UNIVERSITY OF SOUTHAMPTON

QCD Physics from the AdS/CFT

Correspondence

Jonathan Phillip Shock

A thesis submitted for the degree of

Doctor of Philosophy

School of Physics and Astronomy

September 2005



(Or: How I Learned to Stop Worrying and Titivate Supergravity)

Dedicated to my family



UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF SCIENCE
SCHOOL OF PHYSICS AND ASTRONOMY

Doctor of Philosophy

QCD PHYSICS FROM
THE ADS/CFT CORRESPONDENCE

Jonathan Phillip Shock

The AdS/CFT correspondence is studied in the presence of D7-brane probes
which add fundamental matter to the field theory. Using the Dirac-Born-Infeld
action of D7-branes in supergravity geometries dual to supersymmetric and non-
supersymmetric field theories, the phenomenon of chiral symmetry breaking is
studied. We investigate five deformations of the AdSs x S® geometry where rele-
vant operators have been added to the field theory. Some of the properties of a
supergravity background necessary to trigger a quark bilinear condensate in the
dual field theory are discovered. A new technique to study the potential felt by a
D7-brane in the region of a singularity is developed and used to study QCD phe-
nomena analytically. The low energy effective pion Lagrangian is investigated and
predictions made for phenomenological parameters. A preliminary investigation
into perfect QCD actions from the AdS/CFT correspondence is also made. The
results indicate that the gauge-gravity duality with a low UV cutoft can provide

more accurate results than a UV complete theory.
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Chapter 1

Introduction

1.1 Introduction Overview

The progress of gauge theories, from the original conjectures on general relativity
[1] through the development of quantum electrodynamics (QED) [2], and finally
the discovery of non-Abelian gauge theories in 1954 [3], has heralded a giant leap
in our understanding of the structure of the universe. QED has been verified to
ever greater accuracy over the past 50 years and in 1965 its creators were awarded
the Nobel Prize.

A gauge theory [4] is a model with an invariance under a local symmetry of
some of the variables in the theory. In the case of QED, this relabelling means that
the phase on all fields can be changed locally and the physics remains identical.
For the theory to remain invariant under this change, a gauge field (the photon
for QED) is introduced connecting points of local relabelling. In the case of

non-Abelian gauge theories this relabelling is performed on a more complicated,



internal space, which takes values in a non-Abelian (non-commuting) Lie group.
General relativity can be constructed as a gauge theory with an invariance under
local space-time diffeomorphisms. Weyl conjectured incorrectly that the group
may be extended to include local scaling invariance (dilations).

The method of Feynman diagrams has made it possible to perform pertur-
bative calculations in gauge theories that previously would have been unthink-
able. Perturbation theory relies on the fact that non-interacting systems can
often be understood through sets of exactly solvable linear differential equations
and, in many cases, the use of harmonic oscillators. A perturbative calculation
uses a small, dimensionless parameter to parametrise the deviation from a non-
interacting system. A series expansion can often be performed in the small pa-
rameter in the hope that each term in the series will be of decreasing significance.
The series can be truncated at some order to give a reasonable, though not exact,
answer to the problem. This method works only when a small, dimensionless
parameter, defining the deviation from the linear case, exists.

Though there have been significant breakthroughs in our understanding of
physics at very high energy scales, there remain some important, unanswered
questions. Currently, perhaps the most relevant are those concerning the Higgs
boson [5] (predicted to give mass to all matter) and the nature of symmetries
at higher scales [6, 7, 8]. The limits of the standard model are currently being
tested, in the expectation that its predictions, at energy scales above those for
which it is an effective theory, will soon deviate from experiment, leading to a

deeper insight into the bigger picture. Another significant question concerns the



nature of the strong force. The theory of quantum chromodynamics (QCD) was
an important breakthrough in the attempt to understand the large spectrum of
particles observed in bubble and spark chambers in the 1950s. Following this dis-
covery, there were great leaps forward in the understanding of non-Abelian gauge
theories, in particular the phenomenon of asymptotic freedom [9], discovered in
the 1970s, and in 2004 awarded the Nobel prize. Asymptotic freedom describes
the force felt by quarks within a nucleon. At small separations, the force between
the quarks is small, and so within a nucleon they appear to move freely.

At high energy scales, QCD is in its perturbative regime [10], meaning that
its coupling constant (the dimensionless parameter defining the deviation from
the free theory) is small. Calculations can be performed in this regime and have
been verified to accuracies of a few percent at LEP and many other high-energy
particle experiments. However, the big question remains: “how is it possible to
calculate QCD quantities efficiently in the strong coupling regime?” Though the
perturbative Feynman diagram formulation breaks down in this regime, there are
techniques with which this problem can be tackled.

The first is lattice QCD [11] which has proved an immensely valuable tool.
Though both time- and computer-intensive, this technique is crucial to the un-
derstanding of hadron collider physics.

The use of effective field theories [12] is another essential technique ﬁsed to
study QCD at low-energy scales. In QCD, chiral perturbation theory [13] pro-
vides an algebraic link between the quark and meson masses, in addition to an

understanding of the condensate picture of chiral symmetry breaking. In chapter



3 a review of this topic is provided.

The third and most salient technique for this thesis is the use of the NLC

expansion (N, is the number of colours in an SU(N,.) Yang-Mills theory) [14,
15, 16]. This technique has influenced the AdS/CFT correspondence to such an

extent that it is important to understand it in some detail.

1.2 The 't Hooft Expansion

In the strong coupling regime of Yang-Mills theory, the usual perturbative meth-
ods of amplitude calculation break down. If another small parameter exists in
the theory, it may be possible to use this to parametrise small perturbations from
the free theory. 't Hooft [14, 15] showed that in the limit where the number
of colours is taken to co while the combination A = ¢%,, N, (where gy, is the
Yang-Mills coupling constant) is kept fixed and large, Yang-Mills theory appears
to be described by a perturbative string theory.

The S-function of a gauge theory expresses the rate at which the coupling
constant changes with energy. For SU(N,.) pure Yang-Mills theory (Yang-Mills

theory with only gauge fields) this is given by

dgy m 11 . gy 5
= - NIYM :

where p is the energy scale. Truncating the expression at order g¥,,, this equation

can be integrated to give

1 e

e = — ] £ 1.2
22 N, 3. 1pm2 KT CONS (12)

As N, is increased, the strong coupling scale, Ay, is kept constant by keeping

4



the combination A = g¢%,,N, fixed. The strong coupling scale is the energy
scale at which the parameter A becomes large, making perturbative calculations
impossible. In QCD, this is not an exact value as the value of the coupling
constant constituting strong coupling is a matter of definition.

For QCD, the Lagrangian is given by [17]

- 1
L=y g+ gAin" " —m)p — L (1.3)

where 1 is the quark field which is a Dirac fermion in the fundamental of the
gauge group (given in QCD by SU(3)), m is the quark mass, g is the QCD
coupling constant, A is the gluon field (QCD gauge field) which transforms in
the adjoint of SU(3) and the parameters f are given by the structure constants
of the SU(3) algebra. Greek letters label space-time indices and Roman letters
label gauge group indices.

The 't Hooft expansion was originally formulated in terms of a U(N,) gauge
theory, with all matter in the adjoint (though this can be generalised to include
fundamental matter). The Lagrangian for this theory can be written with the
fields normalised such that the coupling constant appears explicitly only as an
overall constant of proportionality. For example, the interaction and kinetic terms
of a theory of scalar fields, in the adjoint of the gauge group, with cubic and

quartic couplings is given by [18]

1 . .
L~ o [Tr (dD;d®;) + ¢7FTr (9;9;0x) + dMTr (2,0,;0,9)] (1.4)
YM

where 5}2}; = % In the large N, limit, the propagators of adjoint fields in a

U(N.) and an SU(N,) gauge theory differ by a vanishing term, proportional to



Nlc, and so are treated as identical in this thesis. A U(NV,) theory with matter
in the adjoint can be written in a double line notation where each adjoint field
is drawn as the direct product of a fundamental and an anti-fundamental field.
This double line notation can be used to write a Feynman diagram expansion
for a scattering amplitude, propagator or vacuum contribution. It is possible to
calculate the powers of N, and ) associated with a given vacuum diagram. There

is a contribution to the amplitude from vertices, propagators and loops, with the

following powers of N, and A

N,
Vert =
ertex 3
Propagato A
I‘ _
pagator N,
Loop : N,. (1.5)
A diagram with V vertices, E propagators and F' Loops, includes a factor
NV—E+F/\E—V — NX/\E_V , (16)

where x is the Euler characteristic (a topological invariant) of the simplicial de-
composition. A simplicial decomposition is a triangulation of a polygon in which
the propagators become edges and the loops become faces. In terms of the genus

of the surface,

Xx=2-2h, (1.7)

where h is the number of handles (genus). Therefore a diagram with A handles is
suppressed by h powers of % The number of factors A is independent of number
of faces. For large ), it is believed that a non-perturbative calculation would
indicate that the diagrams are filled by propagating fields, that is, the internal
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gaps in an individual diagram closes, leaving a surface. This surface is the non-
perturbative Yang-Mills string world-sheet. The perturbative calculation in terms
of Nic is then a topological expansion in the genus of the string in the same form
as a perturbative string calculation [19]. Figure 1.2 provides an example of two
diagrams contributing to a vacuum amplitude. The left and right diagrams are

of Euler character two and zero respectively.

Figure 1.1: Two examples of Feynman diagrams in the double line notation
contributing to the vacuum amplitude. The left and right diagrams contribute

factors N2 and NP respectively.

The link between strong coupling phenomena and string theory dates from
before the 't Hooft expansion. Before the development of QCD, it was discovered
that, in certain energy regimes, hadronic scattering amplitudes could be success-
fully described using the mathematics of string oscillations [20, 21|. In the Regge
region [22] (large Mandelstam variable s with fixed ¢ [23]), these calculations
matched experimental results to a higher accuracy than the naive point-particle
calculations. However, this model did not work well for high-energy scattering

at fixed angles. Subsequently QCD was discovered and realised to be the correct



description of high-energy hadronic processes. However, 't Hooft’s realisation
that, at strong coupling, QCD could really be a string theory, and more recently
Maldacena’s conjecture [24] of an exact duality between string theory and gauge
theory, have meant that these problems are once again being tackled with the

techniques of string theory.

1.3 String Theory

The AdS/CFT correspondence [24, 25, 26] is discussed in detail in chapter 2, but
it is instructive to note at this point that the correspondence links a string theory
and a gauge theory. In the regime of interest for this thesis, the string side of
the duality is described by a classical effective field theory. Though many of the
complex techniques of string theory are not important for this discussion, it is
enlightening to have a clear path between the formulation of string theory and
the effective action, discussed in detail in section 1.4. The aim of this section is to
obtain the massless spectrum of a specific string theory and to discuss the emer-
gence of D-branes from the underlying dualities of the theory. These results are

the essential ingredients necessary to understand the AdS/CFT correspondence.

1.3.1 Calculating the Superstring Spectrum

Though it is common to start with the action for the purely bosonic string, the

full supersymmetric action is provided here for completeness [19].

SIX, 4] =

o [ oGO XX + P gt . (18



The theory is described by a two-dimensional world-sheet with bosonic fields, X*,
and fermionic fields, ¥, living on its surface. The world-sheet metric is given
by n4 and the coupling constants of the fields are given by g,,. The parameter
o is related to the fundamental string length by o = (2. The bosonic part of
the action is motivated by the relativistic point-particle action, where the point-
particle’s position in space-time is a function of a parameter on its world-line. In
the case of the superstring, the positions of the points on the string world-sheet
in space-time (with directions X#) are given by X*(01,02), where o; are the two
directions on the string world-sheet. To label each point on the world-sheet takes
D-coordinates, where D is the number of space-time dimensions. Therefore, there
are D scalar fields and D fermionic fields living on the world-sheet (x runs from 1
to D). The fermionic part of the action describes the superpartners of the bosonic
excitations. ’Just as the X* describe the position of the string in space-time, so
the fermionic degrees of freedom, 1#, describe the position of the world-sheet
in superspace. As for a relativistic point-particle, there are several important
symmetries of the action (equation 1.8).
The symmetries for the bosonic part of the action are given by:
a diffeomorphism invariance for the metric on the world-sheet:

X'*o1,04) = XH#(oy,09),

Ic rd
da’ do'*

%805 f)’cd(alhaflz) = ')’ab(alaafz), (19)

and a two-dimensional Weyl invariance:
Vap(01,02) = egw(al7a2)7ab(alz‘72) , (1.10)

which allows a local rescaling of the world-sheet metric. These symmetries allow
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enough freedom to define the world-sheet metric in the flat Minkowski form in
the action of equation 1.8. In the case of the superstring, there is also explicit
super-Poincaré invariance. The next step in understanding the theory is the
calculation of the stress-energy tensor by the variation of the action with respect
to the world-sheet metric. This variation vanishes classically. The vanishing
of the trace of the stress-energy tensor ensures that Weyl invariance is a good
symmetry of the theory, however, this symmetry is anomalous in the full quantum
theory. This anomaly is equal to the central charge of the theory, which is related
to the variation of the stress-energy tensor under conformal transformations [19].
When the theory is gauge-fixed, ghosts are introduced which, along with the
scalar and fermionic fields, contribute to the central charge. The central charge
is a function of the number of fields, which is proportional to the number of
space-time dimensions. For the central charge to vanish, giving a non-anomalous

Weyl symmetry, the theory must be formulated in ten space-time dimensions.

1.3.2 World-Sheet Boundary Conditions

There are several types of string, the properties of which depend on the nature of
the boundary conditions of the fields on the world-sheet. Open and closed strings
arise from this difference in boundary conditions. It is possible to formulate
equations for left- and right-moving modes living on the world-sheet. For the
open string, these modes are related, whereas for the closed string, these modes
are independent and there are twice as many degrees of freedom as occur in the

open string case. A simple trick allows the coordinates on the world-sheet to be

10



written in terms of two complex numbers, z and z, where left- and right-moving

modes depend on only one of these coordinates (holomorphic and antiholomorphic

functions).

1.3.3 The World-Sheet Mode Expansion

The first step in calculating the spectrum of states on the string, is to expand

the stress-energy tensor as a Laurent series. This is given (in the purely bosonic

case) by

—~ Ln & L,
Ta(z)= Y prrst Tex(z)= Y el (1.11)

I=—00

where L,, are the Virasoro generators. The Virasoro generators make up an
infinite-dimensional algebra which has an infinite number of conserved charges.

This algebra is given by

[Lm: Ln] = (m - n)Lm+n + 1_62(m3 - m)&mﬁn y (112)

where ¢ is the central charge of the algebra. There is an equivalent algebra for the
anti-holomorphic generators L,,. There is also a second set of fermionic Virasoro
generators which obey an anticommutative algebra and are part of the full super
Virasoro algebra.

The bosonic modes, fermionic modes and Virasoro generators can be written
in terms of creation and annihilation operators (a,, for the bosonic modes and 6,
for the fermionic modes). The spectrum of operators can be found by defining
the ground state as the state which is annihilated by all lowering operators. All

physical states are those for which

Lop|¢ >= Lyn|¢p >=0, for m >0, (1.13)

11



and there is a similar condition for the fermionic generators. This condition is
a result of the vanishing of the stress-energy tensor. The mass operator for the

open string modes can be written in terms of the raising and lowering operators:

M2:$ Z (Cp -y +710_ -0, —a)| , (1.14)
nzl,rz%

where a is a normal ordering constant which must be determined by the can-
cellation of the Weyl anomaly. The spectrum of states is determined using this
operator.

For the fermionic fields in the closed string theory, there are two possible

boundary conditions given by
Ramond (R) : ¢*(0a+ 2m) = +10*(02) ,
Neveu-Schwarz (NS) : ¢*(op + 2m) = —¢*(02) ,

where o3 is chosen to be the space-like (compactified) direction on the world-sheet.
The closed string worldsheet is illustrated in figure 1.2.

Though the world-sheet theory is explicitly supersymmetric, to obtain space-
time supersymmetry, a projection of states, the GSO-projection [27] (Gliozzi-
Scherk-Olive), is required. The GSO projection also removes the open string
tachyon which remains in the purely bosonic string theories.

There is another decision to be made for the left- and right-moving modes.
If the R groundstate modes have the same chirality, the theory is labelled type
IIB string theory, while if they have opposite chirality, the theory is type ITA.
IT refers to the number of supersymmetries, as two is the highest number of
supersymmetries in ten dimensions that is consistent with a truncation to four
dimensions. This is discussed in more detail in section 1.4.

12
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Figure 1.2: Plot of the world-sheet for a closed string. The compact and non-

compact directions are labelled by o5 and o) respectively.

Type IT string theory contains only closed strings (until D-branes are intro-
duced in section 1.5). A string theory which contains open strings necessarily
contains closed strings but the reverse is not the case. This is because an open

string one-loop amplitude is equivalent to a closed string propagator.

1.3.4 The Type IIB Spectrum

The groundstate (massless) modes fill representations of the little group of the
ten-dimensional Lorentz symmetry, given by SO(8). Along with the chirality,
these representations are given by 8, (vector representation of SO(8)), 8, (spinor
representation with positive chirality), and 8, (spinor representation with neg-
ative chirality). The existence of three representations can be understood from
the triality of the SO(8) Dynkin diagram.

The massless spectrum of type IIB is the direct product (8, ® 8;) ® (8, & 8,),

which decomposes into irreducible representations of the so(8) algebra given in
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Table 1.1.

States Fields

NS-NS Bosons 1928®35 | @, Byn, Gun

R-R Bosons || 1 & 28 & 35, Ap, Ag, A4
NS-R Fermions 8, & 56, )\(]), 11)5\}1)
R-NS Fermions 8, © 56, A@ 3

Table 1.1: Massless modes from type IIB string theory. The + denotes that
the field strength of this 4-form potential is self-dual. This field is of particular

importance in the formulation of the AdS/CFT correspondence.

1.4 The Type 1IB Supergravity Action

This section begins with the low-energy spectrum of string theory, and attempts
to take the shortest path to the low-energy effective action which describes these
degrees of freedom in terms of a point-particle field theory [28]. The equations
of motion of the fields in the effective action are calculated, and finally a specific
classical solution to these equations, describing D-branes [29], is obtained.

The string theory of interest is type IIB, which is related to type IIA and
eleven-dimensional supergravity [30] by simple duality relations (discussed in sec-
tion 1.5.1). The highest spin field that a four-dimensional, point-particle field
theory can consistently describe (unless it has an infinite tower of spin states

or is non-interacting) is spin two [31], the graviton. This restriction implies a
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limit on the maximum number of supersymmetries of any theory [19]. Specif-
ically, this limit means that the maximal supersymmetry in four dimensions is
N = 8. There is only one possible representation (in the massless case) given by
the supergravity multiplet with the following state multiplicities:

156 156

8
70707 7128)§ 72) N (115)

38
-2, —= ,—1% -
( i 2 2

27 T2
The total number of supercharges in this theory is calculated from the N’ =1
theory, where there are four supercharges. This is the minimum representation
for a Weyl spinor in four dimensions (following from 2%). This implies that, in
the maximally extended supersymmetry, there are 4 - 8 = 32 supercharges. In
fact this bound on the total number of supercharges holds for higher dimensions
because the four-dimensional theory can be reached from a higher-dimensional
compactification. This implies a bound on the maximum number of dimensions
for a consistent field theory due to the minimum spinor representations. The
highest possible number of dimensions for a consistent supersymmetric field the-
ory is eleven (with some exceptions for multiple time-like dimensions) because
min.rep = 2“7 in an odd number of dimensions. In ten dimensions, where the
minimum representation is 16, the maximal supersymmetry is A = 2.

The massless spectrum of eleven-dimensional supergravity has 256 states which,
by the usual supersymmetry rules, are made up of 128 fermions and 128 bosons.
The graviton multiplet contains a graviton and an antisymmetric three-index ten-
sor, making up 44 + 84 bosonic degrees of freedom. These fill two representations
of s0(9) (the little group of SO(10,1)). The fermionic degrees of freedom are all

in a spinor-vector state satisfying (F“’)&‘@bya = 0, and a Dirac equation which
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reduces its degrees of freedom to 128.
With a limit on the number of derivatives, there is a unique supersymmetric

action for this eleven-dimensional spectrum, with the bosonic part given by [18]

1
12k2

1
511 = i dlll‘\/ -G <R - §|F4|2>

5.2 /Ag/\F4/\F4 : (1.16)
where Aj is the three-form potential and Fy is its field strength. As explained, the
maximum number of supersymmetries in ten dimensions is two. However, there
are two possible theories — one includes two supercharges of the same chirality
and the other in which they are opposite. By compactifying eleven-dimensional
supergravity on a circle and keeping only the massless states, a theory with
opposite chirality supercharges (in the 16 and 16') is obtained. This is type
ITA supergravity. To obtain the IIB theory, a duality transformation must be
applied to the IIA theory (T-duality is discussed in more detail in section 1.5.1).
The massless spectra of IIA and IIB can be calculated and the IIB spectrum
is given in Table 1.1. The antisymmetric rank-four tensor has a self-dual field

strength meaning that a satisfactory action which encodes this self-duality does

not exist. The self-duality condition must be added as a supplementary condition:

1
Siip = @/dwﬂf —G€_2¢(2R+85p@8“@ — |H3]?)
1 ~ ~ 1 =
_4—/‘{2\/d101‘v -G (‘Fl‘z + |}713‘2 + §|F5|2) + Sfermiomic )
FE) = *Ft') ) (117)

where the tildes have been added because the fields in this action are not the

same as those in equation 1.16.
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1.4.1 The Type IIB Supergravity Equations of Motion

The equations of motion for this supergravity action are now calculated. The
formulation of the AdS/CFT correspondence (chapter 2) has only three fields
switched on — the graviton, the dilaton and the five-form field strength. The

action with these fields turned on can be written as

1

_ 1 10 1 2 2
Stip = ﬁ/d V-G [R— 5(8@) - TE’)!FE’ : (1.18)

Note that the metric and the dilaton have been redefined to transform the action
from the string frame to the Einstein frame, giving an action in the usual Einstein-
Hilbert form [29]. It is in this frame that the stress-energy tensor has its usual
physical meaning.

The dilaton equation of motion is the least complex, given by [32]
O (VGOM®) =0 . (1.19)

Note that the metric has been written in a Wick rotated form here. The derivative

of the determinant of the metric is given by
NG 9Gnp VG
ozM oxzM 9Gnp

1
= OyG
MNPQ\/E
VG

= TGNPGMGNP . (120)

GGNP

So the equation of motion is

VG

2
1

8M8M<I>+§GNP8MGNP(9MCI> = 0. (1.21)

VGoy(0Md) + =GN oy GrpdMd = 0,
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However, the dot product of a covariant and a partial derivative is

1
VuoMed = 0,0M0 + §GMB (Gupn + Gnem — Gy g OV

1
= OyoMo + 5Gf‘“f'Gm,NaN<I> , (1.22)
which is equal to the left hand side of equation 1.21. Therefore
VoMo =0. (1.23)

The equation of motion for the graviton is more complicated. The first term
in the action is the Einstein-Hilbert term. The variation of the dilaton term is
simple, but the variation of the five-form term is more complex. The equation of

motion for the graviton is given by

1 1 1 1
RAB - §RGAB = —2-8A(I)8N(I) + ﬁ(5FACICzCaC4FBCICzC3C’4 - EGABFE)Q) . (124)

The solutions studied in this thesis are all Riccl flat and so the second term in
the above equation vanishes. The equation of motion and the Bianchi identity

for the five-form are

Op (VGFMOGaCsCay — dFs =0 . (1.25)

1.5 D-Branes

It is hoped that string theory is the unique, fundamental theory that unifies all
the forces of nature. It would be a great achievement if a unique solution could
be found to describe the universe we live in. The anthropic principle may be

correct — the universe may be this way because, of all the many possibilities, this
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is one of few that hold the right conditions to support life. Perhaps, through
studying the statistics of string vacua, it can be shown that the type of universe
we live in is highly favoured by the landscape [33]. The string landscape defines
the space of all possible string vacua, for instance, the value of the dilaton lives
on a moduli-space, so, one value of the dilaton is not favoured over any other.
Finally, it would be most satisfying if the only fully consistent string solution was
that which describes this universe. This would surely be the strongest signal that
string theory is the correct description of nature.

In the early 1990s, the community of string theorists was becoming disillu-
sioned. Not only was it known that string theory had many different solutions,
it also appeared that there were five independent string theories. The hope of a
single unifying theory seemed to be fading. However, the second superstring rev-
olution, started by Ed Witten [34] in 1995 sparked a resurgence in activity when
it was shown that the five theories were linked by a series of simple dualities.
This meant that all the apparently independent theories were actually different

descriptions of the same theory in different regions of parameter space.

1.5.1 T-Duality

T-duality [35] is the most important duality for this thesis. It is a large-small
radius duality between type IIB theory with a large compactified dimension and
type IIA theory with a small compactified dimension. A closed string in a com-
pactified dimension has two contributions to its energy — a winding energy, which

is proportional to both the radius of the compactified direction and the number
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of times the string winds around this direction, and a Kaluza-Klein energy which
is inversely proportional to the radius. For a dimension of radius R, there is
a spectrum of closed strings given by all the possible winding numbers and all
the possible Kaluza-Klein states. If the radius, R, is changed to %, the spec-
trum will remain exactly the same, as the Kaluza-Klein and winding modes are
exchanged. Therefore, a theory with only closed string modes appears to be
dual to itself under the interchange of R — %. However, though open strings
have Kaluza-Klein modes in the compactified direction, they do not have winding
modes. This means that the spectrum will change under the large-small radius
interchange and the theories appear different. In contrast to the closed string
spectrum, the open string spectrum does change under this duality. By studying
the open string modes, it is found that, as a large dimension R is replaced with
a small dimension %, the ends of the open strings become trapped in the small
dimension. In the limit B — oo, the ends of the open strings become trapped
on a hyper-surface of one dimension less then the original space. The physical
spectrum of closed strings, however, does not notice this change and so closed
strings are free to move around as if the radius of the space had not been altered.
The boundary conditions of the open string ends change under this duality from

Neumann to Dirichlet in the T-dualised direction,
Opy X* (01, (0,1)) = 0 & X*(01,(0,1)) = (1.26)

where (0,1) denote the ends of the string, and u is the direction that is T-
dualised. T-duality exchanges Neumann and Dirichlet boundary conditions and
also changes the chirality of the right-moving modes thereby exchanging type IIB
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for ITA. By T-dualising, a hyper-surface has appeared which has excitations in
the form of open strings. This hyper-surface is the D-brane. Though it seems to
be simply a surface in the higher-dimensional space, because open strings can be
excited on it, it is truly a dynamical object. Not only are D-branes a consequence
of the duality inherent in string theory, but these objects exist as solitonic solu-
tions in the low-energy limit of string theory — supergravity — which are discussed
in more detail in section 1.5.2. The two ends of the string, given by 0 and [, can
have different boundary values, meaning that an open string can stretch between
D-branes. By setting up the boundary conditions appropriately, many D-branes
spanning different directions can be introduced.

These D-branes appear to be rather crude constructions, but using another
duality (the strong-weak coupling duality under which type IIB is self-dual), the
fundamental string is exchanged for the two-dimensional D1-brane. This suggests
that D-branes are as fundamental as the strings from which string theory was

originally constructed.

1.5.2 The D3-Brane Solution

The ingredients are now in place to find specific solutions to the supergravity
action, in particular, the D3-brane solution [36, 32]. This is a solitonic solution
to the supergravity equations, and describes a four-dimensional classical solution
in ten-dimensional space. This soliton fills four of the dimensions, including
the time dimension. The existence of this soliton breaks some of the space-time

symmetries of the SO(9,1) Lorentz group, and an ansatz can be postulated which
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preserves the symmetries on the brane world-volume and those perpendicular to
its surface. The presence of the brane is expected to break the Lorentz group in
the following way:

S0(9,1) — SO(3,1) x SO(6) . (1.27)

A four-dimensional soliton has the correct number of dimensions to be a source
for a five-form field strength, and indeed the D3-brane solution is just that. In
general, a Dp-brane is a source for a (p+ 1)-form R-R gauge potential, the charge

density for which is given by
Q= [ B (1.28)
§8-p
The simplest D3-brane ansatz with the appropriate space-time symmetries is then

ds?y = H™2q,dxtde” + H*P§udy®dy®,

A(4) = H7dz Adzt Ada® A da® .
® = 0,

where, by the symmetries, 4 and v run over four-dimensional Minkowski space-
time, and a and b run over six spatial directions with an SO(6) isometry. The
warp factor, H, depends only on the distance from the brane. The metric can be

written in a simpler form, where the flat six-plane is written in spherical polars:
dsiy = H ™, do*de” + H? (dr® + r2dQ2) | (1.30)

where §)5 is the metric on a five-sphere. This means that A can only depend on
the 7 direction. By studying the equations of motion, the parameters (o, 3,7),
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and the form of H(r) can be constrained. The simplest equation of motion leading

to a constraint is given by the Bianchi identity. The five-form can be written as

F5 = dA4+*dA4,

dAy = —yH "9 Hdr Ada® Ada' Adz? Ada®
xdA, = —%H_(”Y“)&H\/Eg”(g”)‘ldwl A A dl®
_ _%H—(v+1)+4a+4ﬁarHr5dw1 A N dw® (1.31)

Due to the self-duality of the five-form, the Bianchi identity is given by

d*dA4 = 0 ,
(do+48 — (v + 1))(@1{)2% +((62H)r +50,H) = 0.  (1.32)
The next field equation is given by
1
Ry = o FMAPCP Eyapop (1.33)

There are two independent components of this equation to study. The first is

given by the rr component. The right hand side of equation 1.33 is given by
lezﬂsmFrm]zzmm = 72(8TH)2H_2(7+/6+1_4O‘) ’ (134)
and from the left hand side is

R, = ¢"Ry,=H"R,
HB (—y (402 = 56 + da(1 + B)) (8, H)?

+ H(-5080,H + r(4a — 508)02H)) . (1.35)

The zx component of equation 1.33 is calculated in a similar fashion and provides

the third constraint.
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In order to be a vacuum solution to the Einstein equations, the metric must

be Ricci flat. This puts the final constraint on the free parameters:
r(1002+ (4 — 168)+58(28—1))0, H)*—(4a—58)H (58, H +r9?H) = 0. (1.36)
From these constraint equations, it can be shown that the consistent solution to

the supergravity ansatz is parametrised by

1
o = 1
1
B - Z)
v =1,
OH = ey (1.37)

A

If the metric on the ab directions in the ten-dimensional space are left unspecified,
it is found that the final constraint means that the warp factor, H, must be a
solution to the six-dimensional Laplace equation. In this case, the D3-brane
supergravity solution is then
ds* = H(y) 2dz?, + H(y)? K™ dy,mdyn ,
Ay = H(y) 'dz® A ... Adz* |
® = 0,
Om(VRE™0,H(y)) = 0. (1.38)
This calculation can be performed in several other ways. Another method of
finding the constraints is by the vierbein and sechsbein formalism with Cartan’s
structure equations to derive equation 1.37. The original method of Horowitz
and Strominger [36] works by writing the metric in an ansatz of the form
ds* = eda}, + ePdy® . (1.39)
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This form of the metric is substituted into the supergravity action, and the pa-
rameters, A and B, which depend on the transverse direction are treated as fields.
The field equations for this action are then calculated and the four equations for

the four fields fix the constraints as above.

1.5.3 D3-Brane Distributions

When the space transverse to the D3-brane is written in Euclidean, flat-space
6

coordinates as Zdy?, the solution to Laplace’s equation can be written as a
i=1

function of the position of the D3-brane, 4, as

L4

T 140

H(y) =1

where L? = 4mg,c’?. This function can be generalised to a solution with N
branes at different positions, i;:

N
LAN,;

H(y) =1+ E —_— . 1.41

() -1 1y~ gl ( :

Generally, the solutions of interest will describe a single stack at one position
(defining the origin of the six-dimensional space) with a large number of branes.
As the limit N — oo is taken, the warp factor tends to its near-horizon solution

H(y) = A;fl In this limit, the simplest parametrisation of the metric is given by

[18]

4 A /2N —% 4 o /2N %
( ”grff —> da?, + (%) (dr? + r2dO2) . (1.42)

This is the product space of AdSs (five-dimensional Anti-de-Sitter space) and
an S°, both of radius R* = 4mg,a”?N. AdSs is a maximally symmetric space
(maximum number of Killing vectors) with a negative cosmological constant [37].
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It is constructed by taking a hyperboloid in a six-dimensional flat-space with
metric (+ ++ + ——). The isometry group of AdSs is SO(4,2) which is inherited
from the six-dimensional embedding. The AdSs x S® metric can be written in
many different ways, and, depending on the most convenient parametrisation
for a specific problem, will be rewritten accordingly. Appendix A summarises
some of these parametrisations. The AdSs x S° metric describes the supergravity
background used in the formulation of the AdS/CFT correspondence.

A more general solution is formulated by defining a continuous distribution of

D3-branes. In this case the sum in the harmonic form becomes an integral over

the distribution

N = /Mdf"y’a(y’), (1.43)

where o(y’) describes the density distribution and the integral is taken over the
six-dimensional space perpendicular to the branes. Due to the infinite number of

possible brane distributions, there are an infinite number of possible warp factors.
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Chapter 2

The AdS/CFT Correspondence

Having introduced the building blocks of the AdS/CFT correspondence, it can
now be explored in some detail. Half of the correspondence was investigated in
the previous section. A stack of D3-branes [29] can be described by a supergravity
solution which is, in the near-horizon limit, AdSs x S® with a non-zero, five-form
field strength and a constant dilaton [18].

The near-horizon geometry is obtained when the number of branes is taken
to infinity. Having formulated this solution, the propagation of closed strings in
this background can be studied. As the number of branes is taken to infinity and
the product g,V is kept large and constant, the radius of curvature of the AdS
space and five-sphere, R = (47rgsNo/2)%, becomes much larger than the string
scale, o/ = l,. Taking the large N limit means that the supergravity limit of

string theory gives an accurate description of the physics.
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2.1 Open Strings on D-Branes

One side of the duality is described by closed string modes in the D3-brane
supergravity background. The other side is described by open strings on a stack
of D3-branes in flat-space [38]. To understand this, the theory of the strings
living on the brane must be explored. The ends of open strings are labelled by
the branes they are attached to. The strings are oriented, meaning that there
are two kinds of string stretching between two branes — one with the left end on
the first brane and the right on the second, and the other with the ends reversed.
These labels, known as Chan-Paton factors [19], generate a symmetry for the
open strings. For a stack of coincident branes, the physics remains invariant
under a permutation of the labels. There are N2 possible string labellings, which
fill a single adjoint representation of a Lie group, U(N). As the strings are free
to move around on the surface of the branes, and a relabelling can be performed
at any point, the symmetry is a local symmetry. Indeed, when the spectrum of
strings living on the D-brane is calculated, it is found that there is a massless
vector mode — the U(N) gauge boson. As explained in chapter 1, in the large N
limit, the U(N) and SU(N) gauge groups can be treated identically. All strings
living on the coincident branes are in the adjoint representation of the U(N)
gauge group. The spectrum of strings is given by the dimensional reduction of

an A = 1 gauge multiplet in ten dimensions to four dimensions:

Ar Ar (4 (U (]
¥ ¥ A A A
D=10,N =1 D=4,N=4 (2.1)
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where A* are gauge fields, 1 are gauginos and X are complex scalars. Six of the
ten-dimensional gauge field degrees of freedom become the three complex scalars
in the four-dimensional reduction. The ten-dimensional Majorana-Weyl spinor
becomes four complex Weyl spinors in four-dimensions. This theory has NV = 4
extended supersymmetry. The spinors are in the fundamental of SU(4)g, the
scalars are in the 6 and the gauge field is a singlet. The Lagrangian for this
N = 4 supersymmetric gauge theory is [18§]

L = = Tr (FuF™ + 2D, 0D — A A?)
20y M
1 - -
LTy (§TD,p + 0T, ) (22)
Iy m

The one-loop G-function for this theory is

11 .
A= (?NC — 45 - §Nc) =0, (2.3)
where the first term comes from the gauge fields, the second from the four gaugi-
nos and the third from the three scalar fields. Supersymmetric non-renormalisation
theorems [39] can be used to show that there are no additional contributions, and
therefore the theory has zero S-function in the full quantum theory [40]. A the-

ory where all fields are massless, and no scale is introduced through dimensional

transmutation of a running coupling, is a conformal field theory [41].

2.2 The Correspondence

The AdS/CFT correspondence states that the open string theory living on a
stack of D3-branes is dual to the closed string theory living in the space warped
by these branes [24, 25, 26]. The theory in the ten-dimensional background can
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be divided into three parts: a near-horizon geometry, a flat-space geometry and
an interaction between the two. In the small g;¢/, low-energy limit the interaction
term disappears. In the large N limit, the space deformed by the branes becomes
AdSs x S°. As o — 0 and N — oo the closed string theory becomes classical
supergravity. As this limit is taken, the open string theory on the branes is
described by the large, constant A = ¢g%,,N = g,N, infinite N, SU(N) N =4
gauge theory. The conjecture states that the classical supergravity theory, in
which calculations are simple, is dual to a strongly-coupled gauge theory, where
calculations are often intractable. Conversely, at weak coupling on the field theory
side, the closed string theory is strongly-coupled. This strong-weak coupling
duality allows full control of one side at a time.

The equivalence is given by an equality in the actions:

SOpen strings on D3-branes = SClosed strings in AdSs x S°

Strongly coupled A ~ 4 Super Yang-Mills = Classical supergravity on AdSs x S°

A diagrammatic sketch of the duality is illustrated in figure 2.1.

This duality is remarkable because, while the left hand side is a four-dimensional
field theory, the right hand side is a ten-dimensional supergravity theory. This
type of duality is known as a holographic correspondence and was first conjectured
for black-holes with the statement that the entropy of a black-hole is given by its
area [42, 43, 44]. This means that all the information enclosed inside the black-
hole is encoded in a lower-dimensional surface. The conjecture of the AdS/CFT

correspondence states that the information in a ten-dimensional theory of gravity
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Duality

Classical Supergravity in
AdsS’x S,

N=4 SYM with an infinite number of
LA colours gt strong 't Hooft coupling

Figure 2.1: The AdS/CFT correspondence is a duality between a theory of open
strings living on a stack of D3-branes, and the supergravity theory living in the

singular region of the geometry sourced by the D3-branes.

can be encoded in a four-dimensional field theory.

2.2.1 Global Symmetry Matching

The AdS/CFT duality was first established [24] by studying the symmetries of the
two sides of the correspondence. The supergravity side is formulated in a space
which has the isometry group SO(4,2) x SO(6) corresponding to AdS; x S5. On
the field theory side, the global symmetry group is SO(4, 2) x SU(4)g which is
locally the same as the isometry group on the supergravity side. These symmetries

correspond to the conformal group and the R-symmetry group. The number of
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supercharges (16) match on both sides of the correspondence.
This correspondence is useful only if there is a concrete means to calculate
physical quantities on both sides [26]. The equivalence is established through the

equality of the actions and is the fundamental equation describing the AdS/CFT

correspondence:

/ d*zgo(z)O(z)

< e >CFT= Zstring [Qﬁ(l'/ T)‘r:oo == ¢O(I)] (24)

where z runs over the four directions parallel to the branes and r is in the radial
direction of the AdSs x S° space. This means that the generating functional for
correlation functions with a source, ¢o(z), for an operator, O, is equal to the
supergravity partition function, with boundary condition that the supergravity
field, ¢, at r = o0, is equal to the source for the field theory operator.

More simply, this means that boundary values for supergravity fields corre-
spond to sources for field theory operators. In order to find which supergravity
field corresponds to each field theory operator, it is necessary to find a combina-
tion (including the d*z in the action) that is a singlet under all the symmetries of
the theory. For instance, the source for an operator charged in the 4 of SU(4)r

must be in the 4 of the SO(6) isometry group.

2.2.2 Energy-Radius Duality

The field theory side of the duality has a conformal symmetry. It is important to
understand what this conformal scaling corresponds to on the supergravity side.
[18]. One of the generators of the conformal group is the dilatation operator which
rescales dimensionful quantities. This means that, in the field theory, there is the

32



freedom to rescale distances and fields with the action remaining unchanged:
A
T — [z, A— ik (2.5)

as

Wl

On the supergravity side, the metric is invariant under this scaling if r —
r — Bz . This means that under the four-dimensional conformal scaling, the
distance r transforms like an energy scale. This relationship between energy and
radius can be understood from another point of view. For an observer at the
boundary of AdSs x S°, a photon emitted from a distance r from the centre of
the space is redshifted. The closer to the centre of the space, the larger the
redshift and so, for an observer at the boundary, the photon appears to have
lower energy as it is emitted from smaller . The energy-radius duality indicates
that, rather than there being a field theory only on the boundary of AdSs x S°,
there is a field theory description at all four-dimensional slices, at different values
of 7, corresponding to field theories at varying energy scales.

Throughout this thesis, the radius of the AdS space is referred to in terms
of an energy scale. The small r limit is labelled the IR and the large r limit is
labelled the UV as these are the low and high energy limits respectively in the

field theory.

2.2.3 Field-Operator Matching

To find the field theory operator corresponding to a specific supergravity field, it

is necessary to calculate the equations of motion for the supergravity fields in the

AdS; x S° background, and to study their possible boundary conditions [25].
As an example, the action for a scalar field, ¢, of mass m in the AdS; x S°
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background is given by

Svcatar = / ¢/ TTgl (0cd)? + m?e?) . (2.6)

The simplest solution to ¢ for this action has dependence only on the radial

direction in AdSs x S°. This solution is
¢ = Ar~@=8) L B2 (2.7)

where A = 2 + v/4+m? For a scalar field with m? = 0, A = 4 or 0, so
the solution is ¢ = A + T%. Because supergravity fields do not scale under the
four-dimensional conformal scaling, the parameter A must have conformal mass
dimension zero, and the parameter B must have conformal mass dimension four.
If the boundary value of the supergravity field is to act as the source for an
operator, its symmetries must be understood. The supergravity field is a scalar
under the SO(6) isometry group which corresponds to the SU(4)p symmetry
group of the field theory. This means that the operator corresponding to this
field must also be a scalar under this symmetry. The field is a space-time scalar
and so has no indices to contract with anything other than a scalar operator. The
parameter A is of scaling dimension zero and therefore must be the source for a
mass dimension four operator which can only be Tr F2. The parameter B is of
scaling dimension four and corresponds to the vacuum expectation value (vev)
of this gauge field operator: < Tr F? >. For this particular supergravity field its
dual field theory operator has been identified. Remarkably, there is a one-to-one
correspondence between fields and operators which has been proved explicitly for
the infinite set of operators and the infinite tower of Kaluza-Klein states on the
five-sphere [45].
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2.2.4 Generalising the Correspondence

The explicit correspondence between a supergravity theory and a field theory has
now been introduced. This allows for the calculation of gauge theory quantities,
even in the strong coupling regime. This ability is extremely important; however,
in the form introduced so far, the correspondence has some deficiencies which
must be discussed. Crucially, the field theory is not very similar to QCD and so
does not describe the universe in which we live [46, 47, 48, 49, 50]. The field theory
is both conformal and highly supersymmetric, as well as being strongly-coupled
in the UV and having an infinite number of colours. The first two problems are
addressed in the bulk of this thesis while the problem of the strongly-coupled UV
is tackled in chapter 10.

The correspondence provides a recipe by which to turn on any operator in
field theory by finding the appropriate supergravity field to act as its source. In
the original formulation of the duality, the only couplings that are switched on,
are those of the A/ = 4 Lagrangian (equation 2.1). This corresponds to having a
graviton, a constant dilaton and a five-form field strength on the supergravity side.
The field theory has two phases: one where the potential is zero, corresponding to
the super-conformal phase for which the vevs of all scalars are zero and the other,
where at least one of the scalars has a vev (the Coulomb phase). The induction
of a vev for M of the scalars generates an SU(N) — SU(N — M) x U(1)™ gauge
theory. On the D-brane side, this corresponds to pulling M D-branes from the
stack in different directions in the space transverse to their world-volume. The

magnitude of the vevs correspond to the distance between the isolated branes
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and the remaining stack.

By switching on masses and vevs for operators, the superconformal symmetry
can be broken explicitly. The inclusion of any mass scale in the field theory au-
tomatically breaks the conformal invariance, while switching on different masses
for fields in a supermultiplet breaks the supersymmetry. As indicated in equation
2.4, to turn on these operators, the boundary values for supergravity fields must
be set appropriately. The correspondence is explicitly realised only in the region
where the supergravity background is AdSs x S° corresponding to the field theory
in its superconformal phase. It is in this regime only that scaling dimensions do
not change under renormalisation group flow and so the field-operator matching
can be performed.

Though turning on a mass for one of the fields breaks the superconformal
invariance, the symmetry is restored in the high energy limit where the mass
is negligible compared to the energy scale. By breaking the symmetries on the
field theory side, the isometries on the supergravity side that match up through
the duality are also broken. Specifically, breaking the conformal symmetry cor-
responds to warping the AdSs section of the geometry, and breaking some of the
supersymmetries corresponds to deforming the five-sphere. The act of breaking
these symmetries is called a deformation and explicit examples of this procedure
are discussed in the following chapters.

Though there are more details which could be discussed on both the structure
of superconformal theories [41, 51, 52] and the geometry of AdSs x S° [26, 53, 32],

the topic of this thesis concentrates on theories in which most of the symmetries
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are broken in order to obtain theories that closely resemble QCD. For this reason,

references to some of the extensive literature on the subject are given without

discussion.

2.3 Brane Probing

Brane probing [54, 55, 56, 57 is the most direct technique employed to study the
gauge theory dual to a specific supergravity background. In the limit of an infinite
number of branes, adding an extra one and studying the theory on its surface
does not disturb the background geometry. In the large /V limit, adding an extra
brane is identical to pulling a single brane from the stack and studying its action
in the closed string background. As discussed in section 2.2.4, this corresponds
to moving into the Coulomb phase of the field theory. Though the presence of
the brane does not alter the metric, the U(1) gauge theory living on its surface
has half as many supersymmetries as the background theory without the probe.
In the case of undeformed AdSs x S°, the theory on the brane surface is N' = 2
supersymmetric. This is because D-branes are Bogomol'nyi-Prassad-Sommerfield

(BPS) objects which break half of the supersymmetries.

2.3.1 BPS Conditions

The BPS conditions [58, 32, 19] arise from studying the massive representations of
a supersymmetry algebra. The anticommutation relation for the supersymmetry

generators in the rest frame, P* = (M, 0,0,0...), is

{90y, (931} = 6p05(M + Z,) (2.8)
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where

Il

1
ok §(Qia + Ugg (Qfaa)f) ;

7 = d?:ag(EZh---;EZTa#)?

612 — —621 =1
N = 2r+1,
a = 1,...,7. (2.9)

Z is the central charge of the supersymmetry algebra and # is zero for odd A
and absent for even A. For unitary particle representations, the left hand side of
equation 2.8 must be greater than or equal to zero. This puts a bound on M in

terms of Z of

M > |Z,, a=1,..,r= {%} (2.10)
If this bound is saturated for one of the Z,, either Q%  or Q%_ must vanish and
the amount of supersymmetry is reduced. A state which saturates this bound is
known as a BPS state, and one for which the bound is saturated for 7o of the
central charges is denoted as a 2—15 BPS state which has dimension 22W-70) By
studying its tension, and charge under the five-form potential, it can be shown
that a D-brane is a half-BPS state and so its presence breaks half of the super-

symmetries. This explains why a D-brane probe reduces the supersymmetry from

N=4to N =2.
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2.3.2 The D-brane Action

There are an infinite number of parametrisations of AdSs x S°. It is possible to
calculate the action of a D-brane probe in AdSs x S°, or one of its deformations,
and this action defines the U(1) gauge theory living on the brane surface. A gen-
eral set of AdSs x S® coordinates will not give the gauge theory in its canonically
normalised form. Therefore, the D-brane probe can sometimes be used to find
the ‘physical’ coordinates with which to describe the gauge theory. In order to
perform this calculation, the form of a Dp-brane action in a general supergravity
background must be understood. The action is given by the following expression,

known as the Dirac-Born-Infeld Wess-Zumino (DBI-WZ) action [59, 60]:

Sprane = —Tp / dPICTY (e—q’ [det (Gop + Bay + 2m'Fab)]%)

+i15 / Tr
p+1

where ( are the coordinates on the brane, and a and b only run over these coordi-

exp(2ma’ Fy + By) A Z C’QJ : (2.11)

q

nates. Cj are the pullbacks of the g-form potentials, F' is the gauge field living on
the brane, and G and B are the pullbacks of the symmetric and antisymmetric
tensors from the bulk to the brane world-volume. The pullback is given by

oXH*oX"

“”a—gaa—gb . (2.12)

Guw =G

The first term in equation 2.11 gives the volume of the brane and is exactly the
same as that used to describe the action for a soap bubble in curved space. The
perpendicular directions to the brane are described by scalar fields living on the
brane world-volume just as the string world-sheet appears to be a scalar field
theory on a two-dimensional surface. The second term describes the pullback of
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the antisymmetric two-form, which is not switched on for most of the examples
in this thesis. The third term describes the U(1) gauge fields living on the brane.
The second integral is the topological Wess-Zumino term that gives the interaction
of the brane with the other closed string modes. This term is unimportant in the
majority of the work that follows.

There is a choice of how to define the directions on the brane with respect to
the directions in the bulk space. The static gauge will always be chosen where
the space-time directions on the brane coincide with p + 1 of those in the world
volume, in the rest-frame of the brane.

The theory living on a D3-brane probe in AdS; x S° is a U(1), N' = 2 su-
persymmetric gauge theory with a single N' = 2 hypermultiplet. The theory
also includes two massive gauge bosons and one scalar vev, corresponding to the
open strings stretching between the brane probe and the central stack. This is
illustrated in figure 2.2.

When the brane probe is taken to the origin containing the rest of the branes,
the theory on the probe returns to the A/ = 4 superconformal phase as the scalar
vev returns to zero. Using these probing techniques, it is possible to study the
theory living on a stack of branes, provided the number of brane probes is signif-
icantly smaller than the number of branes in the stack creating the background
geometry. For N, brane probes, their world-volume theory is an N' = 2, U(N,)
gauge theory. The fields living on the brane (including those corresponding to
the directions perpendicular to its world-volume) become matrix-valued. These

matrices are the generators of the U(N,) gauge group. All fields living on the
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Figure 2.2: A small number of D3-brane probes in a background sourced by a
large stack of D3-branes. The theory living on the probes is a U(N,) gauge
theory and the strings stretching between the probes and the centre of the space

correspond to massive gauge bosons of the broken U(N) gauge symmetry.

brane stack are charged in the adjoint of the U(/N,) gauge group and are singlets
under the colour group associated with the stack of branes distorting the geome-
try. To make comparisons with the usual gauge theory action, the square root in
the DBI action must be expanded. In the non-Abelian case, this expansion is not
fully understood to all orders. For this reason, in chapter 5, when a multi-probe
action is studied, the highest order terms in the action contain the fourth power

of the derivatives, for which a fully consistent DBI action is known.
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Chapter 3

Chiral Perturbation Theory

3.1 Introduction

The motivation behind this research is to use the AdS/CFT correspondence to
gain some insight into the structure of strongly-coupled gauge theories. String
theory originated from the calculation of scattering amplitudes for the strong
force. However, it became clear, once QCD was discovered, that this was actually
the correct theory to describe the strong force. Experiments have verified this
conclusion many times in the past 30 years. The QCD Lagrangian is trivial
to write; however, there is still no eflicient way to calculate QCD observables
when the coupling is strong. Lattice QCD has been very successful and is a vital
link between theory and experiment, but it is a resource-intensive process. Any
method which can perform the same calculations faster, and also provide further
qualitative insight into the properties of QCD in the strong coupling regime, is a

valuable tool.
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In order to use the AdS/CFT correspondence to explain QCD-like phenomena,
it is important to understand the tools used in the current research of low-energy
QCD, and how these tie in with experimental measurements. Chiral perturbation
theory [61, 62, 63] is an essential tool which deserves some discussion before it is
possible to compare lattice calculations with AdS/CFT calculations.

Both experiments and S-function calculations indicate that quarks are con-
fined in QCD. At low energies, and therefore in the strong coupling limit, quarks
are clearly not the right variables to describe QCD in a perturbative language.
This idea is a familiar one in many areas of science, including biology and chem-
istry. Moving from small to large distance scales, the degrees of freedom used
by a theorist to describe the physical system they are interested in will change.
At the fglngstrom scale, physicists are not interested in the dynamics of quarks
but use the theory of atoms to describe their experiments. This theory is formu-
lated through experiments at the atomic energy scale and so, though this physics
is determined by higher energy processes, the higher energy degrees of freedom
have been ‘integrated out’. This process of integrating out high-energy behaviour
determines the couplings and masses of the theory at lower energy. This is how
the pion Lagrangian is constructed. Below the scale at which QCD becomes
strongly-coupled, the degrees of freedom are the low-energy observables at that
scale. These degrees of freedom are the pions and vector mesons associated with

the approximate symmetries to be discussed in section 3.1.1.
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3.1.1 Effective Field Theories

It was shown by Steven Weinberg [12] that to construct the most general low-
energy Lagrangian as an effective theory [61], it is sufficient for the effective
Lagrangian to be local and to incorporate the symmetries of the high-energy
completion of the theory. This effective theory is non-renormalisable just as the
Fermi interaction is not a renormalisable interaction but is perfectly well-defined
up to the mass of the weak interaction gauge bosons.

The first step is to find the symmetries of the underlying theory, by studying

the QCD Lagrangian. The quark sector of the QCD Lagrangian is given by
Locp =Qr PQrL+ Qr PQr+ QLMQr+ QrM'Qy | (3.1)

where () and (Qr are vectors of Weyl fermions. These can be defined in terms

of Dirac fermions using the chiral projections:

1+ ~ ~1+
Qur="752Q,  Qur=Q—=2. (3.2)

Considering the generic case of Ny flavours of quark, @) is an Nj-vector of Dirac
fermions. If M = 0, there is a symmetry that acts on the left and right-handed

quarks with different charge as U(3), x U(3)g:
@rr — ULrQLR , QrLr — QL,RUJE,R : (3.3)

where Uy g € U(Ny),r. In fact, the U(1), — U(1)g (axial) part of this product
symmetry group is anomalous. This is broken by instanton contributions asso-
ciated with the QCD @-angle. Most of the research in this thesis is concerned

with exactly this anomalous part of the symmetry. In the 't Hooft limit (as
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%—i — (), the anomaly vanishes and the chiral symmetry is restored as a quan-
tum symmetry. This means that the U(1)4 symmetry is a good symmetry in
the strongly-coupled theories investigated here. The vector U(1) symmetry is
also preserved but simply corresponds to quark number and will not be discussed
further.

If an equal mass is introduced for each quark, the product symmetry is broken
to the diagonal vector subgroup where the left- and right-handed quarks can still
be rotated, but must have the same charge under the rotation group. In this
case, the axial subgroup is explicitly broken. When a general set of quark masses
is added, the vector symmetry is also broken. The entire SU(3); x SU(3)g

symmetry group can be preserved in the presence of quark masses if the quark

mass matrix is interpreted as being a spurion which transforms under
M — ULMU} . (3.4)

It is important to understand whether chiral symmetry is a good classical symme-
try in QCD. The masses of the u and d quarks can be neglected as they are much
smaller than Agcp, which is the only other scale in the theory. It is debatable
if the s quark mass is significant and this is an important issue in lattice QCD.
However, it is of no concern here as, in general, only a single flavour of quark is
considered. In this research, a QCD-like theory is studied with Nj quarks, all
with m << Agep. Therefore, classically, the chiral symmetry can be treated as a
good approximate symmetry. At low energies, however, strong coupling physics is
believed to alter the symmetries of the theory. There are several pieces of evidence
to suggest that only some of the classical symmetries remain in the full quantum
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theory, the most obvious being the great hierarchy in the QCD spectrum. The
pions (IT7,TI°, TI*) and the kaons (K*, K9, K°) are the lightest mesons, with the
pions being around four times lighter than the kaons. Most other hadronic states
are at least twice the mass of the kaons. As all hadrons are made of the same
basic building blocks, it is intriguing that a few of them are substantially lighter
than the others.

The second piece of evidence is the absence of a parity-doubled spectrum. If
the chiral symmetry were good, there would be a positive parity hadron for every
negative parity hadron, which is clearly not the case. The proton is isospin %,
spin %, positive parity and has a mass of 938Mev, whereas its parity partner has
a mass of around 1500Mev.

From this evidence, it appears that chiral symmetry is broken. The simplest
way to break this symmetry spontaneously is to induce a condensate for the
quark bilinear gg. Simulations on the lattice support this conjecture and the
quark bilinear condensate model is used throughout this thesis.

It is useful to summarise the conjecture of chiral symmetry breaking. In the
small quark mass limit, the vacuum breaks the chiral symmetry. This broken
symmetry will have associated with it a set of pseudoscalar, pseudo, Goldstone
bosons — the pions. The interaction of the mesons with the quark bilinear con-
densate provides the dynamical mass needed to explain the discrepancy between
the constituent quark mass and the hadron spectrum (see figure 3.1).

The following expression defines the coupling between the pions and the axial
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Figure 3.1: Effective mass induced by the interaction of hadrons with the quark

condensate.

vector current:

< ()| gy, s T%q(0)|0 >= —ifpp,*® , (3.5)

where T is a generator of the broken symmetry group a