore, the synthesis methodologies developed here are applied to architectures, or

topologies, of analogue filters, which are suitable for integrated and high-frequency applications.

The new methods developed in the course of this research have been implemented in a

demonstrator synthesis tool for analogue filters, called FIST (Filter Synthesis Tool). FIST uses a

simulation-based optimisation approach for the design of analogue filters, where the core of the

optimisation engine is the widely-used HSPICE simulator.

1.1 Research motivation and aims

The primary aim of this research is to investigate and develop techniques for VHDL-AMS-based

synthesis of high-frequency analogue filters suitable for use in mixed-signal applications. To

achieve this aim, the research is divided into two main parts. The first part is to carry out an

investigation to establish the feasibility of using VHDL-AMS for the purpose of mapping

behavioural descriptions into hardware. The second part of the work will focus on the development

of behavioural synthesis techniques, their implementation in an integrated synthesis environment

and validation using several case studies of lowpass and bandpass 1 GHz filters. Emphasis will be

put on methods to support VHDL-AMS-based behavioural synthesis with efficient architectural

and parametric optimisation of filter topologies. The focus of the optimisation techniques is to

ensure a high correlation between the desired and synthesised transfer functions as well as power

consumption. The possibility of using full HSPICE simulations in the evaluation of filter

topologies will be investigated to ensure the accuracy of the design process.

To overcome the difficulty in the modelling of high-frequency effects, fabrication foundry

transistor models especially developed for the underlying CMOS 0.35)lm technology will be used

in the simulations. The models are based on BSIM3v3 MOSFET model from Berkeley that were

developed for submicron devices, and contain about 120 parameters [3]. As noted in the literature

[4], the reason behind the slow acceptance and adoption of analogue circuit synthesis techniques by

the design industry - although the research has begun in about the early 1980s - is because of the

issue of accuracy and reliability. It is therefore suggested [4] to use full simulation in evaluating the

design, to make the synthesis process more reliable.

It is expected that the new synthesis techniques will be compatible and suitable for

implementation in future mixed-signal environments for ASIC design. This is because VHDL

AMS offers standardised ways in which analogue filters may be behaviourally described in both

10

the time- and frequency-domains. Behavioural descriptions are important in the abstraction at

higher levels of hierarchy where designers are not yet concerned with any structural details.

Integrated high frequency filtering applications are the most likely area where the role of automated

synthesis in a mixed-signal environment would be indispensable.

1.2 Dissertation contents and organisation

This thesis is organised into 7 chapters. Chapter 1 presents the overview of the research topic

including the motivation and aims. Chapter 2 overviews the most prominent analogue synthesis

methods and tools developed over the last two decades. It also summarises some of the existing

methods for analogue filter synthesis.

The first part of the research, as specified in the previous section, is presented in Chapter 3.

In particular, the process of behavioural synthesis from VHDL-AMS parse trees is explained.

VHDL-AMS modelling techniques for analogue filters which are suitable for synthesis are

proposed and demonstrated with case studies. Secondly, the algorithms of the tools that have been

developed to support VHDL-AMS behavioural modelling are presented. Chapter 3 shows how

filter information is extracted from the VHDL-AMS description.

The second part of the research is explained in Chapters 4 and 5. The synthesis procedure,

which begins from the extracted VHDL-AMS filter information until the production of a filter

netlist is outlined in Chapter 4. Inclusive to this procedure is the architectural and parametric

optimisation methodology. The basis for high-frequency synthesis is the use of full HSPICE

simulation within a three-tier optimisation loop. The parametric optimisation of each filter

candidate is performed using a three-tier algorithm, which is a new implementation of existing

tools and algorithms. This three-tier algorithm is detailed in Chapter 5. At the end of this chapter,

the full implementation of the developed methods into FIST, a complete automated filter synthesis

system is presented.

Chapter 6 demonstrates the feasibility of the presented techniques and the practical

operation of the system using another two case studies. In the case studies, several candidate

topologies suitable for integrated high-frequency applications are investigated and the best

candidate is automatically selected.

Finally, the conclusions as well as suggestions for future research directions are presented

in Chapter 7. The research contributions of Chapters 3, 4,5 and 6 have been published or accepted

for publication [5-11].

11

2 State of the Art

Before moving on to the related works, a typical synthesis flow will be briefly presented so that the

following sections are put into perspective. Figure 2.1 shows the sequence of stages that starts from

the concept of a desired functionality down to its physical realisation. This scenario presents a

global view at a higher level than the circuit level, that is, at the system level, for the synthesis of

analogue or mixed-signal Ie.

~
Conceptual

Design V!

Iii: IW; ,
'''l I ~ ,"""

System Architectural
Cell Design I ~ Cell Layout

System Fabrication
Design Design Layout and Testing

c.;....;l ' ?:.';JI'Ei: ~ 1".6. ' Jr~ : j;, ~ 1c' ~+J: r .6.' '!1. L.6. ,~ ,.6. ,'III
, ,

T , , I , I ,
[Verification) [Verification) [Verification) [Verification) [Verification)

~ ~ ~ ~ ~

Figure 2.1 The analogue or mixed-signal Ie design process.

Referring again to Figure 2.1, the following information is extracted from [12]. The first stage is

the Conceptual Design, where information regarding the product and its specifications are decided.

The System Design stage is where the overall architecture of the system is designed. The hardware

and software parts as well as the interfaces are defined. Decisions regarding implementation issues

such as testing and target technology are made. Then during the Architectural Design stage, the

hardware part is decomposed into functional blocks and each block is specified in a suitable

hardware description language, for example VHDL and VHDL-AMS. This stage is where 'high

level synthesis' begins; any description of the desired functionality is specified with no implication

to the physical structure of the circuit. Then, in the Cell Design stage, each analogue block will be

designed, i.e. a proper circuit topology will be selected and the parameters of the circuits will be

sized. Next, in the Cell Layout stage, the schematic or netlist of the topology will be translated into

geometrical representation. Finally, in the System Layout stage, the functional blocks of the whole

12

system is placed and routed, and if it passes the verification stage, the IC is fabricated and tested as

indicated in the Fabrication and Testing process box.

It must be mentioned that progress between each stage will only be made if the current

stage satisfies the verification process. If it fails, or if a potential problem is detected, the design

process backtracks to redesign. The verification processes are done by appropriate simulation tools.

In the light of this research, the focus is directed to the Cell Design stage, where the

starting point is an analogue filter's description in VHDL-AMS, and the final product is an

HSPICE netlist of the filter circuit. The correctness of the filter's functionality is verified by

HSPICE simulation. This will be described more in the subsequent chapters. Following the above

synthesis or design flow, this chapter surveys reported work in the main areas that concerns the

current research work. The literature review is organised into three parts:

• Synthesis from analogue HDL.

• Analogue circuit synthesis.

• Analogue filter synthesis.

2.1 Synthesis from analogue HDL

This section reviews three works on analogue or mixed-signal synthesis that uses analogue HDL as

the input. The first two is KANDIS [13] and VASE [14], which is targeted for mixed-signal,

whereas the third is NEUSYS [15], that focuses on the synthesis of neural networks. Both VASE

and NEUSYS takes VHDL-AMS as its input, while KANDIS uses VHDL-hybrid. A recent paper

on behavioural modelling [16] proposes a behavioural model based on a synthesisable subset of

VHDL-AMS, which is developed part of VASE.

13

2.1.1 KANDIS (1995)

VHDL-hybrid

Analogue
components

KIR-Graph

Simulation

RTL
descriptions

Figure 2.2 KANDIS design flow.

KANDIS [13] is a tool for the construction of mixed analogue/digital systems; using a lmowledge

based expert system. Also part of KANDIS is a high-level synthesis (HLS) tool. As shown in

Figure 2.2, the input language of KANDIS is VHDL-hybrid. VHDL-hybrid is for the specification

of hybrid systems using the syntax of VHDL and is expanded for synthesis. For example,

specification of non-conservative analogue systems is done by having features for integration and

differentiation of a signal over time.

The front end of KANDIS translates VHDL-hybrid into an intermediate representation -

KANDIS intermediate representation (K1R) - which is a graph of edges and nodes. Each node can

contain a subgraph. The semantic of a node determines the tools that handles its subgraph, either

KANDIS, or the HLS tool. For example, subgraphs interpreted as netlists are passed either to the

expert system where they are constructed into functional blocks, or they are transformed into

discrete-time graphs. The discrete-time graphs are then passed to the high-level synthesis and

estimation tool.

The expert system PLAKON interacts with the high-level synthesis tool in producing the

attributes for the algorithmic block and by automatically generating KIR-graph for flmctional

blocks in the digital domain. HLS generates the value of the attributes which are used by the expert

system.

Functional blocks are constructed using PLAKON. The construction process starts with the

generation of an instance of each block. Constraint nets are produced along with instances. There

are four possible construction steps:

14

• Instantiating sub components by splitting objects

• Integrating components

• Specialising objects

• Parameterising objects

Top-down refinement is done to basic blocks, while estimations for area, power, delays and

inaccuracies are propagated bottom-up by the constraint net. These methods produce estimation of

design parameters. In a more recent work on KANDIS [17], a new front-end that accepts VHDL

AMS as the input is presented.

2.1.2 VASE (1997)

VASE (VHDL-AMS Synthesis Environment) [18] [14] is used for synthesis of analogue systems

from VHDL-AMS behavioural descriptions. The top-down hierarchical modelling technique to

automate the synthesis process of analogue CMOS integrated circuits employs VHDL-AMS as the

highest levels of abstraction [19-21]. The result is a sized netlist of electronic circuit, which

satisfies the performance constraints and minimises the ASIC area.

The input of VASE is VHDL-AMS hierarchical intermediate format (VHIF)

representations which are obtained from compiling the VHDL-AMS specification of a system. The

VHDL-AMS used here is appended to make it suitable for synthesis [22]. In VHIF, continuous

time behaviour is represented as signal-flow graphs.

The synthesis methodology, shown in Figure 2.3, uses a two-layered design space

exploration [23], where there are two phases: exploration and estimation. In the exploration phase,

there are two interacting steps, i.e. architecture generation and constraint transformation and

component synthesis. The constraint transformation and component synthesis interact with the

analogue performance estimator (APE) [24] in the estimation phase.

15

Analogue
component library

r

VHDL-AMS Behavioural specification of
analogue systems

y-

Architecture
generator

t t
Constraint Analogue

transformation & ~ Performance
Component synthesis Estimator

EXPLORATION ESTIMATION

...
Sized component netlist

Figure 2.3 VASE analogue behavioural synthesis methodology.

From the behavioural description of an analogue system, an architecture generator [25] generates

alternate system topologies. The architecture generator gets the topologies from a library. This

analogue components library contains unsized topologies of commonly used analogue circuits. The

constraint transformation and component synthesis step then considers each system topology and

obtain the subcomponents and their design/performance constraints. A branch and bound algorithm

is used for the architecture generation. The constraint transformation and component synthesis uses

genetic algorithm (GA) -based heuristic methods.

APE accepts design parameters and the corresponding topology of an analogue circuit and

determines the performance parameters and the sizes of circuit elements. The APE provides fast

and accurate estimates on systems performance at various abstraction levels.

Design methodologies in VASE has been demonstrated in the development of an

environment for implementing mixed signal designs from specifications in VHDL-AMS on rapid

prototyping hardware [26, 27], where a decoder is synthesised onto a field programmable gate

array (FPGA) and field programmable analogue array (FP AA). Also part of V ASE is the

methodology for formal verification ofthe synthesised analogue design [28].

2.1.3 NEUSYS (2000)

NEUSYS is an automated synthesis system for neural networks [15, 29, 30], based on netlist

extraction from VHDL-AMS parse trees [31], developed jointly in University of Southampton and

Universidad Politecnica de Cartagena in Spain. The technique has been applied to several synthesis

examples of dynamic systems with feedback, one of which was Lorenz's chaos oscillator [31].

16

The architectural synthesis technique in NEUSYS uses VHDL-AMS parse trees that are

translated into intermediate SPICE netlists in terms of primitive cells of opamp-1eve1 or transistor

level analogue modules such as analogue multipliers and adders. The final optimised structure is

obtained by combining and parameterising analogue modules. A solution with the minimum cell

count but exhibiting equivalent functionality is selected as the optimal one.

The synthesis technique employed in NEUSYS is based on recursive translation of

hierarchical structural descriptions (in terms of VHDL-AMS component instantiations) into

HSPICE subcircuits. Other VHDL-AMS formats such as simultaneous statements and break

statements are also directly translated and mapped into electronic structures.

2.2 Analogue synthesis

Since most of the existing tools since the past two decades are targeted for a specific analogue

module at the circuit level, a typical synthesis flow common to all the cell-level analogue CAD

tools reviewed here is shown in Figure 2.4 .

..
1
I
1

1
c l
0>1-

·Vi 1

~I
0)1

0::: 1
1
1
1

Layout
generation

Figure 2.4 Cell-level analogue synthesis.

From Figure 2.4, for the synthesis of analogue circuits, there are several basic tasks common in the

design and building of an analogue module, which are, topology generation, device sizing and

layout generation [32]. Further review and summary in this chapter will mainly cover the topology

generation and device sizing aspects only.

The most common classification of the types of analogue synthesis tools usually refers to

how device sizing (and sometime topology generation, or both) is performed. Thus, the existing

method for analogue circuit synthesis during the past two decades are knowledge-based and

optimisation-based. Knowledge-based tools are among the earlier generation of analogue synthesis

tools, and are characterised by having designers' knowledge being codified in the synthesis

17

algorithm. On the other hand, the architecture of optimisations-based tools typically consists of two

main parts, the first being the optimisation engine, and the other is the performance evaluation part

[33]. From the evaluation method, Krasnicki etal [33] further classifies the existing methodologies

into four categories, which are 1) equation based, 2) symbolic analysis, 3) simulation-lite, and 4)

full-SPICE. Further discussion is offered in the coming subsections 2.2.1 and 2.2.2 regarding these

two broad categories of knowledge-based and optimisation-based tools.

Another distinct method of the previous approaches is the way the synthesis tool view the

synthesis task, either by breaking down the task hierarchically, or by solving the problem in a

single step. The first strategy is similar to that in digital is to decompose the synthesis tasks into

sub-tasks, that is, going down the hierarchy where the topmost level is the input specifications.

Examples are An_Com [34], CAMP [35], OASYS [36], BLADES [37], CHIPAIDE [38], STAlC

[39], VASE [14] and AMGIE [47]. In contrary, flattened design view schemes such as that being

used by IDAC [40, 41] selects a circuit from a library and optimise the circuit parameters according

to the specifications. This approach may be simpler than the hierarchical one although it may need

an extensive topological library together with a powerful and efficient optimisation strategy.

Most of the existing tools are for specific types of analogue modules, for example

operational amplifiers (OPASYN [42], OAC [43], GPCAD [44]). There are also comprehensive

design automation environments for analogue circuits such as ADAM [45], ACACIA [46], and

AMGIE [47] and also for mixed analogue-digital systems such as VASE [14].

Based on the discussion above, Table 2.1 summarises several analogue synthesis tools.

There are several distinctive features that are used to classify the types of each tool; KB

(Knowledge-based) or OB (Optimisation-based), SB (Simulation-based) - where SB is a subset of

OB; and A (analogue only) or MS (Mixed-signal). Cell-level tools are marked as C, whereas a

design environment is marked as E. Also, H refers to hierarchical, where the synthesis problem is

decomposed into several smaller tasks and is solved by refinement. F refers to flattened design

view [48] where the synthesis task involves selecting a topology and its subsequent optimisation.

The classification is by no means authoritative, but is made based on the most prominent feature of

the tool. As a matter of fact, a tool may be a mixture of all or any ofKB, OB, or SB.

Name, Year Origin Type Scope Structure Notes
Swiss Center for

Part of ADAM [45].
Electronics and F

1 IDAC 1987
Microtechniques,

A C
KB

Users select a topology from a

Switzerland
library.

Part of ACACIA [46].

OASYS 1988 Carnegie Mellon H
Top-down hierarchical structure in

2
Univ. (CMU), USA

A C
KB

knowledge application [49]. The
layout tool used is ANAGRAM
[50].

3 OPASYN 1988 Univ. of California,
A C

F
Silicon compilation of opamps

Berkeley, USA. OB

18

General Electric
H

Domain knowledge is used for
4 An-Com 1988 Company, New A C

KB
successive decomposition of

York, USA circuit specification.

Univ. of Southern H
Uses iterative self-reconstructing

5 CAMP 1988
California, USA

A C
KB

technique and circuit simulation
for a flexible architecture.

6
DELIGHT. Harris Corporation,

A C
F Utilises a SPICE simulator as the

SPICE 1988 USA OB optimisation core.

AT &T Bell Labs., H
Uses artificial intelligence to

7 BLADES 1989 A C combine formal and intuitive
USA KB

knowledge.
Katholieke

F
Features a symbolic analysis

8 ASAIC 1990 Universiteit Leuven, A E
OB

programme, ISAAC [51] and an
(KUL) Belgium optimiser, OPTIMAN [52-54].

9
CHIPAIDE Imperial College,

A C
H Uses a hierarchical approach to

1990 UK KB produce first-cut circuit topology.

F
CMOS opamp compiler which

10 OAC 1990 Kyoto Univ., Japan A C
OB

runs a simulation-based optimiser
as a post-processor.
Uses description language in its

11 STAlC 1992
Univ.ofWaterloo,

A C
H multilevel modelling scheme.

Ont., Canada OB Synthesis uses successive solution
refmement technique.

12
MINLP-Maulik

CMU, USA A C
F Allows simultaneous circuit

1992 OB topology and parameter selection.

13
ARCHGEN Vanderbilt Univ.,

MS C
F Synthesis of filter systems from

1995 USA OB behavioural specifications.
Translates hybrid-VHDL into

Johann Wolfgang
F

intermediate representation (KIR
14 KANDIS 1995 Goethe Univ., MS C

KB
graph), which are then used by a

Frankfurt high-level synthesis tool and an
estimator.

Ecole Polytechnique
F

Use of fuzzy logic in optimisation.
15 FPAD 1995 ofUniv.ofMontreal, A C

OB
Multiple optimisation objective

Canada using analytic models.
Use fuzzy logic to select a
topology from a library, done by

16 FASY 1996
Univ. of Seville,

A C
F an expert designer. Selected

Spain. OB topology then being optimised by a
two-phase optimiser. Tested on
CMOS ojJamps.
Uses asymptotic waveform

17
ASTRXi

CMU, USA A C
F evaluation (A WE) to evaluate

OBLX 1996 OB circuit performance and simulated
annealing for optimisation.

H
A modified (behavioural) VHDL-

18 VASE 1997
Univ. of Cincinnati,

MS E OB
AMS specifications are compiled

USA to obtain a hierarchical
intermediate representation.
Use of geometric programming to

19 GPCAD 1998 Stanford Univ., USA A C
F optimise and automate component
OB and transistor sizing for CMOS

opamps.

19

Synthesis at cell-level, where a
simulator is included
(encapsulated) in the synthesis

20
MAELSTROM

CMU, USA A C
F process. Uses a combined

1999 SB annealing/genetic optimisation
algorithm, and exploit network
parallelism in distributing
computing tasks.
A fast and robust numerical search
strategy based on pattern search.

ANACONDA F
Simulation-based tool where

21
1999

CMU, USA A C
SB

validation is done using an
encapsulated industrial simulator
for every search. Exploits network
~arallelism

This is an analogue IC synthesis
environment that utilises tools

22 AMGIE 1999 KUL, Belgium A E
H which covers the complete design
OB flow from specification down to

layout generation, with redesign
features in case of failure
An architecture generator
translates the parse trees obtained

23 NEUSYS 2000
Spain & Univ. of

A C
F from behavioural VHDL-AMS

Southampton, UK KB specifications into intermediate
netlists for subsequent
~tirnisation

Table 2.1 Summary of analogue synthesis tools (up to year 2000) described in this chapter.

20

2.2.1 Knowledge-based tools

This type of tools relies heavily on encoded expert designer's knowledge, where the major concern

is usually in obtaining and saving the designer's knowledge in the database. Examples are IDAC

[40], An_Com [34], CAMP [35], OASYS [36, 55], BLADES [37], and CHIP AIDE [38]. These

will be summarised in the following subsections.

2.2.1.1 IDAC (1987)

IDAC [40] is part of a larger synthesis environment called ADAM [45]. Also included in ADAM is

ILAC [56], the layout tool. IDAC (Interactive Design for Analog Circuits) is among the earliest

knowledge-based analogue circuit synthesis tool. As an input to the system, user has to specify the

building block parameters and choose a topology from the library. The library contains schematics

of verified analogue knowledge and formal description of circuit, such as operational amplifiers,

comparators and oscillators. Input specifications are translated by formal description to get results

such as devices' sizes and bias conditions. A built-in verification system is used to ensure the

correctness of the design. If not, the analyser will redefine the input specification and execute

another formal description.

The main feature of an improved version ofIDAC [41] is that it is open to user's expertise.

Designers can store their expertise in the extendable knowledge-base system, such that it can be

reused. The built-in knowledge of IDAC consists of sizing algorithms that calculates the sizes of

devices. The knowledge about circuit's topology and functionality is placed in a 'Describe' file,

while knowledge about sizing sequence is stored in a design plan. A SPICE file can be translated

into a 'Describe' file by the symbolic analysis program, BRAINS. The 'Describe' file is divided

into 6 sections, where sections 1-3 contain topology knowledge while sections 4-6 contains

knowledge of circuit functionality. The design plan is formally implemented in IDAC in the form

of sequences of sizing steps in a source code. The source code uses design primitives, which are

model manipulators, device calculators and structure calculators. Verification is done using Monte

Carlo analysis.

2.2.1.2 CAMP (1988)

CAMP [35] is a knowledge-based system, where the expert system is used in the iterative analogue

design process. Architecture design uses self-reconstructing technique. It is used in the design of a

two-stage CMOS operational amplifier.

The expert system first produces an initial design, which is then simulated by a circuit

simulator to evaluate the performance. The results are fed back to the expert system, which will

21

optimise the design by recommending parameters for the next design iteration, where current

design is modified.

The initial design is chosen by the expert system from several architectures in the

knowledge base. From analytical equations, transistor dimensions are determined. If necessary, the

next design cycle will include modifications of the device sizes orland circuit topology. Circuit

primitives are used as 'replacement parts' in circuit reconstruction. The self-reconstructing

technique is done by the expert system by substituting the corresponding design equations in the

knowledge base. The integration between the expert system and circuit simulation ensures that an

accurate design is attained.

The design automation system also includes an automatic layout generator, LAMP. LAMP

performs two tasks - circuit primitive recognition and circuit layout generation. The input to the

recognition module is a SPICE-like netlist and the output is a set of recognised circuit primitives.

From this, the layout generation module generates the final circuit layout based on the analogue

layout knowledge contained in the knowledge base.

2.2.1.3 OASYS (1988)

OASYS [36, 49, 55, 57] is another knowledge-based tool that applies the knowledge of analogue

circuit design in a hierarchical manner. In this way, complex design task can be tackled in several

refinements; from coarse to grain, as opposed to previous methods of designing analogue circuits,

which is usually done in a flat manner.

The human knowledge is codified as a planning system, having default design plans for

each design style template. The planning system involves several steps, that each involves

numerical optimisation before moving down to the next more-refined plan.

At each hierarchical level, a fixed design style is chosen and the performance specification

for the subsequent level is translated so that in the end, each device is sized. Optimisation is done -

in the form of plan-fixers, as the synthesis process moves down the hierarchy whenever a plan fails

to reach its particular goal. OASYS demonstrates the effectiveness of a hierarchical approach in

synthesis of analogue circuit elements, as the prototype demonstrates with CMOS operational

amplifiers.

Another framework, OASYS-VM (OASYS virtual machine) [55], has been developed as a

structure that allows an easier interaction between the designer and the system. There is also a

prototype layout tool, ANAGRAM [50] that works together in a larger synthesis framework,

ACACIA [46].

22

2.2.1.4 An_Com (1988)

The An_Com [34] compiler is specifically operational amplifier; where the inputs are performance

specifications and technology and process parameters. The compilation result is a SPICE sub circuit

and a complete layout.

Domain knowledge is applied as a top-down planning mechanism with a sequence of

algorithms, rules and other data stored in a template. The collection of templates is used to

dynamically construct the solution space, which is a tree with weighted ordered nodes. A template

is made of a behavioural and a structural component.

A sequence of successive decomposition approach is used in the silicon compilation

process. The circuit topologies are specified hierarchically. High-level specifications are

decomposed into specifications of elements at a lower level of the hierarchy, until reaches the level

where elements are leaf cells or have layout generators. The top-down decomposition of

behavioural and structural specifications is driven by template knowledge. It proceeds by querying

the existence of a generator or predesigned block (typically, non-existence at high levels). An

optimisation step may be used to bring the solution closer to the specifications. After the

interconnections are specified by the templates, the decomposition is verified by simulation, using

macromodels. At the lowest level of hierarchy - the device level- simulation is done using SPICE.

Failure recovery and trade-off analysis is done if specifications are not met at the end of

decomposition. Failure recovery modifies the instantiated template or current specifications, and if

the modifications are not acceptable, failure recovery proceeds to the upper level in the hierarchy to

search for other topology and decomposition. After a complete decomposition, final tests, which

are parameter extraction, layout verification and a full simulation, are done.

2.2.1.5 BLADES (1989)

BLADES [37] is a knowledge-based tool which uses an expert system. It applies artificial

intelligence, which combines the application of formal and intuitive design knowledge. This design

environment uses different abstraction levels based on the complexity of the design task. BLADES

use three types of analogue hardware description languages at distinct design levels to describe the

functionality of circuit components at each level. Each language is then translated from the highest

level to the lowest.

An expert system mainly consists of a knowledge base and an inference engine. The

knowledge base contains both the formal and intuitive knowledge, and the inference engine is the

problem-solving tool based on production rules. The expert system of BLADES implements the

rule-base using 'if-then' format. The inference engine matches the data with the 'if part of the

production rules. Once the rule is applied, its 'then' part is executed. Data is added or removed

from working memory until no-match terminates the execution.

23

BLADES system architecture consists of 5 large subsystems: an expert system manager, a

subcircuit design expert, a subcircuit knowledge base, a test generation facility, and a circuit design

consultant. Subcircuit design experts provides the design primitives. Each expert has its own

knowledge base. Each subcircuit function is represented by its topology and a set of design

equations to calculate subcircuit parameters. The equations are taken from textbooks, but are less

accurate than SPICE models. Design experts are triggered when the expert system fires the rules

chosen for a design problem. Design consultants are programs using algorithmic methods for

analysis and designing. After BLADES completes a design test, the test generator is invoked and

then generates test files along with data for simulation.

2.2.1.6 CHIP AIDE (1990)

CHIP AIDE [38] uses a knowledge-based circuit generation module. It has three other modules for

optimisation, layout generation and tolerance design. Its strategy is to produce a first-cut circuit

based on descending the hierarchical level, from selecting architecture from the knowledge base

until the transistor level. Knowledge is also used in the simple rule-based correcting procedure.

The circuit generator attempts to produce a first cut circuit topology based on the input

from user giving performance specifications and fabrication process' constraints. The strategy here

is to use a hierarchical approach, starting from the architecture level. An architecture will be

selected from the knowledge base, then in the task level, the building blocks are decomposed into

task blocks. Task blocks are selected from a knowledge base, which for a particular task, there may

exist alternative blocks to offer. Decomposition continues until it reaches the transistor level, which

is the final level. The correction procedure is based upon expert knowledge, which points to the

parts in the architecture responsible for the discrepancy. The adjustment made to correct the

discrepancy is then translated down the hierarchy.

The closed-loop nature of CHIP AIDE lies in its ability to compare simulation results with

performance specifications and employ a correction procedure if the comparison fails. The design

loop is closed by extracting the associated parasitics of the layout of the transistor level circuit and

feeding it back to either the circuit generator or the tolerance design module to minimise or

eliminate the parasitic effects. CHIP AIDE is evaluated using operational amplifiers.

2.2.2 Optimisation-based tools

This section highlights and briefly describes the optimisation strategies used in synthesis tools. As

stated in [33], the optimisation-based tools can be divided into 4 groups according to the method of

performance evaluation. The four classifications made by the author are:

24

1. Equation-based: This constitutes the maj ority of early approaches as it offers a fast method to

evaluate the quality of the proposed candidate over the entire solution space. However, as it is

impossible to fully model the behaviour of a circuit topology as a set of closed-form analytical

equations without the need of simplification, the accuracy is limited. Also, to create the model and

its set of equations itself is a complex and time-consuming task. Krasnicki relates that a number of

optimisation strategies are used in conjunction with equation-based techniques:

• Numerical search - OPASYN [42, 58], IDAC [40]

• Combinatorial search - Maulik [59]

• Hierarchical systems that attempt to decompose the evaluation and optimisation - OASYS

[36], STAlC [39]

• Qualitative and fuzzy reasoning techniques - FASY [60], FP AD [61]

• Geometric programming - GPCAD [44]

2. Symbolic analysis: OPTIMAN [53],

3. Simulation-lite: Combination of simulation and equation-based modelling: ASTRXlOBLX [62].

4. Full SPICE simulation: DELIGHT.sPICE [63], MAELSTORM [64], ANACONDA [4, 65]

To handle the complex design space of analogue circuits, several preferred algorithms that

have the potential to attain a global solution are applied in the optimisation-based tools. Firstly is

simulated annealing [66], that has been used, for example, in OPTIMAN [53] and ASTRXlOBLX

[62]. Simulated annealing is also used in a over-designed cell method [67] that combines both

topology selection and parametric optimisation by eliminating or introducing components in a fixed

topology. Another algorithm is the genetic algorithm, as used in VASE [25]. Also, the combination

of both genetic and annealing algorithms have been used to increase computational efficiency [64],

[68].

2.2.2.1 OPASYN (1988)

OPASYN [42, 58] is a synthesis tool specifically for operational amplifiers (opamp). It uses an

optimisation algorithm which uses algebraic evaluation design equations taken from domain

specific design knowledge.

User inputs the opamp performance specifications, which will be taken by the tool to select

the most suitable topology that it has in its internal database. This database contains design

knowledge necessary to make the correct selection of opamp circuit. Selection is done by pruning

the decision tree, which leads to leaf nodes of proven topologies. The selected topology is then

parametrically optimised to tailor its specifications as being required. This is done by using the

analytic model of each of the topology in the database. First order circuit analysis is used to obtain

analytic design equations, which are then used together with user-defined design targets to fonn a

25

cost function. The steepest descent algorithm is used to explore the search space to obtain an

optimal solution. Evaluation is done by comparing the predictions of OPASYN with SPICE

simulation results. The final step in this framework is layout generation, where the output is a

design-rule-correct mask geometry.

2.2.2.2 DELIGHT. SPICE (1988)

DELIGHT.SPICE [63] is the combination of an interactive optimisation-based CAD system

(DELIGHT) and the SPICE circuit analysis program. The optimisation design problem is

formulated as a standard mathematical programming problem. A set of objectives are optimised

subject to constraints. Constraints are classified as either hard or soft. The optimisation algorithm

consists of three phases:

• Attempts to satisfy all hard constraints by minimising the hard constraints violation.

• While maintaining the hard constraints, worst normalised values of objectives and soft

constraints are improved progressively.

• While maintaining the hard and soft constraints, the worst normalised objective value is

progressively improved.

The output of the program includes a performance comb, which displays how close the objective

and constraint values are from their corresponding good and bad values. The SPICE program does

the performance and specification evaluation for the optimisation. The constraints and objectives

used in DELIGHT depend on the DC, AC and transient analyses of SPICE.

2.2.2.3 ASAIC (1990)

ASAIC (Automatic Synthesis of Analog Integrated Circuits) [48, 52] is a system that combines

symbolic simulation, numerical optimisation and knowledge-based techniques. There are four main

modules used in this design environment. First is the symbolic simulator, ISAAC [51], which

returns analytic models, which are then used by DONALD [54]. DONALD is the equation

manipulator that converts the model into a solution plan that would be optimised by OPTIMAN

[52, 53,54], the optimisation program that performs device sizing. finally, the circuit is laid out by

the AUTOLAC [52] program.

ISAAC is a program that does symbolic analysis on analogue integrated circuits to derive

AC characteristics in symbolic expression of circuit parameters. Its feature is that the expressions

can be simplified showing only dominant terms only, and mismatch terms can be explicitly

represented so that second-order effect can be calculated. The program reads in the circuit

topology, expands the circuit into their primitive elements and then performs a topology check.

Next, the analysis type is chosen where the user may interactively assign the excitation source,

26

inputs and outputs. After the transfonnations, the linear circuit equations are set up, and the

expressions are simplified using heuristic approximation. The analytic circuit model produced by

ISAAC is used by OPTIMAN. The optimisation algorithm is simulated annealing.

2.2.2.4 OAC (1990)

OAC [43] is a CMOS operational amplifier compiler that generates an optimised layout. OAC

needs perfonnance specifications, process parameters and constraints as input, and it produces a

complete layout of an optimised circuit, a SPICE circuit description and a perfonnance summary.

The architecture of OAC consists of:

1. Global design module.

2. Detailed design module: a circuit perfonnance optimiser, and layout design and parameter

extraction module.

3. Design library, which stores circuit topologies with their design lmowledge and layout

descriptions.

The design process starts with a global phase and then proceeds to the detailed design phase. The

global phase selects a circuit topology from a library based on given specification, and process the

rough circuit sizing by assigning approximate value to each design parameters. The next phase

does simultaneous fine device sizing and layout design. This detailed design stage needs an

accurate perfonnance evaluation, which is done using SPICE. The optimiser utilises a nonlinear

optimisation technique, which is based on specified perfonnance constraints and relies on the

simulation results of the circuit extracted from the layout.

2.2.2.5 STAIC (1992)

STAlC [39] is an interactive design tool that synthesises CMOS and BiCMOS analogue integrated

circuits. It features the use of a description language for entering hierarchical circuit descriptions

and a solver unit that dynamically integrates analytical model equations across the levels of

hierarchy. The synthesis method is the successive solution refinement.

The analogue hardware description language used in STAlC is classified by the author as

being categoric, specific, device or layout. This classification is based on the circuit complexity

level. The entry of a description begins with filling the empty template or fonn with port and

perfonnance attribute declarations. ST AIC also uses a multilevel modelling scheme, where in the

simplest model level, circuits are described as a collection of linear constraints that can indicate

solution regions. Continuous nonlinear equations and derivatives are used to describe first-order

and second-order model relationship. Modelling is based on analytical descriptions.

27

The initial design stages produces a solution using simplified models that capture design

tradeoffs. An advanced model then would permit a more realistic account of circuit behaviour. The

simplified model produces the starting point for design exploration using the advanced models in

the search of a global optimal solution.

Design space exploration and evaluation are done by the scanner and optimiser application

modules. The scanner finds an initial solution by performing a coarse grid point search for a

solution that is in the neighbourhood of a global optimal point. It can also be used to explore design

tradeoffs. The optimiser may adjust the set of designated independent variables to facilitate the

minimisation of objective value while ensuring that the final solution lies within the domain space.

2.2.2.6 MINLP - Maulik (1992)

MINLP (Mixed-Integer Nonlinear Programming) [59] is an approach to cell-level analogue circuit

synthesis, where simultaneous topology selection and parameter selection is allowed. The problem

formulation uses integer variables to model topology choices and continuous variables for the

design parameters.

The design of a circuit is modelled as a constrained optimisation problem by using the

performance equations derived from circuit topologies. Optimisation is done as a function of power

or area, and is called the objective function. The MINLP problem formulation is solved using the

branch-and-bound algorithm. This algorithm is suitable for simple and small-sized circuits. Other

algorithms that are proposed for solving MINLP are Generalized Bender's Decomposition and

Outer Approximation. This methodology where simultaneous topology and parameter selections

are allowed greatly reduces design time over exhaustive search.

2.2.2.7 ARCHGEN (1995)

ARCHGEN [69] is a program that allows the synthesis of analogue filter systems. This is one of

the earliest attempts to synthesis analogue systems to mimic the synthesis of behavioural digital

systems.

A state space exploration is utilised to unify the synthesis process for the vast options of

filter designs and implementations. For this, an intermediate architecture stage is introduced for

architecture synthesis and evaluation. The input to the synthesis system is the behavioural

specifications in terms of mathematical expressions in time and frequency domain. These are then

synthesised into functional architectures, and are further synthesised into intermediate

architectures, which are implementation specific.

Verification is done by the behavioural simulator ARCHSIM, which performs vanous

analyses for the functional architectures and intermediate architectures. An architecture

28

specification language is used as the hardware description language for external interface between

the synthesis and verification module.

2.2.2.8 FPAD (1995)

FPAD (Fuzzy nonlinear Program for Analog circuit Design) [61] is for the design automation of

cell-level analogue circuits using fuzzy set theory to define the design objectives and constraints,

and thus in the optimisation as well.

The first step is to get input specifications in terms of objectives or constraints. Constraints

are classified into fuzzy (i.e. parameters with no precise values, or with tolerances) or crisp/strict

(mathematical). The second step is to get an initial solution for the use of the optimisation module.

This initial solution is obtained using an automatic device sizing procedure of circuit lmowledge

and basic assumptions, which are then evaluated using HSPICE. Alternatively, users may provide

their own initial solution.

For the fuzzy objectives and constraints, there are membership functions (which may be

linear, exponential or quadratic) with degrees of fulfilment for the fuzzy inequality: where' l'

denotes that the objective has been reached, and '0' when it is missed. The problem is solved using

a feasible direction algorithm, which however, finds a local solution. However, as fuzzy

formulation is independent of optimisation algorithm, a more powerful algorithm can be used.

Performance functions are evaluated using analytical models of circuit equations to avoid using

costly simulations. HSPICE simulation is done only to evaluate the starting point of the

optimisation and for the final evaluation of the designed circuit.

2.2.2.9 FASY (1996)

FASY [60] uses fuzzy set rule in the circuit topology selection process. A topology is selected from

others based on the grading concluded by F ASY after specification entry. The decision rules are

obtained from an expert designer, or can also be automatically produced from previous experiences

stored by the program. The selected topology is sized by a two-stage optimiser. A design that is

accepted by the user will be stored in the database (i.e. decision surfaces as fuzzy rules), where the

experience gained from this design can be used to modify the topology decision rules.

There are two optimisation phases. The first phase uses simulated annealing technique,

with analytical models to estimate circuit performances. The result from this phase is used as the

starting point in the next optimisation phase, in which SPICE simulation is used to compute the

performance. The optimisation algorithm used in the second phase is a standard conjugate gradient

algorithm.

29

2.2.2.10 ASTRXlOBLX (1996)

ASTRXlOBLX [62] uses five key ideas in the synthesis formulation:

I.Synthesis via optimisation: The circuit design problem is mapped to the constrained optimisation

problem. This constrained optimisation problem is converted to an unconstrained optimisation

problem so that simulated annealing can be used. The circuit performance is in the form of a cost

function cex).

2. Asymptotic waveform evaluation (AWE): AWE is used to evaluate cex) without the use of

designer-supplied equations. AWE can be applied to linear or linearised circuit and gives accurate

results without manual circuit analysis.

3. Simulated annealing: This is the optimisation engine to search for the best circuit design in the

solution space defined by cex). Global optimisation can be done in the face of many local minima,

plus it is starting point independent and can optimise without derivatives.

4. Encapsulated device evaluators: This is a compiled database of industrial models that are used to

model active devices. The models are used to linearise non-linear devices, which will then generate

a small signal circuit that can be passed to AWE. Models are completely independent from the

synthesis system and all aspects of the device's performance and representation are hidden.

5.Relaxed-dc formulation: As the models must be treated numerically to solve the DC operating

point after each circuit perturbation, this means that a substantial CPU time would be spent on an

intermediate synthesis step. Therefore, Kirchoffs laws are explicitly formulated and included in

the constraints function. This would be implicitly solved during DC biasing.

2.2.2.11 GPCAD (1998)

In GPCAD [44], CMOS transistors are modelled to be compatible with geometric program (GP),

and performance specifications and constraints need to be appropriately expressed. GP is a convex

optimisation problem, which can efficiently find a global optimal solution. GP is very fast, and, if a

solution exists, convergence is guaranteed. However, problems must be formulated as polynomials

or monomials of the design variables. The feasibility of the method in choosing the best

architecture for a set of specifications in opamp design implies that geometric programming may be

used in combination of better and more accurate models in a local optimisation method. Other

advantage of GP is that the computational effort in solving it grows linearly with the number of

constraints. Also, sensitivity analysis is possible once a geometric program is solved. However,

new models need to be developed for new technologies.

30

2.2.2.12 MAELSTROM (1999)

MAELSTROM [64] attempts to use an-industrially accepted and approved circuit simulator in its

optimisation loop with the argument that in order to make an analogue automation tool acceptable

and trustworthy, the validation of the selected circuit must be done by a well-known simulator. To

overcome the computationally costly method, three strategies are proposed:

1. Simulator encapsulation: This is to separate circuit optimisation and the simulation engines. The

commercial simulator is encapsulated, by the use of software 'wrapper' that makes the simulator as

an object with a set of methods. By this, the simulator's data format and idiosyncrasies are hidden

and insulated from the optimiser.

2. Using a combined genetic/annealing optimisation algorithm. The optimiser uses an annealing

type of algorithm which is global and stochastic, but is threatened by its slowness due to the vast

number of solution candidates that needs to be visited. With the intention to fully simulate each

candidate in the optimisation process, this problem is made worse. A solution to this is to distribute

and synchronise the search task over several annealers - using genetic algorithm proves to be

useful, which forms the basis for parallel recombinative simulated annealing (PRSA). A search task

is distributed over a number of PRSA-node, each of which will run an annealing process, and each

node will randomly communicate its result to the other nodes. A PRSA-node may do a

recombination of results to generate a new solution.

3. Exploiting network parallelism o/workstations. The architecture of the network consists of the

coordination of three tasks: optimisation done by several PRSA-nodes, scheduling of the evaluation

requests by an evaluation master node, and the evaluation process done by a number of evaluation

slave nodes.

2.2.2.13 ANACONDA (1999)

ANACONDA [4, 65] is a cell-level synthesis tool that also supports the idea of incorporating a full

circuit simulator in the optimisation loop as in MAELSTROM [64]. The novelty here lies in the

global optimisation algorithm which applies a parallel stochastic pattern search to solve a complex

cost function that defines the synthesis task. The algorithm, together with an encapsulated

simulator and a network of workstations is able to perform simultaneously a parallel simulation and

numerical search.

Pattern search algorithm is a direct-search method, having a provable convergence. The

algorithm performs a random perturbation to the coordinates of the solution vector. The goal is to

find a perturbation that minimises cost, and only an improved solution is accepted. As the process

proceeds, the perturbation bounds are decreased as it shrinks around the evolving solution, until

there is no more improvement. Implemented as a population of partial circuit solutions, each

31

population receives a short, randomised pattern search, where finally the best solutions will

converge. Thus, a diverse area of the cost surface can be covered, plus poor solution candidate can

be eliminated earlier to avoid being trapped in a poor local minima.

Similar to the MAELSTORM framework, ANACONDA also employs a network

architecture, which is controlled by an evaluation master that dynamically schedules simulation

tasks among a pool of workstations.

2.2.2.14 AMGIE (2000)

The design strategy in AMGIE [47] is a performance-driven hierarchical design sequences,

implemented as an integration of different software tools. The tools are for topology selection,

sizing and optimisation, verification and layout generation, which are all connected to the design

controller. AMGIE system needs two libraries, the first is a 'cell library' containing information

about the analogue cells, and the other one is a 'technology library' containing technology specific

information.

The topology selection process works by eliminating inappropriate topologies from the

candidates in the library and by ranking the remaining ones. Elimination is done by implementing

three filtering sequences, namely, boundary checking (to eliminate topologies with unsuitable

performance parameters), interval analysis (analysing interdependencies between different

performance so that only most important specifications are considered), and rule inferencing.

Generation of sized-models is done using several tools. AC equations are derived using

ISAAC or SYMBA, which uses symbolic analysis technique. DC equations can be derived directly

from the circuit, while other equations need to be provided by the designer. An equation

manipulation tool, DONALD, uses the constraint satisfaction technique to tum the declarative

models into a computational plan that indicates how dependent variables are calculated from the

independent one. This plan is stored in AMGIE's cell library, to be used by OPTWAN, the

optimisation tool. OPTWAN allows the user to choose from a number of global or local

optimisation algorithms, where the initial solutions and optimisation variables are included in the

cell library for every schematic. The following step is verification, where a generic verification

script has been written for each circuit. After the verification stage, the LA YLA tool will generate a

layout of the circuit, where the placement and routing process have constraints based on the

sensitivities of the performances to layout parasitics. Another tool implemented in the AMGIE

system is a redesign wizard that automatically starts in the event that a design fails to fulfill all

specifications. It looks for problems in design by scanning the history, and presents to the user the

procedures to redesign based on scenarios stored in a redesign database.

32

2.2.2.15 Recent developments (2003)

WATSON [70] is a tool which relies on design space boundary exploration that would give insight

on the trade-offs between competing circuit performances. The Pareto hypersurface representing

the optimal design boundary is calculated using a multiobjective genetic optimisation algorithm.

Trade-off analysis is done using multivariate regression technique.

In another recent work [71], an independent architecture generation technique which is not

based on traditional library and cell mapping strategy is introduced. The exploration technique is

based on conversion rules for signal flow graphs (SFG). The algorithm varies the signal type

between voltage and current on the SFG structures.

An optimisation-based approach for exploring the design space of analogue circuits is

demonstrated with the design of an operational transconductance amplifier [72]. The performance

metrics are obtained directly from circuit netlist to form symbolic equations that are used in an

equation-based optimisation approach [73].

2.3 Analogue filter synthesis

Automated synthesis of filters has been used for many decades. This section discusses some recent

analogue synthesis CAD tools for filters.

BECAS [74] is a synthesis tool for OTA-based linear analogue functions. All linear

functions are composed from first- and second-order lowpass filter structure.

A PROLOG-based synthesis tool [75] uses OTA-C circuits as its main building block

structure. The PROLOG program realises the symbolic expressions for the filter transfer function

by replacing the building blocks with integrator, amplifier, open circuit or short circuit.

Another optimisation-based technique for filter synthesis [76] is by having a multi

dimensional search done on a space whose coordinates are the values of the elements of the filters.

The filter is described as a network function containing the complex frequency variable of the poles

and zeros and the vectors of the filter element values. A scalar error criterion is used as a measure

of the element values satisfying the specified approximations. Searching begins from starting

points which encompasses the values of each element over a specified range and incremental value.

Different searching algorithm produce different configurations of starting points.

ARCHGEN [69] synthesises both continuous and discrete systems, and accepts the

behavioural description in the form of transfer functions as its input. In a continuous system, the

frequency domain Laplace transfer function is transformed into state-variable descriptions in the

time domain. State-variable descriptions consist of differential equations that describe the internal

and terminal behaviour of a system. Correspondingly in discrete systems, a z-transfer function in

33

the frequency domain is transformed into state-variable description of difference equations in the

time domain. The model is used to generate a functional architecture, which is composed of

continuous analogue functional blocks such as adders, integrators and amplifiers. The next step of

synthesis in ARCHGEN is done by replacing each functional component at the architecture level

with an implementation style specific realisation.

EXSHOF [77] is an expert system based CAD synthesis tool of high-order active RC

filters. The expert systems asks questions to the user at various stages of the design process as it

assumes that users have little knowledge of computers and filters. The role of the expert system is

in analysing the filters for approximation functions, and trade off between the number of active

components and specifications. The knowledge base of EXSHOF contains a library of biquad

circuits. A similar, earlier work which was the basis for EXSHOF is CHOose FILter (CHOFIL)

[78], a knowledge-based expert system for the synthesis of active biquad filter.

Other existing automated filter synthesis tools such as [79-81] target at specific types of

continuous-time filter. In [79], switched-capacitor ladder filters are optimised using a commercial

switched-capacitor analysis programme in the optimisation loop. SYSCUF [80] uses switched

current integrator as the basic building block. A multi-level optimisation approach [81] is used for

the synthesis of switched capacitor filter.

34

3 Behavioural Synthesis of Analogue
Filters: from VHDL-AMS
description to filter information

The key to behavioural synthesis is the specification method in which the desired circuit

performance is expressed. In this research, the specification is done using VHDL-AMS. This

chapter introduces and discusses the concept of behavioural synthesis from VHDL-AMS parse

trees. The first part gives the background of the VHDL-AMS language, in particular its new

features that can be exploited in analogue synthesis, specifically synthesis of filters.

Secondly, VHDL-AMS modelling of filter characteristics using time- and frequency-domain

constructs are discussed. Then, VHDL-AMS parse trees are introduced and finally, the last part of

this chapter focuses on the software modules developed in the course of this research to extract

filter information from the behavioural VHDL-AMS constructs, namely the synthesis syntax

checker and static calculator. The algorithms for the synthesis of behavioural VHDL-AMS models

are illustrated by two case studies.

3.1 VHDL-AMS

VHDL-AMS stands for Very-High Speed Integrated Circuit Hardware Description ..Language for

Analogue and Mixed-.s.ignal. It is an IEEE standard hardware description language (HDL) for

analogue and mixed-signal systems [1]. VHDL-AMS is a superset ofVHDL [82] - a digital HDL

already well established and widely used since the late 80s.

VHDL-AMS [1, 83] can be used for modelling and simulation of systems containing

discrete-event (digital) and continuous-time (analogue) signals. Continuous-time models are

implemented using differential and algebraic equations (DAEs), while event-driven behaviour is

modelled by concurrent processes which are sensitive to signal changes.

Complex models can be built using combinations of differential equations, algebraic

constraints and logical controls. Furthermore, VHDL-AMS can describe the behaviour of non

electrical dynamic systems like transitional and rotational mechanics, fluid flow, heat flow and

35

many others. VHDL-AMS has already been used to model semiconductor devices [84, 85] and

micro-electromechanical systems (MEMS) [86], as well as neural networks [87].

Several proprietary HDLs have been proposed prior to the release of the VHDL-AMS

standard to cater for the problem of modelling and verifying mixed-signal and mixed-domain

systems, for example HDL-A by Mentor Graphics [88] and MAST AHDL by Analogy [89].

However, the lack of a portable and widely adopted HDL standard restricted the user to the

vendor's own HDL and thus made it impossible to import models between different EDA tools; in

contrast to the ease of modelling and simulation of digital systems with VHDL [82], or Verilog

[90]. The emergence of VHDL-AMS has changed this and is likely to accelerate the development

of more efficient and powerful modelling tools for mixed-system and mixed-domain applications.

This is apparent, as recently other mixed-signal extensions to existing languages have emerged, for

example Verilog-AMS [91] for Verilog, and SystemC-AMS [92] that uses C++ as the hardware

description language.

Several VHDL-AMS compilers have been made available for public use [93-96], including

one from University of Southampton [94] which can be accessed from the Internet. Commercial

VHDL-AMS simulators are still under development and only a few vendors have so far released

their products, for example VeriasHDL from Analogy [97], SystemVision from Mentor Graphics

[88,98], SMASH [99] and Hamster [100].

3.2 VHDL-AMS for synthesis

Although VHDL-AMS is primarily intended for modelling and simulation, a suitable subset for

mixed-signal synthesis has been proposed even before the formal release of the standard [22] and

used in the development of a mixed-signal synthesis tool named VASE [14, 18]. VASE is reviewed

in Chapter 2. Similarly, VHDL-AMS has been used by the Electronic Systems Design Group in

University of Southampton for the development of NEUSYS [15], a synthesis tool for artificial

neural networks. The work on NEUSYS concentrated around the use of VHDL-AMS for

biologically inspired models of complex neural network systems developed in an earlier work [87].

Such systems involve many analogue equations in a mixed-signal environment.

3.2.1 Features suitable for synthesis

VHDL-AMS supports continuous behaviour by introducing new kinds of objects into the classical,

digital VHDL. The most important VHDL-AMS features relevant to this research are briefly

presented below:

36

3.2.1.1 Quantities

quanti ty is an object used to represent the unknowns in the DABs that form the analogue model.

In the context of an electronic system, quantities can represent voltages, currents, capacitor

charges, inductor fluxes, and so on. A quantity can be declared as an interface element in a port

list ofa model's entity declaration. This mechanism creates analogue nets which connect entity

instances together. For example, a filter entity with two quantities representing the input and

output can be simply described as follows:

entity filter is
port (quantity Yin: real;

quantity vout: out real);
end entity filter;

Another mechanism for creating analogue nets is provided by termi nal as described in Section

4.3.1.5 in the VHDL-AMS language reference manual (LRM) [1]. A number of standard,

predefined attributes have been specified in the VHDL-AMS LRM for quantities, some of these

attributes are themselves quantities. For example, a new quanti ty may be implicitly declared

using the attribute Q'DOT to represent a time derivative of quantity Q. The attribute Q'DOT is

essential for describing ordinary differential equations in VHDL-AMS models. Another attribute,

Q'INTEG, allows the declaration of the integral of quantity Q over time.

3.2.1.2 Simultaneous statements

Simultaneous statements represent the system's DABs. They express the relationships between

quantities. As mentioned in [83], simultaneous statements contain ordinary VHDL expression that

can be evaluated in the ordinary way. The behavioural description for electronic circuit,

implementing the conservation semantics of Kirchoffs law, is supported using this new class of

statements, where predefined attributes, allowing quantities having derivatives or integrals over

time may be used in a particular expression. For example, a simple simultaneous statement (SSS)

for a DAB in terms of the quantitites vi nand vout can be formulated as follows:

vi n == r *Vout I DOT + vout;

which represents a first-order lowpass filter in the time-domain, which is expressed as in (3.1).

. dVout(t)
Vzn(t) = r + Vout(t)

dt
(3.1)

3.2.1.3 Predefined attribute - Q'LTF

Q'LTF is a predefined attribute for a quantity object which may be used to describe the Laplace

transfer function of a system. It takes two one-dimensional vectors as parameters that provide the

37

numerator and denominator coefficients of the transfer function arranged in the ascending order. In

a realisable and hence, a synthesisable transfer functions, the order of the denominator must be

greater than or equal to that of the numerator. The LTF attribute provides the most suitable way to

model filter transfer functions in the frequency domain. The VHDL-AMS syntax for Q'LTF is

shown below:

vout == vin'LTF(num,den);

where vi n is the input to the system, vout is the output and num and den are the coefficients of the

system's Laplace transfer function. Note that when the relationship between the input and output

quantities is expressed using the LTF attribute, it must be expressed using the SSS syntax as shown

above. num and den must be static expressions of type real_vector.

In most examples of frequency-domain filter descriptions used in this dissertation, filter

coefficients are defined using static expressions of the type shown below, which hold the values for

typical filter parameters such as the gain, cut-off frequency, Q factor, natural frequency and so on:

constant frequency:real:= 1e3;
constant Q:real:= 10.0;
constant w:real:= 2*3.142*frequency;
constant a:real:= w*w;
constant b:real:= w/Q;

This is a neat and convenient way to specify filter parameters without having to pre-calculate them

prior to writing the VHDL-AMS code.

3.3 Modelling synthesis able analogue filters using VHDL
AMS

As mentioned above, analogue filters can be described in VHDL-AMS using two different ways: as

time-domain models or alternatively as frequency-domain Laplace transfer functions.

Conventionally, the latter method is the more common way to represent a filter to a synthesis

system (for example ARCHGEN [69] and BECAS [74]). However, if the filter is to be integrated

with digital components in a system-on-chip (SOC) - for example in a communication system,

where the digital part can also be modelled using VHDL-AMS - it may be more practical to

describe the filter in the time-domain using DABs.

The following subsections will present the modelling of filter requirements in both the

time- and frequency-domain, using VHDL-AMS. Filter described in the time-domain is referred to

as the DAE construct, while filter described in the frequency-domain is known as the LTF

construct. The synthesisable aspect of the behavioural models will also be explained.

38

3.3.1 Time-domain modelling with DAE construct

Equation (3.2) is the description of a second-order lowpass filter in the time-domain.

V in (t) = Caeff 1 x d 2~;/~ (t) + Caeff 2 x dV ~; (t) + Caeff 3 X VOltt (t) (3.2)

Thus in VHDL-AMS this is implemented using SSS with quantities using the Q'DOT attribute to

represent time-derivatives, as shown below. The following filter description is specified to have

cut-off frequency of 1 GHz and Q factor of 50.

architecture behavioural of filter is
constant pi: real:=3.142;

begin

constant frequency: real:=1.0e9;
constant w: real:= 2.0*pi*frequency;
constant Q: real: = 50.0;
constant coeff1: real:= l/(w*w);
constant coeff2: real:= l/(Q*w);
constant coeff3: real:= 1.0;

yin == coeff1*Vout'dot'dot + coeff2*vout'dot +
coeff3*vout;
end architecture;

Other examples of the time-domain descriptions of second-order filter cells are shown in Table 3.1.

The DAE construct can be used to describe filters in terms of the required gain, frequency and Q

factor. Expressions for coefficients CoejJj, Coef.h and Coefh (Table 3.1) in terms of these

parameters are shown in Table 3.2, where G refers to the filter gain, 0)0 refers to the natural

frequency, and Q is the Q factor. Descriptions of this kind can be synthesised from the

corresponding expression clusters in VHDL-AMS parse trees. Examples of equivalent VHDL

AMS simultaneous statements that can be used to generate such trees are shown in the third column

of Table 3.1. The synthesiser can determine the required filter type from the left-hand side (LHS)

of the corresponding time-domain model, shown in the third column of Table 3.1, while the right

hand side (RRS) of the SSS are identical in each case. Thus the second-order filter type can be

determined from the LHS of its DAEs when written in such a form.

39

2"°-order Time-domain equation Example of an
type equivalent VHDL-AMS

simultaneous statement
Lowpass ~n (t) =

d 2V (t) dV (t)
Vln=

coeffl *vout'dot'dot + Cae.tJ; x au; + CaefJ? X out + Cae!!3 X VOl t (t)
coeff2*vout'dot + dt - dt I

coefD *vout
Bandpass d~n (t)

-- vin'dot == dt
coeffl *vout'dot'dot +

d 2V (t) dV (t) coeff2*vout'dot + Cae.tJ; x o~ + Cae!!2 x out + Cae!!3 x Vout (t) coefD *vout dt dt
Highpass d2~n (t)

- vin'dot'dot ==
dt 2 -

coeffl *vout'dot'dot +
d 2V (t) dV (t) coeff2 *vout'dot +

Cae.tJ; x ~_t - + Cae!!2 x out + Cae!!3 x Va t (t) coefD *vout dt dt u
Table 3.1 Second-order filter cells m the tIme-domam.

2nd -order type Coeffl CoejJ2 Coejj3
Lowpass 1 1 1

-

G· aJo
2 G·Q·aJo G

Bandpass Q 1 Q. aJo -- -
G· aJo G G

Highpass 1 aJo
2

aJo - -- --
G G·Q G

Table 3.2 Time-domain description coefficients in terms of filter parameters for second-order DAE
constructs.

A second-order cell has three terms in the RHS, namely: Coeffl, CoejJ2 and Coejj3 as shown in

Table 3.2. These coefficients may themselves be expressions represented as clusters in the parse

tree. If these expressions are static in the VHDL sense, they can be evaluated by scanning the

corresponding clusters and subsequently mapped into hardware. Section 3.5.2 describes the static

calculator that has been specifically developed for this purpose as part of the architectural

synthesiser. Written in this form, the static calculator will be able to get the filter specification that

will be used to guide the filter synthesis process.

3.3.2 Frequency-domain modelling with L TF construct

The alternative method to describe filters in VHDL-AMS is to use the frequency-domain and built

in predefined Q'LTF attribute representing a Laplace transfer function. For example, a general,

second-order filter cell can be presented in the frequency-domain by the transfer function H(s)

40

shown in (3.3), where kJ, k2' and k3 can assume the value + 1, -lor 0; while OJo and Q are the natural

frequency and Q factor, respectively [101]. The synthesiser can determine the required filter type

by analysing the values of kJ, k2' and k3.

H(s) = kJs
2

+ k2 (OJo I Q)s + k3 OJo 2

S2 + (OJo I Q)s + OJo 2

(3.3)

For example, a second-order lowpass filter behaviour occurs when kJ = k2 = 0 and k3 = 1 in the

transfer function of(3.3). The filter can be described in VHDL-AMS as follows:

entity filter is
port (quantity vin: real;

quantity vout: out real);
end entity filter;

architecture transfer of filter is
constant pi: real:=3.142;

begin

constant frequency: real:=1.Oe9;
constant w: real:= 2.0*pi*frequency;
constant Q: real: = 50.0;
constant a:real:= w*w;
constant b:real:= w/Q;
constant num: real_vector:= (a);
constant den: real_vector:= (a,b,l.O);

vout == vin'LTF(num,den);
end architecture;

Behavioural descriptions of filters of arbitrary orders can normally be found very easily. There

exist many filter design tables that can be used in specifications of filter transfer functions [102].

The polynomial coefficients for the filter's transfer function can be obtained directly from filter

tables, and are usually normalised to a cut-off frequency of 1 rad/s. Furthermore, frequency

transformation techniques [2] can be applied to lowpass filter prototype from design tables, to

produce other filter types, such as bandpass, highpass and others. For example, after applying

frequency transformation to a Butterworth lowpass filter, the following fourth-order bandpass filter

transfer function is obtained:

2

H(s) = as
b+cs+ds 2 +es 3 +S4

(3.4)

where a,b,c,d,e are coefficients. After de-normalising to 1 GHz, the following VHDL-AMS code

can be written to represent the required transfer function:

41

constant a: real:= O.2e18;
constant b: real:= 1.SSle39;
constant c: real:= 1.114e28;
constant d: real:= 7.880e19;
constant e: real:= O.2828e9;
constant nurn: real_vector:= (O,O,a);
constant den: real_vector:= (b,c,d,e,1.0);

vout == vin'LTF(nurn,den);

3.4 VHDL-AMS parse tree

The parse tree is an intermediate version of a VHDL-AMS description. In the context of this work,

the parse tree is used to represent an analogue filter, which may be described using either the time

domain model of Section 3.3.1 or the frequency-domain model of Section 3.3.2. Parse tree

representations have been used for verification [103], analysis and modelling [104, 105] of

electronic circuit applications. Examples of parse tree representations of analogue filter are

illustrated in Figure 3.1 and Figure 3.2.

Figure 3.1 (a), (b) and (c) show three parse tree representations generated for a second

order lowpass, bandpass and highpass filter, respectively. In these examples, filter descriptions are

specified in terms of Simple Simultaneous Statements (SSS), which represent the time-domain

DAE constructs outlined in Table 3.1.

In Figure 3.1, the VHDL-AMS quantities representing the input and the output of the filter

are referred to as (in)Q and (out)Q, respectively. Note that the right hand side expressions of the

filter equations in Table 3.1 are similar, which consist of three terms. These terms are represented

as two-child clusters as shown in each parse tree of Figure 3.1. The clusters specifY information

regarding the filter coefficients as well as the time derivative order of the output quantity (out)Q

associated with each coefficient. The filter coefficients may be a constant or expressed in the form

of a Simple Equation (SE). As mentioned in Section 3.3.1, the filter type is determined by the left

hand side of the SSS, which specifies the time derivative order of the input quantity (in)Q.

On the other hand, Figure 3.2 depicts a generalised parse tree representation of the

analogue filter expressed with an LTF construct, explained in Section 3.3.2. Unlike the DAE

model, the analogue filter type of the LTF filter construct is implicitly determined by evaluating the

numerator and denominator of the filter's LTF. Each of the transfer function's numerator and

denominator coefficients has its own parse tree structure, depending on the filter specification. A

more elaborate discussion on the parse tree structures of an L TF construct is provided in Section

3.5 in the context of Case Study 2.

42

SSS
I

SSS
I

~ - """--- Term
\ \ ~

/~ - -1--1 -- Term

(in)Q'dot " \ ~., (in)Q ")
/........ (out)Q '

Term ~
/ _../ (out)Q

Term ~
~.

(out)Q'dot'dof' .. ,
Term

~

SE ~
(out)Q'dot'dot", ..

SE (out)Q'dot .' ...

(a)

SE

SSS
I

/'(- ~,--- Term

(in)Q'dot'dot ") ~
/ - (out)Q·'

Term ~
~

(out)Q'dot'dot·, .. ,
Term

~
SE (out)Q'dot .' ...

SE

(c)

SE

Term , ~
SE (out)Q'dot .' ...

(b)

SE

SE

Figure 3.1 Example ofVHDL-AMS parse tree patterns representing second-order DAE filter
construct, (a) lowpass, (b) bandpass, (c) highpass.

(out)Q

SSS
I

(in)Q Itf num den

Figure 3.2 Example of the VHDL-AMS parse tree pattern representing an LTF filter construct.

3.4.1 Parser

The parser is a software module that is used to translate any syntactically correct VHDL-AMS

description into a parse tree representation. This module is based on the VHDL-AMS parser

developed by the Electronics Systems Design (ESD) group of University of Southampton [94]. It

provides a full implementation of the VHDL-AMS syntax defined by the IEEE standard 1076.1-

1999 [1], and has been made available to the design and research communities worldwide as a free

on-line tool [94, 106]. The parser is a top-down LL(k) [107] tree parser.

43

The mam tasks of the parser are lexical analysis, symbol hash table maintenance,

declaration scope maintenance, parse tree generation and semantic checks. In a parse tree structure,

the leaf nodes in each cluster, which are child nodes without any descendants or brothers, are

VHDL-AMS lexical tokens, such as identifiers, decimal literals, operator, separators or keywords.

This is true for any VHDL-AMS parse tree produced by the parser.

As mentioned earlier, the parse tree is only an intermediate representation of the VHDL

AMS analogue filter description. The parser will generate a parse tree for any syntactically correct

VHDL-AMS description, even though it does not constitute any synthesisable element. In other

words, the parse tree is another way of representing the information contained in the VHDL-AMS

simultaneous statements. This representation is the basis of analogue filter synthesis in this

research, which focuses on methods and algorithms to convert synthesisable patterns in the parse

tree to filter structure. Therefore, dedicated software modules have been developed for the sake of

identifYing as well as extracting synthesisable analogue filter elements from the parse tree. These

tasks are carried out by the synthesis syntax checker and static calculator modules described in

Section 3.5.

The relationship between the parser and the two software modules with other processes in

the synthesis procedure is shown below in Figure 3.3. In particular, this block diagram shows how

the parser and the modules are linked to the filter cell library to finally produce an analogue filter

netlist that matches the VHDL-AMS specification of the filter. As can be seen, there is no direct

link between the parser and the filter library. The parser, synthesis syntax checker and static

calculator produce filter information that is used to build data in terms of AC response compatible

with the HSPICE simulator. This data is used in the parametric and architectural optimisation stage

that select suitable filter topology(s) from a library. The final result, or output of this process is an

HSPICE netlist of the filter that closely matches the VHDL-AMS specification. The details for

these procedures are given in Chapters 4 and 5. The focus of the following sections in this chapter

is to firstly explain how the parser is used to obtain synthesisable analogue filter descriptions as

well as the modifications being made to the parser. Then the operation of the synthesis syntax

checker and static calculator that extract information regarding the filter is explained with the aid of

two case studies.

44

,

J
i ,
! ,
!
1 , , , ,
! ,
i
!
i
!
i
[, ,
!
i ,
i
!

VHDL-AMS description

.. -.. --............ -.-~.-.-.-.. -.-....... -.. -!
i
!

Parser , , , , , , !
1 ,

Synthesis syntax !
!

checker ! ,
! , ,
i
!
!
!

Static calculator i
i , ,
i

Library of filter
topologies

Filter
information AC response

data

~
Parametric

and
Architectural
Optimisation

i

Optimised
filter netlist

L_._._ _. __ ._._ .. _. __ . ___ . ____ j
,
1

Figure 3.3 Block diagram showing the behavioural synthesis of analogue filter, starting from the
input of a filter's VHDL-AMS description until obtaining the filter's optimised circuit netlist.

3.4.1.1 Using the parser for synthesis

As mentioned before, the main functionality of the parser is to produce a parse tree structure that

will be analysed by the synthesis syntax checker and static calculator modules. This section will

firstly explains parts of the parser that is being used, and as well as how it is being used and the

modifications being made to the original parser in order to allow the parser to be linked to and

utilised by the two software modules (i.e. the synthesis syntax checker and the static calculator).

The parser engine is implemented in C++, and constitute of several classes. However, the

main class being used is the parse tree module which builds the parse tree structure, called class

'ParseTreeT'. The functions or methods that belong to this class and being used in this work are

explained below:

• FindNodelnClusterO: Searches for a particular 'node kind' in a particular parse tree

cluster. A 'node kind' is a node classification according to the grammatical syntax or

identifier specified in the IEEE Language Reference Manual (Appendix A of [1]).

Examples of node kind are "ArchitectureBodyE", "SimultaneousStatementE" and

"SimpleNameE" .

• FindBrotherNodeO: Looks for a 'node kind' in a brother node. The difference between this

function and the previous one is that this function allow the scope of search to be limited

to just the clusters in the same level of the current parse tree hierarchy, i.e. in all the brother

nodes of the current parse tree node.

• FindIdentifierlnClusterO: Searches for a particular identifier in a particular tree cluster.

The three functions above are very similar in which the task is to look for a 'node kind' or an

'identifier' in a particular tree cluster. 'Identifier' are variable names, types as well as the numerical

values assigned to those variables. For example, a constant is declared in VHDL-AMS as follows:

45

constant a: real:= O.2e18;

When being parsed, 'a', 'real' and 'O.2e18' are classified by the parser as 'identifiers'.

Other functions that are being used from 'ParseTreeT' are TestPrintO and TestPrintPTCiusterO

that are used to generate test prints of parse tree sections or clusters for logging and debugging

purposes. Finally, another two methods used (mainly for debugging) are:

• KindStringO: to check the 'node kind'

• NameStringO: to check the name of the 'identifier'

These functions return an array of characters that are printed in a log file.

Therefore, it can be seen that in order to allow the above functions to be used by the synthesis

syntax checker and static calculator, modifications must be made to solve accessibility issues:

• A function to set a particular parse tree node as a parent node is added to the main parse

tree module, 'ParseTreeT': SetParentO. SetParentO is used in the function written for the

synthesis syntax checker module to copy the parse tree (See function CopyParseTreeO in

Table 3.3, Section 3.5.1.3).

• The function NameStringO, in class 'ParseTreeT' are declared as public instead of private

so that it can be directly accessed by the synthesis syntax checker and static calculator. The

other functions described in the paragraphs above are already declared as public.

Also, in order for the whole parser engine to be able to be used by the synthesis system (called

FIST - Filter Synthesis Tool, which is described in Chapter 5) as a whole, the parser is included in

the synthesis system as a dynamically linked library (DLL). Several functions from the parser are

used as imported functions, and are listed as follows:

• AVAMSRunCompilerO: running the compiler by specifying relevant directory paths and

the VHDL-AMS input file.

• AVAMSGetParseTreeO: obtaining the parse tree structure of the VHDL-AMS input file.

• AVAMSCompilerScopeTestPrintO: to print the parse tree structure into a file.

• A VAMSDeieteCompilerO: to delete the compiler.

3.5 Software modules for behavioural synthesis of analogue
filters from VHDL-AMS parse trees

This section describes the software implementation developed for the purpose of extracting the

synthesisable analogue filter information from the VHDL-AMS parse tree. The structure of the

46

software implementation is divided into two modules, namely the synthesis syntax checker module

and the static calculator module. The block diagram of the modules is illustrated in Figure 3.4.

VHDL-AMS filter
parse tree

Filter information

Figure 3.4 Software modules to extract filter information from VHDL-AMS parse tree.

The synthesis syntax checker module analyses the parse tree structure in order to identify

synthesisable analogue filter constructs, which are then processed by the static calculator. The

static calculator module evaluates the static expressions in the parse tree structure of the VHDL

AMS filter constructs to extract filter information. For a DAB construct, the filter type and

coefficient values (coeffl, coeff2 and coeff3) are obtained, while for an LTF construct, the

system's transfer function is obtained. Such information obtained from both the DAB and LTF

constructs are then used to acquire analogue filter structures, which will be discussed in Chapter 4.

For the case of extracting analogue filter information from VHDL-AMS parse trees, the following

subsections will further describe both the synthesis syntax checker and static calculator modules in

more detail with the aid of two case studies.

Case Study 1 is a second-order bandpass filter described in the time-domain; with centre

frequency of 1 GHz, and Q factor of 50. The corresponding VHDL-AMS model of the filter is

shown below:

47

entity filter is
port (quantity vin: real;

quantity vout: out real);
end entity filter;

architecture behavioural of filter is
constant Q: real:= 50.0;

begin

constant frequency: real:= 1e9;
constant w: real:= 2.0*3.142*frequency;
constant coeff1: real:= Q/w;
constant coeff2: real:= 1.0;
constant coeff3: real:= Q*w;

vin'dot == coeff1*vout'dot'dot + coeff2*vout'dot +
coeff3*vout;
end architecture;

Case Study 2 is a lowpass fourth-order Chebyshev filter with passband ripple of O.5dB. The

transfer function coefficients are taken from a filter design table [108], de-normalised to the cut-off

frequency of 1 GHz and implemented in VHDL-AMS as follows:

entity filter is
port (quantity yin: real;

quantity vout: out real);
end entity filter;

architecture transfer of filter is
constant frequency: real:=le9;

begin

constant w: real:= 2.0*3.142* frequency;
constant w2: real:= w*w;
constant w3: real:= w2*w;
constant w4: real:= w2*w2;
constant a:real:=0.3579*w4;
constant b:real:=0.3791*w4;
constant c:real:=1.0255*w3;
constant d:real:=1.7169*w2;
constant e:real:=1.1974*w;
constant nurn: real_vector:= (a);
constant den: real_vector:= (b,c,d,e,1.0);

vout == vin'LTF(nurn,den);
end architecture;

The details of the software implementation for both the synthesis syntax checker and static

calculator are given in Sections 3.5.1.3 and 3.5.2.3 respectively.

3.5.1 Synthesis syntax checker

The synthesis syntax checker traverses the VHDL-AMS parse tree to look for !mown synthesisable

DAE and LTF filter constructs. It recognises filters that are behaviourally modelled as explained in

Section 3.3. The parse tree is analysed by firstly finding a specific tree node and then examining

the structure of the tree cluster of that node. For both the DAE and LTF construct, the synthesis

syntax checker will search for an SSS tree cluster that have two child nodes in the form of an SE.

For a DAE construct, the first SE, which is referred to as SEC 1) contains information regarding the

quantity denoting the input term of the DAE, while for an LTF construct, SE(1) have a very

simple tree structure that holds the name of the quanti ty denoting the output of the Laplace

transfer function of the system. The second SE, SE(2) is analysed in more detail by the synthesis

48

syntax checker to determine whether the VHDL-AMS parse tree is of an LTF construct, DAB

construct or neither. Upon encountering an unidentifiable tree structure, the synthesis syntax

checker will exit and return an error message. When traversing and analysing the parse tree

structure of SE(2), and finding a DAB or LTF construct, information regarding the filter is also

obtained by the synthesis syntax checker. This information is then passed on to the static calculator

for further manipulation. The operation of the synthesis syntax checker on both the DAB and LTF

construct is demonstrated in the following subsections.

3.5.1.1 Synthesis syntax check for Case Study 1

This example illustrates the synthesis syntax checker's operation using a filter modelled in the

time-domain. The VHDL-AMS architecture description of the filter is shown in Figure 3.5. It is a

bandpass filter with a Q factor of 50, gain of 1 and cut-off frequency of 1 GHz. The structure of the

description as defined by the IEEE Standard 1076.1-1999 [1] is also shown, where at the top of the

hierarchy of the description is the architecture body (AB), which is further divided into the

architecture declarative part (ADP) and architecture statement part (ASP).

Architecture Body
(AB)

Architecture Declarative
Part (ADP)

Architecture Statement f
Part (ASP) \..

architecture behavioural of filter is
constant Q: real:= 50.0;
constant frequency: real:= 1.0e9;
constant w: real:= 2.0*3.142*frequency;
constant coeff1: real:= Q/w;
constant coeff2: real:= 1.0;
constant coeff3: real:= Q*w;

begin
vin'dot == coeff1 *vout'dot'dot +
coeff2*vout'dot + coeff3*vout;

end architecture behavioural;

Figure 3.5 Architecture body of the VHDL-AMS code of the second-order bandpass filter.

Synthesis syntax check is done by investigating the tree cluster starting at the ASP node, where the

main features of the filter description or behaviour may exist. The synthesis syntax checker

analyses the ASP cluster to determine whether the description is an LTF construct or a DAB

construct, and then follows the corresponding L TF or DAB routines in order to obtain the

synthesisable expressions.

The ADP of the architecture body in Figure 3.5 has six constant declarations which are

each organised in the parse tree structure as block declarative items (BDI). Figure 3.6 (a) depicts

the parse tree structure of the architecture body down to two descendent levels. Figure 3.6 (a), (b)

and (c) show the details of the parse tree structure of the architecture body of Case Study 1 except

49

for the descendant clusters from the six BDls of the ADP. The details for the BDI clusters will be

discussed in the section on the static calculator for this case study.

The details of the ASP in Figure 3.6 (b) and (c) illustrates a typical DAE parse tree, where

there is an SSS representing the filter equation. The SSS has two simple expressions, SE(l) and

SE(2), which are analysed to determine synthesisability. Figure 3.6 (c) shows the parse tree

structure of SE(2).

The flow chart in Figure 3.7 outlines the methodology of recognising a synthesisable DAE

construct. The RHS of the SE, which is marked as SE (2) in the flow chart, is examined to match

the tree cluster pattern as shown in Figure 3.6(c). When a matching tree cluster is found, the syntax

checker collects the required coefficient values (coeffl, 2 and 3) in an array, and proceeds to

analyse the filter type of the description.

50

AB

ADP /"-.... ASP

~
BDI BDI BDI BDI BDI BDI

(a)

AB - Architecture Body
ADP - Architecture Declarative Part
ASP - Architecture Statement Part
BDI - Block Declarative Item
AS - Architecture Statement
SS - Simultaneous Statement
SSS - Simple Simultaneous Statement

T(1)
~

P * P
,-

I SN
/' N

{coeff1} I
AN

A
AN

A
SN AD
I I

{vout} {dot}

SE - Simple Expression
T - Term
P - Primary
N - Name
AN - Attribute Name
SN - Simple Name
AD - Attribute Designator
{ .. } - identifier

+

AD ,
{dot}

ASP
I

AS
I

SS
I

SSS

A
SE(1) SE(2)

I
P
I
N
I

AN

A
SN AD

, I
{Yin} {dot}

(b)

SE (2)

T(2) +
~

P * P P
I I /

SN N SN

I I /

{coeff2} AN {coeff3}

A
SN AD

I I
{vout} {dot}

(c)

T(3)
~

* P
'\.
SN

" {vout)

Figure 3.6 (a) The AB cluster of Case Study 1, (b) The ASP tree cluster, (c) Tree cluster of the
second SE in the ASP cluster.

51

No

No

No

No

Yes

Found SE(2), check it to be in the fonn
of Q == Tenn1 + Tem2 + Tenn3

ound Tenn in SE(
This is Term1

Check that Tenn1/213 has children in
the fonn of Primary1 a • Primary1 b

Check that brother of each
rimary1/213a cluster is a ' .'

Yes

Keep identifier names of
Primary'1/213a's leaf node

No

No
Found Primary1/213b? >-------+1

Store the 3 coefficient
values in an array

Figure 3,7 Flow chart for the routine that searches for synthesisable DAB constructs in SE (2),

After a recognisable DAE construct is found, the synthesiser calls the DAE filter type analysis

routine, The purpose of this routine is to identify the filter type by examining SE (1), This process

52

is illustrated in Figure 3.8. When the filter type has been identified, the static calculator is called to

examine SE (2). The static calculator will be explained further in Section 3.5.2.1.

Synthesis able DAE construct
found: SSS in the form of
Q==term1 + term2 + term3

Deduce filter type from
LHS of the SSS

LHS==
Q'dot

no

LHS == Q

yes
High pass

filter

Band pass
filter

Low pass
filter

no
RHS==

coeff1 *vout'dot'dot +
coeff2*vout'dot +
coeff3*vout

yes

Figure 3.8 DAE routine for filter type identification.

3.5.1.2 Synthesis syntax check for Case Study 2

Static calculator

The fourth-order lowpass Chebyshev filter modelled with the built-in LTF attribute has an

architecture body structure as shown in Figure 3.9. The synthesis syntax checker firstly examines

the ASP cluster, shown in Figure 3.10, and finds the LTF attribute and associated SSS. The flow

chart of the algorithm to search for an LTF construct is shown in Figure 3.11.

After confirming that the parse tree structure of the ASP is of an LTF construct, the

programme then proceed to the static calculator module.

53

Architecture Body
(AB)

Architecture Declarative
Part (ADP)

architecture transfer of filter is
constant frequency: real:=1.0e9;
constant w: real:= 2.0*3.142*frequency;
constant w2: real:= wow;
constant w3: real:= w2*w;
constant w4: real:= w2*w2;
constant a:real:=0.3579*w4;
constant b:real:=0.3791 *w4;
constant c:real:=1.0255*w3;
constant d:real:=1.7169*w2;
constant e:real:=1.1974*w;

Architecture Statement
Part (ASP)

begin

constant num: real_vector:= (a);
constant den: reaLvector:= (b,c,d,e, 1.0);

Vout == Vin'L TF(num,den);
end architecture;

Figure 3.9 Architecture body of the VHDL-AMS code of Case Study 2.

ASP
I

AS
I

SS
I

SSS

~
SE (1) == SE (2)

I I

P P
I I

SN N
I I

{vout} AN

~
SN AD E E

I I I I
{vin} {Itf} SE SE

I I
P P
I I

SN SN
I I

{num} {den}

AS - Architecture Statement
SS - Simultaneous Statement
SSS - Simple Simultaneous Statement
SE - Simple Expression
P - Primary
N - Name
AN - Attribute Name
SN - Simple Name
AD - Attribute Designator
{ .. } - identifier

Figure 3.10 ASP tree cluster for an LTF construct.

54

Error exit

Traverse parse tree cluster of ASP,
look for SSS cluster

No

No

No

No

No

No

Found SSS?

Yes

Found AN in SSS?

Yes

Found identifier
'Itf?

Yes

Go to brother of AD

Static
calculator

Figure 3.11 Flow chart of synthesis syntax check in an L TF construct.

55

3.5.1.3 Software implementation

The synthesis syntax checker is implemented in the class named Parse Tree TS. This section

describes the important methods used in ParseTreeTS that perform parse tree analysis, and are

listed in Table 3.3.

Name and Syntax Return Value Description
void It copies the parse tree produced by
A1ake CopyojParse Tree AV AA1SGetParseTreeO. 'OldScope' is the
(ScopeRecPT pointer returned by AV AA1SGetParseTreeO.
OldScope) It points to the beginning of a scope record

which contains the parse trees of the entity
and architecture declarations. The program
loops the parent pointer of each scope record,
allocate memory for new scope record and
calls CopyParseTreeO.

PTNodePT Pointer to the new Makes another copy of the parse tree. This
CopyParseTree parse tree. method copies nodes of tree clusters
(PTNodePT Cluster) recursively.
int Search(void) an integer to indicate It first searches the parse tree for L TF filter

error (0), DAB high construct, then try to look for DE filter
pass filter (1), DAB construct. It calls SearchLTFO to find an LTF
band pass (2), DAB construct, and SearchDAEO for a DAB
low pass (3), and an construct.
L TF construct (4)

StatusT OK or ERROR Searches the parse tree for an LTF construct.
SearchLTF(void) status. This method is called by SearchO. Figure

3.10 shows a parse tree cluster that will be
recognised by this method. Figure 3.11 shows
the algorithm that is being implemented in
this method.

StatusT OK or ERROR Searches the parse tree for a DAE construct.
SearchDAE(void) status. This method is called by SearchO, and calls

CheckPrimaryPatternO to determine its
return value.

int An integer indicating Scans a primary cluster for 3 recognisable
CheckPrimaryPattern which of the three parse tree clusters in a DAB construct. Refer
(PTNodePT primary) pattern was found, or to Figure 3.6 (c) for the parse tree pattern

o if no pattern has shown by the three term clusters marked as
been found. T(1) - T(3), and Figure 3.7 for the algorithm

implementing part of this function.

Table 3.3 Functions from class ParseTreeTS.

3.5.2 Static calculator

As mentioned before, the recursive static calculator is necessary to evaluate static expressions in all

the expression clusters, including declarations that are used in the specification of filter

coefficients. The static calculator performs multiple scans of the parse tree in a recursive manner,

56

and is used to extract filter information from a DAE or LTF filter construct. The filter information

is used to obtain analogue filter cells that match the VHDL-AMS behavioural description.

3.5.2.1 Static calculations for Case Study 1

AB

(
I

I
ADP1
ASP {

architecture behavioural of filter is

begin

constant Q: real:= 50.0;
constant frequency: real:= 1.0e9;
constant w: real:= 2.0*3.142*frequency;
constant coeff1: real:= 0Jw;
constant coeff2: real:= 1.0;
constant coeff3: real:= Q*W;

vin'dot == coeff1*vout'dot'dot +
coeff2*vout'dot + coeff3*vout;

end architecture behavioural;

(a)

AB
~

~SP
BOI BOI BOI BOI BOI BOI

(b)

Figure 3.12 (a) VHDL-AMS code of Case Study 1 (b) Parse tree ofthe AB.

As previously stated, after scanning the ASP cluster for synthesisability, and finding a

synthesisable construct, the next step is to match the identifiers of declared objects, found at the

bottom of the expression hierarchy, with their assigned values. This is done by analysing the ADP

cluster. In other words, the values of coeffl, coeff2 and coefD are found by solving the respective

static equations in the ADP. Using the ADP cluster for Case Study 1 for example, the six constant

declarations in Figure 3.12 (a) are represented as six clusters of BDls in the ADP cluster of the

DAE construct as depicted in Figure 3.12 (b). The parse tree clusters for the six BDls are shown in

Figure 3.13.

57

constant Q: real:= 50.0; (1) constant frequency: real:= 1.0e9; (2) constant w: real:= 2.0*3.142*frequency; (3)

IL

{C{

BOI(1)

I
CO

~
SI

I
TM
I
N

I
SN

I
{real}

E

"" SE

I
P
I

{d_l: r: 50.0}

IL

/

BOI(2)

I
CO

~
SI

I
{frequency} TM

I
N

I

E IL

"" {w(SE

I
P

I
SN {dJ r: 1000000000}

I
{real}

BOI(3)

I
CD

~
SI

I
TM
I
N

I
SN

I

E

"" SE

"" T
~

P P P" /

{real} {dJ i: 2,O}1 SN "'-
{frequency}

constant coeff1: real:= QJw; (4)

,/

{coeff1}

IL

BOI(4)

I
CD

/h-,
SI
I

TM
I
N
I

SN
I

{real}

E

" SE

'" T

1
l"-..

P P
/ "-

/ SN SN

{Q} I

constant coeff3: real:= Q*w; (6)

,/

{coeff3}

BOI(6)

I
CD

/h-
IL SI'

I

TM
I
N
I

SN
I

{real}

E

" SE

'" T

""
{w}

""
{w}

{dJ: r: 3.142}

constant coeff2: real:= 1.0; (5)

BOI(5)

I
CD

~
IL SI E

"" {CO~2} I
TM
I
N

SE

I
P
I I

SN
I

{dJ r: 1.0}

{real}

BDI - Block Declarative Item
CD - Constant Declaration
IL - Identifier List
SI - Subtype Indication
TM - Type Mark
N -Name
SN - Simple Name
E - Expression
SE - Simple Expression
P - Primary
T - Term
{ .. j- identifier
{dJ: r: .. j - decimal literal (real)
{dJ: i: .. } - decimal literal (integer)

Figure 3.13 The six tree clusters of the BDI for Case Study 1.

58

Figure 3.14 shows the flow chart of the static calculator that traverses a DAB parse tree

construct, to get the coefficient values whose names were previously found when analysing the

ASP during the synthesis syntax check. The operation starts with a scan of the AB cluster with the

aim to obtain the values of declared objects, which occur in expression leaves. At the end of the

scan and calculating operation, the calculator stores the object identifiers and corresponding values

in two arrays, named Name and Value, respectively. As constant declarations in both case studies

contain expressions, the static calculator needs to scan these expressions before the constant values

are known and can be stored. This is a recursive process in which store and scan operations are

interleaved. The results calculated by the static calculator will be used to find suitable filter

topologies for mapping into hardware. This will be explained further in the next chapter.

59

No

No

No

No

No

No
Error exit

Traverse into parse
tree cluster of AS

Found AOP in AS ?

Found SOl in AOP ?

Found CO in BOI ?

Yes

O->ChildO->LexType
is a declared object e.g.

'constant'?

Yes

Found IL in CO ?

Yes

Save leaf node
containing the identifier

in Name[i]

Yes Get into E to obtain
values for Value[i]

(recursive)

No

Figure 3.14 Flow chart of the static calculator program for a DAE parse tree construct.

60

3.5.2.2 Static calculations for Case Study 2

AOP
AB

ASP

architecture transfer of filter is
constant frequency: real:=1.0e9;
constant w: real:= 2.0*3.142*frequency;
constant w2: real:= w*w;
constant w3: real:= w2*w'
constant w4: real:= w2*w2;
constant a:real:=O.3579*w4;
constant b:real:=O.3791*w4;
constant c:real:=1.0255*w3;
constant d:real:=1.7169*w2;
constant e:real:=1.1974*w;
constant num: real_vector:= (a);
constant den: reaLvector:= (b,c,d,e,1);
begin

Vout == Vin'L TF(num,den);
end architecture;

(a)

AB
/'....

~SP
BOI(1) BOI(2) BOI(11) BOI(12)

(b)

Figure 3.15 (a) VHDL-AMS code of Case Study 2 (b) Parse tree of the AB.

When an LTF construct is found, the static calculator performs its calculations in two stages. The

first stage performs the same functionality as for a DAB construct, which is to solve the static

expressions in the ADP, and is applicable for all the object declarations except for those of the

numerator and denominator vectors. In the second stage, the static calculator arranges and stores

the numerator and denominator coefficients in arrays named NumArray and DenArray for further

analysis by the synthesiser.

The operation of the static calculator for Case Study 2 can be explained by an analysis of

the AB tree cluster shown in

Figure 3.15 (a). The ADP cluster contains 12 constant declarations, which are all arranged

into 12 BDI clusters used by the LTF construct

Figure 3 .15 (b) in the ASP cluster. In the first stage the calculator evaluates the values for

all the ten constants by recursive scans of the BDI clusters. In the second stage the static calculator

collects the numerator and denominator coefficients for the transfer function. To do this, it

traverses the BDI clusters that correspond to the numerator and denominator declaration. In this

example, the numerator is represented by the 11 th BDI, while the denominator is represented by the

12th BDI. Figure 3.16 shows the 12th BDI tree cluster which contains the coefficients for the

denominator. The calculated coefficients are stored in the corresponding elements of arrays

NumArray and DenArray. The position of each coefficient in the corresponding array is found by

an analysis of the five subclusters (which are the EA clusters) of the aggregate clusters Ag in the

declarations of real vectors num and den.

61

constant den: real_ vector:= (b,c,d,e,1.0);

BDI(12)

I
CD

~
IL SI

{den}/ I
TM

I
N

I
SN
I

{real}

E
'\

EA
I
E
I

SE
I
P
I

SN
I

{b}

EA EA
I I
E E
I I

SE SE
I I
P P
I I

SN SN
I I

{c} {d}

EA EA
I I
E E
I I

SE SE
I I
P P

SiN I
I {dJ: r: 1.0}

{e}

Figure 3.16 Tree cluster of the 12th BDI of the LTF construct of Case Study 2.

Figure 3.17 and Figure 3.18 show the flow charts of both static calculations. When the static

calculator completes its analysis, which identifies the numerator and denominator coefficients, the

next stage is similar to that for a DAB construct, which is to find suitable filter topologies. This

further stage of the synthesis process will be explained in Chapter 4.

62

No

No

No

No

No

Traverse into parse
tree cluster of AS

Found ADP in AS ?

Yes

Found SDI in ADP ?

Found CD in SDI ?

Found IL in CD ?

Save leaf node containing the

identifier in Name[i)

No

Yes

Get into E to obtain values
for Value[i) (recursive)

i> SDICount

Yes

Static calculator
stage 2

No

Figure 3.17 Flow chart of the fIrst stage of the static calculator program for an LTF parse tree
construct.

63

Scan BOI clusters to
search for identifier num

orden

Yes

Get into EA cluster to obtain leaf
node's Value

NumArray[n] or OenArray[n] =
Value

EA -> BrotherO NOT
zero?

No

Obtain filter
structure

No

No

No

Error exit

Yes
Increment n

Figure 3.18 Flow chart of the second stage of the static calculator program for an LTF parse tree
construct.

3.5.2.3 Software implementation

The static calculator module is implemented in the class named Calculator. The main functionality

of Calculator is to traverse the parse tree to solve the equations declared in the VHDL-AMS source

code. This calculator resolves simple arithmetic operations of filter parameters' relationship. The

important methods implemented in Calculator is defined in Table 3.4.

64

Function Name and Return Value Description
Syntax
StatusT ERROR or OK Finding the values of the coefficients in a
CalculatorDAEO (void) status DAB of a filter description. This method

implements the algorithm for the static
calculator's operation on a DAB construct, as
explained in Section 3.5.2.1 and shown in
Figure 3.14.

StatusT ERROR orOK Finding the values of the coefficients of the
CalculatorLTFO (void) status Laplace transfer function. This method

implements the algorithm for the static
calculator's operation on an LTF construct, as
explained in Section 3.5.2.2 and shown in
Figure 3.17 and Figure 3.18.

Double Solution of the Obtaining the value of a simple expression
SimpleExpression arithmetic (SE). It scans into the Term clusters in an
(PTNodePT SENode) operations of the SEN ode to solve an arithmetic equation, or to

Terms in obtain the value of its leaf node in the case of
SENode, or the an SE consisting of a Primary without a Term.
value in the leaf An SENode consisting of arithmetic
of SENode. equations must contain a Term. The Term

will have two or more Primary clusters. The
algorithm implementing this method is shown
in Figure 3.19. The methods being used by
SimpleExpressionO are shown in the diagram
as well.

double 1.0 or -1.0 This checks whether a Term is a positive or a
Sign (PTNodePT negative value. The sign is determined by
SENode) checking the value of Lex TypeO of SEN ode.
double Solution of This performs arithmetic operation between
Term (PTNodePT node) arithmetic two Primary values. The algorithm is very

operation. similar to that of SimpleExpressionO, the only
difference that it does not contain the loop as
TermO is specific for solving an arithmetic
operation having two operands only.

double Factor multiply: 1.0, This is to determine the arithmetic operation
(PTNodePT divide: 2.0, open between operands. The method checks the
Primary Cluster) bracket: 3.0, Lex Type 0 of 'PrimaryCluster"s brother node.

close bracket:
4.0, semicolon:
5.0, plus: 6.0,
minus: 7.0

Double Content of the This scans a Primary tree cluster to obtain the
Primary(PTNodePT leaf node in a value in its leaf node. The algorithm
PrimaryCluster) Primary tree implementing this method is shown in Figure

cluster. 3.20.
Double Solution of the This scans a Primary Aggregate tree cluster to
PrimaryAggregate arithmetic obtain the value in its leaf node. A Primary
(PTNodePT node) equation of the Aggregate tree cluster contains several Terms

Simple that are enclosed within a bracket '()', which
Expression. implies an arithmetic equation that contains

precedence. For example consider (3.5). For a
correct calculation for Result, the operation in
the brackets must be solved first.

65

Result = A + (BIC) (3.5)
A Primary Aggregate will contain an SE
cluster, thus SimpleExpressionO will be
called.

int CalcPrimary The number of This is to count the number of Primary
(PTNodePT node) Primary clusters clusters in a SE by counting the brother nodes

in a SE tree node. of the first Primary cluster.
Table 3.4 FunctIOns from class Calculator.

66

N = CalcPrimary()

yes

N = 1

no

result = Sign()*Term()

no
N>2

TermValue1 = result

Op = Factor(PriArray[2+iJ)

TermValue = TermValue1
(Op) Primary(priArray[3+i])

yes

Primary()

Return result

i == N? >----~ Return TermValue

no

Increment i

TermValue1 = TermValue

Figure 3.19 The algorithm implementing SimpleExpressionO.

67

no

ound Aggregate in
Primary Cluster?

exType is
DECIMAL
LITERAL?

yes

ValueType is
Real?

yes

yes

Search for leaf node and I
check the Lex Type to be Ii

an open bracket· (.

Search for Simple
Expression

AggrVal1 =
SimpleExpressionO

Figure 3.20 The algorithm implementing methods PrimaryO and PrimaryAggregateO.

3.6 Concluding remarks

This chapter firstly presents the two methods of describing behavioural analogue filter models in

VHDL-AMS. The first method is to model a filter in the time-domain using differential-algebraic

equations. The second method uses the VHDL-AMS LTF attribute to represent the filter's transfer

function in the frequency domain. The behavioural synthesis process begins by analysing the parse

tree structure of the VHDL-AMS description.

In Section 3.5, two software modules that extract filter information from the VHDL-AMS

description of the analogue filter parse tree are explained. Both modules, the synthesis syntax

checker and static calculator, are explained and illustrated with two case studies. The case studies

respectively represent both the use of a DAE construct in the time-domain and an LTF construct in

the frequency-domain. The synthesis syntax checker looks for patterns in the parse tree that

represent either an LTF construct, or a valid DAE construct. Following the discovery of such

patterns, the static calculator proceeds to find and evaluate the numerical values containing filter

information that will be used by the subsequent stages of the synthesis process. The next chapter,

Chapter 4, will explain the methodologies to attain analogue filter hardware structures from the

filter information obtained from the methodologies described in this chapter.

The methodologies developed in this chapter are particularly useful in a hierarchical CAD

environment for high-level synthesis. A designer may want to specify an abstract, behavioural filter

model, as one of the components in a larger mixed-signal design. VHDL-AMS provides an

integrated, standardised way to specify both digital and analogue systems on a variety of

68

abstraction levels. A filter specification may be written in terms of the gain, frequency or Q factor,

or if necessary, at higher levels of abstraction, according to the design needs.

69

4 Behavioural Synthesis of Analogue
Filters: from High-Level Filter
Specification to Filter Structure

The previous chapter describes the VHDL-AMS behavioural modelling of analogue filter in both

the time-domain and frequency-domain. Methods to extract analogue filter information from

VHDL-AMS parse trees have also been explained. The next step in the synthesis process which

proceeds from Chapter 3 is discussed in this chapter, where the techniques to obtain analogue filter

structure from the extracted filter information is explained in detail. The filter structure, or

topology, is taken from a filter cell library, which is a collection of various filter topologies suitable

for ASIC applications. A very important phase in the synthesis process is the architectural

optimisation stage, where filter topologies that can realise the required specification are firstly

selected from the filter cell library. Then, each filter topology are parametrically optimised by

adjusting and fine-tuning a set of circuit parameters, where finally the filter structure that has the

best match to the specification is selected. The final output to the synthesis procedure is an

optimised HSPICE netlist of the analogue filter topology.

There are two variations of the synthesis procedure that will be investigated earlier in this

chapter, which are called Synthesis Procedure A and Synthesis Procedure B, which are described in

Section 4.1. The main difference between both procedures lies in the processes preceding the

architectural and parametric optimisation stage. The optimisation stage for both procedures is

actually the same one. Synthesis Procedure A and Synthesis Procedure B are compared in Section

4.2 to choose the one that is most suitable for implementation.

Section 4.3 describes the architectural and parametric optimisation process in detail. The

performance measure for analogue filters which defines the optimisation cost function is explained.

In addition, the formulation and cvaluation of the cost function is shown and justified. However,

the optimisation engine that implements the optimisation algorithm developed in the cause of this

research, namely the three-tier algorithm, is not included in this chapter and will be the topic of

discussion in Chapter 5.

70

4.1 Synthesis procedures

Figure 4.1 and Figure 4.2 show the synthesis flow in which the input is the filter infonnation

derived from VHDL-AMS parse tree and the output is the HSPICE netlist of an optimised filter

topology. In Synthesis Procedure A of Figure 4.1, there are two types of filter infonnation that

results from a DAE or LTF construct, where each type needs to be handled in a different manner

during the early part of the synthesis stage. Hence, the key synthesis processes are root jinding

followed by the cell-mapping process for the filter infonnation derived from an L TF construct.

Then, the process of cell realisability check receives either type of filter infonnation (i.e. DAB or

LTF) and if successful, the procedure proceeds to the following processes: performance model

construction,jilter topologies selection and finally, architectural and parametric optimisation. It is

also shown in Figure 4.1 that for an LTF construct, there are two 'routes' to proceed from the cell

mapping process to topologies selection process. The differences between both 'routes' will be

explained in Section 4.1.3

Figure 4.2 shows Synthesis Procedure B. This synthesis procedure differs from the other

one in that it has fewer processes as it takes the filter infonnation directly to produce the

perfonnance model. The processes involved in this synthesis procedure are performance model

construction, cell realisability check, jilter topologies selection and architectural and parametric

optimisation.

The conceptual differences between both procedures will be explained in Section 4.2 after

the related processes for both synthesis procedures are explained in subsections 4.1.1 to 4.1.5. The

role for each process in Synthesis Procedures A and B is briefly explained as follows:

Root finding: A state-of-the-art polynomial root finding algorithm [109] has been implemented to

calculate the poles and zeros of any VHDL-AMS transfer function written as an LTF construct.

Filter cell mapping: The main aim of this mapping stage is to identify the first- or second-order

sections obtained in the root finding process, and to break down a high-order transfer function into

first-order and/or second-order ones.

Cell realisability check: The aim of this stage is to extract the filter parameters from the DAB or

LTF construct. As the synthesis methodology developed here is primarily intended for high

frequency applications, this stage detennines whether the specification can be realised, as this will

be constrained by the topologies available in the filter cell library.

Construction of performance model: The VHDL-AMS specification IS translated into a

perfonnance model, which is used as the target or benchmark for the optimisation process.

Topology selection: This is a manual process, where the user will pick a selection of analogue filter

candidates from the filter cell library. Ifnecessary, this process could be automated.

71

Filter
information

DAE
construct?

yes

no

DAE coefficient values and
filter type

Laplace transfer function
numerator and

denominator polynomials

Exit

HSPICE netlist

Figure 4.1 Synthesis Procedure A.

Route 2

yes

Architectural and parametrical optimisation: The candidate topologies selected by the user are

each parametrically optimised using the three-tier algorithm developed as part of the synthesiser.

The three-tier optimisation algorithm will be explained in Chapter 5. During optimisation, the

evaluation of the performance of filter topologies is done by running an HSPICE AC analysis to

compare the actual frequency response with the ideal response defined by the behavioural

specification. Each filter cell in the library has a set of parameters that have been pre-selected for

optimisation. The objective (or cost) function in the three-tier optimisation algorithm contains a

weighted combination of the AC characteristic accuracy and power consumption. The optimised

candidate topologies are then compared and the best one is selected. The optimisation methodology

is independent of any technology and can be used for any type of filter whose frequency response

can be obtained by full HSPICE simulation.

72

4.1.1 Root finding

Filter
information

Construction of
performance model

Cell realisibility check

no
OK?

yes

Topology selection

Architectural and
parametric optimisation

HSPICE netlist

Exit

Figure 4.2 Synthesis Procedure B.

The filter infonnation derived from an LTF construct is m the fonn of polynomials for the

numerator and denominator of the transfer function. Using classical analogue filter synthesis

technique, synthesis proceeds by expressing the transfer function in tenns of its poles and zeros,

and to be able to do this, it is necessary to find the roots of the numerator and denominator

polynomials. A standard, state-of-the art root-finding algorithm [109], that uses complex

arithmetic, has been adapted for this purpose. The routine is based on Laguerre's method that

guarantees convergence to a root from any starting point. In the implementation of the root-finder,

the numerator and denominator coefficients are placed in a complex vector, and similarly the

program will return the polynomial roots in another complex vector. After the polynomial roots

have been found, the next stage in the synthesis procedure is the cell mapping process.

73

4.1.2 Filter cell mapping

The cell mapper identifies the pole and zero structure of the transfer function and translates high

order filter descriptions arising from LTF constructs to first and second-order (biquad) filter cells.

This stage must be preceded by the root-finding process, as the mapping is based on the roots (the

poles and zeros) of the filter transfer function. The cell mapper identifies four types of first-order

and second-order filter structures as shown in Table 4.1, and will also map a high-order transfer

function into first-order and second-order sections ofthe four types of filter cells.

Filter cell type Transfer function H(s)
151

- order lowpass 1
--
s+a

2nd-order type 1 (bandpass) s+a

S2 + bs + c
2nd -order type 2 (lowpass) 1

S2 + bs + c
Highpass s+a

Table 4.1 First- and second-order constructs used by the cell mapper.

Although the functionality of the cell mapper can be expanded to include the automatic

identification of other type of first- and second-order filter cells, it is sufficient for the purpose of

demonstration to use only the four types listed in Table 4.1. The implementation of the cell mapper

is shown in the flow chart of Figure 4.4.

Two examples of filter cell mapping are shown in Figure 4.3. In Figure 4.3 (a), which has a

root in the numerator and a pair of complex conjugate roots in the denominator, the description is

mapped to a biquad filter cell of type 1. Figure 4.3 (b) shows a section of the VHDL-AMS

description that indicates that the filter has no root in the numerator, and two pairs of complex

conjugate roots in the denominator. As shown in the flow chart in Figure 4.4, this structure will be

mapped to two sections ofbiquad filter type 2.

High-order filters are commonly implemented as cascades of first-order and/or second

order sections. Therefore, to proceed with the synthesis of high-order filter such as that of Figure

4.3 (b), cascade design techniques [2], such as pole-zero pairing, section ordering and gain

distribution must be applied, but such techniques have not been implemented in the synthesiser

described here.

74

architecture transfer of filters is
constant w:real:=6.283e9;
constant q:real:=20.0;
constant a:real:=w/q;
constant b:real:=w*w;

begin

constant num:real_vector:=CO,a);
constant den:real_vector:=Cb,a,l.O) ;

vout == vin'LTFCnum,den);
end architecture;

constant num:real_vector:=Ca);
constant den:real_vector:=Cb,c,d,e,l.O);

(a)

(b)

A 2nd order filter type 1 :
(5-a)/(5*5 + bs + c)

A 2nd order filter type 2:
1/(5*5 + b5 + c)

A 2nd order filter type 2:
1/(5*5 + b5 + c)

Figure 4.3 Examples of filter mapping for higher filter order.

75

Main loop: go through
th e roots of

denominator and
numerator

Order of den >=
num?

Yes

Check size and
content of vector

Full?

No

maginary part on
denom inator root

Yes

root in th
numerator & a

root in the
enominato

No

no root on the
num erator

No

exit

Yes

No No

N u m erator

Yes

highpass

Yes

biquad type 1

Yes

biquad type 2

Figure 4.4 Flow chart of the filter cell mapper algorithm.

low pass

76

4.1.3 Cell realisability check

This stage is where filter information from both the DAE and LTF construct is received and

evaluated. As mentioned, the main purpose of this stage is to determine whether the synthesis

procedure can proceed to the next stage, by checking the filter information against the available

topologies in the analogue filter cell library. The topologies in the cell library are characterised by

the filter type (lowpass, bandpass etc) and filter order. The operational transconductance amplifier

(OTA) cells which are the main building blocks of the analogue filer topologies have unity gain

frequency in the range of several GHz. Hence the maximum frequency of operation for any

analogue filter under synthesis is limited to 1 GHz. Following this, the main specifications that

need to be derived from the DAE or LTF filter information is the filter type, order and frequency of

interest.

For certain type of analogue filter specification, such as the second-order DAE constructs

such as those described in Section 3.3.1, and second-order lowpass, bandpass and highpass LTF

filter construct written as in Equation 4.1, cell parameters such as the gain, cut-off frequency and Q

factor are derived to determine realisability.

N(s)

D(s)

where kl, k2 and k3 are constants, 0)0 is the natural frequency, and Q is the Q factor.

(4.l)

For other types of LTF construct not being written in the form of Equation 4.l, the filter

order is known by inspecting the order of the denominator of the transfer function, while other

specifications such as the filter response type and frequency of interest is known by constructing a

magnitude frequency response curve of the filter. Having said this, the method of constructing the

frequency response together with knowing the filter order can be used for any type of an LTF filter

construct, including the one having the form of Equation 4.1. Referring to the diagram showing

Synthesis Procedure A in Figure 4.1, the generalised LTF construct follows Route B, where cell

realisibility check is done after the performance model is constructed. Route A is taken if the L TF

construct is in the form of Equation 4.1. For Synthesis Procedure B of Figure 4.2, the performance

model is constructed before the cell realisibility check is carried out, hence assuming the filter

information in a generalised L TF form.

Figure 4.5 shows the realisability check for a DAE construct written in the form introduced

in Section 3.3.1. Whereas the flow chart in Figure 4.6 illustrates a similar method for such LTF

constructs.

77

DAE second order
construct

Figure 4.5 Filter parameters calculation and checking for a second-order DAB construct.

78

L TF second order construct
H(s)= N(s)/O(s)

a==1 ?

Yes

No Oenormalise O(s) and
::-----1~, N(s) by dividing all

coefficients with a

x=y=p=O?

No

x=z=R=O?

No

Yes

Yes

Yes

Low pass filter
Gain = z

Band pass filter
Gain = y

O(s) == sl\2 + Ps + Rs
y=P=z=R=O? >-----1~

High pass filter
Gain =x

Frequency = [sqrt(R)](1/(2pi)) ~-----'
Q factor = [sqrt(R)]/P

Filter type determined by
coefficients in N(s)

N(s) = xsl\2 + yPs + zR

No

ERROR status
No heck range fo

~--< each parameter.
OK?

Yes

OK status

Figure 4.6 Filter parameters calculation and checking for a second-order LTF construct.

4.1.4 Construction of performance model

The aim of this step is to derive magnitude over frequency data for the analogue filter from the

existing information. It is used in the optimisation stage, as it becomes the ideal or target

performance to be achieved by the filter. The performance model can be represented in two forms:

• Measurement targets, where the targets are used to inspect the output ofthe AC simulation

results of HSPICE, and to calculate certain criteria that defines the specification, for

example the Q factor of a bandpass response.

• COllstructioll of ideal curve, which is the filter's frequency response III terms of the

magnitude versus frequency.

The information obtained from either the DAE or LTF construct is sufficient to build the

performance model for optimisation. This is especially true for an LTF construct, where the ideal

curve of the frequency response is derived directly from the transfer function. A set of frequency

points that span over the range of the frequency of interest is selected, and the magnitude at each

point is calculated.

4.1.5 Topology selection

In the present implementation of the synthesiser, the topology selection stage is done manually by

the user, where the user selects up to 10 filter cells from a list suitable for the specification. As

79

mentioned before, the user is presented with the filter type and order. The user inputs the selected

topologies to the cell optimisation stage. This is shown in Figure 4.7.

Filter specification
User selects up to 10

topologies
I List of filter topologies in the IHI
I filter cell library .

L-________ ~--------~

HSPICE netlist of the best
filter topology Architectural optimisation

Figure 4.7 The process of selecting filters topologies for optimisation.

In this research, an analogue filter library has been developed for integrated second-order

and fourth-order lowpass and bandpass filters for frequencies of up to 1 GHz. The topologies of the

filters and its descriptions are listed in the file 'TopoList.txt', which the user will be asked to

inspect. The topologies that the user selects must be saved in the file 'Se1ectedTopo.txt'. The

program that does the architectural optimisation process will parametrically optimise each user

selected topology, and will finally select the best topology. The topic of architectural and

parametric optimisation is discussed later in this chapter in Section 4.3.

4.2 Comparative study between synthesis procedures

Synthesis Procedure A and B are used to synthesise a fourth-order lowpass Butterworth filter that

has a cut-off frequency at 1 GHz. The VHDL-AMS specification of the filter is given as follows:

entity filter is
port (quantity yin: real;

quantity vout: out real);
end entity filter;

architecture transfer of filter is

begin

constant a:real:=4.158ge-10;
constant b:real:=8.6483e-20;
constant c:real:=1.0535e-29;
constant d:real:=6.4162e-40;
constant num: real_vector:= (1);
constant den: real_vector:= (l,a,b,c,d);

vout == vin'LTF(num,den);
end architecture;

where the original transfer function of Equation 4.2, taken from filter tables [108], is denormalised

to 1 GHz.

1
R(s) = --------::-------::---:-

1+2.6131s+3.4142s 2 +2.6131s 3 +S4
(4.2)

80

Following Synthesis Procedure A, this LTF construct is then taken through the root finding

and then filter cell mapping process. The root finding process evaluate the LTF construct into two

sets of pole-zero pairs in the form of complex conjugates (Equation 4.3), which are mapped into

two second-order lowpass filter sections, Hls) and H2(S) of Equations 4.4 and 4.5. The required

fourth-order filter can then be obtained by cascading these second-order section of Hls) and His).

The cascading order is Hls) followed by H2(S) for the topology called Cascade H1H2, and H2(S)

followed by Hls) for topology Cascade H2H1•

(4.3)

(4.4)

(4.5)

After obtaining the transfer function for each second-order section, following Route B of

Figure 4.1, the performance model in the form of an ideal curve is generated for each section. The

topology selected to realise the second-order lowpass specification is an OTA-C filter, where the

OTA cell is implemented using the wide-swing configuration. Then, both second-order sections are

individually optimised using the three-tier parametric optimisation algorithm, where the

performance models for each section is shown in Figure 4.8 and Figure 4.9. The details of the

analogue filter topology will be explained in Chapter 6, while the detail on the three-tier algorithm

is in Chapter 5.

81

1.6
a.>

1.4 "0

:E 1.2 c
OJ
ro
E 0 .8

"C
a.>
en

CO 0 .4
E 0 .2 '-
0
Z 0

0 2 3
Frequency (GHz)

4 5

Figure 4.8 The performance model implementing the transfer function HI(S).

a.>
"C :e
§,0.8
ro
E 0 .6
"0
.~ 0.4 +-.......,.",r-="'..."",.~,..>...;-~;.".:.;='-'--'C-...,.".-,=-.."..,..~-'---l
ro
E 0.2
'-o
Z 0 +--~"'--,,-;-'"'-

o 2 3 . 4 5
Frequency (GHz)

Figure 4.9 The performance model implementing the transfer function H2(S).

The three-tier optimisation returns an error figure , called errto1a / , which indicates how close

the actual performance matches the ideal response. The lower the error figure, the better the result.

After each second-order section is optimised, both sections are connected in cascade and the error

figure for the resulting fourth-order lowpass filter is calculated. The two possible ways of

combining the second-order filter sections into a fourth-order filter, as mentioned earlier, gives the

following result in Table 4.2 .

Topology Error figure
Cascade HlH2 0.31461
Cascade H2Hl 0.30603

Table 4.2 Error figures for the cascades of second-order sections of HI and H2.

On the other hand, following Synthesis Procedure B, the VHDL-AMS filter description of

the fourth-order lowpass filter implementing the denormalised transfer function of Equation 4.2 is

taken to produce an ideal curve, as shown in Figure 4.10. Then, the topology of a fourth-order

lowpass OTA-C fi lter using the wide-swing configuration is selected for implementation. The

82

topology, Cascade 1, is parametrically optimised using the three-tier optimisation, which fmally

gives an error figure, errtotal, of 0.30260, which is lower than those shown in Table 4.2. The AC

waveforms of the three cascade circuits - Cascade H j H2, Cascade H2H j and Cascade 1 - against the

ideal fourth-order 1 GHz lowpass response are shown in Figure 4.11. It can be seen that Cascade 1

closely matches the ideal response and outperforms the other two configurations.

Q)
"t:l
::l
:::
c:
g>0.8 ~,.-::':;--

E 0.6
"t:l
Q)

.~ 0.4
ro
E 0.2
o
Z 0 +---~""-

o 2 3
Frequency (GHz)

4

Figure 4.10 The performance model for the fourth-order 1 GHz lowpass Butterworth filter.

As mentioned in Section 4.1.2, cascade design techniques are used in the classical analogue

filter synthesis methodology. The results of this synthesis example using Synthesis Procedure A

shown in Table 4.2 and Figure 4.11 confirms one aspect of this tec1mique, where the second-order

sections should be arranged so that the section with the flattest magnitude of frequency, i.e. having

the lowest Q factor should comes first. Using the information of the roots ofthe transfer function of

Equation 4.3, the values of the Q factor can be derived using the following relationship between a

and /3, with OJo and Q:

(4.6 (a) and (b»

which gives Ql=1.307 and Q2=0.541. Thus, the synthesis results in this example confirms to the

anticipated outcome of using this technique, that the topology Cascade H2H j is better than Cascade

H j H2.

From the presented results and the discussions in this section, it is obvious that Synthesis

Procedure B produces better result using less computational effort than Synthesis Procedure A. In

Synthesis Procedure A, the extra steps of finding the roots of the transfer function, mapping filter

cells and individually optimising the second-order sections are not worth the effort as the results

produced in such carefully defined steps are still inferior. In contrast, in Synthesis Procedure B

83

most of the computational burden is given to the parametric optimisation algorithm, which is a

fully-automated process. Also, as will be seen in Case Study 3 in Chapter 6, there exist other type

of topologies other than cascade circuits that can realise the required specification, thus, it is not

necessary to limit the synthesis procedure to tailor towards one type of implementation only.

Synthesis Procedure B is more general, and although it might be argued that the root

finding and cell mapping procedure can be used after the topology selection stage specifically for

cascade type of circuits, it has been shown earlier in this section that the parametric optimisation

process is a powerful yet simpler process that is able to find a better result rather than a specialised

methodology for cascade design. Therefore, Synthesis Procedure B is implemented in the final

version of the work and the root finding method (Synthesis Procedure A) was abandoned.

The implementation of Synthesis Procedure B in FIST recognises only LTF constructs in

VHDL-AMS code, not time-domain descriptions. The reason for this is because, it is very rare to

find time-domain specifications of analogue filters, and the numerous filter specification found in

filter tables are for filter transfer functions. Also, any linear and time-invariant differential

algebraic equations can be easily transformed to a transfer function using Laplace transformation

method.

, ,

.-...... - - - - =;;;."-;~ .. ----~.:;--------------------::~---------------------- ---
.. ,."~.,,,

.... : Cascade 1
........ : Ideal

-5 __ ___________ .~::::.,,:}-----.:.~--..... __________ __ _________ __________ _ _______________________ _

OJ
~

·10

.gj ·15

:E
c
OJ
ro

::2: .20

i C"",de H2H1 ~, ..• ,.. . •• , •.• ,.,

: '::::,':: :':::~::':::::::::::~:':::::::,': :::::: ::::::::,,::':,,1::: :,,'~:~'~~e:;~;~,'::::::"',~:"'>::,: .. ~~'~::
·35

I ,

~=======================T======================~,
0.5g 19

Frequency (log) Hz
2g i

Figure 4.11 HSPICE AC results for the comparison between Synthesis Procedure A and Synthesis
Procedure B.

84

4.3 Architectural and parametric optimisation

In the topology selection process of the synthesis methodology explained in the previous section,

the user will select from the cell library, a set of filter circuits that can perform the specified

functionality. During the last stage of the synthesis procedure, the optimisation algorithm will

evaluate and optimise each candidate and will finally select the best circuit. This process is called

architectural optimisation. This section outlines the architectural optimisation methodology, and

other aspects concerning the parametric optimisation, which are the cost function formulation and

evaluation.

4.3.1 Architectural optimisation

Architectural optimisation is performed by analysing various filter topologies, optimising them

parametrically using the selected performance criteria and finally choosing the best one. There are

three key aspects that must be addressed: 1) cost junction, 2) parametric optimisation engine, and

3) evaluation method. In our case the cost function that models the required performance is based

on a weighted combination of the frequency response accuracy and power consumption. The

desired frequency response is computed from the filter specification as explained in Section 4.1.4.

The optimisation engine is based on a three-tier optimiser that is described in detail in Chapter 5.

The evaluation of the cost function is performed for each candidate topology by running a

full HSPICE AC analysis within each iteration of the optimisation loop. The results are then used

by the optimisation engine to find a direction in the parameter space leading to a lower value of the

cost function. This process is iterated for each topology until a termination condition is met, then

another candidate is evaluated using the same method.

This algorithm is illustrated in Figure 4.12, where the performance model is the AC

response data, which is used in the three-tier optimisation process. This data can either be passed

directly to the parametric optimisation engine in the form of a data file, or can be embedded in the

netlist of the analogue filter topologies. A set of user-selected filter topologies obtained from the

filter library is passed to the architecture evaluator, which acts as a mediator or controller that gives

the netlist of the filter topology to the optimisation engine to be parametrically optimised one after

another. The three-tier optimiser returns the cost function value for each topology to the

architecture evaluator which keeps track of this information. Finally, after each topology has been

optimised, the architecture evaluator selects the topology with the lowest cost function. The pseudo

code for the architecture evaluator is given in Figure 4.13.

85

AC response data

I ...

Filter Topologies

t
Library of filter

topologies

Three-tier
optimisation

Filter Cost
netlist function

Architecture
Evaluator

Filter topology with
lowest cost function

Figure 4.12. The process of architecture optimisation of analogue filter topologies.

Architecture evaluator

Input: Topology file netlist names.

1. For each topology:

Call three_tier _ opt()

Read the results file

Log the results that give the smallest cost function (CF)

2. Check the list of the best cost functions for each topology.

Output: the best topology and its CF.

Figure 4.13 Pseudo code for the architecture evaluator.

4.3.2 Parametric optimisation

In this section, Case Studies 1 and 2 that are introduced in Chapter 3 are used to illustrate practical

details of the analogue filter synthesis process from behavioural specifications. As the specification

is for high-frequency, and the implementation is intended for on-chip integration, the underlying

86

filter cell topologies are selected from suitable work reported in literature. This section

demonstrates how the filter information extracted from the analogue filter's VHDL-AMS

description is used to fine tune the response of analogue filter hardware. In Case Study 1, the direct

calculation method for bandpass filters is presented, while Case Study 2 presents a curve-fitting

based optimisation. The parametric optimisation methodology is first applied to a second-order LC

bandpass filter with a silicon inductor (Case Study 1), and a fourth-order vertical cascode

Chebyshev lowpass filter (Case Study 2). Both filters are intended as filter cells that may be used as

the building block of higher-order filter topologies.

Both methodologies are employed within a parametric optimisation process that includes

an HSPICE simulation in the optimisation loop. It is imperative to include a full-HSPICE operating

point and AC analysis in the evaluation strategy of the parametric optimisation especially because

the analogue filter is intended for integrated high-frequency application. Firstly, integrated circuits

are implemented by submicron devices where short channel effects can not be easily modelled.

Therefore, transistor models that are based on BSIM 3v3 [110] that accurately models such

behaviours must be used to obtain accurate simulation results for integrated circuits. Secondly, for

high-frequency applications, the transistor models of the submicron devices should be able to

predict the MOSFET behaviour at such frequencies. It is deduced from literature [111] that the

BSIM 3v3-based transistor model is suitable for frequencies up to 1 GHz. Therefore by using

BSIM3v3-based foundry-supplied transistor models for circuit netlists to be simulated by the

industry-tested HSPICE simulator, the final result can be accepted with much confidence.

The parametric optimisation process is shown in Figure 4.14. Selection of filter circuit,

circuit variables and the maximum and minimum range for the circuit variables are done by the

user. The user also supplies the initial values for the circuit variables that must be within its

predefined range. The large shaded box in Figure 4.14 represents the parametric optimisation

process loop that runs an HSPICE simulation. The values of the circuit variables, or parameters of

the components in the circuit are randomly assigned within the predefined boundary. The process is

repeated until a satisfactory result is achieved.

87

(1)

VHDL-AMS behavioural
specification

Define specification in
terms of p~rformance
. model

Select initial values for the
circuit variables

Run HSPI CE simulation:

(2)

Select a filter circuit

Select circuit variables and
their ranges

Initial values & cost
function

Figure 4.14 Parametric optimisation of an analogue filter circuit.

There are four dark boxes numbered (1) to (4) in Figure 4.14. These represent crucial processes that

are demonstrated using the two filter topologies in the case studies, and are explained as follows:

Box (1) represents the process of translating the specification to a performance model, and

has been previously explained in Section 4.1.4.

Box (2) represents the process of selecting the circuit variables in the filter circuit to be

optimised by the optimisation procedure. This is done by the user. However, the number of

parameters to be optimised, as well as the maximum and minimum range for each variable must be

carefully selected.

• The selected circuit variables are the ones that have the most influence on the performance

of the circuit.

• The upper and lower bounds for the parameters are realistically chosen for practical

integrated circuit implementation. This is also important because the next step in the design

cycle is to produce the circuit's layout and finally the fabrication of the circuit on chip.

88

Box (3) represents the process that finds the cost function value in each optimisation iteration.

This is done by comparing the simulation results of the full HSPICE AC analysis against the

performance model generated by the process of Box (1). The strategy to evaluate and produce the

cost function depends on the type of the performance model:

• Measurement targets is utilised by a special-purpose programme that directly calculates the

specification from the simulation output. An example of this is the direct calculation

method which is used for bandpass filters that will be explained in Section 4.3.2.1 and

demonstrated in Case Study 1.

• If the performance model is a frequency response curve or data for magnitude versus

frequency, the curve-fitting algorithm, as will be detailed in section 4.3.2.2 can be used.

This is demonstrated with Case Study 2.

Box (4) shows the process of automatic generation of the values for the circuit parameters

during optimisation iteration. As the two case studies presented in this chapter demonstrate work

done prior to the implementation of the three-tier optimisation, the circuit parameters are generated

stochastically.

The rest of the section is organised as follows. Sections 4.3.2.1 and 4.3.2.2 and present

Case Study 1 and Case Study 2 respectively, including the experimental results. For Case Study 1,

the direct calculation method, which is specific for a bandpass function is presented. For Case

Study 2, the curve-fitting method is explained. The conclusions of the investigations carried out in

Sections 4.3.2.1 and 4.3.2.2 is offered in Section 4.3.2.3.

4.3.2.1 Case Study 1: direct calculation method

entity filter is
port (quantity yin: real;

quantity vout: out real);
end entity filter;

architecture behavioural of filter is
constant Q: real:= 50.0;
constant frequency: real:= leg;
constant w: real:= 2.0*3.l42*frequency;
constant coeffl: real:= Q/w;
constant coeff2: real:= 1.0;
constant coeff3: real:= Q*w;

begin
vin'dot == coeffl*vout'dot'dot + coeff2*vout'dot +
coeff3*vout;
end architecture;

The filter specification for Case Study 1 is a 1 GHz second-order bandpass filter with a Q

factor of 50. The filter is described in VHDL-AMS as shown above. For a high-frequency bandpass

filter suitable for integrated implementation on silicon, the filter topology that is selected for the

specifications of Case Study 1 is based on an LC Colpitts oscillator. The circuit includes two

capacitors, a spiral silicon inductor and an n-type MOS transistor.

89

Recall from Box (1) and Box (3) in Figure 4.14 regarding the performance specification

and evaluation method for the parametric optimisation process. The performance model for this

case study is expressed as measurement targets. As the type of the filter is a bandpass filter, and the

required frequency and Q factor is known, this information are used in the direct calculation

method, that will be described next.

The flow chart in Figure 4.15 shows the implementation of the strategy to evaluate the

accuracy of the results from HSPICE's AC analysis, based on direct calculation. This direct

calculation method is applicable for the evaluation of any bandpass filter, either to find the required

Q factor at a given frequency, or to investigate the maximum Q factor achievable at the frequency

of interest.

As shown in Figure 4.15, the first step is to produce an HSPICE netlist of the circuit under

evaluation, and also specifying the frequency and Q factor of interest. Then the counter to count the

number of iteration is set. The next step is to run an HSPICE AC analysis on the netlist of the filter

circuit, and upon completion, the printout of the magnitude of the circuit's output in HSPICE's

result listings file is inspected. The Q factor is calculated by scanning for the maximum amplitude,

Amax, and the frequency of this maximum amplitude, Fmax, which is the centre or mid-band

frequency for a bandpass filter. If Fmax lies within the range of frequency of interest, the following

stage proceeds to find the -3dB frequencies. Now, the Q factor of the response can be calculated.

If the goal of the process is to find the highest possible Q factor, the calculated Q factor is

logged if the value is larger than a prescribed value, BestQ. BestQ then takes the current Q factor

value. The counter is incremented and another iteration is started. The process of generating a new

set of parameters for the netlist, simulating and evaluating is repeated until the loop terminates. If

the goal is to find the maximum Q factor, the number of HSPICE iterations is specified as MAX

ITER in the flow chart. The termination condition is when the default maximum iteration value has

been reached, and the log file contains the value of the best Q factor.

To find a specific Q factor, the iteration loops terminates either when the value found is

deemed sufficiently close to specification or when the count has arrived at the default maximum

iteration number.

This method is used in Case Study 1, where the specification is to get a bandpass response

at 1 GHz with Q factor of 50. The maximum Q factor achievable by the filter circuit is also

investigated. Next section introduces the circuit that is used to implement the filter specification of

this case study.

90

No

Specify the frequency
and Q factor of

interest

Launch HSPICE

Scan the N frequency points for
the maximum amplitude, Amax

Note the frequency at Amax,
i.e. Fmax

Yes

Find F1 and F2, where the amplitude is
O.707*Amax on the left and right of Fmax

Q factor = FmaX/(F2-F1}

No
hecking fo

maximumQ
factor?

Yes

No Q factor>
BestQ?

Yes

BestQ = Q factor,
and log filter

parameters at
iteration j

Yes

(_ Finish._J

No
Q factor within

range?

Yes

Log filter
parameters at

iteration j

Yes

(Finish)

Figure 4.15 Flow chart for the direct calculation method.

No

91

4.3.2.1.1 Q-enhanced LC filter based on Colpitts oscillator

The use of active LC circuits for integrated high-frequency applications that uses spiral inductor on

silicon has been proposed for its superiority on achieving larger dynamic range for wireless

transceivers [112, 113]. Spiral inductors have significant losses and, for a bandpass filter, this

results in a very low Q factor. Hence, a Q-enhancement method is used to cancel the effect of these

losses by introducing a negative resistance [112, 113].

The second-order filter cell selected for this case study is based on a very effective,

Colpitts-type LC oscillator [113] whose positive feedback provides a mechanism for Q

enhancement. The circuit is shown in Figure 4.16. Inductor L is a spiral inductor whose losses are

modelled by the series resistor Rs. More accurate models have also been described in literature

[112, 114-117]. Although it is possible to construct a higher-value spiral inductor, it is practical to

choose a value of less than 10nH [117]. Therefore, for this specific case where the frequency of

interest is at 1 GHz, the inductor is chosen to be 8 nH, and the corresponding loss resistance Rs is

50 [115].

;--------m---' V DD I I

: Rs :
I I
I I
I I
I I
I I

/
I I

: : R
I I
I I
I I

: L :
I I

Spiral Inductor I I
I I
1 ______ -- _____ 1

V
OUT

M1

C1

I BIAS

T C2

--........ -vss

Figure 4.16 Colpitts circuit producing a Q-enhanced bandpass behaviour at output VOUT.

The centre frequency fc is determined by the values of both capacitors in series, CT,

together with inductor L, as shown in Equations 4.7 and 4.8. Capacitors Cl and C2 act as a voltage

divider, where the amount of feedback is controlled by the value of k (where k = Cl/C2). The Q

enhancement is determined by the feedback provided by the capacitors, and the transconductance

(gm) provided by transistor Ml. The transconductance value is controlled by the current flowing

into the transistor from current source IBlAS, and the width W of the transistor Ml. This Q-

92

enhancement mechanism provides a negative resistance of (- 1/ gm) which cancel out the losses of

the inductor.

C = ClxC2
T Cl+ C2

The inductor Q factor is defined as follows:

(4.7)

(4.8)

(4.9)

With L = 8 nH and R = Rs = 5 n, the Q factor is about 10.1. If no Q-enhancement method is used,

from simulation, the Q factor of a lossy LC circuit without Q-enhancement atfc = 1 GHz is 10.2,

as shown in Figure 4.17.

54 --- ---------------------------- --- -- - -i - -- ----------------------- ---------------------------------

53 - -- - --- ------ - -- - -- --- - -- ----- -- - --------- ----- -- -------- -- --- - --- - -- - - -- --+------- -- ------ ---

52 -------- -------- -------- ---- - -- ------ -------- - ------ ---- - ---- - - --- -- --- - --t --

:: :::-:::-::::::::::::::r:::::::::::::-::-::
49 --- ---------------------t---------------------- --------------------------------------

]:: :::-::::-:::::::::::::::::::::::::r::::::::::::::::::::::::-:::-::::::::::::::::::::::::::::::
46 --- ----------------------------------t----------------------------------- -------------------------

45 ----------------------------------- ---------------------------------------1-- --------------------

44 ----------------------------- ---t-- --------------

43 -------------- --------- ------ ------------------------------ ------ ---- ----- t-- -- --------
42 ---------------- ---r---

41 --------- --t---

I
19

Frequency ('og) [HEATZ)

Figure 4.17 HSPICE simulation result for the lossy LC circuit without Q-enhancement; the graph
covers the frequency range from 0.8GHz to 1.2GHz.

93

4.3.2.1.2 Parametric optimisation and experimental results for Case Study 1

From the simulation results in Figure 4.17, it has been shown that the Colpitts circuit need to be

parametrically optimised. As explained, the circuit parameters that contributed to the Q factor and

its enhancement in an LC circuit are the capacitor values, the bias current and the transistor width.

At the same time, the values of the capacitors and the inductor determine the frequency of the

bandpass response (Equation 4.8). There is also another optimisation constraint - the inductance

value of the spiral inductor- which in order to minimise the losses and parasitic capacitances,

should be kept to a minimum [117]. Therefore, in this case, the inductance was kept at a constant

value of 8 nH. For the circuit to resonate at 1 GHz, the value of the series capacitance CT is chosen

to be 3.16 pF. The values ofC1 and C2 are formulated as shown in Equation 4.10. Therefore, only

the value ofk is optimised.

C1=CT ·(1+k), C2 = C . (1+ k)
T k '

0.01 :S; k :S; 0.99 (4.10)

The objective for the parametric optimisation task is to firstly prove that the Q factor of the

circuit can be improved, and therefore the best Q factor attainable within a specified number of

iterations is required. Then, the optimisation aims to achieve the specified Q factor of 50. To be

able to do this, the results of the AC analysis must be examined each time a new set of parameter

values are assigned. The method of evaluating the accuracy of the AC response is based on direct

calculation of the specifications from the HSPICE result file and has been described in the previous

section. The circuit variables for the HSPICE netlists in this case study are randomly generated.

The HSPICE netlist for the Colpitts circuit in Figure 4.16 is shown in Figure 4.18. The transistor

model is provided by MIETEC for the 0.351lm technology. The allowed element value ranges are

constrained as shown in Table 4.3.

Cl N2 N3F 5.024261e-12
C2 N3F N4 8.562172e-12
Ml N2 N5 N3F N4 nmos0553 L=O.35u W=Wl
II N3F N4 DC ISlAS
VIN N5 0 DC OV AC IV
L

Rs
R
VDD
VSS

N7
N7
N2
Nl
N4

N2 8nH
Nl 5
Nl 10k
0 3.3V
o -3.3V

Figure 4.18 HSPICE netlist of the Collpits oscillator of Figure 4.16.

94

Parameter Minimum Maximum
k 0.01 0.99
WI 0.5 J.lm 500 J.lm
IBIAS 0.1 rnA lOrnA

Table 4.3 Parameters selected for optimisation in Case Study 1.

Table 4.4shows the summary of the optimisation result for up to 118 iterations. Iterations

beyond the 43 rd one did not show a noticeable improvement of the Q factor. Therefore it can be

concluded that for this particular Colpitts configuration, the largest Q factor that can be achieved is

approximately 217, which the optimiser found at the 43 rd iteration and took 74 seconds to find.

Figure 4.19 shows the HSPICE simulation result for a bandpass response having a Q factor of217.

The experiment is done on a SPARC machine using SunOS version 5.8.

CPU Time (s) No. of iterations Q Factor
0 0 14.5
5 1 23.3
9 4 31.0
27 11 33.0
49 27 39.4
53 30 48.2
74 43 217.0
209 118 217.1

Table 4.4 Experimental results for Case Study 1, using a purely stochastic method in generating the
filter parameters, and optimising to get the best Q factor.

For the case of optimising the circuit for a Q factor of 50, the results can also be seen in

Table 4.4 as well. At the 30th iteration, the Q factor was calculated to be 48.2, which is within the

acceptable range. Therefore the stochastic search method was able to find an optimal set of

p~rameters within 53 seconds. Figure 4.20 shows the result for a bandpass response with Q factor

of about 50.

95

j i

: l-:-:::-:::~::~::::::::::::::::~--:::-::::::::-:-:~:::::~::::::-:- f::::::::::~~_:::: ::::: :~::::::::::_ :~:: :::::::_~ ,
40 j --- -------------------- ---
35 j --- ! --- '

30 j -- -J--

i 25 j -- ---1-- --
0: 20 j ___________________________________ _________________________________ _ -----1----- ___ _

15 j ------------------- --- ------------J----------- ----- --
1 1

1 0 ~ ---------- -- --- - ---- - -- --- - - ------ -------- --- --- ---- ------------ --- ---------~ - - - - - --- - - - - - -- ---- - - ------ - ------- -------- ---- - -- - - -- - - ---

1 i

: 1-::-:::---::--::: -~---::---::-:---::-~~--::: -r--::::--: ---::::~::-----::::: --::::
I

19
F,equency IlegJ (HERTZJ

Figure 4.19 HSPICE simulation result of the filter optimised for the maximum Q factor (Q = 217);
the frequency range is 0.8 GHz to 1.2 GHz.

38 ---"---

36 - - ------------- -----.-- ---------------.-.- - - - - ----.-.-------------------- - - -r-- ------------------------.--------- ------------------.-----
34 - - - - - - - - ---------- --- --------------- - - - - - - -- --- ---- - ---- -- ---------- - - -- - - - -r --- ------------------------ -- -------------------------------
32 - - - - - -------------------------- ---- -------------------------- ----------- - - --i---- ------------------------- -- ----------------------------- I

30 -- ---- - - ---- -- --.----------------------. -- - - - -----. ---------.---------- - -- --~- - - --- ------.------------- ------ --.-- - ---. ---- - - - ------- ----

28 - - --- -- ------------ ------------------ -- ------------------------------ -------~- ------- ----------------------- -------- -- ---- ---------------

26 - - --- ------------ -- ---------" ---- ------ --------------------- - -- - - - - - - -- --- ------ ---------

,
] 24 -- ---------.- ---.-----.----. ------.-------- -------------------.- --------.-- -r-------.----- ------- --- ---------- --------. ------------------

: ::--:::-::::::=:::::::r::::::::::::::::-::::::::::::::-::::::::::::::::::::::::
18 - - -- - - - - ------------------------------- - - ----- --- ------ --------------------r--------------------------- --------- -----------------------
16 - -- ---------------------- ---------- - - - ---- ---------------------------- - - ---i---------------------------------- -------------------------
, 4 ---- - - - - -- ----- ------ ------------ ----- - - - - - - -------------------------- -- ---r -- -- ---------------

:: --- :::::::=:::::::::: -::::: :=::-:::::::::::::::::: :::r::: ::::::::::::::::: :::::::: ::: ::::::: ::--:::
19

F,equency IlogJ IHERTZ]

Figure 4.20 HSPICE simulation result of the filter optimised for the Q factor of 50; the frequency
range shown is 0.8 GHz to 1.2 GHz.

96

4.3.2.2 Case Study 2: curve-fitting method

Case Study 2 is of a fourth-order lowpass Chebyshev filter with pass-band ripple of 0.5 dB. The

coefficients that are taken from a filter table [108] are used to build the transfer function, which is

implemented in VHDL-AMS as shown below. This filter is de-normalised to cut-off frequency of

1 GHz. The VHDL-AMS code is used to generate the transfer function's frequency response curve,

as shown in Figure 4.21 . This curve is used by the curve-fitting method that is described next.

entity filter is
port (quantity Yin: real;

quantity Yout: out real);
end entity;

architecture transfer of filter is
constant frequency: real:=le9;
constant w: real:= 2.0*3.142*frequency;
constant w2: real:= w*w;
constant w3: real:= w2*w;
constant w4: real:= w2 *w2;
constant a:real:=O.3579*w4;
constant b:real:=O.3791*w4;
constant c:real:=1.0255*w3;
constant d:real:=1.7169*w2;
constant e:real:=1.1974*w;
constant num: real_vector:= (a);
constant den: real_vector:= (b,c,d,e,l.0);

begin
Yout == Yin ' LTF(num,den);

end architecture;

1.2

~ 1.0
::l -.~ O.S
C\l

E 0.6
-a
(l)

~ 0.4
C\l
E o 0.2
z

o
1e7 1eS 1e9

Frequency (Hz)

Figure 4.21 The ideal curve for Case Study 2.

1e10

The goal of an optimisation problem in general is to minimise an objective function or cost

function. The most common measure for the cost function is the difference between some desired

characteristic and its actual value. In this application, the cost function is defined as the least

squares error calculated from the ideal filter response and the HSPICE simulation result ofthe filter

circuit. The error is expressed as follows:

97

1 N 2

fCC) = - IUdeaZk -resultCC)k) ,
N k=l

l~k~N (4.11)

where C is the set of optimised parameters,f(C} is the cost function, N is the number of frequency

points within the frequency range of the simulation of the HSPICE AC analysis, ideah and

result(C}k are the magnitudes of the transfer function at each point k, obtained by calculation and

HSPICE simulation, respectively.

Thus, the cost function aims to produce a netIist for which the HSPICE simulation most

closely matches or fits the curve of the ideal response. The more the simulated curve fits the ideal

curve, the smaller the difference between the two or error. The user may specify a tolerance value

for I(C} below which the optimisation loop terminates as the error between the desired and

simulated result is deemed small enough. It is implemented using the algorithm shown in Figure

4.22. A note on the method to produce the ideal filter AC response as shown in the flow chart on

the right-hand side of Figure 4.22, is that this is applicable for a filter description using its transfer

function only.

98

Input:
HSPICE

Initialisation: calculate
filter's ideal response

Generate a set of parameter values
and write a new HSPICE netlist

Launch HSPICE

Read the .LlS (HSPICE's result file)
and get the magnitude of the output

waveform at each N point

Compute the cost function, ftc)

ftc) <=
threshold?

Optimised
HSPICE

netlist

Finish

No

Launch HSPICE

Read the .LlS file. Determine

the N frequency points

Calculate IHOw)1 at each
frequency points

Increment count

count == M
ITER?

Yes

Exit

No

Figure 4.22 Algorithm of the curve-fitting parametric optimisation.

99

4.3.2.2.1 Vertically stacked current-mode biquadratic filter

The circuit chosen for Case Study 2 is a vertically stacked current-mode biquadratic filter

implemented around the regulated cascode configuration [118]. It has been selected for its

suitability for integrated high-frequency and low power properties as well as its design simplicity.

VDD

,oo,-t~,~
M4 ~ ,~~JM~

f-<I M5 M55 ~

'l r
VS2 VDD VS2

M1

'----_+-----'~ lin

101
VSS

Q-tuning circuit

(a) (b)

Figure 4.23 (a) A fourth-order lowpass Chebyshev filter, (b) Vertical stacking ofa second-order
regulated cascode.

The circuit in Figure 4.23 (a) is a fourth-order Chebyshev lowpass filter with 1 GHz cut-off

frequency and O.SdB ripple, and is realised by vertically stacking two fully-differential biquad

circuits. Figure 4.23 (b) shows the regulated cascode biquad. In this diagram, the output currents

lout! and lout2 represent the lowpass output for the second-order and fourth-order filter. Bandpass

response can be obtained by taking the output current from the drain of transistors M2. The

regulated cascode biquad is actually lossy as the bandpass current is negatively fed back into the

input terminal and thus gives result to a lower Q factor. To compensate for this loss, a Q-tuning

circuit is implemented using the cross-coupled long-tail pair of transistors M3 and M33 as shown

in Figure 4.23 (a). The Q factor of the circuit can be independently tuned by varying the

transconductance of transistor M3 via 103. Meanwhile, frequency tuning is done by varying the

bias current 101.

Firstly, an example of an un-optimised response will be shown. Figure 4.24 shows the

HSP1CE simulation result of the fourth-order lowpass filter using the original circuit parameters as

in [118]. It can be seen that the circuit produces a high overshoot of almost 7 dB with a cut-off

frequency exceeding 1 GHz.

100

I , I , I I , I I
t I I I I I I I I

7 -------------i------------1-------------1-------------1-------------i------------I-------------1-------------r------------T------------
6.5 -------------;------------1-------------1-------------r------------t------------i-------------l-------------r------------t----- -----

6 -------------1------------1-------------i-------------l------------t------------i-------------i-------------r------------t----- -----
5.5 -------------:------------1-------------(----------1------------t------------(----------1-------------1------------t----- ----- '

4: ~~~~~~~~~~~~F~~~~~~~~~~F~~~~~~~~~~F~~~~~~~~~r~~~~~~~~~~F~~~~~~~~~~F~~~~~~~~~l~~~~~~~~~~r~~~~~~~~~~F~~-: ::::
4 -------- -- ---~-- ----------1-- --- ------- -1-------------r----- ----- --T---- ---- ----1-------------1-------------r------- ----- -~---- -- -- --

3.5 -------------1------------1-------------1-------------(-------------1------------1-------------1-------------(-------------1---- -- ----

J 2: :~::::~~~:~:r~~::::~~~l::::~:~~~:~l~:::::~~~~~~:~::~::::::::T::::~~:::::r:~:~~:~:::r~~~~~::::~:r:::~~::~~~~r: ::: :~~~
1.: :~:~:~:~:~::r~~::::~~~~:F:~~:~~~::~l:::~~:~~~~~::r:::::::~::::r:~:::::::r:::::::::~l~:~~::::~::~::::::::::::r -::: ::::

1 --- ----- ----T------------1-------------1-------------1------------T------------l-------------1-------- -----1------- ----- r- ---- -- ---

~ ;;;:;;:;;;;j;:::;;;;;;j~;;;;;;;;:I;;;;;::::f;:;;;:::;J;::t;;I;;;;;I:-;;;;;;::r;:;;;;:;::;I:;;;;;;:
·2 ________ ----_:-____________ , ___________ --1------------- f------ ----- ---:-------------,--------- ----{ -------------f-------- ----- -:--- ---- ---- -- ;

I
10

I
100

I
lk

I I j I

10k lOOk " llbc
F,equency Oog) (HERTZ)

I I I:
100, 19 109!

!

Figure 4.24 AC characteristic before optimisation using original circuit parameters as in the
reference source[118].

4.3.2.2.2 Parametric optimisation and experimental results for Case Study 2

The curve-fitling methodology described previously is used in this case study. The HSP1CE code

containing the netlist is shown in Figure 4.25 and is simulated on HSP1CE using the device

specifications as quoted in the paper [118]. There are 7 parameters to be adjusted by the

optimisation stage: all the 5 transistor widths and the bias currents (l01 and 103) for transistors Ml

(and MIl), and M3 (and M33). In the netlist, the five sets of transistor widths are marked as WMl

WM5, while the two currents are 101 and 103. Current 1033 has twice the value ofI03. The initial

values and ranges for each parameter are defined in Table 4.5. In each iteration, the values of the

parameters are randomly generated within the stated ranges.

101

mi n6 n14 n7 0 nmos0553 1=O.35u w=wmi
mll n3 niO nB 0 nmos0553 1=O.35u w=wmi
m2 n14 n7 nil 0 nmos0553 1=O.35u w=wm2
m22 nlO nB nll 0 nmos0553 1=O.35u w=wm2
m3 nB n7 nl3 0 nmos0553 1=O.35u w=wm3
m33 n7 nB nl3 0 nmos0553 1=O.35u w=wm3
m4 outl n2 n6 0 nmos0553 1=O.35u w=wm4
m44 outll n5 n3 0 nmos0553 1=O.35u w=wm4
m5 n2 n6 n16 0 nmos0553 1=O.35u w=wm5
m55 n5 n3 n16 0 nmos0553 1=O.35u w=wm5
iol n7 0 de iol
ioll nB 0 de iol
io2 nl n14 de 20u
io22 nl nlO de 20u
io3 nl nB de io3
io33 nl n7 de io3
io333 n13 0 de io33
io4 nl n2 de lu
io44 nl n5 de lu
vsl nll 0 O.3v
vs2 n16 0 O.65v

Figure 4.25 Netlist for fourth-order 10wpass Chebyshev filter.

Parameter Initial value Minimum Maximum
WM1 10e-6 0.5e-6 15e-6
WM2 10e-6 0.5e-6 15e-6
WM3 10e-6 5e-6 15e-6
WM4 82e-6 50e-6 120e-6
WM5 1e-6 0.5e-6 10e-6
101 40e-6 5e-6 80e-6
103 8e-6 1e-6 30e-6

Table 4.5 Parameter ranges for the parametric optimisation of Case Study 2.

The ideal curve which is used in the curve-fitting method consists of 55 points between the

frequencies of 10 MHz and 5 GHz. This means that the value N in Equation 4.11 is 55. The

termination criterion as shown in the flow chart of Figure 4.22 is either when fCc) is smaller than or

equal to a threshold value of 0.05 or if the maximum iteration count, MAX ITER, of 500 is

reached.

The experiment is done on a SPARC machine using SunOS version 5.8. The curve-fitting

optimisation concludes after 500 iterations, with an error figure f(c) of 0.298 that was obtained on

the 87th iteration.. HSPICE simulation waveforms for the optimised fourth-order 10wpass

Chebyshev filter circuit is shown in Figure 4.26.

102

, , , ,

" ~----=~=J-----=~=L-d4---------____ J I I I I I ,
I I I I I I
I I I I I I

~ I ! I 1 : :
'2 : : : : : :

Q) I , I I , I .. I I I I I \ '

0: I 1 I I I I
I I I I 1 ,
I I I I I \ I

-2 -- - - - -- --- - -- - - - -- - -1-------------------- -1---------------------t---------------------}-------------- ------1-----------------\---1-
: : : : : \ :
I I I I I \ ' I I t I I I
I I I I I ,
I I I I I I

: : : : : \ :
I I I I I \ '

I I I I I \' I I I I I I
I I I I I 1 ·4
I i I I I I I

10k 100k 1. 10. 100. 19
Frequency [log) [HERTZ) 1k

Figure 4.26 HSPICE simulation results for the parametric optimisation of Case Study 2.

4.3.2.3 Parametric optimisation strategy: curve-fitting vs. direct calculation

The previous sections present the parametric optimisation strategies for the synthesis of integrated

high-frequency filters which are demonstrated with two case studies. The two case studies have

shown that the optimisation strategies are well-suited for integrated high-frequency

implementations. Important steps have been identified: 1) specification of performance model, 2)

selection of circuit variables and their ranges, 3) evaluation of the accuracy for each candidate

against the performance specification and 4) generation of a new set of circuit variables for the next

optimisation run.

Case Studies 1 and 2 show how the filters' behavioural specifications in VHDL-AMS are

used to evaluate the filters' AC frequency response. The first way to model the performance, as in

Case Study 1, is suitable for bandpass filters where the requirement to check for several amplitude

measurements at specified frequencies ensure the validity of the result. As demonstrated in Case

Study 2, the method of generating the ideal curve of a filter based on its VHDL-AMS transfer

function description is attractive in terms of its flexibility and generality, especially for filter

approximation functions that has ripples in the pass-band and/or stop-band. Therefore, the three-tier

optimisation algorithm relies on the curve-fitting methodology that can be implemented using one

of HSPICE optimisation's features that will be described later in Chapter 5. The three-tier

optimisation algorithm also employs a bandpass checking methodology, similar to the direct

calculation method of Case Study 1 for the optimisation of bandpass filters.

Nevertheless, it follows that the evaluation of the performance of a circuit in the

optimisation loop reveals the drawback of using the ideal curve and curve-fitting method in terms

of both efficiency and accuracy especially if the ideal curve, or performance specification, is not

properly chosen. This can be demonstrated with the following example on the choice of

performance specification. Two different models are used to represent the specification of a fourth-

103

order, 1 GHz lowpass Chebyshev filter with 0.5 dB ripple, similar to the specification of Case

Study 2. In each model, different data points in the magnitude vs. frequency curve are selected, as

shown in Figure 4.27, Figure 4.28 and Figure 4.29.

1.2
Q)

-g 1.0
:t=

§, 0.8
co
E
~
Q)

0.6

.~ 0 4 co .
E o 0.2
z

o
o 0.5 1.0 1.5 2.0 2.5

Frequency (GHz)

Figure 4.27 Modell (44 points between Ie7 to 5e9 Hz): points are evenly scattered in both
passband and stopband.

1.2
Q)

1.0 ~
::J

:t=
c 0.8 OJ
co
E 0.6
~
Q)

0.4 .~
co
E 0.2 I-

0
Z 0

0 0.5 1.0 1.5 2.0 2.5
Frequency (GHz)

Figure 4.28 Model 2 (23 points between Ie7 to 2e9 Hz): more points in passband.

104

1.2
Q)

"C 1.0 ~
~
c 0.8 Ol
ro
E

"C
0.6

Q)

.~ 0.4 ro
E 0.2 L-

0
Z 0

0 0.5 1.0 1.5 2.0 2.5

Frequency (GHz)

Figure 4.29 Model 3 (104 points between Ie7 and 2e9 Hz): even more points in the passband.

The three different 'ideal curves' are used in the three-tier optimisation - which is a curve

fitling optimisation - on an OTA-C filter topology, called Cascade 1, where the OTA is

implemented using the wide-swing configuration. Cascade 1 will be explained in more detail in

Chapter 6. The optimisation results are shown in Table 4.6, which includes the number of iteration

that algorithm took to converge to a solution, the cost function value (CF) as well as the power

consumption and curve-fitling error, errtotal. The cost function formulation that consists of the

power consumption and curve-fitting error value will be described in the next section, Section

4.3 .3. For the moment it suffices to say that the lower the value of the curve-fit error, the closer the

match to the ideal. From Table 4.6, it can be seen that the optimisation that employs Model 1

produces the worse result but at a comparatively quicker rate. The best result is obtained by using

Model 3, which gives such accurate detail of the expected passband response that it not only gives

the best result, but also causes the optimisation algorithm to converge to a solution at a faster rate

when compared to that of Model 2. This faster convergence rate of Model 3 over Model 2 despite

having more data points in the ideal curve is expected as the curve-fitting-based optimisation

algorithm is more informed or guided in the challenging frequency region that has the passband

ripples. However, to obtain such detailed information may not be possible in each filter synthesis /

optimisation task, therefore it is more practical to specify the minimum number of data points in

the performance model specification that is deemed sufficient for the three-tier optimisation

algorithm to produce a correct and accurate result.

Iteration No. CF Power (mW) errtotal

Modell 206 0.202082 61.57 0.1405
Model 2 390 0.006624 36.22 0.0300
Model 3 291 0.004229 21.83 0.0218

Table 4.6 Experiment on performance model specification in a curve-fitling optimisation.

105

The final result obtained from curve-fitting optimisation is as good as the performance

model specification, and will involve the trade-off between accuracy and efficiency. From

experience, a good compromise between accuracy and efficiency is to specify several carefully

chosen points around the frequency of interest instead of using an ideal curve than spans several

orders of magnitude. If the curve-fitting method is to be used for a bandpass response, as

mentioned earlier, it is recommended to combine both the use of curve-fitting optimisation as well

as the inspection method. This strategy is implemented by having a bandpass error check in the

cost function formulation, and is discussed in more detail in Section 4.3.3.2.

When a filter topology has been identified to realise the specification, the key process is

then to select the appropriate circuit variables and the ranges. Having too many variables does not

guarantee an optimal or even correct performance. The best way to select the suitable parameter

and ranges is to have an understanding of the topology from analysis and documentation. Details

regarding analogue filter topologies suitable for integrated high-frequency applications are given in

Chapter 6.

4.3.3 Cost function formulation and evaluation

The HSPICE simulator plays a major role in evaluating the performance of the topology under

consideration. It has several features that can be employed to aid the parametric optimisation of the

filter topologies. Firstly, HSPICE has an optimisation feature that can be used to perform curve

fitting optimisation. This feature will be explained in more detail in Chapter 5. Its capabilities to

perform various analyses, whose results can be presented in several ways, allow us to inspect

several performance criteria which are of interest in the optimisation process. The performance

measure or criteria used in the formulation of the cost function for each analogue filter candidate is

accuracy and power consumption.

The accuracy measure is obtained from the error figure generated by the HSPICE curve

fitting algorithm, which gives a least-squares estimate of how much the simulated AC frequency

response differs from the magnitude of the desired response. The least-squares error figure used by

the HSPICE curve-fitting algorithm is given in Equation 4.12 [119].

[1 ~ 2]1/2 err/o/al = -. ~ erri
n i~1

(4.12)

where,

Mi-Ci . 1 erri = ,1 = ,n
max(MINVAL, M i)

(4.13)

106

where n is the number of points in the frequency and M and C are the measured and calculated

values respectively. Function maxO selects the higher between M and MINVAL at a particular

point, whereMINVAL is defaulted at le-12.

Apart from the accuracy, another optimisation requirement is that the power consumption

of the topology under consideration to be as low as possible. The total power consumption required

by the cost function can be obtained directly from the operating point data in the HSPICE results

file. Both requirements on accuracy and power are expressed in the cost function CF as follows:

CF = errtotal . w + Power + errbp (4.14)

where w is a weighting factor to ensure that a penalty given to errtotal is high. Power is the total

power consumption in Watts, and errbp is a penalty calculation specific to the bandpass filter only.

The weighting factor wand bandpass penalty errbp will be discussed in Sections 4.3.3.1 and 4.3.3.2

respectively.

3 TOptFunc()

Input: a set ofparameter's initial values.

1. Construct a new net/ist:

Prepare .P ARAM statements with current parameter values.

Write newly constructed net/ist to a file.

2. Launch HSPICE.

3. Read the results file and extract the following data:

Curve fitting optimisation results, i. e. the value of errtotal

Power consumption

For a bandpass filter, the frequencies /peak, fl and j2

4. Assign weighting penalty.

5. For a bandpass filter, compute the value of errbp.

6. Compute CF value.

7. Log results.

Output: CF.

Figure 4.30 Pseudo code of the basic cost function evaluator.

The cost function is implemented in the function called 3 TOptFuncO, which outputs the

cost function value for a given set of parameter values. The pseudo code for the basic operation of

the function 3TOptFuncO is shown in Figure 4.30. The inputs to 3TOptFuncO are the parameter

starting points and the output value CF is evaluated according to Equation 4.14. A detailed version

of 3 TOptFuncO being used in the three-tier algorithm will be presented in Chapter 5.

107

4.3.3.1 Cost function weighting assignments

Three experiments were carried out to compare the effect of different weightings on the cost

function. The cost function is used by the three-tier optimisation algorithm, and its value influences

the rate of convergence of the algorithm and the accuracy of the final result. It is desirable for the

cost function to be able to cause the optimisation algorithm to converge quickly to a minimum, i.e.

giving a result that has the lowest curve-fitling error figure and lowest power consumption.

The three different weighting assignments are used in the cost function for the three-tier

optimisation on a synthesis example of a fourth-order lowpass filter at 1 GHz, where the topology

selected for implementation is the cascaded OTA-C circuit using the wide-swing OTA cell.

Experiment 1: The corresponding values of the accuracy weighting ware assigned as listed in

Table 4.7. The values of the weighting factor ware selected to give more prominence to the

accuracy, and effectively ignore the power consumption, if the accuracy errors are excessively

large. For curve-fitting error at the lower range of values, the weighting is relaxed so that the

contribution from the power consumption in the cost function formulation is considered as well.

Curve-fitling error value w

errtotal > 0.9 10

0.6 < errtotal ~ 0.9 5

0.4 < errtotal ~ 0.6 4

0.3 < errtotal ~ 0.4 3

0.2 < errtotal ~ 0.3 2

errlOlal ~ 0.2 1

Table 4.7 The non-linear penalty values assigned to the curve-fitling error function in the cost
function of Equation 4.14.

Experiment 2: In this experiment, the weightings are assigned linearly at ascending values of the

curve-fitting error, as shown in Table 4.8.

108

Curve-fitting error value w

erriotai > 0.9 10

0.8 < errlOlai ~ 0.9 9

0.7 < errlOlai ~ 0.8 8

0.6 < errlOlai ~ 0.7 7

0.5 < errlOlai ~ 0.6 6

0.4 < errlOlai ~ 0.5 5

0.3 < errlOlai ~ 0.4 4

0.2 < errlOlai ~ 0.3 3

0.1 < errlOlai ~ 0.2 2

errlOlai ~ 0.1 1

Table 4.8 The linear penalty values assigned to the curve fitting error function in the cost function
of Equation 4.14.

Experiment 3: Weight is 5 regardless of the value of errtolai. Therefore the cost function IS

formulated as follows:

CFexp3 = 5.errlOlai + Power + errbp (4.15)

Experimental results

The summary of the results are presented in Table 4.9. The table shows the number of iteration that

it takes for the three-tier optimisation algorithm to converge, as well as the value of the resulting

cost function (together with the curve-fit error and power consumption values) that it finally

converged to. Figure 4.31, Figure 4.32 and Figure 4.33 show the relationship between cost function

against the iteration number for Experiments 1,2 and 3 respectively.

Experiment Iter. No. CF Power (mW) errlotai

1 74 0.229 93.7 0.136
2 90 0.565 294 0.136
3 83 0.998 319 0.136

Table 4.9 Experimental results for the weighting assignments values.

From these figures and Table 4.9, it can be seen that the weighting assignments of

Experiment 1 gives the best result, as it causes the three-tier optimisation algorithm to converge at

the fastest rate, and gives the lowest power consumption. The curve-fit error for the three

experiments converged to the same value, although if the values are taken up to 5 decimal points,

the curve-fit error for Experiment 1 turned out to be the lowest, followed by Experiment 2 and 3.

109

The effect of the cost function fonnulation can be seen from Figure 4.31 ,Figure 4.32 and

Figure 4.33 . The series of high points of the cost function values seen in the figures indicate that

the optimisation algorithm is testing or perturbing a direction in the cost function surface in search

for a minimum. The graph of Experiment 1 shows smoother transitions from one iteration to

another, until it settles down and converges, whereas the behaviour shown in Experiments 2 and 3

is more erratic. Therefore, the weighting assignments of Table 4.7 of Experiment 1 is chosen in the

fonnulation of the cost function CF of Equation 4.14.

c:
.Q
1::5
c:
:::J -in
0
()

c:
0

U
c:
:::J --en
0
()

25

20

15

10

5

0

15

10

5

5 9 13 17 2 1 25 29 33 37 4 1 4 5 4 9 53 57 6 1 65

Iteration number

Figure 4.31 Results for Experiment 1.

1 5 9 13 1721 2529333741 4 5 4953 57 6 1 6569 73 77 8 1 85

Iterat ion number

Figure 4.32 Results for Experiment 2.

110

c::
0

U
c::
:::J

'+--en
0

U

25

20

15

10

5

o
1 5 9 13 17212529 3337414549 535761 6569737781

Ite ration number

Figure 4.33 Results for Experiment 3.

4.3.3.2 Cost function bandpass error check

The optimisation of a bandpass filter requires an extra check to ensure a correct result, and

therefore an extra penalty term errbp is used in the formulation of CF (Equation 4.14). This

bandpass check is enabled for the optimisation of bandpass filter topologies, and disabled for other

types of filters, therefore, errbp is set to zero for non-bandpass filtering. For a bandpass filter, errbp

is zero if the following conditions are fulfilled :

fpeakto ~ fpeak ~ fpeak"i

11</2
fpeak

Qto ~ 12 _ 11 ~ Q"i

(4.16)

where fpeak is the measured frequency at which the peak occurs, while fpeakto and fpeak"i is the

allowed fpeak range, fl and j2 are the lower and upper frequencies at which the amplitude of fpeak

drops to its -3dB value ifpeak ,fl and j2 is illustrated in Figure 4.34). Qto and Q"i is the allowed

range of the Q factor. Otherwise, the penalty errbp is set to 10. Therefore, if the measured response

fails the bandpass check, the cost function of Equation 4.14 will have a high value, and the

optimisation algorithm will be driven away from the potentially 'bad' direction.

111

OdS .0(--

-3dS .0(---

f1 f2

Figure 4.34 The position offpeak,fl andj2 on a bandpass response.

An example to justify the use of the bandpass check for the performance model

specification having ideal points in the passband only as well as using points situated in both the

passband and stopband is carried out. In this example, the required filter response is a 1 GHz

fourth-order response with Q factor of 10. The topology selected to implement the specification is

an OTA-C cascaded filter using the wide-swing OTA, which is named Cascade 4. This topology

will be explained in more detail in Chapter 6. Four experiments are carried out by optimising

Cascade 4 using the three-tier algorithm, where two different performance models are used, where

in each case, the bandpass check is enabled and disabled. The performance models, Model 1 and

Model 2 are given below:

Modell: Eleven points in the passband are selected to represent the ideal curve of Figure 4.35. The

frequency ranges of the points are 0.95 to 1.05 G Hz, which spans the magnitude between 0 to - 3

dB.

Model 2: The ideal specification is represented by fifteen points between 0.25 and 4 GHz, which

include the points of Experiment 1 as well as four additional points as shown in Figure 4.36 below.

The additional points are placed at -24 and -48 dB.

112

1
Q)
"0
::J :g 0.8
0)
co
E 0.6 +-~~~.....---,
"0
Q)

C/) 0 .4
co
E
o 0.2 z

O +-~~~~~~~--~~--~,-~---.----~

0.94 0.96 0.98 1.0 1.02 1.04 1.06
Frequency (GHz)

Figure 4.35 Model l (11 points in the passband) used in Experiments 1 and 2.

1.2

1.0
Q)
"0
::J
~ 0.8
0)
co
E 0.6
"0
Q)

~ 0.4
co
E
~ 0.2

0
0 1.0 2 .0 3.0 4 .0 5.0

Frequency (GHz)

Figure 4.36 Model 2 (15 points in the passband and stopband) used in Experiment 3 and 4.

Model 1 is used in Experiments 1 and 2, while Model 2 is used in Experiments 3 and 4.

The bandpass check is enabled in Experiments 1 and 3, and disabled in Experiments 2 and 4. The

three-tier optimisation results for the experiments are shown in Table 4.10, where the results

columns show the number of iteration that it took to converge, the [mal cost function value (CF)

and its respective values for power and curve-fit error (errI01al). The AC waveforms from the

experiments are shown in Figure 4.37 to Figure 4.42, where the dark curve in each figure shows the

waveform of the ideal curve.

113

Exp. Description Iter. No. CF Power (mW) errtotal

1
2
3
4

Model 1, enable bandpass check 48 0.047 30.07 0.0169
Model 1, disable bandpass check 152 0.052 34.72 0.0171
Model 2, enable bandpass check 87 0.19315 46.93881 0.14621
Model 2, disable bandpass check 135 4.138359 39.6095 0.81975

Table 4.10 Experimental results for three-tier optimisation using different performance model
specifications, and by enabling and disabling the bandpass check.

The benefit of having an additional penalty factor in the cost function formulation of the

curve-fitting optimisation of bandpass filters can be seen by observing the results for Experiments 1

to 4 above. For Model 1, Experiment 1 converged at a faster rate than Experiment 2. This is

because, by having a high penalty value assigned to the cost function whenever the measured result

fails the bandpass check, the three-tier optimisation algorithm is steered away from a 'wrong'

direction. Therefore, this bandpass check helps the optimisation algorithm in deciding the direction

to move much earlier, rather than the optimisation algorithm needing to proceed in the direction

and finally discovering that it is indeed a 'bad' direction after a significant number of iterations.

The results also show that in both experiments, the final cost function values that

Experiments 1 and 2 converged to are very near, and can be considered to be similar. Similarly, for

the case of Experiments 3 and 4 employing performance model of Model 2, the bandpass check

also aided the optimisation algorithm to converge quickly at a more accurate or correct solution. As

indicated by the high value of the cost function and errtotal in Table 4.10 and as observed in Figure

4.37, Experiment 4 is unable to converge to a correct solution. Figure 4.40, Figure 4.38 and Figure

4.37 shows the results of Experiments 1,3 and 4 viewed using zoom factor A, where the frequency

is between 0.1 to 10 G Hz, and magnitude is between 3 to -50 dB. (Note that the resulting AC

waveform from Experiment 2 is not shown as the waveform is very similar to that obtained in

Experiment 1). The waveform result of Experiment 4 in Figure 4.37 shows how the measured

response completely misses the specified response in terms of its frequency and gain. Hence, it can

be concluded that by having the bandpass check activated for the optimisation of bandpass filters,

the optimisation algorithm converges to a much better or more importantly, correct, and in other

cases, to a comparatively similar cost function value at a faster rate.

The results from this example also show the effect of using different performance models

on the curve-fitting optimisation result. By concentrating the data points of the performance model

in the frequency range of interest, as in Model 1, a more accurate result is obtained, especially

within 0 to -3 dB attenuation range, compared to that of Model 2. From Table 4.10, it can be seen

that the curve-fit error value, errtotal for Experiments 1 and 2 of Model 1 are much lower than that

of Experiments 3 and 4 of Model 2. This is confirmed by the AC waveform of the results. For a

more specific comparison, this point is supported by the results of Experiment 1 and Experiment 3.

It can be seen that for Experiments 1 and 3, the filter responses closely match the defined

114

perfonnance model. However, the result from Experiment 1 is more accurate than that of

Experiment 3. This fact can be seen clearer in Figure 4.41 and Figure 4.39 that shows the result of

Experiments 1 and 3 using zoom factor B, where the frequency is between 0.5 and 2 G Hz, and

magnitude is between 3 and - 20 dB. Figure 4.42 shows the response of Experiment 1 in more

detail, where the frequency is between 0.9 and 1.3 G Hz, and the magnitude is between 1 and -5

dB.

Therefore, by concentrating the perfonnance model specification around the passband as

well as employing the bandpass checking mechanism, the optimisation algorithm is able to

converge quickly at a solution that gives the most accuracy in the region of interest.

o

·20

·40

i i , ,
__ J

/\
./ \
f ' ,

,
.. .

, , , , , ,
---------T---------- -------------------------------~ , , , , , , , ,

____________________ ___ ..J'- ______ :. _________ ~ _____________________ ____________________ ~

" " I I

".' ... 1 1
. , I I

:. I I
\ I I , , ,

---~------- .. --.-....... -. \':,.: !

100x

" I I
" I I

I
19

Frequency (log) (HERTZ)

i II

10g

Figure 4.37 AC wavefonn result of Experiment 4 viewed using zoom factor A.

115

o

·20

·40

100~ 9
Frequency (IogJ [HERTZJ

10g

Figure 4.38 AC waveform result of Experiment 3 viewed using zoom factor A.

o

·20

9
Frequency (IogJ [HERTZJ

Figure 4.39 AC waveform result of Experiment 3 viewed using zoom factor B.

116

o

-20

-40

---, ----
I
I
I
I
I
I
I

---r--------------- --------------------------

100M

I
I
I
I
I
I
I
I
I
I
I
I

I

19
Frequency (log) (HERTZ)

, , I

10g

Figure 4-40 AC waveform result of Experiment 1 viewed using zoom factor A.

o

-20

9
Frequency (log) (HERTZ)

Figure 4.41 AC waveform result of Experiment 1 viewed using zoom factor B.

117

BOOm
600m
400m
200ra

-200m
-400m
-600m
-800m

-1 DOOm
-1.2
-1.4
·1.6
-l.B

-2
-2.2
-2.4
-2.6
-2.B

-3
-3.2
-3.4
-3.6
-3.B

-4
-4.2
-4.4
-4.6
·4.B

-5

I

---7---------------------------------------
I ---T---------------------------------------
I •

---.---------------------------------------
I

---+--------------------------------------- :
I •

I

--- + -------------------------------------:
-- ~7t~~ ------------------------------------ :

============ ========= == =============-~ .~:;='==!==:~~ -======= =========== =========== ==== ' I ,

----------------------------------- -------~------- ~------------------------------, I \ ------------------------------ --~,' --------t-------- ':!',~ -- - -- - - - ----- -- ------- -- ----

-------------------------------~ ----------r--------- \--------------------------- ,
------------------------------ -----------~----------- ---------------------------

I
I ----------------------------- -------------y------------ -------------------------,

---------------------------- --------------~------------- ------------------------
I

-------------------------- ---------------~-------------- -----------------------I
I ------------------------- -----------------~---------------- ----------------------
I '.

------------------------ ------------------t-----------------,---------------------
I \ ---------------------- -------------------y------------------\-------------------- <

--------------------- --------------------t-------------------~------------------- I

=================;./======================~====================~~~================ I
= == = = === = = = = = = =;= =} ='~,= = = = = = = = = = = = = = =

= == = = = = = = == = =;~.= t = :.~ = = = = = = = = = = = = = :

= = = = == = = = ;.l~ = t ='~'~.= = = = = = = = = = =
J

19
Frequency [Jog) [HERTZ)

Figure 4.42 AC waveform result of Experiment 1 viewed using zoom factor C.

This bandpass error check is implemented by having HSPICE measurement statements,

.MEASURE, in the filter netlist. Examples of such statements are shown in Figure 4.43. The output

variable is the voltage of node VOUT4, and measurements are made for fpeak, f1 and j2 on the

frequency response of the voltage of VOUT4, as indicated in the listing. The respective values for

fpeak,f1 and j2 are then available in the HSPICE results file for processing by the optimiser.

.MEASURE AC MAXAMP MAX V(VQUT4) from=l to=lOG

.MEASURE AC FPEAK when V(VQUT4)='MAXAMP'

.MEASURE AC Fl when V(VQUT4)='MAXAMP*O.707945784' rise=l fall=O

.MEASURE AC F2 when V(VQUT4)='MAXAMP*O.707945784' fall=l

Figure 4.43 Measurement statements to evaluate parameters required by the additional penalty
check for bandpass filters.

4.4 Concluding remarks

The aim of this chapter is to explain the synthesis methodology developed in the course of this

research to obtain optimised analogue filter netlists from VHDL-AMS behavioural specifications.

The methodologies described in this chapter proceed from those outlined in the previous chapter,

118

Chapter 3, where in this chapter the filter information obtained from the analysis of VHDL-AMS

parse trees are used the synthesis procedure.

After detailing the methodologies to obtain analogue filter hardware from filter

information, the latter part of this chapter focuses on the topic of architectural and parametrical

optimisation. Justifications for the optimisation's cost function formulation and discussion on the

choice of performance model specification for the curve-fitting-based optimisation have been

made. The inclusion of full HSPICE simulation to evaluate the performance of the candidate

topologies makes this methodology particularly suitable for high frequency synthesis. The criteria

used in the optimisation are based on the frequency response accuracy and power consumption.

The following chapter, Chapter 5, presents the optimisation engine which relies on the

three-tier optimisation algorithm. Together with the cost function formulation and appropriate

choice of performance specification, this algorithm is proven to produce accurate results as have

already been shown in several examples in this chapter.

119

5 Three-tier Optimisation Algorithm

As explained in Chapter 4 above, the architecture evaluator calls the optimisation algorithm that

performs parametric optimisation for each candidate filter topology. Candidate filter cells are

obtained from a collection of HSPICE netlists of analogue filter topologies suitable for high

frequency integrated circuits. To increase the optimisation accuracy, and to ensure that a minimum

is found, the parametric optimisation strategy is to employ a three-tier optimisation which is a

combination of:

• Stochastic search.

• Downhill simplex algorithm [120].

• HSPICE's built-in optimisation engine.

Sections 5.1 to 5.3 explain the stochastic search, downhill simplex algorithm and HSPICE's

optimiser in detail, and Section 5.4 describes the three-tier optimisation algorithm together with

experimental results highlighting the advantage of the three-tier algorithm over its other constituent

algorithms. Finally, the software implementation of the methods described in Chapters 3, 4 and 5

which are integrated into FIST (Filter Synthesis Tool) are presented in Section 5.5.

5.1 Stochastic search

The stochastic, or random search is an optimisation technique which is based upon the generation

of a (set of) numerical circuit parameter value(s), within a predefined range(s). For example, the

parametric optimisation of the Colpitts oscillator circuit in Case Study 1 (Section 4.3.2.1) involves

the following parameters and their ranges (that are given in Table 4.3), reproduced below in Table

5.1. If, for example, it is specified for the parametric optimisation based on random search to have

3 independent iterations, or more accurately, 3 tries, such tries would produce 3 sets of parameters,

such as those listed in the last three columns of Table 5.1.

120

Parameter Minimum Maximum Set 1 Set 2 Set 3
k 0.01 0.99 0.56 0.08 0.64
W 0.5!-lm 500 !-lm 67.88f!m 4. 56/-lp1 102.44!-lm
IBIAS 0.1 rnA lOrnA 2.33rnA 0.89rnA 5.77rnA

Table 5.1 The optimisation space for the parameters selected for optimisation in Case Study 1, as
well as three sample parameter sets.

This is a very simple and straightforward optimisation method, as no intelligence is

employed in determining the choice of the direction in the optimisation space. In the above table,

Set 2 is independently generated without considering the outcome of the optimisation using

parameters in Set 1, and the relationships between the subsequent sets are similarly independent.

Consequently, the minimum of the optimisation cost function is found by chance and not by

successive purposeful movement based on previous function evaluation or information gathered

from evaluating previous points. It is also apparent that this is a costly procedure, in terms of its

inefficiency as much of the unwanted or unnecessary information is rejected. However, this method

has the ability to find the global minimum, albeit by accident, as opposed to the nearest local

minimum given a sufficient number of maximum tries as well as an appropriate optimisation space.

Also, this optimisation method is useful for the preliminary stages of parametric optimisation

problems, and may be combined with other more powerful algorithms as will be discussed later.

5.2 Downhill simplex optimisation

The downhill simplex algorithm, or also known as the amoeba, is based around manipulation of a

geometrical figure that forms a multi-dimensional simplex. This particular simplex method is

claimed to be the best sequential optimisation method [121]. In an N-dimensional optimisation

space where there are N parameters to be optimised, a simplex consists of N+ 1 vertices (points)'

including the interconnecting line segments and polygonal faces. The amoeba algorithm makes a

series of steps called reflection, expansion, or contraction, aiming at moving the vertices downhill,

until the simplex points converge to a minimum. For example, the basic movements for a

tetrahedron, a four-node simplex (i.e. N = 3) are shown in Figure 5.1. The reflection aims to move

the simplex away from the point that has the highest cost function, while for the direction where

good progress is made, the expansion move is applied. Contraction is to pull the simplex towards

the point where the cost function is the lowest, where the aim is to converge all the vertices of the

simplex to a minimum.

121

~ Simplex at beginning of step

A .
B

~ reflection

B A

~ contraction

A B

reflection &
expansion

A

Figure 5.1 Basic movements ofthe simplex algorithm.

The application of the basic movements are indicated in the implemented function,

amoebaO, as shown in the pseudo code in Figure 5.2 [109]. This function implements the downhill

simplex algorithm being used by the three-tier algorithm, where it is called after the initialisation of

the N+ 1 points has been made. The initialisation of the vertices of the simplex is made by

randomly generating N+ 1 points, and then finding the cost function value of each vertex according

to the cost function of Equation 4.14. This information is passed to the function amoebaO. The

simplex is then moved according to the value of the cost function of its vertices.

When either of the termination criteria is met, the current position of the simplex and the

respective cost functions as well as the number of iteration or function evaluation are returned. The

amoebaO is terminated when the difference between the cost function of the vertices is smaller

than the user-defined value, flol. In this case, the algorithm has converged to a minimum. For the

case that the downhill simplex is trapped in a meaningless direction, amoebaO terminates when the

number of iterations or function evaluations exceeds a user-defined value.

122

amoebaO

Inputs:

1) number of variables: N,

2) N+ 1 parameter set: p _amb[N]

3) the corresponding CF: y_amb[N],

4) the tolerance to determine termination flol,

5) a pointer to the evaluation function which is 3TOptFunc().

1. The points in the simplex are examined to determine the highest, y _amb[hi} and the

lowest point, y _amb[loj.

2. The fractional range, rtol, from the highest to the lowest is computed.

3. If the termination criteria, or convergence test, is fulfilled, the outputs are listed and the

procedure stops. Termination criteria:

(a) rtol <flol, or

(b) maximum iteration value has been reached (each function evaluation is

an iteration).

4. Else, the centroid is computed and a series of steps are taken to move the highest points

through the oppositeface of the simplex to the lowest point:

Reflection: extrapolate through the face of the simplex by factor ALPHA

If the result is better than the best point, i.e. lower than y _ amb[lo}

An additional extrapolation by factor GAMMA is made.

If the reflected point is worse than the second-best point:

Contraction: by a factor of BETA, to look for an intermediate

lower point

If the point is still worse or equal to the highest point:

Contract around the lowest (best) point

Repeat Steps 1 to 4 until terminate.

Three outputs:

1) new N+ 1 sets of converged p_amb[N}

2) converged y _amb[N]

3) number offunction evaluations, nfunc.

Figure 5.2 Pseudo code for the downhill simplex algorithm, amoebaO, from [109].

The downhill simplex algorithm is noted for its robustness in its ability to converge to a

minimum and being able to handle difficult objective function surfaces. Also, the optimisation of

non-linear circuits involves complex multi-dimensional parameter spaces in which the geometrical

naturalness of downhill simplex and the fact that it requires only function evaluations, not

123

derivatives, are particularly attractive. It is noted, however, that this simplicity is traded-off in

terms of inefficiency of the number of function evaluation required [109], where the progress is

slow especially when the algorithm converges, [121]. Nevertheless, the most common strategy is to

employ this algorithm during the early stages of optimisation and then switching to gradient-based

methods in the latter stages.

Another common issue with the downhill simplex algorithm is the starting points, where

the user needs to specify N+ 1 starting points to start the algorithm. Nonetheless, in this research,

the latter issue is viewed as an advantage of the algorithm, as the need to find a large number of

starting points implies a relatively global search.

The effectiveness of the method, as well as the higher possibility for a convergence to a

global minimum, makes this algorithm to be attractive in analogue circuit parametric optimisation.

Similar methods have successfully been used in electrical circuit optimisation and many synthesis

applications [4, 60, 122, 123].

5.3 HSPICE built-in optimiser

HSPICE has its own built-in optimisation engine that may be invoked to perform multi-parameter

optimisation in AC simulations [119]. HSPICE uses a combination of the steepest descent method

and Gauss-Newton to explore the search space. The optimisation algorithm used is Levenberg

Marquardt [109],[119] where the Marquardt scaling parameter is used to indicate the closeness of

the solution to the optimum. The steepest descent algorithm is used when the current search is far

from the solution, hence larger and rapid movements are made to find a better point. However,

when the algorithm detects that the search is improving too slowly, the Gauss-Newton method is

used. There are two types of object functions that can be used in HSPICE:

• Curve-jitting, where the optimiser aims to match the simulation results with user

defined data. The curve-fit error defining the difference between specification and

actual measurement can be selected from several error functions defined by HSPICE.

• Goal, where goals for a particular electrical specification are defined in terms of

HSPICE's .MEASURE statements, using a specific relational operator.

The HSPICE optimisation feature may be invoked by adding relevant command lines in

the netlist. The key statements that must be present in the netlist are:

• .P ARAM parameter=OPTxxx (init, min, max)

o .P ARAM statements specify the parameters to be optimised, their starting

point values as well as minimum and maximum limits.

• .MODEL modename OPT ...

124

• .DC

o This statement defines the optimisation model which contains convergence and

termination criteria, derivative methods and various accuracy control

parameters .

. AC .TRAN <DATA=filename> SWEEP OPTIMIZE=OPTxxx

RESULTS=ierr1 ... + ierm MODEL=optmod

o Analysis statement that includes the OPTIMIZE command for optimisation, as

well as the name of the optimisation model (optmod), and the optimisation

name (OPTxxx) that relates the parameters being optimised with the

optimisation command.

• .DATA statement

o This statement provides a list of numerical data for the desired curve used in

curve-fitting optimisation.

• .MEASURE statements using the GOAL keyword.

o .MEASURE statements are used in goal optimisation in which the .GOAL

keyword defines the target electrical requirement to be measured and used in

the evaluation of the cost function.

Figure 5.3 gives a sample ofthe HSPICE netlist for curve-fitting optimisation. For example

m line (1), the parameter to be optimised is the transistor width of an OT A (operational

transconductance amplifier). The initial value is 101-1m, while its boundaries are set between 0.5)..Lm

and 500)..Lm. The user may control the optimisation process by changing default control parameters

defined in the optimisation model. In the example in Figure 5.3 line (2) shows that the optimisation

model OPTl has been selected with the maximum count of simulation runs 'itropt' set to 100. The

default value is 20. Line (3) is the analysis statement for a curve fitting optimisation. The

measurement to compare the simulated and ideal response is given by line (4) where the standard

ERRl error function has been selected. The desired curve data points are held in a text file (named

cas.dat) and are read by the statements in the lines (3), (5) to (7), as shown in Figure 5.3 .

. param WM1= OPT _ OTA (lOu, O. Su, SOOu) (1)

.MODEL OPTl OPT itropt=lOO (2)

.AC DATA=LOWPASS SWEEP OPTIMIZE=OPT OTA RESULTS=COMPl MODEL=OPTl (3)

.MEAS AC COMPl ERRl par (magn) V(VOUT4) (4)

.DATA LOWPASS MERGE (5)
+ file=cas.dat freq=l magn=2 (6)

.ENDDATA (7)

Figure 5.3 Example ofHSPICE netlist for curve-fitting optimisation.

An example of goal-type optimisation is shown in Figure 5.4. In this case a lowpass filter

circuit has seven parameters to be optimised; five are transistor widths (lines (1) to (5)) and two are

125

bias current sources (lines (6) and (7)). This is actually the vertically stacked regulated cascade

topology introduced in Chapter 4 for Case Study 2. The goal of this optimisation is to obtain a

lowpass cut-off frequency of 1 GHz, while at the same time limiting the overshoot to be lower than

3 dB. The midband gain is set to 1. This objective function is coded into the HSPICE netlist

specification as shown in lines (8), (9) and (10) .

. param WM1=OPTWI(10e-6, 0.5e-6, 15e-6) (1)

.param WM2=OPTWI (10e-6, 0.5e-6, 15e-6) (2)

.param WM3=OPTWI(10e-6, 5e-6, 15e-6) (3)

.param WM4=OPTWI (82e-6, 50e-6, 120e-6) (4)

.param WM5=OPTWI(le-6, 0.5e-6, 10e-6) (5)

.param AMPI01=OPTWI (40e-6, 5e-6, 80e-6) (6)

.param AMPI03=OPTWI (8e-6, 1e-6, 30e-6) (7)

.measure ac midb_gain MAX I (Viout1) from=OHz to=le+6Hz goal=0.5A (8)

.measure ac threedb when I (Vioutl)='O.707*midb_gain' goal=lGHz (9)

.measure ac ov_shoot MAX I(Vioutl) from=100e+6Hz to 3e+9Hz
+goal='l.188*midb_gain' (10)
.model optl opt relin=le-6 relout=le-6 (11)
.ac dec 50 1 5G sweep optimize=OPTWI results=midb_gain,threedb,ov_shoot
+model=optl (12)

Figure 5.4 Section ofHSPICE netlist implementing the built-in optimisation tool of HSPICE, for a
GOAL-optimisation.

The results of HSPICE optimisation will be a summary stating the number of function

evaluations, as well as the values of other parameters that indicate the accuracy of the optimisation

process. A new set of parameter values, as well as the curve-fitting and measurement results are

also given. For example, for the curve-fitting optimisation example of Figure 5.3, the value of

'compI' indicating the curve-fit error value is returned. Whereas for the GOAL optimisation of

Figure 5.4, the measurement values of 'midb_gain', 'threedb' and 'ov_shoot' are also returned by

HSPICE.

HSPICE optimisation employs powerful gradient-based optimisation algorithm, which

performs excellently when the initial values for the parameters are within the vicinity of a local

minimum. However, for poorly chosen initial values, the optimisation fails to converge. Although

there exist some optimisation options for HSPICE that can be used to control the optimisation,

depending whether the starting points are near or far from a solution, such adjustment need to be

done manually by the user. This dependency of HSPICE optimisation on the starting point values

can easily be shown by analysing the earliest and the final stages of an optimisation example using

the three-tier algorithm. This point will be demonstrated in the following section that describes the

three-tier algorithm in detail.

126

5.4 The three-tier algorithm

The three-tier algorithm is the combination of the stochastic search, downhill simplex, and HSPICE

curve-fitting algorithms, to make use of the best features of these algorithms. Although it is

possible to use only HSPICE optimisation, or any of the described algorithms in the optimisation

process, the combination of the three algorithms increases the accuracy as well as the efficiency of

the optimisation procedure. Further in the text, the term 'one-tier' refers to any of the components

that constitute the three-tier optimisation algorithm.

The operation of the three-tier algorithm can be summarised as follows. The stochastic

search serves primarily as a tool to provide initial values for the downhill simplex algorithm. These

initial points are passed to HSPICE optimisation, which will attempt to find the local minima for

each set of points and returns the associated cost function value to the downhill simplex algorithm.

Based on the cost function values, the downhill simplex will perform a series of movements aiming

to converge the vertices of the simplex around the best point that has the lowest cost function value.

By repeatedly restarting the downhill simplex, each time using a different set of initial values, the

possibility of finding the global minimum is increased.

Thus, the strategy employed by the three-tier algorithm explores the local minima present

on the hyper-surface of the analogue circuit optimisation cost function. The initial points generated

stochastically are used by the simplex-based optimisation, which moves the initial points towards a

solution that optimises the accuracy and power of the candidate design. The downhill simplex

algorithm uses HSPICE's optimisation to evaluate the cost function, and hence, to obtain the set of

parameter values that gives the closest fit to the specified frequency response curve.

The following subsections explain the three-tier algorithm in more detail. Section 5.4.1

firstly explains the use of HSPICE curve-fitting optimisation within the downhill simplex

algorithm. After this has been clarified, the operation of the three-tier algorithm is demonstrated in

Section 5.4.2, and finally, in Section 5.4.3, the performance of the three-tier algorithm against each

one-tier algorithm is evaluated.

5.4.1 Downhill simplex function evaluation

The downhill simplex requires evaluations of the cost function, which is done by employing

HSPICE optimisation. There are two distinctive occasions when an evaluation of the function is

required. Firstly, an evaluation is required during the initialisation of the vertices of the simplex,

before the downhill simplex algorithm begins its operation. As described previously in Section 5.2,

this is done before the function amoeba() is called. The second occasion is during the operation of

the downhill simplex algorithm itself, where the decision to perform the next operation depends on

the cost function value of the vertex currently under consideration.

127

The basic operation of the cost function evaluator, 3TOptFunc(), was shown in Figure 4.30

in Section 4.3.3. However, for the use of the function 3TOptFunc() within the downhill simplex, a

detailed implementation as given in the pseudo code of Figure 5.5 below is used. The two

additional stages are shown as Step 1 and Step 5 of Figure 5.5.

3 TOptFultc()

Input: a set of parameter's initial values.

1. Check the range of values for each parameter.

If OK, proceed to Step 2.

If NOT OK, assign a large value to CF, return this value and exit.

2. Construct a new netlist:

Prepare .P ARAM statements with current parameter values.

Write newly constructed netlist to a file.

3. Launch HSPICE curve-fitting optimisation.

4. Read the results file and extract the following data:

Curve fitting optimisation results, i. e. the value of errtotal

Power consumption

For a bandpass filter, the frequencies fpeak, f1 and 12
New values of the parameters

5. For downhill simplex initialisation, replace old parameter values with new ones.

6. Assign weighting penalty.

7. For a bandpass filter, compute the value of errbp-

8, Compute CF value.

9. Log results.

Output: CF.

Figure 5.5 Pseudo code of the detailed cost function evaluator.

Step 1 is checking the parameter range. This process involves analysing the values of each

parameter to ensure that the parameters passed to the cost function evaluator are within their

predefined ranges. As the downhill simplex operations of reflection, expansion or contraction

involve changing the values of the parameters, there is a possibility of the downhill simplex to

calculate and thus assign values that are out of the specified range for any (or all) of the parameters.

If this action is not contained, and the downhill simplex algorithm is further allowed to proceed

into 'forbidden territories', there are two possible consequences. The first is due to the fact that the

parameter values got out of range of the practical realisable values, and the second is due to the fact

128

that the downhill simplex sometimes uses a negative-valued parameter, which may happen when

calculating a reflection or an expansion point.

For the first case, the cost function value that is returned may be acceptably small, and

finally the downhill simplex will settle around and converge around this value, but the optimised

parameters will not be acceptable as they are out of the predefined range. For the second case, the

downhill simplex algorithm may collapse by running until completing the specified maximum

iteration value and returning completely erratic cost function and parameter values. This is because

unpractical parameter values of circuit netlists which are used to run HSPICE analyses may cause

HSPICE to return unpredictable results.

For example, an OTA-C filter having 4 parameters under optimisation is used for the

synthesis of a fourth-order lowpass filter at 1 GHz (see Case Study 3 in Chapter 6). The topology is

optimised using the three-tier algorithm with one restart where the downhill simplex algorithm of

the three-tier is not subjected to the 'sign test'. It is discovered that the algorithm got trapped at a

'wrong' point where one of the parameters have a negative value. The cost function evaluator

keeps on returning an inconsistent value, causing the algorithm to terminate only when the

maximum number of iteration of 1000 is reached. The point which the downhill simplex algorithm

got trapped and converged to is shown in Table 5.2, where it can be seen that parameter 4 is the

CUlprit, and the erratic values of the cost function of the vertices can be observed in the last column.

Vertex Param.l Param.2 Param.3 ParamA CF
no.
1 8.724e-05 2A23e-06 8.99ge-13 -3.750e-15 3.70ge-03
2 8.724e-05 2A23e-06 8.99ge-13 -3.750e-15 5.752
3 8.724e-05 2A23e-06 8.99ge-13 -3.750e-15 3A18
4 8.724e-05 2A23e-06 8.99ge-13 -3.7504e-15 5A12
5 8.724e-05 2A23e-06 8.99ge-13 -3.750e-15 4.933

Table 5.2 The three-tier optimisation result for the case that out-of-range parameters goes
unchecked.

Therefore, to safeguard against these effects, the very first step in the cost function

evaluation process involves checking that the parameters are within the allowable range. If any of

the parameters are detected to be out of the allowable range, a large value is assigned to the cost

function, which is returned to the downhill simplex algorithm, and then the function 3 TOptFunc()

exits without completing the further steps.

Step 5 involves replacing the set of parameters that is passed to function 3TOptFuncO with

those that are newly found by HSPICE optimisation. This step will only affect the parameters that

are selected during the initialisation of the downhill simplex, as will be explained in Section 5 A.2.

For cost function evaluations during the operation of reflection, expansion or contraction, the new

parameter values do not replace the original ones that are passed to 3TOptFuncO. Obviously, this

129

step can be enabled or disabled, depending whether it is desirable to change the old parameters

with new ones or not. The investigation to justify Step 5 will be explained in the following section,

Section 5.4.2.

As a final point, there is another subtle implication of the formulation of the cost function

CF (Equation 4.14) that includes both the curve-fit error as well as power consumption, which

requires the cost function evaluator to be implemented within the downhill simplex algorithm. Note

that this multi-objective optimisation for accuracy and power cannot be done by HSPICE

optimisation alone, as this will involve different types of HSPICE analyses - AC analysis for

frequency response, and operating point or transient analysis for power - using the same set of

parameters. HSPICE can independently optimise the circuit for either accuracy or power, but not

both at the same time. Although HSPICE optimisation is a reasonably powerful gradient-based

optimisation algorithm, it is very dependant on the starting points of the parameters, also, it is

unable to handle such formulation of the cost function as explained above. By embedding HSPICE

optimisation within the downhill simplex algorithm, the downhill simplex provides the starting

points for HSPICE optimisation that are influenced according to the cost function that includes

both the accuracy and power. While HSPICE optimisation directly optimises the circuit to

maximise the curve-fitting accuracy, information regarding power consumption of the candidate

can be obtained from HSPICE optimisation results. Hence, using such arrangement between

HSPICE optimisation and the downhill simplex as well as the formulation of the cost function as

given in Equation 4.14, it is possible to find a set of solutions which are both accurate and exhibits

a reasonably low power consumption for a particular topology.

5.4.2 Three-tier description

Figure 5.6 illustrates the block diagram of the architectural optimisation strategy that employs the

three-tier parametric optimisation algorithm. The three-tier algorithm is implemented in the

software module called Three_tier _ optO, indicated by the dark rectangular box in the diagram. The

shaded right-hand part shows that the algorithm starts by initialising the stochastic search count to

zero. Then, the N+ 1 sets of initial points for the downhill simplex is prepared by firstly randomly

generating the parameters and then finding the cost function value for each N+ 1 sets of parameters.

The left-hand-side of the shaded block shows that the downhill simplex, or the amoeba algorithm,

is called repeatedly by the stochastic search, until the count reaches a predefined value,

max_stach_count. This means that the amoeba algorithm is restarted using different initial values

for max stach count times. - -

By restarting the amoeba algorithm several times usmg different starting points, the

probability of finding the global minimum, or at least a better local one, is increased, rather than

those found by the one-tier optimisation algorithm, especially for HSPICE optimisation whose

130

perfonnance is very sensitive to the starting point. Cost functions calculated from simulation results

of analogue circuits tend to have many local minima, therefore to ensure that a good solution is

found, the optimisation process needs to be restarted with different initial values generated by a

random number generator of the stochastic search.

Filter specification

Generate frequency

curve

Get filter topologies

yes

Optimised fi lter netlist Select the best filter cell

Figure 5.6 Three-tier parametric optimisation strategy.

The cost function evaluation is done by the function called 3TOptFuncO as described

before in Figure 5.5, which returns the value of the cost function CF (Equation 4.14). As previously

described, the need to evaluate the cost function arises twice, first is for the preparation for the

starting points for the amoeba algorithm itself. Secondly, is in the amoeba algorithm as shown in

the shaded left-hand-side block of Figure 5.6, where in this case, the cost function evaluation which

involves calling the curve-fitting algorithm of HSPICE is done repeatedly until the downhill

simplex algorithm converges or terminates. As mentioned in Section 5.4.1, the cost function

evaluator is able to replace the parameters passed to it with the new one found by HSPICE

optimisation, indicated by Step 5 of the pseudo-code in Figure 5.5 . The investigation to justify Step

5 is done with three experiments as follows:

131

Experiment 1: All parameter values are replaced during the initialisation step, as well as during

the subsequent function evaluation calls during the simplex operation of reflection, expansion or

contraction.

Experiment 2: Parameter values are changed to the new ones found by HSPICE optimisation

during the initialisation stage only.

Experiment 3: The parameter values are not replaced at al1.

These three different versions of the three-tier algorithm are explained with the aid of the

following diagrams in Figure 5.7.

x2

x2

Original simplex

A----------.C

(a)

Reflection, where A" is the
reflected pOint

8'V-- A" (CFlo) ----- -:;:,. A"new
/'

/'

........ C'
(CFmed)

(c)

x2

xi

x2

xi

New simplex at the beginning
of three-tier optimisation

8'

/,\FIO)

A'~ C'
(CFhi) (CFmed)

(b)

Expansion from the
reflected point

B' IL---------:-;- A'"

xi

(CFlo) • A'''new --::::::.

C'

(CFmed)

(d)

_---- Ai '''new

xi

Figure 5.7 The operation of the different versions of the three-tier using a two-variable example.

Figure 5.7 shows an example of the operation of the three-tier algorithm on a two

parameter optimisation task, where N = 2. The stochastic search generates three nodes, marked as

A, Band C in Figure 5.7(a), that form a triangle for the two-dimensional argument space. The cost

function evaluator, 3TOptFuncO is used to find the cost function for the three nodes, where it is

found that node A has the highest cost function of CFhi , while node B has the lowest cost function

of CF1o . The cost function value of node C is CFmed. The three cost function values are the local

minima of nodes A, Band C. The cost function evaluator also returns new node values A', B' and

C', corresponding to each local minima that is found from the points A, Band C respectively.

Thus, in Experiment 1 and 2, the shape of the simplex is altered by the new nodes A', B' and C'

that represents the local minima for nodes A, Band C. The new triangle is shown in Figure S.7(b).

132

The reflection, expansion and contraction that operate on nodes A', B' and C' use the same

procedure for the downhill simplex algorithm. However, the effect of changing the node to a new

one, as is done in Experiment 1, or not changing it, as in Experiment 2, can be explained using

Figure 5.7(c). In this diagram, it is shown how the simplex is reflected from node A' that has the

highest cost function, to a new point, A". The cost function value for node A" is evaluated, where

3TOptFuncO returns the local minima associated with A", as well as a new position, A"new. For

Experiment 1, the reflected point is now changed from A" to A"new, while in Experiment 2, it

remains at A" .

If good progress is being made, where the cost function of the reflected point A" is better

than the lowest, CFlo, for Experiment 2, the simplex is expanded to node A'" as shown in Figure

5.7(d), and the cost function of the expanded node is found. For Experiment 1, this expansion is

done from the new reflection point of A" new to point A'" new, however, after the cost function at

A'" new is found, the expanded point is changed to that of Al '" new. For the case of Experiment 3

where no node replacement are made, the simplex begins at its original position of A, Band C of

Figure 5.7(a) and proceed with reflection, expansion or contraction as in Experiment 2.

The three experiments are used to optimise an analogue filter topology called Cascade 1

(which will be detailed in Chapter 6) to realise a fourth-order lowpass response at 1 GHz. The

results for the three-tier algorithm under the three experimental conditions are given below in Table

5.3.

Experiment Iteration CF Power (mW) EITtotal
1 111 0.223 149.81 0.0736
2 274 0.128 93.072 0.0347
3 401 0.061 23.46 0.0377

Table 5.3 Experimental results for the enabling and disabling of parameter changes during the
three-tier optimisation.

From the experimental results, it can be seen that Experiment 1 converged faster than the

rest, however, its result is the worse. Although Experiment 3 is the slowest, it found the best result

with the lowest value of the cost function. These three different versions of the three-tier

implementation actually describe different ways to explore the surface of the optimisation cost

function. In Experiment 1, where each iteration effectively changes the shape of the simplex, the

reflection and expansion movement of the simplex is not truly being 'reflected' or 'expanded' as

the centroid from which the movements are based upon keeps on changing. However, the process

of contraction is speeded up, as the point of local minimum found by HSPICE optimisation is

passed back to the downhill simplex algorithm during each iteration. Therefore, in this case, the

three-tier is more influenced by the gradient-based optimisation algorithm of HSPICE, causing it to

be easily trapped in a local minimum, as indicated by the results of Experiment 1 above.

133

On the other hand, in the case of Experiments 2 and 3, only the starting shape of the

simplex differs. The subsequent movements of the simplex for both experiments are governed by

the downhill simplex algorithm. Therefore, it is expected that the results for both Experiments 2

and 3 to be different because the initial simplex in both cases are different, therefore, the simplex in

the two experiment explored different parts of the function surface. It is effectively like restarting

the downhill simplex algorithm using different starting points. In this particular example, it so

happen that the simplex in Experiment 3 converged to a better value than in Experiment 2, and took

more iteration, although this is not necessary the case in other situation.

To conclude, the three-tier version of Experiment 1 is not a favourable implementation as

the robustness of the downhill simplex algorithm is reduced. As both versions implemented in

Experiments 2 and 3 are principally similar, it is decided to use the implementation of Experiment

2 where the initial simplex is changed.

Three_tier_opt()

Input: an HSPICE net/ist file

1. Open netlistfile to read and check the parameter declarations in the file:

.PARAM paramname = optimname (initial, minimum, maximum)

2. Save paramname and optimname Jor each .P ARAM statement.

3. The number oJ.PARAM statement is counted as N.

For all N parameters: each value Jor initial is computed randomly

3TOptFuncO is called to get the cost Junction CF for this set oj N

parameters

The initial value oj the N parameters are replaced.

4. Step 3 is repeated N+ 1 times.

5. Vze downhill simplex algorithm, amoeba() is called.

6. Vze results Jrom amoeba() is logged and analysed:

Amoeba() is restarted using a new set oj initial points, where steps 3

to 6 will be repeated.

7. The program stops when amoeba has been restarted max_stoch_count number

oJtimes.

Output: max _ stoch _count number oj results files.

Figure 5.8 Pseudo code for the three-tier optimisation algorithm.

134

The pseudo code of the three-tier algorithm is shown in Figure 5.8. Steps 1 and 2 are

carried out only once, and are driven by the type of analogue filter topologies that are predefined in

the optimisation process. Steps 3 and 4 pre-compute initial points necessary to start amoebaO and,

together with Steps 5 to 7, are repeated max_stach_count times. The input to the program is a

netlist file, while the output is a collection of results files. The results files contain the final values

of the optimised parameters, simulation results obtained from HSPICE optimisations, as well as

values of the respective cost functions.

An example that details the operation of the three-tier algorithm on a real optimisation

example is presented as follows. The topology selected to implement a fourth-order lowpass

Butterworth filter with cutoff frequency at 1 GHz has 8 parameters for optimisation. It is called

Cascade 1, and will be detailed in Chapter 6. The stochastic search is used to generate the 9 initial

points of the simplex. HSPICE optimisation is used within the function 3TOptfuncO of Figure 5.5,

which finally returns the following cost function values of Table 5.4 for each 9 points. It can be

seen that the cost function values varies from 0.571 to 9.26.

Vertex no. CF Power (mW) errtotal

1 4.360 160 0.840
2 1.860 107 0.439
3 1.720 32.7 0.423
4 0.571 424 0.147
5 2.910 566 0.585
6 0.592 492 0.099
7 1.170 163 0.334
8 2.410 616 0.447
9 9.260 5.31 0.926

Table 5.4 The initialisation of the simplex for an 8-variable three-tier optimisation.

The three-tier optimisation converges after 283 iterations, where the algorithm finally

converges to the cost function of 0.1278, with power consumption of 93.07 mW and curve-fit error

value of 0.0347. The details of the last twenty iterations are given in Table 5.5.

The behaviour of the algorithm during the early stages and the final stages can be observed

from Figure 5.9 and Figure 5.10. In Figure 5.9, the cost function value of the initial simplex that is

given in Table 5.4 is plotted, while the cost function of the last 20 iterations are shown in Figure

5.10. During the initial stage, the cost function values are vastly different to each other, as they are

due to the stochastic search and each vertex are generated independent to each other. However,

when the downhill simplex is converging in the last twenty iterations, all vertices are near to each

other, so that their cost function values are not ranging too far. It can be seen from Table 5.5 that

the curve-fit error value is almost constant at 0.035.

135

The dependency of HSPICE optimisation on the parameter values supplied to it is also

apparent, where in the very first stage of the three-tier optimisation, the parameter values are

obtained from the stochastic search. During this initial stage, HSPICE optimisation returns large

cost function values due to their random positions on the function surface. Whereas during the final

stage, the parameter values passed to HSPICE for optimisation are due to the downhill simplex

algorithm, and are positioned near the local minima of the surface of the function. Thus, in the end,

the three-tier algorithm managed to find a cost function value which is about one-fifth of the lowest

cost function of the initial point.

Iter. CF Power (mW) errlalal Iter. CF Power (mW) errtolal

264 0.1319 97.10 0.0348 274 0.1294 94.59 0.0348
265 0.1321 97.37 0.0348 275 0.1294 94.68 0.0348
266 0.1130 95.32 0.0348 276 0.1289 94.15 0.0348
267 0.1132 97.03 0.0348 277 0.1280 93.27 0.0347
268 0.1288 94.05 0.0348 278 0.1278 93.07 0.0347
269 0.1290 94.18 0.0348 279 0.1335 98.69 0.0348
270 0.1285 93.73 0.0347 280 0.1349 100.11 0.0348
271 0.1368 101.92 0.0348 281 0.1292 94.41 0.0348
272 0.1297 94.96 0.0348 282 0.1331 98.27 0.0349
273 0.1305 95.76 0.0348 283 0.1283 93.52 0.0348

Table 5.5 The results of the last 20 iterations of the three-tier optimisation.

10.0

9.0

8.0

c 7.0
0

:;::::; 6.0 ()
c

5.0 ::J
"-......

4.0 (/)

0
0 3.0

2.0

1.0

0

2 3 4 5 6 7 8 9

Iteration index number

Figure 5.9 The cost function values ofthe vertices of the initial simplex.

136

c
0

:;::;
()
c
::J -+-'
(/)

0
0

0.138

0.136

0.134

0.132

0.130

0.128

0.126

0.124

0.122

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration index number

Figure 5.10 The cost function values of the last twenty iterations before the algorithm converges.

5.4.3 Three-tier optimisation versus one-tier algorithms

This section presents an example to compare the performance of the three-tier algorithm against the

single usage of the stochastic search, downhill simplex algorithm and the built-in HSPICE

optimisation. The analogue filter synthesis specification is for a fourth-order 1 GHz lowpass filter.

The details of the specification are similar to Case Study 3 which will be further explained in

Chapter 6. This specification is used for the parametric optimisation of an OTA-C filter topology

implemented as cascades of second-order blocks of the wide-swing OT A. This topology is called

Cascade 1, which will also be detailed in Chapter 6. Four experiments are carried out to compare

the above-mentioned algorithms, where in each experiment, the cost function of Equation 4 .14 is

used.

Experiment 1 is the stochastic optimisation which runs for 1000 independent tries. In each

try, normal HSPICE simulation and measurement commands are used to evaluate the cost function,

CF, of Equation 4.14.

In Experiment 2, the same 1000 randomly-generated points used in Experiment 1 are used

as the starting points for HSPICE curve-fitting optimisation. Similar to Experiment 1, each 1000

tries in this experiment are independent to each other, which mean that the result from one try does

not affect the optimisation of the following one.

Experiment 3 uses the downhill simplex algorithm. The cost function of Equation 4.1.4 is

evaluated using normal HSPICE simulation. Finally, Experiment 4 uses the three-tier algorithm.

Both Experiments 3 and 4 are run once (i.e. not restarted) using the same random number

generator, therefore the shape of the initial simplex in both experiments is the same.

137

The experimental results are presented in Table 5.6. The second column of Table 5.6

shows the index number of the best try for Experiments 1 and 2, and the number of iterations taken

to converge for Experiments 3 and 4. The other remaining columns in Table 5.6 give the respective

cost function values, CF, as well as the power consumption and curve-fit error figure, en·lotal.

Experiment Try index no. I CF Power (mW) errtotal

Iteration no.
1 (Stochastic) 444 l.143 27.64 0.372
2 (HSPICE) 820 0.223 86.75 0.137
3 (Downhill 95 0.610 20.18 0.295
simplex)
4 (Three-tier) 52 0.227 90.88 0.136

Table 5.6 Experimental results comparing the performance of the three-tier algorithm with each
one-tier algorithm.

From the experimental results, it is obvious that the three-tier algorithm is superior in terms

of convergence rate compared to the other three algorithms. Also, the final cost function value that

it converged to is very near to the one found using HSPICE optimisation, and can considered to be

the same value, i.e. 0.2.

The performance shown in the above table is as expected, where it is expected that

optimisation based on stochastic search will give the poorest cost function value. It is also expected

that the HSPICE optimisation, which if given sufficient sets of starting points, may be able to

finally give an excellent result, which is possibly a global minimum. However, this is at the costly

expense of computational effort and time, as each try involves lengthy HSPICE optimisation,

which alone, will take many iteration to finally converge to a local minima. Such waste is avoided

by using improved algorithm such as the downhill simplex. As proven, the three-tier algorithm that

combines the robustness of the downhill simplex algorithm with the powerful gradient-based

HSPICE optimisation have the ability to quickly converge to a possibly global minimum. The

probability of obtaining a global minimum of the cost function is increased by having several

number of restarts using different starting points for the downhill simplex within the three-tier

algorithm, as explained in Section 5.4.2.

5.5 FIST - Filter synthesis tool

This section presents the software implementation of the work done in the research. The

methodologies presented in this chapter, as well as Chapters 3 and 4 have been implemented as an

integrated filter synthesis tool, named FIST (Filter Synthesis Tool). In Chapter 3, the analysis of

VHDL-AMS parse trees by the synthesis syntax checker and the static calculator to produce

138

analogue filter information have been presented. Then, in Chapter 4, the synthesis methodology

that uses the analogue filter information together with a set of filter topologies to obtain an

optimised circuit netlist of a filter have been detailed. Finally, in this chapter, the optimisation

strategy is presented and discussed in depth. The integration and interaction of the methodologies

in terms of software modules are further detailed in this section, and in short, is referred to as FIST.

FIST has been developed to run on two platforms: Windows and Unix. The Borland C++

Builder compiler was used in the development of the Windows version, while the Unix

implementation relies on the SunOS g++ compiler. The software modules are created such that

they can be easily ported between both platforms and compilers. The only exception is the

Windows GUI which was developed specifically to drive the system on Windows machines.

During the latter stage of the research that involved long runs of multiple HSPICE simulations,

mainly the Unix version was used. The latest version of HSPICE being used in the research is

version 2003 .03 .

Input: VHDL
AMS

source code

Windows
GUI

Figure 5.11 FIST structure.

Output:
HSPICE
nellist

Figure 5.11 shows the structure of the software modules that implement the methodologies

presented in this chapter and the previous chapter. The shaded boxes show the five main modules.

The basic functions of the modules can be described as follows:

Parser: VHDL-AMS compiler which produces a parse tree structure (Chapter 3).

Parse Tree : Parse tree analyser which looks for synthesisable filter constructs (Chapter 3).

Calculator: Recursive static calculator which scans the parse tree to calculate coefficients for filter

characteristics (Chapter 3).

SYllthesisStagei: Initial synthesis stage which maps filter specifications specification to available

filter cells (Chapter 4).

SYllthesisStage2: Main synthesis stage which performs the architectural synthesis and three-tier

parametric optimisation on the filter candidates (Chapters 4 and 5).

139

5.5.1 Windows GUI environment

VHDL-AMS description----1~~1

Parse Tree
Calculator

Synthesis Stage 1

SynthesisStage2

PARSER
Parse Tree

Parse Tree
Calculator

Synthesis Stage 1

I---;~" HSPICE netlist

Figure 5.12 The interaction between the C++ modules in the GUI environment.

The structure of the main menu driven windows GUI module is shown in Figure 5.12. The

typical operation scenario consists ofthe following 6 stages:

Stage 1:

1. User selects a VHDL-AMS file.

2. Run Parser to check for any syntax errors and create the parse tree.

3. Search the parse tree using ParseTree for synthesisable filter constructs.

a. If an LTF construct is found, proceed to Stage 2a.

b. If a DAB construct is found proceed to Stage 2b.

c. Otherwise, exit the program.

Stage 2a:

1. Call the LTF version of Calculator and check the return status.

2. Exit if status is not ok.

3. If status is ok:

a. Get the numerator polynomial coefficients and place them in an array.

b. Find and store the numerator roots.

c. Get the denominator polynomial coefficients and place them in an array.

d. Find and store the denominator roots.

4. Call the LTF version of SynthesisStagel and check the return status. If ok proceed with

Stage 3.

5. Otherwise, exit the program.

Stage 2b:

1. Call the DAB version of Calculator and check the return status.

140

2. Exit if status is not ok

3. If status is ok, obtain the DAE coefficients from Calculator.

4. Call the DAE version of SynthesisStagel and pass to it the DAE coefficients. Check the

return status. If ok, proceed with Stage 5.

5. Otherwise, exit the program.

Stage 3:

1. The array containing the numerator and denominator coefficients is passed to the ideal

curve generator.

2. The frequency range of interest is obtained.

3. The ideal curve is generated by calculating the magnitude of the transfer function at each

frequency point.

4. The frequency and magnitude data is passed to the user.

Stage 4:

1. User selects the data points within passband as well as stopband.

2. The data points where column 1 is for the frequency and column 2 is for the magnitude are

saved in a file with extension .DAT.

3. The performance model is passed to SynthesisStage2

Stage 5:

1. User inspects the file containing the list of available topologies and then saves the identifier

of the selected topologies in the selected topologies file.

2. The selected topologies are passed to SynthesisStage2.

Stage 6:

1. In SynthesisStage2, the architectural and parametric optimiser is called.

2. Three-tier optimisation is set up by defining the number of restarts, i.e. max_stoch_count,

as described in Chapter 4.

3. The three-tier optimisation algorithm is performed on each topology.

4. The architecture evaluator analyses the results file for each topology.

5. The topology with the lowest cost factor is selected, and its details are returned to the user.

141

5.6 Concluding remarks

A novel algorithm which features the best of the existing algorithms of stochastic search, downhill

simplex and HSPICE optimisation has been detailed in this chapter. It has been shown that the

performance of the three-tier algorithm is superior than each one-tier optimisation, in which it is

able to converge to a possibly global minimum with minimal computational effort and time. The

three-tier algorithm is also easy to implement and use, as the user does not need to tweak

parameters in the algorithm, as is the case with some other heuristic-type algorithms. Even when

the default settings for HSPICE optimisation are used, the three-tier algorithm is able to perform

excellently. As long as the performance model of the ideal curve, as well as the analogue filter

topology and its optimised parameters are appropriately chosen, the three-tier optimisation will be

able to give a satisfactory solution.

The implementation of the three-tier algorithm employs a new and effective approach to

the downhill simplex algorithm. It is usual to combine the downhill simplex with other gradient

based optimisation algorithm where the downhill simplex is used during the earlier stages and the

gradient-based is use during the final stages of optimisation. However, in this case, the gradient

based methods of the HSPICE optimisation is used for function evaluation within the operation of

the downhill simplex algorithm. This proved to be very effective as the HSPICE optimisation keeps

on returning the local minima to the downhill simplex, so that, effectively, the optimisation cost

function surface is thoroughly explored by the three-tier algorithm. Hence, the probability of

encountering the global minimum is very much increased.

The last part of this chapter also presents the platform in which all the methodologies are

integrated. From the description of the procedures involved in the high-level synthesis process, it is

apparent that FIST is very easy to use and requires minimal interaction and knowledge from the

user.

142

6 Practical Experiments with Two Case
Studies

The process of architectural synthesis from VHDL-AMS parse trees and the three-tier parametric

optimisation algorithm have been explained in Chapter 4 and Chapter 5. The aim of this chapter is

to demonstrate the practical application of the presented synthesis methodology to two case studies.

Case Study 3 is a fourth-order 1 GHz lowpass filter, while Case Study 4 is a fourth-order 1 GHz

bandpass filter with Q factor of 10. Both filters are behaviourally specified using their transfer

functions. Filter topologies that are suitable for integrated high-frequency applications are

introduced in each case study, where the parametric optimisation issues of the topologies are also

detailed. Figure 6.1 shows the steps taken in the architectural synthesis process. The dark boxes in

the shaded area represent the repetitive process which is performed until all the filter topologies in

the selected list have been parametrically optimised.

VHDL-AMS behavioural
specification

Best topology

Define specification in terms
of performance model

Filter topolGgies: Select
,'''.r_--" , circuit variables and their

ranges

Evaluate results

Figure 6.1 The architectural synthesis flow.

For both Case Studies 3 and 4, the material in this chapter is organised as follows:

• The performance model.

143

• The filter cell candidates - each candidate's circuit parameters to be optimised, their ranges

and other constraints.

• The set-up for the three-tier parametric optimisation algorithm.

• Detailed results for the parametric optimisation of each topology.

• The final result of the architectural optimisation process.

Case Study 3 is detailed in Section 6.1, while Case Study 4 is in Section 6.2. Then, in

Section 6.3, three application examples of one of the topology introduced in Case Study 3 are

presented.

6.1 Case Study 3: Synthesis of an analogue fourth-order 1 GHz
lowpass filter

This example presents the synthesis of a fourth-order lowpass Butterworth filter with a cut-off

frequency of IGHz. The VHDL-AMS code for this filter is shown below. The desired transfer

function is obtained by denormalising the polynomial coefficients for a fourth-order normalised

filter obtained from filter tables (Table 8.1 in [108]).

entity filter is
port (quantity yin: real;

quantity vout: out real);
end entity filter;

architecture transfer of filter is

begin

constant a:real:=4.158ge-10;
constant b:real:=8.6483e-20;
constant c:real:=1.0535e-29;
constant d:real:=6.4162e-40;
constant num: real_vector:= (1);
constant den: real_vector:= (l,a,b,c,d);

vout == vin'LTF(num,den);
end architecture;

6.1.1 Performance models

For Case Study 3, three models were initially investigated to represent the ideal curve in the

architectural optimisation process. These are named as Model 1, Model 2 and Model 3, and are

detailed below. The main differences between them concern the number of points used and hence

the accuracy of representation. The purpose of the investigation was to select a model that can

represent the ideal curve accurately, while consuming relatively low CPU time. This investigation

is necessary to reduce the overall CPU time because, as detailed in Chapter 5, the three-tier

optimisation will be restarted several times and also, while the downhill simplex algorithm is

generally regarded to be a very robust method of multi-variable minimisation, it tends to converge

slowly.

144

6.1.1.1 Modell

Model 1 represents the ideal curve with 6 points obtained by calculation. The 6 points are located

in the critical frequency region between O.13GHz to 4.3GHz, and is plotted in Figure 6.2. The

normalised magnitude axis represents the output voltage or current.

1.2

Q) 1 .0
"0
.3
'c

0 .8 OJ
ro
E

"0 0 .6 Q)

.!!1
ro
E 0.4 0
z

0.2

0 .0

0 2 3 4 5
Frequency (GHz)

Figure 6.2 Performance model, Modell, for Case Study 3.

6.1.1.2 Model 2

Model 2 represents 133 points that are located in the critical frequency region between O.5GHz to

4GHz., and are shown in Figure 6.3. The magnitude span is between approximately 0 to --48 dB.

These data are obtained by automated calculation of the magnitude of the transfer function defined

by the VHDL-AMS code for Case Study 3. This method of building the performance model ' s ideal

curve from the given transfer function in VHDL-AMS was explained in Chapter 4.

145

1.2

1.0
Q)
"0
:J 0.8 :t:::
c
CJ)
co

0.6 E
"0
Q)

.!:!! 0.4
co
E

0.2 0
z

0.0

0 2 3 4 5
Frequency (GHz)

Figure 6.3 Perfonnance model, Model 2, for Case Study 3.

6.1.1.3 Model3

In Model 3, 36 points were selected from the 133 data points that are used in Model 2, and the

corresponding curve is shown below in Figure 6.4.

1.2

1.0
Q)
"0
:J 0.8 :t:::
c
CJ)
co
E 0.6
"0
Q)
en 0.4 ro
E
0 z 0.2

0.0

0 2 3 4 5
Frequency (GHz)

Figure 6.4 Perfonnance model, Model 3, for Case Study 3.

6.1.2 Fourth-order lowpass analogue filter candidates

There exist several types of filters that are suitable for continuous-time, integrated and high

frequency applications, the most popular being the OTA-C (Operational Transconductance

Amplifier-Capacitor), MOSFET-C, and active LC filter [124] . MOSFET-C filters are very similar

to active RC circuits, where the use of resistors is avoided and instead MOSFETs biased in the non-

146

linear triode region are used. However, to account for the nonlinearities, the circuit must be

carefully designed in the fully differential balanced form. Active LC filters are specific for

bandpass filtering, and the inductor is implemented on-chip as a spiral inductor. The discussion for

this type of circuit has been detailed in the previous chapter (Chapter 4) in Case Study 1, and will

be continued in the discourse for Case Study 4. As it is currently the dominant circuit for such

applications [2], the topology chosen for the implementation for Case Study 3 is of the OTA-C (or

also known as gm-C) type. In this case study and the next, the OTA-C filter topologies are

implemented in a O.35flm CMOS technology.

The popular method to obtain a fourth-order design is to cascade two second-order biquad

sections [2]. A second-order lowpass OTA-C filter [3] is shown in Figure 6.5. The circuit contains

two OTA cells which are labelled gm1 and grn2. The OT A cell is a building block for the filter

topology that may be implemented using various circuits. A simple OTA cell is shown in Figure

6.6, which is a single-ended OTA consisting of 5 transistors.

The transfer function HLP(s) of the biquad filter in Figure 6.5 is given by (6.1), where the

transconductance value for both OTA are equal (in Figure 6.5, gm1 = gm2 = gm), and the

capacitances are labelled as C1 and C2. With this assumption, the Q factor, Q, and the natural

frequency, Wo, of the filter are given by (6.2) and (6.3) respectively. It can be seen that both the

requirements for frequency and Q factor can be achieved by adjusting the values of the

transconductances and capacitances in the biquad lowpass filter circuit. Figure 6.7 (a) shows the

cascade of two second-order lowpass filter blocks, where the output of the first block is directly

connected to the input of the second block.

(6.1)

(6.2)

(6.3)

147

Figure 6.5 A lowpass biquad filter cell implemented using two OTAs and capacitors.

6~-,---, ----.d
M3 M4 L

L, . "
"I ~9 "' M'f~

Jlbias

VDD

VB ~9 M5
VSS

Figure 6.6 A single-ended OT A.

r------------------------'
I
I
I
I
I
I
I ~

Vin __ v 1_ ~
--,--C1 T C2

out

Feedback retv.ork J
~-,-----,--,,-------,----,--------.--

1 1 Voo! L ______ , _________________ _

Vin

• •

'--_---'H Biquad 2 ~ Vout

(a) (b)

Figure 6.7 Implementation of a fourth-order lowpass filter. (a) Using two cascaded sections of
lowpass biquads of Figure 6.5. (b) Using an all-pole multiple loop feedback structure.

148

(a)

Figure 6.8 Fourth-order all-pole filter (a) IFLF (b) LF.

Apart from cascade, another method to implement a fourth-order lowpass OTA-C filter is

to use a multiple loop feedback (all-pole) structure [124] as shown in Figure 6.7 (b). The number of

the OTA-C integrator connected in the feedback network gives the filter order. There are two main

feedback configurations that can be applied in the feedback network; the first one is called inverse

follow-the-leader feedback (IFLF) and the other is the leapfrog (LF) configuration. Both are shown

respectively in Figure 6.8 (a) and (b). The values of the capacitors Cl to C4 in the diagrams are

obtained by comparing the respective transfer functions for each configuration ((6.5) and (6.6))

against a unity-gain fourth-order all-pole lowpass transfer function (6.4). Since the time constant

, of the integrator is related to the capacitance C and transconductance gm as , = CIgn" the

capacitances Cl to C4 can be obtained by solving the formula in (6.7) and (6.8) for '1 to '4 for the

values ofIFLF and LF, respectively.

(6.8)

Based on the previous explanation, for the synthesis of the specifications of Case Study 3,

three different architectures ofthe OTA-C filter will be used:

• Cascade of second-order lowpass OT A-C filter blocks.

149

• All-pole multiple loop feedback III the inverse follow-the-Ieader feedback (IFLF)

configura tion.

• All-pole multiple loop feedback leapfrog (LF) structure.

It is obvious that the main building block of the three configurations of OTA-C filter is the

OTA cell itself. The OTA or operational transconductance amplifier may be implemented using

several configurations, which are widely available in books and publications such as [3, 125, 126].

In this synthesis design, three different OTA circuits [3] were used to implement the OTA or 'gm

block' shown in Figure 6.5. The three OTA circuits are:

• The wide-swing OTA of Figure 6.9.

• The folded-cascode OTA of Figure 6.10.

• The wide-swing folded-cascode OTA of Figure 6.11.

VDD

vss

Figure 6.9 Wide-swing OTA.

150

VDD

VSS

Figure 6.10 Folded-cascode OTA.

VDD

I ~ M14
Vbias4 --------'1

------~------'
vss

Figure 6.11 Wide-swing folded-cascode OTA.

Thus there are nine different circuits that implement the fourth-order lowpass filter, where

each will be parametrically optimised using the three-tier algorithm. The details of each circuit are

summarised in Table 6.1.

151

Name Description Circuit variables Size
Cascade 1 Wide-swing OT A-C cascade 8 (all transistor widths, bias 48 MOSFETs, 4

current, capacitor C1 and C2 for capacitors
biquads 1 and 2)

Cascade 2 Folded-cascode OTA-C 8 (all transistor widths, bias 48 MOSFETs, 4

cascade
current, capacitor C1 and C2 for capacitors
biquads 1 and 2)

Cascade 3 Wide-swing folded-cascode 8 (all transistor widths, bias 74 MOSFETs, 4
OT A-C cascade current, capacitor C1 and C2 for capacitors

biquads 1 and 2)
LF 1 Wide-swing OTA-C leapfrog 6 (all transistor widths, bias 48 MOSFETs, 4

current, capacitors C1 to C4) capacitors
LF2 Folded-cascode OTA-C 6 (all transistor widths, bias 48 MOSFETs, 4

leapfrog current, capacitors C1 to C4) capacitors
LF 3 Wide-swing folded-cascode 6 (all transistor widths, bias 74 MOSFETs, 4

OTA-C leapfrog current, capacitors C1 to C4) capacitors
IFLF 1 Wide-swing OTA-C inverse 6 (all transistor widths, bias 48 MOSFETs, 4

follow-the-Ieader feedback current, capacitors C1 to C4) capacitors
IFLF 2 Folded-cascode OTA-C 6 (all transistor widths, bias 48 MOSFETs, 4

inverse follow-the-Ieader current, capacitors C1 to C4) capacitors
feedback

IFLF 3 Wide-swing folded-cascode 6 (all transistor widths, bias 74 MOSFETs, 4
OTA-C inverse follow-the- current, capacitors C1 to C4) capacitors
leader feedback

Table 6.1 The summary of the topologies used in the architectural synthesis of Case Study 3.

6.1.3 Archite~tural optimisation for Case Study 3

The nine topologies introduced in the previous section consist of four OT A cells so that a fourth

order response can be realised. All four OT A cells are required to produce a unified

transonductance value. This is achieved by having equal widths for all the transistors, and by

biasing each OT A cell with the same amount of current. The transconductance gm is related to the

bias current and transistor sizes as follows:

(6.9)

where hias is the bias current and f3 is the transconductance parameter. The transconductance

parameter which relates the transistor dimensional size - width Wand length L - and the variables

due to different process technology is given by:

W
j3=Kp·-

L
(6.10)

where KP represents the mobility and oxide capacitance factor of the transistor. For the process

technology used in this research, the value for KP was calculated as 271 'tlAJV2 and 62 'tlAJV2 for

152

the nmos and pmos transistors respectively. For a high-frequency design, all the transistor lengths

L are kept to the minimum, i.e. 0.35 flm, so that parasitic effects are reduced. The nmos and pmos

transistors in the OTA circuit are matched so that the transconductance parameters for all

transistors are made equal:

(6.11)

where /3" and j3p are the transconductance parameters for the nmos and pmos transistor respectively.

Consequently, for all nine topologies in Case Study 3, the width of all pmos transistors were

calculated to be four times the width of the nmos ones to achieve the correct transconductance

matching between the devices. The transconductance value for the OT As is tuned by selecting the

bias current and the nmos transistor widths for optimisation.

As stated above, for the multiple loop feedback all-pole filter the time constant for both the

leapfrog and inverse-follow-the-leader feedback can be derived from the all-pole transfer function

and the relationships given by (6.7) and (6.8). The fourth-order transfer function is similar as coded

in the VHDL-AMS description for this case study given in Section 6.1. The following time

constant values are obtained for the two multiple loop feedback configurations:

IFLF LF
'r! 4.16-10 2.43e-10

't2 2.08e-10 2.51e-10

't3 1.22e-10 1. 72e-lO

't4 6.0ge-11 6.0ge-11

Table 6.2 The time constant values in seconds for the fourth-order all-pole lowpass multiple loop
feedback IFLF and LF OTA-C filters.

As the four OT A cells have the same transconductance, the information above can be used

to express the capacitor values as ratios. For example, by normalising to C1, the following values

for C2 to C4 in Table 6.3 are obtained. Hence, only capacitor C1 is directly optimised, similar to

the strategy used for Cascade 1 to 3.

IFLF LF
C2 0.5*C1 1.03*C1
C3 O.29*Cl 0.71 *C1
C4 O.15*C1 0.25*C1

Table 6.3 The capacitor values for the IFLF and LF topologies expressed in terms of capacitor C 1,
where the ratio coefficients are based on the time constants for a fourth-order lowpass filter.

153

However, the initial investigation to use the expressIOn In Table 6.3 shows that a

satisfactory result can not be achieved. Therefore, the strategy used by the parametric optimiser is

not to constraint the search for capacitance values with the above relationship. By specifying only

the maximum and minimum boundary for the capacitances, the optimisation algorithm is given the

freedom to select the capacitances within this range. Therefore for all the six multiple loop

feedback topologies, each capacitors Cl to C4 are independently optimised.

6.1.4 Results

The first task is to determine which of the models presented in Section 6.1.1 that will be used as the

performance model for this case study. The method to evaluate this is by running an HSPICE curve

fitting optimisation once on topology Cascade 1. The results are shown in the following table:

Name Curve-fit error Time (sec) Number of
(errtotaJ iterations

Model 1 (6 points) 0.26 26.0 18
Model 2 (133 points) 0.14 1851 50
Model 3 (36 points) 0.2 150.58 50

Table 6.4 Results for experiment to select the performance model for Case Study 3.

From Table 6.4, it can be seen that Model 1 takes the least time to converge. The time

taken for a single HSPICE optimisation to converge is very important for the efficiency of the

three-tier algorithm. As will be shown, the three-tier optimisation for the stochastic search had to

be restarted several times, the total number of HSPICE optimisation runs amounted up to

thousands. Therefore, the architectural optimisation uses Model 1 as the performance model for

Case Study 3.

The number of restarts for the three-tier algorithm in this experiment is set to three. For

optimisation of circuits containing MOSFET models, the simulation accuracy of HSPICE was set

for tighter convergence options than the default values in order to obtain more accurate results. The

summary of the three-tier optimisation results for the nine candidates is presented in Table 6.5,

where the second column shows the total number of iteration to produce three sets of results, the

following columns show the index number of the iteration that produces the best result, and which

restart number it belongs to. Finally the last three columns of Table 6.5 give the details of the

optimisation result for each topology.

154

Name Total Best Restart Cost Power errlOlal

iter. iter. no. function (mW)
Cascade 1 663 149 2 0.060 25.28 0.035
Cascade 2 977 185 1 0.086 38.89 0.048
Cascade 3 802 692 3 0.145 48.19 0.096
LF 1 521 192 1 0.071 22.49 0.048
LF2 734 259 1 0.040 16.22 0.024
LF3 532 525 3 0.143 45.06 0.098
IFLF 1 735 636 3 0.089 32.58 0.056
IFLF2 870 465 2 0.050 31.76 0.018
IFLF 3 568 122 1 0.066 39.16 0.027

Table 6.5 Architectural optimisation results for Case Study 3.

The topologies arranged from the best to the worst in terms of the cost function, curve-fit

error and power consumption are shown in Figure 6.12, Figure 6.13 and Figure 6.14 respectively.

From Figure 6.12 and Table 6.5, it can be observed that the best topology with the lowest cost

function is topology LF 2, which is the leapfrog topology implemented using the folded-cascode

OT A. The best three topologies are the LF 2, followed by IFLF 2 and Cascade 1. Figure 6.15

shows the AC response of LF 2.

However, from Figure 6.13 it can be seen that the most accurate topology is IFLF 2, the

inverse follow-the-Ieader feedback - also being implemented using the folded-cascode OT A. The

best overall topology, LF 2 has a slightly larger curve-fit error value than IFLF 2. The topology that

consumes least power, about 16 mW, is also LF 2, the best overall topology. The topology with the

worse performance is Cascade 3, followed by LF 3. Both topologies have the highest curve-fit error

(LF 3 followed by Cascade 3) as well power consumption (Cascade 3 followed by LF 3). It is

observed that all three topologies implemented using the wide-swing folded-casco de OT A

consumes the most power, this would be as expected because this OTA configuration has more

MOSFETs than the other two (Table 6.1).

The optimisation results of Case Study 3 are in agreement with published information

[124] that states that the LF configuration gives the best overall performance in comparison to the

IFLF and cascade structure.

155

0.16

0.14

0.12
c::
0 0.1 :;:;
0
c::
:::l 0.08
~
til
0 0.06 u

0.04

0.02

0

0.12

0.1

...
0
a> 0.06 '+r
Q)

~
:::J 0.04
()

2 3 4 5 6 7

Topology name

8 9

Topology name

1 = LF 2,
2 = IFLF 2,
3 = Cascade 1,
4 = IFLF 3,
5 = LF 1,
6 = Cascade 2,
7 = IFLF 1,
8 = LF 3,
9 = Cascade 3

Figure 6.12 Results for Case Study 3 sorted by cost function (ascending).

Topology name

1 = IFLF 2,
2 = LF 2,
3 = IFLF 3,
4 = Cascade 1,
5 = Cascade 2,
6 = LF 1,
7= IFLF 1,
8 = Cascade 3,
9 = LF 3

2 3 4 5 6 7 8 9

Topology name

Figure 6.13 Results for Case Study 3 sorted by curve-fit error (ascending).

156

50

~ 40

E
";:" 30

~ o
a.. 20

10

2 3 4 5 6 7 8
Topology name

9

Topology name

1 = LF 2,
2 = LF 1,
3 = Cascade 1,
4 = IFLF 2,
5 = IFLF 1,
6 = Cascade 2,
7 = IFLF 3,
8 = LF3,
9 = Cascade 3

Figure 6.14 Results for Case Study 3 sorted by power consumption (ascending) .

............ _ .. _ _ _• - __ -..... -....... -..... -.... ~-.-.. ~ --..... -........ -................. - ... -. .

j (.--••• --.~..;.: ··1-.. . . . ,-
1 ,
~ :.~,

o

j j ' \' i· -- -. --.... --.. -.. -_. -- -- - ... - -_. _. t -~\~---... _. ---. -- _. ---...
i·········· ···········-·····;~~f· .+ \~-.. -.
·1· .. ·········· .. · .. · .. ,,·· .. · .. ···· ···· .. ·· ·· ···· .. · .. · ~ \: ... -.............

.. 10

-20

-30
,
i

.~ - ". ; ~. \ _.

1 ; ~ 1 ;
1-·····················-···---··············[·········-·---.... - ~

. j , _ _ ; -... _ ~
: .
i ;

j 7.7.~.O:';;.7.7.7.-;::.~.-;::.7.-:.7.-;::.~.-;::.:.7,7~:::';:.:.7:;::.7.0:':;.7.7.7.~;;::::.7.7:;.7.7.;.-:::t.-;::.7.7:';;.7.7.7.-;::.7.-;::.-:.7.7,-;:::::';;::.7.~.-;::.7.=:;.7.7.7.:.-;::.7::.7;:::.7 7.7.7.7.0 ,

-60

-70
100x 19 10g

Frequency (log) (Hertz)

Figure 6.15 AC response for the best topology (LF2) in Case Study 3.

157

6.2 Case Study 4: Synthesis of an analogue fourth-order 1
GHz bandpass filter

The following VHDL-AMS model is used to specify the desired behaviour of the 1 GHz fourth

order bandpass filter with a Q factor of 10. The transfer function for this specification is build using

frequency transformation techniques that converts a second-order lowpass filter into a fourth-order

bandpass filter.

entity filter is
port (quantity Yin: real;

quantity Yout: out real);
end entity filter;

architecture transfer of filter is
constant w: real:= 2.0*3.142*le9;
constant w2: real:= w*w;

begin

constant w3: real:= w2*w;
constant w4: real:= w2 *w2;
constant a:real:=1/w2;
constant b:real:=14.142/w;
constant c:real:=201/w2;
constant d:real:=14.142/w3;
constant e:real:=100/w4;
constant num: real_vector:= (O,O,a);
constant den: real_vector:= (lOO,b,c,d,e);

Yout == Yin'LTF(num,den);
end architecture;

6.2.1 Performance model

The performance model for this bandpass filter specification is represented by 11 data points

between the -3 dB upper and lower frequencies of the 1 GHz bandpass filter. The plot of the

magnitude versus frequency points is shown in Figure 6.16, where the normalised magnitude axis

represents the output voltage or current.

1.2

(I)
"0
~
~ 0.8 c
OJ
C1J
E 0.6

"0
(I)
en
ro 0.4
E
L-

0 0.2 z

0.94 0.96 0.98 1.0 1.02 1.04 1.06
Frequency (G Hz)

Figure 6.16 The plot of the normalised ideal curve for Case Study 4.

158

6.2.2 Fourth-order bandpass analogue filter candidates

As mentioned when discussing topologies for integrated high frequency analogue filters in Section

6.1.2, a bandpass filter for similar applications may be designed from OTA-C configurations. Q

enhanced LC circuits with silicon inductors are also suitable [124].

A basic second-order (biquad) bandpass OTA-C filter is shown below in Figure 6.17. The

Q factor of the circuit is set by the ratios of capacitors C1 and C2 as shown in (6.2). The cascade of

two similar biquad sections produces a fourth-order bandpass filter. As in Case Study 3, three

different OTAs from [3] are used in this cascaded OTA-C structure for Case Study 4. These

topologies are named Cascade 4, Cascade 5 and Cascade 6 for the OTA-C filter implemented using

the wide-swing OTA, fo1ded-cascode OTA, and wide-swing fo1ded-cascode OTA respectively.

I---'---Vout

Vin ----1 C1

Figure 6.17 A second-order bandpass filter cell implemented using two OTAs and capacitors.

Apart from cascading two OT A-C sections, a fourth-order response may also be obtained

by cascading a second-order active LC section with an OTA-C biquad bandpass filter, as shown in

Figure 6.18. The second-order LC filter cell is based on the Colpitts LC oscillator that has been

introduced in Case Study 1. The second OTA-C bandpass biquad is implemented using the fo1ded

cascode OT A cells. This fourth topology for use in Case Study 4 is named as LC-OTA-C.

159

Spiral
Inductor

VIN

R

M1

~HC11

C12

ISlAS ~V
55

t
BIQUAD 1 BIQUAD 2

Figure 6.18 Cascade of bandpass biquads: Colpitts and OTA-C.

The fifth topology is another LC circuit known as the coupled resonator [127], which is

build with two sections of LC circuits. The block diagram of the second-order Q-enhanced LC

circuit is shown in Figure 6.19. The fourth-order circuit is obtained by connecting both parts as

shown at the bottom of Figure 6.19. The circuit schematic of the resonant circuit consists of input

and output buffers, an LC section, a negative resistance and coupling neutralisation circuits. For

this case study, a simplified version of the circuit from [127] is implemented. The circuit diagrams

of these blocks are shown in Figure 6.20.

The frequency of this circuit is set to 1 GHz by choosing appropriate values for the

inductor and capacitor in the LC circuit. The LC circuit in Figure 6.20 shows that the losses in the

spiral inductor are modelled as a series resistance RL. This loss will cause the dampening of the

circuit's Q factor. Therefore the negative resistance circuitry [127] enhances the lossy Q by means

of positive feedback via cross coupling the gate inputs with drain outputs. The circuit's Q is tuned

by varying the tansconductance value using the current source IQ, shown in Figure 6.20. The input

and output buffers [127] are differential amplifiers that control the voltage gain of the circuit and to

drive off-chip drain loads, respectively. Both are controlled by the current source lB.

As the fourth-order filter requires the implementation of two similar circuits, there will be

two inductors in the final design. The implication of this is there will be magnetic coupling

between the inductors, which is represented by the coupling coefficient k, and is a function of the

placement of the inductors on the die. It is desirable to keep the value of k as low as possible, and

for this, the inductors must be adequately separated. Since chip area is very limited, inadequate

separation makes the performance suffer from coupling effects. Hence, the coupling neutralisation

circuit, shown in Figure 6.20 is essential in reducing this effect.

160

C.R. cell

Input Input buffer LC Negative Output
0 utput

amplifier -,- circuit - resistor 1--,- buffer
amplifier

From other section

I
Coupling To other section

'-- neutralisation I---
Q control

K control

Vin ~
'--__ ---.J

~ Vout
'--__ ---.J

C.R. C.R.

Figure 6.19 Upper: Block diagram of the second order coupled resonator filter (C.R. cell) [127).
Lower: The cascade of two C.R. cells to form a fourth-order bandpass filter.

COIL- COIL+

" "J " . L:
IN+---.Jf-<lM1A M1B~LJ.N-

' ~' .

. ~ IB ,;'
IfliPUT BUFFER AMPLIFIER

COIL+

NEGATIVE RESISTANCE
TRANSCONDUCTANCE

OUT+ . OUT-

J L
COIL-_~~_}-~M3A M3B~~OIL+

¥
OUTPUT BUFFER AMPLIFIER

VDD , VDD

J ' COIL2+ COIL2- ' -C
COIL-___ J-<l M4A - J . L M4B~LCOI L+

,,,h~n,,,
, __ ~.P!C~!_I_t:J~_~~_tQ~_, , ,

, .: i L RL i '
COIL.~: COIL- '

~.~
C1

lCCIRCUIT COUPLING NEUTRALISATION CIRCUIT

Figure 6.20 Circuit diagrams of the C.R. cell components.

The sixth and final topology to be evaluated in the architectural synthesis of Case Study 4

is the current-mode circuit introduced before in Case Study 2. It is a vertically stacked current

mode biquadratic filter implemented around the regulated cascode configuration [118] that may

produce both bandpass and lowpass response. The fourth-order bandpass response can be obtained

by taking the output current from the drain of transistors M5 and M55. The fourth-order bandpass

filter, referred to as the vertical cascode, is shown in Figure 6.21. The Q-factor of the circuit is

tuned via the bias current 103, while the frequency is adjusted via bias current 101.

161

VDD

M,6~ J
f-<I M44

loul

f-<I M5 M55

"l
VS2 VDD VS2

101

Q-tuning circuit

Figure 6.21 Fourth-order vertical cascode in a bandpass configuration [118].

This section has outlined six different topologies that are chosen to implement the

specification of Case Study 4. The details of the topologies are given in Table 6.6.

Name Description Circuit variables Size
Cascade 4 Wide-swing OT A-C 8 (all transistor widths, bias current, 48 MOSFETs,

cascade capacitor C1 and C2 for biquads 1 4 capacitors
and 2)

Cascade 5 Folded-cascode OTA-C 8 (all transistor widths, bias current, 48 MOSFETs,
cascade capacitor C1 and C2 for biquads 1 4 capacitors

and 2)
Cascade 6 Wide-swing folded- 8 (all transistor widths, bias current, 74 MOSFETs,

cascode OTA-C cascade capacitor C1 and C2 for biquads 1 4 capacitors
and 2)

LC- Cascade ofthe colpitts 5 (2 sets of transistor widths, WM 1, 25 MOSFETs,
OTA-C circuit with the folded- and WM3, and bias current IE, 4 capacitors

cascode OTA-C capacitor C1 and capacitor ratio k)
CR Coupled resonator circuit 5 (all transistor widths, 4 bias 12 MOSFETs, 2

currents IB, 1Q, IK1 and IK2) spiral inductors,
4 capacitors

Vertical Vertically stacked 5 (all transistor widths, 4 bias 10 MOSFETs
cascode regulated cascode currents II, 12, 13 and 14)

biquads.

Table 6.6 The summary of the topologies used in the architectural synthesis of Case Study 4.

162

6.2.3 Architectural optimisation for Case Study 4

The setting up for architectural optimisation for OTA-C bandpass cascade circuits is similar to that

of the lowpass as described in Section 6.l.3. For Cascade 4, Cascade 5 and Cascade 6, all bias

currents and transistor widths are optimised, where the width of the pmos transistor is set to be 4

times the width of the nmos transistor.

The second order OTA-C section of the LC-OTA-C topology is also similarly optimised as

Cascade 4 to 6, which are the transistor widths, bias currents and capacitor. In the LC part of the

filter, three parameters are optimised; the width of its single transistor, capacitor ratio and bias

current. The value of the bias current for both the LC and OTA-C parts are set to be equal.

The coupled resonator circuit contains only nmos transistors, whose widths are optimised.

There are four bias currents that are independently optimised to provide Q-tuning, gain adjustment

and coupling neutralisation control as indicated in the circuit diagram of Figure 6.20. The LC

circuit has fixed value to set the frequency at 1 GRz, where the inductance is 8nR and the

capacitance is 3.167 pF. The loss due to the spiral inductor implementation is represented by a 50

resistor in series with the inductor. The final topology, which is the vertical cascode, has its

transistor widths optimised, and other bias currents for tuning the Q factor, frequency and gain.

6.2.4 Results

The optimisation results for Case Study 4 are shown in Table 6.7. The curve-fitting algorithm of

the HSPICE optimisation is done against 11 points situated in the range of 0.95 to 1.05 GHz in the

frequency response, as shown in Figure 6.16.

Name Total Best Restart Cost Power errlOtal

iter. iter. no. function (mW)
Cascade 4 170 142 3 0.0469 30.07 0.017
Cascade 5 96 82 3 0.0325 10.00 0.022
Cascade 6 116 43 1 0.0642 37.60 0.027
LC-OTA- 601 600 3 0.133 100.71 0.026
C
CR 1126 721 2 0.884 345.67 0.269
Vertical 360 90 1 0.0211 4.85 0.016
cascode

Table 6.7 Architectural optimisation results for Case Study 4.

From Table 6.7, it can be seen that the best result is the vertical cascode filter. This

topology has both the lowest error function and power consumption. In fact, the novelty of this

design [118] is its low current consumption due to the proposed vertical connection of the

163

regulated cascade circuit. The frequency response of this curve is shown in Figure 6.25 . It can be

seen that when compared to the ideal magnitude response, the response of the vertical cascade

perfectly matches the ideal within the range of 0 to - 5 dB in the passband, as specified by the

performance model of Figure 6.16.

The rank of the topology according to the best to worst in terms of overall cost function,

curve-fit error and power are illustrated in Figure 6.22, Figure 6.23 and Figure 6.24, respectively.

From these figures , it can be seen that the topology with the worse performance is the coupled

resonator, which has both a significantly higher curve-fit error and power consumption compared

to the other topologies. This is attributed to the fact that this topology is implemented with

simplifications made to the original circuit [127], where only the functionally-important

components are implemented, as shown in Figure 6.20. However, with the curve-fit error of about

0.27, this topology is fairly accurate, and with a more enhanced implementation, it is expected that

its performance would improve. From Figure 6.23, it can be seen that apart from the coupled

resonator, the other five topologies are very accurate, with curve-fit error ofless than 0.03. In terms

of power consumption, after the coupled resonator, the LC-OTA-C consumes most power,

followed by Cascade 6. The LC-OTA-C topology actually have five current sources, where one is

used to bias the Colpitts circuit, and transconductances gml and gm2 of the OTA each contains

two current sources (Figure 6.18). As only a single value for bias current is used for the five current

sources in the optimisation process (Table 6.6), the 'heavy' load pushes the current source to its

limit, hence the higher power consumption. Nevertheless, the LC-OTA-C topology gives accurate

magnitude response despite consuming a fairly large amount of power.

Topology name

1 = Vertical
cascode,
2 = Cascade 5
3 = Cascade 4,
4 = Cascade 6,
5 = LC-OT A-C,
6= CR

Figure 6.22 Results for Case Study 4 sorted by cost function (ascending) .

164

0.25

e 0.2 ...
Q)
.....
t;::
d> 0.15
~
~

<.J 0.1

0.05

o
2 3 4

Topology name
5 6

Topology name

1 = Vertical
cascode,
2 = Cascade 4,
3 = Cascade 5,
4 = LC-OTA-C
5 = Cascade 6:
6 = CR

Figure 6.23 Results for Case Study 4 sorted by curve-fit error (ascending).

Topology name

1 = Vertical
cascode,
2 = Cascade 5,
3 = Cascade 4,
4 = Cascade 6,
5 = LC-OTA-C
6 = CR '

Figure 6.24 Results for Case Study 4 sorted by power consumption (ascending).

165

o
1 ~ i I· , """ -...... ""'J" _., ""'" '._ --..... ""." ··1
• • : r
i : i 1 ,. , I
! \ i ~ ~ i

I ' I i I
1 7. 1

• ~ __ •• _ _____ .• ___ • • _., ... __ { •• _.. ""'"'' • ___ _ .. J

j i ~ I i/ l '\ --------~ !
i I ~~ ~i I . j \ 1
i I \. I
1 ; I
'. I' j .. I !

r······ -....... -.. _ .. -"-7'-" -._ .. -\ ... "- I~~;;;" -... _ .. -"1
: / . i i

I / !
I······· ··L-··· :/. -........ "-" - .-..... _ _ .. - - .. j
! + ! _, ______________________________ L ___ J

·20

·60

t-····-· ·,..··.....,·---.· ... --· -····--,.····-·!··-·-·,..·· ... :"~""1·--"·· •-..... _ ••• - - •••••• _ v·····--··-··:-·· ... -:··· ... :-· ... -1

100x 19 10g

Frequency (log) (Hertz)

Figure 6.25 AC simulation results of the best topology (vertical cascode) for Case Study 4.

6.3 Application examples of topology Cascade 1

The analogue filter library contains library cells whose parameters can be adjusted to suit the

required application. The range for the parameters are chosen to be within those that are practical

for integrated implementation, and are the user is not required to constrain any of the parameter to

realise the required specification. Therefore, to show that the knowledge required from the filter

cell library is not application based, this section presents three application examples of fourth-order

lowpass filters using topology Cascade 1. For each example, the VHDL-AMS description of the

analogue filter is passed to the synthesiser, and then together with the given perfonnance model,

the topology Cascade 1 is optimised using the three-tier algorithm. The specified number of restarts

for the algorithm is five.

The three examples including their VHDL-AMS description as well as the selected

perfonnance models are given in Sections 6.3.1,6.3.2 and 6.3.3. For Example 1 and Example 2, the

perfonnance models for the Chebyshev response are represented by 20 points as the ripple in the

passband requires more data points so that the curve-fitting optimisation result would be more

accurate. These ideal curves are shown in Figure 6.26 and Figure 6.27 respectively. For the

Butterworth response in Example 3, the ideal curve is represented by seven points, as shown in

166

Figure 6.28. The three-tier optimisation results for the examples are presented in Table 6.8 of

Section 6.3.4. AC waveforms of the three examples are also shown.

6.3.1 Example 1: Chebyshev 0.5 db ripple, cut off at 1 GHz (Gain=l)

1.2

OJ 1.0
"0
.2
'c
Cl 0.8
'" E
"0
OJ 0.6 .!!?
ro
E
0 0.4 z

0.2

0

entity filter is
port (quantity vi n: real;

quantity vout: out real) ;
end entity filter ;

archi tecture transfer of filte r is
constant w: real:= 2.0*3.142*le9 ;
constant w2: real:= w*w;
constant w3: real:= w2 *w;
const ant w4 : real:= w2*w2;
constant a:real :=O.3579*w4;
constant b:real: =O . 3791*w4 ;
constant c:real: =1.0255*w3;
constant d: real :=1 . 7169*w2;
constant e : real :=1. 1974*w;
constant nurn: real_vect or: = (a);
constant den: real _vector := (b , c , d , e , l.0);

begin
vout == vi n'LTF (nu rn, den) ;

end archi t ectu re;

0 2 3

Frequency (GHz)

4

Figure 6.26 Performance model for Example 1.

5

167

6.3.2 Example 2: Chebyshev 3 db ripple, cut off at 0.5 GHz (Gain =1)

1.6

1.4

Q) 1.2
'0
.3
'c
Ol

1.0
co
E 0.8 '0
Q)

.!!1
0.6 co

E
0 0.4 z

0.2

0

entity filter is
port (quantity vin: real;

quantity vout: out real);
end entity filter;

architecture transfer of filter is
constant w: real:= 2.0*3.142*0.Se9;
constant w2: real:= w*w;
constant w3: real:= w2 *w;
constant w4: real:= w2 *w2;
constant c:real:=0.4048/w;
constant d:real:=1.1691/w2;
constant e:real:=0.S816/w3;
constant f:real:=1/w4;
constant num: real_vector:= (0.177);
constant den: real_vector:= (0.1770,c,d,e,f);

begin
vout == vin'LTF(num,den);

end architecture;

0 0.5 1.0 1.5

Frequency (GHz)

2.0

Figure 6.27 Performance model for Example 2.

2.5

6.3.3 Example 3: Butterworth, cut off at 0.5 GHz (Gain = 1)

entity filter is
port (quantity vin: real;

quantity vout: out real);
end entity filter;

architecture transfer of filter is
constant w: real:= 2.0*3.142*O.Se9;
constant w2: real:= w*w;

begin

constant w3: real:= w2 *w;
constant w4: real:= w2*w2;
constant c:real :=2.6131/w;
constant d:real:=3.4142/w2;
constant e:real:=2.6131/w3;
constant f:real:=1/w4;
constant num: real_vector:= (1);
constant den: real_vector:= (l,c,d,e,f);

vout == vin'LTF(num,den);
end architecture;

168

1.2

1.0

Q)

:3 0.8
'c
Ol
co

0.6 E
'0
Q)
(/)

~ 0.4
E
0
z

0.2

0
0 0.5 1.0 1.5

Frequency (GHz)
2.0

Figure 6.28 Perfonnance model for Example 3.

2.5

6.3.4 Experimental results

Name Total iter. Best iter. Restart no Cost Power
function lmWl

Example 1 778 576 4 0.116 29.53
Example 2 887 447 3 0.0896 12.31
Example 3 1363 285 1 0.0525 9.26

Errtotal

0.0863
0.0773
0.0432

Table 6.8 Three-tier optimisation results for different applications of Cascade 1.

Table 6.8 above presents the three-tier optimisation result for the Examples 1,2 and 3. The

second column shows the number of iterations for five restarts, and the next two columns give the

index number of the best iteration and which restart it belongs to . The last three columns give the

best cost function for each example together with the power consumption and curve-fit error. The

optimisation proved to be successful as it can be seen that for all three examples, the resulting cost

functions are all very low. The AC wavefonn using filter parameters for the best cost function of

Example 1 is shown in Figure 6.29 and Figure 6.30, while for Example 2 is shown in Figure 6.31

and Figure 6.32. Figure 6.33 is the wavefonn for Example 3. From these diagrams, it can be seen

that the best results from the optimisation closely matches the ideal response.

169

o

·5

·10

·15

·20

0

·5

·10

·15

·20

·25

~
·30

'5 ·35
~ a:

·40

-45

·50

·55

·60

-65

·70

.. ,. , ..
• • : • • : • • :

----------------------------------~------------------- ------------.--· · ,
• : ,
• : , · · · · , ~ _____ ~ _______ ~_~ _______ 8 _________ w ____ ~ ______ ~ ___ * ___ ------------i----~ · . · ~ : ~ · . · : · . · ~ , . · : · . • • · : , ' · - -- -- ---- --- .. ------- .. -_ ... ---- --- .. --_ .. --- -- -_ .. ------- -- -- ---- ---- --"T'" ---- .. -~ ..

10Qx
FreQIJency (log) (HERTZ)

Figure 6.29 AC wavefonn for Example 1.

· · I

· . , . · : , . · ~ , . · ~ · . , ~ · . · : · ' , ~

: 1

11:1

--~- --------------------------------· · : 0:. _w __ ~ _____ .~ __ ._~ ___ ~ __ ~ _____ • __________________ ._~-~-~ _____________________________ _

: ~ · " · . ----------------------- -_ ------ - - --_ - --_ .. --., - ... --- ~.. .. --- .. -- --------- - ---- -- - -_ .. · \ , '
; \

.. ______ .. __ ... 00 ___________ ... ____ ____ _______ ___ ..t ... ______ ~_ __ ______ .. ___ _______ _

, '.

···················-·················-··--·---····1·-· .. -.. ~~'I;\~ ;Z ... ~?e~I ... -.-..
.. ------- -- ---------- --- ----- - ------- - -- --- ------ ... -~ ... --- --- - -- --"\;' -- .. -- -- _ .. -- --- ---

· " · \ · -. "' "' 01 ~ · ~ : "\ · " ._._------------------------ '--------------_. -- ---~---------- --._----, ---.----------, . , ...
- _ - - -.. ~ _- --- .. "" .. - -_ .. --- --........ _ J .. _ -- -- - '1. .. __ .. _ ~- : .. ~

I "

-.. -- .. --------.. -------------------------- ... ------- .. -~----.----------- ... -------~ ------- .. · : _ .. ____ _ ... ________ .. ______ ... __ "''' ____ __ .. __________ J _ ... 00 ... _ .. ______ .. ________ .. __ ___ ~ .. __

:
: ".

". .. "' ... ". - -.. ~ _ '"

· · I ____________ .. _______ ___ ... ____ _ .. ___ __ .. __J _ .. __ .. __ _ .. _______ ... __ .. _ __ ___ _ ,
: ·

19
FleQIJetlcy (log) {HERTZ)

Figure 6.30 AC wavefonn for Example 1.

170

o """: :'.::: :~:~~.~~--_ -_ --_ ... --_ ... --_ ... - _ -........ _ --- ----_ ... -------

Ideal

·10

.~~~============~======~====~====~==~~==~~
lOOx Frequency (log) (HERTZ) 19

Figure 6.31 AC waveform for Example 2 .

0

·10

·20

.. ,~"",,::::::: ... -.:::,~\ j -.......... ···1

\

• i

:::::.::::.::::: :::. : .:: --:.: ::::::::::.\:' :::.::r:: ::::::::::.::.: :::::::: --::::::: 1
: I
• ! · , · · ~ ·30

i
0:

·40

·50

·60

· , , ; .. _- - -_ - _....... •, - - _- - ... _ _ ... _ _ "-1 · ,
.: Ideal !
\~. !

.*-•• --.-•••••• * •••••••••• * ••••••••••••••••••••••• ~, ···T··· -................... ~
t ~ I

: \.. !
i ~\~ I

... _ ... "' _,.. ___ ,.. __ ___ ... _ .. '"' __ __ '" _..: __ ~ '" _ ,. ____ _ J
: \~ I : \~
: \ -_ _- --- - "' .. ""' -_ .. -_ - - .. - _ .. "' -f_ _----- _ _ - _ - ~
:
:
, '\.",

'. ~ ,
I

19
Frequency (log) (HERTZ)

Figure 6.32 AC waveform for Example 2.

171

o

·to

~
·20

"5
0::

·30

·40

~.,;,:: •• ,::: •• ~ ... "", •• m, --....", •• .::.:. ... ::..;.~:.;.: •• -... -... -....... ~"":~;:..-...:: - .. -- .. -- .. "'--- .. - -~-- .. ,..-- ----- - .. - - - · • · · · • :
j · ------------------tcteat ----------------------- --------- -f ----------------- ----------
· · : · · · · · : - ------------- ---------- --- ----_ --_ .. -- ------------- -- --'" ---------- ------- ---- ... - ----· · · · · : · :

--r---~----------------------· ;; · ~ · . · ~ j .. : ~
: \ · '. --------- -------- ----- ------------- --- ------- --- --- -------. ---------~ ... -- ------------, "

tOO!<

· '. · . ; \ · " j " • · · , · I
t9

Figure 6.33 AC waveform of Example 3.

6.4 Concluding remarks

In this chapter, Case Studies 3 and 4 have been used as practical examples to demonstrate the

process of architectural synthesis of high-frequency analogue filters from behavioural VHDL-AMS

descriptions. In both case studies a VHDL-AMS description was used for the analogue filter

specification. From this description, a suitable performance model to represent the ideal magnitude

response of the filter is derived and utilised by the three-tier optimisation algorithm. It has been

shown how a set of suitable filter cell topologies to realise the specification can be easily built from

the wealth of information about various filter topologies and design techniques in the literature. It is

shown in Case Study 3 and Case Study 4 that an excellent result can be achieved by using the

three-tier parametric optimisation on all candidates. The last part of this chapter presents three

different application examples for a single filter topology. All the three examples were synthesised

successfully.

172

7 Conclusions and Future Work

The aims of this research as outlined in Chapter 1, have been achieved. The primary aim was to

investigate and develop techniques for VHDL-AMS-based synthesis of high-frequency analogue

filters suitable for use in a mixed-signal design environment. To achieve this aim, the research

work focused on two areas. The first area concerns methods of behavioural analogue filter

modelling for synthesis using VHDL-AMS and techniques to extract the necessary information

from the model's parse tree. The information is then used to map the behavioural specification into

structural architectures. The second part of the research focuses on techniques to optimise the

synthesised filter architectures for accuracy of magnitude response, as well as power consumption.

The method of using parse trees to extract circuit-level structure from high-level

descriptions proved to be effective. It was shown that parse trees allow for easy detection of

synthesisable constructs and support recursive static evaluations of expressions necessary in

calculation of filter parameters. Case Studies 1 and 2 demonstrated in the early stages of this

research that optimised HSPICE netlists can be successfully obtained from VHDL-AMS

behavioural descriptions. The initial strategy of stochastically optimising a filter topology has been

further expanded into a complete synthesis strategy with better optimisation techniques that are

suitable for architectural optimisation of several analogue filter candidate topologies. Elements of

the synthesis methodology, such as performance specification, cell mapping and realisability

analysis have been developed and tested in detail. Together with the three-tier architectural and

parametric optimisation methodology they form FIST, a complete synthesis system. The practical

use of FIST is demonstrated with Case Studies 3 and 4.

The novel contributions in both main areas of this research are as follows:

A) The methods and supporting tools for behavioural synthesis of analogue filters from VHDL

AMS descriptions:

• Methods to extract synthesisable VHDL-AMS constructs for behavioural models of

analogue filters necessary for the development of an architectural synthesis methodology

based on VHDL-AMS parse trees.

173

• The development and implementation of tools to support the behavioural modelling of

synthesisable constructs, specifically a recursive static calculator.

B) Techniques for architectural synthesis of integrated high-frequency analogue filters from

VHDL-AMS parse trees:

• The development of a synthesis methodology that can be easily extended to support a more

general, mixed-signal synthesis system based on VHDL-AMS.

• The development of an effective architectural optimisation engme for analogue filter

synthesis based on three-tier optimisation, in which a combination of the stochastic search,

the downhill simplex algorithm, and built-in HSPICE optimisation provides a possibility

for a global optimisation strategy in which the accuracy errors and power consumption are

minimised.

• The practical demonstration of the feasibility to include full HSPICE simulation in a

complex and numerically difficult synthesis environment. Coupled with foundry-supplied

transistor models for a state-of-the-art O.35um CMOS technology, this strategy enabled a

successful and reliable implementation of the new synthesis methodology for a high

frequency application.

It can be concluded that architectural synthesis from VHDL-AMS parse trees has proven to be

effective and provides a promising direction for further research into general, VHDL-based

synthesis. The results obtained in the course of this research demonstrate that VHDL-AMS has the

potential to play an important role in the realm of mixed-signal synthesis. Specific directions for

further research can be identified as follows:

• Further exploration of using parse trees as an intermediate representation of synthesisable

descriptions in a mixed-signal environment.

• Extension of the synthesis technique to other mixed-signal ASICs such as amplifiers, AID

and DI A converters and PLLs.

In the context of synthesis for high-frequency applications, the three-tier optimisation method can

be extended in several aspects:

• As this method involves costly iterative simulations, the use of high-performance parallel

processing or grid computing with a view to generalise the method and make it suitable for

larger analogue designs might be investigated.

• To include automatic layout generation and post-layout verification. Thus the effect of

parasitics that is expected to degrade the performance of analogue circuits, especially at

high-frequencies, can be considered early in the design cycle.

174

• As the three-tier optimisation algorithm has been tested on a limited number of practical

cases, it might be beneficial to investigate other heuristic approaches, such as simulated

annealing or genetic optimisation and test alternative versions of the algorithm on a larger

number of practical examples.

175

Appendix A: Analogue filter netlists
for Case Studies 3 and 4

A.1 Cascade 1

.subckt OTAl VINP VINM VOUT
11 VDD 9 DC OIB AC 0 0
12 11 VSS DC OIB AC 0 0
Ml 1 VINM 11 VSS nmos0553 L=O.35u W=OWM1
M2 3 VINP 11 VSS nmos0553 L=O.35u W=OWM1
M3 1 1 VDD VDD pmos0553 L=O.35u W=OWM2
M4 3 3 VDD VDD pmos0553 L=O.35u W=OWM2
M5 VOUT 3 VDD VDD pmos0553 L=O.35u W=OWM2
M6 7 1 VDD VDD pmos0553 L=O.35u W=OWM2
M7 VOUT 7 VSS VSS nmos0553 L=O.35u W=OWM1
M8 3 8 VSS VSS nmos0553 L=O.35u W=OWMl
M9 8 VINM 9 VDD pmos0553 L=O.35u W=OWM2
M10 7 VINP 9 VDD pmos0553 L=O.35u W=OWM2
MIl 8 8 VSS VSS nmos0553 L=O.35u W=OWMl
M12 7 7 VSS VSS nmos0553 L=O.35u W=OWMl
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTAl
X OTA2
X OTA3
X OTA4
C 1
C la
C 2
C 2a
V IN
RIN

VINl VOUT2 VOUTl OTAl
VOUTl VOUT2 VOUT2 OTAl
VOUT2 VOUT4 VOUT3 OTAl
VOUT3 VOUT4 VOUT4 OTAl
VOUTl 0 OCAPl
VOUT3 0 OCAPl
VOUT2 0 OCAP2
VOUT4 0 OCAP2
VIN1 0 DC 0 AC 1 0
VINl 0 lOOMEG

A.2 Cascade 2

.subckt OTA2 VINP VINM VOUT
11 4 VSS DC OIB AC 0 0
12 1 VSS DC OIB AC 0 0
Ml 2 VINP 1 VSS nmos0553 L=O.35u W=OWMl
M2 3 VINM 1 VSS nmos0553 L=O.35u W=OWMl

176

M3 5 5 VDD VDD pmos0553 L=O.35u W=OWM2
M4 4 4 5 VDD pmos0553 L=O.35u W=OWM2
M5 2 5 VDD VDD pmos0553 L=O.35u W=OWM2
M6 3 5 VDD VDD pmos0553 L=O.35u W=OWM2
M7 9 4 2 VDD pmos0553 L=O.35u W=OWM2
M8 VOUT 4 3 VDD pmos0553 L=O.35u W=OWM2
M9 9 9 7 VSS nmos0553 L=O.35u W=OWM1
M10
Mll
M12
VDD

VOUT 9 8 VSS nmos0553
7 7 VSS VSS nmos0553
8 7 VSS VSS nmos0553
VDD 0 DC 3.3v AC 0 0

VSS VSS 0 DC -3.3v AC 0 0
.ends

L=O.35u W=OWM1
L=O.35u W=OWM1
L=O.35u W=OWM1

X OTA1
X OTA2
X OTA3
X OTA4
C 1

VIN1 VOUT2 VOUT1 OTA2

C 1a
C 2
C 2a
V IN
RIN

VOUT1 VOUT2 VOUT2
VOUT2 VOUT4 VOUT3
VOUT3 VOUT4 VOUT4
VOUT1 0 OCAP1
VOUT3 0 OCAP1
VOUT2 0 OCAP2
VOUT4 0 OCAP2
VIN1 0 DC 0 AC 1 0
VIN1 0 100MEG

A.3 Cascade 3

OTA2
OTA2
OTA2

.subckt OTA3 VINP VINM VOUT Vbias1 Vbias2 Vbias3 Vbias4
Ml 2 VINP 1 VSS nmos0553 L=O.35u W=OWM1
M2 3 VINM 1 VSS nmos0553 L=0.35u W=OWM1
M5 2 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
M6 3 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
M7 8 Vbias2 2 VDD pmos0553 L=O.35u W=OWM2
M8 VOUT Vbias2 3 VDD pmos0553 L=0.35u W=OWM2
M9 8 Vbias3 5 VSS nmos0553 L=0.35u W=OWM1
MI0 VOUT Vbias3 6 VSS nmos0553 L=0.35u W=OWM1
M11 5 8 VSS VSS nmos0553 L=0.35u W=OWM1
M12 6 8 VSS VSS nmos0553 L=0.35u W=OWM1
M13 4 VSS nmos0553 L=0.35u W=OWM1 1 Vbias3
M14 VSS VSS nmos0553 L=0.35u W=OWM1 4 Vbias4
M15 VDD pmos0553 L=0.35u W=OWM2 5 VINP 7
M16 VDD pmos0553 L=0.35u W=OWM2 6 VINM 7
M17 VDD VDD pmos0553 L=O.35u W=OWM2 9 Vbias1
M18 9 VDD pmos0553 L=0.35u W=OWM2 7 Vbias2
VDD 3.3v AC 0 0 VDD 0 DC
VSS -3.3v AC 0 0 VSS 0 DC
.ends

.subckt BIASCCT Vbias1 Vbias2 Vbias3 Vbias4
MB1 12 12 Vbias4 VSS nmos0553 L=40u W=30u
MB10 Vbias3 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
MB2 10 10 Vbias1 VDD pmos0553 L=10u W=35u
MB3 Vbias4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
MB4 12 10 11 VDD pmos0553 L=0.35u W=OWM2
MB5 Vbias1 Vbiasl VDD VDD pmos0553 L=O.35u W=OWM2
MB6 11 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
MB7 Vbias2 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2

177

MB8 VSS 10 Vbias2 VDD pmos0553 L=0.35u W=OWM2
MB9 VDD 12 Vbias3 VSS nmos0553 L=O.35u W=OWM1
I 10 VSS DC OIB
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTA1
X OTA2
X OTA3
X OTA4
X BIASNET
C 1

VIN1 VOUT2 VOUT1 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
VOUT1 VOUT2 VOUT2 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
VOUT2 VOUT4 VOUT3 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
VOUT3 VOUT4 VOUT4 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
Vbias1 Vbias2 Vbias3 Vbias4 BIASCCT

C 1a
C 2
C 2a
V IN
RIN

A.4

VOUT1 0 OCAP1
VOUT3 0 OCAP1
VOUT2 0 OCAP2
VOUT4 0 OCAP2
VIN1 0 DC 0 AC 1 0
VIN1 0 100MEG

Cascade 4

.subckt OTA1 VINP VINM VOUT
11 VDD 9 DC OIB AC 0 0
12 11 VSS DC OIB AC 0 0
M1 1 VINM 11 VSS nmos0553 L=0.35u W=OWM1
M2 3 VINP 11 VSS nmos0553 L=0.35u W=OWM1
M3 1 1 VDD VDD pmos0553 L=0.35u W=OWM2
M4 3 3 VDD VDD pmos0553 L=0.35u W=OWM2
M5 VOUT 3 VDD VDD pmos0553 L=0.35u W=OWM2
M6 7 1 VDD VDD p~os0553 L=0.35u W=OWM2
M7 VOUT 7 VSS VSS nmos0553 L=0.35u W=OWM1
M8 3 8 VSS VSS nmos0553 L=0.35u W=OWM1
M9 8 VINM 9 VDD pmos0553 L=0.35u W=OWM2
M10 7 VINP 9 VDD pmos0553 L=O.35u W=OWM2
M11 8 8 VSS VSS nmos0553 L=0.35u W=OWM1
M12 7 7 VSS VSS nmos0553 L=0.35u W=OWM1
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTA1
X OTA2
X OTA3
X OTA4
C 1
C 1a
C 2
C 2a
V IN
RIN

A.5

o VOUT2 VOUT1 OTA1
VOUT1 VOUT2 VOUT2 OTA1
o VOUT4 VOUT3 OTA1
VOUT3 VOUT4 VOUT4 OTA1
VIN1 VOUT1 OCAP1
VOUT2 VOUT3 OCAP1
VOUT2 0 OCAP2
VOUT4 0 OCAP2
VIN1 0 DC 0 AC 1 0
VIN1 0 100MEG

Cascade 5

.subckt OTA2 VINP VINM VOUT
11 4 VSS DC OIB AC 0 0

178

12 1 VSS DC OIB AC 0 0
Ml 2 VINP 1 VSS nmos0553 L=0.35u W=OWMl
M2 3 VINM 1 VSS nmos0553 L=0.35u W=OWMl
M3 5 5 VDD VDD pmos0553 L=0.35u W=OWM2
M4 4 4 5 VDD pmos0553 L=0.35u W=OWM2
M5 2 5 VDD VDD pmos0553 L=0.35u W=OWM2
M6 3 5 VDD VDD pmos0553 L=0.35u W=OWM2
M7 9 4 2 VDD pmos0553 L=0.35u W=OWM2
M8 VOUT 4 3 VDD pmos0553 L=0.35u W=OWM2
M9 9 9 7 VSS nmos0553 L=0.35u W=OWMl
MIO VOUT 9 8 VSS nmos0553 L=0.35u W=OWMl
Mll 7 7 VSS VSS nmos0553 L=0.35u W=OWMl
M12 8 7 VSS VSS nmos0553 L=0.35u W=OWMl
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTAl
X OTA2
X OTA3
X OTM
C 1
C la
C 2
C 2a
V IN
RIN

A.6

o VOUT2 VOUTl OTA2
VOUTl VOUT2 VOUT2 OTA2
o VOUT4 VOUT3 OTA2
VOUT3 VOUT4 VOUT4 OTA2
VINl VOUTl OCAPl
VOUT2 VOUT3 OCAPl
VOUT2 0 OCAP2
VOUT4 0 OCAP2
VINl 0 DC 0 AC 1 0
VINl 0 100MEG

Cascade 6

.subckt OTA3 VINP VINM VOUT Vbiasl Vbias2 Vbias3 Vbias4
Ml 2 VINP 1 VSS nmos0553 L=0.35u W=OWMl
M2 3 VINM 1 VSS nmos0553 L=0.35u W=OWMl
M5 2 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
M6 3 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
M7 8 Vbias2 2 VDD pmos0553 L=0.35u W=OWM2
M8 VOUT Vbias2 3 VDD pmos0553 L=0.35u W=OWM2
M9 8 Vbias3 5 VSS nmos0553 L=0.35u W=OWMl
MIO VOUT Vbias3 6 VSS nmos0553 L=0.35u W=OWMl
Mll 5 8 VSS VSS nmos0553 L=0.35u W=OWMl
M12 6 8 VSS VSS nmos0553 L=0.35u W=OWMl
M13 1 Vbias3 4 VSS nmos0553 L=0.35u W=OWMl
M14 4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWMl
M15 5 VINP 7 VDD pmos0553 L=0.35u W=OWM2
M16 6 VINM 7 VDD pmos0553 L=0.35u W=OWM2
M17 9 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
M18 7 Vbias2 9 VDD pmos0553 L=0.35u W=OWM2
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

.subckt BIASCCT Vbiasl Vbias2 Vbias3 Vbias4
MBl 12 12 Vbias4 VSS nmos0553 L=40u W=30u
MBIO Vbias3 Vbias4 VSS VSS nmos0553 L=0.35u W=OWMl
MB2 10 10 Vbiasl VDD pmos0553 L=lOu W=35u
MB3 Vbias4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWMl
MB4 12 10 11 VDD pmos0553 L=0.35u W=OWM2
MB5 Vbiasl Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2

179

MB6 11 Vbias1 VOO VOO pmos0553 L=0.35u W=OWM2
MB7 Vbias2 Vbias1 VOO VOO pmos0553 L=0.35u W=OWM2
MB8 VSS 10 Vbias2 VOD pmos0553 L=0.35u W=OWM2
MB9 VOO 12 Vbias3 VSS nmos0553 L=0.35u W=OWM1
I 10 VSS OC OIB
VOO VOO 0 OC 3.3v AC 0 0
VSS VSS 0 OC -3.3v AC 0 0
.ends

X BIASNET Vbias1 Vbias2 Vbias3 Vbias4 BIASCCT
X OTA1 0 VOUT2 VOUT1 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
X OTA2
X OTA3
X OTA4
C 1

VOUT1 VOUT2 VOUT2 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
o VOUT4 VOUT3 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
VOUT3 VOUT4 VOUT4 Vbias1 Vbias2 Vbias3 Vbias4 OTA3
VIN1 VOUT1 OCAP1

C 1a
C 2
C 2a
V IN
RIN

A.7

VOUT2 VOUT3 OCAP1
VOUT2 0 OCAP2
VOUT4 0 OCAP2
VIN1 0 OC 0 AC 1 0
VIN1 0 100MEG

Coupled resonator

.subckt BPASS1 INP INM COILP COILM VOO VSS
M1A COILM INP NIB VSS nmos0553 L=0.35U W=OWM1
M1B COILP INM NIB VSS nmos0553 L=0.35U W=OWM1
IBIAS1 NIB 0 OIB
M3A COILP COILM 3 VSS nmos0553 L=0.35U W=OWM1
M3B COILM COILP 3 VSS nmos0553 L=0.35U W=OWM1
IQCTL 3 0 OIQ
.ends

L1 OUTPUTP1 COILP1 Lind
RL1 COILP1 0 RL
C1 OUTPUTP1 0 CAP1

.subckt BPASS2 COIL2P
M3AA COIL2P COIL2M N3
M3BB COIL2M COIL2P N3
IQCTL N3 0 OIQ

COIL2M OUTP OUTM VOO
VSS nmos0553
VSS nmos0553

M5A OUTP COIL2M NIBB
M5B OUTM COIL2P NIBB
IBIAS2 NIBB 0 OIB
. ends

VSS
VSS

L2 INPUTP2 COIL2P1 Lind
RL2 COIL2P1 0 RL
C2 INPUTP2 0 CAP1

nmos0553
nmos0553

L=0.35U
L=0.35U

L=0.35U
L=0.35U

VSS
W=OWM1
W=OWM1

W=OWM1
W=OWM1

MBA VDO OUTPUTM1 NK1 VSS nmos0553 L=0.35U W=OWM1
RM9A NRCA NK1 1k
CM9A NRCA 0 200£
M9A INPUTP2 NRCA NK VSS nmos0553 L=0.35U W=OWM1
M9B INPUTM2 NRCB NK VSS nmos0553 L=0.35U W=OWM1
M8B VOO OUTPUTP1 NK2 VSS nmos0553 L=0.35U W=OWM1
RM9B NRCB NK2 1k
CM9B NRCB 0 200£
I K NK 0 OIK

180

I K1 NK1 0 OIK12
I K2 NK2 0 OIK12
VDDSUP VDD 0 3.3V
VSSSUP VSS 0 -3.3V
VIN INPUTP1 0 AC 1
RIN INPUTP1 0 100rneg
X BP1 INPUTP1 0 OUTPUTP1 OUTPUTM1 VDD VSS BPASS1
X BP2 INPUTP2 INPUTM2 OUTPUTP2 OUTPUTM2 VDD VSS BPASS2
k1 L1 L2 0.1

A.8 IFLFI

.subckt OTA VINP VINM VOUT
11 VDD 9 DC OIB AC 0 0
12 11 VSS DC OIB AC 0 0
M1 1 VINM 11 VSS nrnos0553 L=0.35u W=OWM1
M2 3 VINP 11 VSS nrnos0553 L=0.35u W=OWM1
M3 1 1 VDD VDD prnos0553 L=0.35u W=OWM2
M4 3 3 VDD VDD prnos0553 L=O.35u W=OWM2
M5 VOUT 3 VDD VDD prnos0553 L=0.35u W=OWM2
M6 7 1 VDD VDD prnos0553 L=0.35u W=OWM2
M7 VOUT 7 VSS VSS nrnos0553 L=0.35u W=OWM1
M8 3 8 VSS VSS nrnos0553 L=0.35u W=OWM1
M9 8 VINM 9 VDD prnos0553 L=0.35u W=OWM2
M10 7 VINP 9 VDD prnos0553 L=0.35u W=OWM2
M11 8 8 VSS VSS nrnos0553 L=0.35u W=OWM1
M12 7 7 VSS VSS nrnos0553 L=0.35u W=OWM1
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTA1
X OTA2
X OTA3
X OTA4
C 1
C 2
C 3
C 4
V IN
RIN

VIN1 VOUT4 VOUT1 OTA
VOUT1 VOUT4 VOUT2 OTA
VOUT2 VOUT4 VOUT3 OTA
VOUT3 VOUT4 VOUT4 OTA
VOUT1 0 OCAP1
VOUT2 0 OCAP2
VOUT3 0 OCAP3
VOUT4 0 OCAP4
VIN1 0 DC 0 AC 1 0
VIN1 0 100MEG

A.9 IFLF2

.subckt OTA VINP VINM VOUT
11 4 VSS DC OIB AC 0 0
12 1 VSS DC OIB AC 0 0
M1 2 VINP 1 VSS nrnos0553 L=0.35u W=OWM1
M2 3 VINM 1 VSS nrnos0553 L=0.35u W=OWM1
M3 5 5 VDD VDD prnos0553 L=O.35u W=OWM2
M4 4 4 5 VDD prnos0553 L=0.35u W=OWM2
M5 2 5 VDD VDD prnos0553 L=0.35u W=OWM2
M6 3 5 VDD VDD prnos0553 L=0.35u W=OWM2
M7 9 4 2 VDD prnos0553 L=0.35u W=OWM2
M8 VOUT 4 3 VDD prnos0553 L=0.35u W=OWM2

181

M9 9 9 7 VSS nmos0553 L=0.35u W=OWMl
M10 VOUT 9 8 VSS nmos0553 L=0.35u W=OWMl
Mll 7 7 VSS VSS nmos0553 L=0.35u W=OWMl
M12 8 7 VSS VSS nmos0553 L=0.35u W=OWMl
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTAl
X OTA2
X OTA3
X OTA4
C 1
C 2
C 3
C 4
V IN
RIN

A.tO

VINl VOUT4 VOUTl OTA
VOUTl VOUT4 VOUT2 OTA
VOUT2 VOUT4 VOUT3 OTA
VOUT3 VOUT4 VOUT4 OTA
VOUTl 0 OCAPl
VOUT2 0 OCAP2
VOUT3 0 OCAP3
VOUT4 0 OCAP4
VINl 0 DC 0 AC 1 0
VINl 0 100MEG

IFLF3

.subckt OTA VINP VINM VOUT Vbiasl Vbias2 Vbias3 Vbias4
Ml 2 VINP 1 VSS nmos0553 L=0.35u W=OWMl
M2 3 VINM 1 VSS nmos0553 L=0.35u W=OWMl
M5 2 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
M6 3 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
M7 8 Vbias2 2 VDD pmos0553 L=0.35u W=OWM2
M8 VOUT Vbias2 3 VDD pmos0553 L=0.35u W=OWM2
M9 8 Vbias3 5 VSS nmos0553 L=0.35u W=OWMl
M10 VOUT Vbias3 6 VSS nmos0553 L=0.35u W=OWMl
M11 5 8 VSS VSS nmos0553 L=0.35u W=OWM1
M12 6 8 VSS VSS nmos0553 L=0.35u W=OWM1
M13 1 Vbias3 4 VSS nmos0553 L=0.35u W=OWM1
M14 4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
M15 5 VINP 7 VDD pmos0553 L=0.35u W=OWM2
M16 6 VINM 7 VDD pmos0553 L=0.35u W=OWM2
M17 9 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
M18 7 Vbias2 9 VDD pmos0553 L=0.35u W=OWM2
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

.subckt BIASCCT Vbias1 Vbias2 Vbias3 Vbias4
MB1 12 12 Vbias4 VSS nmos0553 L=40u W=30u
MB10 Vbias3 Vbias4 VSS VSS nmos0553 L=0.35u W=OWMl
MB2 10 10 Vbias1 VDD pmos0553 L=10u W=35u
MB3 Vbias4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
MB4 12 10 11 VDD pmos0553 L=0.35u W=OWM2
MB5 Vbiasl Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
MB6 11 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
MB7 Vbias2 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
MB8 VSS 10 Vbias2 VDD pmos0553 L=0.35u W=OWM2
MB9 VDD 12 Vbias3 VSS nmos0553 L=0.35u W=OWM1
I 10 VSS DC OlB
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

182

X OTA1 VIN1 VOUT4 VOUT1 Vbias1 Vbias2 Vbias3 Vbias4 OTA
X OTA2 VOUT1 VOUT4 VOUT2 Vbias1 Vbias2 Vbias3 Vbias4 OTA
X OTA3 VOUT2 VOUT4 VOUT3 Vbias1 Vbias2 Vbias3 Vbias4 OTA
X OTA4 VOUT3 VOUT4 VOUT4 Vbias1 Vbias2 Vbias3 Vbias4 OTA
X BIASNET Vbias1 Vbias2 Vbias3 Vbias4 BIASCCT
C 1 VOUT1 0 OCAP1
C 2 VOUT2 0 OCAP2
C 3 VOUT3 0 OCAP3
C 4 VOUT4 0 OCAP4
V IN VIN1 0 DC 0 AC 1 0
RIN VIN1 0 100MEG

A.II LC-OTA-C

.subckt co1p N5 N2
M M1 N2 N5 N3F N4 nmos0553 L=O.35u
L L1 N7 N2 8nH
C C1 N2 N3F OCAP3
C C2 N3F N4 OCAP4
I 11 N3F N4 DC OIB
R RL1 N7 N1 5
R R N2 N1 10k

-
V VDD N1 0 3.3V
V VSS o N4 3.3V
.ends

.subckt OTA VINP VINM VOUT
11 4 VSS DC OIB AC 0 0
12 1 VSS DC OIB AC 0 0
M1 2 VINP 1 VSS nmos0553 L=O.35u W=OWM1
M2 3 VINM 1 VSS nmos0553 L=O.35u W=OWM1
M3 5 5 VDD VDD pmos0553 L=O.35u W=OWM2
M4 4 4 5 VDD pmos0553 L=O.35u W=OWM2
M5 2 5 VDD VDD pmos0553 L=O.35u W=OWM2
M6 3 5 VDD VDD pmos0553 L=O.35u W=OWM2
M7 9 4 2 VDD pmos0553 L=O.35u W=OWM2
M8 VOUT 4 3 VDD pmos0553 L=O.35u W=OWM2
M9 9 9 7 VSS nmos0553 L=O.35u W=OWM1
M10 VOUT 9 8 VSS nmos0553 L=O.35u W=OWM1
M11 7 7 VSS VSS nmos0553 L=O.35u W=OWM1
M12 8 7 VSS VSS nmos0553 L=O.35u W=OWM1
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

.subckt otabp VIN1 VOUT2
X OTA1 0 VOUT2 VOUT1 OTA
X OTA2 VOUT1 VOUT2 VOUT2 OTA
C 1 VIN1 VOUT1 OCAP1
C 2 VOUT2 0 OCAP2
.ends

X BPCOLP INPUT1 OUTPUT1 colp
X BPOTA OUTPUT1 OUTPUT2 otabp
VINPUT INPUT1 0 AC 1V

W=OWM3

183

A.12 LFI

.subckt OTA VINP VINM VOUT
11 VDD 9 DC OIB AC 0 0
12 11 VSS DC OIB AC 0 0
M1 1 VINM 11 VSS nmos0553 L=O.35u W=OWM1
M2 3 VINP 11 VSS nmos0553 L=O.35u W=OWM1
M3 1 1 VDD VDD pmos0553 L=O.35u W=OWM2
M4 3 3 VDD VDD pmos0553 L=O.35u W=OWM2
M5 VOUT 3 VDD VDD pmos0553 L=O.35u W=OWM2
M6 7 1 VDD VDD pmos0553 L=O.35u W=OWM2
M7 VOUT 7 VSS VSS nmos0553 L=O.35u W=OWM1
M8 3 8 VSS VSS nmos0553 L=O.35u W=OWM1
M9 8 VINM 9 VDD pmos0553 L=O.35u W=OWM2
M10 7 VINP 9 VDD pmos0553 L=O.35u W=OWM2
M11 8 8 VSS VSS nmos0553 L=O.35u W=OWM1
M12 7 7 VSS VSS nmos0553 L=O.35u W=OWM1
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTA1
X OTA2
X OTA3
X OTA4
C 1
C 2
C 3
C 4
V IN
RIN

A.13

VIN1 VOUT2 VOUT1 OTA
VOUT1 VOUT3 VOUT2 OTA
VOUT2 VOUT4 VOUT3 OTA
VOUT3 VOUT4 VOUT4 OTA
VOUT1 0 OCAP1
VOUT2 0 OCAP2
VOUT3 0 OCAP3
VOUT4 0 OCAP4
VIN1 0 DC 0 AC 1 0
VIN1 0 100MEG

LF2

.subckt OTA VINP VINM VOUT
11 4 VSS DC OIB AC 0 0
12 1 VSS DC OIB AC 0 0
M1 2 VINP 1 VSS nmos0553 L=O.35u W=OWM1
M2 3 VINM 1 VSS nmos0553 L=O.35u W=OWM1
M3 5 5 VDD VDD pmos0553 L=O.35u W=OWM2
M4 4 4 5 VDD pmos0553 L=O.35u W=OWM2
M5 2 5 VDD VDD pmos0553 L=O.35u W=OWM2
M6 3 5 VDD VDD pmos0553 L=O.35u W=OWM2
M7 9 4 2 VDD pmos0553 L=O.35u W=OWM2
M8 VOUT 4 3 VDD pmos0553 L=O.35u W=OWM2
M9 9 9 7 VSS nmos0553 L=O.35u W=OWM1
M10 VOUT 9 8 VSS nmos0553 L=O.35u W=OWM1
M11 7 7 VSS VSS nmos0553 L=O.35u W=OWM1
M12 8 7 VSS VSS nmos0553 L=O.35u W=OWM1
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTA1
X OTA2
X OTA3

VIN1 VOUT2 VOUT1 OTA
VOUT1 VOUT3 VOUT2 OTA
VOUT2 VOUT4 VOUT3 OTA

184

X OTA4 VOUT3 VOUT4 VOUT4 OTA
C 1 VOUT1 o OCAP1
C 2 VOUT2 0 OCAP2
C 3 VOUT3 0 OCAP3
C 4 VOUT4 0 OCAP4
V IN VINl 0 DC 0 AC 1 0
RIN VIN1 0 100MEG

A.14 LF3

.subckt OTA VINP VINM VOUT Vbias1 Vbias2 Vbias3 Vbias4
Ml 2 VINP 1 VSS nmos0553 L=0.35u W=OWM1
M2 3 VINM 1 VSS nmos0553 L=0.35u W=OWM1
M5 2 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
M6 3 Vbiasl VDD VDD pmos0553 L=0.35u W=OWM2
M7 8 Vbias2 2 VDD pmos0553 L=0.35u W=OWM2
M8 VOUT Vbias2 3 VDD pmos0553 L=0.35u W=OWM2
M9 8 Vbias3 5 VSS nmos0553 L=0.35u W=OWM1
M10 VOUT Vbias3 6 VSS nmos0553 L=0.35u W=OWM1
Ml1 5 8 VSS VSS nmos0553 L=0.35u W=OWMl
M12 6 8 VSS VSS nmos0553 L=0.35u W=OWMl
M13 1 Vbias3 4 VSS nmos0553 L=0.35u W=OWMl
M14 4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
M15 5 VINP 7 VOD pmos0553 L=0.35u W=OWM2
M16 6 VINM 7 VDD pmos0553 L=0.35u W=OWM2
M17 9 Vbias1 VDD VDD pmos0553 L=O. 35u W=OWt12
M18 7 Vbias2 9 VDD pmos0553 L=0.35u W=OWM2
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

.subckt BIASCCT Vbias1 Vbias2 Vbias3 Vbias4
MB1 12 12 Vbias4 VSS nmos0553 L=40u W=30u
MB10 Vbias3 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
MB2 10 10 Vbias1 VDO pmos0553 L=10u W=35u
MB3 Vbias4 Vbias4 VSS VSS nmos0553 L=0.35u W=OWM1
MB4 12 10 11 VDD pmos0553 L=0.35u W=OWM2
MB5 Vbias1 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
MB6 11 Vbias1 VOD VDD pmos0553 L=0.35u W=OWM2
MB7 Vbias2 Vbias1 VDD VDD pmos0553 L=0.35u W=OWM2
MB8 VSS 10 Vbias2 VDD pmos0553 L=0.35u W=OWM2
MB9 VDD 12 Vbias3 VSS nmos0553 L=0.35u W=OWM1
I 10 VSS DC OIB
VDD VDD 0 DC 3.3v AC 0 0
VSS VSS 0 DC -3.3v AC 0 0
.ends

X OTA1
X OTA2
X OTA3
X OTA4
X BIASNET
C 1
C 2
C 3
C 4

V IN
RIN

VIN1 VOUT2 VOUT1 Vbias1 Vbias2 Vbias3 Vbias4 OTA
VOUTl VOUT2 VOUT2 Vbias1 Vbias2 Vbias3 Vbias4 OTA
VOUT2 VOUT4 VOUT3 Vbias1 Vbias2 Vbias3 Vbias4 OTA
VOUT3 VOUT4 VOUT4 Vbiasl Vbias2 Vbias3 Vbias4 OTA
Vbias1 Vbias2 Vbias3 Vbias4 BIASCCT
VOUTl 0 OCAP1
VOUT2 0 OCAP2
VOUT3 0 OCAP3
VOUT4 0 OCAP4
VIN1 0 DC 0 AC 1 0
VIN1 0 100MEG

185

A.1S

M M5
V Viout5
R R3
R R4
V VS2
V VSl
I 1044
I 1022
V VDD
M M55
M M44
I 104
V Vioutll
I 10333
M Mll
M M22
I loll
R R2
Iiin2
M M4
V Vioutl
M M3
I 1033
M M33
I 101
I iinl
R Rl
M Ml
I 102
I 103
M M2

Vertical Cascode

N2l N6 N16 0 nmos0553 L=O.35u W=OWMl
N2 N2l ov
o N6 lOOMeg
o N3 lOOMeg
N16 0 O.65V
Nll 0 o. 3V
Nl N5 DC 014
Nl N10 DC 012
Nl 0 2.4V
N5 N3 N16 0 nmos0553 L=O.35u W=OWMl
ioutll N5 N3 0 nmos0553 L=O.35u W=OWMl
Nl N2 DC 014
ioutll Nl OV
N13 0 DC 0133
N3 N10 N8 0 nmos0553 L=O.35u W=OWMl
N10 N8 Nll 0 nmos0553 L=O.35u W=OWMl
N8 0 DC 011
o N8 lOOMeg
N8 0 DC OA AC O.5A
ioutl N2 N6 0 nmos0553 L=O.35u W=OWMl
Nl ioutl OV
N8 N7 N13 0 nmos0553 L=O.35u W=OWMl
Nl N7 DC 013
N7 N8 N13 0 nmos0553 L=O.35u W=OWMl
N7 0 DC 011
o N7 DC OA AC O.5A
o N7 lOOMeg
N6 N14 N7 0 nmos0553 L=O.35u W=OWMl
Nl N14 DC 012
Nl N8 DC 013
N14 N7 Nll 0 nmos0553 L=O.35u W=OWMl

186

Appendix B: Alcatel CMOS O.35J.lm
BSIM 3v3 transistor models

B.l NMOS transistor model

nmos0553 nmos level

tox=6.8e-9
vthO=O.54l0286

k2=-2.0l788e-5

=53

xj=2.3e-7

k3=43.254121

.model
+version=3.2
+tnom=27
+nch=2e17
+kl=0.5538l75
+k3b=-8.3666578
+dvtOw=0.018702
+dvtO=4.l0248

wO=5.7493e-6 nlx=1.72968e-7
dvtlw=5.3e6 dvt2w=-0.032

dvtl=0.4697625 dvt2=-0.05
+uO=524.74 ua=1.476303e-9
+ub=2.083775e-19 uc=5.368193e-ll
+aO=O.8775883 ags=0.214565
+bl=le-7 keta=0.0166414 al=O

vsat=8.83e4
bO=4.40815e-8

+a2=1 rdsw=792 prwg=9.336953e-4
+prwb=0.0539535 wr=l wint=1.572104e-8
+lint=5.15e-8 dwg=-2.687564e-9 dwb=4.696235e-9
+voff=-0.1406745 nfactor=1.4442501 cit=O
+cdsc=le-3 cdscd=O cdscb=O
+etaO=O etab=-0.0722136 dsub=O.56
+pclm=O.8351951 pdiblcl=0.2896433 pdiblc2=2.920887e-3
+pdiblcb=O drout=0.7796106 pscbel=6.510097e8
+pscbe2=2.948305e-5 pvag=0.0587596 delta=1.618913e-3
+alphaO=2.2e-7 betaO=18.45
+alphal=O.78 rsh=2.7 js=6.4e-7 jsw=1.6e-12
+mobmod=l prt=O ute=-1.7395947
+ktl=-O.1635661 ktll=-1.173597e-8 kt2=0.022
+ual=1.081907e-l0
+at=3.3e4
+wwn=l
+11=0
+lw=O
+kf=3.9167e-28

elm=5
ubl=-8.22235e-19

wl=9.246632e-22
wwl=-1.28698e-20
11n=l
lwn=l

af=l
+noimod=l ef=l capmod=3
+xpart=O
+cgdo=1.1274e-l0 cgso=1.1274e-l0
+cj=8.65e-4
+pb=0.904 mj=0.369

ucl=-le-l0
wln=l

lwl=O

+cjsw=2.43e-l0 pbsw=0.894 mjsw=0.356
+cjswg=2.678e-l0
+pbswg=0.896 mjswg=0.356 ckappa=0.6
+clc=le-8 cle=0.6
+noff=l
+moin=15
+tpbswg=O
+tcjswg=O

acde=l
tpb=O tpbsw=O
tcj=O tcjsw=O

ww=O

187

B.2 PMOS transistor model

.model pmos0553 pmos level=53
+version=3.2
+tnom=27 tox=6.8e-9 xj=3e-7
+nch=2.8e17
+vthO=-0.5445258
+k1=0.64566 k2=-8.459721e-5
+k3b=1.27313
+dvtOw=0.21
+dvtO=7.6469
+uO=1l9.56

wO=9.ge-6
dvt1w=3.325e5
dvtl=0.74924

ua=l. 73679ge-9
+ub=2.06712ge-20 uc=-5.97265e-ll

ags=0.1823146
keta=-9.803756e-3

+aO=1.2275109
+b1=le-7

k3=le-3
nlx=7.315701e-8

dvt2w=-0.0455073
dvt2=-0.0356391

a1=0

vsat=1.510148e5
bO=4.165587e-8

+a2=1
+prwb=6.04759ge-3
+lint=5.318836e-8
+voff=-0.1246442

rdsw=1.938327e3
wr=l

dwg=-3.547194e-9
nfactor=0.6522602

prwg=4.254056e-3
wint=1.931593e-8

dwb=9.874385e-9
cit=O

cdscb=O +cdsc=2.4e-4 cdscd=O
+etaO=0.8389729 etab=-0.07 dsub=l
+pclm=1.1132227 pdiblc1=0.0192481 pdiblc2=6.943741e-4
+pdiblcb=O drout=0.999 pscbe1=7.992e8
+pscbe2=1.001e-5 pvag=0.1810426 delta=O.0131564
+ngate=O alphaO=1.786e-7 betaO=28.5
+alpha1=0.42 rsh=2.4 js=7.64e-7
+jsw=2.744e-12 mobmod=l
+prt=350.3826014 ute=-1.2024509 kt1=-0.1263843
+kt1l=-3.483014e-8 kt2=0 ua1=8.676042e-14
Chapter 1 +ub1=-1.88675e-18 uc1=-le-10 at=3.3e4
+elm=5 wl=9.35047ge-20 wln=l ww=O
+wwn=l
+11=0
+lw=O
+af=l

wwl=-1.0483ge-20
11n=l
lwn=l

kf=2.166e-28
lwl=O

+noimod=l
+xpart=O
+cj=1.23e-3

ef=l capmod=3
cgdo=1.1274e-10 cgso=1.1274e-10

+pb=0.908 mj=0.442 cjsw=2.2e-10
+pbsw=O.899 mjsw=0.373 cjswg=2.30e-10
+pbswg=0.904 mjswg=0.411 clc=le-7 cle=0.6

188

References

[1]. IEEE standard VHDL analog and mixed-signal extensions. 23 Dec. 1999, Design
Automation Standards Committee of the IEEE Computer Society.

[2]. Schaumann, R. and M.E.V. Valkenburg, Design of Analog Filters. 2001: Oxford
University Press.

[3]. Baker, R., H. Li, and D.E. Boyce, CMOS circuit design, layout, and simulation. IEEE
Press series on Microelectronic systems. 1998.

[4]. Phelps, R., et aI., Anaconda: simulation-based synthesis of analog circuits via stochastic
pattern search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2000.19(6): p. 703 -717.

[5]. Kazmierski, TJ. and F.A. Hamid. Analogue circuit synthesis from VHDL-AMS (invited
paper). inFDL 2000.2000.

[6]. Hamid, F.A. and T.J. Kazmierski, Analogue circuit synthesis from VHDL-AMS, R.
Seepold, Editor. 2001, Kluwer Academic Publishers: Boston.

[7]. Hamid, F. and T. Kazmierski. Analog filter synthesis from VHDL-AMS. in FDL '01. 2001.
Lyon.

[8]. Hamid, F.A. and TJ. Kazmierski. Synthesis And Optimization Of Analog VLSI Filters
From VHDL-AMS Parse Trees. in ISCAS'2002. 2002.

[9]. Hamid, F.A. and T.J. Kazmierski, Analog filter synthesis from VHDL-AMS, L. Spruiell,
Editor. 2002, Kluwer Academic Publishers: Boston.

[10]. Hamid, F. and TJ. Kazmierski. FIST - a VHDL-AMS based architectural synthesis
strategy for integrated high-frequency analogue filters. in FDL. 2003. Frankfurt, Germany.

[11]. Kazmierski, TJ. and F.A. Hamid. Behavioral Modelling of RF Filters in VHDL-AMSfor
Automated Architectural and Parametric Optimization. in ISCAS 2004.2004. Vancouver,
Canada.

[12]. Gielen, G. and R.Rutenbar, Computer-Aided Design of Analog and Mixed-Signal
Integrated Circuits. Proceedings ofthe IEEE, 2000.88(12): p. 1825-1852.

[13]. Oehler, P., C. Grimm, and K.Waldschmidt. KANDIS - A Toolfor Construction of Mixed
Analog/Digital Systems. in European Design Automation Conference. 1995. Brighton, UK.

[14]. Vemuri, R., et aI. Analog System Performance Estimation in the VASE. in EETimes Analog
And Mixed-Signal Applications Conference. 1998.

[15]. Lopez, lA., et al. Automated High Level Synthesis of Hardware Building Blocks Present in
art-based neural network,from VHDL-AMS descriptions. in ISCAS 2002. 2002.

[16]. Doboli, A. and R. Vemuri, Behavioural Modellingfor HIgh-Level Synthesis of Analog and
Mixed-Signal Systems from VHDL-AMS. IEEE Transactions on CAD of Integrated Circuits
and Systems, 2003. 22(11): p. 1504-1520.

189

[17]. Grimm, C. and K. Wa1dsclunidt. Repartitioning and Technology Mapping of Electronic
Hybrid Systems. in Design, Automation and Test in Europe, 1998.,. 1998.

[18]. Mixed-Signal Synthesis (VASE), Digital Design Environments Laboratory, University of
Cincinnati:http://www. ececs. uc. edu/~ddell.

[19]. Nunez-Aldana, A. and R. Vemuri. A Hierarchical Modeling of Analog CMOS Components
for Synthesis. in Proceedings of the IEEEIVIUF International Workshops on Behavioral
Modeling and Simulation (BMAS'98). 1998.

[20]. Nunez-Aldana, A., et al. A Methodology for Behavioral Synthesis of Analog Systems. in
Proceedings of the IEEE Southwest Symposium on Mixed-Signal Design. 1999. Tucson,
Arizona.

[21]. Aldana, A.-N., A. Doboli, and R. Vemuri. A Top-down Synthesis Methodology for
Behavioral Mixed-Signal Systems Specified in VHDL-AMS. in Proceedings of Second
International Workshop on Design of Mixed-Mode Integrated Circuits and Applications.
1998: IEEE Press.

[22]. Doboli, A. and R. Vemuri. The Definition of a VHDL-AMS Subset for Behavioral Synthesis
of Analog Systems. in 1998 IEEEIVIUF International Workshop on Behavioral Modeling
and Simulation (BMAS'98). 1998.

[23]. Doboli, A., et al. Behavioral Synthesis of Analog Systems using Two-Layered Design Space
Exploration. in 36th Design Automation Conference. 1999.

[24]. Nunez-Aldana, A. and R. Vemuri. An Analog Peiformance Estimator for Improving the
Effectiveness of CMOS Analog Systems Circuit Synthesis. in Design, Automation and Test
in Europe (DATE), Conference Proceedings. 1999.

[25]. Doboli, A. and R. Vemuri. A VHDL-AMS compiler and architecture generator for
behavioral synthesis of analog systems. in DATE. 1999.

[26]. Ganesan, S. and R. Vemuri. A Methodology for Rapid Prototyping of Analog Systems. in
International Conference on Computer Design (ICCD'99). 1999: IEEE Computer Society.

[27]. Ganesan, S., et al. Rapid Proto typing of Mixed Signal Systems from VHDL-AMS. in Proc.
Int!. Workshop on Bell. Modeling and Simulation (BMAS'99). 1999.

[28]. Ghosh, A. and R. Vemuri. Formal Verification of Synthesized Analog Designs. in
International Conference on Computer Design (ICCD'99). 1999: IEEE Computer Society.

[29]. Domenech-Asensi, G. and T.J. Kazmierski, Automated synthesis of high-level VHDL-AMS
analog descriptions. 2000.

[30]. Domenech-Asensi, G., R. Ruiz-Merino, and TJ. Kazmierski. Automatic synthesis of
analog systems using a VHDL-AMS to HSPICE translator. in DCIS'2000. 2000.
Montpelier.

[31]. Domenech-Asensi, G., et al., Architectural synthesis of high-level analogue VHDL-AMS
descriptions using net/ist extraction from parse trees. Electronics Letters, 2000. 36(20): p.
1680 -1682.

[32]. Antao, B.A.A. and AJ. Brodersen, Techniquesfor Synthesis of Analog Integrated Circuits,
in IEEE Design & Test of Computers. 1992.

[33]. Krasnicki, MJ., et al. ASF: A Practical Simulation-Based Methodology for the Synthesis of
Custom Analog Circuits. in ICCAD. 2001.

[34]. Berkcan, E., M. d'Abreu, and W. Laughton. Analog compilation based on successive
decompositions. in 25th ACMIIEEE Design Automation Conference. 1988.

190

[35]. Fung, A.H., et a1. Knowledge based analog circuit synthesis with flexible architecture. in
Proceedings of the 1988 IEEE International Conference on Computer Design: VLSI in
Computers and Processors (ICCD '88). 1988.

[36]. Harjani, R, R.Rutenbar, and L. Carley, OASYS: aframeworkfor analog circuit synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1989.
8(12): p. 1247-1266.

[37]. El-Turky, F. and E.B. Perry, BLADES: An Artificial Intelligence Approach to Analog
Circuit Design. IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, 1989.8(6): p. 680-692.

[38]. Makris, c.A., et aI. CHIPAlDE: A New Approach to Analogue Integrated Circuit Design.
in lEE Colloqium on Analogue VLS!. 1990.

[39]. Harvey, J.P., M.l. Elmasry, and B. Leung, STAlC: an interactiveframeworkfor
synthesizing CMOS and BiCMOS analog circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1992. 11(11): p. 1402 -1417.

[40]. Degrauwe, M.G.R., et aI., IDAC: An Interactive Design Tool for Analog Circuits. IEEE
Journal of Solid-State Circuits, 1987.22(6): p. 1106-1115.

[41]. Jongsma, J., et aI. An open design toolfor analog circuits. in IEEE International
Symposium on Circuits and Systems. 1991.

[42]. Koh, H.Y., C.H. Sequin, and P.R Gray, OPASYN: A Compiler for CMOS Operational
Amplifiers. IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, 1990.9(2): p. 113-125.

[43]. Onodera, H., H. Kanbara, and K. Tamaru, Operational-amplifier compilation with
performance optimization. IEEE Journal of Solid-State Circuits, 1990.25(2): p. 466-473.

[44]. Hershenson, M., S. Boyd, and T. Lee. GPCAD: A toolfor CMOS op-amp synthesis. in
1998 IEEElACM International Conference on Computer-Aided Design (ICCAD 98). 1998.

[45]. DeGrauwe, M., et aI. The ADAM analog design automation system. in IEEE International
Symposium on Circuits and Systems. 1990.

[46]. Carley, L.R., et aI. ACACIA: The CMU analog design system. in 1989 IEEE Custom
Integrated Circuits Con! 1989.

[47]. Plas, G.V.d., AMGIE-A synthesis environmentfor CMOS analog integrated circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2001. 20(9):
p. 1037 -1058.

[48]. Gielen, G. and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated
Circuits. 1991: Kluwer Academic Publishers.

[49]. Harjani, R., RA. Rutenbar, and L.R Carley. Analog circuit synthesis for performance in
OASYS. in Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers., IEEE
International Conference on ,. 1988.

[50]. Garrod, D., R.A. Rutenbar, and L.R. Carley. Automatic layout of custom analog cells in
ANAGRAM. in IEEE International Conference on Computer-Aided Design (ICCAD-88).
1988.

[51]. Gielen, G., H. Walscharts, and W. Sansen, ISAAC: A symbolic simulator for analog
integrated circuits. IEEE Journal of Solid-State Circuits, 1989.24(6): p. 1587-1597.

[52]. Gielen, G., K. Swings, and W. Sansen. An Intelligent Design System for Analogue
Integrated Circuits. in European Design Automation Conference. 1990.

191

[53]. Gielen, G., H. Walscharts, and W. Sansen, Analog Circuit Design Optimization Based on
Symbolic Simulation and Simulated Annealing. IEEE Transaction on Solid-State Circuits,
1990.25(3): p. 707-713.

[54]. Swings, K., G. Gielen, and W. Sansen. An intelligent analog IC design system based on
manipulation of design equations. in IEEE Custom Integrated Circuits Conference. 1990.

[55]. Ochotta, E., The OASYS virtual machine: Formalizing the OASYS analog synthesis
framework. 1989, Carnegie Mellon Univ.

[56]. Rijmenants, 1., et aI., ILAC: an automated layout toolfor analog CMOS circuits. IEEE
Journal of Solid-State Circuits, 1989.24(2): p. 417 -425.

[57]. Harjani, R., R.A Rutenbar, and L.R. Carley. Analog circuit synthesis and exploration in
OASYS. in Computer Design: VLSI in Computers and Processors, 1988. ICCD '88.,
Proceedings of the 1988 IEEE International Conference on, 1988. 1988.

[58]. Young, K.H., C.H. Sequin, and P.R. Gray. Automatic layout generation for CMOS
operational amplifiers. in Computer-Aided Design, 1988. ICCAD-88. Digest of Technical
Papers., IEEE International Conference on ,. 1988.

[59]. Maulik, P.c., L.R. Carley, and R.A. Rutenbar. A mixed-integer nonlinear programming
approach to analog circuit synthesis. in 29th ACMIIEEE Design Automation Conference.
1992.

[60]. Torralba, A, J. Chavez, and L.G. Franquelo, FASY: A Fuzzy-Logic Based Toolfor Analog
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circtuits and
Systems, 1996. 15(7): p. 705-715.

[61]. Fares, M. and B. Kaminska, FPAD: A Fuzzy Nonlinear Programming Approach to Analog
Circuit Design. IEEE Transactions on CAD of Integrated Circuits and Systems, 1995.
14(7): p. 785-793.

[62]. Ochotta, E.S., R.A Rutenbar, and L.R. Carley, Synthesis of High-Performance Analog
Circuits in ASTRXlOBLX. Computer-Aided Design of Integrated Circuits and Systems,
1996.15(3): p. 273-294.

[63]. Nye, W., et aI., DELIGHTSPICE: an optimization based system for the design of
integrated circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 1988.7(4): p. 501-519.

[64]. Krasnicki, M., et aI. MAELSTROM: Efficient Simulation-based synthesis for custom analog
cells. in ACMIIEEE 36th Design Automation Conference. 1999.

[65]. Phelps, R., et aI. ANACONDA: Robust Synthesis of Analog Circuits via Stochastic Patern
Search. in IEEE Custom Integrated Circuits. 1999.

[66]. Kirkpatrick, S., C.D. Gelatt, and M.PJ. Vecchi, Optimization by Simulated Annealing.
Science, 1983.220(4598): p. 671-680.

[67]. Lam, Y.Y.H., Synthesis of Analogue Circuits, in Department of Electronics and Computer
Science. 2001, University of Southampton. p. 248.

[68]. Alpaydin, G., S. Balkir, and G. Dundar, An Evolutionary Approach to Automatic Synthesis
of High-Performance Analog Itegrated Circuits. IEEE Transactions on Evolutionary
Computation, 2003. 7(3): p. 240-252.

[69]. Antao, B. and A. Brodersen, ARCHGEN: Automated Synthesis of Analog Systems. IEEE
Transactions on VLSI, 1995. 3(2): p. 231-244.

[70]. De Smedt, B. and G.G.E. Gielen, Watson: design space boundary exploration and model
generation for analog and RF IC design. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, Feb 2003.20(9): p. 213- 224.

192

[71]. Doboli, A. and R. Vemuri, Exploration-based High-Level Synthesis of Linear Analog
Systems Operating at Low/Medium Frequencies. IEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2003. 22(11): p. 1556-1568.

[72]. Hjalmarson, E., R. Hagglund, and L. Wanhammar. Optimization-Based Design Space
Exploration of Analog Circuits. in Proc. European Conference on Circuit Theory and
Design. 2003. Krakow, Poland.

[73]. Hjalmarson, E., Robert Hagglund, and L. Wanhammar. An Equation-Based Optimization
Approach for Analog Circuit Design. in Proc. Int. Symp. on Signals, Circuits & Systems.
2003. Iasi, Romania.

[74]. Ray, B.N., P.P. Chaudhuri, and P.K. Nandi, Efficient synthesis ofOTA networkfor linear
analogfunctions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2002. 21(5): p. 517 -533.

[75]. Wawryn, K. PROLOG-based active jilter synthesis. in European Conference on Circuit
Theory and Design. 1989.

[76]. Huelsman, L.P. Filter synthesis using multi-dimensional search techniques. in 33rd
Midwest Symposium on Circuits and Systems. 1990.

[77]. Barua, A., Obtaining Expert Advice, in Circuits & Devices. 1999. p. 17-25.

[78]. Barua, A. and S. Sinha. CHOFIL: a knowledge based approach to active biquad synthesis.
in 1994 IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS '94). 1994.

[79]. Younis, A.T. and R.E. Massara, Automated synthesis of sWitched-capacitor ladder jilters
within an analogue silicon compilation environment. IEE Proceedings of Circuits, Devices
and Systems, 1992. 139(2): p. 249-255.

[80]. Barua, A. and M.K. Chandrakar. SYSCUF: automated synthesis of switched current jilter.
in The 7th IEEE International Conference on Electronics, Circuits and Systems. 2000.

[81]. Alpaydin, G., et aI., Multi-level optimisation approach to switched capacitor jilter
synthesis. IEE Proceedings of Circuits, Devices and Systems, 2000.147(4): p. 243-249.

[82]. VHDL Language Reference Manual: IEEE Standard 1076-1993.

[83]. Christen, E. and K. Bakalar, VHDL-AMS-a hardware description languagefor analog and
mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 1999.46(10): p. 1263 -1272.

[84]. KasulaSrinivas, Y.R., Modeling Semiconductor Devices using the VHDL-AMS Languange,
in Department of Electrical and Computer Engineering and Computer Science. 1999,
University of Cincinnati.

[85]. Kasulasrinivas, V.R. and H.W. Carter. Modeling and simulating semiconductor devices
using VHDL-AMS. in Behavioral Modeling and Simulation (BMAS). 2000.

[86]. VHDL-AMS composite system modeling tutorials and guidelines
http://www.ee.duke.edu/researchlIMPA CT/documents/mode g.pd(

[87]. A1cantud, J. and TJ. Kazmierski. VHDL-AMS modeling of self-organizing neural systems.
in International Symposium of Circuits and Systems 2000 (ISCAS 2000).2000.

[88]. http://wvolw.mentor.com/ams/. Mentor Graphics.

[89]. Mast modelling. http://www.analogy.com

[90]. Standard Description Language Based on the Verilog(TM) Hardware Description
Language: IEEE Standard 1364-1995.

193

[91]. Miller,1. and T. Cassagnes. Verilog-A and Verilog-AMS provides a new dimension in
modeling and simulation. in Devices, Circuits and Systems, 2000. Proceedings of the 2000
Third IEEE International Caracas Conference on, 2000. 2000.

[92]. K. Einwich, et aI. SystemC extension to mixed-signal design. in FDL01. 2001. Lyon,
France.

[93]. VHDL-AMS Frontend (Java- Version) http://vV11;w.ti.in(ormatik.uni
frankfurt. de/grimmlhybrid.html#VHDL-AMS. 1997.

[94]. Southampton University VHDL-AMS Validation Suite http://www.syssim.ecs.soton.ac.uk.
1997.

[95]. VHDL-AMS Analyzer. 1997, Electronic Design Automation Research Center, Distributed
Processing Laboratory, University of Cincinnati, http://www.ececs.uc.edu/~ddeI.

[96]. VHDL-AMS compiler, http://worldserver.oleane.comlleda. 1997, LEDA S.A.

[97]. VeriasHDL Simulator. 1999, Analogy.

[98]. VHDL-AMS Design Station User Manual. 1999, Mentor Graphics.

[99]. SMASH mixed-signal simulator http://www.matricsgroup.com/smash.asp.

[100]. hAMSter mixed-signal simulator ,mw.hamster-ams.com.

[101]. Valkenburg, M.E.V., Analog Filter Design. 1982: CBS College Publishing.

[102]. Zverev, A.I., Handbook offilter synthesis. 1967: Wiley.

[103]. El-licy, F.A. and H.S. Abdel-Aty-Zohdy. Verification system inteiface for VLSI
combinational circuits. in 1998 Midwest Symposium on Circuits and Systems. 1998.

[104]. Tanaka, T., Parsing electronic circuits in a logic grammar. IEEE Transactions on
Knowledge and Data Engineering, 1993.5(2): p. 225 -239.

[105]. Tanaka, T. and L.c. Jain. Circuit representation in a logic grammar. in Electronic
Technology Directions to the Year 2000. 1995.

[106]. Kazmierski, T.J. and C. Chalk. A web-based VHDL-AMS design environment. in
IEEEIVIUF BMAS'98. 1998.

[107]. Aho, A.V., R. Sethi, and J.D. Ullman, Compilers principles techniques,and tools. 1986:
Addison-Wesley.

[108]. Carlson, G.E., Signal and linear system analysis. 1992: Houghton Mifflin Company.

[109]. Press, W.H., et aI., Numerical Recipes in C - The art of scientific computing. 1988:
Cambridge University Press.

[110]. BSIM3v3 Manual, Department of Electrical Engineering and Computer Science, University
of California, Berkeley.

[111]. Jia-Jiunn Ou, et aI. CMOS RF modelingfor GHz communication IC's. in 1998 Symposium
on VLSI Technology. 1998.

[112]. Kuhn, W.B., A. Elshabini-Riad, and F.W. Stephenson, Centre-tapped spiral inductors for
monolithic bandpass filters. Electronic Letters, 1995. 31(8): p. 625-626.

[113]. Li, D. and Y. Tsividis, Active LC filters on silicon. IEE Proceedings of Circuits, Devices
and Systems, 2000.147(1): p. 49-56.

[114]. Burghartz, J.N., et aI., RF circuit design aspects of spiral inductors on silicon. IEEE
Journal of Solid-State Circuits, 1998.33(12): p. 2028-2034.

[115]. Yue, c.P., et aI. A Physical Model for Planar Spiral Inductors on Silicon. in International
Electron Devices Meeting, 1996. 1996.

194

[116]. Yue, c.P. and S.S. Wong, Physical modeling of spiral inductors on silicon. IEEE
Transactions on Electron Devices, 2000. 47(3): p. 560 -568.

[117]. Lee, T.H., The Design of CMOS Radio-Frequency Integrated Circuit. 1998: Cambridge
University Press.

[118]. Yodprasit, U. and K. Sirivathanant. A Compact Low-Power Vertical Filter for Very-High
Frequency Applications. in The 2001 IEEE International Symposium on Circuits and
Systems (ISCAS 2001).2001.

[119]. Star-HSPICE Manual. 2000, Avant!

[120]. NeIder, A. and R. Mead, A Simplex Methodfor Function Minimization. Computer Journal,
1965.7: p. 308-313.

[121]. Massara, R.E., Optimization methods in electronic circuit design. Longman Scientific &
Technical. 1991: Longman Group UK Limited.

[122]. Programming Analysis and Optimization, APLAC 7.61, Reference manual, vol. 1.2001,
Aplac Solutions Corp.

[123]. Walker, R., et al. Circuit Optimization Using the Simplex Algorithm. in Hewlett-Packard
1989 VLSI Design Technology Conference. 1989.

[124]. Sun, Y., ed. Design of High-frequency integrated Analogue Filters. 2002, IEE Press (UK).

[125]. Sun, Y. and J.K. Fidler, Synthesis and performance analysis of universal minimum
component integrator-based IFLF OTA-grounded capacitor filter. IEE Proceedings of
Circuits, Devices and Systems, 1996. 143(2): p. 107-114.

[126]. Al-Hashimi, B.M., et aI., Integrated universal biquad based on triple-output OTAs and
using digitally programmable zero. IEE Proceedings of Circuits, Devices and Systems,
1998.145(3): p. 192-196.

[127]. Kuhn, W.B., F.W. Stephenson, and A. Elshabini-Riad, A 200 MHz CMOS Q-Enhanced LC
Bandpass Filter. IEEE Journal Solid-State Circuits, 1996.31(8): p. 1112-1121.

195

