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Applications of order statistics based on concomitant variables in survey 
sampling 

By Ebrahim Khodaie-Biramy 

Using auxiliary variables or concomitants to design a survey, to construct an estimator 
for unknown population parameters for given sample, to select an efficient sample or 
to make a complete data file for data analysis purposes is common in survey 
sampling. This thesis uses the theory of concomitants of order statistics to propose an 
imputation method which is called sequential taxonomy imputation (STI) and a 
variance estimator for a sample mean under ordered systematic sampling (OSY). 

Let (Xi,r;) i = 1,2, ... ,n be n independent and identically distributed random variables 

from a bivariate normal distribution. If X(r:n) denotes the rth ordered X-variate then 

the Y-variate .Iir:Il]' paired with X(r:n) is called the concomitant of the rth order 

statistic. In this thesis, we develop and evaluate a new imputation method for missing 
values. The method uses concomitants of order statistics. In particular, the method 
orders the data according to an auxiliary vector (X) and then selects k-nearest 
neighbours in order to impute a missing value in the variable Y Under missing at 
random (MAR) and missing completely at random (MCAR) assumptions, this so­
called single ordered sequential taxonomy imputation (SSTI) method is evaluated 
theoretically and empirically under a linear relationship between the auxiliary vector 
X and the variable Y In particular we describe a generalised form of SSTI which is 
called doubly ordered sequential taxonomy imputation (DSTI). It is shown that, the 
bias of estimators for population parameters based on these imputed values is smaller 
than under other imputation methods. In addition, SSTI and DSTI preserve marginal 
distributions and individual values better than some commonly used imputation 
methods such as Hot deck imputation. 

Applications of order statistics have introduced new sampling methods such as 
ranked-set and double sampling in recent years. In this research the statistical 
properties of ranked-set sampling are examined, the usual systematic sampling (SY) 
scheme is modified and a variance estimator for ordered systematic sampling (OSY) 
is suggested. Systematic sampling is a practical and efficient method for selecting 
samples from administrative registers or other logically arranged files. A proper 
sorting order of the population ensures that the sample obtained reflects the true 
population distributions. In this study, we use an auxiliary variable to order data and 
refer to this variable as a concomitant variable because of its ordering properties. By 
assuming a linear relationship between the variable of interest and its concomitant, we 
propose a variance estimator for the sample mean that is less biased compared to other 
variance estimators. In addition, we compare the statistical properties of ranked-set 
and ordered systematic sampling with simple random sampling. We justify the 
proposed variance estimator theoretically and demonstrate its properties using a 
simulation study. 
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Chapter 1 

Introduction 

It is common in survey sampling to use information about the population in 

constructing a design, estimating procedures, and in selecting the sample. This 

information can be provided by auxiliary variables or concomitant variables, often 

from official sources, such as a national census. We can use this information in 

designing a survey, constructing an estimator for unknown population parameters for 

a given sample, selecting a sample, or making a complete data file for data analysis 

purposes. This thesis is divided into two parts. 

Making a complete data file by imputation methods is one of the important areas in 

survey sampling. Concomitant variables can be used to construct a new imputation 

method or improve the quality of current imputation methods. In constructing a new 

imputation method, the relationship between the study variable and a set of 

concomitant variables plays an important role. Throughout the thesis, a linear 

relationship is assumed between the study variable and the concomitant variables. The 

proposed method uses concomitants of order statistics theory based on the normal 

distribution. In this method, the data is ordered, according to a constructed variable 

from concomitant variables, and then k-nearest neighbours are selected in order to 

impute a missing value in the study variable. In addition, we use multivariate data 

ordering methods and the sequential taxonomy technique to order data according to 

the concomitant variables. The proposed imputation methods are called single ordered 

sequential taxonomy imputation (SSTI) and double ordered sequential taxonomy 

imputation (DSTI). 

Applications of order statistics have introduced new sampling methods, such as 

ranked-set and double sampling in recent years. In this thesis, the statistical properties 
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of ranked-set sampling are examined, the usual systematic sampling (SY) scheme is 

modified, and a variance estimator of the sample mean for ordered systematic 

sampling (OSY) is suggested. 

The first part proposes a new k-nearest neighbour imputation procedure according to 

the concomitant variables, and the next part proposes an improved variance estimator 

for a sample mean in systematic and ranked set sampling based on concomitants of 

order statistics theory. 

The thesis is organised as follows. In chapter 2, the theory of concomitants of order 

statistics based on normal distribution and the linear relationship between a 

concomitant variable and the study variable are reviewed. Chapter 3 briefly reviews 

the causes of missingness and methods for correcting missingness in surveys and 

censuses, and well-known imputation methods from different statistical aspects, such 

as classical and Bayesian analysis. Chapter 4 covers background information on 

statistical theory for sequential taxonomy imputation. Key definitions and the theory 

of sequential taxonomy imputation are provided in Chapter 5. In this chapter, a new 

multivariate statistical imputation method is developed and its purpose is discussed. 

Mathematical properties such as probability distributions, asymptotic behaviour, and 

the variance of estimates are derived. In addition, Chapter 5 provides some evaluation 

methods for different imputation methods based on the structure of the data. The 

results of different imputation methods are compared using simulated multivariate 

normal data. Chapter 6 briefly reviews the standard systematic, ranked set sampling 

techniques, and proposes a new variance estimator for the sample mean under ordered 

systematic sampling (OSY) and median ranked set sampling (MRSS). Moreover, 

Chapter 6 compares the statistical properties of the variance estimators with other 

sampling methods, such as simple random sampling and regression sampling, using a 

simulation study. Finally, Chapter 7 gives a summary and conclusions to the first and 

second parts of the thesis. 
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Chapter 2 

Theory of concomitants of order statistics 

2.1 Introduction 

The sequential taxonomy imputation (STI) procedure and the variance estimation for 

ordered systematic sampling (OSY) to be investigated in this research involve the use 

of the theory of concomitants of order statistics. Therefore, this chapter briefly 

reviews the theory of concomitants according to our research purpose. 

Suppose (Xr,:t:.) (r = 1, ... ,n) is a random sample of n observations of a bivariate 

random variable (X; 1) with cumulative distribution function (cdt) F(x,y). If we order 

the X variates in ascending order as 

then, the Y-variates paired with these order statistics are denoted by 

and termed the concomitants of the order statistics of X (David, 1973, 1981), while 

Bhattacharya (1974) termed Yrr.nl as the induced order statistics. The Yrr.nl are not 

necessarily ordered, but can be expected to reflect the association between X and Y, a 

strong positive association tending to lead to values of Yr,..nl in roughly ascending 

order, and similarly negative association to Yrr.nl in descending order. Concomitants 

have found a wide variety of applications in fields such as selection procedure (Yeo 

and David, 1984), ocean engineering (Castillo, 1988), inference problems (Do and 

Hall, 1991, Yang 1981), prediction analysis (Gross, 1973) and double sample plans 

(O'Connel and David, 1976). Under the assumption that X and Yare linearly related, 

apart from an independent error term, the small sample theory of concomitants has 
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been studied extensively by O'Connell (1974). The asymptotic distribution theory of 

the concomitants has been investigated by David and Galambos (1974), when the 

paired (Xr,.r:.) has a bivariate nonnal distribution. For a comprehensive review of 

this topic, see Bhattacharya (1984) and David and Nagaraj a (1998). 

2.2 Distribution theory of the concomitants of order statistics 

This section reviews concomitants when the distribution of (Xr' I:.) is a bivariate 

nonnal distribution: N {flx' fly' (J'~ , (J'~ , p), where flx and (J'~ are the mean and 

variance of X, fly and (J': are the mean and variance of Yand p is the correlation 

between X and Y. Before focusing on nonnal distribution, a general theory of 

concomitants is reviewed based on Yang (1977) as follows: 

Let (Xr,.r:.) (r = 1,2, ... , n) be i.i.d. variates from a continuous bivariate distribution 

with cdf F(x,y) and pdf f(x,y). If fey I x) is the conditional distribution of y 

1::; 1] ::; .... ::; rk ::; n, then from the i.i.d. property of(Xr,.r:.) , the conditional pdf of Yrr:IlJ 

given Xr:n = x is fJ[,,,] (y I Xr:n = x) = fey I x). Therefore, the joint distribution of Xr:n 

and Yrr:nJ can be written as follows: 

fXr",J[n,] (x,y) = fey I x)J;.:n(x) . (2.1) 

Moreover, from (2.1) we have the marginal distribution of Yr,.:nJ 

+00 

f Yrr ,,] (y) = f fey I x)J;.n(x)dx . (2.2) 
-00 

Fonnulae (2.1) and (2.2) can be generalised to a multivariate distribution as follows: 

x 

fx,,,,J[r)x,y) = f fey I t)J;.,s:n(t,x)dt , (2.4) 
-00 

4 



From (2.3) and (2.4) we can easily show the following results: 

(2.5) 

Now we focus on the special case of concomitants, where the distribution is bivariate 

normal, and the relationship between X and Y is linear or more generally nonlinear. 

2.3 The simple linear model 

We start with the simplest case of concomitants; suppose (Xr'Y:') (r=1,2, .. ,n) is a 

random sample of n pairs drawn from a bivariate normal distribution 

N2 (flx ' fly' G~, G~, p) , where flx' fly' G.; and G~ are means and variances of X and Y 

and p is the correlation between X and Y. According to the normal distribution, X 

and Y have a linear relationship as follows: 

(2.6) 

where Xr and Gr are independent. Then, from (2.6), we have E(G,.) = 0 and 

Var(Gr ) = GJ(l- p2). By ordering data based on X and using fonnula (2.6), we have: 

G 
Yr,.:nJ = fly + p-y (Xr:n - flx) + G[rJ' r = 1,2, ... , n (2.7) 

G x 

where G[rJ denotes the particular Gr associated with X r:n . Independence of Gr 

and X r , implies that Xr:n and G[rJ are independent. From (2.7) and by using 
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regression and nonnal distribution properties, the expectation and variance of Yrr:nl 

can be obtained as follows: 

Let 

a = E(Xr:n - f.1X) and f3 = Cov(Xr:n - f.1x Xs:n - f.1X) r s = 1 2 n (2.8) 
r:n rS:ll "" , ••• , • 

O'x 0' x 0' x 

Then, from (2.7) we have: 

E(Yrr:nl) = f.1y + pO'yar:n 

Var(Yrr:nl) = O'~(p2 firr:n + 1- p2), 

r::j:. s, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where a r:n is the expectation of the rth of X order statistics and f3rs:n is the covariance 

of rth and sth order statistics of the variable X from the standard nonnal distribution. 

2.4 General models 

In this section, following to David and Ngaraja (2003), we generalize (2.6). Suppose 

~ = g ( Xi) + &i is the general model of the regression of Yon X; where Xi and &i are 

independent. The general model for concomitants can be written as follows 

ir:n] = g ( X(r:n)) + &[r:n] ' r = 1,2, ... , n . 

Then from (2.5) and (2.3), fonnulae (2.9), (2.10), (2.11) and (2.12) can be written as 

follows: 

E(Yrr:nl) = E[g(Xr:J], 

Var(Yrr:nl) = Var[g(Xr:/,)] + E[ 0'2 (Xr:n )], 

Cov(Xr:n,is:n]) = Cov[Xr:n,g(Xs:J], 

Cov(Yrr:nl' Yrs:nl) = Cov[g(Xr:n),g(Xs:n)] , r::j:. s. 
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2.5 The asymptotic distribution of concomitants 

This section shows the asymptotic distribution of concomitants when (Xi'~) 

(i= 1,2, .. ,n) is a random sample of n pairs drawn from a bivariate normal distribution 

N2 (/-Lx' /-Ly' 0"; ,O"~, p) . From (2.9) we have: 

(2.17) 

where a rn is the expectation of the rth of X order statistics from the standard normal 

distribution and p is the correlation between X and Y. By replacing (2.17) in formula 

(2.7) we have: 

~r:n] = (E(~r:n]) - pO"yar:n) + p 0" y (Xr:1l - /-Lx) + E[r] , r= 1,2, .. . ,n. 
O"x 

By simplifying the above formula we have: 

v E(V) ((Xrn-/-Lx) J -12 1[r:n]- 1[r:n] = pO"y o"x -ar:n +E[r]' r- , , ... ,n, (2.18) 

where a r:n = E(Xr:n - /-LX). If the first part on the right hand side of (2.18), which is 
o"x 

the function of X,,"' ph( X,") ~ cr, ( (X,,~:,u x) - a,," l converges to zero in 

probability as n 0 +00 for all r. In other words if (h (Xr:n) - Cn) 0 ° as n 0 00 , 

d 

(1r:n j- PCn )0E and hence the limit distribution of 1r:nj can be arbitrary (David and 

Ngaraja, 2003). Therefore for a bivariate normal distribution, assummg 

1 

/-Lx = /-Ly = 0, 0" x = 0" y = 1 , the above condition holds with Cn = (2Iog n)2. Therefore, 

from (David and Nagaraj a, 2003) the distribution of 

asymptotically N(O, 0"~(1- p2)). 

(2.19) 
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The expectation of l r:nJ in (2.19) is affected by how r is related to n. David and 

Nagaraja (2003) derived an asymptotic expression for E (~r:n)) in a simple case 

(JLx = JLy = 0, (jx = (j y = 1) under three different situations. These are the quantile 

case, where !.-~ p, 0 < p < 1, the extreme case, where either r or n-r is fixed, and the 
n 

intennediate case, where 

E ( l r:nJ) ~ p<D-l (p) 

~ p(210g n)h 

~ -p(210g n)h 

r = [ np ], 0 < p < 1 

r = n - k + 1, k fixed 

r = k, k fixed 

It should be emphasized that (2.20) is valid only under simple random sampling 

scheme. 
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Chapter 3 

A survey of current imputation methods 

3.1 Introduction 

This chapter reviews the causes of missingness, methods for correcting missingness in 

surveys and censuses, and well-known imputation methods from different statistical 

aspects, such as classical and Bayesian analysis. 

3.2 Imputation and missing values 

Standard statistical methods and formula have been developed for analysing 

complete data. Incompleteness in a data file can lead to biased estimates, and standard 

methods of statistical data analysis cannot be used. In addition, possible biases exist 

when respondents are systematically different from non-respondents, and these biases 

are difficult to eliminate when reasons for non-response are not known. 

Non-response is just one source of incompleteness. It is typically characterised as 

being of two types, unit and item non-response. Unit non-response occurs when no 

information is collected from a sample case, and item non-response occurs when 

some of the questions for a case are not answered. However, unit non-response can 

also occur because of data editing, where answers that fail the edits are suppressed 

and replaced by imputed values. Unit non-response is usually accounted for by 

weighting adjustment methods, while item non-response is commonly dealt with 

using imputation methods. This thesis will be concerned with an investigation of 

imputation methods based on ordering. 
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3.3. Missingness 

Missing observations in sample surveys lead to non-sampling errors. Generally, total 

survey errors split into two components: sampling errors and non-sampling errors. 

Sampling error arises from the sampling process itself, when inferences are made 

from observation on a randomly chosen subset of units, rather than observing the 

whole population. In other words, sampling error is a penalty for incomplete 

enumeration. Non-sampling error includes all the errors not attributable to this 

incomplete enumeration. Every step in the survey process is a potential source of non­

sampling error, such as imperfections in the initial specification, incomplete listing of 

the target population, failure to obtain complete information from all units drawn in 

the sample, failure to obtain correct information from the contacted units and errors in 

recording and managing the data after the survey has been completed. Sampling error 

is relatively easy to deal with, at least in theory, and increasing the sample size and 

modelling the proper choice of design and estimator can reduce it. The size of the 

sampling error may be estimated from the sample in this case. In contrast, non­

sampling errors often increase when sample size increases or there is increased 

complexity in the sampling procedure. In addition, it is difficult to measure the size of 

most components of non-sampling errors without external information. The following 

section examines some specific sources of non-sampling errors from the missing 

values point of view. Missing values in sample surveys occur in three ways: non­

coverage, unit non-response, and item non-response. Non-coverage arises when the 

population from which the sample is actually drawn differs from the target 

population. Unit non-response occurs when no information is collected from a 

sampled unit, and item non-response occurs when some but not all the information is 

collected. This thesis focuses on item non-response. 

Item non-response may occur for a variety of reasons. The respondents may not 

know the answers to certain questions or they may refuse to answer some questions. 

They may consider them sensitive or irrelevant. The interviewer may skip over a 

question under pressure in an interview or for other reasons. A recorded answer on the 

survey may be rejected during editing because of inconsistency with other questions. 

Analysing missing values requires clear assumptions about the structure, pattern, and 
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mechanism for the occurrence of missing values. These are reviewed in the next two 

sections. 

3.3.1 Missing data mechanisms 

The performance of missing-data methods depends strongly on the missing data 

mechanism, which explains why values are missing, and in particular, whether 

missingness depends on the values of variables in the dataset. For example, subjects 

in longitudinal studies may drop out of a study because they feel that their 

involvement is ineffective, which might be related to a poor value of an outcome 

measure. Little and Rubin (1987) define three types of missing data mechanisms. For 

simplicity, we use Rubin's notation. Let Y = (yabs ,ymiS) be a data matrix that includes 

two parts, missing and observed; and let R = (rif) be the associated missing-data 

indicator matrix; that is rij = 1 if Yij is observed, and rij = 0 if Yij is missing. Little 

and Rubin (2003) assume that the missing-data indicator matrix is a random matrix, 

and characterises the missing-data mechanism by the conditional distribution of R 

given Y, feR I y,r/J) , where r/J = (B,I.jf) denotes unknown parameters for the 

distribution of Y and R respectively. Missing-data mechanisms then fall into three 

classes, the missing completely at random mechanism (MCAR) , the missing at 

random mechanism (MAR) and non-ignorable missingness (NI). Here, we define 

missing data mechanisms according to Little and Rubin's (1987) definitions. 

a) Missing completely at random (MCAR) 

Under MCAR, the missing-data mechanism is umelated to the values of any of the 

survey variables, whether missing or observed. In other words, the observations are 

mIssmg completely at random, with peR = r I y = y) = peR = r) or 

equivalently feR I Y,r/J) = feR I r/J) for all Y and r/J; that is R and Yare independent. For 

example, if survey participants randomly skipped answering some questions or a 

researcher accidentally forgot to ask some questions or drops a case, in this case, the 

available data is a simple random sub-sample from the original dataset. 
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b) Missing at random (MAR) 

A slightly weaker assumption than MCAR is missing at random (MAR). Under MAR 

the missing-data mechanism depends only on the observed values yahs and not on the 

missing values ym;s. In other words, the observations are missing at random if 

peR = r I y = y) = peR = r I yahs) or equivalently feR I y, Ij/) = feR I yah" Ij/) for all 

ym;s and Ij/. That is, knowledge about ym;s does not provide any additional 

information about R if yahs is already known. As a consequence, Rand ym;s are 

conditionally independent, given yahs. For example, since people with low education 

may skip questions about household income, low education is one explanation of why 

income is missing. If we include education in any question as a mechanism variable, 

we will have the distribution of R in our survey. More generally, if we include all the 

mechanism variables in our model as controls, we have made the missing data 

mechanism MAR. However, Little (1995) introduces covariate dependent 

missingness (CD) as a extension to MAR. Both MAR and CD require that the cause 

of the missing data is unrelated to the missing values, but may be related to the 

observed values of other variables. MAR means that the missing values are related to 

either observed covariates or response variables; whereas CD means that, the missing 

values are related only to covariates. As an example of CD missing data, missing 

income data are only related to education. 

3) Non-ignorable (NI) missingness 

If the MAR assumption does not hold, then we say that the missing data mechanism is 

non-ignorable (NI). NI means that the missing data mechanism is related to the 

missing values. For example, if individuals with higher incomes are less likely to 

reveal them on a survey than are individuals with lower incomes, the missing data 

mechanism for income is non-ignorable. Whether income is missing or observed is 

related to its value. 
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3.3.2 The missing data pattern 

The missing data pattern simply indicates which values in the dataset are observed 

and which are missing. Specifically, let Y=(Yij)denote an (nxp) data matrix 

without missing values. With missing values, the pattern of missing data is defined by 

the missing-data indicator matrix R = (If) ), such that rij = 1 if Y ij is observed and 

lfj = 0 if Y ij is missing. We assume throughout this thesis that individual values 

y, = (Yn'Y'2'.··'Y'p) and If = (lfplf2,···,lfp) are independent over i. Some missing data 

analysis methods are designed for any pattern of missing data, whereas other methods 

assume a special pattern. Certain patterns may allow simpler or more direct 

techniques to be applied: for example, "monotone" missingness patterns may allow 

ML estimates (under a "missing at random" mechanism assumption) to be obtained 

without resorting to data augmentation or imputation. Figure 3.1 shows the shape of 

different types of missing values in multivariate data. Obviously, for univariate data, 

the missing data pattern is the special case (3.1 a). 
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Figure 3.1 Missing data patterns 
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Figures 3.1 a-f display different types of missing data patterns. Figure 3.1 a shows the 

simplest case of a missing data pattern; in this case, missing values occur only in one 

variable and most imputation methods can be used to handle the missing data. Figure 
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3.1 b shows unit non-response for multivariate data, with the fully observed variables 

consisting of survey design variables. In other words ~ and 1'; are survey design 

variables. The third type of missing data pattern (Figure 3.1c) displays a monotone 

pattern of missingness in Y. ~ is at least as observed as r;, which is at least as 

observed as r;, and so on. Such a pattern of missingness, or close approximation to it, 

is not uncommon in practice. For example, longitudinal studies collect information on 

a set of cases repeatedly over time. Different subjects drop out in each "wave" and do 

not return. Figures 3.1d and 3.lf are also common missing data patterns. Figure 3.1d 

shows two sets of variables that are never jointly observed. An important point is that 

attempts to estimate the association between these variables may yield misleading 

results. Figure 3.1e shows latent-variable patterns with some variables never 

observed. It will be useful to consider these kinds of unobserved latent variables as a 

missing-data problem, where the latent variables are completely missing, and then use 

missing data theory to estimate data parameters. In the Figure 3.1e, X is a latent 

variable that is completely missing and Y is a set of variables that are fully observed. 

Factor analysis is one of the suggested multivariate methods to deal with this kind of 

pattern. By using factor analysis, under specific assumptions, the data parameters can 

be estimated without using imputation methods. 

Almost all imputation methods can be used to handle missing values, but they need 

more work in non-standard situations. For example, when handling missing values by 

regression imputation under a monotone pattern of missingness, there are two options: 

the first is to fit a multivariate regression model to all the fully observed variables. In 

this case, we have to discard a considerable amount of information, because the fully 

observed values are only those with observed values for the last variable. Therefore, 

the number of valid cases for a multiple regression imputation is the number of 

respondents for the last variable (Ys). The second option is to carry out the regression 

imputation on a variable-by-variable basis, using only the most fully observed 

variables. For example, suppose ~ is a complete variable and missing values occur 

in r; , then missing values in r; are imputed based on the regression of r; on ~. Now 

variables ~ and r; are complete and we can use the regression of 1; on ~ and r; to 
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impute missing values for r;. This procedure continues until all missing values are 

imputed. 

3.3.3 Strategies for analyzing data with item non-response 

In the missing data literature, there are three general approaches to handling data 

containing missing values. These approaches depend on several factors, such as 

knowledge about the data distribution, the missing data pattern, the missing data 

mechanisms, and the number of missing values. To illustrate, consider a dataset made 

up of two variables Y = (y
obS1 

yobS2) and Y = (y
obs 

ymiS) where Y is a complete 
1 l' 1 2 2' 2' 1 

variable, while missing values occur in r;. The first strategy is based on the analysis 

of the complete, which focuses on ~ObS1 and r;obs only. This approach is designed to 

make inference simple. However, it can be inefficient and can produce biased 

estimates. The second approach is based on using all of the available data and is 

based on the application of either weighting or model-based procedures. Under both 

we use ~obS1, r;obs and ~obS2 to estimate unknown population parameters. The 

weighting method typically leads to simple estimates but complex inferences about 

parameters, and can be inefficient, whereas model-based methods typically lead to 

complex estimates and inferences about parameters that are statistically efficient. The 

third approach is imputation, which uses ~obS1, r;obs , ~ObS2 and f;mis to make an estimate 

and inferences about unknown parameters, where f;mis denotes imputed values for the 

missing observations in r;mis . Under this approach, we usually have simple estimates 

but complex inferences for unknown parameters, which can be less efficient than 

model-based methods. However, since fully specified models for data can be 

unavailable in many surveys, this loss of efficiency from using imputation methods to 

handle missing values is usually acceptable. 

1) Complete case analysis 

If the fraction of missing data is small, one way to handle it is to discard records or 

cases that have missing values. This procedure is known as list-wise deletion or case­

wise deletion. A serious limitation of this approach is that relevant data are frequently 
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discarded. List-wise deletion is simple, but with a greater number of variables, 

increasing amounts of data are ignored, even though the total number of missing 

values remains constant. For example, in an extreme case, where all respondents in 

the sample have only one (not necessarily the same) variable missing, list-wise 

deletion would discard all cases. Hence, this approach leads to excessive loss of 

statistical power. As the number of complete cases decreases, there is a decrease in 

error degrees of freedom, leading to a loss of statistical power and a larger standard 

error. 

An alternative is pair-wise deletion, which is attractive when there is a small number 

of missing cases for each variable relative to total sample size, and a large number of 

variables are involved. With this method, all available observations for each particular 

variable are used to compute means and variances, while all available pairs of values 

are used to compute covariances. Thus, correlations are computed using only those 

observations that have non-missing values for both variables. The problem with the 

use of pair-wise deletion is the potential inconsistency of the covariance matrix in a 

multivariate context. When correlations and other statistics are based on different but 

overlapping sub-samples of a larger sample, the population to which generalization is 

sought is no longer clear. 

There are two obvious advantages to complete case analysis: (a) it can be used for 

any kind of statistical analysis without an increase in complexity; (b) no special 

computational methods are required. Nevertheless, discarding cases will decrease the 

sample size and this reduced sample size increases the variance of estimates. Note 

also that, under MCAR, complete case analysis does not lead to an increase in bias, 

since the distribution of the missing data is the same as the distribution of the 

complete case data. The same is not true under MAR, where these distributions can be 

quite different. Since MCAR has a very strong modelling assumption, the use of 

complete case analysis is not usually recommended unless the extent of missingness 

in the data is very small. 
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2) Available case analysis 

This approach uses all of the available information for inference, and can be divided 

into two kinds: weighting methods and model-based methods. Weighting methods for 

non-response modify estimation weights in an attempt to adjust for non-response, 

treating this as part of the sample design. Typically, design weights are inversely 

proportional to the probability of selection. For example, if Y is a random variable 

defined on a specific population, and Yi is the value of this variable for unit i in the 

population, then the mean of Y in the population can be estimated via: 

where the summation is over sample units, rei is the probability of inclusion in the 

sample for unit i, and re;1 is the design weight for unit i. With non-response on Y, 

this estimate cannot be calculated. Weighting procedures modify the estimator, so that 

it is of the form: 

where summation is over respondent units, and Pi is the estimated probability of 

response for unit i. Weighting procedures and some imputation methods, such as 

mean imputation methods are related. For example, if we have constant design 

weights in categories of the sample, both provide the same estimates for the mean of 

the population. 

The second method of handling missing data using the entire available information is 

via model-based procedures. Here, a model for the data (including the missing data) 

and a model for the missing data mechanism are specified. Then, unknown parameters 

in the models are estimated using efficient estimation procedures, such as maximum 

likelihood or Bayesian methods. The main advantages of this model-based approach 

are flexibility, avoidance of ad hoc methods, the availability of assessment methods 
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for model assumptions and estimators, and the capacity to validate these procedures 

using the central limit theorem for large samples. 

3) Imputation 

A popular class of procedures for handling missing item response is imputation. 

Imputation methods are the focus of this thesis. Imputation is the assignment of likely 

or feasible values to remaining missing items. Imputation procedures use information 

that is available for a case to impute missing item values for that case. This implies 

that imputation is most successful when the amount of information to be imputed is 

small in relation to what is known about the case. 

Before proceeding further, we shall define some common concepts used in the thesis. 

A donor is the record from which the value to be assigned to the missing item is 

normally taken. The records with missing items (for which imputation is carried out) 

are called recipients. Not all imputation methods assign imputed values to recipients 

from a donor (e.g. mean imputation). In other words, a donor may come from a model 

rather than the data file. Auxiliary variables (also called control variables, matching 

variables or assignment variables) are those related to a variable with missing values. 

These variables are used to find the distance between donors and recipients or can be 

used for defining models, for example regression models. 

In general, let Y be the variable with missing values, with Xl' X 2 , ••• , X p the p 

auxiliary variables that are complete. Suppose we want to impute a missing value Yi' 

A broad class of imputation methods that lead to imputed values can be written as 

follows: 

YA. = g. (X y ahs e lniS
) I I , , , 

where g (.) is a known function and elnis is a part of some introduced perturbations. In 

the above formula, the specification of g (.) can distinguish the imputation methods 

(Lessler and Kalsbeek, 1992). For example, in deterministic imputation emis set to 

zero. We therefore have 
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P 

Yi =bo + Ibjxij, 
j=! 

where bo and bj are estimated by standard regression methods from complete case 

data. In contrast, for stochastic regression imputation, a randomly generated residual 

ei is added to this imputed value. For mean imputation, a missing value is imputed as: 

where y is the mean of respondents for the variable Y. Again, this can be extended to 

stochastic imputation by addition of a randomly generated residual. This method can 

be generalized to categorical variables via either mean, median or mode imputation. 

Imputation creates a complete dataset and has the following advantages. 

1) Data collectors usually know the reasons for the missing values. This infonnation 

can be used in imputation. 

2) Missing values complicate the data structure, so sophisticated statistical tools are 

required to conduct analysis. Imputation may ease this difficulty. 

3) Imputation can prevent the loss of infonnation due to deletion of incomplete 

records if the statistical methods used (e.g. regression) require complete records. 

4) Imputation can reduce non-response bias in some situations. Imputation attempts 

to reduce bias based on distinct assumptions, which specify the missing mechanisms 

and the relationships between response and non-response. 

On the other hand, a major concern is that imputation can distort the distribution of 

variables, leading to underestimation of variance, or changes in the relationship 

between variables. A proper imputation method should therefore lead to plausibility 

and consistency with edits, should reduce bias and preserve the relationship between 

items properly, should work with every missing data pattern and mechanism, should 

be capable of being set up ahead of time, and should be capable of being evaluated in 

tenns of impact on the biases and the precision of the estimates. However, this does 

not necessarily lead to estimates that are less biased than those obtained from the 

incomplete dataset; indeed the biases could be much larger, depending on the 

imputation procedure and the fonn of the estimate. 
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3.4 General categories of imputation methods 

Several methods of data imputation are available, but some of the more popular 

methods for handling missing data appear below. The list is not exhaustive, but it 

covers some of the more widely recognized approaches for handling incomplete cases 

in databases. It should be noted that different imputation methods are acceptable and 

reliable in different circumstances, such as with discrete or continuous data structures 

and the various missing data mechanism. 

There are two main types of imputation methods: the first is single imputation, and 

the second is multiple imputation. Single imputation assigns a single value to each of 

the missing values and multiple imputations impute each of the missing values by two 

or more values to reflect the distribution of the missing values (Rubin, 1987). 

Multiple imputation produces more than one complete dataset. The data analysis 

should combine the results from each component dataset. All methods are based on 

some assumptions about the missing data mechanism and pattern, even if they are 

derived from intuitive models. Without these assumptions, any imputation method 

cannot be justified. Multiple imputation has the advantage of compensating for the 

uncertainty of the assumptions, but it increases the complexity of the analysis. 

Therefore, single imputation probably remains the most widely used approach. In the 

literature, there is another categorizing procedure for imputation methods. In this 

procedure, imputation methods are divided into three groups: real-donor, model­

donor, and a mixture of real-donor and model-donor. This section discusses 

imputation techniques under these three categories. The three categories are not 

exhaustive, and are used mainly for convenience of discussion. 

3.5 Real-donor imputation methods 

The real-donor imputation method imputes missing values by observed values without 

any changes. The popular real-donor imputation methods are as follows. 

22 



3.5.1 Deductive imputation 

This method deduces missing values from available information such as similar items 

in previous surveys, related items in current surveys, etc. To apply this method, the 

user needs to find some deterministic relationship between the missing item and items 

from other sources. Generally, it is impossible to find enough information to impute 

all missing items in a survey using deductive imputation, but this method can be used 

to impute some of the missing items. Whenever possible, deductive imputation should 

be used before any other imputation method, because it provides accurate or 

approximately accurate imputations for missing cases. However, the performance of a 

deductive imputation method completely depends on the available sources. 

3.5.2 Cold deck imputation 

Cold deck imputation provides a set of values for each missing item, which are 

usually taken from previous surveys. The problem with this method is the 

compatibility between the former and the more up-to date data. 

3.5.3 Hot deck imputation 

The hot deck imputation method is a general class of procedures for the handling 

missing data, and there is no general agreement on the definition of this method. One 

of the more general definitions of hot deck method is as follows. A hot deck method 

is a duplication process, when a missing value occurs in a sample; a reported value is 

chosen and replaces the missing value. One of the advantages of hot deck methods is 

their simplicity and non-reliance on a strong statistical background. In addition, in the 

hot deck imputation method generally, there is no explicit statistical model. The 

general methodology of hot deck imputation employs many methods, and some 

popular methods are based on classification, finding the closeness of a missing value 

to an available case based on different closeness procedures, such as distance or 

similarity measures. In the classification process, data is classified into homogenous 

categories, based on prior knowledge about the structure of the data, or based on 

available information. In this case, for an efficient classification, we must have a 

reasonable correlation between auxiliary variables and the variable with missing 

values. After the classification process, hot deck imputation methods employ two 
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strategies for handling missing values: the first is deterministic and the second the 

random. 

a) Deterministic hot deck imputation 

The following are the most popular deterministic hot deck imputation methods. 

a1) Sequential hot deck imputation 

In the deterministic sequential hot deck method, data are ordered, then for each 

missing value the nearest value is chosen, and replaced. If the data ordering procedure 

is not a random method, we call this a deterministic sequential hot deck method. First, 

a single value, such as the mean or some pre-specified value, is assigned as an initial 

value. Then the records or cases in the data file are treated sequentially. If a record has 

a response for the target variable, this response replaces the previously stored value. If 

a record has a missing value for the target variable, it keeps the previously assigned 

value. This method can be used in categorized data. In other words, the data is 

categorised into homogeneous categories then the sequential hot deck is carried out 

inside each category. 

A major attraction of this method is its computing economy, smce all 

imputations are made in a single pass through the data file. A disadvantage is that it 

may easily give rise to multiple uses of donors, a feature that leads to a loss of 

precision for survey estimators (Kalton and Kasprzyk, 1982). In addition, there is a 

serial correlation between cases (see Bai1ar, Bailey and Corby, 1978). 

a2) Multivariate matching 

In this method, the respondents are divided into groups, and then each nonrespondent 

is matched to a group of respondents. Classification of respondents into groups is 

based on the values of a set of fully observed auxiliary variables. Each nonrespondent 

is matched to the group of respondents for whom the auxiliary variables take the same 

values, and the missing value is imputed using the value observed from the nearest 

respondent in the matched group. If no donor is found in a matched group, the group 

is combined with other groups to obtain donors. 
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While this method is not convenient to implement using computer programs, an 

approximately equivalent imputation algorithm may be used to replace it. The 

algorithm first sorts the data file by the same auxiliary variables, and then imputes the 

nearest response value for each missing case. This alternative method is very easy to 

implement. The donor and recipient will match on all auxiliary variables if such 

donors are available. Otherwise, it will automatically find a donor matched on some 

of the auxiliary variable, which is equivalent to collapsing the matched groups. 

a3) Nearest neighbour imputation 

In this method, the nearest value to a missing value is found, based on a distance or 

similarity function of covariates. In the literature, this method has been called as a 

distance function matching imputation method (Little and Rubin 1987). Therefore, it 

is assumed that auxiliary variables or covariates are fully or partially observed. 

Finding the distance or similarity between two cases depends on the type of variables. 

A variety of distance or similarity functions that can be used to find nearness based on 

the type of variables. (For more details, see section 4.2.3.) 

b) Random hot deck method 

The process of a random hot deck method is divided into three steps: first, defining 

the match method (in other words, in this step, we have to define the auxiliary 

variables that are going to be used in matching); secondly, the missing value is 

imputed using the value observed for a randomly drawn respondent from the class; 

thirdly, if there was no valid value for a missing value in this class, then combining 

some classes is an alternative strategy to reach a valid imputed value for the missing 

value. In this method, we categorise the data into homogenous categories or classes, 

then the random hot deck method is carried out inside each class. The following are 

the most popular random hot deck imputation methods. 

bl) Random sequential hot deck imputation 

In this method, the data is ordered randomly, while other processes are the same as in 

the deterministic hot deck imputation method. Bailar, Baily and Corby (1978) showed 
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that the sample mean with imputed values is an unbiased estimator of the population 

mean. In addition, they showed that the variance of sample mean with replacement 

sampling is larger than the variance in a hot deck procedure without replacement 

sampling. 

b2) Hierarchical hot deck imputation 

Similar to the sequential hot deck method, the data file is sorted into a much larger 

number of imputation classes or categories in a hierarchical structure. It is possible to 

add more auxiliary variables and have a greater number of imputation classes. If no 

suitable donor is found at the finest level of the classification, classes can be collapsed 

into broader groups until a donor is found. A pattern of 'hard' and 'soft' class 

boundaries can be programmed into a hierarchical structure, e.g. to ensure that an item 

is always imputed from a donor of the same group. It is assumed that the missing 

mechanism in each class is completely at random. Therefore, the imputation is just a 

random selection of the available values. This method is similar to the nearest 

neighbour imputation that is explained in section 3.6.2. 

c) The mathematical properties of hot deck 

In this section, the mathematical properties of the hot deck imputation method will be 

reviewed, because of its similarity with the sequential taxonomy imputation 

procedure. According to the traditional hot deck procedure, missing values are 

replaced randomly by values from the most similar respondents in the sample. 

Consider a finite population of size N of Y and a sample with a size of n from this 

population. Let Y to be a sample from Y with size n, Y r are respondents with the size 

of rand Yn- r are non-respondents with the size of n - r. Given an equal probability 

to sample units (Rubin, 1987), the mean of sample can be written: 

where Yr is the mean of respondents in the sample and 

-* ~ HiYi 
Yn-r = L,.--' 

i~l n-r 
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where Hi is the number of times Yi is used for imputing a missing value. The 

statistical properties of YHDl depends on the generation method of(HI'H2 , ... ,Hr ). In 

the traditional hot deck method, one of the suggested methods is selection by a 

probability sampling design; in this case, the distribution of (HI'H2 , ... ,Hr ) is known 

in the statistical literature. For example, suppose the probability sampling design for 

(HI'Hz, ... ,Hr ) is simple random sampling with replacement from the respondents. 

By conditioning over given respondents, the distribution of (HI'H2 , ... ,Hr ) is 

multinomial, with sample size n - r and probabilities of(1I r, 1 / r, ... , 11 r). Therefore, 

according to the theory of multinomial distribution we have: 

n-r 
E(Hi I Yr) =-, 

r 

Var(Hi I Yr) = (n - r)(1-1I r) / r, 

Now, suppose that YHDI is the estimate of the population mean with respect to the 

above multinomial distribution, then: 

and 

Var(YHDl I Y,.) = (1- r- 1 )(1- r / n)s,~ / n , (3.2) 

where s,z is the variance of respondents in the sample. It can be shown that YHDl IS 

an unbiased estimator for Y (population mean) as follows: 

(3.3) 

then, by assuming MCAR for the missing data mechanism: 
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In addition, the variance of Y HDI given Y (Rubin, 1987) can be obtained as follows: 

(3.4) 

then, by assuming MCAR for the missing data mechanism 

Var(YHDl I Y) = (1/ r -1/ N)S~ + (1-1/ r)(1- r / n)S~ / n, 

where S~ is the population variance. 

The variance of sample mean by the traditional hot deck method is larger than the 

mean imputation method. The equation (3.2) is the added part to the variance 

estimation of Y HDI' In other words, this part is added by hot deck imputation to the 

total variance. This added part of the variance of sample mean can be decreased again 

by selecting an appropriate sampling design, such as sampling without replacement. 

To conduct hot deck imputation by simple random sampling without replacement 

according to Little and Rubin (1987), the number of respondents should be greater 

than the half of sample size or number of non-respondents should be less than the 

number of respondents. In other words, we have r;::: n / 2 or n - r < r in r respondents 

cases. Missing values are replaced by sampling without replacement from respondent 

cases, and in this case Hi is zero or one because selected cases cannot be duplicated. 

To produce a general method, suppose that n - r = kr + t , where k is a nonnegative 

integer and 0 ~ t ~ r. In other words, this method selects each respondent k times and 

then selects t additional cases for imputing the n - r missing values. Hence, 

where Yt is the mean of t additional cases of Y . The expectation and variance of Yt 

given y,. can be obtained as follows: 

ECYt I Yr ) = Y,. 

and: 
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Var(Yt lyJ=(1-tlr)s,2 It 

Now, suppose that YHD2 is the estimator of the population mean Y, as follows: 

then, the expectation and variance of Y HD2 given Yr are: 

and: 

Var(y HD2 I Yr) = t I n(1- t I r )S,2 In. (3.5) 

Finally from (3.4), (3.5) and assuming missing completely at random (MCAR) for 

missing data mechanism, from Rubin, (1987) we have 

Var(YHD2) = (1/ r -1 I N)S~ + (t I n)(1-t I r)S~ In, (3.6) 

where SJ~ is the population variance. Therefore, from (Little and Rubin, 1987) the 

variance of sample mean using without replacement sampling and hot deck 

imputation is smaller than the variance of sample mean with replacement. 

Sequential hot deck is one of the popular hot deck imputation families. In this method, 

data is ordered according to similarities between cases, and then the nearest case in 

sequence is selected to impute a missing value. Estimation of data parameters depends 

on the type of data ordering. If the data is ordered randomly, according to Bailer, 

Bailey and Corby (1978), the estimator of Y, say Y HD3' is unbiased for Y and the 

variance of YHDJ is: 
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Var(- )=[1+(2(n-r))( rn+n-1 ]]S2In 
YHD3 n (r+1)(r+2) y , 

(3.7) 

It can be seen from (3.7) that the variance of sequential hot deck with random 

ordering is larger than the variance of traditional hot deck methods if r > 0 . 

Sometimes the missing value occurs at the beginning of a data file; hence, in this case 

an initial value is needed for imputation. This initial value is usually selected from 

other sources, such as previous similar studies, or can be selected from the population, 

independently of the other responses in the sample. Formula (3.7) can be 

approximated (Bailar, Baily, and Corby, 1978) for large n by: 

- [2(n-r)] 2 Var(YHD3) = 1+ n Sy In . (3.8) 

Another type of sequential hot deck is when the data file is not randomly ordered. In 

this case there is a serial correlation between cases i and j. Suppose that the serial 

correlation structure can be modelled by: 

i,j = 1,2, ... ,n . (3.9) 

Bailer and Bailar (1978) showed that the variance of sample mean (YHD4) is: 

Var(- ) = S2 I n2[n + 2 (n - r)(nr + n + r) 
YHD4 y (r+1)(r+2) 

(3.10) 
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Formula (3.10) can be approximated for a large n by 

Var(YHD4) ~ S~ In[l+ 2(n-r) +2(~- n-r ~)] 
r 1-0 n 2-0 

(3.11) 

The formula (3.11) is not monotonic in 0, and as a result, hot deck imputation 

methods have a greater variance for the sample mean than the mean imputation 

method; however, this method preserves the distribution of the data better than mean 

imputation (Little and Rubin, 1987). 

Reducing non-response bias is one of the important aims of hot deck imputation 

methods. In the random hot deck methods, the data are classified into homogenous 

categories; then for every missing value, a donor is chosen randomly among its 

category. Hence, it is expected that the non-response bias will reduce by increasing 

the homogeneity of categories and decreasing the number of cases in each category. 

We justify the reduction of non-response bias by the following example: 

Consider a finite population of size N and a sample with size of n; let y be a variable 

of interest, and suppose sr is the set of respondents to item y, of size r, and sn_r the set 

of non-respondents with size n-r. In addition, suppose B is the non-response bias if 

we use only respondents to estimate the mean. Hence, we have: 

B =E(Yr)-Y' 

where Yr =! L Yi· We use hot deck imputation to impute missing values in each 
r iESr 

category. Suppose the sample units are categorized into K homogenous groups; also 

nk 

LYi 

suppose that Pk =ni and Yk =~ (k=1,2, .. ,K) are the proportion and mean of 
nk 

sample units in group k. Let YHD be the estimator of the sample mean by any hot 

deck method; then the non-response bias is 
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The expectation of Y HD' given constant Yk and Pk' can be written as follows: 

(3.12) 

then, from the independence of hand Yk' we have: 

K K 

E(YHD) = LE(Pk)E(yk) = LP;E(Yk) ' (3.13) 
k~l k~l 

where P; = E(Pk)' Therefore, the non-response bias for the hot deck estimator is: 

KKK 

BHD = LP;E(Yk)-Y = Lp;ECYk -J:) = Lp;Bk , (3.14) 
k~l k~l k~l 

where .0: and Bk are the population mean and its bias in category k. From (3.14), it 

can be seen that, by increasing the homogeneity in each category, Bk decreases and 

the non-response bias (B HD) decreases. 

3.6 Model-donor imputation methods 

In the model-donor based imputation methods, imputed values are directly derived 

from a model. This procedure builds a predictive model for a variable with missing 

values based on all of the available information. Some of the popular model-donor 

based procedures appear below. 

3.6.1 Mean and mode imputation: 

Substitute variables (mean or mode values) are computed from available cases to fill 

in for missing data values in the remaining cases, based on the structure of data. The 

rationale for assigning the mean and mode is that, without any other knowledge about 

a case, the best guess of their score on any variable is the mean (for skewed variables, 

it may be better to substitute the median). This method can provide unbiased estimates 

for the population means or totals in two situations. The first is when missing values 

are missing completely at random (MCAR), and the second is when data are 
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approximately normally distributed and missing values are missing at random (MAR) 

(see Little & Rubin 1987). 

An improvement over mean or mode imputation is to impute the mean or the mode 

for groups that are known to be relatively homogenous. This approach is reasonable 

when the grouping variable is significantly correlated with the variable with missing 

data. This method can give unbiased estimates for the population mean, mode or total 

if the missing values only depend on the auxiliary variables that are used to construct 

the homogenous groups. From (3.14), it can be seen that by having homogenous 

categories, reduction in non-response bias is expected. The approach is much better 

than simple mean or mode imputation, because the imputed values and estimated 

parameters are more efficient; but the variance is underestimated. However, the 

distribution of data will be distorted substantially, and the concentration of all 

imputed values in group means, creates spikes in the distribution. Some mathematical 

properties of the mean imputation method are as follows: 

Consider a finite population of size N and let y be a variable of interest. Suppose the 

aim is to estimate the mean and variance of the population. The formulae for the mean 

and variance of the population are Y = ~ f y; 
N ;=1 

1 N 2 

and S; =-I(y;-Y) 
N-1 ;=1 

respectively. Then a simple random sample without replacement of size n is derived. 

In the complete case, the unbiased estimators of the mean and variance of population 

1 n 1 11 2 

are y = - Iy; and s~ = --I(Yi - Y) respectively. 
n ;=1 n -1 ;=1 

Suppose s,. is the set of respondents to item y, of size r, s1l_,. is the set of non-

respondents with size n-r and y; denotes the imputed value for missing value Yi . 

Then the estimators for the sample mean and variance with imputed values are: 

(3.15) 

and 
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2 _ 1/ [" ( _ _)2 "( * _ _ )2 ] 
Smi - In-l ~ Yi Y mi +i~r Y i Y mi , 

(3.16) 

where Ymi and S;"i are the sample mean and variance with imputed values. By 

imputing the missing values with the mean of respondents that is Y;* = Yr' i E Sn-r' 

and replacing Yr in (3.15) and (3.16) we have: 

Ym; = Yr 

and 

where s~, = Yr _ 1 [ t (y; - y, )'] is the variance of respondents. If we suppose that 

the respondents are simple random samples from the population, in other words, 

under the MCAR assumption for missing values, we have: 

(3.17) 

and 

E( 2) = r - 1 S 2 ~ ~ S 2 < S 2 
Sml Y Y - Y n -1 n 

(3.18) 

where YIIl; is an unbiased estimator for Y but S':'i is a biased estimator for S~. In 

other words the mean imputation procedure, apart from creating a spike at Yr ' 

decreases the variance ofy. 

3.6.2. Nearest neighbour imputation (NNI) 

Generally, NNI methods are divided into two categories, the first is the traditional 

NNI and the second is k -Nearest neighbour imputation. The following section briefly 

reviews both methods. 
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a) Nearest neighbour imputation 

Nearest neighbour imputation is a type of hot deck imputation. The NNI procedure 

uses a metric to define the nearness between a recipient and a donor or donors; based 

on auxiliary variables (it is supposed that the auxiliary variable or variables are 

complete). Then a donor or donors are chosen according to the metric. There is a 

comprehensive discussion by Chen and Shao (2000) about NNI. They test the theory 

of NNI in a bivariate case by using the Euclidian distance between the donor and 

recipients. In the simplest case, suppose there is a bivariate sample (XI'Yl), ... ,(xn,Yn) 

where X is complete and missing values occur only in Y. For simplicity, suppose the 

first r values of Y to be observed and the rest of them (m = n - r) are missing. 

According to Chen and Shao (2000), in the NNI method, a missing Y j' r + 1 :::; j :::; n 

is imputed by Yi' 1:::; i :::; r if: 

(3.19) 

When more than one donor exists by criterion (3.19), a donor can be randomly 

selected. IfYj' r + 1:::; j:::; n are imputed values, then the NNI sample mean is: 

(3.20) 

where di is the number of times that case i is used as a donor. Chen and Shao (2000) 

showed that the NNI sample mean is asymptotically an unbiased estimator for the 

population mean under simple random sampling and stratified sampling. NNI was 

generalized to multivariate data by Murthy and Hossain (2003), with possibly mixed 

types of variable, such as nominal, ordinal, binary, categorical, and interval. They 

used the following formula to define the closeness between a complete case c and a 

mlssmg case m. 

p-l 

I5!'ndfm 
D( ) j=l 

c, m = -=--p--l-- (3.21) 

I5!'n 
j=l 
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where 

1 

dim = d!,n(xcj'Xm) = 0 

IXcj -xmjl 

Rj 

if Xcj -:f. xmj ' when /h covariate is binary or nominal 

otherwise, when/' covariate is binary or nominal 

when the /h covariate is continuous 

5;'n is an indicator variable that is zero when the /h covariate is symmetric and 

Xci = xmi = 0, otherwise it is one. Rj is the range of the /h covariate and p is the 

number of variables. In (3.21), we assume p and p-l variables are observed for case c 

and case m respectively. Therefore, there are p-l terms in (3.21), because we have 

only p-l available variables. 

b) k-Nearest neighbour imputation 

This method is similar to the nearest neighbour imputation in terms of finding the 

closest value to a missing value, based on the distance function. The only difference is 

that in this method we find k neighbours rather than one neighbour. Again, to find 

nearness, we need similarity and dissimilarity measures. After finding the k nearest 

neighbours for a missing value, a function of k neighbours is used to estimate the 

missing value. Where more than one case is being used, there are various possibilities, 

the simplest being a straightforward arithmetic mean and alternatively an inverse 

distance weighted algorithm. However, the common functions are the mean and 

median. For categorical variables, a similarity measure is used. Typically, k is one or 

two but as it tends to r, where r is the number of available cases, NNI coincides with 

mean imputation if all of available cases are used as nearest neighbours and the mean 

function is used to impute. The obvious advantage of this technique is that it enables 

the most similar cases to be the most influential. In addition, many distance metrics 

will allow the inclusion of categorical and continuous variables. A number of studies 

have reported good results using k-NN, including the investigation by Chen (2000). 
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As a result, we can categorize this method as a model donor based imputation method 

because ofthe use of the function of available cases for imputing missing values. 

3.6.3 Regression imputation methods 

One of the traditional imputation methods is the regression imputation procedure. In 

this method, a missing value is replaced by a value predicted from a regression model 

based on observed values. The main assumptions in regression imputation are the 

MAR assumption, and the specification of the regression function. In regression 

imputation, there is no distinction between response and independent variables, in 

other words every variable with missing values is considered as a dependent variable. 

Generally, RI (regression imputation) is divided into two main categories: 

deterministic regression imputation method and random or stochastic regression 

imputation method. In this section, two popular regression imputation methods are 

reviewed. 

a) Deterministic and random linear regression imputation 

We start with a simple regression with one response variable Y and one independent 

variable X and missing values occur in the variable Y. It is assumed that r cases are 

available and n-r cases are missing in the response variable. This method imputes the 

missing value by a prediction from the linear model built using the available cases. 

Here MAR is implicitly assumed. 

Suppose the regression model is as follows: 

Yi ~ N(f-Li, cr2
), f-li = E (Yi I Xi) = a + JJXi and the unknown parameters are 8=( a ,~, cr2

). 

Then the regression model is: 
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where Ci ~ N(O, (J2). The detenninistic linear regressIOn imputation of Yi 

(i=r+ 1, ... ,n) is 

A AfJA. 1 y;=a+ x;,z=r+ , ... ,n. (3.22) 

This method underestimates the variance of the sample mean. Therefore, to avoid this 

underestimating problem, an error tenn is added to the imputed value. In this case, the 

method is known as a random linear regression imputation. Thus, we have: 

3.23) 

where &i is added to the prediction by the regression model. This is done to conserve 

the distributional properties of the target variable Y. The residual tenn can be obtained 

from a random draw from the residuals of available cases. Finally, different regression 

imputation methods can be used according to the type of response variable, such as 

logistics regression imputation, multinomial regression imputation, and nonparametric 

imputation. 

3.6.4 Multiple imputation 

The general idea of multiple imputation (MI) is to impute missing data via a random 

process that reflects uncertainty about the actual value being imputed. Simply, we 

randomly impute M values for a missing value, and thus create M complete but 

different datasets. According to Rubin (1987) in the simplest cases, a Monte Carlo 

simulation approach is used to complete the dataset with M> 1 simulated values 

(where typically 3<M<10), leading to M complete datasets. Each of the M complete 

datasets is then analysed, and the results are combined using simple rules into a result 

comprising estimates and standard errors. However, the choice of imputation model 

should be compatible with the analyses to be perfonned and should preserve 

relationships between the variables that are to be investigated. Thus, the imputation 

model should at least use all of the variables available to the analysis model. MI 

techniques generally assume data missing at random MAR. 

In companson with MI, single imputation has two advantages: first, standard 

complete data analysis methods can be used easily; secondly, in the context of public­

use databases, the possibly substantial effort required to create sensible imputations 

needs to be made only once, by the data producer, and these imputations can 
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incorporate the data collector's knowledge. There is also an important disadvantage 

of single imputation: the single value being imputed reflects neither sampling 

variability about the actual value when one model for non-response IS being 

considered, nor additional uncertainty when more than one model is being 

entertained. 

An efficient MI is based on three assumptions. These assumptions are related to the 

population of data values, the prior distribution for the model parameters, and the 

missing data mechanism. The first assumption means that, to conduct MI, a 

probability model for data (observed and missing values) should be assumed. The 

popular models are the multivariate normal model, loglinear models, the general 

location model, and the two-level linear regression model. The second assumption 

means that a prior distribution for the parameters of the imputation model should be 

assumed. This assumption is directly related to Bayes theory. However, Schafer 

(1997) claims that an efficient MI is more sensitive to the choice of the data model 

than the choice of the prior. In addition, he says that, for large samples, any 

reasonable prior distribution gives the same results. Finally, the third assumption 

pertains to the missing data mechanism, and MI assumes MAR for missing values. 

In conclusion, any "proper" imputation method can be used in MI, and it would be 

easier if the missing pattern were monotone. The suggested proper imputation 

methods for MI (Schafer, 1997) are the Markov chain Monte Carlo, data 

augmentation methods and the EM algorithm. 
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Chapter 4 

Sequential taxonomy and its applications 

4.1. Introduction 

Nearest neighbour imputation methods use variety of techniques to find a donor or 

donors for a recipient. Examples are ordering methods, multivariate matching, 

distance function matching, and minimum distance function based on fully observed 

covariates techniques (see 3.5.2 and 3.6.2). In this thesis ordering methods are used to 

conduct a new imputation method. There is a general discussion about the ordering 

methods in appendix 1. Therefore, choosing an efficient ordering method plays an 

important role in increasing the efficiency of our imputation method. We use 

sequential taxonomy (ST) to find nearest neighbours for a missing value. ST is a 

multivariate ordering method which is used for ordering numerical data, based on 

similarities and dissimilarities between cases. ST uses a variety of measures to order 

data such as distance or similarity measures. We focus on Euclidian distance because 

of its simplicity and mathematical properties. This chapter reviews the theory of ST 

and statistical properties of ST and its applications. In addition, the relationship of ST 

with the theory of concomitants of order statistics, and the distribution of the distance 

measure when data are normally distributed will be discussed in this chapter. 

4.2 Sequential taxonomy (ST) 

Assume that a data matrix X exists withp variables (p > 1) and N objects or cases (N 

> 1) drawn from a specific multivariate distribution. The idea behind sequential 
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taxonomy comes from the ordering of cities based on their levels of development. The 

definition of a developed city or country is not an absolute concept and is related to 

the corresponding development of other cities. In order to make a comparison 

between these different cities, we therefore need to identify a "best city". Differences 

between any particular city and the best city can be characterised using an appropriate 

distance measure. In practice, the city with the best in each development indexes for 

all variables is defined as the ideal city. Note that, the definition of the best value for 

an index depends on the underlying variable, and can be a maximum value or a 

minimum value of this variable. The vector defined by the best values is called the 

ideal vector, and the distance from this vector to the corresponding vectors of the 

cities of interest can be calculated, and the cities then ordered based on this distance 

vector. This idea can be easily extended to any multivariate data matrix X with N 

cases and p variables. 

An efficient ST contains four stages: the first is weighting and standardization, the 

second is finding an ideal vector, the third is calculating distances between cases and 

the ideal vector, and the final stage is ordering the data file based on these distances. 

We now describe each of these steps in the next sections. 

4.2.1 Standardization 

To calculate a distance in sequential taxonomy, we need to calculate the distance from 

the ideal vector. Most distance measures are sensitive to the scale of measurement 

variables, and, typically require same scales for all variables. When all the variables 

are measured on a continuous scale, the solution most often suggested is simply to 

standardize each variable to a unit variable before analysis. This can be done, for 

example by standard scoring: 

x .. -x. z .. = IJ } 
IJ S 

i=1,2, ... ,N, }=1,2, .. . ,p (4.1) 

where Xj and Sj are the mean and standard deviation of the variable}, respectively. 

In general, standardization of variables to unit variability can be viewed as a special 
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case of weighting, and corresponds to giving it greater or lesser importance than other 

variables when using it to detennine the proximity between two cases. The weights 

chosen for the variables reflect the importance that the investigator assigns to the 

variables for the classification task. This assignment or weighting is either the result 

of a judgement by the researcher or based on some aspect of the data matrix, X In 

what follows we assume standardization, so the data matrix of X is replace by the data 

matrix Z, of z scores via (4.1). 

4.2.2 Ideal vector 

The second stage in sequential taxonomy is defining the ideal vector. This vector 

consists of specified function of the values of each variable, such as the maximum, 

minimum, mean or median. That is, the ideal vector is a 1 x p vector. 

where a j = h/zj ), j = 1,2, ... ,p and h/·) is specified function of the N values of 

variable Z}. For example, if all the variables had the same direction then the ideal 

vector could be defined as 

a
J
, = max(z ,), j = 1,2, ... ,p, 

i J 

where i is the case index. It should be emphasized that the maximum is taken over 

cases not variables. Under this assumption, all variables represent a direction of 

increasing development. However, suppose a data file contains countries with three 

variables, adult literacy rate (ALR), infant mortality rate (IMR), and real GDP per 

capital (GDP). It seems reasonable to assume that that ALR and GDP have positive 

direction, but IMR has negative direction. In other words by increasing the values of 

ALR and GDP the development of a country increases, but by increasing the values of 

IMR the development of the country decreases. Hence, if the above ideal vector 

definition is to be used, then the direction of IMR should be changed (e.g. by 

multiplying by minus one). 

42 



4.2.3 Similarity, dissimilarity, and distance measures 

The third stage of ST is to calculate the distance or similarity between the ideal vector 

and the cases of interest. In this section, we review similarity, dissimilarity, and 

distance measures. Generally, we use similarity measures for categorical variables and 

mixtures of categorical and continuous variables. However, dissimilarity or distance 

measures are usually applied with continuous data. In what follows we examine each 

of these situations separately. 

a) Similarity measures for categorical data 

When data is categorical, similarity measures are the most common measures used to 

measure the similarity between individuals. Generally, values of similarity measures 

lie between zero and one. We represent the similarity between case i and j by sij' 

where a zero value for sij corresponds to the maximum difference between case i and 

j for all variables. The dissimilarity of case i and case} is then given by oij = 1-sij' To 

illustrate, Table 4.1 shows the cases classification of binary outcome variables for two 

cases as follows: 

Case} 

Table 4.1 frequency Table for case i and case j 

Outcome 

1 

o 
Total 

Case i 

1 

a 

c 

a+c 

o 
b 

d 

b+d 

Total 

a+b 

c+d 

p=a+b+c+d 

Where p is the number of binary variables. Some similarity measures that have been 

proposed for the data in Table 4.1 are set out in Table 4.2. 
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Table 4.2 Similarity measures for binary data 

Measure 

S 1 Matching coefficient 

S2 Jaccard coefficient (1901) 

S3 Rogers and Tanimoto (1960) 

S4 Sokal and Sneath (1963) 

S5 Gower and Legendre (1986) 

S6 Gower and Legendre (1986) 

Formula 

Sij =(a+d)/(a+b+c+d) 

Sij =a/(a+b+c) 

Sij = (a + d)/[(a + 2(b + c) +d)] 

sij =a/[a+2(b+c)] 

sij = (a +d)/[a + 1I2(b+c) +d] 

sij =a/[a+1I2(b+c)] 

For an extensive discussion ofthese and other measures of association for binary data, 

see Kaufinan and Rousseeuw (1990). 

A categorical variable is a generalisation of the binary variable, which has more than 

two categories. Here, we only generalise the matching approach (S 1) to categorical 

variables. To define a similarity measure, suppose Sijk' k= 1,2, .. ,p is zero or one 

depending on whether the two cases i and j disagree or agree on variable k. In other 

words, we have 

s"'k = {I if case i and} match in variable k , 
l} 0 otherwise 

where k= 1,2, " .. ,p. Therefore from Gower and Legendre (1986) a generalized 

similarity measure for categorical variables based on the matching approach is 

(4.2) 

b) Dissimilarity and distance measures for continuous data 

Generally, dissimilarity and distance measures are used when variables are 

continuous. Let 6ij represent dissimilarity and dij a distance measure between case i 

and case j. We say that the dissimilarity is a distance measure if it fulfils the triangle 

inequality for pairs of cases (i,j), (i,m) and (j,m): 
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(jij + (jim;;:: (jjm 

(jij = (jji' Vi,) 

(jij ;;:: 0 

(4.3) 

There is a variety of distance measures in the literature, see Gower and Legendre 

(1986). Table 4.3 shows the commonly used distance measures when XPX2' ... 'Xp 

are continuous random variables with n observations. 

Table 4.3 Distance measures for continuous data 

Measure 

D 1 Euclidian 

D2 City block 

D3 Minkowski 

D4 Canberra 

D5 Pearson correlation 

D6 Angular separation 

Formula 

(j .. = (1- d. .. ) / 2 with 
fj 'f'fj 

¢ .. = ~ (x'
k 

- x. )(x 'k - x. )/(~ (x'
k 

- X. )2 ~ (X'
k 

- X. )2 JI/2 
fj L.... I l. ] J. L.... I 1. L.... ] J. 

k=1 k=1 k=1 

p 

where Xi. = 1/ P L X ik 
k=1 

(j .. =(1-d. .. )/2 with 
fj 'f'fj 

Generally, dissimilarity measures can be divided into two mam categories: 

distance measures and correlation-type measures. Distance measures are the physical 

distance between two p dimensional points. For example, the Euclidian distance (D 1) 
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space. This measure is also known as the 12 norm. Measures D 1 to D4 are examples 

of distance measures, and D5 and D6 are examples of dissimilarity measures based on 

correlation coefficients. More details of the advantages and disadvantages of different 

dissimilarity measures can be found in Gower and Legendre (1986) and Anderberg 

(1973). This thesis will only use Euclidian distance, because of its simple 

mathematical properties when data are distributed as multivariate normal. 

b) Similarity measures for data containing both continuous and 

categorical variables 

Different methods have been proposed in the statistics literature for calculating 

similarity measures for mixed-mode data (continuous and categorical data). One of 

the simplest methods is to categorise the continuous variables and then similarity 

measures appropriate for categorical data. In this thesis, however, we consider 

Gower's general similarity measure (Gower and Legendre, 1986), which is defined as 

follows: 

(4.4) 

where Sijk is the similarity between case i and case j as measured by the kth variable, 

and W ijk is a weight that takes the value zero or one, depending on the validity of the 

comparison. For binary and categorical variables, Sijk is one and zero. For continuous 

variables, Gower suggests using City block distance (D2), after scaling the kth 

variable to unit range. 

(4.5) 

where Rk is the range for the variable k. 
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4.2.4 Ordering the data 

In what follows we assume that the data have a multivariate normal distribution and 

so use Euclidian distance to find the distance between cases and the ideal vector. In 

particular, this Euclidean distance is calculated as: 

(4.6) 

where zij is the standardized matrix ofxij' (i=1,2, ... ,n),(j=1,2, ... ,p), and a j 

denote the jth component of the ideal vector. 

After obtaining the d;(a), the data file is ordered according to these values. This type 

of ordering is actually a special case of reduced (aggregate) ordering, and is 

sometimes referred to as R ordering, where each multivariate observation is reduced 

to a single value by means of some combination of the component population or 

sample values (see Appendix 1, ordering methods). In general the d;(a) can be 

obtained by any ordering method or dimension reduction technique, e.g. based on the 

first component of principal component analysis. In addition, the dJa) can be 

generalized to different types of data; if data is categorical, continuous or a mixture of 

continuous and categorical, we simply use a different distance measure appropriate to 

these data types to define the distance vector. 

4.2.5 Example 

The underlying data here are taken from a 1997 data file issued by the United Nations 

Statistics Division (UNSD), which covers 85 countries, and gives information on 

thirteen variables, namely region, HDI, adult literacy (ad_Ii) rate (%), population 

growth (popul), contraceptive prevalence (%) (contr), dependency ratio (depen), 

infant mortality rate (per 1000 live births) (inCm), life expectancy (l_exp) at birth 

(years), maternal mortality rate (per 1 0000 live) (mater), real GDP per capital (PPP$) 

(gdp), education index, GDP index and life expectancy index. Our aim is to order 

these 85 countries using sequential taxonomy based on their development and to then 
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compare this ordering with the ordering of the same 85 countries based on these 

Human Development Index (HDI). To start, we note that adult literacy rate, 

contraceptive prevalence, life expectancy at birth and real GDP per capita all have a 

positive direction, while population growth, dependency ratio, infant mortality rate 

and maternal mortality rate all have a negative direction. These negative direction 

variables are therefore converted to positive direction by multiplying by -1. All 

variables are then standardized: 

x .. -x. 
Zij = IJ .J, i = 1,2, ... ,85 and j = 1,2, .. ,8, 

s-j 

where x'j and s-j are the mean and standard deviation of the fh variable. The ideal 

vector is then defined as the vector of maximum values of each variable and the 

Euclidian distance between each of the 85 countries and the ideal vector is computed. 

These distances are referred to as ST in what follows. Tables 4.4 and 4.5 show the 

correlations between ST, the component variables, HDI, and a number of other UN 

indexes that can be used to order the 85 countries, such as education index (ED I), 

GDP index (GDPI) and life expectancy index (LEI). It can be seen from Table 4.4 

that there are high negative correlations between ST and the main variables. 

Therefore, by increasing the development variables, ST decreases, which means small 

values of ST show more developed countries. 

Table 4.4: Correlation matrix between main variables and ST 

ad li popul contr depen inf m 1 exp mater gdp ST 
Ad li 1.000 0.644 0.733 0.643 0.786 0.697 0.780 0.667 -0.835 
Popul 0.644 1.000 0.666 0.741 0.688 0.640 0.620 0.628 -0.826 
Contr 0.733 0.666 1.000 0.775 0.798 0.753 0.755 0.658 -0.870 

Depen 0.644 0.741 0.775 1.000 0.734 0.754 0.643 0.683 -0.869 
Inf m 0.786 0.687 0.798 0.734 1.000 0.846 0.811 0.693 -0.897 
L _exp 0.697 0.640 0.753 0.754 0.846 1.000 0.772 0.670 -0.858 
mater 0.780 0.620 0.755 0.643 0.811 0.772 1.000 0.671 -0.848 

gdp 0.667 0.628 0.658 0.683 0.693 0.670 0.671 1.000 -0.864 
ST -0.835 -0.826 -0.870 -0.869 -0.897 -0.858 -0.848 -0.864 1.000 

It can be seen from Table 4.5 that there is a very strong correlation between ST, HDI 

and other indexes. The correlation between ST and HDI is -0.955, which means that 

92 % of the variation ofHDI can be explained by ST. 
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Table 4.5: Correlation matrix between ST, HDI, and other indexes 

ST HDI EDI GDPI LEI 
ST 1.0000000 -0.9545449 -0.8568659 -0.9244939 -0.8589800 

HDI -0.9545449 1.0000000 0.9196896 0.9265910 0.9077694 
EDI -0.8568659 0.9196896 1.0000000 0.7984540 0.7089641 

GDPI -0.9244939 0.9265910 0.7984540 1.0000000 0.7906557 
LEI -0.85898 0.9077694 0.7089641 0.7906557 1.0000000 

Correlation may not be meaningful without linear association. Figure 4.1 and 4.2 

show pairwise scatterplots for ST, the component variables, HDI and the other 

indices. 

Figure 4.1: Pairwise plots for the main variables and ST 
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Figure 4.2: Pairwise plots for ST, HDI and other indexes 
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Figure 4.2 shows a strong linear relationship between ST, HDI and other indices. That 

is, for these data, sequential taxonomy preserves the ordering relationships defined by 

HDI and the other development indices. 

4.3 Distribution theory for distance measures 

Before we can develop a theory for sequential taxonomy imputation, we need to 

know the distribution of the distance vector. In this section we therefore obtain the 

distribution of d; given X is normally distributed. For simplicity, we assume a 

bivariate situation where the data consist of independent measurements on two 

random variables X and Y To find the distribution of (4.6), we start from the simple 

case where X~N(O, CJx2), Y~N(O, CJy2) and R = -V (X-hx)2 + (Y-hy)2 is the distance 

from an arbitrary and fixed point (hx,hy) to (X, J). Here (hx,hy) corresponds to fixed 

maximum points of X and Y or to an ideal vector. Our aim is to find the cumulative 

distribution FR(rlhx,hy) and density function/R(rlhx,hy) for random variable R. 
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Case one: 

Integrating over 8 and making the change of variable u=r2/2a2, so du=rdr/a2 and 

dr=a2du/r, we have: 

Hence, 

(4.7) 

This is the Rayleigh density function. fR(r) has a maximum value at r=a and 

ErR} = a-Vnl2 ~1.2533 a and Var(R)=a2 (4-JT)/2=0.4290a 2 (Johnson,Kotz 

and Balakrishnan, 1994). 
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Figure 4.3: Rayleigh distribution for some values of a 
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It can be seen from Figure 4.3 that when a has small values, the Rayleigh 

distribution is very close to the normal distribution. 

Case two: 

Ordering data via sequential taxonomy requires an ideal vector that is usually 

nonzero. Given ax=o:y=a and h = fh 2 + h 2 > 0, the distribution of R is as follows \j x y 

(J agdish, 1996): 

(4.8) 

where Io(x) is the modified Bessel function of order o. This distribution is also called 

Rice distribution (Johnson, Kotz and Balakrishnan, 1994). Numerical integration is 

required to evaluateFR(r). For large x, Io(x) zeX~ . 
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Figure 4.4: Distribution of fR (r) for some values hand () = 5 
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Figure 4.4 shows the distribution of fR (r) for some values h. when r is farout the tail 

of the curve or when h is large, the Rice density function in (4.8) behaves like a 

normal distribution with mean Jl and variance (}2 (Johnson, Kotz and Balakrishnan, 

1994). 

So far, we have shown that the distance measure or sequential taxonomy coefficients 

have approximately normally distributed under two assumptions. The first is 

()x=()y=() and second is independence of X and Y. To calculate sequential taxonomy 

coefficients as seen in section 4.2.1, the data are standardised. Therefore, the variance 

of X and Yare equal (()x= ()y= 1). In practice, X and Yare dependent; therefore, to 

meet the second condition, correlated variables are transformed to uncorrelated 

variables by standard statistical techniques such as principal component analysis, then 

sequential taxonomy coefficients are calculated. Finally, to justify using the normal 

distribution for taxonomy coefficients, we show the normality of these coefficients by 

a simulation study in section 4.5. 
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4.4 Sequential taxonomy (ST) and concomitants of order statistics 

(COS) 

Now we focus onto the relationship between ST and COS. In chapter 2, we studied 

two variables with a joint distribution off(x,y). According to COS theory, the data 

are ordered according to the values of the variable X and the corresponding ordered 

values of Yare tenned the concomitants of order statistics. In next chapter, it is 

assumed that the distance vector in the sequential taxonomy procedure is equivalent to 

the X variable and Y is a variable with missing values; therefore, the distance variable 

X is the complete variable and missing values occur only in the Y variable. We know 

from section 4.3 that the distribution of the distance vector is approximately nonnal, 

hence: 

(X, Y) ~ N2 (f.11' f.12' (J'~, (J'~, p), 

where f.11' f.12 are the means of X and Y, (J'~, (J'~ are variances of X and Y, respectively, 

and p is the correlation between X and Y. Based on the theory of concomitants of 

order statistics the X values are ordered as follows: 

Thus, the corresponding values of each Y based on the ordered X are: 

1(1:n] ~ 1(2:n] ~ ••• ~ 1(r:n] ~ ••• ~ 1(n:n] • 

Suppose there is a linear relationship between X and Y and, in addition, X is a 

complete and Y is an incomplete variable. More specifically, suppose 1(r:n] is a 

missing value. Thus, we can find the distribution of 1(r:n] based on the theory of 

concomitants of order statistics. In the next chapter, more details of imputing missing 

values and other characteristics ofthe estimation of missing values are given. 

4.5 The simulation study 

In this section, a simulation study is carried out to show the approximate nonnality of 

sequential taxonomy coefficients. A multivariate nonnal database with 1000 cases 

was generated according to the mean vector and the correlation matrix in section 5.8. 

The generated multivariate data contains five variables with no missing values. All 

variables are then standardized: 
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x .. -x. 
Zij = ij 'J , i=1,2, ... ,1000 andj=1,2, .. ,5, 

s· 'J 

where X j and Sj are the mean and standard deviation of the fh variable. The ideal 

vector is then defined as the vector of maximum values of each variable and the 

Euclidian distance between each of the 1000 cases and the ideal vector is computed. 

These distances are referred to as ST in what follows. The number of iterations was 

2000. 

To test the normality of ST there are different normality tests such as the Chi-square 

good-ness of fit, and the Kolomogrov-Simimov test, but here we use the Shapiro­

Wilk test because of the simplicity and availability in the R package. The Shapiro­

Wilk test, proposed by Shapiro and Wilk (1965), calculates a W statistic that tests 

whether a random sample, comes from (specifically) a normal distribution. Shapiro­

Wilk test is one of the most powerful normality tests, especially for small samples. In 

each iteration, the p-value was calculated and if it was higher than a significance 

levels (0.05), then we accepted null hypothesis that is ST has a normal distribution. 

In 2000 iterations, the percentage of insignificant Shapiro-Wilk test was 94.94%. 

Therefore, our simulation result shows approximate normality of ST. Figure 4.5 

shows the histogram of ST in the last iteration. 

Figure 4.5: Histogram of sequential taxonomy coefficients in the last iteration. 
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Chapter 5 

Sequential taxonomy imputation for 

normal data 

5.1 Introduction 

In this chapter, a new imputation method is developed based on an integration of 

sequential taxonomy (ST), concomitants of order statistics (COS) and nearest 

neighbour imputation (NNI) theory. The method is referred to as sequential taxonomy 

imputation (STI) in what follows. STI may be categorised as a nonparametric 

imputation method because of its similarities to NNI, but here we want to apply this 

method to parametric models. It is similar to hot deck imputation methods, especially 

sequential hot deck, when data are ordered non-randomly. STI can be implemented in 

five steps: (1) calculating a distance variable (vector) using all available data, (2) 

identifying the variable with missing values as a concomitant variable for the distance 

variable, (3) ordering both variables according to the distance variable, (4) finding the 

locations and nearest neighbours of the missing values in the ordered data, and (5) 

imputing missing values using nearest neighbour methods. It should be emphasised 

that the distance variable X is assumed to be complete with missing values only in its 

concomitant variable Y. For general definitions of nearness, see sections 3.5.2 and 

3.6.2. It is also assumed that the k nearest neighbours for a case with missing value 

1[j:nl are all available, consisting of % cases "below" this case in the concomitant 

ordering and % cases "above" this case in the ordering. 
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Like any imputation method, STI is based on assumptions. In this chapter, we assume 

a linear relationship between the distance variable X and its concomitant Y. Two 

versions of STI are developed in what follows, the first is single order sequential 

taxonomy imputation (SSTI), and the second is double order sequential taxonomy 

imputation (DSTI). 

5.2 Single order sequential taxonomy imputation (SSTI) 

An imputation method called single order sequential taxonomy imputation (SSTI) is 

proposed here. SSTI imputation uses one complete auxiliary variable to order data 

according to data ordering methods. We assume X is a complete variable and missing 

values only occur in Y. The method developed here assuming a bivariate normal 

distribution for X and Y. To formulize this method we us assume (Xi'~) 

(i = 1,2, ... , n) is an i.i.d. random sample from a bivariate normal distribution 

(X i , ~ ) ~ N 2 (f.1 X , f.1 y , (J' ~ , (J'; , p) , 

where E(X)=f.1x,E(Y)=f.1y,Var(X)=(J'~, Var(y)=(J';andCor(X,Y)=p. It then 

follows that we can write 

(5.1) 

where Xi and Zi are mutually independent, with E(Z) = 0 and Var(Z) = (J';(1- p2) . 

The data is now ordered according to X; and, based on the concomitant statistics 

theory set out in Chapter 2, we have 

(J' 

Yrr:l1l = f.1y + p-Y (Xr:n - f.1x ) + Z[r:nl' 
(J'x 

(5.2) 

where Z[r:nl denotes the concomitant of Zi with respect to X r:n. From the 

independence of Xi and Zi' we can conclude that Xr:n and Z[r:nl are independent. 

Here we use the same notation as in Chapter 2, so by setting 

X -1/ X -1/ X -1/ - E( r:n r X ) d fJ - C ( r:n r X S:/1 r X ) - 1 2 a r :11 - an rS:11 - ov , , r,s - , , ... ,n, 
(J'x (J' x (J' x 
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then, from (5.2) we have: 

E(Yrr:IIJ) = J1y + payar:lI , 

Var(Yrr:nJ) = a;(p2 Prr:n + 1- p2), 

Cov(Xr:lI , Yrs:nJ) = pa x a y J3rs:n' 

Cov(Yrr:lIl' Yrs:nJ) = p 2
a;prs:n r::j:. s, 

(5.3) 

5.4) 

(5.5) 

(5.6) 

where a r:1I 
is the expectation of the rlh of order statistics and firs:n is the covariance 

of rill and sth order statistics from standard normal distribution. In order to calculate 

the expectation and variance of Yrr:nJ ' we therefore need to calculate the expectation 

and variance ofthe rlh order statistic of X 

To construct a mathematical theory under SSTI, suppose Yrr:IIJ is a missing value and 

we wish to impute Yrr:nJ by the k nearest neighbours of Yrr:nJ' as defined by the 

concomitant ordering of Y in terms of X A simple predictor of this missing value is 

the average of its two nearest Y values, or more generally, the average of the k nearest 

neighbours of Yrr:nJ ' defined as the kl2 values above and the kl2 values below Yrr:IIJ . If 

there are missing values in these k nearest neighbours of Yrr:IIJ ' then the next complete 

cases in the ordering are used until a total of k are identified. It should be noted that 

may be missing values in the k nearest neighbours of Yrr:nJ . In this case, we have to re-

index the k neighbours and include the k nearest values with non-missing values. 

However, in this case, the k neighbours may no longer be balanced (k12 values above 

and below of a missing value). Therefore, existence of these neighbours is important, 

and in the case of unbalanced situations it may decreases the efficiency of our 

proposed imputation method. The following developed theory for SSTI is based on 

the availability of all k neighbours, and the effect of missing values needs further 

research. We therefore assume that the k nearest neighbours of Ycr:nJ are complete and 

given by 

Yrr-i:nJ and Yrr+i:nJ' i = 1,2, ... , ~ . (5.7) 
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An imputation for Yrr:nl based on these k neighbours is then 

kl2 

L (Yrr-i:nl + Yrr+i:nl) 

f i=l 
[r:nl - --'-=---k---

To illustrate (5.8), we investigate the simple case k=2, where 

A Yrr-1:nl + Yrr+1:nl 
Yr r:n 1 = -"---'--'-"-2----'---'-

(5.8) 

(5.9) 

That is, the imputation for Yrr:nl is the average of the Y values for the nearest complete 

cases above and below this case in the concomitant ordering. In the next two sections, 

some statistical properties of(5.8) and (5.9) are established. 

5.2.1 Expectations of ~r:lIl for two and k nearest neighbours 

From (5.9) the expectation of ~r:nl when k=2 is 

(5.10) 

By substituting the expectation of Yrr:nl from (5.3) in (5.10), we see that 

(5.11) 

X -II X -jl where a = E( r-1:n rx) and a = E( r+1:n X) 
r-1:11 r+1:n • 

~x ~x 
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The parameter we are interested in calculating is the mean of prediction error, which 

iSE(Yrr:II]-Yrr:nJ. By substituting (5.11) and (5.3) in the prediction error fonnula we 

have 

E y,: -y,: -E y,: -E y,: ( ~ ) (~) ( ) [r:n] [r:n] - [r:n] [r:n] (5.11a) 

= fl + pCY (ar- I :n + ar+I :II ) - fl - pCY a 
y y 2 Y Y r:n 

= pCY (ar- I :n + ar+l :n - a ) 
Y 2 r:n 

As can be seen the prediction error is not necessarily zero. However, it easily can be 

shown that the prediction error is asymptotically equal to zero as follows: 

For ease of writing take fly = flx = 0, CY x = CYy = 1, and by substituting (2.20) in 

(5.10) and (5.11a), and assuming a bivariate nonnal distribution for X and Y it 

immediately can be seen that 

E y,: -y,: ~o. ( ~ ) 
[r:n] [r:lI] 

We can easily generalize (5.11) to the k nearest neighbours. Suppose k nearest 

neighbours are available for Yrr:nl' by using (5.3) and (5.8), we have: 

kl2 

I (ar - i:n + a r+i:n ) 

E(Yrr:nl) = fly + pCYy --'..i;--'...I ____ _ 

2 
(5.12) 

where ar:n = E(Xrn - flx) , fly is the mean, CYy is the variance of Y. Again as can be 
CYx 

seen from (5.12), the prediction error of ~r:1l1 according to (5.11a) is necessarily not 

zero. However, by substituting (2.20) in (5.12), it immediately can be seen that the 

mean prediction error for ~r:nl is asymptotically zero. 
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5.2.2 Variance of ~r:nl for two and k nearest neighbours 

In this section, we find the variance of 1[r:nl under SSTI according to two and k 

nearest neighbours. 

a) Variance of ~r:nl for two nearest neighbours 

In this section we calculate the variance of ~r:nl when k=2. We use the following 

fonnula to calculate the variance of~r:nl . 

Var(~)r:~) = LW;2Var(~)+2LW;~Cov(~,~) (5.13) 
i<j 

By substituting (5.9) in (5.13), we have: 

and by substituting (5.4) and (5.6) in the above fonnula we have: 

A 1( 2 2 2) 1( 2 2 2) 1 22 
Var(1[r:nl) = 4" O"y (p /3(r-l)(r-l):n + 1- P + 4" O"y (p /3(r+l)(r+l):n + 1- P + 20"YP /3(r-l)(r+l):11 . 

Then, by simplifying, we have: 

( A) 2{1( 2 2) 1( 2 2) 1 2 } 
Var Yrr:nJ =O"y 4" P fJ(r-l)(r-l):n+ 1-p +"4 p fJ(r+l)(r+l):n+ 1-p +2 P /3(r-l)(r+l):n . 

Hence, the variance of for ~r:nl can be written as follows: 

A 2 { 2 ( 1 1 1 ) 1 _ p2 } 
Var(1[r:nl) = O"y P 4" fJ(r-l)(r-l):n +"4 fJ(r+l)(r+l):1I +2 fJ(r-l)(r+l):n + 2 (5.14) 

Finally, the variance for ~r:nl can be estimated as follows: 
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A 2 { 2 ( 1 1 1 ) 1- r2 } 
Var(Yrr:nl) = Sy r 4" f3(1'-I)(r-l):n + 4 f3(r+I)(r+I):1l +"2 f3(r-l)(r+I):n + -2- , 

where 

fJA __ Co (Xr:n -x Xs:n -XJ rs:n V , --"-"'--- , 
Sx Sx 

( - -J A X r- I:n - X X r- I:n - X 2 
/3(r-I)(r-I):n = COV , = SX,._ln and 

Sx Sx 

( - -J A X -X X -X 
C r+l·n r+l·n 2 = OV· . = S /3(1'+I)(r+I):n ' X r +bl 

Sx Sx 

are the covariance of X r:1l 
and Xs:n ,the variance of X r-I:n and the variance of Xr+l:n 

respectively. In addition X and S x are the sample mean and standard deviation of X 

and r is the correlation between X and Y Therefore, to find the variance of ~r:nl' we 

need to find the expectation and the variance and covariance of the rlh and Sill of 

order statistics from a standard normal distribution. 

The prediction variance for Yrr:ll] when k=2 can be found as follows 

By substituting (5.9) in above formula we have 

var(f -Y, )=var(f )+Var(y, )-Cov(y, Y, )-Cov(y, ] y,[ ]) [r:ll] [r:n] [r:n] [r:n] [r-I:Il] , [r:n] [r+l:n' r:n ' 

where Var(Yrr:n]) has been calculated in (5.14). Therefore by substituting (5.4), (5.5) 

and (5.14) we have 

(

A ) 2{ 2(1 1 1 f3 Var 1[r:n] -1[1':11] = (J' y p "4 f3(r-I)(r-I):11 +"4 f3(r+I)(r+I):1l +:2 /3(r-I)(r+I):n + rr:n 

+ f3(r-I)(r):11 + /3(r+I)(r):n ) + ~ (1- P 2) } 

b) Variance estimation for k nearest neighbours 

An estimator that use k nearest neighbours for the missing value Yrr:1l1 is as follows: 
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(5.15) 

By substituting (5.15) in (5.13) we have: 

1 [k12 
= 11 ~ Var (1[r-in] + 1[r+i:n]) + 

2 L: ( Cov (1[r-i:nl' 1[r-j:n]) + Cov( 1[r+i:nl' 1[r+ In]) + Cov( 1[r-i:nl' 1[r+j:n]) + Cov( 1[r+i:nl' 1[r-j:n]))] 
I<J 

(5.16) 

Formula (5.16) is divided into two terms, the variance, and the covariance term. We 

expand the first term as follows: 

0'2 kl2 

= -L "[p2fJ + 1- 2 + 2fJ + 1- 2 + 2 2/3 ] 
k2 ~ (r-i)(r-i):n P P (r+i)(r+i):n P P (r-i)(r+i):n 

(5.17) 

Now we tum to the second term of (5.16). Here, we have: 

e II = 2:L ( Cov( 1[r-i:n] ' 1[r-Jn]) + Cov( 1[r+i:n] ' 1[r+ j:n]) + Cov( 1[r-i:n] ' 1[r+ j:n)) + Cov( 1[r+i:n] ' 1[r-Jn])) 
i<j 

=2"( 2 2(l 2 2(l 2 2(l + 2 2(l ) ~ P 0' y fJ(r-i)(r- j):n + P 0' y fJ(r+i)(r+ j):n + P 0' Y fJ(r-i)(r+ j):n P (J' Y fJ(r+i)(r- j):n 
i<j 

= 2 p2 O'~ I (fJ(r-i)(r- j):n + P(r+i)(r+ j):n + fJ(r-i)(r+i):n + fJ(r+i)(r- j):n ) • 
i<j 
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By multiplying ~ from (5.16), we have: 
k 

2p2a 2 

II = k 2 y.z: (/3(r-I)(r- j):1l + /3(r+I)(r+ j):n + /3(r-I)(r+i):n + /3(r+I)(r- j):n) • 
I<j 

Finally, from (5.17) and (5.18) we have 

~ p 2a 2 12 

[ 

k/ 

Var(J[r:nl) = 7 ~ (/3(r-i)(r-i):n + /3(r+i)(r+i):n + 2/3<r-i)(r+i):n ) + 

( )] CJ; (1- p2) 2.z: fJ(r-i)(r-J):n + /3(NI)(r+ j):n + /3(r-I)(r+ j):n + fJ(r+i)(r- j):n + k ' 
I<j 

(5.18) 

(5.19) 

where p is the correlation coefficient between X and Y, a; is the variance of Y. In 

addition, 

/3 = cov(Xr:1l - flx Xs:n - flx J 
rs:n " 

ax ax 

/3 C (
Xr-i:n - flx X r- i:n - flx J 2 d 

(r-I)(r-i):n = ov , = a x,_,,, an 
ax ax 

/3 . . = cov(Xr+i:n - flx , Xr+i:n - flx J = a 2 
(I +1)(r+1).n x,"+"" 

ax ax 

are the covariance of Xr:n and Xs:n ,the variance of X r- i :n and the variance of Xr+i:n ' 

respectively. As we know Xr:n is the rth order statistic of the variable X Therefore, to 

find the variance of ~r:nl' we need to find the expectation and the variance and 

covariance of the rth and sth of order statistics from the standard normal distribution. 

The prediction variance for Yrr:n] under k nearest neighbours can be found as follows 

Var y; -y; = Var Y; + Var Y; -2Cov Y; Y; . ( ~ ) (~) () (~ ) [r:n] [r:ll] [r:n] [r:n] [r:ll] , [r:n] 
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By substituting (5.8) in above formula we have 

(A) (A) ( ) 2 ~ (( ) ( )) Var y; - y; = Var y; + Var Y; - - Cov Y; . Y; - . r.: [r:n] [r:l1] [I':n] [r:n] k fr [r-t:n] , [r:n] Cov 1r+t:n] , [I':n] , 

where Var( Yrr:n]) has calculated in (5.19). Therefore by substituting (5.4), (5.6) and 

(5.19) we have 

Var( Yrr:n]-1(r:n]) = 

p
2a; (fJrr:n + ~( a a + 2 a ) k2 k2 ~ f/(r-i)(r-i):n + f/(r+i)(r+i):11 f/(r-i)(r+i):11 

-~IX !3cr-i)(r):11 + fJ(r+i)(r):n ) + 2 ~(fJ(r-i)(r-)):11 + !3cr+i)(r+ )):11 + !3cr-i)(r+ )):11 + !3cr+i)(r-)):11 )J . 
1=1 I<j 

(k+ l)a;(1- p2) 
+ . 

k 

5.3 Double order sequential taxonomy imputation (DSTI) 

We generalize SSTI to double order sequential taxonomy imputation (DSTI). In this 

method, we use two components to order the data, and as a result, there are two sets of 

nearest neighbours for a missing value. In the previous section (5.2) for data 

imputation, we had two variables, X and Y, and the data were ordered based on X. 

Then the expectation and variance of ~r:fll were found with two and k nearest 

neighbours. In this section, there are three variables Xl' X 2 and Y , and the data is 

ordered according to Xl andX2 , which are assumed to be complete variables. To 

conduct DSTI, two scenarios exist. In the first scenario, data is ordered based on a 

linear combination of Xl andX2 , and in the second scenario data is separately 

ordered on these variables. This section is divided into two sub-sections, the first sub­

section reviews imputed value properties of the linear combination of two orders, and, 

the second sub-section reviews the imputed value properties of two separate orders. 
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5.3.1 Imputation by a linear combination of two orders 

Suppose three random variables Xl' X 2 and Y exist, where Xl ~ N(1l Xl' CJL~) , 

X 2 ~ N(llx ,CJ~) and Y ~ N(lly,CJ~). We want to order the data according to the 
2 2 

linear combination of Xl and X 2 • That is 

(5.20) 

where al and a2 are fixed. This case is similar to the single order sequential 

taxonomy imputation. Based on statistical properties of normal distribution (Johnson 

and Kotz, 1994) the linear combination of two normal random variables (5.20) has 

normal distribution as follows: 

(5.21) 

where CJ X X is the covariance between Xl andX2 • In addition, it is assumed that the 
I 2 

Xl and X 2 are complete, and missing values occur only in the variable Y. Thus, this 

case changes to SSTI, and all of the assumptions and formulae in section 5.2 are valid 

for imputation by the linear combination of two orders. Expectations, variances, and 

covariances of the order statistics X are obtained according to the distribution of X 

(5.21). This method is more efficient than SSTI if PX,y ;:;::max(PX
I
,Y'PX

2
,y) according 

to the regression properties. 

5.3.2 Imputation with two separate orders 

In this method, the data is ordered based on two complete variables and nearest 

neighbours under each ordering are obtained separately. Therefore, there are two sets 

of nearest neighbours for a missing value, where the first set comes from ordering by 

the first component, and the second set comes from ordering by the second 

component. 

Let Xl ~ N(llx ,CJ~), X 2 ~ N(llx ,CJ~) andY ~ N(IlY'CJ~). The data is divided into 
1 I 2 2 

two sets: (Xl'Y) and (X2 ,y). Thus, two separate datasets exist, and the link between 
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them is the correlation between XI andX2 • Therefore, we have two sets of 

concomitants of order statistics: 

(XI(r1:nl'~[rl:n]),r1=1,2, ... ,n , 

(X2(r2:n)' Yz[r2:n])' r2 = 1,2, ... , n , 

where ~[rln] is the concomitant of XI(rl:n) and Yz[r2:n] is the concomitant of X 2(r2:1I)' In 

addition, XI(rl:n) and X 2(r2:1I) are complete and missing values occur in ~[rl:lI] 

and Yz[r2:n] . 

In order to develop a mathematical theory for DSTI suppose (Xli,J~) and (X2i,1~) 

(i = 1,2, ... ,n) are i.i.d. random samples from a bivariate normal distribution, such that 

Cor(XI'Y) = PI and Cor(X2,y) = P2. From statistical properties of bivariate normal 

distribution we then have 

(5.22) 

(5.23) 

where Xli and ZIP and X 2i and Z2i are mutually independent. Then from (5.22) 

and (5.23), it follows that E(ZI)=O, 

Var(Z2) = a~(1- p~). 

Assume XI and X 2 are ordered, and ~ and .r; are concomitants of XI and X 2 

respectively. Hence, from (5.22) and (5.23), we have: 

Y. - a y (X - ) Z I[r:n] - fly + PI Ir:n flx! + I[r:n]' 
ax! 

(5.24) 

(5.25) 
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where ZI[r] and Zl[r] are concomitants of Zli and Zli with respect to X lr:n and X lr:n . 

From the independence of Xli and Zli we can conclude that X lr:n and ZJ[r:n] are 

independent. Similarly from the independence of Xli and Zli it is concluded that 

X lr:
1l 

and Zl[r:n] are independent. 

In order to establish an imputation method for the missing value under DSTI, we 
~ 

suppose that there are two sets of imputed values for a missing value, given by ~[r:n] 

and ~[r:n]' which we then combine to form a unique imputed value as follows: 

~r:n] = ai;"[r:ll] + (1- a )~[r:n] , (5.26) 

where a is a fixed. From (5.26), the statistical properties of the missing value 1[r:n] 

can be found. The expectation of ~r:n] is: 

(5.27) 

where E(i;"[r:n]) and E(~[I':n]) are the expectations of imputed values based on a 

single order as discussed in section 5.2. Consequently E(~r:n] I a) is asymptotically 

equal to the population mean of Y. As seen from section 5.2.1 E(i;"[r:n]):= fly and 

The variance of ~I':n] can be found as follows: 

Var(~r:n]1 a) = Var(ai;"[r:ll] +(l-a)~[I':n])' 
1 ~ 1 ~ ~ ~ 

= a Var(~[r:n]) + (1- a) Var(Yz[r:n]) + 2a(1- a)Cov(J';[r:n] , .Y;[r:n]) 5.28) 

where Var(i;"[r:n]) and Var(~[r:n]) are the variances of the imputed values under the 

separate ordering. Then from (5.24), (5.25), and (5.28), we have: 

1 

- PIPlO'y C (X X )+ PIO'Y C (X Z )+ 
- OV II':n' 2r:n -- ov Ir:n' 2[1'] 

O'X!O'x, O'X! 
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(5.29) 

Now the important question is how to define "a" for equation (5.26). Equation (5.26) 

can be seen as a weighted imputation method for two different imputation procedures. 

The constant a in (5.26) is chosen to give the imputed values minimum variance. We 

calculate a by differentiating the prediction variance Var(~r:n] - 1[r:n] 1 a), with respect 

to a, and setting the result to zero. The prediction variance of ~r:n] under DSTI is 

Var(~r:n] - 1rn] 1 a) = Var (~r:n]) + Var( 1[r:II]) - 2Cov( ~r:nl' 1[r:n]) . 

By substituting (5.26) in above formula we have 

" 2" 2" " " 
Var(1[r:n] - 1 r:n] 1 a) = a Var(~[r:n]) + (1- a) Var(~[r:II]) + 2a(1- a)Cov(~[r:n]' ~[r:n]) 

+Var( 1[r:n]) - 2aCov( ~[r:nl' 1[r:n]) - 2(1- a )Cov( ~[r:nl' 1[r:n]). 

Then by differentiating, this formula with respect a and setting equals to zero we have 

a(Var(~r:n]) )/aa = 2a Var(~[r:II]) - 2(1- a)Var(~[r:n]) + (2 - 4a)Cov(~[r:nl' ~[r:n]) 

-2Cov( ~[rnl' 1[r:n]) + 2Cov( ~[r:nl' 1[r:II]) = 0 . 

Solving for a, we have 

Var( ~[r:II]) + COv( ~[r:II]' 1[1':11]) - Cov( ~[r:nl' 1[r:n]) - Cov( ~[r:lIl' ~[r:n]) 
a = Var (~[r:n]) + Var (1;[r:n]) - 2Cov( ~[r:nl' 1;[r:n]) 

The above formula depends on the covariances of true and imputed values, which are 

unavailable. Therefore, in practice we use the following procedure to find a. 

1) For each ordering, a mean vector based the values of nearest neighbours under 

that ordering is calculated. Then, two Euclidean distances of a missing value 

from the two mean vectors are calculated according to the available 

information of the missing value and these two vectors. These are d1i and d2i , 

i=i,2, .. ,m, where m is the number of missing values. In other words for each 

missing value we have two distance values. 

2) a can be defined for each missing value as follows: 
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a =1 

a=O 

a = 0 or 1 

where in the case of two equal distances, we can choose a=J or a=O 

randomly. 

5.4 Evaluation and simulation study 

Different imputation methods have been designed for different types of data. In 

addition, every imputation method has its own assumptions, such as the missing data 

pattern, the missing data mechanism, and possibly the distribution of the data. 

Therefore, when comparing and evaluating imputation methods, it is necessary to 

determine and consider all the assumptions and the type of data required; otherwise, 

the comparisons and evaluations are not valid. There are two main purposes in the 

evaluation of imputation methods. The first aim is to identify the capability of any 

imputation method to predict true data in the sample and the second is to assess the 

statistical imputation effects on the data. In other words, an imputation method affects 

the quality of the estimates and data. In evaluating an imputation method, the most 

relevant concerns are the bias of point estimators, the variance of estimates, and the 

ability to predict missing values correctly. In the statistical literature on evaluation, 

there are two points of view. The first focuses on evaluation when true values are 

known, and is essentially a simulation-based approach (Chambers 2001), and the 

second focuses on evaluation when the true values are unknown. The first type of 

evaluation method is usually used for the establishment and comparison of different 

types of imputation methods, and for assessing the suitability of an imputation method 

for specific application. Which evaluation criteria to use depends on the purpose of on 

study. For example, if our aim is to estimate the sample mean, we then shall focus in 

the estimation accuracy and so on. This section is divided into three sections: the first 

is concerned with evaluation, when true values are available; the second is concerned 

with the establishment of assessment measures for imputation methods when true 

values are not available; and the third describes a simulation study that was used to 
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compare the imputation methods described in this chapter with a number of other 

commonly used methods. 

5.5 Evaluation methods when true values are available 

According to Chambers (2001), the evaluation criteria for companng different 

imputation procedures include predictive, ranking, distribution and estimation 

accuracy as well as imputation plausibility. An efficient imputation method should 

have some of the following properties: 

a) Predictive accuracy, which means that that the imputed values should be 

close to the true values 

b) Ranking accuracy, which means the imputed values should preserve the 

ranks of true values 

c) Distribution accuracy, which means that the imputation method should 

preserve the distribution of true values. 

d) Estimation accuracy, which means that the imputation procedure should 

produce unbiased and efficient estimators for the parameters of the 

population distribution of true values. 

e) Imputation plausibility, which means that the imputed values should be 

plausible with respect to other values and other variables; for example, the 

imputed values should be verified by all edit tests. 

Note that some of the above properties are used for continuous data and some are 

used for ordinal or categorical variables. This section reviews only the predictive and 

distribution accuracy, and the estimation accuracy is reviewed in section 5.3. 

5.5.1 Distribution accuracy 

The consistency of marginal distributions between true and imputed values is a 

measure of the validity of the imputation method. Stuart (1955) offered a test statistic, 

which has a Chi -square distribution. Chambers (200 l) adapts this statistic to 

imputation leading to a Wald statistic expression. This method is based on the 

following assumptions: 
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Suppose Y is a multinomial variable with c + 1 categories. We assume the last 

category of Y as a reference category, which contains missing values. We map the 

first c categories of Y to a c-vector y. In addition, we use index i for a specific case. 

Therefore, Yi = (Yij) for case i, where Yik = 1 for Y = k < c + 1 and Yij = 0 for j *- k. 

Let Yi be an imputer for Yi' Pi is the probability of observing category i, and Pi is 

the estimator of Pi' Then the first assumption is: {Yi} represents independent draws 

from multinomial(pJ (imputed values for different individuals are independent of 

one another and drawn from some distributions). The second assumption is: imputed 

and actual values for an individual are independent of one another, as well as across 

different individuals. This assumption reflects the fact that 

• Variation in the pi's accounts for all dependence between different individuals (no 

residual dependence), 

• The Pi'S are based on responding individuals, 

• The respondent sample size is large enough to ignore correlation between Pi and 

Pj when i *- j. 

We then have: 

= [R - SY [diag(R + S) - T _TT ]-1 [R - s], (5.32) 

where Rand S are the marginal counts of ex c upper left matrix of contingency table 

of Y/ and ~nis and T = (nij)' i, j = 1,2, .. , c. Wald has asymptotically x/ distribution. 

The following is the contingency table. 
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yl 
I 

1 '" c c+l R 

~nis 
1 nl. 

nij 

c np. 

c+l nv+l. 

S n.l ... n.v n.v+l 

For continuous variables, the Kolomogrov-Smimov test (KS) can be used to test the 

equality of marginal distribution between true and imputed values. Let Y/ and ~T be 

imputed and true values, respectively. The KS distance can be written as follows: 

(5.33) 

where 

n 

LWJ(~T ::::;t) 
F T (t) = --,,=;=,,-1 ---

:t;1 n 

LW; 
;=1 

n 

LWJ(~1 ::::;t) 
F (t) = i=1 and 

y! n 

" L~' 
;=1 

Wi are the sampling weights. Marginal distributions of true values and imputed values 

are equal (F ! (t) = F T (t), 'if (t)), when KS = 0 
Y,I Y" 

5.5.2 Predictive accuracy or preservation of individual data 

The extent of preservation of individual values can be measured if true or validated 

data are available. Suppose Y is the variable with missing values, and let ~T and ~l 
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be true and imputed values of Y for i = 1,2, ... , n, respectively. The definition of the 

predictive accuracy measure depends on the scale of measurement of Y. For a nominal 

variable Y, a measure of preservation of individual values can be written as follows: 

1 ~ T J 
d yT yf = - LJ(Y; ,Y; ), 

, n i=l 

(5.34) 

where 

T J {I I(Y ,Y ) = 
I I 0 

yT =yJ 
I I 

otherwise 

When formula (5.34) is equal to one, the imputation method preserves individual data 

perfectly. Chambers (2001) obtains the variance of D = 1- d yf T as follows: 
,y 

s~ = n-1 
- n-21t {diag(R + S) - T - diag(T)}l = n-1 (1- D), (5.35) 

where 1 denotes a c-vector of ones, and the definitions of R, Sand T are as gIVen III 

section 5.5.1. In an ideal condition, when the imputation method preserves individual 

values, D is zero. Knowing this fact, we can build a statistical test for D. Hence, if 

D > & + 2fS'i ' then it can be said that the imputation method does not preserve the 

individual values. There is a variety of ways to calculate & . Chambers (2001) sets & 

to zero and suggests & * = max( 0, D -2fS'i). Therefore, the smaller values of 

& * show a better imputation method, and when & * is equal to zero it can be said that 

the imputation method preserves the individual values. 

From Chambers (2001), for an ordinal variable Y, predictive accuracy can be 

measured by 

(5.36) 

where: 
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if yT = yI 
I I 

if ~T :;t: ~I and ~T, ~I :;t: blank 

if ~T :;t: ~I and ~T or ~I = blank 

and m = (max(Y) - min(Y) ) + 1 if the category blank is in the domain of Y, while 

m = (max(Y) - min(Y)) if the category blank is not in the domain of Y . 

For continuous variables there are three measures to obtain predictive accuracy: the 

first, transforming continuous data to categorical data, then using the Wald statistic 

and D to test preservation of marginal distribution and individual values; the second 

calculating the distance between true values and imputed values, the third, fitting 

regression line between the true values and the imputed values or calculating 

correlations between true and imputed values (RHO = Cor(~T ,~I)) . Hence, for the 

second case we have 

(5.37) 

where a > 0 while, a = 2 corresponds to the Euclidian distance between the true and 

imputed values. In the third case, ~l is considered a dependent variable and ~T is an 

independent variable. Then the regression properties of the fitted model, such as R2 

and root mean square error (RMSE), are calculated. Large values of R2 or RHO and 

small values ofRMSE represent a good imputation method. 

5.6 Evaluation methods when true values are not available 

In reality, true values might not be available. Hence, performing the evaluation 

method for imputation is more difficult than in the case of knowing the true values. 

When conducting the evaluation method, knowing the purpose of the imputation 

method is very important. For example if the aim is to estimate the population 

parameter e, then some aspects of classical statistical evaluation methods are 

involved, such as unbiasedness of the estimators, having the minimum variance and 
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standard errors for the estimator of 8, preservation of the distribution of data, and 

preservation of the relationship between variables. 

The first measure of the performance of an imputation method is bias. In an ideal 

situation, the estimator of the unknown population parameter should be unbiased, but 

an estimator with low bias is also desirable. Let 8 be the population parameter and 8 

its estimator based on the imputed dataset. In addition, let SE(B) be the standard error 

for 8. Unbiasedness of the unknown population parameter estimator means 

E(8) = 8. 

Interpreting the amount of bias is difficult; there are two ways of looking at it in order 

to get alternative information for the evaluation of imputation performance. 

The first measure is relative bias, which can be defined as follows: 

E(8)-8 

8 

(expressed as a percentage of 8). The second measure is standardized bias, which is 

a percentage of standard error: E(8) -:8 *100. According to Schafer (1997), if the 
SE(8) 

amount of the standardized bias exceeds 30%, it starts to adversely affect the coverage 

of confidence intervals. 

The combination of unbiasedness and low variance creates a measure of accuracy, 

which is the mean square error for 8. The formula for mean square error is 

Mean Square Error = Variance + (Bias)2 , 

where high values of mean square error are not desirable, because they imply either 

big variance or big bias ( or both). 

5.7 The simulation study 

The aim of this section is to assess the performance of single order and double order 

sequential taxonomy imputation methods (SSTI and DSTI), using simulated 
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multivariate normal data. In order to assess this performance, three simulations were 

carried out using a database that contains synthetic missing values. The simulated data 

involves cases with no missing information. Selected data items, for which full 

information was available, were artificially considered as missing and imputation 

procedures were applied to impute their values. In these simulations, different 

percentages of missing values (20% missing values under MCAR and approximately 

20% and 30% missing values under MAR) for k= 10 nearest neighbours and different 

types of missing data mechanism were used in order to compare their effect on 

results. Moreover, means and variances of population and imputed values, 

correlations between true and imputed values and Wald statistic were calculated in 

order to evaluate the properties of the estimators. 

A brief description of all the steps taken in this simulation will be given in this 

section. This includes the use of the ranks, imputation and more general material as, 

for example, the generation of the database. 

5.7.1 Generation of the multivariate normal database 

A multivariate normal database was generated as shown in section 5.8, with different 

means and covariance matrices. The generated multivariate data contains five 

variables with no missing values. The missing values are generated by an ignorable 

missing data mechanism. In this case, the generation of missing values is based on 

two popular missing data mechanisms. Those are missing completely at random 

(MCAR) and missing at random (MAR). In addition, the rate of generated missing 

values was set to 20% of the data file with missing values generated to four of the five 

variables. In other words, one variable was assumed complete. 

5.7.2 Ordering the data file 

SST! and DSTI use data ordering to impute missing values. Therefore, the data were 

ordered by three different techniques. These are the sequential taxonomy coefficients 

(see Chapter 4), the first component of principal component analysis and the 

Euclidian distance of each case from the centre (EDC). 
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5.7.3 Imputing 

Given the different ordering, SSTI and DSTI imputation was carried out 

independently for each order. In addition, some other imputation methods were 

carried out to compare perfonnance. The imputation methods that were investigated 

were single order sequential taxonomy imputation (SSTI), double order sequential 

taxonomy imputation (DSTI), regression imputation (RI) , stratified hot deck 

imputation (SHDI), Euclidian distance from centre imputation (EDCI), and principal 

component analysis imputation (PCAI). Actually, SSTI, DSTI, EDCI, and PCAI are 

in the same family of imputation methods, which in these methods the data are 

ordered according to the coefficients calculated by these methods. Under these 

methods, the location of the missing values is specified and k nearest neighbours for 

missing values are selected. Regression imputation (RI) actually is a fonn of 

conditional mean imputation. Under multivariate nonnal assumptions, the imputed 

value will be the mean of the variable, multiplied by its associated coefficient. In this 

study, we assume the variable with missing values as a dependent variable. The 

dependent variable can be ~ ,1; ,1;, or ~. A multivariate regression was carried out 

based on all available observations and then the regression models were used to 

predict missing values. To conduct SHDI the data categorized into 10 homogeneous 

categories based on a k-means technique, then missing value is replaced by a 

responding value from a donor randomly selected from a set of potential donors in 

each category. It is assumed that the number of nearest neighbours is k= lOin this 

simulation. 

5.7.4 Evaluation of imputation methods 

Different graphs, tests, biases, and variances are used to evaluate the imputation 

methods. These are mean and variance of the population and imputed values, 

correlation between true values and imputed values in order to compare preservation 

of individual values, and the Wald statistic test for comparison of the marginal 

distribution of true and imputed values. In addition, different graphs are produced to 

compare means, and the variances of imputed values with true values. Finally, real 
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orders of data (calculating data orders in the complete data) were calculated to assess 

the performance ofthe ordering based imputation methods. 

5.8 Data 

The database used for the analysis consists of five normally distributed 

variables ~, Yz, 1;, ~, Ys, which are generated by simulation. The mean vector of these 

variables is f1 = (50,40,60,35,20) and correlation matrix for this database is set out in 

Table 5.1. 

Table 5.1: Correlation matrix for multivariate simulated data 

~ 1.0000 0.5668 0.3960 0.4465 0.5090 

Yz 0.5668 1.0000 0.3863 0.3194 0.4343 

1; 0.3960 0.3863 1.0000 0.4620 0.5273 

~ 0.4465 0.3194 0.4620 1.0000 0.4159 

Ys 0.5091 0.4344 0.5273 0.4159 1.0000 

In order to obtain the bias and variances of estimators as well as estimators for the 

variance in some cases, a simulation was carried out. The simulation involved several 

steps, which are explained below. 

1. Generation of the databases. First 2000 databases each with 1000 cases were 

created according to the above mean vector and the correlation matrix. These 

2000 databases are fully observed with no missing values. 

2. Generation of missing values. In these files, the missing values were 

generated under two missing data mechanisms: MCAR and MAR. Missing 

values under the MCAR assumption are generated by uniform distribution and 

the occurrence of missing values does not depend on the other variables. In 

other words, each variable (~, Yz, 1;, ~) has been indexed from 1 to 1000 and 

then 200 of observations in each variable were defined as missing values 

according a random sample of size 200 from 1000 cases. The missing values 

under the MAR assumption are generated under a logistic model conditioned 

on the complete variable Ys. For the MAR mechanism, we used the follwing 
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two models, where the average response probability of observations are 0.80 

and 0.70, respectively. 

Po 80 (i)=exp(O. 1+0.07 * YsJ/(1+exp(0.1+O.07*YsJ) , i =1,2, ... ,1000 

Po.70 (i)=exp(0.1+O.0385 *YsJ/(1+exp(0.1+O.0385*YsJ), i=l,2, ... ,l000. 

Where Po.so (i) and PO.70 (i) are the response probability of ~, r;, 1; and ~, 

when the probability of respondents are 0.80 and 0.70, respectively. We then 

generated a uniform random sample P a (i, j) ~ U (0,1), i = 1,2, ... , 1000 and 

j = 1,2,3,4 for each variable and each case separately. In the first simulation, 

if Pa (i, j) was less than Po.so (i) case i was considered as a respondent for 

variable j. In this simulation, the observed number of missing values is 197 

cases for all variables. In the second simulation, if P a (i, j) was less than 

PO.70 (i) case i was considered as a respondent for variable j. In this simulation, 

the observed number of missing values is 304 cases for all variables. 

3. Ordination of data. In order to carry out the imputation, the data file in each 

iteration is ordered according to the different ordering methods. The data are 

ordered according to sequential taxonomy coefficients, the first component of 

principal component analysis, and the Euclidian distance from the centre of 

the data. The centre in the Euclidian distance based ordering is defined to be 

the zero vector. 

4. Imputation. After ordering the data, SIX different imputation methods are 

carried out in each iteration. These methods are set out in Table 5.2 below. 

Table 5.2: Applied imputation methods 
Single order sequential taxonomy imputation (from max points) 
Euclidian distance from centre imputation 
Regression imputation 
Principal component analysis imputation 
Stratified Hot Deck Imputation 
Double ordered sequential taxonomy imputation 
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It should be noted that, SHDI was implemented using a classifier based on a k-means 

clustering technique. 

5. Evaluation. There is no doubt that the evaluation of imputation methods 

depends on the aim of the study and available information for testing the results. This 

thesis evaluates the imputation methods according to the three following principles: 

the first is a comparison of marginal distributions of real and imputed values, the 

second is a comparison of the individual values and the third is an assessment of the 

properties of the estimators used in the study. 

Preservation of marginal distributions is essential when the imputed data are going to 

be used for estimating aggregates or totals. In this case, preserving marginal 

distributions guarantees an accurate estimation of these aggregates, since individual 

values are not needed separately, such as in descriptive studies. Nevertheless, in some 

cases where micro data are required, it is important to maintain a relationship between 

variables for the sUbjects. 

Therefore, in order to evaluate the three aspects mentioned at the beginning of this 

section, three different criteria were used. These are the correlation of real and 

imputed values for testing the preservation of individual values, the Wald statistic for 

testing the preservation of marginal distribution and finally comparison of the mean 

and the variance of real and imputed values. 

5.9. Results 

Before presenting the results, it is necessary to define the characteristics of the 

simulation. Firstly, the distribution of the generated data is multivariate normal; 

secondly, other characteristics of this simulation are as follows: 

Size of generated databases 
Number of missing values in each variable 
Number of variables with missing values 
Number nearest neighbours (k) 
Number of simulations 

1000 
200 

4 
10 

2000 

Results are presented under two assumptions about the missing data mechanisms, 

MCAR and MAR. The expected values of number of missing values under MAR is 

200. 
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5.9.1 Simulations under MCAR assumption 

In this sub-section the simulation results are under MCAR. 

5.9.1.1 Test of agreement or Wald statistic 

Table 5.3 shows the percentages of insignificant Wa1d statistics as described in 

section 5.5.1, for variab1e~. Only the Wa1d statistic results presented for variab1e~, 

because of the similarity between the results of this variable with other variables. 

Table 5.3: The percentages of insignificant Wa1d statistic for different imputation 
methods by real order of data and estimated order of data 

estimated order real order of data 

SSTI 79.40 86.35 
EDCI 81.90 80.45 
RI 20.05 20.05 
PCAI 67.70 78.70 
SHDI 97.30 97.70 
DSTI 85.25 90.55 

The first column of this Table shows the percentages of insignificant Wa1d statistics 

when estimated data orders are used for imputation. For example, in 79.4% of the 

2000 iterations, SSTI preserves the marginal distribution, but in 20.05% of iterations 

the marginal distributions are preserved by RI. However, SHDI preserves the 

marginal distributions in 97.3% of iterations and the percentage for DSTI is 85.25%. 

The second column of Table 5.3, shows the percentages of insignificant Wa1d 

statistics when the real order of data is used. In other words, in this case, the data are 

ordered when there are no missing values in the data file. It can be seen from Table 

5.3 that for the order based imputation methods, the percentage of insignificant Wa1d 

statistics increase, but for RI it remains constant. For example, for DSTI, if real orders 

of data rather than estimated orders are used, the percentage of the preservation of 

marginal distribution increases from 85.25% to 90.55%. 

5.9.1.2 Comparison of population means 

Table 5.4 and Figures 5.1 to 5.4 show the means of the database without considering 

missing values and the database with imputed values. These means are population 

means in 2000 iterations. 
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Table 5.4: Population means for simulated data and different imputation methods 

True 
SSTI 
EDCI 
RI 
PCAI 
SHDI 
DSTI 

50.0000 40.0000 60.0000 35.0000 
50.0013 40.0018 60.0018 34.9981 
50.0048 40.0066 60.0090 35.0066 
49.9985 40.0013 60.0008 35.0005 
49.9925 40.0037 60.0039 35.0107 
49.9985 40.0013 60.0009 35.0003 
49.9964 40.0023 60.0026 35.0038 

It can be seen from Table 5.4 and Figures 5.1 to 5.4 that all ofthe imputation methods 

create biased estimations for population means. However, generally, SST!, RI, and 

SHDI have small biases with compared to the other imputation methods. 

Figure5.1: Comparison of population means of I; by different imputation methods 
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Figure5.2: Comparison of population means of 1; by different imputation methods 
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Figure5.3: Comparison of population means of 1'; by different imputation methods 
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Figure5.4: Comparison ofpopulation means of ~ by different imputation methods 
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5.9.1.3 Comparison of population variances 

Table 5.5 and Figures 5.5 to 5.8 show the vanances of the database without 

considering missing values and the database with imputed values. These variances are 

population variances in 2000 iterations. 

Table 5.5: Population variance for simulated data and different imputation methods 

~ 1'; 1; ~ 
True 4.0000 3.0000 7.0000 4.0000 
SSTI 3.8918 2.9185 6.8095 3.8810 
EDCI 3.8643 2.9062 6.7769 3.8753 
RI 3.8137 2.8557 6.6548 3.7845 
PCAI 3.8887 2.9174 6.8064 3.8822 
SHDI 3.9948 3.0024 6.9982 3.9975 
DSTI 3.8779 2.9278 6.8095 3.9105 

Figure 5.5: Comparison of population variance of ~by different imputation methods 

405 

3.95 

39 
Y1 

385 

3.8 

3.75 

37 

SSTI EDC RJ PCAI &lOI OSrI 

I mputati on methods 

84 



Figure 5.6: Comparison of population variance of 1; by different imputation methods 
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Figure 5.7: Comparison of population variance of ~ by different imputation methods 
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Figure 5.8: Comparison of population variance of ~ by different imputation methods 
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It can be seen from Table 5.5 and Figures 5.5 to 5.8, that apart from SHDl, all of the 

used imputation methods underestimate the variance of the population. Based on the 

theory of SHDl (see Chapter 3) this method creates asymptotically unbiased 

estimations for population variance under MCAR. According to the simulation 

results, DSTI, SSTl, PCAl create less bias for the estimation population variances. 

However, RI underestimates the population variance more, compared to the other 

imputation methods. 
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5.9.1.4 Comparing means of imputed and real values 

Table 5.6 and Figures 5.9 to 5.12, show the true means and estimated means of 

imputed values in four variables by different imputation methods. It should be added 

that the following table and figures show only the means of imputed values and their 

correspondent true values. In other words, the means have been calculated from 200 

imputed values rather than the whole data file. In addition, the means in this section 

are based on standardized data. 

Table 5.6: Means oftrue and imputed values by different imputation methods 

~ 1'; r; ~ 
True 5.0024 4.9963 4.9970 5.0002 
SSTI 5.0169 5.0024 5.0035 4.9871 
EDCI 5.0384 5.0379 5.0392 5.0398 
RI 4.9988 4.9987 4.9998 5.0010 
PCAI 4.9608 5.0163 5.0143 5.0654 
SHDI 4.9977 4.9983 5.0003 4.9993 
DSTI 4.9856 5.0060 5.0078 5.0222 

Figure 5.9: Comparison of the means of imputed values and true values by different 
imputation methods 
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Figure 5.10: Comparison of the means of imputed values and true values by different 
imputation methods 
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Figure 5.11: Comparison of the means of imputed values and true values by different 
imputation methods 
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Figure 5.12: Comparison of the means of imputed values and true values by different 
imputation methods 
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It can be seen from the above table and figures that the estimation of means by 

imputed values is slightly better than the estimation of population means, but the 

structure is the same. However, SHDI, RI, SSTI, and DSTI create less biased 

estimations for means of imputed values. 

5.9.1.5 Comparing variances of imputed and real values 

Table 5.7 and Figures 5.13 to 5.16 show the variances of true and imputed values by 

different imputation methods. 

Table 5.7: Variance of true and imputed values by different imputation methods 

~ r; ~ ~ 
True 1.00602 1.0002 1.0001 1.0050 
SSTI 0.66543 0.6432 0.6447 0.6216 
EDCI 0.58513 0.5967 0.5937 0.6091 
RI 0.42655 0.3862 0.3747 0.3236 
PCAI 0.66133 0.6438 0.6464 0.6270 
SHDI 0.9999 1.0033 0.9956 0.9972 
DSTI 0.6270 0.6886 0.6450 0.7215 
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Figure 5.13: Comparison of the variance of imputed values and true values by 
different imputation methods 
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Figure 5.14: Comparison of the variance of imputed values and true values by 
different imputation methods 
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Figure 5.15: Comparison of the variance of imputed values and true values by 
different imputation methods 
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Figure 5.16: Comparison of the variance of imputed values and true values by 
different imputation methods 
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The estimation of variances by imputed values and population are the same. As can be 

seen from the Figures, SHDI has approximately unbiased estimation for variances and 

other imputation methods underestimate variances. However, DSTI underestimates 

variances slightly less than other imputation methods. 

5.9.1.6 Comparing the correlations of imputed and real values 

Table 5.8 and Figures 5.17 to 5.20; show the correlations between true and imputed 

values by different imputation methods in four variables. 

Table 5.8: Correlation between true and imputed values 

SSTI 
EDCI 
RI 
PCAI 
SHDI 
DSTI 

0.58707 0.5519 0.5541 
0.60803 0.5702 0.5753 
0.64642 0.6164 0.6028 
0.59111 0.5533 0.5558 
0.0024 -0.0048 -0.0044 
0.5986 0.5492 0.5533 

0.5198 
0.5424 
0.5598 
0.5234 
0.0007 
0.5332 

Figure 5.17: Comparison of the correlation of imputed values and true values by 
different imputation methods 
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Figure 5.18: Comparison of the correlation of imputed values and true values by 
different imputation methods 
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Figure 5.19: Comparison of the correlation of imputed values and true values by 
different imputation methods 
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Figure 5.20: Comparison of the correlation of imputed values and true values by 
different imputation methods 
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As can be seen from Table 5.8 and Figures 5.17 to 5.20, all of the imputation methods 

apart from SHDI preserve individual values. For all of the four variables, RI has the 

best preservation of individual values, followed by DSTI. 

5.9.2 Simulation under MAR assumption 

This section is similar to section 5.6.1; the only difference being the missing data 

mechanism. The occurrence of missing values is under the MAR assumption and 

other simulation parameters such as imputation methods, the definition of the 

simulated data and ordering methods are the same as in the previous section. 

5.9.2.1 Test of agreement or Wald statistic 

Table 5.9 shows percentages of insignificant Wald statistics for two scenanos as 

described in section 5.5.1, for variable ~ under the MAR assumption. First and 

second columns show Wald statistics when the expected number of missing values is 

197 and 304. Only the Wa1d statistic results for variable ~ are presented, because of 

the similarity between the results for this variable and other variables. 
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Table 5.9: The percentages of insignificant Wald statistics for different imputation 
methods under MAR 

Number of missing values 

SSTI 

EDCI 
RI 
PCAI 
SHDI 
DSTI 

197 304 

39.4 

48.6 
0.2 
47 
96 
75.6 

27.85 

27.9 
o 
31.3 
95.5 
61.15 

It can be seen from Table 5.9 that when the percentage of missing values is 

approximately 20% then SHDI preserves the marginal distribution of ~ in 96% of 

iterations, followed by DSTI is in second place with 75.6% of iterations. In addition, 

EDCI, PCAI, SSTI, and RI preserve marginal distribution of ~ in 48.6%, 47%, 

39.4%, and 0.2% of iterations, respectively. When the percentage of missing values is 

30%, SHDI preserves the marginal distribution of ~ in 95.5% of iterations, followed 

by DSTI is in second place with 61.15% of iterations. In addition, PCAI, EDCI, SSTI, 

and RI preserve marginal distribution of ~ in 31.3%, 27.9%, 27.85%, and 0% of 

iterations, respectively. 

5.9.2.2 Comparison of population means 

Table 5.10 and Figures 5.21 to 5.24 show the means of the database without 

considering missing values and the database with imputed values. These means are 

population means in 2000 iterations under the MAR assumption. 

Table 5.10: Population means by different imputation methods under MAR 

True 50.00040.00060.00035.000 
STI 50.003 39.99960.001 34.983 
EDCI 50.01040.013 60.021 35.006 
RI 49.99740.00260.00334.995 
PCAI 49.98340.00960.013 35.017 
SHDI 49.99640.003 60.005 35.023 
DSTI 49.99640.00960.00735.002 
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Figure 5.21: Comparison of the means of population 
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Figure 5.22: Comparison of the means of population 
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Figure 5.23: Comparison of the means of population 
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Figure 5.24: Comparison of the means of population 
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It can be seen from Table 5.9 and Figures 5.21 to 5.24 that the estimated means by 

almost all imputation methods are close to the population means. 

5.9.2.3 Comparison of population variances 

Table 5.11 and Figures 5.25 to 5.28 show the variances of the database without 

considering missing values and the database with imputed values. These variances are 

the population variances in 2000 iterations under the MAR assumption. 

Table 5.11: Population variances by different imputation methods under MAR 

True 
STI 
EDCI 
RI 
PCAI 
SHDI 
DSTI 

4.0003.0007.0004.000 
3.7722.813 6.5303.725 
3.7052.7866.451 3.699 
3.5472.6376.1193.458 
3.7632.813 6.5273.718 
4.0023.0056.9693.984 
3.9773.4096.9873.785 

As can be seen from Table 5.11 and Figures 5.25 to 5.28, the variances of the sample 

mean by SHDI are close to the true means, but other imputation methods 

underestimate it for all variables. However, DSTI underestimates variances less than 

the other imputation methods and RI underestimates variances the most. 

Figure 5.25: Comparison of the variance of population 
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Figure 5.27: Comparison of the variance of population 
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Figure 5.28: Comparison of the variance of population 
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5.9.2.4 Comparing means of imputed and real values 

SHOI OSll 

Table 5.12 and Figures 5.29 to 5.32 show means and the graphs of imputed values 

under MAR and their correspondent real values. 
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Table 5.12: Means of true and imputed values by different imputation methods under 
MAR 

Y1 

Y3 

True 
STI 
EDCI 
RI 
PCAI 
SHDI 
DSTI 

5.0074.9954.9974.933 
5.0194.9884.9924.896 
5.0375.0305.0304.958 
5.005 4.996 4.996 4.928 
4.9685.0185.0154.986 
5.0005.0004.9995.000 
5.0025.0195.0034.946 

Figure 5.29: Comparison of the means of imputed values and true values 
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Figure 5.30: Comparison of the means of imputed values and true values 
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Figure 5.31: Comparison of the means of imputed values and true values 
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Figure 5.32: Comparison of the means of imputed values and true values 
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It can be seen from the above table and figures that the mean of imputed values by 

different imputation methods are close to the true means. DSTI gives better estimated 

means with compare to SHDl in all variables except in r;. In addition, estimated 

means by other imputation methods are very close to true means too. 

5.9.2.5 Comparing variances of imputed and real values 

Table 5.13 and Figures 5.33 to 5.36 show the variances of true and imputed values 

and their graphs by different imputation methods under MAR. It can be seen from the 

following tables and figures that SHDl slightly underestimates the variance and other 

imputation methods underestimate the variance in each variable. However, DSTl 

underestimates the variance less than other imputation methods and is very close to 

true variance. 

Table 5.13: Variances of true and imputed values by different imputation methods 
under MAR 

True 
STl 
EDCl 
Rl 
PCAl 
SHDl 
DSTI 

0.9966 0.9993 1.0060 1.0050 
0.6929 0.6589 0.6673 0.6460 
0.61340.6181 0.6161 0.6253 
0.4084 0.3605 0.3679 0.3082 
0.6872 0.6633 0.6712 0.6502 
0.99800.9961 1.0017 0.9970 
0.96860.9560 1.0013 0.7356 
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Figure 5.33: Comparison ofthe variance of imputed values and true values 
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Figure 5.34: Comparison of the variance of imputed values and true values 
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Figure 5.35: Comparison of the variance of imputed values and true values 
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Figure 5.36: Comparison of the variance of imputed values and true values 
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5.9.2.6 Comparing correlations of imputed and real values 

SHDI DSTI 

Table 5.14 and Figures 5.37 to 5.40 show the correlations between true and imputed 

values under MAR and their graphs by different imputation methods. 
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Table 5.14: Correlations between true and imputed values by different imputation 
methods under MAR 

STl 
EDCl 
Rl 
PCAl 
SHDl 
DSTl 

0.571 0.533 0.548 0.511 
0.594 0.557 0.572 0.538 
0.6250.594 0.597 0.551 
0.5740.537 0.552 0.518 
0.0000.003 -0.002 -0.001 
0.561 0.506 0.519 0.527 

Figure 5.37: Comparison of the correlation of imputed values and true values 

0.7 

0.6 +,~ ..... ===.= ................... _~".., ...•....... -. 
0.5 

Y1 0.4 
0.3 

0.2 

0.1 

SSTI EDCI RI PCAI SiDI osn 

Imputation Methods 

Figure 5.38: Comparison of the correlation of imputed values and true values 
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Figure 5.39: Comparison of the correlation of imputed values and true values 
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Figure 5.40: Comparison of the correlation of imputed values and true values 
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It can be seen from Table 5.14 and Figures 5.37 to 5.40 that correlations between true 

and imputed values under MAR have approximately the same pattern with correlations 

under the MCAR assumption. RI and SHDI have the highest and lowest correlations 

between true and imputed values for all variables respectively. In other words, RI 

preserves the relationship of imputed and true values the most, but on the other hand 

SHDI does not preserves the relationship between imputed and true values at all. 

However, other imputation methods have slightly less correlations than RI and they 

preserve the relationship between true and imputed values less than RI. 
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Part II 

Systematic and Ranked Set Sampling 

based on Concomitants of Order 

Statistics 

100 



Chapter 6 

Ordered systematic and ranked set 

sampling 

6.1 Introduction 

New sampling methods, such as ranked-set and double sampling, based on 

applications of order statistics have been introduced in recent years. In this chapter, 

the statistical properties of ranked-set sampling are examined, the usual systematic 

sampling (SY) scheme is modified and a variance estimator for ordered systematic 

sampling (OSY) is suggested. As in previous chapters, we assume that an auxiliary 

variable is used to order data. This variable is referred to as a concomitant variable, in 

what follows. By assuming a linear relationship between the variable of interest and 

its concomitant, a variance estimator can then be developed for the sample mean 

under OSY. This estimate turns out to be less biased compared to other variance 

estimators for the sample mean under OSY. In addition, we compare the statistical 

properties of ranked-set and OSY with those of simple random sampling. We justify 

the proposed variance estimator theoretically, and demonstrate its properties using a 

simulation study. 

101 



6.2 Ordered systematic sampling (OSY) 

Systematic sampling is a practical and efficient method for selecting samples from 

administrative registers or other logically arranged files. A proper sorting order of the 

population ensures that the sample obtained reflects true population distributions. 

When a population is ordered, it is clear that the selection of a systematic sample will 

provide a heterogeneous sample and that the variance of the sample mean will 

generally be smaller than the variance of the sample mean under simple random 

sampling. 

The reason for this is intuitively clear. A systematic sample will cover the whole 

population and will avoid the chances of selecting samples containing too many large 

or small values. That is to say, a systematic sample will tend to be more representative 

of the population than a random sample. In general, we may say that the sampled 

units in a systematic sample from an ordered population will generally be more 

heterogeneous than those in a simple random sample. Hence, the intraclass correlation 

will be small and, as will be explained in the following sections, the variance of the 

sample mean under systematic sampling can be expected to be smaller than the 

variance of a sample mean under simple random sampling. 

This chapter is organised as follows. In the following section, the procedure of sample 

selection under OSY is described. In Section 4, the sample mean is shown to be an 

unbiased estimator for the population mean under OSY given appropriate 

assumptions. In section 5, the variance of the sample mean is obtained using 

concomitant order statistics theory. Finally, in Section 6, the relative precision of the 

variance ofthe sample mean under OSY is derived. 

6.3 Notation and sample selection procedure 

This section introduces appropriate assumptions and notation, and describes the OSY 

sample selection procedure. 

As in the classic systematic sampling scheme, we assume the study variable is Yand 

the concomitant variable is X The population size is N, the sample size is nand k = 
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Nln, the sampling step that, for simplicity, is assumed to be an integer. The values 

obtained for any specific item in the N units that comprise the population are denoted 

by .r;, 1;, ... , YN and Xl' X 2 , ... , X N' In the following analysis, we assume xij is the jth 

member of the ith systematic sample, with i = 1,2, ... , k, j = 1,2, ... , n. Here, each 

systematic sample is considered as a class; therefore, we have k classes. In addition, 

we use the following notation for the super population moments of X and Y. 

f.1y Population mean of Y 

(j y = Population variance of Y 

p = Correlation between X and Y 

where 

f.1 x = Population mean of X 

(j x = Population variance of X 

5 = Intraclass correlation of X 

In other words, 5 expresses the degree of homogeneity in a systematic sample which 

is the correlation coefficient between pairs of units in the same systematic sample 

under the following model: 

From Samdal, Swensson and Wretman (1997), 5 can be estimated as follows: 

f -1 n SSW u- ---.--, 
n-1 SST 

where n is the sample size in each systematic sample, SSW is the variation within 

systematic samples, and SST is the total variation. Positive values of g show elements 

in the same sample tend to have similar values. g =1 if SSW=O, which means there 

is no variation within systematic samples or in other words there IS complete 

homogeneity. On the other hand, if SSB=O, which means there IS complete 

heterogeneity within samples, and our sample is a proper representative of population. 

A systematic sample from a perfectly ordered population has almost complete 

heterogeneity. 

Finally, we assume a linear relationship between Y and X as follows: 
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Y = Jly + p (J y (X - Jl x ) + B , 
(Jx 

where B and X are independently distributed. 

6.3.2 The sample selection procedure 

(6.1) 

To select a sample VIa OSY the population IS first ordered according to the 

concomitant X in ascending order as follows: 

X <X <···<X (1:N) - (2:N) - - (N:N) • 

The Y-variates paired with these order statistics are denoted by 

~l:N]' ~2:N]"", ~N:N] • 

The ~j:N] are not necessarily ordered, but can be expected to reflect the association 

between X and Y, a strong positive association tending to lead to values of ~j:N] in 

roughly ascending order, and similarly a negative association tending to lead to ~j:n] 

in descending order. A sample is then taken from the ordered population using a 

systematic sampling procedure. That is a random integer e between 1 and Nln is 

selected and then every e + j %, j=O,I, ... ,n-l unit in the ordered population is 

selected into the sample. The Y values associated with this sample are: 

Y[l:n] ' Y[2:n]" • " Y[n:n] , 

and the corresponding values of the concomitant X are 

x <x <"'<x (I:n) - (2:n) - - (n:n)' 

Note that (6.1) is still valid for this sample. Consequently 

(6.2) 

where BUnl and xUn) are independent. 

6.4 Estimation of the population mean 

By assuming N=nk, it can be proved that the sample mean is an unbiased estimator of 

the population mean under OSY. Let 
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_ 1 n 

YOSy = - IY[J:nl ' 
n j=1 

be the sample mean under OSY. 

Theorem 6.1. The sample mean Yosy is an unbiased estimator of Jly . 

Proof: By its definition, 

E(- )=E(~ ~ J=~E(~ J=~ ~ E( ) Y OSy n f:t Y[j:n 1 n f:t Y[J:n 1 n f:t Y[j:n 1 . 

By substituting (2.9) we then have: 

_ 1 n 

E(yoSY)=- I(Jly+p(Jyaj:n)' where 
n j=1 

Hence, 

E(- ) = + (Jy ~ E(XUn) - Jlx J YOSy Jly P L. ' 
n j=1 (J X 

n n 

(6.3) 

or equivalently, since IXUn) = Ixj , where xPx2,,,,,xn is a random sample from X, 
j=1 j=1 

(David and Nagaraja, 2003) we have 

E (YOSY ) = fly + P ~ E I (Xj - Jl x ) . 
n(J x j=1 

It immediately follows that 

(6.4) 

Therefore YOSy is an unbiased estimator of the population mean Jly . 

6.5 The variance and other statistical properties of the sample 

mean 

We now derive the variance ofyosy under OSY. In a classic systematic sampling 

scheme, the variance of the sample mean depends on the sample means generated by 

all k systematic samples. Hence, it cannot be used for practical applications. Instead 

the variance of the sample mean under simple random sampling (SRS) is used as the 
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classic systematic variance estimator, even though the variance estimator under SRS 

overestimates the variance of the sample mean under OSY. In this section we 

therefore develop a variance estimator for the sample mean under OSY that needs 

only the intraclass correlation of X and is more efficient than the variance estimator 

suggested by SRS. 

Put 

(6.5) 

That is, 5 is the intraclass correlation coefficient between the X values of all pairs of 

units in the same systematic sample. From (6.5) and using the definition of covariance 

we have: 

(6.6) 

Theorem 6.2. The variance of sample mean under OSY is: 

(6.7) 

where p is the correlation between Y and X and 5 is the intrac1ass correlation of X 

over all k possible systematic samples. (The following proof is based on a private 

communication from R. Sugden.) 

Proof: By its definition 

- (In J 1 (n J Var(yoSY) = Var -;; ~Y[j:nl = -;1 Var ~Y[j:nl . 

By substituting (2.7) above we have: 

(6.8) 

Simplifying, 
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From the independence of X and C we have: 

11 11 11 n 

Since IXUn) = Ix), and IC[J:n] = Ie) where xPx2,···,xn is a random sample 
)=1 j=l j=l j=l 

from X (David and Nagaraja, 2003), we have: 

In (6.9) we need to calculate var(t,Xi) and var(t,e} Now, 

va{t,x;) ~ t,var( Xi )+2~COV( Xi'X}) 
= n(j2 + 2 n(n -1) r5(j2 

x 2 x 

= n(j~ + n(n -1)r5(j~ 

and, from the independence between ci and c( for all i, we have: 

By substituting (6.10) and (6.11) in (6.9), we have: 

(j2 
Var(yoSY) = -Y [1 + (n -1) p2 r5 ] ' 

n 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

where (j~ is the population variance of Y, p is the correlation between X and Y 

variates, and r5 is the intraclass correlation of all k possible samples in X This 

completes the proof. 
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Now from Theorem 6.2, we can obtain a variance estimator of the sample mean based 

on the available sample data as follows: 

(6.13) 

where s~ is the sample variance, r is the sample correlation and 6 is the intraclass 

correlation of X over all k possible systematic samples. 

6.6. The relative precision of the sample mean under OSY 

In this section, we compare the variance of the sample mean under OSY with the 

variance of the same mean under classic systematic and simple random sampling. The 

variance of the sample mean under systematic sampling, (Coer-llan, 1978) is: 

(6.14) 

where cr~ is the population variance of Y and 61 is the intrac1ass correlation of Y 

over all k possible samples. Calculating Var(ySY) requires all k possible systematic 

samples, and so (6.14) cannot be used for practical applications. Under certain 

conditions, however, we may consider a systematic sample to approximate a simple 

random sample and so we can use the variance under SRS as an approximation. On 

the other hand, Var(yoSY) is computable and, as shown in the next section, it is more 

efficient than Var(YsRS) . 

The relative precision of ordered systematic sampling in relation to simple random 

sampling is given by: 

(6.15) 

As can be seen from (6.15), the performance of OSY in relation to SRS is therefore 

dependent on the correlation of X and Y and the intraclass correlation of X The 

performance of OSY is better than SRS if, and only if, 8 < O. Sarndal, Swensson and 
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Wretman (1997) show that the efficiency of systematic sampling depends on the 

orders of population. In addition, they show that: 

s: -1 n SSW u- ---.--, 
n-1 SST 

(6.16) 

In addition, Samdal, Swensson and Wretman (1997) show that for populations 

ordered by X, 

-1 
6=:;;-<0. 

n-1 

We can therefore conclude that the precision of OSY is always better than that of 

SRS, except when the correlation of X and Yequals zero, in which case OSY and SRS 

have the same precision. 

6.7 Ranked set and median ranked set sampling (RSS & MRSS) 

Ranked set sampling was first suggested by McIntyre (1952), with Takashi and 

Wakimito (1968) giving the necessary mathematical theory. Ranked set sampling is 

designed for situations where the study variable Y is difficult or expensive to measure, 

but where ranking in small subsets is easy. Concomitants of order statistics enter 

when the ranking is subject to error or is not perfect. Applications of concomitants of 

order statistics in ranked set sampling were studied by Dell and Clutter (1972). They 

showed that when there is no ranking error the mean of RSS is an unbiased estimator 

for popUlation mean. Moreover, they showed that the variance of the sample mean 

under RSS is smaller than the variance of the sample mean under SRS. Patil, Shina 

and Tai111ie (1993) showed that the sample mean under RSS is more efficient than the 

regression estimator under SRS, when the correlation between the study variable and 

its concomitant is less than 0.85. Finally, Muttlak (1997) has suggested using MRSS 

to reduce errors in ranking, thereby increasing the efficiency ofRSS. 

The next section reviews ranked set and median ranked sampling schemes, and 

presents a variance estimator for the sample mean under these schemes when there is 

a concomitant variable. Note that there are many aspects of ranked set sampling that 

do not involve concomitants. See the comprehensive review paper by Patil , Shina and 

Tai111ie (1992). 
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6.8 The RSS and MRSS algorithms 

Suppose Y is the study variable, X is the concomitant variable, N is the population 

size, m is the set size, r is the cycle size, n = mr is the sample size, and p is the 

correlation between X and Y. In addition, we assume a linear relationship between X 

and Yas specified by (6.1). 

The RSS procedure can be summarized as follows: 

a) Select m 2 sample units from the concomitant variable X 

b) Randomly allocate the m2 selected units into m sets each of size ofm. 

c) Rank the units within each set. 

d) Choose a sample of size m to include the smallest ranked unit from the first 

set, the second smallest unit from the second set and so on. 

e) Measure the m associated values of the study variable Y. 

f) Repeat the above steps r times until n = mr sample values of Yare obtained. 

For a graphic view ofthe above steps, see Tables 6.1 and 6.2. 

Sample....;. 1 

Set 

~ 

1 X (l:m)l 

2 X (1:m)2 

k 

m 

Table 6.1 Summary of steps a to c ofRSS 

2 

x(2:m)1 

x(2:m)2 

X (2:m)k 

X (2:m)m 

i 

x(i:m)l 

x(i:m)2 

m 

x(m:m)l 

x(m:m)2 

X (m:m)k 

X (m:m)m 

Here x(i:m)k i = 1,2, ... ,m, k = 1,2, ... ,m is the sample from the concomitant variable 

x 
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Table 6.2 Summary of steps d to e ofRSS 

S amp le- 1 2 i m 

Set 

~ 

1 Y[I:m]1 Y[2:m]1 Y[i:m]1 Y[m:m]1 

2 Y[I:m]2 Y[2m]2 Y[i:m]2 Y[m:m]2 

k Y[l:m]k Y[i:m]k Y[m:m]k 

m Y[1:m]m Y[2:m]m Y[i:m]m Y[m:m]m 

Therefore, the first set of the RSS sample is the diagonal units from Table 6.2 That is 

Y[i:mlk i = k = 1,2, ... , m , where m is the set and sample size in each set. In other 

words, the first set of all r (cycle size) possible sample sets are: 

Y[l:m]l' Y[2:m]2' ... , Y[i:m]k' ... , Y[m:m]m' 

For simplicity, we can drop the second index k, and show the first sample from the 

first cycle as Y[I:m]'Y[2:m]""'Y[m:m]' Note that we have to repeat sample selection 

process r times to select the sample size of n=rm under RSS. Therefore, the RSS 

sample is Y[i:m]J i~I,2, ... ,m, j~I,2, ... ,r' where m is the set size and r is the cycle size. 

The sample mean under RSS can therefore be written as follows: 

1 m r 

YRss = -LLY[ilnli' 
rm i~l j~l 

(6.17) 

It can be proved that E (YRSS ) = fly (see David and Nagaraja, 2003). Moreover, the 

variance of ~ss can be obtained (David and Nagaraja, 2003) as follows 

(6.18) 

where (J"~ is the population variance of Y, p is the correlation between X and Y, (J"~ 

is the population variance of X and (J"~ is the variance of the ith order statistics of X. 
(i:m) 
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6.9 MRSS sample selection procedure 

The procedure for selecting a median ranked set sample (MRSS) is similar to that 

used to select a RSS, the only difference being in step (d). Here instead of selecting 

the smallest ranked unit from the first set, we select the median observation for that 

set. This procedure is then repeated for all sets. That is, we select a median in each set 

instead of diagonal units (Table 6.2). This algorithm is displayed in Table 6.3. 

Sampl~ 

Set 

.t 

1 

2 

k 

m 

Here x( ) 
"!:i k 
2 

Table 6.3. Summary of steps d to fofMRSS. 

1 2 median m 

Y[l:m]l Y[2:m]1 Y[~:m} Y[m:m]l 

Y[1:m]2 Y[2:m]2 Y[~:m} Y[m:m]2 

Y[2:m]k Y[m:m]k 

Y[l:m]m Y[2:m]m Y[m:m]m 

i = 1,2, ... , m, k = 1, 2, ... , m is the sample from the variable X under 

MRSS. Therefore, the first set of the MRSS sample is the median units from Table 

6.3. That is 

Y[ ] , k = 1,2, ... ,m 
'!!..:m k 
2 

, where m is the set and sample size in each set. 

We repeat the sample selection process r times to select the sample size of n=rm 

under MRSS. The m index repeats for all cycles, so for simplicity, we can drop the m 

index and reindex the selected sample under MRSS as follows: 
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Yri:m!2]j i = 1,2, ... ,m, j = 1,2, ... ,r, 

where m is the set size and r is the cycle size. Note that, for simplicity we assume that 

set size m is an odd number. The median ranked set sample estimator of fly is then 

the corresponding sample mean 

_ 1 m r 

YMRSS = -LLY[i:mI2]j' 
rm ;=1 j=1 

(6.19) 

The sample mean Y MRSS is an unbiased estimator of fly if the underlying distribution 

is symmetric otherwise the sample mean is a biased estimator (Muttlak, 1998). The 

variance of sample mean under MRSS (Muttlak, 1998) is 

(6.20) 

where o-~ is the population variance of Y, p is the correlation between X and Y, o-~ 

is the population variance of X variates, and o-~ is the variance of (m )th order 
(;,,,/2) 2 

statistic of X 

6.10 Relative precision of RSS and MRSS with respect to SRS 

Clearly, the benefit of using concomitant variables will depend on the correlation 

between the variable of interest Yand the concomitant variable X If Y and X are 

independent, the estimators YRSS and YMRSS will be equivalent in efficiency to the 

sample mean under SRS (assuming the same sample size). To compare the two 

estimators YRss and YMRSS with respect to YSRS' a linear relationship between X and Y 

is assumed. The relative precision of YRSS with respect to YsRs can then be defined 

as 

o-~/ 
_ Var(YsRS) _ Irm 

RPRSS - - - [ 22 j' Var(YRSS) 1 2 P o-y ~ 2 
2 mo-y + 2 ~ 0-X(i:m) 

m r o-x i=1 

This can be simplified to 
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1 
RPRSS = 2 m 

(1- 2)+L" (J'2 p ~ z(i:m) 
m i=! 

(6.21) 

where (J'~(i:m) is the variance of the ith order statistic from a standard nonnal 

distribution. Similarly, the relative precision of YMRSS with respect to YSRS is 

Var(YSRS) (J'%n 

RP
MRSS = Var(YMRSS) = ~1~[ 2 p2(J'~ ~ 2 ] • 

2 m(J' y + 2 ~ (J' X(i:mI2) 
m r (J' x i=! 

This can be simplified to 

(6.22) 

where (J'~(i:mI2) is the variance of the ith median statistic from a standard nonnal 

distribution. The relative precision of RSS and MRSS is compared in a simulation 

study in the next section. 

6.11 A Simulation comparison of OSY, RSS and MRSS 

6.11.1 Simulation study 

A simulation study was carried out in order to assess the practical perfonnances of the 

estimators of a population mean under OSY, RSS, and MRSS, relative to the 

perfonnance of the usual SRS estimator. The simulation was a model-based 

simulation. In every iteration, a population was generated according to the model and 

a sample was selected. 

The parameter of interest was the population mean of Y in all cases. Two kinds of 

simulation scenarios were considered. In the first the population was bivariate nonnal 

data with N=6000 and with five different correlation coefficients and a sample size of 

60. The second was the same as the first, the only difference being the sample size, 

which in this case was 600. The five different correlation coefficients between the 
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target variable Yand its concomitant X were 0.07, 0.37, 0.50, 0.75 and 0.92. The 

number of sets and cycles for RSS and MRSS in the first scenario were 6 and 10 and 

for the second scenario were 60 and 100, respectively. The population means of Yand 

X were 9 and 3. Finally, the number of Monte Carlo simulation was 6000. Table 6.4 

shows the key characteristics of the simulation study 

Table 6.4 Key characteristics ofthe simulation study. 

1- (X,Y) IS A BIVARIATE NORMAL DISTRIBUTION 

2- N = 6000, n = 60 for first scenario and 600 for second scenario 

3- flx =3, fly = 9 

4- No. of sets = (6,60) , no. of cycles = (10,100) (for RSS and 

MRSS) 

5- No. of Monte Carlo simulation = 6000 

Tables 6.5 and 6.6 show the empirical means and variances of the sample means, the 

variance of sample means by formula (6.13), relative bias for the variance of sample 

means, and coverage percentages generated by ordered systematic sampling (OSY) 

under different correlation coefficients. Tables 6.7 and 6.8 then show the relative 

precisions under both scenarios for OSY, RSS, and MRSS for the different correlation 

coefficients. 

Table 6.5: Scenario 1, statistical properties of the sample mean under OSY 

n=60 Pop. Empirical Empirical Formula Relative Coverage 

Mean Means Variance Variance Bias % % 

of 

vanance 

estimator 

p=0.07 9.00 9.0063 0.1187580 0.1143326 -3.73 94.24 

p=0.37 9.00 9.0038 0.2060074 0.2000961 -2.86 94.18 

p=0.50 9.00 8.99997 0.1195291 0.1206034 -0.89 94.68 

p=0.75 9.00 8.998 0.05221673 0.05039186 -3.49 94.18 

p=0.92 9.00 8.999 0.02341593 0.02195380 -6.24 94.14 
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It can be seen from Tables 6.5 and 6.6 that the OSY sample means are unbiased 

estimators for population means, and this unbiasedness is unchanged when we change 

the correlation between Y and X We also show two different variances for the 

proposed sample means. The first is the Monte Carlo or empirical variance, and the 

second is the average of the sample values of (6.13), which is denoted by formula 

variance. To compare these two variances, we also show the relative bias of(6.13). As 

seen from Table 6.5, the calculated variance using (6.13) slightly underestimates the 

empirical variance, but the amount of underestimation is small enough to be ignored 

in practical applications. Finally, the last column shows the coverage of the 95% 

confidence intervals generated using (6.13), and, as can be seen this coverage is 

almost 95 percent in all cases. 

Table 6.6: Scenario 2, statistical properties ofthe sample mean under OSY 

n=600 Pop. Empirical Empirical Formula Relative Coverage 

Mean Means Variance Variance Bias % % 

of 

vanance 

estimation 

p=0.07 9.00 8.999 0.01151 0.01160 0.79 94.86 

p=0.37 9.00 8.994 0.02062 0.02010 -2.52 94.66 

p=0.50 9.00 9.002 0.01269 0.01201 -5.35 94.20 

p=0.75 9.00 8.999 0.00528 0.00476 -9.77 94.00 

p=0.92 9.00 8.999 0.00282 0.00251 -10.71 90.10 

By increasing the sample size from 60 to 600, the same pattern is seen in Table 6.6 

but with some decrease in coverage and increase in relative bias. 
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Table 6.7: Relative precisions ofOSY, RSS, and MRSS with respect to SRS in the 

first scenario (n=60). 

n=60 RP(RSS) RP(MRSS) RP(OSY) 

p=0.07 0.98 1.01 1.01 

p=0.37 1.09 1.13 1.15 

p=0.50 1.22 1.25 1.40 

p=0.75 1.63 1.79 2.27 

p=0.92 2.39 2.70 4.99 

Finally, from Tables 6.7 and 6.8, it is clear that substantial gains may be achieved by 

using the proposed OSY procedure. As seen from these results, the relative precision 

of OSY is more than that of RSS and MRSS. Furthermore, this precision increases as 

the correlation between Y and X increases, and is evident for both sample sizes 

considered in the simulation study. 

Table 6.8: Relative precisions ofOSY, RSS, and MRSS with respect to SRS in the 

second scenario (n=600). 

n=600 RP(RSS) RP(MRSS) RP(OSY) 

p=0.07 0.95 0.88 1.03 

p=0.37 1.07 1.05 1.17 

p=0.50 1.16 1.18 1.34 

p=0.75 1.53 1.51 2.18 

p=0.92 1.98 2.29 4.36 
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Chapter 7 

Summary and Conclusions 

7.1 Introduction 

In this chapter we summarise the main conclusions of the work undertaken in this 

thesis and highlight the main contributions of this research. Further research areas and 

suggestions are given. This research is done within the framework defined by 

application of concomitants of order statistics in survey sampling. The core of the 

research consists in investigating two main topics: 

1) Nearest Neighbour Imputation based on Concomitants. 

2) Variance Estimation of Sample Mean based on Ordered Sampling using 

Concomitants. 

Main conclusions and contributions associated with each of this two topics are now 

presented in detail. 

7.2 Summary and conclusions for part one 

The problem of missing data and using available information to impute missing 

values has been addressed in this thesis. In particular, the focus of the thesis was to 

develop an imputation method by using multivariate data ordering methods and 

concomitants of order statistics. The imputation method also used nearest neighbour 

imputation theory. Simply, the idea was that when multivariate data (with at least two 

variables) contains missing values, it is ordered according to an artificially calculated 
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variable. This variable is a function of auxiliary variables and can for example be a 

first component of principal component analysis, or sequential taxonomy coefficients. 

After ordering the data using the artificial variable, the concomitant orders of the 

missing values are specified and then the k nearest neighbours for the missing value 

in the ordered data defined by kl2 of available values above and below the missing 

values are used to define the imputed value. 

In this thesis, three ordering methods were examined, based on (1) the first 

component of principal component analysis, (2) sequential taxonomy coefficients, (3), 

the Euclidian distance of each case from the centre of data. 

Given this ordering, missing values can then be imputed under SSTI or DSTI. The 

statistical properties of these imputation methods are then under the assumption that 

the ordering variable and the variable with missing values have a linear relationship. 

Under this condition, mathematical properties of sequential taxonomy (ST) were 

established in Chapter 4 and statistical properties of SSTI and DSTI were investigated 

mathematically and by a simulation study in Chapter 5. 

In this study, six different imputation methods were discussed and their performance 

evaluated with respect to estimation accuracy, preservation of marginal distributions 

and prediction of individual values. The results of the study showed that under MCAR 

and MAR, the methods that performed best with respect to preservation of marginal 

distributions were stratified hot deck imputation (SHDI), double order sequential 

taxonomy imputation (DSTI), and single order sequential taxonomy imputation 

(SST!) in that order. From the mean estimation point of view, regression based 

imputation methods (RI) and SHDI resulted in better estimation than any of the 

ordering based methods. However, from the variance estimation point of view, SHDI, 

DSTI, and SSTI estimated the population variance better than the other imputation 

methods. Furthermore, when correlations between real and imputed values under 

MCAR and MAR are computed, it can be seen that RI gives the highest correlations 

with DSTI in second place. SHDI has the lowest correlations under both assumptions. 

In other words, RI and DSTI predict individual values better than the other imputation 

methods. Although the evaluation of imputation methods depends on the aims of the 
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study, our results provide evidence that with respect to all aspects of evaluation DSTI 

seems more stable than other imputation methods we investigated. 

7.3 Summary and conclusions for part two 

Ranked-set sampling (RSS), median ranked-set sampling (MRSS), and ordered 

systematic sampling (OSY) are three sampling methods based on the properties of 

direct and indirect order statistics. This research develops a new variance estimator 

for the sample mean under OSY based on these properties. In general, systematic 

sampling can be regarded as form of cluster sampling where only one cluster is 

selected, thus making it impossible to unbiasedly estimate the sampling variance 

without any assumption about the population. In practice, the variance of simple 

random sampling is therefore used instead, leading to overestimates of the variance of 

sample mean. Here we propose a variance estimator for sample mean under OSY 

based on a linear relationship between the concomitant variable X (always available 

for systematic sampling) and the variable of interest Y assuming all values of X are 

available in the population. This estimator is then compared theoretically and by 

simulation study with simple random sampling, ranked-set sampling, and median 

ranked-set sampling. Other statistical properties such as the relative precision of OSY 

compared with SRS, the coverage of sample mean and the relative bias of variance 

estimation are derived in this thesis. 

In our study, RSS, MRSS, and OSY provided unbiased estimations for the population 

means, with the variance of the sample mean under OSY smaller than its variance 

under SRS, RSS, and MRSS. A major advantage of the new variance estimator is its 

applicability. In practice, this variance estimator can be used under standard 

systematic sampling and it needs assume only a linear relationship between the 

concomitant variable and the variable of interest. Under this assumption, the new 

variance estimator appears to be more efficient than previously used variance 

estimators. 
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7.4 Further research for part one 

The research described in this thesis has shown that nearest neighbour imputation 

based on concomitants of order statistics such as SST!, DSTI, and PCAl gives 

reasonable results when compared to other widely used imputation methods. These 

methods were developed under the assumption of a linear relationship between the 

variable with missing values and the concomitant variable. Furthermore, it was 

assumed that the distribution of the ordering was normal. This study has been 

developed under a bivariate normal distribution assumption of the variable with 

missing values and its concomitant because of the existence of linear relationship 

between both variables. However, the main assumption was the linearity not the 

normality. Further research is needed to resolve a number of issues connected to the 

variance estimation of a missing value. The variance estimator is a complicated 

formula and needs to made simpler and applicable in practice. Multiple concomitants 

were used to develop DSTl in the simplest form and this needs to be extended. In 

addition, to use multiple concomitants we defined weights according to minimize the 

variances of each imputation set, therefore further research is needed to investigate 

other weighting methods and to compare the efficiency of these weighting procedures. 

The proposed imputation methods are in the first stage of using order statistics theory 

to develop an imputation method; hence, the following directions are suggested to 

generalize SSTl and DSTI. 

1) The relationship of the concomitant and the variable of interest with missing values 

can be assumed nonlinear. 

2) Multiple concomitant order statistics can be used to improve the quality of SSTl 

and DSTI. 

3) The distribution of the concomitant variable and the variable with missing values is 

assumed to be bivariate normal. Therefore, in future work, this imputation method can 

be extended to non-normal distributions. 

4) The relationship between the concomitant variable and the variable with missing 

value can be extended to non-parametric relationships. 

5) Comparison between the proposed methods and other imputation methods such as 

multiple imputation and neural network based imputation methods. 
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7.5 Further research for part two 

This study represents just the first stage on the research of the use of concomitants 

order statistics for variance estimation under OSY. Further research should be done in 

order to assess more aspects. The further work can be divided into two different 

aspects: existence of nonlinear or nonparametric relationship between the concomitant 

variable and the variable of interest and having a balanced or an unbalanced sampling 

scheme. The proposed variance estimator for a sample mean under OSY was for a 

balanced sampling scheme. Further work is needed to investigate the properties this 

vanance estimator under unbalanced sampling procedures. In addition, our new 

vanance estimator was developed assuming of a linear relationship between the 

concomitant variable and the variable of interest. Therefore, further research should 

be done in order to assess more aspects of the variance estimator under nonlinear 

relationship. In summary, the following directions can be suggested as extension of 

this method. 

1- Generalisation of this method to systematic sampling in two dimensions. 

2- Comparison of the new variance estimator with other sampling techniques. 

3- Generalizing to a broad class of super population model. 

4- Generalisation of this method to using multi concomitants 

5- Generalisation ofthis method to other aspects of systematic sampling such as 

having periodic or circle trend in the popUlation. 
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Appendix 1: Ordering Multivariate Data 

1.1 Introduction 

In spite of the lack of a strong theory for data ordering, especially for 

multivariate data, we can find many examples of ordering in every day life, such 

as ordering cities or countries according to development, ranking of universities 

based on research activities, and so on. Ordering is a special case of dimension 

reduction of data into one dimension, and it has a large literature in statistics. 

Therefore, ordering and dimension reduction methods are related. Generally, high­

dimensional datasets present many mathematical challenges as well as some 

opportunities, and are bound to give rise to new theoretical developments. This 

section briefly reviews ordering methods in five categories: marginal ordering, 

reduced (aggregate) ordering, partial ordering, conditional (sequential) ordering 

and sequential taxonomy. In addition, single components of dimension reduction 

techniques can be used as an ordered vector, for example in principal component 

analysis, the first component, or, in factor analysis, the first factor, and so on. 

Therefore, the dimension reduction technique can be seen and used as an ordering 

technique. Dimension reduction techniques can be found in multivariate analysis 

books, some popular methods are principal component analysis, projection 

pursuit, and projection pursuit regression, principal curves, and methods based on 

topologically continuous maps, such as Kohonen's maps, or generalized 

topographic mapping. Neural network implementations for several of these 

techniques are also reviewed, such as the projection pursuit-learning network and 

the theory of Bienenstock, Cooper and Mumo (BCM) with an objective function. 
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1.2 Ordering techniques 

Ordering techniques are divided into four groups: marginal ordering, reduced 

(aggregate) ordering, partial ordering and conditional (sequential) ordering. The 

first two ordering methods are reviewed in this section. 

1.3 Marginal ordering (M ordering) 

In M-ordering, the multivariate data is ordered according to a marginal 

distribution. Sometimes, for inference about M -ordering, certain order features in 

the marginal samples may be considered in combination (as in global, or 

component-based, concepts of median, range, extremes, etc). Another application 

of M-ordering is data transformation. In other words, M-ordering is sometimes 

used in the ordering of particular combinations (proj ections) of component values 

or of radial distances or angular deviations from some fixed point or direction. 

Then again, the sample points may each be initially reduced to a single value by 

some metric. However, most examples of ordering after initial transformation of 

data are best considered under the next heading of reduced ordering since their 

intention is not to represent marginal behaviour but to summarily express overall 

characteristics for the multivariate dataset 

1.4 Reduced (aggregate) ordering (R-ordering) 

In this method, each multivariate observation is reduced from p dimension to 

one dimension by an appropriate metric that is the component of sample values. 

This method is popular in distance based ordering, and usually data is reduced to a 

single value by a quadratic function: 

(X -a)T-l(X -a) 

for some convenient choice of a and r, where a is the origin, the mean, the 

extreme values or the set of marginal medians (sample or population) and r is 
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the identity matrix, the vanance and covanance matrix of the sample or 

population, or perhaps the diagonal matrix component variances (see Wilk and 

Gnanadesikan 1964). Setting r = I corresponds to the Euclidian distance of the 

sample points from some "centre" a. The raw Euclidian distance disregards 

second order moment structure (and location) and this is a big disadvantage of 

using r =1. If we knew the distribution of x, there would be some appeal in 

ordering in relation to probability concentration contours. For multivariate nonnal 

distribution, the above fonnula changes to: 

where f1 is the mean vector and L is the variance covariance or correlation 

matrix. This metric is very sensitive to the correlation of variables. For example, 

suppose we have two variables and the correlation between them is zero. In this 

case, the diagram of two variables is circular, but for a correlation of 0.5, the 

diagram is elliptical Barnett (1977). By increasing the correlation between the 

variables, the diagram between two variables becomes linear. In multivariate 

nonnal data, standardizing data and then using the above formula corresponds to 

use of Mahalanobis distance. Ordering data based on R-ordering is one of the 

main principles of sequential taxonomy method (see Chapter 4). For 

comprehensive discussion about ordering methods, please refer to Barnett (1977). 
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