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We study the phenomenological consequences of models with family symmetries 

which are broken close to the GUT scale. First, we consider a string-inspired model 

which becomes a supersymmetric Pati-Salam model with an abelian family symmetry 

at energy scales between the string scale and the GUT scale. We use the predicted 

rates of BR(p, --7 er) to gauge the relative importance of a number of contributions 

to flavour violation, including from auxiliary fields associated with the spontaneous 

breaking of the family symmetry close to the GUT scale. Secondly, we consider the 

effect of an operator expansion in the Kahler sector similar to the operator expansions in 

the superpotentials of family symmetry models. When the family symmetry is broken, 

the fields in the effective theory become non-canonical, and have to be rescaled and 

mixed. This process can change the Yukawa textures, but we show that the effects on 

physical observables are sub-dominant provided that the textures are hierarchical. 
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Chapter 1 

General Introduction 

1.1 Preliminaries 

1.1.1 Motivation 

The work in this thesis is involved with the analysis of models which extend the Min­

imal Supersymmetric Standard Model (MSSM) with a gauge symmetry which relates 

the three generations of matter, but is spontaneously broken at a high scale. Such 

symmetries tend to be called family symmetries. The motivation for studying these 

models is that they can, in principle, successfully explain in a natural way the hierarchy 

of quark and lepton masses, the smallness of the quark mixings and the largeness of the 

neutrino mixings. If these models could not be tested phenomenologically, they would 

be of no interest. There are several aims for studying these models: 

• To understand where the hierarchy of quark and lepton masses originates from 

• To understand why the mixing between generations of quarks are small, but the 

mixing between neutrinos is large 

• To make predictions that can be tested experimentally in the near future, at the 
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LHC and the proposed LC. Also, to find ways of making predictions in the model 

which could, in principle, rule them out to allow theorists to study only those 

models which are consistent with experiment. Such avenues are: 

Bounds on the rates of rare decays, especially flavour violating decays such 

as f..L ---7 ey. 

Predictions for the spectrum of supersymmetric particles, which can be 

tested if supersymmetry is seen at the LHC, and which can be compared 

with the lower bounds attained from the running of LEP-II. 

Finding that the model requires fine-tuning to be consistent with all exper­

imental data. 1 

In general, these models are appealing because they can explain the entire fermion 

sector of the Standard Model, without the need for fine tuning, sometimes with fewer 

free parameters than there are observables, where one would not in general expect to 

find the fermion spectrum and mixings of the Standard Model. 

1.1.2 Thesis structure 

This thesis is organised as follows: in Chapter 1, we review the Standard Model (SM), 

and discuss the motivations for its extension. In particular, we focus on low energy 

N = 1 supersymmetry, and the Minimal Supersymmetric Standard Model (MSSM). 

We also talk about two mechanisms which work at extremely high energy scales which 

can be indirectly detected at low energies, the see-saw model for explaining neutrino 

masses, and the Froggatt-Nielsen mechanism which can explain the Yukawa couplings 

in the MSSM and SM. 

1 While this would not rule a model out per se, if alternative models exist that do not require any 

fine-tuning, these would become the priority for further investigation. 
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In Chapter 2, we review the framework for considering models at extremely high 

energy. We start by considering field-theory unification by introducing the SUSY Pati­

Salam model. Then we introduce some relevant aspects of string theory for model 

building, concentrating on brane-world setups in Type I string theory. Then we unite 

the two parts of the chapter by considering a Pati-Salam setup coming from a Type I 

brane scenario. 

In Chapter 3, we consider a non-universal contribution to the trilinear scalar inter­

actions in the soft supersymmetry breaking Lagrangian in supergravity models which 

contain a family symmetry. These contributions were known to be dangerous with 

respect to flavour violation, and we introduce a specific model to study this numer­

ically. The model considered is a string inspired Pati-Salam model, with an added 

abelian family symmetry. We then calculated the branching ratios BR(/-l -+ e'Y) and 

BR( T -+ /-l'Y) for four points in the parameter space of the model, which correspond to 

different flavour violating contributions dominating. 

In Chapter 4, we consider the effect of having to canonically normalise fields in the 

effective field theory once flavour symmetry breaking Higgs fields gain a VEV. This 

corresponds to a field redefinition which is generation dependent, and can in principle 

change the Yukawa textures. We then utilise a residual freedom in the field redefinition 

to demonstrate that the effect on the masses and mixing angles are always small, even 

if some choices of normalisation transformations do change the textures. 

The overall conclusions to this thesis are presented in Chapter 5, which is followed 

by a number of Appendices. 
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1.2 The Standard Model 

The Standard Model (SM) of particle physics, is a renormalisable gauge quantum field 

theory, 2 based on the gauge group GSM = SU(3)c®SU(2)L®U(1)y. Being a quantum 

field theory (QFT), every fundamental particle observed experimentally corresponds to 

a field in the QFT. There are three generations of fermionic matter; each member of a 

generation has a corresponding member in the other two generations which are identical 

in every way except mass and mixing to the other generations. Each member of a single 

generation has a different representation under GsM ; see table 1.1. 

Field Spin SU(3)c SU(2)L U(1)y 

Left-handed quarks, QiL == (UiL' diL) 1/2 3 2 1/6 

Right-handed up quarks UiR 1/2 3 1 2/3 

Right-handed down quarks diR 1/2 3 1 -1/3 

Left-handed leptons LiL == (ViL' eiL) 1/2 1 2 -1/2 

Right-handed electrons eiR 1/2 1 1 -1 

Higgs boson, ¢ == (¢+, ¢o) 0 1 2 1/2 

Gluons, go., (a = 1 - 8) 1 8 1 0 

Weak bosons, W a , (a = 1 - 3) 1 1 3 0 

Hypercharge boson, B 1 1 1 0 

Table 1.1: Gauge representations of the Standard Model fields. Note that left-handed 

( right-handed) fields transform as fundamental ( trivial) representations of SU(2)L. 

The fermion index i is a generation index, so U = (u, c, t) etc. 

The gauge symmetry doesn't allow mass terms for any of the fermions or gauge 

bosons. Adding mass terms for the gauge bosons which explicitly break the gauge 

2There are many excellent references to the Standard Model, such as Refs. [1,2]. 
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symmetry doesn't work, since this makes the theory non-unitary. Instead we use the 

Higgs mechanism, which itself utilises spontaneous symmetry breaking of the electroweak 

symmetry ( Electroweak Symmetry Breaking ( EWSB) ): 

SU(2)L ® U(l)y -7 U(l)em (1.1) 

In order to explain how breaking the electroweak symmetry SU(2h ® U(l)y to 

electromagnetism generates gauge-invariant masses for the gauge bosons and all SM 

fermions, we need to start by writing down the Higgs-sector Lagrangian: 

(1.2) 

Where the electroweak covariant derivative is: 

(1.3) 

If m~ = +1f-L12 and A > 0, then this is just a standard scalar field coupled to two 

gauge fields. But if m~ = -1f-L12, then ¢ = 0 is no longer a minimum of the potential. 

Were we able to do exact field theoretical calculations, this wouldn't be a problem, 

but in order to do calculations in perturbation theory, we must expand around the 

minimum of the potential. The minimum of the potential is no longer at ¢ = 0, and 

we say that the Higgs field has developed a Vacuum Expectation Value (VEV). 

In this case we can use the gauge freedom to write the Higgs field in full generality 

as: 

¢(x) = ~ ( 0 ) 

v + h(x) 

(1.4) 

If we substitute Eq. (1.4) into the Higgs Lagrangian, Eq. (1.2) then the non-

derivative terms in the covariant derivative multiplying the VEV will lead to mass 

terms for some of the gauge bosons: 
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In terms of physical states, we form linear combinations of Wi and B. As elec-

tromagnetism survives as a gauge symmetry, we form combinations of definite electric 

charge. The charged states are: 

(1.6) 

With masses of mw = gv /2. Then the electrically neutral states W 3 and B are mixed 

together by EWSB 

( 
Z2) (c~sew -Sinew) ( WJ ) 
AJ-L smew cos ew EJ-L 

(1.7) 

The massless field is the photon of electromagnetism, and the ZO boson has a mass 

Mz = )g2 + g'2. ew is defined by: tanew = g'/g. The electromagnetic charge e is 

related to the SU(2)L and U(l)y couplings via: 

e = 9' cos ew (1.8) 

This has explained how we can get masses for the gauge bosons in the theory 3. 

Now we consider massive fermions. By examining table 1.1, we can see that the Higgs 

field has exactly the right representation to allow couplings that link left and right 

handed fields. Thus we can generate fermion masses if we allow the model to contain 

a Yukawa sector: 

When we introduce the Higgs VEV, this will generate masses and mixings for the 

quarks and charged leptons. So that the quark and charged lepton mass matrices will 

be: 

(1.10) 

3 Remarkably, the theory is now renormalizable with these mass terms [3] 
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Note that in the Standard Model we cannot have any neutrino masses, because 

there is not a right-handed neutrino field to form a Yukawa coupling with. In general 

these mass matrices are not diagonal, and so fermions from different generations can 

mix together. In order to extract the physical masses, we make a unitary transforma-

tion on the weak eigenstates to get the mass eigenstates. This is especially useful for 

perturbative calculations, where it is much better to have diagonal propagators and 

non-diagonal vertices than the other way around. In doing so, we redefine: 

(1.11) 

Where Vz,~ are unitary and diagonalise the quark mass matrices: 

u,d _ Vu,d u,dVu,dt 
m diag - L m R (1.12) 

We don't make a distinction for the leptons; the absence of a RH neutrino field in 

the SM has the effect that we can simultaneously diagonalise the mass matrices and 

the couplings to the electroweak bosons for the charged leptons, and diagonalise the 

neutrino couplings to the electroweak bosons. 

The combination VCKM = vLvl is the unitary Cabibbo-Kobayashi-Maskawa 

(CKM) matrix [4]. The standard parameterisation involves three mixing angles and 

one CP-violating phase which cannot be removed. The elements of VCKM are observ-

able in weak charged-current processes, and the CKM matrix is observed to be highly 

diagonal. 

1.2.1 Successes of the Standard Model 

The Standard Model has been subject to experimental testing since its inception. This 

testing includes the large data collected by various high energy accelerators, as well as 
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precision electroweak data. The latest data is collated and released regularly by the 

Particle Data Group [5]. This includes the measurement, from the ZO boson decay 

width, that there are only three left-handed (non-sterile) neutrinos with mass mv :S 

mz/2. Furthermore, in order to avoid chiral anomalies, where quantum corrections 

break symmetries of the classical theory, there must exist only complete generations 4. 

Taken together, this tells us that there must be three complete generations of matter 

in the SM. 

Furthermore, the quark model tells us that there must exist a number of approx­

imate flavour symmetries, from which we can successfully predict the spectra of light 

mesons and baryons. The unitarity of the CKM matrix leads to the Glashow-Iliopoulis­

Maiani (GIM) [6] mechanism which suppresses flavour changing processes, and was used 

to predict the existence of the charm quark before it was observed. 

The Higgs mechanism allows an understanding of where the electroweak boson 

masses come from; this in turn allows us to understand why the range of the electroweak 

interaction is so low. Since most of the couplings in the Standard Model are so small, 

it has been possible to perform a large number of calculations, which compare very 

well with experiment. The Renormalisation Group Equations ( RGEs) are one such 

calculation, which allows us to understand the variation of physical parameters with 

energy scale. This allows us to accept that the QCD group SU(3)c confines in the infra­

red, which has the effect that quarks confine; quarks always form into SU(3)c singlet 

bound states of three quarks ( a baryon) or a quark and an antiquark ( a meson). 

4This statement strongly constrains any new matter that is added, which makes going beyond the 

Standard Model more difficult. We will return to this when we discuss supersymmetry and the MSSM 
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1.2.2 Issues with the Standard Model 

While the Standard Model has been very successful as far as it goes, it is becoming 

increasingly clear from both experimental and theoretical viewpoints that it is a low­

energy effective field theory. As such, it then becomes a reasonable question to ask 

what lies beyond the Standard Model. Any such theory would have to replicate the 

successes of the Standard Model, as well as removing one or (hopefully) more of the 

problems that the SM has. The main issues that the Standard Model has trouble with 

dealing with are: 

• Neutrino Masses 

It has long been known that there was a discrepancy between the Standard Solar 

Model (SSM) and the earth-based experiments measuring solar neutrinos. The SSM 

predicted that the sun generated energy by fusion reactions, which would generate 

electron neutrinos. The first neutrino astrophysics experiments in the 1960s tried, and 

succeeded, to measure solar neutrinos. Unfortunately, the observed flux of solar neutri­

nos was about three times smaller than that predicted by the SSM. This discrepancy 

could be explained by electron neutrinos oscillating into muon and tau neutrinos, which 

would be undetectable by the experiments of the time. Any oscillation would require 

the neutrinos to be massive. However, the discrepancy between the SSM prediction 

and the observed flux was not conclusive because there was no way of distinguishing 

between the SSM prediction being wrong with no oscillation and the SSM prediction 

being correct with massive neutrinos oscillating into each other. 

More recently, super-Kamiokande [7] has observed a deficit of atmospheric muon­

neutrinos reaching the surface after being generated in the upper atmosphere. The 

production involved a decay chain of 7f- --7 f-l- + lip, followed by f-l- --7 e- + lie + Vw 

9 



With no neutrino oscillation, one would expect to observe twice as many atmospheric 

muon neutrinos as electron neutrinos. 

The issue of solar neutrino oscillations was settled when the Sudbury Neutrino 

Observatory (SNO) reported their results [61]. SNO was able to measure separately 

the flux of electron neutrinos and the total flux of all three neutrino species. The results 

demonstrated that the SSM prediction of neutrino flux was correct. 

Combining results from the various experiments, it was possible to extract the 

differences between the squared masses of the three neutrinos and two of the three 

leptonic mixing angles in the PMNS matrix 5. The mass differences are incompatible 

with zero, thus requiring at least two neutrinos to be massive. This is a problem for the 

Standard Model, where the lack of a right-handed neutrino field implies a zero neutrino 

Dirac mass, and gauge-invariance won't allow a renormalisable Majorana neutrino mass. 

• The fermion hierarchy 

In the SM, the fermion masses and mixings come from 27 parameters in Yukawa 

coupling matrices. However, these are all input parameters, and the SM has no way of 

explaining the fact that the top quark is 6 orders of magnitude heavier than the electron, 

other than that the top quark Yukawa is 6 orders of magnitude larger than the electron 

Yukawa. The fact that there is a similar hierarchy in masses in the three generations 

is suggestive of some organising principle, but there is no way of understanding this as 

anything other than a coincidence within the SM. In order to understand why such a 

strong hierarchy exists, one has to start looking beyond the Standard Model. 

• The Gauge Hierarchy Problem 

5The PMNS matrix is the leptonic equivalent of the CKM matrix 
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Figure 1.1: The dominant correction to the Higgs mass2 in the Standard Model comes 

from the top quark bubble diagram 

The Gauge Hierarchy problem amounts to the question 'why is the electroweak scale 

so much lower than the Planck scale?'. There are two parts to the question, neither of 

which the Standard Model can answer in a natural manner. The first is the question 

why the electroweak symmetry breaks at the order 100 GeV. There is no reason 

to expect the Higgs mass parameter m~ to become negative at this energy scale in 

particular. The fact that it does has to be put in by hand to make the Standard Model 

work. The second question is more technical. Consider the mass renormalisation of 

the Higgs mass, 6m~; the dominant term comes from the top-quark loop, as in fig. 1.1. 

The dominant term is then: 

6m~ = IAtl2 [-2Abv + 6m; In(Auv /mt) + ... ] 
167T 

(1.13) 

The problem is that the Higgs is a scalar, so the finite part of the renormalisation 

is sensitive to the largest mass in the theory that couples directly or indirectly to the 

Higgs. As well as this, we have a naturalness problem. If there is nothing beyond 

the Standard Model, then the appropriate ultraviolet cutoff, Auv is the Planck scale, 

where quantum gravity effects start to become large. But then, in order to have a 

renormalised Higgs mass of the order of 100 Ge V we need to set the tree level mass 
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to be of the order of A~v' in order to cancel the quadratic divergence in the one-loop 

correction: 

m~ physical = (m~)o + 6m~ = A~v - A~v + 0(100 GeV2) (1.14) 

However, doing this involves the fine tuning of the tree level mass such that the two 

contributions to the physical mass cancel down to a number 20 orders of magnitude 

smaller. Unfortunately, there is no way of getting around this in the SM . 

• Problems with gauge unification 

It is possible in the Standard Model to calculate the energy dependence of the 

parameters within it; when this calculation is performed for the gauge couplings it 

turns out that they appear to converge at a very high energy scale. This led some 

theorists to predict that the reason that the couplings appear to get close together was 

because the Standard Model gauge group, GSM, is a subgroup of a larger group, such 

as 80(10). Such models are called Grand Unified Theories (GUTs). They have the 

benefit of naturally explaining why each generation of matter is anomaly-free, because 

each generation forms a complete representation of the 'Grand Unified' group. There 

are many groups that could contain GSM as a subgroup, and most of them require 

the existence of a right-handed neutrino field, which means that they predict neutrino 

masses. 

However, improved calculations made it clear that although the gauge couplings 

did appear to be heading towards each other, they didn't all meet at a single point, as 

would be required for a GUT. 

There are many well motivated solutions which each solve some of these problems, 

such as supersymmetry, string theory, family symmetries and the see-saw mechanism, 

which we will review in the following sections. 
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1.3 Supersymmetry 

Supersymmetry (SUSY) is a symmetry which transforms between fermions and bosons. 

Unlike gauge symmetries, SUSY is not an internal symmetry of the Poincare group. 

There are many very good introductions to the formalism of supersymmetry available 

[8, 9, 10, 11]. In order to construct actions which are supersymmetric, it is useful to 

use the super field formalism. We introduce this notation in the next subsection. Then, 

we use it to define the Minimal Supersymmetric Standard Model (MSSM), which is the 

minimal consistent supersymmetric extension of the Standard Model. Then we briefly 

mention the problems that the MSSM solves, and some unanswered questions that it 

has. 

1.3.1 Superfield basics 

The generators of SUSY are fermionic, and satisfy an anti-commutation relation: 

(1.15) 

Thus supersymmetry extends the Poincare group, called the super-Poincare group or 

the super-algebra. The SUSY generators commute with the momentum operator Pp,: 

(1.16) 

In the same way that xp, is the coordinate corresponding to the momentum operator 

Pp" we introduce Weyl spinors containing Grassman variables Ba , ee-, corresponding to 

the SUSY charge operators Qcn Qe-,. The properties of anti-commuting Grassman 

variables will help us greatly. 

We can write a superfield S(x, B, e) as a function of all three coordinate types. Since 

B, e are Grassman variables, the Taylor series in B,e terminates and can be written 
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exactly in terms of component fields. The most general superfield doesn't turn out to 

be useful. One useful superfield is the chiral super field, <P(y, (J), where yll = xll + iBcrll(j: 

<P(y, B) = ¢(y) + v0.B'IjJ(y) + BBF(y) (1.17) 

Chiral superfields have the useful property that the product of two chiral superfields 

is itself a chiral superfield. Another useful superfield is the vector superfield. This is 

the most general real superfield, i.e. V (y) = vt (y). 

In both superfields there are auxiliary fields, F for chiral superfields and D for 

vector superfields. Both have the property that under SUSY transformations they 

only change by a derivative term, so they leave the action invariant. This gives us 

a convenient way for constructing supersymmetric actions. If we extract the F term 

from a chiral superfield of mass dimension 3, and the D term from a mass dimension 2 

vector superfield, we will have an action which is supersymmetric. Thus there are two 

ways of constructing SUSY invariant actions: 

(LIS) 

This works for any chiral superfield, <P. The other way works for any vector superfield 

V: 

(1.19) 

Both are needed to generate an interesting theory. We define the superpotential 

W as a mass dimension 3 chiral superfield. In order to satisfy this constraint, the 

superpotential has to be a holomorphic polynomial of chiral superfields. This will 

contain the interactions. We also define the K iihler potential, K as a mass dimension 2 

vector superfield. 

We now demonstrate how this all pulls together in the simplest case, of a chiral 
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fermion and its scalar partner field. K = <I> <I> t. We can write the expansion of <I> as 

<I> rjJ(x) + v2(8'lj;¢(x)) + (88)F¢(x) 

(1.20) 

In order to extract the SUSY-invariant part of the Kahler potential ( which is a 

vector superfield ), we need to extract the auxillary field D. However, in the definition 

of a vector superfield, there is a term: 

- 1 
V = C(x) + ... + (ee)(ee)(D(x) - 20C(x)) (1.21 ) 

Thus in order to extract the D term, we need to add 1/20 operating on the e indepen-

dent term. 

This leads to the following contribution to the action: 

SK J d4x [oJ1rjJ*oJ1rjJ + ~ {([OJ1'lj;~(x)lO"J1'lj;¢(x)) 

-'lj;~(x)0"J10J1'lj;¢(x)} + F;(x)Fcp(x)] (1.23) 

Thus the Kahler potential has generated the kinetic terms for the scalar field rjJ and 

fermionic field 'lj;¢, with a non-propagating scalar field F¢ of mass dimensions 2, which 

is an auxiliary field. Note that these kinetic terms are canonically normalised. This is 

not an accident, it is because we wrote down a canonically normalised Kahler potential. 

Had we not done so, we would have had to rescale the fields in the Kahler potential in 

order to canonically normalise it. 6 

6Note that in an effective field theory, the effective Kahler potential, Keff could become non-canonical 

after at least one scalar field gains a VEV. In this case, a previously canonical Kahler potential will 
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We use the superpotential 

This leads to the following contribution to the action: 

Sw J d4x [m('IjJ¢ (x)'IjJ¢ (x)) + mF¢(x)¢(x) 

+g¢(x)('IjJ¢(x)'IjJ¢(x)) + g¢(x)q'>(x)] 

(1.24) 

(1.25) 

The full action of the theory is gained by adding the contributions from the Kahler 

potential, the superpotential and the hermitian conjugate of the superpotential: 

Sful! = SK + Sw + Sw* (1.26) 

It should be noted that the F can be eliminated by solving its Euler-Lagrange 

equation, and doing the same for F*: 

(1.27) 

This leads to the solutions: 

-F* = m¢ + g¢¢ - F = m¢* + gq'>*¢* (1.28) 

And substituting it into the action: 

S J d4x [Ofj¢*(x)Ofj¢(x) + ~ {([Ofj'IjJ~(x)] (J"fj'IjJ¢(x)) - ('IjJ~(x)(J"fjOfj'IjJ¢(x))} 

-m [( 'IjJ¢(x)'IjJ¢(x)) + ('IjJ~(x)'IjJ~(x))] -Im¢ + gq'>212] (1.29) 

This is a theory of a self-coupling complex scalar coupled to a fermion with an 

identical (Majorana) mass term. 

become non-canonical, and the fields in the effective theory will have to be rescaled to correct this, 

but this shift has to be applied consistently throughout the theory. This point is developed in detail 

in Chapter 4. 
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None of this involves gauge fields, or chiral superfields which transform non-trivially 

under any gauge symmetry. It is possible to use the superfield formalism to construct 

superfields which contain field strength tensors, and use these to construct the gauge 

sector of a supersymmetric gauge field theory. However, the non-gauge sector can be 

constructed in the same way as already outlined, providing that each term in the super­

potential is a gauge singlet. We now move on to defining the Minimal Supersymmetric 

Standard Model (MSSM). 

1.3.2 The Minimal Supersymmetric Standard Model 

The MSSM is the supersymmetric extension of the Standard Model with the minimal 

gauge group and minimal particle content. The minimal gauge group turns out to be 

the same gauge group as the standard model, GSM = SU(3)c ® SU(2)L ® U(l)y. The 

minimal field content is not just a case of promoting all Standard Model fields to become 

superfields. This is because the fermionic partners to the Higgs fields can contribute to 

chiral anomalies, since it has hypercharge 1/2. This is cancelled by introducing a new 

Higgs doublet with hypercharge -1/2. This turns out to be important to generate the 

up-type fermion masses, due to the holomorphicity of the superpotential. 

We introduce the standard tilde notation here. For every field in the SM, the 

partner field to the same field in the MSSM has a tilde on top. When naming the 

field, we prepend an 's-' if the new field is a scalar, and append an '-ino' if the new 

field is fermionic. There are no new vector fields introduced. We refer to the partner 

field of a SM field in general as its 'superpartner', and the particles corresponding to 

the new fields as 'sparticles'. Thus the superpartner field of a quark is a squark, and 

the superpartner of a Higgs is a Higgsino. The fields of the MSSM and their gauge 

representations are laid out in table 1.2. 
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Superfield Spin 0 Spin-l/2 Spin-l SU(3)c SU(2)L U(I)y 

QiL qiL qiL - 3 2 1/6 

- ::::: 
-2/3 UiR UiR UiR - 3 1 

-
diR diR 1/3 DiR - 3 1 

LiL liL liL - 1 2 -1/2 

- ~ 

EiR eiR eiR - 1 1 1 

Hu hu Hu - 1 2 1/2 

Hd hd Hd - 1 2 -1/2 

ea - ?ia ga 8 1 0 

-Wa - Wa Wa 1 3 0 

B - B B 1 1 0 

Table 1.2: The eSM representations of the field content of the MSSM. Note that right-

handed field degrees of freedom have been C P-conjugated to make them transform as 

left-handed fields. 
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The MSSM superpotential is: 

(1.30) 

The Kahler potential has to be modified slightly to ensure gauge invariance. To 

be consistent with gauge invariance and supersymmetry, we must introduce a set of 

superfields which contain the gauge fields g~, wf and EM, and their superpartner 

fields. Then we need to ensure that the gauge and gaugino fields have kinetic terms. 

Since SUSY is broken in nature ( we have not discovered any light scalar fields that 

could partner the charged leptons ), we must break it in the MSSM. Since we do not 

know how it is broken, we break SUSY by introducing a set of terms which explicitly 

break the supersymmetry in the Lagrangian, but break it 'softly'. We define 

-£soft 

- -::::: -d - - -
+UiRCbLhuAij + diRqjLhdAij + eiRljLhdATj 

-t 2-:::::t 2::::: :::::t 2::::: It 2 :::::t 2::::: 
+qiLmQLqjL + UiRmURUjR + diRmDRdjR + liLmLLljL + eiRmERejR 

(1.31) 

The Mi are gaugino mass terms, the A& are trilinear scalar interactions and the 

m;j are scalar mass terms. After phase redefinitions, there are 105 additional free 

independent parameters in the MSSM. 

We can write down the full MSSM Lagrangian £MSSM. Having done so, one can 

diagonalise the mass terms to get the physical masses of all of the superpartner fields. 

Note that there are 8 degrees of freedom in the Higgs sector, of which 3 get Goldstone 

modes are eaten by the W± ,Zo bosons. There are then 5 physical degrees of freedom 

in the MSSM Higgs sector: 

• HO, hO - two CP-even neutral Higgs bosons, 
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• AO - a CP-odd Higgs boson, 

• H± - a charged Higgs boson pair 

After EWSB, states with the same representation under SU(3)c 0 U(l)em mix, 

and the mass eigenstates are given by linear combinations of the (unbroken) gauge 

eigenstates. In this, the charged Higgsinos and charged gauginos mix into chargino 

states: 

-h+ -h- WI W2 ~ X-± X-± 
u' d" I' 2 (1.32) 

The neutral Higgsinos and gauginos mix into neturalino states: 

-0 -ho W3 B- :-1J -0 -0 -0 hu, d, , ~ Xl , X2 , X3 , X4 (1.33) 

The lightest neutralino X~ is often the lightest supersymmetric partner (LSP). 

Successes and motivations for the MSSM 

I 

I 

I " \ 

hu', / hu 
- - - - - ~-~ - - - - -

Figure 1.2: The correction to the Higgs mass2 comes from both the top quark bubble 

and the top squark loop 
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• Hierarchy Problem 

The MSSM helps the Hierarchy Problem in two ways. It helps answer the nat-

uralness problem by being a softly broken SUSY theory; the corrections to the 

Higgs self-energy now have superpartners in the loops which exactly cancel the 

quadratic divergence, as in fig. 1.2. With softly broken SUSY there is an extra 

correction due to the parameters in Lsoft. The correction to the Higgs mass2 is 

then: 

(1.34) 

The hierarchy is then stabilised if the soft parameters are at most of the Te V 

scale. 

The other part of the hierarchy problem is to understand why the Electroweak 

breaking scale is so far below the Planck scale. This is actually addressed in the 

MSSM, by Radiative Electroweak Symmetry Breaking . 

• Radiative Electroweak Symmetry Breaking 

In the SM, we have to insert by hand the fact that the Higgs mass2 becomes 

negative at something close to the electroweak scale to trigger Electroweak Sym-

metry Breaking. In the MSSM, the Renormalisation Group Equations for mt 
are such that if the top quark Yukawa is 0(1) then the RG running will drive 

mt negative at around the electroweak scale. This can then trigger EWSB, and 

helps explain why the EW scale is so much lower than the Planck scale, which of 

course is the second part of the hierarchy problem alluded to above . 

• Gauge Coupling Unification 

As the RGEs are changed, this is going to change the predictions for the evolution 

of the three gauge couplings to high energy scales. The MSSM RGEs for the 
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gauge couplings are smaller in magnitude, leading to approximate unification at 

a higher scale. The correct approach is to use the 8M RGEs up to the scale 

that the sparticle fields enter and then switch to the MSSM RGEs. As the 

lines are approaching each other, two lines will always meet and by changing 

the scale that we switch to the MSSM RGEs we can make all three points meet. 

However, it turns out that to get gauge coupling unification, the appropriate point 

to make this change is at the Te V scale, which is the scale we need SUSY to be 

at to solve the Hierarchy Problem. This is promising for both SUSY GUTs and 

string phenomenology, since a lot of string-inspired models have some amount of 

unification close to the Planck scale. 

Unanswered Questions in the MSSM 

• The SUSY Flavour Problem 

Although there are 100 free parameters in ..esoft, experimental constraints on, 

amongst other things, rare flavour violating decays tells us there are hints of an 

organising structure. Consider the lepton flavour violating process T ---7 11/'1. If we 

move to the basis where the Yukawa matrices are diagonal, then the couplings of 

charged leptons to neutralinos and charginos are flavour universal. Then the con­

tribution to these flavour violating decays come from the off-diagonal elements in 

the slepton mass matrices m'i, m~, and are suppressed by the diagonal elements. 

A typical Feynman graph contributing to T ---7 11/'1 is shown in fig. 1.3. 

This brings us to the SUSY flavour problem; in order to accommodate the very 

small experimental limits on BR( T ---7 Pi), BR( T -----t ei) and BR(p ---7 ei), we 

know that the slepton mass matrices mi,E must be nearly diagonal in the basis 

where the Yukawa matrices are diagonal. However, we do not expect the soft 
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T 

Figure 1.3: Feynman graph contributing to the process T ---7 I.V,( at one loop in the 

MSSM 

couplings to originate from the same (unknown) physics as the Yukawa coupling. 

We therefore either have to explain why the slepton mass matrices are aligned 

to the Yukawa matrices, or explain why the slepton mass matrices are close to 

the identity. There are similar arguments for the quark sector, where we need 

alignment or universality in the squark mass matrices to avoid predicting rates 

for b ---7 8, etc. which are far above the experimentally measured limits. 

• Free Parameters 

The other problem with the MSSM is the rather large number of independent, free 

parameters, most of which come from Lsoft. At the moment, there are no strong 

direct constraints on most of these, other than by limits due to rare decays, which 

can be ameliorated by increasing the scale of all of the soft parameters. There 

currently isn't a standard accepted model for SUSY breaking, and there isn't an 

accepted view on how SUSY breaking is transmitted to the visible sector. Once 

these parameters are measured, it may be possible to probe these questions. At 

the moment, though, the sheer number of parameters makes general predictions 

using the MSSM very difficult. 

• Neutrino Masses 

The MSSM, like the Standard Model doesn't have any right-handed neutrino 
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fields, and therefore predicts massless neutrinos. This is a problem for the MSSM 

in the light of the neutrino oscillation observations [7, 12] which demonstrate that 

at least two neutrinos must have non-zero mass. There isn't a standard model 

for the generation of neutrino masses, so a 'new MSSM' with massive neutrinos 

isn't currently a viable option. 

1.4 Low energy footprints of high energy physics 

It turns out that in the context of supersymmetry, it is possible to consistently 

have fields with mass terms close to the Planck scale, which can then be integrated 

out of the effective field theory ( the MSSM, or one of its extensions ). We can't 

do this in the SM because radiative corrections to the Higgs mass would be of the 

order of the new energy scale. In a SUSY theory, the supersymmetry protects 

the Higgs mass, so the large scale doesn't become a technical problem. 

In fact, in some circumstances it is possible to see the low energy effects of such 

high energy physics. 

1.4.1 The see-saw mechanism 

The see-saw mechanism [13] is a rather general way of producing Majorana mass 

terms for the left-handed neutrino fields, which are naturally of the correct or­

der. We introduce right-handed neutrino field(s), which have masses just below 

the SUSY GUT scale of about 2.2· 1016GeV. While gauge invariance forbids a 

left-handed Majorana mass terms, right-handed neutrino fields are allowed, and 

Yukawa terms are also allowed. Taking there to be three right-handed neutrino 
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generations 7, the full theory has a see-saw part of the superpotential: 

(1.35) 

Then, despite the fact that a tree-level left-handed Majorana mass matrix is 

not allowed by gauge invariance, one will be generated once we break SU(2)L ® 

U(l)y -+ U(l)em and integrate out the right handed neutrino fields. This then 

gives a term in the effective Lagrangian: 

(1.36) 

Thus we have generated an effective Majorana mass matrix for the left-handed 

neutrinos as: 

(1.37) 

Now, if we set the Dirac-Yukawa mass term to be of the same order as the charged 

lepton mass terms, then we get Majorana masses of the right order if the right 

handed masses are just below the GUT scale. As there is no symmetry in the 

MSSM which protects the right-handed neutrino fields from attaining a mass,s 

they are expected to get masses around the high-energy scale, so thinking in 

terms of a string-inspired theory of a GUT, then the see-saw mechanism naturally 

generates neutrino masses of the right order. 

It is possible to attain the neutrino mixing angles coming from the see-saw mech-

anism in a natural way as well, [14J which means that the neutrino measurements 

7This works well phenomenologically, and is a requirement of most GUTs and string-inspired models 

8While there is no symmetry in the MSSM which protects the right handed neutrino fields N from 

having a mass, there are in most GUTs, and in the Pati-Salam model. When these symmetries are 

broken, the N fields are expected to gain a mass close to the energy scale where the symmetry is broken. 

Thus in unified theories, we expect right handed neutrinos to acquire masses just below the unification 

scale Mx ~ 1016 GeV. 
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can actually act as a window into the very high energy physics, and it tells us 

that if the see-saw mechanism is correct, there is an energy scale very close to the 

GUT scale for SUSY theories. 

1.4.2 The Froggatt-Nielsen mechanism 

It is possible to understand the hierarchical form of the Yukawa matrices in a 

similar manner to how we understand the neutrino masses and mixings as coming 

from the see-saw mechanism. Following Froggatt and Nielsen, [15] we take a 

similar idea, of there being a high energy theory for which the MSSM is the 

appropriate low-energy effective field theory. 

In the full theory, we introduce a new U(l)F gauge symmetry, under which there 

is a generation dependent charge. We can allow the Higgs fields to have charges 

under the new symmetry. We also introduce a new superfield, iJ?FN, which has 

charge -1 under U (1) F. In the full theory, there are also messenger fields x· 

Then we can generate the Yukawa interactions in the MSSM as being effective 

operators, which are generated when iJ?FN get a VEV. For example, we get a 

(non-renormalisable) term in the effective superpotential: 

(1.38) 

aij is a coupling that we expect to be 0(1) , and xf is the U(l)F charge of the 

field f. When iJ? F N develops a VEV, this leads to a Yukawa interaction, in the 

same way that in the MSSM and SM, when the Higgs develops a VEV we get a 

Dirac mass term. In this case, defining E =< ¢FN > /Mx we can read off: 

(1.39) 
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Then we can understand the hierarchical form of the Yukawa matrices, and the 

small quark mixing angles by having the the charges under U(l)F being differ­

ent between each generation. In doing so, it is possible (at least in principle) 

to understand the hierarchical Yukawa matrices in terms of a number of 0(1) 

parameters, within the context of a symmetry which becomes broken at a very 

high energy scale. 

This idea is very powerful when combined with the idea of a Grand Unified 

Theory, where in order to be consistent with the larger multiplets of Grand Uni­

fication, we impose the constraints that the charges of some ( or all ) of the fields 

have to be the same. For example, in a Pati-Salam unified theory enhanced with 

a U(l)F' we must have that x qi = Xli' and X Ui = Xdi = x ei = x ni . This is useful 

in terms of model-building, because there will only be a small number of symme­

tries which can lead to the correct Standard Model particle spectrum which are 

consistent with a unified group such as Pati-Salam or 80(10). 
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Chapter 2 

Introduction to Pati-Salam and 

Strings 

2.1 Introduction 

In this chapter, we introduce two formalisms which could be appropriate for the under­

standing of particle physics at extremely high energies, approaching the Planck scale, 

at which it is believed that gravitation becomes comparable in strength to the gauge 

interactions, and quantum gravitational effects have to be taken into account. These 

two formalisms are those of the unification, in the context of the Pati-Salam model, 

and string theory. We then bring these threads together by describing a string-inspired 

Pati-Salam model. 

2.2 The Pati-Salam model 

Unified theories are the next logical step from the electroweak theory, which unify the 

left-handed quarks and leptons into left handed 'doublets' above the scale of electroweak 

symmetry breaking. Historically, the first such model proposed was the Pati-Salam 
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model [16], where leptons are considered a 'fourth colour' 1, under a larger colour 

gauge group SU(4)c, which undergoes spontaneous symmetry breaking at some very 

high energy scale. The Pati-Salam model has a gauge group of Cps = SU(4)c 09 

SU(2)L 09 SU(2)R. Under Cps, the left-handed matter F transforms non-trivially 

under SU( 4)c and SU(2)L and the right-handed matter F transforms non-trivially 

under SU(4)c and SU(2)R: 

= (4,2,1) = 
( 

UL,R 

dL,R 

UL,G UL,B 

-pa,x (2.1) = (4,1,2) = 
( 

~R'R 
UR,R UR,G UR,B 

Note that with the intention of eventually looking at the supersymmetric version 

of this model, the right handed field degreed of freedom have been C P-conjugated to 

transform as left-handed fields in order to facilitate constructing a superpotential. 

In order to form a full right-handed representation, we have to introduce a right-

handed neutrino field, so this model predicts neutrino masses, and we do not have to 

introduce right handed neutrino fields by hand. Also, in order to allow Yukawa terms 

that are gauge singlets, it is clear that the SM (MSSM) Higgs fields have to transform 

as (1,2,2) under Gps for the non-SUSY (SUSY) version of the model: 

( hht~ hhd~) h = (1,2,2) = _ (2.2) 

This gauge group is clearly broken, and it must be at a very high energy scale in 

order to suppress operators which break baryon and lepton number converting quarks 

into leptons. In order to break this spontaneously, we need to introduce a new set of 

lThe original Pati-Salam model was non-supersymmetric; we are more interested in the supersym-

metric variant [17] 
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'heavy' Higgs fields which get a VEV which breaks Cps ----t GSM . These are H,H: 

( HUR 
Hue HUB 

Hv ) H = (4,1,2) = 

HdR Hde HdB He 

H = (4,1,2) = ( HdR 
Hde HdB :: ) (2.3) 

HUR Hue HUB 

We have the unfortunate notation that for H, 2 represents the first row and 1 

represents the second row. These attain VEVs in the 'neutrino' directions so: 

(2.4) 

These VEVs break the Pati-Salam group SU(4)c@SU(2)L@SU(2)R to the Standard 

Model group SU(3)c @ SU(2)L @ U(l)y. Note that B - L is actually a generator of 

SU(4)Cl which is broken when Cps is broken. While the residual U(l) groups in 

SU( 4) @ SU(2)R are both broken, hypercharge can be made from a linear combination 

of them, and remains unbroken: 

Y 1 
- = IsR + - (B - L) 
2 2 

(2.5) 

The left-handed matter representations are then broken to the left-handed quark 

doublet and the left-handed lepton doublets. The right handed representations are 

broken apart into the up quark, down quark, electron and neutrino fields. This also 

breaks the Higgs bi-doublet apart into the two MSSM Higgs doublets. 

Just as in the SM, the gauge bosons corresponding to broken generators become 

massive, while the gauge bosons corresponding to unbroken generators remain massless. 

After diagonalisation, the massive gauge bosons are: 

• 1 U(l)B-L boson with mass squared (viI + v~)(g~R/4 + 3gl!S) 

• 2 SU(2)R bosons with mass squared (viI + v~)g~R/4 
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• 6 8U(4) bosons with mass squared (vl + v1)gV4 

g4 and g2R are the gauge couplings for 8U(4)c and SU(2hR. The hypercharge 

coupling g' is related to these couplings via: 

112 
-=-+-
g' 2 g~R 3g~ 

(2.6) 

Furthermore, right handed Majorana mass terms can be generated, at non-renormalisable 

order: 

(2.7) 

The structure of the VEV s are such that these only generate such mass terms for the 

right-handed neutrinos. In SUSY Pati-Salam, such right-handed masses are generated 

at almost exactly the right order of magnitude to make the see-saw mechanism work 

without any need for fine tuning. So not only does SUSY Pati-Salam predict neutrino 

masses, but it can predict the masses at the correct order of magnitude. 

There is no need to stop the unification here; it is possible to unify everything into 

a single multiplet under a larger group, such as 80(10), with a single gauge coupling. 

This does have certain technical problems. The two main problems are predicting 

proton decay at rates which are competitive with the current experimental limits, and 

the 'doublet-triplet' splitting problem. The doublet-triplet splitting problem comes 

from the fact that the Higgs representations become unified. In order to sufficiently 

suppress Higgs-mediated proton decay, the colour triplet part has to become super-

heavy, whereas the electroweak doublet part must have a mass at the electroweak 

scale. These problems don't occur in a fundamental Pati-Salam model. 
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2.3 Strings and phenomenology 

In this section, we review the formalism of string theory and the current status of string 

phenomenology. We will ignore the more technical details, but they are covered in detail 

in some excellent introductory texts [9, 18, 19]. String theory is attractive since it is the 

only known theory that unifies the four fundamental forces ( electromagnetism, strong, 

weak and gravity) within a consistent framework. 

Everything that a QFT would call a field, a string theory would call a vibrational 

mode of a fundamental string. These fundamental strings are one-dimensional objects 

of length 1/ M*, where M* is the string scale. So scalars, fermions, vector bosons and 

gravitons would be seen as different vibrational modes of strings. Strings can be open, 

in which case they have two free ends, or they can be closed, so that the two ends have 

joined to form a loop 2. The closed strings have a spin-2 massless excitation, which 

behaves in the way that a mediating particle of gravity would. The most successful 

string theories are those which the strings are supersymmetric, which tends to lead to 

a supersymmetric spectrum. String phenomenology is the ongoing attempt to find a 

way of embedding either the MSSM or the Standard Model into string theory, without 

too much low energy exotic matter. This task is made extremely challenging by a 

number of factors, which include the difficulty of performing detailed calculations in 

string theory, the large number of vacua that string theory has and the large number 

of experimental constraints that any string model has to be consistent with. 

2.3.1 String dualities and M-theory 

Since its inception, progress in string theory has been characterised by sudden progress 

after a key breakthrough or revolution, followed by longer periods of slow progress. 

2 A closed string can be thought of as the bound state of two open strings 
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The 'first string revolution' happened in 1984, when the first lO-dimensional, anomaly 

free type I string theory was constructed by Green and Schwarz [20]. The theory 

had both open and closed strings, and a gauge group of 80(32). This was followed 

by the construction of two heterotic string theories, that combined bosonic strings 

in 26 dimensions with the lOd supersymmetric Green-Schwarz theory to give a lOd 

theory with a gauge group of 80(32) and Es x Es respectively [21]. All of these 

theories have N = 1 spacetime supersymmetry, and large gauge groups which can easily 

accommodate the standard model gauge group. These string theories look promising for 

finding the MSSM, since the both 80(32) and Es can break to 8U(3) x 8U(2) x U(l), 

and there is the right amount of spacetime supersymmetry. Two type II string theories 

were later developed, with N = 2 spacetime supersymmetry. These look less promising, 

since N = 2 SUSY automatically preserves parity, and the weak interaction of the 

SM is parity-violating. Therefore, a mechanism of breaking N = 2 to N = 1 must 

be incorporated in the type II string theories in order to get acceptable low energy 

phenomenology. It should be noted that there is a lot to do in all five theories, as they 

predict large amounts of exotic states not in the MSSM, and the extra dimensions must 

be dealt with, in order to have only four dimensions evident at low energy. 

In 1995, there was another key series of breakthroughs, the 'second string revolu­

tion', which started with the discovery of the strong/weak coupling duality [22] . This 

is a duality between the strong (weak) coupling phase of the heterotic 80(32) theory 

with the weak (strong) coupling phases of the type I theory. A number of dualities were 

discovered linking the five string theories. The revolution culminated with the realisa­

tion that all of the five superstring theories were different limits of an ll-dimensional 

theory, M-theory . The full set of dualities is laid out in figure 2.1. Another important 

discovery was the discovery of extended solitonic objects, Dirichlet branes (D-branes) 
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[23, 24, 25], in type I and type II string theory. 

S-duality 

S-duality 

T-duality 

Figure 2.1: The dualities linking M-theory with the five string theories. The dualities 

linking the five string theories are shown as double headed arrows. The compactifica­

tions leading from M-theory to a lOd string theory is denoted by a radial arrow. 

A DN-brane is a (N + I)-dimensional manifold of the full lOd spacetime; the ends 

of open strings in the theory are constrained to lie within one of the D-branes. The 

endpoints of the string then have Neumann boundary conditions within the D-brane, 

and Dirichlet boundary conditions in the directions transverse to the D-brane. A stack 

of coincident D-branes leads to a symmetry under which the open strings transform. 

Usually, a stack of N coincident branes leads to a U(N) symmetry group. This sym­

metry group behaves like a global symmetry when viewed from the string 'worldsheet' 

perspective, but behaves like a gauge symmetry when viewed from the target-space 

perspective. Gravity fields then arise as closed strings. Thus the study of models con­

straining D-branes is interesting, since it gives a natural way of considering small gauge 

groups. Thus scenarios in Type I and type II string theory with branes can lead to 
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models with less exotic matter to be dealt with. 

2.3.2 Aspects of Type I strings 

We now move on to consider some aspects of type I supergravity3 relevant for attempts 

to construct MSSM like models 4. For a more complete discussion, see ref. [26J. 

Type I string theory in lOd can be obtained by taking an 'orientifold' [27, 28, 29, 

30, 31J of the lOd Type lIB string theory. The orientifold takes a parity operation, n 

on the lIB string worldsheet; this operation transforms left-moving and right moving 

vibrations into each other. The result of this projection leads to a closed, unoriented 

string with N = 1 SUSY in 10d. Furthermore, for consistency open strings whose ends 

are attached to D-branes have to be added to the theory. The consistency conditions 

( tadpole anomaly cancellation) require 32 D9-branes in the vacuum, and the open 

strings will transform in the adjoint representation of 50(32). This leads to a D = 

10 , N = 1 target-space string theory with open and closed strings. 

One problem with this orientifold is that it doesn't break enough supersymmetry; 

although Type I string theory is a N = 1 theory in lOd, compactification tends to 

lead to extended supersymmetry in the lower dimensional theory. This is because the 

fermionic supersymmetry generators get 'split' by compactification; The supersymme-

try generators have to be in the fundamental spinor representation of the Poincare 

group; for a lOd theory, this is 50(9, 1), and for a 4d theory this is 50(3,1). The extra 

degrees of freedom don't vanish. A 10d N = 1 theory compactified on a 6-Torus would 

become a N = 4 theory in 4d. 5. As we wish to have a D = 4, N = 1 theory, we must 

3Type I SUGRA is the SUGRA corresponding to type I string theory 

4By MSSM like models, we mean models that contain either the MSSM or one of its simple extensions 

as its appropriate low-energy description. This can include string-inspired GUTs at energies close to 

the string scale. 

5We can count the number of supersymmetries by looking at the spectrum, since the number of 
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find a way of breaking some (but not all) of the supersymmetry. 

We will consider Type lIB 4d orientifolds, obtained by compactifying six dimensions 

on a six-torus T6 = T(21) X T(~) x T(~). [32, 33, 34, 35, 36, 37, 38, 39, 40] Each pair of 

extra dimensions is wrapped around a symmetric two-torus T(~) with radius Ri; the 

two-torus will then have volume Vi = (21fRi)2. We label a spacetime co-ordinates as 

Xi, where Xo - X3 are the usual4d Minkowski spacetime coordinates and the remaining 

six correspond to the compactified dimension. Since the compactification is so simple, 

it is convenient to treat each pair of compact dimensions as a complex number, Zi: 

(2.8) 

With Zi spanning the two-torus T(~). 

Imposing an orientifold group {D x G}, where D is the world-sheet parity, and G is 

a discrete Abelian group G = I17=1 Zi is said to 'twist' the theory. Twisting the theory 

in this way leads to an N = 1 SUSY in 4d with the presence of fixed points which are 

invariant under the action of the orientifold group. There are only a finite number of 

Type lIB orientifolds which lead to N = 1 in 4d; these have already been classified, 

in the context of toroidal heterotic compactifications [41]. The action of orientifolding 

leads to tadpole divergences; in order to cancel these, Dp-branes must be introduced 

into the vacuum of the theory. In order to preserve N = 1 SUSY, p must be 5 and/or 9. 

Thus the string constructions can contain D9-branes and D5i-branes. The D5i-branes 

span the non-compact Minkowski space plus the two-torus T(~); the compactification 

radius of T(~) is often labelled as R5i' The tadpole cancellation conditions strongly 

constrain the massless spectrum and the gauge structure by projecting out states which 

are not singlets under the orientifold group [26, 42, 37, 38]. 6. 

We now consider the open and closed string states which appear in generic construc­

supersymmetries must be equal to the number of gravitinos. There can be only one graviton, but there 
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Z3 = (XS, zg) 

Figure 2.2: We represent the six-dimensional compact space using a complex coordinate 

system (left), where D5i-branes are shown as straight line along the Zi direction. A 

D51-brane and a D52 brane will overlap in Minkowski space (which is the origin of the 

coordinate system) but extend out in perpendicular directions (right) 

tions involving stacks of D9-branes and (up to) three stacks of D5i-branes. A D9-brane 

fills the entire lOd spacetime, (xo - xg), whereas a D5i brane spans the Minkowski 

spacetime, plus two extra compact dimensions which wrap the two-torus T(~). We can 

represent the 6-dimensional compact space on the six-torus T6 using three complex 

coordinates Zi, where each coordinate corresponds to a pair of compact dimensions, as 

in Eq. (2.8). In this system, a stack of coincident D5i-branes are represented by a single 

line along the ith coordinate. See figure 2.2. 

Two types of massless N = 1 chiral fields arise in Type I string models: 

• Closed string chiral singlets 

will be N generators Qa, generating N gravitinos when acting upon a graviton state. 

6The presence of a background field BJ1-v or non-trivial Wilson lines can modify the tadpole cancel­
lation conditions, and lead to a reduced rank gauge group since fewer D-branes are required to cancel 

the tadpoles 
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Chiral singlets arise from the scalar excitation of closed string states. They include 

the 4d dilaton S and the untwisted moduli fields ~,(i = 1,2,3), which are all free to 

move in the fulllOd spacetime. The VEVs of the untwisted moduli parametrise the size 

of the compactified dimensions, and the compactification radius of the ith two torus 

T(~) is given by [26J: 

(2.9) 

In Type I models, the gauge coupling corresponding to a stack of branes is related to 

the corresponding modulus, S for the 9-branes and Ti for the 5i-branes. There are also 

closed string states that are trapped at the fixed point singularities of the orientifold 

group, the twisted moduli fields Yk. The twisted moduli parametrise the size of the 

fixed points. The twisted states can contribute to SUSY breaking and also modify the 

relation of the brane gauge couplings. 

• Charged open string states 

Chiral superfields arise as open strings attached to D-branes. Since quarks, leptons 

and Higgs fields are all members of chiral superfields in the MSSM, they should corre-

spond to open string states in the string theory. The open strings can either end on 

different D-branes ( denoted as C a {3 e.g. C 5i5j , or attached to the same D-brane and 

( denoted by the D-brane they attach to and a winding direction Cj e.g. cg1 
). 

The most general setup consists of a D9-brane and three D5i-branes. In this sce-

nario, string selection rules constraining the allowed interactions which appear in the 

superpotential at renormalisable level [26J: 

w 
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The coupling constants are given by: 

2 47f 
g9 = RS (2.11) 

In Appendix A, we discus the supergravity formalism that can be used for the low-

energy description of Type I models in terms of the Kahler potential, superpotential 

and gauge kinetic functions [43]. We also provide general expressions for the terms of 

the soft supersymmetry breaking Lagrangian in terms of the SUSY breaking F-terms, 

assuming that only closed string states acquire non-zero VEV s. 

2.4 A String Pati-Salam model 

We now discuss a string model for which the supersymmetric Pati-Salam model dis-

cussed in section 2.2 becomes the appropriate effective field theory when the super-

heavy exotic states are integrated out. Both the string theoretical [44] and the model 

building [45] aspects have been considered in detail. We summarise the relevant parts 

of the model here. 

The model is a Type I model with two stacks of 5-branes. The two stacks are taken 

to be the 51 and 52 branes, although any other combination would be equivalent. In 

the full string model, there is a gauge group of U(4) 0 U(2)a 0 U(2)b on each brane. 

We take the gauge group on the 52 brane to have been broken to U(4)(2). Thus the 

gauge group on the 51 brane is U(4)(l) 0 U(2)L 0 U(2)R, and the gauge group on the 

52 brane is U(4)(2). The setup is shown schematically in fig. 2.3. 

The group representations of the field content is laid out in table 2.1. In the table, 

h represents the MSSM Higgs, Fi the ith generation of left handed matter, F
j 

the 

yth generation of right handed matter, Hand H are the Higgs fields responsible for 

breaking SU(4) 0 SU(2) 0 SU(2) ---t SU(3) 0 SU(2) 0 U(l). The model therefore has a 
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Field SU(4)(1) SU(2)L SU(2)R SU(4)(2) Qil ) Q2L Q2R Qi2) Brane 

assignment 

h 1 2 2 1 0 1 -1 0 C51 
I 

F3 4 2 1 1 1 -1 0 0 C51 
2 

- 4 C51 
F3 1 2 1 -1 0 1 0 3 

F I ,2 1 2 1 4 0 -1 0 1 C5152 

-
F I ,2 1 1 2 4 0 0 1 -1 C5152 

H 4 1 2 1 1 0 -1 0 C51 
I 

- 4 H 1 1 4 -1 0 1 0 C51 
2 

'PI 4 1 1 4 1 0 0 -1 C5152 

'P2 4 1 1 4 -1 0 0 1 C5152 

D(+) 
6 6 1 1 1 2 0 0 0 C51 

I 

(-) 
D6 6 1 1 1 -2 0 0 0 C51 

2 

Table 2.1: The particle content of the '4224' string Pati-Salam model. We have used 

the isomorphism U(Na) = U(l)a 0 SU(Na) to write a U(Na) representation as a U(l)a 

charge and a SU(Na) representation. 
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3rd generation and Higgs 

U(4) Q9 U(2) Q9 U(2) 

Figure 2.3: Setup of the '4224' model. The first and second generations of matter 

arise as C5
1

5
2 intersections states; the third generation, Pati-Salam and Electroweak 

breaking Higgs fields arise as C:1 states. 

gauge symmetry SUe 4)(1) Q9SU( 4)(2) Q9SU(2)LQ9SU(2)R Q9 U(1)4. The third generation 

arises from the 51 sector, and the first two generations are intersection states. 

The gauge symmetry breaking pattern follows the three-family approach of Shiu and 

Tye [44]. There are two stages to the symmetry breaking, which are assumed to occur 

close to the unification scale, Mu. The first stage is the breaking of U(4)(1) Q9 U(4)(2) 

to the diagonal U(4) subgroup, which is identified as the U(4)c part of the Pati-Salam 

group. This breaking is done by the diagonal VEVs of 'P1,2; the resulting theory has 

a U(1)3 enhanced Pati-Salam group. The U(l)s are anomalous, and are expected to 

decouple by the scale that the Pati-Salam group breaks to the MSSM group. The 

breaking of the Pati-Salam is by the PS Higgs fields, H, H. The breaking should occur 

along flat directions in order to preserve supersymmetry; D flatness should be spoilt 

only by terms of the order of the soft parameters. 
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The symmetry breaking pattern occurs as follows: 

(2.12) 

The simultaneous requirements of (approximate) D-fiatness and diagonal symmetry 

breaking gives us the VEVs of the r.p fields: 

(2.13) 

At this point, we note that there are a number of combinations that are overall colour 

triplets which would lead to high rates of proton decay. The colour sextet fields D~±) 

exist to give these super-heavy mass terms in order to reduce the rate to an acceptable 

level. More details are beyond the present scope, but are presented in ref. [45]. 

2.4.1 MSSM couplings 

As the string model is predictive, we can make quantitative statements about the cou-

plings in the MSSM, which is the appropriate effective field theory below the GUT scale 

of Mu R:j 1016 GeV. On the string side, there are two gauge couplings, one associated 

with each 5i -brane. In the MSSM, there are three, and they are related to the brane 

couplings 95i by: 

93 
951 952 

V 9g1 + 9g2 

92 951 

9y 
.)3951952 (2.14) 

V592 + 292 
52 51 

We now turn to the Yukawa couplings. The string assignments have been chosen 

to allow a third family-third family-higgs Yukawa coupling, but no others. We see that 

in eq. (2.10) the term cf1 cg1 Cg1 is allowed, thus giving an 0(1) Yukawa coupling 
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F3F3h. However, the terms that would give Yij, Yi3 and Y3j (i,j = {1,2}) do not 

appear so only the (3,3) element is allowed at renormalisable order due to the form 

of the superpotential, eq. (2.10) and the string assignments as given in table 2.1. The 

model predicts third family Yukawa unification, and therefore requires large tan (3 ;:::; 50 

to ensure the correct mt!mb ratio. 

The small (non-zero) values of the Yukawa couplings of the first and second gen­

erations as well as the Majorana right-handed mass matrix are generated by non­

renormalisable operators. These could be generated by operators of the form FiFjh(H Hn) 

[46], by Froggatt-Nielsen operators for models extended with a family symmetry or by 

combining the two approaches [47]. 

We can use the phenomenological approach of [48] to write down the soft couplings 

in terms of a few goldstino parameters. Here, we make the usual assumption that 

the auxiliary fields of the moduli contribute dominantly over the auxiliary members of 

the Higgs superfields <Pi, H, H to all of the soft terms. This is not necessarily true for 

the trilinear soft parameters Aijk [49], an issue that will be returned to in Chapter 3. 

We start off by parameterising the auxiliary fields. Then, through the expressions in 

Appendix A, we will obtain the gaugino soft masses, the scalar soft masses, and the 

trilinear soft couplings for the MSSM in terms of a few goldstino parameters, X Q and 

the gravitino mass m3/2: 

V3(S + S*)m3/2XseiQS 

V3(7i + Tnm3/2XieiQi 

(2.15) 

(2.16) 

The goldstino parameters sum square to one: .L:i Xl = 1, and in general the auxiliary 
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fields can have arbitrary phases as, ai. The masses of the 4224 gauginos are: 

m (l) - m - m 4 - 2L - 2R (2.17) 

(2.18) 

The MSSM gaugino masses are then: 

V3m
3/2 [(T T*)X -ial ('7' fT1*)X -ia2] (2.19) 

(Tl + Tn + (T2 + Tn 1 + 1 1 e + -L 2 + -L 2 2e 

v!:3m3/2Xle-ial 

V3m 3/2 

i(T1 + Tn + ~(T2 + T2') 

[~(Tl + TnX1e- ia1 + ~(T2 + T2)X2e-ia2
] 

(2.20) 

(2.21 ) 

Each scalar mass will depend only on which string assignment it is; they are: 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The trilinear parameters Aij can then be written down in terms of Aij and the 

Yukawa couplings Yij: 

d1Yn d 1Y12 d2Y13 

Aij = d 1Y21 d1Y22 d2Y23 (2.27) 

d3Y31 d3Y32 d4Y33 
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where the d i are defined as: 

(2.28) 

;;:; (1. . 1 .) y 3m3/2 '2Xse-ws - X1e-W1 
- '2 X3e - U

l<3 (2.29) 

J3m 3/2 (~Xse-ias - X1e-ia1 
- X 2e-ia2 + ~X3e-i(3) (2.30) 

;;:;3 X -ial -y()m3/2 Ie (2.31 ) 

The string-derived superpotential doesn't allow the MSSM to have a f.L term. The 

f.L and B f.L terms must be generated in the effective theory, ( such as by the Giudice-

Masiero mechanism [50]). This is model dependent, and we will not consider the 

issue further. However, their magnitudes will be set by the requirements of radiative 

electroweak symmetry breaking. 
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Chapter 3 

Lepton Flavour Violation from 

Yukawa operators, Supergravity 

and the See-Saw mechanism 

We investigate the phenomenological impact of different sources of lepton flavour vi­

olation arising from realistic models based on supergravity mediated supersymmetry 

breaking with Yukawa operators. We discuss four distinct sources of lepton flavour 

violation in such models: minimum flavour violation, arising from neutrino masses and 

the see-saw mechanism with RG running; supergravity flavour violation due to the non­

universal structure of the supergravity model; flavour violation due to Froggatt-Nielsen 

(FN) fields appearing in Yukawa operators developing supersymmetry breaking F-terms 

and contributing in a non-universal way to soft trilinear terms; and finally heavy Higgs 

flavour violation arising from the heavy Higgs fields used to break the unified gauge 

symmetry which also appear in Yukawa operators and behave analogously to the FN 

fields. In order to quantify the relative effects, we study a particular type I string 
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inspired model based on a supersymmetric Pati-Salam model arising from intersecting 

D-branes, supplemented by a U(l) family symmetry. 

3.1 Introduction 

Lepton flavour violation (LFV) has been long known to be a sensitive probe of new 

physics in supersymmetric (SUSY) models [51, 52J. LFV arises in SUSY models due 

to off-diagonal slepton masses in the super-CKM basis in which the Yukawa matrices 

are diagonal. Such flavour violation could arise either directly at the high energy 

scale due to primordial string or SUGRA effects, or be generated radiatively by the 

renormalisation group equations, for example in running a grand unified theory (GUT) 

from the Planck scale to the GUT scale (due to the presence of Higgs triplets) [53J or 

in running the minimal supersymmetric standard model (MSSM) with right-handed 

neutrinos from the Planck scale down to low energies, through the scales at which the 

right-handed neutrinos decouple. 

Even in minimal supergravity (mSUGRA), where there is no flavour violation at 

the high energy scale, the presence of heavy right-handed neutrinos as required by the 

see-saw mechanism explanation of small neutrino masses will lead inevitably to LFV 

[54, 55J. The recent neutrino experiments which confirm the matter enhanced Large 

Mixing Angle (LMA) solution to the solar neutrino problem [12], together with the 

atmospheric data [7J, show that neutrino masses are inevitable, and, assuming SUSY 

and the see-saw mechanism, hence show that LFV must be present. For example this 

has recently been studied in mSUGRA models with a natural neutrino mass hierarchy 

[56J. There is in fact a large literature on this subject [57J. 

Recently it has been realised that in realistic string inspired models based on su­

pergravity mediated supersymmetry breaking, in which the origin of Yukawa matrices 
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Yij is due to Froggatt-Nielsen (FN) operators [15] of the form Yij rv enij , where nij 

is an integer power, there may be a new and dangerous source of LFV which arises 

when the FN fields e develop supersymmetry breaking F-terms Fe rv m3/2e leading to 

non-universal soft trilinear terms .6.Aij = FeGe In Yij [58] which implies .6.Aj rv nijm3/2 

[59, 60]. The effect is independent of the vacuum expectation value (vev) of the FN 

field e, and is present even in minimum flavour violation scenarios such as mSUGRA. 

In this chapter we shall explore the phenomenological impact of the new source of 

LFV arising from FN fields discussed above, and compare it to the more usual sources of 

LFV arising from right-handed neutrinos, and non-universal SUGRA models in order 

to gauge its relative importance. A phenomenological analysis is necessarily model 

dependent, and so we shall study a particular type I string inspired model based on a 

SUSY Pati-Salam model arising from intersecting D-branes, which was introduced in 

[45]. However in order to explore the effects of interest, it is necessary to supplement 

this model by a U(I) family symmetry, and introduce FN fields so as to provide a 

realistic description of quark and lepton masses and mixing angles, including those of 

the neutrino sector. Recently a global X2 analysis of a realistic SUSY Pati-Salam model 

was performed [47], and a good fit to the quark and lepton mass spectrum was obtained 

based on a FN operator analysis with a U(I) family symmetry. It is therefore natural 

to combine the models in [45] and [47] in order to provide a realistic framework for 

studying the new LFV effects arising from the FN fields, and to compare this to the 

effects on non-universal SUGRA and also right-handed neutrinos in a model that gives 

a good fit to the neutrino data. 

Of course in combining the two models we are taking some liberties with string 

theory. In particular we assume that the combined model corresponds to the low 

energy limit of a string model as in [45], but with the addition of an extra state, which 
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is a Froggatt-Nielsen [15] family field, e. We assume that since the model without e 

can be extracted from a string model, then so can the model with e, but we make no 

attempt to derive it. We emphasise that the main motivation for combining the two 

approaches is to explore the phenomenology of LFV in a 'realistic' framework. One 

by-product of doing this is that we identify a genuinely new source of LFV that has not 

been considered at all in the literature, namely the heavy Higgs fields H that break the 

unified gauge symmetry at high energies. These heavy Higgs fields also appear in the 

operators which describe the Yukawa couplings, and they can be expected to behave 

in a similar way to the FN fields e, and give rise to LFV analogously. The combined 

model has a number of attractive features: it includes approximate third family Yukawa 

unification, the number of free parameters is restricted to eight undetermined free 

parameters related to supergravity, and the model gives a good fit to all quark and 

lepton masses and mixing angles. 

In order to study the phenomenological effect of the different sources of LFV, we 

generalise the Goldstino Angle parametrisation of the dilaton and moduli fields S, Ti to 

include a parametrisation of the SUSY breaking F-terms for the FN fields e and heavy 

Higgs fields H. There are four distinct sources of lepton flavour violation in this model: 

minimum flavour violation, arising from neutrino masses and the see-saw mechanism 

with renormalisation group (RG) running; supergravity flavour violation due to the 

non-universal structure of the supergravity model; FN flavour violation due to the FN 

fields developing supersymmetry breaking F-terms and contributing in an non-universal 

way to soft trilinear terms; and finally heavy Higgs flavour violation arising from the 

Higgs fields used to break the unified gauge symmetry which may behave analogously 

to the FN fields. We propose four benchmark points at which each of these four sources 

separately dominate. We then perform a detailed numerical analysis of LFV arising 
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from the four benchmark points. The numerical results show that LFV due to FN fields 

is the most sensitive source in the sense of leading to larger limits of m3/2, however 

we find that the gluino mass is relatively light in these cases which tends to reduce 

fine-tuning. We also find that in some cases the LFV effects from Yukawa operators in 

the presence of the seesaw mechanism can be less than without the seesaw mechanism. 

The outline of this chapter is as follows. In section 3.2 we introduce the specific 

model that we shall study, discuss the symmetries of the model, and the Yukawa and 

Majorana operators, and for particular choices of the order unity coefficients, show 

that this leads to a good fit to the neutrino data, with a prediction for the unmeasured 

813 . In section 3.3 we discuss the soft SUSY breaking aspects of the model. We 

parametrise the SUSY breaking F-terms, give the soft scalar masses, including the 

D-term contributions, give the soft gaugino masses and soft trilinear couplings, and 

explain why these are expected to lead to large flavour violation. In section 3.4 we 

give the results of a numerical analysis of the model, focusing on four benchmark 

points designed to highlight the four different sources of LFV. Finally we present our 

concluding remarks in section 3.5 

3.2 The Model 

3.2.1 Symmetries and Symmetry Breaking 

The model defined in Table 3.1 is an extension of the string inspired Supersymmetric 

Pati-Salam model discussed in ref. [45], and summarised in Chapter 2 , based on two 

D5 branes which intersect at 90 degrees and preserve SUSY down to the Te V energy 

scale. The string scale is taken to be equal to the GUT scale, about 3 x 1016 GeV. 

The extension is to include an additional U(l)F family symmetry and the FN op-

50 



Field SU(4)(1) SU(2)L SU(2)R SU(4)(2) Ends U(l)F charge U(l)F charge 

h 1 2 2 1 C 51 
1 0 0 

F3 4 2 1 1 C51 5 0 2 6 

- "4 C51 5 0 F3 1 2 1 3 -6 

F2 1 2 1 4 C5152 5 2 6 

F2 1 1 2 "4 C5152 7 0 6 

H 1 2 1 4 C5152 11 1 6"" 

- "4 C5152 19 4 Fl 1 1 2 6"" 

H 4 1 2 1 C51 5 0 
1 6 

-
"4 1 2 1 C51 5 0 H 2 -6 

<PI 4 1 1 "4 C5152 - -

<p2 "4 1 1 4 C5152 - -

D(+) 6 1 1 1 C51 - -
6 1 

D(-) 6 1 1 1 C52 - -
6 2 

e 1 1 1 1 C5152 -1 -1 

7J 1 1 1 1 C5152 1 1 

Table 3.1: The particle content of the 42241 model, and the brane assignments of the 

corresponding string 
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erators as in [47] (see also [46]). The present 42241 Model is then just the 4224 Model 

of [45] augmented by a U(I)F family symmetry. The purpose of this extension is to 

allow a more realistic texture in the Yukawa trilinears Yabc, along the lines of the recent 

operator analysis in [47]. 

The quark and lepton fields are contained in the representations F, F which are 

assigned charges XF under U(I)F. In Table 3.1 we list two equivalent sets of charges 

U(I)F and U(I)p, where U(I)F is anomaly free, but U(I)F is equivalent for all prac-

tical purposes and has much simpler charge assignments. The field h represents both 

Electroweak Higgs doublets that we are familiar with from the MSSM. The fields H 

and H are the Pati-Salam Higgs scalars; I the bar on the second is used to note that 

it is in the conjugate representation compared to the unbarred field. 

The extra Abelian U(I)F gauge group is a family symmetry, and is broken at the 

high energy scale by the VEVs of the FN fields [15] e,7J, which have charges -1 and +1 

under U(I)F, respectively. We assume that the singlet fields e,7J arise as intersection 

states between the two D5-branes, transforming under the remnant U(I)s in the 4224 

gauge structure. In general they are expected to have nOll-zero F-term VEVs. 

The two SU(4) gauge groups are broken to their diagonal subgroup at a high scale 

due to the assumed VEVs of the fields 'PI, 'P2 [45]. The symmetry breaking at the scale 

Mx 

SU(4) @ SU(2)L @ SU(2)R -7 SU(3) @ SU(2)L @ U(I)y (3.1) 

is achieved by the heavy Higgs fields H, H which are assumed to gain VEVs [46]) 

This symmetry breaking splits the Higgs field h into two Higgs doublets, hI, h2. Their 

lWe will also refer to these as 'Heavy Higgs'; this has nothing to do with the MSSM heavy neutral 

Higgs state HO 
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neutral components then gain weak-scale VEVs 

(3.3) 

The low energy limit of this model contains the MSSM with right-handed neutrinos. 

We will return to the right handed neutrinos when we consider operators including 

the heavy Higgs fields H, H which lead to effective Yukawa contributions and effective 

Majorana mass matrices when the heavy Higgs fields gain VEVs. 

3.2.2 Yukawa Operators 

The Yukawa operators, responsible for generating effective Yukawa couplings, have the 

following structure 2 [46]: 

(3.4) 

where the integer p(i,j) is the total U(l)F charge of FI+F J+h and HH has a U(l)F 

charge of zero. The tensor structure of the operators in Eq.3.4 is 

(3.5) 

One constructs [46] SU(4)ps invariant tensors cgJ that combine 4 and 4,4 and 4 or 4 

and 4 representations of SU(4)ps into 1, 6, 10, 10 and 15 representations. Similarly 

we construct SU(2)R tensors R~Zu that combine 2 representations of SU(2) into singlet 

and triplet representations. These tensors are contracted together and into O~~~~ to 

create singlets of SU(4)ps, SU(2)L and SU(2)R. Depending on which operators are 

used, different Clebsch-Gordan coefficients (CGCs) will emerge. 

We look at two different models for the Yukawa sector, which we refer to as model I 

and model II. The models represent different 0(1) parameters a, a', a" in the following 

2We note that due to the allocation of charges, and since the effective Yukawa operators include the 

fields FI F J h with overall charge positive, the field e does not enter the Yukawa operators. 
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operator texture [47J: 

0= 

(3.6) 

where the operator nomenclature is defined in Appendix C. For convenience, from this 

point on, we define: 

(3.7) 

and 

() 
E= --

Mx 
(3.8) 

Eq.(3.6) then yields the effective Yukawa matrices 

0 ' 8 62 2 a225 \1'5 E 0 (3.9) 

0 a' ~62E2 
325 a33 

8 6 5 -a' J262E3 
, 4 

alls E 12 a13 \1'5 

26 4 a21 \1'5 E ( ~6 ,16 6 2 ) 2 a22 S + a22 5\1'5 E a' ~62 23 5 
(3.10) 

8 6 4 
a31S E a32J2&2 a33 

6 6 5 
alls E 0 o 

4 6 4 a21 \1'5 E (-a223~~ +a;265~)&2 (3.11) 

6 6 4 
-a31S E a32J2&2 

a~2J263E5 a122&3 a" 6 3 E 13 

0 ' 6 62 2 a22 5\1'5 E a23 26 (3.12) 

0 a' Q62E2 
325 a33 

The order unity coefficients aij, a~j of the operators are adjusted to give a good fit to 

the quark and lepton masses and mixing angles, and take the values given in Table 3.2. 
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Model I Model II 

a33 0.55 0.55 

all -0.92 -0.92 

a12 0.33 0.33 

a21 1.67 1.67 

a22 1.12 1.12 

a23 0.89 0.89 

a31 -0.21 -0.21 

a32 2.08 2.08 

, 
a12 0.77 0.77 

, 
a 13 0.53 0.53 

, 
a22 0.66 0.66 

, 
a 23 0.40 0.40 

, 
a 32 1.80 1.80 

a" II 0.278 0.278 

a" 13 0.000 1.000 

All 0.94 0.94 

A12 0.48 0.48 

A 13 2.10 2.10 

A22 0.52 0.52 

A 23 1.29 1.79 

A33 1.88 1.88 

Table 3.2: The a, a' and a" parameters for model I and model II 
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Note that the two models differ only in the choice of a{3' which is taken to be zero in 

model I. Model I consequently has a lower rate for f-L -t ery, and model II has a higher 

f-L -t e, rate due to the non-zero 13 element of the neutrino Yukawa matrix, as can be 

understood from the analytic results in [56]. The fits assume 8 = E = 0.22. 

3.2.3 Majorana Operators 

We are interested in Majorana fermions because they can contribute neutrino masses 

of the correct order of magnitude via the see-saw effect. The operators for Majorana 

fermions are of the form 

___ (HH) (HH)n-l ( () )qIJ 
OIJ - FJFJ Mx Ml Mx (3.13) 

There do not exist renormalisable elements of this infinite series of operators, so 

n < 1 Majorana operators are not defined 3. A similar analysis goes through as for the 

Dirac fermions; however the structures only ever give masses to the neutrinos, not to 

the electrons or to the quarks. 4 

It should be noted that the Majorana neutrinos will not affect the A-terms, as these 

operators do not contribute to the Yukawas. The RH Majorana neutrino mass matrix 

is: 

(3.14) 

3Except for the 33 neutrino mass term; this is allowed because of string theoretic effects 

4To see this note that the form of the two H VEVs is symmetric, and proportional to 8:t8~. Symmet-

ric structures will then contract to give neutrino mass terms. Antisymmetric structures will contract 

to give zero. As any structure can be written as a sum of a symmetric and an antisymmetric part, 

we see immediately that the only mass terms can be given to the neutrinos because of the form of the 

VEVs in Eq. (3.2) 
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3.2.4 Neutrino sector results 

The neutrino Yukawa matrix in Eq.(3.12) and the heavy Majorana mass matrix in 

Eq.(3.14) imply that the see-saw mechanism satisfies the condition of sequential dom­

inance [14], leading to a natural neutrino mass hierarchy m1 « m2 « m3 with no 

fine-tuning. The dominant contribution to the atmospheric neutrino mass m3 comes 

from the third (heaviest) right-handed neutrino, with the leading sub dominant contri­

bution to the solar neutrino mass m2 coming from the second right-handed neutrino. 

In such a natural scenario, the large atmospheric angle is due to the large ratio of dom­

inant neutrino Yukawa couplings tan 023 ~ Yd3/Y;33, and the large solar angle is due to 

the large ratio of leading sub dominant Yukawa couplings tan 012 ~ )2Y12 /(Yd2 - Y:l2). 

Model I for the Yukawa sector is taken from a global analysis of a SUSY Pati-Salam 

model enhanced with an Abelian flavour symmetry [47]. At one-loop order the Yukawa 

runnings only depend on the other Yukawas and the gauge couplings. Since Model II 

only differs from Model I in the neutrino Yukawa, we do not expect the quark masses 

or mixing angles to be different. We also do not expect the charged lepton masses to 

differ by much. 

The possibility remains open, however, that the new operator in the 13 Yukawa 

elements could predict either a mass difference or a neutrino mixing angle in violation 

of the results from the various neutrino experiments [12, 7, 61, 62]. As such, we checked 

our predictions for the mass-differences and the mixing angles for both models, in 

comparison to experiment. The results of this are summarised in Table 3.3. 

We note that in both model I and model II, we are within the constraints on 

the neutrino sector. In fact Model II is slightly closer to the central values of three 

observable parameters (the solar and atmospheric neutrino mixing angles, and the 

atmospheric mass difference). In both cases we predict values of 013 below the current 
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Observable Model I Model II Experimental 

Prediction Prediction Values 

sin2 e12 0.316 0.308 0.28 ± 0.05 

sin2 e23 0.553 0.552 0.50 ± 0.15 

. 2 e sm 13 5.18· 10-3 5.20.10-3 < 0.03 

~m~tm 1.32.10-3 1.33.10-3 (2.5 ± 0.8)10-3 

~m;ol 6.05.10-5 5.91 .10-5 (7.0 ± 3.0)10-5 

Table 3.3: The neutrino mass differences and mixing angles in model I, model II and 

the experimental limits 

limit. 

3.3 Soft Supersymmetry Breaking Masses 

3.3.1 Supersymmetry Breaking F-terms 

In [45] it was assumed that the Yukawas were field-independent, and hence the only 

F-vevs of importance were that of the dilaton (8), and the untwisted moduli (Ti). Here 

we set out the parameterisation for the F-term VEVs, including the contributions from 

the FN field e and the heavy Higgs fields H, H. Note that the field dependent part 

follows from the assumption that the family symmetry field, e is an intersection state. 

Fs V3m3/2 (8 + S) XS (3.15) 

FTi V3m3/2 (Ii + Ti) X Ti (3.16) 

1 

FHo:b V3m3/2Hab (8 + S) '2 X H (3.17) 

1 

F- V3m3/2Hax (T3 + T3) '2 X H (3.18) HQX 

1 1 

Fe V3m3/2e (8 + S) 4: (T3 + T3) 4: Xe (3.19) 
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We introduce a shorthand notation: 

(3.20) 
ab ax 

3.3.2 Soft Scalar Masses 

There are two contributions to scalar mass squared matrices, coming from SUGRA and 

from D-terms. In this subsection we calculate the SUGRA predictions for the matrices 

at the GUT scale, and in the next subsection we add on the D-term contributions. 

The SUGRA contributions to soft masses are detailed in Appendix A. From 

Eq. (A.7) we can get the family independent form for all scalars: 

a 

2 _ 2 
mL- m 3/ 2 a (3.21) 

bL 

a 

2 2 
mR= m 3/ 2 a (3.22) 

bR 

2 
mh= 2 

m 3/ 2 (1 - 3X~) (3.23) 

2 
mH= 

2 
m 3/ 2 (1 - 3X~) (3.24) 

m~= 2 (1 - 3Xf3) H m 3/ 2 (3.25) 

where 

a 
3 22 1 - :2(Xs + X T3 ) (3.26) 

bL 1 - 3Xf3 (3.27) 

bR = 1 - 3Xf2 (3.28) 

Here m'i represents the left handed scalar mass squared matrices m~L and m'iL' m1 

represents the right handed scalar mass squared matrices mf;R' mbR' m'J,JR and m'ivR' 
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3.3.3 D-term Contributions 

We now consider the D-terms from breaking the Pati-Salam group SU(4) @ SU(2)L @ 

SU(2)R down to the MSSM group SU(3) @ SU(2)L @ U(l)y . These will be family 

independent, but charge dependent, and will pull the six matrices that appear in the 

RGE equations apart. We shall neglect D-term contributions from the broken family 

symmetry which would lead to additional sources of flavour violation. 

The addition to the D-terms have been written down before [63]. The corrections 

are, in matrix notation: 

2 
mQL ml + glD2 (3.29) 

2 
mUR m1- (gl- 2g~R)D2 (3.30) 

2 
mDR m1- (gl + 2g~R)D2 (3.31 ) 

2 
mLL ml- 3g1D2 (3.32) 

2 
mER m1 + (3g1 - 2g~R)D2 (3.33) 

2 
mNR m1 + (3g1 + 2g~R)D2 (3.34) 

m2 
hu 

2 2 2 D2 mh2 - g2R (3.35) 

2 
mhd 2 2 2 D2 mhl + g2R (3.36) 

where in the appendix of Ref. [63], an expression for D2 in terms of the soft parameters 

m'1 and m~ is derived, 

2 2 
2 mH-mH 

D = 2 2 2' 
4As + 2g2R + 394 

(3.37) 

The gauge couplings and mass parameters in Eq.(3.37) are predicted from the model. 

The only free parameter is the coupling As is a dimensionless coupling constant which 

enters the potential [63] and should be perturbative. Furthermore, we see that the 

largest that D2 can be is when AS is zero, so not only is the order of magnitude of D2 
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predicted in this model, but we also have an exact upper bound on the value. 

3.3.4 Soft Gaugino Masses 

The soft gaugino masses are the same as in [45], which we quote here for completeness. 

The results follow from Eq. (A.8) applied to the SU(4) Q9 SU(2)L Q9 SU(2)R gauginos, 

which then mix into the SU(3) Q9 SU(2)L Q9 U(l)y gauginos whose masses are given by 

(3.38) 

(3.39) 

(3.40) 

The values of Tl + Tl and T2 + T2 are proportional to the brane gauge couplings 951 

and 952' which are related in a simple way to the MSSM couplings at the unification 

scale. This is discussed in [45J. 

When we run the MSSM gauge couplings up and solve for 951 and 952 we find that 

approximate gauge coupling unification is achieved by Tl + Tl » T2 + T 2. Then we 

find the simple approximate result 

(3.41 ) 

3.3.5 Soft Trilinear Couplings 

So far the soft masses are as in [45], with the FN fields and heavy Higgs contributions 

being completely negligible due to the smallness of their F-terms. However for the soft 

trilinear couplings these contributions are of order O(m3/2) despite having small F-

terms, so FN and Higgs contributions will give very important additional contributions 

beyond those considered in [45J. 

From Appendix A we see that the canonically normalised equation for the trilinear 
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is: 

(3.42) 

This general form for the trilinear accounts for contributions from non-moduli F-terms. 

These contributions are in general expected to be of the same magnitude as the mod-

uli contributions despite the fact that the non-moduli F-terms are much smaller [49]. 

Specifically, if the Yukawa hierarchy is taken to be generated by a FN field, e such that 

Yij tv epij
, then we expect Fe tv m3/2e, and then .6.Aij = FeGe In Yij tv Pijm3/2 and 

so even though these fields are expected to have heavily sub-dominant F -terms 5 they 

contribute to the trilinears at the same order O(m3/2) as the moduli, but in a flavour 

off-diagonal way. 

In the specific D-brane model of interest here the general results for soft trilinear 

masses, including the contributions for general effective Yukawa couplings are given in 

Appendix B. From Eqs.(3.4,3.5) we can read off the effective Yukawa couplings, 

YhFphF F == (c)~;(r)~:nH'YzHPwep h~Faa F{3x. 
, J 

V 

Y _f3x 
hFFay 

(3.43) 

Note the extra group indices that the effective Yukawa coupling YhFP~~ has, and proper 

care must be taken of the tensor structure when deriving trilinears from a given opera-

tor. For Model I and II defined earlier, we can write down the trilinear soft masses, A, 

by substituting the operators in Eq.(3.6) into the results in Appendix B. Having done 

this we find the result: 

d1 + dH + 5de d1 + dH + 3de d2 + dH + de 

A = V3m3/2 d1 + dH + 4de d1 + dH + 2de (3.44) 

SIn our model the FN and heavy Higgs vevs are of order the unification scale, compared to the 

moduli vevs which are of order the Planck scale. 
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where 

d1 Xs - X T1 - XT2 (3.45) 

d2 
1 1 

(3.46) -Xs - X T - -Xy. 2 1 2 2 

d3 
1 1 

(3.4 7) -Xs - X T - Xy. + -Xy. 2 1 2 2 3 

d4 -XTI (3.48) 

dH 
- 1 - 1 

(8 + 8)"2XH + (T3 + T3)"2XH (3.49) 

de 
- 1 - 1 

(8 + 8)4(T3 + T3)4Xe (3.50) 

3.3.6 Why we expect large flavour violation 

According to ref.[64]' if the trilinears can be written in a certain manner, then flavour 

violation is expected to be small. However, it is not possible to write the trilinears in 

this manner if either X H =j:. 0 or XjJ =j:. 0 or Xe =j:. O. It is possible in general to write: 

(3.51) 

If 6ij = 0, then the trilinears factorise. 

Yij + (3.52) 

If this is true at the SUSY breaking scale, then the FCNC effects are small, and the 

leading order contributions are proportional to Af - Af or Af - Af. If there are any 

contributions which are universal, AD, then we can add them in any linear combination 

to Af and Af provided that A~L + AjR = Af + Af + AD. From the SUGRA formula 

for A ij , it is clear which terms contribute to the universal part, the left part and the 
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right part: 

(3.53) 

We see that 6ij is the terms due to the derivative of the Yukawa. If this is either zero 

or universal, then the A matrix can be written in the restricted form. 

Unfortunately, neither the Higgs contribution or the Froggatt-Nielsen contribution 

can be written in this form. The Higgs contribution to Eq.(3.44) is: 

a a a o 0 0 

a a a = a + (b - a) 0 0 0 (3.54) 

a a b o 0 1 

The Froggatt-Nielsen contribution is maximally non-universal, and the elements have 

Aij 1- Akl for i i- k ; j i- l. In this case we expect there to be the largest contribution 

to flavour violation, assuming that it is not tuned down. ( We could do this either by 

selecting a very small value for the F-term VEV by setting Xe ~ 0, or by setting the 

operator texture in the Yukawas to have very small off-diagonal elements, as the A-

contribution multiplies Yukawa elements). Hence we see that the new sources of flavour 

violation will not only contribute to the trilinear terms on at least an equal footing as 

the moduli, but that also they cannot be written in a form where the contribution to 

flavour violation is expected to be small. 

3.4 Results 

3.4.1 Benchmark points 

Since the parameter space for this model is reasonably expansive, and the intention 

is to compare different sources of LFV, it is convenient to consider four benchmark 
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points, as follows. It should be noted that for all these points, we have taken all XTi 

to be the same, X Ti = X T , and also XH = X H. 

Point Xs X T X H X H Xe 

A 0.500 0.500 0.000 0.000 0.000 

B 0.536 0.488 0.000 0.000 0.000 

C 0.270 0.270 0.000 0.000 0.841 

D 0.270 0.270 0.578 0.578 0.000 

Table 3.4: The four benchmark points, A-D 

• Point A is referred to as 'minimum flavour violation'. At the point Xs = X Ti 

the scalar mass matrices m 2 are proportional to the identity, and the trilinears A 

are aligned with the Yukawas. Also, if we look back to Eq. (4.6), Eq. (3.24) and 

Eq. (3.25) we see that for Xs = X T , which is the case for point A ( and point 

C, and point D ) we see that the upper limit on the magnitude of the D-term 

contribution is zero. As such both m 2 and A will be diagonal in the SCKM basis 

in the absence of the RH neutrino field. 

• Point B is referred to as 'SUGRA'. With Xs i- X Ti it represents typical flavour 

violation from the moduli fields; this is the amount of flavour violation that would 

traditionally have been expected with no contribution from the FH or Fe fields. 

• Point C is referred to as 'FN flavour violation'. It represents flavour violation 

from the Froggatt-Nielsen sector by itself, without any contribution to flavour 

violation from traditional SUGRA effects since Xs = X Ti as in point A. 

• Point D is referred to as 'Heavy Higgs flavour violation'. It represents flavour 

violation from the heavy Higgs sector, without any contribution from either tra-
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ditional SUGRA effects since Xs = X Ti , or from FN fields since Fe = O. As will 

become apparent, at this point the seesaw mechanism actually helps reduce the 

LFV for I-" -7 e, in model I and T -7 1-", in both models. 

3.4.2 Numerical Results 

From the benchmark points defined in Table 3.4, the F-term VEVs were determined, 

and from these the soft parameters at the high energy scale Mx = 3.1016 GeV were 

calculated. The soft parameters were then run down using the I-loop RGEs of the 

MSSM + V C model. For our numerical results we use a modified version of SOFTSUSY 

[65]. The modifications were made to add the effect of the right-handed neutrino field 

to the RGEs and to decouple them in a manner that allows the neutrino masses and 

mixing angles to be calculated at the low energy scale. As a result of the RGEs having 

to be recoded, all of them are to one loop only in the version that was used here. 

Flavour violation is proportional to non-zero off diagonal elements in the scalar 

mass squared matrices m 2 in the SCKM basis and to non-zero off diagonal elements in 

the trilinears A in the SCKM basis. 6. Hence, there are two ways to generate flavour 

violation. The first is to have non-zero off-diagonal elements in m 2 of the scalars and A 

at the unification scale. The second is to have non-zero off diagonal elements radiatively 

generated by the ,B-function running down to the electroweak scale. It is possible to 

remove the second source by removing the RH neutrino field from the model; this allows 

a disentangling of the see-saw mechanism from the particular source of interest, but is 

unphysical since we know that the neutrinos have to be massive. 

Figure 3.1 shows numerical results for BR(I-" -7 e,) for Model I, plotted against 

the gravitino mass m3/2, where each of the four panels corresponds to each of the four 

6The SCKM basis is the basis where the Yukawas are diagonal at the electroweak scale 
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Figure 3.1: BR(ft --7 e')') for points A-D in model I ( low ft --7 q). The solid line 

represents model 1. The dashed line represents an unphysical model with no right-

handed neutrino field whose purpose is only comparison. The horizontal line is the 

2002 experimental limit from ref. [5J 
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Figure 3.2: BR(T ---7 fJ/y) for points A-D. The lines coincide in both model I and model 

II. The solid line represents models I and II ( which predict very similar rates for T ---7 

f-l,). The dashed line represents an unphysical model with no right-handed neutrino 

field whose purpose is only comparison. The horizontal line is the 2002 experimental 

limit from ref. [5J 
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Figure 3.3: BR(fL -; ey) for points A-D in model II (high f.l -; e,). Note that because 

the rate is much higher the scale is different to that in fig. 3.1. The solid line represents 

model II. The dashed line represents an unphysical model with no right-handed neutrino 

field whose purpose is only comparison. The horizontal line is the 2002 experimental 

limit from ref. [5] 
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benchmark points A-D. As m3/2 increases the sparticle spectrum becomes heavier. This 

will look different at each parameter point, but the physical masses are expected to be 

of the same order of magnitude as the gravitino mass. As such, high gravitino masses 

will start to reintroduce the fine-tuning problem of the gluino mass being too high. 

Point A corresponds to minimum flavour violation, where the only source of LFV is 

from the see-saw mechanism, which for Model I is well below the experimental limit, 

shown as the faint horizontal dashed line. Point B has LFV arising from SUGRA, with 

the FN and heavy Higgs sources of LFV switched off, and in this case we also show 

the results with the see-saw mechanism switched off (dashed curve) as well as with the 

see-saw mechanism with SUGRA contributions to LFV (solid curve). In both cases 

the results are below the experimental limit for m3/2 above 500 GeV. Point C is the 

FN benchmark point, and for this case we see that the experimental limit is violated 

over the entire range of m3/2 shown, with the see-saw mechanism making very little 

difference. Point D shows the heavy Higgs point, for which the experimental limit is 

violated for m3/2 below 1000 Ge V. Interestingly, the effect of switching off the see-saw 

mechanism in this case (dashed curve) is to increase the rate for BR(f-t -7 er). 

Figure 3.2 shows results for BR( T -7 Wi) for Model I, plotted against the gravitino 

mass m3/2. Point A for minimum flavour violation is below the experimental limit, 

as is point B corresponding to SUGRA, with the see-saw mechanism switched off cor­

responding as before to the dashed curve. Point C corresponding to FN violates the 

experimental limit for lower m3/2, with a rather large effect coming from the see-saw 

mechanism. Point D shows the heavy Higgs point, with the effect of the see-saw mech­

anism being to reduce BR(T -7 wy) in conjunction with the LFV coming from heavy 

Higgs, similar to the analogous effect observed previously. 

Figure 3.3 shows the analogous results for BR(f-t -7 ey) for Model II. As expected 
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model II, which is supposed to give a high rate for f-l ------t wy, does give results close 

to the experimental limit for points A and B, and the limit is now well exceeded for 

points C and D. By increasing the gravitino mass sufficiently (which increases all the 

sparticle masses) it is possible to respect the current experimental limit, but at the 

expense of a very heavy superpartner spectrum. However it is worth noting that for 

benchmark points C,D the value of XT is almost half its value corresponding to points 

A,B. According to Eq.(3.41) this implies that for points C,D the gaugino masses are 

almost half their values corresponding to points A,B, leading to reduced fine-tuning for 

a given m3/2. 

The results for BR( T ------t Wy) for Model II are almost identical to those shown for 

Model I in Figure 3.2, which is as expected since the only difference between the two 

models is in the 13 element of the neutrino Yukawa matrix. 

3.5 Conclusions 

We have investigated the phenomenological impact of different sources of lepton flavour 

violation arising from realistic D-brane inspired models based on supergravity medi­

ated supersymmetry breaking, where the origin of flavour is due to Froggatt-Nielsen 

(FN) operators. We have discussed four distinct sources of lepton flavour violation in 

such models: minimum flavour violation, arising from neutrino masses and the see-saw 

mechanism with renormalisation group (RG) running; supergravity flavour violation 

due to the non-universal structure of the supergravity model; FN flavour violation due 

to the FN fields developing supersymmetry breaking F-terms and contributing in an 

non-universal way to soft trilinear terms; and finally heavy Higgs flavour violation aris­

ing from the Higgs fields used to break the unified gauge symmetry which may behave 

analogously to the FN fields. 

71 



In order to quantify the relative effects, we studied a particular type I string inspired 

model based on a supersymmetric Pati-Salam model arising from intersecting D-branes 

as proposed in [45], but here supplemented by a U(l) family symmetry with the quarks 

and leptons described by the set of FN operators as in [47]. We have derived the 

soft supersymmetry breaking masses for the model, including the new flavour violating 

contributions to the soft trilinear masses arising from the FN and heavy Higgs fields. 

We then performed a numerical analysis of LFV for four benchmark points, each chosen 

to highlight a particular source of flavour violation, with the benchmark points C and 

D corresponding to LFV arising from the FN and heavy Higgs fields giving by far the 

largest effects. Since the new contributions are dominantly from the trilinears A, the 

amount of flavour violation is therefore strongly dependent on the choice of Yukawa 

matrices at the unification scale. For example the huge difference in the rate of I-" ~ e"( 

between Model I and Model II is simply generated by changing the (1,3) element of 

yv. Also we find that I-" ~ e"( is more constraining than T --T 1-""(. 

The numerical results show that the contributions to LFV from Yukawa operators 

with the heavy Higgs sector and the Froggatt-Nielsen sector can give the dominant 

contributions to LFV processes, greatly exceeding contributions from SUGRA and the 

see-saw mechanism, and should be taken into account when performing phenomenolog­

ical analyses of supergravity models. 
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Chapter 4 

Canonical Normalisation and 

Kahler operators 

We highlight the important role that canonical normalisation of kinetic terms in flavour 

models based on family symmetries can play in determining the Yukawa matrices. Even 

though the kinetic terms may be correctly canonically normalised to begin with, they 

will inevitably be driven into a non-canonical form by a similar operator expansion 

to that which determines the Yukawa operators. Therefore in models based on family 

symmetry canonical re-normalisation is mandatory before the physical Yukawa matrices 

can be extracted. In nearly all examples in the literature this is not done. As an 

example we perform an explicit calculation of such mixing associated with canonical 

normalisation of the Kahler metric in a supersymmetric model based on a SU(3) family 

symmetry, where we show that such effects can significantly change the form of the 

Yukawa matrix. We then develop techniques to simplify the analysis of such effects 

on the Yukawa sector. Using them we show that in the class of theories with an 

hierarchical structure for the Yukawa couplings the Kahler corrections to both the 

masses and mixing angles are subdominant. This is true even in cases that texture 
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zeros are filled in by the terms coming from the Kahler potential. 

4.1 Introduction 

There is great interest in the literature in trying to understand the hierarchical pattern 

of Standard Model fermion masses, the smallness of the quark mixing angles and the two 

large and one small neutrino mixing angles. One popular way of doing this is to extend 

either the Standard Model, or one of its more common supersymmetric extensions, by 

adding a gauge or global family symmetry, GF which is subsequently broken [15J. 

In such models based on family symmetry GF , Yukawa couplings arise from Yukawa 

operators which are typically non-renormalisable and involve extra heavy scalar fields, 

1;, coupling to the usual three fields, for example: 

( 4.1) 

where F represents left-handed fermion fields, F represents the CP-conjugate of right­

handed fermion fields, H represents the Higgs field, and M is a heavy mass scale which 

acts as an ultraviolet (UV) cutoff. In the context of supersymmetric (SUSY) field 

theories, all the fields become superfields. The operators in Eq.(4.1) are invariant under 

GF , but when the scalar fields 1; develop vacuum expectation values (vevs) the family 

symmetry is thereby broken and the Yukawa couplings are generated. The resulting 

Yukawa couplings are therefore effective couplings expressed in terms of an expansion 

parameter, E, which is the ratio of the VEV of the heavy scalar field to the UV cut­

off, E = <fj. Explaining the hierarchical form of the Yukawa matrices then reduces to 

finding an appropriate symmetry G F and field content which leads to acceptable forms 

of Yukawa matrices, and hence fermion masses and mixing angles, at the high energy 

scale. 
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Over recent years there has been a huge activity in this family symmetry and oper­

ator approach to understanding the fermion masses and mixing angles [66J, including 

neutrino masses and mixing angles [67J. However, as we shall show in this chapter, 

in analysing such models it is important to also consider the corresponding operator 

expansion of the kinetic terms. The point is that, even though the kinetic terms may 

be correctly canonically normalised to begin with, they will inevitably be driven to 

a non-canonical form by a similar operator expansion to that which determines the 

Yukawa operator. In order to extract reliable predictions of Yukawa matrices, it is 

mandatory to canonically re-normalise the kinetic terms once again before proceeding. 

In nearly all examples in the literature this is not done. The main point of this chapter 

is thus to highlight this effect and to argue that it is sufficiently important that it 

must be taken into account before reliable predictions can be obtained. However, even 

after this field redefinition, we can still perform further arbitrary unitary rotations of 

the chiral superfields which will preserve the canonical form of the Kahler potential. 

Clearly any superfield field redefinitions in the Kahler potential must be performed 

consistently for all the superfields in the theory and this will result in a transformation 

of the superpotential couplings when written in terms of the new chiral superfields. 

This transformation of the Yukawa couplings is the main subject of this work and we 

are especially interested in the observable effects of this transformation on the physical 

masses and mixing angles. In fact, in the literature it is usually believed that these field 

redefinitions can have very important observable effects in quark and squark mixings 

[68, 69, 70], although it has been noted that this is not always the case [71J. 

Many approaches combine the family symmetry and operator approach with su­

persymmetric grand unified theories (SUSY GUTs) [66, 67]. Such models tend to be 

more constraining, because the Yukawa matrices at the high scale should have the same 
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form, up to small corrections from the breaking of the unified symmetry. The same 

comments we made above also apply in the framework of SUSY GUTs. In the SUSY 

case the Yukawa operators arise from the superpotential W, and the kinetic terms and 

scalar masses, as well as gauge interaction terms come from the Kahler potential, K. 

In nearly all examples in the literature the superpotential W has been analysed inde-

pendently of the Kahler potential, K, leading to most of the published results being 

inconsistent. The correct procedure which should be followed is as follows. 

To be consistent, the Kahler potential, K, should also be written down to the same 

order M-n as the superpotential W. Having done this, one should proceed to calculate 

the elements of the Kahler metric, k ij , which are second derivatives with respect to 

fields of the Kahler potential ki) = 8
2 
K t. However, in order to have canonically 

81Ji8¢j 

normalised kinetic terms, the Kahler metric has to itself be canonically normalised 

k{j = I\J' In making this transformation, the superfields in the Kahler potential are 

first being mixed and then rescaled. Once this has been done, the superfields in the 

superpotential must be replaced by the canonically normalised fields. 

Canonical normalisation is not of course a new invention, it has been known since 

the early days of supergravity [72]. However, as we have mentioned, for some reason 

this effect has been largely ignored in the model building community. A notable ex-

ception is the observation some time ago by Dudas, Pokorski and Savoy [58], that the 

act of canonical normalisation will change the Yukawa couplings, and could serve to 

cover up 'texture zeros', which are due to an Abelian family symmetry which does not 

allow a specific entry in the Yukawa matrix and is therefore manifested as a zero at 

high energies. This issue has been resurrected for abelian family models recently [73]. 

However, as we have already noted, this observation has not been pursued or developed 

in the literature, but instead has been largely ignored. 
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In this chapter we consider the issue of canonical normalisation in the framework of 

non-Abelian symmetries, in which the Yukawa matrices are approximately symmetric. 

In such a framework we show that the effects of canonical normalisation extend beyond 

the filling in of 'texture zeros', and can also change the expansion order of the leading 

non-zero entries in the Yukawa matrix. As an example we perform an explicit cal­

culation of such mixing associated with canonical normalisation of the Kahler metric 

in a recent supersymmetric model based on SU(3) family symmetry where we show 

that such effects can significantly change the form of the Yukawa matrix. The SU(3) 

model we consider is a grossly simplified version of the realistic model in [74], where 

we only consider the case of a single expansion parameter and perform our calculations 

in the 23 sector of the theory for simplicity, although we indicate how the results can 

straightforwardly be extended to the entire theory. We then use the fact that, for su­

persymmetric models, once the Kahler metric is canonical, it remains canonical under 

unitary transformations since UIUt = 1. We can therefore pick a basis for conve­

nience; doing so, we can show that for textures with certain properties, the corrections 

coming from canonical normalisation are small corrections for each element. Following 

this up, we demonstrate that the corrections to the CKM and PMNS matrices and the 

quark and lepton masses are at higher powers of the expansion parameter f than the 

non-canonical values. 

The outline of the rest of this chapter is as follows. In section 4.2 we discuss the 

issues surrounding canonical normalisation in the Standard Model supplemented by 

a family symmetry, first without then with SUSY. In the SUSY case we discuss the 

scalar mass squared and Yukawa matrices for two types of Kahler potential where only 

one superfield contributes to supersymmetry breaking. In section 4.3 we discuss a 

particular model in some detail as a concrete example, namely the simplified SU(3) 
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family symmetry model, focusing on the second and third generations of matter, later 

indicating how the results can be extended to all three families. In section 4.4 we point 

out that there is a freedom in choosing a canonical basis, and we use this freedom to 

pick a more convenient basis for calculating the effect of the canonical normalisation. 

In section 4.5 we will show that, at least for the case of an hierarchical pattern of masses 

and mixing angles for the up and down sectors, the effect of the Kahler potential, is 

always sub-dominant and cannot change the structure coming from the superpotential. 

Note that this disagrees with published results claiming that the effects of Kahler terms 

can change the order in E of the CKM mixing angles [68]. We conclude in section 4.7 

4.2 Canonical normalisation 

4.2.1 Standard Model with a Family Symmetry 

In this section we first consider extending the Standard Model gauge group with a 

family symmetry, under which each generation has a different charge ( for abelian 

family symmetries ) or representation ( for non-abelian family symmetries ). The 

family symmetry typically prohibits renormalisable Yukawa couplings (except possibly 

for the third family) but allows non-renormalisable operators, for example: 

(4.2) 

where i, j are generation indices, M is some appropriate UV cutoff, F represents left-

handed fermion fields, and F represents CP-conjugates of right-handed fermion fields, 

and H is a Higgs field. When the £lavon scalar field ¢ gets a VEV, which breaks the 

family symmetry, effective Yukawa couplings are generated: 

(4.3) 
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The effective Yukawa matrices are determined by the operators allowed by the symme-

tries of the model, GF (6) SU(3)c (6) SU(2)L (6) U(l)y, as well as the form that the vev of 

¢ takes. 

Even though the kinetic terms are correctly canonically normalised to begin with, 

they will receive non-renormalisable corrections arising from operators allowed by the 

family symmetry, which will cast them into non-canonical form. For example, 

(4.4) 

This leads to a non-canonical kinetic term when ¢ is replaced by its VEV. It is therefore 

mandatory to perform a further canonical re-normalisation of the kinetic terms, before 

analysing the physical Yukawa couplings. The canonical normalisation amounts to a 

transformation which is not unitary but which gives all the fields canonical kinetic 

terms. The kinetic part of a theory with a Higgs scalar field H, a fermionic field Fi 

and the field strength tensor FI-'v corresponding to a gauge field AI-' when canonical 

will look like: 

(4.5) 

Once we have done this normalisation, we have to rewrite all of our interactions in 

terms of the canonical fields with the shifted fields. 

The important point we wish to emphasise is that all the interaction terms should 

be expressed in terms of canonical fields, before making any physical interpretation. 

If this is not done, as is often the case in the literature, then the results will not be 

reliable. 

4.2.2 SUSY Standard Model with Family SYITlITletry 

In the context of supersymmetric theories, it turns out to be possible to automatically 

canonically normalise all the fields in the theory at once. However these transformations 
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are not always simple, and in practice calculating the relevant transformations may well 

turn out to be intractable for any given model. 

The aim of SUSY model builders with respect to flavour is two-fold. The primary 

wish is to generate a set of effective Yukawa matrices which successfully predict the 

quark and lepton masses and mixing angles as measured by experiment. However, 

because of the parameters associated with softly broken SUSY models, there exist dan-

gerous one-loop diagrams which lead to processes such as b -+ s, and f.L -+ e, at 

rates much greater than predicted by the Standard Model and also much greater than 

measured by experiment. A successful SUSY theory of flavour will therefore success-

fully describe fermion masses and mixing angles, while simultaneously controlling such 

flavour changing processes induced by loop diagrams involving sfermion masses which 

are off-diagonal in the basis where the quarks and leptons are diagonal. 

In a SUSY or supergravity (SUGRA) model, very often the starting point in ad-

dressing the flavour problem is to propose a set of symmetries that will give rise to non-

renormalisable superpotential operators which will lead to a hierarchical form for our 

Yukawa matrices, arising from some effective Yukawa operators as discussed previously. 

Extra fields, ¢ are introduced that spontaneously break the extra family symmetries. 

The general form of the superpotential is : 

(4.6) 

Here Wij (¢ / M) is a general function of the extra fields, cp, which has mass dimension 

zero and contracts with Fi F
j 

to make W a singlet of the extended symmetry group. 

In models of this type, the amount of flavour violation is proportional to the size 

of the off-diagonal elements in the scalar mass matrices at the electroweak (EW) scale 

when the scalar mass matrices have been rotated to the basis where the Yukawas are 

diagonal (the super-CKM basis). Since the quark mixing angles are small, this suggests 
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that any large scalar mixings at the electroweak scale would remain large when in the 

super-CKM basis. Since we would generally not expect the RG running of the scalar 

mass matrices to tune large off-diagonal values to zero, we would expect to be in trouble 

if there are large off diagonal scalar mass mixings predicted at the high energy scale. 

This scale might be, for example, the unification scale in a SUSY GUT. 

We now proceed to demonstrate that this will not be a problem in for two classes 

of Kahler potential. The two classes of Kahler potential are: The first form is: 

(4.7) 

The second form we consider is: 

(4.8) 

Here k( ¢) and k( ¢) represent functions of the various ¢ fields that can be contracted 

with the matter fields to make the Kahler potential a singlet and of the correct mass 

dimension. 

Since we are looking at gravity-mediated SUSY breaking, we may use the SUGRA 

equations which relate the non-canonically normalised soft scalar mass squared matrices 

m~b in the soft SUSY breaking Lagrangian to the Kahler metric Kab = a:l~b' and the 

vevs of the auxiliary fields which are associated with the supersymmetry breaking, Fm 

[72J: 

where we have assumed a negligibly small cosmological constant. Roman indices from 

the middle of the alphabet are taken to be over the hidden sector fields, which in our 

case can only be the singlet field S associated with SUSY breakdown. As it happens, 

for both Kl and K 2 , the non-canonically normalised mass matrix reduces to: 

(4.10) 
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This is obvious for K 1 , since the Kahler metric doesn't involve S, so partial derivatives 

with respect to S will give zero. To see that eq. (4.9) reduces to eq. (4.10) for K2, is 

less obvious. We first write: 

- S8 
K-b = -M-b a M2 a (4.11) 

Substituting this into eq. (4.9) gives a non-canonically normalised scalar mass squared 

matrix: 

(4.12) 

It is clear that eq. (4.12) reduces to eq. (4.10). However, the physical states are those 

for which the Kahler metric is canonically normalised, k = 1. This is attained by 

pt k P = 1. In order to canonically normalise the mass matrix, we apply the same 

transformation, and find that the canonically normalised squark mass squared matrix 

then takes the universal form: 

2 2 1 m e.n . = m 3/ 2 (4.13) 

We conclude that models with Kahler potentials like Kl or K2 will result in universal 

sfermion masses at the high-energy scale. Of course all this is well known, and it has 

long been appreciated that this would tame the second part of the flavour problem, 

flavour violating decays. However, what is less well appreciated at least amongst the 

model building community, is that canonical normalisation corresponds to redefining 

the fields in the Kahler potential, and one must therefore also redefine these fields in 

the same way in the superpotential. Unless this is done consistently it could lead to a 

problem with the first part of the flavour problem, because the shifted fields may well 

no longer lead to a phenomenologically successful prediction of the masses and mixing 

angles for the quarks and leptons. 
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The 'standard' method 

After the flavour symmetry is spontaneously broken we obtain a certain Yukawa tex­

ture given by non-renormalisable operators which are functions of the flavon vevs as 

in Eq. (4.1). In the same way the effective Kahler potential will be a general non­

renormalisable real function invariant under all the symmetries of the theory coupling 

the superfield combinations F/ Fj to the flavon fields, and similarly for FiFj , where 

i, j are flavour indices. The terms F/ Fi , Fi Fi without £lavon superfields are clearly 

invariant under gauge, flavour and global symmetries and hence give rise to a fam­

ily universal contribution. However, family symmetry breaking terms involving flavon 

superfields give rise to important corrections [75, 76, 77]. In fact, it is interesting to 

notice that, due to the non-holomorphicity of the Kahler potential, new terms are al­

lowed with different structure from the terms that appear in the Yukawa couplings of 

the superpotential. 

In general the matter fields do not have canonical wave functions (kinetic terms) 

in the symmetry eigenstate basis F i , Fj . Rather, flavon field vevs contribute to the 

diagonal terms and also generate new flavour off-diagonal entries. Thus, we now have 

non-canonical kinetic terms and we must redefine the fields to obtain canonical kinetic 

terms. The effect of these redefinitions, which can be regarded as wave function correc­

tions, on the Yukawa couplings and other couplings in the theory may be determined 

after this field redefinition, F = P F. 

To obtain canonical kinetic terms we have to redefine the fields to go to the canonical 

basis by the inverse of the square root of the Kahler metric K given by 

(4.14) 

Thus K = (p-l)t p-l. Using Supergravity (SUGRA) equations, the Kahler metric is 
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obtained as Kab = E)2G/(8<P!8<pb) with G the Kahler function and it determines both 

the kinetic terms and the non-canonically normalised soft scalar mass squared matrices 

m~b' In SUGRA, where Kab represents a metric, p-l is also a Hermitian matrix, such 

that p-l = (p-l)t and hence it can be conventionally written as [69] 

with V a unitary matrix diagonalising the Hermitian matrix K and X the square root 

of the eigenvalues of K. We call this solution the 'standard' form of p-l. 

At this point, if we had a specific model, we would then need to check that the 

canonically normalised Yukawas are viable. This is then the procedure which must be 

followed in analysing a general model. We now turn to a particular example which 

illustrates the effects described above, in the framework on a non-Abelian family sym­

metry. 

4.3 A SUSY Model based on 8U(3) family symmetry 

4.3.1 The quark sector 

As an example of the general considerations above, and in order to determine the 

quantitative effects of canonical normalisation, we now turn to a particular example 

based on SU(3)F family symmetry. As mentioned the model we consider is a simplified 

version of the realistic model by King and Ross [74] in which we assume only a single 

expansion parameter. For simplicity, we shall also ignore the presence of the first 

generation, although later we shall indicate how the results may be extended to the 

three family case. This model is based on a SUSY Pati-Salam model with a gauged 

SU(3) family symmetry extended by a Z2 0 U(l) global symmetry. As shown in Table 

1, the left-handed matter is contained in F i , the right-handed matter is contained in a 

84 



left-handed field -p . The MSSM Higgs doublets are contained in H; :E is a field which 

has broken SO(10) to SU(4)c ® SU(2)L ® SU(2)R. There are two SU(3)F-breaking 

fields, (/;3 and ¢23' 

Field SU(3)F SU(4)c SU(2)L SU(2)R Z2 U(I) 

F 3 4 2 1 + 0 

-
4 F 3 1 2 + 0 

H 1 1 2 2 + 8 

:E 1 15 1 1 + 2 

¢3 "3 1 1 1 - -4 

¢23 "3 1 1 1 + -5 

Table 4.1: The field content of the toy model 

The superpotential has to be a singlet under the combined gauge group SU(4)c ® 

SU(2)L ® SU(2)R ® SU(3)F and also neutral under Z2 ® U(I). Because of this, the 

standard Yukawa superpotential: 

(4.15) 

is not allowed because of the Z2 ® U(I). As such, we have to move to a superpotential 

containing non-renormalisable terms. We view this as being the superpotential corre-

sponding to a supersymmetric effective field theory, where some heavy messenger fields 

and their superpartners have been integrated out. Then, assuming that the messenger 

fields have the same approximate mass scale, we write: 

(4.16) 

The ai are parameters that are expected to be of the order of unity, M is the appropriate 

UV cutoff of the effective field theory. This will clearly lead to a set of effective Yukawa 

terms when the fields ¢3 and ¢23 gain VEVs which break the family symmetry. 
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We choose the vacuum structure after King and Ross [74J: 

(4.17) 

And we then trade these for a single expansion parameter, E ~ l~. 

(4.18) 

Substitutingeqs. (4.17,4.18) intoeq. (4.16), we can write down our high-energyYukawa 

matrix: 

(4.19) 

We write it as Yn.c. to represent the fact that it is the Yukawa matrix corresponding to 

the non-canonical Kahler metric. 

4.3.2 The squark sector 

In order to write down the squark mass matrices, the first step is to write down our 

Kahler potential. This should be the most general Kahler potential consistent with the 

symmetries of our model up to the same order in inverse powers of the UV cutoff as 

the superpotential is taken to. In our case, this is M-3 . However, from the general 

arguments of section 4.2, we know that if we pick our Kahler potential, K to be of the 

form as Kl (eq. (4.7)) or K2 (eq. (4.8)) then we will have universal scalars. 

The non-canonical form of the scalar mass-squared matrix is: 

( 4.20) 

However, we already know exactly what the canonical form of this matrix will look 

like: 

(4.21) 
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This universal form is a direct result of the simple supersymmetry breaking mechanism 

that we have and canonical normalisation, and is independent of other details about 

the model. 

4.3.3 Kahler potential for the model 

We saw in the previous subsection that we will not end up with dangerous off-diagonal 

elements in the scalar mass matrices for general Kahler potentials of the type we are 

going to look at. We must now write down our Kahler potential. We choose this to be 

of the same form K 1 . There will be no M- 3 terms, so it will suffice to write this down 

The matrices which diagonalise the Kahler metric will in general be large and in-

tractable. In order to proceed, we will have to make some simplifying assumptions. We 

first assume that the Kahler metric Kab = 8: K b is block diagonal, of the form: 
8¢a 8¢ 

Kab= 

Kl:, 

ab 

( 4.22) 

In this, KLH represents the block for chiral superfields, F, containing left-handed mat-

ter; KRH represents chiral superfields, F, containing right-handed matter; K¢ repre-

sents the SU(3)F breaking Higgs fields, ¢23 and ¢3; Kl:, represents the block for the 

Higgs field that break the GUT symmetry down to the MSSM gauge group, ~; fi-

nally, the block KH represents the block corresponding to the MSSM Higgs fields, H. 

The block diagonal assumption is equivalent to switching off some terms in the Kahler 
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potential. The remaining terms in the Kahler potential are listed below: 

+ ~2 {<p1<pL<p~<pLd55{5k + <p1<pL<p~3<Pb3,l(d65{5k + d75{5f} 

+<P~3<Pb3,j<p~3<Phld85{ 15k + dgH Ht H Ht + dlO~~t~~t } (4.23) 

Having done this, we now need to calculate the Kahler metric K. But since we have 

set K up specifically such that it is block diagonal, we can instead work out the non-zero 

blocks, KLH, KRH, Krj)) K2', and KH. Once we have done so, we need to canonically 

normalise them. This is done in two stages. The first is a unitary transformation to 

diagonalise each block K i : 

(4.24) 

The mixed Kahler metric, K', is now diagonal. Then we rescale the fields by a 

diagonal matrix R such that Ri = (KI)-1/2. These new superfields are then canonically 

normalised. 

Then: 

12::) (FtUR- 1) (RUtKUR)(R-lUtF) (4.25) 
~ 

1 

So, with this notation P = R-1 ut. As before, the Kahler metric is equal to pt P. 

The important point to note is that in canonically normalising, we have redefined 

our superfields, so we must also redefine them in our superpotential. This is discussed 

in the next section. 
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4.3.4 Yukawa sector after canonical normalisation 

In this section we return to the important question of the form of the Yukawa ma-

trices in the correct canonically normalised basis. In order to do this we would have 

to calculate the shifting in all of the fields in the superpotential. Unfortunately, alge-

braically diagonalising the sub-block K¢ is intractable, even for such a simple model. 

We therefore make a second assumption and neglect the effects of canonical normalisa-

tion arising from this sector, although we shall correctly consider the effects of canonical 

normalisation arising from all the other sectors. 

Even making this assumption, the expressions we get are not especially pleasant. We 

then substitute in the form of the VEVs (eq. (4.17) and eq. (4.18)). Having done this, 

we then expand the cofactors of pi pj H as a power series in 10 around the point 10 = O. 

The cofactors of En are quite complicated, so we only write out here the expression for 

the effective Yukawa for the 23 element. The full expressions for all four elements are 

listed in Appendix E. 

(4.26) 

The important point to note is that, compared to the 23 element of Eq.( 4.19), the 

leading order expansion in 10 has changed. No longer is it at 103 , it is now 10 2 • 

Note that we can write the expressions for the canonically normalised off-diagonal 

Yukawa matrix elements Y23 and Y 32 in such a way that they would transform into each 

other if we interchange bi +--+ Ci, as would be expected. We also note that the diagonal 

matrix elements would transform into themselves under the same substitution, bi +--+ Ci. 

This has been checked explicitly to the order in the Taylor expansion shown in the 

Appendix. 

Setting the 0(1) parameters bi,Ci and di to unity, the Yukawa matrix then takes 
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the canonical form: 

(4.27) 

We emphasise again that Eq.( 4.27) has a different power structure in E to the original, 

non-canonically normalised Yukawa in eq. (4.19). 

What has happened is that the unitary matrix which redefines our fields has mixed 

them amongst themselves. This leads to a similar (but different) high energy Yukawa 

texture. This certainly could be a sufficiently different set-up to ruin any predictions 

that the non-canonical model was designed to make. However we emphasise that this 

result applies to the simplified SU(3)F model with a single expansion parameter, and 

not the realistic SU(3)F model of King and Ross [74] with two different expansion 

parameters. 

By comparing the non-canonical Yukawa matrix in eq. (4.19) to the canonical 

Yukawa matrix in eq. (4.27), we can see that the Kahler mixing angles are large, of 

O(E). In the appendix, we have an expression for the inverse P-matrix, p-l. The large 

mixing effect can come only from the mixing part of the transformation. Schematically, 

the appearance of the E2 leading order terms in the off-diagonal elements can then be 

understood by neglecting all the coefficients of 0(1), as follows: 

( 4.28) 

which accounts for the appearance of the E2 leading order terms in the off-diagonal 

elements. 
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4.3.5 Three generations of matter 

The procedure we have discussed for the second and third families can straightforwardly 

be generalised to include also the first family or indeed to any number of generations. 

The first thing to do is to write down all of the symmetries of the model. Having done 

this, write down all of the non-renormalisable operators up to the the chosen order in 

the UV cutoff, M. In the two generation case, this was to O(M-3 ). The next step is 

to write down the Kahler potential consistent with all the symmetries of the model, 

up to the same order in the UV cutoff M as the superpotential was expanded to. For 

tractability, some terms may have to be switched off to make the Kahler metric block 

diagonal as in eq. (4.22). At this point, the fields which break the family symmetry are 

replaced by their VEV s. 

Then one must find the matrices which canonically normalise each sub-block of the 

Kahler metric. These will take the form of a unitary matrix which diagonalises the sub­

block, and then a rescaling which takes it to the identity matrix of the appropriate size. 

Having done this, the unnormalised fields can be written in terms of the canonically 

normalised fields. If Ps is the matrix which diagonalises the sub-block Ks, and 'l/Js and 

'I/J's are respectively the unnormalised and canonically normalised fields in the sub-block, 

then: 

PsKsPJ = 1 (4.29) 

'l/Js = Fs'I/J's (4.30) 

We then substitute eq. (4.30) into the superpotential. Once we have done this, 

the canonically normalised Yukawa matrix will be the coefficient of pI pI HI. At this 

point, the Yukawa matrix elements may well be of the form of one polynomial in 

expansion parameters, ( E in the example model ) divided by another. In this case, to 
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understand the power structure in the expansion parameter, it is necessary to use a 

Taylor expansion to get a power series in the expansion parameters ( we may do this 

because the expansion parameters must be small in order for the whole technique of 

non-renormalisable operators to work in the first place). 

Having completed this, the end result is canonically normalised three-generation 

Yukawa matrices, as required. Note that any step of this calculation could in principle 

be intractable, and therefore some simplifying assumptions may have to be made. 

4.4 An improved method for calculating P 

Note that if p-l is a solution of Eq. (4.14) then also V.p-l is a solution of Eq. (4.14), 

with V any unitary matrix. Of course physical quantities will not depend on V and 

for any choice we must always obtain the same physical result. This is due to the 

invariance of the Lagrangian under the so-called Weak Basis Transformations (WBT) 

[78, 79J. The theory is invariant if we transform the fields as, 

where Vq , Vu and Vd are transformations from the global unitary groups U(3)L' U(3)UR 

and U(3)dR respectively, while simultaneously the Yukawa couplings are transformed 

as, 

(4.31) 

Therefore when we choose the different Va all we are doing is to choose a particular weak 

basis where we write our theory and the physical results are absolutely independent of 

this choice. However, it is very useful to choose the unitary transformation V in the 

definition of P = K- 1/ 2 to get a simpler form for this transformation. The form that 

proves to be useful is the Cholesky decomposition of an Hermitian matrix. It is always 
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possible to write an Hermitian matrix as K = UtU in terms of an upper U triangular 

matrix, 

un 0 o 

K= =utu= o o (4.32) 

o 

This equation is very easy to solve, 

( 4.33) 

The inverse of this upper triangular matrix is also upper triangular, and it is also easily 

obtained. Obviously we could have chosen to use lower triangular matrices L instead 

of the upper triangular matrices U and the explicit form of the L would then have been 

obtained in a similar way in terms of K. 

This form for the square root of the Kahler matrix is different from the 'standard' 

form used in the literature [69, 70]. Clearly the 'standard' form is related to our 

triangular form by an unobservable WBT and therefore the two forms are physically 

indistinguishable. However it is evident from Eq. (4.33) that from the point of view of 

calculability it is much simpler to obtain the triangular form than the 'standard' form. 

4.5 The Kahler corrections to Yukawa couplings 

4.5.1 The form of the Yukawa coupling matrix 

To proceed we need to know the form of the Yukawa couplings coming from the super-

potential. A fit to the data using a form for the Yukawa matrices where the smallness 

of CKM mixing angles is due to the smallness of the off-diagonal entries with respect 
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to the relevant diagonal entry yields the structure [80], 

0 [3 [3 0 c:3 c3 

Yd ex: [2 [2 Yu ex: c:2 c2 

1 1 

with the expansion parameters [ = 0.15 and c = 0.05. Some non-Abelian family 

symmetry models can provide such a structure quite naturally [74, 81]. Here we have 

suppressed coefficients of 0(1). This structure has Ykj < Yij for i > k and j 2: i and is 

unique if the contribution to the left-handed mixing angles from the elements below the 

diagonal are negligible. If one relaxes this constraint then it is possible for some of the 

entries to be smaller or zero (texture zeros). We will discuss both these possibilities. 

To do so let us first note that, although there are no direct bounds on the Yukawa 

couplings below the diagonal from (right-handed) mixing angles, we can obtain some 

upper bounds on these entries from their contributions to the mass eigenvalues. Just 

requiring that the determinant of the down Yukawa matrix is t> = 1 X ms X !!:!:.4 we 
mb mb 

arrive to the conclusion that Y21 :::; [3, Y31 :::; [ and Y31 :::; 1, assuming no cancellation 

between different contributions to the determinant. The same bounds are valid for 

the up Yukawa matrix in terms of c. With this the most general hierarchical Yukawa 

structure consistent with the masses and mixing angles is 

Yex: ( 4.34) 

where E = [, c for Y = Yd , Yu ' Not all of the four coefficients a, b, c, d must be 0(1) 

allowing for the possibility of additional texture zeros. 

In the rest of this chapter we consider the case that this structure is reproduced 

by the terms of the superpotential in the symmetry basis and we show that the effect 
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of the Kahler potential is then always subdominant in its effects on the masses and 

mixing angles. 

4.5.2 The Kahler corrections 

It proves to be useful in most realistic models to go to the canonically normalised 

basis by redefining the fields by a wave function normalisation matrix chosen to have 

the upper triangular form, as discussed above. Using this form the correction to the 

Yukawa coupling matrix in the Standard Model (SM) is of the form 

If we consider, for the moment, only the transformation on the left handed fields using 

our triangular matrices, with P = U, the total (t) Yukawa is, 

~~ I:PkiYkj 
i?k 

P/il'ij + I: PkiYkj ( 4.35) 
i>k 

As may be seen in Eq. (4.1) the expansion parameters are given by terms of the 

form < e > 1M where M is the messenger mass. In the superpotential the expansion 

parameters come from both the LH and RH sectors. The expansion parameters, c and 

E, for the up and down sectors1 in the superpotential may differ as the SM gauge group 

does not relate the up and down right handed quark sectors. However the contribution 

from the LH sector to the mass matrix structure must be equal in the up and down 

IHere we have implicitly assumed that E =< () > 1M is the fundamental expansion parameter. 

If this is not true and the true expansion parameter is larger (e.g. e is itself generated by a higher 

dimension term cP.cPIM) one should allow for the possibility that the expansion parameter in the Kahler 

sector is the larger one (e.g. < cP> 1M). 
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sectors due to the SU(2)L gauge symmetry. Thus its contribution cannot be larger 

than c, the smaller of the two (right handed) expansion parameters. This implies that 

the Kahler rescaling matrix in the LH sector, Pit, has a strong hierarchy controlled by 

the small parameter c with Pit c::::: 1 and p/k ::; E for the non-zero entries of the upper 

triangular form. Notice that an 0(1) value for Pit,il-k would destroy the hierarchy in 

Eq. (4.34) and therefore is not phenomenologically allowed. A similar argument applies 

to the up quark RH sector, Pif'u c::::: 1 and Pi~'u ::; c but in the down quark RH sector 

the expansion parameter must be the larger one, t, so Pif,d ~ 1 and Pi~,d ::; t. 

In fact it is easy to prove that for the hierarchical textures of interest here the 

leading correction to a given Yukawa element is suppressed by at least 0(E2). With the 

underlying family symmetry ordering the correction we know that, before symmetry 

breaking, the operator giving rise to the correction to a given element must transform 

in the same way under the family symmetry as the leading term. We have just proved 

that the difference of the Kahler transformations from the identity is at least of O(E). 

Furthermore corrections to Yij after transformations to canonical Kahler with upper 

triangular matrices come only from Ykj with k < i and Ykj < Yij . This implies that 

a new contribution to Yij is subdominant relative to Yij at least by O(E) where E =< 

e > 1M. As e transforms non-trivially under the family symmetry, to maintain the 

symmetry property of the leading term, this relative correction must be given by a 

combination of fields which transforms as a singlet, that is at least of the form eet 

and hence of O( (2). This result applies to hierarchical Yukawa structures. For the case 

that the (2,3) element saturates the bound of Eq. (4.34) it violates the condition of 

hierarchical Yukawa couplings and our conclusions above do not apply. In what follows 

we consider this possibility separately. 

Using this we will now calculate the canonical Yukawa through Eq. (4.35). Al-
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though we have started with the superpotential generating the form of Eq. (4.34) in 

the symmetry basis we have the freedom to use any basis when calculating the effects 

on physical quantities. It is convenient to go to the Cholesky form when determining 

the effects of the Kahler potential and we use an upper triangular form for the Kahler 

rescaling matrix in the LH sector with Pt, = 0 for i < k. The corrections to a given 

element of the Yukawa matrix induced by the transformation to canonical Kahler are 

given by PkiYkj . 

No additional texture zeros 

We first consider the case without additional texture zeros so that all of a, b, c, dare 

of 0(1). Taking into account that Ykj < Yij for k < i and j 2: i we conclude that 

PkiYkj < Yij. Therefore, these corrections are always sub-dominant in E. This is not 

yet sufficient to prove that the transformation to the canonical left handed Kahler basis 

does not change the observable mixings and masses because they could be sensitive to 

elements of Y below the diagonal. Given the bounds of Eq. (4.34) the only dangerous 

term is the (3,1) term because for Y3,1 < Y2,1 the Kahler correction can dominate the 

(3,1) element. However in this case, from the structure in Eq. (4.34), Yl,1 ::; E5. Clearly 

this is too small to affect masses or LH mixing angles at leading order. As we have 

discussed, for the hierarchical textures of interest here, the leading correction to a given 

Yukawa element is suppressed by at least 0(E2). 

One might worry that the condition Ykj < Yij for k < i and j 2: i is too strong and 

that what are constrained are the elements after Kahler mixing, i.e. Yfj < Y'i) for k < i 

and j 2: i and the condition on Ykj is not satisfied. However this is inconsistent. To 

see this note that the phenomenological structure of Yfj in Eq. (4.34) would correspond 

both to the basis of canonical Kahler with upper triangular transformations or to the 
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basis of "standard" canonical transformations. This is due to the fact that both basis 

are related by a small rotation which does not change the order of the elements if the 

departure of the original Kahler metric from the identity is also hierarchical as expected 

in models with a spontaneously broken family symmetry. Thus we still have Pik ::; E 

for i =J. k. Therefore, we would need Ykj > Yij for k < i, or more exactly the power in 

E of Ykj is smaller than the power in E of Yij for k < i so that Pki Ykj > Yij is possible. 

However in this case we necessarily have Yfj = Ykj > Yij + Pik Ykj = Yi; for k < i and 

j 2: i (neglecting smaller contributions from Ymj with m < k if present) and we arrive 

to an inconsistency with the initial statement Yfj < Yi;. thus even with the weaker 

condition we need Ykj < Yij for k < i and j 2: i. 

So far we have discussed the transformations to canonical Kahler for the left handed 

fields. Now, we have to proceed exactly in the same way for the right-handed transfor­

mation. Clearly, if the Yukawa structures are also hierarchical we can perform the same 

analysis using upper triangular matrices and we would again arrive to the conclusion 

that corrections from the Kahler to any Yukawa element are always sub-dominant at 

least by E2 (E = E, c for Y = Yd , Yu). There is an exception to this conclusion if Y23 

does not preserve the hierarchical structure and is of 0(1) saturating the bound in 

Eq. (4.34). In this case it is possible that Pi!3 = 0(1) and therefore corrections 0(1) 

to Yi3 are still possible. Even in this case, it is clear that we can never modify the 

order in E of the different elements of the Yukawa matrix, all it can do is to change the 

0(1) coefficients of the Yi3 elements. To determine whether this special case is possible 

one needs to know Y32 and this can be done through measurement of flavour changing 

neutral currents [82, 83J or lepton flavour violation [84J. 

Thus, using the triangular form, we have shown that the Kahler corrections to the 

Yukawa matrix are sub-dominant for hierarchical Yukawa matrices. In the next section 

98 



we prove that this is also true for the observable mixing angles and mass eigenstates. 

Additional texture zeros 

A special situation occurs when one of a, b, c, dis < 0(1) giving rise to an approximate 

texture zero. This can spoil the hierarchical structure of our Yukawa textures, Ykj < Yij 

for k < i and j 2: i and therefore must be analysed separately. An example of the 

origin of such zeros occurs in spontaneously broken Abelian theories through the so­

called holomorphic zeros [68]. In this case the symmetry breaking is through flavon 

field(s) carrying only one sign of charge (say negative) and then a net negative charge of 

the fermionic fields cannot be compensated with insertions of the flavon field because, 

due to the holomorphicity of the superpotential, the charged conjugated flavon can not 

be used. However the Kahler potential is non holomorphic and therefore these zeros 

can be filled after the transformation to the canonical basis. 

As before, if we are only interested in the physical effects of this texture zero filling 

we can choose a convenient basis [68]. Once more our choice of upper triangular matrices 

is especially simple. In a hierarchical texture we can have a texture zero in any position 

of the matrix except in Y33 which is necessarily 0(1). Although it is clear that the 

texture zeros can be filled in by the Kahler corrections we can immediately use the 

analysis presented above to show that physical observables will not be affected by these 

corrections. The point, as is explicitly demonstrated in the next section, is that the 

form of Eq. (4.34) gives the value of each entry of the Yukawa matrix that has a leading 

effect on a mass or a mixing angle. If the entry is larger than the value shown it will 

give a mass or mixing angle in conflict with the measured value. If the entry is smaller 

it will only contribute to measurable quantities at subleading order. 

In the previous section we showed that, for the case of hierarchical textures, the 
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Kahler corrections only contribute to the Yukawa matrix elements suppressed relative 

to the order shown in Eq. (4.34) by at least O( E2). For example we can see that a zero in 

Yu is never filled by any other element. In the same way a zero in Y12 or Y21 is only filled 

by a non-zero entry in Yu . Taking into account the constraints from the determinant 

of the Yukawa matrix, Yu :s; E4 and in the hierarchical case with Pi~~R) :s; E this implies 

that they can only be filled at 0(E5). In the same way Y13 Y31 and Y22 can only be filled 

at 0(E4) (Y12 , Y21 :s; E3). Finally a zero in Y23 or Y32 implies that Y22 = E2 and hence 

these zeros can be filled at most at 0(E3). As we will now show, these subleading terms 

only contribute to physical quantities at subleading order even though the texture zero 

may be filled in. The only exception to this is when the hierarchical structure is spoilt 

through an 0(1) term in Y23 . In this case, following the discussion given above, the 

Kahler corrections can contribute at 0(1) to physical quantities. 

4.6 Kahler corrections to the mass matrix eigenvalues and 

mixing angles 

To complete our proof we need to demonstrate that the entries of Eq. (4.34) are the 

smallest that can affect masses and mixing angles and thus the Kahler corrections, 

which we have shown are smaller than those of Eq. (4.34), are necessarily subdominant 

in determining physical quantities. 

4.6.1 Quark and charged lepton masses and mixing angles. 

Since the Kahler corrections are wave function corrections which cannot change the 

rank of the mass matrix we know that they lead to multiplicative normalisations of the 

masses. For hierarchical Yukawa matrices the wave function normalisation has the form 
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Pik = 5ik + 0(::::; c) and this means the Kahler corrections to masses are necessarily sub-

dominant. To see this explicitly, consider only the left handed canonical normalisation 

Pik with P upper triangular. Now using Eq. (4.35) the canonical Yukawa and the fact 

that the Yukawa and Kahler matrices are hierarchical in the left handed sector, the 

determinant of yt is, 

Det(yt) = Det(P)Det(Y) ~ (1 + 0(::::; t))Det(Y) 

Moreover, from the hierarchical structure in Eq. (4.34) we know that any element of 

the matrix is corrected only at 0(::::; t 2 ) under the transformations to canonical left-

handed Kahler. In particular, the heaviest eigenvalue in yt will be still be 1 + 0(::::; t
2). 

Therefore this implies that the product of the two lightest eigenvalues can only be 

changed at 0(::::; t
2). Finally the second eigenvalue is basically obtained from the 

lightest eigenvalue of the (2,3) submatrix and thus we obtain again that any change 

to this eigenvalue will be sub-dominant in t and therefore the same is true for the first 

generation eigenvalue. 

In the case of a non-hierarchical structure in the (2,3) entry with P~ of 0(1) we 

expect Det(pR ) to be 0(1) barring accidental cancellations. In this case the corrections 

to the eigenvalues, while still not changing their order in t, could be 0(1). 

Concerning the mixing angles, with the use of triangular matrices we have not 

changed the hierarchical structure of the Yukawa matrices. Hence, we can still use the 

usual perturbative expansion. In this way, after the transformations to left handed 

canonical Kahler we have, 

ed _ eu = (Y21)t _ (Y23)t = Y21(1 + 0(c2
)) _ ~23(1 + 0(c2)) 

23 23 (Y31)t (Y33)t Y31(1 + 0(c2 )) Y33 (1 + 0(c2)) 

e23 (1 + O( c2
)) (4.36) 

the discussion is identical for the e13 mixing angle. The case of e12 is slightly more 
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complicated, now we have, 

(4.37) 

where the denominator is really the Y2~ element in the basis where we have already 

diagonalised the 2,3 sector, and it is approximately equal to ms/mb = t 2. However, we 

that the denominator can also be corrected only at O(c:2
), then we have, 

( 4.38) 

doing the same for 812 we arrive immediately to e12 = et2 - 812 = 812 (1 + O(c:2)). 

Moreover, it is easy to check that the effect of the transformation to canonical 

Kahler for the right handed fields on the left handed mixings is usually negligible. To 

see this, we consider the limit of trivial left handed Kahler and nontrivial right-handed 

Kahler. Then, we consider the diagonalisation of the Hermitian matrix H t , 

where we have written Y = vlMfvR and reabsorbed the right-handed rotation in 

k- 1 , i.e. we have written the inverse of the Kahler in the basis of right handed mass 

eigenstates. Now it is trivial to see that the matrix diagonalising Ht will be the product 

of VL with the matrix diagonalising Mjk-1 Mj. As we have seen Mj are approximately 

equal to the eigenvalues of the total Yukawa matrix, this implies that Mjk-1 Mj is 

strongly hierarchical and then the mixing angles diagonalising this matrix will be, 

therefore these contributions are suppressed both by the smallness of off-diagonal entries 

in the Kahler with respect to diagonal ones and by ratios of fermion masses. This last 
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suppression is usually enough to make Bij « Bij and then we can safely neglect the 

effect of right handed transformation in left handed mixings. 

The exception to this rule arises when the right handed Kahler in the basis of right 

handed mass eigenstates is not hierarchical and has 0(1) entries in K 23 , K22 and K33. 

In this case the correction to the angle B23 from the down quark right handed Kahler 

could be of leading order as both B23 and ms/mb are 0(E"2). Still this situation can 

be understood as an exception to the main rule we formulated above. The correction 

from the right handed Kahler in the left handed mixing angles would still be of the 

same order as the contribution from the non-canonical Yukawa matrix and therefore 

would only modify the unknown 0(1) coefficients. Usually, we find this structure in 

U(l) models with lopsided Yukawa textures [85J. These models depend precisely on the 

existence of different 0(1) coefficients in the elements of the Yukawa texture to obtain 

the correct masses and mixing angles. However, the U(l) symmetry has no control on 

these 0(1) coefficients and so this means that we do not need to worry about these 

effects. Only in a theory where we can control these unknown coefficients we should 

worry about the effects of this right-handed field redefinition. 

4.6.2 Neutrino masses and mixing angles 

The case of neutrino masses can be analysed with similar techniques. In this case, we 

obtain the effective Majorana mass matrix for the left handed neutrinos through the 

seesaw mechanism. The neutrino mass matrix structure has the form 

giving the effective Majorana mass matrix of the effective low energy neutrinos, Mv of 

the form 
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The transformation properties of the effective neutrino mass matrix under the trans-

formations to canonical Kahler for both left handed and right handed fields is given 

by 

PL
T y'v M'R- 1 y' vT PL pT' P = L Xv L (4.39) 

Hence, we see that the effective neutrino coupling Xv is transformed only by the left 

handed canonical transformations and the right-handed transformations cancel exactly. 

However the neutrino sector can be special because in this case, we do not know 

much about the hierarchy of the leptonic Yukawa couplings yv and ye. In fact we can 

find two different situations: 

1. yv and ye are hierarchical and Ykj < Yij for k < i and j 2:: i. This is this 

situation in realistic non-Abelian flavour theories explored to date [74J. 

2. yv or ye have two rows of similar size. We can find this situation in some U(l) 

models [86J. 

In case 1 the Kahler metric is also very close to the identity with small off-diagonal 

entries. Therefore we can choose PL to be upper triangular with (PL)ii ~ 1 and 

(PL)ij ::::; E. Then both Yv and Ye are only changed at higher order in E and neutrino 

masses and mixings are only changed at sub-dominant order. In the case of non-Abelian 

symmetries X~ and ye are changed at most at order c2 . Then we can immediately 

use the standard formulae for the neutrino mixings compiled in Ref. [87J. For all 

the different cases compatible with hierarchical rows in the lepton Yukawa matrix, we 

can immediately see that neutrino mixings will only be changed at sub-leading order. 

Although small, this might still be relevant for the difference of the solar mixing angle 

from maximality. 
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Case 2 arises if two left handed fields have identical flavour symmetry charges. As a 

result the Kahler metric will have large mixing between these two fields and therefore 

0(1) off-diagonal entries. In this case, it is possible to modify the 0(1) coefficients in the 

different elements of the canonical Yukawa matrices, but the order in E of these entries is 

not changed. Therefore, in this case, it is possible to generate changes at leading order 

in neutrino masses and mixings. This corresponds again to the case where right-handed 

mixing angles can modify left-handed mixings in the quark sector. Since only the 0(1) 

coefficients are modified these corrections do not change the predicted structure if the 

family symmetry does not predict the value of these coefficients. 

4.6.3 Soft SUSY breaking masses and mixing angles 

Finally, we would also like to comment on the effects of the Kahler transformations 

on the soft breaking masses which may give rise to dangerous flavour changing neutral 

current processes [82]. Notice that the F-term contributions to soft breaking masses in 

supergravity are closely related to the Kahler potential [72]. In fact the non canonical 

soft breaking masses are, 

To obtain the canonical soft breaking masses we have to multiply this matrix by the 

inverse of the square root of K, m 2 = (K-l/2)tm2 K- 1/ 2 . Then we obtain, 

m 2 = m~/21- (K-l/2)tpm (&monK - &mK(K-l)OnK) FnK- 1
/
2 

m~/21- ptPm (&monK - &mK(K-l)onK) Fn P 

Therefore we see that we have a universal contribution proportional to m~/2 plus other 

terms which in principle will depend on flavour. These terms depend on the derivatives 

of the Kahler potential with respect to fields with non vanishing F-terms. 
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If the field with non-vanishing F-term is a hidden sector field it must be neutral 

under the flavour symmetry and therefore the structure in powers of E of 8monK or 

8mK will be the same as the structure of K. However, factors 0(1) can be different and 

indeed can sometimes be zero. The important point is that no terms larger in powers of 

E are generated than are in K itself. Due to this difference in the 0(1) coefficients the 

product (K-l/2)t8mKK-l/2 will be different from the identity, but will be bounded 

by the same power in E as the original K matrix [71 J . 

Another possibility is that the field with non-vanishing F-term is a flavon field with 

non-trivial quantum numbers under the flavour symmetry. As shown in [88J, the natural 

size for Fe for B a flavon field is m3/2(B), although it can be smaller depending on the 

characteristics of the scalar potential. In this case, we also have that Fm8mK cannot 

generate terms larger in powers of E than the terms initially present in K itself and the 

conclusion above still applies. 

We have also to consider the possibility of a non-vanishing flavour D-term con­

tributing to the soft masses. Although this possibility is extremely dangerous for the 

phenomenology of flavour changing neutral currents (FCNCs) it can be realised for 

heavy sfermion masses in some Abelian flavour models. In this case we obtain a new 

contribution to the soft masses, 

with qb the charge of the field ¢b under the U(l)fl symmetry. Notice that due to the 

dependence on the charges of the different fields this contribution to the soft masses 

is not diagonalised when we make the transformation to the basis of canonical Kahler 

and therefore it gives rise to new FCNC effects. 

To analyse these FCNC effects it is convenient to work in the SCKM basis where 

the corresponding Yukawa matrix is diagonal. Therefore, to obtain the sfermion mass 
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matrix in the SCKM basis we have to do two transformations. First we go to the 

basis of canonical Kahler with our triangular matrices and second we diagonalise the 

corresponding Yukawa matrix with a rotation of the full superfield. Now, we can 

compare the effects of the transformations to the basis of canonical Kahler with the 

effects of the second transformation to the SCKM basis. First it is easy to see that 

in U(I) models the structure in E of our triangular Kahler transformations are always 

smaller or equal that the corresponding rotation diagonalising the Yukawa matrix. For 

instance, the left handed Kahler transformation is usually of the same order as the left 

handed rotation diagonalising the up quark Yukawa matrix and smaller than the left 

handed rotation diagonalising the down quark Yukawa. If the diagonal elements of the 

Kahler metric are 0(1), this means that the corrections to off-diagonal elements that 

we obtain from the transformations to the SCKM basis are larger or equal than the 

corrections obtained in the transformation to the canonical basis. As before, if we are 

not interested in coefficients 0(1), we can also ignore the effects of transformation to 

canonical Kahler in the soft breaking masses. 

4.7 Conclusions 

In this chapter we have studied the effects of the transformations to the canonical Kahler 

basis on the Yukawa textures for quarks and leptons and their contributions to physical 

masses and mixing angles. We demonstrated using a simple example model that the 

texture in the Yukawa matrices seems to change after canonical normalisation using the 

'standard' method for canonically normalising the matter fields. We have developed 

a simple formalism that allows a straightforward calculation of the necessary Kahler 

transformations and simplifies enormously the phenomenological analysis. Using this 

formalism we have proved that, in the case of models with a hierarchical structure of 
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the Yukawa matrices, the corrections obtained through the transformations to canonical 

Kahler are always suppressed by a factor :S E2 with E the expansion parameter in the 

Yukawa matrix. This implies that, in this case, fermionic masses and mixing angles 

receive only corrections at E2 from the Kahler transformations. We have seen that 

although texture zeros can be filled by transformations to canonical Kahler the physical 

effects of this texture zero filling are only sub dominant corrections in E to observable 

masses and mixing angles. We have also discussed some exceptions to the case of 

completely hierarchical Yukawa matrices where some corrections at leading order are 

possible. In any case, we have seen that in these models only unknown 0(1) coefficients 

are modified. We have also shown that the corrections to the scalar soft breaking mass 

matrices can only change the unknown 0(1) coefficients. We conclude that in the large 

class of models considered here the leading order superpotential couplings in the non­

canonical Kahler basis are essentially unchanged when transformed to the canonical 

Kahler basis. Agreement on this issue was arrived at independently by Refs. [89, 90J 

108 



Chapter 5 

Conclusions 

In this thesis we have studied the connections between family symmetries and low­

energy observable physics in the context of supersymmetric unified theories. The em­

phasis has been on trying to find low energy constraints since the energy scale where 

the new physics arises is far too high for direct observation. Such effects may be con­

sidered the low energy footprints of models which otherwise could not be distinguished, 

as they would all have the same low energy limit. 

In Chapter 3, we numerically investigated a contribution to flavour violation that 

had previously been neglected, coming from the auxiliary fields to the Higgs fields that 

break a gauge family symmetry. Since the investigation was numerical, it had to be done 

in the context of a specific model; the model chosen was a string-inspired Pati-Salam 

model with a U(l) family symmetry. The most constraining flavour violation turned 

out to be BR(f-L -7 ey). In the model chosen, we picked four benchmark points which 

demonstrate different dominant contributions to flavour violation. These were running 

effects from having a see-saw mechanism, non-universal scalar masses from the model 

itself, auxiliary fields associated with breaking the family symmetry and auxiliary fields 

associated with the breaking of the Pati-Salam group down to the MSSM group. We 
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found that when the flavour violation is dominated by the auxiliary fields, the decay 

rates are close to being ruled out by the current experimental limits, but when other 

forms dominate, the rate can be well below the experimental limit. 

In Chapter 4, we considered the effects of non-renormalisable flavon operators in 

the Kahler potential. These were considered to be consistent with non-renormalisable 

flavon operators in the superpotential. When the flavons are replaced by their VEVs, 

the effective Kahler potential becomes non-canonical. Canonically normalising is a 

simultaneous field rescaling and mixing effect, which will change the superpotential 

couplings. We then use the freedom to apply a further unitary transformation on 

the fields post-canonical normalisation. Using this freedom, we show that the effects 

of canonical normalisation will not change the leading order predictions of masses, 

CKM and PMNS matrix elements, provided that the original Yukawa matrices have a 

hierarchical form. Since such a hierarchical form is common in family symmetry models, 

we concluded that when building such models the effects of canonical normalisation can 

usually be neglected. 

The ultimate aim of family symmetry models is to explain the structure of the 

Yukawa matrices in the MSSM in a natural way. This would involve a number of non­

renormalisable operators with numerical coefficients which are all order 1, preferably 

with less operators than constraints. However, there is no way of directly telling the 

difference between such a model, and the MSSM with the same Yukawa matrices. 

Therefore, we would like to find indirect ways of distinguishing the two. The work 

in this thesis has looked at a couple of ways that the GUT-scale family symmetry 

model might leave traces in the low energy physics accessible at current and near-future 

experiments. However, there is still a large amount of work to do in this field. 
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Appendix A 

Soft terms from supergravity 

We summarise here the standard way of getting soft SUSY breaking terms from super-

gravity. Supergravity is defined in terms of a Kahler function, G, of chiral superfields 

(rp = h, Ca ). Taking the view that the supergravity is the low energy effective field the-

ory limit of a string theory, the hidden sector fields h are taken to correspond to closed 

string moduli states (h = S, Ti ), and the matter states Ca are taken to correspond to 

open string states. In string theory, the ends of the open string states are believed to 

be constrained to lie on extended solitonic objects called Dp-branes. 

Using natrual units: 

G(rp, ¢) = KC!~ ¢) + In (~(:)) + In (w:~¢)) 
Mpl Mpl Mpl 

(A.l) 

K(rp, ¢) is the Kahler potential, a real function of chiral superfields. This may be 

expanded in powers of Ca : 

Kab is the Kahler metric. W(rp) is the superpotential, a holomorphic function of 

chiral superfields: 

(A.3) 
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We expect the supersymmetry to be broken; if it is broken, then the auxiliary 

fields Fcp i- 0 for some ¢. Lacking a model of SUSY breaking we can proceed no further 

without parameterising our ignorance. We do this using goldstino angles. We introduce 

a matrix, P that canonically normalises the Kahler metric, ptKJ1P = 1 1 [91J. We 

also introduce a column vector e which satisfies ete = 1. We are completely free to 

parameterise e in any way which satisfies this constraint. 

Then the un-normalised soft terms and trilinears appear in the soft SUGRA break-

ing potential [43J: 

The non-canonically normalised soft trilinears are then: 

AabcYabc I:~ eK
/

2 
Fm [K mYabc + OmYabc - ( (k-1

) OmKeaYdbc 

+ (a f--7 b) + (a f--7 c))] 

(A.4) 

(A.S) 

In this equation, it should be noted that the index m runs over h, C. However, by 

definition, the hidden sector part of the Kahler potential and the Kahler metrics are 

independent of the matter fields. 

Assuming that the terms oe Yabc i- 0, the canonically normalised equation for the 

trilinear is: 

(A.6) 

If the Yukawa hierarchy is taken to be generated by a Froggatt-Nielsen field, ¢ such 

that Y ex rp, then we expect Fcp ex m3/2¢, and then Fcpo¢ In Y ex m3/2 and so even 

though these fields are expected to have heavily sub-dominant F-terms, they contribute 

to the trilinears on an equal footing as the moduli. 

IThe subscripts on the Kahler potential KJ means EhK. However, the subscripts on the F-terms 

are just labels. 
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If the Kahler metric is diagonal and non-canonical, then the canonically normalised 

scalar mass-squareds are given by 

(A.7) 

And the gaugino masses are given by 

(A.8) 

Where fa. is the 'gauge kinetic function'. a enumerates D-branes in the model. In 

type I string models without twisted moduli these have the form f9 = 8; f5 i = Ti. 

For the models considered in this thesis, we use a Kahler potential that doesn't 

have any twisted-moduli [26J: 

K - In (8 + S -I Cf1 12 -I Cg212) - In ( T1 + T 1 - 1 cf 12 -I Cg3 12) 

-In (T2 - T2 -lcil2 -ICglI2) -In (T3 - T3 -lcjl2 -lcgll2 -ICflI2) 
IC515212 IC95112 

+ + ----'--;-.,..--'-----,.". 
(8 + S) 1/2 (T3 + T3) 1/2 (T2 + T 2) 1/2 (T3 + T3) 1/2 

IC95212 
+ (A.9) 

(T1 + T 1) 1/2 (T3 + T3) 1/2 

The notation is that the field theory scalars, the dilaton S and the untwisted moduli 

Ti originate from closed strings. Open string states Cf are required to have their ends 

localised onto D-branes. The upper index then specifies which brane(s) their ends are 

located on, and if both ends are on the same brane, the lower index specifies which pair 

of compacitified extra dimensions the string is free to vibrate in. 
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Appendix B 

Parameterised trilinears for the 

42241 Model 

We here write the general form of the trilinear parameters A ijk assuming nothing about 

the form of the Yukawa matrices. 

1 

+ X H (8 + S) '2 HOH In Y abc 

1 

+ X H (T3 + T3) '2 H~ In Yabc 

II} + Xe (8 + S) 4 (T3 + T3) 4 Boe In Yabc (B.1) 
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AC;l C~l C5152 = J3m 3/2 { Xs [~ + (8 + 8) Os In Yabc] 

+ X T1 [-1 + (Tl + T 1) aT1 In Yabc] 

+ X T2 (T2 + T 2) oT2 In Yabc 

+ XT3 [-~ (T3 + T3) OT3 In Yabc] 

1 

+ XH (8 + S)"2 HOH In Yabc 

AC;lC~lC5152 = J3m3/2 {Xs [~+ (8+8) Os In Yabc] 

+ X T1 [-1 + (Tl + T 1) aT1 In Yabc] 

+ X T2 [-1 + (T2 + T 2) OT2 In Yabc] 

+ XT3 [~ (T3 + T3) oT3 In YabC] 

1 

+ X H (8 + S)"2 HOH In Yabc 

1 

+ X H (T3 + T 3)"2 H ~ In Yabc 
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(B.2) 

(B.3) 



J3m3/2 {Xs (8 + 8) Os In Yabc 

1 

+ XH (8 + 8)2 HOH In Yabc 

1 

+ X H (T3 + T3) '2 H~ In Yabc 

(B.4) 
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Appendix C 

n 1 operators 

The n = 1 Dirac operators are the complete set of all operators that can be constructed 

from the quintilinear F FhH H by all possible group theoretical contractions of the 

indices in 

(C.l) 

We define some SU(4) invariant tensors C and some SU(2) invariant tensors R as 

follows 1; 

(C1)~ 50< 
(3 

(C6)~1 P'IWX 
Eo<(3wx 

(ClO)~ 50< 5(3 + 50< 5(3 
P'I '1P 

(C15)~; 5(36'l - ~5(3 5'1 
P 0< 4 0< P 

(Rd~ 5x 
y 

(R3)~: = 5x5w _ ~5x5w (C.2) 
y z 2 z y 

IThe subscript denotes the dimension of the representation they can create from multiplying 4 or 

4 with 4 or 4. For example (C15)~F'Y4P = 15~ 
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Operator Name Operator Name in [46] QUh2 QDh1 LEh1 LNh2 
OAa OA 1 1 1 1 
OAb OB 1 -1 -1 1 
OAc OM 0 0 V2 0 

OAd OT 2V2 V2 V2 2V2 
-5- 5 5 5 

oAe OV V2 0 0 V2 
OAf OU V2 2V2 2V2 V2 

5 -5- 5 5 
oBa OC 1 1 -3 -3 

vI5 v'5 vI5 vI5 
OEb OD 1 -1 -3 3 

vI5 v'5 vI5 vI5 
OBc OW 0 v1 -31i 0 

OBd OX 2V2 V2 -3V2 -6V2 
-5- 5 -5- 5 

oBe OZ Ii 0 0 -31i 
OBI oy V2 2V2 -6V2 -3V2 

5 -5- -5- 5 
oCa oa V2 0 0 0 
OCb OF V2 -0 0 0 
OCc OE 0 2 0 0 
OCd Ob 4 2 0 0 

vI5 v'5 
oCe ON 2 0 0 0 
OC! oc 2 4 0 0 

vI5 v'5 
oDa Od Ii v1 21i 21i 
ODb oe Ii -~ -21i 21i 
ODc OG 0 4 0 

v'5 vI5 
ODd OH 4 2 4 8 

5" 5 5" 5" 
oDe 0° 2 0 0 4 

vI5 vI5 
OD! O! 2 4 8 4 

5" 5 5" 5" 
oEa 0 9 0 0 V2 V2 
OEb Oh 0 0 -V2 V2 
OEc Oi 0 0 2 0 
OEd oj 0 0 2 4 

vI5 vI5 
oEe OJ 0 0 0 2 
OE! OJ 0 0 4 2 

vI5 vI5 
oFa oP 4V2 4V2 3V2 3V2 

-5- -5- -5- -5-

OFb OQ 4V2 -4V2 -3V2 3V2 
-5- -5- -5- -5-

OFc OR 0 8 6 0 5 5" 
OFd OL 16 8 6 12 

5~ 5v'5 5V5 5){5 
oFe OK § 0 0 g 
OF! OS 16 12 

57s 575 575 575' 

Table C.1: Operator names, CGCs and names in [46] 
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Then the six independent SU(4) structures are: 

A. (C1)~ (C1); J/3p 
0< p 

B. (C15)~~ (C15);~ J/3J'Y - '!'J/3p 
p 0< 4 a p 

C. (C6)~~ (C6)~~ 8( J/3 P - J'Y J(3) 
0< 0< a p 

D. (ClO)~~ (ClO)~~ 2(J~~ + JJJ~) 

E. (C1)~ (Cr)~ J/3p 
0< 0< 

F. (C15)~~ (C15)~~ J'Y JO< - .!. 6" J/3 
p/3 4 ap 

(C.3) 

And the six SU(2) structures are: 

a. (R1)~ (R1)~ JZ JX 
w y 

b. (R3)~~ (R3)~~ JXJz _ '!'JxJz 
w y 2 y w 

c. EXZEyw EXZEyw 

Ews Ext (R3)~~ (R3):; 
1 

d. JX JZ - -E EXZ 
w y 2 wy 

e. (R1)~ (Rr)~ JZJx 
y w 

f. (R3)~;' (R3r::q 
JXJz _ '!'Jx JZ 

y w 2 w y (C.4) 

All possible n = 1 operators were then named OA ... oZoa ... Oj in [46J. We rename 

them here in a manner consistent with the n > 1 operators o(nl

), so that the names 

are OI17r where II is the SU(4) structure and 1T is the SU2 structure. See Table C.l for 

the translation into the names of ref. [46J and the CGCs. 

All of these operators are operators for the case without a U(l) family symmetry. 

In the case when there is, we follow the prescription: 

(C.5) 

Where PIJ = !XoIJ ! is the modulus of the charge of the operator. If the charge 

of the operator is negative, then the field e should be replaced by the field e. The 
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prescription makes the operator chargeless under the U(l)p while simultaneously not 

changing the dimension. 

120 



Appendix D 

n > 1 operators 

In the case that n > 1, there will be more indices to contract, which allows more 

representations, and hence more Clebsch coefficients. To generalise the notation, it is 

necessary only to construct the new tensors which create the new structures. However, 

it will always be possible to contract the new indices between the Hand H fields to 

create a singlet H H which has a Clebsch of 1 in each sector u, d, e, v. In this case, 

the first structures are the same as the old structures, but with extra 5 symbols which 

construct the H H singlet. 

Thus taking a n = 2 operator, say ()lFb, which forms a representation that could 

have been attained by a n = 1 operator, the Clebsch coefficients are the same. This 

is what we mean by on! TIn, as we have only used n > 1 coefficients which are in the 

subset that have n = 1 analogues. 
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Appendix E 

Expressions for the canonically 

normalised Yukawa elements, and 

p-l 
LH 

We write here the full expressions for the four Yukawa elements. 

(E.5) 

These follow from the expressions for the inverse P-matrix after it has been Taylor 
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expanded in £ to order £3 around the point £ = O. The full expression for the left-handed 

P-matrix is then, to sub-leading order in £: 

(E.6) 

The structure of the right-handed equivalent is exactly the same, but with every bi 

replaced with a Ci. 
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