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There is growing recognition that successful software systems evolve. Similarly,
the processes that produce software must also evolve in order to free evolutionary
system growth. Systems Dynamics modelling and simulation has been used to
support process improvement strategies; however ad-hoc modelling methods may
cause failures of understanding that lead to failures of these strategies. If we are to
build better, evolvable software development processes with predictable behaviour
and outcome, we need to be able to use modelling and simulation in a more

systematic way.

This thesis describes an evolutionary modelling method that uses quantitative
simulation to ensure close correspondence between a Systems Dynamics model
and the behaviour of a software development process. Secondly, through two
experiments, we show how componentisation allows us to evolve process models
in a dependable way, by breaking processes down into components that are well
understood, with predictable behaviour. We suggest that we will be better placed
to design evolvable, flexible processes that make good use of complex strategies
like distribution, concurrency and feedback if we can develop re-usable process
components, with well understood and predictable behaviour in the software

development domain.
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Chapter 1 Introduction

Chapter 1

Introduction

Let’s set a scenario familiar to many software practitioners; at the start of a project,
despite resourcing it with the most able, motivated staff, it is hard to see progress.
As you get nearer to your carefully planned, realistic and costed project deadline,
your rate of progress towards that goal slows. We all recognise this behaviour, and
anecdotally we may have many theories as to why we can observe it.
Unfortunately, if we can’t be sure of the causes of this behaviour, we can neither
improve our prediction of project progress nor build processes that improve our

performance.

So how can we improve our understanding of the behaviour of processes and have
more certainty that any changes we make to our processes will have beneficial

effects?

We may decide that, once we have a stable process, with all its flaws, we can treat
it as a ‘black box’, basing predictions on past performance and adopting the view

that, ‘if it ain’t broke, don’t fix it’.

And yet processes cannot remain the same. In the same way that systems must
evolve to meet new needs, process models must evolve to meet the needs of the
developer and the system domain; thus systems development processes can be
described as evolutionary systems. As proposed in one of Lehman's laws for
software evolution [Lehman 1996], developed over thirty years study of evolution
1n software, user satisfaction declines unless steps are taken to evolve the product

to meet new needs. We can view processes as similar evolutionary systems, and in
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the case of process models, their users are developers who are building software
products. The developer’s satisfaction with the process model declines when the
model no longer meets their need to respond to technological and cultural domain

changes in order to meet market expectation.

There are many new process models that are claimed to provide an improved
response to market demands, and answers to the problems of building large reliable
and evolvable systems rapidly. For example, XP, Agile, Rational Unified Process,
and Open Source. New processes use feedback mechanisms to evolve the product,
and concurrency and distribution in order to achieve their project goals. Whether
these new models will achieve their claimed results is the subject of much

discussion but should also be the subject of evaluation.

Making changes to processes is expensive in time and money whilst potentially
risking the operational stability of the organisation, so we need to reduce the risks
and increase the benefits by improving our understanding and prediction of the

effects of change.

Software developers are beginning to explore how componentisation allows them
to evolve systems in a more dependable way, by breaking systems down into
components that are well understood, with predictable behaviour. Similarly,
process designers will be better placed to design flexible processes that make good
use of complex strategies like distribution, concurrency and feedback, if we can
develop re-usable process components, with well understood and predictable

behaviour in the software development domain.

In the same way that systems developers have learned that using modelling and
simulation tools to design systems products improves reliability and user
satisfaction, process designers must learn that the processes that produce the
systems deserve similar attention. The use of modelling and simulation is essential

to achieving the goal of building effective, flexible, and evolvable processes.
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Software processes have been shown to constitute feedback systems; [Belady and
Lehman 1972; Lehman 1996] [Abdel Hamid and Madnick 1991]. Systems
Dynamics [Forrester 1961] provides a methodology and tools that enable us to
model and simulate dynamic processes and examine the feedback relationships that
cause behaviour. Systems Dynamics has been used to successfully model
individual processes, for example Adel-Hamid and Madnick’s investigation of
Brooks law (adding staff to a late project makes it later [Brooks 1995]) using
Systems Dynamics showed that it is possible to add staff to a late project without

making it ‘later’ and reduce the overrun provided that rules are followed.

Most Systems Dynamics modelling of software development processes has been ad
hoc in nature, examining a particular instance of a process. In an ad hoc approach
to modelling, we observe a dynamic behaviour, propose a plausible theory to
explain it, and then attempt to replicate the behaviour using a modelling and
simulation tool. Ifthe behaviour can be replicated in the model with an
understandable structure, then the plausible theory can be accepted as the cause of
the real world phenomena. Unfortunately, from our subjective observations of the
real world, we may add unnecessary process structure to our models that has no
bearing on the real dynamics of the process and clouds our analysis of how to

make process improvement decisions. This may lead us to make incorrect

judgements about the real world we are examining.

Even within Abdel — Hamid and Madnick’s successful model, later work has
shown that the model may be over complicated and that some of the process
structure, while depicting real world activity, has little or no bearing on the

behaviour of the process [Houston, Mackulak and Collofello 2000].

Lehman and Ramil [Lehman and Ramil 1999] suggest that many process changes
make no real or, at best, only marginal improvements to our ability to produce

more reliable systems faster and more cheaply.
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If we are to build better development processes with predictable behaviour and
outcome, we need to be able to use modelling and simulation tools in a more

systematic way.

This thesis describes how we can use Systems Dynamics to build process models
from simple, well understood process components that can help us to explain,

understand and predict software development process behaviour.

We describe two alternative process models that are both able to recreate the
behaviour described at the beginning of the chapter; the asymptotic approach to
completion of software. The process models have been created in Systems
Dynamics using Vensim [Vensim 1988 - 1997] as a simulation and modelling tool,
by connecting together simple process components. We show that we are able to
explain the same behaviour with two very different and equally plausible theories.
Were this behaviour to be modelled in an ad-hoc way, either theory may have been
accepted as the cause of the real world behaviour, leading to process improvement

decisions that would have marginal improvements on the process outcome.

We suggest that modelling using well understood components designed for the
systems development domain would enable better process improvement and

produce processes that are more evolvable.
The structure of this thesis is as follows.
Chapter 1, an introduction.

Chapter 2 provides a background for the study and covers evolution in software

and processes; software quality and the software process.

Chapter 3 provides a background study of understanding process behaviour using

modelling and simulation.
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Chapter 4 presents a case study of ad-hoc process modelling based on the Cellular

Manufacturing Process Model.

Following Chapter 4 are two chapters presenting work concerning how to move

from ad hoc modelling to systematic modelling.

Chapter 5, ‘Evolutionary Systems Dynamics Model Building’. In this chapter we
use evolutionary model building to investigate behavioural congruence between
models in different paradigms. We will use a simple process as a case study and
examine the effects of resource allocation policies on the schedule and quality of
the product. The simple process produces software that contains defects; it has
policies that control defect removal activities that depend on the perceived quality
of the software in production. The process is modelled firstly by Monte Carlo
methods and secondly, in Systems Dynamics, using an evolutionary model

building process.

Chapter 6, ‘Simulation Experiments in Modelling Software Process using
Components’. We will describe how Systems Dynamics can be applied to
development processes in a systematic way. Most Systems Dynamics modelling is
carried out in an ad hoc manner; a behaviour is observed and the modeller attempts
to discover the feedback relationships that cause that behaviour and builds a model
that reproduces that behaviour. Modelling in this way may cause inappropriate
conclusions to be drawn about how best to improve the process. In this chapter we
will show how abstract software development processes composed of simple,
repeated components may be modelled and simulated to investigate their
behaviour. Simple components with well understood behaviour that can be
combined to form a process model will allow process modellers to have confidence
about the causes of observed behaviour and propose process changes that will

improve process outcomes.
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Chapter 7, ‘From Qualitative to Predictive Quantitative Models’. We discuss
factors that affect our ability to build predictive quantitative systems dynamic

models, using examples from the CMPM case study.

Chapter 8 provides a summary of the thesis and suggestions for future work.



Chapter 2
Background

There is significant interest within the software engineering community in
improving the process of developing software in order to improve the software
product itself, as well as to improve the predictability of development costs and
schedule. This interest has generated research into the achievement of quality and

predictability.

There have been many attempts to define software quality as we discuss later in
this chapter but they coalesce around defining the quality of software products in
terms of specific software attributes of interest to the user. These are external
product attributes that represent the user’s functional and non-functional
requirements [Fenton and Pfleeger 1997]; they define the fitness for purpose of the

software.

The International Standards Organisation’s Single Universal Model (ISO 9126) has
been developed to follow this view of quality using the definition: ‘the totality of
features and characteristics of a software product that bear on its ability to satisfy
stated or implied needs’. It has six factors: functionality, reliability, efficiency,
usability, maintainability, portability. In essence, perfect quality is the meeting of

all requirements and the absence of defects.

Research into quality has focussed on two major areas, measurement of the product
in terms of its attributes and measurement of the ability of an organisation and its
processes to produce quality products. The second research direction has produced

the Capability Maturity Model [Paulk, Curtis, Chrissis and Weber 1994] and
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SPICE [Dorling 1993]. Explicit in the models is the recognition that an
organisation must define, measure, control and finally improve its process in order
to improve its capability. Progress through CMM and SPICE requires that
organisations adopt an explicit development process model to make the delivery of

systems more predictable.

Research into predictability in terms of effort, cost and schedule is led by research
into project planning requirements. The COCOMO and COCOMO 1I estimation
systems [Boehm, Clark, Horowitz, Westland, Madachy and Selby 1995; Boehm,
Abts, Clark and Devnani-Chulan 1996] were created as a result of this research.
COCOMO is based on a traditional waterfall lifecycle and a traditional
development process estimating the cost of development from the number of
person months a development will take based on an estimate of the size of the

software in KSLOC (thousands of lines of source code).

Quality, cost and schedule are interdependent attributes (Figure 1); if you reduce
the cost (effort) or time available (schedule), quality is affected; if you take steps to
increase quality through quality assurance procedures or testing, cost and schedule
are affected [Rus, Collofello and Lakey 1999]. Research into these dependencies
within processes may prove to be valuable in providing the dynamic controls

necessary for improvement.
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Quality

7\

Cost P — Schedule

Ny >

Figure 1. Cost, Quality and Schedule Interdependency

Producers of large-scale systems are aware that these systems, often involving both
hardware and software delivered as one system, evolve over time but in today’s
fiercely competitive market place there is increasing commercial pressure to
respond rapidly to new needs. In this environment, systems must evolve rapidly to

achieve a fast time to market and secure competitive advantage.

Performance predictability in cost, schedule and delivered quality is critical to
maintaining competitive advantage. Manufacturers use increasingly sophisticated
techniques to reduce costs and improve delivery time. They make use of legacy
code, have an asset base of reusable components and buy in specialist
functionality. They reduce cycle time by looking for opportunities for
development concurrency within the process. In order to make the development
process more predictable, most organisations now undertake continual
development process improvement using methods such as CMM or SPICE.
Achievement of CMM or SPICE level 4, where measurement makes the
development more predictable, requires the introduction of detailed process models
and practical methods of process measurement [Pfleeger and Rombach 1994]. To
get beyond level 4, a company must be able to use these measurements to control
the process directly. Producers of large-scale software recognise that software
evolves and that advanced process techniques must be used to maintain

competitive responsiveness.
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Process structure has been largely ignored as a determinant of process outcome
when examining and modelling development processes [Ford and Sterman 1997],
yet the research into CMM and SPICE shows that processes are an important
determinant of product outcome, in terms of cost, schedule and quality. In the
same way that products must evolve to remain successful and continue to satisfy
market needs, the processes that produce software must evolve to support product

evolution [Belady and Lehman 1985].

Software development processes are dynamic structures with complex
interdependent feedback relationships. Understanding process behaviour is
important to the success of any process control or improvement strategy.
Modelling and simulation provide the means to develop, determine and validate the
behaviour of new processes but the methodology chosen to model behaviour must
be capable of capturing dynamic behaviour. Prediction systems that ignore
complex, dynamic process structure cannot provide the predictability that

manufacturers need to make competitive decisions.

2.1 Software Evolution

The evolutionary nature of software was first investigated and described in
pioneering work by Belady and Lehman [Belady and Lehman 1972] more than
thirty years ago, following a study of the IBM programming process. Continuing
the examination of the nature and prerequisites for evolution in software to the
present day, Lehman described eight laws for software evolution including a law
recognising the role of feedback dynamics in the evolutionary process [Belady and

Lehman 1985] [Lehman 1996].

Lehman defines and characterises two types of software: E-type systems that are
used to solve problems in the real world and must be continually be fixed, adapted
and extended, and S-type systems that are an executable model of a formal

specification. An E-type system is judged by the continuing satisfaction of the

10



Chapter 2 Background

stakeholders in the real world whereas the criterion of acceptability of an S-type is

that of mathematical correctness relative to the specification.

E-type systems evolve in an unbounded operational domain which itself evolves in
response to the system. S-type systems have a bounded operational domain and so

not evolve.

At this point it might be sensible to define what we mean by evolution in software
and how it differs from maintenance particularly as the terms have been used
interchangeably as if they were synonymous. There have been definitions of
software maintenance since the 1970’s and in the 1990’s it was defined by two

international standards; IEEE Standard 1219 defines it as:

‘The modification of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the product to a modified

environment.’

The International Standards Organisation (ISO/IEC) definition is similar. The term
evolution has been used to describe maintenance and adaptive development, but

there are no standard definitions of software evolution as yet.

Lientz and Swanson in the late 1970’s categorised maintenance activities into four
classes [Lientz and Swanson 1980]:

e Adaptive — changes in the software environment

e Perfective — new user requirements

e Corrective — fixing errors

e Preventive — prevent problems in the future.

Bennett and Raglich [Bennett 2000] suggest that maintenance should be defined as
general post-delivery activities whereas the goal of evolution is the adaptation of

the system to the ever-changing user requirements and operating environment,

11
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Thus evolution extends the idea of adaptive and perfective maintenance to be a
continuous, feedback driven adaptation of software to meet stakeholders’
expectation in the operational domain. We shall follow Bennett and Raglich’s

distinction.

E-type systems, therefore, after initial deployment with customers are continuously

modified over a series of versions to meet new market needs.

In the Feast projects (Feedback Evolution and Software Technology), Lehman
examines the nature of and the prerequisites for evolution in software [Lehman and
Stenning 1996; Lehman and Stenning 1998]. The software studied in the project is
large-scale software that has persisted over many years and meets the E-type

criteria.

The Feast hypothesis is that software evolution is a feedback process and that
unless the feedback dynamics are understood, major process improvement cannot
be achieved [Lehman 1996; Lehman and Ramil 2000]. Lehman believes that
external factors from the domain of the system limit evolution and that changes to
process models have marginal effects. Process improvements that are made
without understanding feedback dynamics will fail to deliver the expected benefits.

The project proposes eight laws for evolution:

I Continuing Change E-type systems must be continually adapted else they

become progressively less satisfactory.

II Increasing Complexity As an E type system is evolved its complexity increases

unless work is done to maintain or reduce it.

12
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I Self Regulation

v Conservation of
Organisational

Stability

Vv Conservation of

Familiarity

VI  Continuing Growth

VII  Declining Quality

VIIT Feedback System

Global E-type system evolution processes are self-

regulating.

Unless feedback mechanisms are appropriately adjusted,
the average effective global activity rate in an evolving
system tends to remain constant over the product

lifetime.

As an E-type system evolves, all associated with it must
maintain mastery of its content and behaviour to achieve
satisfactory usage and evolution. Excessive growth
diminishes the mastery and leads to a transient reduction
in growth rate or even shrinkage. Therefore the mean

incremental growth remains constant or even declines.

Functional content of E-type systems must be continually

increased to maintain user satisfaction over its lifetime.

Quality of E-type systems will appear to be declining
unless they are rigorously maintained and adapted to

operational environment changes.

E-type evolution processes are multi-level, multi-loop,
and multi-agent feedback systems and must be treated as

such to achieve major process improvement.

Lehman’s findings are that evolution is constrained by feedback in the process. In

the empirical studies carried out by Lehman, over the lifetime of the software, the

rate ofisoftware growth declines. The inference is that the system loses its ability

to be adapted to meet new needs; legacy, complexity and unwieldiness limit

successful evolution.
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Lehman proposes that there is a limit to the age and growth of software. However
the early studies are of very old software (IBM OS/360) [Belady and Lehman
1985] and growth is represented by the physical size of the software. This equates
growth in size with evolution and this may not be a good representation of

evolution.

More recently developed software, e.g. Microsoft Windows 2000 and Netscape
Navigator and Communicator have shown aggressive evolutionary growth in
functionality and size. Navigator has evolved from a web browser into
Communicator, a set of Internet communication tools, within 3 years and has
grown in physical size from a code base of 100,000 units to 3,000,000 units.
Microsoft Windows has evolved over 18 years from Windows 286 to Windows
NT. The ability of Windows to continue to evolve may be based on the evolution

of the process model used to develop the software [Cusumano and Yoffie 1998].

The example of Netscape shows how rapidly a software product needs to evolve in
response to an expansion of the technological and cultural domain of the software

and market expectation.

The characteristics of evolutionary change in software described by Lehman and
the proposal that the process used to produce the software must support the
requirements of software to evolve provide a basis for further investigation.
Lehman stresses that an understanding of feedback is necessary to design processes
that produce software that can evolve effectively; therefore any investigation

should be supported by tools that allow feedback to be examined [Allen 1988].

The EPSRC funded SEBPC research programme indicates that evolution in
business processes is necessary to maintain competitiveness and the ability of an
organisation to change and adapt to new threats and opportunities [Henderson
2000]. Warboys also stresses the need to examine feedback [ Warboys, Greenwood
and Kawalek 2000].
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In the case of software development business, the processes that need to evolve are

the processes that produce software.

2.2 Quality

Fenton [Fenton 1996] [Fenton and Pfleeger 1997] asserts that we should define the
quality of software products in terms of specific software attributes of interest to
the user. These are external product attributes that represent the user’s functional

and non-functional requirements; they define the fitness for purpose of the

software.

Returning to the ISO 9126 Single Universal Model, mentioned earlier in this
chapter, it was developed to follow this view of quality using the definition: ‘the
totality of features and characteristics of a software product that bear on its ability

to satisfy stated or implied needs’. It has six factors:
e Functionality
e Reliability
e Efficiency
o Usability
e Maintainability
e Portability

These external attributes are difficult to measure or compare, so the attributes are
defined in terms of more concrete characteristics that are measurable. Within this
model, each high level factor is composed of lower level criteria which define it,
for example, reliability is defined as ‘A set of attributes that bear on the capability
of software to maintain its level of performance under stated conditions for a stated
period of time’. A set of characteristics that define the attributes is suggested but

not prescribed. The standard provides a framework for evaluation of quality.
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The ISO model develops models proposed by Boehm [Boehm, Brown and Kaspar
1978] and McCall [McCall, Richards and Walters 1977], which are also tree
structured decompositional models of the components of quality. Boehm used his
model when developing the COCOMO cost estimation model; the McCall model is
used to predict productivity [Fenton and Pfleeger 1997]. One of the difficulties in
making quality comparisons is that the models used differ in their interpretation of
the criteria that define the external attribute. For example, Boehm defines

reliability as:
o Completeness
e Accuracy

e (Consistency

McCall defines reliability as

e Accuracy

e Error tolerance
e Consistency

e Simplicity

The ISO model is an attempt to provide a universal standard but as the
interpretation of the characteristics is not defined and is dependent on the

evaluator, comparison of the quality of products is difficult.

Quality must be measurable for meaningful comparison to be made. External
attributes are not directly measurable, so the quality models relate these external
attributes through decomposition to internal attributes that are measurable, as

shown in Figure 2.
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External Attributes Characteristics Internal attributes

. Completeness Defects
Size
Complexit

Reliability Accuracy plexity

Syntactic
Correctness

. Consistency

Figure 2. ISO decompositional model of the components for reliability

Whilst the user is the primary focus for consideration of quality, we should
consider other stakeholders. Software producers, for example, expect to be able to
reuse software components in order to reduce development cycle times. They need
measures of the quality of the components that will be integrated into new and
evolved software products; low quality assets may not be reusable or may cost
more to integrate. Software quality is one of the measures that represents the value
of their asset base. As well as reuse considerations, lower quality products will
cost more to maintain and are less likely to evolve successfully. As described in
Lehman’s Laws for evolution, systems must be continually adapted else they
become progressively less satisfactory. The observed quality of software will

decline if the software doesn’t evolve to meet new needs.

Producers' quality goals also include external attributes relating to process, cost,
stability, timeliness and resource attributes of productivity. These attributes can
similarly be represented by internal attributes. Fenton shows examples of the

relationship between internal and external attributes for products, processes and

resources, see Figure 3.
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Entity Attributes
External Internal
product | Code Reliability Size, reuse, modularity,
Usability functionality,
complexity ...
Maintainability
process | Detailed Design | Quality Time, effort, number of
Cost faults found
Stability
resource | Personnel Productivity Experience, motivation,
cost

Figure 3. Internal and external relationships for products processes and resources

The difficulty for producers is predicting the outcome of external attributes whilst

the product is in the process of development. The product’s internal attributes, for

example, size, are often easier to measure than external attributes. The process

must provide measurements of the internal product and process attributes in order

to provide predictability and control. If it is difficult to predict the quality outcome

of the product by measuring the product itself during development, an alternative

would be to measure capability of the organisation and its processes to produce a

quality product, based on the assertion that process predictability determines

product predictability. Process measurement is discussed in section 7 of this

chapter.
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2.3 The Software Process

Humphrey [Humphrey 1990] defines the software process as,

‘that set of actions required to efficiently transform a user’s need into an
effective software solution. A particular process is the set of tools, methods and

practices we use to produce a software product’.

He identifies the characteristics of an effective software process as predictability;
cost estimates and schedules must be met with reasonable consistency and products
must meet functional and quality expectations, reflecting the interdependency

shown in Figure |
Development activities that are carried out in the software process include:

System conceptualisation Software integration and testing

System requirements and benefits analysis ~ System integration and testing

System design Installation at site
Specification of software requirements Site testing and acceptance
Architectural design Training and documentation
Detailed design Implementation

Unit development Maintenance

Process models are differentiated by the combination of tasks adopted, the
development effort allocation to the tasks, the timing of activities and the feedback

and control methods used to predict and control the process outcome.

Humphrey identifies three levels of software process models. The universal, U
model provides a high level, abstract overview of the process model; the worldly,

W model provides the working model adopted by an organisation and refines the U
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model; the Atomic or A model is the instantiation of the W model for a specific

project and is a refinement of the W model.
The universal models that are typically in use in software production are

o Waterfall [Royce 1970]
e Prototyping models - Spiral [Boehm and Bose 1994]
e Defect Prevention - V model [Dréschel and Wiemers 1999]
Process models developed in response to the increased demands placed by the
market for fast time to market and fast growth of capability include:
e Incremental Development (synch and stabilise [Cusumano and Selby
1997], Objectory)

e Evolutionary (eXtreme Programming [Beck 1999], Open Source [Raymond
1999])

o Agile Methods (eXtreme Programming [Beck 19997])
2.4 Process Models

2.4.1 Waterfall Lifecycle

The Waterfall or Classic lifecycle (Figure 4) [Royce 1970]is the oldest attempt to
define the software development process as a systematic, sequential engineering
process. It is based on a systematic, sequential approach that begins with system
requirements and progresses through analysis, design, coding, testing and

maintenance.
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Systems
Requirements 1

2 Analysis
'
4 Design
[ 3
A Code
R’
L Test

3

A Maintenance

Figure 4. The Waterfall Model

The paradigm can be criticised because real projects rarely follow a sequential flow
and iteration always occurs. Iteration is desirable in that it follows the change in
mental model produced by understanding and learning as the project progresses.
Customers evolve their understanding of their requirements as the project
progresses yet under this lifecycle they are required to fix their requirements early
in the lifecycle. Major failures of understanding can remain undetected because
the customer sees a working version late in the cycle. The model assumes that all
projects start from a ‘clean sheet’ whereas modern software producers use their
resources of knowledge and predictable, stable software assets to shorten time to

market.

Parnas in ‘How and why to fake it’[Parnas and Clements 1985], proposes that there
are benefits in retrofitting the model to the project as a method to document an
idealised version. This historical, idealised version of the project smoothes out the
iteration that actually takes place. Parnas uses the process model as a schema for
documentation to aid maintenance and support legacy development. This

acknowledges that the Waterfall Model does not effectively support the actual
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process followed by developers or the planning, estimation and control of the

process.

2.4.2 V model

The V model of development is a sequential model of development, similar to the

waterfall model, that incorporates verification and validation of the product

throughout the sequence of tasks, see Figure 5. The model follows Humphrey's

[Humphrey 1990] definition in that it models the frameworks of tools, methods and

standards that support the process as well as the sequence of activities to be

followed. Validation and verification is ensured though inspection, review and

testing at each stage in the development cycle. Testing is a planned, not ad hoc

activity.

Systems

Analysis

N Dynamic Verification and Validation

Software

Elicitation

\

Requirements
Analysis | — e e e e e m e

N

Preliminary
Design

N

Detailed Design

Implementation

Figure 5. V model of development

Requirements | == -=-==-cc-memmm e — -

Requirements | —~===-—---—-—-—=c--—-—c-—-—-~

Operation

T

Client
-
Acceptance

/

System
Integration &
Test

Component
Integration
Testing
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The model addresses the need to ensure quality of outcome by incorporating defect
removal and prevention activities in the process model; for example unit tests are

an outcome of the detailed design.

2.4.3 Rapid Application Development - Spiral Lifecycle model

Rapid Application Development uses iteration of the development cycle to provide
a progressively more complete version of a product. Prototyping is used as a
method of eliciting requirements and feedback about each successive version and
for exploring the problem domain. Prototyping as a technique was developed in
response to the difficulties encountered in sequential development where
requirements are fixed early and the changes that are a natural response to learning
about the problem domain are difficult to feedback into the requirements. Whilst
users may know many of the objectives that they wish to address with a system,
they may not know all the details of the problem domain or the capabilities of the
system domain. Process models that use prototyping allow for these conditions
and offer a development approach that yields results without fixing requirements
too early. In Rapid Application Development models, the developer builds a
simplified version of the proposed system and presents it to the customer for
consideration as part of the development process. The customer in turn provides
feedback to the developer, who refines the system requirements to incorporate the
additional information. Prototype code may be thrown away or refactored and

entirely new programs developed once requirements are identified.

The Spiral model developed by Boehm [Boehm 1988] Figure 6, shows the iteration
inherent in development . The spiral model formalises earlier rapid application
development models characterised by prototyping and includes risk assessment of

the project outcome.
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Figure 6. Spiral Model of Development

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

A spiral flow through four quadrants describes the process model. The quadrants

are planning, risk analysis, engineering and customer evaluation. At each circuit

around the spiral, increasingly more complete versions of software are built that

can be evaluated by the customer; risk analysis determines whether the project

should continue or whether the process should be modified or halted. For example,

if an increase in cost or project completion time is identified during one phase of

risk assessment, the customer or the developer may decide to limit the product

features because the increased cost or lengthened timeframe may make

continuation of the project with the current feature set impractical or infeasible.
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Customer evaluation of each successive version of the product is used to modify

the next more detailed version.
Each flow around the Spiral is made up of the following steps:

e determine objectives, alternatives, and constraints.

e assess risk, evaluate alternatives, identify and resolve risks.
e develop and verify.

e plan next phase.

At this point in the spiral the commitment to proceed is reviewed.

The model is designed to show dynamic development that is modified by the

development process itself.

The Win-Win Spiral Model [Boehm and Bose 1994] described by the diagram in

Figure 7, is an evolution of the original Spiral model. It incorporates a framework

(Theory W) for the product stakeholders (e.g. developers, users) to negotiate
mutually satisfactory sets of objectives and alternatives and constraints for each

successive version.
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7. Review commitment ' ‘
4. Evaluate product and

process alternatives

6. Validate product Resolve risks

and process
definitions

Original
5. Define next level of product and Spiral
process - including partitions

Figure 7. Spiral Model with Win-Win Extensions

2.4.4 Incremental Builds- Microsoft 'Synch and Stabilise'

Incremental models of development [McConnell 1996] have been developed in
response to the need to reduce the time to market by using high levels of
concurrency in the process. Development and testing are done in parallel and the
specification evolves from a high-level vision statement of prioritised goals
through incremental releases of successively more complete versions of the

product.
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feedback from
Release into planning
e
Plan %\ ) “R Release @ Release
»

feedback from
Release into feature
evolution

Figure 8. An Instance of a Synch and Stabilise Process

Incremental models based on 'Synch and Stabilise' [Cusumano and Selby 1997] use
distribution to create concurrency, Figure 8. The product is broken down into
feature sets that can be tackled by a team. The project is broken down into
sequential sub projects (milestones) representing completion points for major
portions of the product, each with a prioritised set of features. Feature teams
complete a complete cycle of development (design, code, fix, integrate) for each
milestone. Each milestone completes an increment of the product, Figure 9.
Developers work in teams aligned with the components or requirements they are
making, each team has the skills needed to complete the development cycle. The
teams synchronise together by submitting the components they are building into a

daily build of the product. The product is stabilised at each release milestone.
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The team structure breaks the communication barriers that can occur between
functionally aligned groups. In comparison, Waterfall process models, with
sequential phasing create functional organisation structures of developers aligned
with phases. A team of analysts would work on a specification, and pass the
completed and signed off specification to a team of designers in the design phase,

who pass off the signed off design to a team of implementers.

Developers improve their competitive advantage by reducing their time to market
by planning multiple release cycles with fixed release dates. The release content is
not fixed too far ahead so that the release date can be achieved irrespective of

whether feature completion plans have been achieved.

Customer feedback from each successive release is used to evolve the specification

for later phases.

Continue

cycle from 1
Understand current

N feature and design
evolution

submit to
build

— code feature

Fix defects
Test new feature

Figure 9. An Individual Cycle in Microsoft Synch and Stabilise
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2.4.5 Agile Methods - eXtreme Programming

Agile Methods [Cockburn 2002] [McConnell 1996] are low procedural overhead
methods that accept that software development is difficult to control. Agile
methodologies emphasise values and principles in software engineering, rather
than procedures and documentation. Projects minimise risk by ensuring that
engineers focus on small units of work and work in close collaboration with
customers. The method uses short, iterative project cycle; at the end of each cycle
project priorities are re-evaluated. Agile Methods include eXtreme Programming,

and DSDM (Dynamic Systems Development Method).

The most well known agile method is eXtreme Programming (XP) [Beck 1999]
uses similar techniques to Synch and Stabilise and has been developed for use with
small teams building software quickly in an environment of changing
requirements. The model emphasises high levels of communication and feedback
from the customer and the development process. The process follows these

techniques.
e negotiate requirements with on-site customer domain expert, simple design
using storyboards, CRC ( Class Responsibility Collaboration) cards

e no design/architecture review, design is refined through the code-fix-

release cycle

e design is broken down into coding work packages/components that can be

completed in a day

e development using well defined and strictly adhered to tools and coding

standards
e pair programming
e iterated code, test and fix cycle (writing tests before code)

e daily builds
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e incremental release of frequent updates in functionality in a short cycle.

The model shows similarities with rapid application development models that use
iteration and prototyping to evolve successively more complete versions of

software.

2.4.6 Open Source
The Open Source process model developed and described by Torvalds [Raymond

1999] was most famously used for the development of the Linux operating system.
The model has been used to produce collaborative software using the web as a

community infrastructure:

e in the academic world,
e networked computer game world e.g Half-Life: Counter-Strike

¢ and for middleware infrastructure e.g Apache TomCat web server, Mozilla

web browser

The last two communities produce successful, mature Open Source products that

are able to create or replace commercially viable products [Scacchi 2002].

Scacchi reports the one Open Source community portal for collaborative
development, SourceForge [OSDN 2002-2004] had more than 30,000 open source
projects listed in 2001, with more than 10% indicating the availability of mature,

released and actively supported software.

The source code is published and freely available. Interested users find and fix
bugs and offer improvements. The owner selects fittest component from those
offered, integrates it into the product and includes it in the published system. The
system is a co-operative venture between the publisher and the user. The market
decides how the product will evolve and evolutionary success of the product is
dependent on the willingness of the market to participate in the development

process. The process model is distributed and concurrent [Moon and Sproull
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2000]. However, in this process model, the publisher is not concerned with the

development activities that produce a component.

Open Source is probably the most innovative process model to emerge in the last
ten years that challenges how complex systems can be constructed, evolved and
deployed. Scacchi identifies Open source development as ‘a complex web of
socio-technical processes, development situations, and dynamically emerging

development contexts’ [Scacchi 2004].

Feedback is used implicitly and explicitly as the dynamic that evolves an Open
Source product. The Open Source developer solicits and uses feedback from the
developer and user community. Software evolves when the product is successful in
the marketplace and interest and commitment has been stimulated from the

stakeholder community.

The Open Source process model is being used successfully in developing and
evolving infrastructure and network game software both in academic and

commercial environments.

2.5 Comparing Process models

Classical lifecycle models such as the ‘waterfall” and V-Model are sequential and
static, they are non-evolutionary and assume that the product is created solely
within the organisational boundary. In traditional software development
environments, they aided process understanding and improvements but cannot
support the more complex evolutionary processes described here or predict their

behaviour.

More recently introduced lifecycle models such as Spiral [Boehm 2000] have been
developed to take account of iterative dynamic development. However, Perry,
Staudenmayer and Votta [Perry, Staudenmayer and Votta 1994] conducted
empirical studies using diaries and direct observation in two organisations to

examine the software process and in particular how developers spend their time.
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They found that neither the waterfall nor the spiral models reflect what really
happens. Their findings were that many iterative and evolutionary processes were

performed concurrently.

Powell and Mander [Powell, Mander and Brown 1999] have described iterative
development where concurrent pipelining techniques have been used to reduce
cycle times. The model shows a traditional sequence of development phases from
requirements through design, implementation and testing. Each Phase is iterated
producing successively more complete versions of the product to be passed from

each phase to the next, thereby enabling the phases to overlap.

In these cases the process model follows the traditional development sequence of
phases. There remains the problem of predicting performance when work is

distributed and may not all be within the organisational boundary.

Incremental 'synch and stabilise' models have been successfully used at Microsoft
to allow fast evolution of large systems, and fast time to market. The process is a
sequence of sub-projects each of which is a complete development cycle producing
an increment of functionality of the product. Because of the iterative development
of increments of functionality, there is always a system that is ready to ship.
Customer and developer feedback into requirements ensures that the product can
respond quickly to changing user needs and changes in the system domain needs.
The high level of concurrency within sequential sub projects allows a faster time to
market for large systems. The process model addresses the problems of the lack of
responsiveness in the waterfall model by breaking barriers between functional
groups, and providing feedback mechanisms from users and developers to evolve
the product rapidly. Whilst the code-fix-build cycle is clearly defined in the
model, there is no clear definition of how design activities can be as responsive as
requirements. The model incorporates code and fix rather than defect prevention,

which may allow design defects to proliferate. Criticisms have been made that,
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unless these aspects of the process model are better defined, the process model may

not scale to development of systems where high reliability is required.

Open source is a distributed process model. The system publisher selects and
integrates components provided by interested users outside the organisational
boundary. At component level any lifecycle model may be used. The benefits of
the process model are a fast time to fix, market driven, and fitness for purpose,
evolution of the whole system guaranteed through competition for survival of
evolutions of components. However the publisher needs to generate sufficient
market interest or users may not supply new and evolved components in which

case the product will not evolve.

Competition for the most successful fix evolves components quickly but the cost of
development effort is hidden because most development is unpaid. The resources
of many programmers are used to find and develop fixes for any one successful fix.
The cost of thrown away work, (unsuccessful evolutions) is not measured or

measurable.

The emphasis in the model is on a code and fix cycle of evolution; requirements
and design are not formalised. The product design evolves through competition for
successful components. Failures of design are cast aside through competition and
the cost of design failures is not measured. Thus upstream design defects are
ignored in favour of down stream code fixing which takes more development

effort.

The process model does not define how the product architecture is developed, in
Open Source developments described so far (Linux), the architecture was well

defined and stable before the source was opened.

The successful application of the model is likely to be determined by the nature of
the software to be developed for example, operating system software and

infrastructure. If this model is to be used in vertical markets, then developers will
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need to use a different model for their revenue stream, possibly based on selling

product related services rather than the products themselves.

2.6 Evolution in process models.

In the same way that systems must evolve to meet new needs, process models must
evolve to meet the needs of the developer and the domain system. As suggested by
Lehman's work on software evolution, user satisfaction declines unless steps are
taken to evolve the product to meet new needs. In the case of process models, the
users are developers who are building software products. Their satisfaction with
the process model declines when the model no longer meets the needs of the
developer to respond to changes in the technological and cultural domain to meet

market expectation.

Process improvement models like Humphrey's [Humphrey 1990] use feedback
from the current model to evolve new models. Feedback from evaluation of world
W-models and changes in the system domain leads to evolutionary changes in
universal U-models. Evolution in process models can be observed by examining

how process models have developed over time.

The Waterfall Lifecycle was the first attempt to define a process model; it

sequences and defines development activities.

The V model is an evolution of the Waterfall Lifecycle that includes validation and
verification, but is still sequential. This evolution was in response to developer and

user needs to improve the quality of software products.

The Spiral model is an evolution of rapid application development, incorporating a
formal framework of risk analysis. In turn, the Win-Win Spiral model is an
evolution of the Spiral model that includes formalised negotiation of requirements.
This evolution to include prototyping and requirements feedback was in response

to dissatisfaction with the Waterfall Model early requirements fixing and late
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realisation leading to undetected failures of understanding between developers and

users.

Incremental models are a response to the need to be able to react to market
expectations by developing large systems rapidly. To achieve rapid growth in
software products, developers need concurrency in development activities, and
feedback relationships to allow requirements evolution. Incremental models use
build and release iteration for requirements evolution and concurrent development
cycles to reduce the time to complete each release. This shows evolution from
both Spiral models and Waterfall models. Synch and Stabilise iterates concurrent
waterfall cycles in a sequence of subprojects. eXtreme iterates concurrent rapid

application models.

Open Source has evolved to provide a model for component-wise distributed
development across organisational and geographical boundaries. The product
reacts rapidly to market needs and expectations of fast defect correction. There
appears to be evolutionary interdependence between Open Source systems and

their user-developer communities so that they co-evolve.

2.7 Process Predictability and Control

A process is said to be under statistical control if its future performance is
predictable within established statistical limits. When it is under statistical control,
it should be repeatable with similar results. Deming [Deming 1982] states that
measurement is the basis for statistical process control. He applied these
techniques to manufacturing industries. Humphrey [Humphrey 1990] asserts that
these techniques are applicable to the management of software development
processes and they have been incorporated into the Capability Maturity Model
[Paulk, Curtis et al. 1994]. Following the Representational Theory for
Measurement [Fenton and Pfleeger 1997], numbers must properly represent the

process being controlled and must be sufficiently well defined and verified to
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provide a reliable basis for action. Measures of the product and process are

required for predictability of product quality, cost and schedule.

2.7.1 Measuring Software Products

According to the Representational Theory of Measurement [Fenton and Pfleeger
1997], data obtained as measurements must properly represent attributes of the
observed entities; measurement must be consistent and manipulation of data should
preserve the relationship observed between entities. The theory provides rules for

consistency in measurement and provides a basis for interpreting data.

The definition of measurement using the representational theory provided by

Fenton is:

"Measurement is a mapping from the empirical world to the formal relational
world. Consequently, a measure is the number or symbol assigned to an entity by

this mapping in order to characterize an attribute.'

The theory can be applied to product and process quality measurement in order to
find concrete internal attributes that truly represent the external attributes. Internal
attributes are more measurable during the process so their measurements are easier

to use, to assess and to control progress towards target outcomes.

Fenton defines internal attributes ‘as those that can be measured purely in terms of

the product, process or resource on its own, separate from its behaviour’.

Commonly measured internal attributes are size, modularity, redundancy, reuse,

syntactic correctness, structuredness and defect density.

Size is one of the most important measurements used for predicting cost and
schedule, for example in the COCOMO and COCOMO II estimation models. If
we examine size, Fenton shows that it is not one-dimensional and that it has at least
three dimensions, length (physical size), functionality and complexity (of the

underlying problem solved by the software).
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One aspect, length, is the most commonly measured in Lines of Code (LOC) or
KLOC (thousand lines of code) yet there are many definitions of a LOC. They can
be blank, comments or data declarations; the counted size of the product depends
on the counting method used and the definition of a LOC. Jones [Jones 1986]
reported differences of five times in the counted size of a product depending on the

definition used.

When we consider comparisons of length in LOCs between two products, one
composed of components and one developed from scratch, can a comparison of the
effort required to produce the products be made? Comparisons can be spurious,
because methods of counting differ. Measurements of size seem uncomplicated
but there are difficulties in achieving comparable, consistent and meaningful

results.

The internal product attribute typically used as a measure and predictor of quality
during the process is defect density. If defect density is to be used as a predictor,
we must be certain that the representational theory of measurement holds, and that
it represents the reliability of the product (mean time between failure). However,
Adams at IBM found that the density of defects in a product did not necessarily
indicate its rate of failure [Adams 1984]. Neither are comparisons of defect

densities reliable if the measurement of size is not consistent.

Narrow measures of internal attributes are often used because they seem easier to
count and collect; there is a tendency to measure only the readily measurable

attributes rather than the full representation of the external attribute.

2.7.2 Measuring Process

As well as measuring the quality of their products, producers need to be able to
measure how successful they are at producing software efficiently. Producers need

to be able to predict:

e How much effort it will take to produce a software product,
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e How long the process will take to complete,
e The productivity of the process.

As discussed in section 3, these are process and resource attributes. Process,
resource and product attributes are similarly measured in terms of their internal
attributes. There are similar difficulties in achieving precise and comparable
measurements, for example, manpower costs may include only those working

directly on the product, or they may include administrative staff.

Effort required to complete a process is determined by the amount of work that is
required to be completed. The time that the process will take to complete is
determined also by the amount of work to be completed. One definition of the
work to be completed is the size of the product. Size in terms of LOC is a concrete
product measure but it is only available when the product is complete. In order to
predict effort and time, size must first be predicted. This shows the

interdependence of product and process measures.

2.7.3 Cost and Schedule Estimation COCOMO and COCOMOII

In recognition that not all development follows traditional process paradigms,
COCOMO II [Boehm, Abts et al. 1996] has been developed to take account of
prototyping life cycles (spiral), reuse and COTs style development (integrations of
Commercial Off-The-Shelf components through exposed interfaces). Whilst
COTS style development is recognised within COCOMO II, only components
integrated as part of a tool-bed or an infrastructure are modelled. It does not
address COTS integration development where the delivered system is an

integration of components.

COCOMO 11 is designed to be applied at three stages in the target lifecycles, at
project start up, early design and post architecture, with the intention of providing
increasingly more accurate costs as more information becomes available about the

delivered system. The model is intended to be applicable to a wide range of
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organisations and products and incorporates a set of parameters that must be set up
to tailor the model to a specific organisation and process. Twenty four cost driver
parameters are required to set up the model for a two stage estimation process,
covering product factors (required reliability, complexity, reusability,
documentation), platform factors (execution time, storage constraints, volatility),
personnel factors (experience and continuity), project factors (tools, schedule and
inter site communication). This requires a sophisticated knowledge of the software
to be developed, the organisation, resources and process. For example, to calibrate
PCON, personnel continuity, (high is desirable) the producer first must assess their
project’s annual personnel turnover, APT using data from previous projects and
other evidence, and use it to derive their PCON rating as shown in Figure 10. A

low value APT is desirable and converts to a high value PCON.

) Very Extra
PCON Very Low | Low Nominal | High ‘ '
High High
APT 48%/year | 24%/year | 12%/year | 6%/year | 3%/year

Figure 10. Calibration parameters for Personnel Continuity

The definition of the parameters and calibration of the model requires considerable
effort and it is very difficult to calibrate the model for an organisation. However

the cost drivers show the areas that affect productivity.

Project costs are estimated from person months required to produce software of

size S. The fundamental relationship modelled is:

PM = Ax(Size)” x| [(EM,)
i=1
Where:
PM is person months adjusted by cost drivers,

A 1s a constant used to capture the multiplicative effects on effort with projects

of increasing size,
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S is size in KSLOC, adjusted by a breakage factor, of the delivered system
B is a scale factor used to account for economies or dis-economies of scale
EM is a set of cost drivers.

The breakage factor represents the amount of code developed but not delivered in
the system because of discarded or changed requirements and due to rework
through error. It therefore represents the extra work required to achieve the desired

quality in the delivered system.

COCOMO I1 is interesting because it identifies that new process models require
new techniques for estimating project costs and schedules; it identifies that the size
of the delivered source code does not represent all of the work done to make the
product (the breakage factor); and that the behaviour of the project process affects
the estimate (cost drivers). The research also indicates that more effort needs to be

expended when the requirements for reliability are high.

2.7.4 COCOTs

The research into COCOTs [Boehm 1997] by USC began in recognition that
COCOMO II did not address delivered systems composed of components. The
researchers found that although many people within the software industry are
talking about such systems as yet there is little empirical or theoretical research in

this area.

Their early research is based on lexical maps of surveys of risk factors identified
by software professionals in the Risk Repository of the Software Engineering
Institute at Carnegie-Mellon. COCOTs researchers have used this information to

suggest cost drivers for a cost estimation model analogous to COCOMO II.

The cost model calculates the effort in person months required to make the planned
product. The researchers recognised that the size of the delivered product in
thousands of source lines of code used in COCOMO and COCOMO II was an

inappropriate measure of the amount of development work done by developers
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because it also included those lines of code developed by the component suppliers.
Henderson describes the work of integrating developers as ‘glueing’ [Chatters,
Henderson and Rostron 1998] components together. The cost or person-months is
related to the amount or ‘size’ of the glue code. In COCOMO II an alternative
method of calculating KSLOC is by counting function points and then converting
them to KSLOC using a conversion table. The function point method of sizing the

glue code, without conversion to KSLOC, has been used in COCOTs.

Following the model of COCOMO II, in the COCOTs model version 1, person
months are calculated from the size of the code adjusted by linear and non-linear

scaling constants, rework and a set of cost drivers (effort multipliers).

ESIZE = UFP x (1.0+ BRAK /100)
PM = Ax(ESIZE)” x ﬁ(EM,.)
i=1

Where:

ESIZE is effective size of developed glue code

UFP unadjusted function points

BRAK rework percentage

A linear scaling constant

B non-linear scaling constant

EM 13 effort multipliers or cost drivers

PM is the estimated effort in person-months for the COTs integration task

The 13 cost drivers include COTs specific factors identified through the Carnegie-
Mellon risk assessment; supplier maturity and performance, component reliability,
integrator experience. Interestingly many of the project, personnel and product

factors considered important in COCOMO II do not appear in the COCOTs model,

for example, personnel continuity, process maturity, team cohesion, yet these
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factors exist in an organisation whether using component integration methods or
more traditional development processes. The researchers assert that the 13 drivers
are the most significant factors affecting cost prediction for COTs style
development. Organisations may find that some COTs integration projects will
include some self built components; in this case they will need one cost estimation
model, COCOMO II, for the self built component and another for the COTs part of
the project, the difficulty will then be of holding sufficient information to set up
and calibrate the COCOMO II parameters and the COCOTs parameters.

Estimation models provide a snapshot prediction of the costs of developing a
product however they do not capture how the project performs against the
prediction until the project is complete. The method of estimating the size of the
product means that it is not easy to assess progress during the project.
Achievement of KSLOC against target is not visible during all phases of the
project (requirements, design, testing). Without this information the costs cannot

be controlled.

Estimation systems do not provide control of the dynamic system even if they are
applied at more than one point in the development (as is suggested for COCOMO
IT). Cost and schedule metrics can indicate exceptions to the planned costs and

schedule but estimation tools do not provide the insight necessary for the dynamic

control of the process

2.8 Process Improvement

Humphrey [Humphrey 1990] identifies process improvement as a key management
task to reduce costs, make more effective use of resources and improve the
organisation’s ability to prosper. One goal of process improvement therefore is to
improve predictability in schedule, cost and quality of the products of the process.

Another goal is improvement of the quality of the products of the process.
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Humphrey defines a continuous cycle of process improvement with six repeated
actions, Figure 11. At each iteration of the cycle, the starting point for
improvement is understanding the current status of the process. The completion of

each iteration is starting the next iteration. The cycle provides evolutionary

Continue

cycle from 1 z
Understand

current status
of process

Commit
resources
Develop vision of
desired process

Establish list of
required process
improvements

Plan required
actions

Figure 11. Humphrey's Process Improvement Cycle

progress for the process.

The Software Engineering Institute’s Capability Maturity Model, CMM, [Paulk,
Curtis et al. 1994] and SPICE [Dorling 1993] assess the ability of an organisation
and its processes to produce quality products, Figure 12. Explicit in the models is
the recognition that an organisation must define, measure, control and finally
improve its process to improve its capability. CMM and SPICE provide a
framework for organisations progressively to improve quality through the adoption
of quantitatively controlled process models. The models follow the improvement
cycle proposed by Humphrey; each progression from one level to the next is an

iteration of the cycle where the improvement priorities are made obvious.
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Optimising

/ 5
/

Managed

/4 4

Defined

/3

Repeatable

22
_

Initial
1

Figure 12. Capability Maturity Model

CMM define five levels of maturity of an organisation, where level 1 is the lowest
and level 5 the highest. SPICE has 6 levels, the top 4 are comparable to CMM but
Spice further differentiates the lowest level into 0 and 1. The levels were chosen to
represent the actual phases of evolutionary improvement of software organisations
and the difference between each level represents a measure of improvement

reasonable to achieve from a prior level [Paulk, Curtis et al. 1994].
The following description refers to the CMM model.
Level 1. Atlevel 1, an organisation has no defined process and is chaotic.

Level 2. At Level 2, an organisation has a stable, repeatable process, although will
not have defined the processes or have any insight into the behaviour of the

process. The process is a ‘black box’.

Level 3. At level 3 the organisation has insight into the process and has defined it.
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Level 4. At level 4 the organisation is able to manage the defied process by using
quantitative control information. The organisation aims to operate the process
within quantitative performance limits by taking measurements of process
performance, analysing them and adjusting the process to maintain performance

within limits.

Level 5. Organisations have detailed validated models of their processes. They can
make major changes to their processes and be able to predict the effect on

performance of those changes with a high degree of confidence.

The cost estimation models such as COCOMO and COCOTs support planning key
process areas but do not provide the dynamic information to match performance
against plans that is necessary for control of the dynamic process fully to achieve

level 4 and level 5 in the maturity model.

2.9 Summary

In this chapter we have provided a background study for this thesis in which we

examine evolutionary behaviour of both software and the processes that produce it.

We described some of the technological and commercial dynamics involved in
producing successful products in the marketplace. Performance predictability in
cost, schedule and delivered quality is critical to maintaining competitive

advantage.

We presented an evaluation of software quality and showed that quality is not a
static measure or characteristic but depends on the stakeholders’ perception. In
fact, quality declines unless active steps are taken to evolve the software to meet

stakeholders’ evolving expectations.

We described software process models, from the earliest sequential model, the
Waterfall, proposed by Royce [Royce 1970] through to process models that

employ distribution, concurrency and iteration. Each new process model was
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proposed to improve product quality, reduce time to market and costs, either all or
some of these. Alongside process model developments have been innovations in
methods and tools to measure or predict the achievement of project goals. We
show that software processes are key to producing and evolving high quality
software products. Thus software process is an important determinant of product

outcome, in terms of cost, schedule and quality.

Grady Booch’s interpretation of the central COCOMO equation shows that the
performance of a software project (the effort required to complete a product)
depends on the complexity of the software being produced, the process, the team

and tools used, where size is a determinant of complexity [Booch 2004] .

(process)

Project = (complexity) * (Team) * (Tools)

Performance

In this interpretation, it becomes clear that an effective process damps down

complexity, a poor process exponentially increases the effects of complexity.

The overview of software processes suggests that processes evolve too, and are
also multi-level, multi-loop feedback systems. In the same way that products must
evolve to remain successful and continue to satisfy market needs, the processes
that produce software must evolve to support product evolution. Processes that

recognise and support feedback are more likely to produce evolvable software

This chapter underpins the need for better understanding of process behaviour In
Chapter 3 we show that this understanding can be achieved through modelling and
simulation and the same techniques can be used to support process improvement,
providing predictability. Unless we understand the evolutionary nature of software
products and processes, and use process improvement techniques that are

supported by the modeling and simulation of dynamic behaviour, then product
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quality improvements, and cost and schedule predictability through process

improvements, are unlikely to be achieved.
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Chapter 3
Understanding Process
Behaviour using Modelling and

Simulation

Simon proposed the ‘principle of bounded rationality’ in which he described the
difficulty that we have in making accurate mental models of processes and

therefore making accurate predictions of outcomes.

“The capacity of the human mind for formulating and solving complex problems
is very small compared with the size of the problem whose solution is required
for objectively rational behavior in the real world or even for a reasonable

approximation to such objective rationality’ [Simon 1996]

Human judgement is bounded by limitations of the mental models we create and
limited further by our failures in interpreting the models through lack of attention,
information processing capability, biased perspectives and unchallenged accepted
‘truths’. As process models become more complex, mental analysis is unable to
cope with the complex interactions that take place that determine the outcome
[Sterman 1989]. The Waterfall model is one of the simplest process models
adopted by software development organisations yet predictions of cost and
duration based on it are notoriously inaccurate because interactions due to iteration

are not captured in the mental model.
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Formal computer models can help to overcome the limitations of mental models
because they are able to inter-relate many factors simultaneously, make
assumptions explicit and open to reasoning, reveal causes of behaviour and, most
importantly, they can be simulated to allow experiments to investigate outcomes

and behaviour without risk to the real environment [Sterman 1989].

However, this doesn’t mean that formal modelling can solve all of the problems of
understanding process, for the following reasons:

e The model may not represent the real world

e (Correlation is mistaken for causal behaviour

e Models can become so complex that they become a copy of the real world
and therefore understanding and reasoning about the model become as

difficult as understanding the real world

e Models are only as good as the expert knowledge captured within them.
The data should include ‘soft” data (team experience, management

resourcing policies etc.)
e Models can be difficult for non-modelling practitioners to understand

e The modelling technique may not model dynamic behaviour and feedback

in the system

These weaknesses can be overcome by choosing modelling methodology and tools
carefully to support the purposes of modelling and if the modelling methodology is

applied using process modelling guidelines.
The modelling techniques chosen should:

e explicitly model feedback relationships

e represent both hard and soft data
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e have a graphical representation that helps non-practitioners to understand

the models
e Dbe simulatable to aid model validation and understanding.

Process modelling guidelines suggest how potential weaknesses in models can be

overcome.

Modellers can avoid over-complex models by carefully defining the objective of
making the model and then defining a perspective from which to abstract from the
real world to examine behaviour patterns rather than single events. By using these

principles, the modeller can abstract from detail that is not the focus of the model.

The problems of lack of representation and incorrect structure can be overcome if

modellers validate their models against real world behaviour.

Validation tests include checking that the model is able to replicate past behaviour
in the real world, testing the model’s assumptions, the correspondence of the model
structure to the system and the robustness of the models behaviour. The modeller
needs to use all sources of information including interviews, direct observation and
historical and experimental data to capture the structure of a system to ensure that

soft data is not overlooked.

Simulation provides an important tool for handling the complexity of dynamic

feedback systems [Abdel Hamid and Madnick 1991].

“The behaviour of systems of interconnected feedback loops often confounds
common intuition and analysis, even though the dynamic implications of
isolated loops may be reasonably obvious. The feedback structures of real
problems are often so complex that the behaviour they generate over time can

usually be traced only by simulation .” [Richardson and Pugh 1981]
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Abdel Hamid and Madnick assert that not only does simulation make possible
more complex models and models of more complex systems but also provides a

means of experimentation.

Simulation models make possible controlled experiments that solve the problem
that “isolation of the effect and the evaluation of the impact of any given practice
within a large complex and dynamic project environment can be exceedingly

difficult” [Glass 1982]

Zelkowitz and Wallace describe simulation as one of the types of controlled

method experimentation that is useful in the software engineering domain.

“We can evaluate a technology by executing the product using a model of the
real environment. We hypothesise , or predict, how the real environment will
react to the new technology. ... a simulation is often easier, faster and less
expensive to run than the full product in the real environment.” [Zelkowitz and

Wallace 1997].

Simulation therefore, provides a means of revealing and understanding the
behaviour of complex dynamic models and also of making controlled experiments

on the model to examine the effects of different behavioural policies.

3.1 Using Modelling and Simulation to Support

Process Improvement

Effective use of modelling and simulation can be seen if we examine how these
techniques can be used to support the process improvement cycle described by

Humphrey [Humphrey 1990].

Adopting or changing a process model is a significant undertaking for any

organisation and is a risk to the success of the organisation.
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Weiss [Weiss and Basili 1985] wrote that,

'...in software engineering it is remarkably easy to propose hypotheses and
remarkably difficult to test them. Accordingly, it is useful to seek methods for

testing software engineering hypotheses.'

The feasibility of adopting a process model needs to be underpinned by evidence
that the new process will achieve the aims of the organisation for improvement.
Evidence of the suitability of a process can be gained from case studies, but for a
novel process model this may not be available and for an established model, it may
be difficult to find case studies in organisations with an analogous profile. In both
cases there may be insufficient evidence to predict the performance of a process

model within the organisation and support a case for its implementation.

Risk can be reduced if the new process is modelled and then simulated to provide
predictions of the process behaviour. Decisions about whether to adopt a new
process can be made with greater confidence about the outcome. Creating a model
of the process and then simulating its behaviour over time allows us to understand
and predict process behaviour ‘off-line’. The models can take into account the
specific profile of the organisation. This enables us to validate the expected

benefits of the new process before implementation in the organisation.

Simulation and modelling support the six stage process improvement cycle
suggested by Humphrey and improve the predictability of improvement outcome

by adding two new stages and improving the effectiveness of the others, Figure 13.
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Continue cycle
from 1

Model current
process for
understanding

Use simulation to
support new
process

Use modelling and
simulation to develop

vision of desired process
Commit

resources

Validate proposed
process

Plan required

actions Establish list of

required process
improvements

Figure 13. Humphrey'’s process improvement cycle extended with modelling and

simulation

e Understand existing process — Model existing process, simulate to ensure

that model represents real world (and understanding is complete)
e Develop vision of desired process - Model new process
e New stage, validate new process - simulate new process to evaluate effects

e Prioritise improvement actions - simulation shows effects of improvement

actions
e Plan process changes - use simulation to examine effects of plans
e Commit resources - use simulation to work out staffing requirements

e New stage, support new process - use models and simulations to train users
in the new process; use tools derived from the models to control the

process.
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e Continue cycle from 1

Modelling and simulation can produce tailored tools for the organisation to manage

the live process to predict and improve performance.

The use of modelling and simulation in the improvement cycle can be seen by
examining where it can be applied in the progression through the Capability
Maturity Model. In the Capability Maturity Model, an explicit development
process model is fundamental for achieving higher levels of maturity and is a
requirement for level 3. It can be argued that capability improvements through
process definition can be enhanced if simulation techniques are used [Christie

1998], because the effects of complex interactions are revealed.
Simulation can be useful in improving capability in these respects:

o Using modelling tools for process definition, the process can be validated

before introduction (level 3).

e Through the use of process simulation in training, the model can be
embedded throughout the organisation (institutionalised, in CMM terms)
(level 3).

e Simulation in project management and control, using metrics from the
process, allows prediction of possible outcomes for a range of control
decisions, making explicit complex feedback relationships that are difficult
to reason about (level 4). This enables managers to balance targets in

quality, cost and schedule.

¢ Dynamically changing the process, possibly through technology insertion,
can be evaluated and the effects on quality cost and schedule targets

predicted before implementation (level 5).

In these respects, simulation supports process improvement in the Capability

Maturity Model.
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3.2 Process Simulation and Modelling Methods

When simulation and modelling has been applied to software processes, the two
techniques that have been most commonly used are Discrete Event (or State —

based) and Systems Dynamics.

Both combine graphical representations of the process with a simulation capability
based on a mathematical expression of the relationships between the model

entities.

Knowledge based systems have been developed [Scacchi 1999] but the models
produced have not been satisfactory in terms of encouraging a shared
understanding of the behaviour of the modelled system or promoting process
improvement or redesign because model representations and animation are not
sufficiently well designed to aid shared understanding. Shared understanding,
particularly where there are complex relationships, is aided by tools with a

graphical representation and interface.

Wolfgang Kreutzer [Kreutzer 1986] describes that in discrete — event simulation,
models are viewed as structured collections of objects bound into webs of relations
and transformations. Time is advanced as an event occurs; event driven models
assume that nothing relevant happens between successive state transitions.
Discrete event modelling is useful for tracking individual entities within a process
and finding deadlock and livelock. The effects of process decisions on individual

entities and interacting entities can be examined.

Systems Dynamics is the application of feedback control systems principles and
techniques to managerial, organisational and socio-economic problems.
Interdependent flows of objects and conditions are modelled and simulated

continuously.
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Kellner [Kellner, Madachy and Raffo 1999] suggests that the decision to use one

technique in preference to another should be based on the following criteria:

e continuous, for strategic analyses
e discrete for scheduling

Kellner points out that process modelling situations are not so clear-cut and that in
fact discrete processes may have sub processes that are continuous e.g. human-
resourcing and continuous models have to compromise to describe interruptions,

queues and delays.

There are tools available which allow both techniques. Their ability to do this is
questionable if you consider the way time is calculated and advanced in the two
techniques. Discrete event modelling advances time with each event. Systems
Dynamics solves partial difference equations that underlie the model at time

intervals (dt); time is therefore advanced at dt interval.

Systems Dynamics is a suitable methodology to examine the strategic behaviour of
new software development processes and investigate how the structure of the
process affects its behaviour and the outcomes. Discrete event modelling is suited
to examining how an individual entity will interact with others and behave within
the process. Within this thesis, processes will be examined at a strategic level,
therefore the thesis will concentrate on modelling and simulation using Systems

Dynamics.
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3.3 Systems Dynamics, Systems Thinking

‘The purpose of modelling is insight not numbers’

states Kreutzer in System Simulation Programming Styles and Languages

[Kreutzer 1986].

Systems Dynamics was first developed by Jay Forrester in 1961 [Forrester 1961]
and further developed by, amongst others, Barry Richmond [Richmond 1990],
Peter Senge [Senge 1990], Geoff Coyle [Coyle 1996] and John Sterman [Sterman
1989].

Systems Dynamics is described as ‘the art and science of making reliable
inferences about behaviour by developing an increasingly deep understanding of
the underlying structure’[Richmond 1990]. Systems Dynamics 1s a methodology
for capturing, modelling and simulating processes. Relationships within a system
or process cause the dynamics it exhibits (feedback) but intuitive judgements are
unreliable about how systems change over time. Simulating the process over time

shows the effects of complex relationships.

Systems Dynamics abstracts from individual entities and discontinuities. Instead
of examining the behaviour of each single entity, Systems Dynamics considers
how accumulations of entities behave. These are described as stocks or levels, for
example within software development, completed code can be considered to be a
stock. Stocks can also be intangible, for example the experience of a team of

developers can be described as a stock.
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Stocks are increased or depleted by activities, described as flows. In the example

given, Figure 14, coding is the flow that increases the stock of completed code.

Completed
' —— e — code

O

coding

Figure 14. Coding increases the stock of completed code

The stock of experience is accumulated by a learning flow. If there is a stock of
something, then it must have been generated by an activity or flow; conversely if
there is an activity then, associated with it, something will be either increased or

depleted.

Stocks can also be resources in the process. These can either be consumable
resources that are depleted by a flow, or producing resources that generate flows

but are not consumed in the process.

The difference can be shown if we look at two examples, the first illustrates a
consumable resource, Figure 15; a stock of defects is depleted or consumed by a

flow of detecting and fixing the defects. Physical stocks obey conservation laws.

defects

h—— >

O

Find and fix
defects

Figure 15. Finding and fixing defects reduces the stock of defects
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The experience process illustrates a producer stock, Figure 16; the stock of
completed code generates a flow of learning about the software being produced.
This increases the stock of experience, but the stock of completed code is not

reduced by the learning flow.

Experience
. 6 — p
Completed learning
code

Figure 16. Increasing stock of experience as code increases

Systems Dynamics explicitly models feedback relationships within processes.
These are circular loops of cause and effect that run from stocks to flows and back
to the stock. Stocks give rise to flows of activities and flows change stocks or
conditions. The effect of feedback is to generate goal seeking behaviour with
respect to some target so that when deviations from targets occur, feedback
relationships inspire, and then trigger corrective actions to bring the condition back
into line. When there is more than one feedback loop in an interdependent process,
the goal-seeking behaviour of each loop may conflict, as activities designed to
bring one condition to meet its target simultaneously knock another condition out
of line. These effects are very difficult to predict through mental analysis. Sterman
reports that in controlled experiments people are shown to misperceive the effects
of feedback structure in even small, simple processes. The strength of Systems
Dynamics modelling is that the effects of goal seeking and goal conflict in

complex webs of relationships can be exposed and accurately determined.
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A simple feedback relationship can be illustrated in the experience example, Figure
17. As the stock of experience increases, there is reinforcing feedback that affects

the productivity of developer and increases the rate at which code is completed.

experience

3

completed code |

rning

productivity

Figure 17. Systems Dynamics model showing feedback relationship between

experience and productivity

We can extend this simple model to show how feedback relationships interact to
create conflicting goal seeking behaviour as shown in Figure 18. The developers
with increased experience are more marketable and may be inclined to leave to
improve their salary. This would deplete the workforce within the organisation

and reduce the rate at which code can be completed.
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experience
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completed code lhrning

coding workforce

productivity

quitrate

Figure 18. Systems Dynamic model showing the effects of goal conflicts in feedback

relationships

We can show how Systems Dynamics models are simulated over time using
mathematical algorithms. A set of discrete calculations is used to approximate to
the idealised curve. The software divides the time axis into equally spaced
intervals each with a width of delta time (dt). Calculations are performed at

discrete intervals of delta time.

Equations behind the model diagrams define the calculations. These are Finite
Difference Equations that are initialised for a simulation and then iterated for each

delta time.
The two calculation methods most commonly used in Systems Dynamics are:

e FEuler’s method which is a simple linear extrapolation which is fast and
suitable for most models but it is less suitable for examining a process on
the edge of instability because it will always overshoot a turning point on a

curve.
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¢ Runge Kutta uses higher order differentiation which makes it more suitable
for examining the trajectory of a changing process on the edge of
instability. The number of calculations increase and therefore the time to

perform simulations is greater.

Systems Dynamics has been used successfully to model systems and processes in

many domains:

e Socio-economic systems including population growth dynamics, effects of

economic policies [Sterman 1985]

¢ Business strategy and policy assessment [Forrester 1980]. The U.S.
Department of Energy has produced detailed forecasts and policy analyses

of domestic and international system using Systems Dynamics

¢ Biological systems — insulin process in the human body [Stella 1990 -

1998], population growth cycles.

e Development Processes for example, in software, construction,

shipbuilding, electronics [Ford and Sterman 1997].

Rodrigues and Bower [Rodrigues and Bowers 1996; Ford and Sterman 1997] have
identified three domains in development processes that have been addressed using
Systems Dynamics; monitoring and control, rework and human resources [ Abdel
Hamid and Madnick 1991; Rodrigues and Bowers 1996], [Madachy 1996].
Sterman identifies that a fourth domain, the structure of the process itself is a key

determinant of the behaviour of the process and its predictability.

3.4 Modelling Software Development using Systems
Dynamics

In ‘Software Project Dynamics — an integrated approach’ Abdel-Hamid and
Madnick [Abdel Hamid and Madnick 1991} use Systems Dynamic models to

understand the process of managing software development, and the problems of
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controlling cost, quality and schedule. This work is one of the most
comprehensive studies of software projects using Systems Dynamics and has been
the basis of work by other researchers in the field. Their aim was to gain insight
into how the management of software development maybe improved to reduce cost
overruns, late deliveries and user dissatisfaction. They stress that without an
improved understanding of the process, real improvements are unlikely to be made.
They particularly wanted to explore how typical critical management problems can
be understood and how the outcome of alternative decisions can be predicted, for

example:

'If a project is behind schedule, what are the implications of increasing the
workforce, or changing the completion date? How may Brooks Law [Brooks

1995] (adding people to a late project makes it later) be explained?'

What are the reasons for and implications of the differences among potential

productivity, actual productivity, and perceived productivity?

The focus of their work is management of software development projects, therefore
rather than examining components of development processes; they abstract
management activities, human resource management, controlling and planning and
show how these are interrelated with software production. These activities form the
subsystems of an integrated Systems Dynamics model. Abdel-Hamid and
Madnick chose this integrated approach to

‘prompt and facilitate the search for the multiple and potentially diffused set of
factors interacting to cause software development problems’.

They give an example that the schedule overshoot problem can arise not only
because of schedule underestimation but also because of management’s hiring and

firing policies.

The figure below, Figure 19, shows the structure of the model and the flows that

connect the subsystems.
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Figure 19. Overview of Abdel-Hamid and Madnick’s model showing subsystems

Abdel-Hamid and Madnick’s work sees the software development process as
continuous. Individual objects are not identified. They represent the process as a
sequence of stages through which requirements flow (coding, testing, quality
assurance and rework) transformed at each stage by a process following the
waterfall lifecycle model. In order to simplify their model, they set a model
boundary that commences with design and coding and finishes with testing. They
have made assumptions that requirements are fully defined and stable and that all
defects are found and removed by the end of the development process. Their
reasons were that they wanted to exclude from the model behaviour that was not
caused by the developers and managers within the project. Their investigation
therefore focuses on cost and schedule overruns that are a result of the policies,
decisions and actions ofithe project team in spite of stable requirements. It should
be noted that the cost estimation model that they have used is COCOMO, which
also excludes requirements definition. These assumptions restrict the quality

assurance methodology to defect detection through review and testing.
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Their sources of empirical information were DEC, SofTech, and MITRE, all
producing medium size (64KLOC) systems and extensive systems dynamics
models were developed and tested against case studies at NASA to confirm the

model’s behaviour.

Having confirmed that the model was able to replicate behaviour observed in case
studies, Abdel-Hamid and Madnick carried out extensive simulation experiments
to explore the effects on cost and schedule of different planning, QA and

resourcing policies and the decisions and actions based on them.

When carrying out simulation experiments on typical quality assurance policies,
where manpower is allocated to QA as a percentage of development man-days,
they discovered that there are diminishing returns in QA effort. QA expenditures
that were either significantly lower or significantly higher than the optimal range
increased the total cost of the project. Too low expenditure increased the time
spent on testing and too high expenditure consumed cost without detecting more
errors. Significantly, they realised the importance of emphasising quality during

the software development project.

Their simulation experiments on manpower policies in relation to explaining
Brooks Law, show that adding more people to a late project always makes it more
costly but does not always cause it to be completed later. They were able to show
that the interaction between adding additional manpower, increasing training and
communication requirements caused a reduction in average productivity and an
increase in man day requirements and therefore cost. Whether the project will be
further delayed depends on whether the drop in productivity is so severe that the

additional person’s net contribution is negative.

They show that project estimates and resulting schedule affect the outcome project

itself.

'A different schedule creates a different project'
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Abdel-Hamid and Madnick touch on, without making explicit, recognition that the

tools and process used are structural in determining outcomes, as Sterman found.

Abdel-Hamid and Madnick’s work shows one of the problems with Systems
Dynamics; models can rapidly become very large and complicated. The model
may be criticised for its level of detail in that it has very many converters
(variables). However, they deliberately chose this level of detail because they were
concerned that simpler models might leave out vital aspects of the real world
environment that would misguide project managers making decisions based on

predictions from the model.

Wernick and Lehman [Wernick and Lehman 1998}, [Lehman and Stenning] in
their work on the evolutionary nature ofisoftware, believe that Systems Dynamics
models must be abstracted as far as possible in order to retain understanding and
insight. Systems Dynamics is a useful tool for revealing the dependencies that
cause behaviour, a model that is at too high a level may not reveal sufficient
information to show the basis for complex behaviour or enable understanding of
strategic issues whilst models that are too complex can too closely attempt to

model the real world rather than model the behaviour of the real world.

This shows the importance of choosing the correct focus and level of abstraction
for the purpose of the model. Kreutzer [Kreutzer 1986] uses the example of

Occam’s Razor, a good model is the simplest one that can still be justified.

Madachy [Madachy 1996] has used Abdel-Hamid and Madnick’s [Abdel Hamid
and Madnick 1991] models as a basis to develop models that investigate the
behaviour of inspection based processes. Lehman [Lehman and Stenning] used
Systems Dynamics to produce the models that underpin his work on the laws for
software evolution discussed in chapter 2. Mander and Powell [Powell, Mander et
al. 1999] have used Systems Dynamics models to investigate the behaviour of a
highly iterative, concurrent, pipelined process model. Sterman [Ford and Sterman

1997] has shown that Systems Dynamics can be used to investigate and explain the
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behaviour of development projects in many domains, and Allen [Allen 1988] has

shown how Systems Dynamics can be used to investigate evolving systems.

The work done by Abdel-Hamid and Madnick, Madachy, and Lehman in the
domain of software development shows that simulated Systems Dynamics models
can replicate the behaviour of software development projects within the chosen
focus. Each has chosen a different focus for their work, Abdel-Hamid chose to
investigate the effect of project management policies, Madachy investigated the
effects inspection based process improvement and Lehman chose to examine
product evolution. Furthermore, they show that simulation experiments can be
performed on the models that will explain and predict how the real world will

behave.
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Chapter 4
The Cellular Manufacturing
Process Model

The Cellular Manufacturing Process Model, CMPM, [Chatters, Henderson et al.
1998] has been proposed by Peter Henderson to support the evolutionary nature of
modern development, concurrency and distribution and to take account of reused
and bought in components. Henderson based the model on Watts Humphrey’s
network models of software development [Humphrey 1990] and on the value chain
model for competitive advantage developed by Michael Porter [Porter 1985]. In
proposing a new process model we must be sure that we can predict its behaviour,
support process design and planning and show the benefits in improved control and

management.

In this chapter, we will describe CMPM and how it may be applied in large-scale
development projects. We examine the issues that affect the ability of cells to
achieve their output targets, showing how simulation with Systems Dynamics is

giving us insight into the behaviour of CMPM [Henderson and Howard 1998].

CMPM, the Cellular Manufacturing Process Model is an advanced process strategy
based on components, which uses concurrency and distribution to reduce cycle
times. In CMPM, networks of semi-autonomous producing cells co-operate to
produce a complex large-scale system. The model views development as a
manufacturing activity where large scale systems are built from components,
which may be a mixture of self built components, re-used components from the

producers own asset base and from bought in components. Viewing large-scale
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software development as a manufacturing activity may be considered to be
contentious when software development traditionally has been seen as essentially a
creative or an engineering activity. This model seeks to show how large scale
software producers use the techniques of manufacturing assembly of available
components with known behaviour and properties in order to satisfy the market

cycle.

The model is hierarchical in that any component may itself be a product of other
components. Components are stable sub-assemblies of an evolving product; each
sub-assembly can evolve independently. Our conjecture is that a process model
based on integrating systems from components, which are separately evolving sub-
assemblies, will enable evolutionary growth beyond what is possible in the

monolithic systems, described by Lehman [Belady and Lehman 1985]

Software producers need predictability in cost, quality and schedule when
competitive advantage demands a short time to market. Predicting the cost, quality
and schedule outcome of CMPM depends upon the behaviour within the cell (intra
cell) and the co-operative behaviour between the cells (inter cell) in a dynamic

environment.

In a cellular manufacturing environment each cell produces a series of versions of
a component each of which meets the requirements imposed on it by its customers
or by some internal or external decision process. A cell will have a role both as

supplier to other cells in the process network and also as customer for components

from other cells.
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Figure 20 shows three supplier-customer relationships, an external supplier

provides components for Cell B, Cell A is an internal supplier to Cell C and Cell C

is also supplier to the Customer. There is another possible relationship where the

organisation collaborates with another supplier to supply the customer.

Each cell has responsibility for producing their product (which may itself be a

component) from components supplied by other cells within the organisation

(internal suppliers), external suppliers or made within the cell, (Figure 20). The

work of the cell is to design their product by selecting and sourcing components,

build the product by gluing the components together using component interfaces,

and to remove defects to ensure that it meets output quality targets.

S
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0 @
——p

From suppliers

Figure 21. A cell integrating components in CMPM

To customers
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The cell has goals that are dependent on the goals of its suppliers and customers.
In order to meet an obligation to a customer it will have to meet imposed targets
for quality, cost and schedule but will be dependent on the targets achieved by its
own suppliers. Predicting the achievement of these targets for each cell is
important for predicting the performance of ‘downstream’ cells and of the whole

network.

Scanner
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o /
Till
Basket Till
Software Software
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Client Look Up
Service
Banking Server
Service
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Hardware

Figure 22. Electronic Point of Sale System component structure
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Here we consider a simplified Electronic Point of Sale System, comprising a
network of tills using a set of services, as shown in Figure 22. When customers
present their purchases for payment, each item in their basket is scanned
electronically and is transferred to a virtual basket held in the till. The till uses
remote services to lookup the price and description of each item. The till
calculates the value of the ‘basket’ and uses the banking service to control the
financial transaction with the customer. Figure 22 shows the simplified component
structure of such a system. In this example there are hardware and software
components to be integrated into the delivered system and the system includes

client and server components.

Consider the Till client component, which is made up of a hardware component
comprising a scanner and PC based till, and a software component comprising a
number of components including a ‘basket’ component that stores the items and
calculates the value of each shopping transaction. The Server component
comprises hardware components and software components that include banking
and price look up (PLU). The complete EPOS system comprises the Till hardware
and software and the Server hardware and software. We can evolve the system to
include a loyalty card scheme, creating a new loyalty card component for the till

and a component for the loyalty card service for the server.

4.1 EPOS CMPM - mapping hierarchy to process

The Cellular Manufacturing Process Model for this system maps directly onto the
product breakdown structure to give a network of manufacturing cells, Figure 22.
This work breakdown structure is likely to survive many generations of product.
The stability of the structure is caused by semi-autonomous cells independently

evolving their own product.

Each cell is responsible for one level of integration. Each cell receives components
from suppliers, builds some components locally, glues the components into an

integrated product (which is tested to output standards) and shipped to a customer
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or to the next level of system integration. If we again consider the Till component,
in this case the architects have chosen to source the scanner hardware from an
external supplier. The Till Hardware cell integrates their own components with the
externally supplied scanner. Concurrently the software cells are manufacturing
their component, gluing together components they have built themselves and
components from internal and external suppliers. The Till Integration cell (labelled
Till in Figure 22 ) can start to work integrating the till components as soon as they
are available but in order to collapse time-scales, the cells can choose to start
integration with an earlier version of any component from the repository. Thus if
the software components are available before the new version of the scanner is
delivered, the cell may use an older version recognising that when the new version
is available some of the integration work may need to be redone, trading effort for

schedule completion.

Should the PLU Client cell produce a component with an output quality lower than
its target, the Till Software cell will be faced with a choice of working around the
low quality component and consequently increasing the effort they must spend on
gluing the component in, or reverting to an earlier version. In both cases the output
quality of the Till component delivered to the Till Integration Cell will fall short of

its target.

The challenge facing planners is to allocate effort over the process network. Too
much effort allocated to a cell creates cost overruns, too little creates either
schedule delays or quality problems for downstream cells. With an early
prediction of upstream problems, planners can mitigate the effects and avoid an

increasing ‘bow-wave’ of delays or quality shortfall.

4.2 Intra Cell Behaviour

The behaviour within a cell can be as formalised or as ad hoc as the product
demands. The network is not dependent on detailed knowledge of how each cell

performs its integration task, only how it meets its external obligations. However,
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in general, the behaviour within a cell will be a pumping action over time in that
versions of products (components to the customer) will flow out, meeting an ever-
evolving customer requirement. Figure 23 shows one elementary possibility for
the behaviour of the cell. Component flow is shown by solid arrows, requirement
flow and other control flows are shown by the broken arrows. Rectangles show

repositories and ellipses show activities.

The behaviour is as follows. From customers (or elsewhere) the cell receives
external requirements for evolutions of the product for which this cell is
responsible. The cell is a team of architects, designers and engineers who are
knowledgeable about the components and previous builds the cell maintains in its
asset base. They develop build plans and requirements for new or changed
components. Some of these requirements will be internal requirements, which
determine new or revised components to be built by the team working in the cell.
Other requirements will be passed back to a supplier. Either way, the new and
revised components are assumed eventually to arrive in the repository. At some
stage, all of the necessary components will be available to undertake integration
and test activities leading to the delivery to the customer of a version of the

product.
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Figure 23. The pumping behaviour of a cell

4.2.1 Relationship between Work and Quality

If we examine a simple cell, corresponding to the internal behaviour of the
pumping model fig 4, Work (effort), W is applied to complete the component of
size S and to remove defects (detection and rework). Q is the input quality of a
component and P is the output quality of the component, informally estimated on a

scale where 1=perfect and O=useless.

Cell
Q —» Work SizeS |—> P

|

w

Figure 24. Work allocation in a CMPM cell
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If Q is low or the target quality is very high we must put in more effort. We
implicitly understand that perfection is unattainable and that as we approach it the

return on investment in effort diminishes [Chatters, Henderson et al. 1998].

Early theoretical predictions [Chatters, Henderson and Rostron 1998] of the
behaviour of quality and work using simple EXCEL models based on the
COCOMO relationships between Work and Size and naive reliability models, have
produced a family of curves all asymptotic approaching P=1 as shown in Figure
25.
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Figure 25. Predicted growth of quality

As we expend effort, our quality eventually reaches about 95% in the upper line,
but the last 10% takes something like 35% of the effort. The steepness of the curve
1s greater if the quality of the components being integrated is higher. The upper
line shows the process integrating from components with an average input quality

0f 95%. The lower line shows the same process where the input quality averages
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50%. With the same effort expended as in the first case, we only reach 85% output
quality.

The internal effort allocation W1, W2,...,WN depends on management and policy
decisions, for example whether there is an inspection-based process [Madachy

1996]. We expect that a range of policy decisions would produce behaviour within

the family of asymptotic graphs.
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Figure 26. Graph shapes from industrial partner data

In fact, data from our industrial partners is beginning to show different behaviours,
Figure 26, shows two graph shapes that have emerged. The data was collected over
the period of the CMPM investigation and includes both a historical data and data
captured after CMPM metrics had been established [ICL 1999].
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Our Systems Dynamics models reproduce the first shape in Figure 26, which
shows an asymptotic relationship between output quality P and effort W. There is
a range of asymptotic curves where P approaches 1, depending on a range of
values of effort, W1, W2, ..., WN and Q. If Q is high, the curve is steeper and the
output quality P is higher. We believe that the difference from the naive EXCEL
models is due to the dynamic feedback of error detection and rework within the

process.
The second shape is discussed in Chapter 7.

This may indicate that the quality profiles of components are much more sensitive
to the policy and process control decisions about the allocation of effort. Correctly
allocating effort between process phases may be crucial to achieving quality targets

on which the network of cells depends.

4.3 Modelling and Simulating CMPM

The use of modelling and simulation to examine the feasibility of implementing
process improvements and the difficulty of finding sufficient empirical evidence
has been discussed in Chapters 2 and 3. The most extensive change that an
organisation can make is changing its adopted process model. Modelling and
simulation forms part of the process model development, risk assessment and also

the definitions and tools which will support the management process.

We are investigating CMPM at a strategic level rather than examining what
happens in a specific project. As discussed in Chapter 3, Systems Dynamics,
which is a continuous technique, is the most appropriate dynamic modelling and
simulation paradigm for investigating dynamic behaviour at strategic level
[Kellner, Madachy et al. 1999], [Kreutzer 1986]; we have therefore chosen this
method for our investigation of CMPM. In this chapter we investigate the causal
loop structures that represent the dynamic relationships within the process. We

create a model of the process showing these feedback relationships and then
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simulate the behaviour over time. In Chapter 7, we describe the process of moving
from simulatable, qualitative models to quantitative models where data from our
industrial partners is used to check whether the model exhibits similar behaviour to

the live system.

At a strategic level CMPM may be viewed as a continuous process where
requirements for new versions of a product are received, products are made and
delivered to internal or external customers, therefore suited to a Systems Dynamics
approach. We used Stella [Stella 1990 - 1998] as a graphical environment for
producing systems dynamics models and running simulations of the models. By
simulating the cell behaviour at the intra-cell level we can explore the effects of
varying inputs to the cell on the achievement of its output targets and gain

understanding of the relationship between the targets.

Figure 27 shows a representation of a single CMPM cell derived from the pumping
model abstraction. In this example we have focussed on two targets, quality of a
component (reliability, fitness for purpose) both at an input level and the target
level to be achieved by the cell and the effort that must be expended by the cell to
achieve the target quality. The difference between the input and output quality is a
measure of the value added to the component by the cell. The effort required is a

measure of the cost of adding the value [Porter 1985].

The Systems Dynamics model abstracts the Pumping model into two activities,
doing work to integrate components, Complete Tasks, and doing work to remove
defects. Work to integrate components covers the pumping model activities
‘understand and design’, ‘build/modify components’ and ‘integrate’. Work to
remove defects covers the ‘test’ activities identified in the pumping model. The
amount of work that the cell must do derives from the external requirements
imposed on the cell, generating work to build or modify internal components and
work to integrate internal and externally produced components. In the Systems

Dynamics model this is identified as Planned Work.
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In developing these models I have used tried and tested systems dynamic structures

[Systems; isee systems 1998], [Kreutzer 1986] as modelling components, for
example, co-incident flows (completed work and defects) and producer flows

(completed tasks produced by effort).
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&3

add detects

per man day

defects per task

Planned Wo Achieved Work

Mtet sks 2

work per man day

effort for quality

productivity 2

effort for tasks

Figure 27. Systems Dynamics Model of a single CMPM cell

80



Chapter 4 The Cellular Manufacturing Process Model

Planned Work, Achieved Work, Defects are defined as stocks which accumulate
and are drained by work processes. Undetected Errors represents errors in

delivered components that the cell will integrate.

Complete tasks is the flow which accumulates Achieved Work. The resource for
task completion is effort in man-days. As work is done to complete the
component, defects are co-incidentally generated (a co-flow, add defects). The
stock of defects is drained by the work process remove defects. Effort in man-days
is divided between the work processes that complete work and those that detect
and remove defects. The percentage applied to each flow can be varied to examine

the effect of different process policy decisions.

Quality is a measure of absence of defects and completeness, and because quality
is a coincident flow with work, an increase in quality can only be achieved by work
to complete the component and remove its defects. This is shown by the
connection between Quality, Achieved Work and level of Defects. The cell can
only remove defects in the components it builds itself; incoming components from
internal or external suppliers that are of low quality cannot be improved by the cell,
only by the supplier, but the amount of work that the cell has to do increases
because of the difficulty of integrating low quality components. The model shows
a feedback relationship between the level of defects and the rate of defect removal.
Littlewood [Littlewood 1991] observes that errors with a high frequency are fixed
first, and that as the error density decreases, those remaining are infrequent and

more difficult to find.

In this model, for the purposes of focussing on the work processes and quality,
Effort (manpower) has been defined as a constant, representing fixed team size and
availability for the duration of the project. Other models, in particular Abdel
Hamid and Madnick [Abdel Hamid and Madnick 1991] and Madachy [Madachy
1996], explicitly show that manpower is a stock that increases through a

recruitment process and decreases by people leaving. This was because they were
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investigating the effects on costs and schedule of varying manpower through
resourcing policies. In this model, manpower resourcing behaviours are not being

examined and have been excluded.

Effort for each delta time interval is the same and represents the cost of each time

unit; expenditure of time is equivalent to expenditure of cost.

The effort available for work is converted by Productivity. In the best case, all of
the effort is productive, but productivity is reduced by human resource factors, for
example: level of experience, team size, motivation [Boehm, Abts et al. 1996]. In
their empirical research Perry, Staudenmayer and Votta [Perry, Staudenmayer et al.
1994] found that developers spent only 40% of their time working directly on
development, and for the remaining time they were either waiting or doing other

work.

The work process is converted by a factor representing the process quality. In the
best case the process will have a high quality. The quality of process can be
assessed using CMM [Paulk, Curtis et al. 1994] or SPICE [Dorling 1993].
Assessing overall process maturity and Key Process Area maturity in the
Capability Maturity Model is similarly used in COCOMO II [Boehm, Abts et al.
1996] as one of the Scaling Drivers (PMAT) for project estimation.

Simulation shows the interaction between interdependent goals of cost (effort) and
quality as we vary the effort and its division between work done to complete the
component and work done to remove defects, planned work, productivity and

process quality.
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Figure 28. Graph from simulation of Stella model

The graph of quality over time (effort), Figure 28, shows an asymptotic approach

to its maximum value.

As work is done to complete the component, defects accumulate and work is done
to remove them. Since the number of defects in proportion to the size of the
completed work reduces it takes more work to remove them. The amount of effort
to detect an error increases as error density decreases. Errors therefore become

more expensive to detect and fix.

If overall effort (manpower is insufficient) or the proportion of effort allocated to
removing defects is reduced, the product may be completed but the quality will be

lower at the end of the simulation time.

We can simulate the effects of receiving a faulty component by injecting extra
defects that have not been generated by the cell’s work process. The achievement

of quality by the end of the simulation time is reduced. Our collaborators feel that
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this graph shape, an asymptotic approach to completion of size and achievement of

quality Figure 28, reflects their experience.

4.3.1 Systems Dynamics Model Evolution

The model shown in Figure 27 is an evolution of earlier Systems Dynamics

models, descriptions of some of which follow.

&3

adding Quaiity

Losjng Quality

ioss fraction
compounding fraction

Figure 29. Early Quality Model

In the early models, quality was modelled as a stock that could be lost through
adding defects or gained by doing work to add quality (Figure 29). A later model
(Figure 30) showed quality as the inverse to a stock of defects; quality was defined

as an ‘absence of defects’.

This produced behaviour where the quality of a component was at its maximum

when no work had been completed, Figure 31.
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Figure 30. Stella Model of Development Process, Quality is a simple measure of
defects

Our understanding of quality was improved by recognising that a more reasonable
definition of quality has to include the completeness of the product and is therefore

a measure of absence of defects and also of satisfaction of requirements.
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Figure 31. Graph produced from simplistic Stella model, Quality is greatest when no

work has been done

The models were developed further to include the effects of defects in components

being integrated.
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Figure 32. Asymptotic growth in size, tasks 2

The growth in size of the product was modelled to investigate how the rate of
completion reduces as size increases, Figure 32. The following models (Figure 33)

show three structures that produce an asymptotic growth in size.
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Figure 33. Three task completion models showing structures where the completion of

tasks takes longer as the size of the stock increases

Experience in developing the models showed the dangers of increasing their
complexity to a level where understandability is reduced, so that the purpose of the

model, which is to increase understanding is not achieved.
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4.4 Modelling CMPM Networks of Cells

A CMPM process instance is a network of independent single cells that co-operate.
We have shown the behaviour of a single cell but the dynamics of the network are
created by the individual cell in dynamic relationship with the other cells. In

modelling a process network the dynamic couplings will be investigated.

4.4.1 Repeating structures

Wernick and Lehman [Lehman and Stenning 1996], [Wernick and Lehman 1998],
in their work on the evolutionary nature of software, believe that systems dynamics
models must be abstracted as far as possible in order to retain understanding and
insight. While Systems Dynamics is a useful tool for revealing the dependencies
that cause behaviour, a model that is at too high a level may not reveal sufficient
information to show the basis for complex behaviour or enable understanding of
strategic issues. On the other hand, models that are too complex can too closely
attempt to model the real world rather than model the behaviour of the world.
Kreutzer [Kreutzer 1986] follows the principle of Occam’s Razor which is that a

good model is the simplest one that can still be justified.

The abstraction at the heart of the CMPM models is that there are repeating process
structures; each process model is a network of co-operating cells, each one

repeating a generic model structure.

We can abstract from the pumping model described (Figure 23) and show each cell
as a ‘black box’, with the pumping model as its internal behaviour. effort, W, is
applied to a component of Planned Size S to complete the component and remove
defects. Q is the input quality of a component and P the output quality of the

component, informally estimated on a scale where 1=perfect and O=useless.

A process model is defined by creating the cells and connecting them into the
network. Using generic, repeating structures we can generate a model for each

instance of a process. The cells are dynamically coupled by inter cell relationships.
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There are two views of CMPM where repeating structures can be observed. The
first view, which has been described, is a network of co-operating cells, each of
which is repeating a pumping model process to produce sub assemblies of the

delivered system.

The second view shows the repeating structures within the evolution of the

product. Each delivered instance of the system is an evolution.

Each evolution is a build (product design); each build has one or more integrations

of sub assemblies and each integration is made of one or more components.

We investigated the dynamic coupling between cells, the inter cell relationships.
The connecting relationships that affect the behaviour of the CMPM process
network are as follows; the amount of work that the delivery of a component
supplies to the customer cell, (traditionally this has been related to size), the quality
of the component supplied, the required output quality of the component to be
built, and the schedule completion. These relationships between cells may be

described as a set of metrics. [Chatters, Henderson et al. 1998]:

W=7(QP.S)
Where:
W = effort; S = size
Q = input quality of supplied components
P =delivered quality of system

The rapid rate of evolution of products means that planning and control
information needs to be recorded much more frequently. In this environment it is
important that this information is captured easily and speedily. In the same way
interpretation needs to be quick and simple to enable control decisions to be made
in time to achieve the target outcome. In modelling network coupling we must be

sure that the relationships are expressed in measures that are feasible to collect.
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We discuss below our investigations into these relationships.

4.4.2 Size

Systems Dynamics simulation by Abdel-Hamid and Madnick [Abdel Hamid and
Madnick 1991; Abdel Hamid, Kishore and Daniel 1993] has helped us understand
the behaviour of traditional sequential paradigms and the complex, concurrent
behaviour described by Mander and Powell [Powell, Mander et al. 1999] but
existing simulation models assume that all of the work to complete a development
product is done within the organisational boundary. This allows the abstraction
that a unit of code (size) can be directly related to a unit of work. We can say that,
for example, in the process modelled by Abdel-Hamid and Madnick (Figure 34)
the work to produce a kloc (thousand lines of code) comprises the sum of the work

at each phase in the process that the organisation has adopted.

Design

Code

Test

Quality
Assurance

Figure 34. The work to produce KLOC

The process phases are dynamically coupled, as the work outputs from one phase

are the work inputs to the next phase. However, new size metrics are needed when
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the work output units of one cell do not form the work input units to the
downstream cell and the final size of the product is not directly related to the work
required to produce it. The input work units are related to the amount of work
required to ‘glue’ components together via component interfaces and the required
work to produce a cell’s self-produced components. The exported work units are
the size of the produced component’s interface. The size, S, of the required work

of a cell is defined by:

S = component Glue + self built components.

The exported work size SE, delivered to the customer cell is defined by:

SE = Interface size of the component

The amount of ‘glue’ needed should be related to the sum of the interface sizes of
the components. We expect inter cell dynamic coupling to be related to interface

size.

However, Garlan, [Garlan, Allen and Ockerbloom 1995] in proposing a theory of
architectural mismatch, presents a case study of the problems associated with
assembling a system out of existing large scale parts. The study showed that
considerable effort was required to solve problems of interfacing the parts that
were not related to the size of the interface, but were to do with mismatched
architectures. Solving the problems required ‘work—around glue code’ or
additional components in order to compensate for the mismatched interfaces as
described in 4.2 . Whilst the Garlan study attempted to compose large-scale
existing systems that were not designed or intended to be components, it does
indicate that the architecture and closeness of fit of components may be an

important determinant of the effort and glue required to compose them.

The degree of fit may be regarded as an aspect of the incoming component quality
Q, in terms of usability, efficiency, reliability and functionality of the component

to be composed. In this view, the perceived quality of a component (and therefore
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suitability for selection as a component) varies according to the components with

which it will be composed.

The size of total glue code required is related to the size of the interface and the
closeness of the fit. A component that fits perfectly requires no additional glue
code whereas a component with a poor fit requires additional glue code. The size
of the additional glue code is a measure of the degree of fit of the component. It
represents the extra work required to achieve the desired quality in the delivered
system. In COCOMO II, Boehm uses a breakage factor to indicate code created
but discarded as a result of error or changed requirements (see Chapter 2.7.3). The
additional size required to create glue code to work-around poorly fitting
components is a similar factor, but in this case, the code is delivered not discarded.

So we must modify our earlier definition of S to be:

S = Interface Glue + work-around glue + self built components.

In his work on prediction models and tools, in particular COCOTs [Boehm 1997],
Boehm provides an analysis of the effects of COTs style development on
prediction and provide an alternative size framework based on interface points as a

method of estimating the amount of work that an interface generates.

4.4.3 Quality

The quality abstraction used by Abdel-Hamid and Madnick [Abdel Hamid and
Madnick 1991] and Madachy [Madachy 1996] assumes that all defects are
removed and all requirements achieved by the end of the simulation. The dynamic
effect on the process is the rework required. This is a reasonable abstraction in a
traditional process environment where the simulation covers one complete
lifecycle where at the end of the process the software product moves outside of
scope of the simulation and output quality has no dynamic affect on the process. In
CMPM each cell has a complete lifecycle of its own and the output quality of a
component produced by one cell provides the input quality of components for

downstream customer cells. The cells are dynamically coupled by quality.
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Informally we estimate the quality (reliability, fitness for purpose, closeness of fit)
of the components we must build from and the product we must build. Thus
quality is an estimation of completion of requirements both functional and non
functional (NFR). A component with completed requirements and without defects
would have quality =1, a useless product would have quality = 0. Quality
predictions are vital process control information for managers who must trade off
their own schedule, cost and quality targets. If the predicted quality of a
component from an upstream cell is poor, the downstream manager may decide to
use an earlier evolution of the component, trading requirement fulfilment against

schedule fulfilment.

4.4.4 Schedule

The network of cells also have to meet schedule targets, the schedule achievement
by an individual cell affects the downstream cells ability to meet their targets. If a
cell is predicted to fail to meet its target, the customer cell may have the flexibility
to rearrange their integration tasks to minimise the effect of the delay, or it may use
an earlier version of the component or in the worst case be delayed in the
achievement of its own schedule target. However the delay imposes schedule

pressure which acts on the downstream cells.

Boehm’s work in COCOTs [Boehm 1997], is based on an analysis of the
experience of component integrators, contained in the SEI Software Engineering
Risk Repository; the study confirms that delays in the supply of components affect
the ability of the integrator to meet their performance targets. Supplier

performance is used as a cost driver in the COCOTs tool.

Ford and Sterman [Ford and Sterman 1997] also show the importance of modelling
customer and supplier relationships, although in their model, the suppliers and
customers are development phases. They show the dynamic effect on work

availability and therefore performance of external concurrence relationships.

94



Chapter 4 The Cellular Manufacturing Process Model

4.4.5 Predictability

Organisations indicate that predictability about project performance is critical to
the success of the organisation. Decisions to invest in a product are based on risk,
costs, potential revenue and whether the time to market matches a predicted
window of opportunity for the product (when the product is likely to achieve its
sales potential). If predictions under-estimate schedule then an organisation will
commit expenditure to a project that will fail to meet its sales potential. If the
predictions significantly over-estimate schedule then organisations will fail to
invest in potentially profitable products. To date, achieving predictability has been
difficult, since traditional static project planning and estimating systems do not

model the dynamic nature of software processes.
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Chapter 5
Evolutionary Systems

Dynamics Model Building

There are two motivations for this set of investigations and simulation experiments.

e Showing how systems dynamics models can be built in an evolutionary
manner, with successive models making an evolutionary step towards a
closer correspondence to a real world model; this may be described as

evolutionary model building.

¢ Demonstrating that observed behaviour can be reproduced in Systems
Dynamics, using an evolutionary model building process and validated

by quantitative data.

Whilst qualitative Systems Dynamics models can be useful as means of
understanding a problem domain, it is very easy to construct a model that appears
to convincingly explain a particular behaviour but there may be other equally

plausible models that could explain the behaviour.

A model’s correspondence with real world behaviour is more likely to be
demonstrated if qualitative data from the real world, when used in the model,
reproduces the real world behaviour. When taking a real world process and
modelling it in Systems Dynamics, it can be very difficult to move beyond
qualitative models to quantitative models because unfortunately, in many complex
systems it is very difficult to find accurate data from the problem domain that can

be used to validate the model. This happens for many reasons; historic data at the
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level of detail that the model needs may not be available; recording data

specifically for the purpose of modelling may not be economically viable.

In this simulation experiment I have used a simple process with precisely defined
behaviour. The process is defined by activities governed by probabilistic choices

and can be simulated to produce quantitative data using Monte Carlo methods

[Metropolis and Ulam 1949], [Fishman 1996].

The Monte Carlo method models probabilistic choices of activities; Systems
Dynamics models stocks and the flows that create and deplete them. Both
paradigms model continuously over time but Monte Carlo methods calculate a
choice over a probability distribution at each tick of time, whereas Systems
Dynamics calculates, using partial difference integration, the effects of flows on
stocks at each tick of time. Systems Dynamics explicitly models causal and

feedback relationships and abstracts from single entities to a population.

The investigation shows an evolutionary method of Systems Dynamics modelling;
feedback at each evolution from comparing the model to the real world behaviour
is the dynamic that generates a closer correspondence in the next evolution of the
model. In this investigation the Monte Carlo model provides an alternative model
of the simple process which gives qualitative and quantitative visibility into the

process to support the evolutionary process.

I will show how Systems Dynamics models can be produced in an evolutionary
manner to reproduce the behaviour of our simple process using qualitative and
quantitative results from the Monte Carlo model simulation to bring the
correspondence of the two models closer together at each evolution of the Systems

Dynamic model.

In the earlier evolutions, when the Systems Dynamic model and simple process
behaviour is furthest apart, the comparisons are typically qualitative; in later

evolutions we can use quantitative comparisons.
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5.1 The Simple Process

Let us examine a simple software development process. A piece of software must
be built to a specified size (this may be a number of components or function points
or any other measure of the size of software). How long it will take to complete
and the quality of the resulting software will depend on three things; the work
applied to the task, the efficiency of the process in producing good work, and the

quality assurance practices used to detect and fix faults.

The quality assurance practice can be represented as a policy of tolerating only a
certain proportion of bad code throughout development before applying effort to
fix the bad code.

The efficiency of the process can be represented by the proportions of good and

bad code produced throughout the process and its ability to fix bugs.

This simple process may be described by Monte Carlo methods to produce a model
in which effort is allocated according to the perceived defects in the already

completed work
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The process has a probabilistic choice of four activities:

¢ Doing good work
e Doing bad work
¢ Fixing bad work
e Or finishing

At every tick of the clock a randomised choice between the activities is made; this

corresponds to a unit of work being carried out.

The choice between activities is weighted towards fixing bugs if the bugs are in

excess of a fixed proportion of code or if the code has achieved its target size.

When making new work, weighting towards making a bug increases with the
proportion of code completed. In the example provided, the weighting increases
from 30%, when the proportion of completed code is nil, to 95% when the code
approaches target size. This likelihood of making a bug may be used to represent
the efficiency of the production process, both in making good code and also in

finding and fixing bugs.

Although the process is simple, these structural dynamics cause interesting
behaviour in terms of the quality outcome of the code and the time it takes to

complete a target amount of code.

5.2 The Simple Process Modelled as a Decision Tree

How the choice is made between activities may be modelled as a decision tree
(Figure 35). For every iteration of the process (a ‘tick’ of the process clock), the
choice is between correcting bad work (correct) and doing new work (move on). If
the choice to correct bad work is made, either the path to make a fix (make fix) is
taken or the path for an unsuccessful fix (don 't fix) is followed. If the choice is to

do new work, then either new work finishes (finished) when the work has
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completed its target size, or a new piece of code may be added (add bit). If a new
piece of code is added, then either the path to make good code may be followed
(make good work) or the path to make bad work (make bad work) may be taken.

The leaves of the tree show the effect on cumulative work w, cumulative bad work

b, and cumulative code n.

.Il

/ b1

1
make fix wt
correct ®

finished

n
o,

w1

move on

nt+l
@,

w+l
@ make good work

add bit

make bad )
work n+

® b+1

w1

Figure 35. The simple process modelled as a decision tree

5.3 Monte Carlo Model (Mathcad)

The process described by the decision tree can also be described by Monte Carlo
methods to produce a statistical simulation. The process then becomes a set of
probabilistic choiccs, (corresponding to the nodes of the decision tree) which
determine the paths followed. A simulation is the graph of paths followed as each

choice is made randomly, according to the probability distribution.
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The equations below describe a Monte Carlo model of the process in Mathcad

[Mathcad 1999].

The model has the following functions:

e corr
e bug

e addbit
o fixbug

Corr is the choice to correct a bug, or to do new work (move on in the decision
tree) provided that the work has not reached its target size, N. ( Table 1, page 103

provides a key to the symbols used in the following equations)

el

corr(pc,b,n,t,k) = (bt > 1) -{(nt > N) + (k-pct < Ej:|

corr is true (choose to correct a bug) if there is at least one bug, the code is not at
the target size and the bugs in the completed code are greater than the maximum
percentage of bugs tolerated £, weighted by a random choice function (pc).

When corr is false, the ‘move on’ path is followed.

Bug is the choice that work (either new work or work to correct a bug) is good

work.

bug(pb,b,n,t,aa,bb) = pb; < aa + bb-%

bug is true (a work unit is incorrect) when the random choice (pb), falls between

the minimum rate of faulty work set for the process (aa) and a maximum that
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increases as the completed code increases (bb*n/N). When bug is false, a unit of
good work is added if new work is being done, or a bug is removed if the path to

correct has been followed.

Addbit is the choice that adds a piece of new work, which may be either good work

or bad work, determined by the choice, Bug.

o+ 1 n+ 1
addbi{pb,b,n,w,t,aa,bb) := if| bugpb,b,n,t,aa,bb), b+ 1 , bt
Wi + W(nt) Wi + W(nt)

Fixbug is work to remove a bug which may be effective (make fix in the decision
tree) or ineffective which does not remove the bug (don ¢ fix in the decision tree),

determined by the choice, Bug.

; 0
fixbugpb,b,n,w,t,aa,bb) = iff bugpb,b,n,t,aa,bb), bt , bi—1
Wt + W(nt) Wi + W(nt)

At each tick of time of the simulation, the functions are evaluated;

Ngy Tt
b1 | = if] corr(pe,b,n,t, k), fixbugpb,b,n,w,t,aa,bb),if| ny = N,| by |,addbi(pb,b,n,w,t,aa,bb)

Wit 1 Wi

Key:
n is cumulative code.

N is final size of code (target)
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w is a unit of work; in this case a unit of work is added for every tick of

Time, t
t1s a tick of time
T is time

Two random functions determine the probability distribution of choices

(where runif is the Mathcad random generator):

pb is randomly generated probability of making a bug

pb = runif T,0,1)
pc is randomly generated probability of choosing to correct
pc = runifT,0,1)
k is the maximum percentage of bugs tolerated in the code
Two constants weight the balance of producing good and faulty code:
aa minimum rate of bug production

bb variable rate of bug production

Q is quality of the incoming components

P is quality of the outgoing components

(m—by)

o

Pt =

Table 1. Key to Monte Carlo model equations

At each tick of the simulation,

if corr evaluates to true,
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the simulation follows the fixbug path.
if corr evaluates to false,
we evaluate whether the product has reached its target size;
if it has, no new work is added;
if it is less than the target size,
the simulation follows the addbit path.

At each tick of the clock, whether new good or bad work is added or a bug is either
fixed or not fixed, a unit of work is added until the process finishes. The process
finishes when the target size for the code is complete and all of the bugs have been
removed. During a typical simulation of the process, the time allowed for the

simulation may expire before the process is complete.

By varying the initial settings for the simulation; we can produce a range of results
for the time taken to complete the code, the rate of growth in size and the quality of
the code.

5.3.1 Simulation 1, varying the quality of the incoming

component

We can simulate a typical process scenario in which we receive a component from
which we are to build our product. The component is 200 code units in size and
our finished product will be 400 code units. The component is not perfect and has
a proportion of bad code which will affect the quality of our product. Within our
process we will add new code until we have reached the target size and attempt to

fix the bugs. We will set the threshold for tolerance of bugs in the code at 25%.
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The first simulation was set up with the following values:

Initial size, n0 200
Target size, N 400
Initial bugs, b0 25

Threshold for bug tolerance, k 25%

Minimum bug rate, aa 0.3

Variable bug rate, bb 0.95

Table 2. Initial settings for Simulation 1

When simulating the Monte Carlo model in MathCAD, the initial value of bugs
was set at 25 and the initial value of code was set at 200. Thus at the
commencement of the simulation, the number of bugs in the code was below the

maximum tolerated.

Figures 36 to 39 show graphs from simulations of the model which trace the
growth of size and defects as work is done. For each simulation, probabilistic
choices at each tick of time determine the outcome of the unit of work. Thus
repeating a simulation will not repeat the results, but produce a distribution of
values of n, and b. However, the general shape of the graphs is similar; these

graphs are representative of the graphs that were produced.

Figure 36 shows a graph of the growth in size, n, as work, w increases.
Completion of the required 200 code units took 860 work units which takes 860
time units to complete, (because in this instance, one work unit takes one time unit
(tick, t). As the units of completed code approach the target size, the rate of faulty
work compared with good work increases, slowing the rate of completion and

showing an asymptotic approach to the target size. As new bugs increase, the bug
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tolerance threshold is exceeded and at every tick of the clock the random choice to

fix bugs is more likely.

400 T T

350 =]

code 300~ o
units

250 — =

| | | | |
0 200 400 600 800 1000 1200

200

w, work units

Figure 36. Graph from Monte Carlo simulation showing growth in size n, as work, w,

is done

Figure 37 is a graph from the same simulation showing the growth in bugs, b, as
work w is done. The level of bugs increases to a maximum of 85 when the code
reaches its target size, subsequently new work stops and no new bugs are added.
The simulation stops before the all of the bugs are removed, taking 340 work units
to remove 37 bugs; this is a consequence of the effectiveness of the bug removal

policy in the process.

The growth of bugs against work appears to show an S shaped population growth

phenomenon.
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Figure 37. Graph from Monte Carlo simulation showing growth of defects, b against

work, w
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Figure 38. Monte Carlo simulation, graph showing growth of defects, b with

increasing size, n
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We can see the effects on the amount of work to achieve target size and the
outgoing quality of the product of a different quality of the incoming component;
in this case, there are 60 defects in the code from which we must build. The target

size of 400 units and the defect removal policy remain the same.

The initial level of defects is higher than threshold level of bugs tolerated in the
code, as a consequence work is done to reduce the level of bugs to below the

tolerance threshold before any new work is done.

a0p 4

350~

n,

code
units  300— N
2501 =
200, 200 | | | | |
0 200 400 600 800 1000 1200
w, work units 1210,

Figure 39. Monte Carlo simulation, initial defects = 60, graph of increasing size, n as

work, w increases

Figure 39 shows the effect of high initial defects on code production; no new work
is done so that the code does not begin to increase in size until t = 40 and target

size is not reached until t = 850.
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Figure 40. Monte Carlo simulation, initial defects = 60, graph of defects, b as work,

w is done

Figure 40 shows the effect on the number of defects in the code; initially work is
done to reduce the defects in the code until the threshold level has been reached.
After that, new code can be made and the balance of work between making new
work and fixing defects has the same probability distribution as when the incoming
component had only 25 defects. The component takes 65 work units longer to
complete and there are 2 more defects in the component at the end of the
simulation time than in the previous example. Results for other values of incoming

defects are summarised below.
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b0 Maximum Residual Work to complete | Final Quality,
defects defects N, 400 p

0 89 59 780 0.853

25 88 63 825 0.843

60 88 65 890 0.843

100 100 68 940 0.83

Table 3. Results from Monte Carlo simulations where the number of initial defects

were varied

Overall, in our simple process, the effect of defects in incoming components on the
final product and the time it takes to complete is very small. For example, the
work to complete the product increases by 20% when defects are increased to 50%
of the incoming product. The residual defects increase by 10%. This is because
the effects are only in the work done to reduce the defects to below the threshold of
tolerance. Thereafter the process behaviour and the balance between new work and

defect removal is the same, whatever the quality of the incoming component.

5.3.2 Simulation 2, varying defect removal policies

The second simulation I shall describe shows the effect of different policies for
defect removal. As before, we are building from a component of 200 code units in
size, and our finished product will be 400 code units. The component has 60
defects, and during the process we will attempt to produce a perfect product.
Within our process we will vary the threshold of defects in the code above which

we will choose to fix defects rather than produce new work.

The results from other simulations are summarised below; showing how varying
the threshold, k affects the simulation outcomes of maximum and residual bugs,

work to complete the product and the final quality.
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k Maximum Residual Work to complete | Final Quality,
defects defects N, 400 p

0.10 38 28 1110 0.93

0.25 88 65 890 0.843

0.50 150 115 690 0.713

Table 4. Results from simulating The Monte Carlo model with varying defect fixing

policies, k

If we tolerate only 10 % defects in the code in production, we will achieve a low
number of residual defects, but the time to complete the component will be nearly
double the time to complete the product with a tolerance of 50% defective code.
At the higher threshold of tolerance, the time to completion is short, but the

residual defects are four times higher than if the 10% tolerance policy is followed.

In our simple process, varying the defect removal policy has a much greater effect
on the time taken to complete the process and the quality of the finished product

than the quality of the incoming components.

5.4 Systems Dynamics Representation of the Simple

Process (Vensim)

We can recreate the Monte Carlo simulation developed in Mathcad, in Systems
Dynamics using Vensim [Vensim 1988 -1997], by direct analogy. Here we
describe an evolutionary modelling process producing a series of models, each
iteration building on the last, as we understand more about the process until a close

replication of the Monte Carlo model is achieved.

For each evolutionary cycle, we start with the real world behaviour and attempt to
recreate it with the simplest possible Systems Dynamics structure. We then

compare the Systems Dynamics model with the real world process and determine
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the points of correspondence between the model and the real world behaviour.
Where we have good correspondence, we can take the structure into the next
evolutionary cycle. Where the correspondence is incorrect or absent, we add or
remodel the structure in the next evolutionary cycle. In this way we are looking for

successively better synchronisations of the model and real world behaviour.

This is a feedback driven process, the modelling activity increases understanding
of the problem domain, which feeds back into increasing correspondence between

the model behaviour and the real world behaviour.

To return to our simple process, we have a good understanding of the behaviour,
both externally because we can simulate it and collect quantitative data, and

internally because we can express the process precisely mathematically.

We can begin to represent the simple process in Systems Dynamics by making an
initial abstract model of the stocks in the process and the flows that increase or
deplete them, and using the evolutionary process described, evolve the model to

include structures that affect the dynamic behaviour.

We produced eleven models in all; I will describe in detail six models that show
the major evolutionary steps made towards the final representation of the simple
process in Systems Dynamics. The six successive models show the evolutionary
path to the successful final model. The other models were alternative paths that
could have been followed but that were discarded. At each evolutionary step
quantitative and qualitative analysis of structure and behaviour identified the model

with the closest correspondence, which became the next successful evolution.

The Systems Dynamics paradigm abstracts from the individual entities to a

population, therefore I have not used a randomised choice between the activities.

5.4.1 First Evolution - Monte 3

The first significant model is a simple abstraction of stocks and flows.
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The obvious stocks in the system are code, expressed in code units, and bad code,
expressed in bad code units. The activities that increase and deplete the stocks are
making code and fixing bugs. For the first evolutionary cycle, I will concentrate

only on the activities that increase the stocks.

There are two stocks, all code (code) and faulty code (code that’s bad). The code

stock is increased by two flows, make good code and make buggy code.

Code that’s bad is increased by the flow, make buggy code. The activity make
buggy code increases both the stock of code and the stock of bugs.

The first approximation of the flows splits making new code between good and bad

work in the ratio 65:35. There is no flow that removes bugs.

£3 % . code

Ay
make good code

add 1o code
3 X P code that's bad
make buggy code

Figure 41. Systems Dynamics model of simple process

The model can be tested for correspondence with the simple process defined in

Monte Carlo methods.
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The systems dynamic model abstraction of flows is comparable to the Monte Carlo

function addbit and the part of the decision tree coloured red in Figure 42.

® .

/ b-1
make fix wtl
don’t fix n

o ®

w1

move on finished

w n+l
® b

add bit wtl

[ ) make good work

make bm

@® n+1
b+1
w+tl

Figure 42. Decision tree of simple process showing coverage of first

Systems Dynamic model

n;+ 1 n+ 1
addbi({pb,b,n,w,t,aa,bb) := iff bugpb,b,n,t,aa,bb), b+ 1 : by
Wt + W(nt) Wt + W(nt)

addbit makes both defective and good code with every tick of time, z. The size of
the code 7, is made up of defective code and good code. The function accumulates
the number of bugs, b within the code, n. The probability distribution between
making good code and defective code is governed by two constants, the minimum
rate of bad code production, aa and maximum rate, bb; these were defined for the

simulation as aa = 0.3 and bb = 0.95 —aa .

The systems dynamics model approximates the probability distribution to a ratio of

good and bad work. We can say that the Systems Dynamic model is in good
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correspondence with the Monte Carlo model in the structure of stocks and the
flows (or activities) that create them. We have a corresponding structure that
determines the proportion of defective code in the total code. The structure is an
abstraction of the Monte Carlo probability distribution, but it is good enough for

the first evolution of the Systems Dynamics model

Graph for code production
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code : monte3-1 == code unit
code that's bad : monte3-1 code unit

Figure 43. Simulation of first Systems Dynamics model, graph of code and

defects as time increases

If we examine a graph of code production from simulating the Systems Dynamics
model, Figure 43, we can see an increase in both total code and defects within the
code. The code does not show an asymptotic approach to a target size that the full
simple process simulated in Monte Carlo methods shows. However, the
underlying structural correspondence is good, in that we accumulate the same

stocks of good and bad code and they are increased by equivalent activities.

We can compare this model with an earlier discarded version that fails comparison
with the simple process defined by Monte Carlo methods, Figure 44. In this

model, although we have stocks of code and defects, the flows that create them do
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not correspond closely with the addbit function. The model is too complicated as
it has flows that increase stocks and flows that decrease stock whereas addbit only
increases stocks. Instead of the stock of code being increased by two flows, code
is increased by add code and bugs is increased by add bugs. The two flows are
shown as coincident flows (one flows as a result of the other). The mathematical
representation does not correspond either; in addbit the code is increased by both
adding a flow of good code and adding the flow of defects, in the failed Systems

Dynamic model, the stock of code is increased by increasing the flow add bugs.

23#» Code, n

addTode

=——Z—p bugsh 3

add bugs remove bugs

Figure 44, Alternative Systems Dynamics model of the simple process

5.4.2 Evolution 2, Monte 4

The second evolution of the Systems Dynamics model (Monte 4), Figure 45, has

two new features, making an evolutionary step closer to the simple process.

The first feature stops code production when a target amount of code has been
completed. The code production flows (make good code and make buggy code)
stop when code done? is set to true, which is the case when the code already
completed is the same as the target size (final code size, N). This structure

describes goal-seeking behaviour in the process.
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The model has a new flow, remove bugs, which decreases the stock of bugs.

final code size, N————  ®code done?

)

£3 g code

pay
make good code

Md’ code

<code done?>

P code that's bad—2%—3{3

yay
make buggy code remove bugs

3

Figure 45. Second evolution of Systems Dynamics model of the simple process

We can examine the Systems Dynamics model for correspondence with the simple

process.

The structure that stops production when the final size is complete is similar to the
decision tree choice between finished? and addbit. In the Monte Carlo method
equation, repeated below, it is modelled by evaluating  n, > N (code at
simulation time, 7 less than or equal to the target size, N) before evaluating addbit
in for every tick of the simulation. This stops the production of all code, both good

and defective.
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By q T
biy1 | = if] corr(pec,b,n,t, k), fixbugdpb,b,n,w,t,aa,bb),iff oy = N,| by |,addbi(pb,b,n,w,t,aa,bb)
Wit1 Wt

We can conclude that the Systems Dynamic structure limiting code growth has a

good correspondence with the Monte Carlo equation.

The flow remove bugs in the Systems Dynamic model represents fixbug in the
Monte Carlo Model and correct in the decision tree. However, the representation
is approximate; the simple process has a probabilistic choice that any attempt to
correct a defect will fail, increasing a unit of work, w, but the number of defects, b
remains the same. The Systems Dynamic model approximates defect removal rate
over the defect population. Therefore whilst the structure corresponds to the
simple process defined by Monte Carlo methods, the probabilistic behaviour is

approximated.

The paths of the decision tree are now all represented in the Systems Dynamics
model, Figure 46, however except for the decision to stop code production, the
choices at the nodes of the decision tree that determine which paths will be

followed have been approximated.

118



Chapter 6 Evolutionary Systems Dynamics Model Building

@
9 .{
don’t fix n
@ ® .
w1
move on finished

n+1

@ n
/ b
w
@® b
add EN / w+l
@ make good work

make m

Figure 46. Decision tree coverage by Systems Dynamics model evolution 2

Graph for code and defects
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Figure 47. Simulation of 2nd evolution Systems dynamics model, graph of code and

defects as time increases
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The simulation results from the Systems Dynamic model, Figure 47, show that the
code and new defects in the code stop increasing when the code reaches the target
size, 400 units, as we expect from the correspondence with the Monte Carlo model.
After that point, defect removal continues, again following the behaviour of the
Monte Carlo model; except that the Systems Dynamic model has no structure that
will stop defect removal after defects have reached zero. The increase in code does
not show an asymptotic approach to the maximum produced by simulation of the

Monte Carlo model.

5.4.3 Evolution 3 - Monte 6

The third evolution focuses on dynamic behaviour that affects the choice between

making new code and defect removal activities.

Monte 6, Figure 48, adds another goal seeking structure to follow the policy that up
to 25% bugs in the code in progress will be tolerated. This is the variable
‘willingness to tolerate bugs’ and associated links. The function that defines the

structure in the systems dynamic model follows:

willingness to tolerate bugs=

IF THEN ELSE(*‘code done?">=1,0,(IF THEN ELSE(XIDZ(code that's bad,
code, 0)>=0.25,\0,1)))

The function compares the percentage of bugs in the code completed so far with a
constant tolerance percentage, in this case 25% (equivalent to setting the constant
k = 0.25 in the Monte Carlo model). willingness to tolerate bugs evaluates to false
when the percentage of bugs in the code exceeds the tolerance percentage or when

the code has reached its target size.
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The new structure affects the flow ‘remove bugs’ as shown in the following code

fragment:

remove bugs=
IF THEN ELSE(willingness to tolerate bugs=0, 1,0)
~  bad units/Month

Remove bugs flow is set to zero while willingness to tolerate bugs is true. Remove
bugs flow is non-zero while willingness to tolerate bugs is false. Thus the variable
willingness to tolerate bugs acts as a switch that turns defect removal activities on
and off. The make good code flow is reduced by the remove bugs flow, so the bug
tolerance policy affects the flow of new work, distributing work over the two

activities.

fnal code size, N————»=code done?
£3 Fay code

make good code

/
<remove bugs> before code is finished be prepared to tolerate up to
25% bugs, when code is complete, tolerate no
add code bugs.
<code done?>

lmgness to tolerate bugs

oy P code that's bad
make buggy code remove bugs

Figure 48, Systems Dynamics model evolution 3
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The new structure models the choice corr in the Monte Carlo Model,

corr(pc,b,n,t, k) = (bt > 1) I:(nt > N) + (k~pct < E):I
o

and in particular, (k- pe < %j which randomly provides the probability distribution
that corr will evaluate to trute (choose to correct a bug) if the ratio of bugs in the
code is greater than k at each tick of the simulation. The correspondence between
the Monte Carlo model and the Systems Dynamics structure is good, but limited by
the Systems Dynamics abstraction of a modelling a population flow, rather than

discrete entities.

We can simulate the evolved Systems Dynamics model to examine the effects of
the new structure on the behaviour of code and defect growth and on defect
removal in comparison with both the previous model and the behaviour of the

Monte Carlo model.

The following graph, Figure 49, shows a simulation where there was an initial
stock of defects higher than the tolerated percentage. The effect on behaviour of
the structure is that code and defect growth is slower, and no new code is produced
until defects are below the tolerated percentage. This is in better correspondence to
the simple process modelled in Monte Carlo methods than the previous evolution
of the systems dynamics model. However the code and defects increase in a
straight line rather than showing an asymptotic approach. The Systems Dynamics

model has to evolve further to correspond to the simple process behaviour.
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Graph for code and defects
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Figure 49, simulation of 3rd model evolution, graph of code and defects as time

increases

5.4.4 Evolution 4, Monte 8

Monte 1 — 6 models use an approximation to allocate the work between making
new work (good and bad) and fixing bugs. Monte 8, Figure 50, refines the
approximation towards a better representation of the split between activities in the

Monte Carlo model.

In the definition of the simple process, and the Monte Carlo model, the rate of
production of defective code increases as the proportion of code completed

increases.
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The new structure in the Systems Dynamics model, proportion of code complete

models the ratio of code completed to the target code size, N.
proportion of code complete=
code/"final code size,N"

~  dmnl

The new variable is used to refine the definition of the flow make buggy code,

which in turn refines the definition of the flow make good code.

final code size,N —\

code done?

<remove bugs> }
&3 Ly > code
make good code
<code>
proportion of code complete <code done?> add t4 code

ss to tolerate bugs

= < - code that's bad
make buggy code remove bugs

Figure 50. Systems Dynamics model evolution 4
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The following equations from the Systems Dynamics model define the dynamic

split between code production activities.

make buggy code=

IF THEN ELSE( "code done?">=1, 0, (0.3+ (0.65*proportion of code
complete)))

~  bad units/Month ~

make good code=
IF THEN ELSE( "code done?"=1, 0, (1-make buggy code-remove bugs))

~  code unit/Month

0.3 is the value of the constant aa in the Monte Carlo model which represents the
minimum level of bad code production. 0.65 is value of the Monte Carlo constant
bb which represents the variable rate of bad code production above the minimum.
As the proportion of code completed increases to a maximum of 1, the rate of bad

code production increases to 0.95.

The behaviour of good code production is defined by defect production and
removal behaviour, in correspondence with the simple process and Monte Carlo
model where it is defined by the choice not to correct a bug (in corr) and not to

produce a defect (in addbir).

5.4.4.1 Exploring the behaviour of Systems Dynamics Model in
Comparison with Monte Carlo Model

At this stage of evolution of the Systems Dynamic model, where we have evolved

the model of the structure of the simple process, and have good structural

correspondence through qualitative behavioural comparison, we can begin to use

quantitative data to check correspondence further.
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The Vensim model was simulated with the same parameters as the Monte Carlo

Model:

Initial Bugs 60

Initial code size 200 units
Target code size 400 code units
aa 0.3

bb 0.65

Bug tolerance level at | 25%

Table 5. Initial parameters for the Vensim model simulation

The Vensim model shows similar behaviour to the Monte Carlo simulation. The
graph of bad code over work (or time), Figure 52, shows that initially work is done
to reduce bugs in the code to below the bug tolerance threshold, then new code is
added (including new bugs) and bugs are removed until the code reaches its final

size. When the code is complete, work is done to remove bugs.

80

b,

defects 9°

40

| | | | |
200 400 600 800 1000 1200

O, w, work units 1.2x10°,

Figure 51, Monte Carlo simulation graph of defects b as work w is done
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Graph for bad code against work
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Figure 52, Systems Dynamics model simulation, graph of code and defects as time

increases

The graph of code against work (time) generated by the Vensim simulation, Figure
52, shows a similar behaviour to the Monte Carlo simulation graph, Figure 51. At
first, no code is added because work is done to reduce the level of bugs to below
the tolerance threshold. Then new code is added until the code reaches the target
size. Both graphs show an asymptotic approach to the maximum. This asymptotic
approach is closer to the simple process behaviour than the previous systems
dynamics model evolution. The evolutionary change has been the closer
representation of the tendency to make a bug when making new code or not fix a
bug in fixbug. The dynamic structure is a feedback relationship where the
tendency increases with increasing code size. As no other behavioural changes
were made, we can assume that it is the feedback relationship that has produced the

asymptotic effect.
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The target size is reached in a similar time for both simulations (approximately

960 work/time units), Figure 53 and Figure 54.

Graph for code against work
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Figure 53, Systems Dynamics model simulation graph of code against work done
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Figure 54. Monte Carlo simulation, graph of code, n against work, w
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5.4.4.2 Varying the policy on Bug toleration

The Monte Carlo model simulations showed that the simple process is sensitive to
the level of bugs tolerated in the code before defect removal activities were
undertaken; if we have good correspondence between the models, we would expect

that the systems dynamic model would show a similar sensitivity.

Therefore, we simulated the Systems Dynamics model with the bug tolerance level
set at different levels for consecutive simulation runs to explore the growth of code

and defects for bug tolerance levels of 10%, 25%, 50%, and 90%.

Using Vensim’s graphical capability, Figure 55, it is easy to see that this process
exhibits some interesting behaviour if you are willing to tolerate a high level of
bugs, say 50%, or even 90%. In this case, the new code is completed faster but
with a higher level of bugs. When the target size has been reached, the only
activity possible at each tick of time is to fix all the bugs, thus the overall time to
achieve the target size is reduced and also the time to complete code and fix all
bugs. At 25% toleration of bugs, total time to reach target size and fix all bugs is
approx 1100 time units. At 90% toleration the total time to reach completion is
420 time units. Were this a real process, the conclusion might be drawn that in
order to finish work and remove all faults in the shortest possible time, you should
make no attempts to fix faults until the target size of code has been completed, and

then make no new work and only fix faults.

Tolerance of Max bugs in Time to reach Time finish code and
bugs in code code target size remove all bugs

25% 100 900 1100

50% 200 420 610

90% 220 190 420

Table 6. Results from simulating Systems Dynamics model Monte 8, varying the

willingness to tolerate bugs, k
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Comparison of bad code growth at varying bug tolerance levels
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Figure 55. Systems Dynamics simulation of different quality assurance policies

The Systems Dynamic Model follows the behaviour of the Monte Carlo model
until the code has reached its target size. After this point, the Systems Dynamics
model shows a more rapid rate of reduction in bad code and therefore a shorter
time to completion than the Monte Carlo model. The behaviour of the two models

is not yet in good correspondence.

5.4.5 Evolution 5, Monte 11

Monte 11 evolves the behaviour of fixing bugs in the Systems Dynamics model

closer to the Monte Carlo model, Figure 58.

On examining the flows for making and removing bugs in Monte 8, it becomes
clear that the remove bugs flow does not follow the behaviour that, as the
proportion of completed code increases, so does the tendency to make a bug. In

the remove bugs flow this should become a tendency nof to fix a bug. It may be
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represented as the difficulty of removing bugs as the proportion of completed code

increases.

In order to represent this properly, the remove bugs flow was changed to

differentiate the behaviour before the code reaches its target size, when the make

buggy code flow suppresses the effectiveness of code fixing, and the behaviour

afterwards. The variable tendency to make a bug wraps up the difficulty factor in

the previous model, Monte 8, (0.3 + (0.65*proportion of code complete)), and

defines the minimum level rate of defects as aa, and the variable rate as bb.
tendency to make a bug=

(aa +(bb*proportion of code complete))

The new definition of the remove bugs flow is:

remove bugs=
IF THEN ELSE("code done?"=1, (1-tendency to make a bug),
IF THEN ELSE(willingness to tolerate bugs= 0, 1, 0))
~ bad units/Month
The code flows are similarly changed to correspond more closely to the simple
process:
make buggy code=
IF THEN ELSE("code done?"=1, 0, tendency to make a bug)
~ bad units/Month
make good code=
IF THEN ELSE( "code done?"=1, 0, (1-make buggy code-remove bugs))

~ code unit/Month
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A Systems Dynamics model Figure 56, of effort allocation and Figure 57, (Vensim
causes strip feature) show more clearly the effect of defect creation and removal on
the productivity of the process. Effort must be allocated between making new code
and defect removal before code is complete. The productivity of effort for new

work is further reduced by the effort spent on new bugs.

<tendency to make a bug>

effort for new bugs

<willingness to wokrate bugs>

effort for code before

<code dome?>
effort for new code

effort before code complete <tendency to make a bug>

<tendency to nuke a bug>

effort for bugremovalbefore  <wwillingness 1o tokerate bugs>

effort after code conplete

/ tendency to rmk‘eibug
<code done”: / <proportion of code conplete>

effort for bug removal after
Figure 56, Systems Dynamics model of effort allocation

effort after code complete ———————— effort for bug removal after
effort < effort for bug removal before
effort before code complete <

effort for code before

Figure 57. Causes strip for Systems Dynamics model of effort allocation

Work in Monte 8 is represented by adding together all of the code flows; however,
because the tendency to make a defect varies, the total code flows at each tick of

time is not equivalent to a work unit, understating the amount of work done. In
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Monte 11, I have added a Work Done stock, so that at each d¢, one unit of work is

added. This is a closer representation of the Monte Carlo model, where at each

tick of time, a work unit is added.

3 % - code
make good code

<remove bugs>
<tendency to make a bug>
<code done?> add tg code
willingness to toler&@

/ bug tolerance level

£3 TS - code that's bad
make buggy code remove bugs
nitial bugs <code done?>
tendency to make a bug (3=, work done
work

<proportion of code complete>
bb

aa
\/ beonstant

Figure 58. Systems Dynamics model, Monte 11

5.4.5.1 Causes strip for code and bad code

The causes strip feature in Vensim allows us to see which flows and variables
create any particular stock. Figure 59 shows the flows and variables that create

defects.
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code done?
> make buggy code

tendency to make a bug

(code done?) code that's bad
(tendency to make a bug) > remove bugs

willingness to tolerate bugs

Figure 59. Systems Dynamics causes strip for defective code, Monte 11

Code that’s bad is caused by two flows, make buggy code that creates defects and
remove bugs that depletes the stock of defects. We can see two feedback
relationships that control the flow make buggy code, firstly goal seeking behaviour
to stop the flow after achieving a target size (code done?) and secondly the
tendency to make a bug, dependent on the proportion of code completed so far.

Remove bugs is also controlled by willingness to tolerate bugs.

The causes tree for code, Figure 60, shows that it is caused by two flows, which

both add to the stock, make buggy code and make good code.

code done?
> make buggy code

tendency to make a bug

(code done?) code

(make buggy code) make good code

remove bugs

Figure 60. Systems Dynamics causes strip for code, Monte 11
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5.5 Exploring the Simple Process with Systems
Dynamics

Two aspects of the process affect its dynamic behaviour, firstly the willingness of
the process to tolerate bugs in the code, and secondly the efficiency of the
production process in terms of making new code and fixing bad code, defined in

the model as the tendency to make a bug.

5.5.1 Simulation 1 varying the willingness to tolerate defects in

the code

The graph, Figure 61, shows the growth of bad code for policies of tolerating 10%,
25%, 50% and 90% defects in code. Figure 62 shows an equivalent graph for code
growth.

The results from simulating the model now show bad code fixing at a rate closer to
the results from the Monte Carlo model. Without the ‘noise’ generated by the
probabilistic choice, it is easy to see how the bug tolerance policy affects the rate

of bad code production and fixing and of code completion.

The graph for bad code against work at the 25% tolerance level shows an initial
decrease in the level of bugs because the bugs present in the code at the beginning
of the simulation are already in excess of the tolerated level. Thus work is
allocated to reducing the bugs to below the tolerance level before any new work is

done.
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Graph for bad code production at varying bug tolerance levels
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Figure 61. Systems Dynamics simulation exploring the effects of different defect

toleration policies on bad code production
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Figure 62. Systems Dynamics simulation exploring the effects of different defect

toleration policies on code production
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Code growth and bug growth show an asymptotic approach to the maximum. The
maximum proportion of bad code is approx 25%, reached as the code reaches
target size after 854 ticks (equivalent to work units), The bad code reduced to 22%

by continued bug fixing until the end of the simulation.

A more extreme policy of tolerating only 10 % bugs shows a low rate of bad code
growth but the bugs are never completely removed and the code only reaches the
target size at the end of the simulation time bound. It takes six times longer to
reach target size than if a policy of tolerating 90% bugs is used but only 10% of the

code 1s bad.

The graph for bugs against work at the 50% tolerance level shows an inflection at
the point where the tolerance level is exceeded and work to correct bad work

begins. At this point, new work slows until the target size is reached.

At the 90% tolerance level, the code is almost finished before the tolerance level is

exceeded. Fixing bugs begins when the code reaches its target size.

In contrast to the model, Monte 8, where a high bug tolerance caused an early
completion of the code with all bugs removed, simulating Monte 11 shows a
different behaviour. In this model, if the policy of 90% bug toleration is followed,
although the target size is reached rapidly, the proportion of bad code is high (more
than 50%) and only reduces to 42% of code by the end of the simulation. The
policy of 50% bug toleration fares little better, the time to reach target size doubles

and the proportion of bad code is still 40% at the end of the simulation.

5.5.2 Simulation 2, varying the efficiency of the process

In the last simulation experiment, we looked at how the policy of bad code
tolerance affected the completion of code and the quality of the code in terms of
the proportion of code that was bad. During these experiments the constants aa
and bb that set the minimum and maximum efficiency were set not varied ( 0.3 and

0.95). In this set of simulations, we vary aa and bb. The graph Figure 63, shows
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the range of code production behaviour when we vary the process efficiency for
the same willingness to tolerate bugs and initial defects. The grey graph line
shows code growth with high process efficiency. Initial defects are removed
quickly because the defect removal process is more likely to fix a bug. The growth
of defects is low, Figure 64, with a maximum of 65 because the tendency to make
defective code increases only slightly as the proportion of completed increases.
All defects are removed after 290 work/time units, again because of the efficiency
of the defect removal process. In comparison the red graph line shows a process
with low process efficiency; the minimum rate of defective code is 50% which
rises to a maximum 95% when code is near completion. In this case defects rise to
100 and the defect removal process fails to remove the bugs before the end of the

simulation.

The simulation was set up with the following values:

Minimum rate of Maximum rate
Graph name Graph colour

defects, aa of defects, bb
Montel1-a5b95 red 0.1 0.1
Montel1-a5b7 green 0.5 0.7
Montel1l-ab grey 0.3 0.95
Montel 1-albl blue 0.5 0.95

Table 7. Montell simulation constants
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Figure 63, Systems Dynamics simulation results for code production with varying

process efficiency

A graph of code growth from the same set of simulations shows the effects of
varying the process efficiency on code production. As we have seen from the

defects graph (blue graph, aa = 0.1 and bb = 0.1), a highly efficient process

completes the code quickly, whereas the inefficient process (red graph, aa = 0.5

and bb = 0.95) takes nearly six times as much work to complete a product of the

same size and shows an asymptotic approach to code completion.
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Graph for defects for varying process efficiency
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Figure 64. Systems Dynamics simulation defect production with varying process

efficiency

5.6 Conclusion

In this chapter we showed an evolutionary method of Systems Dynamics
modelling where feedback at each evolution from comparing the behaviour and
structure of the model against real world behaviour is the dynamic that generates a

closer correspondence in the next evolution of the model.

In this example, we have defined a simple software development process to
provide the real world behaviour to be modelled. We defined the simple process as
a set of probabilistic choices of activities that could be simulated using Monte

Carlo methods to provide qualitative and quantitative visibility of the behaviour.
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Comparative simulation results from the Monte Carlo model show that there are
still differences between the last evolution of the Systems Dynamics model and the
Monte Carlo model in terms of the quantitative results from simulations although
the qualitative correspondence is strong. Table 8 shows results from Monte Carlo
simulations for variable willingness to tolerate defects, k. The results are average
values from ten simulation runs, and comparable results from the Systems

Dynamics model simulations.

The results from the Systems Dynamics model show fairly close correlations
between maximum and residual defects and work to complete target size for k =
10% and k = 25%. The results for higher tolerations of defects show the difference

between the behaviour of the two models widening.

k Maximum Residual Work to complete | Final Quality, P
defects defects N, 400

Monte | Sys |Monte | Sys [Monte Sys Monte Sys
Carlo | Dyn. |Carlo Dyn. |[Carlo Dyn. Carlo Dyn.

0.10 |38 40 36 40 1200 | 1200 |0.91 0.9

025 |92 95 76 80 852 950 0.81 0.79

0.50 153 [190 [120 | 150 |550 460 0.70 0.6

090 |190 |22 146 | 170 | 346 310 0.64 0.59

Table 8. Results from Monte Carlo and Systems Dynamics simulations of the simple

process, varying k.

The behaviour of the two models when assessed qualitatively seemed to be in close
correspondence, but when we examine the results from simulations of both models

we can see discrepancies in quantitative behaviour.
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The questions that we can examine to bring the models into quantitative

COI’I‘CSpOI’ldeIlCG arc:

e Are there modelling errors in the Systems Dynamics model?

e Are there failures of understanding of the behaviour of either the Monte

Carlo model or the Systems Dynamics model?

e Does the Monte Carlo method more closely represent the simple process

than the Systems Dynamics model?

e Is the difference caused by the different abstractions in the modelling

paradigms?

One clear difference is that in the Systems Dynamics model, we are representing
activities as flows; the Monte Carlo method model represents the activities as
probability distributions. In some ways, the Monte Carlo representation is easier to
understand; we can visualise a software implementer either making good or bad
code according to process efficiency or using the quality measures from the code to
decide when to remove defects. It is more difficult to abstract from this
visualisation of a single action for every tick of process time to flows of code
stocks that increase or reduce at each tick of process time. The Systems Dynamic
simulation results are closer at the extreme values of willingness to tolerate defects
and process efficiency. The Systems Dynamics uses the exact values of these
constants whereas the Monte Carlo model randomly selects from a probability
distribution; this may be the cause of the qualitative differences between the results
from the models in the two paradigms. We should sample values for these
constants to produce values that more closely represent the probability distribution

used in the Monte Carlo method.

We have shown how we can use evolutionary model building to produce a Systems
Dynamics model of the simple process, with successive models making an

evolutionary step closer to correspondence to the real world process.
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Figure 65 shows the evolutionary path to the successful final model, but there were

alternative paths that could have been followed, and models that were discarded.

Unsuccessful models are shown on the diagram with a red cross.

Step 1
Define stocks and
flows
Monte3

e

Step 2
Add goal seeking

2
behaviour to limit code |~ M

size
Monte 4

Step 3
Add Quality Assurance
(defect toleration)
feedback,
Monte 6

Step 4

Monte 8

Add Process Efficiency
Feedback

ep 4

Step 5
Refine Process
Efficiency feedback

Monte 11

Figure 65, Evolutionary path of Systems Dynamics models of the simple process

The equivalent process to natural selection to identify the successful models is the

check for correspondence between the Systems Dynamic Model and the Monte

Carlo Method model of the simple process. At each evolutionary step quantitative

and qualitative analysis of the results of simulations identify the model with the

closest correspondence, which becomes the next evolution.
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Careful analysis of the real world process, together with analysis of qualitative
results from the real world process and simulations of the model provide the basis
for understanding the problem domain. Qualitative analysis can be used to identify
similar patterns of behaviour; for example, whether code production stops when
the code has reached its target size, or defect removal continues when code
production ceases. Correspondence of overall patterns, for example, asymptotic
approach to maximum values, can indicate that feedback loops have been
identified. However, analysis of comparative quantitative simulation data is
necessary to enable the precise feedback and control mechanisms to be understood
and replicated. The Monte Carlo method simulations of the simple process
provided qualitative results for comparison with qualitative results from the

Systems Dynamics Model.

The investigation shows how systematic, evolutionary modelling using qualitative
and quantitative data enables a model to achieve close correspondence between the

model and the real world behaviour of which it is an abstraction.

In this set of simulations, the simple process provides no real data; quantitative and
qualitative data was provided by a model of the process modelled by Monte Carlo
methods. This shows that we were able to use an alternative model representation
of the simple process to provide external visibility into dynamic behaviour to

provide a basis for Systems Dynamics modelling.
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Simulation Experiments in
Modelling Software Processes

using Components

A prime requisite is to use only a small sound and
rigorous set of symbols or building blocks ... it is
important that they are fully understood in isolation
before describing how they are linked in
methodological terms for model construction and

analysis — [Wolstenholme 1990]

The motivation for this chapter is to show how components of software
development processes may be identified and modelled using System Dynamics.
e To develop models of software processes using process components

e To build incremental models exploring the effects of feedback

relationships.

e To show that Systems Dynamics can be used in a systematic way to
examine the causes of software process behaviour and predict the behaviour

of those processes.

In this investigation I have used the controlled experimental method described by

Zelkowitz and Wallace as simulation; modelling the behaviour of the environment
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for certain variables and using the results to examine the validity of an hypothesis

[Zelkowitz and Wallace 1997].

6.1 Components

The term ‘component’ has been used to describe both elements of software and
also of processes but we should examine what it means to use the term. In
software terms component has been used to describe anything from a GUI button
to a complete system, without any agreement on the meaning of the term except in
an individual context (for example Microsoft COM). The looseness of the
definition varies from ‘a useful package’ to a fully standardised plug in part.
However, for the term to become useful, it is important that we have a definition
that is well understood and is not limited to the context of a particular
implementation architecture. Recent discussions within the object oriented
community have focussed on this issue and this definition of component has
emerged from the work of Szyperski [Szyperski, Gruntz and Murer 2002]. A

component is:
e A unit of functionality
e A unit of deployment and replacement

o Composable

e Usable by other software elements whose authors are unknown to the

component’s authors
e A software element conforming to a defined component standard

e All of these, but used as black box, targeted at execution (whether as

binary, byte or source code.

An alternative view suggested by Bertrand Meyer [Meyer 2000] is similar, but
adds criteria for specifications of functionality and dependencies and leaves out the

criteria for conformance to a defined component standard:
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e May be used by other software elements (clients)

e May be used by clients without the intervention of the component's

developers

e Includes a specification of all dependencies (hardware and software

platform, versions, other components)
e Includes a precise specification of the functionalities it offers
o Is usable on the sole basis of that specification
e Is composable with other components
e Can be integrated into a system quickly and smoothly.

A component defined from these viewpoints, has a specification, has an
implementation, can be composed, can be deployed and may conform to a
standard. For a component to be useful and composable, the following
requirements can be considered to be essential; to be reusable, extendable,
evolvable and reliable. We should also think about how components defined in
this way should be used in order to produce successful systems. When we
compose components, ‘plugging them together’, they are only pluggable to the
extent that they satisfy the specifications of what we plug them into; just because it
is possible connect a component to our system doesn’t mean that it makes sense to

do so. The completed system must satisfy its requirements [Henderson 1998].

What can we take from this into the area of software processes and, further than
that, into software process modelling? We have already discussed that in the same
way that software systems are evolutionary, software processes are evolutionary
systems in their own right. We want our processes to be reusable, evolvable,
reliable and extendable as described in Watts Humphrey’s process improvement

model for U, W and A processes [Humphrey 1990].

If we consider our processes in component terms, we can evolve processes by

evolving individual components, by adding new components or replacing
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components and we can change how we connect the process components together,

for example, connecting them in series or in parallel or a combination of these .

In order to improve the way we implement process evolution, we use modelling
and simulation to understand and predict the behaviour of processes and process
improvements. In the same way that our product can be structured into
components, giving us benefits of reusability and an evolutionary capability, our
process model may be similarly structured, so that we can model components and

then compose the components to make the process model.

6.2 An example of using components to build a

Simple Process

In this set of models we will describe a simple process component that produces
software development products. These may be lines of code, components from
which larger components will be built or any other software deliverable. We will

build the simplest possible process that can be justified.

We will show how the model evolved and how each structure of the model can be

justified in terms of the observed behaviour.

6.2.1 Simple 1

The first model of a process, Simple 1 Figure 66, shows a stock of software
components that is increased by an activity, input rate, and depleted by an activity,
output rate. This models a scenario that an implementer receives a stock of
components at the input rate, works on the components at the output rate; thus
depleting the stock of components to be worked on. In this case there is a limitless

supply of components that can be received; designated by the cloud.
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SZ
3 T — corrpgnents Z >3
mput rate 0 output rate 0

Figure 66. Simple 1, modelled in Systems Dynamics

If the input rate equals the output rate, then the stock of software components will
maintain its initial level, in a steady state. If the input rate exceeds the output rate,
then the level of components will grow. If the output rate exceeds the input rate,

the stock decreases. (Figure 67)

Graph for components

400

-400

0 25 50 7S5 100
Time (Month)

mput rate = output rate
mput rate > output rate
mput rate< output rate

Figure 67. Graph of software components stock from Simple 1
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If this simple process were to be considered as a process component, one of the
properties that we would want from our component is composability; we should be
able to connect one simple component to another, either another simple component
or any other process component from our defined set. Simple 1 does not provide
easy composition; For example, in a serial composition, an output rate would have
to be connected to input rate, which is not possible without an intervening stock.

(Figure 68).

Q#bcomonenm 00 X -3 X » COH’DSI(I)CUTS 0

mput rate 0 0 output rate 0 0 nputrate 0 00 output rate 0 0 0

Figure 68. Serial composition of two simple 1 process components

6.2.2 Simple 2

The second simple model, Figure 69, shows another interpretation of the
development process. We have a stock of software components that we must
transform by an activity, work rate into a stock of finished components, finished.
The software components might be requirements that we must transform into

component build plans, or components to be assembled. This is a conserved flow.
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components 5 B> finished
work rate

Figure 69. Simple 2 modelled in Systems Dynamics

The following graph, Figure 70, shows the effects on components and finished
components when we simulate the model with an initial stock of 100 components
and a work rate of transforming 2 components for each tick of time, t. After time,
t=50 all of the components have been transformed, and the stock of finished
components, finished = 100. (The modelling tool allows stocks to be come
negative, unless explicitly prevented from doing so, hence the continuing growth

of finished components after t =50).

Graph for components and finished components

200
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components : simple2-1
finished : simple2-1

Figure 70. Simple 2, graph of component and finished components

As a process component, Simple 2 does not provide easy composition. If we wish
to compose simple 2 process component instances in series, we must connect two

stocks together, finished 2 and components 3; this is not possible without some
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intervening structure, for example, a flow. Inserting an additional flow to connect
the output stock of one software component to the input stock of the other would
mean that the composed model was not the same as the two process components

added together.

6.2.3 Simple 3

We want our process component to be the simplest unit that structurally represents
a development process and that will be composable and reusable. Feedback from
comparisons of Simple 1 and Simple 2, suggests that the component model must be
evolved further in order to achieve a closer correspondence to the simple

development process.

Simple 1 has two flows, increasing software components (input rate) and
decreasing software components (output rate), corresponding to work activities.
Simple 2 has only one flow, corresponding to doing work, which decreases the
stock of work to do. The Simple 2 work flow is a closer conceptual representation

of the simple process than Simple 1.

Simple 1 has one stock, corresponding to software components. Simple 2 has two
stocks; the software components that are to be built from and the components that
are produced by the work activity. Simple 2 appears to be a plausible conceptual
representation of the simple process, but in our simple process, we have a stock of
software components that must be transformed by the work activity; in a series of
simple process components, the finished software components become the stock of
work to do for the successor simple process. This indicates that only one stock is

necessary to represent the simple process.
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components o -3
work rate

Figure 71. Simple 3 modelled in Systems Dynamics

Simple 3 (Figure 71 ) represents the simple process as a stock of software

components that must be built from and the work activity that transforms the

components into a product. The finished product is not represented as a stock but

as a cloud, or sink. Simulation of Simple 3 shows the stock of components

decreasing by the work rate at each tick of time as the product is made, Figure 72.

Graph for components

100
\\\
N
50
N
0
0 20 40 60 80 100
Time (Month)
components : simple3-1 Sem—— components

Figure 72. Simple 3 simulation of components
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6.2.4 Composing Simple 3 Components

We can create a process in a systematic way easily, by composing Simple 3
process components. In the following example, Figure 73 we have a process

composed of two Simple 3 process components connected serially.

The second process structure has an identical structure to the component; the stock
from the second process component replacing the ‘cloud’ sink from the first
component. No process structure has to be added or removed. We can continue to

add further process components in the same way.

components 2 > comp;)nents < >3
0 work rate 0 work rate 1

Figure 73. Simple 4, Two Simple 3 process components connected in series

6.3 Experiments in building systems development

process models using components

In the following two sections of this chapter we will describe two experiments in
building Systems Dynamics models of development processes composed of simple

repeating process structures

e The first experiment investigates differences in perceived against predicted

rates of completion of a product.

e The second experiment investigates the effect of reworking faulty software

components on project schedule.
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The two experiments investigate the effects of process behaviour on the

completion of a product.

We will show how the behaviours may be explained by modelling the process in

Systems Dynamics.

6.4 Experiment 1, perceived against predicted rates

of product completion

One of the difficulties of predicting development schedules is reporting progress
against plan. In order to give visibility into a process, we use product and process
measurements (for example, time and resource) to report actual progress against a
schedule for completion. We may adopt measures for units of product, for
example, KLLOC (thousands of lines of code), number of components, or other
deliverable work products. We may adopt other measures for process, time in days

or months, resource in number of people allocated to the project.

The simplest completion behaviour is a straight line graph for completion of type,
y = mx +c where y is product size, x is project time and m effort. A more
sophisticated plan may expect the behaviour to be an asymptotic approach to

completion [Lehman and Ramil 2002].

The usual project management technique we use to provide visibility of progress is
to break work down into units and report on the completion of these units of work.
By doing so, we can improve our measurement of progress, but however fine the
granularity of the work break down structure, this means that we will still under
report the actual amount of work complete at any moment. This is because
however well structured the reporting method, it is difficult to evaluate
completeness of work and what work should be reported against progress towards
product completion. There will always be some work units that are complete, some
in a partial state of completion and some that have not been started at any moment

that we choose to report. At each reporting milestone, the tendency is to report
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only completed work to be passed on to the next stage in the process. This has the

effect of

e under reporting progress towards completion

e under reporting work done

e overstating effort consumed by reported complete work
e lowering perceived productivity.

By the end of all stages in the process, all work is complete, but intermediate

reports of progress and effort are inaccurate.

In a process with 4 stages and five reporting mile stones, we might expect that at
the first milestone, the product will be 25% complete, at the second, 50% complete

and so on, until the final stage when the product will be 100% complete.

Earlier in this thesis in Chapter 4, we described the Cellular Manufacturing Process
Model, (CMPM) where the work of a production cell is to assemble software
components into a product, ‘gluing components together’. This work includes
producing build plans, unit and integration testing and delivery. At each reporting
period, some components may be complete; other components may be partially
assembled and may range from 0% to 99% completeness. If only complete
components are reported, partially assembled products which have consumed effort

will not be counted.

Work units may be partially complete because we have not yet expended sufficient
effort to complete them. The work on components may not be serial; we do some
work towards a number of components, all of them partially completed. We have
concurrent completion of components, but a serial model of reporting. Because of
the difficulty of counting completeness, as an alternative process measure, we may

count resource applied for completion.
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In reality we are measuring what can be passed on to the next stage, or effort

expended, rather than measuring the work completion.

We will show how this behaviour may be modelled in Systems Dynamics using the
systematic, evolutionary approach already described, but also how the process may

be modelled by composing identical process components.

Let us examine a software development process with a number of stages; at least
two and possibly many. The work at each stage may be different. In the first stage
we may be gathering requirements, in the second designing a build plan. In the
third assembling software components and so on until the product is ready to be
shipped. Or the work at each stage may be the same, each corresponding to an

evolution of a product, or component.

The first task is to identify a simple process component structure for a software
development process with several reporting mile stones. If we abstract from the
specific activities carried out and artefacts produced, we have a process that at each
stage, some units of work are received; the stage completes its part of the work on
those units, and hands on the work to the next stage. We can describe this as a

simple process component repeated for each stage in the process.

We will describe how the process component was evolved and used to build
processes with different numbers of stages and reporting milestones and how these

models were used to explore perceived progress behaviour.

6.4.1 Perceived Progress Model 1

The first model shows an abstract representation of the process modelled in
Systems Dynamics, Figure 74. The model abstracts from separate process stages
with reporting milestones to a single stage with simple stocks of work items and

activities that increase or deplete them.
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done?

final Size,N

conponents > 03
complete components

Figure 74. Systems Dynamics model of abstract process

In this example, the process has a stock of raw software components to be
assembled. Work activities produce an item of completed work and drain the stock
of work to be done. An abstract view of the process is that the work activity,
complete components, builds our product from a stock of software components.
The process has a goal seeking behaviour; the process stops when the product has

reached its final size, N.

As we are interested in qualitative behaviour, we may choose arbitrary values for
the variables and constants in the model for simulation purposes. In this case,
simulating the model with an initial stock of 100 components and a work rate of 2
components per tick of time shows the behaviour of components over time is a
straight line, Figure 75. At the end of time T = 50 weeks, all of the components
have been completed. If we were to impose a reporting milestone at t =25 weeks,
50 components would be complete, and 50 components would be remain to be

completed.
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Graph for components
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Figure 75. Graph showing sofiware component completion from simulation of abstract

model

6.4.2 Perceived Progress Model 2

The first model, a single process component, shows only the stock of work items to
be built from; the work activity depletes the stock of software components at each
tick of time but the model does not show completed products. The second model is
an evolution to identify stocks of completed product, equivalent to a milestone.

We could just add a stock, finished, of completed software components to the work

activity in ad-hoc manner, as shown in Figure 76.

A simulation of the ad-hoc model gives the expected result that the stock of
completed components increases at the same rate that the stock of work to be built
from decreases, Figure 77. When the stock of work to be done is empty, at time T,
all of the work items have been transformed and the stock of completed work has

reached its final size.
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components Z B finished
work rate

Figure 76. abstract model with ad-hoc completion milestone

Graph for components and finished components
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Figure 77. Graph of completed software components from ad-hoc model simulation

Whilst this model corresponds to the expected behaviour, the model does not
repeat the process structure, and therefore does not fulfil our criteria for modelling

in a systematic way, using repeated components of models.

The second abstract model shows a second milestone added to the model in a
systematic manner, Figure 78. The second milestone has an identical structure to
the first process component. The components are composed serially together; the

stock from the second process component replacing the ‘cloud’ sink from the first
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component. Milestone 2 represents the completed product from the complete
components activity. The product is finished when all of the software components
have been transformed, and milestone 2 has reached its final size, N 0. Composing
the two identical structures, also adds another work activity, complete components
2. In our process, there is no second work activity; rather than removing the
activity, as this would mean that our model is no longer composed of identical

structures, we will set the activity flow rate to zero.

done? ™ final Size,N done2? N
/ final Size,N 0
components > - milestone 2 % .
complete components conplete components 2

Figure 78. Systems Dynamic model composed of two identical process structures

We can show that this has the same effect as adding a finished component stock to
the complete components activity by simulating both models and comparing the

results from the two versions. The simulations show that the stocks of work to be
completed and finished work have the same behaviour as shown in Figure 77 and

Figure 79 (there is a rounding difference in the stock size).
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Graph for components and milestone 2

200
149.95
99.9 o
\\\ //
49.85 <
e // \\\
-0.2 B
0 25 50 79 100
Time (Week)
milestone 2 : Current T components
components : Current S components

Figure 79. Graph of software component completion from simulating a two

component abstract process

We now have a mechanism for making a process with any number of reporting
milestones to show an increasingly fine granularity, using simple repeating process
components, serially composed. The process can be stopped by setting the final

work activity rate to zero.

6.4.3 Perceived Progress Model 3

The process described so far, models the perception of a perfect process; progress
towards the completed product is directly proportional to the work activity applied

to the work to be done, and all of the work is reported.

The behaviour that we wish to examine is that the completed work reported at each

milestone is understated.
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This may be described as a delay in reporting, because eventually all work will be
reported as complete or it may be described as proportionate effort, where the
effort has been applied proportionately to all of the components to be built from,

rather than each product in turn.

Each process stage has the characteristic that as the work nears completion it
becomes easier to complete software components and send them on to the next

stage.

done?
final Size,N

components i 03

\Dletecornp o

Target production

Figure 80. Evolved Systems Dynamics abstract model 3 with feedback

We can evolve our simple abstract model to model the perceived rate of
component completion instead of a predicted linear completion by adding feedback
from the software components remaining to be built to the work completion
activity, Figure 80. This indicates that the work activity is applied proportionately
to the work that is required to be done. This is shown by the feedback loop from

the stock of work to be done, components, to the complete components activity.

The complete components work activity now relates to the perceived completion

rate.
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Examining qualitative results from simulating the abstract process, Figure 81,
shows us that the complete components activity has a graph with an asymptotic

approach to a zero rate.

Graph for complete components
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Figure 81, graph for complete components activity from simulation of model 3

6.4.4 Perceived Progress Model 4

As in the previous example of composition, we may refine the abstract process to
show completion of software components by repeating the abstract process
component structure. We add the second milestone by replacing the output ‘cloud’
or sink of the work activity, complete components, with an identical process
component, Figure 82. The process finishes at the second process component; the
work is not passed on to another stage, so we may set the work activity of the
second process component complete components 2 to zero. The model now has the
structure of a process that has one stage with a start milestone and a completion

milestone.
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final Size,N
-~ = .
done 22 final Size, N2
/done‘?
components \\i = milestone 2 % 3
Target production Target production 2

Figure 82. Systems Dynamics model of one stage process composed of two process

components

When we simulate the process, the graph for perceived completion of product at
milestone 2 (Figure 83) now shows an asymptotic approach to the final size, rather

than a straight line. Components are reported as complete later.
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Graph for components and milestone 2
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Figure 83. Graph of simulation results from one stage process composed from two

process components

We can add more reporting milestones in the same way, replacing the terminal
work activity cloud with another process structure, and setting the final work
activity rate to zero. In this way we can build processes with, 2, 3, 4, and 5
milestones, equating to 1, 2, 3, and 4 stage processes. As a further evolution, now
that we have conserved flows, unnecessary done? tests have been removed from
the models, and the final zero rate activity has been hidden. Figure 84 shows four
process models built in this way from identical process components, with

increasing numbers of stages and reporting milestones.
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Figure 84. Systems Dynamic models of 1, 2, 3, and 4 stage processes composed of

process components

Simulating each process allows us to compare the behaviour at the completion of
each process and also at intermediate reporting milestones. A comparison of the

behaviour of each model shows S shaped growth of the completed product.
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Graph for perceived component completion
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Figure 85. Graph of component completion for four processes with different numbers

of milestones

The graph, Figure 85, shows results from simulating four processes:

e grey line (milestone2000), shows a process with one completion milestone
e blue line ( milestone 300) shows a process with two completion milestones

e green line ( milestone 40) shows a process with three completion

milestones
e red line ( milestone 5) shows a process with four completion milestones

Each graph shows the growth of the final milestone in each of the four processes.
Each graph shows an S shaped completed components growth. The greater the

number of milestones, the more pronounced the S-shape. As the number of
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milestones in the process increases, the early deflection away from the expected

straight line graph increases. The first part of each S shape shows a lower rate of

component completion, as more components are only partially complete or not yet

started, and fewer can be passed to the next stage. As the work activity continues

over time, more components are complete and can be passed to the next stage,

showing an increased rate of completion.

If we examine one process in detail, taking for our example, a process with four

stages and five milestones. The expected completion rate is shown by the green

graph, Figure 86; the perceived completion rate is shown by the red graph. The

lower perceived rate of completion shown by the deflection away from the

predicted line can be clearly seen.

100
100

50
50

o O

milestone 5 : Current
milestone 5 : 15 simple

components
components

components
components

components
components

Graph for milestone 5

T
e
e
J // A
7/
AV
Y
0 125 250 375 500
Time (Week)
components
components

Figure 86. Graph of perceived and expected component completion for a five

milestone process

The growth and depletion behaviour of individual stocks, Figure 87, shows how

software components are moving through the milestones of the process.
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Graph for individual milestones, 5 milestone process
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Figure 87. Graph showing components moving through 5 milestones

The behaviour shows the perception that at the beginning of a project there is less
than expected progress to be seen, at the end of the project, the approach to
completion is asymptotic. We have demonstrated that this behaviour can been
replicated by a systems dynamic model composed of simple, repeated process

structures.

6.5 Experiment on Rework

The second experiment described in this chapter investigates effects of rework on

the completion of a product.

In the first experiment we examined one of the difficulties of predicting
development schedules in reporting progress against plan. One of the other
difficulties is predicting how much effort will be required to complete a work unit
and the subsequent effect on schedule when some of work products will be

reworked, incurring additional effort expenditure. The amount of rework required
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may be assessed as the required quality of the software component, and also as one

of the factors of the productivity of the process

As described in the previous experiment, the simplest completion behaviour is a
straight line graph for completion of type, y = mx + ¢ where y is product size, x is
project time and m effort. A more sophisticated plan may expect the behaviour to

be y = mxb + ¢ where b is a rework factor.

One project management technique we use to provide visibility of progress is to
break work down into units and report on the effort expended on the completion of
these units of work. Because it is difficult to assess, often the rework element of
effort expenditure is not visible in product and process reporting measures. How
much of the effort expended is attributable to new work and how much has been
expended on reworking is difficult to evaluate. If all of the effort is attributed new
work, the completeness of the product and progress towards schedule completion

will be overstated. The likely effect is schedule and cost overrun.

We will examine a development process in which there are successive stages; at
least two and possibly many. In each stage some software components are
received, transformed by the work activities of the stage and passed as products to
the downstream, successor stage for the next work activity. The work at each stage
may be different. In the first stage we may be gathering requirements, in the
second designing a build plan. In the third, assembling software components and so
on until the product is ready to be shipped. Or the work at each stage may be the
same, each corresponding to an evolution of a product, or component. The process
is not perfect and produces a product that contains errors that must be discovered

and corrected.

We will assume that each stage some errors escape to be discovered by the
downstream stage for which the producer is a supplier. The downstream consumer
stage is unable to complete the work on these faulty components and cannot

correct the defective component itself, but must return the component to the
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producer stage for reworking. It is also possible that the faulty unit is successively

referred back to earlier stages until the error can be fixed.

The products of software development processes are unlike other manufactured
products, the rework is done by the same process that carried out the original work
process and is not error free; we may not only fail to fix the original error but even

introduce new errors.

We will show that the behaviour may be explained by modelling the process in

Systems Dynamics using simple repeated process structures.

The first task is to identify a simple component structure for the process, by

abstracting to the simplest possible structure that will model the behaviour.

If we abstract from the specific activities carried out and artefacts produced, we
have a process that at each stage, some units of work are received; the stage detects
errors in the some work units and returns them to the supplier stage for rework.
The stage completes its part of the work on those units, and hands on the work to
the next client stage. We can describe this as a simple process component repeated

for each stage in the process.

6.5.1 Rework Model 1

The first model shows a simple, abstract representation of a development process
with rework, modelled in Systems Dynamics, Figure 88. The model abstracts from
the separate process stages and represents the process as a single stage with simple
stocks of work and the activities that increase and deplete them. We will represent
the work to be completed by the process by the stock, fasks and show the
completed work as the stock, tasks 2. The work that transforms tasks into tasks 2
1s modelled as the work activity complete tasks. We will represent the process
activity that discovers faulty work as a flow, return bad work from the completed
work, tasks 2 back to work to be completed, tasks. The proportion of completed

work returned by the refurn bad work activity is determined by the constant,
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percentage bad work. Thus the stock of work to be done is depleted by the work
activity and increased by the flow of returned bad work. Conversely, the stock of
completed work is increased by the complete tasks activity and depleted by the

return bad work activity.

percentage bad work

AV4
AN

return bad work

tasks Z P tasks 2

conplete tasks

Figure 88. Abstract development process with rework

The abstract model in this experiment does not provide an easily composable
process structure. If we were to build a refinement of the abstract model by adding
a second identical structure, we would need to connect two stocks together, which
is not possible without an intervening flow. However as the stock of completed
work, tasks 2, is the stock of work to be completed by the successor stage; the
process structure may be represented with a single stock. A better abstraction of
the process model shows the process with a stock of work to be completed,
components, that is depleted by work to complete tasks and by work to discover

and return defective work, Figure 89.
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percentage bad work
return defective work
components >z 03
conplete tasks

Figure 89. Abstract process component

The model is an evolution of the same simple, abstract process component
described in the first experiment, Figure 89, shown here for comparison. In the
case of the rework component, there is no structure for stopping the process at a

target size, Figure 90.

done?

final Size,N

components X L ]
complete components

Figure 90. Abstract simple process component modelled Systems Dynamics
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6.5.2 Rework Model 2, abstract single stage model composed of
two process components

We can remodel the single stage abstract process using two process components
composed together, Figure 91. We add the second milestone by replacing the
output ‘cloud’ or sink of the work activity, complete tasks, from the first milestone
with an identical process structure. The return defective work 0 activity cloud of
the second milestone is replaced by the stock of work components to be completed
in the first process structure. The process finishes at the second milestone; the
work is not passed on to another stage, so we may set the complete tasks 0 activity
of the second process component to zero. Similarly, the first process component

has no preceding milestone so we may set its return defective work activity to zero.

percentage bad work percentage bad work 0
Q‘ pAY l_\.
return defective work ﬁ return defective work 0
components = > conpgnents = i3
complete tasks conplete tasks 0

Figure 91. Systems Dynamic Model composed of two rework components

The model now has the structure of a process that has one stage with a start
milestone and a completion milestone. The single stage makes both good and

defective work, and has a process for discovering and reworking defective work.

We can show that the two versions of the abstract model have equivalent behaviour
by simulating both models with the same set up variables and comparing the

results. The simulations show that the stocks of work to be completed and finished
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work have the same behaviour as shown in Figure 92 and Figure 93. Both have an

asymptotic depletion of the stock of software components to be completed and an

asymptotic increase in completed components

Graph for tasks 2
600 tasks L
1,000  tasks &
300 tasks \\
500 tasks \\.\
0 tasks
0 tasks
0 25 50 75 100
Time (Month)
tasks 2 : rework 3 tasks
tasks : rework 3 tasks

Figure 92. Simulation results from the first version of the abstract model
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Graph for components
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Figure 93. Simulation of abstract process composed to two process components

The abstract model composed of identical process components and the first

abstraction of the process are in good correspondence.

6.5.3 Rework Model 3

We can add more reporting milestones in the same way, replacing the terminal

work activity cloud with another process component, setting the final work activity

rate to zero, and connecting the defective work return activity to the preceding

milestone stock of work to be done. In this way we can build processes with, 2, 3,

4, and 5 milestones, equating to 1, 2, 3, and 4 stage processes. Figure 94 shows a

model of three stage process with four milestones built in this way from identical

components. As in the models from the previous experiment, we have hidden the

zero rate flows.
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percentage bad work 1 percentage bad work 2 percentage bad work 3
LN X SZ SZ
AN [AY
return bad work 1 return bad work 2 return bad work 3
)
task 1 v »  task 2 > P task 3 > - task 4
corrplete task| conplete task 2 complete task 3

Figure 94. Systems Dynamics model of a three stage, four milestone rework process

6.5.4 Simulating rework model

We can simulate the model to show the effects of a range of different rework rates,

but keeping the numbers of tasks and task completion work rates the same.

e set the same for each stage, at 0% and 10 %.

o set differently for each stage in a simulation, increasing from 5% to 20%

and decreasing from 20% to 5 %

6.5.5 Simulation 1, 0% rework

The first simulation, Figure 95 shows that when the rework rate is zero for all
stages in the process, the model behaves exactly as the simple model described in
the previous experiment Figure 78, Figure 79. The stock of completed software
components increases at the same rate that the stock of work to be built from
decreases. When the stock of work to be done is empty, at time T, all of the work
items have been transformed and the stock of completed work has reached its final

size.
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Graph for tasks,zero rework
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Figure 95. Simulation 1, graph of work to be completed and completed work with zero

rework

6.5.6 Simulation 2, Rework at 10%

Figure 96, shows the results from simulating the model with 10% rework rate for

each stage. The final stock shows an asymptotic approach to completion whilst

intermediate stocks show S-shaped growth behaviour. The time taken to complete

production increases.
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Graph for tasks, stable rework percentage
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Figure 96. Simulation 2, graph of work to be completed and completed work with 10%

rework

6.5.7 Simulation 4, decreasing and increasing rework

Figure 97, shows the behaviour of stocks of work tasks when rework percentages
decrease throughout the process, starting at a rework rate of 20% and the final
stage has a rework rate of 5%. This is analogous to a process where faults are
discovered early in the process, resulting in lower rework requirements later in the
process. The final stage again shows an asymptotic approach to the final size and
intermediate stages show S-shaped growth patterns, similar to those shapes seen in

Figure 85.
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Graph for tasks rework decreasing
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Figure 97. Simulation 3, graph of work to be completed and completed work with

rework decreasing

Figure 98 shows the results if rework percentages increase during the process,

analogous to a process where faults are detected late in the process.

Graph for tasks rework increasing
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Figure 98. Simulation 4, graph of work to be completed and completed work with

increasing rework
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We may add additional structures, increasing the complexity of the model by, for

example,

e adding a delay to the return of defective stock for rework, representing a

delay in the time for discovering errors
e preventing stocks from going negative.

However, the underlying behaviour remains the same; an asymptotic approach to

final stage production and S-shaped intermediate stage growth.

The simulations show growth in number of software components that are produced
when the process produces faulty work; this is because, reworking a faulty
component creates another component. The process stock counts both the original
faulty component and the reworked component; this reveals that a faulty process
increases the number of components that need to be produced in order to create a
product of fault free components of the target size. This is seen as an increase in
the work required to produce a fault free product. The number of software
components required to achieve a product of size, N is a measure of the efficiency

of the process.

6.6 Conclusions

We have used Systems Dynamics to build models from simple process components
that explore two plausible reasons for a commonly observed process behaviour.
Although both models are ofia staged process, in one model we are examining the
effect of under reporting completed work and in the other, the effects of reworking

faulty work units.

The process models are simplistic, and qualitative; for example in the rework
model we have made arbitrary choices for the rates of defective work, and have
not differentiated between error rates for reworked software components and new

work.
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In both cases simulation of the models produces a behaviour that shows an
asymptotic approach to the completion of growth targets, an S- shaped growth

pattern, consistent with our observed process behaviour.

Using simple process components to build a model of our processes we find that

we can find two explanations that reproduce our observed real world behaviour

6.6.1 When our real world project exhibits this behaviour

On the basis of these qualitative models, if we believe that our process under
reports progress, we may introduce finer grained reporting structures to improve
our ability to predict completion at each stage and final completion, but if the real
cause is the poor quality of incoming work, the improved reporting structure will
make no improvement to the predictability of the project completion; even worse,

the underlying causes of our predictability problems will remain undetected.

If we believe that the problem is due to quality control, one process improvement
measure we could adopt would be to introduce a new quality assurance
programme. This would increase our project costs for testing and quality control.
But if the real problem is insufficiently fine grained project management and
reporting, we will increase our project costs without improving our project

completion predictability.

Both behaviours have as their fundamental cause under reporting of work done, but
causes of the under reporting are different and lead to different process

improvement solutions.

This shows that in order to underpin process improvements with modelling and
simulation tools we need to have a better understanding of process component
behaviour in the domain of software development otherwise process evolution will

have little effect on the outcome of project goals.
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Quantitative Models

Geoff Coyle [Coyle 2000] suggests that qualitative models may be sufficient to
understand the dynamic behaviour of the feedback relationships within the process;
that they are ‘good enough’. However, in his argument for limiting systems
dynamics models to qualitative modes unless there are demonstrable benefits, he
uses results of simulations of models to investigate their flaws and quantification of
the soft variables used. Without an attempt at quantification, the dynamics of the

systems are difficult to understand, and the model cannot be validated.

This suggests that we should examine how far should we go in terms of

quantification; what is good enough?

In Chapter 4, we showed a Systems Dynamics model of CMPM, the Cellular
Manufacturing Process Model, developed in an ad-hoc manner. The model was
simulated using subjectively derived data, including ‘soft’ variables such as
productivity. The ad-hoc CMPM model appears to reproduce some, but not all of

the observed behaviour of the real world process.

Whilst this model is useful for exploring the behaviour of the real life system, and
increasing understanding of the feedback relationships causing observed
behaviour, the model needs to be validated against data from the real world
process. The model cannot be used as a tool to predict the behaviour of the real

world process unless the behaviour of the model and the real world are in good
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correspondence, as we demonstrated in Chapter 5, Evolutionary Model Building.
In this set of models we had high visibility into the modelled process and a means
of capturing data from Monte Carlo simulations, enabling us to have confidence in

the correspondence between the process and the Systems Dynamics model.

However, quantification in the real world is difficult. Coyle describes Systems
Dynamics models that have 38,000 variables; clearly quantification of such models
would be both expensive and difficult, and one would question how the
quantitative data could be collected or evaluated in the case of soft variables.

Even if we avoid producing over complicated models, collecting data to support

quantification of our models is difficult.

7.1 Ethnography and Quantitative Data.

We have quantitative data supplied for an investigation of CMPM, collected from a
systems integration project covering a period of fifteen months [ICL 1999]. The
first twelve months of quantitative data was a retrospective re-interpretation of
historical data captured for a project reporting system based on a different cost and
schedule model. The quantitative data is not source data, but an interpretation of
source data in terms of the requirements of the new process model, made by
project staff with expert knowledge of the data domain. Interpretation requires not
only an understanding of what the source data represents and how its data capture
system imposes a view of the data, but also an understanding of the model
underlying the new data requirements. The final three months of data were

interpreted specifically in CMPM format.

The historical data was presented in three different interpretations derived by the
organisation from their time recording; the interpretation process was prone to

transcription error.
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There may be other constraints that affect the quality or fitness for purpose of the
interpreted data:

o Confidentiality of commercial data

e Gaps in source data, a mismatch between what has been captured

historically and what the new model for the data requires
e How much effort has been made available to interpret the data

e The perceived value that the organisation places on the purposes of the data

use
e Perceived value of the new model for the data

e Personal motivations, resource contention, strength of organisational

loyalty
e Authority within the organisation to require access to data.

The sociological theory, Ethnomethodology [Garfinkel 1967] may provide us with
an explanation and understanding of how data is interpreted in this way. The theory
suggests that individuals construct a framework of order in a social world, which in
this case is working in a systems development organisation, by a psychological
process called the ‘documentary method’. An individual will attempt to organise
experiences into a coherent pattern by selecting certain facts from a social situation
which seem to conform to a pattern, and then using the pattern to make sense of the
facts. An established pattern will be used as a framework for interpreting new
facts. From this ethnomethodological viewpoint; the data interpreter will attempt
to make sense of new facts and requirements from the research investigation into
the new process model (for example, CMPM) within a framework of their existing
experience of process models and development practices within their organisation.
They will interpret the data from the definitions of the data and from how they

believe the interpreted data will be used by imposing a pattern from their
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experience and their knowledge of the organisational and the data domain.
[Rodden, Rouncefield, Sommerville and Viller 2000] This will affect

e What is selected

e What is not selected

e How the source is interpreted using internal project knowledge to fit the

new data model
e Effort applied to accuracy.

Using an ethnomethodological insight, we might suggest the different viewpoints
from which two experts within the investigation might apply the documentary

method in order to interpret data to satisfy the requirements of the investigation.

Domain expert,
e Higher organisational loyalty
e Resource available constrained
e Higher domain and existing data model knowledge
e Lower knowledge of new data model
e Lower identification with new model and purposes of the new model
e Imposes pattern from their own domain experience on new requirements
External process expert,
e Lower organisational loyalty
e High identification with new requirements and model,
e High understanding of new data requirements and purposes for data
e Lower domain understanding

e Imposes pattern of beliefs from data requirements to try to make sense of

sources
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People will impose a pattern from their own domain and experience on ideas and
requests from outside their known experience in order to make sense of them. The

responses to those requests have to be evaluated on that basis.

Understanding the effects of the documentary method on interpretation of source
data is important when evaluating the suitability of data for quantifying systems

dynamic models for validation and prediction.

The data user must find ways of evaluating the data that minimise the effects of
interpretation. Beliefs constructed about results from the data should be based on

an ethnomethodological awareness.

7.2 CMPM Project data

As discussed in Chapter 4, CMPM, the Cellular Manufacturing Process Model
[Chatters, Henderson et al. 1998] proposed by Peter Henderson is an advanced
process strategy based on components that uses concurrency and distribution to
reduce cycle times. (As a reminder, in CMPM, networks of semi-autonomous
producing cells co-operate to produce a complex large-scale system. The model
views development as a manufacturing activity where large scale systems are built
from components, which may be a mixture of self built components, re-used

components from the producers own asset base and from bought in components.)

The organisation collaborating in the investigation provided project data in order to
explore and validate CMPM. The supplied data was derived from the
organisation’s project management reporting system, based on an existing project
process model which records time spent by project staff allocated to a project, less
time spent on holidays, sickness, training etc.. The data is commercially
confidential, so the data was derived from the source data by project staff and

anonymised.
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7.3 Measurements from the process

In Chapter 2 we examined models of the quality of software products in terms of
external attributes desired by the stakeholders in the product (both users and
producers) and internal measures of product and process that indicate the degree to
which the external attributes have been achieved. We also referred to the
Representational Theory of Measurement [Fenton and Pfleeger 1997], which
indicates that the data we use to describe and measure internal attributes must
properly represent attributes of the observed entities and that measurement must be
consistent and preserve the relationship observed between entities. The rules for

consistency in measurement provide a basis for interpreting the data.

In a real process, the measurements need to be simple and either easy to collect or

collected automatically. [Chatters, Henderson et al. 1998],

7.3.1 Time ET, Effort Measures W (raw), and Team size,N

Raw effort is comparatively easy to collect, counted in days worked by a person
assigned to a task. In order to define it, we must first define what we mean by a
day, in CMPM Elapsed Time, E , is calendar days per month less public holidays
and weekends. We must also define which people should be counted as project

staff.
W = (Elapsed Time in days * people assigned to project) — outage days

where outage days are days not spent on task, for example, recorded sickness,

holidays, training

Whilst capturing raw effort data is reasonably easy, capturing effort W, broken
down by work type, (problem solving, testing, building) and allocating the effort to

either products or product lines is much harder.

189



Chapter 7 From Qualitative to Predictive Quantitative Models

7.3.2 Size, S

In Chapter 4, we discussed the problems of achieving representative size
measurements in a COTs integration project. In the third phase of the CMPM
investigation, S was derived from quality independent cost drivers (building
systems, installing products, regression testing, producing project infrastructure,
making glue and in-house components by counting process artefacts, measured in
standard units (SIU’s). This had the benefit that they directly relate to the work
done to integrate a component. The measurement depends on the number of
supplied components, the amount of in-house development, and the number of
incremental builds, not the size of a supplied component. In terms of the
representational theory of measurement, this is a more representative way of
measuring the size of the output component in terms of the work required to
complete it, rather than an internal component dimensions. The problem with this
definition is that if the process artefacts change between projects, the

representativeness would be lost.

This size data was not available in the historical data, but the measures were
defined for the last phase of the investigation. From that point, although they could

not be retrospectively applied, data were collected for ongoing development.

7.3.3 Quality Measures, Q and P

Q is a measure of the quality of supplied components and data is based on internal

and external problems solved in assembly.

What counts as a problem? What problems should be counted? For component
assemblers and integrators, they may perceive their work in ‘gluing’ components
together, as problem solving; therefore problems do not get perceived or
distinguished separately from work. Problems that should be counted may be
pejoratively misperceived as ‘errors’ indicating faulty work. There is a tendency to
avoid counting these, unless they become highly visible by causing an obvious

project delay, or can be attributed elsewhere.
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External problems with suppliers outside the organisational boundary are more
likely to be counted as there will be documentary evidence to support the problem
and blame is not an issue. In the CMPM investigation quality attributes were
estimated as ‘soft’ attributes designed to evaluate the additional project effort
required to compensate for imperfect supplied components. For example, one of

five attributes for Q, attribute A is defined as:
attribute A: The impact of the product and development process characteristics
are fully understood.

Similar attributes were used to estimate P, the quality of the outgoing components.

7.3.4 CMPM Historical data

Historical data from the first 9 months of a systems integration project was used to
redefine cost and schedule results from the existing process model in the context of
a CMPM interpretation, to enable cost and schedule estimation comparisons. [ICL

1999]

The source data was interpreted at CMPM component level and further interpreted
at product version level. Where the source data model didn’t map directly to the
CMPM model, the project staff interpreted the source data using their internal
project knowledge.

The CMPM data model is as follows:

W=f(©QPS)

W = effort; S = size

Q = input quality of supplied components
P = delivered quality of system

Q and P are ‘soft’ variables based on a subjective assessment of component

quality
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The time recording system provides effort, W, data in man days. The project staff
reported the number of errors in externally supplied components, and rated the
supplied components, which supports the measurement of Q. However, there are

no source data for measurements of S.

The historical data gives a count of the number of components in each release, but
the source of the numbers or what they represent is not clear. There are big
variations in effort per component, within the same product and release, so without
further information to establish a representative measure, the number of

components reported in this data cannot be used to calculate Size, S.

However, we can use effort data to represent S by assuming a relationship between

effort, W and size, S.

S =f(W)
The source data has been interpreted into the following CMPM representation
,Table 9. The product has three software components, SPA, SPB and SPC, a
hardware component, HPA which used two versions of hardware x and xx. Each
release of a product version has a systems design component SD, an integration

component IP, and a release management component, RM.

Component releasea |releaseb |releasec |released | releasee
Software

SPA a b

SPB a d

SPC a b c d

Hardware

HPA X X X XX XX
Integration

IPA a b c d

IPB e
Release Management

RMA a b c d

Systems Design

SD a b C d

Table 9. Matrix of components and releases
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The following table, Table 10, shows how project staff allocated effort, W, to
components and releases.

w w w w w Total for

release | release | release | release | release component
Component a b c d e
Software
SPA 548.5 31.2 659.26 1239
SPB 261.5 803.9 1065.4
SPC 217.5 15.1 137. 325.03 694.9
Hardware
HPA 196 16.8 155 53.3 26.7 447.8
Integration
IPA 630 63 250 825.64 1768.8
IPB 766.7 766.7
Release
Management
RM 125 8.4 67.5 27 227.9
Systems
Design
SD 117 17 445 37 215.3
Total W 2095 151 654 273113 | 793.4

Table 10. Matrix of components and releases showing Effort, W in man days

Because the data source is time sheets generated for a different purpose, these are
difficult to interpret for the requirements of CMPM. The data interpreter will
attempt to fit their usual understanding of project data and their organisation into a
new CMPM view, using their judgement of how effort should be allocated. These
judgements include how resource and time should be allocated over a number of
components where the project staff does not differentiate them. For example,
‘Software Project B (SPB) releases a and d, Table 11, shows how the data
interpreter has attempted to resolve apportioning work for each release of the
software, where the project staff probably reported only that they worked on SPB,
note how the first four months of each release have identical effort allocations W
and team size N. The SPB project team may have been seven people for the first

four months.

193



Chapter 7 From Qualitative to Predictive Quantitative Models

W T N
SPBa 01-Aug-97 31-Aug-97 | 57.75 21 3.50
01-Sep-97 30-Sep-97 67 22 3.50
01-Oct-97 31-Oct-97 | 72.25 23 3.50
01-Nov-97 30-Nov-97 64.5 20 3.50
SPBd 01-Aug-97 31-Aug-97 | 567.75 21 3.50
01-Sep-97 30-Sep-97 67 22 3.50
01-Oct-97 31-Oct-97 | 7225 23 3.50
01-Nov-97 30-Nov-97 64.5 20 3.50
01-Dec-97 31-Dec-97 924 21 5.50
01-Jan-98 31-Jan-98 98 21 5.00

Table 11. SPB cell resource allocation

The hardware component, HPA appears to have two versions of hardware, one

used in releases a, b ¢ and d, and the second used in releases d and e, Table 4;

however, the source data does not easily fit a CMPM representation of the product

version. This difficulty is underlined by differences in interpretation of the release

structure between the three versions of the data which cannot be resolved.

The interpreted data shows two integration projects, which attempt to resolve the

mapping of the product versions into a CMPM structure. Where software

components are not shown in releases in the matrix, it is not clear whether they

were not present in the release, or whether they were left out of the data because

assembly effort was not allocated to them (a re-used component and not a new

instance of the component).

‘Consequently, the cells were redefined for the subsequent incremental

releases. A single cell for each incremental release represents the

multidiscipline activities of the integration team. This change... requires only

one category of cell (“systems integration”).’[Chatters, Henderson and Rostron

1999]
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Release a release b release ¢ | release d
Simmer a
Simmer b
Simmer ¢
Simmer d
Simmer e

Table 12. Second interpretation of CMPM structure

The same data reinterpreted into a second view of the CMPM model, Table 12
(there are some discrepancies in the reported effort, W,) shows simmer releases a
and b assimilated as release a. Simmer ¢ becomes release b, simmer d becomes
release ¢ and simmer e becomes release d [Chatters, Henderson et al. 1998]. The
actual and estimated values for W, effort, T, elapsed Time and N team size are

shown, Table 13.

Release W, T, N We Te Ne

Release a 2284 149 28 1320 60 28
Release b 440 84 7.9 576 40 18
Release c 2758 213 15 1512 140 14
Release d 793.4 | 213 4.2 640 140 4.5

Table 13. Second interpretation of source data into CMPM structure

The following data shows values obtained for product releases in the third phase of

the investigation, Table 14.

Release W, T, N We Te N.
Release e 362 148 3 205 87 2.5
Release f 303 125 4 293 82 2.9
Release g* | 2127 221 12 1819 189 12

Table 14. Third phase CMPM data interpretation

e W, is based on a revised estimate as the project had not completed.
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This suggests that in this phase the CMPM process has been abstracted from a

network of producer cells to a single black box cell.

7.4 Relationships between project data and Systems

Dynamics models

As long as we are aware of the inconsistencies between the interpretations, the data
can be used to investigate process and model behaviour, however without
representative size data, it cannot be used to quantitatively validate the Systems

Dynamics models for use as predictive tools.

7.4.1 Ad-hoc Systems Dynamic model of CMPM

We investigated the Stella ad-hoc CMPM model Chapter 4, Figure 27, with
quantitative data values from Table 12 and Table 14. There are problems with
quantification; the model and the CMPM implementation diverged and the model
was not ‘re-synchronised’, or brought back into correspondence with the
implementation, for example, some areas of greatest divergence are input and

output metrics and the definitions of Q and P.

The Systems Dynamics model definition of output quality is based on the number
of defects remaining in the product and its ‘completeness’, whereas the
implementation assesses P by comparison with an output checklist to evaluate
completion of requirements. The implemented CMPM process uses an assessment
of incoming component quality, Q, based on the suppliers ability to supply high
quality components. This soft evaluation is neither used in the CMPM model, nor

is there a variable relating to supplier capability.

There are few data points available for the largest project, release g, Table 14; we
have data points at elapsed time, T =40, T =63 and T = 229 (estimated), limiting
the value of comparisons of completion behaviour. Releases e and f were produced

concurrently; release e has 6 data points and release f (completed one month later)
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has 7. The graph of effort, for releases e (S _rel e), and f (S _rel f), over elapsed
time, produced in Mathcad [Mathcad 1999] is shown below, Figure 99.

400 T

3001

100 —

2 | |
0 50 100 150

Torel e, Tirel £

Figure 99. Graph showing growth of effort for release e and f (S _rel e, Srel f) over

time T

In comparing the two graphs, release e shows an S-shaped completion shape

whereas release f shows an asymptotic completion.

We can examine the correspondence between the Systems Dynamics model and
the CMPM implementation, by comparing the results from simulating the Systems

Dynamics model of CMPM and results from the CMPM implementation.

Initially, we simulate release e using the model calibrated as in Chapter 4, setting

the variables as shown in Table 15.

The resulting simulation (sim 1) Table 16, shows little correspondence in
completion time (schedule); the product is complete and all defects are removed in
48 days. This should ensure a perfect product where P = 1. However, the output

quality from the simulation is P = 0.32.
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Simulation variables Sim1 | Sim2 |Sim3 | Sim 4
Percentage effort for tasks 60 60 60 60
Percentage effort for quality (defect 40 40 40 40
removal

Tasks per man-day 0.7 0.7 0.7 0.7
Defects per man-day 0.3 0.3 0.3 0.3

k 0.32 1 1 1
Defects per task 1 0.1 0.1 0.1

b 0.02 |0.02 |0.003
b_defects 0.05 0.05 0.005
Initial defects 50 50 50 200
Target size (W, release €) 362 362 362 2127
effort (Team size N) 3 3 3 12

Table 15. Simulation initialisation values

For the second and subsequent simulations (sim 2 and sim 3) the System Dynamics

model was changed to weaken the effect of the feedback loop from completed

tasks to task completion, (as the product nears completion, it gets more difficult to

complete) by a factor . Similarly, the feedback loop affecting defect removal was

weakened by a constant b defects

For the third simulation, we changed the graph supporting productivity in the

feedback relationship. The simulations produced schedule completion times with

closer values to the implementation data Figure 100, Figure 101.

In the following table of simulation results, Table 16, the long asymptotic tail of

completion has been truncated at approximately 98% of effort completion.
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simdata | Sim 1 Sim 2 Sim 3 Sim 4
release | T P ol P I P P
S 148 48 | 0.32 | 250 | 0.84 | 150 | 0.94
f 125 34 1 032 139 | 0.97 [113:].0.95
g 221 50 |1 300 | 0.95

Table 16. Table of simulation results

1.00 9
400.00
55.00

ﬁ 1: Quality 2: tasks 2 3: defects
13
2
3

0.50
200.004
30.00

g

0.00 45.00 90.00 135.00 180.00
g =45 Graph 1 (Untitled) Days 09:28 03 Dec 2003

Figure 100. Graph from Systems Dynamics simulation 3 of release e
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ﬁ : Quality 2: tasks 2 3: defects

1.00 =
400.00
50.00

0.50
25.00

\\3

0.00
0.00 s
0.00
0.00 45.00 90.00 135.00 180.00
a =y 5 Graph 1 (Untitled) Days 10:05 03 Dec 2003

Figure 101. Graph from Systems Dynamics simulation 3 of release f

From the simulations for releases e and f, we may believe that the Systems
Dynamics model is now reasonably calibrated for the CMPM implementation.
However, if we simulate implementation data for release g, the feedback factors &
and b defects have to be weakened by a factor of 10 to 0.003 and 0.005, in order to
achieve an estimate of schedule completion corresponding to the implementation

estimate.

CMPM model was created in an ad—hoc, not systematic way, without an
evolutionary process that ensured correspondence with the implementation. When
data from the implementation is used in model, where there are errors, it is difficult

to work out what or where they may be.

7.4.2 Component based Systems Dynamics model used to

investigate Hardware Project, HPA

We used Mathcad and Systems Dynamics [Vensim 1988 -1997] to investigate the
behaviour of the hardware project, HPA as a CMPM cell, Table 10. We examined

the work consumed by the cell over the duration of the project; in this way
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anomalies in the attribution of effort to individual releases could be ignored. Using

Mathcad, we plotted cumulative effort data for each reporting period against time.

248 °% ‘ : ‘ ! '

400 [— —

3001 =l

W_HPA

200 T

100~ il

ALl | | | | |
0 50 100 150 200 250 300

215 T_HPA 255,

Figure 102, Graph of effort (W_HPA) over time (T _HPA)

The project data records five releases of Hardware Project A, a to e. The graph of
effort W_HPA, over time T_HPA, Figure 102, shows an asymptotic approach to
the total effort expenditure, as discussed in previous chapters, however, there is an
unexpected inflection between T = 100 and T = 175. On examining the project
data, this appears to coincide with the start of HPA release d where a new version

of hardware was integrated into the product.

We can investigate the behaviour of HPA using a simple Systems Dynamics model
composed of two components (see Chapter 6). We have little visibility into the

project, so we will abstract the project to show two completion milestones
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milestone I and milestone 2 and one activity, complete components . Milestone 1

represents the initial workload of components to be completed by the cell, and
milestone 2 represents the completed work Figure /03. In this model, we will

assume the relationship of effort, W and components, S, W = fS).

milestone 1

SZ

-

Figure 103. Systems Dynamics Model of the hardware project cell, showing two

milestone abstraction.

Simulating the model with arbitrary values for stocks of components and flows

ZX

\j)rrp;letg components

Target production

milestone 2

gives the expected asymptotic behaviour, (Figure 104), but does not correspond to

the inflexion seen in the actual project data.

202



Chapter 7 From Qualitative to Predictive Quantitative Models

Graph for milestone 2
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Figure 104. Graph of HPA with two completion, milestones

We can simulate the coincidence of the start of HPA release d, where work on the
new version of hardware commenced, by adding another process component to the
process model, Figure /05. The new process component adds a pulse of new
components of work to do into the process at T = 125, as shown in Figure 106.
This represents the additional workload received by the CMPM cell when the new

hardware version was introduced.
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conponents
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complete ciymponents

Target production
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milestone 1

>

Target production 2

Figure 105. Systems Dynamics model with three process components, additional

hardware requirements at T = 125

AN
\cirriete(components 2

milestone 2

Simulating the model, again with arbitrary values for stocks of work and activities,

shows behaviour corresponding to the graph of project data shown in Figure 102.

There is an inflexion in the graph of effort at the point where the additional work

for the new version of hardware is received. The effect on the work behaviour of

the cell is the same as work on a new product with a new set of components to be

integrated. The effort for each version of hardware follows the same asymptotic

behaviour.
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Graph for milestone 2
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Figure 106. Graph of work done, Hardware Project A, modelled in Systems Dynamics

The Systems Dynamics model composed of simple process components has
allowed us to suggest a plausible reason for the observed effort behaviour of the

hardware project cell.
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Chapter 8
Summary, Conclusion and

Future Work

8.1 Summary

We have shown that systems development processes can be described as
evolutionary systems; in the same way that software systems must evolve to meet
new needs, process models must evolve to meet the needs of the developer and the
system domain. Unless steps are taken to evolve the process to meet new needs,
the developer’s satisfaction with the process model declines when the model no
longer meets their need to respond to technological and cultural domain changes in

order to meet market expectation.

In chapter 2 we provided a background for the study. We examined definitions for
software quality models, incorporated as the ISO universal single model. We
discussed the effects and necessity of evolution in software, investigated by
Lehman in the Feast projects [Lehman and Stenning 1996] and Henderson et al. in
the SEBPC project [Henderson 2000]. We suggested that the processes that
develop software were also subject to the evolutionary laws proposed by Lehman;
declining quality (VII) and feedback (VIII). In order for software to evolve
successfully, the processes by which software is developed must also evolve
successfully. Warboys [Warboys, Greenwood et al. 2000] concurs that evolution is
necessary to maintain competitiveness and the ability of an organisation to change

and adapt to new threats and opportunities.

The ISO single universal model includes maintainability as an external attribute of

software quality, however, Lehman’s Laws for Evolutionary Systems and research
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in the SEBPC project suggests that the definition may need to include the ability of

the software to evolve, ‘evolvability’.

We compared software process models from the early life cycle models (Waterfall
and V), to iterative models, (Spiral and Win-Win Spiral) with newer incremental
and iterative models that attempt to free evolutionary growth (Microsoft Synch and

Stabilise, agile methods) and distributed models (Open Source).

We showed that measuring processes enables producers to predict schedule and
effort (COCOMO, COCOCOII and COCOTs) and their ability to produce quality
software (CMM and SPICE).

The measurement models themselves need to evolve, for example COCOMO and
II become less satisfactory as process models evolve to use components, leading to
development of COCOTs. However, they need to evolve further to support the
dynamic control of processes required by higher levels of CMM and SPICE.

We examined Humphrey’s work on the relationships between Universal, World
and Atomic process models and the process improvement model implicit in the
Capability Maturity Model, CMM and SPICE. We showed that process modelling
and simulation support Humphrey’s process improvement model [Humphrey

1990].

In chapter 3, Understanding Process Behaviour using Modelling and Simulation,
we provided a study of the need for modelling to support the understanding of
complex interactions of behaviours found in software processes and described
methods for modelling and simulating them. In the light of our background studies
into evolution and process improvement, and the importance of being able to
understand the dynamics that cause behaviour, we restricted our invéstigation into
those methods that allow feedback to be explicitly modelled in a dynamic

representation.
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The study showed that methods providing a graphical representation of the model
and simulation enable greater understanding of behaviour and better
communication of that understanding. We examined both continuous and discrete
methods of dynamic modelling, showing that at a strategic level, continuous
methods such as Systems Dynamics are most appropriate because they model how
the process structure affects its behaviour and the process outcome, abstracting

from individual entities.

We described how Abdel Hamid and Madnick [Abdel Hamid and Madnick 1991]
used Systems Dynamics successfully to model a software development process
(with a text based modelling representation), and carry out experiments on
different planning, resourcing and quality assurance policies. We described two
extremes in the level of abstraction of behaviour; Abdel Hamid and Madnick
modelled at a low level of detail, concerned that too high an abstraction would
leave out vital aspects of real world behaviour, whereas Wernick and Lehman
[Wernick and Lehman 1998] showed that simpler models enabled understanding

and insight to be retained.

We showed that it is easily possible to over-complicate models in an ad-hoc model

building method so that clarity is lost and the models become impossible to evolve.

Chapter 4, The Cellular Manufacturing Process Model, presents a process
modelling case study of CMPM, proposed by Peter Henderson and investigated at
ICL [Chatters, Henderson et al. 1998]. We used Systems Dynamics to model the
process in an ad-hoc manner, abstracting the model to the activities of completing
component tasks and removing errors. The model showed the interaction between
interdependent goals of cost (effort) and output quality as we vary policies of
resource allocation between activities and process quality, and allowed us to

understand the dynamics of the process.

By simulating the model we could reproduce predictions of effort and quality

growth behaviours of the process. The model had a graphical representation that
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allowed feedback in the process to be investigated and the feedback effects to be
better understood. Through simulation, again with graphical representation, we
were able to demonstrate the relationship between the quality of supplied

components Q, and the output quality of the product P.

The model lacked correspondence with the implementation of CMPM and was not
re-synchronised. As a result, there was a divergence of the metric definitions,
explained in chapter 7. The case study showed the difficulty of retaining model
and implementation synchronisation when the modelling method is ad-hoc, rather

than systematic and designed for evolution.

In chapter 5, Evolutionary Systems Dynamic Model Building, we use evolutionary
model building to investigate behavioural congruence between models of a process
in different paradigms. We used a simple software development process as a case
study and examined the effects of resource allocation policies on the schedule and
quality of the product. The simple process produces software that contains defects;
it has policies that control defect removal activities that depend on the perceived
quality of the software in production. The process was modelled firstly by Monte

Carlo methods and secondly, using Systems Dynamics.

We chose the process because, in process terms, it is relatively simple and yet the
structural dynamics create complex behaviour the outcome of which, in terms of
quality and schedule, is intuitively difficult to predict. The process has simple,
visible activities and policies; it has precisely defined behaviour, we have a formal
description of the system in the form of a model defined by Monte Carlo methods,
and simulating the Monte Carlo model provides quantitative results to validate the

models.

The Monte Carlo model was defined by a set of probabilistic choices describing
the process activities of making code and removing defects, and policies for

choosing between the activities.
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We described systems dynamics models created using an evolutionary modelling
method, where successive models brought closer correspondence to the simple

process.

In this experiment, we described a sequence of five systems dynamics models in
the evolution of the simple process model. As described by Warboys, each new
model was the evolutionary offspring from an earlier model, and was a response to
new requirements (refining the model abstraction), or discovery of non-
conformances [ Warboys, Greenwood et al. 2000]. Graphical representation of the
model and simulation allowed convergence of the simple process and Systems
Dynamics model through qualitative and quantitative comparison, showing the

importance of qualitative and quantitative correspondence.

The final model shows a close behavioural correspondence to the simple process,
assessed by qualitative comparison with the simple process and the Mathcad
Monte Carlo model and also by quantitative comparison, whilst retaining

abstraction and simplicity.

The modelling method follows the improvement model suggested by Humphrey
for process improvement and extended in chapter 2, Figure 13 (model, compare,

feedback, continue from the beginning)

The motivations for Chapter 6, Experiments in Modelling Software Processes
using Components, were to show how components of software processes may be
identified and modelled using Systems Dynamics and how these components may

be used to build process models in a systematic, incremental, evolutionary way.

We conducted two experiments to show how abstract software development
processes composed of simple, repeated components may be modelled and

simulated to investigate their behaviour.

The first experiment examined perceived against predicted rates of product

completion that may cause inappropriate schedule or resource allocation decisions
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in process planning and control. The second experiment investigated the effects of

reworking defective work on the completion of a product.

In each experiment we demonstrated that a simple process component could be
identified, modelled and simulated with arbitrary values. In each case, we used the
simplest possible process component that could be justified. The component was
composed with other components to build process models with repeated process

structures; the resulting models were simulated.

The simulations provided plausible explanations for the observed process
behaviour, in both cases an asymptotic approach to the completion of growth

targets.

We showed that whilst we may build models composed of repeated components, a
better understanding of process component behaviour causality in the software
development domain through quantitative simulation analysis is required before we

may have confidence that the models will enable us to underpin process evolution.

Simple components with well understood behaviour that can be combined to form
a process model will allow process modellers to have confidence about the causes
of observed behaviour and propose process changes that will improve process

outcomes.

In Chapter 7, From Qualitative to Predictive Quantitative Models, we discussed
factors that affect our ability to build predictive quantitative systems dynamic

models, using examples from the CMPM case study.

We found that ethnomethodology may provide an explanation of how frameworks
of order from social world of the software development organisation and the

process designer affect the capture of data for quantitative analysis.
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We showed that understanding the effects of the ethnomethodolgical documentary
method on interpretation of source data is important when evaluating the suitability

of data for quantifying systems dynamic models for validation and prediction.

We showed that quantitative comparison and analysis revealed that the ad-hoc
Systems Dynamics model of CMPM, whilst superficially showing behavioural

correspondence with the CMPM model, diverged from the implementation.

We further showed that we could build a model composed of one of the simple
process components identified in chapter 5 that could explain the product growth

behaviour of the CMPM hardware project cell.

The experiments supported the understanding gained during the work in chapters 5
and 6, that qualitative and quantitative correspondence between the abstract model

needs to be maintained at each evolutionary step.

8.2 Conclusion

In this thesis we have suggested that process designers may reduce the risks and
increase the benefits of introducing new processes by improving their
understanding and prediction of the effects of change. We have suggested that
modelling and simulation allows us to examine and improve our understanding of
the processes that produce software, and further, that the use of modelling and
simulation is essential to achieving the goal of building effective, flexible, and

evolvable processes.

Failure to understand the evolutionary nature of software and to build processes
that enable successful evolution increases the risk that process changes will not

achieve their predicted benefits and make only marginal improvements.

We have shown, through a case study investigating CMPM, that just using
modelling and simulation is not enough to ensure that process improvement

benefits will be achieved. Ad-hoc modelling and lack of synchronisation between
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model and real world behaviour at each evolutionary step may cause failures of

understanding and possible failures of process improvement.

As a means of reducing these risks, we have demonstrated an evolutionary
modelling method that uses quantitative simulation to ensure close correspondence
between the abstract model and the real world behaviour. Secondly,
componentisation allows us to evolve process models in a more dependable way,
by breaking processes down into components that are well understood, with
predictable behaviour. Process designers may be better placed to design flexible
processes that make good use of complex strategies like distribution, concurrency
and feedback if we can develop re-usable process components, with well
understood and predictable behaviour in the software development domain. With
these methods process designersshould be able to avoid producing models that

Nuthman describes as ‘plausible nonsense’. [Nuthman 1994]

We were able to show that we must always be able to answer the question,

‘but what have we modelled?’

8.3 Future work

The future work suggested by this thesis is to:
e identify simple process components in the software development domain,

e validate the process components by quantitative analysis using data from
appropriate domains. The Open Source community may prove to be arich

source of data.

e and investigate component composition. In the experiments on using
components in this thesis, we showed serial composition, repeating
identical process structures, however, in order to support concurrent and
distributed process models, we need to investigate other forms of

composition.
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Appendix1 CMPM Systems Dynamic Model [Stella
1990 - 1998]

defects(t) = defects(t - dt) + (add_defects - remove defects) * dt

INIT defects =0
add_defects = complete tasks 2*defects per task

remove_defects = effort for quality*defects*defects per man day*(1-
undetected _error density)

tasks 2(t) =tasks 2(t - dt) + (complete tasks 2) * dt

INIT tasks 2=0

complete tasks 2 =effort for tasks*(target size 2-
tasks 2)*tasks per man day 2*productivity 2*(1-undetected error density)

undetected errors(t) = undetected errors(t - dt) + (component_error rate) * dt

INIT undetected errors =0

component_error rate = PULSE(2,1,0)

cumulative quality = (tasks 2/target size 2)*(k2/1+defectstundetected errors)
defects per man day=.3

defects per task =1

effort =4

effort for quality = effort*(1-percentage of effort for tasks/100)
effort for tasks = effort*percentage of effort for tasks/100
k=.32

k2 =0.32

percentage of effort for tasks =60

Quality = (tasks 2/target size 2)*k/(1+defects)

target fraction 2 = (tasks 2/target size 2)*100

target size 2 =303

tasks per man day 2=.2

undetected error_density = undetected errors/target size 2

productivity 2 = GRAPH(target fraction 2)
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(0.00, 0.895), (10.0, 0.895), (20.0, 0.9), (30.0, 0.895), (40.0, 0.89), (50.0, 0.895),
(60.0, 0.835), (70.0, 0.76), (80.0, 0.69), (90.0, 0.605), (100, 0.535)
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Appendix 2 Monte Series of Models [Vensim 1988

-1997]
2.1 Monte 3 (Figure 41)

code that's bad=INTEG (

make buggy code,
60)
~ bad units

I

add to code=
35
~ code units/Month

~ |

code= INTEG (
make buggy code+make good code,
200)

~ code unit

|

make buggy code=
0.35
~ bad units/Month

|

make good code=
0.65
~ code unit/Month

~ |
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3k 3k 3k ok ok sk s sk e 3k e ik 3k e i e 3k sfe sk sk sk sk sk sk sk sk sk sk sl sk sk sk skl sk sk sk sk sk sl s sk skosk sl sk sk sk sk sk skok

.Control

sk sk sk sk sk sfe st st sk sfe sk o s s ik e e ofe e sie ofe sfe sl ofe sk ik i sfe ok sk sk sk sk kR sk sk ok s sk sk sk sk sk sk sk sksk skokskok

Simulation Control Paramaters

FINAL TIME = 1200
~ Month

~ The final time for the simulation.

INITIAL TIME =0
~ Month

~ The initial time for the simulation.

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
|
TIME STEP =1
~ Month
~ The time step for the simulation.
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2.2 Monte 4 (Figure 45)
add to code=

IF THEN ELSE("code done?", 0, 0.35)

~ code units/Month

|

make buggy code=
IF THEN ELSE( "code done?", 0, 0.35)
~ bad units/Month

[

"code done?"=
IF THEN ELSE( code>="final code size,N",1,0)

~

|

"final code size,N"=
400

~

~

make good code=
IF THEN ELSE( "code done?", 0, 0.65)
~ code unit/Month

|

code= INTEG (
make buggy code+make good code,
200)

~ code unit
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code that's bad= INTEG (

make buggy code-remove bugs,

25)
~ bad units
~ |
remove bugs=
0.1
~ bad units/Month

~ |

s ske sie sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sfe sk sk sk sk s ske sk sk sk sk sk sk sk sk ok ok 3 ok ok sk sk she sk ki sk sk sk s sk sk sk sk sk

.Control

sk sfe sk sk ok ok sk sk sk s sk sk sk sfe sk sk st sfe sk sk sie s sk ske ske 2k o sk sk sk sk sk ok sk sk ke she sk sk sk sk sk sk sk s sk kst sk sk sk sk sk sk

Simulation Control Paramaters

FINAL TIME =1200
~ Month

~ The final time for the simulation.

INITIAL TIME =0

~ Month
~ The initial time for the simulation.
|
SAVEPER =
TIME STEP
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~ Month
~ The frequency with which output is stored.

TIME STEP =1
~ Month
~ The time step for the simulation.
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2.3 Monte 6 (Figure 48)

make good code=
IF THEN ELSE( "code done?", 0, (0.65-remove bugs))
~ code unit/Month

willingness to tolerate bugs=
IF THEN ELSE( "code done?">=1,0, (IF THEN ELSE (XIDZ (code
that's bad, code, 0)>=0.25, \
0,1)))

remove bugs=
IF THEN ELSE(willingness to tolerate bugs=0, 1,0)
~ bad units/Month

add to code=
IF THEN ELSE ("code done?">=1, 0, 35)
~ code units/Month

make buggy code=
IF THEN ELSE( "code done?'">=1, 0, 0.35)
~ bad units/Month

"code done?'"=
IF THEN ELSE( code>="final code size,N",1,0)

) |

"final code size,N"=
400

code= INTEG (
make buggy code+make good code,
200)
~ code unit

code that's bad= INTEG (
make buggy code-remove bugs,
60)
~ bad units

LR AR SRR R EEEEEREEEEEEREEEESEEEEEREEEREEEEEEEEEESEEEEEEEES

.Control
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Simulation Control Paramaters

FINAL TIME = 600
~ Month
~ The final time for the simulation.

INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
TIME STEP =1

~ Month
~ The time step for the simulation.
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2.4 Monte 8 (Figure 50)
make buggy code=

IF THEN ELSE( "code done?">=1, 0, (0.3+ (0.65*proportion of code
complete)))

~ bad units/Month

l

work done= INTEG (
make good code +make buggy code +remove bugs,
0)
~ work units/Month

|

proportion of code complete=
code/"final code size,N"

~ dmnl

|

make good code=
IF THEN ELSE( "code done?"=1, 0, (1-make buggy code-remove bugs))
~ code unit/Month

I

willingness to tolerate bugs=

IF THEN ELSE( "code done?">=1,0,(IF THEN ELSE(XIDZ(code that's
bad, code, 0)>=0.25, \

0,1)))

remove bugs=
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IF THEN ELSE(willingness to tolerate bugs=0, 1,0)

~ bad units/Month

|

add to code=
IF THEN ELSE("code done?">=1, 0, 35)
~ code units/Month

l

"code done?"=

IF THEN ELSE( code>="final code size,N",1,0)

~

|

"final code size,N"=
400

~

~ |

code= INTEG (
make buggy code+make good code,
200)

~ code unit

|

code that's bad= INTEG (
make buggy code-remove bugs,
60)

~ bad units

I
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sk sk ok sk sk sk sfe s sk sk sfe sk sk sk sk sk sk sk sk sk sk sk sk sfe sk sk sk sk sk ok ok sk ok sk sk st sk sk sk sk sk sle sk ske st sle sk sk sk sk sleske sk ok ok

.Control

sk sk 3k ok sk ok ok ok sk sk ok sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk she sk sk sk sk ok sk sk sk sk ke ste sk s sk sk ke sk skskoske sk skoke sk sk sk k|

Simulation Control Paramaters

FINAL TIME =1200
~ Month

~ The final time for the simulation.

|

INITIAL TIME =0

~ Month
~ The initial time for the simulation.
| .
SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
|
TIME STEP =1
~ Month
~ The time step for the simulation.

2.5 Monte 11 ( Figure 58)
add to code=

IF THEN ELSE("code done?"=1, 0, tendency to make a bug)
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~ code units/Month

|

bb=

bconstant-aa

~ dmnl

~ |
bconstant=

0.85

~ dmnl

|

initial code=
200

~ code unit

|

code that's bad= INTEG (

make buggy code-remove bugs,

initial bugs)

~ bad units

~ I
initial bugs=

60

~ bad units

~ |
aa=

0.3
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tendency to make a bug=

(aa +(bb*proportion of code complete))

~

~ |

make buggy code=
IF THEN ELSE("code done?"=1, 0, tendency to make a bug)
~ bad units/Month
~ I
make good code=
IF THEN ELSE( "code done?"=1, 0, (1-make buggy code-remove bugs))
~ code unit/Month
~ I
P:

(code-code that's bad)/code
~ dmnl

~ |

remove bugs=

IF THEN ELSE("code done?"=1, (1-tendency to make a bug), IF THEN
ELSE(willingness to tolerate bugs\

=0, 1, 0))
~ bad units/Month

l

work done= INTEG (

work,
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0)
~ work units

|

work=

~ work unit/Month

I

bug tolerance level=
0.25
~ dmnl

I

willingness to tolerate bugs=
IF THEN ELSE(XIDZ(code that's bad, code, 0)>=bug tolerance level, 0,1)

~

~ |

proportion of code complete=
code/"final code size,N"
~ dmnl

|

"code done?"=
IF THEN ELSE( code>="final code size,N",1,0)

~

|

"final code size,N"=
400
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code=INTEG (
make buggy code+make good code,
initial code)
~ code unit

~ |
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Simulation Control Paramaters

FINAL TIME =1200
~ Month

~ The final time for the simulation.

INITTIAL TIME =0
~ Month

~ The initial time for the simulation.

SAVEPER =
TIME STEP
~ Month

~ The frequency with which output is stored.
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TIME STEP =1
~ Month
~ The time step for the simulation.

Appendix 3 Process Components Series of
Models

3.1 Simple 1 (Figure 69)
(Ref: simplel.mdl

input rate 0 0 0=
4
~ components/Month

~ |

input rate 0 1=
4
~ components/Month

compenents 0 0= INTEG (
input rate 0 O-output rate 0 0,
0)

~ |

compecnents 0 0 0= INTEG (
input rate 0 0 O-output rate 0 0 0,
0)

~ |

compeonents 0 1= INTEG (
input rate 0 l-output rate 0 1,
0)

~ |
output rate 0 0=

~ components/Month

output rate 0 0 0=

~ components/Month
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output rate 0 1=
4
~ components/Month

input rate 0 0=
4
~ components/Month

components= INTEG (
input rate-output rate,
100)

components 0= INTEG (
input rate O-output rate 0,
100)

components 1= INTEG (
input rate l-output rate 1,

100)

input rate=

2

~ components/Month
input rate 0=

4

~. components/Month
input rate 1=

2

~ components/Month
output rate=

2

~ components/Month

output rate 0=
2
~ components/Month

- |
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output rate 1=
4
~ components/Month
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Simulation Control Paramaters

FINAL TIME = 100
~ Month
~ The final time for the simulation.

INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

I

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
TIME STEP =1

~ Month
~ The time step for the simulation.

3.2 Simple 2 (Figure 71)
(Ref: simple2.mdl)

finished 1= INTEG (
work rate 1,
0)

~ |

components 0= INTEG (
-work rate O,
100)

components 1= INTEG (
-work rate 1,
100)
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components 2= INTEG (
-work rate 2,
100)

components 3= INTEG (
-work rate 3,
100)

work rate 1=
2
~ components/Month

finished 0= INTEG (
work rate 0,
0)

work rate 3=
2
~ components/Month

~ |

finished 2= INTEG (
work rate 2,
0)

finished 3= INTEG (
work rate 3,
0)

work rate 2=
2
~ components/Month

work rate 0=
2
~ components/Month

components= INTEG (
-work rate,
100)
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finished= INTEG (
work rate,
0)

work rate=
2
~ components/Month
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FINAL TIME = 100
~ Month
~ The final time for the simulation.

INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

Simulation Control Paramaters

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
TIME STEP =1

~ Month
~ The time step for the simulation.

I

3.3 Simple 3 (Figure 73)
(Ref: simple3.mdl)

components 0= INTEG (
-work rate 0,
100)
~ components
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components 1= INTEG (
work rate O-work rate 1,
100)
~ components

~ I

work rate 0=
2

work rate 1=
2
~ components/Month

componentg= INTEG (
-work rate,

100)
~ components
work rate=
2
~ components/Month

~ |
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Simulation Control Paramaters

FINAL TIME = 100
~ Month
~ The final time for the simulation.

|

INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

|

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
TIME STEP = 1

~ Month
~ The time step for the simulation.
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3.4 Perceived Progress Model 1 (Figure 76)
(Ref: 2™ Monte 2)

complete components=
IF THEN ELSE( "done?"= 1, 0, 2)
~ components/day

components= INTEG (
-complete components,
100)
~ components

"done?"=
IF THEN ELSE( componentss>="final Size,N",0,1)

~ |

"final Size,N"=
0

IE R T R TR R R E R R R RS R E S SRR R R SRR TR S SRR EEEEEEEEEEEREERESE S
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Simulation Control Paramaters

FINAL TIME = 100
~ Week
~ The final time for the simulation.

l

INITIAL TIME = 0
~ Week
~ The initial time for the simulation.

SAVEPER =
TIME STEP
~ Week
~ The frequency with which output is stored.
TIME STEP = 0.0625

~ Week
~ The time step for the simulation.

I
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3.5 Perceived Progress Model 2 (Figure 80)
(ref 2™ Monte 5)

"final Size,N 0"=
100

"done 2?"=
IF THEN ELSE (milestone 2>="final Size,N 0",0,1)

complete components 2=
IF THEN ELSE("done 2?"=0, 0, 0)

milestone 2= INTEG (
complete components-complete components 2,
0)
~ components

~ l

complete components=
IF THEN ELSE( "done?"=0, 2, 0)
~ components/day

components= INTEG (
-complete components,

100)

components

~ I

"done?"=
IF THEN ELSE( components>="final Size,N",0,1)

"final Size,N"=
0

IR R S R SRR R R R R RS R RS R RS R R R RS R R E R RS SR SRR R EE R LR R RS SR

1
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Simulation Control Paramaters
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FINAL TIME = 100
~ Week
~ The final time for the simulation.

|

INITIAL TIME = 0
~ Week
~ The initial time for the simulation.

|

SAVEPER =
TIME STEP
~ Week
~ The frequency with which output is stored.
TIME STEP = 0.0625

~ Week
~ The time step for the simulation.

3.6 Perceived Progress Model 3 (Figure 83)
( Ref: 2™ Monte 3.mdl)

complete components=
IF THEN ELSE( "done?", 0, (2*components/Target production))
~ components/day

~ I

components= INTEG (
-complete components,
Target production)
~ components

Target production=
100
~ components

~ |

"done? "=
IF THEN ELSE( components>="final Size,N",0,1)

"final Size,N'"=
0
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Simulation Control Paramaters

FINAL TIME = 100
~ Week
~ The final time for the simulation.

INITIAL TIME = 0
~ Week
~ The initial time for the simulation.

|

SAVEPER =
TIME STEP
~ Week
~ The frequency with which output is stored.
TIME STEP = 0.0625

~ Week
~ The time step for the simulation.

3.7 Perceived Progress Model 4 (Figure 86)
(Ref: 2™ Monte 13.mdl)

milestone 2 0 0 0= INTEG (
complete components 0 0 0,
0)
~ components

~ |

complete components 0=
2*components 0/Target production 0
~ components/day

~ l

complete components 0 0=
2*components 0 0/Target production 0 0
~ components/day

complete components 0 0 0=
l*components 0 0 0/Target production 0 0 0
~ components/day

~ |
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components 0 0= INTEG (
-complete components 0 O,
Target production 0 0)
~ components

complete components 2 0=
2*milestone 2 0/Target production 2 0
~ components/Week

complete components 2 0 0=
2*milestone 2 0 0/Target production 2 0 0
~ components/Week

~ I

milestone 2 0= INTEG (
complete components O-complete components 2 0,
0)
~ components

~ I

complete components 3 0=
2*milestone 3 0/Target production 3 0

Target production 0 O=
100
~ components

Target production 0 0 0=
100
~ components

components 0= INTEG (
-complete components O,
Target production 0)
~ components

~ |

milestone 3 0 0= INTEG (
complete components 2 0 0,
0)
~ components

~ I

components 0 0 0= INTEG (
-complete components 0 0 0,
Target production 0 0 0)
~ components

~ |
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milestone 4 0= INTEG (
complete components 3 0,
0)

milestone 3 0= INTEG (
complete components 2 O-complete components 3 0,
0)

milestone 2 0 0= INTEG (
complete components 0 O-complete components 2 0 0,
0)
~ components

Target production 0=
100
~ components

~ |

Target production 2 0 0=
100

Target production 2 0=
100

Target production 3 0=
100

- |

Target production 4=
100
~ components

~ |

milestone 4= INTEG (
complete components 3 -complete components 5,
0)
~ components

milestone 5= INTEG (
complete components 5,
0)
~ components

~ [
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complete components 5=
2*milestone 4/Target production 4
~ components/Week

~ |

complete components=
2*components/Target production
~ components/Week

~ l

complete components 3=
2*milestone 3/Target production 3
~ components/Week

milestone 3= INTEG (
complete components 2-complete components 3,
0)

Target production 3=
100
~ components

complete components 2=
2*milestone 2/Target production 2
~ components/Week

milestone 2= INTEG (
complete components-complete components 2,
0)
~ components

~ |

Target production 2=
100
~ components

components= INTEG (
-complete components,
Target production)
~ components

Target production=
100
~ components

~ |

khkhkkkhhhkdhhdhhkdhhhhhhhhhhhhhhhkhhhhhhhrhhrhhdhkdorrohhrdhhhdd
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Simulation Control Paramaters

FINAL TIME = 500
~ Week
~ The final time for the simulation.

INITIAL TIME = 0
~ Week
~ The initial time for the simulation.

|

SAVEPER =
TIME STEP
~ Week
~ The frequency with which output is stored.
TIME STEP = 0.0625

~ Week
~ The time step for the simulation.

3.8 Rework Model 1 (Figure 90)
(Ref: rework3.mdl)

complete tasks=
60
~ tasks/Month

~ |

percentage bad work=
0.1

return bad work=
tasks 2*percentage bad work
~ tasks/Month

tasks= INTEG (
+return bad work-complete tasks,
1000)
~ tasks
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tasks 2= INTEG (
complete tasks-return bad work,
0)
~ tasks
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|

FINAL TIME = 100
~ Month
~ The final time for the simulation.

|

INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

Simulation Control Paramaters

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
TIME STEP =1

~ Month
~ The time step for the simulation.

3.9 Rework Model 2 ( Figure 93)

(Ref: rework3 component.mdl)

components= INTEG (
+return defective work O-complete tasks-return defective
work,
1000)

complete tasks 0=
0

components 0= INTEG (
complete tasks-complete tasks O-return defective work 0,
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~ I

percentage bad work 0=
0.1

return defective work 0=
components O*percentage bad work 0

return defective work=
0*components*percentage bad work

complete tasks=
60

) |

percentage bad work=
0.1

IR SR SR SR A SRS R RS S S SRS SRR RS E R RS EEEE LR EEEEEEEEEEEEEERS
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l

FINAL TIME = 100
~ Month
~ The final time for the simulation.

INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

Simulation Control Paramaters

SAVEPER =
TIME STEP
~ Month
~ The frequency with which output is stored.
TIME STEP = 1

~ Month
~ The time step for the simulation.
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3.10Rework Model 3 (Figure 96)
Ref: (rework 3e v4.mdl)

done 1=
IF

THEN ELSE( task 3 2>=initial tasks 1, 1, 0)

initial tasks=
1000

initial tasks 0=

1000
complete task 2 2=

IF THEN ELSE(done 1, 0, 100)

~ Tasks/Month
complete taskl 2=

IF THEN ELSE( done 0, 0, 100)

~ Tasks/Month
done=

IF THEN ELSE( task 4 2>=initial tasks, 1, 0)
done 0=

IF THEN ELSE( task 2 2>=initial tasks 0, 1, 0)
complete task 3 2=

IF THEN ELSE (done, 0, 100)

~ Tasks/Month

|

initial tasks 1=
1000

return bad work 3 2=

IF

THEN ELSE(done, 0, (task 4 2*percentage bad work 3 2))

Tasks/Month
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task 2= INTEG (

+complete taskl+return bad work 2-complete task 2-return bad

work 1,
0)
~ Tasks

return bad work 1=
percentage bad work 1l*task 2
~ Tasks/Month

task 1= INTEG (
+return bad work l-complete taskl,
1000)
~ Tasks

complete task 2=
100
~ Tasks/Month

complete task 2 0=
100
~ Tasks/Month

complete task 2 1=
100
~ Tasks/Month

~ |

complete task 3=
100
~ Tasks/Month

complete task 3 0=
100
~ Tasks/Month

~ |

complete task 3 1=
100
~ Tasks/Month

complete taskl=
100
~ Tasks/Month

complete taskl O=
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100

Tasks/Month

complete taskl 1=

100

percentage
0

percentage
0.1

percentage
0.05

percentage
0.3

percentage
0

percentage
0.1

percentage
0.1

percentage
0.2

percentage
0

percentage

Tasks/Month

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

bad work

Dmnl

|

bad work

1=

1 0=

1 2=
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percentage
0.2

percentage
0.1

return bad
task

return bad
task

return bad
task

return bad
task

return bad
task

return bad
task

return bad
task

return bad
task

return bad

Dmnl

(

bad work 3 1=

Dmnl

|

bad work 3 2=

Dmnl

|

work 1 O=
2 O*percentage bad work
Tasks/Month

|

work 1 1=

2 l*percentage bad work 1 1

Tasks/Month

|

work 1 2=

2 2*percentage bad work 1 2

Tasks/Month

|

work 2=
3*percentage bad work 2
Tasks/Month

work 2 0=
3 O*percentage bad work
Tasks/Month

work 2 1=
3 l*percentage bad work
Tasks/Month

|

work 2 2=
3 2*percentage bad work
Tasks/Month

!

work 3=
4*percentage bad work 3
Tasks/Month

work 3 0=
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task 4 O*percentage bad work 3 0
~ Tasks/Month

return bad work 3 1=
task 4 l*percentage bad work 3 1
~ Tasks/Month

task 1 0= INTEG (
+return bad work 1 O-complete taskl 0,

1000)

~ Tasks

task 1 1= INTEG (
+return bad work 1 l-complete taskl 1,

1000)

~ Tasks

task 1 2= INTEG (
+return bad work 1 2-complete taskl 2,
initial tasks)
~ Tasks

task 2 0= INTEG (
+complete taskl O+return bad work 2 O-complete task 2 0-
return bad work 1 0,
0)
~ Tasks

task 2 1= INTEG (
+complete taskl l+return bad work 2 1-complete task 2 1-
return bad work 1 1,
0)
~ Tasks

task 2 2= INTEG (
+complete taskl 2+return bad work 2 2-complete task 2 2-
return bad work 1 2,
0)
~ Tasks

]

task 3= INTEG {
complete task 2+return bad work 3-complete task 3-return
work 2,
0)

~ Tasks

bad
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task 3 0= INTEG (

complete task 2 O+return bad work 3 O-complete

return bad work 2 0,
0)
~ Tasks

task 3 1= INTEG (

task 3 0-

complete task 2 l+return bad work 3 l-complete task 3 1-

return bad work 2 1,
0)
~ Tasks

task 3 2= INTEG (

complete task 2 2+return bad work 3 2-complete

return bad work 2 2,
0)
~ Tasks

task 4= INTEG (

complete task 3-return bad work 3,

0)
~ Tasks

task 4 0= INTEG (

complete task 3 O-return bad work 3 0,

0)
~ Tasks

task 4 1= INTEG (

complete task 3 1l-return bad work 3 1,

0)
~ Tasks

task 4 2= INTEG (

complete task 3 2-return bad work 3 2,

0)
~ Tasks
~ I

task 3 2-

khkhkhkhhkkhkhkkhkhkhkhhhdhhhhhhhhhhhhkhahkrhhhhdhhhhhhkkhhhhihhhhx
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Simulation Control Paramaters

FINAL TIME = 100
~ Month

~ The final time for the simulation.
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INITIAL TIME = 0
~ Month
~ The initial time for the simulation.

|

SAVEPER =
TIME STEP
~ Month ‘
~ The frequency with which output is stored.
TIME STEP = 1

~ Month
~ The time step for the simulation.
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