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The AdS/CFT correspondence is studied in the presence of D7-brane probes 

which add fundamental matter to the field theory. Using the Dirac-Born-Infeld 

action of D7-branes in supergravity geometries dual to supersymmetric and non­

supersymmetric field theories, the phenomenon of chiral symmetry breaking is 

studied. We investigate five deformations of the AdS5 x 8 5 geometry where rele­

vant operators have been added to the field theory. Some of the properties of a 

supergravity background necessary to trigger a quark bilinear condensate in the 

dual field theory are discovered. A new technique to study the potential felt by a 

D7-brane in the region of a singularity is developed and used to study QCD phe­

nomena analytically. The low energy effective pion Lagrangian is investigated and 

predictions made for phenomenological parameters. A preliminary investigation 

into perfect QCD actions from the AdS/CFT correspondence is also made. The 

results indicate that the gauge-gravity duality with a low UV cutoff can provide 

more accurate results than a UV complete theory. 
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Chapter 1 

Introduction 

1.1 Introduction Overview 

The progress of gauge theories, from the original conjectures on general relativity 

[1] through the development of quantum electrodynamics (QED) [2], and finally 

the discovery of non-Abelian gauge theories in 1954 [3], has heralded a giant leap 

in our understanding of the structure of the universe. QED has been verified to 

ever greater accuracy over the past 50 years and in 1965 its creators were awarded 

the Nobel Prize. 

A gauge theory [4] is a model with an invariance under a local symmetry of 

some of the variables in the theory. In the case of QED, this relabelling means that 

the phase on all fields can be changed locally and the physics remains identical. 

For the theory to remain invariant under this change, a gauge field (the photon 

for QED) is introduced connecting points of local relabelling. In the case of 

non-Abelian gauge theories this relabelling is performed on a more complicated, 
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internal space, which takes values in a non-Abelian (non-commuting) Lie group. 

General relativity can be constructed as a gauge theory with an invariance under 

local space-time diffeomorphisms. Weyl conjectured incorrectly that the group 

may be extended to include local scaling invariance (dilations). 

The method of Feynman diagrams has made it possible to perform pertur­

bative calculations in gauge theories that previously would have been unthink­

able. Perturbation theory relies on the fact that non-interacting systems can 

often be understood through sets of exactly solvable linear differential equations 

and, in many cases, the use of harmonic oscillators. A perturbative calculation 

uses a small, dimensionless parameter to parametrise the deviation from a non­

interacting system. A series expansion can often be performed in the small pa­

rameter in the hope that each term in the series will be of decreasing significance. 

The series can be truncated at some order to give a reasonable, though not exact, 

answer to the problem. This method works only when a small, dimensionless 

parameter, defining the deviation from the linear case, exists. 

Though there have been significant breakthroughs in our understanding of 

physics at very high energy scales, there remain some important, unanswered 

questions. Currently, perhaps the most relevant are those concerning the Higgs 

boson [5] (predicted to give mass to all matter) and the nature of symmetries 

at higher scales [6, 7, 8]. The limits of the standard model are currently being 

tested, in the expectation that its predictions, at energy scales above those for 

which it is an effective theory, will soon deviate from experiment, leading to a 

deeper insight into the bigger picture. Another significant question concerns the 
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nature of the strong force. The theory of quantum chromo dynamics (QCD) was 

an important breakthrough in the attempt to understand the large spectrum of 

particles observed in bubble and spark chambers in the 1950s. Following this dis­

covery, there were great leaps forward in the understanding of non-Abelian gauge 

theories, in particular the phenomenon of asymptotic freedom [9], discovered in 

the 1970s, and in 2004 awarded the Nobel prize. Asymptotic freedom describes 

the force felt by quarks within a nucleon. At small separations, the force between 

the quarks is small, and so within a nucleon they appear to move freely. 

At high energy scales, QCD is in its perturbative regime [10], meaning that 

its coupling constant (the dimensionless parameter defining the deviation from 

the free theory) is small. Calculations can be performed in this regime and have 

been verified to accuracies of a few percent at LEP and many other high-energy 

particle experiments. However, the big question remains: "how is it possible to 

calculate QCD quantities efficiently in the strong coupling regime?" Though the 

perturbative Feynman diagram formulation breaks down in this regime, there are 

techniques with which this problem can be tackled. 

The first is lattice QCD [11] which has proved an immensely valuable tool. 

Though both time- and computer-intensive, this technique is crucial to the un­

derstanding of hadron collider physics. 

The use of effective field theories [12] is another essential technique used to 

study QCD at low-energy scales. In QCD, chiral perturbation theory [13] pro­

vides an algebraic link between the quark and meson masses, in addition to an 

understanding of the condensate picture of chiral symmetry breaking. In chapter 
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3 a review of this topic is provided. 

The third and most salient technique for this thesis is the use of the ~c 

expansion (Ne is the number of colours in an SU(Ne) Yang-Mills theory) [14, 

15, 16]. This technique has influenced the AdS/eFT correspondence to such an 

extent that it is important to understand it in some detail. 

1.2 The 't Hooft Expansion 

In the strong coupling regime of Yang-Mills theory, the usual perturbative meth-

ods of amplitude calculation break down. If another small parameter exists in 

the theory, it may be possible to use this to parametrise small perturbations from 

the free theory. 't Hooft [14, 15] showed that in the limit where the number 

of colours is taken to 00 while the combination A = g~MNe (where gYM is the 

Yang-Mills coupling constant) is kept fixed and large, Yang-Mills theory appears 

to be described by a perturbative string theory. 

The ,8-function of a gauge theory expresses the rate at which the coupling 

constant changes with energy. For SU(Ne) pure Yang-Mills theory (Yang-Mills 

theory with only gauge fields) this is given by 

(1.1 ) 

where f-l is the energy scale. Truncating the expression at order g~ M, this equation 

can be integrated to give 

1 11 
3 . 167f2 In f-l + canst . (1.2) 

As Ne is increased, the strong coupling scale, AyM , is kept constant by keeping 
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the combination). = g~MNe fixed. The strong coupling scale is the energy 

scale at which the parameter). becomes large, making perturbative calculations 

impossible. In QeD, this is not an exact value as the value of the coupling 

constant constituting strong coupling is a matter of definition. 

For QeD, the Lagrangian is given by [17] 

(1.3) 

where 1jJ is the quark field which is a Dirac fermion in the fundamental of the 

gauge group (given in QeD by SU(3)), m is the quark mass, 9 is the QeD 

coupling constant, A is the gluon field (QeD gauge field) which transforms in 

the adjoint of SU(3) and the parameters f are given by the structure constants 

of the SU(3) algebra. Greek letters label space-time indices and Roman letters 

label gauge group indices. 

The 't Rooft expansion was originally formulated in terms of a U (Ne ) gauge 

theory, with all matter in the adjoint (though this can be generalised to include 

fundamental matter). The Lagrangian for this theory can be written with the 

fields normalised such that the coupling constant appears explicitly only as an 

overall constant of proportionality. For example, the interaction and kinetic terms 

of a theory of scalar fields, in the adjoint of the gauge group, with cubic and 

quartic couplings is given by [18] 

(1.4) 

where + = ~c. In the large Ne limit, the propagators of adjoint fields in a 
gYM /\ 

U(Ne) and an SU(Ne) gauge theory differ by a vanishing term, proportional to 
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~c' and so are treated as identical in this thesis. A U(Nc ) theory with matter 

in the adjoint can be written in a double line notation where each adjoint field 

is drawn as the direct product of a fundamental and an anti-fundamental field. 

This double line notation can be used to write a Feynman diagram expansion 

for a scattering amplitude, propagator or vacuum contribution. It is possible to 

calculate the powers of Nc and A associated with a given vacuum diagram. There 

is a contribution to the amplitude from vertices, propagators and loops, with the 

following powers of Nc and A 

Vertex 
Nc 
A 

, 

Propagator 
A 

Nc 
, 

Loop Nc · (1.5) 

A diagram with V vertices, E propagators and F Loops, includes a factor 

NV-E+FAE-V (1.6) 

where X is the Euler characteristic (a topological invariant) of the simplicial de-

composition. A simplicial decomposition is a triangulation of a polygon in which 

the propagators become edges and the loops become faces. In terms of the genus 

of the surface, 

X 2 - 2h , (1.7) 

where h is the number of handles (genus). Therefore a diagram with h handles is 

suppressed by h powers of J2' The number of factors A is independent of number 

of faces. For large A, it is believed that a non-perturbative calculation would 

indicate that the diagrams are filled by propagating fields, that is, the internal 
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gaps in an individual diagram closes, leaving a surface. This surface is the non­

perturbative Yang-Mills string world-sheet. The perturbative calculation in terms 

of ~c is then a topological expansion in the genus of the string in the same form 

as a perturbative string calculation [19J. Figure 1.2 provides an example of two 

diagrams contributing to a vacuum amplitude. The left and right diagrams are 

of Euler character two and zero respectively. 

+ + ... 

Figure 1.1: Two examples of Feynman diagrams in the double line notation 

contributing to the vacuum amplitude. The left and right diagrams contribute 

factors N 2 and NO respectively. 

The link between strong coupling phenomena and string theory dates from 

before the 't Hooft expansion. Before the development of QeD, it was discovered 

that, in certain energy regimes, hadronic scattering amplitudes could be success­

fully described using the mathematics of string oscillations [20, 21]. In the Regge 

region [22J (large Mandelstam variable s with fixed t [23]), these calculations 

matched experimental results to a higher accuracy than the naive point-particle 

calculations. However, this model did not work well for high-energy scattering 

at fixed angles. Subsequently QeD was discovered and realised to be the correct 
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description of high-energy hadronic processes. However, 't Hooft's realisation 

that, at strong coupling, QeD could really be a string theory, and more recently 

Maldacena's conjecture [24] of an exact duality between string theory and gauge 

theory, have meant that these problems are once again being tackled with the 

techniques of string theory. 

1.3 String Theory 

The AdS/eFT correspondence [24, 25, 26] is discussed in detail in chapter 2, but 

it is instructive to note at this point that the correspondence links a string theory 

and a gauge theory. In the regime of interest for this thesis, the string side of 

the duality is described by a classical effective field theory. Though many of the 

complex techniques of string theory are not important for this discussion, it is 

enlightening to have a clear path between the formulation of string theory and 

the effective action, discussed in detail in section 1.4. The aim of this section is to 

obtain the massless spectrum of a specific string theory and to discuss the emer­

gence of D-branes from the underlying dualities of the theory. These results are 

the essential ingredients necessary to understand the AdS / eFT correspondence. 

1.3.1 Calculating the Superstring Spectrum 

Though it is common to start with the action for the purely bosonic string, the 

full supersymmetric action is provided here for completeness [19]. 
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The theory is described by a two-dimensional world-sheet with bosonic fields, XI', 

and fermionic fields, 1jJv, living on its surface. The world-sheet metric is given 

by 'Tlab and the coupling constants of the fields are given by gf-tv, The parameter 

a' is related to the fundamental string length by a' = l;. The bosonic part of 

the action is motivated by the relativistic point-particle action, where the point-

particle's position in space-time is a function of a parameter on its world-line. In 

the case of the superstring, the positions of the points on the string world-sheet 

in space-time (with directions XI') are given by XI'(0"1,0"2), where O"i are the two 

directions on the string world-sheet. To label each point on the world-sheet takes 

D-coordinates, where D is the number of space-time dimensions. Therefore, there 

are D scalar fields and D fermionic fields living on the world-sheet (p runs from 1 

to D). The fermionic part of the action describes the superpartners of the bosonic 

excitations. Just as the Xf-t describe the position of the string in space-time, so 

the fermionic degrees of freedom, 1jJf-t, describe the position of the world-sheet 

in superspace. As for a relativistic point-particle, there are several important 

symmetries of the action (equation 1. 8). 

The symmetries for the bosonic part of the action are given by: 

a diffeomorphism invariance for the metric on the world-sheet: 

(1.9) 

and a two-dimensional Weyl invariance: 

(1.10) 

which allows a local rescaling of the world-sheet metric. These symmetries allow 
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enough freedom to define the world-sheet metric in the fiat Minkowski form in 

the action of equation 1.8. In the case of the superstring, there is also explicit 

super-Poincare invariance. The next step in understanding the theory is the 

calculation of the stress-energy tensor by the variation of the action with respect 

to the world-sheet metric. This variation vanishes classically. The vanishing 

of the trace of the stress-energy tensor ensures that Weyl invariance is a good 

symmetry of the theory, however, this symmetry is anomalous in the full quantum 

theory. This anomaly is equal to the central charge of the theory, which is related 

to the variation of the stress-energy tensor under conformal transformations [19]. 

When the theory is gauge-fixed, ghosts are introduced which, along with the 

scalar and fermionic fields, contribute to the central charge. The central charge 

is a function of the number of fields, which is proportional to the number of 

space-time dimensions. For the central charge to vanish, giving a non-anomalous 

Weyl symmetry, the theory must be formulated in ten space-time dimensions. 

1.3.2 World-Sheet Boundary Conditions 

There are several types of string, the properties of which depend on the nature of 

the boundary conditions of the fields on the world-sheet. Open and closed strings 

arise from this difference in boundary conditions. It is possible to formulate 

equations for left- and right-moving modes living on the world-sheet. For the 

open string, these modes are related, whereas for the closed string, these modes 

are independent and there are twice as many degrees of freedom as occur in the 

open string case. A simple trick allows the coordinates on the world-sheet to be 
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written in terms of two complex numbers, z and z, where left- and right-moving 

modes depend on only one of these coordinates (holomorphic and antiholomorphic 

functions) . 

1.3.3 The World-Sheet Mode Expansion 

The first step in calculating the spectrum of states on the string, is to expand 

the stress-energy tensor as a Laurent series. This is given (in the purely bosonic 

case) by 
00 

"" Lm 
~ zm+2 ' 

i=-oo 

(1.11) 

where Lm are the Virasoro generators. The Virasoro generators make up an 

infinite-dimensional algebra which has an infinite number of conserved charges. 

This algebra is given by 

(1.12) 

where c is the central charge of the algebra. There is an equivalent algebra for the 

anti-holomorphic generators Lm. There is also a second set of fermionic Virasoro 

generators which obey an anticommutative algebra and are part of the full super 

Virasoro algebra. 

The bosonic modes, fermionic modes and Virasoro generators can be written 

in terms of creation and annihilation operators (an for the bosonic modes and Or 

for the fermionic modes). The spectrum of operators can be found by defining 

the ground state as the state which is annihilated by all lowering operators. All 

physical states are those for which 

Lml¢ >= Lml¢ >= 0, for m > 0 , (1.13) 
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and there is a similar condition for the fermionic generators. This condition is 

a result of the vanishing of the stress-energy tensor. The mass operator for the 

open string modes can be written in terms of the raising and lowering operators: 

M' = ~, C~~/"~n an + rO_,· B, - a)) . (1.14) 

where a is a normal ordering constant which must be determined by the can-

cellation of the Weyl anomaly. The spectrum of states is determined using this 

operator. 

For the fermionic fields in the closed string theory, there are two possible 

boundary conditions given by 

Ramond (R) 

where (J2 is chosen to be the space-like (compactified) direction on the world-sheet. 

The closed string worldsheet is illustrated in figure 1.2. 

Though the world-sheet theory is explicitly supersymmetric, to obtain space-

time supersymmetry, a projection of states, the GSO-projection [27] (Gliozzi-

Scherk-Olive), is required. The GSO projection also removes the open string 

tachyon which remains in the purely bosonic string theories. 

There is another decision to be made for the left- and right-moving modes. 

If the R groundstate modes have the same chirality, the theory is labelled type 

IIB string theory, while if they have opposite chirality, the theory is type IIA. 

II refers to the number of supersymmetries, as two is the highest number of 

supersymmetries in ten dimensions that is consistent with a truncation to four 

dimensions. This is discussed in more detail in section 1.4. 
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Figure 1.2: Plot of the world-sheet for a closed string. The compact and non­

compact directions are labelled by J2 and Jl respectively. 

Type II string theory contains only closed strings (until D-branes are intro­

duced in section 1.5). A string theory which contains open strings necessarily 

contains closed strings but the reverse is not the case. This is because an open 

string one-loop amplitude is equivalent to a closed string propagator. 

1.3.4 The Type lIB Spectrum 

The groundstate (massless) modes fill representations of the little group of the 

ten-dimensional Lorentz symmetry, given by SO(8). Along with the chirality, 

these representations are given by 8v (vector representation of SO(8)), 8e (spinor 

representation with positive chirality), and 88 (spinor representation with neg­

ative chirality). The existence of three representations can be understood from 

the triality of the SO(8) Dynkin diagram. 

The massless spectrum of type IIB is the direct product (8 v 8 8 ) @ (8v EB 88 ), 

which decomposes into irreducible representations of the 30(8) algebra given in 
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Table 1.1. 

States I Fields /I 

NS-NS Bosons 1 ED 28 EB 35 iP,BMN,GMN 

R-R Bosons 1 EB 28 ED 35+ Ao, A 2 , A4 

NS-R Fermions 88 EB 568 
),(J) 1j;(1) 

, M 

R-NS Fermions 88 ED 568 
), (2) 1j;(2) 

, M 

Table 1.1: Massless modes from type IIB string theory. The + denotes that 

the field strength of this 4-form potential is self-dual. This field is of particular 

importance in the formulation of the AdS/CFT correspondence. 

1.4 The Type lIB Supergravity Action 

This section begins with the low-energy spectrum of string theory, and attempts 

to take the shortest path to the low-energy effective action which describes these 

degrees of freedom in terms of a point-particle field theory [28J. The equations 

of motion of the fields in the effective action are calculated, and finally a specific 

classical solution to these equations, describing D-branes [29J, is obtained. 

The string theory of interest is type IIB, which is related to type IIA and 

eleven-dimensional supergravity [30J by simple duality relations (discussed in sec-

tion 1.5.1). The highest spin field that a four-dimensional, point-particle field 

theory can consistently describe (unless it has an infinite tower of spin states 

or is non-interacting) is spin two [31], the graviton. This restriction implies a 
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limit on the maximum number of supersymmetries of any theory [19]. Specif-

ically, this limit means that the maximal supersymmetry in four dimensions is 

N = 8. There is only one possible representation (in the massless case) given by 

the supergravity multiplet with the following state multiplicities: 

3
8 

28 (-2 -- -1 , 2' , (1.15 ) 

The total number of supercharges in this theory is calculated from the N = 1 

theory, where there are four supercharges. This is the minimum representation 

for a Weyl spin or in four dimensions (following from 2~). This implies that, in 

the maximally extended supersymmetry, there are 4·8 = 32 supercharges. In 

fact this bound on the total number of supercharges holds for higher dimensions 

because the four-dimensional theory can be reached from a higher-dimensional 

compactification. This implies a bound on the maximum number of dimensions 

for a consistent field theory due to the minimum spin or representations. The 

highest possible number of dimensions for a consistent supersymmetric field the-

ory is eleven (with some exceptions for multiple time-like dimensions) because 

min.rep = 2 d 21 in an odd number of dimensions. In ten dimensions, where the 

minimum representation is 16, the maximal supersymmetry is N = 2. 

The massless spectrum of eleven-dimensional supergravity has 256 states which, 

by the usual supersymmetry rules, are made up of 128 fermions and 128 bosons. 

The graviton multiplet contains a graviton and an antisymmetric three-index ten-

sor, making up 44 + 84 bosonic degrees of freedom. These fill two representations 

of 80(9) (the little group of SO(10, 1)). The fermionic degrees of freedom are all 

in a spinor-vector state satisfying (fJ-L)i3Ci 1jJJ-LCi = 0, and a Dirac equation which 
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reduces its degrees of freedom to 128. 

With a limit on the number of derivatives, there is a unique supersymmetric 

action for this eleven-dimensional spectrum, with the bosonic part given by [18] 

(1.16) 

where A3 is the three-form potential and F4 is its field strength. As explained, the 

maximum number of supersymmetries in ten dimensions is two. However, there 

are two possible theories one includes two supercharges of the same chirality 

and the other in which they are opposite. By compactifying eleven-dimensional 

supergravity on a circle and keeping only the massless states, a theory with 

opposite chirality supercharges (in the 16 and 16') is obtained. This is type 

IIA supergravity. To obtain the IIB theory, a duality transformation must be 

applied to the IIA theory (T-duality is discussed in more detail in section 1.5.1). 

The massless spectra of IIA and IIB can be calculated and the IIB spectrum 

is given in Table 1.1. The antisymmetric rank-four tensor has a self-dual field 

strength meaning that a satisfactory action which encodes this self-duality does 

not exist. The self-duality condition must be added as a supplementary condition: 

BIIB _1_ J dlOXV -Ge-2<p(2R + 88 (j)8f1 (j) IH312) 
411:2 f1 

- 4~2 J dlOXV-G (IF\12 + IF312 + ~IF512) + Bjermionic , 

(1.17) 

where the tildes have been added because the fields in this action are not the 

same as those in equation 1.16. 
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1.4.1 The Type lIB Supergravity Equations of Motion 

The equations of motion for this supergravity action are now calculated. The 

formulation of the AdS/eFT correspondence (chapter 2) has only three fields 

switched on - the graviton, the dilaton and the five-form field strength. The 

action with these fields turned on can be written as 

SIlE = - d xv -G R - -(01)) --F, 1 J 10 r-;=; [ 1 2 1 2] 
2K,2 2 2.5! 5 

(l.18) 

Note that the metric and the dilaton have been redefined to transform the action 

from the string frame to the Einstein frame, giving an action in the usual Einstein-

Hilbert form [29J. It is in this frame that the stress-energy tensor has its usual 

physical meaning. 

The dilaton equation of motion is the least complex, given by [32J 

(l.19) 

Note that the metric has been written in a Wick rotated form here. The derivative 

of the determinant of the metric is given by 

oVG oGNPoVG 

(l.20) 

So the equation of motion is 

(l.21) 
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However, the dot product of a covariant and a partial derivative is 

(1.22) 

which is equal to the left hand side of equation 1.21. Therefore 

(1.23) 

The equation of motion for the graviton is more complicated. The first term 

in the action is the Einstein-Hilbert term. The variation of the dilaton term is 

simple, but the variation of the five-form term is more complex. The equation of 

motion for the graviton is given by 

The solutions studied in this thesis are all Ricci fiat and so the second term in 

the above equation vanishes. The equation of motion and the Bianchi identity 

for the five-form are 

(1. 25) 

1.5 D-Branes 

It is hoped that string theory is the unique, fundamental theory that unifies all 

the forces of nature. It would be a great achievement if a unique solution could 

be found to describe the universe we live in. The anthropic principle may be 

correct the universe may be this way because, of all the many possibilities, this 
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is one of few that hold the right conditions to support life. Perhaps, through 

studying the statistics of string vacua, it can be shown that the type of universe 

we live in is highly favoured by the landscape [33J. The string landscape defines 

the space of all possible string vacua, for instance, the value of the dilaton lives 

on a moduli-space, so, one value of the dilaton is not favoured over any other. 

Finally, it would be most satisfying if the only fully consistent string solution was 

that which describes this universe. This would surely be the strongest signal that 

string theory is the correct description of nature. 

In the early 1990s, the community of string theorists was becoming disillu­

sioned. Not only was it known that string theory had many different solutions, 

it also appeared that there were five independent string theories. The hope of a 

single unifying theory seemed to be fading. However, the second superstring rev­

olution, started by Ed Witten [34J in 1995 sparked a resurgence in activity when 

it was shown that the five theories were linked by a series of simple dualities. 

This meant that all the apparently independent theories were actually different 

descriptions of the same theory in different regions of parameter space. 

1.5.1 T-Duality 

T-duality [35J is the most important duality for this thesis. It is a large-small 

radius duality between type IIB theory with a large compactified dimension and 

type IIA theory with a small compactified dimension. A closed string in a com­

pactified dimension has two contributions to its energy a winding energy, which 

is proportional to both the radius of the compactified direction and the number 
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of times the string winds around this direction, and a Kaluza-Klein energy which 

is inversely proportional to the radius. For a dimension of radius R, there is 

a spectrum of closed strings given by all the possible winding numbers and all 

the possible Kaluza-Klein states. If the radius, R, is changed to ~, the spec­

trum will remain exactly the same, as the Kaluza-Klein and winding modes are 

exchanged. Therefore, a theory with only closed string modes appears to be 

dual to itself under the interchange of R -----+ l However, though open strings 

have Kaluza-Klein modes in the compactified direction, they do not have winding 

modes. This means that the spectrum will change under the large-small radius 

interchange and the theories appear different. In contrast to the closed string 

spectrum, the open string spectrum does change under this duality. By studying 

the open string modes, it is found that, as a large dimension R is replaced with 

a small dimension ~, the ends of the open strings become trapped in the small 

dimension. In the limit R -----+ 00, the ends of the open strings become trapped 

on a hyper-surface of one dimension less then the original space. The physical 

spectrum of closed strings, however, does not notice this change and so closed 

strings are free to move around as if the radius of the space had not been altered. 

The boundary conditions of the open string ends change under this duality from 

Neumann to Dirichlet in the T-dualised direction, 

(1.26) 

where (0, l) denote the ends of the string, and f..L is the direction that is T­

dualised. T-duality exchanges Neumann and Dirichlet boundary conditions and 

also changes the chirality of the right-moving modes thereby exchanging type IIB 
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for IIA. By T-dualising, a hyper-surface has appeared which has excitations in 

the form of open strings. This hyper-surface is the D-brane. Though it seems to 

be simply a surface in the higher-dimensional space, because open strings can be 

excited on it, it is truly a dynamical object. Not only are D-branes a consequence 

of the duality inherent in string theory, but these objects exist as solitonic solu­

tions in the low-energy limit of string theory supergravity - which are discussed 

in more detail in section 1.5.2. The two ends of the string, given by 0 and l, can 

have different boundary values, meaning that an open string can stretch between 

D-branes. By setting up the boundary conditions appropriately, many D-branes 

spanning different directions can be introduced. 

These D-branes appear to be rather crude constructions, but using another 

duality (the strong-weak coupling duality under which type IIB is self-dual), the 

fundamental string is exchanged for the two-dimensional D 1-brane. This suggests 

that D-branes are as fundamental as the strings from which string theory was 

originally constructed. 

1.5.2 The D3-Brane Solution 

The ingredients are now in place to find specific solutions to the supergravity 

action, in particular, the D3-brane solution [36, 32]. This is a solitonic solution 

to the supergravity equations, and describes a four-dimensional classical solution 

in ten-dimensional space. This soliton fills four of the dimensions, including 

the time dimension. The existence of this soliton breaks some of the space-time 

symmetries of the SO(9, 1) Lorentz group, and an ansatz can be postulated which 
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preserves the symmetries on the brane world-volume and those perpendicular to 

its surface. The presence of the brane is expected to break the Lorentz group in 

the following way: 

50(9,1) -7 50(3,1) x 50(6) . (1.27) 

A four-dimensional soliton has the correct number of dimensions to be a source 

for a five-form field strength, and indeed the D3-brane solution is just that. In 

general, a Dp-brane is a source for a (p+ I)-form R-R gauge potential, the charge 

density for which is given by 

( 1.28) 

The simplest D3-brane ansatz with the appropriate space-time symmetries is then 

dsio H-2a'l7l"vdxl"dxV + H2(3l5abdyadyb, 

A(4) H-'Y dxo 1\ dx 1 1\ dx2 1\ dx3 , 

<P 0, 

A(o) 0, (1.29) 

where, by the symmetries, f.1 and 1/ run over four-dimensional Minkowski space-

time, and a and b run over six spatial directions with an 50(6) isometry. The 

warp factor, H, depends only on the distance from the brane. The metric can be 

written in a simpler form, where the flat six-plane is written in spherical polars: 

(1.30) 

where D5 is the metric on a five-sphere. This means that H can only depend on 

the r direction. By studying the equations of motion, the parameters (ex, (3, I), 
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and the form of H(r) can be constrained. The simplest equation of motion leading 

to a constraint is given by the Bianchi identity. The five-form can be written as 

(l.31) 

Due to the self-duality of the five-form, the Bianchi identity is given by 

o. (l.32) 

The next field equation is given by 

_l_FMABCDF 
2.4! NABCD· (l.33) 

There are two independent components of this equation to study. The first is 

given by the IT' component. The right hand side of equation l.33 is given by 

(l.34) 

and from the left hand side is 

( l.35) 

The xx component of equation l.33 is calculated in a similar fashion and provides 

the third constraint. 
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In order to be a vacuum solution to the Einstein equations, the metric must 

be Ricci fiat. This puts the final constraint on the free parameters: 

From these constraint equations, it can be shown that the consistent solution to 

the supergravity ansatz is parametrised by 

1 
a 4' 
f3 

1 

4' 

l' 1 , 

82H 
-58r H 

r r 
(1.37) 

If the metric on the ab directions in the ten-dimensional space are left unspecified, 

it is found that the final constraint means that the warp factor, H, must be a 

solution to the six-dimensional Laplace equation. In this case, the D3-brane 

supergravity solution is then 

<I> 0 , 

( 1.38) 

This calculation can be performed in several other ways. Another method of 

finding the constraints is by the vierbein and sechsbein formalism with Cartan's 

structure equations to derive equation 1.37. The original method of Horowitz 

and Strominger [36] works by writing the metric in an ansatz of the form 

(1.39) 
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This form of the metric is substituted into the supergravity action, and the pa-

rameters, A and B, which depend on the transverse direction are treated as fields. 

The field equations for this action are then calculated and the four equations for 

the four fields fix the constraints as above. 

1.5.3 D3-Brane Distributions 

When the space transverse to the D3-brane is written in Euclidean, flat-space 
6 

coordinates as L dyt, the solution to Laplace's equation can be written as a 
i=l 

function of the position of the D3-brane, ill, as 

(1.40) 

where L4 = 41fgso:,2. This function can be generalised to a solution with NJ 

branes at different positions, ik 

(1.41) 

Generally, the solutions of interest will describe a single stack at one position 

(defining the origin of the six-dimensional space) with a large number of branes. 

As the limit N ---+ 00 is taken, the warp factor tends to its near-horizon solution 

H(y) = ~~4. In this limit, the simplest parametrisation of the metric is given by 

[18] 

(1.42) 

This is the product space of Ad55 (five-dimensional Anti-de-Sitter space) and 

an 55, both of radius R4 = 41fgso:'2N. Ad55 is a maximally symmetric space 

(maximum number of Killing vectors) with a negative cosmological constant [37]. 
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It is constructed by taking a hyperboloid in a six-dimensional fiat-space with 

metric (+ + + + --). The isometry group of AdS5 is SOC 4,2) which is inherited 

from the six-dimensional embedding. The AdS5 x S5 metric can be written in 

many different ways, and, depending on the most convenient parametrisation 

for a specific problem, will be rewritten accordingly. Appendix A summarises 

some of these parametrisations. The AdS5 x S5 metric describes the supergravity 

background used in the formulation of the AdS/eFT correspondence. 

A more general solution is formulated by defining a continuous distribution of 

D3-branes. In this case the sum in the harmonic form becomes an integral over 

the distribution 

H(y) 1 6' L4 (') 
1+ d y I~ :711 4 0- Y 

M y-y 

N 1M d6y' o-(y') , (1.43) 

where o-(y') describes the density distribution and the integral is taken over the 

six-dimensional space perpendicular to the branes. Due to the infinite number of 

possible brane distributions, there are an infinite number of possible warp factors. 
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Chapter 2 

The AdS / CFT Correspondence 

Having introduced the building blocks of the AdS/eFT correspondence, it can 

now be explored in some detail. Half of the correspondence was investigated in 

the previous section. A stack of D3-branes [29] can be described by a supergravity 

solution which is, in the near-horizon limit, AdS5 x S5 with a non-zero, five-form 

field strength and a constant dilaton [18]. 

The near-horizon geometry is obtained when the number of branes is taken 

to infinity. Having formulated this solution, the propagation of closed strings in 

this background can be studied. As the number of branes is taken to infinity and 

the product gsN is kept large and constant, the radius of curvature of the AdS 

space and five-sphere, R = (41fgsN 0/2 ) ~, becomes much larger than the string 

scale, VCI ls. Taking the large N limit means that the supergravity limit of 

string theory gives an accurate description of the physics. 
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2.1 Open Strings on D-Branes 

One side of the duality is described by closed string modes in the D3-brane 

supergravity background. The other side is described by open strings on a stack 

of D3-branes in flat-space [38]. To understand this, the theory of the strings 

living on the brane must be explored. The ends of open strings are labelled by 

the branes they are attached to. The strings are oriented, meaning that there 

are two kinds of string stretching between two branes - one with the left end on 

the first brane and the right on the second, and the other with the ends reversed. 

These labels, known as Chan-Paton factors [19], generate a symmetry for the 

open strings. For a stack of coincident branes, the physics remains invariant 

under a permutation of the labels. There are N 2 possible string labellings, which 

fill a single adjoint representation of a Lie group, U(N). As the strings are free 

to move around on the surface of the branes, and a relabelling can be performed 

at any point, the symmetry is a local symmetry. Indeed, when the spectrum of 

strings living on the D-brane is calculated, it is found that there is a massless 

vector mode - the U(N) gauge boson. As explained in chapter 1, in the large N 

limit, the U(N) and SU(N) gauge groups can be treated identically. All strings 

living on the coincident branes are in the adjoint representation of the U(N) 

gauge group. The spectrum of strings is given by the dimensional reduction of 

an N = 1 gauge multiplet in ten dimensions to four dimensions: 

(:') ~(:) (:) (:) (:) 
D = IO,N = 1 D 4,N= 4 (2.1) 
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where Af.t are gauge fields, 'l/J are gauginos and A are complex scalars. Six of the 

ten-dimensional gauge field degrees of freedom become the three complex scalars 

in the four-dimensional reduction. The ten-dimensional Majorana-Weyl spinor 

becomes four complex Weyl spinors in four-dimensions. This theory has N = 4 

extended supersymmetry. The spinors are in the fundamental of SU(4)R, the 

scalars are in the 6 and the gauge field is a singlet. The Lagrangian for this 

N = 4 supersymmetric gauge theory is [18J 

-~Tr (Ff.tvFf.tV + 2Df.tAiDf.tAi - ['\' AjF) 
29YM 

--+-Tr (1j)rf.t Df.t'l/J + i1j)ri [Ai, 'l/JJ) 
gYM 

The one-loop ,B-function for this theory is 

(2.2) 

(2.3) 

where the first term comes from the gauge fields, the second from the four gaugi-

nos and the third from the three scalar fields. Supersymmetric non-renormalisation 

theorems [39J can be used to show that there are no additional contributions, and 

therefore the theory has zero ,B-function in the full quantum theory [40J. A the-

ory where all fields are massless, and no scale is introduced through dimensional 

transmutation of a running coupling, is a conformal field theory [41 J. 

2.2 The Correspondence 

The AdS/CFT correspondence states that the open string theory living on a 

stack of D3-branes is dual to the closed string theory living in the space warped 

by these branes [24, 25, 26J. The theory in the ten-dimensional background can 
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be divided into three parts: a near-horizon geometry, a flat-space geometry and 

an interaction between the two. In the small gso/, low-energy limit the interaction 

term disappears. In the large N limit, the space deformed by the branes becomes 

AdS5 x S5. As 0/ --+ 0 and N --+ 00 the closed string theory becomes classical 

supergravity. As this limit is taken, the open string theory on the branes is 

described by the large, constant A = g~MN = gsN, infinite N, SU(N) N = 4 

gauge theory. The conjecture states that the classical supergravity theory, in 

which calculations are simple, is dual to a strongly-coupled gauge theory, where 

calculations are often intractable. Conversely, at weak coupling on the field theory 

side, the closed string theory is strongly-coupled. This strong-weak coupling 

duality allows full control of one side at a time. 

The equivalence is given by an equality in the actions: 

SOpen strings on D3-branes = SClosed strings in AdS5 x S5 

Strongly coupled N ~ 4 Super Yang-Mills = Classical supergravity on AdS5 x S5 

A diagrammatic sketch of the duality is illustrated in figure 2.1. 

This duality is remarkable because, while the left hand side is a four-dimensional 

field theory, the right hand side is a ten-dimensional supergravity theory. This 

type of duality is known as a holographic correspondence and was first conjectured 

for black-holes with the statement that the entropy of a black-hole is given by its 

area [42, 43, 44J. This means that all the information enclosed inside the black­

hole is encoded in a lower-dimensional surface. The conjecture of the AdS/CFT 

correspondence states that the information in a ten-dimensional theory of gravity 
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Duality 

Classical Supergravity in 
AdSsxSs 

N =4 SYM with an infinite number of 
colours at strong 't Hooft coupling 

Figure 2.1: The AdS/CFT correspondence is a duality between a theory of open 

strings living on a stack of D3-branes, and the supergravity theory living in the 

singular region of the geometry sourced by the D3-branes. 

can be encoded in a four-dimensional field theory. 

2.2.1 Global Symmetry Matching 

The AdS/CFT duality was first established [24] by studying the symmetries of the 

two sides of the correspondence. The supergravity side is formulated in a space 

which has the isometry group SO(4,2) x SO(6) corresponding to AdS5 x S5. On 

the field theory side, the global symmetry group is SO(4, 2) x SU(4)R which is 

locally the same as the isometry group on the supergravity side. These symmetries 

correspond to the conformal group and the R-symmetry group. The number of 
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supercharges (16) match on both sides of the correspondence. 

This correspondence is useful only if there is a concrete means to calculate 

physical quantities on both sides [26J. The equivalence is established through the 

equality of the actions and is the fundamental equation describing the AdS/eFT 

correspondence: 

J d4x¢o(x)O(x) 
< e >CFT= Zstring [¢(x, r)lr== = ¢o(x)J (2.4) 

where x runs over the four directions parallel to the branes and r is in the radial 

direction of the AdS5 x S5 space. This means that the generating functional for 

correlation functions with a source, ¢o (x), for an operator, 0, is equal to the 

supergravity partition function, with boundary condition that the supergravity 

field, ¢, at r = 00, is equal to the source for the field theory operator. 

More simply, this means that boundary values for supergravity fields corre-

spond to sources for field theory operators. In order to find which supergravity 

field corresponds to each field theory operator, it is necessary to find a combina-

tion (including the d4 x in the action) that is a singlet under all the symmetries of 

the theory. For instance, the source for an operator charged in the 4 of SU ( 4) R 

must be in the .4 of the SO(6) isometry group. 

2.2.2 Energy-Radius Duality 

The field theory side of the duality has a conformal symmetry. It is important to 

understand what this conformal scaling corresponds to on the supergravity side. 

[18J. One of the generators of the conformal group is the dilatation operator which 

rescales dimensionful quantities. This means that, in the field theory, there is the 
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freedom to rescale distances and fields with the action remaining unchanged: 

x ~ j3x, (2.5) 

On the supergravity side, the metric is invariant under this scaling if r ~ ~ as 

x ~ j3x. This means that under the four-dimensional conformal scaling, the 

distance r transforms like an energy scale. This relationship between energy and 

radius can be understood from another point of view. For an observer at the 

boundary of AdS5 x S5, a photon emitted from a distance r from the centre of 

the space is redshifted. The closer to the centre of the space, the larger the 

redshift and so, for an observer at the boundary, the photon appears to have 

lower energy as it is emitted from smaller r. The energy-radius duality indicates 

that, rather than there being a field theory only on the boundary of AdS5 x S5, 

there is a field theory description at all four-dimensional slices, at different values 

of r, corresponding to field theories at varying energy scales. 

Throughout this thesis, the radius of the AdS space is referred to in terms 

of an energy scale. The small r limit is labelled the IR and the large r limit is 

labelled the UV as these are the low and high energy limits respectively in the 

field theory. 

2.2.3 Field-Operator Matching 

To find the field theory operator corresponding to a specific supergravity field, it 

is necessary to calculate the equations of motion for the supergravity fields in the 

AdS5 X S5 background, and to study their possible boundary conditions [25]. 

As an example, the action for a scalar field, cp, of mass m in the AdS5 x S5 
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background is given by 

(2.6) 

The simplest solution to ¢ for this action has dependence only on the radial 

direction in Ad85 x 85 . This solution is 

(2.7) 

where ,0. = 2 ± V 4 + m 2 . For a scalar field with m 2 = 0, ,0. = 4 or 0, so 

the solution is ¢ A + ~. Because supergravity fields do not scale under the 
r 

four-dimensional conformal scaling, the parameter A must have conformal mass 

dimension zero, and the parameter B must have conformal mass dimension four. 

If the boundary value of the supergravity field is to act as the source for an 

operator, its symmetries must be understood. The supergravity field is a scalar 

under the 50(6) isometry group which corresponds to the 5U(4)R symmetry 

group of the field theory. This means that the operator corresponding to this 

field must also be a scalar under this symmetry. The field is a space-time scalar 

and so has no indices to contract with anything other than a scalar operator. The 

parameter A is of scaling dimension zero and therefore must be the source for a 

mass dimension four operator which can only be Tr p2. The parameter B is of 

scaling dimension four and corresponds to the vacuum expectation value (vev) 

of this gauge field operator: < Tr p2 >. For this particular supergravity field its 

dual field theory operator has been identified. Remarkably, there is a one-to-one 

correspondence between fields and operators which has been proved explicitly for 

the infinite set of operators and the infinite tower of Kaluza-Klein states on the 

five-sphere [45]. 
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2.2.4 Generalising the Correspondence 

The explicit correspondence between a supergravity theory and a field theory has 

now been introduced. This allows for the calculation of gauge theory quantities, 

even in the strong coupling regime. This ability is extremely important; however, 

in the form introduced so far, the correspondence has some deficiencies which 

must be discussed. Crucially, the field theory is not very similar to QCD and so 

does not describe the universe in which we live [46, 47, 48,49, 50J. The field theory 

is both conformal and highly supersymmetric, as well as being strongly-coupled 

in the UV and having an infinite number of colours. The first two problems are 

addressed in the bulk of this thesis while the problem of the strongly-coupled UV 

is tackled in chapter 10. 

The correspondence provides a recipe by which to turn on any operator in 

field theory by finding the appropriate supergravity field to act as its source. In 

the original formulation of the duality, the only couplings that are switched on, 

are those of the N = 4 Lagrangian (equation 2.1). This corresponds to having a 

graviton, a constant dilaton and a five-form field strength on the supergravity side. 

The field theory has two phases: one where the potential is zero, corresponding to 

the super-conformal phase for which the vevs of all scalars are zero and the other, 

where at least one of the scalars has a vev (the Coulomb phase). The induction 

of a vev for M of the scalars generates an SU(N) ---+ SU(N - M) x U(l)M gauge 

theory. On the D-brane side, this corresponds to pulling M D-branes from the 

stack in different directions in the space transverse to their world-volume. The 

magnitude of the vevs correspond to the distance between the isolated branes 
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and the remaining stack. 

By switching on masses and vevs for operators, the superconformal symmetry 

can be broken explicitly. The inclusion of any mass scale in the field theory au­

tomatically breaks the conformal invariance, while switching on different masses 

for fields in a supermultiplet breaks the supersymmetry. As indicated in equation 

2.4, to turn on these operators, the boundary values for supergravity fields must 

be set appropriately. The correspondence is explicitly realised only in the region 

where the supergravity background is AdS5 x S5 corresponding to the field theory 

in its superconformal phase. It is in this regime only that scaling dimensions do 

not change under renormalisation group flow and so the field-operator matching 

can be performed. 

Though turning on a mass for one of the fields breaks the superconformal 

invariance, the symmetry is restored in the high energy limit where the mass 

is negligible compared to the energy scale. By breaking the symmetries on the 

field theory side, the isometries on the supergravity side that match up through 

the duality are also broken. Specifically, breaking the conformal symmetry cor­

responds to warping the AdS5 section of the geometry, and breaking some of the 

supersymmetries corresponds to deforming the five-sphere. The act of breaking 

these symmetries is called a deformation and explicit examples of this procedure 

are discussed in the following chapters. 

Though there are more details which could be discussed on both the structure 

of superconformal theories [41, 51, 52J and the geometry of AdS5 x S5 [26,53,32]' 

the topic of this thesis concentrates on theories in which most of the symmetries 
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are broken in order to obtain theories that closely resemble QCD. For this reason, 

references to some of the extensive literature on the subject are given without 

discussion. 

2.3 Brane Probing 

Brane probing [54, 55, 56, 57] is the most direct technique employed to study the 

gauge theory dual to a specific supergravity background. In the limit of an infinite 

number of branes, adding an extra one and studying the theory on its surface 

does not disturb the background geometry. In the large N limit, adding an extra 

brane is identical to pulling a single brane from the stack and studying its action 

in the closed string background. As discussed in section 2.2.4, this corresponds 

to moving into the Coulomb phase of the field theory. Though the presence of 

the brane does not alter the metric, the U(l) gauge theory living on its surface 

has half as many supersymmetries as the background theory without the probe. 

In the case of undeformed AdS5 x S5, the theory on the brane surface is N = 2 

supersymmetric. This is because D-branes are Bogomol'nyi-Prassad-Sommerfield 

(BPS) objects which break half of the supersymmetries. 

2.3.1 BPS Conditions 

The BPS conditions [58,32, 19] arise from studying the massive representations of 

a supersymmetry algebra. The anticommutation relation for the supersymmetry 

generators in the rest frame, pil = (M, 0, 0, 0 ... ), is 

{Q~±, (Qp±)t} = c5bc5~(M ± Za) , 
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where 

Q~± ~(Q;a ± CT~$ (Q~a) t) , 

Z diag( EZl, ... , EZn #) , 

E12 _E21 = 1 , 

N 2T + 1 , 

a 1, ... , T . (2.9) 

Z is the central charge of the supersymmetry algebra and # is zero for odd N 

and absent for even N. For unitary particle representations, the left hand side of 

equation 2.8 must be greater than or equal to zero. This puts a bound on M in 

terms of Z of 

a=l, ... ,T [N2] . (2.10) 

If this bound is saturated for one of the Za, either Q~+ or Q~_ must vanish and 

the amount of supersymmetry is reduced. A state which saturates this bound is 

known as a BPS state, and one for which the bound is saturated for TO of the 

1 
central charges is denoted as a - BPS state which has dimension 22(N -ro). By 

2ro 

studying its tension, and charge under the five-form potential, it can be shown 

that a D-brane is a half-BPS state and so its presence breaks half of the super-

symmetries. This explains why a D-brane probe reduces the supersymmetry from 

N=4 toN 2. 
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2.3.2 The D-brane Action 

There are an infinite number of parametrisations of AdS 5 x S5. It is possible to 

calculate the action of a D-brane probe in AdS5 x S5, or one of its deformations, 

and this action defines the U(l) gauge theory living on the brane surface. A gen-

eral set of AdS5 x S5 coordinates will not give the gauge theory in its canonically 

normalised form. Therefore, the D-brane probe can sometimes be used to find 

the 'physical' coordinates with which to describe the gauge theory. In order to 

perform this calculation, the form of a Dp-brane action in a general supergravity 

background must be understood. The action is given by the following expression, 

known as the Dirac-Born-Infeld Wess-Zumino (DBI-WZ) action [59, 60J: 

-Tp J dP+1(Tr (e-<I> [det (Gab + Bab + 21fa' Fab)J~) 

+iTp 1 Tr [eXP(21fa' F2 + B 2 ) 1\ L Cq] , 

Ml q 

(2.11) 

where ( are the coordinates on the brane, and a and b only run over these coordi-

nates. Cq are the pullbacks of the q-form potentials, F is the gauge field living on 

the brane, and G and B are the pullbacks of the symmetric and antisymmetric 

tensors from the bulk to the brane world-volume. The pullback is given by 

(2.12) 

The first term in equation 2.11 gives the volume of the brane and is exactly the 

same as that used to describe the action for a soap bubble in curved space. The 

perpendicular directions to the brane are described by scalar fields living on the 

brane world-volume just as the string world-sheet appears to be a scalar field 

theory on a two-dimensional surface. The second term describes the pullback of 
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the antisymmetric two-form, which is not switched on for most of the examples 

in this thesis. The third term describes the U(l) gauge fields living on the brane. 

The second integral is the topological Wess-Zumino term that gives the interaction 

of the brane with the other closed string modes. This term is unimportant in the 

majority of the work that follows. 

There is a choice of how to define the directions on the brane with respect to 

the directions in the bulk space. The static gauge will always be chosen where 

the space-time directions on the brane coincide with p + 1 of those in the world 

volume, in the rest-frame of the brane. 

The theory living on a D3-brane probe in Ad85 x 85 is a U(l), N = 2 su­

persymmetric gauge theory with a single N = 2 hypermultiplet. The theory 

also includes two massive gauge bosons and one scalar vev, corresponding to the 

open strings stretching between the brane probe and the central stack. This is 

illustrated in figure 2.2. 

When the brane probe is taken to the origin containing the rest of the branes, 

the theory on the probe returns to the N = 4 superconformal phase as the scalar 

vev returns to zero. Using these probing techniques, it is possible to study the 

theory living on a stack of branes, provided the number of brane probes is signif­

icantly smaller than the number of branes in the stack creating the background 

geometry. For Np brane probes, their world-volume theory is an N = 2, U(Np) 

gauge theory. The fields living on the brane (including those corresponding to 

the directions perpendicular to its world-volume) become matrix-valued. These 

matrices are the generators of the U(Np) gauge group. All fields living on the 
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Figure 2.2: A small number of D3-brane probes in a background sourced by a 

large stack of D3-branes. The theory living on the probes is a U(Np) gauge 

theory and the strings stretching between the probes and the centre of the space 

correspond to massive gauge bosons of the broken U (N) gauge symmetry. 

brane stack are charged in the adjoint of the U(Np) gauge group and are singlets 

under the colour group associated with the stack of branes distorting the geome-

try. To make comparisons with the usual gauge theory action, the square root in 

the DBI action must be expanded. In the non-Abelian case, this expansion is not 

fully understood to all orders. For this reason, in chapter 5, when a multi-probe 

action is studied, the highest order terms in the action contain the fourth power 

of the derivatives, for which a fully consistent DBI action is known. 
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Chapter 3 

Chiral Perturbation Theory 

3 .1 Introduction 

The motivation behind this research is to use the AdS/eFT correspondence to 

gain some insight into the structure of strongly-coupled gauge theories. String 

theory originated from the calculation of scattering amplitudes for the strong 

force. However, it became clear, once QeD was discovered, that this was actually 

the correct theory to describe the strong force. Experiments have verified this 

conclusion many times in the past 30 years. The QeD Lagrangian is trivial 

to write; however, there is still no efficient way to calculate QeD observables 

when the coupling is strong. Lattice QeD has been very successful and is a vital 

link between theory and experiment, but it is a resource-intensive process. Any 

method which can perform the same calculations faster, and also provide further 

qualitative insight into the properties of QeD in the strong coupling regime, is a 

valuable tool. 
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In order to use the AdS/CFT correspondence to explain QCD-like phenomena, 

it is important to understand the tools used in the current research of low-energy 

QCD, and how these tie in with experimental measurements. Chiral perturbation 

theory [61, 62, 63J is an essential tool which deserves some discussion before it is 

possible to compare lattice calculations with AdS/CFT calculations. 

Both experiments and j3-function calculations indicate that quarks are con­

fined in QCD. At low energies, and therefore in the strong coupling limit, quarks 

are clearly not the right variables to describe QCD in a perturbative language. 

This idea is a familiar one in many areas of science, including biology and chem­

istry. Moving from small to large distance scales, the degrees of freedom used 

by a theorist to describe the physical system they are interested in will change. 

At the Angstrom scale, physicists are not interested in the dynamics of quarks 

but use the theory of atoms to describe their experiments. This theory is formu­

lated through experiments at the atomic energy scale and so, though this physics 

is determined by higher energy processes, the higher energy degrees of freedom 

have been 'integrated out'. This process of integrating out high-energy behaviour 

determines the couplings and masses of the theory at lower energy. This is how 

the pion Lagrangian is constructed. Below the scale at which QCD becomes 

strongly-coupled, the degrees of freedom are the low-energy observables at that 

scale. These degrees of freedom are the pions and vector mesons associated with 

the approximate symmetries to be discussed in section 3.1.1. 
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3.1.1 Effective Field Theories 

It was shown by Steven Weinberg [12] that to construct the most general low-

energy Lagrangian as an effective theory [61], it is sufficient for the effective 

Lagrangian to be local and to incorporate the symmetries of the high-energy 

completion of the theory. This effective theory is non-renormalisable just as the 

Fermi interaction is not a renormalisable interaction but is perfectly well-defined 

up to the mass of the weak interaction gauge bosons. 

The first step is to find the symmetries of the underlying theory, by studying 

the QCD Lagrangian. The quark sector of the QCD Lagrangian is given by 

where QL and QR are vectors of Weyl fermions. These can be defined in terms 

of Dirac fermions using the chiral projections: 

1 ± 15 
QL,R= -2-Q , 

- -1 ± [5 
QL,R = Q 2 (3.2) 

Considering the generic case of N f flavours of quark, Q is an Nrvector of Dirac 

fermions. If M = 0, there is a symmetry that acts on the left and right-handed 

quarks with different charge as U(3)L X U(3)R: 

(3.3) 

where UL,R E U(Nfh,R. In fact, the U(l)L - U(l)R (axial) part of this product 

symmetry group is anomalous. This is broken by instant on contributions asso-

ciated with the QCD e-angle. Most of the research in this thesis is concerned 

with exactly this anomalous part of the symmetry. In the 't Hooft limit (as 
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~ -+ 0), the anomaly vanishes and the chiral symmetry is restored as a quan­

tum symmetry. This means that the U (1) A symmetry is a good symmetry in 

the strongly-coupled theories investigated here. The vector U(l) symmetry is 

also preserved but simply corresponds to quark number and will not be discussed 

further. 

If an equal mass is introduced for each quark, the product symmetry is broken 

to the diagonal vector subgroup where the left- and right-handed quarks can still 

be rotated, but must have the same charge under the rotation group. In this 

case, the axial subgroup is explicitly broken. When a general set of quark masses 

is added, the vector symmetry is also broken. The entire SU(3)L x SU(3)R 

symmetry group can be preserved in the presence of quark masses if the quark 

mass matrix is interpreted as being a spurion which transforms under 

(3.4) 

It is important to understand whether chiral symmetry is a good classical symme­

try in QeD. The masses of the u and d quarks can be neglected as they are much 

smaller than AQCD , which is the only other scale in the theory. It is debatable 

if the s quark mass is significant and this is an important issue in lattice QeD. 

However, it is of no concern here as, in general, only a single flavour of quark is 

considered. In this research, a QeD-like theory is studied with N j quarks, all 

with m « AQCD . Therefore, classically, the chiral symmetry can be treated as a 

good approximate symmetry. At low energies, however, strong coupling physics is 

believed to alter the symmetries of the theory. There are several pieces of evidence 

to suggest that only some of the classical symmetries remain in the full quantum 
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theory, the most obvious being the great hierarchy in the QeD spectrum. The 

pions (II-,IIo,II+) and the kaons (K±,KO,KO) are the lightest mesons, with the 

pions being around four times lighter than the kaons. Most other hadronic states 

are at least twice the mass of the kaons. As all hadrons are made of the same 

basic building blocks, it is intriguing that a few of them are substantially lighter 

than the others. 

The second piece of evidence is the absence of a parity-doubled spectrum. If 

the chiral symmetry were good, there would be a positive parity hadron for every 

negative parity hadron, which is clearly not the case. The proton is isospin ~, 

spin ~, positive parity and has a mass of 938Mev, whereas its parity partner has 

a mass of around 1500Mev. 

From this evidence, it appears that chiral symmetry is broken. The simplest 

way to break this symmetry spontaneously is to induce a condensate for the 

quark bilinear qq. Simulations on the lattice support this conjecture and the 

quark bilinear condensate model is used throughout this thesis. 

It is useful to summarise the conjecture of chiral symmetry breaking. In the 

small quark mass limit, the vacuum breaks the chiral symmetry. This broken 

symmetry will have associated with it a set of pseudoscalar, pseudo, Goldstone 

bosons - the pions. The interaction of the mesons with the quark bilinear con­

densate provides the dynamical mass needed to explain the discrepancy between 

the constituent quark mass and the hadron spectrum (see figure 3.1). 

The following expression defines the coupling between the pions and the axial 
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Figure 3.1: Effective mass induced by the interaction of hadrons with the quark 

condensate. 

vector current: 

(3.5) 

where Ta is a generator of the broken symmetry group and In is the pion decay 

constant. For an SU(2) chiral symmetry, three pions are expected, which consist 

of only two types of quark. 

3.1.2 The Pion Lagrangian 

Having found the degrees of freedom and the symmetries of the high energy 

completion of the pion theory, it should be possible, according to Weinberg, 

to build a phenomenological effective Lagrangian which respects the remaining 

unbroken symmetries. It was shown by Vafa and Witten that these symmetries 

are not broken spontaneously [64]. The most general chiral Lagrangian [62] is 

given by 

if Tr (DP,U Dp,Ut ) + v3Tr (MUt + U Mt) , 

LlTr (DP,UDp,Utf + L2Tr ((DP,UDvUt)(Dp,UDvUt)) + L3(DP,UDp,UtDvUDvUt) 
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(3.6) 

where 

(3.7) 

The final expression indicates that the symmetry is non-linearly realised on the 

pions. The terms L 1, ... , L12 are known as the Gasser-Leutwyler coefficients and 

are the coupling constants of the pion effective Lagrangian. It is possible to 

expand the exponential and write a series expansion in the pion fields. For a mass 

matrix M = mqINj and a normalisation of the SU(Nj) generators, Tr TaTb = i5;b, 

the first terms in the expansion are 

(3.8) 

From the path-integral formalism of quantum field theory, mq is a source for the 

quark bilinear condensate. For every quark flavour there will be a contribution 

to the total vacuum energy, so as 

< qq >= ~ dZI ' 
Z dm m=O 

(3.9) 

the following equality can be made 

1 
v

3 = 2" < qq > (3.10) 

The pion mass and quark mass can be related by studying the term which is 

quadratic in the pion fields. This is the Gell-Mann-Oakes-Renner relation: 

(3.11) 

It is interesting to study this relationship from the dual gravity perspective using 

Ads/eFT techniques. 
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3.2 Naive Dimensional Analysis 

It is possible to calculate the strength of the non-renormalisable couplings in an 

effective field theory using a method, formulated in [65, 66], known as naive-

dimensional-analysis. This method works for QeD-like theories which may differ 

in numbers of colours and flavours where, below some scale, chiral symmetry is 

broken and the theory is given in terms of an effective chiral Lagrangian. The 

method of calculation is simple and depends on only two parameters: the value 

of the pion decay constant, in, and the value of the strong coupling constant, A. 

The method is given by a straightforward algorithm: 

1. Each coupling will have an overall factor of t;A2. 

2. Each strongly interacting field (pions for example) comes with a factor of 

1 {; . 

3. p factors of A are included to get the correct dimensions of the coupling. 

The pion decay constant can be written in terms of the strong coupling constant 

and the number of colours: 

(3.12) 

From this, the order of the other coefficients in the chiral Lagrangian can be 

calculated. For instance, the Gasser-Leutwyler coefficient L11 is given by 

(3.13) 
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In chapter 5, this value is compared with that calculated using the AdS/eFT 

correspondence. 
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Chapter 4 

Flavouring the Ad85 x 85 

Geometry 

4.1 Quarks in the AdS/CFT Correspondence 

As it stands in chapter 2, the AdS/CFT correspondence has many useful ingre­

dients which allow the study of both supersymmetric and non-supersymmetric, 

strongly-coupled gauge theories. However, there is one key ingredient missing 

which will make the gauge theories significantly more like QCD: this is the intro­

duction of quarks [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. 

All of the matter discussed in chapter 2 was in the adjoint of the SU(Nc ) colour 

group. This is because both ends of the open strings start on the same type of 

brane - a D3-brane - and so are indistinguishable. To study quarks it is necessary 

to introduce a new object which will allow open strings that start on a D3-brane 

and end on this new object. These strings are labelled in the fundamental of the 
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colour group, and the fundamental of the group determined by the new objects. 

These new objects are D7-branes. By probing a background sourced by D3-branes 

with a D7-brane, the strings stretching between the two are colour-fundamental 

hypermultiplets. Chapters 4-9 detail the introduction of quarks via D7-brane 

probes in various supergravity backgrounds. D7-branes, rather than any other 

higher dimensional object, are introduced due to the number of supersymmetries 

that they preserve, as well as the local symmetries of the fields living on their 

world-volume. This is discussed in section 4.1.1. 

4.1.1 The D7-Brane Probe 

The AdS5 x S5 metric can be written in the form 

2 R2 6 
2 U 2 "" 2 ds = R2 dx // + -::z;: ~ dUi , ( 4.1) 

i=l 

which is dual to the large Nc , N = 4 gauge theory at the origin of its moduli-

space. A D7-brane probe can be chosen to fill the x / / directions and four of the 

Ui directions. This is illustrated in table 4.1, where the dimensions filled by both 

the D3- and D7-branes are shown. 

Table 4.1: D3- and D7-brane embedding in the AdS5 x 8 5 geometry. Filled di-

mens ions are marked with crosses, those perpendicular to the world-volumes are 

denoted by a dot. 
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The configuration is illustrated in figure 4.1 where a stack of N f D7-brane probes 

is in a background sourced by a large number of D3-branes. 

"'" Fields in bifundamental 
~ of tile flavour group 

Quark hypermultiplet c=::> 

o 0 

D7·brane probes 

o o 
D3·branes interacting Wit/I 

closed strings 

Figure 4.1: D7-brane probes in the presence of a background sourced by D3-

branes. The open strings between the two live in a quark hypermultiplet. The 

open strings on the D7-brane correspond to mesons and their superpartners and 

the fields living on the D3-brane make up Nc N = 4 hypermultiplets. 

Due to the limited number of dimensions of a piece of paper, figure 4.1 is 

illustrated with only one of the two directions perpendicular to the D7-brane 

world-volume drawn explicitly. These two directions correspond to scalar fields 

as discussed in more detail in section 4.2. 
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The D3-brane has three complex scalars living on its world-volume. The 

position of the brane, in the six perpendicular directions to its world volume, give 

the magnitude of the scalar condensates. There is an interaction term between 

the N = 2 chiral supermultiplet (connecting the D3 and D7-brane stack) and 

the N = 4 supermultiplet, A, living on the brane. When the scalars of the 

supermultiplet, Ai, acquire a vev by moving in the perpendicular direction away 

from the D7-branes, the vev of the scalar associated with the directions U5 and U6 

(A5,6), which is also perpendicular to the D7-brane stack, corresponds to giving 

a mass to the quarks: 

(4.2) 

The existence of this interaction is particularly important when the flavour group 

is extended in section 5.6. 

To calculate the number of supersymmetries preserved by a D7-brane in a D3-

brane background, the result of a system of Dp and Dp'-branes, where Ip-p'l = 4, 

is used [84J. The simplest case is p = 5, which preserves SO(5, 1) x 50(4) space­

time symmetry. This background preserves eight unbroken supersymmetries 

which corresponds to a world-volume theory on the D5-brane of a six-dimensional 

N = 1 field theory. This D-brane setup can be T-dualised twice in two of the 

spatial directions parallel to the D5-brane, which results in a D3-D7 system. The 

four-dimensional field theory on the D3-brane has the same number of super­

charges as the theory before T-dualising, and therefore this corresponds to an 

N = 2 field theory. The introduction of a D7-brane has broken half of the su­

persymmetries of the original D3-brane configuration. This is the same number 
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of broken supersymmetries as the D3-brane probe off moduli-space. The probe 

limit of the D7-branes means that, though sources are added for the quarks (see 

figure 4.1), the probe does not back-react with the metric. This corresponds to 

the quenched approximation where quark loops are neglected. That is, the D3-

branes (and therefore the gauge fields) only feel the presence of the D7-branes 

through the quark sources and not through higher dimension quark operators (ie. 

quark loops). This is exactly the same as the quenched approximation in lattice 

QeD. 

Though the }v = 2 theory has a jJ-function proportional to ~, in the probe 

limit, the theory is conformal. Therefore, as long as the space being probed is 

asymptotically Ad55 x 55, the fields living on the D7-brane can be understood in 

exactly the same way as those living on a D3-brane probe. 

The fact that a D7-brane is probing a D3-brane background means that there 

is no charge to stabilise the D7-brane from decay, so it must be stabilised in 

another way. This is achieved by wrapping the brane on a non-trivial three-cycle 

in the five-sphere. 

The full action for a D7-brane in this background is given by 

For now, the field strength of the U(l) gauge field will not be studied (but will be 

in chapter 5). This means that the action is calculated from the term associated 

with the pullback of the ten-dimensional metric onto the D7 world-volume. In 

section 4.2.3, when the gauge-fields are reintroduced, only those gauge fields with 

no R-charge corresponding to vectors with no indices on the three-sphere will be 
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of interest. The WZ term vanishes for this case. 

4.2 The D7-Brane Embedding 

The D7-brane embedding is chosen such that the directions U5 and U6 are or­

thogonal to its world-volume [69J. Throughout this thesis, static gauge is always 

used in which the space-time directions on the D7-brane coincide with the ten­

dimensional space-time directions in its rest-frame. The distance between the 

D7-brane and the stack of D3-branes, sets a scale and breaks the conformal sym­

metry of the gauge theory. This distance gives the mass of the lightest string 

states in the N = 2 hypermultiplets which include the quarks and therefore 

mq ex L. As there is a U(l) '" 50(2) symmetry between U5 and U6, there is a 

freedom to choose a direction in this plane to separate the D7-brane from the 

D3-brane stack. This U(l) symmetry corresponds to the axial symmetry of a 

single-flavour QeD model. In QeD, as explained in chapter 3, this symmetry 

is anomalous. However, in the 't Hooft limit the symmetry is restored. The 

Goldstone boson associated with this symmetry in QeD is the r/. In the 't Hooft 

limit, the pions and the r/ are degenerate in mass so throughout this thesis, the 

Goldstone mode for this spontaneously broken symmetry is called a pion. 

The excitations of the D7-brane in the directions perpendicular to its world­

volume correspond to scalar fields, which are singlets under the colour group and 

in the adjoint of the flavour group. These states include mesons. There is also a 

U(l) gauge field living on the brane which will be discussed in chapter 5. As the 

theory is supersymmetric, there will be other states, including fermions, living on 
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the brane but these are not explored in this research. 

Due to the supersymmetry, a fermion bilinear condensate cannot be induced 

meaning that, though quarks have been introduced, the chiral symmetry is not 

expected to be broken as it is in QeD. Non-supersymmetric deformations must 

be studied to find this phenomenon, which form the bulk of this thesis. However, 

to understand the D7-brane probe and the dictionary between the fields on the 

brane and the degrees of freedom of the chiral Lagrangian, the simplest example 

to start with is the D7-brane probe in an Ad85 x 85 background. 

Neglecting the gauge field living on the brane, the DBI action for the D7-brane 

is given by 

( 
OU5 2 OU6

2
) R2 (OU 5 2 OU6

2
) 

1+ ~ +~ +2 ~ +~ , up up U uX ux 
( 4.4) 

where the ten-dimensional metric has been written in the form 

2 R2 
2 U 2 22222 

ds + 2dx// + 2(dp + P dD3 + dU5 + du6) , 
R U 

(4.5) 

where u2 = p2 + u~ + u~. Before examining the x-dependent fluctuations of 

the scalar fields (corresponding to mesons), it is important to understand how 

the D7-brane lies in the p direction. In the large p limit, p corresponds to the 

energy scale of the field theory on the brane. As explained in section 2.2.2, the 

p-dependence of the fields will provide information about the vev and source for 

the scalar fields. Due to the existence of the U(l) symmetry in the (U5, U6) plane, 

there is a freedom to choose in what direction the D7-brane flows. The D7-brane 

is chosen to flow away from the D3-branes in the U5 direction. In this limit, 

where the x-dependence of the fields is neglected, the square root is expanded 

57 



to quadratic order in the scalar fields and the equation of motion for U5 (p) is 

calculated: 

(4.6) 

At the boundary of the AdS space where U 00, this equation has solution 

C 
U5 = m + 2' . (4.7) 

p 

As U5 has conformal dimensions of a mass in the four-dimensional field theory, 

the parameter m corresponds to a mass for the qq operator and the parameter c 

(which has mass dimension three) corresponds to the vev for the qq corresponding 

to the quark bilinear operator. 

4.2.1 Stable Brane Flow Calculation 

For a given mass, it can now be investigated whether there is a particular value 

of the condensate which gives a consistent field theory. For a consistent field 

theory, the D7-brane must be well-behaved throughout its flow. The field theory 

of interest must have a unique description at a given energy, meaning that as 

the D7-brane flows in the p direction from 00, the sum u~ + p2 must decrease 

monotonically. There is also a symmetry of the metric given by p --+ - p. A 

brane configuration with a kink will have an infinite contribution to the action. 

This means that the well-behaved solutions must be configurations that have 

opu5lp=o = 0 and u5lp=o =I- ±oo. Figure 4.2.1 shows three flows for m = 1 with 

c = -1, 0 and 1. 

For any mass, a non-zero condensate makes the flow unstable. As expected 

for a supersymmetric theory, a condensate is not allowed to form. In this case, 
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Figure 4.2: D7-Brane flows for m = 1 with several initial conditions for the 

condensate value in an AdS5 x S5 background. Only the c 0 solution defines a 

consistent theory. 

the fact that a condensate cannot form can be shown analytically from equation 

4.2. The full solution to this equation is known for all values of p and is given by 

[
1 1 7 6] 

U5(P) A· i· hypergeom 6' 2' 6' p + B . (4.8) 

This function is complex unless A 0, meaning that only a constant value of U5 

is well-behaved. This agrees with the numerical analysis shown in figure 4.2.1. 

The symmetries of the system can now be studied. Before the D7-brane was 

placed in the background, there was a U(l) symmetry in the (U5, U6) plane. There 

was a choice of where to start the flow in the UV. If the flow starts at U5 = U6 = 0, 

because no condensate is allowed, and from the numerical analysis, this flow will 

remain at U5 = U6 = 0 all the way into the IR. This situation preserves the U(l) 

symmetry from the UV to the IR of the theory and corresponds to a theory with 
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massless quarks. Starting the flow in the UV at a non-zero value in the (U5' U6) 

plane, corresponds to a non-zero quark mass which explicitly breaks the U(l) 

symmetry. The aim of this thesis is to find backgrounds where this symmetry 

is broken dynamically by a condensate, even in the limit that there is no quark 

mass 

4.2.2 Meson Mass Spectrum 

The next step is to calculate the spectrum of mesons in this background [69J. 

Mesons correspond to x-dependent fluctuations of the fields U5 and U6 on the 

D7-brane world-volume. To find the meson spectrum, the mesons are treated 

as small fluctuations on the brane surface, meaning that the DBI action can be 

expanded to quadratic order giving no interactions between meson fields. Because 

of this, the mesons can be treated as freely moving plane-waves which will allow 

their spectrum to be calculated. In this case, the p-dependent flow of the brane 

(U5) is a constant, so the following field redefinition is possible 

U5=m+x(x,r), U6=¢(x,r) , (4.9) 

where the U(l) freedom has been utilised to choose the p-dependent flow to be 

the U5 direction. The induced metric on the D7-brane can be written as 

(4.10) 

where p2 = u2 - L2. Land m are used interchangeably here; there is a constant 

of proportionality between the two, though for this study of the qualitative be-

haviour this is unimportant. Then the Lagrangian for the fields X and ¢ is given 
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by 

(4.11) 

The equations of motion for ¢ and X are identical, so these fields are generically 

labelled <I> whose equation of motion is 

(4.12) 

This equation differs from that in [69J where R-charged fields, which are ignored 

here, were considered. The non-interacting, plane-wave assumption for the x-

dependence of the mesons is given by 

<I> = f (p )eik
.
x 

, ( 4.13) 

where k 2 = - M2. Again, only those solutions which are normalisable correspond 

to consistent field theories. M2 (equivalently k 2 ) is tuned to find the well-behaved 

field solutions. Equation 4.12 has a UV asymptotic solution, given by 

b 
f(p) = a + 2' . 

p 
(4.14) 

The field qq has conformal scaling dimension three in the UV, therefore, because 

<I> has scaling dimension one, the parameter b has the correct dimensions to cor-

respond to the qq operator. It is possible to solve the above equation exactly in 

terms of Legendre polynomials to find the meson spectrum. However, this ana-

lytic luxury will not be available in the more complicated geometries so numerical 

calculations are performed at this stage in order to compare to the analytic solu-

tions found in [69J. To find the numerical solutions, a shooting technique is used. 

A trial mass is used in equation 4.12 which is then solved numerically with the 
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correct UV boundary conditions for f (p) (a = 0) and the IR behaviour is studied 

(note that the value of b drops out of the equation of motion). If the solution is 

not well-behaved in the IR, the value of M2 is altered slightly and the process 

is performed again. M2 is tuned through a range of values. Those values which 

produce well-behaved flows give the mass spectrum. Instead of shooting one trial 

mass after another, there is a simple algorithm for finding this spectrum: 

• Define the equation of motion for the field f (p) in terms of an undetermined 

parameter M. 

( 4.15) 

• Define a function which numerically solves the equation of motion for the 

field with the correct UV boundary conditions. 

func(p, M) = solve { eq1If(oo)=1:r } (4.16) 

• Define a new function 

( 4.17) 

and plot this as a function of M . 

• The values of M in this plot where the value changes from + 1 to -1 define 

the most stable flows (those which don't asymptote to ±oo) and therefore 

give the meson mass spectrum. 

Figure 4.3 illustrates the output for this spectrum calculation. This example is 

given for L = R = 1. 
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Figure 4.3: Calculation of the meson spectrum for L = 1 (and R = 1) in the AdS 

background. The dots indicate the spectrum from the analytic calculation. 

The numerical eigenvalues in figure 4.3 agree to a very high accuracy with the 

analytic solution for the R-chargeless meson spectrum, given by 

M(n) ( 4.18) 

This is an important result which means that the numerical analysis which 

gives the same answer as the analytical result can be used in more complicated 

geometries where exact results will not be available. 

As the quark mass (given by L) is reduced, the meson spectrum gets closer 

and closer to zero. In the numerical studies as well as the above analytic result, 

a massless meson spectrum is found in the massless quark limit. 

In this case, their is no potential felt by the D7-brane. For this reason, the 

meson spectrum associated with the U5 and U6 fields coincide. This will not be 

the case when there is a potential felt by the fields living on the brane. 
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One important point to note here is that the meson mass is proportional to 

the quark mass. This relationship is expected to change in theories where chiral 

symmetry breaking is dynamically induced. 

4.2.3 Vector Meson Spectrum 

Now, the U(Nf ) gauge field living on the D7-brane is reintroduced in the DBI 

action. By including only the background x-independent values for the U5 direc­

tions, the spectrum for the vector mesons can be calculated in exactly the same 

way as the pseudo-scalar meson spectrum by giving an ansatz for the gauge field 

potential of the form 

( 4.19) 

where eji, is a unit vector in the x / / directions and g(p) IS a function to be de­

termined using the equations of motion. For this ansatz, the vector mesons have 

exactly the same spectrum as the pseudo-scalar mesons. Again, this is not sur­

prising as they live in an N 2 hypermultiplet so are expected to have the same 

mass. In the non-supersymmetric theories studied from chapter 5 onwards, this 

degeneracy is not expected. 

4.2.4 The Signatures of Chiral Symmetry Breaking 

At this point, it is constructive to postulate what sort of behaviour is likely in a 

theory which does exhibit chiral symmetry breaking. The aim is to find a theory 

with a U(1) symmetry in the UV which is broken dynamically in the IR. To have 

a theory with this U(l) symmetry in the UV, the quarks must be in their massless 
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limit. It will then be necessary to have a potential which forces the brane out from 

the origin of the (U5, U6) plane to break the U (1) symmetry dynamically. Because 

of the original symmetry, there should be a freedom in choosing which direction 

to break the U(l). This dynamical symmetry breaking will be associated with a 

qq condensate. An understanding of the Higgs mechanism indicates that there 

will be light modes associated with oscillations in the flat directions orthogonal to 

the condensate. These modes will be the Goldstone bosons of the spontaneously 

broken symmetry. It will be interesting to calculate the relationship between the 

meson mass and quark mass in the massless limit. It has been shown in this 

chapter that in the case where there is no chiral symmetry breaking, there is a 

linear relationship between the quark and meson mass. This is in contrast to the 

relationship predicted by the effective action of a theory with chiral symmetry 

breaking which predicts a quadratic relationship (equation 3.11). 
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Chapter 5 

The Constable-Myers geometry 

In Chapter 4, quarks were introduced into the field theory dual to the AdS5 x S5 

background by embedding D7-brane probes. This simple example has provided 

some insight into the techniques that are essential for this chapter, where quarks 

are introduced to a more realistic field theory. Before adding quarks to this non­

supersymmetric, non-conformal field theory, the background geometry and the 

field theory in the absence of quarks are studied. 

5.1 The Background 

The Constable-Myers dilaton flow geometry, first studied in [85], is a consistent 

solution to the type lIB supergravity equations of motion. Similar geometries 

have been studied in [86,87]. Though it has a naked singularity, its analytic form 

and asymptotic behaviour, as well as its non-supersymmetric nature, make it an 

ideal candidate to use for studying chiral symmetry breaking in its field theory 

dual. The solution is asymptotically AdS5 x S5 in the UV limit and has a non-
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trivial profile for the dilaton and five-form field strength. The set of solutions are 

parameterised by a single dimensionful parameter b which characterises the size 

of the singularity. The background in the Einstein frame is given by the metric 

(5.1) 

where 

H 

(5.2) 

For future convenience, the flat Euclidean six-plane can be written as 

6 

I:dw; 
i=l 

(5.3) 

where b is the dimensionful parameter which sets the scale at which the super-

symmetry and conformal symmetry are broken, and R is the radius of the AdS 

space and five-sphere. 

5.1.1 Supersymmetry in the Constable-Myers Geometry 

To calculate whether a given background allows any degree of supersymmetry, the 

Killing spinor equations are studied. From [88J, an integrability condition relating 

the Ricci tensor to the variation of the dilaton indicates when a background is 
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supersymmetric: 

(5.4) 

(5.5) 

T = (5.6) 

where the metric has been written in the form: 

(5.7) 

and Rmn (h) is the Ricci scalar of the metric on the six coordinates perpendicular 

to the D3-brane stack. In the case of the dilaton flow geometry, there is an 

undeformed Euclidean six-plane so the relevant metric is 

(5.8) 

The Ricci scalar vanishes for this metric. The vector Pm has a single non-zero 

component given by 

So that the right hand side of equation 5.4 is 

2w6 ( 40b8 - R 8 ) 

(b8 _ W8)2 

(5.9) 

(5.10) 

Clearly, the integrability condition is not satisfied unless b = 4 or b = 0, 
40E 

corresponding to the AdS5 x S5 limit of this geometry, at which point the dilaton 

is a constant, and the integrability condition is satisfied trivially. 

5.1.2 The Singularity 

A black-hole horizon is a region of space-time where the Killing vectors change 

from time-like to space-like. A vector field defines a flow on a manifold, and 
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the change of another vector or tensor field as it travels along this flow can be 

calculated. A Killing vector defines a flow which preserves the metric as it flows 

on the manifold: 

Lxg = 0, (5.11) 

defining the Lie derivative in the direction of the Killing vector X. The number of 

Killing vectors provides a measure of the isometries of a space. Ad-dimensional, 

maximally symmetric space, for instance Euclidean flat-space, has d(dt) Killing 

vectors corresponding to d translations and d(d;l) rotations. 

It has been shown that, in the dilaton flow geometry, this boundary does not 

exist for w 2: b; therefore the singularity is naked. It may be that when stringy 

corrections are included in the calculation of this geometry, the D3-brane dis­

tribution sourcing the background becomes fuzzy and the naked singularity is 

removed. In the current context, the existence of a naked singularity is unim­

portant. As discussed in chapter 2, the 't Hooft limit corresponds to a small 

curvature in the supergravity background. In this case, as w tends to b the cur­

vature tends to infinity. Assuming all calculations are performed in the region 

away from the singularity, the supergravity approximation holds. In fact, in the 

't Hooft limit, as long as calculations are not performed on the singularity, the 

radius of the space can be scaled (by increasing R) such that the region of interest 

is sufficiently far from the singularity to be flat compared to the string scale. 

In this background, b is a free parameter, which when varied can give qualita­

tively different geometries. For instance, for b < R· 4o-k, the dilaton is complex, 

and appears to correspond to a complex coupling constant on the gauge theory 
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side. Other values of b are studied in different contexts in the following sections 

to understand how this affects the physics. 

5.1.3 Dilaton Asymptotics in the Constable-Myers Geom-

etry 

To understand the gauge theory dual of this geometry, the asymptotics of the 

dilaton are studied. In the large p limit (UV of the field theory), the form of the 

dilaton is 

(5.12) 

The coefficient of ~ has scaling dimension four and is a singlet under the isome­
p 

tries of the five-sphere. The dilaton is a massless, p-dependent supergravity field 

and therefore this term corresponds to the R-singlet operator of dimension four 

< Tr F2 > - and the size of this vev is given by the coefficient of the p4 term. 

This deformation breaks the supersymmetry from N = 4 to N = 0 on the gauge 

theory side. If the relevant operator addition is to be real, the dilaton must be 

real. The addition of a complex vev would not make sense and so b is always set 

1 
larger than R . 40- 8. 

5.1.4 Confinement and Glueballs in the Constable-Myers 

Geometry 

Before moving on to chiral symmetry breaking in the field theory dual of this 

supergravity background, it is worthwhile reviewing some of the previous research 

into this geometry [85J to discover its properties in the absence of quarks. 
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Confinement in a four-dimensional field theory can be studied by calculating 

the Nambu-Goto action for a fundamental string in the geometry dual to the 

field theory. This was first argued in [89J where confinement was studied by 

calculating the energy of a quark-antiquark pair as a function of their separation. 

The AdS/CFT correspondence provides a method for calculating expectation 

values of field theory operators in the large 't Hooft coupling limit. In this case, 

the operator in question is the Wilson loop, given by 

(5.13) 

where the integral is taken around a closed loop, C, and A is the gauge field, 

path ordered by the operator P. The Wilson loop is related to the holonomy 

of the gauge connection and the operator acts to create a quantum excitation 

which is localised on the loop. In Euclidean field theory with a square contour, 

defined with sides of length T and L, it is possible to calculate the energy of a 

quark-anti quark pair by finding the expectation value of the Wilson loop in the 

T -----+ 00 limit. This is given by 

< W(C) >= A(L)e-TE(L) , (5.14) 

where E(L) is the energy of a quark-antiquark pair and A is the amplitude for 

the Wilson loop. It was conjectured by Maldacena that this expectation value is 

dual to the fundamental string in a supergravity background: 

< W(C) >rv e-s , (5.15) 

where S is the Nambu-Goto action for the string and is equal to the area of the 

string world-sheet. Therefore, it is possible to calculate the energy of a quark-. 

71 



antiquark pair by studying the action of a fundamental string. The displacement 

of the quark and antiquark pair is equal to the length of the string and confinement 

corresponds to a minimum energy configuration for a finite string length. In pure 

Ad85 X 85 , quarks do not confine as the size of their bound-state would set a 

scale and break the conformal symmetry. 

Confinement 

In the Constable-Myers geometry, a string at position LV has a minimum action 

when its length is 

4 
rmin 1 

( 1~1+8)"8 _ 1 
I~I-o 

(5.16) 

The action is minimised for finite r min provided, b > -4- [85, 86]. The value of 
20E 

r min tends to infinity as this bound is saturated and, and therefore this bound 

must be obeyed for confinement to be exhibited in the dual field theory. Note 

that this bound is stronger than the reality bound for the dilaton discussed in 

section 5.1.2. It is interesting that, when the above bound is saturated and the 

string length tends to infinity, the QCD string tension is the same as that for a 

string in fiat, empty space. 

Glueballs 

The glueball spectrum for this background has also been investigated [85]. The 

details of this calculation are covered fully in chapter 10. Using the WKB ap-

proximation, this background is found to give a discrete glueball spectrum with 

a mass gap. The WKB approximation is a common method for solving simple 

72 



Schrodinger-type potential problems perturbatively. However, in this research, 

numerical methods are generally relied upon instead. 

5.2 Chiral Symmetry Breaking 

Having investigated the field theory dual of the Constable-Myers geometry in 

the absence of fundamental matter, quarks are introduced using the D7-brane 

techniques developed in chapter 4, in order to study chiral symmetry breaking. 

Chiral symmetry breaking was first discovered in the dilaton flow geometry us-

ing the AdS/CFT correspondence in [71] and has subsequently been investigated 

in several other backgrounds [83, 76, 90, 91]. The method is the same as that used 

in the non-deformed, AdS5 x S5 case as studied in chapter 4. A D7-brane is used 

to probe the geometry to introduce fundamental matter, including quarks, into 

the field theory. By calculating the world-volume action, a U(l) gauge theory 

with mesons can be studied. In the case of the Constable-Myers geometry, as the 

only deformation is a non-constant dilaton and five-form field strength, there is 

no contribution to the WZ term for the D7-brane world-volume action (unless an 

R-charged field strength is studied). Just as in the AdS5 x S5 case, for the D7-

brane to be stable it must wrap a three-cycle. The Constable-Myers background 

is particularly simple because the five-sphere is undeformed and so there is an 

undeformed three-cycle to wrap. The D7-brane lies in the Minkowski space-time 

and the p-direction, and wraps the three-sphere. The two directions orthogonal 

to the brane are parametrised in terms of a complex coordinate, defined as 

(5.17) 
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The dimensions filled by the D7- and D3-brane directions are indicated in table 

5.1 

Table 5.1: D3-brane and D7-brane embedding in the Constable-Myers geometry. 

Filled dimensions are marked with crosses, those perpendicular to the world-

volumes are denoted by a dot. 

There are two free dimensionful parameters in the theory: R, the AdS radius, 

given by R2 = V 47rgsN ci, and b which determines the scale of conformal and 

supersymmetry breaking. At this stage all dimensionful quantities are written in 

units of R, meaning that b ---+ Rb. The mass scale of the dual gauge theory is 

then 

Rb 
2m}:' ' 

(5.18) 

which is the mass of a string with length b. Though it is understood from section 

5.1 that changing b alters the properties of the gauge theory, at this point it is 

set to one, setting the QCD scale. In section 5.8, this constraint will be relaxed 

and chiral symmetry will be sought for varying values of b. 

With this constraint on band reparametrisation of dimensionful quantities, 

the metric is 

(5.19) 
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where 

H = (W4 + 1)" _ 1 
w4 -1 ' 

(5.20) 

The Einstein-frame DBI action for the D7-brane is given by 

(5.21) 

As in chapter 4, P[GabJ is the pullback of the background metric onto the D7-

brane world-volume. Though the pullback of the metric is rather complicated, 

with 28 of the 49 elements being non-zero, the determinant is relatively simple. 

Most of the cross-terms in the determinant cancel out leaving the following action 

for the D7-brane 

(5.22) 

where 

(5.23) 

5.2.1 Stable Brane Flow Calculation 

As in the undeformed geometry in chapter 4, quark fields are introduced by 

embedding a D7-brane probe. The scalar fields living on the brane correspond 

to colourless operators in the bifundamental of the flavour gauge symmetry. The 

first aim of this investigation is to study the mass and condensate of the scalar 
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fields associated with the directions perpendicular to the brane-probe. The x­

dependent excitations of the scalar fields (corresponding to mesons) are small 

compared to the p-dependence, and to first order are not included in the action. 

Just as in the undeformed geometry, it is important to note the symmetries of 

the background ten-dimensional space. The translational symmetry of the three 

directions, W5 ,W6 and p, is broken by the singularity. However, there is an 50(2) 

symmetry between the W5 and W6 directions. This is broken by the presence of 

the brane, unless the brane has the solution W5 (p) = W6 (p) = 0 for all values of p. 

Though this is a solution of the equations of motion, it is not a physical solution 

as it flows directly into the singularity. An example of the possible symmetry 

breaking and symmetry preserving solutions are illustrated in figure .5.1 

Figure .5.1: Plot illustrating the symmetries of the Constable-Myers geometry. 

Toy examples of symmetry breaking and symmetry preserving flows are also il­

lustrated. 
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The equation of motion for the complex field <I> as a function of p is given by 

~ (erf;G(p, I<I>I) d<I» 

dp VI + 1~!12 dp 

G(p,I<I>1) 

b4p3<I>erf; (4b4 
- V 40 - yfs(p2 + 1<I>12)) 

(p2 + 1<I>12)5 

3 (p2 + 1<I>12)4 - b8 

P (p2 + 1<I>12)4 

5.2.2 The UV Scalar Field Boundary Conditions 

(5.24) 

As the gauge-gravity correspondence is only quantitatively understood when the 

gravity side is Ad85 x 85 , the UV limit of this equation of motion, where the 

space returns to the near-horizon limit, must be studied. It is in this limit that 

the values of the couplings and vevs for relevant operators can be calculated. In 

this limit, the equation of motion is given by 

~ (p3
d

<I» = 0 . 
dp dp 

(5.25) 

As there is an 50(2) symmetry in the background (the (W5, W6) plane), the phase 

of the function <I>(p) is a free choice. In this case, the choice is made to flow in the 

direction of real <I>. Therefore, the solution to the Ad85 x 8 5 equation of motion 

is 

c 
<I>=m+2"' 

p 
(5.26) 

This choice of phase corresponds to a brane solution which flows in the W6-

direction and remains at W5 = 0 throughout the flow. The parameter In, in 

equation 5.26, is interpreted as a source (dimension one) and parameter c as a 

condensate (dimension three) for a qq operator. 

Having calculated the UV boundary behaviour for the scalar fields, the flow of 

the brane into the IR is investigated. As in the case of Ad85 x 85 , the solutions 
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to the equation of motion which describe real physics in the dual field theory are 

those which are well-behaved in the IR. This is defined by flows which neither fall 

into the singularity nor asymptote to infinity as the brane flows in. They must 

also monotonically approach the singularity all along their flow, so that there is 

a unique field theory for each radial slice corresponding to an energy scale. 

For a given value of m, corresponding to the quark mass, a range of values of 

the condensate are tested to find which one gives a well-behaved brane solution. 

This involves flowing from the UV to the IR numerically. However, using the 

symmetry of the background, at p = 0 the derivative of the scalar field must 

vanish. The equation of motion with this boundary condition can then be solved 

to find the flow from the IR to the UV. The value of the mass and condensate 

for the given IR boundary conditions can be found by calculating the behaviour 

in the UV asymptotic region. 

5.2.3 Numerical Solutions 

When these numerical calculations are performed, and the mass and condensate 

are calculated, there appear to be four quantitatively different types of behaviour. 

Two of these are shown in the plots in figure 5.2. The other two are mirror images 

of these plots in the p-axis. The upper plot corresponds to solutions with positive 

mass and positive condensate. Due to the symmetry <I> ~ -<I> there are also 

solutions with negative mass and negative condensate. The lower plot shows a 

set of solutions with positive mass and negative condensate. 

From the flows in Figure 5.2 and their mirror images, a graph of the consistent 
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Figure 5.2: D7-brane flows about the spherical singular region. The upper di­

agram shows those flows with positive condensate and mass while the lower di­

agram illustrates those with negative condensate and positive mass. For each 

graph, the values of m and c are annotated in the form (m, c) for the two highest 

mass solutions. 

condensate values against mass is plotted in figure 5.3. 

It is worth noting at this point, that the relation between mass and condensate, 

though not known analytically, is found to be of a logarithmic nature as shown 

in figure 5.4. 

5.2.4 Signatures of Chiral Symmetry Breaking 

In the AdS5 x S5 case it was found that there was no condensate for any of 

the stable brane flows. In the case of a D7-brane probe in the Constable-Myers 

geometry, there is a condensate, and most significantly, there is one for the mass-
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condensate 

1 

mass 
2 4 

1 

-2 

Figure 5.3: Mass plotted against condensate for the consistent solutions to equa-

tion 5.24. For 1.8;S m ;S 1.8 there are two consistent solutions with opposite 

sign condensate. The reason for this is discussed in section 5.2.4. The value of 

the condensate in the massless limit is given by c = ±1.86. 

5.1 Log[m+ 3] 

m+3 

1.2 

2.5 

0.8 

5 
m 

7.5 10 5 15 

Figure 5.4: Plot approximating the logarithmic behaviour of the condensate as a 

function of the mass. 

less quark limit. This is the first sign of chiral symmetry breaking, discussed in 

chapter 3. Not only is there a non-zero value for the condensate, the symmetry 

breaking pattern is exactly as expected. In the UV, there is an SO(2) symmetry 

(corresponding to a chiral symmetry) in the geometry, which is respected by the 
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massless quark, D7-brane flow. However, the brane solution breaks this symmetry 

as it flows into the IR. These are the signatures of chiral symmetry breaking. 

In the search for the signatures of chiral symmetry breaking, the next stage 

is to study the pion mass and compare this with the Gell-Mann-Oakes-Renner 

relation (equation 3.11) [63]. However, before calculating chiral Lagrangian pa­

rameters, it is worthwhile investigating these brane flows a little further. 

5.2.5 Unstable Flow Solutions 

For a given quark mass (with -1.8 ;S m ;S 1.8) there are apparently two different 

condensate solutions, but, only one of these is stable. By picturing the brane flow 

in the (p, W5, W6) plane, the two solutions for a given mass can be continuously 

deformed into one another by pulling the brane around in the (W5, W6) plane as 

indicated in figure 5.5. 

p 

Figure 5.5: Graph showing how the two solutions for a given mass can be con­

tinuously deformed into one another. 
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It is important, however, to understand which of the two solutions is stable. 

This can be found by calculating the action for each configuration. It is also 

possible to understand which is stable from the field theory side by looking at a 

Higgs field breaking an 50(2) symmetry. The two horizontal axes in the Higgs 

potential (figure 5.6) correspond to the (W5, W6) plane. The decision is made to 

break the symmetry in the W6 direction. For m = 0, this is an arbitrary choice 

as there is a continuous set of minima, and a maximum corresponding to the 

solution where the brane flows straight into the singularity. In the case that a 

mass is added in the W6 direction (corresponding to a linear term mqq on the 

Higgs plot) there is a single minimum. However, as the W5 = 0 choice is taken, 

the flows in Figure 5.2 have been projected onto the two-dimensional space where 

there appears to be a second minimum. This solution is continuously deformable 

into the true minimum (as seen in figure 5.5) even though, in the two-dimensional 

plots, this is not explicitly apparent. Therefore, the solutions that have opposite 

signs for mass and condensate are not stable. 

For positive masses, there is a minimum negative condensate solution that 

exists ("-' -1.8 as seen in the lower line in figure 5.3). Figure 5.7 illustrates that 

the higher the mass, the more the brane stretches as it passes around the other 

side of the singularity. For a high enough mass, the minimum action for the brane 

consists of two pieces: one that wraps all the way around the singularity and one 

that becomes the positive condensate solution for the given mass. 

However, this picture is not physical, as explained above. In the full three­

dimensional picture, the brane deforms around the singularity when the sign of 
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Figure 5.6: Plots illustrating the apparent minimum seen in the solutions to the 

D7-brane flows. Using a toy Higgs model, a cross-section in two of the field 

directions appears to give a second minimum in the potential V. 

the mass changes. 

The value of the condensate in the massless limit in figure 5.3 is given by 

c = 1.86. The massless limit where chiral symmetry is realised is of particular 

interest in this research. 

5.3 Calculating the Vacuum Energy 

It is now possible to start calculating the coupling constants of the chiral La­

grangian [61, 62J. Pion fields have yet to been introduced, so at this stage, only 

the vacuum energy can be calculated. This corresponds to calculating the four­

dimensional cosmological constant. Having set b = 1, all dimensionful quantities 

are in units of Ab. To compare the DBI action with the chiral Lagrangian, the 

83 



Figure 5.7: Plots illustrating the reason for a minimum negative condensate value 

for the positive mass. 

vacuum energy must be divided by Ab . Therefore, the quantity of interest is 

(5.27) 

Io (5.28) 

where [24 is the four-dimensional cosmological constant and the integral over the 

three-sphere provides a factor 21T2. To compare the value of the vacuum term 

with that in the chiral Lagrangian, the normalisation of the quark fields must be 

studied. The quark fields in the chiral Lagrangian are canonically normalised, 

whereas, in the brane analysis they have an extra factor of v21 that must be 
-rrgB 
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absorbed into the field definitions in order to compare the two. The integral 

in equation 5.27 is UV divergent, because UV asymptotically, [24 rv PUv' This 

divergence is identical for any D7-brane configuration corresponding to any quark 

mass and condensate in the theory, due to the quark mass becoming negligible 

in the UV. The form of the normalised vacuum potential, as a function of the 

quark mass, is regularised by subtracting the zero quark mass solution for %-. As 
b 

equation 5.27 is equal to - V, the potential is the negative of this integral. This 

normalised potential is plotted in figure 5.8, along with the spurious negative 

condensate solutions corresponding to the unphysical metastable brane flows. 

normalised vacuum potential 

4 -ve c solutions 

2 

m 
0.6 0.8 1.2 1.4 

-2 

-4 
+ve c solutions 

Figure 5.8: Normalised vacuum potential, Vim - Vlm=o. The positive condensate 

solutions are favoured for a positive mass. 

This demonstrates that the negative condensate solutions are unstable for a 

positive mass. 

Comparing the D7-brane action with the chiral Lagrangian, the parameter 

]/3 from equation 3.1.2 can now be computed. In the single-flavour case, this is 
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predicted to be 

(5.29) 

Therefore, the gradient of the graph in figure 5.8 provides another way to calculate 

the value of < qq >. The numerical value is found to be 

< qq >= 1.86 , (5.30) 

which is the same as the value calculated from the well-behaved brane flows up 

to the third decimal place. It appears that any deviation in the two answers 

is likely to be due to numerical inaccuracies. This identification confirms the 

original prediction that c is indeed the quark bilinear condensate. 

5.4 Pions and Their Interactions 

Having calculated the vacuum condensate of the quark bilinear operator, the low­

energy, dynamical degrees of freedom described by excitations along the moduli­

space (in this case lifted by the quark masses), can be studied. At this point, it is 

most convenient to describe the pions using the circular coordinate system, (0", e), 

of equation 5.17. The decision to have the mass and vev defined in the W6 direction 

(real <p) corresponds to a vev in the e = 0 direction. The pions correspond to 

x-dependent excitations of the e direction. The pion interactions are treated as 

negligible so only the quadratic, kinetic and mass terms involving the pion fields 

are considered. This means that the pions can be treated as plane-waves and the 

p- and x-dependence can be parametrised as 

e(p,x) = f(p)e ik
.
x 

. 
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To calculate the pion mass, the DBI action is expanded to quadratic order in e 

with the background solutions (0" = 0"0 = 1>(p)) calculated for the mass and vev. 

Again, the three-sphere is integrated over giving a factor of 21T2: 

s 

(5.32) 

From this, the equation of motion for e is calculated. The second derivative with 

respect to the Minkowski space-time directions gives a factor of k2 = _M2: 

Taking the UV limit of this equation of motion, including the UV behaviour of 

0"0 gives 

(5.34) 

The solution to this equation of motion is f = A + ~. The x-dependent oscil­
p 

lations correspond to excitations of the qq field which has dimension three. As 

the fields living on the brane correspond to directions perpendicular to the brane 

surface, f has scaling dimension of an energy. This means that B has scaling 

dimension three corresponding to the excitations of qq. If the solution with non-

zero A were chosen, this would correspond to x-dependence in the quark mass, 

which does not describe a QeD-like theory. Therefore the boundary conditions 

for the field f are given by f = ~. f should be normalised by scaling B, however, p 

the value of B drops out of the equation of motion, so for this calculation the 

normalisation is unimportant. The equation of motion is now solved numerically 

with the above boundary condition for the field e, and the background flow for 
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the field (To. Those solutions which are well-behaved in the interior are then stud-

ied. In this calculation, the tunable parameter is MR. For a given mass and 

condensate for the quarks there is a discrete spectrum for M R, which produces 

a well-behaved brane flow. By using a background flow for (To (corresponding to 

setting the quark mass) the relationship between the meson and quark mass is 

found (figure 5.9). These results provide a good match to the prediction of the 

Gell-Mann-Oakes-Renner relation: 

MR = K,Vm, (5.35) 

where K, has the numerical value 2.61. Note that the parameter labelled m here 

is actually ~:. 

MR 
2 

1.75 1 
1.5 

1.25 
1 

0.75 
0.5 

0.25 
L-~--~~~~~~~m 

0.1 0.2 0.3 0.4 0.5 

MR 
0.25 
0.2 

0.15 

0.1 

0.05 

~~~~~~~~{ffi 
0.02 0.04 0.06 0.08 0.1 

Figure 5.9: Quark mass plotted against plOn mass as calculated numerically 

from D7-brane flows. This shows excellent agreement with the Gell-Mann-Oakes-

Renner prediction from the chiral Lagrangian. 

Note that the right hand plot in figure 5.9 only extends to m 0.1 but the 

relationship between quark and meson mass changes for large m. This is exactly 

as expected. For a brane flow corresponding to a large quark mass, the brane 

is far away from the deformed region of the geometry and exhibits the same 
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behaviour as in the Ad85 x 85 background. For large m, the quark mass and 

meson masses are proportional, as expected for a theory with no chiral symmetry 

breaking. This signals the return of a parity-doubled spectrum and more research 

is planned on this subject in the near future. 

The pion decay constant is calculated using the chiral Lagrangian relationship 

between the pion mass and quark mass: 

(5.36) 

The value of l/3 has been calculated in equation 5.30 by studying the vacuum 

energy contribution from the condensate. Equation 5.35, provides a relationship 

between the meson mass and the quark mass: 

(5.37) 

and the vacuum energy given by the chiral Lagrangian and the DBI action are 

2l/3m 
A 4 q (from the chiral Lagrangian) 

b 

mqc 
(from the DBI action) . 

27fgsAb 

Equating these two terms gives a relationship between l/3 and c 

(5.38) 

(5.39) 

Therefore, combining equations 5.36 - 5.39 and using the numerical value of K 
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given by the gradient of the M R against Vm plot in figure 5.9: 

4v3m q ",2m 7f q 

j2A2 rr b AbgsN ' 

f/r Ne 
A2 

b 
7f2 ",2 

N 
(5.40) 0.246 2 . 

7f 

This has the expected N-dependence and matches the estimate from naive-

dimensional-analysis of section 3.2 [65]. 

This expression can be compared with the standard model value for the pion 

decay constant. Using N = 3 and A rv 300MeV, the value of the pion decay 

constant is found to be 

Jrr = 82MeV . (5.41) 

When compared with the standard model value of 92M e V, this result is remark-

ably close and it appears that the difference between this theory and QeD, along 

with extra h corrections, do not make a large difference. 

To formulate the action for the pions, the plane wave is replaced with the 

correctly normalised pion field 27fCY'II(x). The solution !(p), used to calculate 

the mass spectrum, is used so that the function e is given by 

e = 27fa'J(p)II(x) . (5.42) 

Therefore the action for the pion fields up to quadratic order is 

(5.43) 

where 

Jd J()2 e<Pg H ((p2 + 0-5)2 + 1) 1;8 (p2 + 0-5)2 + 10-2 
P P )1 + (opo-)2 (p2 + 0-5)2 - 1 (p2 + 0-5)2 0 

0.144 . (5.44) 
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The pion kinetic term is then canonically normalised to match the chiral La­

grangian. 

5.5 Higher Order Interactions 

This investigation into models of chiral symmetry breaking aims to compare the 

DBI action of a D7-brane probe to the phenomenological chiral Lagrangian. So 

far, the vacuum term and mass term for the pions have been studied, and from 

this, the value of the condensate and the pion decay constant have been calcu­

lated. These appear to be in remarkable agreement with QeD results. The next 

stage is to study higher order interactions terms, however there are a couple of 

points to note before continuing. 

Firstly, the pions are described by the excitations in the angular direction in 

the qq plane. This statement is exact when the quark mass is zero, but when a 

finite quark mass is added, excitations in the e direction will have a component 

in the direction of the induced condensate (see the left hand plot in figure 5.6). 

To separate the mixing between the Higgs and the Goldstone modes, the shape 

of the vacuum manifold, about which the Goldstone modes oscillate, must be 

understood. This is a complex calculation and may not provide any more insight 

into chiral dynamics than taking the massless limit where the angular oscillations 

correspond exactly to the Goldstone modes. 

The second point to note is that in the case of a single D7-brane, where 

the flavour symmetry is Abelian, the Gasser-Leutwyler coefficients cannot be 

studied separately. While in the non-Abelian case L1 , L2 and L3 differ in their 
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trace structure, the trace over the Abelian group is trivial. In the Abelian case, 

looking at the quartic pion terms only, the following combination can be studied: 

L1 Tr (fJl"U 81IUt)2 + L2Tr (( 8II U8v Ut)( 8II U8v Ut)) + L3 Tr (81IU81I Ut 8v U 8v Ut) 

rv 4(L1 + L2 + L3 ) (8 II)4 = 4L (8 II)4 f: II f: II . 
(5.45) 

The same term in the DBI action can now be studied, using the ansatz for e and 

looking for the (8II II)4 term: 

I: = 

(5.46) 

where 

0.0061 . (5.47) 

Canonically normalising the pion fields and matching the coefficients of the pion 

interaction terms gives 

(5.48) 

so that 

(5.49) 

where g~mN is a fixed parameter defining the strong coupling of the theory. This 

can be compared with the naive-dimensional-analysis estimate [65] by using the 

values of Ko and c, along with the numerical values for the integrals which gives 

0.006N. (5.50) 
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These values are equal for a 't Hooft parameter of 60 which seems to be a rea-

sonable strong coupling value. 

5.6 Non-Abelian Flavour Symmetry 

It would be interesting to promote the axial symmetry from an Abelian to a non-

Abelian symmetry by introducing more flavours of quark [92, 93]. Though more 

quarks can be introduced, the symmetry group cannot be enhanced. In the UV 

of the field theory, there is a superpotential term QAQ (see section 4.1) which 

breaks the extended axial symmetry explicitly, meaning that the addition of more 

quark flavours does not enhance the axial flavour group. However, the adjoint 

scalar, A, is expected to have a mass of order A and therefore an accidental 

chiral symmetry is possible. To enhance the D7-brane to a stack of D7-branes, 

the perpendicular directions to the stack take values in the adjoint of the U(Nj) 

flavour group: 

(5.51) 

where Ta are the broken generators of the Lie group. The DBI-Lagrangian of the 

field for two pions takes the form 

(5.52) 
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where 

A 

B 

(5.53) 

The equivalent term in the chiral Lagrangian expansion is 

1 1 
"2 ((OfLil l (X))2 + (OfLIl2(X))2) + 3/; (Ill(X)Il2(X) (OfLil l (X)OfLIl2(X))) 

- 6~; (Ill (X)2(OfLIl2(x))2 + Il2(X)2(OfLIl l(X))2) (5.54) 

The pion decay constant can be calculated in exactly the same way as for the 

Abelian case, and it is found that all the extra numerical factors associated with 

the non-Abelian nature of this action cancel out, leaving the same answer as 

the Abelian case. This is unsurprising as the axial flavour symmetry cannot 

be enhanced by the addition of new quark flavours. However, comparing the 

interaction terms of the chiral Lagrangian with those in the DBI action with 

coefficients B allows for an alternative method by which to calculate the pion 

decay constant. Again, the kinetic term must be canonically normalised and 

compared to the chiral Lagrangian parameter which gives the equality 

(~:) 2 

A2 1 
= --

B 6A2 
b 

I2 N 
1 ---

I3 67f2 

N 
(5.55) 0.2462 . 

7f 
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This is exactly the same answer as calculated from the pion quadratic term in both 

the Abelian and the non-Abelian cases. This calculation is important because 

the integrals being evaluated are non-trivial, meaning that the numerical results 

which are obtained may not be trustworthy; however, having obtained the same 

result twice with two separate sets of integrals is confirmation that the numerics 

are reliable. 

5.7 Vector Mesons and Weakly Gauged Chiral 

Symmetries 

There is a further bosonic field in the low-energy DBI action for the D7-brane 

the gauge field partner of the scalar <l). The field strength, Fab, for this field, 

enters the DBI action in the form 

(5.56) 

The parameter ex' is small, so the results of the previous calculations are not 

altered greatly by this additional field. The leading term in the Lagrangian for 

the field in a background solution of 0"0 is 

21f2R4 J ( / ((P2+0"2)2_1)i 1 
£ = (21f)7 a,4gs dpe<Pg V 1 + (OpO"O)2 H (p2 + O"g)2 + 1 (21fa,)2 4 Ff.L

V 
Ff.Lv 

1 1 ((p2+0"5)2_1)~ (P2+0"5)2 Ff.LVF) 
. 2R2 J1 + (OpO"O)2 (p2 + 0"5)2 + 1 (p2 + 0"5)2 - 1 f.LV 

(5.57) 

where /-L, v run over four-dimensional space-time indices. A coupling between 

the gauge field living on the brane and the four-form C(4) , described by a Wess-
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Zumino term, could be included here. However, this term is only relevant for 

gauge fields with a vector index on the three-sphere which is not the case for the 

vector mesons of interest in QeD studies. The gauge field is written in the form 

(5.58) 

where the function a(p) is determined by the equations of motion and, agam, 

the non-interacting plane-wave approximation for the form of the space-time-

dependence of the gauge field is taken. The meson spectrum can now be studied 

using a shooting technique, varying k2 = - M2, to find the well-behaved solutions. 

The equation of motion for this field is given by 

In the UV limit of this equation, there are two independent solutions. The first 

is given by a(p) = const, which corresponds to introducing a background gauge 

field associated with the U(l) baryon number symmetry in the field theory. In 

the UV, the Lagrangian for this field is 

(5.60) 

which reflects the logarithmic running of the flavour gauge coupling. 

The second solution corresponds to the mesons of the vector symmetry asso-

ciated with the operator iJ,i-'q. and is a(p) rv ~. The algorithm used in section 
p 

4.2.2 is employed, with these boundary conditions for a(p), to find the vector 

meson spectrum. The results of this analysis can be compared to those for pure 
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AdS5 X S5 where the spectrum is known analytically: 

(5.61) 

The results of the Constable-Myers analysis and the pure AdS5 x S5 calculation 

are given in table 5.2. 

/I n I AdS case I eM case /I 

0 2.83 2.06 

1 4.90 4.63 

2 6.93 6.73 

3 8.94 8.78 

4 11.0 10.8 

5 13.0 12.9 

6 15.0 14.9 

7 17.0 16.9 

8 19.0 19.0 

Table 5.2: Vector meson spectrum companng Constable-Myers and pure 

AdS5 x S5 backgrounds. The Constable Myers results are normalised to agree 

with the AdS5 x S5 results for highly excited states. 
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5.8 Analytic Investigation of Chiral Symmetry 

Breaking 

The couplings and masses in the field theory dual to the dilaton flow geometry, 

have now been calculated using D7-brane probes. All the calculations performed 

have been numerical but it would be useful to employ analytical methods to 

investigate some of these properties. It transpires that it is possible to calcu­

late whether chiral symmetry will be broken in a given model using analytical 

techniques. 

As explained in section 5.2.4, there appears to be a link between the geometri­

cal symmetry breaking of the D7-brane and the chiral symmetry breaking of the 

field theory. The symmetry breaking is induced by a deformation in the centre 

of the space which repels the brane from the singular region. Therefore it is key, 

as far as chiral symmetry breaking is concerned, that the D7-brane feels a repul­

sive potential from the singularity. The brane flow from the UV into the IR can 

only be solved numerically. There is, however, a brane configuration for which 

the repulsive potential felt by the D7-brane can be calculated analytically. This 

configuration simplifies the equations because, using the symmetry properties of 

the background space, the differential equation can be reduced to an algebraic 

equation. This configurations corresponds to a brane which does not flow from 

the UV to the IR, but instead wraps around the singularity like an elastic band 

around a ball. This configuration is clearly unstable as the band can slip off the 

ball and collapse. However, the configuration can still be used to study the po-
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tential. Rather than calculating W6 as a function of p, the coordinates are altered 

again and the (W6, p) plane is written in circular coordinates: 

6 

L dwt = dr2 + r2(dci + cos2 ade!} + sin2 exdOD . 
i=l 

(5.62) 

The action for a brane wrapping the singularity is then written in terms of a 

scalar field r as a function of the angular coordinate a. This embedding is given 

in table 5.3. 

II II Xo I Xl I X21 X31 r I a I ¢ I WI I W2 I ;] 

II :: II : I : 1 : I : 1·1 x 1·1 x 1 x hl 
Table 5.3: D3-brane and wrapped D7-brane embedding in the Constable-Myers 

geometry. Filled dimensions are marked with crosses, those perpendicular to the 

world-volumes are denoted by a dot. 

5.8.1 Brane Wrapping in the Ad85 x 85 Geometry 

As explained, this configuration does not have a stable field theory description 

but this is unimportant here. Before calculating the solution to this deformed 

case, it is enlightening to see what happens in the pure Ad85 x 85 case. The 

action for the wrapped brane in the Ad85 x 85 geometry is given by 

SwrappedD7 
1 + _1_ (dr(a)) 2 

r(a)2 dex ' 
(5.63) 

There is a solution to this action which is 

r(a)=O. (5.64) 
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This means that, when a brane starts in a circular configuration, it will collapse 

into the centre of the space. This is illustrated in figure 5.10 

Figure 5.10: Plot illustrating that a D7-brane in a circular configuration m 

Ad85 X 85 will collapse into the centre of the space. 

This will be important when calculating the solutions in the deformed geome-

tries. Without the deformations, the brane collapses and the question is now 

whether a deformation can prevent this collapse. 

5.8.2 Brane Wrapping the Constable-Myers Singularity 

In the Constable-Myers geometry, it has been shown in figure 5.2, that there 

is a repulsive potential felt by the brane caused by the singular region. This 

calculation is performed numerically, but it would be ideal to get the same re-

suIt analytically using a wrapped brane. The action for a brane wrapping the 

Constable-Myers singularity is given by 

SwrappedD7 
1 + _1_ (dr(o:)) 2 

r( 0:)2 do: ' 

(5.65) 
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where the integral runs over (x / /' D3 , a). At this stage, b is reinstated as a free 

parameter to allow the behaviour for different sized singularities to be studied. 

The equation of motion for this action is rather complicated, however, there is 

a solution where, just as for AdS5 x S5, r( a) is constant. This is the circular 

wrapping solution of interest. To find the solution, the potential is minimised 

with respect to the radius, r(a). The existence of this symmetric solution is due 

to the symmetries of the background space which have been used to reduce the 

original differential equation to a simple algebraic equation. 

For b = 1, the potential as a function of r is plotted in figure 5.11. 

Potential 
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Figure 5.11: Plot of the potential against radius, r, for the b = 1 circular wrapping 

solution. The potential is minimised at ro = 1.29. 

For a general singularity size, b, the radius, ro, which minimises the potential 

is given by one of the solutions to 

(5.66) 

where all variables are in units of R. This equation has eight solutions. Four of 
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which are real, two are positive and for 

( 
1 )! b> -

- 24 ' 
(5.67) 

there is a solution where TO 2:: b. Provided that the above inequality is satisfied, 

a brane wrapping solution exists which is repelled from the singularity. If the 

inequality is saturated, the brane lies on the surface of the singularity. If the 

inequality is not obeyed, the largest solution of TO lies inside the singularity and 

there will be no chiral symmetry breaking. Configurations which saturate the 

bound are investigated in more detail in the following chapters. 

1 

A solution with b 2:: (2~)"8 is illustrated in figure 5.12 indicating that the brane 

solution lies slightly off the singularity. 

Figure 5.12: Plot illustrating that a brane stretched artificially to some large 

radius will collapse to a configuration which is repelled by the central singularity. 

5.8.3 Analysis of the Brane Wrapping Solutions 

For the b = 1 solution, a plot of the minimum action radius, TO, and the UV /IR 

flow for zero quark mass, is shown in figure 5.13. There is a small gap between 
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the two configurations at p = O. 

w6 

-6 6 
p 

Figure 5.13: Plot of the minimum action spherical D7-brane embedding and the 

massless quark embeddings in the Constable-Myers Geometry. The black circle 

represents the singularity in the geometry. 

Figure 5.14 is a plot of the circular embedding solution and the UV /IR flow 

solution which has the largest positive mass for which a negative condensate so­

lution exists (see figure 5.3). Figure 5.7 demonstrates that, as the quark mass 

of a UV /IR brane flow increases from a negative to a positive value, there is a 

maximum mass for which a negative condensate solution exists. Above this mass, 

the solution is not stable and there is a single solution to the equations of motion 

- that with a positive condensate. It appears that the circular wrapping distance 

corresponds to the closest point a UV /IR flowing brane can come to the singu­

larity. Note again that these are not stable solutions. The positive mass-negative 

condensate solution will deform to the stable positive mass-positive condensate 

solution, while the wrapping brane configuration will slip off the singularity and 

collapse. 

As b decreases, so does the distance between the wrapped brane and the 

singularity and, when the inequality (equation 5.67) is saturated, the brane falls 
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Figure 5.14: Plot of the minimum action spherical D7-brane embedding and a 

local minimum embedding action for a massive quark in the Constable-Myers 

Geometry. 

onto the singular surface. Similarly, the zero quark mass solution of figure 5.13 

approaches the singularity as b decreases. Due to the gap between the solutions, 

there is a range of values for b where there is no wrapping configuration (with 

TO > b) but chiral symmetry breaking is exhibited. The wrapping technique gives 

a good indication of the potential felt by the brane, but is not a perfect analytic 

test of chiral symmetry breaking. 

A plot of the phase-space of the field theory for varying b is plotted in figure 

5.15. 

It is particularly interesting to note that there exists a region of parameter 

space where there is no confinement but chiral symmetry breaking occurs. It is 

possible that this region may disappear when stringy corrections are included. 

Though the circular wrapping technique has not led to any more insight into 

the physics of chiral symmetry breaking, it is an extremely useful tool for more 

complex geometries. Geometries with no known analytic form for the metric, 

dilaton or other R-R fields are investigated in chapters 6 to 9. 
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_Confinement, b>20-s -
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_ Wrapped brane outside singularity, b>24-s -
- Chiral Symmetry Breaking, b>O.666 
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Geometry well defined, b>40-s 
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Figure 5.15: Phases of the Constable-Myers dual field theory as a function of the 

conformal symmetry breaking parameter b. The ends of each arrow indicate the 

point at which the property of the background or the field theory stops. 
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Chapter 6 

AnN 4 Scalar Deformation 

The last two chapters have been concerned with introducing quarks to the field 

theories dual to qualitatively different supergravity backgrounds. In this chapter, 

a more complicated geometry is studied and fundamental matter is added in a 

further attempt to investigate chiral symmetry breaking. 

6.1 The Background 

In chapter 2, the duality between an N = 4 super-Yang-Mills theory and ten­

dimensional supergravity on Ad85 X 85 was discussed in detail. In section 2.2.4, it 

was indicated how this duality could be generalised by deforming the supergravity 

background, thereby introducing relevant operators to the field theory. In this 

chapter, a specific deformation is discussed which retains all the supersymmetry 

of the undeformed background. 

It is possible to truncate an eleven-dimensional supergravity background to 

four dimensions. Conversely, it has been shown in [94J that every formulation of 
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N = 8 gauged supergravity in four dimensions can be uniquely lifted to eleven­

dimensional supergravity compactified on an 57. It is believed that the same 

relationship holds between N = 8 gauged supergravity in five dimensions and 

IIB supergravity compactified on an 55. This means that all five-dimensional 

truncations are consistent, due to the isomorphism between the five- and ten­

dimensional theories. 

In this chapter, a specific five-dimensional supergravity solution is discussed 

and its lift to ten dimensions provided. 

6.1.1 N = 8 Five-Dimensional Supergravity 

A set of solutions to five-dimensional supergravity [95, 96, 97J were found in 

[98, 99J and their lifts to ten dimensions were calculated. It was discovered that 

this family of supergravity solutions corresponds to D3-branes distributed in disk 

configurations in the six-dimensional space perpendicular to their world-volume. 

The algorithm for the consistent lift is complicated and so only a brief outline of 

this process is discussed here. 

It is important to understand the dictionary between fields in the five-dimensional 

supergravity theory and operators in the field theory. There are a total of 42 

scalars in five-dimensional N = 8 gauged supergravity. These fill representations 

of a coset group given by E6(6)/U5p(8). This group has an unbroken 50(6) sub­

group and the 42 scalars are in the (10, rO, 20, 12) representations of 50(6). In 

this particular example, the field (labelled M) in the 20 is turned on. Using the 

AdS/eFT dictionary, a field with mass m 2 = -2, corresponds to both source and 
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vev for a dimension two operator. This dimension two operator is given by 

(6.1) 

The solutions to the equation of motion for M correspond to switching on different 

coefficients for the six real scalar field bilinears. The SO(6) symmetry corresponds 

to the SU ( 4) R symmetry of the field theory. 

6.1.2 The Five-Dimensional Supergravity Action 

The action for the field M, in the 20 of SO(6), is written in terms of a set of 

fields, ai, which are related to M by the parametrisation 

/31 
1 1 1 0 1 

,;2 v'2 v'2 v'6 
a1 

/32 
1 1 1 0 1 

v'2 -v'2 -v'2 v'6 
a2 

/33 
1 1 1 0 1 

-v'2 -v'2 v'2 v'6 
a3 

/34 
1 1 1 0 1 

-v'2 v'2 -,;2 v'6 

-Ii 
a4 

/35 0 0 0 1 

Ii 
a5 

/36 0 0 0 -1 

where the field M is given by 

M = diag (e 2f31 e2f32 e2f33 e2f34 e2f3s e2(36
) , , , , , . (6.2) 

The action for the scalars, a, is 

1 5 1 
£, = --R+ 2: -(oa·)2 - P 4 2' , 

i=l 

(6.3) 

where R is the Ricci scalar of the five-dimensional space and P is given by 

2 

P = -~2 [(Tr M)2 - 2Tr M2] , (6.4) 
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where 9 is the coupling constant for the scalar field interactions. P can be written 

in terms of a superpotential W where 

(6.5) 

There is a simple condition on the superpotential which guarantees the existence 

of 16 supercharges (giving N = 8 in five dimensions): 

dA 
du 

:2:w 
3 ' 

(6.6) 

where u is the radial coordinate in a warped five-dimensional AdS space with 

metric 

(6.7) 

There is a set of solutions to 0: where the magnitude, but not the direction, of 

the vector (3 is a function of u. These solutions to (3a are given by 

(3a = laf-L( u) , (6.8) 

where I is a fixed vector and f-L( u) is a scalar function of the direction u. These 

supersymmetric solutions are parametrised by the boundary value of f-L at infinite 

u. As discussed in section 6.1.1, turning on this scalar deforms the field theory 

by the addition of the operator Tr A2. In this supersymmetric case, the size of 

f-L at infinite u gives the size of the vev of this operator. The components of the 
6 

vector, la, give the coefficients of the fermion bilinears in the form L 'aA~. The 
a=l 

non-supersymmetric generalisation of this solution corresponds to switching on 

a source for this operator. The size of the source is related to the derivative of 

f-L ( u) at infinite u. 
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6.1.3 The Ten-Dimensional Lift 

To lift this geometry from five to ten dimensions, it is necessary to find the map 

between the five-dimensional field solutions and deformed metrics on the five-

sphere. The ten-dimensional space is a product space between a non-compact 

component, M, and a compact component, lC, which is the deformed five-sphere, 

given by 

(6.9) 

where the warp factor b. is a function of components of the five-sphere. The 

metric on the compact space can have dependence on the non-compact manifold, 

but not vice versa. 

The subgroup, SO(6), of the coset group corresponds to the rotational isome-

try ofthe five-sphere. By switching on the supergravity fields, the SO(6) is broken 

down to a further subgroup. This corresponds to deforming the five-sphere. For 

the lift to be consistent, the symmetries of the two broken groups should match 

exactly. 

There are only five solutions, la, which preserve a subgroup of the original 

SO( 6) symmetry. The metric and warp factor for each of these solutions are 

given by 

H (6.10) 

The form of la for each of the five solutions, along with the symmetry that is 

preserved and the form of the distribution (J(w), is given in table 6.1. 
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symmetry I ~ II 

1 vh(l, 1, 1, 1, 1, -5) 50(5) ':£v!l2 - w2 
7r1 2 

2 ~(1, 1, 1, 1, -2, -2) 50(4) x 50(2) .le(l2 - w2) 
7rt2 

3 ~(1, 1, 1, -1, -1, -1) 50(3) x 50(3) 1 1 
7r212 v12-w2 

4 ~(2, 2, -1, -1, -1, -1) 50(4) x 50(2) _1_15([2 _ w2) 
7r212 

5 vh(5, -1, -1, -1, -1, -1) 50(5) 1 _ (_O(12_W 2) 8(12-W 2)j 
3[2 3+~ 
7r 2(12-w2)2 I -w 

Table 6.1: Geometries representing n-dimensional disk distributions with their 

supergravity field boundary conditions. 

6.1.4 The Ten-Dimensional Solution 

The solution of interest here has n = 2 (table 6.1), where a vev is switched 

on for the operator Tr,,\2 of the form diag(l, 1, 1, 1, -2, -2). This vev preserves 

the N = 4 symmetry (and therefore the N = 2 symmetry when the probe is 

included). As explained in section 6.1.2, though the direction in the complex 

scalar field space is defined by la, the size of the vev is a free parameter. The 

supersymmetry conditions, the superpotential and the warp factor are given by 

goW 

2 Of-L ' 
~ 1_~ 

-e v'6 - -e v'6 
2 

~log 1 ~:~'I + log G) (6.11) 

where [ is a constant of integration and R is the asymptotic AdS radius. At 

this point, a final reparametrisation is made before writing the metric for this 

111 



background. The supergravity field is rewritten as 

(6.12) 

The metric for this background is then 

where 

x = cos2 e + X6 sin 2 e . (6.14) 

X and A satisfy the differential equations 

dX = ~ (~_ X5) 
du 3R X ' 

(6.15) 

with solution 

(6.16) 

There is also a non-zero four-form potential given by 

4AX e 0 1 2 3 
C(4) = --2 dx 1\ dx 1\ dx 1\ dx . 

9sX 
(6.17) 

Most of the following calculations are performed by solving equations 6.15 nu-

merically, but it is interesting to note that u can be calculated analytically as a 

function of X. There is a one-parameter family of solutions given by 

R ( (1 + I V3 + 2X) (1 + X
2 + X4) ) 

U = canst + - IV3log V3 + log (2 )2 
4 1 - I 3 + 2x X - 1 

(6.18) 

Figure 6.1 shows examples of some of the solutions for different values of the 

constant of integration. 
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Figure 6.1: Analytic solutions to the first order equations of motion for the scalar 

field flow given by equation 6.18. 

6.2 Adding Quarks to the N 4 Scalar Defor-

mation 

As in chapters 4 and 5, quarks are added to the field theory dual of this geometry 

by the introduction of a D7-brane probe. Before attempting to understand the 

excitations on the probe (corresponding to mesons), it is important to study the 

flow of a D7-brane from the UV (where the duality is understood) to the IR 

(where the chiral symmetry breaking may be triggered). This case differs from 

the dilaton flow geometry as there is no longer a natural Euclidean six-plane 

containing an undeformed five-sphere in which to embed. The most natural 

choice is to embed the D7-brane to lie in the xII, u, 0 3 directions and study the 

profile of B( u) at fixed ¢. The embedding is illustrated in table 6.2. Fixing ¢ 

is equivalent to fixing a direction on the U(l) circle (fixing 1> to be real in the 
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II II Xo I Xl I x21 X31 u 1 e 1 ¢ 1 0 1 1 n2 1 0 3 11 

II :: II : I : I : I : I X III X I X I X II 
Table 6.2: D3- and D7-brane embedding in the N = 4 geometry. Filled di-

mensions are marked with crosses, those perpendicular to the world-volumes are 

denoted by a dot. 

Constable-Myers D7 embedding). The DBI action for this embedding is 

(6.19) 

It is possible to plot the solutions for e as a function of u, but to compare with 

the results which are understood in the Constable-Myers case, it is sensible to 

plot the brane flow in a similar coordinate system. In the large u limit, where 

the space returns to Ad85 x 85 , a change of coordinates given by 

v 
- = tane , 
r 

(6.20) 

transforms the circular coordinate system of equation 6.13 to Cartesian coordi-

nates. However, it can be seen that by performing this coordinate transformation, 

the metric becomes 

(6.21) 

This means that, though in the UV there is a Cartesian six-plane, in the IR of the 

theory the coordinates are not orthogonal and there is a deficit angle related to 
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X. In this coordinate system, the D7-brane flow is given by v as a function of r, 

table 6.3. The existence of a deficit angle means that any plots in this coordinate 

II " Xo I Xl I X21 X31 r I v I ¢ I [11 I O 2 I [1311 

1/ :: II : I : I : I : I x III x I x I x II 
Table 6.3: D3- and D7-brane embedding in the pseudo-Cartesian N = 4 ge-

ometry. Filled dimensions are marked with crosses, those perpendicular to the 

world-volumes are denoted by a dot. 

system will be warped when drawn in flat-space. 

The DBI action for a brane embedded in the coordinate system of table 6.3 

is given by 

(6.22) 

where 

x = X[log( Jv(r)2 + r 2 )J , A = A[log( Jv(r)2 + r 2 )J , (6.23) 

and' denotes the derivative with respect to r. 

6.2.1 D7-Brane Flow in the Physical Coordinates 

In this geometry, the correct, 'physical' coordinate system is known [98, 100J. 

In the physical coordinate system, the scalar and gauge fields living on a D3-

brane in the background geometry are simultaneously canonically normalised. 
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The change of variables between the original coordinate system (6.13) and the 

physical coordinates is known in this case. Due to the supersymmetric nature 

of this geometry, the equations of motion are first order, and the action for the 

D3-brane can be manipulated using these first order equations of motion. The 

change of variables between the original coordinates and the physical coordinates 

(u, ex) is 

(6.24) 

which gives the standard multi-centre D3-brane solution: 

6 

ds 2 = H-~dx// + H~ L du~ , 
i=l 

(6.25) 

where 

(6.26) 

As explained in the formulation of this background, the introduction of the scalar 

field produces a distribution of D3-branes in a disk configuration. The physical 

coordinate system makes the distribution more explicit. 

By writing the metric in the form of equation 6.25, it is clear that the DBI 

action for the UV /IR flow of the brane will be the same as the undeformed 

AdS5 X S5 case. This is because the warp factors cancel in the determinant of 

the pullback and the D7-brane does not notice the distribution of the D3-branes. 

The solution to the D7-brane equation of motion in the physical coordinates 

can be calculated analytically, just as in the AdS5 x S5 case: 

ex = arcsin (~) , (6.27) 
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where m corresponds to the quark mass, and for a consistent flow there is no 

quark bilinear condensate. 

This is the most important result of this chapter. As the D7-brane does not no-

tice any difference between the current D3-brane distribution and the AdS5 x S5 

geometry, there is no chiral symmetry breaking. In the physical coordinates 

(where the solutions are the same as those for the undeformed geometry) it has 

been shown analytically in section 4.2.1, that no condensate forms. 

If the meson spectrum were to be calculated in this geometry, the warp fac-

tors would not cancel out in the equations of motion and the mass spectrum 

would differ from that in the AdS5 x S5 geometry. Though the meson spectrum 

has not be calculated for this geometry, this is an interesting route that will be 

investigated in the near future. It will be a useful exercise to compare the meson 

spectrum from this geometry with both the AdS5 x S5 results and the Gell-Mann-

Oakes-Renner relation. The expectation is that the results should coincide with 

the AdS5 x S5 results. 

6.2.2 The Supergravity Background In Physical Coordi-

nates 

The physical set of circular coordinates, (a, u), can be written m terms of a 

physical set of Cartesian coordinates, (Cl' C2): 

(6.28) 
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The warp factor in the Cartesian coordinates is 

2 
H=--~~~~~~~~~~~~~r=~~==~==~~~ 

1 + (cr + c§)2 - 2(c§ - cD + (1 + (ci + c§))J1 + (ci + c§)2 - 2(c§ - cD 
(6.29) 

This is plotted in figure 6.2 in the (Cl, C2) plane. There are still singularities in 

the warp factor as expected. In fact, it is possible to see what happens in the 

coordinate transformation in more detail. At large v2 + r2, the (v, r) and (Cl, C2) 

coordinate systems are the same, and a circle in one is mapped to a circle in 

the other. As v2 + r2 is reduced, a circle in the (v, r) coordinates is mapped to 

a deformed circle in the physical coordinates. As the singularity is a circle in 

the (v, r) system, it is possible to study what this is mapped to in the physical 

coordinates. The right hand side of figure 6.2 shows what happens to circles 

of different radii, mapped from (v, r) into (Cl, C2). The inner ovals are mapped 

from the circles nearest to the singularity and it can be seen that the circular 

singularity is mapped to a line. The product of this line with the three-sphere 

gives the SO( 4) x SO(2) symmetry expected from table 6.1. 

It is also interesting to note that because both the solution in the physical 

coordinates, and the change of variables between the original and physical coordi-

nates are known, the exact solution to the D7-brane flow in the original coordinate 

system is also known: 

e = arcsin (72~4) = arcsin ( m' J X6 - 1) . (6.30) 

m and m' are not equal due to the constant of integration in A(X). 
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Figure 6.2: Singularity structure of the warp factor, H, in the physical coordi-

nate system. The right hand plot demonstrates that the circular singularity is 

deformed to a disk singularity as expected from the D3-brane distribution. 

6.2.3 The Unphysical Coordinates Revisited 

It would be simple to conclude this investigation by stating that there is no chiral 

symmetry breaking in this background, as calculated in the physical coordinate 

system. However, in the next chapter, a very similar background to this one, 

which is not supersymmetric, is investigated for evidence of chiral symmetry 

breaking. Due to the absence of supersymmetry, there are no first order equations, 

with which to find the correct coordinate system. As the current geometry is well 

understood, it is useful to study it in the original, unphysical, coordinate system 

and discover what problems may be faced in the non-supersymmetric case. 

Figure 6.3 illustrates solutions to the D7-brane equations of motion in the 

( v, r) plane. These look similar to the flows in the Constable-Myers geometry 

(figure 5.2). The numerical calculation to determine the D7-brane flows in the 

(v, r) plane can be performed in two ways. First, these flows can be calculated 
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using the pullback of the metric in the (v, r) coordinates onto the D7-brane (equa­

tion 6.22). The flow can then be calculated numerically from the equations of 

motion for v(r). The second method is to use the analytical flow in the (Cl' C2) 

coordinate system and the change of variables between (Cl' C2) and (v, r). It is 

sensible to use both these methods to check the consistency of the numerical 

techniques (both of these methods are plotted in figure 6.3). 

v 

21--_~ -

r 
3 4 

Figure 6.3: D7-brane flows in the scalar deformed geometry for different quark 

masses. The solid lines are the numerical solutions and the dashed lines, the 

coordinate transform of the full analytic solutions. This plot indicates that the 

numerical and analytical solutions to the DBI equations of motion for the D7-

brane match well. The singularity of the geometry is shown as a black circle. 

From the UV behaviour of these flows, the value of the mass and condensate 

for the quarks and quark bilinear can be calculated. In the physical coordinates, 

the D7-brane flows as if it were in Ad85 x 85 , so there is no condensate. Even 

before the physical coordinates were found, it was known that there would be 
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no condensate due to the supersymmetric nature of the background. The plot of 

mass against condensate calculated using the unphysical coordinates is shown in 

figure 6.4: 

0.02 

0.015 

0.01 

0.005 

c 

0.5 1 1.5 
m 

2 

Figure 6.4: Apparent values of the quark mass and condensate extracted asymp-

totically from the flows in figure 6.3. 

It appears that there is a small, but non-zero, condensate for non-zero quark 

mass, but it is known that this is not possible. This inconsistency is again due 

to the use of the incorrect coordinate system. The direction v, which has mass 

dimension one, has an asymptotic UV solution given by 

b c 
v(r)rv a +2"+4'" r r 

(6.31) 

Whereas in the correct coordinate system, the solution contains only two terms 

(a and b), here it is not possible to extract the value of the mass and condensate. 

This means that the method by which the values m and c have been calculated 

for figure 6.4 is not the correct one for the unphysical coordinate system. In the 
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massless limit, where v -----+ 0, the action for the D7-brane in the AdS limit is given 

by 

(6.32) 

In this limit, the solution is exactly v = m + T~' and the result of figure 6.4 can 

be trusted. Fortunately, the massless limit is the situation of interest for this 

investigation and so the result that there is no condensate is a useful one. 

6.3 Brane Wrapping the N = 4 Geometry 

The original geometrical argument for the presence of chiral symmetry break­

ing now seems slightly misleading. In the current background, the flows in the 

massless limit appear to break the geometrical SO(2) symmetry as they flow 

around the singularity (figure 6.3). However, it has now been shown that this is 

an artefact of using inappropriate coordinates. 

In chapter 5, it was noted that in the massless quark limit there is a gap 

between the D7-brane and the Constable-Myers singularity. In this background, 

the gap is not present (see figure 6.3). There seems to be a qualitative difference 

in the force felt by the D7-brane, between this supersymmetric background and 

the Constable-Myers background. 

The analytic techniques utilised at the end of chapter 5 to look at the potential 

of a brane wrapping around the singularity, can now be used. In the case of the 

Constable-Myers geometry, the embedding of the spherical wrapping brane was 

performed with r as a function of e and it was shown that a constant radius 

brane satisfied the equations of motion. This was simple because the DBI action 
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was known analytically. In this case, the most natural embedding is with u as a 

function of e. In this case, the DBI action is 

Swrapping brane rv 

(6.33) 

At this stage, the action contains the numerical function X( u), however, the 

dependent variable can be changed in order to write the action in a purely analytic 

form. Equation 6.15 provides an analytic expression which can be used to turn 

the derivative in equation 6.33 into a derivative purely in terms of X and e. All 

u-dependence is removed, thereby providing a fully analytic Lagrangian: 

Swrapping brane rv 

Whereas, before the change of variables, the IR and UV limits were u = -00 

and +00 respectively, now they correspond to the limits X = +00 and 1. The 

equation of motion for X as a function of e is now determined and the solution 

which minimises the action is found to be X -----+ 00, corresponding to the brane 

falling onto the surface of the singularity. This is analytic proof that the brane 

feels no repulsive potential from the singular region. This result matches the 

result from 6.3 where the flow corresponding to massless quarks wraps onto the 

surface of the singularity. This is illustrated in figure 6.5. 

In this background it has been possible to show, using several different tech-

niques, that there is no chiral symmetry breaking. However, the numerical tech-

niques are difficult to use to calculate the mass of the quarks and the condensate 
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Figure 6.5: Wrapping D7-brane (central circle) falling onto singularity (outer 

circle) at X = 00. 

of the quark bilinear. It seems that the most reliable method for backgrounds in 

which the physical coordinates are not known is the brane wrapping technique. 

Using this method, an analytic calculation of the potential felt by a D7-brane 

in the massless limit can be performed. This will prove vital in the following 

chapters. 
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Chapter 7 

A Non-Supersymmetric Scalar 

Deformation 

Having studied the effects of quarks in a supersymmetric background where 

the metric is dependent on functions which are calculated numerically, a non­

supersymmetric generalisation is investigated. Whereas, in chapter 6, chiral sym­

metry breaking was not permitted due to the supersymmetry, this generalised 

geometry may allow the induction of a chiral condensate. 

7.1 The Background 

As explained in section 6.1, there is a generalisation of the previous N = 4 geometry 

[98J in which all the supersymmetry is broken by including a mass term for the 

scalars. This geometry has again been generated from a five-dimensional super­

gravity flow which was lifted to ten dimensions in [101J. 

As in the background discussed in chapter 6, a five-dimensional scalar field A 
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in the 20 of SO(6) is switched on. This has the potential 

4A(U) 2A(U) 
V -e - v'6 2e v'6 . (7.1 ) 

The difference between the current and the previous geometry is that the scalar 

field, A, acts as the source and vev for the field theory operator Tr (¢i + ¢~ + ¢§ + 

¢~ - 2¢~ - 2¢~). In the supersymmetric case, only the vev of this operator was 

switched on. Switching on a mass gives rise to an unbounded scalar potential so, 

as in the case of the Constable-Myers geometry, this is not a realistic field theory 

dual. However, as this background has a qualitatively different structure from the 

cases already studied, it may be able to provide an insight into the properties of 

a field theory necessary for chiral symmetry breaking to be triggered. Unlike the 

previous scalar deformed geometry, chiral symmetry breaking may be expected 

as there is no supersymmetry to prevent a chiral condensate from forming. 

The relevant five-dimensional supergravity equations of motion are given by 

[102J 

A"(u) + 4A'(U)V~(>.'(u)2 - 2V) 

A'(u) 

oV 
o),(u) , 

V~(X(U)2 - 2V) . 

The solution to the large u limit of these equations is 

(7.2) 

(7.3) 

where, by studying the u-dependence, both M and C have dimension two. This 

is because both the source and condensate for this operator are of dimension 

two. In the supersymmetric case, only the M = 0 solution exists and therefore 

126 



M is interpreted as the source for the field theory operator and C as the vev. 

This generalises the N = 4 case where only the vev of the scalar operator is 

switched on. Equations 7.2 are solved numerically with boundary conditions set 

by equation 7.3 and some examples of these solutions are plotted in figure 7.1. 

A(U) 

0.6 

0.4 

0.2 

0.2 

-0.4 

-0.6 

-0.8 

u 
3 4 5 

Figure 7.1: Plot of the scalar field A(U) for various values of M and C. 

Generically, the flows diverge in the IR with A -> ±oo. It is interesting to 

study the IR behaviour and, in particular, how the different types of IR asymp­

totics relate to values of M and C which set the UV boundary conditions. Figure 

7.2 shows a plot of the sign of the IR divergence as a function of the M and C 

boundary conditions. 

The supersymmetric flows are given by the line M = O. There is a line 

of maximum stability between those solutions which asymptote to ±oo. The 

supersymmetric solutions lie on this line, but there is another set of solutions 

which are approximately the M = -C flows. 
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M 
-1 3 4 5 

-1 AsymptoteS---7 +00 

-2 

-3 Asymptotes-7-OO 

-4 

-5 

Figure 7.2: IR asymptotic behaviour of A as a function of the mass and condensate 

defined by the boundary conditions in the UV. The supersymmetric line (M = 0) 

is on the line of stability between those flows which diverge to +00 and -00. As 

seen from figure 6.1, these supersymmetric flows do diverge. 

The ten-dimensional lift shares exactly the same form of the metric as the 

supersymmetric case: 

where the parameters are defined in the same way as the N = 4 case and 

>.(u) 

x=e-16 (7.5) 

The four-form potential of the lift does not match the supersymmetric case but 

in neither case does it enter into the DBI action of the D7-brane probe. 
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7.2 Adding Quarks to the Non-Supersymmetric 

Scalar Deformation 

It is important to note that there are masses and condensates for two different 

operators discussed in this section. One set (written in calligraphic text) defines 

the deformed geometry and is associated with the scalar bilinear operator. The 

second set is associated with the quark bilinear operator introduced with the 

D7-brane embedding and is always referred to by name rather than letter. 

From chapter 6, it is known that the coordinates of equation 7.4 are not the 

physical ones in which to define the gauge theory living on a D7-brane. However, 

whereas in the supersymmetric case, the physical coordinates were found by using 

the first order equations of motion for the fields, this technique cannot be used 

in this case. 

It was found III chapter 6 that, though the original coordinates were not 

physical for a non-zero quark mass, in the massless case the original and physical 

coordinates coincided. In the current geometry therefore, the D7-brane flow from 

the UV to the IR is used to discover whether, in the massless limit, a condensate 

is induced. As in the previous chapter, the brane is embedded in the x II, U, D3 

directions and the flow of e as a function of r is calculated. The same change of 

variables used in the supersymmetric scalar deformation (equation 6.20) is utilised 

here. Using the symmetries of the background, the IR boundary conditions are set 

and the flow from the IR to the UV is calculated. By studying the UV behaviour, 

the values of the mass and condensate are calculated. A set of D7-brane flows is 
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2 3 4 5 
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-2 

Figure 7.3: Sample solutions for a D7-brane embedding in the non­

supersymmetric scalar deformation geometry showing the absence of a gap be­

tween the solutions and the singularity. 

plotted in figure 7.3. In this example the scalar deformation has positive values 

of M and C. 

For all values of M and C, defining the scalar deformation, in the massless 

quark limit the brane wraps onto the surface of the singularity (see figure 7.3). 

The quark bilinear condensate can be calculated numerically for this flow, and is 

always zero, indicating that in this geometry (as in the previous one) there is no 

chiral symmetry breaking. 

In chapter 6, it was indicated that the numerical methods may not be reliable. 

It would be more persuasive if it were proved analytically that the singular region 

does not repel the brane, indicating that in the physical coordinate system, the 
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brane would flow in a straight line just as in figure 4.2.1. The next step is to 

study the IR region using the analytic techniques devised in the previous two 

chapters. 

7.3 Analytic Search for Chiral Symmetry Break-

. 
lng 

Though the geometry is complicated as the solution of the scalar field, A, is known 

only numerically, approximations can be made in the IR such that the limiting 

behaviour of the field can be calculated analytically. In the IR, the scalar field 

asymptotes to ±oo meaning that the potential for the scalar field in this region 

can be approximated by 

±2>.(u) 

V = -2e~ = -2X(U)±2 , (7.6) 

where the ± depends on whether the solution asymptotes to ±oo. When this 

potential is used in the equation of motion it can be solved analytically by in-

spection, assuming the form: 

A(U) = alog(b(u - us)) , x(u) = (b(u - us)) -ft . (7.7) 
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By using this ansatz in the equation of motion, there are four possible solutions 

given by 

Xl(U) = /¥-(u!us) , Al(U) = 4log(c(u - us)) , (7.8) 

X2(U)=(~(u-us))~ , A2(u) = log(c(u - us)) , (7.9) 

X3(U) = (b(u - us))i , 
1 

A3(U) = 4Iog(c(u - us)) , (7.10) 

X4(U) = (b(u - us))-i , 
1 

A4(U) = 4Iog(c(u - us)) , (7.11) 

where b, and Us are the free parameters of the second order equations of motion 

and c is a function of b, determined by matching onto the UV behaviour. The 

value of c is unimportant in all the following calculations. Us corresponds to the 

value of u where the solution becomes singular. By studying the IR asymptotics of 

the supersymmetric equations of motion, it can be shown that the supersymmetric 

solution is given by equation 7.11 with b = ~. This solution flows to the UV 

solutions with M = 0 (figure 7.2). 

A part from the su persymmetric case (corresponding to the line M = 0), there 

is no known analytic link between the UV and IR behaviour. Equations 7.8 and 

7.9 appear to lie close to the ridge in figure 7. 2. Equation 7.10 corresponds to 

the small quadrant which approximately corresponds to the lower right octant be-

tween the lines: M = 0 and C = -M. Equation 7.11 corresponds to the majority 

of the plot where the field diverges to +00. This includes the supersymmetric 

flow. 
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7.4 Brane Wrapping the Non-Supersymmetric 

Scalar Deformation 

Having found these solutions, the potential of a wrapped brane in the presence of 

the scalar potential can be calculated. The action for a D7-brane can be written 

with u and ¢ as perpendicular directions to the brane, with u(O) and ¢ constant, 

giving 

SDBI -T7 J d8~R4V cos(O)2 + X( u(O))6 sin2(O)e4A(u(e))X( u(O)) I cos3
( 0) I 

1 + (dU(O))2 X(u(O))2 (7.12) 
dO R2' 

Having calculated the analytic IR form of the scalar field, the potential can also 

be calculated analytically. This is the action with the variation of u with respect 

to 0 set to zero. Care must be taken as the potential will vary for different values 

of O. For instance the term X = Jcos20 + X6 sin2 0 in the divergent X limit has 

different behaviour for varying values of O. The following gives the behaviour for 

0=1 (0, ~) corresponding to the four solutions given by equations 7.8 to 7.11: 

SDBI,l r-v - J d8~(UO us )121 sin(O)11 cos3 (0)1 , 

SDBI,2 r-v - J d8~(UO - us)~ cos4 (O) , 

SDBI,3 r-v - J d8~(UO us)~ cos4 (O) , 

SDBI,4 r-v - J d8~1 sin(O)11 cos3 (0)1 . 

For 0 = (0, ~), the potential in the IR is zero for all the analytic solutions. 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

Equations 7.13 to 7.15 are clearly minimised when Uo = Us and the wrapped 

brane feels no repulsive potential. This means that a brane flowing from the UV 
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to the IR will wrap onto the surface of the singularity in the massless limit, and 

therefore there will be no chiral symmetry breaking. 

Care must be taken with equation 7.16 which appears not to depend on u in 

the IR. The solution interpolates to e4r in the Uv. By performing the calculation 

numerically, a monotonically increasing potential for the brane, as a function of 

p, is found, indicating that for this solution, the brane also collapses onto the 

singularity just as in figure 6.5. 

This non-supersymmetric deformation of N = 4 super-Yang-Mills appears to 

preserve the chiral symmetry of the undeformed geometry. There is one major 

qualitative difference between this background and the Constable-Myers geometry 

- this background has a constant dilaton field in contrast to the flowing dilaton 

in Constable-Myers. 

It may be that a dual gravity theory requires a running dilaton to trigger 

chiral symmetry breaking on the gauge theory side. This could be triggered when 

the magnitude of the dilaton reaches some critical value. It would be valuable to 

discover the generic properties of a background needed to trigger chiral symmetry 

breaking in a field theory dual. 

As indicated in chapter 6, a further way to see if chiral symmetry is preserved 

in a geometry would be to calculate the meson spectrum. The Gell-Mann-Oakes­

Renner relation (equation 3.11) indicates that in a model with chiral symmetry 

breaking, the meson mass is proportional to the square root of the quark mass, 

whereas the two masses are proportional in the case where chiral symmetry is 

preserved. The eigenvalues for the scalar field should not depend on the coordi-

134 



nate system and therefore it should be possible to calculate the behaviour of the 

pion mass as a function of the quark mass even in the unphysical coordinates. 

Again, this is an interesting avenue for future research. 
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Chapter 8 

AnN 2* Geometry 

In chapter 9, a complicated deformation of AdS5 x S5 that appears to be dual 

to a remarkably QeD-like theory, is studied. In order to understand some of the 

problems that are faced in this highly non-trivial deformation, another supersym­

metric geometry is studied. In this chapter, quarks are added to the field theory 

dual to the N 2* geometry. Though chiral symmetry breaking is not exhibited, 

studying this geometry proves a useful exercise before tackling the complicated 

background of chapter 9. 

8.1 The Background 

This background [99, 103] is a more complicated deformation of AdS5 x S5 that is 

still supersymmetric, but does have a running dilaton. This geometry is compli­

cated as the field equations have not been solved analytically, and because there 

are several R-R and NS-NS fields in the background that have not been switched 

on in the preceding geometries. There is also no simple three-sphere on which to 
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wrap a D7-brane as there has been in the previous examples. 

This background is dual to the N = 4 geometry with the addition of a mass 

term for two of the adjoint chiral matter fields. This means that it contains the 

massless fields of N = 2 super-Yang-Mills, and therefore has a two-dimensional 

moduli-space (coming from the vev of the complex scalar field). The * in the 

name of this geometry indicates that this theory has a UV completion with a 

higher degree of supersymmetry (N = 4). 

As in the geometries discussed in chapters 6 and 7, this background is derived 

from the lift of a five-dimensional supergravity solution to ten dimensions [99]. 

The solution to this lift in Einstein frame is given by 

In this metric 

c cosh 2( , 

ccos2 e + X6 sin2 e , 
e4AX 
__ 1 dxO /\ dx 1 /\ dx2 /\ dx3 

4gs X2 

(8.1) 

(8.2) 

where ( ,A and X are the five-dimensional supergravity fields. The axion/dilaton 
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is 

B 

b (8.3) 

Additionally, there is the anti-symmetric two-form, whose NS-NS and R-R parts 

are given respectively by 

where 

al R2 tanh 2( cos e , 

a2 
R2 X6 sinh 2( . e 2 e 

Xl sm cos , 

a3 
R2 sinh 2( . e 2 e sm cos . 

X2 

The supergravity fields (, A and X = eO< satisfy the equations of motion: 

These have solutions: 

do: 

dr 
dA 
dr 
d( 

dr 

x2 

k---,--
sinh(2() 

cosh( () + sinh2 (2() (, + log( tanh ()) 
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(8.4) 

(8.5) 

(8.6) 

(8.7) 



where 1 is a free parameter which defines different forms of the deformation. In 

the large 1 limit, these solutions deform into the N = 4 solutions of chapter 6. 

In this case, the vev is much larger than the supersymmetry breaking scale so 

the theory is effectively N = 4. The 1 = 0 geometry differs most from those 

studied in the previous chapters. This geometry can be probed with a D3-brane 

[104, 105J. Performing this embedding demonstrates that, when e = ¥, there is 

a moduli-space corresponding to the vanishing of the potential felt by the brane 

probe. It is possible to find the physical coordinates in which to describe the 

field theory and in particular these coordinates give the correct computation of 

the jJ-function. As in the N = 4 background, this coordinate change takes the 

spherical singularity to a disk. 

The singular behaviour in this geometry comes from the supergravity fields 

( ,A and X, which asymptote to ±oo in the IR. This asymptotic behaviour allows 

the limiting IR solutions to the equations of motion (equation 8.6) to be calculated 

analytically, just as in section 7.3. The solutions are given by 

((r) 
3 2 3r-r ( , ) -2 log (35 ) If-

x(r) vl2f9-
3 R' 

A(r) 4log Cr ~rs)) + b , (8.8) 

where b = log k + log (21887) and k is a constant of integration fixed by the UV 

asymptotics. rs , the radius of the singularity, is the single free parameter of the 

equations of motion. 
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8.2 Adding Quarks to the N = 2* Scalar Defor-

mation 

Quarks can now be added to the field theory by embedding a D7-brane in the 

N = 2* background. Whereas in all previous examples there has been an explicit 

three-sphere on which to wrap the D7-brane, in this geometry it is not obvious 

how to embed the brane. When quark fields are included, the chiral superfields 

have a superpotential coupling to the N = 4 adjoint scalars of the form QAQ, 

where the adjoint field is represented in the geometry by the two transverse 

directions to the D7-brane. In this geometry, the N = 4 fields have already been 

broken to N = 2 multiplets and care must be taken that the embedding does not 

break this symmetry further. To ensure this, the probe must lie perpendicular to 

the e i plane, because this plane corresponds to the massless scalar fields. 

To calculate the potential of a D7-brane in this background, the three one-

forms, 0"1,2,3, are written in terms of the spherical coordinates a, (3, 1/J which are 

taken from the parametrisation of an undeformed three-sphere: 

1 
0"1 ;;,(da + cos1jJd(3) , 

1 
0"2 ;;, (cos ad1jJ + sin a sin 1jJd(3) 

1 
;;, ( cos a sin 1jJd(3 sin ad1jJ) . (8.9) 
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This converts the metric to the form: 

(8.10) 

To study the D7-brane flow from the UV to the IR, the most natural embedding 

is in the xII, r, Q, (3 and 1/J directions. From this, the DBI action can be calcu-

lated. However, it can be seen that the two perpendicular directions, e and cp, will 

be dependent on both rand 1/J making the equations of motion extremely diffi-

cult to solve. This contrasts with the previous examples where the perpendicular 

directions were dependent only on a single variable. This is discussed in more 

detail in chapter 9 where the Yang-Mills* geometry is investigated. Rather than 

attempting the UV /IR flow solution, for which no numerical calculation has yet 

been successfully performed, the wrapping techniques developed in the previous 

chapters are used to look at the potential felt by a D7-brane around the singu-

larity. The wrapping brane has two perpendicular directions, rand cp, which are 

now functions of e and 1/J. cp is taken to be constant which, as before, corresponds 

to choosing a direction in the SO(2) plane. This embedding is illustrated in table 

8.1. 

For simplicity, the brane is embedded with cp = mr where the axion vanishes 

and the dilaton is given by 

(8.11) 

and III this case, the NS-NS two-form is also zero. The DBI action for this 

141 



/I /I Xo I Xl I X21 X31 r I e I ¢ I a I ~ I ~ /I 

11::1/:1:1:1 :Illllxlxl/ 
Table 8.1: D3-brane and D7-brane embedding in the N = 2* geometry. Filled 

dimensions are marked with crosses, those perpendicular to the world-volumes 

are denoted by a dot. 

configuration is 

Whereas in the previous cases, it has been simple to see that the Wess-Zumino 

term is not important, more care must be taken here to show that it vanishes. 

The gauge fields living on the brane are order a' corrections so the Wess-Zumino 

term is given by 

(8.13) 

However, due to the decision to set ¢ mr, the dual of the axion, C(8), vanishes. 

The second term is zero because the pullback onto the D7-brane world-volume 

of these two fields, when ¢ = mr, also vanishes. As in the previous analysis, 

only the IR behaviour is of interest and so the exact solutions to the asymptotic 

equations of motion found in equation 8.8 can be used. The DBI potential of a 

spherical brane is then 

(8.14) 

142 



This minimises the action when I = IS. Note that the kinetic terms are important 

for all solutions, excluding those in the IR asymptotic region. 

The D7-brane feels no repulsion from the singularity and so this test demon­

strates that this background, as expected, does not induce chiral symmetry break­

ing. It must be noted that the particular embedding chosen is one which retains 

the original supersymmetry. It may be possible to find an embedding which does 

reproduce chiral dynamics though the analysis would be more complex. The 

main reason to study this background is as a preliminary exercise for the more 

complicated geometry studied in chapter 9. 
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Chapter 9 

The Yang-Mills* Geometry 

The final background studied for evidence of chiral symmetry breaking is the 

geometry whose dual most closely resembles QeD. It is also the most compli-

cated deformation, and all the techniques developed from studying the previous 

geometries are crucial to gain insight into the phenomenology of the field theory 

that is dual to this background. 

9.1 The Background 

This background is another lift constructed from a five-dimensional supergravity 

in [106, 107]. Again, it is a deformation of Ad85 x 85 so the field theory is 

deformed by a relevant operator. The supersymmetry is broken in this geometry 

by adding a scalar that corresponds to an equal mass and/or vev for the gaugino 
4 

operator 0 = L 1jJ(I/Ji, Once the supersymmetry is broken, the masses of the 
i=l 

scalars are no longer protected and these decouple from the low-energy theory. 

This means that the low-energy theory contains only gauge fields. Once quarks 
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are added to this geometry, the theory appears to be very similar to QeD. As 

all supersymmetry is removed, all equations of motion for the fields are second 

order, which must be solved numerically. 

The five-dimensional background is constructed using the familiar ansatz for 

the metric: 

The scalar field Lagrangian can be written as 

£. = ~(O>.)2 - V(>') . 
2 

(9.1) 

(9.2) 

The scalar field of interest is in the 10 of 50(6), which corresponds to a source 

and vev for the operator O. This is the same operator as in the N = 1* solution 

formulated in [108, 109, 11 OJ which contains two supergravity scalars. These 

scalars are set equal to obtain the Yang-Mills* background. The potential for 

this scalar is given by 

v (9.3) 

The equations of motion for this field are then the usual second order differential 

equations: 

oV 
o>.(r) , >'''(r) + 4A'(r)X(r) 

6A'(r)2 X(r)2 - 2V , 

--3A" (r )6A' (r)2 (9.4) 

145 



9.1.1 UV and IR Asymptotics of the Yang-Mills* Geom-

etry 

The AdS / eFT dictionary can be used to understand the UV behaviour of the field 

theory. For a supergravity scalar, the mass of the field is related to the conformal 

dimension of its dual field theory operator as explained in section 2.2.3: 

(9.5) 

This means that as the operator of interest is of dimension 3, m 2 = -3 so that 

in the UV, the potential is 

(9.6) 

In the UV, the space returns to AdS5 x S5 as A ----+ O. The UV behaviour of the 

solution is 

A(r)luv = Me-r + Ke-3r 
. (9.7) 

In this parametrisation of the metric, under conformal scaling er --+ (Jer as x --+ ~. 

Therefore, K and M have scaling dimensions three and one respectively, so they 

correspond to a vev and mass for the fermion bilinear operator. The scalar field 

solutions can be calculated numerically using these boundary conditions and, as 

before, some of the solutions asymptote to -00 and some to +00. An analysis, 

similar to the non-supersymmetric scalar deformation, carried out in chapter 

7, can be performed by studying the IR asymptotics as a function of the UV 

boundary conditions, (M, K) (figure 9.1). 

In section 9.2.2 the IR asymptotic solutions to the supergravity equations are 

calculated using the same methods as in chapters 7 and 8. From these solutions, 
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Figure 9.1: Plot of the IR asymptotic flow of the five-dimensional supergravity 

field corresponding to a fermion bilinear as a function of the UV boundary con-

ditions. The lower half corresponds to flows which asymptote to negative infinity 

while those in the top half asymptote to positive infinity. 

and figure 9.1, it is be possible to extract information about the near-singular 

potential for different UV scalar field boundary conditions. 

9.1.2 The Ten-Dimensional Lift 

The uplift to ten dimensions is described briefly here. In order to use Einstein's 

equation the stress-energy tensor for all the fields in the ten-dimensional bosonic 

spectrum must be known. Einstein's equation is 

R - r(l) + T(3) + T(5) 
MN - MN MN MN' (9.8) 
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where the indices are ten-dimensional curved-space indices and 

T(3) 
MN 

T(5) 
MN 

1 (GPQ G* G*PQ G 1 CPQRG* ) "8 M PQN + M PQN - fj9rnn PQR 

1 PQRS 
fjF MFpQRSN. (9.9) 

These are the stress-energy tensors for the dilaton/axion, three-form and five-

form field strengths respectively. The dilaton is written (in unitary gauge) in 

terms of a field B: 

1 
f = V1 - BB* ' 

(9.10) 

where the dilaton/ axion combination is given by 

• <I> .1- B 
T=a+2e =2--

l+B 
(9.11) 

Th' ... f h.c p . OMT . . 51Th h IS parametnsatIOn IS 0 t e lorm M = 2--, as III sectIOn .. e t ree-
2ImT 

form field strength is written as 

(9.12) 

The equations of motion for the bosonic fields are then 

pRG* 2 'F GQRS 
MNR - '32 MNQRS , 

1 QRS 
-24 G G QRS . (9.13) 

The self-duality condition for the five-form is imposed by hand: F(5) = *F(5)' The 

Bianchi identities are given by 

(9.14) 
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It is now necessary to find the operator which is dual to the gluino bilinear in 

the ten-dimensional theory. The lift of the five-dimensional scalar dual to the 

operator of interest is lifted to a two-form potential. The operator transforms in 

the (4 x 4)sym = 10 of SU(4)R. The three-form field strength must, therefore, 

have the correct rotational symmetry in the six-dimensional space perpendicular 

to the brane stack to make an SU( 4)R singlet with the field theory operator. The 

six transverse directions are written in terms of three complex planes: 

(9.15) 

It transpires that the three-form field strength with the correct symmetries is 

given by 

where the < 1/Ja 1/Ja > are the vevs of the gaugino bilinears. The operator of 

interest is the one in which all the gauginos are given the same mass and vev. 

This corresponds to a three-form: 

(9.17) 

The final reparametrisation of this geometry is achieved by rewriting the six-plane 

in terms of a pair of two-spheres, a radial coordinate corresponding to the energy 

in the field theory, and an angle between the two-spheres. Each two-sphere is a 

spherical section in one of the three-dimensional spaces wand y. The metric for 

the two-spheres is parametrised as follows: 

(9.18) 
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The two-form potential of the three-form field strength is 

(9.19) 

The calculation of this two-form has been performed in the UV region where 

there is a quantitative link between the field theory and supergravity background. 

Though this has the correct symmetry properties for the operator in question, 

this does not give the correct five-dimensional truncation. In order to achieve the 

correct five-dimensional truncation this equation of motion for the two-form must 

reproduce the UV asymptotic behaviour of the five-dimensional field A. This is 

given by 

(9.20) 

This solution then produces the full ten-dimensional flow of the two-form field 

strength. 

The metric and dilaton are calculated using an ansatz formulated in [111, 112J. 

In [106], the lift of this deformation was calculated using the N = 1* lift [108, 

109, 110J by equating the two scalars. The full ten-dimensional uplift solution is 
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dsio 

A± 

B 

w(r) 

cosh4 >'(r) + sinh4 >.(r) cos2 20: , 

cosh2 >'(r) ± sinh2 >.(r) cos 20: , 

sinh 2>.(r) 
cosh2 >.(r) ±cos20:sinh2 >.(r) , 
sinh2 >'(r) cos 20: 

cosh 2 >. (r) + ~ , 
1- B 

l+B' 

iA+ ( >. (r ), 0:) cos3 0: cos e + de + 1\ d¢ + - A_ (>. (r ), ex) sin 3 0: cos e _ de _ 1\ d¢ - , 

(9.21) 

9.2 D3-Brane Probing the Yang-Mills* Geome-

try 

9.2.1 UV Asymptotics 

Prior to adding quarks, it is interesting to study the stability of various solutions 

parametrised by different values of the mass of the gauginos and the gaugino 

bilinear condensate (M and JC respectively). To study the stability, the probe 

potential of a D3-brane is calculated. In this case, the DBI action is given by 

(9.22) 
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with fJ3 = gsT3' Calculating the pullback, the probe potential is 

(9.23) 

The region of interest is the UV of the potential and if this is unbounded, the 

field theory will not be well behaved. The UV behaviour for this potential can 

be calculated and is given by 

1 1 2 
Vuv = -M(9JC + 5M2) + _M4 cos 40: + _M2e2r . (9.24) 

9 4 3 

Therefore, the condensate-only solution is unbounded. A gaugino mass must be 

present to produce a well-defined field theory. 

9.2.2 IR Asymptotics 

The IR asymptotic solutions to the equations of motion for A and A can be 

calculated using the techniques employed in the previous examples. The solutions 

are 

AIR,l(r) = -log (fj;(r - rs)) , 

AIR,2(r) = log (fj;(r - rs)) , 

AIR,3(r) = - l' log(a(r - rs)) , 

A = 2/3Iog(r - rs), (9.25) 

A 2/3Iog(r - rs), (9.26) 

A = 1/4Iog(r - rs), (9.27) 

A = 1/4Iog(r rs ), (9.28) 

where a and rs are free parameters, the latter setting the size of the singularity. 

This IR behaviour cannot be linked analytically with the UV boundary condi-

tions. However, each IR flow can be numerically solved into the UV to establish 

where in the (M, JC) phase-space each IR solution flows to. 
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Equations 9.25 and 9.26 appear to lie very close to the critical line in figure 

9.1 between those solutions that asymptote to ±oo in the IR. In particular, equa-

tion 9.25 flows to positive mass and positive condensate solutions and lies just 

above the critical line, while equation 9.26 flows to negative mass and negative 

condensate solutions and lies just below the critical line. 

Equation 9.27 appears to fill the remaining positive JC region of figure 9.1, 

and equation 9.28 completes the negative JC region. In particular, the M = 0 

solutions are given by equations 9.27 and 9.28 with a = 1.42, and the JC = 0 

solutions are given by a 3.64. 

Using equations 9.25 to 9.28 the D3-brane potential can be recalculated. Due 

to the nature of the scalar potential, V, the sign of ,\ is unimportant (specifi-

cally because the potential depends only on the square of hyperbolic functions of 

'\). This means that, though there appear to be four separate forms of the IR 

boundary behaviour, in fact equations 9.25 and 9.26 produce exactly the same 

D3-brane IR potential, as do equations 9.27 and 9.28. For the first two solutions, 

the potential in the IR is given by 

VIR,(1,2) 
10)1 + cos2 2a log(r - rs) 

27(r rs) 

while for the second two solutions it is 

VIR,(3,4) 
log(r - rs) 
16(r - rs) 

(9.29) 

(9.30) 

Therefore, independent of the parameters rs and a, the first two solutions asymp-

tote to -00 while the second two asymptote to +00. 

From these investigations of the UV and IR behaviour, it can be seen that only 

the boundary behaviour set by equations 9.27 and 9.28 give a bounded potential 
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in the IR, while in the UV any solution with a mass will give a bounded potential. 

Therefore, the well-behaved solutions are given by: 

1 
A = 4log(r-rs), a i= l.42. (9.31) 

9.3 Glueballs in the Yang-Mills* Geometry 

A detailed calculation of the glueball potential [107] is not provided in this section 

as it is covered fully in chapter 10. However, some general remarks about analytic 

solutions which produce bounded glueball potentials are made. 

From the AdS/eFT correspondence, the field dual to the operator Tr p2 is 

given by the dilaton, a massless scalar field. x-dependent excitations of this 

scalar correspond to x-dependent excitations of the square of the gauge field, 

corresponding to glueballs. The equation of motion for the dilaton in a super-

gravity background can be calculated, and using the same plane-wave ansatz as 

used in the previous meson spectrum calculations, the mass eigenstates of the 

glue ball can be determined. This procedure is covered in detail in chapter 10. 

The potential felt by the dilaton can be calculated and its dependence on the UV 

and IR boundary conditions established. In particular, the existence of a discrete 

glueball spectrum depends on the gradient of the potential in the UV and the IR. 

To calculate the potential, the equation of motion for the scalar is rewritten 

in a Schrodinger form. A change of variables is performed, given by 

dz _ -2A(r) 
dr - e . (9.32) 

Having implemented this change of variables, the Schrodingerpotential is given 
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by 

U (z) = ~ A" (r) + ~ (A' (r ) ) 2 • 
2 4 

(9.33) 

In the UV, A(r) -+ r meaning that z = e-r
, and therefore A(r) -+ -log(-z). 

Therefore the Schrodinger potential in the UV is 

15 
U(z)luv = 4Z2 ' (9.34) 

As z -+ 0_, U (z) luv -+ 00 meaning that the UV of the glueball potential is 

bounded independent of the value of M and K. 

Next, the IR behaviour is calculated using a general IR form for A (of which 

the true solutions given by equations 9.25 to 9.28 form a subset): 

A(r) clog(r - rs) + b , 

z - Zs 
e-b(r - rs)l-c 

1- c 

A(z) 1 ~ c 10g((1 - c)eb(z - zs)) + b , 

U(z) 3 c (3 c 1) 
2(z - zs)2 1 - c 21 - c 

(9.35) 

For quantum mechanical, potential-well problems, there is a bound on the grad i-

ent of the potential, which produces a discrete mass spectrum [113J. This is 

k 
U(z - z ) '" -

s Z2' 
1 

k> -­- 4 (9.36) 

ensures the existence of a discrete spectrum. From U(z) in equation 9.35, for this 

bound to be satisfied, the value of c must be :2: ~. This bound is exactly saturated 

for equations 9.27 and 9.28 which fill most of the (M, K) phase-space. Equations 

9.25 and 9.26 also satisfy the inequality, so all possible boundary conditions for 

the Yang-Mills* geometry exhibit a discrete glueball spectrum. This result is in 
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contrast to the conclusions drawn in [107] where it appeared that only the lC = 0 

solutions produced a discrete spectrum. The link between the IR solutions and 

the UV boundary conditions is illustrated in figure 9.2 

Asymptotes~+oo 

Solution 3 

2 

M 

.a=I.42 

~---------------+--------------~/~/ X -15 -10 -5 5 ]0 

Asymptotcs~ -(Xl 

Solution 4 

'a=3.64 

15 

Figure 9.2: Plot indicating the link between the IR asymptotic behaviour of the 

supergravity scalar, A(r), and the UV boundary conditions defined by M and lC. 

The conclusions from section 9.2 and 9.3 are that, provided the gauginos are 

not massless, the field theory dual to the Yang-Mills* geometry will be stable and 

have a discrete glueball spectrum. 

9.4 Adding Quarks to the Yang-Mills* Geome-

try 

As in the previous chapters, quarks can be added by the introduction of D7-

branes. In this case, the brane is embedded in the direction illustrated in table 

9.1. The DBI action for this embedding can be calculated and is given by equation 
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II II Xo I Xl I X2! x31 r! a I e+ I ¢+ I a_I ¢-II 

II :: II : I : I : I : I x I x III x I x Ii 
Table 9.1: D3- and D7-brane embedding in the Yang-Mills* geometry. Filled 

dimensions are marked with crosses, those perpendicular to the world-volumes 

are denoted by a dot. 

9.37. 

In contrast to the actions calculated in chapters 4 to 8, the two-form potential 

is important. The embedding is chosen such that the directions on the two-sphere, 

(e+, ¢+), are perpendicular to the D7-brane, so these correspond to the scalar 

fields living on the brane. The DBI action is given by 

SDBI = -TD7 J d8(e<Pe4AJF~sin2e_cos4a+ t(A_Sin3acose_)2 

1 + ((ore+)2 + (oae+)2) Si;~ a + ((or¢+)2 + (8a ¢+)2) sin
2 

e;:os2 a , 

(9.37) 

where the ansatz e+ = e+(r, a) ,¢+ = ¢+(r, a) is used. The above action includes 

a term from the NS-NS two-form. The Wess-Zumino term is 

(9.38) 

However, the eight-form is dual to the axion which is zero in this background. 

The six-form is dual to the two-form by the relation dC(6) = *B~~-R). Therefore, 

(9.39) 
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When the wedge product of the NS-NS two-form is taken with the six-form, 

each term contains two copies of at least one of the D_ directions giving a total 

antisymmetric product of zero. This means that in this case, the Wess-Zumino 

term vanishes. 

As in the previous examples, a constant value in one of the perpendicular 

directions to the D7-brane is chosen corresponding to picking a direction in the 

U(l) chiral plane. In this case, the direction is given by ¢+ = canst. To calculate 

the equation of motion for (J+ the two directions in the action on which (J+ is 

independent must be integrated out. Integrating over ¢_ is trivial and produces 

a numerical prefactor in the action. However, integrating over (J_ produces an 

elliptic integral, giving a DBI action of the form 

(9.40) 

9.4.1 D7-Brane Solutions in the Yang-Mills* Coordinates 

It is now possible to calculate the equation of motion for e+ which is a second 

order partial differential equation in r and a: 

_0 (e<I> e4A 
EllipticE (1 - ~~os:~:;~3) or(J+) 

or VI + Si;~Q((OQ(J+)2 + (ore+)2) 
sin2 a cos2 a 

o (e<I>e4A 
EllipticE (1 - ~~::~:;~3) sin

2 a cos2 aOQe+) 
+- =0. 

oa VI + Si;~Q((OQ(J+)2 + (or(J+)2) 
(9.41) 

This equation is clearly not analytically solvable, but it may be possible to gain 

some insight by studying it in the large r limit, where the space returns to 
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AdS5 X S5. It is critical that even in this limit, though it can be solved an-

alytically, it cannot be solved numerically due to the nature of the boundary 

conditions. In the AdS limit, the metric becomes 

(9.42) 

The dilaton and five-form field strength are constant and the three-form field 

strength vanishes. The pullback of this metric onto a D7-brane, embedded with 

orthogonal direction e+ and ¢+ and the latter set as a constant, produces an 

action of the form 

(9.43) 

Though in the deformed case, the integral over e_ gave an elliptic integral, in this 

case it simply gives a numerical prefactor which is ignored as it does not alter the 

solutions. The equation of motion is given by 

U nsurprisingly, this second order, non-linear, partial differential equation cannot 

be solved using the normal methods in Mathematica. However, because the 

solution is known in the usual parametrisation of AdS5 x S5 (equation 9.45) and 

the change of variables between the current coordinate system and the canonical 

one is known, the solution to this equation can be found with some effort. The 
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canonical metric is 

ds2 (p2 + X~ + x~)2dx// 

1 (2 2(d 2 2 2d 2 2 . 2 d 2) d 2 d 2) + (2 2 2)2 P + P Xl + cos Xl X2 + COS Xl sm X2 X3 + Xs + Xg , 
P + Xs + Xg 

the solution to the D7-brane action in this coordinate system is 

c 
Xs = m+ 2"' 

p 
Xg 0, 

and the change of variables between the two coordinate systems is 

psin Xl 

p cos Xl cos X2 

p cos Xl sin X2 cos X3 eT' cos 0: sin B_ sin ¢_ , 

p cos Xl sin X2 sin X3 

Xs 

Xg 

(9.46) 

(9.47) 

At this stage, the choice to set ¢+ = 0 is made. It is possible to rewrite Xs in 

equation 9.46 in terms of B+: 

(9.48) 

The solution to this cubic is very complicated and demonstrates why the equation 

cannot be solved analytically using Mathematica. The solution to equation 9.48, 
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describing the flow of a D7-brane in pure AdS5 x S5 in the Yang-Mills* coordinate 

system, can be written as a series expansion and the first two terms are 

(
me ) e + = arcsin . + . . 

er sm a e3r sm a 
(9.49) 

From equation 4.8 it is known that the well-behaved solution is given by the 

c = 0 branch of equation 9.48. This makes the analytic form of the equation 

much more simple: 

e + = arcsin ( ~ ). er SIn a 

9.4.2 Boundary Value Problems for PDEs 

(9.50) 

In the Yang-Mills* coordinate system, it is very difficult to calculate the solution 

to equation 9.44 numerically. This should be a simple question of how the D7-

brane flows in an AdS5 x S5 geometry and therefore it is surprising that it is so 

complicated. This is due to the nature of the boundary conditions for this partial 

differential equation. In the UV, the solution is known to be equation 9.49 where 

the UV is the large r limit. Ideally, the boundary conditions for all values of a 

would be set, however, this means that the largest value of r in the domain of 

the arcsin function is given by the solutions of 

em. - + - < sma. 
e3r er 

(9.51) 

As a ---+ 0, r must ---+ 00 for this condition to be satisfies. This analysis indicates 

that the boundary values for a and r cannot be set independently. For a non-

linear, partial differential equation, such as 9.44, Mathematica will not attempt 

a numerical solution with this sort of boundary condition and so another method 
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must be sought. The method attempted for this problem was the relaxation 

method [114]. 

9.4.3 D7-Brane Solutions using the Relaxation Method 

A relaxation method can most easily be explained using a simpler example of 

a differential equation. The example given here is the equation of motion for a 

D7-brane in the canonical Ad85 x 85 coordinates (equation 9.45). This is simpler 

because, though it is still non-linear, the function is dependent only on a single 

variable. First, the action for the D7-brane is written as in section 4.1: 

(9.52) 

In this case, because the action is clearly negative, the function w(p) which max-

imises the action is sought. This action can then be discretised (having already 

integrated over x II and the three-sphere and discarded all numerical factors). To 

perform this discretisation, a 2 x N array is defined, where the first column is 

the discretised values of P and the second column is the corresponding values of 

w. The UV boundary condition is given by fixing the value of w for the largest 

value of p. The other values are then allowed to vary. To initialise, the values 

of ware set as random numbers (in a sensible range) in all of the array entries 

apart from the boundary value. The discretised action is then written in terms 

of these array elements as 

N-l 

Sdiscrete = L (P(i+l) - Pi)P; 
i=l 

( )

2 
1 + W(i+l) Wi 

P(i+l) - Pi 
(9.53) 

Note that, for simplicity, the sign of the action has been changed so the min-

imising action solution is sought. For the current values in the array, the action 
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is calculated. The next stage is a loop algorithm by which one of the Wi values 

is adjusted randomly, followed by a recalculation of the action. If the action is 

closer to zero than the previous action, the new value of Wi is kept, and if not, 

it is returned to its initial value. There are many possible algorithms for this 

procedure. One algorithm chooses the value of i randomly, then the derivative of 

the action with respect to Wi is evaluated to find the action minimising value of 

Given a random starting array, it should be possible to find the minimising 

solution (provided there are no local minima). This is illustrated in figure 9.3 

1 
0.8 
0.6 
0.4 
0.2 

w 

5 10 15 

w 

1 +------~-....... - ........ -.-.-.-.-<.-. 
0.8 

----i .. ~ 0.6 

0.4 
0.2 

5 10 15 

Figure 9.3: Plots illustrating the relaxation method for a D7-brane flow in the 

canonical Ad85 x 85 coordinates. Starting from a random discretised brane flow 

with a fixed UV boundary point (p = 20), it is possible to find the action min-

imising solution using the relaxation method. 

The values of the mass and condensate corresponding to this solution can be 

calculated by studying the UV behaviour and matching onto m + c2 • Indeed, 
p 

in this very simple case, the analysis does work and obtains the correct answer 

Wi = m, Vi. Unfortunately, though many months were spent attempting to 
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solve the partial differential equation in the Yang-Mills* coordinate system, the 

problems with singularities in the supergravity fields, as well as a lack of an 

efficient discretisation procedure, meant that a successful solution has not yet 

been found. 

Chronologically, this was the point that the wrapping method was first de-

veloped. In chapters 5 to 8, spherical solutions were found which minimised 

the action. In the Constable-Myers case, due to the symmetries of the problem, 

the solution to the brane wrapping action was reduced to solving an algebraic 

equation analytically. In the current case, it is possible to reduce the partial dif-

ferential equation to an ordinary differential equation which can be solved using 

the relaxation method. 

9.5 Brane Wrapping the Yang-Mills* Geometry 

It has not been possible to study the flow of a brane from the UV to the IR in 

this geometry, however, the methods developed in chapter 5 to study the near-

singular behaviour can be investigated. A D7-brane wraps the singularity with 

two directions orthogonal to its world-volume, rand ¢+, and the functional ansatz 

for these directions are ¢ 0 and r(o: ,e+). As in the case of the UV /IR flow, 

the Wess-Zumino term is zero. The action for the D7-brane in this wrapping 

configuration is 

(9.54) 
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The simplest possible solution would be one in which the brane is perfectly spher-

ical (has no a or e dependence). For this to be a solution, there must be no re-

pulsive potential to this configuration. To calculate the potential, the asymptotic 

IR solutions (equations 9.25 to 9.28) are used. The signs of the IR asymptotics 

of the field equations are unimportant for this action, so there are two different 

forms of IR behaviour. The potentials for these solutions are given by 

J 7 2 (18 2 ) J . 3 I Vsphere,(1,2) = d ~ ('T'c-'T'o) 3" EllipticE 1 - "5('T'c - 'T'o) I cotal I cos5 asm a , 

(9.55) 

corresponding to AIR,l and AIR,2 and 

Vsphere,(3,4) = 

(9.56) 

corresponding to AIR,3 and AIR,4' 

It is important to understand the nature of the elliptic integrals in the IR 

limit. As 'T'c -----+ 'T'o, the asymptotics of the cot function can cause the argument of 

the elliptic integral to blow up. For equation 9.55, for a « arctan('T'c - 'T'0)2 the 

elliptic integral is given by 

(9.57) 

so the potential in this limit is 

Vsphere rv ('T'c - 'T'o) i V cos6 a sin2 a . (9.58) 

For equation 9.56, when a « arctan('T'c - 'T'0)v1, the elliptic integral goes like 

EllipticE (1 -- 8(a('T'c - 'T'0))v11 cot al) -----+ V8('T'c 'T'0)v1' vi cot ai, (9.59) 
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so the potential is 

( )I-VI J 6 . 2 Vsphere rv rc - rO 2 cos ex SIn a . (9.60) 

Therefore, for this small ex limit, neither of the potentials are repulsive. However, 

it is significant that, as rc -> ro, the range of ex for which this limit holds is 

vanishingly small. 

In the opposite limit, ex » arctan(rc - ro)VI, equation 9.55 goes like 

(9.61) 

while equation 9.56 goes like 

(9.62) 

This contrasts with the small ex limit where neither potential was repulsive. In 

this case, the second potential is repulsive. It can be seen that the first potential 

will always be minimised for small r,independent of ex. This suggests that for this 

set of solutions, there is a brane configuration where the brane does wrap onto 

the surface of the singularity. 

From the analysis of chapters 5 and 6, the conclusion is that the field theory 

dual to the geometry with IR boundary behaviour given by equations 9.25 and 

9.26 does not exhibit chiral symmetry breaking. The Yang-Mills* geometry with 

IR boundary behaviour given by equations 9.27 and 9.28 does produce a repulsive 

potential in the IR limit. This suggests that for a D7-brane flowing from the UV 

to the IR, the brane will be repelled inducing chiral symmetry breaking in the 

field theory. It would be extremely interesting to find the D7-brane flow solution 

from the UV to the IR of the gauge theory and show explicitly by studying the 
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quark mass and bilinear condensate that chiral symmetry breaking is induced in 

this region. 

9.5.1 Dilaton Behaviour in the IR 

It has been postulated in this thesis that a running dilaton may be necessary 

to trigger chiral symmetry breaking. In the region between the UV and the IR 

of the Yang-Mills* geometry, the dilaton is dependent on the radial-direction, r. 

However, in the IR limit, the dilaton is purely a function of a: 

e1> 

lim,\-+oo 

cosh2
).. + sinh2 

).. cos 2a + J cosh4 ).. + sinh4 ).. cos2 2a 

cosh2
).. sinh2 

).. cos 2a + J cosh4 ).. + sinh4 ).. cos2 2a 

cos 2a + \11 + cos2 2a . (9.63) 

This is in contrast to the Constable-Myers dilaton which asymptotes to infinity 

in the IR. The a dependence of the dilaton, given by equation 9.63, is shown in 

figure 9.4. 
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Figure 9.4: Asymptotic behaviour of the dilaton as a function of a. The dilaton 

is independent of r in the IR of the gauge theory. 
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9.5.2 D7-Brane Wrapping in a Repulsive Potential 

The IR behaviour defined by equations 9.27 and 9.28 appears to produce a re­

pulsive potential for the D7-brane wrapping the singularity. In the analysis to 

calculate the potential, a spherical ansatz for the brane was postulated. By 

studying the symmetries of the action for the brane, a spherically symmetric con­

figuration appears impossible. However, the symmetries of the action do allow a 

solution for which there is no B+-dependence in r. This reduces the problem of 

finding a solution from a partial to an ordinary differential equation. This prob­

lem is the equivalent of calculating the configuration of a charged elastic band, 

stretched about a non-spherical charge distribution. The tension of the band 

pulls it in, while the charge distribution repels it. Due to the symmetries of the 

charge distribution, the band will not lie in a circular configuration. 

The simplest way to set the boundary conditions for the solution would be 

to state that the rubber band is both continuous and smooth: r[O] = r[27f] and 

r/[O] r/[27f]. To be able to use Mathematica to solve a problem numerically with 

boundary conditions of this form, the equation must be linear which is not the 

case for the wrapping D7-brane. If instead, the value and gradient of r at some 

fixed value of a are set, Mathematica will not find a solution which is continuous. 

Figure 9.5 illustrates the answer when these boundary conditions are used. 

Mathematica's algorithms are clearly not suitable for this problem so the 

relaxation method is used instead. There is more freedom in how to define the 

boundary values in the relaxation method. 

In this case the boundary values are set such that the value of r at some fixed a/ 
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r(a)sina 

r(a)cosa 

Figure 9.5: Attempts to solve the differential equation for a wrapped brane using 

the usual boundary condition methods (plot calculated using the IR asymptotic 

form of ).). 

and a' + 21f are equated. This value of r is then allowed to vary and the relaxation 

algorithm is run. To obtain a smooth function in the highly singular region, a 

large number of points are needed on the curve, which consequently takes a long 

time to run. Having calculated the function r( a), the two dimensional surface 

r(a,O+) can be drawn. This is shown in figure 9.6. 

The field theory dual to the Yang-Mills* geometry does exhibit chiral sym­

metry breaking for almost all of the parameter space defined by the supergravity 

field UV boundary conditions. It would be a major achievement if the UV /IR 

flow of a D7-brane could be calculated in this geometry. 
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2 

Figure 9.6: Three-dimensional brane wrapping solution about a spherical sin­

gularity. This plot is generated using the ansatz that r is a function of 0:, but 

independent of e +. The function r is then found using the relaxation method and 

the three-dimensional plot generated from this function. The distance between 

the brane and the singularity has been exaggerated in order to see the deviation 

of the brane from a perfect sphere. 
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Chapter 10 

Glueballs and Perfect Actions 

10.1 Glueballs from Eleven-Dimensional Super­

gravity 

This chapter is conceptually different from the previous ones, however, the moti­

vation is similar. In chapters 4 to 9, the inclusion of relevant operators to the IR 

of the gauge theory has been studied [102, 108, 99, 109J. This process was used to 

remove some or all of the unrealistic symmetries from the low-energy limit of the 

field theory, while in the UV, the theory returned to the superconformal phase. 

These operators were included in an attempt to construct a realistic model of 

QCD. At low-energy in QCD, the theory is non-supersymmetric, non-conformal 

and appears to have an induced quark bilinear condensate. All of these properties 

have been investigated in chapters 4 to 9. The aim of this chapter is to study the 

UV of the field theory in an attempt to make it more QeD-like. 
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10.2 A UV Cutoff in the AdS/CFT Correspon-

dence 

The AdS/CFT correspondence is perturbatively controlled on the supergravity 

side when the gauge theory coupling, A = gsN, is large. This condition is sat-

isfied for low-energy QCD, but not in the high-energy regime. In the examples 

in previous chapters, the UV of the theory has been conformal and strongly-

coupled. It is interesting to investigate whether this discrepancy from QCD can 

be removed. Figure 10.1 illustrates the discrepancy between the QCD coupling 

and the coupling studied previously. 

Gauge Coupling 
10 

8 

6 

4 

2 

Energy, J1 
0.2 0.4 0.6 0.8 1.2 

Figure 10.1: Comparison of the QCD gauge coupling (lower curve) and the gauge 

coupling of the field theory dual to the supergravity backgrounds in the applicable 

regimes (upper curve). The plots match well in the IR, but not in the UV. 

The supergravity approximation to string theory is an inaccurate description 

of the physics in the small 't Hooft coupling limit of the AdS/CFT correspon-

dence. In this limit, the radius of curvature is smaller than the string length and 
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so stringy effects are important. It appears that, if the AdS/eFT correspondence 

is to describe QeD with a supergravity theory, the UV of the field theory must 

somehow be removed. 

By defining the boundary conditions for the couplings and vevs in a field the­

ory at an energy scale, A, a cutoff is automatically imposed. By the string-gauge 

duality, supergravity fields correspond to sources and vevs for field theory oper­

ators, so, setting the supergravity field boundary conditions in the large r limit 

corresponds to defining a high-energy UV cutoff in the field theory. In previous 

examples, this cutoff was sent to infinity because in the deformed geometries it 

is only at r 00 (where the space returns to AdS5 X S5) that the field-operator 

correspondence is quantitatively understood. If a cutoff is defined such that the 

boundary conditions for operators are set in the IR, quantum corrections change 

the scaling dimensions for the field theory operators and full control over the 

duality is lost. 

As illustrated in figure 10.1, the high-energy limit of the field theories formu­

lated in the previous chapters has not been QeD-like. The boundary conditions 

for the supergravity fields can be set further into the IR (where the field the­

ory does exhibit QeD-like behaviour) thereby defining a field theory with a UV 

cutoff. This field theory will then include only the QeD-like region. 

When a finite UV cutoff is introduced into a field theory, an infinite number of 

higher dimension operators are switched on to take account of the high-energy de­

grees of freedom that are integrated out. These operators are non-renormalisable 

as the field theory now has a cutoff. As the cutoff is lowered, the higher di-
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mension operators become increasingly important, and to provide an accurate 

description of the physics, more of these operators must be included in pertur­

bative calculations. This same process can be employed in the AdS/eFT cor­

respondence. When the UV cutoff is lowered from infinity to a finite value of 

r, non-renormalisable operators can be introduced. This idea is motivated di­

rectly by lattice QeD [l15, l16] in which, due to the finite lattice spacing, there 

is automatically a UV cutoff. A perfect lattice action has, in addition to the 

usual QeD terms (equation 1.3), the most important higher-dimensional opera­

tors switched on to take account of this cutoff. By using the exact renormalisation 

group [l17, l18]' the renormalisation of the coupling constants for these higher­

dimensional operators can be studied. 

10.2.1 Non-Renormalisable Operators in the AdS/eFT 

Correspondence 

This preliminary investigation aims to introduce a UV cutoff to the field theory 

and add a single, higher-dimensional operator to take account of the integration 

over the high-energy modes. The higher dimension operator has a coupling con­

stant that is free to be tuned. By calculating some physical, measurable quantity 

using this field theory with a cutoff, the coupling constant can be tuned to match 

the AdS/eFT results with experimental results. 

In this example, the AdS/eFT results to be compared to experiment are 

the masses of glueball bound-states in a four-dimensional large N field theory. 

Unfortunately, glue balls have yet to be seen, conclusively, in any experiments. For 
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this reason, results from lattice QeD simulations [119,120, 121,122,123,124,125] 

are used to compare to the AdS/eFT results. Even using lattice results, there 

are only a very small number of data points available for large N field theories. 

Therefore, it is difficult to draw confident conclusions from this preliminary study 

of the effects of defining the gauge-gravity duality with a cutoff. 

The aim is to tune the free parameter (the coupling constant) so that the 

ratio of two glueball masses match the lattice results. Then, using the value for 

the parameter which gives the correct ratio, the rest of the glueball spectrum is 

calculated and compared with both the lattice data, and the results of AdS/eFT 

calculations without the inclusion of the higher-dimensional operator. The overall 

scale of the spectrum is set by tuning the AdS radius, R, such that the first 

glueball mass matches the lattice data. 

10.3 The AdS-Schwarzschild Black-Hole Solu-

tion 

It was proposed by Ed Witten in [53] that the Schwarzschild black-hole solution 

in ten-dimensional AdS space is dual to three-dimensional, non-supersymmetric 

Yang-Mills theory at finite temperature. The AdS-Schwarzschild background [36] 

is given by 

, 22 2 '22 2 (( b4 ) 4) b2 ( d 2 ) 
b2 1 - ,4 dt + b ~ dXi + ,2 1 _ ~: +, dD5 , (10.1) 
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where b is the inverse temperature of the dual field theory. The near-horizon 

solution to this geometry is 

H 
b4 

lima+ 4." . 
r--->O r 

(10.2) 

The theory is non-supersymmetric as the fermions, with anti-periodic boundary 

conditions around the compactified direction, have a different mass from the low-

est mass bosonic states. The broken supersymmetry allows quantum corrections 

to the scalar masses which are driven to the fermion mass scale. At low energy 

(/--l < b), the gauge theory is left with pure glue. 

It is simple to add a higher dimension operator to the field theory dual to 

this background. The operator must be constructed from the gauge field only 

and have dimension higher than four. The first two options are Tr F3 and Tr F4 

[126, 127, 128, 85]. The simplest operator to add in this case is the dimension 

eight operator, Tr F4. At high energy, large r, the field theory is actually four-

dimensional. Switching on this operator adds the following term to the action: 

(10.3) 

G has scaling dimension four and zero R-charge, meaning that the background 

must be deformed by adding a dimensionless term ar4. This term is dual to an 

R-symmetry scalar because it has no dependence on the coordinates of the five-

sphere. In this case, the operator is easy to find as the harmonic warp factor, H, 

away from the near-horizon limit already contains this field: 

(10.4) 
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The new supergravity field is part of the s-wave component of the graviton. The 

addition of this higher-dimensional operator corresponds to leaving the near-

horizon (extremal) limit of the black-hole geometry. By performing this defor-

mation, the geometry asymptotes to fiat-space instead of Ad85 x 85
. It can be 

seen from equation 10.4 that this term becomes less important in the IR and 

more important in the Uv. This equates with the fact that it corresponds to a 

non-renormalisable operator. 

10.4 The Eleven-Dimensional Black-Hole Solu-

tion 

Though the field theory dual to the geometry defined by equation 10.2 is four-

dimensional in the UV, it is only three-dimensional in the IR. In order to compare 

it with QeD, a four-dimensional IR background must be studied. The background 

dual to a finite temperature, four-dimensional field theory in the IR is the M5-

brane solution of eleven-dimensional Euclidean supergravity with a compactified 

time direction. An M5-brane is a solitonic object, believed to exist in M-theory 

of which eleven-dimensional supergravity is the classical field theory limit. This 

metric for the M5-brane solution is 

ds;, h-j ( (1 -!:) d72 + t dX;) + ,3 ((1 !:r dP' + p2dil;)' 

h p-3(1 + ap3) , (10.5) 

where p = r2. r has mass dimension one, meaning that the parameter a has mass 

dimension -6. This is consistent because in the UV, the dual of this background 
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is actually a six-dimensional field theory given by the action 

J 6 [1 2 4] S FT = d X g2 Tr F + aTr F , (10.6) 

where the coupling a is six-dimensional. Finite temperature QCD4 (the subscript 

four denoting the number of dimensions) is dual to the low-energy limit of type 

IIA string theory on the AdS-Schwarzschild black-hole background [18, 129J. The 

IIA metric is obtained by compactifying the eleventh dimension and taking the 

limit as the radius of that dimension goes to zero. The metric is then rescaled by 

f Y!. h 1 b' a actor e 3 = -6" to 0 tam 

( (1 -::) dT' + t dX;) + h l ( (1 - !: r dP' + p' d!l; ) 
(10.7) 

This solution has a non-constant dilaton related to the moduli-space of the com-

pactification of the eleventh dimension given by ecP = h-i. The function h is a 

solution of the five-dimensional Laplace equation 

- vggPP- =0, d ( dh) 
dp dp 

(10.8) 

where 

~ ( p4 dh) 
dp dp 

0, (10.9) 

with solution 

(10.10) 

This solution is a very specific case which depends only on p, and not on the five-

sphere coordinates. There are an infinite number of other solutions that depend 
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on the spherical coordinates and correspond to R-charged operators. There are 

also solutions which fall off faster than p3 corresponding to operators of the form 

Tr¢n [130, 100]. 

10.5 Calculating the 0++ Glueball Spectrum 

To calculate the glueball spectrum, the equation of motion for a scalar field 

with mass zero (m = ,6.(,6. - 4)), with x- and p-dependence but no five-sphere-

dependence, must be calculated. This field corresponds to excitations of the 

operator Tr F2. This operator has scaling dimension four, so if the geometry were 

undeformed, the UV behaviour of the scalar field would be ~. This equation of 
p 

motion for the scalar field is 

(10.11) 

where the metric is given in the string frame background (equation 10.7). The 

scalar field is taken as a small perturbation so the plane wave ansatz is used: 

1> = f(p)eik
.x , (10.12) 

leading to 

-- (p - p)-1 d [4 df ] 
pdp dp 
4p3 - 1 df d2 f 

+-p4 - P dp dp2 
(10.13) 

The radius of the black-hole, b, is set to 1 and the mass of the dilaton, m 2 = _k2, 

is in units of b. By changing b, the entire glueball spectrum can be scaled so that 

the first glueball mass matches the lattice result. The second free parameter, CY, 
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can then be tuned such that the second glue ball mass also coincides with that 

calculated on the lattice. The inclusion of a single higher-dimensional operator 

has added one extra degree of freedom compared with the AdS/CFT result with 

the operator absent. It is hoped that this extra degree of freedom will give results 

which match the lattice results to higher accuracy than those obtained previously. 

To study the potential felt by the scalar field, the equation of motion (equation 

10.13) is translated into the Schrodinger form. This involves performing a change 

of variables, from p to z, so that the right hand side of equation 10.13 takes the 

form k 2 f. The change of variables is given by 

Therefore 

dz 

dp 

df 

dp 

d2f 
dp2 

1321"+ (df3 + 4p
3 - 1 (3) f' 

dp p4 - p 

1" + ~ (df3 + t(3) f' 
132 dp 

t 

dz df f3df 

dpdz dz ' 

132 d
2 
f + df3 df 

dz2 dp dz ' 

where / is derivative with respect to z. The function f is then rewritten as f = gh: 

g"h + 2g'h' + gh" + (;2 ~ + *) (gh' + hg') = k 2gh , 

g"h + 2g'h' + gh" + P(gh' + hg') = k 2gh . (10.16) 

To get the equation into a Schrodinger form, all terms in g/ must be removed. Its 

180 

(10.14) 

(10.15) 



coefficient must therefore be zero: 

2h' + Ph 0, 

hi P 

h 

h" 

-2' 
pi h - Phi = h (P

2 _ PI) 
242 

(10.17) 

which gives 

v 

(PI P2) 
-g"+ 2+4 9 

-g" + Vg 

1 #23 
- 1 dP 1 2 - -+-P 

2 1 + a 3 dp 4 
-4 + 8(2a - 5)p3 + (35 a(146 + 25a))p6 - 16(0: - 7) ap9 + 32a2p12 

16p2(p3 - 1)(1 + ap3)3 

(10.18) 

The equation of motion is now in the Schrodinger form so the potential felt by 

the scalar field can be studied. The potential is plotted as a function of p for 

various values of a in figure 10.2. 

For a i= 0 the potential is unbounded in the UV. Though it has been stated 

previously that the addition of this new operator introduces only a single extra 

free parameter, this is not strictly true. In reality there are two new free param-

eters. As well as the value of a, there is a free choice of the value of p at which 

to set the boundary conditions for the scalar field. This corresponds to choosing 

the UV cutoff in the dual field theory. In fact, the value of a that will give the 

correct second glueball mass will depend on the cutoff. As the cutoff is lowered, 

the value of the coupling constant of this higher-dimensional operator is expected 
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Figure 10.2: Graph of the potential felt by the scalar field in the non-extremal, 

AdS-Schwarzschild black-hole background for different values of a. a is the cou­

pling constant for the higher-dimensional operator Tr F4. 

to increase. The aim, however, was to introduce a single free parameter and to 

show that, with this single new degree of freedom, the second glue ball mass could 

be tuned onto the lattice data. It is possible to restrict artificially the second 

degree of freedom to prove that, in this restricted regime, it is still possible to 

get the correct answer. The cutoff radius is chosen to correspond to the peak 

position in the potential. This is a function of a and is plotted in figure 10.3. 

The cutoff is no longer free but is tied to the value of a. The peak position 

is chosen as the cutoff, because, with finite a, as the geometry returns to flat­

space, the glueball potential becomes flat. A flat potential in the UV does not 

produce a discrete spectrum. By choosing the cutoff to be at the peak position of 

the potential, the discrete spectrum will contain the maximum number of states 

(discrete masses up to the height of the potential). 

Having found the cutoff for a particular value of a, the glueball spectrum 
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Figure 10.3: Peak position of the potential plotted in figure 10.2 as a function of 

cx. This sets the value of the field theory cutoff, A. 

can be calculated. To do this, the boundary value behaviour for the scalar field 

must be known in order to set up the boundary conditions correctly. However, 

in lowering the cutoff and adding the new operator, the Ad85 x 85 region has 

been removed. This is the only region where the gauge-gravity duality is known 

quantitatively. The large p region of the current geometry is flat-space. In flat-

space, the solution to the equation of motion is given by a sin p + b cos p. This 

solution is not normalisable unlike the solutions for the Ad85 x 85 region. In 

addition, because the gauge-gravity duality is not understood in this region, it is 

unknown what sort of field theory operator each solution corresponds to. At this 

point, the quantitative control becomes more speculative. In Ad85 x 85 , there 

are two solutions to the large p behaviour of the scalar field, given by 

(10.19) 

Only the solution a = 0 is normalisable, so this is chosen to be the boundary 
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behaviour of the field. This means that b has the conformal scaling of 7"6 which 

corresponds, as expected, to the six-dimensional operator Tr F2. Ideally, the 

dimension of the operator Tr F2 would be calculated at the cutoff, however, this 

will be renormalised and its dimension is unknown for an arbitrary cutoff value. 

Unfortunately, the least naive procedure is to use the AdS 5 x 85 UV boundary 

conditions to set the behaviour of the scalar field at the cutoff. As CY increases and 

the cutoff lowered, the dimensions of Tr F2 will change and might be expected to 

become dimension four in the four-dimensional IR. The calculation is therefore 

also performed with an alternative set of boundary conditions: 

f(A) 

f'(A) 

A -(3+E) , 

-(3 + f)A -(4+E) , (10.20) 

with 1 < f < 1, which includes the speculative four-dimensional value. It 

is hoped that, through this range, the spectrum will not change dramatically, 

indicating that the naive boundary conditions do not alter the results significantly. 

The algorithm to calculate the glueball spectrum is the same as that used in 

the previous chapters to calculate any other mass spectrum. The mass in the 

equation of motion is altered until a well-behaved IR behaviour is found. This 

procedure is performed for different values of CY and for each value, the ratio 

m(O++*)jm(O++) is calculated. The lattice result [131, 132J for this ratio is 1.9. 

The variation of this ratio is plotted as a function of CY for f = 0 in figure 10.4. 

The correct value of the ratio is obtained for CY = 0.0855 (in units of b). The 

peak position of the potential is at A = 1.99. A is of scaling dimension mass2 

and, therefore, the cutoff is actually at Acutoff = Jf.99 = 1.41. 
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Figure 10.4: Ratio of the first two glueball masses as a function of the parameter 

a. The lattice value [131, 132J 1.9 is indicated in the diagram. 

As the boundary conditions are altered, by varying E, The stability of these 

results is now calculated. In the range -1 < E < 1, the glueball mass ratio 

changes by only 6%. 

To find the correct glueball mass ratio, the value of ex is such that there is 

a field theory description only between the IR scale b = 1 and the UV scale 

Acutoff = 1.41. This means that the AdS-like (conformal) region has almost 

entirely been removed from the description. This matches the expectations of 

a realistic model of QeD for which the region between the mass gap and the 

perturbative regime is indeed small. 

The full glueball spectrum from the supergravity calculation with a = 0.0855 

and with a = 0 can be compared with those from the lattice data. This is not a 

remarkable result as there are only two lattice values to compare to and there are 
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Glueball State Improved Geometry a=O N 3 Lattice N = (Xl Lattice 

0++ 1.00 1.00 1.00 1.00 

0++* 1.90 1.58 1.74 1.90 

0++** 3.05 2.15 - -

0++*** 4.27 2.72 - -

0++**** 5.52 3.33 - -

Table 10.1: QCD4 0++ glueball masses from AdS (a = 0) and Improved (a = 

0.0855) geometries along with lattice data [131, 132] . All states are normalised 

to the 0++ ground state. 

two free parameters (b and a) in the supergravity theory. It is interesting that 

the spectra can be tuned to match exactly. However, more impressive matching 

is possible. 

The 0-+ glueball spectrum can be calculated using the same values of b and a 

that were used to match onto the 0++ spectrum. This provides more data values 

to investigate whether the addition of a cutoff improves previous supergravity 

calculations. 

10.6 Calculating the 0-+ G lueball Spectrum 

The 0-+ glueball is dual to the operator Tr F F, as this is the lowest dimension 

operator with the correct quantum numbers. On the supergravity side, the dual 

of this operator is given by the R-R one-form Ai-" The equation of motion for 
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this field is 

(10.21) 

The component of interest of this one-form can be found by studying the action 

for N D4-branes. The Tr F P term comes from the WZ part of the action, given 

by 

(10.22) 

Compactifying the r-direction, the a-angle is related to the integral of the one-

form on the compactified direction: 

a = J drAT' (10.23) 

The a-angle is the source for F P so it is this component of the field A that is of 

interest. Using the plane-wave ansatz for this component, AT = f(p )eik.x , gives 

the equation of motion 

(10.24) 

Setting cy = 0.0855 and A = 1.99, the spectrum for these states can be calculated 

in the same way as for the 0++ glueball states. Unfortunately, there are no lattice 

data available for the large N limit of the 0-+ glueball spectrum, so a comparison 

can be drawn only to the N 3 data. The results of the 0-+ glueball spectrum 

along with previous supergravity calculations and the N = 3 lattice data are 

provided in table 10.2. There seems to be a large mismatch between the AdS/CFT 

calculations and the data. However, in the literature, for the cy = 0 results, the 

first data point always appears to be omitted, though the reasoning for this seems 

to have been forgotten. Whether this point is omitted or not, the results with 
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Glueball State Improved Geometry 0:=0 N = 3 Lattice 

0-+ 0.35 0.29 1.61 

0-+* 1.38 1.24 2.26 

0-+** 2.48 1.84 nla 

0-+*** 3.71 2.42 nla 

Table 10.2: QCD4 0-+ glueball masses from AdS (0: = 0) and improved 

(0: = 0.0855) geometries along with lattice data [131] . All states are normalised 

to the 0++ ground state. 

a small UV cutoff are better than those with the cutoff at (Xl (by 10% or 4% 

depending on whether the first mass is, or is not, left in). It would be interesting 

to compare to large N lattice data and to understand the reasoning behind the 

mismatch in the first data point. 
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Chapter 11 

Conclusions 

QCD still holds many mysteries, from confinement and asymptotic freedom [133] 

to chiral symmetry breaking and the nature of glueballs. Some of these phe­

nomena have been studied experimentally, but others remain speculative. The 

AdS/CFT correspondence has proved to be a valuable tool in our understanding 

of strongly-coupled gauge theories and may one day give significant insight into 

the real structure of the strong force. This will take considerable time and effort, 

but an attempt has been made here to progress in this endeavour. 

Chapters 1 to 3 provided an introduction to large N gauge theories, string 

theory and chiral perturbation theory, as well a detailed look at the AdS/CFT 

correspondence. 

In chapter 4, quarks were introduced into the AdS/eFT correspondence in 

the simplest manner possible, via a D7-brane probe. By studying the action of 

D7-branes in an AdS5 x S5 background, many properties of the field theory living 

on the brane surface were investigated. By studying the relationship between the 
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quark mass and quark bilinear condensate, it was shown that chiral symmetry 

breaking was not induced. The relationship between the quark mass and the 

mass of the scalar fields living on the D7-brane, corresponding to mesons, was 

calculated both analytically and numerically to ensure that the numerics were 

understood. The AdS5 x S5 background was studied to gain insight into the sort 

of results that may be expected in the deformed geometries corresponding to 

more QCD-like theories. 

In chapter 5, a singular, non-supersymmetric supergravity background was 

studied. This geometry has been investigated in the past and was the first back­

ground in which chiral symmetry breaking was found. This background is partic­

ularly simple as its form is known analytically. Quarks were introduced into this 

geometry using D7-brane probes, and following the work of [71], a more thor­

ough investigation into the properties of this theory was carried out. The stable 

and unstable D7-brane flows were studied in some detail and the relationship be­

tween the quark mass and bilinear condensate was investigated. This relationship 

indicated that chiral symmetry is broken in the field theory dual to this geometry. 

The spectrum of scalar fields living on the D7-brane surface were studied and 

compared with the results from the phenomenological pion Lagrangian introduced 

in chapter 3. The AdS/CFT results match to a high degree of accuracy with 

the Gell-Mann-Oakes-Renner relation. Next, the higher order interaction terms 

and the pion decay constant were studied and again compared with the chiral 

Lagrangian. These results matched remarkably well with experimental results, 

indicating that the -h corrections make only a small difference to these values. 
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Comparing the magnitude of the Gasser-Leutwyler coefficients with those cal­

culated using naive-dimensional-analysis also gave a good match indicating that 

even in this non-supersymmetric deformation of the gauge-gravity correspon­

dence, the duality holds well. Having studied the case of a single flavour of quark, 

the action for multiple D7-branes was investigated. The multi-flavour model gave 

exactly the same results for the pion decay constant and the Gasser-Leutwyler 

coefficients as the single flavour case. This result was understood having stud­

ied the interaction terms between the open strings on the D7-branes and those 

stretching between the D3- and D7-branes. The chiral symmetry group is not 

enhanced, because any non-Abelian extension is broken explicitly by the open 

string interaction terms. 

As the metric and dilaton fields are known analytically in this geometry, the 

background was used as a testing-ground for new techniques, later applied to 

the more complicated geometries. It was discovered that one of the signatures of 

chiral symmetry breaking, is the presence of a gap between the D7-brane in the 

massless quark limit, and the singular structure causing the deformation. This 

gap is due to a potential felt by the D7-brane, and a simple procedure to calculate 

the potential felt by the brane was developed. This used a non-physical brane 

configuration to probe the region around the singularity using a circular wrapping 

technique. This allowed the equations of motion for the brane to be simplified 

to such an extent that they could be solved analytically. The analytical solution 

showed the repulsive potential expected in this case. 

This background has a single free parameter, and it was found that changing 
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its value (corresponding to the size of the singularity) produces qualitatively 

different gauge theories. It was discovered that there is a lower bound on this 

parameter, which gives chiral symmetry breaking. There is another, slightly lower 

bound, which gives a theory with confinement. It is somewhat perplexing to find 

a gauge theory which does induce chiral symmetry breaking with a qq condensate 

but is not confining. It may be that stringy corrections to the geometry would 

bring these two bounds together, meaning that chiral symmetry breaking vanishes 

at the same point in parameter space where confinement stops. 

Chapter 6 dealt with a supersymmetric geometry constructed from a lift of 

a five-dimensional supergravity solution to ten dimensions. The solutions to 

the field equations are known only numerically meaning that the equations of 

motion for the D7-brane cannot be solved analytically. When the qq condensate 

is calculated as a function of the quark mass, numerical results appear to show 

a finite condensate for non-zero quark mass. This condensate vanishes in the 

massless limit, however, the supersymmetry should not allow any condensate at 

all. The reason for this discrepancy came from using inappropriate coordinates. 

For this specific geometry, a change of variables for the coordinate system is 

known which produces a canonically normalised gauge theory on a D3-brane. In 

this system, the equations of motion for the D7-brane are equivalent to a D7-brane 

in the AdS5 x S5 geometry, and the absence of a condensate can be calculated 

analytically. 

The wrapping technique was applied to this geometry in the unphysical coor­

dinate system and it was found that the repulsive potential necessary for chiral 
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symmetry breaking was absent. Though the absence of chiral symmetry breaking 

had already been proved analytically, it was useful to understand the unphysi­

cal coordinate system in order to study the non-supersymmetric background of 

chapter 7. 

The geometry of chapter 7 was a generalisation of the previous one, this time 

with no supersymmetry. In the near singular limit, the equations of motion 

for the supergravity fields simplify greatly, and analytical solutions were found. 

Unlike the previous geometry, the physical coordinates for this one are not known. 

Quarks were introduced using D7-branes, however, it was not possible to extract 

a link between the quark mass and condensate due to the use of inappropriate 

coordinates. 

The D7-brane wrapping technique was applied for this geometry and because 

the IR asymptotics was understood analytically, an analytical expression for the 

action was formulated for the circular brane configuration. It was found that 

the minimum action solution corresponded to the brane falling onto the singular 

surface. This indicated that, just as in the supersymmetric case, chiral symmetry 

is not broken in this background. It would be interesting to find the physical 

coordinates in which to describe the gauge theory, so that the brane flows indicate 

explicitly the absence of a chiral condensate. 

The absence of a condensate in this background is more surprising than its 

absence in the previous geometry. However, the background of chapter 7 differs 

from the Constable-Myers geometry, in having a constant dilaton. In the regime 

of parameter space where the dilaton running vanishes in the Constable-Myers 
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geometry, chiral symmetry is restored. It may be that the running of the dilaton 

is a necessary ingredient for chiral symmetry breaking. 

In chapter 8, the N = 2* geometry was studied. This has a more complicated 

structure than the previous backgrounds because of the presence of extra closed 

string modes and the warped form of the five-sphere. Due to the symmetries 

of the background, it has not been possible to formulate a UV /IR flow for a 

D7-brane so no numerical results for the quarks and mesons were obtained. 

Using the IR asymptotics, the equations of motion for the background fields 

were solved analytically. These solutions, when used in the action for a spherical 

D7-brane, showed the absence of a repulsive potential. No chiral symmetry break­

ing is allowed in this background due to its supersymmetry, and this is confirmed 

by the non-repulsive potential. 

In chapter 9, the non-supersymmetric Yang-Mills* background was investi­

gated. This geometry is dual to a field theory which is the closest to QeD of 

all those studied up to now. With the addition of quarks via a D7-brane probe, 

it would be interesting to compare the brane action to the chiral Lagrangian in 

order to investigate the relationships between the parameters of the two theories. 

However, the Yang-Mills* background describes a very complex geometry, specif­

ically, the five-sphere is squashed to a pair of two-spheres and a deficit angle. The 

DBI action for a D7-brane probe in this background includes the NS-NS two-form 

which is switched on in this geometry. Due to the extra closed string modes and 

the non-trivial deformation, the equations of motion are very difficult to solve, 

analytically or numerically. A relaxation method was developed to attempt to 
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solve the flow equations for the brane running between the UV and the IR of 

the theory. However, the background was too complicated even for this and the 

brane wrapping technique was again invoked. 

As in the previous sections, the IR behaviour of the fields were calculated 

analytically and it was found that, for most of the supergravity field solutions, 

there was a repulsive potential. However, this was not the case for some solutions 

which appear to retain the chiral symmetry. It would be interesting to study the 

difference between those IR solutions which do retain chiral symmetry and those 

which do not. This question remains open, pending further research. 

Whereas in chapters 4 to 9, quark fields were introduced in order to formulate 

a more QeD-like field theory, the final chapter concentrated on a different aspect 

of the same problem. In all deformations of the AdS/eFT correspondence studied 

in the previous chapters, the UV of the field theory has been strongly coupled, 

in contrast to QeD. 

The type IIA AdS-Schwarzschild geometry, corresponding to five-dimensional 

high temperature QeD, which reduces to four-dimensional QeD in the low energy 

limit, was studied. By defining the supergravity field boundary conditions at a 

finite radius, the strongly-coupled UV of the field theory was removed. At the 

same time, a higher-dimensional operator was introduced to account for the high­

energy degrees of freedom which had been integrated out. This introduced two 

new free parameters to the theory: the cutoff and the coupling constant for the 

higher-dimensional operator. By linking the cutoff to the peak position of the 

potential felt by a scalar field, one of these degrees of freedom was removed 
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In order to constrain the theory. The masses of 0++ and 0-+ glue balls were 

calculated in this background as a function of the new coupling constant. These 

masses were compared to the small number of lattice data values available and 

it was found that, for the 0++ masses, the two values calculated on the lattice 

matched exactly those in the deformed geometry. Though there appears to be 

an anomalous data point for the 0-+ masses, whether or not this is included, the 

results with a cutoff are closer to the lattice data than those without. 

The overall conclusion to be drawn from this thesis is that we have been 

able to use the AdS/eFT correspondence to investigate many of the properties 

of strongly-coupled, non-supersymmetric gauge theories. The results appear to 

match, to a high degree of accuracy, both calculations on the lattice and experi­

ments. Whereas lattice calculations are extremely time and computer intensive, 

many of the calculations performed in this thesis were performed very quickly on 

a simple desktop computer. More research must be completed in order to un­

derstand the gauge-gravity duality, especially in the non-supersymmetric regime, 

and the correspondence in the presence of fundamental matter. 

Many toy models are currently being developed [134, 90, 135J to study su­

pergravity duals to QeD. One of the key conclusions being drawn seems to be 

that, even for the most naive models, the results match with lattice data and 

experimental results far more closely than might have been previously imagined. 

Even with arguments about universality, the similarity of the results appears as­

tonishing. It may not be long before we have a model that mimics QeD to an 

accuracy which can be used in the building of hadron colliders in the future. 
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Appendix A 

Ad85 x 85 Parametrisations 

The metric for the product of a five-dimensional anti-de-Sitter space and a five-

sphere can be parametrised in a variety of ways. Different forms of the metric 

are used for simplifying calculations or to make a D-brane embedding easier to 

visualise. Below are some of the possible parametrisations all of which have been 

scaled such that no dimensionful quantities are explicit. 

r2dxI 1+ 12 (dr2 + r2dnD ' 
r 

(p2 + wg + wi) dXII + (2 12 2) (dp2 + dw~ + dwi + p2dn~) 
p + W5 + W6 

6 

( 2 2 2 2 2 2) d 2 1 '"' d 2 
YI + Y2 + Y3 + Y4 + Y5 + Y6 X II + (2 2 2 2 2 2) L....t Yi , 

YI + Y2 + Y3 + Y4 + Y5 + Y6 i=I 

r
2
dxII + ~ (dr2 + d02 + sin2 Od(P + cos2 Odn~) 

r 

(A.l) 
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