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There is growing recognition that successful software systems evolve. Similarly, 

the processes that produce software must also evolve in order to free evolutionary 

system growth. Systems Dynamics modelling and simulation has been used to 

support process improvement strategies; however ad-hoc modelling methods may 

cause failures of understanding that lead to failures of these strategies. If we are to 

build better, evolvable software development processes with predictable behaviour 

and outcome, we need to be able to use modelling and simulation in a more 

systematic way. 

This thesis describes an evolutionary modelling method that uses quantitative 

simulation to ensure close correspondence between a Systems Dynamics model 

and the behaviour of a software development process. Secondly, through two 

experiments, we show how componentisation allows us to evolve process models 

in a dependable way, by breaking processes down into components that are well 

understood, with predictable behaviour. We suggest that we will be better placed 

to design evolvable, flexible processes that make good use of complex strategies 

like distribution, concurrency and feedback if we can develop re-usable process 

components, with well understood and predictable behaviour in the software 

development domain. 



TABLE OF CONTENTS 

Chapter 1 Introduction 1 

Chapter 2 Background 7 

2.1 Software Evolution 10 

2.2 Quality 15 

2.3 The Software Process 19 

2.4 Process Models 20 

2.4.1 Waterfall Lifecycle 20 

2.4.2 V model 22 

2.4.3 Rapid Application Development - Spiral Lifecycle model 23 

2.4.4 Incremental Builds- Microsoft 'Synch and Stabilise' 26 

2.4.5 Agile Methods - eXtreme Programming 29 

2.4.6 Open Source 30 

2.5 Comparing Process models 31 

2.6 Evolution in process models. 34 

2.7 Process Predictability and Control 35 

2.7.1 Measuring Software Products 36 

2.7.2 Measuring Process 37 

2.7.3 Cost and Schedule Estimation COCOMO and COCOMOII 38 

2.7.4 COCOTs 40 

2.8 Process Improvement 42 

2.9 Summary 45 

Chapter 3 Understanding Process Behaviour using Modelling and 
Simulation 48 

3.1 Using Modelling and Simulation to Support Process Improvement 

51 



3.2 Process Simulation and Modelling Methods 55 

3.3 Systems Dynamics, Systems Thinking 57 

3.4 Modelling Software Development using Systems Dynamics 62 

Chapter 4 The Cellular Manufacturing Process Model 

4.1 EPOS CMPM - mapping hierarchy to process 

4.2 Intra Cell Behaviour 

4.2.1 Relationship between Work and Quality 

4.3 Modelling and Simulating CMPM 

4.3.1 Systems Dynamics Model Evolution 

4.4 Modelling CMPM Networks of Cells 

4.4.1 Repeating structures 

4.4.2 Size 

4.4.3 Quality 

4.4.4 Schedule 

4.4.5 Predictability 

68 

72 

73 

75 

78 

89 

89 

91 

93 

94 

95 

Chapter 5 Evolutionary Systems Dynamics Model Building 96 

5.1 The Simple Process 98 

5.2 The Simple Process Modelled as a Decision Tree 99 

5.3 Monte Carlo Model (Mathcad) 100 

5.3.1 Simulation 1, varying the quality of the incoming component 104 

5.3.2 Simulation 2, varying defect removal policies 110 

5.4 Systems Dynamics Representation of the Simple Process (Vensim) 

5.4.1 First Evolution - Monte 3 

5.4.2 Evolution 2, Monte 4 

5.4.3 Evolution 3 - Monte 6 

5.4.4 Evolution 4, Monte 8 

111 

112 

116 

120 

123 



5.4.4.1 Exploring the behaviour of Systems Dynamics Model ia Comparison 

with Monte Carlo Model 125 

5.4.4.2 Varying the policy on Bug toleration 129 

5.4.5 Evolution 5, Monte 11 130 

5.4.5.1 Causes strip for code and bad code 133 

5.5 Exploring the Simple Process with Systems Dynamics 135 

5.5.1 Simulation 1 varying the willingness to tolerate defects in the code 135 

5.5.2 Simulation 2, varying the efficiency of the process 137 

5.6 Conclusion 140 

Chapter 6 Simulation Experiments in Modelling Software 
Processes using Components 145 

6.1 Components 146 

6.2 An example of using components to build a Simple Process 148 

6.2.1 Simple 1 148 

6.2.2 Simple 2 150 

6.2.3 Simple 3 152 

6.2.4 Composing Simple 3 Components 154 

6.3 Experiments in building systems development process models using 

components 154 

6.4 Experiment 1, perceived against predicted rates of product 

completion 155 

6.4.1 Perceived Progress Model 1 157 

6.4.2 Perceived Progress Model 2 159 

6.4.3 Perceived Progress Model 3 162 

6.4.4 Perceived Progress Model 4 164 

6.5 Experiment on Rework 170 

6.5.1 Rework Model 1 172 

6.5.2 Rework Model 2, abstract single stage model composed of two process 

components 175 

6.5.3 Rework Model 3 177 

6.5.4 Simulating rework model 178 



6.5.5 Simulation 1, 0% rework 

6.5.6 Simulation 2, Rework at 10% 

6.5.7 Simulation 4, decreasing and increasing rework 

6.6 Conclusions 

6.6.1 When our real world project exhibits this behaviour 

178 

179 

180 

182 

183 

Chapter 7 From Qualitative to Predictive Quantitative Models 184 

7.1 Ethnography and Quantitative Data. 185 

7.2 CMPM Project data 

7.3 Measurements from the process 

7.3.1 Time ET, Effort Measures W (raw), and Team size,N 

7.3.2 Size, S 

7.3.3 Quality Measures, Q and P 

7.3.4 CMPM Historical data 

188 

189 

189 

190 

190 

191 

7.4 Relationships between project data and Systems Dynamics models 

196 

7.4.1 Ad-hoc Systems Dynamic model of CMPM 196 

7.4.2 Component based Systems Dynamics model used to investigate 

Hardware Project, HP A 200 

Chapter 8 Summary, Conclusion and Future Work 

8.1 Summary 

8.2 Conclusion 

8.3 Future work 

206 

206 

212 

213 

Appendix 1 CMPM Systems Dynamic Model [Stella 1990 -1998] 214 

Appendix 2 Monte Series of Models [Vensim 1988 -1997] 

2.1 Monte 3 (Figure 41) 

216 

216 

2.2 Monte 4 (Figure 45) 218 



2.3 Monte 6 (Figure 48) 221 

2.4 Monte 8 (Figure SO) 223 

2.5 Monte 11 (Figure 58) 225 

Appendix 3 Process Components Series of IVIodels 230 

3.1 Simple 1 (Figure 69) 230 

3.2 Simple 2 (Figure 71) 232 

3.3 Simple 3 (Figure 73) 234 

3.4 Perceived Progress Model 1 (Figure 76) 236 

3.5 Perceived Progress Model 2 (Figure 80) 237 

3.6 Perceived Progress Model 3 (Figure 83) 238 

3.7 Perceived Progress Model 4 (Figure 86) 239 

3.8 Rework Model 1 (Figure 90) 243 

3.9 Rework Model 2 ( Figure 93) 244 

3.10 Rework Model 3 (Figure 96) 246 

BIBLIOGRAPHY 253 



LIST OF FIGURES 

Figure 1 Cost, Quality and Schedule Interdependency 9 

Figure 2. ISO decompositional model of the components for reliability 17 

Figure 3. Internal and external relationships for products processes and 

resources 18 

Figure 4. The Waterfall Model 21 

Figure 5. V model of development 22 

Figure 8. An Instance of a Synch and Stabilise Process 27 

Figure 9. An Individual Cycle in Microsoft Synch and Stabilise 28 

Figure 10. Calibration parameters for Personnel Continuity 39 

Figure 12. Capability Maturity Model 44 

Figure 13. Humphrey's process improvement cycle extended with modelling 

and simulation 53 

Figure 14. Coding increases the stock of completed code 58 

Figure 15. Finding and fixing defects reduces the stock of defects 58 

Figure 16. Increasing stock of experience as code increases 59 

Figure 17. Systems Dynamics model showing feedback relationship between 

experience and productivity 60 

Figure 18. Systems Dynamic model showing the effects of goal conflicts in 

feedback relationships 61 

Figure 19. Overview of Abdel-Hamid and Madnick's model showing 

subsystems 64 

Figure 22. Electronic Point of Sale System component structure 71 

Figure 23. The pumping behaviour of a cell 75 

Figure 24. Work allocation in a CMPM cell 75 

Figure 25. Predicted growth of quality 76 

Figure 26. Graph shapes from industrial partner data 77 

Figure 27. Systems Dynamics Model of a single CMPM cell 80 

Figure 28. Graph from simulation of Stella model 83 

Figure 29. Early Quality Model 84 

Figure 30. Stella Model of Development Process, Quality is a simple measure 

of defects 85 

Figure 31. Graph produced from simplistic Stella model. Quality is greatest 

when no work has been done 86 



Figure 32. Asymptotic growth in size, tasks 2 87 

Figure 33. Three task completion models showing structures where the 

completion of tasks takes longer as the size of the stock increases 

88 

Figure 34. The work to produce KLOC 91 

Figure 36. Graph from Monte Carlo simulation showing growth in size n, as 

work, w, is done 106 

Figure 37. Graph from Monte Carlo simulation showing growth of defects, b 

against work, w 107 

Figure 38. Monte Carlo simulation, graph showing growth of defects, b with 

increasing size, n 107 

Figure 39. Monte Carlo simulation, initial defects = 60, graph of increasing 

size, n as work, w increases 108 

Figure 40. Monte Carlo simulation, initial defects = 60, graph of defects, b as 

work, w is done 109 

Figure 54. Monte Carlo simulation, graph of code, n against work, w 128 

Figure 67. Graph of software components stock from Simple 1 149 

Figure 68. Serial composition of two simple 1 process components 150 

Figure 74. Systems Dynamics model of abstract process 158 

Figure 75. Graph showing software component completion from simulation 

of abstract model 159 

Figure 77. Graph of completed software components from ad-hoc model 

simulation 160 

Figure 78. Systems Dynamic model composed of two identical process 

structures 161 

Figure 79. Graph of software component completion from simulating a two 

component absfract process 162 

Figure 80. Evolved Systems Dynamics abstract model 3 with feedback 163 

Figure 82. Systems Dynamics model of one stage process composed of two 

process components 165 

Figure 83. Graph of simulation results from one stage process composed from 

two process components 166 

Figure 84. Systems Dynamic models of 1, 2, 3, and 4 stage processes 

composed of process components 167 

Figure 85. Graph of component completion for four processes with different 

numbers of milestones 168 



Figure 86. Graph of perceived and expected component completion for a five 

milestone process 169 

Figure 87. Graph showing components moving through 5 milestones 170 

Figure 88. Abstract development process with rework 173 

Figure 89. Abstract process component 174 

Figure 90. Abstract simple process component modelled Systems Dynamics 

174 

Figure 91. Systems Dynamic Model composed of two rework components 175 

Figure 92. Simulation results from the first version of the abstract model 176 

Figure 93. Simulation of abstract process composed to two process 

components 177 

Figure 94. Systems Dynamics model of a three stage, four milestone rework 

process 178 

Figure 95. Simulation 1, graph of work to be completed and completed work 

with zero rework 179 

Figure 96. Simulation 2, graph of work to be completed and completed work 

with 10% rework 180 

Figure 97. Simulation 3, graph of work to be completed and completed work 

with rework decreasing 181 

Figure 98. Simulation 4, graph of work to be completed and completed work 

with increasing rework 181 

Figure 99. Graph showing growth of effort for release e and f (S rel e, S 

rel_f) over time T 197 

Figure 100. Graph from Systems Dynamics simulation 3 of release e 199 

Figure 101. Graph from Systems Dynamics simulation 3 of release f 200 

Figure 102. Graph of effort (W_HPA) over time (T_HPA) 201 

Figure 103. Systems Dynamics Model of the hardware project cell, showing 

two milestone absttaction. 202 

Figure 104. Graph of HP A with two completion,milestones 203 

Figure 105. Systems Dynamics model with three process components, 

additional hardware requirements at T = 125 204 

Figure 106. Graph of work done, Hardware Project A, modelled in Systems 

Dynamics 205 



LIST OF TABLES 

Table 1 Key to Monte Carlo model equations 103 

Table 2 Initial settings for Simulation 1 105 

Table 3 Results from Monte Carlo simulations where the number of initial 

defects were varied 110 

Table 4 Results from simulating The Monte Carlo model with varying 

defect fixing policies, k 111 

Table 5 Initial parameters for the Vensim model simulation 126 

Table 6 Results from simulating Systems Dynamics model Monte 8, 

varying the willingness to tolerate bugs, k 129 

Table 7 Monte 11 simulation constants 138 

Table 8 Results from Monte Carlo and Systems Dynamics simulations of 

the simple process, varying k. 141 

Table 9 Matrix of components and releases 192 

Table 10 Matrix of components and releases showing Effort, W in man days 

193 

Table 11 SPB cell resource allocation 194 

Table 12 Second interpretation of CMPM structure 195 

Table 13 Second interpretation of source data into CMPM structure 195 

Table 14 Third phase CMPM data interpretation 195 

Table 15 Simulation initialisation values 198 

Table 16 Table of simulation results 199 



DECLARATION OF AUTHORSHIP 

I, Yvonne Margaret Howard declare that the thesis entitled 
Towards Evolutionary and Systematic Process Modelling using Components 
and the work presented in it are my own. I confirm that: 

• this work was done wholly or mainly while in candidature for a research 
degree at this University; 

• where any part of this thesis has previously been submitted for a degree or 
any other qualification at this University or any other institution, this has 
been clearly stated; 

• where I have consulted the published work of others, this is always clearly 
attributed; 

• where I have quoted from the work of others, the source is always given. 
With the exception of such quotations, this thesis is entirely my own work; 

• I have acknowledged all main sources of help; 

• where the thesis is based on work done by myself jointly with others, I have 
made clear exactly what was done by others and what I have contributed 
myself; 

• parts of this work have been published as: 

Signed: 

Date: 

Henderson, P. and Y. Howard (1998). "Simulating a Process Strategy for 
Large Scale Software Development using System Dynamics." Software 
Process Improvement and Practice(5): 121 - 131. 



Acknowledgements 

My grateful thanks are due to the many people who have generously given their 

advice and encouragement to support me in this research. But in particular I would 

like to thank Peter Henderson, my supervisor, for his inspiration, constructive 

criticism and unfailing patience, and Andy Gravell for his guidance. On a personal 

note, I owe a debt of gratitude to my husband Tim Malone, and sons Joe and Jack 

for their generous and tolerant support. And to Frank and Margaret Howard, who 

set my expectations. 

Finally, thanks are due to EPSRC grant (Engineering and Physical Sciences 

Research Council) for their financial support. 

Yvonne Howard 



Chapter 1 Introduction 

Chapter 1 

Introduction 

Let's set a scenario familiar to many software practitioners; at the start of a project, 

despite resourcing it with the most able, motivated staff, it is hard to see progress. 

As you get nearer to your carefully planned, realistic and costed project deadline, 

your rate of progress towards that goal slows. We all recognise this behaviour, and 

anecdotally we may have many theories as to why we can observe it. 

Unfortunately, if we can't be sure of the causes of this behaviour, we can neither 

improve our prediction of project progress nor build processes that improve our 

performance. 

So how can we improve our understanding of the behaviour of processes and have 

more certainty that any changes we make to our processes will have beneficial 

effects? 

We may decide that, once we have a stable process, with all its flaws, we can treat 

it as a 'black box', basing predictions on past performance and adopting the view 

that, 'if it ain't broke, don't fix it'. 

And yet processes cannot remain the same. In the same way that systems must 

evolve to meet new needs, process models must evolve to meet the needs of the 

developer and the system domain; thus systems development processes can be 

described as evolutionary systems. As proposed in one of Lehman's laws for 

software evolution [Lehman 1996], developed over thirty years study of evolution 

in software, user satisfaction declines unless steps are taken to evolve the product 

to meet new needs. We can view processes as similar evolutionary systems, and in 
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the case of process models, their users are developers who are building software 

products. The developer's satisfaction with the process model declines when the 

model no longer meets their need to respond to technological and cultural domain 

changes in order to meet market expectation. 

There are many new process models that are claimed to provide an improved 

response to market demands, and answers to the problems of building large reliable 

and evolvable systems rapidly. For example, XP, Agile, Rational Unified Process, 

and Open Source. New processes use feedback mechanisms to evolve the product, 

and concurrency and distribution in order to achieve their project goals. Whether 

these new models will achieve their claimed results is the subject of much 

discussion but should also be the subject of evaluation. 

Making changes to processes is expensive in time and money whilst potentially 

risking the operational stability of the organisation, so we need to reduce the risks 

and increase the benefits by improving our understanding and prediction of the 

effects of change. 

Software developers are beginning to explore how componentisation allows them 

to evolve systems in a more dependable way, by breaking systems down into 

components that are well understood, with predictable behaviour. Similarly, 

process designers will be better placed to design flexible processes that make good 

use of complex strategies like distribution, concurrency and feedback, if we can 

develop re-usable process components, with well understood and predictable 

behaviour in the software development domain. 

In the same way that systems developers have learned that using modelling and 

simulation tools to design systems products improves reliability and user 

satisfaction, process designers must learn that the processes that produce the 

systems deserve similar attention. The use of modelling and simulation is essential 

to achieving the goal of building effective, flexible, and evolvable processes. 
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Software processes have been shown to constitute feedback systems; [Belady and 

Lehman 1972; Lehman 1996] [Abdel Hamid and Madnick 1991]. Systems 

Dynamics [Forrester 1961] provides a methodology and tools that enable us to 

model and simulate dynamic processes and examine the feedback relationships that 

cause behaviour. Systems Dynamics has been used to successfully model 

individual processes, for example Adel-Hamid and Madnick's investigation of 

Brooks law (adding staff to a late project makes it later [Brooks 1995]) using 

Systems Dynamics showed that it is possible to add staff to a late project without 

making it 'later' and reduce the overrun provided that rules are followed. 

Most Systems Dynamics modelling of software development processes has been ad 

hoc in nature, examining a particular instance of a process. In an ad hoc approach 

to modelling, we observe a dynamic behaviour, propose a plausible theory to 

explain it, and then attempt to replicate the behaviour using a modelling and 

simulation tool. If the behaviour can be replicated in the model with an 

understandable structure, then the plausible theory can be accepted as the cause of 

the real world phenomena. Unfortunately, from our subjective observations of the 

real world, we may add unnecessary process structure to our models that has no 

bearing on the real dynamics of the process and clouds our analysis of how to 

make process improvement decisions. This may lead us to make incorrect 

judgements about the real world we are examining. 

Even within Abdel - Hamid and Madnick's successful model, later work has 

shown that the model may be over complicated and that some of the process 

structure, while depicting real world activity, has little or no bearing on the 

behaviour of the process [Houston, Mackulak and Collofello 2000]. 

Lehman and Ramil [Lehman and Ramil 1999] suggest that many process changes 

make no real or, at best, only marginal improvements to our ability to produce 

more reliable systems faster and more cheaply. 
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If we are to build better development processes with predictable behaviour and 

outcome, we need to be able to use modelling and simulation tools in a more 

systematic way. 

This thesis describes how we can use Systems Dynamics to build process models 

from simple, well understood process components that can help us to explain, 

understand and predict software development process behaviour. 

We describe two alternative process models that are both able to recreate the 

behaviour described at the beginning of the chapter; the asymptotic approach to 

completion of software. The process models have been created in Systems 

Dynamics using Vensim [Vensim 1988 - 1997] as a simulation and modelling tool, 

by connecting together simple process components. We show that we are able to 

explain the same behaviour with two very different and equally plausible theories. 

Were this behaviour to be modelled in an ad-hoc way, either theory may have been 

accepted as the cause of the real world behaviour, leading to process improvement 

decisions that would have marginal improvements on the process outcome. 

We suggest that modelling using well understood components designed for the 

systems development domain would enable better process improvement and 

produce processes that are more evolvable. 

The structure of this thesis is as follows. 

Chapter 1, an introduction. 

Chapter 2 provides a background for the study and covers evolution in software 

and processes; software quality and the software process. 

Chapter 3 provides a background study of understanding process behaviour using 

modelhng and simulation. 
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Chapter 4 presents a case study of ad-hoc process modelhng based on the Cellular 

Manufacturing Process Model. 

Following Chapter 4 are two chapters presenting work concerning how to move 

from ad hoc modelling to systematic modelling. 

Chapter 5, 'Evolutionary Systems Dynamics Model Building'. In this chapter we 

use evolutionary model building to investigate behavioural congruence between 

models in different paradigms. We will use a simple process as a case study and 

examine the effects of resource allocation policies on the schedule and quality of 

the product. The simple process produces software that contains defects; it has 

policies that control defect removal activities that depend on the perceived quality 

of the software in production. The process is modelled firstly by Monte Carlo 

methods and secondly, in Systems Dynamics, using an evolutionary model 

building process. 

Chapter 6, 'Simulation Experiments in Modelling Software Process using 

Components'. We will describe how Systems Dynamics can be applied to 

development processes in a systematic way. Most Systems Dynamics modelling is 

carried out in an ad hoc manner; a behaviour is observed and the modeller attempts 

to discover the feedback relationships that cause that behaviour and builds a model 

that reproduces that behaviour. Modelling in this way may cause inappropriate 

conclusions to be drawn about how best to improve the process. In this chapter we 

will show how abstract software development processes composed of simple, 

repeated components may be modelled and simulated to investigate their 

behaviour. Simple components with well understood behaviour that can be 

combined to form a process model will allow process modellers to have confidence 

about the causes of observed behaviour and propose process changes that will 

improve process outcomes. 
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Chapter 7, 'From Qualitative to Predictive Quantitative Models'. We discuss 

factors that affect our ability to build predictive quantitative systems dynamic 

models, using examples from the CMPM case study. 

Chapter 8 provides a summary of the thesis and suggestions for future work. 



Chapter 2 

Background 

There is significant interest within the software engineering community in 

improving the process of developing software in order to improve the software 

product itself, as well as to improve the predictability of development costs and 

schedule. This interest has generated research into the achievement of quality and 

predictability. 

There have been many attempts to define software quality as we discuss later in 

this chapter but they coalesce around defining the quality of software products in 

terms of specific software attributes of interest to the user. These are external 

product attributes that represent the user's functional and non-functional 

requirements [Fenton and Pfleeger 1997]; they define the fitness for purpose of the 

software. 

The International Standards Organisation's Single Universal Model (ISO 9126) has 

been developed to follow this view of quality using the definition; 'the totality of 

features and characteristics of a software product that bear on its ability to satisfy 

stated or implied needs'. It has six factors: functionality, reliability, efficiency, 

usability, maintainability, portability. In essence, perfect quality is the meeting of 

all requirements and the absence of defects. 

Research into quality has focussed on two major areas, measurement of the product 

in terms of its attributes and measurement of the ability of an organisation and its 

processes to produce quality products. The second research direction has produced 

the Capability Maturity Model [Paulk, Curtis, Chrissis and Weber 1994] and 
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SPICE [Dorling 1993]. Explicit in the models is the recognition that an 

organisation must define, measure, control and finally improve its process in order 

to improve its capability. Progress through CMM and SPICE requires that 

organisations adopt an explicit development process model to make the delivery of 

systems more predictable. 

Research into predictability in terms of effort, cost and schedule is led by research 

into project planning requirements. The COCOMO and COCOMO II estimation 

systems [Boehm, Clark, Horowitz, Westland, Madachy and Selby 1995; Boehm, 

Abts, Clark and Devnani-Chulan 1996] were created as a result of this research. 

COCOMO is based on a traditional waterfall lifecycle and a traditional 

development process estimating the cost of development Ixom the number of 

person months a development will take based on an estimate of the size of the 

software in KSLOC (thousands of lines of source code). 

Quality, cost and schedule are interdependent attributes (Figure 1); if you reduce 

the cost (effort) or time available (schedule), quality is affected; if you take steps to 

increase quality through quality assurance procedures or testing, cost and schedule 

are affected [Rus, Collofello and Lakey 1999]. Research into these dependencies 

within processes may prove to be valuable in providing the dynamic controls 

necessary for improvement. 
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Quality 

Cost ^ ^ Schedule 

Figure 1. Cost, Quality and Schedule Interdependency 

Producers of large-scale systems are aware that these systems, often involving both 

hardware and software delivered as one system, evolve over time but in today's 

fiercely competitive market place there is increasing commercial pressure to 

respond rapidly to new needs. In this environment, systems must evolve rapidly to 

achieve a fast time to market and secure competitive advantage. 

Performance predictability in cost, schedule and delivered quality is critical to 

maintaining competitive advantage. Manufacturers use increasingly sophisticated 

techniques to reduce costs and improve delivery time. They make use of legacy 

code, have an asset base of reusable components and buy in specialist 

functionality. They reduce cycle time by looking for opportunities for 

development concurrency within the process. In order to make the development 

process more predictable, most organisations now undertake continual 

development process improvement using methods such as CMM or SPICE. 

Achievement of CMM or SPICE level 4, where measurement makes the 

development more predictable, requires the introduction of detailed process models 

and practical methods of process measurement [Pfleeger and Rombach 1994]. To 

get beyond level 4, a company must be able to use these measurements to control 

the process directly. Producers of large-scale software recognise that software 

evolves and that advanced process techniques must be used to maintain 

competitive responsiveness. 
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Process structure has been largely ignored as a determinant of process outcome 

when examining and modelling development processes [Ford and Sterman 1997], 

yet the research into CMM and SPICE shows that processes are an important 

determinant of product outcome, in terms of cost, schedule and quality. In the 

same way that products must evolve to remain successful and continue to satisfy 

market needs, the processes that produce software must evolve to support product 

evolution [Belady and Lehman 1985]. 

Software development processes are dynamic structures with complex 

interdependent feedback relationships. Understanding process behaviour is 

important to the success of any process control or improvement strategy. 

Modelling and simulation provide the means to develop, determine and validate the 

behaviour of new processes but the methodology chosen to model behaviour must 

be capable of capturing dynamic behaviour. Prediction systems that ignore 

complex, dynamic process structure cannot provide the predictability that 

manufacturers need to make competitive decisions. 

2.1 Software Evolution 

The evolutionary nature of software was first investigated and described in 

pioneering work by Belady and Lehman [Belady and Lehman 1972] more than 

thirty years ago, following a study of the IBM programming process. Continuing 

the examination of the nature and prerequisites for evolution in software to the 

present day, Lehman described eight laws for software evolution including a law 

recognising the role of feedback dynamics in the evolutionary process [Belady and 

Lehman 1985] [Lehman 1996]. 

Lehman defines and characterises two types of software: E-type systems that are 

used to solve problems in the real world and must be continually be fixed, adapted 

and extended, and S-type systems that are an executable model of a formal 

specification. An E-type system is judged by the continuing satisfaction of the 

10 
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stakeholders in the real world whereas the criterion of acceptability of an S-type is 

that of mathematical correctness relative to the specification. 

E-type systems evolve in an unbounded operational domain which itself evolves in 

response to the system. S-type systems have a bounded operational domain and so 

not evolve. 

At this point it might be sensible to define what we mean by evolution in software 

and how it differs fi-om maintenance particularly as the terms have been used 

interchangeably as if they were synonymous. There have been definitions of 

software maintenance since the 1970's and in the 1990's it was defined by two 

international standards; IEEE Standard 1219 defines it as; 

'The modification of a software product after delivery to correct faults, to 

improve performance or other attributes, or to adapt the product to a modified 

environment.' 

The International Standards Organisation (ISO/IEC) definition is similar. The term 

evolution has been used to describe maintenance and adaptive development, but 

there are no standard definitions of software evolution as yet. 

Lientz and Swanson in the late 1970's categorised maintenance activities into four 

classes [Lientz and Swanson 1980]: 

• Adaptive - changes in the software environment 

• Perfective - new user requirements 

• Corrective - fixing errors 

• Preventive - prevent problems in the fiiture. 

Bennett and Raglich [Bennett 2000] suggest that maintenance should be defined as 

general post-delivery activities whereas the goal of evolution is the adaptation of 

the system to the ever-changing user requirements and operating environment. 

11 
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Thus evolution extends the idea of adaptive and perfective maintenance to be a 

continuous, feedback driven adaptation of software to meet stakeholders' 

expectation in the operational domain. We shall follow Bennett and Raglich's 

distinction. 

E-type systems, therefore, after initial deployment with customers are continuously 

modified over a series of versions to meet new market needs. 

In the Feast projects (Feedback Evolution and Software Technology), Lehman 

examines the nature of and the prerequisites for evolution in software [Lehman and 

Stenning 1996; Lehman and Stenning 1998]. The software studied in the project is 

large-scale software that has persisted over many years and meets the E-type 

criteria. 

The Feast hypothesis is that software evolution is a feedback process and that 

unless the feedback dynamics are understood, major process improvement cannot 

be achieved [Lehman 1996; Lehman and Ramil 2000]. Lehman believes that 

external factors from the domain of the system limit evolution and that changes to 

process models have marginal effects. Process improvements that are made 

without understanding feedback dynamics will fail to deliver the expected benefits. 

The project proposes eight laws for evolution: 

I Continuing Change E-type systems must be continually adapted else they 

become progressively less satisfactory. 

II Increasing Complexity As an E type system is evolved its complexity increases 

unless work is done to maintain or reduce it. 
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III Self Regulation 

rv Conservation of 

Organisational 

Stability 

V Conservation of 

Familiarity 

VI Continuing Growth 

VII Declining Quality 

VIII Feedback System 

Global E-type system evolution processes are self-

regulating. 

Unless feedback mechanisms are appropriately adjusted, 

the average effective global activity rate in an evolving 

system tends to remain constant over the product 

lifetime. 

As an E-type system evolves, all associated with it must 

maintain mastery of its content and behaviour to achieve 

satisfactory usage and evolution. Excessive growth 

diminishes the mastery and leads to a transient reduction 

in growth rate or even shrinkage. Therefore the mean 

incremental growth remains constant or even declines. 

Functional content of E-type systems must be continually 

increased to maintain user satisfaction over its lifetime. 

Quality of E-type systems will appear to be declining 

unless they are rigorously maintained and adapted to 

operational environment changes. 

E-type evolution processes are multi-level, multi-loop, 

and multi-agent feedback systems and must be treated as 

such to achieve major process improvement. 

Lehman's findings are that evolution is constrained by feedback in the process. In 

the empirical studies carried out by Lehman, over the lifetime of the software, the 

rate of softwai'e growth declines. The inference is that the system loses its ability 

to be adapted to meet new needs; legacy, complexity and unwieldiness limit 

successful evolution. 

13 



Chapter 2 Background 

Lehman proposes that there is a hmit to the age and growth of software. However 

the early studies are of very old software (IBM OS/360) [Belady and Lehman 

1985] and growth is represented by the physical size of the software. This equates 

growth in size with evolution and this may not be a good representation of 

evolution. 

More recently developed software, e.g. Microsoft Windows 2000 and Netscape 

Navigator and Communicator have shown aggressive evolutionary growth in 

functionality and size. Navigator has evolved from a web browser into 

Communicator, a set of Internet communication tools, within 3 years and has 

grown in physical size from a code base of 100,000 units to 3,000,000 units. 

Microsoft Windows has evolved over 18 years from Windows 286 to Windows 

NT. The ability of Windows to continue to evolve may be based on the evolution 

of the process model used to develop the software [Cusumano and Yoffie 1998]. 

The example of Netscape shows how rapidly a software product needs to evolve in 

response to an expansion of the technological and cultural domain of the software 

and market expectation. 

The characteristics of evolutionary change in software described by Lehman and 

the proposal that the process used to produce the software must support the 

requirements of software to evolve provide a basis for further investigation. 

Lehman stresses that an understanding of feedback is necessary to design processes 

that produce software that can evolve effectively; therefore any investigation 

should be supported by tools that allow feedback to be examined [Allen 1988]. 

The EPSRC funded SEBPC research programme indicates that evolution in 

business processes is necessary to maintain competitiveness and the ability of an 

organisation to change and adapt to new threats and opportunities [Henderson 

2000]. Warboys also stresses the need to examine feedback [Warboys, Greenwood 

and Kawalek 2000]. 
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In the case of software development business, the processes that need to evolve are 

the processes that produce software. 

2.2 Quality 

Fenton [Fenton 1996] [Fenton and Pfleeger 1997] asserts that we should define the 

quality of software products in terms of specific software attributes of interest to 

the user. These are external product attributes that represent the user's functional 

and non-functional requirements; they define the fitness for purpose of the 

software. 

Returning to the ISO 9126 Single Universal Model, mentioned earlier in this 

chapter, it was developed to follow this view of quality using the definition: 'the 

totality of features and characteristics of a software product that bear on its ability 

to satisfy stated or implied needs'. It has six factors: 

• Functionality 

• Reliability 

• Efficiency 

• Usability 

• Maintainability 

• Portability 

These external attributes are difficult to measure or compare, so the attributes are 

defined in terms of more concrete characteristics that are measurable. Within this 

model, each high level factor is composed of lower level criteria which define it, 

for example, reliability is defined as 'A set of attributes that bear on the capability 

of software to maintain its level of performance under stated conditions for a stated 

period of time'. A set of characteristics that define the attributes is suggested but 

not prescribed. The standard provides a framework for evaluation of quality. 
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The ISO model develops models proposed by Boehm [Boehm, Brown and Kaspar 

1978] and McCall [McCall, Richards and Walters 1977], which are also tree 

structured decompositional models of the components of quality. Boehm used his 

model when developing the COCOMO cost estimation model; the McCall model is 

used to predict productivity [Fenton and Pfleeger 1997]. One of the difficulties in 

making quality comparisons is that the models used differ in their interpretation of 

the criteria that define the external attribute. For example, Boehm defines 

rehabihty as: 

• Completeness 

• Accuracy 

• Consistency 

McCall defines reliability as 

• Accuracy 

• Error tolerance 

• Consistency 

• Simplicity 

The ISO model is an attempt to provide a universal standard but as the 

interpretation of the characteristics is not defined and is dependent on the 

evaluator, comparison of the quality of products is difficult. 

Quality must be measurable for meaningful comparison to be made. External 

attributes are not directly measurable, so the quality models relate these external 

attributes through decomposition to internal attributes that are measurable, as 

shown in Figure 2. 
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External Attributes Ctiaracteristics Internal attributes 

Completeness 

Accuracy 

Consistency 

Reliability 

Size 

Complexity 

Syntactic 
Correctness 

Defects 

Figure 2. ISO decompositional model of the components for reliability 

Whilst the user is the primary focus for consideration of quality, we should 

consider other stakeholders. Software producers, for example, expect to be able to 

reuse software components in order to reduce development cycle times. They need 

measures of the quality of the components that will be integrated into new and 

evolved software products; low quality assets may not be reusable or may cost 

more to integrate. Software quality is one of the measures that represents the value 

of their asset base. As well as reuse considerations, lower quality products will 

cost more to maintain and are less likely to evolve successfully. As described in 

Lehman's Laws for evolution, systems must be continually adapted else they 

become progressively less satisfactory. The observed quality of software will 

decline if the software doesn't evolve to meet new needs. 

Producers' quality goals also include external attributes relating to process, cost, 

stability, timeliness and resource attributes of productivity. These attributes can 

similarly be represented by internal attributes. Fenton shows examples of the 

relationship between internal and external attributes for products, processes and 

resources, see Figure 3. 
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Entity Attributes 

External Internal 

product Code Reliability 

Usability 

Maintainability 

Size, reuse, modularity, 

functionality, 

complexity ... 

process Detailed Design Quality 

Cost 

Stability 

Time, effort, number of 

faults found 

resource Personnel Productivity Experience, motivation, 

cost 

Figure 3. Internal and external relationships for products processes and resources 

The difficulty for producers is predicting the outcome of external attributes whilst 

the product is in the process of development. The product's internal attributes, for 

example, size, are often easier to measure than external attributes. The process 

must provide measurements of the internal product and process attributes in order 

to provide predictability and control. If it is difficult to predict the quality outcome 

of the product by measuring the product itself during development, an alternative 

would be to measure capability of the organisation and its processes to produce a 

quality product, based on the assertion that process predictability determines 

product predictability. Process measurement is discussed in section 7 of this 

chapter. 
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2.3 The Software Process 

Humphrey [Humphrey 1990] defines the software process as, 

'that set of actions required to efficiently transform a user's need into an 

effective software solution. A particular process is the set of tools, methods and 

practices we use to produce a software product'. 

He identifies the characteristics of an effective software process as predictability; 

cost estimates and schedules must be met with reasonable consistency and products 

must meet functional and quality expectations, reflecting the interdependency 

shown in Figure 1 

Development activities that are carried out in the software process include: 

System conceptuahsation Software integration and testing 

System requirements and benefits analysis System integration and testing 

System design Installation at site 

Specification of software requirements Site testing and acceptance 

Architectural design Training and documentation 

Detailed design hnplementation 

Unit development Maintenance 

Process models are differentiated by the combination of tasks adopted, the 

development effort allocation to the tasks, the timing of activities and the feedback 

and control methods used to predict and control the process outcome. 

Humphrey identifies three levels of software process models. The universal, U 

model provides a high level, abstract overview of the process model; the worldly, 

W model provides the working model adopted by an organisation and refines the U 
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model; the Atomic or A model is the instantiation of the W model for a specific 

project and is a refinement of the W model. 

The universal models that are typically in use in software production are 

• Waterfall [Royce 1970] 

• Prototyping models - Spiral [Boehm and Bose 1994] 

• Defect Prevention - V model [Droschel and Wiemers 1999] 

Process models developed in response to the increased demands placed by the 

market for fast time to market and fast growth of capability include: 

• Incremental Development (synch and stabilise [Cusumano and Selby 

1997], Objectory) 

• Evolutionary (eXtreme Programming [Beck 1999], Open Source [Raymond 

1999]) 

• Agile Methods (eXtreme Programming [Beck 1999]) 

2.4 Process Models 

2.4.1 Waterfall Lifecycle 

The Waterfall or Classic lifecycle (Figure 4) [Royce 1970]is the oldest attempt to 

define the software development process as a systematic, sequential engineering 

process. It is based on a systematic, sequential approach that begins with system 

requirements and progresses through analysis, design, coding, testing and 

maintenance. 
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Test 

Design 

Code 

Analysis 

Systems 
Requirements 

Maintenance 

Figure 4. The Waterfall Model 

The paradigm can be criticised because real projects rarely follow a sequential flow 

and iteration always occurs. Iteration is desirable in that it follows the change in 

mental model produced by understanding and learning as the project progresses. 

Customers evolve their understanding of their requirements as the project 

progresses yet under this lifecycle they are required to fix their requirements early 

in the lifecycle. Major failures of understanding can remain undetected because 

the customer sees a working version late in the cycle. The model assumes that all 

projects start from a 'clean sheet' whereas modem software producers use their 

resources of knowledge and predictable, stable software assets to shorten time to 

market. 

Pamas in 'How and why to fake it'[Pamas and Clements 1985], proposes that there 

are benefits in retrofitting the model to the project as a method to document an 

idealised version. This historical, idealised version of the project smoothes out the 

iteration that actually takes place. Pamas uses the process model as a schema for 

documentation to aid maintenance and support legacy development. This 

acknowledges that the Waterfall Model does not effectively support the actual 
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process followed by developers or the planning, estimation and control of the 

process. 

2.4.2 V model 

The V model of development is a sequential model of development, similar to the 

waterfall model, that incorporates verification and validation of the product 

throughout the sequence of tasks, see Figure 5. The model follows Humphrey's 

[Humphrey 1990] definition in that it models the frameworks of tools, methods and 

standards that support the process as well as the sequence of activities to be 

followed. Validation and verification is ensured though inspection, review and 

testing at each stage in the development cycle. Testing is a planned, not ad hoc 

activity. 

Systems 
Requirements 

Analysis 

Dynamic Verification and Validation 
Software 

Requirements 
Elicitation 

Requirements 
Analysis 

X 

X 
Detailed Design 

Operation 

iz: 
Client 

Acceptance 

z 
System 

Integration & 
Test 

Preliminary 
Design 

z 
Component 
Integration 

Testing 

Unit 
Test 

^ 
Implementation 

Figure 5. V model of development 
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The model addresses the need to ensure quality of outcome by incorporating defect 

removal and prevention activities in the process model; for example unit tests are 

an outcome of the detailed design. 

2.4.3 Rapid Application Development - Spiral Lifecycle model 

Rapid Application Development uses iteration of the development cycle to provide 

a progressively more complete version of a product. Prototyping is used as a 

method of eliciting requirements and feedback about each successive version and 

for exploring the problem domain. Prototyping as a technique was developed in 

response to the difficulties encountered in sequential development where 

requirements are fixed early and the changes that are a natural response to learning 

about the problem domain are difficult to feedback into the requirements. Whilst 

users may know many of the objectives that they wish to address with a system, 

they may not know all the details of the problem domain or the capabilities of the 

system domain. Process models that use prototyping allow for these conditions 

and offer a development approach that yields results without fixing requirements 

too early. In Rapid Application Development models, the developer builds a 

simplified version of the proposed system and presents it to the customer for 

consideration as part of the development process. The customer in turn provides 

feedback to the developer, who refines the system requirements to incorporate the 

additional information. Prototype code may be thrown away or refactored and 

entirely new programs developed once requirements are identified. 

The Spiral model developed by Boehm [Boehm 1988] Figure 6, shows the iteration 

inherent in development. The spiral model formalises earlier rapid application 

development models characterised by prototyping and includes risk assessment of 

the project outcome. 

23 



Chapter 2 Background 

DETERMINE 
OBJECTIVES, 
ALTERNATIVES, 
CONSTRAINTS 

Commitment 
partition 

REVIEW 

CUMULATIVE 
COST 

EVALUATE 
ALTERNATIVES 
IDENTIFY, 
RESOLVE RISKS 

Progress 
ttirougti steps 

Risk analysis 

Risk analysis 

Risk analysis ^ 

RislTNw ^ \ Operational 
Anal ^pro to type 

% type 
type 

Emuiat 
Ions 

Rqts plan 
Life cycle 

plan 

Models Benchmarks Concept of 
opera t io i ^ Software 

rqts 
Software 
product 
design 

eveiopment 
plan 

Detailed 
Design 

Requirements 
validation 

Integration 
and test 

Ian 

Design validation 
and verification Unit 

test 
Integral \ 
ion and \ Accept xtest 

. -ance 
Implemen test 
cation 

PLAN NEXT 
PHASES 

DEVELOP, VERIFY 
NEXT LEVEL PRODUCT 

Figure 6. Spiral Model of Development 

A spiral flow through four quadrants describes the process model. The quadrants 

are planning, risk analysis, engineering and customer evaluation. At each circuit 

around the spiral, increasingly more complete versions of software are built that 

can be evaluated by the customer; risk analysis determines whether the project 

should continue or whether the process should be modified or halted. For example, 

if an increase in cost or project completion time is identified during one phase of 

risk assessment, the customer or the developer may decide to limit the product 

features because the increased cost or lengthened timeframe may make 

continuation of the project with the current feature set impractical or infeasible. 
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Customer evaluation of each successive version of the product is used to modify 

the next more detailed version. 

Each flow around the Spiral is made up of the following steps: 

• determine objectives, alternatives, and constraints. 

• assess risk, evaluate alternatives, identify and resolve risks. 

• develop and verify. 

• plan next phase. 

At this point in the spiral the commitment to proceed is reviewed. 

The model is designed to show dynamic development that is modified by the 

development process itself 

The Win-Win Spiral Model [Boehm and Bose 1994] described by the diagram in 

Figure 7, is an evolution of the original Spiral model. It incorporates a framework 

(Theory W) for the product stakeholders (e.g. developers, users) to negotiate 

mutually satisfactory sets of objectives and alternatives and constraints for each 

successive version. 
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1. Identify next level 
Stakeholders 

7. Review commitment 

5. Validate product 
and process 
definitions 

2. Identify Stakeholders 
win conditions Win-Win 

Extensions 

3. Reconcile win 
conditions. Establish 
next level obiectives 

4. Evaluate product and 
process alternatives 
Resolve risks 

Original 
Spiral 5. Define next level of product and 

process - including partitions 

Figure 7. Spiral Model with Win- Win Extensions 

2.4.4 Incremental Builds- Microsoft 'Synch and Stabilise' 

Incremental models of development [McConnell 1996] have been developed in 

response to the need to reduce the time to market by using high levels of 

concurrency in the process. Development and testing are done in parallel and the 

specification evolves from a high-level vision statement of prioritised goals 

through incremental releases of successively more complete versions of the 

product. 
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feedback from 
Release into planning 

Release 

feedback from 
Release into feature 
evolution 

Figure 8. An Instance of a Synch and Stabilise Process 

Incremental models based on 'Synch and Stabilise' [Cusumano and Selby 1997] use 

distribution to create concurrency, Figure 8. The product is broken down into 

feature sets that can be tackled by a team. The project is broken down into 

sequential sub projects (milestones) representing completion points for major 

portions of the product, each with a prioritised set of features. Feature teams 

complete a complete cycle of development (design, code, fix, integrate) for each 

milestone. Each milestone completes an increment of the product. Figure 9. 

Developers work in teams aligned with the components or requirements they are 

making, each team has the skills needed to complete the development cycle. The 

teams synchronise together by submitting the components they are building into a 

daily build of the product. The product is stabilised at each release milestone. 
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The team structure breaks the communication barriers that can occur between 

functionally aligned groups. In comparison, Waterfall process models, with 

sequential phasing create functional organisation structures of developers aligned 

with phases. A team of analysts would work on a specification, and pass the 

completed and signed off specification to a team of designers in the design phase, 

who pass off the signed off design to a team of implementers. 

Developers improve their competitive advantage by reducing their time to market 

by planning multiple release cycles with fixed release dates. The release content is 

not fixed too far ahead so that the release date can be achieved irrespective of 

whether feature completion plans have been achieved. 

Customer feedback fi-om each successive release is used to evolve the specification 

for later phases. 

Continue 
cycle from 1 

submit to 
build 

Understand current 
feature and design 

evolution 

code feature 

Fix defects 

Test new feature 

Figure 9. An Individual Cycle in Microsoft Synch and Stabilise 
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2.4.5 Agile Methods - extreme Programming 

Agile Methods [Cockbum 2002] [McConnell 1996] are low procedural overhead 

methods that accept that software development is difficult to control. Agile 

methodologies emphasise values and principles in software engineering, rather 

than procedures and documentation. Projects minimise risk by ensuring that 

engineers focus on small units of work and work in close collaboration with 

customers. The method uses short, iterative project cycle; at the end of each cycle 

project priorities are re-evaluated. Agile Methods include eXtreme Programming, 

and DSDM (Dynamic Systems Development Method). 

The most well known agile method is eXtreme Programming (XP) [Beck 1999] 

uses similar techniques to Synch and Stabilise and has been developed for use with 

small teams building software quickly in an environment of changing 

requirements. The model emphasises high levels of communication and feedback 

from the customer and the development process. The process follows these 

techniques. 

• negotiate requirements with on-site customer domain expert, simple design 

using storyboards, CRC ( Class Responsibility Collaboration) cards 

• no design/architecture review, design is refined through the code-fix-

release cycle 

• design is broken down into coding work packages/components that can be 

completed in a day 

• development using well defined and strictly adhered to tools and coding 

standards 

• pair programming 

• iterated code, test and fix cycle (writing tests before code) 

• daily builds 
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• incremental release of frequent updates in functionality in a short cycle. 

The model shows similarities with rapid application development models that use 

iteration and prototyping to evolve successively more complete versions of 

software. 

2.4.6 Open Source 

The Open Source process model developed and described by Torvalds [Raymond 

1999] was most famously used for the development of the Linux operating system. 

The model has been used to produce collaborative software using the web as a 

community infrastructure: 

• in the academic world, 

• networked computer game world e.g Half-Life: Counter-Strike 

• and for middleware infrastructure e.g Apache TomCat web server, Mozilla 

web browser 

The last two communities produce successful, mature Open Source products that 

are able to create or replace commercially viable products [Scacchi 2002]. 

Scacchi reports the one Open Source community portal for collaborative 

development, SourceForge [OSDN 2002-2004] had more than 30,000 open source 

projects listed in 2001, with more than 10% indicating the availability of mature, 

released and actively supported software. 

The source code is published and freely available. Interested users find and fix 

bugs and offer improvements. The owner selects fittest component from those 

offered, integrates it into the product and includes it in the published system. The 

system is a co-operative venture between the publisher and the user. The market 

decides how the product will evolve and evolutionary success of the product is 

dependent on the willingness of the market to participate in the development 

process. The process model is distributed and concurrent [Moon and Sproull 
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2000]. However, in this process model, the publisher is not concerned with the 

development activities that produce a component. 

Open Source is probably the most innovative process model to emerge in the last 

ten years that challenges how complex systems can be constructed, evolved and 

deployed. Scacchi identifies Open source development as 'a complex web of 

socio-technical processes, development situations, and dynamically emerging 

development contexts' [Scacchi 2004]. 

Feedback is used implicitly and explicitly as the dynamic that evolves an Open 

Source product. The Open Source developer solicits and uses feedback from the 

developer and user community. Software evolves when the product is successful in 

the marketplace and interest and commitment has been stimulated from the 

stakeholder community. 

The Open Source process model is being used successfully in developing and 

evolving infrastructure and network game software both in academic and 

commercial environments. 

2.5 Comparing Process models 

Classical lifecycle models such as the 'waterfall' and V-Model are sequential and 

static, they are non-evolutionary and assume that the product is created solely 

within the organisational boundary. In traditional software development 

environments, they aided process understanding and improvements but cannot 

support the more complex evolutionary processes described here or predict their 

behaviour. 

More recently introduced lifecycle models such as Spiral [Boehm 2000] have been 

developed to take account of iterative dynamic development. However, Perry, 

Staudenmayer and Votta [Perry, Staudenmayer and Votta 1994] conducted 

empirical studies using diaries and direct observation in two organisations to 

examine the software process and in particular how developers spend their time. 
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They found that neither the waterfall nor the spiral models reflect what really 

happens. Their findings were that many iterative and evolutionary processes were 

performed concurrently. 

Powell and Mander [Powell, Mander and Brown 1999] have described iterative 

development where concurrent pipelining techniques have been used to reduce 

cycle times. The model shows a traditional sequence of development phases fi-om 

requirements through design, implementation and testing. Each Phase is iterated 

producing successively more complete versions of the product to be passed from 

each phase to the next, thereby enabling the phases to overlap. 

In these cases the process model follows the traditional development sequence of 

phases. There remains the problem of predicting performance when work is 

distributed and may not all be within the organisational boundary. 

Incremental 'synch and stabilise' models have been successfully used at Microsoft 

to allow fast evolution of large systems, and fast time to market. The process is a 

sequence of sub-projects each of which is a complete development cycle producing 

an increment of functionality of the product. Because of the iterative development 

of increments of functionality, there is always a system that is ready to ship. 

Customer and developer feedback into requirements ensures that the product can 

respond quickly to changing user needs and changes in the system domain needs. 

The high level of concurrency within sequential sub projects allows a faster time to 

market for large systems. The process model addresses the problems of the lack of 

responsiveness in the waterfall model by breaking barriers between functional 

groups, and providing feedback mechanisms from users and developers to evolve 

the product rapidly. Whilst the code-fix-build cycle is clearly defined in the 

model, there is no clear definition of how design activities can be as responsive as 

requirements. The model incorporates code and fix rather than defect prevention, 

which may allow design defects to proliferate. Criticisms have been made that, 
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unless these aspects of the process model are better defined, the process model may 

not scale to development of systems where high reliability is required. 

Open source is a distributed process model. The system publisher selects and 

integrates components provided by interested users outside the organisational 

boundary. At component level any lifecycle model may be used. The benefits of 

the process model are a fast time to fix, market driven, and fitness for purpose, 

evolution of the whole system guaranteed through competition for survival of 

evolutions of components. However the publisher needs to generate sufficient 

market interest or users may not supply new and evolved components in which 

case the product will not evolve. 

Competition for the most successful fix evolves components quickly but the cost of 

development effort is hidden because most development is unpaid. The resources 

of many programmers are used to find and develop fixes for any one successful fix. 

The cost of thrown away work, (unsuccessful evolutions) is not measured or 

measurable. 

The emphasis in the model is on a code and fix cycle of evolution; requirements 

and design are not formalised. The product design evolves through competition for 

successful components. Failures of design are cast aside through competition and 

the cost of design failures is not measured. Thus upstream design defects are 

ignored in favour of down stream code fixing which takes more development 

effort. 

The process model does not define how the product architecture is developed, in 

Open Source developments described so far (Linux), the architecture was well 

defined and stable before the source was opened. 

The successful application of the model is likely to be determined by the nature of 

the software to be developed for example, operating system software and 

infi-astructure. If this model is to be used in vertical markets, then developers will 
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need to use a different model for their revenue stream, possibly based on selling 

product related services rather than the products themselves. 

2.6 Evolution in process models. 

In the same way that systems must evolve to meet new needs, process models must 

evolve to meet the needs of the developer and the domain system. As suggested by 

Lehman's work on software evolution, user satisfaction declines unless steps are 

taken to evolve the product to meet new needs. In the case of process models, the 

users are developers who are building software products. Their satisfaction with 

the process model declines when the model no longer meets the needs of the 

developer to respond to changes in the technological and cultural domain to meet 

market expectation. 

Process improvement models like Humphrey's [Humphrey 1990] use feedback 

from the current model to evolve new models. Feedback from evaluation of world 

W-models and changes in the system domain leads to evolutionary changes in 

universal U-models. Evolution in process models can be observed by examining 

how process models have developed over time. 

The Waterfall Lifecycle was the first attempt to define a process model; it 

sequences and defines development activities. 

The V model is an evolution of the Waterfall Lifecycle that includes validation and 

verification, but is still sequential. This evolution was in response to developer and 

user needs to improve the quality of software products. 

The Spiral model is an evolution of rapid application development, incorporating a 

formal framework of risk analysis. In turn, the Win-Win Spiral model is an 

evolution of the Spiral model that includes formalised negotiation of requirements. 

This evolution to include prototyping and requirements feedback was in response 

to dissatisfaction with the Waterfall Model early requirements fixing and late 
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realisation leading to undetected failures of understanding between developers and 

users. 

Incremental models are a response to the need to be able to react to market 

expectations by developing large systems rapidly. To achieve rapid growth in 

software products, developers need concurrency in development activities, and 

feedback relationships to allow requirements evolution. Incremental models use 

build and release iteration for requirements evolution and concurrent development 

cycles to reduce the time to complete each release. This shows evolution from 

both Spiral models and Waterfall models. Synch and Stabilise iterates concurrent 

waterfall cycles in a sequence of subprojects. eXtreme iterates concurrent rapid 

application models. 

Open Source has evolved to provide a model for component-wise distributed 

development across organisational and geographical boundaries. The product 

reacts rapidly to market needs and expectations of fast defect correction. There 

appears to be evolutionary interdependence between Open Source systems and 

their user-developer communities so that they co-evolve. 

2.7 Process Predictability and Control 

A process is said to be under statistical control if its future performance is 

predictable within established statistical limits. When it is under statistical control, 

it should be repeatable with similar results. Deming [Deming 1982] states that 

measurement is the basis for statistical process control. He applied these 

techniques to manufacturing industries. Humphrey [Humphrey 1990] asserts that 

these techniques are applicable to the management of software development 

processes and they have been incorporated into the Capability Maturity Model 

[Paulk, Curtis et al. 1994]. Following the Representational Theory for 

Measurement [Fenton and Pfleeger 1997], numbers must properly represent the 

process being controlled and must be sufficiently well defined and verified to 
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provide a reliable basis for action. Measures of the product and process are 

required for predictability of product quality, cost and schedule. 

2.7.1 Measuring Software Products 

According to the Representational Theory of Measurement [Fenton and Pfleeger 

1997], data obtained as measurements must properly represent attributes of the 

observed entities; measurement must be consistent and manipulation of data should 

preserve the relationship observed between entities. The theory provides rules for 

consistency in measurement and provides a basis for interpreting data. 

The definition of measurement using the representational theory provided by 

Fenton is; 

'Measurement is a mapping from the empirical world to the formal relational 

world. Consequently, a measure is the number or symbol assigned to an entity by 

this mapping in order to characterize an attribute.' 

The theory can be applied to product and process quality measurement in order to 

find concrete internal attributes that truly represent the external attributes. Internal 

attributes are more measurable during the process so their measurements are easier 

to use, to assess and to control progress towards target outcomes. 

Fenton defines internal attributes 'as those that can be measured purely in terms of 

the product, process or resource on its own, separate fi-om its behaviour'. 

Commonly measured internal attributes are size, modularity, redundancy, reuse, 

syntactic correctness, structuredness and defect density. 

Size is one of the most important measurements used for predicting cost and 

schedule, for example in the COCOMO and COCOMO II estimation models. If 

we examine size, Fenton shows that it is not one-dimensional and that it has at least 

three dimensions, length (physical size), functionality and complexity (of the 

underlying problem solved by the software). 
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One aspect, length, is the most commonly measured in Lines of Code (LOG) or 

KLOC (thousand hnes of code) yet there are many definitions of a LOG. They can 

be blank, comments or data declarations; the counted size of the product depends 

on the counting method used and the definition of a LOG. Jones [Jones 1986] 

reported differences of five times in the counted size of a product depending on the 

definition used. 

When we consider comparisons of length in LOGs between two products, one 

composed of components and one developed from scratch, can a comparison of the 

effort required to produce the products be made? Gomparisons can be spurious, 

because methods of counting differ. Measurements of size seem uncomplicated 

but there are difficulties in achieving comparable, consistent and meaningful 

results. 

The internal product attribute typically used as a measure and predictor of quality 

during the process is defect density. If defect density is to be used as a predictor, 

we must be certain that the representational theory of measurement holds, and that 

it represents the reliability of the product (mean time between failure). However, 

Adams at IBM found that the density of defects in a product did not necessarily 

indicate its rate of failure [Adams 1984]. Neither are comparisons of defect 

densities reliable if the measurement of size is not consistent. 

Narrow measures of internal attributes are often used because they seem easier to 

count and collect; there is a tendency to measure only the readily measurable 

attributes rather than the full representation of the external attribute. 

2.7.2 Measuring Process 

As well as measuring the quality of their products, producers need to be able to 

measure how successful they are at producing software efficiently. Producers need 

to be able to predict: 

• How much effort it will take to produce a software product. 
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• How long the process will take to complete, 

• The productivity of the process. 

As discussed in section 3, these are process and resource attributes. Process, 

resource and product attributes are similarly measured in terms of their internal 

attributes. There are similar difficulties in achieving precise and comparable 

measurements, for example, manpower costs may include only those working 

directly on the product, or they may include administrative staff 

Effort required to complete a process is determined by the amount of work that is 

required to be completed. The time that the process will take to complete is 

determined also by the amount of work to be completed. One definition of the 

work to be completed is the size of the product. Size in terms of LOG is a concrete 

product measure but it is only available when the product is complete. In order to 

predict effort and time, size must first be predicted. This shows the 

interdependence of product and process measures. 

2.7.3 Cost and Schedule Estimation COCOMO and COCOMOII 

In recognition that not all development follows traditional process paradigms, 

COCOMO II [Boehm, Abts et al. 1996] has been developed to take account of 

prototyping life cycles (spiral), reuse and COTs style development (integrations of 

Commercial Off-The-Shelf components through exposed interfaces). Whilst 

COTS style development is recognised within COCOMO II, only components 

integrated as part of a tool-bed or an infrastructure are modelled. It does not 

address COTS integration development where the delivered system is an 

integration of components. 

COCOMO II is designed to be applied at three stages in the target lifecycles, at 

project start up, early design and post architecture, with the intention of providing 

increasingly more accurate costs as more information becomes available about the 

delivered system. The model is intended to be applicable to a wide range of 
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organisations and products and incorporates a set of parameters that must be set up 

to tailor the model to a specific organisation and process. Twenty four cost driver 

parameters are required to set up the model for a two stage estimation process, 

covering product factors (required reliability, complexity, reusability, 

documentation), platform factors (execution time, storage constraints, volatility), 

personnel factors (experience and continuity), project factors (tools, schedule and 

inter site communication). This requires a sophisticated knowledge of the software 

to be developed, the organisation, resources and process. For example, to calibrate 

PCON, personnel continuity, (high is desirable) the producer first must assess their 

project's annual personnel turnover, APT using data from previous projects and 

other evidence, and use it to derive their PCON rating as shown in Figure 10. A 

low value APT is desirable and converts to a high value PCON. 

PCON Very Low Low Nominal High 
Very 

High 

Extra 

High 

APT 48%/year 24%/year 12%/year 6%/year 3%/year 

Figure 10. Calibration parameters for Personnel Continuity 

The definition of the parameters and calibration of the model requires considerable 

effort and it is very difficult to calibrate the model for an organisation. However 

the cost drivers show the areas that affect productivity. 

Project costs are estimated from person months required to produce software of 

size S. The fundamental relationship modelled is: 

PM = Ax {SizeY X Y\(em) 
i=\ 

Where: 

PM is person months adjusted by cost drivers, 

A is a constant used to capture the multiplicative effects on effort with projects 

of increasing size. 
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S is size in KSLOC, adjusted by a breakage factor, of the deUvered system 

B is a scale factor used to account for economies or dis-economies of scale 

EM is a set of cost drivers. 

The breakage factor represents the amount of code developed but not delivered in 

the system because of discarded or changed requirements and due to rework 

through error. It therefore represents the extra work required to achieve the desired 

quality in the delivered system. 

COCOMO II is interesting because it identifies that new process models require 

new techniques for estimating project costs and schedules; it identifies that the size 

of the delivered source code does not represent all of the work done to make the 

product (the breakage factor); and that the behaviour of the project process affects 

the estimate (cost drivers). The research also indicates that more effort needs to be 

expended when the requirements for reliability are high. 

2.7.4 COCOTs 

The research into COCOTs [Boehm 1997] by USC began in recognition that 

COCOMO II did not address delivered systems composed of components. The 

researchers found that although many people within the software industry are 

talking about such systems as yet there is little empirical or theoretical research in 

this area. 

Their early research is based on lexical maps of surveys of risk factors identified 

by software professionals in the Risk Repository of the Software Engineering 

Institute at Camegie-Mellon. COCOTs researchers have used this information to 

suggest cost drivers for a cost estimation model analogous to COCOMO II. 

The cost model calculates the effort in person months required to make the planned 

product. The researchers recognised that the size of the delivered product in 

thousands of source lines of code used in COCOMO and COCOMO II was an 

inappropriate measure of the amount of development work done by developers 
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because it also included those lines of code developed by the component suppliers. 

Henderson describes the work of integrating developers as 'glueing' [Chatters, 

Henderson and Rostron 1998] components together. The cost or person-months is 

related to the amount or 'size' of the glue code. Li COCOMO II an alternative 

method of calculating KSLOC is by counting function points and then converting 

them to KSLOC using a conversion table. The function point method of sizing the 

glue code, without conversion to KSLOC, has been used in COCOTs. 

Following the model of COCOMO II, in the COCOTs model version 1, person 

months are calculated from the size of the code adjusted by linear and non-linear 

scaling constants, rework and a set of cost drivers (effort multipliers). 

ESIZE = UFP X (1.0 + BRAK /1OO) 

13 

PM = Ax {ESIZEY X Y[[em) 
i=i 

Where: 

ESIZE is effective size of developed glue code 

UFP unadjusted function points 

BRAK rework percentage 

A linear scaling constant 

B non-linear scaling constant 

EM 13 effort multipliers or cost drivers 

PM is the estimated effort in person-months for the COTs integration task 

The 13 cost drivers include COTs specific factors identified through the Carnegie-

Mellon risk assessment; supplier maturity and performance, component reliability, 

integrator experience. Interestingly many of the project, personnel and product 

factors considered important in COCOMO II do not appear in the COCOTs model, 

for example, personnel continuity, process maturity, team cohesion, yet these 
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factors exist in an organisation whether using component integration methods or 

more traditional development processes. The researchers assert that the 13 drivers 

are the most significant factors affecting cost prediction for COTs style 

development. Organisations may find that some COTs integration projects will 

include some self built components; in this case they will need one cost estimation 

model, COCOMO II, for the self built component and another for the COTs part of 

the project, the difficulty will then be of holding sufficient information to set up 

and calibrate the COCOMO II parameters and the COCOTs parameters. 

Estimation models provide a snapshot prediction of the costs of developing a 

product however they do not capture how the project performs against the 

prediction until the project is complete. The method of estimating the size of the 

product means that it is not easy to assess progress during the project. 

Achievement of KSLOC against target is not visible during all phases of the 

project (requirements, design, testing). Without this information the costs cannot 

be controlled. 

Estimation systems do not provide control of the dynamic system even if they are 

applied at more than one point in the development (as is suggested for COCOMO 

II). Cost and schedule metrics can indicate exceptions to the planned costs and 

schedule but estimation tools do not provide the insight necessary for the dynamic 

control of the process 

2.8 Process Improvement 

Humphrey [Humphrey 1990] identifies process improvement as a key management 

task to reduce costs, make more effective use of resources and improve the 

organisation's ability to prosper. One goal of process improvement therefore is to 

improve predictability in schedule, cost and quality of the products of the process. 

Another goal is improvement of the quality of the products of the process. 
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Humphrey defines a continuous cycle of process improvement with six repeated 

actions, Figure 11. At each iteration of the cycle, the starting point for 

improvement is understanding the current status of the process. The completion of 

each iteration is starting the next iteration. The cycle provides evolutionary 

Continue 
cycle from 1 

Commit 
resources 

Plan required 
actions 

Understand 
current status 

of process 

Develop vision of 
desired process 

Establish list of 
required process 

improvements 

Figure 11. Humphrey's Process Improvement Cycle 

progress for the process. 

The Software Engineering Institute's Capability Maturity Model, CMM, [Paulk, 

Curtis et al. 1994] and SPICE [Dorling 1993] assess the ability of an organisation 

and its processes to produce quality products. Figure 12. Explicit in the models is 

the recognition that an organisation must define, measure, control and finally 

improve its process to improve its capability. CMM and SPICE provide a 

firamework for organisations progressively to improve quality through the adoption 

of quantitatively controlled process models. The models follow the improvement 

cycle proposed by Humphrey; each progression fi-om one level to the next is an 

iteration of the cycle where the improvement priorities are made obvious. 
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Initial 

Repeatable 

Defined 

Managed 

Optimising 

Figure 12. Capability Maturity Model 

CMM define five levels of maturity of an organisation, where level 1 is the lowest 

and level 5 the highest. SPICE has 6 levels, the top 4 are comparable to CMM but 

Spice further differentiates the lowest level into 0 and 1. The levels were chosen to 

represent the actual phases of evolutionary improvement of software organisations 

and the difference between each level represents a measure of improvement 

reasonable to achieve from a prior level [Paulk, Curtis et al. 1994]. 

The following description refers to the CMM model. 

Level L At level 1, an organisation has no defined process and is chaotic. 

Level 2. At Level 2, an organisation has a stable, repeatable process, although will 

not have defined the processes or have any insight into the behaviour of the 

process. The process is a 'black box'. 

Level 3. At level 3 the organisation has insight into the process and has defined it. 
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Level 4. At level 4 the organisation is able to manage the defined process by using 

quantitative control information. The organisation aims to operate the process 

within quantitative performance limits by taking measurements of process 

performance, analysing them and adjusting the process to maintain performance 

within limits. 

Level 5. Organisations have detailed validated models of their processes. They can 

make major changes to their processes and be able to predict the effect on 

performance of those changes with a high degree of confidence. 

The cost estimation models such as COCOMO and COCOTs support plaiming key 

process areas but do not provide the dynamic information to match performance 

against plans that is necessary for control of the dynamic process fully to achieve 

level 4 and level 5 in the maturity model. 

2.9 Summary 

In this chapter we have provided a background study for this thesis in which we 

examine evolutionary behaviour of both software and the processes that produce it. 

We described some of the technological and commercial dynamics involved in 

producing successful products in the marketplace. Performance predictability in 

cost, schedule and delivered quality is critical to maintaining competitive 

advantage. 

We presented an evaluation of software quality and showed that quality is not a 

static measure or characteristic but depends on the stakeholders' perception. In 

fact, quality declines unless active steps are taken to evolve the software to meet 

stakeholders' evolving expectations. 

We described software process models, fi-om the earliest sequential model, the 

Waterfall, proposed by Royce [Royce 1970] through to process models that 

employ distribution, concurrency and iteration. Each new process model was 
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proposed to improve product quality, reduce time to market and costs, either all or 

some of these. Alongside process model developments have been innovations in 

methods and tools to measure or predict the achievement of project goals. We 

show that software processes are key to producing and evolving high quality 

software products. Thus software process is an important determinant of product 

outcome, in terms of cost, schedule and quality. 

Grady Booch's interpretation of the central COCOMO equation shows that the 

performance of a software project (the effort required to complete a product) 

depends on the complexity of the software being produced, the process, the team 

and tools used, where size is a determinant of complexity [Booch 2004] . 

(process) 

M o l a n c e ° * (Team) • (Tools) 

In this interpretation, it becomes clear that an effective process damps down 

complexity, a poor process exponentially increases the effects of complexity. 

The overview of software processes suggests that processes evolve too, and are 

also multi-level, multi-loop feedback systems. In the same way that products must 

evolve to remain successful and continue to satisfy market needs, the processes 

that produce software must evolve to support product evolution. Processes that 

recognise and support feedback are more likely to produce evolvable software 

This chapter underpins the need for better understanding of process behaviour In 

Chapter 3 we show that this understanding can be achieved through modelling and 

simulation and the same techniques can be used to support process improvement, 

providing predictability. Unless we understand the evolutionary nature of software 

products and processes, and use process improvement techniques that are 

supported by the modeling and simulation of dynamic behaviour, then product 
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quality improvements, and cost and schedule predictability through process 

improvements, are unlikely to be achieved. 
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Understanding Process 

Behaviour using Modelling and 

Simulation 

Simon proposed the 'principle of bounded rationality' in which he described the 

difficulty that we have in making accurate mental models of processes and 

therefore making accurate predictions of outcomes. 

'The capacity of the human mind for formulating and solving complex problems 

is very small compared with the size of the problem whose solution is required 

for objectively rational behavior in the real world or even for a reasonable 

approximation to such objective rationality' [Simon 1996] 

Human judgement is bounded by limitations of the mental models we create and 

limited further by our failures in interpreting the models through lack of attention, 

information processing capability, biased perspectives and unchallenged accepted 

'truths'. As process models become more complex, mental analysis is unable to 

cope with the complex interactions that take place that determine the outcome 

[Sterman 1989]. The Waterfall model is one of the simplest process models 

adopted by software development organisations yet predictions of cost and 

duration based on it are notoriously inaccurate because interactions due to iteration 

are not captured in the mental model. 
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Formal computer models can help to overcome the limitations of mental models 

because they are able to inter-relate many factors simultaneously, make 

assumptions explicit and open to reasoning, reveal causes of behaviour and, most 

importantly, they can be simulated to allow experiments to investigate outcomes 

and behaviour without risk to the real environment [Sterman 1989]. 

However, this doesn't mean that formal modelling can solve all of the problems of 

understanding process, for the following reasons: 

• The model may not represent the real world 

• Correlation is mistaken for causal behaviour 

• Models can become so complex that they become a copy of the real world 

and therefore understanding and reasoning about the model become as 

difficult as understanding the real world 

• Models are only as good as the expert knowledge captured within them. 

The data should include 'soft' data (team experience, management 

resourcing policies etc.) 

• Models can be difficult for non-modelling practitioners to understand 

• The modelling technique may not model dynamic behaviour and feedback 

in the system 

These weaknesses can be overcome by choosing modelling methodology and tools 

carefully to support the purposes of modelling and if the modelling methodology is 

applied using process modelling guidelines. 

The modelling techniques chosen should: 

• explicitly model feedback relationships 

represent both hard and soft data 
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• have a graphical representation that helps non-practitioners to understand 

the models 

• be simulatable to aid model validation and understanding. 

Process modelling guidelines suggest how potential weaknesses in models can be 

overcome. 

Modellers can avoid over-complex models by carefully defining the objective of 

making the model and then defining a perspective from which to abstract from the 

real world to examine behaviour patterns rather than single events. By using these 

principles, the modeller can abstract from detail that is not the focus of the model. 

The problems of lack of representation and incorrect structure can be overcome if 

modellers validate their models against real world behaviour. 

Validation tests include checking that the model is able to replicate past behaviour 

in the real world, testing the model's assumptions, the correspondence of the model 

structure to the system and the robustness of the models behaviour. The modeller 

needs to use all sources of information including interviews, direct observation and 

historical and experimental data to capture the structure of a system to ensure that 

soft data is not overlooked. 

Simulation provides an important tool for handling the complexity of dynamic 

feedback systems [Abdel Hamid and Madnick 1991]. 

"The behaviour of systems of interconnected feedback loops often confounds 

common intuition and analysis, even though the dynamic implications of 

isolated loops may be reasonably obvious. The feedback structures of real 

problems are often so complex that the behaviour they generate over time can 

usually be traced only by simulation ." [Richardson and Pugh 1981] 
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Abdel Hamid and Madnick assert that not only does simulation make possible 

more complex models and models of more complex systems but also provides a 

means of experimentation. 

Simulation models make possible controlled experiments that solve the problem 

that "isolation of the effect and the evaluation of the impact of any given practice 

within a large complex and dynamic project environment can be exceedingly 

difficult" [Glass 1982] 

Zelkowitz and Wallace describe simulation as one of the types of controlled 

method experimentation that is useful in the software engineering domain. 

"We can evaluate a technology by executing the product using a model of the 

real environment. We hypothesise , or predict, how the real environment will 

react to the new technology. ... a simulation is often easier, faster and less 

expensive to run than the full product in the real environment." [Zelkowitz and 

Wallace 1997]. 

Simulation therefore, provides a means of revealing and understanding the 

behaviour of complex dynamic models and also of making controlled experiments 

on the model to examine the effects of different behavioural policies. 

3.1 Using Modelling and Simulation to Support 

Process Improvement 

Effective use of modelling and simulation can be seen if we examine how these 

techniques can be used to support the process improvement cycle described by 

Humphrey [Humphrey 1990]. 

Adopting or changing a process model is a significant undertaking for any 

organisation and is a risk to the success of the organisation. 
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Weiss [Weiss and Basili 1985] wrote that, 

. .in software engineering it is remarkably easy to propose hypotheses and 

remarkably difficult to test them. Accordingly, it is useful to seek methods for 

testing software engineering hypotheses.' 

The feasibility of adopting a process model needs to be underpinned by evidence 

that the new process will achieve the aims of the organisation for improvement. 

Evidence of the suitability of a process can be gained from case studies, but for a 

novel process model this may not be available and for an established model, it may 

be difficult to find case studies in organisations with an analogous profile. In both 

cases there may be insufficient evidence to predict the performance of a process 

model within the organisation and support a case for its implementation. 

Risk can be reduced if the new process is modelled and then simulated to provide 

predictions of the process behaviour. Decisions about whether to adopt a new 

process can be made with greater confidence about the outcome. Creating a model 

of the process and then simulating its behaviour over time allows us to understand 

and predict process behaviour 'off-line'. The models can take into account the 

specific profile of the organisation. This enables us to validate the expected 

benefits of the new process before implementation in the organisation. 

Simulation and modelling support the six stage process improvement cycle 

suggested by Humphrey and improve the predictability of improvement outcome 

by adding two new stages and improving the effectiveness of the others, Figure 13. 
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Continue cycle 
from 1 

Use simulation to 
support new 
process 

Commit 

Plan required 
actions 

Model current 
process for 
understanding 

Use modelling and 
simulation to develop 
vision of desired process 

Validate proposed 
process 

Establish list of 
required process 
improvements 

Figure 13. Humphrey's process improvement cycle extended with modelling and 

simulation 

Understand existing process - Model existing process, simulate to ensure 

that model represents real world (and understanding is complete) 

Develop vision of desired process - Model new process 

New stage, validate new process - simulate new process to evaluate effects 

Prioritise improvement actions - simulation shows effects of improvement 

actions 

Plan process changes - use simulation to examine effects of plans 

Commit resources - use simulation to work out staffing requirements 

New stage, support new process - use models and simulations to train users 

in the new process; use tools derived fi-om the models to control the 

process. 
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• Continue cycle from 1 

Modelling and simulation can produce tailored tools for the organisation to manage 

the live process to predict and improve performance. 

The use of modelling and simulation in the improvement cycle can be seen by 

examining where it can be applied in the progression through the Capability 

Maturity Model. In the Capability Maturity Model, an explicit development 

process model is fundamental for achieving higher levels of maturity and is a 

requirement for level 3. It can be argued that capability improvements through 

process definition can be enhanced if simulation techniques are used [Christie 

1998], because the effects of complex interactions are revealed. 

Simulation can be useful in improving capability in these respects; 

• Using modelling tools for process definition, the process can be validated 

before introduction {level 3). 

• Through the use of process simulation in training, the model can be 

embedded throughout the organisation (institutionalised, in CMM terms) 

(level 3). 

• Simulation in project management and control, using metrics from the 

process, allows prediction of possible outcomes for a range of control 

decisions, making explicit complex feedback relationships that are difficult 

to reason about (level 4). This enables managers to balance targets in 

quality, cost and schedule. 

• Dynamically changing the process, possibly through technology insertion, 

can be evaluated and the effects on quality cost and schedule targets 

predicted before implementation {level 5). 

In these respects, simulation supports process improvement in the Capability 

Maturity Model. 
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3.2 Process Simulation and IVIodelling i\/letiiods 

When simulation and modelling has been applied to software processes, the two 

techniques that have been most commonly used are Discrete Event (or State -

based) and Systems Dynamics. 

Both combine graphical representations of the process with a simulation capability 

based on a mathematical expression of the relationships between the model 

entities. 

Knowledge based systems have been developed [Scacchi 1999] but the models 

produced have not been satisfactory in terms of encouraging a shared 

understanding of the behaviour of the modelled system or promoting process 

improvement or redesign because model representations and animation are not 

sufficiently well designed to aid shared understanding. Shared understanding, 

particularly where there are complex relationships, is aided by tools with a 

graphical representation and interface. 

Wolfgang Kreutzer [Kreutzer 1986] describes that in discrete - event simulation, 

models are viewed as structured collections of objects bound into webs of relations 

and transformations. Time is advanced as an event occurs; event driven models 

assume that nothing relevant happens between successive state transitions. 

Discrete event modelling is useful for tracking individual entities within a process 

and finding deadlock and livelock. The effects of process decisions on individual 

entities and interacting entities can be examined. 

Systems Dynamics is the application of feedback control systems principles and 

techniques to managerial, organisational and socio-economic problems. 

Interdependent flows of objects and conditions are modelled and simulated 

continuously. 

55 



Chapter 3 Understanding Process Behaviour using Modelling and Simulation 

Kellner [Kellner, Madachy and Raffo 1999] suggests that the decision to use one 

technique in preference to another should be based on the following criteria: 

• continuous, for strategic analyses 

• discrete for scheduling 

Kellner points out that process modelling situations are not so clear-cut and that in 

fact discrete processes may have sub processes that are continuous e.g. human-

resourcing and continuous models have to compromise to describe interruptions, 

queues and delays. 

There are tools available which allow both techniques. Their ability to do this is 

questionable if you consider the way time is calculated and advanced in the two 

techniques. Discrete event modelling advances time with each event. Systems 

Dynamics solves partial difference equations that underlie the model at time 

intervals (dt); time is therefore advanced at dt interval. 

Systems Dynamics is a suitable methodology to examine the strategic behaviour of 

new software development processes and investigate how the structure of the 

process affects its behaviour and the outcomes. Discrete event modelling is suited 

to examining how an individual entity will interact with others and behave within 

the process. Within this thesis, processes will be examined at a strategic level, 

therefore the thesis will concentrate on modelling and simulation using Systems 

Dynamics. 
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3.3 Systems Dynamics, Systems Thinking 

'The purpose of modelling is insight not numbers' 

states Kreutzer in System Simulation Programming Styles and Languages 

[Kreutzer 1986]. 

Systems Dynamics was first developed by Jay Forrester in 1961 [Forrester 1961] 

and further developed by, amongst others, Barry Richmond [Richmond 1990], 

Peter Senge [Senge 1990], Geoff Coyle [Coyle 1996] and John Sterman [Sterman 

1989]. 

Systems Dynamics is described as 'the art and science of making reliable 

inferences about behaviour by developing an increasingly deep understanding of 

the underlying structure'[Richmond 1990]. Systems Dynamics is a methodology 

for capturing, modelling and simulating processes. Relationships within a system 

or process cause the dynamics it exhibits (feedback) but intuitive judgements are 

unreliable about how systems change over time. Simulating the process over time 

shows the effects of complex relationships. 

Systems Dynamics abstracts from individual entities and discontinuities. Instead 

of examining the behaviour of each single entity. Systems Dynamics considers 

how accumulations of entities behave. These are described as stocks or levels, for 

example within software development, completed code can be considered to be a 

stock. Stocks can also be intangible, for example the experience of a team of 

developers can be described as a stock. 
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Stocks are increased or depleted by activities, described as flows. In the example 

given, Figure 14, coding is the flow that increases the stock of completed code. 

Completed 

coding 

Figure 14. Coding increases the stock of completed code 

The stock of experience is accumulated by a learning flow. If there is a stock of 

something, then it must have been generated by an activity or flow; conversely if 

there is an activity then, associated with it, something will be either increased or 

depleted. 

Stocks can also be resources in the process. These can either be consumable 

resources that are depleted by a flow, or producing resources that generate flows 

but are not consumed in the process. 

The difference can be shown if we look at two examples, the first illustrates a 

consumable resource. Figure 15; a stock of defects is depleted or consumed by a 

flow of detecting and fixing the defects. Physical stocks obey conservation laws. 

defects 

Find and fix 
defects 

Figure 15. Finding and fixing defects reduces the stock of defects 
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The experience process illustrates a producer stock, Figure 16; the stock of 

completed code generates a flow of learning about the software being produced. 

This increases the stock of experience, but the stock of completed code is not 

reduced by the learning flow. 

learning 
Completed 

code 

Experience 

Figure 16. Increasing stock of experience as code increases 

Systems Dynamics explicitly models feedback relationships within processes. 

These are circular loops of cause and effect that run from stocks to flows and back 

to the stock. Stocks give rise to flows of activities and flows change stocks or 

conditions. The effect of feedback is to generate goal seeking behaviour with 

respect to some target so that when deviations from targets occur, feedback 

relationships inspire, and then trigger corrective actions to bring the condition back 

into line. When there is more than one feedback loop in an interdependent process, 

the goal-seeking behaviour of each loop may conflict, as activities designed to 

bring one condition to meet its target simultaneously knock another condition out 

of line. These effects are very difficult to predict through mental analysis. Sterman 

reports that in controlled experiments people are shown to misperceive the effects 

of feedback structure in even small, simple processes. The strength of Systems 

Dynamics modelling is that the effects of goal seeking and goal conflict in 

complex webs of relationships can be exposed and accurately determined. 
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A simple feedback relationship can be illustrated in the experience example, Figure 

17. As the stock of experience increases, there is reinforcing feedback that affects 

the productivity of developer and increases the rate at which code is completed. 

experience 

completed code 

codii 

productivity 

Figure 17. Systems Dynamics model showing feedback relationship between 

experience and productivity 

We can extend this simple model to show how feedback relationships interact to 

create conflicting goal seeking behaviour as shown in Figure 18. The developers 

with increased experience are more marketable and may be inclined to leave to 

improve their salary. This would deplete the workforce within the organisation 

and reduce the rate at which code can be completed. 
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completed code iGBming 

coding 

productivity 

workforce 

quitrate 

Figure 18. Systems Dynamic model showing the effects of goal conflicts in feedback 

relationships 

We can show how Systems Dynamics models are simulated over time using 

mathematical algorithms. A set of discrete calculations is used to approximate to 

the idealised curve. The software divides the time axis into equally spaced 

intervals each with a width of delta time (dt). Calculations are performed at 

discrete intervals of delta time. 

Equations behind the model diagrams define the calculations. These are Finite 

Difference Equations that are initialised for a simulation and then iterated for each 

delta time. 

The two calculation methods most commonly used in Systems Dynamics are; 

• Euler's method which is a simple linear extrapolation which is fast and 

suitable for most models but it is less suitable for examining a process on 

the edge of instability because it will always overshoot a turning point on a 

curve. 
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• Runge Kutta uses higher order differentiation which makes it more suitable 

for examining the trajectory of a changing process on the edge of 

instabihty. The number of calculations increase and therefore the time to 

perform simulations is greater. 

Systems Dynamics has been used successfully to model systems and processes in 

many domains: 

• Socio-economic systems including population growth dynamics, effects of 

economic policies [Sterman 1985] 

• Business strategy and policy assessment [Forrester 1980]. The U.S. 

Department of Energy has produced detailed forecasts and policy analyses 

of domestic and international system using Systems Dynamics 

• Biological systems - insulin process in the human body [Stella 1990 -

1998], population growth cycles. 

• Development Processes for example, in software, construction, 

shipbuilding, electronics [Ford and Sterman 1997]. 

Rodrigues and Bower [Rodrigues and Bowers 1996; Ford and Sterman 1997] have 

identified three domains in development processes that have been addressed using 

Systems Dynamics; monitoring and control, rework and human resources [Abdel 

Hamid and Madnick 1991; Rodrigues and Bowers 1996], [Madachy 1996]. 

Sterman identifies that a fourth domain, the structure of the process itself is a key 

determinant of the behaviour of the process and its predictability. 

3.4 Modelling Software Development using Systems 

Dynamics 

In 'Software Project Dynamics - an integrated approach' Abdel-Hamid and 

Madnick [Abdel Hamid and Madnick 1991] use Systems Dynamic models to 

understand the process of managing software development, and the problems of 
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controlling cost, quality and schedule. This work is one of the most 

comprehensive studies of software projects using Systems Dynamics and has been 

the basis of work by other researchers in the field. Their aim was to gain insight 

into how the management of software development maybe improved to reduce cost 

overruns, late deliveries and user dissatisfaction. They stress that without an 

improved understanding of the process, real improvements are unlikely to be made. 

They particularly wanted to explore how typical critical management problems can 

be understood and how the outcome of alternative decisions can be predicted, for 

example: 

'If a project is behind schedule, what are the implications of increasing the 

workforce, or changing the completion date? How may Brooks Law [Brooks 

1995] (adding people to a late project makes it later) be explained?' 

What are the reasons for and implications of the differences among potential 

productivity, actual productivity, and perceived productivity? 

The focus of their work is management of software development projects, therefore 

rather than examining components of development processes; they abstract 

management activities, human resource management, controlling and planning and 

show how these are interrelated with software production. These activities form the 

subsystems of an integrated Systems Dynamics model. Abdel-Hamid and 

Madnick chose this integrated approach to 

'prompt and facilitate the search for the multiple and potentially diffused set of 

factors interacting to cause software development problems'. 

They give an example that the schedule overshoot problem can arise not only 

because of schedule underestimation but also because of management's hiring and 

firing policies. 

The figure below. Figure 19, shows the structure of the model and the flows that 

connect the subsystems. 
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Work Force 
Needed 

Progress 
Status 

Tasks 
Completed 

Schedule 

Effort 
Remaining 

Human 
Resource 

Management 

Software 
Production 

Planning Controlling 

Figure 19. Overview of Abdel-Hamid and Madnick 's model showing subsystems 

Abdel-Hamid and Madnick's work sees the software development process as 

continuous. Individual objects are not identified. They represent the process as a 

sequence of stages through which requirements flow (coding, testing, quality 

assurance and rework) transformed at each stage by a process following the 

waterfall lifecycle model. In order to simplify their model, they set a model 

boundary that commences with design and coding and finishes with testing. They 

have made assumptions that requirements are fully defined and stable and that all 

defects are found and removed by the end of the development process. Their 

reasons were that they wanted to exclude fi-om the model behaviour that was not 

caused by the developers and managers within the project. Their investigation 

therefore focuses on cost and schedule overruns that are a result of the policies, 

decisions and actions of the project team in spite of stable requirements. It should 

be noted that the cost estimation model that they have used is COCOMO, which 

also excludes requirements definition. These assumptions restrict the quality 

assurance methodology to defect detection through review and testing. 
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Their sources of empirical information were DEC, SofTech, and MITRE, all 

producing medium size (64KLOC) systems and extensive systems dynamics 

models were developed and tested against case studies at NASA to confirm the 

model's behaviour. 

Having confirmed that the model was able to replicate behaviour observed in case 

studies, Abdel-Hamid and Madnick carried out extensive simulation experiments 

to explore the effects on cost and schedule of different planning, QA and 

resourcing policies and the decisions and actions based on them. 

When carrying out simulation experiments on typical quality assurance policies, 

where manpower is allocated to QA as a percentage of development man-days, 

they discovered that there are diminishing returns in QA effort. QA expenditures 

that were either significantly lower or significantly higher than the optimal range 

increased the total cost of the project. Too low expenditure increased the time 

spent on testing and too high expenditure consumed cost without detecting more 

errors. Significantly, they realised the importance of emphasising quality during 

the software development project. 

Their simulation experiments on manpower policies in relation to explaining 

Brooks Law, show that adding more people to a late project always makes it more 

costly but does not always cause it to be completed later. They were able to show 

that the interaction between adding additional manpower, increasing training and 

communication requirements caused a reduction in average productivity and an 

increase in man day requirements and therefore cost. Whether the project will be 

further delayed depends on whether the drop in productivity is so severe that the 

additional person's net contribution is negative. 

They show that project estimates and resulting schedule affect the outcome project 

itself 

'A different schedule creates a different project' 

65 



Chapter 3 Understanding Process Behaviour using Modelling and Simulation 

Abdel-Hamid and Madnick touch on, without making expHcit, recognition that the 

tools and process used are structural in determining outcomes, as Sterman found. 

Abdel-Hamid and Madnick's work shows one of the problems with Systems 

Dynamics; models can rapidly become very large and complicated. The model 

may be criticised for its level of detail in that it has very many converters 

(variables). However, they deliberately chose this level of detail because they were 

concerned that simpler models might leave out vital aspects of the real world 

environment that would misguide project managers making decisions based on 

predictions from the model. 

Wemick and Lehman [Wemick and Lehman 1998], [Lehman and Stenning] in 

their work on the evolutionary nature of software, believe that Systems Dynamics 

models must be abstracted as far as possible in order to retain understanding and 

insight. Systems Dynamics is a useful tool for revealing the dependencies that 

cause behaviour, a model that is at too high a level may not reveal sufficient 

information to show the basis for complex behaviour or enable understanding of 

strategic issues whilst models that are too complex can too closely attempt to 

model the real world rather than model the behaviour of the real world. 

This shows the importance of choosing the correct focus and level of abstraction 

for the purpose of the model. Kreutzer [Kreutzer 1986] uses the example of 

Occam's Razor, a good model is the simplest one that can still be justified. 

Madachy [Madachy 1996] has used Abdel-Hamid and Madnick's [Abdel Hamid 

and Madnick 1991] models as a basis to develop models that investigate the 

behaviour of inspection based processes. Lehman [Lehman and Stenning] used 

Systems Dynamics to produce the models that underpin his work on the laws for 

software evolution discussed in chapter 2. Mander and Powell [Powell, Mander et 

al. 1999] have used Systems Dynamics models to investigate the behaviour of a 

highly iterative, concurrent, pipelined process model. Sterman [Ford and Sterman 

1997] has shown that Systems Dynamics can be used to investigate and explain the 

66 



Chapter 3 Understanding Process Behaviour using Modelling and Simulation 

behaviour of development projects in many domains, and Allen [Allen 1988] has 

shown how Systems Dynamics can be used to investigate evolving systems. 

The work done by Abdel-Hamid and Madnick, Madachy, and Lehman in the 

domain of software development shows that simulated Systems Dynamics models 

can replicate the behaviour of software development projects within the chosen 

focus. Each has chosen a different focus for their work, Abdel-Hamid chose to 

investigate the effect of project management policies, Madachy investigated the 

effects inspection based process improvement and Lehman chose to examine 

product evolution. Furthermore, they show that simulation experiments can be 

performed on the models that will explain and predict how the real world will 

behave. 
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The Cellular Manufacturing 

Process Model 

The Cellular Manufacturing Process Model, CMPM, [Chatters, Henderson et al. 

1998] has been proposed by Peter Henderson to support the evolutionary nature of 

modem development, concurrency and distribution and to take account of reused 

and bought in components. Henderson based the model on Watts Humphrey's 

network models of software development [Humphrey 1990] and on the value chain 

model for competitive advantage developed by Michael Porter [Porter 1985]. In 

proposing a new process model we must be sure that we can predict its behaviour, 

support process design and planning and show the benefits in improved control and 

management. 

In this chapter, we will describe CMPM and how it may be applied in large-scale 

development projects. We examine the issues that affect the ability of cells to 

achieve their output targets, showing how simulation with Systems Dynamics is 

giving us insight into the behaviour of CMPM [Henderson and Howard 1998]. 

CMPM, the Cellular Manufacturing Process Model is an advanced process strategy 

based on components, which uses concurrency and distribution to reduce cycle 

times. In CMPM, networks of semi-autonomous producing cells co-operate to 

produce a complex large-scale system. The model views development as a 

manufacturing activity where large scale systems are built from components, 

which may be a mixture of self built components, re-used components from the 

producers own asset base and from bought in components. Viewing large-scale 
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software development as a manufacturing activity may be considered to be 

contentious when software development traditionally has been seen as essentially a 

creative or an engineering activity. This model seeks to show how large scale 

software producers use the techniques of manufacturing assembly of available 

components with known behaviour and properties in order to satisfy the market 

cycle. 

The model is hierarchical in that any component may itself be a product of other 

components. Components are stable sub-assemblies of an evolving product; each 

sub-assembly can evolve independently. Our conjecture is that a process model 

based on integrating systems from components, which are separately evolving sub-

assemblies, will enable evolutionary growth beyond what is possible in the 

monolithic systems, described by Lehman [Belady and Lehman 1985] 

Software producers need predictability in cost, quality and schedule when 

competitive advantage demands a short time to market. Predicting the cost, quality 

and schedule outcome of CMPM depends upon the behaviour within the cell (intra 

cell) and the co-operative behaviour between the cells (inter cell) in a dynamic 

environment. 

In a cellular manufacturing environment each cell produces a series of versions of 

a component each of which meets the requirements imposed on it by its customers 

or by some internal or external decision process. A cell will have a role both as 

supplier to other cells in the process network and also as customer for components 

from other cells. 
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Figure 20. Supplier and Customer Relationships in CMPM 

Figure 20 shows three suppUer-customer relationships, an external supplier 

provides components for Cell B, Cell A is an internal supplier to Cell C and Cell C 

is also supplier to the Customer. There is another possible relationship where the 

organisation collaborates with another supplier to supply the customer. 

Each cell has responsibility for producing their product (which may itself be a 

component) from components supplied by other cells within the organisation 

(internal suppliers), external suppliers or made within the cell, (Figure 20). The 

work of the cell is to design their product by selecting and sourcing components, 

build the product by gluing the components together using component interfaces, 

and to remove defects to ensure that it meets output quality targets. 

I I 
From asset base 

To customers 

From suppliers 

Figure 21. A cell integrating components in CMPM 
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The cell has goals that are dependent on the goals of its suppliers and customers. 

In order to meet an obligation to a customer it will have to meet imposed targets 

for quality, cost and schedule but will be dependent on the targets achieved by its 

own suppliers. Predicting the achievement of these targets for each cell is 

important for predicting the performance of 'downstream' cells and of the whole 

network. 

Scanner 

Hardware 

Basket 
Software 

Till 
Software 

Basket 
Software 

Till 
Software 

Client 
Look Up 
Service 

Banking 
Service 

Server Banking 
Service 

Server 

Server 
Hardware 

Figure 22. Electronic Point of Sale System component structure 
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Here we consider a simplified Electronic Point of Sale System, comprising a 

network of tills using a set of services, as shown in Figure 22. When customers 

present their purchases for payment, each item in their basket is scanned 

electronically and is transferred to a virtual basket held in the till. The till uses 

remote services to lookup the price and description of each item. The till 

calculates the value of the 'basket' and uses the banking service to control the 

financial transaction with the customer. Figure 22 shows the simplified component 

structure of such a system. In this example there are hardware and software 

components to be integrated into the delivered system and the system includes 

client and server components. 

Consider the Till client component, which is made up of a hardware component 

comprising a scanner and PC based till, and a software component comprising a 

number of components including a 'basket' component that stores the items and 

calculates the value of each shopping transaction. The Server component 

comprises hardware components and software components that include banking 

and price look up (PLU). The complete EPOS system comprises the Till hardware 

and software and the Server hardware and software. We can evolve the system to 

include a loyalty card scheme, creating a new loyalty card component for the till 

and a component for the loyalty card service for the server. 

4.1 EPOS CMPM - mapping hierarchy to process 

The Cellular Manufacturing Process Model for this system maps directly onto the 

product breakdown structure to give a network of manufacturing cells, Figure 22. 

This work breakdown structure is likely to survive many generations of product. 

The stability of the structure is caused by semi-autonomous cells independently 

evolving their own product. 

Each cell is responsible for one level of integration. Each cell receives components 

from suppliers, builds some components locally, glues the components into an 

integrated product (which is tested to output standards) and shipped to a customer 
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or to the next level of system integration. If we again consider the Till component, 

in this case the architects have chosen to source the scanner hardware from an 

external supplier. The Till Hardware cell integrates their own components with the 

externally supplied scanner. Concurrently the software cells are manufacturing 

their component, gluing together components they have built themselves and 

components from internal and external suppliers. The Till Integration cell (labelled 

Till in Figure 22 ) can start to work integrating the till components as soon as they 

are available but in order to collapse time-scales, the cells can choose to start 

integration with an earlier version of any component from the repository. Thus if 

the software components are available before the new version of the scanner is 

delivered, the cell may use an older version recognising that when the new version 

is available some of the integration work may need to be redone, frading effort for 

schedule completion. 

Should the PLU Client cell produce a component with an output quality lower than 

its target, the Till Software cell will be faced with a choice of working around the 

low quality component and consequently increasing the effort they must spend on 

gluing the component in, or reverting to an earlier version. In both cases the output 

quality of the Till component delivered to the Till hitegration Cell will fall short of 

its target. 

The challenge facing planners is to allocate effort over the process network. Too 

much effort allocated to a cell creates cost overruns, too little creates either 

schedule delays or quality problems for downstream cells. With an early 

prediction of upstream problems, planners can mitigate the effects and avoid an 

increasing 'bow-wave' of delays or quality shortfall. 

4.2 Intra Cell Behaviour 

The behaviour within a cell can be as fonnalised or as ad hoc as the product 

demands. The network is not dependent on detailed knowledge of how each cell 

performs its integration task, only how it meets its external obligations. However, 
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in general, the behaviour within a cell will be a pumping action over time in that 

versions of products (components to the customer) will flow out, meeting an ever-

evolving customer requirement. Figure 23 shows one elementary possibility for 

the behaviour of the cell. Component flow is shown by solid arrows, requirement 

flow and other control flows are shown by the broken arrows. Rectangles show 

repositories and ellipses show activities. 

The behaviour is as follows. From customers (or elsewhere) the cell receives 

external requirements for evolutions of the product for which this cell is 

responsible. The cell is a team of architects, designers and engineers who are 

knowledgeable about the components and previous builds the cell maintains in its 

asset base. They develop build plans and requirements for new or changed 

components. Some of these requirements will be internal requirements, which 

determine new or revised components to be built by the team working in the cell. 

Other requirements will be passed back to a supplier. Either way, the new and 

revised components are assumed eventually to arrive in the repository. At some 

stage, all of the necessary components will be available to undertake integration 

and test activities leading to the delivery to the customer of a version of the 

product. 
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Figure 23. The pumping behaviour of a cell 

4.2.1 Relationship between Work and Quality 

If we examine a simple cell, corresponding to the internal behaviour of the 

pumping model fig 4, Work (effort), W is applied to complete the component of 

size S and to remove defects (detection and rework). Q is the input quality of a 

component and P is the output quality of the component, informally estimated on a 

scale where l=perfect and 0=useless. 

Work Size S • P 

W 

Figure 24. Work allocation in a CMPM cell 
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If Q is low or the target quality is very high we must put in more effort. We 

implicitly understand that perfection is unattainable and that as we approach it the 

return on investment in effort diminishes [Chatters, Henderson et al. 1998]. 

Early theoretical predictions [Chatters, Henderson and Rostron 1998] of the 

behaviour of quality and work using simple EXCEL models based on the 

COCOMO relationships between Work and Size and naive reliability models, have 

produced a family of curves all asymptotic approaching P=1 as shown in Figure 

25. 

1.00 
0.90 --
0.60 

0.70 --
0.60 

0.50 --
0.40 --
0.30 --
0 . 2 0 - -

effort W pe raon-months 

Figure 25. Predicted growth of quality 

As we expend effort, our quality eventually reaches about 95% in the upper line, 

but the last 10% takes something like 35% of the effort. The steepness of the curve 

is greater if the quality of the components being integrated is higher. The upper 

line shows the process integrating from components with an average input quality 

of 95%. The lower line shows the same process where the input quality averages 
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50%. With the same effort expended as in the first case, we only reach 85% output 

quality. 

The internal effort allocation Wl, W2,.. .,WN depends on management and policy 

decisions, for example whether there is an inspection-based process [Madachy 

1996]. We expect that a range of policy decisions would produce behaviour within 

the family of asymptotic graphs. 

Effort W, 

CL 

ra 
O 

Effort W, 

Figure 26. Graph shapes from industrial partner data 

In fact, data from our industrial partners is beginning to show different behaviours, 

Figure 26, shows two graph shapes that have emerged. The data was collected over 

the period of the CMPM investigation and includes both a historical data and data 

captured after CMPM metrics had been established [ICL 1999]. 
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Our Systems Dynamics models reproduce the first shape in Figure 26, which 

shows an asymptotic relationship between output quality P and effort W. There is 

a range of asymptotic curves where P approaches 1, depending on a range of 

values of effort, Wl, W2, WN and Q. If Q is high, the curve is steeper and the 

output quality P is higher. We believe that the difference from the naive EXCEL 

models is due to the dynamic feedback of error detection and rework within the 

process. 

The second shape is discussed in Chapter 7. 

This may indicate that the quality profiles of components are much more sensitive 

to the policy and process control decisions about the allocation of effort. Correctly 

allocating effort between process phases may be crucial to achieving quality targets 

on which the network of cells depends. 

4.3 Modelling and Simulating CMPM 

The use of modelling and simulation to examine the feasibility of implementing 

process improvements and the difficulty of finding sufficient empirical evidence 

has been discussed in Chapters 2 and 3. The most extensive change that an 

organisation can make is changing its adopted process model. Modelling and 

simulation forms part of the process model development, risk assessment and also 

the definitions and tools which will support the management process. 

We are investigating CMPM at a strategic level rather than examining what 

happens in a specific project. As discussed in Chapter 3, Systems Dynamics, 

which is a continuous technique, is the most appropriate dynamic modelling and 

simulation paradigm for investigating dynamic behaviour at strategic level 

[Kellner, Madachy et al. 1999], [Kreutzer 1986]; we have therefore chosen this 

method for our investigation of CMPM. In this chapter we investigate the causal 

loop structures that represent the dynamic relationships within the process. We 

create a model of the process showing these feedback relationships and then 
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simulate the behaviour over time. In Chapter 7, we describe the process of moving 

from simulatable, qualitative models to quantitative models where data from our 

industrial partners is used to check whether the model exhibits similar behaviour to 

the live system. 

At a strategic level CMPM may be viewed as a continuous process where 

requirements for new versions of a product are received, products are made and 

delivered to internal or external customers, therefore suited to a Systems Dynamics 

approach. We used Stella [Stella 1990 - 1998] as a graphical environment for 

producing systems dynamics models and running simulations of the models. By 

simulating the cell behaviour at the intra-cell level we can explore the effects of 

varying inputs to the cell on the achievement of its output targets and gain 

understanding of the relationship between the targets. 

Figure 27 shows a representation of a single CMPM cell derived from the pumping 

model abstraction. In this example we have focussed on two targets, quality of a 

component (reliability, fitness for purpose) both at an input level and the target 

level to be achieved by the cell and the effort that must be expended by the cell to 

achieve the target quality. The difference between the input and output quality is a 

measure of the value added to the component by the cell. The effort required is a 

measure of the cost of adding the value [Porter 1985]. 

The Systems Dynamics model abstracts the Pumping model into two activities, 

doing work to integrate components. Complete Tasks, and doing work to remove 

defects. Work to integrate components covers the pumping model activities 

'understand and design', 'build/modify components' and 'integrate'. Work to 

remove defects covers the 'test' activities identified in the pumping model. The 

amount of work that the cell must do derives from the external requirements 

imposed on the cell, generating work to build or modify internal components and 

work to integrate internal and externally produced components. In the Systems 

Dynamics model this is identified as Planned Work. 
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In developing these models I have used tried and tested systems dynamic structures 

[Systems; isee systems 1998], [Kreutzer 1986] as modelling components, for 

example, co-incident flows (completed work and defects) and producer flows 

(completed tasks produced by effort). 

undetected errors 

component error rate 

undetected error density 

defects 

remove defect: 

defects per man day 

defects per task 

Quality 

Planned Woi Achieved Work 

effort tor quality 

complete tasks 2 

work per man day 

productivity 2 

effort 

effort for tasks 

Figure 27. Systems Dynamics Model of a single CMPM cell 
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Planned Work, Achieved Work, Defects are defined as stocks which accumulate 

and are drained by work processes. Undetected Errors represents errors in 

deHvered components that the cell will integrate. 

Complete tasks is the flow which accumulates Achieved Work. The resource for 

task completion is effort in man-days. As work is done to complete the 

component, defects are co-incidentally generated (a co-flow, add defects). The 

stock of defects is drained by the work process remove defects. Effort in man-days 

is divided between the work processes that complete work and those that detect 

and remove defects. The percentage applied to each flow can be varied to examine 

the effect of different process policy decisions. 

Quality is a measure of absence of defects and completeness, and because quality 

is a coincident flow with work, an increase in quality can only be achieved by work 

to complete the component and remove its defects. This is shown by the 

connection between Quality, Achieved Work and level of Defects. The cell can 

only remove defects in the components it builds itself; incoming components from 

internal or external suppliers that are of low quality cannot be improved by the cell, 

only by the supplier, but the amount of work that the cell has to do increases 

because of the difficulty of integrating low quality components. The model shows 

a feedback relationship between the level of defects and the rate of defect removal. 

Littlewood [Littlewood 1991] observes that errors with a high frequency are fixed 

first, and that as the error density decreases, those remaining are infrequent and 

more difficult to find. 

In this model, for the purposes of focussing on the work processes and quality. 

Effort (manpower) has been defined as a constant, representing fixed team size and 

availability for the duration of the project. Other models, in particular Abdel 

Hamid and Madnick [Abdel Hamid and Madnick 1991] and Madachy [Madachy 

1996], explicitly show that manpower is a stock that increases through a 

recruitment process and decreases by people leaving. This was because they were 
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investigating the effects on costs and schedule of varying manpower through 

resourcing policies. In this model, manpower resourcing behaviours are not being 

examined and have been excluded. 

Effort for each delta time interval is the same and represents the cost of each time 

unit; expenditure of time is equivalent to expenditure of cost. 

The effort available for work is converted by Productivity. In the best case, all of 

the effort is productive, but productivity is reduced by human resource factors, for 

example: level of experience, team size, motivation [Boehm, Abts et al. 1996]. In 

their empirical research Perry, Staudenmayer and Votta [Perry, Staudenmayer et al. 

1994] found that developers spent only 40% of their time working directly on 

development, and for the remaining time they were either waiting or doing other 

work. 

The work process is converted by a factor representing the process quality. In the 

best case the process will have a high quality. The quality of process can be 

assessed using CMM [Paulk, Curtis et al. 1994] or SPICE [Dorling 1993]. 

Assessing overall process maturity and Key Process Area maturity in the 

Capability Maturity Model is similarly used in COCOMO II [Boehm, Abts et al. 

1996] as one of the Scaling Drivers (PMAT) for project estimation. 

Simulation shows the interaction between interdependent goals of cost (effort) and 

quality as we vary the effort and its division between work done to complete the 

component and work done to remove defects, planned work, productivity and 

process quality. 
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1: Quality 2: tasks 2 3: undetected errors 
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Figure 28. Graph from simulation of Stella model 
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The graph of quahty over time (effort), Figure 28, shoves an asymptotic approach 

to its maximum value. 

As work is done to complete the component, defects accumulate and work is done 

to remove them. Since the number of defects in proportion to the size of the 

completed work reduces it takes more work to remove them. The amount of effort 

to detect an error increases as error density decreases. Errors therefore become 

more expensive to detect and fix. 

If overall effort (manpower is insufficient) or the proportion of effort allocated to 

removing defects is reduced, the product may be completed but the quality will be 

lower at the end of the simulation time. 

We can simulate the effects of receiving a faulty component by injecting extra 

defects that have not been generated by the cell's work process. The achievement 

of quality by the end of the simulation time is reduced. Our collaborators feel that 
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this graph shape, an asymptotic approach to completion of size and achievement of 

quality Figure 28, reflects their experience. 

4.3.1 Systems Dynamics Model Evolution 

The model shown in Figure 27 is an evolution of earlier Systems Dynamics 

models, descriptions of some of which follow. 

Quality 

adding Quaiity 

ioss fraction 

L o ^ g Quality 

compounding fraction 

Figure 29. Early Quality Model 

hi the early models, quality was modelled as a stock that could be lost through 

adding defects or gained by doing work to add quality (Figure 29). A later model 

(Figure 30) showed quality as the inverse to a stock of defects; quality was defined 

as an 'absence of defects'. 

This produced behaviour where the quality of a component was at its maximum 

when no work had been completed, Figure 31. 
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cum defects 

increase in defects 

add dmects remove defects 

errors per task 
process quality 

completed tasks 
defects per man day 

tasks to do 

task rate 

Quality% 

effort for quality 

productivity 

'effort for iasks 

tasks per man day 

elfort 

Tasks% 

effort at 5 

errors per task at .5 

process quality at 0.5 

Figure 30. Stella Model of Development Process, Quality is a simple measure of 

defects 

Our understanding of quality was improved by recognising that a more reasonable 

definition of quahty has to include the completeness of the product and is therefore 

a measure of absence of defects and also of satisfaction of requirements. 
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Figure 31. Graph produced from simplistic Stella model. Quality is greatest when no 

work has been done 

The models were developed farther to include the effects of defects in components 

being integrated. 
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Figure 32. Asymptotic growth in size, tasks 2 

The growth in size of the product was modelled to investigate how the rate of 

completion reduces as size increases, Figure 32. The following models (Figure 33) 

show three structures that produce an asymptotic growth in size. 
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basetask 
tasks 

mplele tasks 

productivity 
target size 

target fraction 

tasks per man day 

productivity 2 

tasks per man day 2 

target fraction 2 target size 2 

tasks 3 

compieteltas 

tasks per man day 3 

target size 3 

Figure 33. Three task completion models showing structures where the completion of 

tasks takes longer as the size of the stock increases 

Experience in developing the models showed the dangers of increasing their 

complexity to a level where understandability is reduced, so that the purpose of the 

model, which is to increase understanding is not achieved. 
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4.4 Modelling CMPM Networks of Cells 

A CMPM process instance is a network of independent single cells that co-operate. 

We have shown the behaviour of a single cell but the dynamics of the network are 

created by the individual cell in dynamic relationship with the other cells, hi 

modelling a process network the dynamic couplings will be investigated. 

4.4.1 Repeating structures 

Wemick and Lehman [Lehman and Stenning 1996], [Wemick and Lehman 1998], 

in their work on the evolutionary nature of software, believe that systems dynamics 

models must be abstracted as far as possible in order to retain understanding and 

insight. While Systems Dynamics is a useful tool for revealing the dependencies 

that cause behaviour, a model that is at too high a level may not reveal sufficient 

information to show the basis for complex behaviour or enable understanding of 

strategic issues. On the other hand, models that are too complex can too closely 

attempt to model the real world rather than model the behaviour of the world. 

Kreutzer [Kreutzer 1986] follows the principle of Occam's Razor which is that a 

good model is the simplest one that can still be justified. 

The abstraction at the heart of the CMPM models is that there are repeating process 

structures; each process model is a network of co-operating cells, each one 

repeating a generic model structure. 

We can abstract from the pumping model described (Figure 23) and show each cell 

as a 'black box', with the pumping model as its internal behaviour, effort, W, is 

applied to a component of Planned Size S to complete the component and remove 

defects. Q is the input quality of a component and P the output quality of the 

component, informally estimated on a scale where Imperfect and 0=useless. 

A process model is defined by creating the cells and connecting them into the 

network. Using generic, repeating structures we can generate a model for each 

instance of a process. The cells are dynamically coupled by inter cell relationships. 
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There are two views of CMPM where repeating structures can be observed. The 

first view, which has been described, is a network of co-operating cells, each of 

which is repeating a pumping model process to produce sub assemblies of the 

delivered system. 

The second view shows the repeating structures within the evolution of the 

product. Each delivered instance of the system is an evolution. 

Each evolution is a build (product design); each build has one or more integrations 

of sub assemblies and each integration is made of one or more components. 

We investigated the dynamic coupling between cells, the inter cell relationships. 

The connecting relationships that affect the behaviour of the CMPM process 

network are as follows; the amount of work that the delivery of a component 

supplies to the customer cell, (traditionally this has been related to size), the quality 

of the component supplied, the required output quality of the component to be 

built, and the schedule completion. These relationships between cells may be 

described as a set of metrics. [Chatters, Henderson et al. 1998]: 

W =/(Q,P,S) 

Where: 

W = effort; S = size 

Q = input quality of supplied components 

P = delivered quality of system 

The rapid rate of evolution of products means that planning and control 

information needs to be recorded much more frequently. In this environment it is 

important that this information is captured easily and speedily. In the same way 

interpretation needs to be quick and simple to enable control decisions to be made 

in time to achieve the target outcome. In modelling network coupling we must be 

sure that the relationships are expressed in measures that are feasible to collect. 
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We discuss below our investigations into these relationships. 

4.4.2 Size 

Systems Dynamics simulation by Abdel-Hamid and Madnick [Abdel Hamid and 

Madnick 1991; Abdel Hamid, Kishore and Daniel 1993] has helped us understand 

the behaviour of traditional sequential paradigms and the complex, concurrent 

behaviour described by Mander and Powell [Powell, Mander et al. 1999] but 

existing simulation models assume that all of the work to complete a development 

product is done within the organisational boundary. This allows the abstraction 

that a unit of code (size) can be directly related to a unit of work. We can say that, 

for example, in the process modelled by Abdel-Hamid and Madnick (Figure 34) 

the work to produce a kloc (thousand lines of code) comprises the sum of the work 

at each phase in the process that the organisation has adopted. 

Design 

Code 

Quality 
Assurance 

Figure 34. The work to produce KLOC 

The process phases are dynamically coupled, as the work outputs from one phase 

are the work inputs to the next phase. However, new size metrics are needed when 
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the work output units of one cell do not form the work input units to the 

downstream cell and the final size of the product is not directly related to the work 

required to produce it. The input work units are related to the amount of work 

required to 'glue' components together via component interfaces and the required 

work to produce a cell's self-produced components. The exported work units are 

the size of the produced component's interface. The size, S, of the required work 

of a cell is defined by: 

S = component Glue + self built components. 

The exported work size SE, delivered to the customer cell is defined by: 

SE = Interface size of the component 

The amount of 'glue' needed should be related to the sum of the interface sizes of 

the components. We expect inter cell dynamic coupling to be related to interface 

size. 

However, Garlan, [Garlan, Allen and Ockerbloom 1995] in proposing a theory of 

architectural mismatch, presents a case study of the problems associated with 

assembling a system out of existing large scale parts. The study showed that 

considerable effort was required to solve problems of interfacing the parts that 

were not related to the size of the interface, but were to do with mismatched 

architectures. Solving the problems required 'work-around glue code' or 

additional components in order to compensate for the mismatched interfaces as 

described in 4.2 . Whilst the Garlan study attempted to compose large-scale 

existing systems that were not designed or intended to be components, it does 

indicate that the architecture and closeness of fit of components may be an 

important determinant of the effort and glue required to compose them. 

The degree of fit may be regarded as an aspect of the incoming component quality 

Q, in terms of usability, efficiency, reliability and functionality of the component 

to be composed. In this view, the perceived quality of a component (and therefore 
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suitability for selection as a component) varies according to the components with 

which it will be composed. 

The size of total glue code required is related to the size of the interface and the 

closeness of the fit. A component that fits perfectly requires no additional glue 

code whereas a component with a poor fit requires additional glue code. The size 

of the additional glue code is a measure of the degree of fit of the component. It 

represents the extra work required to achieve the desired quality in the delivered 

system. In COCOMO II, Boehm uses a breakage factor to indicate code created 

but discarded as a result of error or changed requirements (see Chapter 2.7.3). The 

additional size required to create glue code to work-around poorly fitting 

components is a similar factor, but in this case, the code is delivered not discarded. 

So we must modify our earlier definition of S to be: 

S = Interface Glue + work-around glue + self built components. 

In his work on prediction models and tools, in particular COCOTs [Boehm 1997], 

Boehm provides an analysis of the effects of COTs style development on 

prediction and provide an alternative size framework based on interface points as a 

method of estimating the amount of work that an interface generates. 

4.4.3 Quality 

The quality abstraction used by Abdel-Hamid and Madnick [Abdel Hamid and 

Madnick 1991] and Madachy [Madachy 1996] assumes that all defects are 

removed and all requirements achieved by the end of the simulation. The dynamic 

effect on the process is the rework required. This is a reasonable abstraction in a 

traditional process environment where the simulation covers one complete 

lifecycle where at the end of the process the software product moves outside of 

scope of the simulation and output quality has no dynamic affect on the process. In 

CMPM each cell has a complete lifecycle of its own and the output quality of a 

component produced by one cell provides the input quality of components for 

downstream customer cells. The cells are dynamically coupled by quality. 
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Informally we estimate the quality (reliability, fitness for purpose, closeness of fit) 

of the components we must build firom and the product we must build. Thus 

quality is an estimation of completion of requirements both functional and non 

functional (NFR). A component with completed requirements and without defects 

would have quality =1, a useless product would have quality = 0. Quality 

predictions are vital process control information for managers who must trade off 

their own schedule, cost and quality targets. If the predicted quality of a 

component from an upstream cell is poor, the downstream manager may decide to 

use an earlier evolution of the component, trading requirement fulfilment against 

schedule fulfilment. 

4.4.4 Schedule 

The network of cells also have to meet schedule targets, the schedule achievement 

by an individual cell affects the downstream cells ability to meet their targets. If a 

cell is predicted to fail to meet its target, the customer cell may have the flexibility 

to rearrange their integration tasks to minimise the effect of the delay, or it may use 

an earlier version of the component or in the worst case be delayed in the 

achievement of its own schedule target. However the delay imposes schedule 

pressure which acts on the downstream cells. 

Boehm's work in COCOTs [Boehm 1997], is based on an analysis of the 

experience of component integrators, contained in the SEI Software Engineering 

Risk Repository; the study confirms that delays in the supply of components affect 

the ability of the integrator to meet their performance targets. Supplier 

performance is used as a cost driver in the COCOTs tool. 

Ford and Sterman [Ford and Sterman 1997] also show the importance of modelling 

customer and supplier relationships, although in their model, the suppliers and 

customers are development phases. They show the dynamic effect on work 

availability and therefore performance of external concurrence relationships. 
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4.4.5 Predictability 

Organisations indicate that predictabihty about project performance is critical to 

the success of the organisation. Decisions to invest in a product are based on risk, 

costs, potential revenue and whether the time to market matches a predicted 

window of opportunity for the product (when the product is likely to achieve its 

sales potential). If predictions under-estimate schedule then an organisation will 

commit expenditure to a project that will fail to meet its sales potential. If the 

predictions significantly over-estimate schedule then organisations will fail to 

invest in potentially profitable products. To date, achieving predictability has been 

difficult, since traditional static project planning and estimating systems do not 

model the dynamic nature of software processes. 
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Evolutionary Systems 

Dynamics Model Building 

There are two motivations for this set of investigations and simulation experiments. 

• Showing how systems dynamics models can be built in an evolutionary 

manner, with successive models making an evolutionary step towards a 

closer correspondence to a real world model; this may be described as 

evolutionary model building. 

• Demonstrating that observed behaviour can be reproduced in Systems 

Dynamics, using an evolutionary model building process and validated 

by quantitative data. 

Whilst qualitative Systems Dynamics models can be useful as means of 

understanding a problem domain, it is very easy to construct a model that appears 

to convincingly explain a particular behaviour but there may be other equally 

plausible models that could explain the behaviour. 

A model's correspondence with real world behaviour is more likely to be 

demonstrated if qualitative data from the real world, when used in the model, 

reproduces the real world behaviour. When taking a real world process and 

modelling it in Systems Dynamics, it can be very difficult to move beyond 

qualitative models to quantitative models because unfortunately, in many complex 

systems it is very difficult to find accurate data from the problem domain that can 

be used to validate the model. This happens for many reasons; historic data at the 
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level of detail that the model needs may not be available; recording data 

specifically for the purpose of modelling may not be economically viable. 

In this simulation experiment I have used a simple process with precisely defined 

behaviour. The process is defined by activities governed by probabilistic choices 

and can be simulated to produce quantitative data using Monte Carlo methods 

[Metropolis and Ulam 1949], [Fishman 1996]. 

The Monte Carlo method models probabilistic choices of activities; Systems 

Dynamics models stocks and the flows that create and deplete them. Both 

paradigms model continuously over time but Monte Carlo methods calculate a 

choice over a probability distribution at each tick of time, whereas Systems 

Dynamics calculates, using partial difference integration, the effects of flows on 

stocks at each tick of time. Systems Dynamics explicitly models causal and 

feedback relationships and abstracts from single entities to a population. 

The investigation shows an evolutionary method of Systems Dynamics modelling; 

feedback at each evolution from comparing the model to the real world behaviour 

is the dynamic that generates a closer correspondence in the next evolution of the 

model. In this investigation the Monte Carlo model provides an alternative model 

of the simple process which gives qualitative and quantitative visibility into the 

process to support the evolutionary process. 

I will show how Systems Dynamics models can be produced in an evolutionary 

manner to reproduce the behaviour of our simple process using qualitative and 

quantitative results from the Monte Carlo model simulation to bring the 

correspondence of the two models closer together at each evolution of the Systems 

Dynamic model. 

In the earlier evolutions, when the Systems Dynamic model and simple process 

behaviour is ftirthest apart, the comparisons are typically qualitative; in later 

evolutions we can use quantitative comparisons. 
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5.1 The Simple Process 

Let us examine a simple software development process. A piece of software must 

be built to a specified size (this may be a number of components or function points 

or any other measure of the size of software). How long it will take to complete 

and the quality of the resulting software will depend on three things; the work 

applied to the task, the efficiency of the process in producing good work, and the 

quality assurance practices used to detect and fix faults. 

The quality assurance practice can be represented as a policy of tolerating only a 

certain proportion of bad code throughout development before applying effort to 

fix the bad code. 

The efficiency of the process can be represented by the proportions of good and 

bad code produced throughout the process and its ability to fix bugs. 

This simple process may be described by Monte Carlo methods to produce a model 

in which effort is allocated according to the perceived defects in the already 

completed work 
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The process has a probabiKstic choice of four activities: 

• Doing good work 

• Doing bad work 

• Fixing bad work 

• Or finishing 

At every tick of the clock a randomised choice between the activities is made; this 

corresponds to a unit of work being carried out. 

The choice between activities is weighted towards fixing bugs if the bugs are in 

excess of a fixed proportion of code or if the code has achieved its target size. 

When making new work, weighting towards making a bug increases with the 

proportion of code completed, hi the example provided, the weighting increases 

from 30%, when the proportion of completed code is nil, to 95% when the code 

approaches target size. This likelihood of making a bug may be used to represent 

the efficiency of the production process, both in making good code and also in 

finding and fixing bugs. 

Although the process is simple, these structural dynamics cause interesting 

behaviour in terms of the quality outcome of the code and the time it takes to 

complete a target amount of code. 

5.2 The Simple Process IVIodelled as a Decision Tree 

How the choice is made between activities may be modelled as a decision tree 

(Figure 35). For every iteration of the process (a 'tick' of the process clock), the 

choice is between correcting bad work {correct) and doing new work (move on). If 

the choice to correct bad work is made, either the path to make a fix (make fix) is 

taken or the path for an unsuccessful fix (don't fix) is followed. If the choice is to 

do new work, then either new work finishes (finished) when the work has 
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completed its target size, or a new piece of code may be added (add bit). If a new 

piece of code is added, then either the path to make good code may be followed 

(make good work) or the pa th to m a k e bad w o r k (make bad work) m a y b e taken. 

The leaves of the tree show the effect on cumulative work w, cumulative bad work 

b, and cumulative code n. 

correct 

move on 

make fix 

don't fix 

fimshed 

make good work 

add bit 

n+1 
b 
w+1 

make bad 
work 

Figure 35. The simple process modelled as a decision tree 

5.3 Monte Carlo Model (Mathcad) 

The process described by the decision tree can also be described by Monte Carlo 

methods to produce a statistical simulation. The process then becomes a set of 

probabilistic choiccs, (corresponding to the nodes of the decision tree) which 

determine the paths followed. A simulation is the graph of paths followed as each 

choice is made randomly, according to the probability distribution. 
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The equations below describe a Monte Carlo model of the process in Mathcad 

[Mathcad 1999]. 

The model has the following fimctions: 

• corr 

• bug 

• addbit 

• fixbug 

Corr is the choice to correct a bug, or to do new work {move on in the decision 

tree) provided that the work has not reached its target size, N. (Table 1, page 103 

provides a key to the symbols used in the following equations) 

corr(pc,b ,n , t ,k) := (bt > l) (nt > N) k-pct < — 

corr is true (choose to correct a bug) if there is at least one bug, the code is not at 

the target size and the bugs in the completed code are greater than the maximum 

percentage of bugs tolerated k, weighted by a random choice function (pc). 

When corr is false, the 'move on' path is followed. 

Bug is the choice that work (either new work or work to correct a bug) is good 

work. 

nt 
b u g [ p b , b , n , t , a a , b b ) := pbt < a a + bb — 

N 

bug is true (a work unit is incorrect) when the random choice (pb), falls between 

the minimum rate of faulty work set for the process (aa) and a maximum that 
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increases as the completed code increases (bb*n/N). When bug is false, a unit of 

good work is added if new work is being done, or a bug is removed if the path to 

correct has been followed. 

Addbit is the choice that adds a piece of new work, which may be either good work 

or bad work, determined by the choice, Bug. 

addbi (pb ,b ,n ,w, t ,aa ,bb) := if bug(pb,b,n, t ,aa ,bb) , 

nt+ 1 

bt+ 1 

Wt + w(nt) 

nt+ 1 

bt 

^wt + W(nt) / J 

Fixbug is work to remove a bug which may be effective (make fix in the decision 

tree) or ineffective which does not remove the bug {don't fix in the decision tree), 

determined by the choice, Bug. 

fibd3ug;pb,b,n,w,t,aa,bb) := if bug;pb ,b ,n , t , aa ,bb) , 

"t 

bt 

^wt + W(nt) 

b t - 1 

^Wt + W(nt) J_ 

At each tick of time of the simulation, the functions are evaluated; 

' ' " t ' 

bt+1 := ii corr(pc,b,n,t,k),fixbug;pb,b,n,w,t,aa,bb),if nj > N, bt ,addbi1(pb,b,n,w,t,aa,bb) 

.Wt, 

Key: 

n is cumulative code. 

N is final size of code (target) 
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w is a unit of work; in this case a unit of work is added for every tick of 

Time, t 

t is a tick of time 

T is time 

Two random fimctions determine the probabihty distribution of choices 

(where runif is the Mathcad random generator): 

pb is randomly generated probability of making a bug 

pb := runifT,0,1) 

pc is randomly generated probability of choosing to correct 

pc := runi^T,0,1) 

k is the maximum percentage of bugs tolerated in the code 

Two constants weight the balance of producing good and faulty code: 

aa minimum rate of bug production 

bb variable rate of bug production 

Q is quahty of the incoming components 

nt 

P is quality of the outgoing components 

(lit - bt) 
Pt := 

nt 

Table 1. Key to Monte Carlo model equations 

At each tick of the simulation, 

if corr evaluates to true, 
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the simulation follows the fixbug path. 

if corr evaluates to false, 

we evaluate whether the product has reached its target size; 

if it has, no new work is added; 

if it is less than the target size, 

the simulation follows the addbit path. 

At each tick of the clock, whether new good or bad work is added or a bug is either 

fixed or not fixed, a unit of work is added until the process finishes. The process 

finishes when the target size for the code is complete and all of the bugs have been 

removed. During a typical simulation of the process, the time allowed for the 

simulation may expire before the process is complete. 

By varying the initial settings for the simulation; we can produce a range of results 

for the time taken to complete the code, the rate of growth in size and the quality of 

the code. 

5.3.1 Simulation 1, varying the quality of the incoming 

component 

We can simulate a typical process scenario in which we receive a component from 

which we are to build our product. The component is 200 code units in size and 

our finished product will be 400 code units. The component is not perfect and has 

a proportion of bad code which will affect the quality of our product. Within our 

process we will add new code until we have reached the target size and attempt to 

fix the bugs. We will set the threshold for tolerance of bugs in the code at 25%. 
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The first simulation was set up with the following values: 

Ihitial size, nO 200 

Target size, N 400 

Initial bugs, bO 25 

Threshold for bug tolerance, k 25% 

Minimum bug rate, aa 0.3 

Variable bug rate, bb 0.95 

Table 2. Initial settings for Simulation 1 

When simulating the Monte Carlo model in MathCAD, the initial value of bugs 

was set at 25 and the initial value of code was set at 200. Thus at the 

commencement of the simulation, the number of bugs in the code was below the 

maximum tolerated. 

Figures 36 to 39 show graphs from simulations of the model which trace the 

growth of size and defects as work is done. For each simulation, probabilistic 

choices at each tick of time determine the outcome of the unit of work. Thus 

repeating a simulation will not repeat the results, but produce a distribution of 

values of n, and b. However, the general shape of the graphs is similar; these 

graphs are representative of the graphs that were produced. 

Figure 36 shows a graph of the growth in size, n, as work, w increases. 

Completion of the required 200 code units took 860 work units which takes 860 

time units to complete, (because in this instance, one work unit takes one time unit 

(tick, t). As the units of completed code approach the target size, the rate of faulty 

work compared with good work increases, slowing the rate of completion and 

showing an asymptotic approach to the target size. As new bugs increase, the bug 
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tolerance threshold is exceeded and at every tick of the clock the random choice to 

fix bugs is more likely. 

400 

350 -

n, 
code 
units 

300 

250 

200 
1200 

w, work units 

Figure 36. Graph from Monte Carlo simulation showing growth in size n, as work, w, 

is done 

Figure 37 is a graph from the same simulation showing the growth in bugs, b, as 

work w is done. The level of bugs increases to a maximum of 85 when the code 

reaches its target size, subsequently new work stops and no new bugs are added. 

The simulation stops before the all of the bugs are removed, taking 340 work units 

to remove 37 bugs; this is a consequence of the effectiveness of the bug removal 

policy in the process. 

The growth of bugs against work appears to show an S shaped population growth 

phenomenon. 
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.90, 
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defects 60 
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Figure 37. Graph from Monte Carlo simulation showing growth of defects, b against 

work, w 

,,400j 
400 

n, 
code units 300 -

2̂00̂ 200 

b, defects 

Figure 38. Monte Carlo simulation, graph showing growth of defects, b with 

increasing size, n 
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We can see the effects on the amount of work to achieve target size and the 

outgoing quahty of the product of a different quaUty of the incoming component; 

in this case, there are 60 defects in the code from which we must build. The target 

size of 400 units and the defect removal policy remain the same. 

The initial level of defects is higher than threshold level of bugs tolerated in the 

code, as a consequence work is done to reduce the level of bugs to below the 

tolerance threshold before any new work is done. 

400 

units 300 

w, work units 

0̂0, 200 

Figure 39. Monte Carlo simulation, initial defects = 60, graph of increasing size, n as 

work, w increases 

Figure 39 shows the effect of high initial defects on code production; no new work 

is done so that the code does not begin to increase in size until t = 40 and target 

size is not reached until t = 850. 

108 



Chapter 5 Evolutionary Systems Dynamics Model Building 

b, 
defects gg 

.33. 30 

w, work units 

1200 

Figure 40. Monte Carlo simulation, initial defects = 60, graph of defects, b as work, 

w is done 

Figure 40 shows the effect on the number of defects in the code; initially work is 

done to reduce the defects in the code until the threshold level has been reached. 

After that, new code can be made and the balance of work between making new 

work and fixing defects has the same probability distribution as when the incoming 

component had only 25 defects. The component takes 65 work units longer to 

complete and there are 2 more defects in the component at the end of the 

simulation time than in the previous example. Results for other values of incoming 

defects are summarised below. 
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bO Maximum 

defects 

Residual 

defects 

Work to complete 

N, 400 

Final Quality, 

P 

0 89 59 780 &853 

25 88 63 825 &843 

60 88 65 890 &843 

100 100 68 940 0,83 

Table 3. Results from Monte Carlo simulations where the number of initial defects 

were varied 

Overall, in our simple process, the effect of defects in incoming components on the 

final product and the time it takes to complete is very small. For example, the 

work to complete the product increases by 20% when defects are increased to 50% 

of the incoming product. The residual defects increase by 10%. This is because 

the effects are only in the work done to reduce the defects to below the threshold of 

tolerance. Thereafter the process behaviour and the balance between new work and 

defect removal is the same, whatever the quality of the incoming component. 

5.3.2 Simulation 2, varying defect removal policies 

The second simulation I shall describe shows the effect of different policies for 

defect removal. As before, we are building from a component of 200 code units in 

size, and our finished product will be 400 code units. The component has 60 

defects, and during the process we will attempt to produce a perfect product. 

Within our process we will vary the threshold of defects in the code above which 

we will choose to fix defects rather than produce new work. 

The results from other simulations are summarised below; showing how varying 

the threshold, k affects the simulation outcomes of maximum and residual bugs, 

work to complete the product and the final quality. 
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k Maximum 

defects 

Residual 

defects 

Work to complete 

%L400 

Final Quality, 

P 

0.10 38 28 1110 0.93 

0.25 88 65 890 &843 

OJO 150 115 690 0.713 

Table 4. Results from simulating The Monte Carlo model with varying defect fixing 

policies, k 

If we tolerate only 10 % defects in the code in production, we will achieve a low 

number of residual defects, but the time to complete the component will be nearly 

double the time to complete the product with a tolerance of 50% defective code. 

At the higher threshold of tolerance, the time to completion is short, but the 

residual defects are four times higher than if the 10% tolerance policy is followed. 

In our simple process, varying the defect removal policy has a much greater effect 

on the time taken to complete the process and the quality of the finished product 

than the quality of the incoming components. 

5.4 Systems Dynamics Representation of the Simple 

Process (Vensim) 

We can recreate the Monte Carlo simulation developed in Mathcad, in Systems 

Dynamics using Vensim [Vensim 1988 -1997], by direct analogy. Here we 

describe an evolutionary modelling process producing a series of models, each 

iteration building on the last, as we understand more about the process until a close 

replication of the Monte Carlo model is achieved. 

For each evolutionary cycle, we start with the real world behaviour and attempt to 

recreate it with the simplest possible Systems Dynamics structure. We then 

compare the Systems Dynamics model with the real world process and determine 
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the points of correspondence between the model and the real world behaviour. 

Where we have good correspondence, we can take the structure into the next 

evolutionary cycle. Where the correspondence is incorrect or absent, we add or 

remodel the structure in the next evolutionary cycle. In this way we are looking for 

successively better synchronisations of the model and real world behaviour. 

This is a feedback driven process, the modelling activity increases understanding 

of the problem domain, which feeds back into increasing correspondence between 

the model behaviour and the real world behaviour. 

To return to our simple process, we have a good understanding of the behaviour, 

both externally because we can simulate it and collect quantitative data, and 

internally because we can express the process precisely mathematically. 

We can begin to represent the simple process in Systems Dynamics by making an 

initial abstract model of the stocks in the process and the flows that increase or 

deplete them, and using the evolutionary process described, evolve the model to 

include structures that affect the dynamic behaviour. 

We produced eleven models in all; I will describe in detail six models that show 

the major evolutionary steps made towards the final representation of the simple 

process in Systems Dynamics. The six successive models show the evolutionary 

path to the successful final model. The other models were alternative paths that 

could have been followed but that were discarded. At each evolutionary step 

quantitative and qualitative analysis of structure and behaviour identified the model 

with the closest correspondence, which became the next successful evolution. 

The Systems Dynamics paradigm abstracts from the individual entities to a 

population, therefore I have not used a randomised choice between the activities. 

5.4.1 First Evolution - IVIonte 3 

The first significant model is a simple abstraction of stocks and flows. 
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The obvious stocks in the system are code, expressed in code units, and bad code, 

expressed in bad code units. The activities that increase and deplete the stocks are 

making code and fixing bugs. For the first evolutionary cycle, I will concentrate 

only on the activities that increase the stocks. 

There are two stocks, all code (code) and faulty code (code that's bad). The code 

stock is increased by two flows, make good code and make buggy code. 

Code that's bad is increased by the flow, make buggy code. The activity make 

buggy code increases both the stock of code and the stock of bugs. 

The first approximation of the flows splits making new code between good and bad 

work in the ratio 65:35. There is no flow that removes bugs. 

ZS 
make good code 

add t code 

make buggy code 
code that's bad 

code 

Figure 41. Systems Dynamics model of simple process 

The model can be tested for correspondence with the simple process defined in 

Monte Carlo methods. 
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The systems dynamic model abstraction of flows is comparable to the Monte Carlo 

function addbit and the part of the decision tree coloured red in Figure 42. 

correct 

move on 

make fix 

don t fix 

finished 

make good work 

add bit 

n+1 
b 
w+1 

make bad work 

Figure 42. Decision tree of simple process showing coverage offirst 

Systems Dynamic model 

addbi1(pb,b,n,w,t,aa,bb) := if bua^pb,b,n,t,aa,bb). 

nt + 1 

bt + 1 

^wt + W(nt) 

nt + 1 

bt 

Ŵt + w(iit) 

addbit makes both defective and good code with every tick of time, t. The size of 

the code n, is made up of defective code and good code. The function accumulates 

the number of bugs, b within the code, n. The probability distribution between 

making good code and defective code is governed by two constants, the minimum 

rate of bad code production, aa and maximum rate, bb\ these were defined for the 

simulation as aa = 0.3 and bb = 0.95 - aa . 

The systems dynamics model approximates the probability distribution to a ratio of 

good and bad work. We can say that the Systems Dynamic model is in good 
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correspondence with the Monte Carlo model in the structure of stocks and the 

flows (or activities) that create them. We have a corresponding structure that 

determines the proportion of defective code in the total code. The structure is an 

abstraction of the Monte Carlo probability distribution, but it is good enough for 

the first evolution of the Systems Dynamics model 

2,000 

LOOO 

Graph for code production 

360 720 
Time (Month) 

code : monte3-l 
code that's bad : monte3-l 

code unit 
code unit 

Figure 43. Simulation offirst Systems Dynamics model, graph of code and 

defects as time increases 

If we examine a graph of code production from simulating the Systems Dynamics 

model. Figure 43, we can see an increase in both total code and defects within the 

code. The code does not show an asymptotic approach to a target size that the fall 

simple process simulated in Monte Carlo methods shows. However, the 

underlying structural correspondence is good, in that we accumulate the same 

stocks of good and bad code and they are increased by equivalent activities. 

We can compare this model with an earlier discarded version that fails comparison 

with the simple process defined by Monte Carlo methods. Figure 44. In this 

model, although we have stocks of code and defects, the flows that create them do 
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not correspond closely with the addbit function. The model is too complicated as 

it has flows that increase stocks and flows that decrease stock whereas addbit only 

increases stocks. Instead of the stock of code being increased by two flows, code 

is increased by add code and bugs is increased by add bugs. The two flows are 

shown as coincident flows (one flows as a result of the other). The mathematical 

representation does not correspond either; in addbit the code is increased by both 

adding a flow of good code and adding the flow of defects, in the failed Systems 

Dynamic model, the stock of code is increased by increasing the flow add bugs. 

add 

Z3 
add bugs remove bugs 

code, n 

add bugs 

Figure 44, Alternative Systems Dynamics model of the simple process 

5.4.2 Evolution 2, Monte 4 

The second evolution of the Systems Dynamics model (Monte 4), Figure 45, has 

two new features, making an evolutionary step closer to the simple process. 

The first feature stops code production when a target amount of code has been 

completed. The code production flows (make good code and make buggy code) 

stop when code done? is set to true, which is the case when the code already 

completed is the same as the target size (final code size, N). This structure 

describes goal-seeking behaviour in the process. 
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The model has a new flow, remove bugs, which decreases the stock of bugs. 

final code size.N- - • c o d e done? 

A 
make good code 

add t:) code 

# < 3 
remove bugs make buggy code 

code thafs bad 

code 

Figure 45. Second evolution of Systems Dynamics model of the simple process 

We can examine the Systems Dynamics model for correspondence with the simple 

process. 

The structure that stops production when the final size is complete is similar to the 

decision tree choice between finished? and addbit. In the Monte Carlo method 

equation, repeated below, it is modelled by evaluating nt > N (code at 

simulation time, n less than or equal to the target size, N) before evaluating addbit 

in for every tick of the simulation. This stops the production of all code, both good 

and defective. 
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f \ 
nt+1 

bt+i := if co r r (pc ,b ,n , t , k ; ) , f ixbug ;pb ,b ,n ,w , t , aa ,bb) ,if nt > N , bt , a d d b i ( p b , b , n , w , t , a a , b b ) 

v^t+ l 

We can conclude that the Systems Dynamic structure limiting code growth has a 

good correspondence with the Monte Carlo equation. 

The flow remove bugs in the Systems Dynamic model represents fixbug in the 

Monte Carlo Model and correct in the decision tree. However, the representation 

is approximate; the simple process has a probabilistic choice that any attempt to 

correct a defect will fail, increasing a unit of work, w, but the number of defects, b 

remains the same. The Systems Dynamic model approximates defect removal rate 

over the defect population. Therefore whilst the structure corresponds to the 

simple process defined by Monte Carlo methods, the probabilistic behaviour is 

approximated. 

The paths of the decision tree are now all represented in the Systems Dynamics 

model, Figure 46, however except for the decision to stop code production, the 

choices at the nodes of the decision tree that determine which paths will be 

followed have been approximated. 
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correct 

move on 

make fix 

don't fix 

finished 

add bit 

make good work 

n+1 
b 
w+1 

make bad work 

Figure 46. Decision tree coverage by Systems Dynamics model evolution 2 

400 
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180 

70 

-40 

Graph for code and defects 

240 480 ICO 
Time (Month) 

960 1200 

code : Current 
code that's bad : Current 

code unit 
code unit 

Figure 47. Simulation of 2nd evolution Systems dynamics model, graph of code and 

defects as time increases 
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The simulation results from the Systems Dynamic model, Figure 47, show that the 

code and new defects in the code stop increasing when the code reaches the target 

size, 400 units, as we expect from the correspondence with the Monte Carlo model. 

After that point, defect removal continues, again following the behaviour of the 

Monte Carlo model; except that the Systems Dynamic model has no structure that 

will stop defect removal after defects have reached zero. The increase in code does 

not show an asymptotic approach to the maximum produced by simulation of the 

Monte Carlo model. 

5.4.3 Evolution 3 - Monte 6 

The third evolution focuses on dynamic behaviour that affects the choice between 

making new code and defect removal activities. 

Monte 6, Figure 48, adds another goal seeking structure to follow the policy that up 

to 25% bugs in the code in progress will be tolerated. This is the variable 

'willingness to tolerate bugs' and associated links. The function that defines the 

structure in the systems dynamic model follows: 

willingness to tolerate bugs= 

IF THEN ELSE ("code done? ">=1,0, (IF THEN ELSE (XIDZ(code that's bad, 

code, 0)>=0.25, \0,1))) 

The fimction compares the percentage of bugs in the code completed so far with a 

constant tolerance percentage, in this case 25% (equivalent to setting the constant 

k = 0.25 in the Monte Carlo model), willingness to tolerate bugs evaluates to false 

when the percentage of bugs in the code exceeds the tolerance percentage or when 

the code has reached its target size. 
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The new structure affects the flow ^remove bugs' as shown in the following code 

fragment: 

remove bugs= 

IF THEN ELSE(willingness to tolerate bugs=0, 1,0) 

~ bad units/Month 

Remove hugs f low is set to zero while willingness to tolerate bugs is true. Remove 

bugs flow is non-zero while willingness to tolerate bugs is false. Thus the variable 

willingness to tolerate bugs acts as a switch that turns defect removal activities on 

and off. The make good code f low is reduced by the remove bugs f low, so the bug 

tolerance policy affects the flow of new work, distributing work over the two 

activities. 

final code s i ze .N- - c o d e done? 

make good code 

<i-emove bugs> before code is finished be prepared to tolerate up to 

25% bugs, when code is complete, tolerate no 

bugs. add til code 

<code d o n e ? > 

willingness to tolerate bugs 

A 
remove bugs make code 

code that's bad 

code 

Figure 48, Systems Dynamics model evolution 3 
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The new structure models the choice corr in the Monte Carlo Model, 

corr (pc ,b ,n , t ,k) ;= (bt > l) • ("t ^ N) + 
^ b,̂  

k • pct < — 

' b,^ 
and in particular, k pq < — which randomly provides the probabihty distribution 

V "t y 

that corr will evaluate to true (choose to correct a bug) if the ratio of bugs in the 

code is greater than k at each tick of the simulation. The correspondence between 

the Monte Carlo model and the Systems Dynamics structure is good, but limited by 

the Systems Dynamics abstraction of a modelling a population flow, rather than 

discrete entities. 

We can simulate the evolved Systems Dynamics model to examine the effects of 

the new structure on the behaviour of code and defect growth and on defect 

removal in comparison with both the previous model and the behaviour of the 

Monte Carlo model. 

The following graph, Figure 49, shows a simulation where there was an initial 

stock of defects higher than the tolerated percentage. The effect on behaviour of 

the structure is that code and defect growth is slower, and no new code is produced 

until defects are below the tolerated percentage. This is in better correspondence to 

the simple process modelled in Monte Carlo methods than the previous evolution 

of the systems dynamics model. However the code and defects increase in a 

straight line rather than showing an asymptotic approach. The Systems Dynamics 

model has to evolve further to correspond to the simple process behaviour. 
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Graph for code and defects 

400 

200 

-200 

-400 
240 360 
Time (Month) 

code ; Current 
code that's bad : Current 

code unit 
code unit 

Figure 49, simulation of 3rd model evolution, graph of code and defects as time 

increases 

5.4.4 Evolution 4, Monte 8 

Monte 1 - 6 models use an approximation to allocate the work between making 

new work (good and bad) and fixing bugs. Monte 8, Figure 50, refines the 

approximation towards a better representation of the split between activities in the 

Monte Carlo model. 

In the definition of the simple process, and the Monte Carlo model, the rate of 

production of defective code increases as the proportion of code completed 

increases. 
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The new structure in the Systems Dynamics model, proportion of code complete 

models the ratio of code completed to the target code size, N. 

proportion of code complete= 

code/"final code size,N" 

~ dmnl 

The new variable is used to refine the definition of the f low make buggy code, 

which in turn refines the definition of the flow make good code. 

final code size,N 

code done? 
V 

<remove bu2S> 

make good code 

<c 0 d e d one ? > add t(, 

<code> 

proportion of code complete 

wi inmess to tolerate bugs 

make buggy code 
code that's bad A 

remove bugs 

Figure 50. Systems Dynamics model evolution 4 
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The following equations from the Systems Dynamics model define the dynamic 

split between code production activities. 

make buggy code= 

IF THEN ELSE ( "code done?">=l, 0, (0.3+ (0.65*proportion of code 

complete))) 

~ bad units/Month ~ 

make good code= 

IF THEN ELSE ( "code done?"=l, 0, (1-make buggy code-remove bugs)) 

~ code unit/Month 

0.3 is the value of the constant aa in the Monte Carlo model which represents the 

minimum level of bad code production. 0.65 is value of the Monte Carlo constant 

bb which represents the variable rate of bad code production above the minimum. 

As the proportion of code completed increases to a maximum of 1, the rate of bad 

code production increases to 0.95. 

The behaviour of good code production is defined by defect production and 

removal behaviour, in correspondence with the simple process and Monte Carlo 

model where it is defined by the choice not to correct a bug (in corr) and not to 

produce a defect (in addbit). 

5.4.4.1 Exploring the behaviour of Systems Dynamics Model in 

Comparison with Monte Carlo Model 

At this stage of evolution of the Systems Dynamic model, where we have evolved 

the model of the structure of the simple process, and have good structural 

correspondence through qualitative behavioural comparison, we can begin to use 

quantitative data to check correspondence further. 
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The Vensim model was simulated with the same parameters as the Monte Carlo 

Model: 

Initial Bugs 60 

Initial code size 200 units 

Target code size 400 code units 

aa 0.3 

bb 0.65 

Bug tolerance level at 25% 

Table 5. Initial parameters for the Vensim model simulation 

The Vensim model shows similar behaviour to the Monte Carlo simulation. The 

graph of bad code over work (or time), Figure 52, shows that initially work is done 

to reduce bugs in the code to below the bug tolerance threshold, then new code is 

added (including new bugs) and bugs are removed until the code reaches its final 

size. When the code is complete, work is done to remove bugs. 

defects 

1.3 3j 20 
400 600 

w, work units 

1200 

J .2xl0, 

Figure 51, Monte Carlo simulation graph of defects b as work w is done 
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Graph for bad code against work 

200 
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100 

50 

480 "̂ O 
work done 

1200 

code that's bad : Current bad units 

Figure 52, Systems Dynamics model simulation, graph of code and defects as time 

increases 

The graph of code against work (time) generated by the Vensim simulation, Figure 

52, shows a similar behaviour to the Monte Carlo simulation graph. Figure 51. At 

first, no code is added because work is done to reduce the level of bugs to below 

the tolerance threshold. Then new code is added until the code reaches the target 

size. Both graphs show an asymptotic approach to the maximum. This asymptotic 

approach is closer to the simple process behaviour than the previous systems 

dynamics model evolution. The evolutionary change has been the closer 

representation of the tendency to make a bug when making new code or not fix a 

bug in fixbug. The dynamic structure is a feedback relationship where the 

tendency increases with increasing code size. As no other behavioural changes 

were made, we can assume that it is the feedback relationship that has produced the 

asymptotic effect. 
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The target size is reached in a similar time for both simulations (approximately 

960 work/time units), Figure 53 and Figure 54. 

400 

325 

250 

175 

100 

Graph for code against work 

V 
/ 

240 480 720 
work done 

960 1200 

code : Current code unit 

Figure 53, Systems Dynamics model simulation graph of code against work done 
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2̂00J200 
1000 1200 
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Figure 54. Monte Carlo simulation, graph of code, n against work, w 
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5.4.4.2 Varying the policy on Bug toleration 

The Monte Carlo model simulations showed that the simple process is sensitive to 

the level of bugs tolerated in the code before defect removal activities were 

undertaken; if we have good correspondence between the models, we would expect 

that the systems dynamic model would show a similar sensitivity. 

Therefore, we simulated the Systems Dynamics model with the bug tolerance level 

set at different levels for consecutive simulation runs to explore the growth of code 

and defects for bug tolerance levels of 10%, 25%, 50%, and 90%. 

Using Vensim's graphical capability. Figure 55, it is easy to see that this process 

exhibits some interesting behaviour if you are willing to tolerate a high level of 

bugs, say 50%, or even 90%. In this case, the new code is completed faster but 

with a higher level of bugs. When the target size has been reached, the only 

activity possible at each tick of time is to fix all the bugs, thus the overall time to 

achieve the target size is reduced and also the time to complete code and fix all 

bugs. At 25% toleration of bugs, total time to reach target size and fix all bugs is 

approx 1100 time units. At 90% toleration the total time to reach completion is 

420 time units. Were this a real process, the conclusion might be dravm that in 

order to finish work and remove all faults in the shortest possible time, you should 

make no attempts to fix faults until the target size of code has been completed, and 

then make no new work and only fix faults. 

Tolerance of 

bugs in code 

Max bugs in 

code 

Time to reach 

target size 

Time finish code and 

remove all bugs 

25% 100 900 1100 

50% 200 420 610 

90% 220 190 420 

Table 6. Results from simulating Systems Dynamics model Monte 8, varying the 

willingness to tolerate bugs, k 
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Comparison of bad code growth at varying bug tolerance levels 

400 

300 

200 

100 

A 

/ \ \ \ 
/ 

\ \ / 
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240 480 720 

work done 

bad code at 90% bug toleration 
at 50% bug toleration 
at 25% bug toleration 
at 10% bug toleration 

960 1200 

bad units 
bad units 
bad units 
bad units 

Figure 55. Systems Dynamics simulation of different quality assurance policies 

The Systems Dynamic Model follows the behaviour of the Monte Carlo model 

until the code has reached its target size. After this point, the Systems Dynamics 

model shows a more rapid rate of reduction in bad code and therefore a shorter 

time to completion than the Monte Carlo model. The behaviour of the two models 

is not yet in good correspondence. 

5.4.5 Evolution 5, Monte 11 

Monte 11 evolves the behaviour of fixing bugs in the Systems Dynamics model 

closer to the Monte Carlo model, Figure 58. 

On examining the flows for making and removing bugs in Monte 8, it becomes 

clear that the remove bugs flow does not follow the behaviour that, as the 

proportion of completed code increases, so does the tendency to make a bug. In 

the remove bugs flow this should become a tendency not to fix a bug. It may be 
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represented as the difficulty of removing bugs as the proportion of completed code 

increases. 

In order to represent this properly, the remove bugs flow was changed to 

differentiate the behaviour before the code reaches its target size, when the make 

buggy code flow suppresses the effectiveness of code fixing, and the behaviour 

afterwards. The variable tendency to make a bug wraps up the difficulty factor in 

the previous model, Monte 8, {0.2 + (0.6 5 "^proportion of code complete)), and 

defines the minimum level rate of defects as aa, and the variable rate as bb. 

tendency to make a bug= 

(aa +(bb*proportion of code complete)) 

The new definition of the remove bugs flow is: 

remove bugs= 

IF THENELSE("code done?"=I, (1-tendency to make a bug), 

IF THEN ELSE(willingness to tolerate bugs= 0, 1, 0)) 

~ bad units/Month 

The code flows are similarly changed to correspond more closely to the simple 

process: 

make buggy code= 

IF THENELSE("code done?"=l, 0, tendency to make a bug) 

~ bad units/Month 

make good code= 

IF THENELSE( "code done?"=l, 0, (I-make buggy code-remove bugs)) 

~ code unit/Month 
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A Systems Dynamics model Figure 56, of effort allocation and Figure 57, (Vensim 

causes strip feature) show more clearly the effect of defect creation and removal on 

the productivity of the process. Effort must be allocated between making new code 

and defect removal before code is complete. The productivity of effort for new 

work is further reduced by the effort spent on new bugs. 

<\\illingness to lobrate bngs> 

effort for code before 

<code doiie'?> 

V 
effort before code complete 

<tendencv to make a bug> 

.-effort for new bugs 

effort for new code 
"*^<tendencv to make a bug> 

effort 
<tcndency lo nuke a bug> 

effort for bug removal before <«illingness lo tolerate bugs> 

effort after code corrplete 

/ ' 
<code clone?---

tendency to m a k ^ b u g 

:pioportion o f c o d e c o m p l e t o 

efibrt for bug removal after 

Figure 56, Systems Dynamics model of ejfort allocation 

effort 

effort after code complete 

effort before code complete 

effort for bug removal after 

effort for bug removal before 

effort for code before 

Figure 57. Causes strip for Systems Dynamics model of ejfort allocation 

Work in Monte 8 is represented by adding together all of the code flows; however, 

because the tendency to make a defect varies, the total code flows at each tick of 

time is not equivalent to a work unit, understating the amount of work done. In 

132 



Chapter 5 Evolutionary Systems Dynamics Model Building 

Monte 11,1 have added a Work Done stock, so that at each dt, one unit of work is 

added. This is a closer representation of the Monte Carlo model, where at each 

tick of time, a work unit is added. 

< remove bLigs> 

make good code 

code done?> " 

<tendeiicy to make a bug>\ 

code-̂ "^^ 

make busay code 
code that's bad V-ii 1 code that's bad A ' 

remove bugs 

initial bugs 

tendency to make a bug 

<proportiDn of code complete> 

^willingness to tolerate bugs 

bug tolerance level 

<code done'?> 

o X 
work 

work done 

,bb 
bconstant 

Figure 58. Systems Dynamics model, Monte 11 

5.4.5.1 Causes strip for code and bad code 

The causes strip feature in Vensim allows us to see which flows and variables 

create any particular stock. Figure 59 shows the flows and variables that create 

defects. 
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code done? 

tendency to make a bug 

(code done?) 

(tendency to make a bug) 

willingness to tolerate bugs 

make buggy code 

code that's bad 

remove bugs 

Figure 59. Systems Dynamics causes strip for defective code, Monte 11 

Code that's bad is caused by two flows, make buggy code that creates defects and 

remove bugs that depletes the stock of defects. We can see two feedback 

relationships that control the flow make buggy code, firstly goal seeking behaviour 

to stop the flow after achieving a target size {code done?) and secondly the 

tendency to make a bug, dependent on the proportion of code completed so far. 

Remove bugs is also controlled by willingness to tolerate bugs. 

The causes tree for code, Figure 60, shows that it is caused by two flows, which 

both add to the stock, make buggy code and make good code. 

code done? 

tendency to make a bug 

(code done?) 

(make buggy code) 

remove bugs 

make buggy code 

make good code 

code 

Figure 60. Systems Dynamics causes strip for code, Monte 11 
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5.5 Exploring the Simple Process with Systems 

Dynamics 

Two aspects of the process affect its dynamic behaviour, firstly the willingness of 

the process to tolerate bugs in the code, and secondly the efficiency of the 

production process in terms of making new code and fixing bad code, defined in 

the model as the tendency to make a bug. 

5.5.1 Simulation 1 varying the willingness to tolerate defects in 

the code 

The graph. Figure 61, shows the growth of bad code for policies of tolerating 10%, 

25%), 50% and 90% defects in code. Figure 62 shows an equivalent graph for code 

growth. 

The results from simulating the model now show bad code fixing at a rate closer to 

the results from the Monte Carlo model. Without the 'noise' generated by the 

probabilistic choice, it is easy to see how the bug tolerance policy affects the rate 

of bad code production and fixing and of code completion. 

The graph for bad code against work at the 25% tolerance level shows an initial 

decrease in the level of bugs because the bugs present in the code at the beginning 

of the simulation are already in excess of the tolerated level. Thus work is 

allocated to reducing the bugs to below the tolerance level before any new work is 

done. 
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Graph for bad code production at varying bug tolerance levels 
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Figure 61. Systems Dynamics simulation exploring the effects of different defect 

toleration policies on bad code production 
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Figure 62. Systems Dynamics simulation exploring the effects of different defect 

toleration policies on code production 
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Code growth and bug growth show an asymptotic approach to the maximum. The 

maximum proportion of bad code is approx 25%, reached as the code reaches 

target size after 854 ticks (equivalent to work units). The bad code reduced to 22% 

by continued bug fixing until the end of the simulation. 

A more extreme policy of tolerating only 10 % bugs shows a low rate of bad code 

growth but the bugs are never completely removed and the code only reaches the 

target size at the end of the simulation time bound. It takes six times longer to 

reach target size than if a policy of tolerating 90% bugs is used but only 10% of the 

code is bad. 

The graph for bugs against work at the 50% tolerance level shows an inflection at 

the point where the tolerance level is exceeded and work to correct bad work 

begins. At this point, new work slows until the target size is reached. 

At the 90% tolerance level, the code is almost finished before the tolerance level is 

exceeded. Fixing bugs begins when the code reaches its target size. 

ha contrast to the model, Monte 8, where a high bug tolerance caused an early 

completion of the code with all bugs removed, simulating Monte 11 shows a 

different behaviour, hi this model, if the policy of 90% bug toleration is followed, 

although the target size is reached rapidly, the proportion of bad code is high (more 

than 50%) and only reduces to 42% of code by the end of the simulation. The 

policy of 50% bug toleration fares little better, the time to reach target size doubles 

and the proportion of bad code is still 40% at the end of the simulation. 

5.5,2 Simulation 2, varying the efficiency of the process 

In the last simulation experiment, we looked at how the policy of bad code 

tolerance affected the completion of code and the quality of the code in terms of 

the proportion of code that was bad. During these experiments the constants aa 

and bb that set the minimum and maximum efficiency were set not varied ( 0.3 and 

0.95). In this set of simulations, we vary aa and bb. The graph Figure 63, shows 
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the range of code production behaviour when we vary the process efficiency for 

the same wilhngness to tolerate bugs and initial defects. The grey graph line 

shows code growth with high process efficiency. Initial defects are removed 

quickly because the defect removal process is more likely to fix a bug. The growth 

of defects is low, Figure 64, with a maximum of 65 because the tendency to make 

defective code increases only slightly as the proportion of completed increases. 

All defects are removed after 290 work/time units, again because of the efficiency 

of the defect removal process. In comparison the red graph line shows a process 

with low process efficiency; the minimum rate of defective code is 50% which 

rises to a maximum 95% when code is near completion. In this case defects rise to 

100 and the defect removal process fails to remove the bugs before the end of the 

simulation. 

The simulation was set up with the following values; 

Graph name Graph colour 
Minimum rate of 

defects, aa 

Maximum rate 

of defects, bb 

Monte Il-a5b95 red 0.1 0.1 

Montell-a5b7 green 0.5 0.7 

Monte 11-ab grey 0.3 0.95 

Montell-albl blue 0.5 0.95 

Table 7. Montell simulation constants 
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Figure 63, Systems Dynamics simulation results for code production with varying 

process efficiency 

A graph of code growth f rom the same set of simulations shows the effects of 

varying the process efficiency on code production. As we have seen from the 

defects graph (blue graph, aa = 0.1 and bb = 0.1), a highly efficient process 

completes the code quickly, whereas the inefficient process (red graph, aa = 0.5 

and bb = 0.95) takes nearly six times as much work to complete a product of the 

same size and shows an asymptotic approach to code completion. 
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Graph for defects for varying process efficiency 
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Figure 64. Systems Dynamics simulation defect production with varying process 

efficiency 

5.6 Conclusion 

In this chapter we showed an evolutionary method of Systems Dynamics 

modelling where feedback at each evolution from comparing the behaviour and 

structure of the model against real world behaviour is the dynamic that generates a 

closer correspondence in the next evolution of the model. 

In this example, we have defined a simple software development process to 

provide the real world behaviour to be modelled. We defined the simple process as 

a set of probabilistic choices of activities that could be simulated using Monte 

Carlo methods to provide qualitative and quantitative visibility of the behaviour. 
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Comparative simulation results from the Monte Carlo model show that there are 

still differences between the last evolution of the Systems Dynamics model and the 

Monte Carlo model in terms of the quantitative results from simulations although 

the qualitative correspondence is strong. Table 8 shows results from Monte Carlo 

simulations for variable wiUingness to tolerate defects, k. The results are average 

values from ten simulation runs, and comparable results from the Systems 

Dynamics model simulations. 

The results from the Systems Dynamics model show fairly close correlations 

between maximum and residual defects and work to complete target size for k = 

10% and k = 25%. The results for higher tolerations of defects show the difference 

between the behaviour of the two models widening. 

k Maximum 
defects 

Residual 
defects 

Work to complete 
f ^ 4 0 0 

Final Quality, P 

Monte 
Carlo 

Sys 
Dyn. 

Monte 
Carlo 

Sys 
Dyn. 

Monte 
Carlo 

Sys 
Dyn. 

Monte 
Carlo 

Sys 
Dyn. 

0.10 3 8 40 36 40 1 2 0 0 1200 0 . 9 1 0 . 9 

0 . 2 5 9 2 95 76 8 0 8 5 2 9 5 0 0 , 8 1 0 . 7 9 

& 5 0 153 1 9 0 1 2 0 1 5 0 5 5 0 4 6 0 0 ^ 0 0 . 6 

0 . 9 0 1 9 0 2 2 146 170 3 4 6 3 1 0 0 . 6 4 & 5 9 

Table 8. Results from Monte Carlo and Systems Dynamics simulations of the simple 

process, varying k. 

The behaviour of the two models when assessed qualitatively seemed to be in close 

correspondence, but when we examine the results from simulations of both models 

w e can see discrepancies in quantitative behaviour. 
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The questions that we can examine to bring the models into quantitative 

correspondence are: 

• Are there modelling errors in the Systems Dynamics model? 

• Are there failures of understanding of the behaviour of either the Monte 

Carlo model or the Systems Dynamics model? 

• Does the Monte Carlo method more closely represent the simple process 

than the Systems Dynamics model? 

• Is the difference caused by the different abstractions in the modelling 

paradigms? 

One clear difference is that in the Systems Dynamics model, we are representing 

activities as flows; the Monte Carlo method model represents the activities as 

probability distributions. In some ways, the Monte Carlo representation is easier to 

understand; we can visualise a software implementer either making good or bad 

code according to process efficiency or using the quality measures from the code to 

decide when to remove defects. It is more difficult to abstract from this 

visualisation of a single action for every tick of process time to flows of code 

stocks that increase or reduce at each tick of process time. The Systems Dynamic 

simulation results are closer at the extreme values of willingness to tolerate defects 

and process efficiency. The Systems Dynamics uses the exact values of these 

constants whereas the Monte Carlo model randomly selects f rom a probability 

distribution; this may be the cause of the qualitative differences between the results 

from the models in the two paradigms. W e should sample values for these 

constants to produce values that more closely represent the probability distribution 

used in the Monte Carlo method. 

W e have shown how w e can use evolutionary model building to produce a Systems 

Dynamics model of the simple process, with successive models making an 

evolutionary step closer to correspondence to the real world process. 
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Figure 65 shows the evolutionary path to the successful final model, but there were 

alternative paths that could have been followed, and models that were discarded. 

Unsuccessful models are shown on the diagram with a red cross. 

"onte 

Step 1 
Define stocks and 

flows 
Monte3 

Step 5 
Refine Process 

Efficiency feedback 
Monte 11 

Step 4 
Add Process Efficiency 

Feedback 
Monte 8 

Step 2 
Add goal seeking 

behaviour to limit code 
size 

Monte 4 

Step 3 
Add Quality Assurance 

(defect toleration) 

feedback, 

Monte 6 

Figure 65, Evolutionary path of Systems Dynamics models of the simple process 

The equivalent process to natural selection to identify the successful models is the 

check for correspondence between the Systems Dynamic Model and the Monte 

Carlo Method model of the simple process. At each evolutionary step quantitative 

and qualitative analysis of the results of simulations identify the model with the 

closest correspondence, which becomes the next evolution. 
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Careful analysis of the real world process, together with analysis of qualitative 

results from the real world process and simulations of the model provide the basis 

for understanding the problem domain. Qualitative analysis can be used to identify 

similar patterns of behaviour; for example, whether code production stops when 

the code has reached its target size, or defect removal continues when code 

production ceases. Correspondence of overall patterns, for example, asymptotic 

approach to maximum values, can indicate that feedback loops have been 

identified. However, analysis of comparative quantitative simulation data is 

necessary to enable the precise feedback and control mechanisms to be understood 

and rephcated. The Monte Carlo method simulations of the simple process 

provided qualitative results for comparison with qualitative results from the 

Systems Dynamics Model. 

The investigation shows how systematic, evolutionary modelling using qualitative 

and quantitative data enables a model to achieve close correspondence between the 

model and the real world behaviour of which it is an abstraction. 

In this set of simulations, the simple process provides no real data; quantitative and 

qualitative data was provided by a model of the process modelled b y Monte Carlo 

methods. This shows that we were able to use an alternative model representation 

of the simple process to provide external visibility into dynamic behaviour to 

provide a basis for Systems Dynamics modelling. 
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Chapter 6 

Simulation Experiments in 

Modelling Software Processes 

using Components 

A prime requisite is to use only a small sound and 

rigorous set of symbols or building blocks... it is 

important that they are fully understood in isolation 

before describing how they are linked in 

methodological terms for model construction and 

analysis - [Wolstenholme 1990] 

The motivation for this chapter is to show how components of software 

development processes may be identified and modelled using System Dynamics. 

• To develop models of software processes using process components 

• To build incremental models exploring the effects of feedback 

relationships. 

• To show that Systems Dynamics can be used in a systematic way to 

examine the causes of software process behaviour and predict the behaviour 

of those processes. 

In this investigation I have used the controlled experimental method described by 

Zelkowitz and Wallace as simulation; modelling the behaviour of the envirormient 
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for certain variables and using the results to examine the validity of an hypothesis 

[Zelkowitz and Wallace 1997]. 

6.1 Components 

The term 'component ' has been used to describe both elements of software and 

also of processes but we should examine what it means to use the term. In 

software terms component has been used to describe anything from a GUI button 

to a complete system, without any agreement on the meaning of the term except in 

an individual context (for example Microsoft COM). The looseness of the 

definition varies from ' a useful package ' to a fully standardised plug in part. 

However, for the term to become useful, it is important that we have a definition 

that is well understood and is not limited to the context of a particular 

implementation architecture. Recent discussions within the object oriented 

community have focussed on this issue and this definition of component has 

emerged from the work of Szyperski [Szyperski, Gruntz and Murer 2002]. A 

component is: 

• A unit of functionality 

• A unit of deployment and replacement 

• Composable 

• Usable by other software elements whose authors are unknown to the 

component 's authors 

• A software element conforming to a defined component standard 

• All of these, but used as black box, targeted at execution (whether as 

binary, byte or source code. 

An alternative view suggested by Bertrand Meyer [Meyer 2000] is similar, but 

adds criteria for specifications of functionality and dependencies and leaves out the 

criteria for conformance to a defined component standard: 

146 



Chapter 6 Simulation Experiments in Modelling Software Processes using 
Components 

• May be used by other software elements (clients) 

• May be used b y clients without the intervention of the component 's 

developers 

• Includes a specification of all dependencies (hardware and software 

platform, versions, other components) 

• Includes a precise specification of the functionalities it offers 

• Is usable on the sole basis of that specification 

• Is composable with other components 

• Can be integrated into a system quickly and smoothly. 

A component defined fi"om these viewpoints, has a specification, has an 

implementation, can be composed, can be deployed and may conform to a 

standard. For a component to be useful and composable, the following 

requirements can be considered to be essential; to be reusable, extendable, 

evolvable and reliable. W e should also think about how components defined in 

this way should be used in order to produce successful systems. When we 

compose components, 'plugging them together ' , they are only pluggable to the 

extent that they satisfy the specifications of what we plug them into; just because it 

is possible connect a component to our system doesn' t mean that it makes sense to 

do so. The completed system must satisfy its requirements [Henderson 1998]. 

What can we take f rom this into the area of software processes and, further than 

that, into software process modelling? We have already discussed that in the same 

way that software systems are evolutionary, software processes are evolutionary 

systems in their own right. We want our processes to be reusable, evolvable, 

reliable and extendable as described in Watts Humphrey 's process improvement 

model for U, W and A processes [Humphrey 1990]. 

If we consider our processes in component terms, we can evolve processes by 

evolving individual components, by adding new components or replacing 
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components and we can change how we connect the process components together, 

for example, connecting them in series or in parallel or a combination of these . 

In order to improve the way we implement process evolution, we use modelling 

and simulation to understand and predict the behaviour of processes and process 

improvements. In the same way that our product can be structured into 

components, giving us benefits of reusability and an evolutionary capability, our 

process model may be similarly structured, so that we can model components and 

then compose the components to make the process model. 

6.2 An example of using components to build a 

Simple Process 

In this set of models w e will describe a simple process component that produces 

software development products. These may be lines of code, components from 

which larger components will be built or any other software deliverable. W e will 

build the simplest possible process that can be justified. 

W e will show how the model evolved and how each structure of the model can be 

justified in terms of the observed behaviour. 

6.2.1 Simple 1 

The first model of a process. Simple 1 Figure 66, shows a stock of software 

components that is increased by an activity, input rate, and depleted b y an activity, 

output rate. This models a scenario that an implementer receives a stock of 

components at the input rate, works on the components at the output rate; thus 

depleting the stock of components to be worked on. In this case there is a limitless 

supply of components that can be received; designated by the cloud. 
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input rate 0 

conponents 
0 

output rate 0 

Figure 66. Simple 1, modelled in Systems Dynamics 

If the input rate equals the output rate, then the stock of software components will 

maintain its initial level, in a steady state. If the input rate exceeds the output rate, 

then the level of components will grow. If the output rate exceeds the input rate, 

the stock decreases. (Figure 67) 

Graph for components 
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Figure 67. Graph of software components stock from Simple 1 
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If this simple process were to be considered as a process component, one of the 

properties that we would want from our component is composability; w e should be 

able to connect one simple component to another, either another simple component 

or any other process component from our defined set. Simple 1 does not provide 

easy composition; For example, in a serial composition, an output rate would have 

to be connected to input rate, which is not possible without an intervening stock. 

(Figure 68). 

o= 
input rate 0 0 

components 0 0 = • 0 
output rate 0 0 input rate 0 0 0 

components 0 
00 = • 0 

output rate 0 0 0 

Figure 68. Serial composition of two simple 1 process components 

6.2.2 Simple 2 

The second simple model. Figure 69, shows another interpretation of the 

development process. W e have a stock of software components that we must 

transform b y an activity, work rate into a stock of finished components, yzwwAeJ. 

The software components might be requirements that we must transform into 

component build plans, or components to be assembled. This is a conserved flow. 
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cortponenis V cortponenis a 
work rate 

finished 

Figure 69. Simple 2 modelled in Systems Dynamics 

The following graph, Figure 70, shows the effects on components and finished 

components when we simulate the model with an initial stock of 100 components 

and a work rate of transforming 2 components for each tick of time, t. After time, 

t=50 all of the components have been transformed, and the stock of finished 

components, finished = 100. (The modelling tool allows stocks to be come 

negative, unless explicitly prevented from doing so, hence the continuing growth 

of finished components after t =50). 

Graph for components and finished components 
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Figure 70. Simple 2, graph of component and finished components 

As a process component. Simple 2 does not provide easy composition. If we wish 

to compose simple 2 process component instances in series, we must connect two 

stocks iogQ\hQX, finished 2 and components 3; this is not possible without some 
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intervening structure, for example, a flow. Inserting an additional f low to cormect 

the output stock of one software component to the input stock of the other would 

mean that the composed model was not the same as the two process components 

added together. 

6.2.3 Simple 3 

W e want our process component to be the simplest unit that structurally represents 

a development process and that will be composable and reusable. Feedback from 

comparisons of Simple 1 and Simple 2, suggests that the component model must be 

evolved further in order to achieve a closer correspondence to the simple 

development process. 

Simple 1 has two flows, increasing software components (input rate) and 

decreasing software components (output rate), corresponding to work activities. 

Simple 2 has only one flow, corresponding to doing work, which decreases the 

stock of work to do. The Simple 2 work flow is a closer conceptual representation 

of the simple process than Simple 1. 

Simple 1 has one stock, corresponding to software components. Simple 2 has two 

stocks; the software components that are to be built from and the components that 

are produced by the work activity. Simple 2 appears to be a plausible conceptual 

representation of the simple process, but in our simple process, we have a stock of 

software components that must be fransformed by the work activity; in a series of 

simple process components, the finished software components become the stock of 

work to do for the successor simple process. This indicates that only one stock is 

necessary to represent the simple process. 
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components V components 
work rate 

Figure 71. Simple 3 modelled in Systems Dynamics 

Simple 3 (Figure 71 ) represents the simple process as a stock of software 

components that must be built from and the work activity that transforms the 

components into a product. The finished product is not represented as a stock but 

as a cloud, or sink. Simulation of Simple 3 shows the stock of components 

decreasing by the work rate at each tick of t ime as the product is made. Figure 72. 
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Figure 72. Simple 3 simulation of components 
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6.2.4 Composing Simple 3 Components 

W e can create a process in a systematic way easily, by composing Simple 3 

process components. In the following example, Figure 73 we have a process 

composed of two Simple 3 process components connected serially. 

The second process structure has an identical structure to the component; the stock 

f rom the second process component replacing the 'cloud' sink from the first 

component. No process structure has to be added or removed. W e can continue to 

add further process components in the same way. 

components 
0 work rate 0 

conponents V 
1 ZA 1 

work rate 1 

Figure 73. Simple 4, Two Simple 3 process components connected in series 

6.3 Experiments in building systems development 

process models using components 

In the following two sections of this chapter we will describe two experiments in 

building Systems Dynamics models of development processes composed of simple 

repeating process structures 

• The first experiment investigates differences in perceived against predicted 

rates of completion of a product. 

• The second experiment investigates the effect of reworking faulty software 

components on project schedule. 
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The two experiments investigate the effects of process behaviour on the 

completion of a product. 

W e will show how the behaviours m a y be explained by modelling the process in 

Systems Dynamics. 

6.4 Experiment 1, perceived against predicted rates 

of product completion 

One of the difficulties of predicting development schedules is reporting progress 

against plan. In order to give visibility into a process, we use product and process 

measurements (for example, t ime and resource) to report actual progress against a 

schedule for completion. We may adopt measures for units of product, for 

example, KLOC (thousands of lines of code), number of components, or other 

deliverable work products. W e may adopt other measures for process, t ime in days 

or months, resource in number of people allocated to the project. 

The simplest completion behaviour is a straight line graph for completion of type, 

y = mx +c w h e r e i s product size, x is project time and m effort. A more 

sophisticated plan may expect the behaviour to be an asymptotic approach to 

completion [Lehman and Ramil 2002]. 

The usual project management technique we use to provide visibility of progress is 

to break work down into units and report on the completion of these units of work. 

By doing so, we can improve our measurement of progress, but however fine the 

granularity of the work break down structure, this means that we will still under 

report the actual amount of work complete at any moment. This is because 

however well structured the reporting method, it is difficult to evaluate 

completeness of work and what work should be reported against progress towards 

product completion. There will always be some work units that are complete, some 

in a partial state of completion and some that have not been started at any moment 

that we choose to report. At each reporting milestone, the tendency is to report 
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only completed work to be passed on to the next stage in the process. This has the 

effect of 

• under reporting progress towards completion 

• under reporting work done 

• overstating effort consumed by reported complete work 

• lowering perceived productivity. 

By the end of all stages in the process, all work is complete, but intermediate 

reports of progress and effort are inaccurate. 

In a process with 4 stages and five reporting mile stones, we might expect that at 

the first milestone, the product will be 25% complete, at the second, 50% complete 

and so on, until the final stage when the product will be 100% complete. 

Earlier in this thesis in Chapter 4, we described the Cellular Manufacturing Process 

Model, (CMPM) where the work of a production cell is to assemble software 

components into a product, 'gluing components together' . This work includes 

producing build plans, unit and integration testing and delivery. At each reporting 

period, some components may be complete; other components may be partially 

assembled and may range fi-om 0% to 99% completeness. If only complete 

components are reported, partially assembled products which have consumed effort 

will not be counted. 

Work units may be partially complete because we have not yet expended sufficient 

effort to complete them. The work on components may not be serial; we do some 

work towards a number of components, all of them partially completed. We have 

concurrent completion of components, but a serial model of reporting. Because of 

the difficulty of counting completeness, as an alternative process measure, we m a y 

count resource applied for completion. 
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In reality w e are measuring what can be passed on to the next stage, or effort 

expended, rather than measuring the work completion. 

W e will show how this behaviour may be modelled in Systems Dynamics using the 

systematic, evolutionary approach already described, but also how the process may 

be modelled by composing identical process components. 

Let us examine a software development process with a number of stages; at least 

two and possibly many. The work at each stage may be different. In the first stage 

we may be gathering requirements, in the second designing a build plan. In the 

third assembhng software components and so on until the product is ready to be 

shipped. Or the work at each stage may be the same, each corresponding to an 

evolution of a product, or component. 

The first task is to identify a simple process component structure for a software 

development process with several reporting mile stones. If we abstract fi-om the 

specific activities carried out and artefacts produced, we have a process that at each 

stage, some units of work are received; the stage completes its part of the work on 

those units, and hands on the work to the next stage. We can describe this as a 

simple process component repeated for each stage in the process. 

We will describe how the process component was evolved and used to build 

processes with different numbers of stages and reporting milestones and how these 

models were used to explore perceived progress behaviour. 

6.4.1 Perceived Progress Model 1 

The first model shows an abstract representation of the process modelled in 

Systems Dynamics, Figure 74. The model abstracts fi'om separate process stages 

with reporting milestones to a single stage with simple stocks of work items and 

activities that increase or deplete them. 
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done? 

conponentB 

final Size,N 

complete components 

Figure 74. Systems Dynamics model of abstract process 

In this example, the process has a stock of raw software components to be 

assembled. Work activities produce an item of completed work and drain the stock 

of work to be done. An abstract view of the process is that the work activity, 

complete components, builds our product f rom a stock of software components. 

The process has a goal seeking behaviour; the process stops when the product has 

reached its final size, N. 

As we are interested in qualitative behaviour, we may choose arbitrary values for 

the variables and constants in the model for simulation purposes. In this case, 

simulating the model with an initial stock of 100 components and a work rate of 2 

components per tick of t ime shows the behaviour of components over time is a 

straight line. Figure 75. At the end of t ime T = 50 weeks, all of the components 

have been completed. If we were to impose a reporting milestone at t = 25 weeks, 

50 components would be complete, and 50 components would be remain to be 

completed. 
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Figure 75. Graph showing software component completion from simulation of abstract 

model 

6.4.2 Perceived Progress Model 2 

The first model, a single process component, shows only the stock of work items to 

be built from; the work activity depletes the stock of software components at each 

tick of t ime but the model does not show completed products. The second model is 

an evolution to identify stocks of completed product, equivalent to a milestone. 

W e could just add a siocy., finished, of completed software components to the work 

activity in ad-hoc manner, as shown in Figure 16. 

A simulation of the ad-hoc model gives the expected result that the stock of 

completed components increases at the same rate that the stock of work to be built 

from decreases, Figure 77. When the stock of work to be done is empty, at t ime T, 

all of the work items have been transformed and the stock of completed work has 

reached its final size. 
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finished 

Figure 76. abstract model with ad-hoc completion milestone 
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Figure 77. Graph of completed software components from ad-hoc model simulation 

Whilst this model corresponds to the expected behaviour, the model does not 

repeat the process structure, and therefore does not fulfil our criteria for modelling 

in a systematic way, using repeated components of models. 

The second abstract model shows a second milestone added to the model in a 

systematic manner, Figure 78. The second milestone has an identical structure to 

the first process component. The components are composed serially together; the 

stock fi-om the second process component replacing the 'c loud' sink fi"om the first 
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component. Milestone 2 represents the completed product from the complete 

components activity. The product is finished when all of the software components 

have been transformed, and milestone 2 has reached its final size, N 0. Composing 

the two identical structures, also adds another work activity, complete components 

2. In our process, there is no second work activity; rather than removing the 

activity, as this would mean that our model is no longer composed of identical 

structures, we will set the activity flow rate to zero. 

done? done 2? 
final SizE,N 0 

complete components 2 complete components 

milestone 2 

Figure 78. Systems Dynamic model composed of two identical process structures 

W e can show that this has the same effect as adding a finished component stock to 

the complete components activity by simulating both models and comparing the 

results from the two versions. The simulations show that the stocks of work to be 

completed and finished work have the same behaviour as shown in Figure 77 and 

Figure 79 (there is a rounding difference in the stock size). 
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Graph for components and milestone 2 
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Figure 79. Graph of software component completion from simulating a two 

component abstract process 

We now have a mechanism for making a process with any number of reporting 

milestones to show an increasingly fine granularity, using simple repeating process 

components, serially composed. The process can be stopped by setting the final 

work activity rate to zero. 

6.4.3 Perceived Progress Model 3 

The process described so far, models the perception of a perfect process; progress 

towards the completed product is directly proportional to the work activity applied 

to the work to be done, and all of the work is reported. 

The behaviour that we wish to examine is that the completed work reported at each 

milestone is understated. 
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This may be described as a delay in reporting, because eventually all work will be 

reported as complete or it may be described as proportionate effort, where the 

effort has been applied proportionately to all of the components to be built from, 

rather than each product in turn. 

Each process stage has the characteristic that as the work nears completion it 

becomes easier to complete software components and send them on to the next 

stage. 

done? 

conponents 
complete components 

final Size,N 

Target production 

Figure 80. Evolved Systems Dynamics abstract model 3 with feedback 

W e can evolve our simple abstract model to model the perceived rate of 

component completion instead of a predicted linear completion by adding feedback 

from the software components remaining to be built to the work completion 

activity. Figure 80. This indicates that the work activity is applied proportionately 

to the work that is required to be done. This is shown by the feedback loop from 

the stock of work to be done, components, to the complete components activity. 

The complete components work activity now relates to the perceived completion 

rate. 

1 6 3 



Chapter 6 Simulation Experiments in Modelling Software Processes using 
Components 

Examining qualitative results f rom simulating the abstract process, Figure 81, 

shows us that the complete components activity has a graph with an asymptotic 

approach to a zero rate. 

Graph for complete components 

R 

0 25 50 75 100 
Time (Week) 

complete components ; Curremcomponents/day 

Figure 81, graph for complete components activity from simulation of model 3 

6.4.4 Perceived Progress Model 4 

As in the previous example of composition, w e may refme the abstract process to 

show completion of software components by repeating the abstract process 

component structure. W e add the second milestone by replacing the output 'c loud' 

or sink of the work activity, complete components, with an identical process 

component, Figure 82. The process finishes at the second process component; the 

work is not passed on to another stage, so we may set the work activity of the 

second process component complete components 2 to zero. The model now has the 

structure of a process that has one stage with a start milestone and a completion 

milestone. 
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final Size, N2 done 2? 
done? 

# 4 3 
conplete components 2 complete components 

Target production 2 Target production 

components milestone 2 

Figure 82. Systems Dynamics model of one stage process composed of two process 

components 

When we simulate the process, the graph for perceived completion of product at 

milestone 2 (Figure 83) now shows an asymptotic approach to the final size, rather 

than a straight line. Components are reported as complete later. 
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Figure 83. Graph of simulation results from one stage process composed from two 

process components 

We can add more reporting milestones in the same way, replacing the terminal 

work activity cloud with another process structure, and setting the final work 

activity rate to zero. In this way we can build processes with, 2 , 3 , 4 , and 5 

milestones, equating to 1 , 2 , 3 , and 4 stage processes. As a further evolution, now 

that we have conserved flows, unnecessary done? tests have been removed f rom 

the models, and the final zero rate activity has been hidden. Figure 84 shows four 

process models built in this way f rom identical process components, with 

increasing numbers of stages and reporting milestones. 
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conplete components ^ 'conplete conponeits 2 

milestone 4 milestone 5 

Thigct production Target production 2 
Target production 3 Target production 4 
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conponents 
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milestone 2 
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Target production 0 0 0 

Figure 84. Systems Dynamic models of 1, 2, 3, and 4 stage processes composed of 

process components 

Simulating each process allows us to compare the behaviour at the completion of 

each process and also at intermediate reporting milestones. A comparison of the 

behaviour of each model shows S shaped growth of the completed product. 
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Graph for perceived component completion 
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Figure 85. Graph of component completion for four processes with different numbers 

of milestones 

The graph, Figure 85, shows results from simulating four processes: 

• grey line (milestone2000), shows a process with one completion milestone 

• blue line (mi les tone 300) shows a process with two completion milestones 

• green line (mi les tone 40) shows a process with three completion 

milestones 

• red line (mi les tone 5) shows a process with four completion milestones 

Each graph shows the growth of the final milestone in each of the four processes. 

Each graph shows an S shaped completed components growth. The greater the 

number of milestones, the more pronounced the S-shape. As the number of 

168 



Chapter 6 Simulation Experiments in Modelling Software Processes using 
Components 

milestones in the process increases, the early deflection away from the expected 

straight line graph increases. The first part of each S shape shows a lower rate of 

component completion, as more components are only partially complete or not yet 

started, and fewer can be passed to the next stage. As the work activity continues 

over time, more components are complete and can be passed to the next stage, 

showing an increased rate of completion. 

If we examine one process in detail, taking for our example, a process with four 

stages and five milestones. The expected completion rate is shown by the green 

graph. Figure 86; the perceived completion rate is shown by the red graph. The 

lower perceived rate of completion shown by the deflection away from the 

predicted line can be clearly seen. 

100 
100 

50 
50 

Graph for milestone 5 

components 
components 

components 
components 

0 conponents 
0 components 

milestone 5 : Current 
milestone 5 : 1 5 simple 

125 250 375 
Time (Week) 

500 

components 
components 

Figure 86. Graph of perceived and expected component completion for a five 

milestone process 

The growth and depletion behaviour of individual stocks. Figure 87, shows how 

software components are moving through the milestones of the process. 
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Figure 87. Graph showing components moving through 5 milestones 

The behaviour shows the perception that at the beginning of a project there is less 

than expected progress to be seen, at the end of the project, the approach to 

completion is asymptotic. We have demonstrated that this behaviour can been 

replicated by a systems dynamic model composed of simple, repeated process 

structures. 

6.5 Experiment on Rework 

The second experiment described in this chapter investigates effects of rework on 

the completion of a product. 

In the first experiment we examined one of the difficulties of predicting 

development schedules in reporting progress against plan. One of the other 

difficulties is predicting how much effort will be required to complete a work unit 

and the subsequent effect on schedule when some of work products will be 

reworked, incurring additional effort expenditure. The amount of rework required 
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may be assessed as the required quahty of the software component, and also as one 

of the factors of the productivity of the process 

As described in the previous experiment, the simplest completion behaviour is a 

straight line graph for completion of type, y = mx + c where y is product size, x is 

project time and m effort. A more sophisticated plan may expect the behaviour to 

be}' = mxb + c where 6 is a rework factor. 

One project management technique we use to provide visibility of progress is to 

break work down into units and report on the effort expended on the completion of 

these units of work. Because it is difficult to assess, often the rework element of 

effort expenditure is not visible in product and process reporting measures. How 

much of the effort expended is attributable to new work and how much has been 

expended on reworking is difficult to evaluate. If all of the effort is attributed new 

work, the completeness of the product and progress towards schedule completion 

will be overstated. The likely effect is schedule and cost overrun. 

We will examine a development process in which there are successive stages; at 

least two and possibly many. In each stage some software components are 

received, transformed by the work activities of the stage and passed as products to 

the downstream, successor stage for the next work activity. The work at each stage 

may be different. In the first stage we may be gathering requirements, in the 

second designing a build plan. In the third, assembling software components and so 

on until the product is ready to be shipped. Or the work at each stage may be the 

same, each corresponding to an evolution of a product, or component. The process 

is not perfect and produces a product that contains errors that must be discovered 

and corrected. 

We will assume that each stage some errors escape to be discovered by the 

downstream stage for which the producer is a supplier. The downstream consumer 

stage is unable to complete the work on these faulty components and cannot 

correct the defective component itself, but must return the component to the 
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producer stage for reworking. It is also possible that the faulty unit is successively 

referred back to earlier stages until the error can be fixed. 

The products of software development processes are unlike other manufactured 

products, the rework is done by the same process that carried out the original work 

process and is not error free; we may not only fail to fix the original error but even 

introduce new errors. 

We will show that the behaviour may be explained by modelling the process in 

Systems Dynamics using simple repeated process structures. 

The first task is to identify a simple component structure for the process, by 

abstracting to the simplest possible structure that will model the behaviour. 

If we abstract from the specific activities carried out and artefacts produced, we 

have a process that at each stage, some units of work are received; the stage detects 

errors in the some work units and returns them to the supplier stage for rework. 

The stage completes its part of the work on those units, and hands on the work to 

the next client stage. We can describe this as a simple process component repeated 

for each stage in the process. 

6.5.1 Rework Model 1 

The first model shows a simple, abstract representation of a development process 

with rework, modelled in Systems Dynamics, Figure 88. The model abstracts fi-om 

the separate process stages and represents the process as a single stage with simple 

stocks of work and the activities that increase and deplete them. We will represent 

the work to be completed by the process by the stock, tasks and show the 

completed work as the stock, tasks 2. The work that transforms tasks into tasks 2 

is modelled as the work activity complete tasks. We will represent the process 

activity that discovers faulty work as a flow, return bad work fi^om the completed 

work, tasks 2 back to work to be completed, tasks. The proportion of completed 

work returned by the return bad work activity is determined by the constant. 
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percentage bad work. Thus the stock of work to be done is depleted by the work 

activity and increased by the flow of returned bad work. Conversely, the stock of 

completed work is increased by the complete tasks activity and depleted by the 

return bad work activity. 

percentage bad work 

return bad work 

tasks 2 tasks 

Figure 88. Abstract development process with rework 

The abstract model in this experiment does not provide an easily composable 

process structure. If we were to build a refinement of the abstract model by adding 

a second identical structure, we would need to connect two stocks together, which 

is not possible without an intervening flow. However as the stock of completed 

work, tasks 2, is the stock of work to be completed by the successor stage; the 

process structure may be represented with a single stock. A better abstraction of 

the process model shows the process with a stock of work to be completed, 

components, that is depleted by work to complete tasks and by work to discover 

and return defective work. Figure 89. 
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percentage bad work 

return defective work 

conponents 
corrplete tasks 

Figure 89. Abstract process component 

The model is an evolution of the same simple, abstract process component 

described in the first experiment. Figure 89, shown here for comparison. In the 

case of the rework component, there is no structure for stopping the process at a 

target size. Figure 90. 

done? 

components 

final Size,N 

corrplete components 

Figure 90. Abstract simple process component modelled Systems Dynamics 
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6.5.2 Rework Model 2, abstract single stage model composed of 

two process components 

We can remodel the single stage abstract process using two process components 

composed together, Figure 91. We add the second milestone by replacing the 

output 'cloud' or sink of the work activity, complete tasks, from the first milestone 

with an identical process structure. The return defective work 0 activity cloud of 

the second milestone is replaced by the stock of work components to be completed 

in the first process structure. The process finishes at the second milestone; the 

work is not passed on to another stage, so we may set the complete tasks 0 activity 

of the second process component to zero. Similarly, the first process component 

has no preceding milestone so we may set its return defective work activity to zero. 

percentage bad work percentage bad work 0 

return defective work 0 return defective work 

components 

Figure 91. Systems Dynamic Model composed of two rework components 

The model now has the structure of a process that has one stage with a start 

milestone and a completion milestone. The single stage makes both good and 

defective work, and has a process for discovering and reworking defective work. 

We can show that the two versions of the abstract model have equivalent behaviour 

by simulating both models with the same set up variables and comparing the 

results. The simulations show that the stocks of work to be completed and finished 
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work have the same behaviour as shown in Figure 92 and Figure 93. Both have an 

asymptotic depletion of the stock of software components to be completed and an 

asymptotic increase in completed components 
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Figure 92. Simulation results from the first version of the abstract model 
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Figure 93. Simulation of abstract process composed to two process components 

The abstract model composed of identical process components and the first 

abstraction of the process are in good correspondence. 

6.5.3 Rework Model 3 

We can add more reporting milestones in the same way, replacing the terminal 

work activity cloud with another process component, setting the final work activity 

rate to zero, and connecting the defective work return activity to the preceding 

milestone stock of work to be done. In this way we can build processes with, 2, 3, 

4, and 5 milestones, equating to 1,2,3, and 4 stage processes. Figure 94 shows a 

model of three stage process with four milestones built in this way fi-om identical 

components. As in the models fi-om the previous experiment, we have hidden the 

zero rate flows. 
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percentage bad work 3 percentage bad work 2 percentage bad work 1 

\ X 
return bad woric 1 

A 
return bad work 3 return bad work 2 

A 
complete task 3 complete taskl 

task 3 task 2 task 4 task 1 

Figure 94. Systems Dynamics model of a three stage, four milestone rework process 

6.5.4 Simulating rework model 

We can simulate the model to show the effects of a range of different rework rates, 

but keeping the numbers of tasks and task completion work rates the same. 

• set the same for each stage, at 0% and 10 %. 

• set differently for each stage in a simulation, increasing from 5% to 20% 

and decreasing from 20% to 5 % 

6.5.5 Simulation 1, 0% rework 

The first simulation, Figure 95 shows that when the rework rate is zero for all 

stages in the process, the model behaves exactly as the simple model described in 

the previous experiment Figure 78, Figure 79. The stock of completed software 

components increases at the same rate that the stock of work to be built from 

decreases. When the stock of work to be done is empty, at time T, all of the work 

items have been transformed and the stock of completed work has reached its final 

size. 

178 



Chapter 6 Simulation Experiments in Modelling Software Processes using 
Components 

1,000 

500 

Graph for tasks,zero rework 

y 

X 

\ 

task 4 : rework 3e 
task 1 : rework 3e 

6 9 12 15 18 
Time (Month) 

Tasks 
Tasks 

Figure 95. Simulation 1, graph of work to be completed and completed work with zero 

rework 

6.5.6 Simulation 2, Rework at 10% 

Figure 96, shows the results from simulating the model with 10% rework rate for 

each stage. The final stock shows an asymptotic approach to completion whilst 

intermediate stocks show S-shaped growth behaviour. The time taken to complete 

production increases. 
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Figure 96. Simulation 2, graph of work to be completed and completed work with 10% 

rework 

6.5J Simulation 4, decreasing and increasing rework 

Figure 97, shows the behaviour of stocks of work tasks when rework percentages 

decrease throughout the process, starting at a rework rate of 20% and the final 

stage has a rework rate of 5%. This is analogous to a process where faults are 

discovered early in the process, resulting in lower rework requirements later in the 

process. The final stage again shows an asymptotic approach to the final size and 

intermediate stages show S-shaped growth patterns, similar to those shapes seen in 

Figure 85. 
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Figure 97. Simulation 3, graph of work to be completed and completed work with 

rework decreasing 

Figure 98 shows the results if rework percentages increase during the process, 

analogous to a process where faults are detected late in the process. 

2,000 

LOOO 

Graph for tasks rework increasing 

15 

task 41 ziewoik increasing 
tasks 1 :iewoA increasing 
task 2 1 iTcwo* increasing 
task 1 1 zTcwodc increasing 

30 45 60 
Time (Month) 

75 

\ X 
— / 

90 

Tasks 
Tasks 
Tasks 
Tasks 

Figure 98. Simulation 4, graph of work to be completed and completed work with 

increasing rework 
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We may add additional structures, increasing the complexity of the model by, for 

example, 

• adding a delay to the return of defective stock for rework, representing a 

delay in the time for discovering errors 

• preventing stocks from going negative. 

However, the underlying behaviour remains the same; an asymptotic approach to 

final stage production and S-shaped intermediate stage growth. 

The simulations show growth in number of software components that are produced 

when the process produces faulty work; this is because, reworking a faulty 

component creates another component. The process stock counts both the original 

faulty component and the reworked component; this reveals that a faulty process 

increases the number of components that need to be produced in order to create a 

product of fault free components of the target size. This is seen as an increase in 

the work required to produce a fault free product. The number of software 

components required to achieve a product of size, N is a measure of the efficiency 

of the process. 

6.6 Conclusions 

We have used Systems Dynamics to build models from simple process components 

that explore two plausible reasons for a commonly observed process behaviour. 

Although both models are of a staged process, in one model we are examining the 

effect of under reporting completed work and in the other, the effects of reworking 

faulty work units. 

The process models are simplistic, and qualitative; for example in the rework 

model we have made arbitrary choices for the rates of defective work, and have 

not differentiated between error rates for reworked software components and new 

work. 
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In both cases simulation of the models produces a behaviour that shows an 

asymptotic approach to the completion of growth targets, an S- shaped grov/th 

pattern, consistent with our observed process behaviour. 

Using simple process components to build a model of our processes we find that 

we can find two explanations that reproduce our observed real world behaviour 

6.6.1 When our real world project exhibits this behaviour 

On the basis of these qualitative models, if we believe that our process under 

reports progress, we may introduce finer grained reporting structures to improve 

our ability to predict completion at each stage and final completion, but if the real 

cause is the poor quality of incoming work, the improved reporting structure will 

make no improvement to the predictability of the project completion; even worse, 

the underlying causes of our predictability problems will remain undetected. 

If we believe that the problem is due to quality control, one process improvement 

measure we could adopt would be to introduce a new quality assurance 

programme. This would increase our project costs for testing and quality control. 

But if the real problem is insufficiently fine grained project management and 

reporting, we will increase our project costs without improving our project 

completion predictability. 

Both behaviours have as their fundamental cause under reporting of work done, but 

causes of the under reporting are different and lead to different process 

improvement solutions. 

This shows that in order to underpin process improvements with modelling and 

simulation tools we need to have a better understanding of process component 

behaviour in the domain of software development otherwise process evolution will 

have little effect on the outcome of project goals. 
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From Qualitative to Predictive 

Quantitative Models 

Geoff Coyle [Coyle 2000] suggests that quahtative models may be sufficient to 

understand the dynamic behaviour of the feedback relationships within the process; 

that they are 'good enough'. However, in his argument for limiting systems 

dynamics models to qualitative modes unless there are demonstrable benefits, he 

uses results of simulations of models to investigate their flaws and quantification of 

the soft variables used. Without an attempt at quantification, the dynamics of the 

systems are difficult to understand, and the model cannot be validated. 

This suggests that we should examine how far should we go in terms of 

quantification; what is good enough? 

In Chapter 4, we showed a Systems Dynamics model of CMPM, the Cellular 

Manufacturing Process Model, developed in an ad-hoc manner. The model was 

simulated using subjectively derived data, including 'soft' variables such as 

productivity. The ad-hoc CMPM model appears to reproduce some, but not all of 

the observed behaviour of the real world process. 

Whilst this model is useful for exploring the behaviour of the real life system, and 

increasing understanding of the feedback relationships causing observed 

behaviour, the model needs to be validated against data from the real world 

process. The model cannot be used as a tool to predict the behaviour of the real 

world process unless the behaviour of the model and the real world are in good 
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correspondence, as we demonstrated in Chapter 5, Evolutionary Model Building. 

In this set of models we had high visibility into the modelled process and a means 

of capturing data from Monte Carlo simulations, enabling us to have confidence in 

the correspondence between the process and the Systems Dynamics model. 

However, quantification in the real world is difficult. Coyle describes Systems 

Dynamics models that have 38,000 variables; clearly quantification of such models 

would be both expensive and difficult, and one would question how the 

quantitative data could be collected or evaluated in the case of soft variables. 

Even if we avoid producing over complicated models, collecting data to support 

quantification of our models is difficult. 

7.1 Ethnography and Quantitative Data. 

We have quantitative data supplied for an investigation of CMPM, collected from a 

systems integration project covering a period of fifteen months [ICL 1999]. The 

first twelve months of quantitative data was a retrospective re-interpretation of 

historical data captured for a project reporting system based on a different cost and 

schedule model. The quantitative data is not source data, but an interpretation of 

source data in terms of the requirements of the new process model, made by 

project staff with expert knowledge of the data domain. Interpretation requires not 

only an understanding of what the source data represents and how its data capture 

system imposes a view of the data, but also an understanding of the model 

underlying the new data requirements. The final three months of data were 

interpreted specifically in CMPM format. 

The historical data was presented in three different interpretations derived by the 

organisation from their time recording; the interpretation process was prone to 

transcription error. 
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There may be other constraints that affect the quahty or fitness for purpose of the 

interpreted data: 

• Confidentiahty of commercial data 

• Gaps in source data, a mismatch between what has been captured 

historically and what the new model for the data requires 

• How much effort has been made available to interpret the data 

• The perceived value that the organisation places on the purposes of the data 

use 

• Perceived value of the new model for the data 

• Personal motivations, resource contention, strength of organisational 

loyalty 

• Authority within the organisation to require access to data. 

The sociological theory, Ethnomethodology [Garfinkel 1967] may provide us with 

an explanation and understanding of how data is interpreted in this way. The theory 

suggests that individuals construct a framework of order in a social world, which in 

this case is working in a systems development organisation, by a psychological 

process called the 'documentary method'. An individual will attempt to organise 

experiences into a coherent pattern by selecting certain facts from a social situation 

which seem to conform to a pattern, and then using the pattern to make sense of the 

facts. An established pattern will be used as a framework for interpreting new 

facts. From this ethnomethodological viewpoint; the data interpreter will attempt 

to make sense of new facts and requirements from the research investigation into 

the new process model (for example, CMPM) within a framework of their existing 

experience of process models and development practices within their organisation. 

They will interpret the data from the definitions of the data and from how they 

believe the interpreted data will be used by imposing a pattern from their 
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experience and their knowledge of the organisational and the data domain. 

[Rodden, Rouncefield, Sommerville and Viller 2000] This will affect 

• What is selected 

• What is not selected 

• How the source is interpreted using internal project knowledge to fit the 

new data model 

• Effort applied to accuracy. 

Using an ethnomethodological insight, we might suggest the different viewpoints 

from which two experts within the investigation might apply the documentary 

method in order to interpret data to satisfy the requirements of the investigation. 

Domain expert, 

• Higher organisational loyalty 

• Resource available constrained 

• Higher domain and existing data model knowledge 

• Lower knowledge of new data model 

• Lower identification with new model and purposes of the new model 

• Imposes pattern from their own domain experience on new requirements 

External process expert, 

• Lower organisational loyalty 

• High identification with new requirements and model, 

• High understanding of new data requirements and purposes for data 

• Lower domain understanding 

• Imposes pattern of beliefs from data requirements to try to make sense of 

sources 
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People will impose a pattern from their own domain and experience on ideas and 

requests from outside their known experience in order to make sense of them. The 

responses to those requests have to be evaluated on that basis. 

Understanding the effects of the documentary method on interpretation of source 

data is important when evaluating the suitability of data for quantifying systems 

dynamic models for validation and prediction. 

The data user must find ways of evaluating the data that minimise the effects of 

interpretation. Beliefs constructed about results from the data should be based on 

an ethnomethodological awareness. 

7.2 CMPM Project data 

As discussed in Chapter 4, CMPM, the Cellular Manufacturing Process Model 

[Chatters, Henderson et al. 1998] proposed by Peter Henderson is an advanced 

process strategy based on components that uses concurrency and distribution to 

reduce cycle times. (As a reminder, in CMPM, networks of semi-autonomous 

producing cells co-operate to produce a complex large-scale system. The model 

views development as a manufacturing activity where large scale systems are built 

from components, which may be a mixture of self built components, re-used 

components from the producers own asset base and from bought in components.) 

The organisation collaborating in the investigation provided project data in order to 

explore and validate CMPM. The supplied data was derived from the 

organisation's project management reporting system, based on an existing project 

process model which records time spent by project staff allocated to a project, less 

time spent on holidays, sickness, fraining etc.. The data is commercially 

confidential, so the data was derived from the source data by project staff and 

anonymised. 
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7.3 Measurements from the process 

In Chapter 2 we examined models of the quality of software products in terms of 

external attributes desired by the stakeholders in the product (both users and 

producers) and internal measures of product and process that indicate the degree to 

which the external attributes have been achieved. We also referred to the 

Representational Theory of Measurement [Fenton and Pfleeger 1997], which 

indicates that the data we use to describe and measure internal attributes must 

properly represent attributes of the observed entities and that measurement must be 

consistent and preserve the relationship observed between entities. The rules for 

consistency in measurement provide a basis for interpreting the data. 

In a real process, the measurements need to be simple and either easy to collect or 

collected automatically. [Chatters, Henderson et al. 1998], 

7.3.1 Time ET, Effort Measures W (raw), and Team size,N 

Raw effort is comparatively easy to collect, counted in days worked by a person 

assigned to a task. In order to define it, we must first define what we mean by a 

day, in CMPM Elapsed Time, E , is calendar days per month less public holidays 

and weekends. We must also define which people should be counted as project 

staff. 

W = (Elapsed Time in days * people assigned to project) - outage days 

where outage days are days not spent on task, for example, recorded sickness, 

holidays, training 

Whilst capturing raw effort data is reasonably easy, capturing effort W, broken 

down by work type, (problem solving, testing, building) and allocating the effort to 

either products or product lines is much harder. 
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7.3.2 Size, S 

In Chapter 4, we discussed the problems of achieving representative size 

measurements in a COTs integration project. In the third phase of the CMPM 

investigation, S was derived from quality independent cost drivers (building 

systems, installing products, regression testing, producing project infrastructure, 

making glue and in-house components by counting process artefacts, measured in 

standard units (SIU's). This had the benefit that they directly relate to the work 

done to integrate a component. The measurement depends on the number of 

supplied components, the amount of in-house development, and the number of 

incremental builds, not the size of a supplied component. In terms of the 

representational theory of measurement, this is a more representative way of 

measuring the size of the output component in terms of the work required to 

complete it, rather than an internal component dimensions. The problem with this 

definition is that if the process artefacts change between projects, the 

representativeness would be lost. 

This size data was not available in the historical data, but the measures were 

defined for the last phase of the investigation. From that point, although they could 

not be retrospectively applied, data were collected for ongoing development. 

7.3.3 Quality Measures, Q and P 

Q is a measure of the quality of supplied components and data is based on internal 

and external problems solved in assembly. 

What counts as a problem? What problems should be counted? For component 

assemblers and integrators, they may perceive their work in 'gluing' components 

together, as problem solving; therefore problems do not get perceived or 

distinguished separately fi-om work. Problems that should be counted may be 

pejoratively misperceived as 'errors' indicating faulty work. There is a tendency to 

avoid counting these, unless they become highly visible by causing an obvious 

project delay, or can be attributed elsewhere. 
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External problems with suppliers outside the organisational boundary are more 

likely to be counted as there will be documentary evidence to support the problem 

and blame is not an issue. In the CMPM investigation quality attributes were 

estimated as 'soft' attributes designed to evaluate the additional project effort 

required to compensate for imperfect supplied components. For example, one of 

five attributes for Q, attribute A is defined as: 

attribute A: The impact of the product and development process characteristics 

are fully understood. 

Similar attributes were used to estimate P, the quality of the outgoing components. 

7.3.4 CMPM Historical data 

Historical data from the first 9 months of a systems integration project was used to 

redefine cost and schedule results from the existing process model in the context of 

a CMPM interpretation, to enable cost and schedule estimation comparisons. [ICL 

1999] 

The source data was interpreted at CMPM component level and fiirther interpreted 

at product version level. Where the source data model didn't map directly to the 

CMPM model, the project staff interpreted the source data using their internal 

project knowledge. 

The CMPM data model is as follows: 

W = effort; S = size 

Q = input quality of supplied components 

P = delivered quality of system 

Q and P are 'soft' variables based on a subjective assessment of component 

quality 
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The time recording system provides effort, W, data in man days. The project staff 

reported the number of errors in externally supplied components, and rated the 

supplied components, which supports the measurement of Q. However, there are 

no source data for measurements of S. 

The historical data gives a count of the number of components in each release, but 

the source of the numbers or what they represent is not clear. There are big 

variations in effort per component, within the same product and release, so without 

further information to establish a representative measure, the number of 

components reported in this data cannot be used to calculate Size, S. 

However, we can use effort data to represent S by assuming a relationship between 

effort, W and size, S. 

S = f(W) 

The source data has been interpreted into the following CMPM representation 

,Table 9. The product has three software components, SPA, SPB and SPC, a 

hardware component, HP A which used two versions of hardware x and xx. Each 

release of a product version has a systems design component SD, an integration 

component IP, and a release management component, RM. 

Component release a release b release c release d release e 

Software 
SPA a b 

SPB a d 

SPC a b c d 

Hardware 
HPA X X X XX XX 

Integration 
IPA a b c d 

IPB e 
Release Management 

RMA a b 0 d 

Systems Design 
SD a b 0 d 

Table 9. Matrix of components and releases 
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The following table, Table 10, shows how project staff allocated effort, W, to 
components and releases. 

W W W W W Total for 
release release release release release component 

Component a b c d e 
Software 
SPA 548.5 31.2 659.26 1239 

SPB 261.5 803.9 1065.4 

SPC 217.5 15.1 137. 325.03 694.9 

Hardware 

HPA 196 16.8 155 53.3 26.7 447.8 

Integration 

IPA 630 63 250 825.64 1768.8 

IPB 766.7 766.7 
Release 
Management 

RM 125 8.4 67.5 27 227.9 
Systems 
Design 
SD 117 17 44.5 37 215.3 

Total W 2095 151 654 2731.13 793.4 

Table 10. Matrix of components and releases showing Effort, W in man days 

Because the data source is time sheets generated for a different purpose, these are 

difficult to interpret for the requirements of CMPM. The data interpreter will 

attempt to fit their usual understanding of project data and their organisation into a 

new CMPM view, using their judgement of how effort should be allocated. These 

judgements include how resource and time should be allocated over a number of 

components where the project staff does not differentiate them. For example, 

Software Project B (SPB) releases a and d. Table 11, shows how the data 

interpreter has attempted to resolve apportioning work for each release of the 

software, where the project staff probably reported only that they worked on SPB, 

note how the first four months of each release have identical effort allocations W 

and team size N. The SPB project team may have been seven people for the first 

four months. 
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W T N 

SPBa 01-Aug-97 31-Aug-97 57.75 21 3.50 

01-Sep-97 30-Sep-97 67 22 3.50 

01-Oct-97 31-Oct-97 72.25 23 3.50 

01-NOV-97 30-NOV-97 64.5 20 3.50 

SPBd 01-Aug-97 31-Aug-97 57.75 21 3.50 

01-Sep-97 30-S6p-97 67 22 3.50 

01-Oct-97 31-Oct-97 72.25 23 3.50 

OI-Nov-97 30-NOV-97 64.5 20 3.50 

01-Dec-97 31-D6C-97 92.4 21 5.50 

01 -J3n-98 31 -J3n-98 98 21 5.00 

Table 11. SPB cell resource allocation 

The hardware component, HP A appears to have two versions of hardware, one 

used in releases a, b c and d, and the second used in releases d and e. Table 4; 

however, the source data does not easily fit a CMPM representation of the product 

version. This difficulty is underlined by differences in interpretation of the release 

structure between the three versions of the data which cannot be resolved. 

The interpreted data shows two integration projects, which attempt to resolve the 

mapping of the product versions into a CMPM structure. Where software 

components are not shown in releases in the matrix, it is not clear whether they 

were not present in the release, or whether they were left out of the data because 

assembly effort was not allocated to them (a re-used component and not a new 

instance of the component). 

'Consequently, the cells were redefined for the subsequent incremental 

releases. A single cell for each incremental release represents the 

multidiscipline activities of the integration team. This change... requires only 

one category of cell ("systems integration").'[Chatters, Henderson and Rostron 

1999] 
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Release a release b release c release d 

Simmer a 

Simmer b 

Simmer c 

Simmer d 

Simmer e 

Table 12. Second interpretation of CMPM structure 

The same data reinterpreted into a second view of the CMPM model, Table 12 

(there are some discrepancies in the reported effort, Wa) shows simmer releases a 

and b assimilated as release a. Simmer c becomes release b, simmer d becomes 

release c and simmer e becomes release d [Chatters, Henderson et al. 1998]. The 

actual and estimated values for W, effort, T, elapsed Time and N team size are 

shown, Table 13. 

Release Wa Ta Na We Te Ne 

Release a 2 2 8 4 149 2 8 1 3 2 0 60 2 8 

Release b 440 8 4 7.9 5 7 6 40 18 

Release c 2 7 5 8 2 1 3 15 1512 140 14 

Release d 7 9 3 . 4 2 1 3 4.2 6 4 0 140 4.5 

Table 13. Second interpretation of source data into CMPM structure 

The following data shows values obtained for product releases in the third phase of 

the investigation. Table 14. 

Release Wa Ta Na We Te Ne 

Release e 3 6 2 148 3 2 0 5 87 2.5 

Release f 3 0 3 125 4 2 9 3 82 2 . 9 

Release g* 2 1 2 7 2 2 1 12 1819 189 12 

Table 14. Third phase CMPM data interpretation 

• Wa is based on a revised estimate as the project had not completed. 
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This suggests that in this phase the CMPM process has been abstracted from a 

network of producer cells to a single black box cell. 

7.4 Relationships between project data and Systems 

Dynamics models 

As long as we are aware of the inconsistencies between the interpretations, the data 

can be used to investigate process and model behaviour, however without 

representative size data, it cannot be used to quantitatively validate the Systems 

Dynamics models for use as predictive tools. 

7.4.1 Ad-hoc Systems Dynamic model of CMPM 

We investigated the Stella ad-hoc CMPM model Chapter 4, Figure 27, with 

quantitative data values from Table 12 and Table 14. There are problems with 

quantification; the model and the CMPM implementation diverged and the model 

was not 're-synchronised', or brought back into correspondence with the 

implementation, for example, some areas of greatest divergence are input and 

output metrics and the definitions of Q and P. 

The Systems Dynamics model definition of output quality is based on the number 

of defects remaining in the product and its 'completeness', whereas the 

implementation assesses P by comparison with an output checklist to evaluate 

completion of requirements. The implemented CMPM process uses an assessment 

of incoming component quality, Q, based on the suppliers ability to supply high 

quality components. This soft evaluation is neither used in the CMPM model, nor 

is there a variable relating to supplier capability. 

There are few data points available for the largest project, release g, Table 14; we 

have data points at elapsed time, T = 40, T = 63 and T = 229 (estimated), limiting 

the value of comparisons of completion behaviour. Releases e and/were produced 

concurrently; release e has 6 data points and release f (completed one month later) 
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has 7. The graph of effort, for releases e (S_rel_e), and f (S_rel_f), over elapsed 

time, produced in Mathcad [Mathcad 1999] is shown below, Figure 99. 

400 

300 -

S rel e 

S rel f 

50 100 150 

T_rel_e,T_rel_f 

Figure 99. Graph showing growth of ejfort for release e and f (S_rel_e, S rel J) over 

time T 

Im comparing the two graphs, release e shows an S-shaped completion shape 

whereas release f shows an asymptotic completion. 

We can examine the correspondence between the Systems Dynamics model and 

the CMPM implementation, by comparing the results from simulating the Systems 

Dynamics model of CMPM and results from the CMPM implementation. 

Initially, we simulate release e using the model calibrated as in Chapter 4, setting 

the variables as shown in Table 15. 

The resulting simulation (sim 1) Table 16, shows little correspondence in 

completion time (schedule); the product is complete and all defects are removed in 

48 days. This should ensure a perfect product where P = 1. However, the output 

quality from the simulation is P = 0.32. 
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Simulation variables Sim 1 Sim 2 Sim 3 Sim 4 

Percentage effort for tasks 60 60 60 60 

Percentage effort for quality (defect 
removal 

40 40 40 40 

Tasks per man-day 0.7 0.7 0.7 0.7 

Defects per man-day 0.3 0.3 0.3 0.3 

k 032 1 1 1 

Defects per task 1 0.1 0.1 0.1 

b 0.02 0.02 0.003 

b_defects 0.05 0.05 0.005 

Initial defects 50 50 50 200 

Target size (W, release e) 362 362 362 2127 

effort (Team size N) 3 3 3 12 

Table 15. Simulation initialisation values 

For the second and subsequent simulations (sim 2 and sim 3) the System Dynamics 

model was changed to weaken the effect of the feedback loop from completed 

tasks to task completion, (as the product nears completion, it gets more difficult to 

complete) by a factor b. Similarly, the feedback loop affecting defect removal was 

weakened by a constant b defects 

For the third simulation, we changed the graph supporting productivity in the 

feedback relationship. The simulations produced schedule completion times with 

closer values to the implementation data Figure 100, Figure 101. 

hi the following table of simulation results. Table 16, the long asymptotic tail of 

completion has been truncated at approximately 98% of effort completion. 
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simdata S iml Sim 2 Sim 3 Sim 4 

release T T P T P T P T P 

e 148 48 0.32 250 0.84 150 0.94 

f 125 34 0.32 137 0.97 113 0.95 

g 221 50 1 300 0.95 

Table 16. Table of simulation results 
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Figure 100. Graph from Systems Dynamics simulation 3 of release e 
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Figure 101. Graph from Systems Dynamics simulation 3 of release f 

From the simulations for releases e and f, we may believe that the Systems 

Dynamics model is now reasonably calibrated for the CMPM implementation. 

However, if we simulate implementation data for release g, the feedback factors b 

and b defects have to be weakened by a factor of 10 to 0.003 and 0.005, in order to 

achieve an estimate of schedule completion corresponding to the implementation 

estimate. 

CMPM model was created in an ad-hoc, not systematic way, without an 

evolutionary process that ensured correspondence with the implementation. When 

data from the implementation is used in model, where there are errors, it is difficult 

to work out what or where they may be. 

7.4.2 Component based Systems Dynamics model used to 

investigate Hardware Project, HPA 

We used Mathcad and Systems Dynamics [Vensim 1988 -1997] to investigate the 

behaviour of the hardware project, HPA as a CMPM cell. Table 10. We examined 

the work consumed by the cell over the duration of the project; in this way 
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anomalies in the attribution of effort to individual releases could be ignored. Using 

Mathcad, we plotted cumulative effort data for each reporting period against time. 

500 

W HPA 

150 

T HPA 

Figure 102, Graph of effort (W_HPA) over time (T_HPA) 

The project data records five releases of Hardware Project A, a to e. The graph of 

effort W_HPA, over time TjBPA, Figure 102, shows an asymptotic approach to 

the total effort expenditure, as discussed in previous chapters, however, there is an 

unexpected inflection between T = 100 and T = 175. On examining the project 

data, this appears to coincide with the start of HPA release d where a new version 

of hardware was integrated into the product. 

We can investigate the behaviour of HPA using a simple Systems Dynamics model 

composed of two components (see Chapter 6). We have little visibility into the 

project, so we will abstract the project to show two completion milestones 

201 



Chapter 7From Qualitative to Predictive Quantitative Models 

milestone 1 and milestone 2 and one activity, complete components . Milestone 1 

represents the initial workload of components to be completed by the cell, and 

milestone 2 represents the completed work Figure 103. In this model, we will 

assume the relationship of effort, W and components, S, W =j{S). 

complete components 
mflestone 2 milestone 1 

Target production 

Figure 103. Systems Dynamics Model of the hardware project cell, showing two 

milestone abstraction. 

Simulating the model with arbitrary values for stocks of components and flows 

gives the expected asymptotic behaviour, (Figure 104), but does not correspond to 

the inflexion seen in the actual project data. 
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Graph for milestone 2 

60 

30 

/ 
/ 
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Time (Week) 

400 

milestone 2 : 7xxx 

Figure 104. Graph of HP A with two completion,milestones 

We can simulate the coincidence of the start of HP A release d, where work on the 

new version of hardware commenced, by adding another process component to the 

process model. Figure 105. The new process component adds a pulse of new 

components of work to do into the process at T = 125, as shown in Figure 106. 

This represents the additional workload received by the CMPM cell when the new 

hardware version was introduced. 
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complete c:)mponents 

Target production 

corrplete components 2 

components 

milestone 2 

Target production 2 

Figure 105. Systems Dynamics model with three process components, additional 

hardware requirements at T = 125 

Simulating the model, again with arbitrary values for stocks of work and activities, 

shows behaviour corresponding to the graph of project data shown in Figure 102. 

There is an inflexion in the graph of effort at the point where the additional work 

for the new version of hardware is received. The effect on the work behaviour of 

the cell is the same as work on a new product with a new set of components to be 

integrated. The effort for each version of hardware follows the same asymptotic 

behaviour. 
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Figure 106. Graph of work done, Hardware Project A, modelled in Systems Dynamics 

The Systems Dynamics model composed of simple process components has 

allowed us to suggest a plausible reason for the observed effort behaviour of the 

hardware project cell. 
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Chapter 8 

Summary, Conclusion and 

Future Work 

8.1 Summary 

We have shown that systems development processes can be described as 

evolutionary systems; in the same way that software systems must evolve to meet 

new needs, process models must evolve to meet the needs of the developer and the 

system domain. Unless steps are taken to evolve the process to meet new needs, 

the developer's satisfaction with the process model declines when the model no 

longer meets their need to respond to technological and cultural domain changes in 

order to meet market expectation. 

In chapter 2 we provided a background for the study. We examined definitions for 

software quality models, incorporated as the ISO universal single model. We 

discussed the effects and necessity of evolution in software, investigated by 

Lehman in the Feast projects [Lehman and Stenning 1996] and Henderson et al. in 

the SEBPC project [Henderson 2000]. We suggested that the processes that 

develop software were also subject to the evolutionary laws proposed by Lehman; 

declining quality (VII) and feedback (VIII). In order for software to evolve 

successfully, the processes by which software is developed must also evolve 

successfully. Warboys [Warboys, Greenwood et al. 2000] concurs that evolution is 

necessary to maintain competitiveness and the ability of an organisation to change 

and adapt to new threats and opportunities. 

The ISO single universal model includes maintainability as an external attribute of 

software quality, however, Lehman's Laws for Evolutionary Systems and research 

206 



Chapter 8 Summary, Conclusion and Future Work 

in the SEBPC project suggests that the definition may need to include the ability of 

the software to evolve, 'evolvability'. 

We compared software process models from the early life cycle models (Waterfall 

and V), to iterative models, (Spiral and Win-Win Spiral) with newer incremental 

and iterative models that attempt to free evolutionary growth (Microsoft Synch and 

Stabilise, agile methods) and distributed models (Open Source). 

We showed that measuring processes enables producers to predict schedule and 

effort (COCOMO, COCOCOII and COCOTs) and their ability to produce quality 

software (CMM and SPICE). 

The measurement models themselves need to evolve, for example COCOMO and 

II become less satisfactory as process models evolve to use components, leading to 

development of COCOTs. However, they need to evolve further to support the 

dynamic control of processes required by higher levels of CMM and SPICE. 

We examined Humphrey's work on the relationships between Universal, World 

and Atomic process models and the process improvement model implicit in the 

Capability Maturity Model, CMM and SPICE. We showed that process modelling 

and simulation support Humphrey's process improvement model [Humphrey 

1990]. 

In chapter 3, Understanding Process Behaviour using Modelling and Simulation, 

we provided a study of the need for modelling to support the understanding of 

complex interactions of behaviours found in software processes and described 

methods for modelling and simulating them. In the light of our background studies 

into evolution and process improvement, and the importance of being able to 

understand the dynamics that cause behaviour, we restricted our investigation into 

those methods that allow feedback to be explicitly modelled in a dynamic 

representation. 
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The study showed that methods providing a graphical representation of the model 

and simulation enable greater understanding of behaviour and better 

communication of that understanding. We examined both continuous and discrete 

methods of dynamic modelling, showing that at a strategic level, continuous 

methods such as Systems Dynamics are most appropriate because they model how 

the process structure affects its behaviour and the process outcome, abstracting 

from individual entities. 

We described how Abdel Hamid and Madnick [Abdel Hamid and Madnick 1991] 

used Systems Dynamics successfully to model a software development process 

(with a text based modelling representation), and carry out experiments on 

different planning, resourcing and quality assurance policies. We described two 

extremes in the level of abstraction of behaviour; Abdel Hamid and Madnick 

modelled at a low level of detail, concerned that too high an abstraction would 

leave out vital aspects of real world behaviour, whereas Wemick and Lehman 

[Wemick and Lehman 1998] showed that simpler models enabled understanding 

and insight to be retained. 

We showed that it is easily possible to over-complicate models in an ad-hoc model 

building method so that clarity is lost and the models become impossible to evolve. 

Chapter 4, The Cellular Manufacturing Process Model, presents a process 

modelling case study of CMPM, proposed by Peter Henderson and investigated at 

ICL [Chatters, Henderson et al. 1998]. We used Systems Dynamics to model the 

process in an ad-hoc manner, abstracting the model to the activities of completing 

component tasks and removing errors. The model showed the interaction between 

interdependent goals of cost (effort) and output quality as we vary policies of 

resource allocation between activities and process quality, and allowed us to 

understand the dynamics of the process. 

By simulating the model we could reproduce predictions of effort and quality 

growth behaviours of the process. The model had a graphical representation that 
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allowed feedback in the process to be investigated and the feedback effects to be 

better understood. Through simulation, again with graphical representation, we 

were able to demonstrate the relationship between the quality of supplied 

components Q, and the output quahty of the product P. 

The model lacked correspondence with the implementation of CMPM and was not 

re-synchronised. As a result, there was a divergence of the metric definitions, 

explained in chapter 7. The case study showed the difficulty of retaining model 

and implementation synchronisation when the modelling method is ad-hoc, rather 

than systematic and designed for evolution. 

In chapter 5, Evolutionary Systems Dynamic Model Building, we use evolutionary 

model building to investigate behavioural congruence between models of a process 

in different paradigms. We used a simple software development process as a case 

study and examined the effects of resource allocation policies on the schedule and 

quality of the product. The simple process produces software that contains defects; 

it has policies that control defect removal activities that depend on the perceived 

quality of the software in production. The process was modelled firstly by Monte 

Carlo methods and secondly, using Systems Dynamics. 

We chose the process because, in process terms, it is relatively simple and yet the 

structural dynamics create complex behaviour the outcome of which, in terms of 

quality and schedule, is intuitively difficult to predict. The process has simple, 

visible activities and policies; it has precisely defined behaviour, we have a formal 

description of the system in the form of a model defined by Monte Carlo methods, 

and simulating the Monte Carlo model provides quantitative results to validate the 

models. 

The Monte Carlo model was defined by a set of probabilistic choices describing 

the process activities of making code and removing defects, and policies for 

choosing between the activities. 
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We described systems dynamics models created using an evolutionary modelling 

method, where successive models brought closer correspondence to the simple 

process. 

In this experiment, we described a sequence of five systems dynamics models in 

the evolution of the simple process model. As described by Warboys, each new 

model was the evolutionary offspring from an earlier model, and was a response to 

new requirements (refining the model abstraction), or discovery of non-

conformances [Warboys, Greenwood et al. 2000]. Graphical representation of the 

model and simulation allowed convergence of the simple process and Systems 

Dynamics model through qualitative and quantitative comparison, showing the 

importance of qualitative and quantitative correspondence. 

The final model shows a close behavioural correspondence to the simple process, 

assessed by qualitative comparison with the simple process and the Mathcad 

Monte Carlo model and also by quantitative comparison, whilst retaining 

abstraction and simplicity. 

The modelling method follows the improvement model suggested by Humphrey 

for process improvement and extended in chapter 2, Figure 13 (model, compare, 

feedback, continue from the beginning) 

The motivations for Chapter 6, Experiments in Modelling Software Processes 

using Components, were to show how components of software processes may be 

identified and modelled using Systems Dynamics and how these components may 

be used to build process models in a systematic, incremental, evolutionary way. 

We conducted two experiments to show how abstract software development 

processes composed of simple, repeated components may be modelled and 

simulated to investigate their behaviour. 

The first experiment examined perceived against predicted rates of product 

completion that may cause inappropriate schedule or resource allocation decisions 
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in process planning and control. The second experiment investigated the effects of 

reworking defective work on the completion of a product. 

In each experiment we demonstrated that a simple process component could be 

identified, modelled and simulated with arbitrary values. In each case, we used the 

simplest possible process component that could be justified. The component was 

composed with other components to build process models with repeated process 

structures; the resulting models were simulated. 

The simulations provided plausible explanations for the observed process 

behaviour, in both cases an asymptotic approach to the completion of growth 

targets. 

We showed that whilst we may build models composed of repeated components, a 

better understanding of process component behaviour causality in the software 

development domain through quantitative simulation analysis is required before we 

may have confidence that the models will enable us to underpin process evolution. 

Simple components with well understood behaviour that can be combined to form 

a process model will allow process modellers to have confidence about the causes 

of observed behaviour and propose process changes that will improve process 

outcomes. 

In Chapter 7, From Qualitative to Predictive Quantitative Models, we discussed 

factors that affect our ability to build predictive quantitative systems dynamic 

models, using examples from the CMPM case study. 

We found that ethnomethodology may provide an explanation of how frameworks 

of order from social world of the software development organisation and the 

process designer affect the capture of data for quantitative analysis. 
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We showed that understanding the effects of the ethnomethodolgical documentary 

method on interpretation of source data is important when evaluating the suitability 

of data for quantifying systems dynamic models for validation and prediction. 

We showed that quantitative comparison and analysis revealed that the ad-hoc 

Systems Dynamics model of CMPM, whilst superficially showing behavioural 

correspondence with the CMPM model, diverged from the implementation. 

We further showed that we could build a model composed of one of the simple 

process components identified in chapter 5 that could explain the product growth 

behaviour of the CMPM hardware project cell. 

The experiments supported the understanding gained during the work in chapters 5 

and 6, that qualitative and quantitative correspondence between the absfract model 

needs to be maintained at each evolutionary step. 

8.2 Conclusion 

hi this thesis we have suggested that process designers may reduce the risks and 

increase the benefits of introducing new processes by improving their 

understanding and prediction of the effects of change. We have suggested that 

modelling and simulation allows us to examine and improve our understanding of 

the processes that produce software, and further, that the use of modelling and 

simulation is essential to achieving the goal of building effective, flexible, and 

evolvable processes. 

Failure to understand the evolutionary nature of software and to build processes 

that enable successful evolution increases the risk that process changes will not 

achieve their predicted benefits and make only marginal improvements. 

We have shown, through a case study investigating CMPM, that just using 

modelling and simulation is not enough to ensure that process improvement 

benefits will be achieved. Ad-hoc modelling and lack of synchronisation between 
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model and real world behaviour at each evolutionary step may cause failures of 

understanding and possible failures of process improvement. 

As a means of reducing these risks, we have demonstrated an evolutionary 

modelling method that uses quantitative simulation to ensure close correspondence 

between the abstract model and the real world behaviour. Secondly, 

componentisation allows us to evolve process models in a more dependable way, 

by breaking processes down into components that are well understood, with 

predictable behaviour. Process designers may be better placed to design flexible 

processes that make good use of complex strategies like distribution, concurrency 

and feedback if we can develop re-usable process components, with well 

understood and predictable behaviour in the software development domain. With 

these methods process designersshould be able to avoid producing models that 

Nuthman describes as 'plausible nonsense'. [Nuthman 1994] 

We were able to show that we must always be able to answer the question, 

'but what have we modelled?' 

8.3 Future work 

The future work suggested by this thesis is to: 

• identify simple process components in the software development domain, 

• validate the process components by quantitative analysis using data from 

appropriate domains. The Open Source community may prove to be a rich 

source of data. 

• and investigate component composition, hi the experiments on using 

components in this thesis, we showed serial composition, repeating 

identical process structures, however, in order to support concurrent and 

distributed process models, we need to investigate other forms of 

composition. 
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Appendix 1 CMPIVI Systems Dynamic Model [Stella 
1990-1998] 

defects(t) = defects(t - dt) + (add_defects - remove_defects) * dt 

INIT defects = 0 

adddefects = complete_tasks_2*defects_per_task 

remo ve_defects = effort_for_quality* defects * defects jper_man_day* (1 -
undetected_error_density) 

tasks_2(t) = tasks_2(t - dt) + (complete_tasks_2) * dt 

INIT tasks_2 = 0 
complete_tasks_2 = effort_for_tasks*(target_size_2-

tasks_2)*tasksjper_man_day_2*productivity_2*(l-undetected_error_density) 

undetected_errors(t) = undetected_errors(t - dt) + (component_error_rate) * dt 

INIT undetected_errors = 0 

component_error_rate = PULSE(2,1,0) 

cumulative_quality = (tasks_2/target_size_2) * (k2/1 +defects+undetected_errors) 

defects_per_man_day = .3 

defects_per_task = 1 

effort = 4 

effort_for_quality = effort*(l-percentage_of_effort_for_tasks/100) 

effort_for_tasks = effort*percentage_of_effort_for_tasks/100 

k = .32 

k2 = 0.32 

percentage_of_effort_for_tasks = 60 

Quality = (tasks_2/target_size_2)*k/(l+defects) 

target_fraction_2 = (tasks_2/target_size_2)*100 

target_size_2 = 303 

tasks_per_man_day_2 = .2 

undetected_error_density = iindetected_errors/target_size_2 

productivity_2 = GRAPH(target_fraction_2) 
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(0.00, 0.895), (10.0, 0.895), (20.0, 0.9), (30.0,0.895), (40.0,0.89), (50.0,0.895), 
(60.0, 0.835), (70.0, 0.76), (80.0, 0.69), (90.0,0.605), (100, 0.535) 
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Appendix 2 IVIonte Series of Models [Vensim 1988 
-1997] 

2.1 Monte 3 (Figure 41) 

code that's bad= INTEG ( 

make buggy code, 

60) 

~ bad units 

add to code= 

35 

~ code units/Month 

code= INTEG ( 

make buggy code+make good code, 

200) 

~ code unit 

make buggy code= 

0.35 

~ bad units/Month 

make good code= 

0.65 

~ code unit/Month 
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******************************************************** 
•Control 

********************************************************^ 

Simulation Control Paramaters 

FINAL TIME = 1200 

~ Month 

~ The final time for the simulation. 

INITIAL TIME = 0 

~ Month 

~ The initial time for the simulation. 

SAVEPER = 

TIME STEP 

~ Month 

~ The frequency with which output is stored. 

TIME STEP = 1 

~ Month 

~ The time step for the simulation. 
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2.2 Monte 4 (Figure 45) 
add to code= 

IF THEN ELSEC'code done?", 0, 0.35) 

~ code units/Month 

make buggy code= 

IF THEN ELSE( "code done?", 0, 0.35) 

~ bad units/Month 

"code done?"= 

IF THEN ELSE( code>="final code size,N", 1,0) 

"final code size,N"= 

400 

make good code= 

IF THEN ELSE( "code done?", 0, 0.65) 

~ code unit/Month 

code= INTEG ( 

make buggy code+make good code, 

200) 

~ code unit 
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code that's bad= INTEG ( 

make buggy code-remove bugs, 

25) 

- bad units 

remove bugs= 

0.1 

~ bad units/Month 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

•Control 

Simulation Control Paramaters 

FINAL TIME = 1200 

~ Month 

~ The final time for the simulation. 

INITIAL TIME = 0 

~ Month 

~ The initial time for the simulation. 

SAVEPER = 

TIME STEP 
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Month 

The frequency with which output is stored. 

TIME STEP = 1 

~ Month 

~ The time step for the simulation. 
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2.3 Monte 6 (Figure 48) 
make good code= 

IF THEN ELSE( "code done?", 0, (0.65-remove bugs)) 
code unit/Month 

willingness to tolerate bugs= 
IF THEN ELSE( "code done?">=1,0,(IF THEN ELSE(XIDZ(code 

that's bad, code, 0)>=0.25, \ 
0,1))) 

remove bugs= 
IF THEN ELSE(willingness to tolerate bugs=0, 1,0) 

bad units/Month 

add to code= 
IF THEN ELSE("code done?">=l, 0, 35) 

code units/Month 

make buggy code= 
IF THEN ELSE( "code done?">=l, 0, 0.35) 

bad units/Month 

"code done?"= 
IF THEN ELSE ( code>="final code size,N",1,0) 

"final code size,N"= 
400 

code= INTEG ( 
make buggy code+make good code, 

200) 
code unit 

code that's bad= INTEG ( 
make buggy code-remove bugs, 

60) 
bad units 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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Simulation Control Paramaters 

FINAL TIME = 6 0 0 
Month 
The final time for the simulation. 

INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER = 

TIME STEP 
Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 
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2.4 Monte 8 (Figure 50) 
make buggy code= 

IF THEN ELSE( "code done?">=l, 0, (0.3+ (0.65*proportion of code 
complete))) 

~ bad units/Month 

work done= INTEG ( 

make good code +make buggy code +remove bugs, 

0) 

~ work units/Month 

proportion of code complete= 

code/"final code size,N" 

~ dmml 

make good code= 

IF THEN ELSE( "code done?"=l, 0, (1-make buggy code-remove bugs)) 

~ code unit/Month 

willingness to tolerate bugs= 

IF THEN ELSE( "code done?">=l,0,(IF THEN ELSE(XIDZ(code that's 
bad, code, 0)>=0.25, \ 

0,1))) 

remove bugs= 
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IF THEN ELSE(willingness to tolerate bugs=0, 1,0) 

~ bad units/Month 

add to code= 

IF THEN ELSEC'code done?">=l, 0, 35) 

~ code units/Month 

"code done?"= 

IF THEN ELSE( code>="final code size,N",l,0) 

"final code size,N"= 

400 

code= INTEG ( 

make buggy code+make good code, 

200) 

~ code unit 

code that's bad= INTEG ( 

make buggy code-remove bugs, 

60) 

~ bad units 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 

********************************************************^ 

Simulation Control Paramaters 

FINAL TIME = 1200 

~ Month 

~ The final time for the simulation. 

INITIAL TIME = 0 

~ Month 

~ The initial time for the simulation. 

SAVEPER = 

TIME STEP 

~ Month 

~ The frequency with which output is stored. 

TIME STEP = 1 

~ Month 

~ The time step for the simulation. 

2.5 Monte 11 ( Figure 58) 
add to code= 

IF THEN ELSE("code done?"=l, 0, tendency to make a bug) 
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code units/Month 

bb= 

bconstant-aa 

~ dmnl 

bconstant= 

(185 

~ dmnl 

initial code= 

200 

~ code unit 

code that's bad= INTEG ( 

make buggy code-remove bugs, 

initial bugs) 

~ bad units 

initial bugs= 

60 

~ bad units 

aa= 

0.3 
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dmni 

tendency to make a bug= 

(aa +(bb*proportion of code complete)) 

make buggy code= 

IF THEN ELSE("code done?'-1, 0, tendency to make a bug) 

~ bad units/Month 

make good code= 

IF THEN ELSE( "code done?"=l, 0, (1-make buggy code-remove bugs)) 

~ code unit/Month 

P= 

(code-code that's bad)/code 

~ dmnl 

remove bugs= 

IF THEN ELSE("code done?"=l, (1-tendency to make a bug), IF THEN 
ELSE(willingness to tolerate bugs\ 

= 0,1,0)) 

~ bad units/Month 

work done= INTEG ( 

work. 
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0) 

work units 

work= 

1 

~ work unit/Month 

bug tolerance level= 

0.25 

~ dmnl 

willingness to tolerate bugs= 

IF THEN ELSE(XIDZ(code that's bad, code, 0)>=bug tolerance level, 0,1) 

proportion of code complete^ 

code/"final code size,N" 

~ dmnl 

"code done?"= 

IF THEN ELSE( code>="fmal code size,N",1,0) 

"final code size,N"= 

400 
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code= INTEG ( 

make buggy code+make good code, 

initial code) 

~ code unit 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

•Control 

Simulation Control Paramaters 

FINAL TIME = 1200 

~ Month 

~ The final time for the simulation. 

INITIAL TIME = 0 

~ Month 

~ The initial time for the simulation. 

SAVEPER = 

TIME STEP 

~ Month 

~ The frequency with which output is stored. 
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TIME STEP = 1 

~ Month 

~ The time step for the simulation. 

Appendix 3 Process Components Series of 
IVIodels 

3.1 Simple 1 (Figure 69) 

(Ref: simplel.mdl 

input rate 0 0 0= 
4 

components/Month 

input rate 0 1= 
4 

components/Month 

components 0 0= INTEG ( 
input rate 0 0-output rate 0 0, 

0 ) 

components 0 0 0= INTEG ( 
input rate 0 0 0-output rate 0 0 0, 

0 ) 

components 0 1= INTEG { 
input rate 0 1-output rate 0 1, 

0) 

output rate 0 0= 
4 

components/Month 

output rate 0 0 0= 
4 

components/Month 
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output rate 0 1= 
4 

components/Month 

input rate 0 0= 
4 

components/Month 

components= INTEG ( 
input rate-output rate, 

100) 

components 0- INTEG { 
input rate 0-output rate 0, 

100) 

components 1= INTEG ( 
input rate 1-output rate 1, 

100) 

input rate= 
2 

components/Month 

input rate 0= 
4 

components/Month 

input rate 1= 
2 

components/Month 

output rate= 
2 

components/Month 

output rate 0= 
2 

components/Month 
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output rate 1= 
4 

components/Month 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . 

Simulation Control Paramaters 

FINAL TIME = 10 0 
Month 
The final time for the simulation. 

INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 

3.2 Simple 2 (Figure 71) 
(Ref: simple2.mdl) 

finished 1= INTEG ( 
work rate 1, 

0 ) 

components 0= INTEG 
-work rate 0, 

100) 

components 1= INTEG 
-work rate 1, 

100) 
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components 2= INTEG { 
-work rate 2, 

100) 

components 3= INTEG 
-work rate 3, 

100) 

work rate 1= 

2 
components/Month 

finished 0= INTEG 
work rate 0, 

0 ) 

work rate 3= 
2 

components/Month 

finished 2= INTEG { 
work rate 2, 

0 ) 

finished 3= INTEG 
work rate 3, 

0 ) 

work rate 2= 

2 
components/Month 

work rate 0= 

2 
components/Month 

components= INTEG 
-work rate, 

100) 
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finished= INTEG 
work rate, 

0) 

work rate= 
2 

components/Month 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

simulation Control Paramaters 

FINAL TIME = 100 
Month 
The final time for the simulation. 

INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER 
TIME STEP 

Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 

3.3 Simple 3 (Figure 73) 

(Ref: simpleS.mdl) 

components 0= INTEG ( 
-work rate 0, 

100) 

components 
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components 1= INTEG ( 
work rate 0-work rate 1, 

100) 
components 

work rate 0= 
2 

work rate 1= 
2 

components/Month 

components= INTEG ( 
-work rate, 

100) 
components 

work rate= 

2 
components/Month 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . 

Simulation Control Paramaters 

FINAL TIME = 100 
Month 
The final time for the simulation. 

INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER 
TIME STEP 

Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 
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3.4 Perceived Progress Model 1 (Figure 76) 

(Ref: 2""̂  Monte 2) 

complete components= 
IF THEN ELSE( "done?"= 1, 0, 2) 

components/day 

components= INTEG ( 
-complete components, 

100) 

components 

"done?"= 
IF THEN ELSE{ components>="final Size,N",0,1) 

"final Size,N"= 
0 

******************************************************** 
.Control 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ * * * * * * * * * * * * * * * * * . 

Simulation Control Paramaters 

FINAL TIME = 10 0 
Week 
The final time for the simulation. 

INITIAL TIME = 0 
Week 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Week 
The frequency with which output is stored. 

TIME STEP = 0.0 62 5 
Week 
The time step for the simulation. 
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3.5 Perceived Progress Mode/ 2 (Figure 80) 

(ref 2"̂^ Monte 5) 

"final Size,N 0"= 
100 

"done 2?"= 
IF THEN ELSE(milestone 2>="final Size,N 0",0,1) 

complete components 2= 
IF THEN ELSE("done 2?"=0, 0, 0] 

milestone 2= INTEG ( 
complete components-complete components 2, 

0 ) 

components 

complete components= 
IF THEN ELSE{ "done?"=0, 2, 0) 

components/day 

components= INTEG ( 
-complete components, 

100) 
components 

"done?"= 
IF THEN ELSE( components>="final Size,N",0,1) 

"final Size,N"= 
0 

******************************************************** 
.Control 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . 

Simulation Control Paramaters 
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FINAL TIME = 100 
Week 
The final time for the simulation. 

INITIAL TIME = 0 
Week 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Week 
The frequency with which output is stored. 

TIME STEP = 0.0625 
Week 
The time step for the simulation. 

3.6 Perceived Progress Mode/ 3 (Figure 83) 

( Ref: 2"'̂  Monte S.mdl) 

complete components^ 
IF THEN ELSE( "done?", 0,(2*components/Target production) 

components/day 

components= INTEG ( 
-complete components, 

Target production) 
components 

Target production= 
100 

components 

"done?"= 
IF THEN ELSE( components>="final Size,N",0,1) 

"final Size,N"= 
0 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
********************************************************, 

Simulation Control Paramaters 

FINAL TIME = 10 0 
Week 
The final time for the simulation. 

INITIAL TIME = 0 
Week 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Week 
The frequency with which output is stored. 

TIME STEP = 0.0625 
Week 
The time step for the simulation. 

3.7 Perceived Progress Mode/ 4 (Figure 86) 

(Ref: 2""̂  Monte 13.mdl) 

milestone 2 0 0 0= INTEG ( 
complete components 0 0 0, 

0 ) 

components 

complete components 0= 
2*components O/Target production 0 

components/day-

complete components 0 0= 
2*components 0 O/Target production 0 0 

components/day 

complete components 0 0 0= 
1*components 0 0 O/Target production 0 0 0 

components/day 
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components 0 0= INTEG ( 
-complete components 0 0, 

Target production 0 0) 
components 

complete components 2 0= 
2*milestone 2 O/Target production 2 0 

components/Week 

complete components 2 0 0= 
2*milestone 2 0 O/Target production 2 0 0 

components/Week 

milestone 2 0= INTEG ( 
complete components 0-complete components 2 0, 

0 ) 

components 

complete components 3 0= 
2*milestone 3 O/Target production 3 0 

Target production 0 0= 
100 

components 

Target production 0 0 0= 
100 

components 

components 0= INTEG ( 
-complete components 0, 

Target production 0] 
components 

milestone 3 0 0= INTEG ( 
complete components 2 0 0, 

0 ) 

components 

components 0 0 0= INTEG ( 
-complete components 0 0 0, 

Target production 0 0 0) 
components 
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milestone 4 0= INTEG ( 
complete components 3 0, 

0 ) 

milestone 3 0= INTEG { 
complete components 2 0-complete components 3 0, 

0 ) 

milestone 2 0 0= INTEG ( 
complete components 0 0-complete components 2 0 0, 

0 ) 

components 

Target production 0= 
100 

components 

Target production 2 0 0= 
100 

Target production 2 0= 
100 

Target production 3 0= 
100 

Target production 4= 
100 

components 

milestone 4= INTEG ( 
complete components 3 -complete components 5, 

0) 

components 

milestone 5= INTEG { 
complete components 5, 

0 ) 

components 
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complete components 5= 
2*milestone 4/Target production 4 

components/Week 

complete components= 
2*components/Target production 

components/Week 

complete components 3= 
2*milestone 3/Target production 3 

components/Week 

milestone 3= INTEG { 
complete components 2-complete components 3, 

0 ) 

Target production 3= 
100 

components 

complete components 2= 
2*milestone 2/Target production 2 

components/Week 

milestone 2= INTEG ( 
complete components-complete components 2, 

0 ) 

components 

Target production 2= 
100 

components 

components^ INTEG ( 
-complete components, 

Target production) 
components 

Target production^ 
100 

components 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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.Control 
********************************************************* 

Simulation Control Paramaters 

FINAL TIME = 5 00 
Week 
The final time for the simulation. 

INITIAL TIME = 0 
Week 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Week 
The frequency with which output is stored. 

TIME STEP = 0.0 625 
Week 
The time step for the simulation. 

3.8 Rework Model 1 (Figure 90) 
(Ref: reworks .mdl) 

complete tasks= 

60 
tasks/Month 

percentage bad work= 
0.1 

return bad work= 
tasks 2*percentage bad work 

tasks/Month 

tasks= INTEG ( 
+return bad work-complete tasks, 

1000) 
tasks 

243 



Appendix 

tasks 2= INTEG ( 
complete tasks-return bad work, 

0 ) 

tasks 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
********************************************************, 

Simulation Control Paramaters 

FINAL TIME = 10 0 
Month 
The final time for the simulation. 

INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 

3.9 Rework Model 2 ( Figure 93) 
(Ref: reworks component.mdl) 

components= INTEG ( 
+return defective work 0-complete tasks-return defective 

work, 
1000) 

complete tasks 0= 
0 

components 0= INTEG ( 
complete tasks-complete tasks 0-return defective work 0, 
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0 ) 

percentage bad work 0= 
0.1 

return defective work 0= 
components 0*percentage bad work 0 

return defective work= 
O*components*percentage bad work 

complete tasks= 
60 

percentage bad work= 
0.1 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
* *,* *****************************************************. 

Simulation Control Paramaters 

FINAL TIME = 100 
Month 
The final time for the simulation. 

INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 
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3.10 Rework Model 3 (Figure 96) 

Ref: (rework 3e v4.mdl) 

done 1= 
IF THEN ELSE ( task 3 2>=initial tasks 1, 1, 0) 

initial tasks= 
1000 

initial tasks 0= 
1000 

complete task 2 2= 
IF THEN ELSE(done 1, 0, 10 0) 

Tasks/Month 

complete taskl 2= 
IF THEN ELSE( done 0, 0, 10 0] 

Tasks/Month 

done= 
IF THEN ELSE ( task 4 2> = initial tasks, 1, 0) 

done 0 = 
IF THEN ELSE( task 2 2>=initial tasks 0, 1, 0) 

complete task 3 2= 
IF THEN ELSE(done, 0, 100) 

Tasks/Month 

initial tasks 1= 
1000 

return bad work 3 2= 
IF THEN ELSE(done, 0, (task 4 2*percentage bad work 3 2)) 

Tasks/Month 
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task 2= INTEG ( 
+complete taskl+return bad work 2-complete task 2-return bad 

work 1, 
0 ) 

Tasks 

return bad work 1= 
percentage bad work l*task 2 

Tasks/Month 

task 1= INTEG ( 
+return bad work 1-complete taskl, 

1000) 
Tasks 

complete task 2= 
100 

Tasks/Month 

complete task 2 0= 
100 

Tasks/Month 

complete task 2 1= 
100 

Tasks/Month 

complete task 3= 
100 

Tasks/Month 

complete task 3 0= 
100 

Tasks/Month 

complete task 3 1= 
100 

Tasks/Month 

complete taskl= 
100 

Tasks/Month 

complete taskl 0= 
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100 
Tasks/Month 

complete taskl 1= 
100 

Tasks/Month 

percentage bad work 1= 
0 

Dmnl 

percentage bad work 1 0= 
0.1 

Dmnl 

percentage bad work 1 1= 
0 . 05 

Dmnl 

percentage bad work 1 2-
0.3 

Dmnl 

percentage bad work 2-
0 

Dmnl 

percentage bad work 2 0= 
0.1 

Dmnl 

percentage bad work 2 1= 
0.1 

Dmnl 

percentage bad work 2 2= 
0.2 

Dmnl 

percentage bad work 3= 
0 

Dmnl 

percentage bad work 3 0= 
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0 .1 
Dmnl 

percentage bad work 3 1= 
0 . 2 

Dmnl 

percentage bad work 3 2--
0.1 

Dmnl 

return bad work 1 0= 
task 2 0*percentage bad work 1 0 

Tasks/Month 

return bad work 1 1= 
task 2 l*percentage bad work 1 1 

Tasks/Month 

return bad work 1 2= 
task 2 2*percentage bad work 1 2 

Tasks/Month 

return bad work 2= 
task 3*percentage bad work 2 

Tasks/Month 

return bad work 2 0= 
task 3 0*percentage bad work 2 0 

Tasks/Month 

return bad work 2 1= 
task 3 l*percentage bad work 2 1 

Tasks/Month 

return bad work 2 2= 
task 3 2*percentage bad work 2 2 

Tasks/Month 

return bad work 3= 
task 4*percentage bad work 3 

Tasks/Month 

return bad work 3 0= 
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task 4 0*percentage bad work 3 0 
Tasks/Month 

return bad work 3 1= 
task 4 l*percentage bad work 3 1 

Tasks/Month 

task 1 0 = INTEG ( 
+return bad work 1 0-complete taskl 0, 

1000) 
Tasks 

task 1 1= INTEG { 
+return bad work 1 1-complete taskl l, 

1000) 
Tasks 

task 1 2= INTEG ( 
+return bad work 1 2-complete taskl 2, 

initial tasks) 
Tasks 

task 2 0= INTEG ( 
+complete taskl 0+return bad work 2 0-complete task 2 0-

return bad work 1 0, 
0 ) 

Tasks 

task 2 1= INTEG ( 
+complete taskl 1+return bad work 2 1-complete task 2 1-

return bad work 1 1, 
0 ) 

Tasks 

task 2 2= INTEG ( 
+complete taskl 2+return bad work 2 2-complete task 2 2 

return bad work 1 2, 
0 ) 

Tasks 

task 3= INTEG ( 
complete task 2+return bad work 3-complete task 3-return bad 

work 2, 
0) 

Tasks 
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task 3 0= INTEG ( 
complete task 2 0+return bad work 3 0-complete task 3 0-

return bad work 2 0, 
0 ) 

Tasks 

task 3 1= INTEG ( 
complete task 2 1+return bad work 3 1-complete task 3 1-

return bad work 2 1, 
0 ) 

Tasks 

task 3 2= INTEG ( 
complete task 2 2+return bad work 3 2-complete task 3 2-

return bad work 2 2, 
0 ) 

Tasks 

task 4= INTEG ( 
complete task 3-return bad work 3, 

0 ) 

Tasks 

task 4 0= INTEG ( 
complete task 3 0-return bad work 3 0, 

0 ) 

Tasks 

task 4 1= INTEG { 
complete task 3 1-return bad work 3 1, 

0) 

Tasks 

task 4 2= INTEG { 
complete task 3 2-return bad work 3 2, 

0 ) 

Tasks 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

.Control 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Simulation Control Paramaters 

FINAL TIME = 1 0 0 
Month 
The final time for the simulation. 
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INITIAL TIME = 0 
Month 
The initial time for the simulation. 

SAVEPER = 
TIME STEP 

Month 
The frequency with which output is stored. 

TIME STEP = 1 
Month 
The time step for the simulation. 
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