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Modelling methods for longitudinal complex survey data are investigated in this thesis. 

An empirical investigation using longitudinal survey data is conducted. Variance effects of 

clustering are identified and results indicate that clustering impacts may be stronger for longitudinal 

studies than for cross-sectional studies. Earlier empirical evidence that those impacts could be less 

the more complex the analysis, which may sometimes be used to justify ignoring the complex 

sampling scheme in longitudinal analysis, is thus contradicted. A theoretical discussion is provided 

in order to support the major empirical results. The considered longitudinal regression modelling 

methods are reviewed in the complex survey context. 

The adoption of covariance structure models for longitudinal survey data is emphasised in this 

dissertation as this approach includes a wide range of modelling techniques and has application in 

the social sciences. A weighted estimation procedure (Sw), which considers covariates, is proposed 

for estimating the population covariance matrix ~. Further developments on variance estimation 

methods for t considering the complex survey approach are accomplished by adopting a Taylor 

expansion technique in order to extend asymptotically distribution-free (ADF) methods. By adopting 

Sw, modifications to point estimation methods, such as unweighted (ULS) and generalised least 

squares (GLS), for a vector parameter are also proposed. A pseudo maximum likelihood (PML) for 

covariance structure models is also derived via maximisation of the pseudo log likelihood function. 

The behaviour of the proposed estimation procedures are assessed by simulation. 

ADF variance estimation methodology for GLS point estimators is extended. A method for 

estimating the asymptotic covariance matrix of the PML point estimator is proposed under the 

complex survey data approach. Some extensions to model fitting statistics when working with 

longitudinal data in a complex survey design framework are developed. We propose modifying the 

Wald goodness of fit test in the context of models for covariance structures, which is shown to be 

equivalent to modifying the scaled test statistics. Furthermore, we also propose a modification for 

the Wald significance test for nested hypothesis. Goodness of fit indices are also modified in order 

be utilised in the complex survey data context. An additional simulation study is adopted for 

evaluating the proposed variance estimation methods. 
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Chapter 1 

Introduction 

1.1 Longitudinal surveys 

Sample surveys have been a substantial source of human and institutional data for both 

descriptive and analytic use, since the XIX century (Skinner, Holt and Smith, 1989). The 

collection of longitudinal survey data has become more purposeful, and longitudinal 

research has become more valued by the governments and the scientific community, after 

the World War II (Menard, 1991)1. 

Survey data has never been as indispensable as it is for XXI century society, especially 

because this type of data is the main source of information when regarding demographic 

and social characteristics of the population, economic activity, lifestyle patterns, and 

public opinion (Barnett, 1991). Furthermore both everyday life decisions and scientific 

research in different subject areas are based to a great extent on samples (Cochran, 1977). 

Longitudinal survey data allow, for example, the periodic measurement of individual's 

demographic and socio-economic changes in their conditions (Berrington, 2002). We may 

briefly describe two different classes of longitudinal studies: (i) repeated cross-sections 

studies, where data is collected repeatedly through time with the same variables being 

measured on different samples of cases (see Menard, 2002; Kalton and Citro, 2000; and 

Firebaugh, 1997); (ii) panel studies2 (or repeated measures data studies), where the same 

and (or) different variables are measured on the same units at least at two time points. 

Methodology discussed in this thesis shall be appropriate mainly to analysing repeated 

measures data. 

"The term panel data refers to the pooling of observations on a cross

section of households, countries, firms, etc. over several time periods. This 

I Periodic collection of census data has been conducted at the national level since the XVII (Menard, 2002). 
2 Terminology usually adopted by economists and sociologists. 



can be achieved by surveying a number of households or individuals and 

following them over time" (Baltagi, 2001). 

Panel data is particularly adequate for investigating changes at the individual level. 

Furthermore longitudinal studies also allow us to distinguish the degree of variation in the 

response variable across time for one person from the variation among subjects, and in 

principle also to make stronger causal interpretations (Diggle et al., 2002) mainly 

regarding inferences about changes, by determining the direction and magnitude of causal 

relationships (Menard, 1991). Repeated measures data analysis techniques may be adopted 

for disentangling persistent from transient effects and for controlling for individuals' pasts 

when evaluating effects (Duncan, 2000). Furthermore, panel data is capable, for example, 

of providing measures before and after important social policy events. See Rose (2000b) 

for a comprehensive review on the characteristics of household panel studies. 

In panel data studies, data is obtained prospectively, i.e. individuals are followed 

advanced in time. Nevertheless, longitudinal data on each individual may also be obtained 

retrospectively, i.e. by selecting a cross-sectional sample and obtaining data by inquiring 

retrospective questions. According to Skinner (2000), common inaccuracies of retrospective 

measurements are: (i) under reporting, i.e. failure to declare events; (ii) over reporting, i.e. 

reporting of episodes which did not happen; (iii) 'telescoping', i.e. susceptibility to over or 

under estimate time since event; and (iv) 'heaping', i.e. tendency to round time since 

episode to round number. Moreover, respondents may understate change within the 

reference time interval. 

Examples of a combination of both prospective and retrospective measurements are 

the cohort studies, which are longitudinal studies that involve the selection of a sample of 

individuals born within a specific period of time and following them over time. It is 

frequent in this type of study to collect information on events since the previous wave. 

Some examples of longitudinal studies carried out in Great Britain are the British 

Household Panel Survey (BHPS; see Taylor et al., 2001), the Youth Cohort Study (YCS, 

see Courtenay, 1997), the Office for National Statistics (ONS) Longitudinal Study (LS, 

see Hattersley and Creeser, 1995), and the English Longitudinal Study of Ageing (ELSA, 

see Marmot et aI., 2003). See Rose (2000b) for various applications involving the analysis 

of social and economic longitudinal survey data. 
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A very brief overview of models appropriate for the analysis of longitudinal data shall 

be presented in Section 1.2. Section 1.3 shall provide some consideration on 

methodological issues related to sampling in longitudinal surveys. Some important aspects 

related to statistical inference, including finite population and superpopulation models, 

shall be discussed in Section 1.4. The motivation and aims for this research project are 

summarized in Section 1.5. Finally, Section 1.6 presents concisely the outline of this thesis. 

1.2 Models for the analysis of longitudinal survey data 

Let y denote the study variable, or survey variable, which is quantified in the survey and is 

relevant in the analysis. As in Chambers and Skinner (2003, Part D) and most of the 

longitudinal data literature, in this thesis we shall adopt i to denote an individual and t to 

denote time. In this context, we thus denote the survey variable of interest as Yit for 

individual i at time t. 

In this thesis we shall be concerned mainly with the analytic use of longitudinal 

surveys3. Hence, several different modelling techniques could be adopted when analysing 

longitudinal survey data. We shall present in the current section a short overview of 

models appropriate for the analysis of longitudinal data. 

The interest for fitting models to longitudinal complex survey data has been growing 

in the last few years (see Feder, Nathan and Pfeffermann, 2000). Methods for modelling 

longitudinal data have to consider the variation in y across the population as well as across 

time (Chambers and Skinner, 2003). Consequently specific statistical techniques are 

required when analyzing this type of data, as we should consider the inter-correlation 

among observations on one subject. 

One factor that could guide one's decision on the adoption of a specific modelling 

technique is the nature of the data to be analysed, for example whether the response 

variable of interest is continuous or discrete. Furthermore, different modelling approaches 

would also be chosen depending on whether continuous (with t taking any value in a given 

interval) or discrete time data is available (note that in this thesis we shall only consider 

3 See Skinner, Holt and Smith (1989, Chapter 1, Section 1.1) for a discussion on the distinction between 
analytic and descriptive uses of sample surveys. 
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the discrete time case, as t = 1, .. . ,T , where T is the number of waves of the survey and t 

are equally spaced in time). 

Perhaps the simplest approach to be adopted when modelling repeated measures data 

is the so-called two-stage or derived variable strategy (see for example Diggle et aI., 2002, 

Chapter 1). This technique is based on reducing the repeated values of the response 

variable into one or two summaries and analysing each summary variable as a function of 

the covariates. Nevertheless, this approach is limited to time-constant covariates. 

Alternatively, we may choose to model response variable individual values in terms of 

time-varying (and/or time-constant) covariates. In this context, we could model the 

marginal mean similarly to the cross-sectional data modelling case. However, repeated 

observations on the same variable are likely to be correlated and such correlation has to be 

considered in this marginal analysis. Moreover, when adopting this modelling approach 

we would have the capability of separately modelling the mean and the covariance. This 

class on longitudinal regression model shall be discussed in more details in the Chapter 2 

ofthis thesis. For further information see, for example, Diggle et ai. (2002). 

An approach alternative to the marginal analysis is random effects modelling, which 

presupposes the correlation among repeated observations is caused by the fact that model 

coefficients vary across individuals. This class of longitudinal regression models is 

especially appropriate when we aim to produce inferences about individuals (Diggle et aI., 

2002). A conditional version of the random effects modelling approach, i.e. fixed effects 

models, is also an approach that could be adopted when analysing longitudinal data. 

Skinner (2003b) considers, however, this specification to be unnatural to some extent from 

a survey sampling viewpoint, as this considers the inference being conditional on the 

effects in the sample. For additional information on random effects models for 

longitudinal data see, for example, Goldstein (1995, Chapter 6), and Hand and Crowder 

(1996). Note that both marginal models and random effects models are suitable for 

discrete time data. 

Transition models could also be adopted when analysing longitudinal survey data. This 

kind of models involves the regression of the response variable of interest on its values at 

previous time point (or points) in addition to the covariates. When working with discrete 

4 



response variables one could adopt logistic or multinomial logistic regression models, for 

example, for the analysis of transitions. For supplementary material and application 

involving transition models see, for example, Mealli and Pudney (2003), Diggle et al. 

(2002), Skinner (2000), and Ermisch (2000). 

Event history analysis (ERA) is also an alternative methodology for performing 

analysis of transitions, as (i) an event may be described as a transition between states and 

(ii) a transition may be interpreted as a type of event. Techniques of ERA deal with 

intervals of time which units spend in the different categories of the response variable 

(Skinner, 2003b). ERA can be carried out on either discrete or continuous time recorded 

longitudinal data. In most situations, discrete time methods give very similar results to 

continuous time methods, although in practical terms the latter are more often adopted. In 

discrete time event history, models may be fitted via standard logistic regression 

techniques. For further information on the analysis of event history data see, for example, 

Allison (1984) and Lawless (2003). 

When analysing one-way transition data the term survival analysis is usually adopted. 

Basic survival analysis models are then special cases of ERA and consider the time of 

occurrence of a single terminal event as the outcome of interest. 

Furthermore, the characteristics of longitudinal survey data adapts adequately with the 

adoption of structural equation modelling (or covariance structure analysis4
). Wiley, 

Schmidt and Bramble (1973) define the covariance structure analysis as the group of 

models and statistical methods (including multivariate analysis of variance, regression and 

factor analysis), which are employed for the structural analysis of covariance matrices 

predominantly in the social sciences. For further information on structural equation 

modelling, see for example, Bollen (1989), Raykov and Marcoulides (2000), Loehlin (1987), 

Finkel (1995), Long (1983), Bentler and Weeks (1980), Browne (1982), Schoenberg 

(1989), Bentler and Dudgeon (1996), and MacCallum and Austin (2000). We shall discuss 

methods for covariance structure modelling from Chapter 4 and beyond. 

4 According to Long (1983), this statistical modelling approach is also referred to as linear structural 
relations modelling, moments structure modelling, latent variable equation systems in structured linear 
models, and LISREL modelling. 
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1.3 Sampling in longitudinal surveys 

The sampling scheme used by the survey designer to select the sample is one of the crucial 

features that have to be considered in survey data analysis. In this section we give some 

consideration on methodological issues surrounding sampling in longitudinal surveys. 

1.3.1 Sampling designs 

We first consider the cross-sectional case. 

The target population is the finite population about which we demand information. 

Moreover it shall be denoted by V with N distinct elements, which are labelled so that 

V = {1,2, ... ,N}, 

without loss of generality. 

Let s= {1, ... , n} represent a sample, where S is a subset of V, n is the sample size, and 

1 ~ n < N . For each sampled unit, the values of a set of study variables are observed. Let 

the function peS) represent a sampling scheme, defined for every S. 

The sampling scheme of a survey may be defined as the procedure adopted to select a 

sample S from V (see, for example, Nascimento Silva, 1996, Section 2.3). Let t; represent 

the set of all possible samples (or subsets of '0). 

Let s denote the actual selected sample and Pre S = s) = p(s), where the operator Pr(.) 

denotes the probability of The sampling scheme peS) has the following attributes, 

o ~p(S)<1 for all Sc t; , 

and 

Let Wi denote sampling (or probability) weights, which could be taken to be 

reciprocals ofthe inclusion probability, i.e. Wi = 1/ "i , where 

"i = Pr(i E s) = Lp(s) 
s3i 

is the probability of selecting the ith individual in the sample s, which is assumed to be 

known. A sample scheme is a probability sample scheme if every element of V has a 

chance to be selected in s, i.e. 
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ff; > 0, all i E V. 

Let E p (.) denote the expectation with respect to the sampling distribution of statistics 

over repeated samples s generated by the sampling design p(s). Moreover, let Zi be any 

variable, which does not depend upon the choice of the sample s. We may now consider 

the following general results, (Isaki and Fuller, 1982) 

and 

n 

LW;z; 
p lim -'.:i;=~,--_ 

LZ; 
i;1 

(1.1) 

= 1, 

which shows the design unbiasedness and consistency of the Horvitz-Thompson estimator 

(Horvitz and Thompson, 1952). In (1.1), plim denotes probability limit of This result shall 

be very useful and shall be referred to later in this thesis. Note that in this dissertation the 

model expectationS shall be denoted by E(.). 

Sampling schemes with a less variable set of weights are often desired because weights 

with high variability could cause the increase in weighted estimators' variability (Kom 

and Graubard, 1995). 

In most social surveys populations, characteristics such as indicator variables, strata 

and clusters, which define subgroups and are normally used by the survey designer, may 

be referred as design variables (see Chambers and Skinner, 2003, Section 1.2). 

Examples of sampling schemes include stratification, clustering and multistage 

sampling. Primary sampling units (PSUs), could be selected within each stratum using 

either equal or unequal probability sampling, with or without replacement. From each 

PSU, secondary sampling units (SSU) could be selected using either equal or unequal 

probability sampling with or without replacement, and so forth in the presence of 

subsequent sampling stages. 

We may additionally classify sampling designs as informative when they depend 

directly upon the study variable (see, for example, Chambers, Dorfinan and Sverchkov, 

5 The 'classic' model-based expectations do not take the randomisation due to the sample design into account. 
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2003, Section 11.2). Otherwise the sampling scheme could be categorized as non

informative. 

1.3.2 Sampling designs for longitudinal surveys 

There is usually a high cost associated6 with repeated sampling of individuals over time 

when compared to a cross-sectional sampling scheme, although the analysis of longitudinal 

survey data has several methodological advantages (see Section 1.1). Sampling designs for 

prospective longitudinal surveys involve collecting initially a cross-sectional sample at 

wave one and then following its elements from wave two and beyond. The longitudinal 

features of the longitudinal survey have to be taken into account when designing the 

sample for the first wave (Kalton and Citro, 2000). 

Let ST denote longitudinal sample. In longitudinal studies, waves of data are collected 

usually equally spaced through time on the same individuals. Under these general 

circumstances, sample data would thus follow the form {Yit;i E sT,t = 1, . .. ,r}, when it is 

assumed no nomesponse (Skinner, 2003b). We additionally assume here that the 

popUlation V and the sample are determined at the time of first wave of the survey, 

remaining fixed thereafter. 

Sampling in longitudinal studies may become a more sophisticated issue than under a 

cross-sectional perspective, as it is fundamental that the longitudinal sample continues 

representative of the popUlation (Rose, 2000a). Skinner (2003b) provides some further 

discussion on this issue, including the fact that (i) survey designers could face problems 

like attrition and other types of non-response7
; moreover (ii) panel rotation may be 

adopted and new respondents may be allowed to join the survei; furthermore (Ui) tracing 

respondents9 could become a potential cause for incomplete data, specially when we have 

long time windows among the waves; and (iv) additionally there are possible issues 

involving measurement error in longitudinal surveys. See also Skinner (2000) for further 

6 See Menard (2002) for further information on the costs oflongitudinal research. 
7 Note that cumulative non-response as result of attrition is likely to be a more considerable issue in 
longitudinal surveys than in cross-sectional ones (Rose, 2000). The risk of panel attrition usually increases 
with the number of waves of data collection (KaIton and Citro, 2000). See Duncan (2000), Winkels and 
Withers (2000), and Menard (2002) for information on the analytical problems caused by attrition. 
S Often 'births' that enter population may be sampled while co-habitants with sample members may also be 
included in the longitudinal study with the aim of updating the sample. 
9 See also Kalton and Citro (2000) for further information on tracking and tracing panel members. 
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infonnation on measurement error in panel surveys, and Kalton and Citro (2000), and 

Duncan (2000), for additional material on other sources of non-sampling error. 

In the context of longitudinal data, the sampling weights Wi may be adjusted, at each 

wave, for taking account of previous wave respondents' absence through refusal at the 

present wave, or through some other way of sample attrition. Thus, the essential procedure 

for calculating sampling weights for a panel survey is practically equivalent to that for a 

cross-sectional study although there are a numerous further complexities to be taken into 

account (Kalton and Brick, 2000). Hence the longitudinal weight at any wave generally 

account for losses between each immediate pair of waves up to that point and the initial 

design (Taylor et aI., 2001). In this thesis the adjusted sampling weights are called 

longitudinal weights and shall be denoted by Wi*T' i E S . See Kalton and Brick (2000), for 

further infonnation on the many issues involved on the production of sampling weights in 

longitudinal surveys. Furthennore, for financial reasons, samples in most household 

longitudinal surveys are selected by a complex design, frequently involving multi-way 

stratification and multi-stage clustering and unequal probability sampling. 

1.4 Inference in the presence of complex sampling 

1.4.1 Finite populations and superpopulation models 

It is usually assumed that V is fixed. Nevertheless, III the longitudinal survey 

framework, we could concede the population to change over time. 

Recall that y denotes the study variable. In this thesis we shall assume that there is 

neither non-response nor measurement error, i.e. we suppose that y is accounted properly 

for all sample units. 

We may define a finite population parameter as any descriptive function of the values 

Yl" .. , Y N' which are the population values of y. 

Under the super population model the values Yl"'" Y N are assumed to be a joint 

realisation of the random vectors I;, ... , YN (Skinner, Holt and Smith, 1989). We may 
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denote the joint distribution of r;, ... , YN by C;. Super population parameters are 

characteristics of c; , which may also be seen as a model for the N-dimensional distribution 

of Yp"',YN (Samdal, Swenson and Wretman, 1992). 

Super population modelling may be briefly described as the exercise one could adopt 

for specifying the characteristics of the mechanism considered to have generated 

Yp . .. , Y N (Samdal, Swenson and Wretman, 1992). This shall be the approach adopted in 

this thesis. 

We shall denote both finite population and super population parameters by Greek 

letters. In order to make a distinction we shall add a subscript N to the finite population (or 

census) parameters. 

Some further notation and essential tenninology, which are necessary for later 

chapters, are also set out here. Estimators of the unknown super population characteristics, 

for example a parameter vector fi, shall be denoted by ~ when calculated from sample 

results. Therefore, the hat in ~ expresses that this is a function of sampling observations. 

1.4.2 Inference approaches 

Two types of statistical inference could be adopted (Samdal, Swenson and Wretman, 

1992): (i) inference about the finite population V itself (i.e. about the current condition of 

'0); and (ii) inference about a model or a super population considered to have generated V 

(i.e. about V's underlying process). Inference type (i) shall not be relevant to this thesis. 

Moreover, there are two possible approaches for perfonning inference: (i) the design

based or randomization approach; and (ii) the model-based or prediction approach. 

According to approach (i), inference is conducted with respect to the sampling 

distribution of statistics over repeated samples S produced by the sampling scheme peS), 

assuming that the values of the finite population are seen as fixed constants, but unknown 

(Skinner, Holt and Smith, 1989; Cochran, 1977). In this case, the stochastic structure is 

produced by the sampling design because the sample is the random element (Samdal, 

Swenson and Wretman, 1992). The randomization approach assumes that the unique 
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aspect that is random and controlled by the laws of probability is the process that controls 

which population elements are included in the sample (Kott, 1991). 

On the contrary, when approach (ii) is adopted, inference is conducted with respect to 

the sampling distribution of statistics over repeated realizations YI' ... ' Y N (of N random 

variables r;, ... , YN ) generated by the model denoted by ~, assuming that s is fixed 

(Skinner, Holt and Smith, 1989). The statistical literature is predominantly model-based. 

The purely prediction approach bases the inference uniquely on the model, and it pays no 

attention to peS) and its inclusion probabilities 1[i (Sarndal, Swenson and Wretman, 1992). 

In this case the inference is done to the specific realised s and not to any other samples. 

Both design-based and model-based approaches utilize a frequentist approach to 

inference (see Chambers and Skinner, 2003), which we adopt in this dissertation. 

Infonnation on the Bayesian approach for inference in the context of complex survey data 

may be also found in Chamber and Skinner (2003, Part A). 

For both parameter and standard error estimation, the classical design-based survey 

methods are usually more robust than model-based methods (Korn and Graubard, 1995). 

But the second approach is frequently more efficient than the first one. When both a 

super population model and a probability sampling distribution are obtainable, the measures 

of variance and bias of an estimator could be defined with regard to the combined 

model (see Royall and Cumberland, 1981, Section 2.3). 

Additionally, at this stage it is important to mention two wide alternative sets of 

analytic methodologies (Skinner, Holt and Smith, 1989). When the disaggregated 

approach is adopted, modelling procedures are perfonned allowing for different patterns 

within and between the categories of the design variables. Otherwise, in an aggregated 

analysis (or marginal modelling) the target model parameter is defined irrespective of the 

design variables. 

1.5 Motivation and aims of the thesis 

Researchers and other users of longitudinal survey data often make use of standard (or 

classic) statistical techniques, which in most of the cases do not take account of the 

complex sample designs. When statistical procedures are based upon standard fonnulation 
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assumptions, it is usually assumed that data are generated plainly from the concerned 

population model, without any consideration of the sampling design (Chambers and 

Skinner, 2003). Those techniques may assume that the data are realizations of independent 

and identically distributed (iid) random vectors (Scott and Holt, 1982; and Skinner, 1986), 

which is rare in practice (Chambers and Skinner, 2003). 

The standard formulation of the inference methods is often not valid when analysing 

data derived using a complex sampling scheme, i.e. when data is selected according to the 

complex survey design approach. In some situations, it may be not recommended to 

ignore the sampling design, especially when the scheme has a direct effect on inference 

procedures (Skinner, 1986). Furthermore, even when the sampling design is considered 

ignorable, the stochastic hypothesis incorporated by the standard procedures could not 

satisfactorily reproduce the population complexities underlying the sampling (Chambers 

and Skinner, 2003). 

Complex sampling schemes may be the cause of a correlation structure among 

observations, as elements in the same cluster are likely to be more similar than elements in 

different clusters. This phenomenon is called in the literature by positive intra-cluster 

correlation. Under the presence of positive intra-cluster correlation, the use of standard 

methods could lead, for example, to the under-estimation ofthe standard errors. Therefore, 

test statistics could be affected and confidence intervals based on those standard errors 

could fail to achieve the desired nominal coverage level (Scott and Holt, 1982). 

Scott and Holt (1982) discuss the effects of intra-cluster correlation on ordinary least 

squares methods (OLS) for linear regression. Skinner (1986) clarifies the effects of two

stage sampling on statistical inference of functions of population moments under both 

design-based and model-based viewpoints. 

After doing an extensive literature review we have diagnosed that further investigation 

is needed on methods for the analysis of longitudinal complex survey data. This is our 

main motivation. In this thesis we focus our attention mainly on the analytic use of sample 

surveys. It is our main target to investigate statistical methods for the analysis of 

longitudinal data collected under complex sampling designs. It shall be one of our aims to 

formulate statistical methods that take this issue into account appropriately, when 

estimating a target model vector parameter fl. . 
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According to Skinner (2003b), we may regard longitudinal analysis as a form of 

multivariate analysis and the issue of how to take the sampling design into account may be 

seen as a generalisation of this problem for cross-section surveys. This is generally the 

strategy we shall follow in this thesis. In particular, we shall be mainly concerned with 

studying statistical techniques for analysis and modelling of longitudinal survey data, such 

as covariance structure models and random effects models. We shall initially investigate 

the variance effects of clustering for longitudinal studies in the context of complex survey 

data. We shall also evaluate empirically the effects of ignoring survey design 

characteristics when using standard methodologies. 

1.6 Outline of the thesis 

This dissertation is organized in eight chapters. The present chapter has provided an 

overview of models appropriate for the analysis of longitudinal data. It has also discussed 

issues related to sampling and inference, including finite population and superpopulation 

models, and sampling designs in the longitudinal context. We have also introduced some 

notation and reviewed some aspects of longitudinal data. In addition, our motivations and 

the aims of our research project have been summarized above. 

The remainder of this thesis is organised as follows. In Chapter 2 we shall mainly 

review longitudinal regression models in the context of complex survey data. In addition, 

existing methods for model parameters variance estimation are reviewed. Moreover we 

shall discuss misspecification effects in that context. 

Chapter 3 shall consider an empirical investigation using longitudinal survey data from 

the British Household Panel Survey (BHPS), applying methods discussed in Chapter 2. 

The main characteristics of the BHPS data set shall also be described. Moreover variance 

effects of clustering for longitudinal studies shall be identified and illustrated. Furthermore 

we shall include some conclusions and a theoretical discussion in order to provide an 

argumentation that supports our major empirical results. The main results of this chapter 

appear in Skinner and Vieira (2005). 

In Chapter 4 we shall further discuss estimation procedures for the longitudinal 

regression model vector parameter fJ. Moreover we shall describe methods on inference 
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about the population covanance matrix :2: and for the variance estimation of :2:. 

Furthermore we shall discuss and review estimation methods for the vector parameter of 

interest fl, upon which the covariance matrix depends, including unweighted least 

squares, generalised least squares under the classical approach, and maximum likelihood. 

We shall additionally propose some modified estimation methods, as unweighted least 

squares and generalised least squares under the complex survey approach. A pseudo 

maximum likelihood is also derived via maximisation of the pseudo log likelihood 

function, in the context of covariance structure models. In addition some discussion about 

the methods discussed and proposed in this chapter shall also be given. 

Chapter 5 shall present the characteristics and results of a simulation study, which has 

the main object of evaluating the statistical properties of the point estimation procedures 

discussed in Chapter 4. We shall also compare the properties of the proposed methods 

with the traditional statistical techniques described in Chapter 4. Several observations 

shall be drawn from the simulation results. 

In Chapter 6 we shall discuss methods for variance estimation of iJ.. and diagnostics 

techniques for structural models for covariance matrices. We shall initially review variance 

estimation methods and model fitting statistics under the standard approach. Furthermore, 

we shall also provide some new developments on both variance estimation and model 

fitting statistics when working under the complex sampling approach. 

Chapter 7 shall present the characteristics and results of a second simulation study, 

which has the main object of evaluating the statistical properties of the variance estimation 

procedures and model fitting statistics proposed in Chapter 6. We shall also compare the 

properties of the proposed methods with the classic ones also discussed in Chapter 6. 

We shall include in Chapter 8 some conclusions about the main issues discussed in 

this thesis. Moreover we shall point out the main research achievements included in this 

dissertation. In addition we shall enumerate some possible further research topics and 

future outcomes of this doctoral research project. 
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Chapter 2 

Regression models 

for longitudinal survey data 

2.1 Introduction 

We consider a finite population denoted by V (see Chapter 1, Sub-section 1.2.1), which is 

fixed on occasions 1, .. . ,T. Let N represent the size of V. Let No = N . T . 

, 
Let L = (~1"'" ~T) be the random vector containing T repeated observations on the 

study variable for unit i = 1,2, ... , N over the T waves of the survey. We mainly consider 

Yit to be continuous. We assume a model in which 

(2.1) 

is the T x 1 vector with their respective expected values, where 

(2.2) 

In (2.2) ~it is a 1 x q vector with the q fixed covariates, fJ is a q x 1 vector of 

unknown parameters and the function ,u(.,.) is assumed known. Let y. be the observed 
-I 

values of Ii (data). 

Additionally let 

2: = covCr;) = E{[L - JlJLr; - Jl.]'}, 
_1 -I 

(2.3) 

to be a TxT population variance-covariance matrix. It is assumed that 2: does not 

depend on i. In (2.3), and in the remaining of this dissertation, COV(.) denotes population 

covanance. 

Longitudinal regression models are able to relate individual's behaviour at one time 

point, possibly to other behaviour at another point in time. The regression models mainly 



described in this chapter are usually referred in the literature as (i) cross-sectional time

series linear models, (ii) population-averaged, or (iii) marginal models. This approach, 

including information about its estimation procedures is described in Liang and Zeger 

(1986), Zeger, Liang and Albert (1988), and Diggle et al. (2002). 

In the linear cross-sectional regression models context, the model parameters are 

estimated by performing a comparison of subjects with a specific value of x, to the 

remaining cases with other values. Distinctively, for longitudinal regression model 

parameters to be estimated, a comparison of responses on a subject over the time is 

additionally carried out, considering that x is allowed to modify with time. When fitting a 

longitudinal model, each subject could be seen as working as its particular control. 

Moreover, there is usually a large amount of variability across subjects caused by 

unobserved attributes. Nevertheless, those unmeasured characteristics are 'camouflaged' 

when cross-sectional model parameters are estimated. See Diggle et al. (2002, Chapter 1, 

Section 1.4), for further information on these issues. 

The methodology discussed in this chapter is one of the possible approaches to 

longitudinal data analysis. In brief terms, we may say that these models allow for within

individual correlation. Furthermore the estimation procedures focus on the marginal 

distribution and the correlation structure is also estimated. 

The longitudinal regression models discussed in this chapter may be included in the 

aggregated approach, discussed in Chapter 1, Sub-section 1.3.3, as their target model 

parameters are usually not defined with respect to the categories of the design variables. 

Marginal regression models are an alternative for analysing continuous response discrete 

time longitudinal data, avoiding thus the specification of random effects (Skinner, 2003b). 

We review in Section 2.2 estimation procedures for longitudinal regression model 

parameters considering the classic case, which considers a general situation where the 

sampling scheme p(s) is defined such that s is selected setting data to be independent and 

to obey the model introduced in expressions (2.1) and (2.2). Section 2.3 discusses 

parameters variance estimation in the classic case. 

The estimation of longitudinal model parameters allowing for complex designs is 

reviewed in Section 2.4, whilst Section 2.5 includes variance estimation of estimators of 

parameters. Section 2.6 discusses misspecification effects in the present context. Section 
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2.7 gives infonnation about Sudaan, which is one of the possible statistical software to be 

adopted for application of the techniques discussed in the current chapter. Moreover, 

Section 2.8 concludes this chapter. 

It is illustrative at this point to discuss a class of linear regression models in the 

context oflongitudinal data (see Example 2.1 below). 

Example 2.1: uniform correlation model (UCM) 

A special case of the model discussed above may be represented as 

r;( = ~iffJ + Ui + Vif, with i = 1, .. . ,N and t = 1, .. . ,T, (2.4) 

which defines a class of random effects models lO (see Model A, in Skinner and Holmes, 

2003; and Skinner, 2003b, Section 13.2). In (2.4), ~it is a 1 x q vector with the q fixed 

covariates, fJ is the q x 1 vector of the unknown fixed coefficients for the x variables 

(which represent the effect of each covariate on the response variable), Ui are the 

pennanent random effects (or unobservable individual specific factors), and Vii are 

transitory random effects. More generally we could re-write (2.4) as 

where cif is the error tenn and E( Cit) = 0 . 

We assume that the random variables Ui and Vii are mutually independent with 

COV(Ui , vJ = 0, where V AR(.) denotes population variance. The expectation of Yit, may 

be represented as 

E(r;J= ~itj3 = !!l~it,j3), witht = 1, ... ,T. (2.5) 

From (2.4) and (2.5), the variance of r;/ and the covariance between r;1 and r;1' are 

given respectively by 

0'2 = V AR(r;J = E{kit f }= E[ui + vit f = E[u; + 2uivit + Vi~] = 
(2.6) 

and 

10 The model described in Example 2.1 could be also called a multilevel or mixed linear model. 
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COV(Y,I' Y,I' ) = E [U i + Vii l [U i + Vit' ]} = 
= E{uJ }+E{ui • VJ+ E{u i • Vii' }+ E{vil · V iI'}= E{UJ2}= 0';, (2.7) 

for all t -:j:. t' . The variance of any response is modelled as two separate components: (i) the 

variation on the same individual, a;; and (ii) variance across individuals (a covariance), 

a~ (see Lindsey, 1994). From the general definition of correlation and expressions (2.6) 

and (2.7), 

2 

CORR(Y,p Y,I') = p = 2 all 2' 

all + a v 

where p denotes the population intra-individual correlation, and 0::::; p < 1. The intra

individual correlation is basically produced by the random individual effect. It is (see 

Jones, 1993, p. 14) (i) P = 0 when a~ = 0, meaning that there is no variance across units 

(what would reduce the case to simple regression); and (ii) p is 'close' to 1 when a; is 

'close' to 0, meaning that there is almost no variation on the same individual over time 

and no measurement error (the situation' p = l' does not happen in practice). II 

We assume in this chapter that (i) the observations are equally spaced in time; and 

(u) the number of individuals, N, is 'large' relative to the number of observations per 

individual, T (see Jones, 1993, Section 1.3). 

We also suppose that (iii) the sample is selected on one occasion and then the same 

sample units are returned on to each of the T -1 subsequent waves of the survey, and for 

simplicity (iv) we assume no nomesponse (every 1';. has the same length 1). 

2.2 Estimation procedures for parameter f3 - Classical case 

, 
Suppose that I.i = (y,p .. . ,Y,T) IS distributed as a T-dimensional multivariate normal, 

which is denoted by 

L ~ Nr[Ei~),2:], (2.8) 

where 2: is a TxT positive definite covariance matrix. Note the distinction in notation 

between N, which is adopted for the finite population size, and N which is adopted as 

usual for the Normal distribution. 
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Let y. be T x 1 vectors with the observed values for the response variable for each 
_I 

individual i in each wave. At this stage, we assume that the whole finite population is 

observed, and that L, ... , [N are mutually independent. So, we may define the census joint 

density function (or probability mass function) for all the observations as the product of the 

marginal normal densities (see Johnson and Wichern, 1998) 

(2.9) 

Note the distinction in notation between L, which is adopted for the covariance matrix, 

and I, which is the standard symbol to represent the sum. The matrix L is treated here 

as known. In (2.9), the resulting expression may be called census likelihood function, 

which we denote by f. N ~J. 

The q x 1 parameter vector fJ may then be estimated by maximising the logarithmic11 

census likelihood with respect to fJ, which is defined as 

(2.10) 

The maximum census likelihood estimator12 jJ , for the parameter fJ, may be 
-N 

obtained by minimising the exponent in the census likelihood function (2.10) 

(2.11) 

with respect to fJ. Expression (2.11) above is the sum of squares of the multivariate 

generalized distance from [i to f-ii (jJ). 

II It is fi .. equently easier to maximise the log of a function than the function itself. The adoption of the 
logarithm does not change the value of fJ, as the log is a monotonic function (Bollen, 1989, Appendix 4A). 

12 The classic maximum likelihood estimation approach (ML) "determines estimates for the model 
parameters that maximise the likelihood of observing the available data if one were to collect data from the 
same population again" (Raykov and Marcoulides, 2000). Furthermore, ML estimators are consistent, 
asymptotically normal, and efficient, but they are "derived under the assumption of a particular parametric 
form, generally the normal, for the distribution of the data vector (Harville, 1977). 
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Now suppose that we only observe y. for unit i in a sample s, denote {1, ... ,n}. Thus 
-1 

expression (2.11) could be estimated by 

: . t ~i - ~i ~)J L-
1 ~i - ~i ~)] • (2.12) 

The maximum likelihood estimator of 13, is obtained by minimising expression (2.12). 

Alternatively, we may solve the following equation system, 

(2.13) 

which are usually known as the pseudo score equations for fJ . Let Xi be the T x q matrix 

with covariates for individual i, so that Xi = C~il ' , ... , ,!iT ,)' . When fl. (13 ) = Xi 13 , we have 
-1_ -

In this case, under the linear model presented in (2.1), the pseudo score equations have 

a closed-form solution for jJ(r.) given by (with standard matrix manipulations; see Jones, 

1993) 

(2.14) 

In general r. is unknown. We shall consider estimation of r. in Chapter 4. One 

alternative approach is to replace r. by a TxT working covariance matrix V (Diggle et 

aI., 2002, p. 70). Let thus jJ(V) denote the estimator when L: is replaced by V. Thus, 

when ~i(P)=Xif3, 

p(V) ~ (t. X;V-' xT t. X:V',1', . (2.15) 

Different estimators of 13 arise for different choices of V . We consider below some 

alternatives. Let R be a TxT working correlation matrix corresponding to V, so that (see 

for example, Press, 1972; and Rencher, 1998) 

R=D-1VD-1 
Y Y' 

V = DyRDy, 

where 

Dy = [diag(VW/2. (2.16) 
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In (2.16), diag(V) may be obtained replacing off-diagonal elements of V by zeros. In 

practice, R could be chosen after calculating empirical estimates of the correlations, and 

could take several different commonly adopted patterns, as for example: (i) exchangeable, 

i.e. Rtt' = 1 for t = t ' and P otherwise, where P is the first lag correlation; (ii) stationary, 

e.g. Rtt' = 1 for t = t', P if 0 < It - t'l:::; g, and 0 otherwise, where g is the maximum 

considered lag covariance; (iii) autoregressive, i.e. Rtt' = 1 for t = t' and plt-t'l otherwise; 

(iv) nonstationary, e.g. Rtt' = 1 for t = t', Pit' if 0 < It - t'l:::; g, where Pit' = Pt't; and (v) 

unstructured, i.e. Rtf' = 1 for t = t ' , Ptt' otherwise, where Pit' = Pt't . 

We refer to V and R as working covariance and correlation matrices respectively, 

because V (as in Zeger and Liang, 1986) is not expected to be the true value of L. 

As a special case of p(V), the simplest option for the working covariance matrix is 

V = I, where I is an TxT identity matrix, i.e. we assume that repeated outcomes for a 

given individual are independent. It makes expression (2.15) equivalent to the ordinary 

least squares (OLS) estimator for fJ, and equals to 

(2.17) 

According to Liang and Zeger (1986, Section 4), p(V) is a consistent estimator for fJ 

whatever the choice!3 of a constant matrix V. This generally depends only upon the 

correct specification ofthe mean. We further discuss this statement for the complex survey 

data case. 

Example 2.1: (Continuation) 

Continuing the uniform correlation example, we have 

1 

VAR(fJ= ()2 ~ 1 
(2.18) 

P P 1 

13 However, specifying V closer to the true correlation increases the efficiency of the estimator. 
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I 

where £.i = [cil" .. , GiT ] • Thus, it is assumed constant residual correlation between any pair 

of observations from the same individual, i.e. an exchangeable working covariance 

matrix. Note that (J2 is a constant term which cancels out of (2.15) and hence does not 

need to be estimated for jJ(V). 

Let var(.) denote an estimator ofVAR(.). The covariance matrix VAR(~J, presented 

in expression (2.18) could be estimated by 

1 

(~ ) ~2 P var\§.i = (J : 

1 
=V, (2.19) 

p P 1 

where (Jones, 1993) 

a- 2 
= (l/n - q). :t&liV-1~i' 

i=1 

is an estimator of (J2 (Shah, Barnwell and Bieler, 1997), 

n·T }l·T P = --=-=---;-----,:--'-"--"'--

n· (T -1) 

is the estimator of the intra-individual correlation, and by iterating between the estimation 

of j3 and the estimation of the intra-individual correlation (Liang and Zeger, 1986; and 

Shah, Barnwell and Bieler, 1997), 

(2.20) 

and 
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2.3 Variance estimation in classical case 

2.3.1 Weighted least squares 

A variance estimator for jJ(V) given in (2.18), assuming that the model is true, is (Diggle 

et aI., 2002, p. 60) 

(2.21) 

where (Jones, 1993; Diggle et al., 2002, p. 63) 

6-2 = (l/n - q). It'y-l fi' 
i=1 

and Xi, V and fi are defined earlier on. Expression (2.20), given above, may be adopted 

for calculating fi' 

The estimator in (2.21) does not account for the complex survey design. It is also not 

robust for misspecifications of V. In (2.21) the subscript n is thus adopted for denoting 

'naIve'. This estimator is usually referred in the literature as the weighted least squares 

estimator. 

We shall adopt in Chapter 3 the term 'naIve' for this variance estimator in situations 

where we assume that V = I, where I is an identity matrix as defined for (2.20). Then, 

(2.21) could be re-expressed as (Diggle et al., 2002, p. 63) 

(2.22) 

When (2.22) is adopted, we do not consider the correlation structure in the data. It may be 

somehow very risky to assume that V = I when it is not so, what could lead us to serious 

over- or underestimation of the variance of jJ (Diggle et aI., 2002). 

2.3.2 Robust variance estimator 

The variance estimator discussed in the current section belongs to a class of estimation 

methods, which are referred in the statistical and econometric literature as Huber-White 

(White, 1980) or sandwich estimators. These methods produce consistent estimates 
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without making any distributional assumption. The previous statement is valid even if the 

underlying model is incorrect (see Kauermann and Carroll, 2001). 

We may produce estimates for the variance of jJ(V) given in (2.15) which are robust 

for misspecifications of V, as the covariance matrix 2: is typically unknown. We shall 

discuss in this sub-section the robust variance estimator presented by Liang and Zeger 

(1986) as consistent when (2.1) holds, but where the working covariance matrix, V, may 

not reflect the true covariance structure. However, expressions presented below still regard 

situations where the sample is selected by a simple random sampling (srs) scheme. We 

may derive this estimator by writing 

(2.23a) 

In addition the variance of [jJ(V)- P] is given by (Liang and Zeger, 1986; see also Zeger, 

Liang, and Albert, 1988; Kauermann and Carroll, 2001; and Binder, 1983) 

var~(v) - ji 1 = (t. X;V-' X, r . t. var(X;V-' d( t. X;V-'X, r 
= (t. x:v-'xJ' .[ t. X;V-' var{f,)v' X, J (t, X;V' xT ' 

(2.23b) 

where Xi is as defined for (2.14) whilst V is as defined for (2.15). The final expression in 

(2.23b) yields the robust variance estimator of jJ(V) , given by 

vaT, ~(v)l = [t.x;v'X, nt. (x;v' §, Xx;v' §, j I t.x;v'X, r ' 
where 

§.i = y -xjj(v). 
-I _ 

The estimator given above does not account for the complex survey design, as it still 

assumes that observations for two different individuals are independent. 

According to Diggle et al. (2002), an inadequate choice of V could affect the 

efficiency of inferences for p(v) , even though that would not have any effect on its 

validity. Hence, confidence intervals and significance tests calculated based on 
~ 

varr[p(V)] are asymptotically correct. However, the price of the consistency of 
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var,.[jJ(V)] IS its inefficiency because it has in general larger variance than classical 

variance estimators. See Kauermann and Carroll (2001), and references contained therein, 

for further information regarding robust variance estimators. 

2.4 Estimation of jJ allowing for complex design 

The methods discussed in the previous two sections rely on the assumption that the data 

are obtained by srs from large populations. However, the sample structure of many social 

surveys is complex, involving stratification, clustering, and multiple stages of selection, 

yielding data that violate the srs assumption. 

We assume here that ,L is defined as in Section 2.2 and is distributed as stated in 

(2.08). Moreover we define the census joint density function and the census likelihood 

function as in (2.09). Let y. and Xi be respectively a vector and a matrix as previously 
-I 

defined in Section 2.2. 

Here we may still consider that the maximum census likelihood estimator jJ ,for the _N 

parameter jJ, could be obtained by minimising the exponent in the census likelihood 

function, presented in (2.11), with respect to jJ . 

As in Section 2.2, we may again suppose that we only observe y. for units i in a 
-I 

sample s. As N may be unknown, in order to allow for complex sampling design, we could 

estimate expression (2.11) by 

(2.24) 

where Wi are sampling weights (see Chapter 1, Sub-section 1.3.1). The pseudo maximum 

likelihood estimator, PML (Skinner, 1989a), of jJ, is obtained by minimising expression 

(2.24). Alternatively, we have to solve the following equation system, 

(2.25) 

When J1. (jJ) = Xi jJ , we have 
-1_ _ 
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The pseudo score equations would thus have a c1osed-fonn solution for /J(I')PML gIVen 

by 

(2.26) 

where jJ('Z )PML is a q x 1 vector with the estimated coefficients, the sampling weights Wi 

are scalars, and n, Xi' 'Z and y. are as defined in Section 2.2. 
-I 

We let jJ(V)PML denote the pseudo likelihood estimator when 'Z is replaced by V, 

where V is a working covariance matrix as defined in Section 2.2. Thus, when fl. (,0 ) = Xi,o , 
-1- -

(2.27) 

Note that the estimator jJ(V) defined in expression (2.15), in Section 2.2, is a special case 

of jJ(V)PML when the sampling weights are constant. Note that (2.27) is equivalent to 

where 

and 

fJ~(V) =(~X*'V-IX~)-ILn X~'V-I * PML L.... 1 1 1 Y. , 
- -I 

i=1 i=1 

* (* *)' Y. = YiP""YiT , _I 

with 

with y~ = rw; . Yit . 

(2.27a) 

Different estimators of fJ arise for different choices of V. See Section 2.2 for some 

alternative choices and further infonnation on V. 

We assume that repeated outcomes for a given individual are independent when we 

consider V = I, where I is an TxT identity matrix, for /l(V)PML' It makes expression 

(2.27) equivalent to the ordinary least squares (OLS) estimator for fJ weighted by the 

sampling weighs Wi, and equal to (Kish and Frankel, 1974; and Fuller, 1975) 
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(2.28) 

where jJ(J)PML denotes the PML estimator for f3 when setting V = J. 

We now show, assummg V is constant, that f3 PML IS approximately unbiased 

whichever choice of V we adopt. Although V could be sometimes chosen after calculating 

empirical estimates, we shall assume here that V is constant, i.e. that it does not depend 

upon the choice of the sample s. Thus, from (2.26), (2.27) and (2.28) 

Ep~(V)PMJ~ Ep[ (t w,X;V-'X, r t w,X;V' ,)',] '" 

== [E p (t WiX;V-1 XiJ]-1 Ep (t WiX;V-1 ~iJ = (f X;V-I XiJ-l f X;V-1 ~i . 
/=1 /=1 /=1 /=1 

The approximation above may be justified by expressions given by (1.1), in Chapter 1, 

Sub-section 1.3.1, taking Zi =X;V-1Xi or Zi =X;V-l~i' Moreover, if E~)=X:f3 and if 

we assume that V is constant with respect to the model, 

(2.29) 

Then, similarly to the Generalised Estimating Equation (GEE) approach discussed by 

Liang and Zeger (1986), jJ(V)PML will be approximately unbiased with respect to 

sampling, nonresponse and the model whatever the choice of a constant matrix V, if the 

model holds and the weights fully capture the sampling and nonresponse probabilities. 

A common concern when working with a longitudinal sample ST is that the underlying 

attrition mechanism may conduct to biased estimation of fJ (see Chapter 1, Section 1.3). 

One possible way of attempting to correct for this potential biasing effect is via the use of 

longitudinal survey weights, W;T' We may assume here that (2.29) holds even when we 

substitute Wi by W;T' This is a reasonable assumption as the longitudinal weights still 

capture the probabilities of selection Jr i , where Jr; is as described in Chapter 1, Sub

section 1.3.1. 
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2.5 Variance estimation for jJ _PML 

When sample s is selected by a complex sampling scheme, a correlation structure among 

the observations, additional to the longitudinal correlation, may be caused. Then, in that 

situation if we assume that s is selected by a simple random sampling, we could generate 

erroneous estimates of the standard errors. An effect that could also interfere in the 

construction of confidence intervals and calculation oftests of significance. 

In this section we present some information on two of the most commonly used 

variance estimation methods in survey sampling: the (i) Taylor linearization variance 

estimation approach (Sub-section 2.5.1); and the (ii) Jackknife replication variance 

estimation approach (Sub-section 2.5.2). 

2.5.1 Linearization variance estimator 

The robust variance estimation method discussed in Sub-section 2.3.2 involve Taylor 

expansions of the parameter point estimator jJ(V), about the true model parameter fJ 

providing first order approximations. The robust variance estimator is thus a special case 

of the linearization variance estimator, which we present in more details in the current 

sub-section. We provide here further discussion about the well known linearization 

variance estimator, particularly in the context of complex survey schemes. 

The linearization (commonly named Taylor series expansion or 5) method is based on 

the approximation of jJ(V)PML' which is nonlinear in the observations, by a linear 

function. Variance estimation is thus performed making use of the first-order senes 

approximation (see Binder, 1983). We have to assume that (i) jJ(V)PML is consistent for 

fJ (see Section 2.4), and that (ii) the expansion of the estimator (terms beyond the linear 

one) make negligible contribution to its variance14 (Rust, 1985). 

Let varJjJ(V)PML] denote a linearization variance estimator, which is a q x q 

covariance matrix of jJ(V)PML. We shall follow steps suggested by Binder (1995). 

Expression (2.23a) extends to 

14 This assumption may fail for 'small' sample sizes (Rust, 1985). 
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(2.30) 

where 5· is the error term, 
-I 

5. = Y. -X·fJ. 
-I -1 1_ 

(2.31 ) 

Thus (similarly to Skinner, 1989a, Sub-section 3.4.4), we have 

vaY, [;J(V)PM' - ,B 1 ~ ( t w,x;v~' xJ' . var{ t w,x;v-' l:' H t, w,x;v~' x,f, (2.32) 

where the sUbscript L denotes linearization. 

For producing an estimate for varJ~(V)pMrJ, we need to find an estimate for the 

middle term in the right hand side of (2.32), 

varL[i: WiX;V-
1 
fi] . 

1=1 

(2.33) 

As we usually do not know the population parameter fJ in (2.31), we also can not observe 

fi given above. Expression (2.33) could then be estimated by 

varL[i: WiX;V-
1 
§..i] , 

1=1 

(2.34) 

where §..i = Y; - XJj(V)PML' with jJ(V)PML given by (2.27). 

We notice that (2.34) is basically an estimate for the variance of a weighted estimator 

(see Binder, 1983, Section 4.2), which is explicitly dependent upon the sampling weights 

Wi' We could then rewrite (2.34) as 

where ~i = X;V-1 §..i is a q x 1 vector. In (2.35) we may notice that 

n 

"w.Z. ~ I-I 

(2.35) 

(2.36) 

has the form of an estimate of the population total of Z (see Binder 1995), which we 

denote by the q x 1 vector of totals ~. Therefore, 

n 

Z = "w.Z .. 
- ~ I-I 

(2.37) 
i=l 
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We may thus adopt a standard technique for estimating the variance of (2.36) for the 

sampling scheme adopted for selecting the considered data set. We consider below an 

specific sampling design as an example on how to estimate the variance of ~. 

Example 2.2: sampling of PSUs with replacement 

We shall consider a multistage stratified sampling scheme that involves sampling with 

replacement at the first stage of PSUs from each of a total of H strata, and sampling with 

or without replacement at subsequent stages. We additionally consider equal or unequal 

selection probabilities at both the first and subsequent stages. 

In order to explicitly consider stratification and clustering we may rewrite (2.37) as 

h=! h=! j=! h=! j=! i=! 

where H is the number of strata in the sample, mh is the sample number of PSUs in 

stratum h, nhj is the sample number of individuals in PSU j in stratum h, and wi?ii is the 

sampling weigh for individual i in PSU j in stratum h. From Shah et al. (1995, Sub-section 

2.2.3), an estimator for the variance of Z, considering the sampling scheme described 

above, is given by 

(2.38) 

where ~hj is an estimator of a total in PSU j in stratum h, and Zh is the mean of ~Izj III 

stratum h. See also Cochran (1977, Section 11.9). 

Therefore, the estimator 

varL[~] 
may be adopted for calculating 

when considering the sampling scheme described in this example. In the current context, 

expression (2.38) could thus be plugged in (2.32) and hence yielding an expression for 

varL[p(V)PML]' III 
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See Lavange, Koch and Schwartz (2001), for example, for applications of a similar 

procedure to allowing for complex sampling schemes in regression analyses of repeated 

measures data from various longitudinal studies. 

Example 2.3: independent sampling of units 

Under independent sampling of units, expression (2.23b) extends to 

var~PM' (V)-pH t w,x;v-'xT . t var(w,X;V·' eJ{ t w,x;v'xT 

~ (t w,x;v·'xT -[ t w;x;v·' var(o:,)V·'X, H t w,x;y-'x,f 
(2.39) 

The last expression in (2.39) yields the robust variance estimator of jJ (V), given by -PML 

where, 

va" ~PM' (V)] ~ [t w,X;V'X, n t "" (X;V' §., XX;V·' §., j It w,X;V·'X, r 
(2.40) 

~i = Y -XJJ (V). 
-I _PML 

The variance estimator given in (2.40) does not account for complex survey schemes. 

As in Sub-section 2.3.2 we also assume here that observations at two different individuals 

are independent. II 

Taylor series approximation of variances for complex statistics could be performed 

through different asymptotically equivalent procedures (Binder, 1995). In fact, Taylor 

series methods are responsible exclusively for the construction of a linear approximation 

of the statistic of interest, jJ(V)PML here. The variance expression, suitable for the actual 

survey sampling design, could then be employed for the linear approximation. 

This method presents a very important property - it allows for the possibility that a 

clustered sampling design could generate data with a correlated error structure, and also 

for the likeliness of unequal unit variances both within and across clusters (Kott, 1991). 
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Nevertheless, the linearization method has also disadvantages: (i) the necessity for 

producing analytic expressions for the partial derivatives (see Skinner, Holt and Smith, 

1989, Chapters 3 and 5); and (ii) it is biased because the number of clusters is finite, and 

the bias tends to be downward (Wolter, 1985, Chapter 8; and Kott, 1991). 

Another difficulty with using Taylor series expansion to approximate the variance of 

fJ may arise when the number of primary sampling units is 'small'. That could result in 

reduced degrees of freedom for the variance estimation and consequently the possibility 

for a 'weak' statistical inference (Kom and Graubard, 1995). 

2.5.2 Jackknife variance estimator 

The jackknife is a pseudo-replication method for variance estimation. The use of this class 

of variance estimation methods is nowadays considerably widespread among survey 

statisticians. The introduction of the jackknife estimation technique is attributed in the 

statistical literature to J. W. Tukey in the 1950's, who extended the bias reduction in 

parametric estimation methods previously developed by M. H. Quenouille in papers 

published in the 1940's and 50's (for full references see Miller, 1974). 

In early stages, one of the jackknife's predominant applications had been to ratio 

estimation (see Durbin, 1959, among others). Tukey's original idea has then been 

described in details by Miller (1964), where we can also find further investigation mainly 

on the use of jackknife for the construction of approximate confidence intervals and 

significance tests, considering a simple non-linear parameter that is locally linear in the 

observations. 

Additionally, Miller (1974) gives several other important references and presents a 

comprehensive literature review on early developments ofthe jackknife technique including 

its application to (i) inference on variances, (ii) regression problems, (iii) maximum 

likelihood estimation, (iv) transformation of statistics, and (v) multivariate analysis. Note 

that Wolter (1985; Chapter 4) also provides a comprehensive coverage of the topic. 

Moreover the jackknife principle has been extended to handle stratified multistage 

sampling data in successive papers by (i) Lee (1973), for combined ratio estimators, where 

this method has been referred to as generalised repeated partial sample; (ii) Jones (1974), 
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for the class of estimators that can be expressed as functions of sample means; (iii) Kish 

and Frankel (1974), where it is referred as jackknife repeated replication method; and (iv) 

Krewski and Rao (1981), where the consistency of jackknife variance estimators for both 

linear and non-linear statistics are theoretically established; among other papers. 

A jackknife estimator may also perform variance estimation for jJ (V) by _PML 

estimating numerous estimates ofthe population target parameter from distinct parts ofthe 

original sample. For the stratified multistage sampling case, we produce each estimate by 

removing a primary sampling unit (PSU) at a time (as in Jones, 1974), and its units from 

all subsequent sampling stages, in stratum h in order to make one replication. The variance 

estimation is thus obtained by calculating the variability among all the replicate estimates 

of j3 (see Drewski and Rao, 1981). Therefore (Shah, Barnwell, and Bieler, 1997), 

(2.41) 

where the subscript J denotes jackknife, H is the total number of strata in the sample, mh 

is the number ofPSUs in stratum h, jJ (') is the pseudo maximum likelihood estimator 
-PML hl 

of j3 after omitting PSU j in stratum h, 

(2.42) 

and jJ(V)PML(Jzj) is estimated using (2.27). 

When applying the Jackknife variance estimation method, the sampling weights have 

to be inflated in the remaining PSUs, so that those become representative of all the 

elements (Lee, Forthofer and Lorimor, 1989). This may be obtained by dividing the sum 

of the sampling weights ofthe remaining PSUs by the factor 

1- (sumIj sum2) 

where sum 1 is the sum of the sampling weights for individuals in the excluded PSU and 

sum2 is the sum of the weights for individuals in all PSUs in stratum h. We shall adopt 

this procedure for defining the replication weights when applying the Jackknife method in 

the next chapter. 
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Jackknife repeated replication methods usually work under the assumption that the 

PSUs are selected independently and with replacement. The adoption of jackknife for 

variance estimation for situations where PSUs are not selected independently could be a 

source of bias (Rust, 1985, Section 7, and references therein). That assumption could be 

substituted by an alternative presupposition that the sampling fraction 15 in every first stage 

stratum is 'small', say less than 10% (Shah, Barnwell, and Bieler, 1997). 

In the next chapter of this thesis, we shall have a chance to perform an empirical 

comparison between jackknife and linearization variance estimation methods for a data set 

with a specific sampling design in both cross-sectional and longitudinal contexts. 

2.6 Misspecification effects 

Kish (1965) introduced the term design effect for a measure of the impact of a complex 

design, which is usually defined as the variance of a statistic under the given design 

divided by the variance of the corresponding statistic under a srs design. 

Kish's design effect deffKis,,(e) of e, where here e is an estimator of any scalar 

parameter of interest 8, is thus given by 

de!"!". (e) = V ARt/'ue(~) , 
:JJ KlSh V AR (8) 

srs 

where V ARtrue (e) is the true variance of e that considers the true sampling scheme used 

for the selection of the sample, and V ARsrs (e) is the hypothetical variance of e when the 

sample was selected by srs with replacement. 

The original design effect measure present some disadvantages for analysis purposes. 

Kish's design effect has its applicability related mainly to the evaluation of precision gains 

or losses, when comparing alternative sampling schemes (see Lee, Forthofer and Lorimor, 

1989). The measure deffKish (e) would actually not be appropriate for analysis under one 

single design, according to Skinner, Holt and Smith (1989). 

15 The sampling fraction in a stratum is calculated as the number of PSUs selected in the sample divided by 
the population number ofPSUs in the stratum (Shah, Barnwell, and Bieler, 1997). 
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Skilmer (1989b) extends the concept of design effect by proposing the misspecification 

effect (meff), which is more suitable for analytic inference than the classic design effect. 

The meffis designed to measure the effects of incorrect specification of both the sampling 

scheme and the considered model. 

The meffis defined in the same way as the deffwith the same numerator, but with the 

denominator consisting of the expectation of a variance which ignores the complex design. 

Thus let (Skinner, Holt and Smith, 1989) 

varo (e) = variid (e) 
be a consistent estimator of the variance of e , when we assume that the observations are 

independent and identically distributed (iid). The effect of the complex sampling scheme 

on varo(e) can be evaluated if we examine its distribution. 

Skinner, Holt and Smith (1989) thus define the misspecification effect as 

~ VAR (8) 
meff(8, varo) = true ~ , 

E1rue [ varo (8)] 

which gives a measure of how much varo (e) over- or underestimate V AR true ( e) , and may 

be estimated, for example by 

or 

The meff, defined above, is thus a measure of relative bias of the variance estimator. 

Figure 2.1 below gives information on how to interpret misspecification effect results. 

meff(e, varo) Bias [varo(e)] Interpretation 

< 1 >0 Overestimation of V AR( 8) 

=1 =0 Correct estimation of V AR( 8) 

> 1 <0 Underestimation of V AR( 8) 

Figure 2.1 - meff(e, varo) interpretation. 
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We may observe, for example, that: (i) mejJ(O, varo) < 1 when estimating varo(t~) and 

ignoring stratification; and (ii) mejJ(O, varo ) > 1 when estimating varo (0) and ignoring 

sampling weights or clustering. See Skinner, Holt and Smith (1989, Chapter 2), for some 

examples. 

The misspecification effect proposed by Skinner, Holt and Smith (1989) may be either 

a design based or a model based measure. We may take both V ARtrue(B) and 

Etrue [varo (0)] to refer to either the randomization distribution induced by the true 

sampling design or by the model. 

The mejJ( 0, varo) is theoretically different from the de.!JKish (0), because that depends 

upon two arguments Band varo (Skinner, Holt and Smith, 1989). However we may 

observe that their respective estimators, calculated from a unique sample coincide in 

practice. 

In the context of the current chapter, we may define the misspecification effect as 

V AR[P(V)PML ] 
mejJ= ~()'K , 

varr [P V PML ] 
- ,K 

which may be estimated by replacing VAR by varJ or varL , so that 

~ J varAP(V)PML,J 
mejJ = A() , 

varr [P V PML K] - , 

or (2.43) 

where P(V)PML is as defined for (2.27) in Section 2.4, and the subscript K denotes that 

P(V)PML,K is the Klh element of P(V)PML , with K = 1, ... , q . 

Both mejJJ and mejJL measure the influence of a sample design on inference 

procedures, although they do not account for the effects of the longitudinal structure of the 

data on inference procedures. In general, mejJs will reflect the impact of weighting, 

clustering and stratification. 
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Note that we should always be cautious when interpreting estimated misspecification 

effect results, considering that (2.43) are estimators and therefore are subject sampling 

variability. For some discussion on this subject as well as empirical results, see Yu (2002). 

2.7 Software 

The statistical specialist sampling package SUDAAN (Shah, Barnwell, and Bieler, 1997) 

is an alternative to be adopted for the application of the techniques described in this 

chapter. SUDAAN was originally developed for analysis of complex survey data. This is 

one of the few software which supports for multiple nesting levels (see Horton and 

Lipsitz, 1999). This characteristic makes SUDAAN to be particularly appropriate for 

analysis of repeated measures and clustered data. 

SUDAAN's regress procedure fits linear regression models to sample survey data, 

which could be either cross-sectional or longitudinal. Survey data longitudinal model 

parameters can be estimated using either expression (2.27) for jJ(V)PML' with the working 

covariance matrix V assumed to be exchangeable (see Section 2.4), or (2.28) for jJ(I)PML' 

which assumes that V = J , depending on the procedure that is adopted in SUDAAN. 

In addition, when assuming the classical case jJ(V) may also be calculated by this 

software, which adopts either (2.15) considering the working covariance matrix V to be 

exchangeable (see Section 2.2) or (2.17), with jJ(V = J). 

Furthermore SUDAAN is able to perform variance estimation for jJ(V)PML' 

considering a linearization variance estimator (see Sub-section 2.5.1) and a jackknife 

variance estimator (see Sub-section 2.5.2). A weighted least square (see Sub-section 2.3.1) 

and robust variance estimator (see Sub-section 2.3.2) can also be calculated for jJ(V) by 

this software. 

When calculating jJ (V) by adopting (2.27), and estimating jJ (V)'s variance via _PML _PML 

jackknife or linearization methods, this software should be able to consider both 

individual-level correlations over time and between cluster variability. 
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Therefore, we shall consider the utilization of SUDAAN for applying some of the 

techniques discussed in the current chapter in Chapter 3, including linearization variance 

estimation. 

However, jackknife vanance estimates III the longitudinal context shall not be 

produced by using the software described in the current section. We shall adopt the 

statistical computer software R (Ihaka and Gentleman, 1996) for programming this 

technique. We shall provide some description of this software later in this thesis, in 

Chapter 5. Moreover, see Zhang (2001) for some information on the limitations of using 

SUDAAN for variance estimation. 

Other softwares that could handle complex survey data are, for example: STATA (svy 

commands; Stata Corp., 2003); SAS (PROC SURVEYREG; SAS Institute, 2004); and a 

'Complex Sample add-on' more recently implemented for SPSS version 14.0 (SPSS Inc, 

2005). Note that STATA (xt commands; Stata Corp., 2003), SAS (PROC GENMOD; SAS 

Institute, 2004), and S-PLUS (Y AGS library or Oswald system; see Horton and Lipsitz, 

1999), for example, could be adopted for fitting population-averaged or marginal 

longitudinal models, albeit without allowing for effects of sample clustering on variance 

estimation. Nevertheless, to our knowledge, none of the software listed above offer readily 

available tools that could be utilised for modelling longitudinal survey data by accounting 

for correlations over time as well as clustering, using the techniques discussed in the 

current chapter, which belong to a survey sampling approach. 

Notice, that any standard software's longitudinal modelling procedure could be 

adopted for point estimation of j3(V) by calculating jJ (V) given by (2.27a). This, 
_ _PML 

however, does not eliminate the necessity of estimating jJ (V), s variance via methods 
_PML 

that take clustering into account. 

An alternative set of techniques for modelling longitudinal survey data allowing for 

clustering is the multilevel modelling approach (see, for example, Goldstein, 1995), which 

we shall not explicitly discuss in this Thesis. Thus, MLwiN (Rasbash et al., 2002) or SAS 

(PROCs MIXED, GLIMMIX, and NLMIXED; SAS Institute, 2004), for example, could 

be adopted for handling both longitudinal correlations and clustering in a multilevel 

modelling set up. 
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2.8 Concluding remarks 

In this chapter we have mainly presented a literature review on longitudinal regression 

models in the context of complex survey data. We have given information on the 

estimation of longitudinal regression model parameters and on how to estimate their 

variances considering initially the classical case. 

We have additionally discussed methods for situations where we allow for complex 

survey schemes. We have considered the pseudo likelihood estimation method for model 

parameter estimation. A robust estimator for jJ , which does not account for complex 
-PML 

survey schemes, has then been discussed. In addition, we have given information on both 

jackknife replication variance estimation and Taylor linearization variance estimation 

approaches. 

Moreover we have reviewed the main aspects of the misspecification effect, which we 

shall adopt in Chapter 3 as a measure of the influence of a sample design on longitudinal 

analytic inference procedures. 

Furthermore we have pointed out m Section 2.7 the mam characteristics of the 

software Sudaan, which is a statistical package that we shall mainly adopt in the following 

chapter for an empirical application, which shall involve the adoption of most of the 

techniques discussed in the current chapter. 

Hence, we shall carry out in the following chapter an empirical investigation about 

variance effects of clustering in longitudinal studies, using longitudinal survey data from 

the British Household Panel Survey (BHPS) applying methods discussed in the current 

chapter. 
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Chapter 3 

Variance effects of clustering in longitudinal 

studies - an empirical investigation 

3.1 Introduction 

In this chapter we shall study the misspecification effects (meffs), discussed in Chapter 2, 

Section 2.6. We expect mejJs to behave empirically like Kish's design effects (deffs). 

There is some empirical evidence that design effects from clustering tend to decrease the 

more complex the analysis (Kish and Frankel, 1974). For example, design effects for 

regression coefficients are often found to be less than design effects for the mean of the 

dependent variable in the regression. An intuitive reason for such findings is that a 

regression model may 'explain away' certain differences between strata or multi-stage 

units thus diminishing the residual impact of the design. Evidence of design effects close 

to unity for such analyses may be used by some analysts of survey data to justify ignoring 

the sampling design in complex analyses. 

In this chapter we present some evidence of an opposite tendency, for design effects to 

be higher for complex longitudinal analyses than for corresponding cross-sectional 

analyses. The design effects for some of the regression coefficients are found to increase 

the more waves are included in the analysis. A similar tendency is observed for estimates 

of the time-averaged mean of the dependent variable. The implication of these findings is 

that standard errors in analyses of longitudinal survey data could be misleading if the 

initial sample was clustered and if this clustering is ignored in the analysis. Moreover, it is 

our aim to provide some possible theoretical justification for that result. 

Our empirical evidence is based upon data from the British Household Panel Study 

(BHPS). This survey follows longitudinally a sample of individuals selected in 1991 by 

two-stage sampling, with clustering by area. Data are collected in annual waves. Our 

analyses are based upon a subsample of women aged 16-39. The dependent variable is a 

gender role attitude score, derived from responses to six five-point questions, and treated 



as a continuous variable. Covariates include age group, economic activity and educational 

qualifications. Data are analysed for five waves of the survey when the gender role 

attitude questions were asked. 

Methods discussed in Chapter 2 shall be applied in the empirical investigation 

presented in this chapter. We shall adopt longitudinal regression modelling, based upon a 

model considered by Berrington (2002), who studies persistence and changes in the gender 

role attitudes of women in Britain. Regression model fitting results allowing for both (i) 

longitudinal structure; (ii) clustering, (iii) stratification and (iv) sampling weights shall be 

produced in this chapter. Moreover, we shall also present values of design effects that 

capture only the effect of clustering, treating the weights as constant and ignoring 

stratification. Furthermore, jackknife (see Chapter 2, Sub-section 2.5.2) and Taylor 

linearization variance estimation (see Chapter 2, Sub-section 2.5.1) results shall be 

included here. 

In this chapter we shall assume that the parameters of interest should not depend upon 

the sampling design, via the population structure underlying the sampling (Skinner, Holt 

and Smith, 1989). The reason for the adoption of this assumption is that the primary 

sampling units (PSUs) in the BHPS are postcode sectors, determined by the needs of the 

British postal system. Thus, we shall assume here that BHPS PSUs are not relevant to the 

definition of parameters of scientific interest. 

The main characteristics of BHPS data set, including its sampling design features, 

shall be presented in details in Section 3.2, which also includes some further information 

on how the study variable considered in this chapter was originally constructed. 

Section 3.3 mainly identifies and illustrates variance effects of clustering for 

longitudinal studies, but also includes some exploratory data analysis and cross-sectional 

model fitting results. It is in that section that we shall provide some evidence that the 

design effects for longitudinal analyses can be greater than for corresponding cross

sectional analyses, implying that more caution is required before ignoring the complex 

design in standard error estimation. Moreover, we present a succinct interpretation for 

some achieved model fitting results. 

A theoretical discussion about the major results presented in this chapter is presented 

in Section 3.4. Finally, Section 3.5 includes some concluding remarks. 
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3.2 British Household Panel Survey 

We have been able to notice great modifications in the role of men and women in the 

family in numerous countries over the last few decades. The relationship between changes 

in the gender role attitudes and behaviour modifications, as for example parenthood and 

labour force participation, has been an issue of great interest for social scientists (see, for 

example, Morgan and Waite, 1987; Fan and Marini, 2000; Berrington, 2002; and more 

recently Brooks and Bolzendahl, 2004). 

We analyse here data from the BHPS, which is an on-gomg large nationally 

representative household panel survey of individuals in private domiciles16
, carried out by 

the Institute for Social and Economic Research, University of Essex (see Taylor et al., 

2001; and Berrington, 2002). The BHPS exemplifies the use of complex sampling as well 

as longitudinal schemes. This survey has the main objective of providing information 

about social and economic change at the individual and household level, "to identifY, 

model and forecast such changes, and also to investigate their causes and consequences 

in relation to a range of socio-economic variables" (Taylor et al., 2001). 

3.2.1 Sampling design 

The BHPS is a longitudinal survey and adopts a complex multistage sampling scheme for 

collecting data. It has additionally a multiple cohort prospective panel design. At wave 

one, in 1991, it involved an (i) approximately equal probability selection of households, 

and a (ii) multistage stratified clustered probability design with systematic sampling. 

As PSUs, 250 postcode sectors were selected, with replacement and with probability 

of selection proportional to size using a systematic procedure. Delivery points17 were 

selected as secondary sampling units, with the adoption of an analogous systematic 

procedure. 

In addresses with up to 3 households present, all households were included, and in 

those with more than 3 households, a random selection procedure, using a Kish grid, was 

16 BHPS data is collected prospectively (see Chapter 1, Sub-section 1.3.2), which has usually better quality 
than data collected retrospectivelly (see Diggle et al., 2002). 
17 The BHPS sampling design defines delivery points as addresses. 
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used for the selection of 3 households. Then, all resident household members aged 16 or 

over were selected. All adults selected at wave one, were followed from wave two and 

beyond. A result of this sampling design is that inclusion probabilities of adults have little 

variability. 

A considerable number of PSUs are sampled for the BHPS. This protects against the 

occurrence of limited degrees of freedom when estimating variances (see Chapter 2, 

Sub-section 2.5.1). Korn and Graubard (1995), for example, recommend sampling designs 

with 'many' PSUs for more efficient variance estimation. 

The BHPS data set includes longitudinal weights w;r (see Chapter 1, Section 1.3), 

which are provided to individual cases who have responded at each wave up to and 

including the latest wave. Those weights allow for different selection probabilities, 

nomesponse at wave one and attrition. Cross-sectional weights were also produced for 

each wave and are also provided. For infonnation regarding how weights are defined for 

the BHPS case, including some expressions, see Taylor et al. (2001), where further details 

about the BHPS 's sampling design are also included. 

3.2.2 BHPS subset 

We consider in this study data from waves one, three, five, seven, and nine (collected 

respectively in 1991, 1993, 1995, 1997, and 1999). The subset of data adopted here was 

obtained and prepared with computational procedures adapted from Berrington (2002), 

which were provided by that author. We use in the analysis presented here the following 

BHPS subset of variables, (i) gender role attitude score, (ii) wave number t, which is the 

time variable, (iii) age group, (iv) economic activity, (v) parenthood status, and (vi) 

educational level. 

Covariates for the regression analysis that shall be performed in the current chapter 

were chosen on the basis of discussion in Berrington (2002) but cut down in number to 

facilitate a focus on the methodological questions of interest. We consider economic 

activity as the exploratory variable of highest scientific importance. That covariate 

discriminates between women who are at horne looking after children and those following 

other kinds of activity in relation to the labour market. Two other covariates, age and 
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education, are also included in our analysis because these have been considered to be 

related to gender role attitude as, for example, in Fan and Farini (2000). 

Note that we shall thus include both age and time as candidate covariates in our model 

fitting procedures. This is only possible in longitudinal analysis. Hence, by doing that we 

try to control for both aging (developmental effect) and trend over time (historical effect) 

when studying variables like the women gender role attitudes. This strategy is so-called 

Palmore's method. Ideally we should also include the birth cohort factor as explanatory 

variable, but it is usually not done due to co linearity problems (Menard, 1991; and 

Firebaugh, 1997, Chapter 2). 

The levels of each categorical variable adopted in the current chapter are described 

below in Table 3.1. 

Variable 

Age group 

Economic activity 

Parenthood status 

Educational level 

Values 

2 

3 

16-21 years 

22-27 years 

28-33 years 

4 More than 34 years 

Full time employed 

2 Part time employed 

3 Other inactive 

4 Full time student 

5 Family care 

o Not a parent 

Parent 

First or higher degree 

Labels 

2 Teaching qualification (QF) or other higher QF 

3 Nursing QF or GCE A levels 

4 GCE 0 levels or equivalent 

5 Other* 

* Includes the following original categories: 'commercial QF', 'CSE Grade 2-5', 'apprenticeship', 'other 
QF', 'no QF', and 'still at school'. 

Table 3.1 Variable's categories and their respective labels. 
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The BHPS subset considered in this chapter includes additionally some design 

variables, as the cross-wave person identifier, strata and primary sampling unit. 

Given our interest in whether women's primary labour market activity is 'caring for a 

family', we consider women aged 16-39, in 1991, in Britain, as our study population. Only 

women with full interview outcome (complete records) in all five waves are included in 

our data set, i.e. no case with panel attrition is considered so far. Then, we have also a 

balanced design because the number of observations in the sample is the same for all 

n = 1340 sUbjects. The individuals included in the adopted data subset are distributed 

fairly evenly across m = 248 postcode sectors (PSUs), where m is the number of clusters 

in the sample. As T = 5, where T is the number of waves, then no = n· T = 6700 (see 

Chapter 2, Section 2.1), where no is thus the total number of rows in the data set. 

The small average sample size of approximately five per PSU associated with the 

somewhat low intra cluster correlation for the variable of interest leads to relatively small 

impacts of the sampling design, as measured by misspecification effects (meffs). Since our 

aims in this chapter are mainly methodological ones, i.e. to compare meffs for different 

analyses, we have decided to group the postcode sectors into 47 geographically contiguous 

clusters, in order to create clearer comparisons, less confused by sampling errors which 

could be considerable when performing variance estimation. 

3.2.3 Gender role attitudes 

The women's role attitudes score is the variable of interest or the response variable in this 

chapter and that is a measure originally considered by Berrington (2002). In waves one, 

three, five, seven and nine, respondents were requested to complete a questionnaire with 

the same affirmations concemingthe family, women's roles, and work out of the household 

(see Appendix A). The respondents were advised to express the magnitude to which they 

'strongly agree', 'agree', 'neither agree nor disagree', 'disagree' or 'strongly disagree' 

with each affirmation. The statements were coded on a range from 1 to 5. 

Factor analysis was adopted to establish which statements would be composite into 

a gender role attitude measure. The attitude score was thus constructed from the total 
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score to the first six statements. Higher scores signify more egalitarian gender role 

attitudes18
• Further information on how the variable attitude score was originally 

constructed may be found in Berrington (2002, Sub-section 10.3.4). For an example of an 

application involving gender role attitudes see Firebaugh (1997). 

3.3 Clustering effects for longitudinal studies 

It is our main objective in this chapter to identify variance effects of clustering for 

longitudinal studies. This section is organized as follows. Sub-section 3.3.1 presents some 

exploratory data analysis whilst Sub-sections 3.3.2 and 3.3.3 include some model fitting 

results with non-weighted parameter estimates in both cross-sectional and longitudinal 

contexts respectively. 

To allow for the minor variations in the selection probabilities as well as wave one non 

response and attrition we shall use the longitudinal sampling weights provided at wave 

nine, denoted by Wi*9' in all the weighted parameters calculated in the current chapter. 

Recall that the data set we adopt in this chapter includes only cases for individuals who 

have responded at each wave up to and including wave nine. 

3.3.1 Exploratory data analysis 

We present briefly some exploratory data analysis for the gender role attitude score in 

terms of three candidate covariates to be included in our model - age group, economic 

activity and educational level, which are all time-varying. See also Appendix B for an 

examination of the distribution of the study variable of interest y, and a graphical display 

ofthe repeated observations for the response variable for each individual. 

Furthermore, for the following three tables, jackknife variance estimation for the 

estimated mean is performed taking the actual BHPS's complex survey design into 

account. See Chapter 2, Section 2.5, Sub-section 2.5.2 for information on jackknife 

variance estimation regarding regression model parameters estimators. For a jackknife 

18 The codes for affirmations 3, 4 and 5 (see Appendix A) were inverted. 
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variance of the estimator of the mean, substitute jJ with Yt in (2.41) and (2.42), where 
_PML 

Yt is a weighted estimator for the mean, Y;, at wave t given by (Skinner, 2003b) 

(3.1) 

where Yt is a scalar, n is the sample size and Yit is the value of the variable of interest for 

individual i at wave t. The jackknife variance estimation for Yt shall be denoted here by 

varJ [YtJ· 

To assess the misspecification effect, we also calculate the unweighted estimator of the 

mean, denoted by Y;, and assuming that the sample is selected by simple random 

sampling (srs), its well known standard variance estimator is 

(_*] sdt 
var Yt = J;;' (3.2) 

where sdt is the standard deviation of Y considering wave t, and n is the sample size. In 

(3.2), both Y; and sdt are scalars. 

Let .Jvar[.] be an estimator of the standard error (s.e.) of the estimator of our target 

parameter. Tables from 3.2 to 3.4 show the attitude score weighted mean, Yt' calculated 

using (3.1) and the sample size n for each considered wave by 'age group', 'economic 

activity', and 'educational level' respectively. Also shown are: (i) Yt 's jackknife standard 

error (s.e.) estimates, given by .JvarJ[Yt]; (ii) Y; 's estimated s.e. given by ~var[y;] , 

which is calculated from expression (3.2), considering that the sample is selected by srs; 

and (iii) misspecification effects - meff (see Chapter 2, Section 2.6). Note that Yt'S 

linearization s.e. estimates are found to be very similar to .JvarJ [Yt] , and therefore shall 

not be presented below. 

For evaluating the influence of the BHPS sampling design on the particular cross

sectional inference procedures presented in Tables from 3.2 to 3.4, we shall adopt meffJ , 

which shall be calculated in the present situation as (see Chapter 2, Section 2.6) 
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A;fJJ _ varJ Lyt ] 
me)) - *. 

varLyt ] 

(3.3) 

Note that y; in (3.3) is not a weighted estimator, and that the variance estimator in the 

denominator of mejJJ defined above is not a robust estimator, as considered in expression 

(2.43) in Chapter 2, Section 2.6. 

Table 3.2 below gives results for mean attitude score by 'age group'. 

Attitude Score 

Age Group Statistics Wave Wave Wave 
Wave 1 Wave 9 

3 5 7 

Yt 
21.67 21.55 21.6 22.59 

n 229 146 64 2 0 

16-21 ~varJ [Yt ] 0.28 0.30 0.49 3.63 
s. e. mean 

~var[y;] 0.25 0.29 0.46 3.00 

mejJJ 1.25 1.07 1.13 1.52 

Yt 20.12 20.43 20.47 20.72 20.54 

n 370 311 273 229 149 

22-27 ~varJ [Yt] 0.22 0.19 0.24 0.27 0.31 
s. e. mean 

~var[y;] 0.20 0.20 0.23 0.24 0.29 

mejJJ 1.21 0.90 1.09 1.27 1.14 

Yt 
19.75 19.72 19.77 19.79 20.12 

n 416 435 406 371 311 

28-33 ~varJ [Yt ] 0.20 0.20 0.21 0.21 0.23 
s. e. mean 

~var[y;] 0.21 0.19 0.18 0.18 0.21 

mejJJ 0.91 1.11 1.36 1.36 1.20 

Yt 
19.53 19.62 19.43 19.45 19.40 

n 325 448 597 738 880 

More than 34 ~varJ [Yt ] 0.24 0.18 0.15 0.14 0.12 
s. e. mean 

~var[y;] 0.21 0.17 0.15 0.13 0.12 

mejJJ 1.31 1.12 1.00 1.16 1.00 

Table 3.2 - Mean attitude score by age group. 

48 



The misspecification effects are reasonably close to one (see Figure 2.1, in Chapter 2, 

Section 2.6) for most of the age categories, in most of the waves. Two of the results for 

mejfJ are slightly smaller than one and some of them are approximately equal to one. The 

mejfJ,s largest values are 1.52 for age '16-21' in wave 7, and 1.36 for age '28-33' in 

waves 5 and 7. Thus, we could say that in general the influence of the BHPS sampling 

design on this particular cross-sectional inference procedure is not very strong. 

We may notice that older women are more traditional in their orientation than younger 

ones. Moreover, controlling by age group, the results show that the gender role attitude 

score does not vary substantially over time. Nevertheless, we may notice a slight positive 

trend over time in the attitude score mean for age groups '22-27' and '28-33'. 

Table 3.3 gives results for mean attitude score by 'economic activity'. 
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Attitude Score 
Economic Activity Statistics 

Wave 1 Wave 3 Wave 5 Wave 7 Wave 9 

Yt 21.59 21.35 20.03 20.99 20.98 

n 605 568 588 630 634 

Full time employed ~varJ [Yt] 0.15 0.14 0.17 0.16 0.14 
s. e. mean 

~var[y;] 0.15 0.14 0.15 0.14 0.14 

mejJJ 1.00 1.00 1.28 1.31 1.00 

Yt 19.41 19.28 19.57 19.26 19.06 

n 284 303 337 341 364 

Part time employed ~varJ [Yt] 0.22 0.19 0.19 0.18 0.18 
s. e. mean 

~var[y;] 0.21 0.18 0.18 0.17 0.17 

mejJJ 1.10 1.11 1.11 1.12 1.12 

Yt 19.20 20.24 20.32 19.66 19.12 

n 73 76 77 86 101 

Other inactive ~varJ[Yt] 0.51 0.47 0.42 0.40 0.49 
s. e. mean 

~var[y;] 0.47 0.44 0.41 0.34 0.41 

mejJJ 1.18 1.14 1.05 1.38 1.43 

Yt 22.21 22.25 21.78 20.61 21.12 

n 85 71 39 21 16 

Full time student ~varJ [Yt] 0.41 0.44 0.51 1.19 0.91 
s. e. mean 

~var[y;] 0.38 0.44 0.58 0.92 0.84 

mejJJ 1.16 1.00 0.77 1.67 1.17 

Yt 17.76 18.12 17.73 17.50 17.60 

n 293 322 299 262 225 

Family care ~varJ[Yt] 0.25 0.22 0.21 0.23 0.23 
s. e. mean 

~var[y;] 0.21 0.20 0.22 0.21 0.22 

mejJJ 1.42 1.21 0.91 1.20 1.09 

Table 3.3 - Mean attitude score by economic activity. 

In this case the misspecification effects are reasonably close to one for most of the 

economic activity groups, for almost all waves. Some of the m~fJJ' s results are slightly 

smaller than or equal to one. The largest values are 1.67 for 'full time student' in wave 7 

and 1.43 for 'other inactive' in wave 9. Hence, we could say that in general the influence 

of the BHPS sampling design on this particUlar cross-sectional inference procedure is also 

not very strong for most ofthe economic activity groups. 
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We may see that 'full time employed' and 'full time student' women have more 

egalitarian gender role attitudes than other categories. Furthermore, controlling by 

economic activity, we can not see any clear trend over time in the attitude score mean for 

most of the categories. Nevertheless, there is a possible slight negative trend over time in 

the attitude score mean for some economic activity groups. Table 3.4 below shows results 

for mean attitude score now controlled by 'educational level' . 

Educational Level Statistics 
Attitude Score 

Wave 1 Wave 3 Wave 5 Wave 7 Wave 9 

Yt 21.30 21.21 21.13 20.73 20.59 

n 135 148 171 194 204 

First or ~varJ[Yt] 0.33 0.29 0.36 0.34 0.26 
higher degree s. e. mean 

~var[y;] 0.34 0.29 0.29 0.27 0.26 

meffJ 0.94 1.00 1.54 1.59 1.00 

Yt 20.61 20.88 20.33 20.20 20.04 

n 159 222 268 309 382 

T. QF or ~varJ[Yt] 0.35 0.27 0.24 0.22 0.21 
other higher QF s. e. mean 

~var[y;] 0.33 0.26 0.22 0.22 0.19 

meffJ 1.12 1.08 1.19 1.00 1.22 

Yt 20.88 20.52 19.98 19.66 19.63 

n 247 247 235 207 177 

Nursing QF or ~varJ[Yt] 0.29 0.23 0.26 0.27 0.28 
GCE A levels s. e. mean 

~var[y;] 0.24 0.23 0.24 0.24 0.27 

meffJ 1.46 1.00 1.17 1.27 1.08 

Yt 20.39 20.3 19.67 19.60 19.6 

n 434 388 356 336 306 

GCE 0 levels or ~varJ [Yt] 0.20 0.20 0.21 0.19 0.21 
equivalent s. e. mean 

~var[y;] 0.18 0.18 0.20 0.19 0.19 

meffJ 1.23 1.23 1.10 1.00 1.22 

Yt 19.18 19.12 19.19 19.24 18.96 

n 365 335 309 292 265 

Other ~varJ [Yt] 0.22 0.22 0.20 0.24 0.25 
s. e. mean 

~var[y;] 0.21 0.20 0.22 0.22 0.23 

meffJ 1.10 1.21 0.83 1.19 1.18 

Table 3.4 - Mean attitude score by educational level. 
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For the table above, the misspecification effects are also sufficiently close to one for 

most of the economic activity groups in almost all the waves. Two of the mejJJ' s results 

are either slightly smaller than or approximately equal to one. The largest values are 1.59 

and 1.54 for the category 'First or higher degree', in waves 7 and 5 respectively. 

Therefore, we could say that in general the influence of the BHPS sampling design on this 

particular cross-sectional inference procedure is also not very strong for most of the 

educational level groups. 

From Table 3.4's results we may affirm that more educated women tend to have more 

egalitarian gender role attitudes than the less educated ones. Moreover, controlling by 

educational level, we can not see any strong trend over time in the attitude score mean for 

most ofthe categories. Nevertheless, there is a possible slight negative trend in the attitude 

score mean over time for most ofthe categories (except for category 'Other'). 

Table 3.5 shows some estimates for the mean attitude score, for each wave and for 

waves '1 to 9', fully considering the actual BHPS sampling design and longitudinal 

weights. The estimator Yt shall now be obtained by fitting the regression model described 

in Example 2.1, Chapter 2, considering a model only with the constant term. We shall thus 

calculate Yt by adopting (2.27) given in Chapter 2, Section 2.4. Cross-sectional results 

may be achieved by holding t fixed as t = 1, t = 3, t = 5, t = 7 , and t = 9 for waves one, 

three, five, seven, and nine respectively. 

The following table thus give: (i) Yt 's estimated robust s.e., represented by ~varr[Yt 1 

(see Chapter 2, Sub-section 2.5.1, Example 2.3); (ii) Yt'S estimated linearization s.e., 

represented by .JvarJYtl (see Chapter 2, Sub-section 2.5.1); (iii) Yt 's estimated jackknife 

s.e., represented by ~varJ[Ytl (see Chapter 2, Sub-section 2.5.2); and (iv) mejJJ and 

mejJL, which shall be calculated in this situation respectively as 

and (3.4) 

where the variance estimator in the denominator of both mejfJ and mejJL is now a robust 

estimator, and Yt is a weighted estimator. 
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One wave only Waves 
Wave 1 3 5 7 9 1 to 9 

Yt 
20.24 20.15 19.93 19.84 19.76 19.98 

~varr[Yt] 0.12 0.11 0.11 0.11 0.11 0.09 

~var/[Yt] 0.12 0.10 0.10 0.11 0.10 0.09 

~varL[yJ 0.12 0.10 0.10 0.11 0.10 0.09 

'iffJ. 'iff L me =me 1.00 0.83 0.82 1.09 0.93 1.00 

Table 3.5 Misspecification effects for mean attitude score considering the actual BHPS 
sampling design. 

We notice a possible negative trend over time in the attitude score mean, which could 

be caused, for example, by the aging process of the survey respondents included in the 

sample subset considered in our investigation. Note that linearization s.e. estimates are 

approximately equal to jackknife ones. Further discussion shall be presented later in the 

current chapter regarding a comparison between these two variance estimation methods. 

Moreover, misspecification effects are close or equal to one, for both when each wave 

is analysed separately and waves' 1 to 9'. However, meffs are not considerably lower for 

waves '1 to 9' compared to each single wave, as one could expect. This issue shall be 

further investigated below. Note that meffs presented in Table 3.5 are in general smaller 

than those included in Tables 3.2 to 3.4. Recall that for Table 3.5, misspecification effects 

were given by (3.4) and calculated considering a robust variance estimator in the 

denominator, while that was not the case in Tables 3.2 to 3.4. 

We shall provide in Table 3.6 estimates for the mean estimator for the attitude score 

for wave one, and then for waves' 1 to 3', '1 to 5', '1 to 7', and '1 to 9'. We shall consider 

now the 'new clustering' BHPS sampling design, treat the weights as constant and ignore 

stratification in order to create clearer comparisons. 

Wave 1 to 3 1 to 5 1 to 7 1 to 9 

Yt 20.07 20.03 19.95 19.88 19.83 

~varr[Yt] 0.11 0.10 0.09 0.09 0.09 

~varL[Yt] 0.12 0.12 0.12 0.12 0.12 

meffL 1.51 1.50 1.68 l.81 1.84 

Table 3.6 Misspecification effects for mean attitude score considering the 'new 
clustering' BHPS sampling design. 
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Note that the meffs included in table above capture only the effect of clustering and are 

given by (3.4). Table 3.6 suggests a trend for the meffto augment with the number ofwaves 

included in the analysis. These misspecification effects are unquestionably subject to 

sampling error and there seems to be some authentic variation in meffs for cross-sectional 

estimates at separate waves but this variation does not appear to be enough to explain this 

tendency. 

We shall expand the analysis by presenting in the next table weighted and unweighted 

estimates of difference of means, 5, for the attitude score among the categories of the 

variable age group. Let 5 represent an unweighted estimator of the contrast. We could 

obtain 5 by adopting (2.15) given in Chapter 2, Section 2.2. We would then need to fit a 

regression model with indicator variables for age group as covariates (see model in 

Example 2.1, Chapter 2). The resulting regression model has an intercept term, which is a 

domain mean, and three covariates representing the contrasts between women in age 

group '16-21' and women in other age groups. Note that Table 3.7 shall not include results 

for the intercept term. 

Moreover let the variance of 5 be represented by V AR( 5) , which could be estimated 

by var( 5) when not accounting for the complex survey design. Hence the estimator 

var( 5) could be obtained by adopting (2.21) given in Chapter 2, Sub-section 2.3.1. 

A weighted estimator, 5w ' for the measure of contrast may be calculated by adopting 

(2.27) given in Chapter 2, Section 2.4. We shall estimate V AR(5w ) adopting the robust 

variance estimator described in Chapter 2, Sub-section 2.5.1, Example 2.3, for the 

contrast, denoted here by varJ5w ] to estimate the variance of 5w ' 

Furthermore, we shall also estimate V AR( 5,J , considering the actual BHPS complex 

sampling design, adopting the linearization variance method (see Chapter 2, Sub-section 

2.5.1) for the contrast, denoted here by varL [5w ] to estimate the variance of 5w ' Note that 

5w 's jackknife s.e. estimates are fond to be very similar to varJ5w], and thus shall not be 

presented below. 

Note that for producing results presented in Table 3.5 for each wave separately, i.e. in 

a cross-sectional analyses context, we shall consider that t is held fixed as t = 1, t = 3 , 
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t = 5, and t = 7 , for waves one, three, five and seven respectively. We shall not include 

results for wave 9 in Table 3.7, as there are no women in the age group' 16-21' at wave 9. 

For evaluating the influence of the BHPS sampling scheme on the results included in 

Table 3.7 we adopt meffL , which shall be calculated in the present situation as 

(3.5) 

See also Chapter 2, Section 2.6. Note in (3.5) that 5w is a weighted estimator. 

Results in Table 3.7 below are presented for each wave separately, where we may 

observe only complex sampling effects, and then for waves '1 to 9', where we may 

observe both longitudinal and complex sampling effects. 

Contrast s.e. 
Wave meffL 

0 Ow ~var(5) ~vadb'J ~vadb'J 

"22-27" minus "16-21" -1.53 -1.57 0.32 0.33 0.36 1.07 

"28-33" minus "16-21" -1.99 -1.94 0.32 0.33 0.34 1.18 

"34+" minus "16-21" -2.10 -2.15 0.32 0.34 0.34 1.04 

"22-27" minus "16-21" -1.22 -1.12 0.35 0.36 0.35 0.98 

3 "28-33" minus "16-21" -2.01 -1.84 0.34 0.35 0.35 0.97 

"34+" minus "16-21" -2.00 -1.94 0.33 0.34 0.35 0.98 

"22-27" minus "16-21" -1.36 -1.17 0.51 0.54 0.52 1.06 

5 "28-33" minus "16-21" -1.98 -1.86 0.49 0.52 0.52 0.92 

"34+" minus "16-21" -2.25 -2.19 0.48 0.52 0.51 0.99 

"22-27" minus "16-21" -2.32 -1.77 2.14 2.10 2.09 0.96 

7 "28-33" minus "16-21" -3.33 -2.76 2.13 2.09 2.08 0.99 

"34+" minus "16-21" -3.62 -3.03 2.13 2.09 2.08 0.99 

"22-27" minus "16-21" -1.27 -0.86 0.20 0.18 0.21 1.25 

1 to 9 "28-33" minus "16-21" -1.91 -1.25 0.19 0.21 0.22 1.16 

"34+ minus "16-21" -2.20 -1.52 0.19 0.21 0.23 1.19 

Table 3.7 - Mean difference in the attitude score by age group. 
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By looking across each row of Table 3.7 we can notice that weighted and unweighted 

means are very similar for wave one, although they differ more for waves three, five and 

seven, and waves '1 to 9'. Misspecification effects are sufficiently close to one in all 

situations but tend to be greater for waves '1 to 9' than for each wave separately. 

Misspecification effects results for waves' 1 to 9' could be providing some evidence that 

variance effect of clustering may be stronger for longitudinal studies. We do not try to 

give any attitudinal interpretation for estimates given in the table above, as our interest in 

that case is mainly to evaluate the misspecification effects. 

We shall additionally consider estimating 5 for the attitude score among the 

categories of the economic activity. Results shall be produced now considering the 'new 

clustering', treating the weights as constant and ignoring stratification. In the table below 

meffL is also given by (3.5). 
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s.e. 
meffL Wave 

S ~vad5J ~varL[6J 

Intercept 21.49 0.15 0.16 1.13 

"PT emp." minus "FT emp." -2.31 0.26 0.25 0.93 

"0. inactive" minus "FT emp." -2.48 0.49 0.38 0.60 

"FT stud." minus "FT emp." 0.72 0.41 0.43 1.10 

"Fam. Care" minus "FT emp." -3.85 0.26 0.22 0.72 

Intercept 21.08 0.12 0.12 1.01 

"PT emp." minus "FT emp." -1.68 0.18 0.17 0.91 

1 to 3 "0. inactive" minus "FT emp." -1.29 0.30 0.29 0.96 

"FT stud." minus "FT emp." 0.43 0.32 0.37 1.32 

"Fam. Care" minus "FT emp." -2.76 0.19 0.13 0.49 

Intercept 20.81 0.11 0.11 1.09 

"PT emp." minus "FT emp." -1.20 0.14 0.14 0.93 

1 to 5 "0. inactive" minus "FT emp." -0.83 {\ ",.., 
V.L.L. 0.18 0.68 

"FT stud." minus "FT emp." 0.30 0.25 0.27 1.14 

"Fam. Care" minus "FT emp." -2.46 0.16 0.12 0.58 

Intercept 20.70 0.10 0.11 1.38 

"PT emp." minus "FT emp." -1.14 0.12 0.12 1.00 

1 to 7 "0. inactive" minus "FT emp." -0.84 0.18 0.16 0.76 

"FT stud." minus "FT emp." 0.27 0.21 0.25 1.48 

"Fam. Care" minus "FT emp." -2.34 0.14 0.11 0.66 

Intercept 20.58 0.09 0.11 1.50 

"PT emp." minus "FT emp." -1.03 O.lO 0.10 0.89 

1 to 9 "0. inactive" minus "FT emp." -0.80 0.17 0.15 0.81 

"FT stud." minus "FT emp." 0.41 0.20 0.24 1.44 

"Fam. Care" minus "FT emp." -2.18 0.12 0.10 0.59 

Table 3.8 - Mean difference in the attitude score by economic activity. 

As before, there is some evidence in Table 3.8 of tendency for the meffto augment, 

from 1.13 with one wave to 1.50 with five waves. The meffs for the contrasts in the table 

above differ in size, some greater than and some less than one. This misspecification 

effects may be considered as a mixture of the classic variance inflating effect of clustering 

in surveys combined with the known variance reducing effect of blocking in an experiment. 

The fundamental characteristic of these results of interest here is that there is once more 

no tendency for the meffs to converge to one as the number of waves expands. If there is a 

trend, it is in the opposite direction. 
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Therefore, we could say that in general the influence of the BHPS sampling design on 

those contrast measures inference procedure should not be ignored. For the contrast of 

special scientific relevance, that between women who are 'full-time employed' and those 

who are' at home caring for a family', the meffis invariably considerably inferior to one. 

We may try to compare results included in Table 3.6 with those in Table 3.8. Such 

comparison validates Kish and Frankel (1974) statement that meffs for regression 

coefficients are likely not to be greater than those for the means of the response variable 

(see also Kish, 1980). 

3.3.2 Cross-sectional models 

This sub-section presents cross-sectional model fitting results with both non-weighted and 

weighted parameter estimates. Bothjackknife and linearization variance estimation methods 

shall be adopted in this sub-section when taking the BHPS sampling design into account. 

We shall start by describing explicitly in Example 3.1 below a linear regression cross

sectional model (LM). 

Example 3.1: linear cross-sectional model 

In studies where T = 1 , i.e. in cross-sectional studies, we may consider that the response 

variable Yi of individual i, is represented by the model 

r;J = ::s.ilfJc + Gil' with i = 1, .. . ,N, (3.6) 

where the superscript c denotes 'cross-sectional', ::s.il is the 1 x q vector with the q fixed 

covariates, which are also survey variables, fJc is the qx 1 vector of the unknown fixed 

coefficients for the x variables, and the scalar Gil is the error term. In (3.6), if the 

explanatory variables are categorical, fJc may be interpreted as the average difference in 

Y when comparing each ofthe categories ofthe covariates with their reference levels. 

Let a J2 = VAR(r;J)' where V AR(.) denote population variance. Moreover we assume 

that E(~iJ)= 0 for all i. In (3.6), we assume that 

l1li 
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Model fitting is undertaken in this sub-section for the model described above. We first 

include all the candidate covariates in the model (see Sub-section 3.2.2, variables from iii 

to vi). We thus exclude, one by one, variables which do not have their coefficients 

significantly from zero at the 5% level, starting with the least significant variables, i.e. we 

perfonn the well known backward elimination procedure. Only final model fitting results 

are presented in this sub-section, i.e. Tables 3.9 and 3.10 only include covariates found to 

be significant at 5% level. 

Interactions shall not be considered in the model fitting results presented in this 

chapter, as our main interests are to identify and to illustrate variance effects of clustering 

for longitudinal studies, which do not require us to have very elaborate models. 

The cross-sectional model parameters may be estimated by a cross-section pseudo 

AC 

maximum likelihood estimator, f3 , calculated by (2.27) given in Chapter 2, Section 2.4, 
_PML 

AC 

with t being held fixed as t = 1 for wave one, for example. An unweighted fJ may be 
_PML 

achieved when considering that Wi are constant (see Chapter 2, Section 2.2), and that would 

AC 

be equivalent to an ordinary least square estimator, which we shall denote here by fJ . 
-OLS 

Both jackknife and linearization estimators shall be adopted here for the variance of 

~c AC AC 

fJ and shall be denoted by varJ [fJ ] and varL [fJ J, respectively. See Chapter 2 
_PML -PML -PML 

for further infonnation on these methods. Results for robust variance estimator shall also 

AC 

be produced and denoted here by varr [fJ PML ] . 

AC 

We shall also calculate a variance estimator for fJ given by (Kmenta, 1971) 
_OLS 

(3.7) 

where the subscript n denotes 'naIve', and 

i=l 

is the usual mean squared residual, and f; is a scalar, as defined in Example 3.1. We may 

consider (3.7) to be a cross-sectional version of (2.22) in Chapter 2, Subsection 2.3.1. 
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For evaluating the influence of the BHPS sampling scheme on the results included in 

Tables 3.9 and 3.10 we adopt meffL, which shall be calculated in the present situation as 

AC 

meffL = varJ~:ML] . 
varJfl PML] 

See also Chapter 2, Section 2.6. Note that Table 3.9 shall additionally include meffL * , 

which represents a misspecification effect calculated considering the 'new clustering' 

BHPS design, with constant sampling weights and ignoring stratification. 

Table 3.9 presents the final LM for the women gender role attitude score as response 

variable, considering only wave one data. 

s.e. 

Covariate mejJL mejJL * AC 

jY ~var"[pCl JvarJ[,B" 1 fl OLS vaT,[p' 1 varL [~:ML 1 -PML _PML _PML 

Intercept 23.15 23.23 0.44 0.44 0.46 0.45 l.05 0.95 

16-21 

Age 22-27 -0.99 -l.03 0.34 0.35 0.38 0.38 l.18 l.22 

group 28-33 -1.l4 -l.11 0.34 0.36 0.37 0.36 l.00 l.38 

More than 34 -l.27 -l.36 0.35 0.37 0.37 0.36 0.95 0.94 

FTemp. 

PTemp. -2.03 -l.88 0.27 0.29 0.26 0.26 0.80 0.97 
Econ. 

O. inactive -2.57 -2.47 0.45 0.54 0.51 0.50 0.86 0.60 
activity 

FT stud. -0.01 -0.l0 0.47 0.49 0.50 0.50 l.04 0.93 

Fam. Care -3.54 -3.47 0.27 0.29 0.30 0.29 l.00 0.77 

Degree 

QF -0.82 -0.80 0.42 0.44 0.44 0.44 l.00 0.77 
Educ. 

A-level -0.63 -0.67 0.40 0.39 0.39 0.39 l.00 0.98 
level 

O-level -0.82 -0.93 0.36 0.36 0.37 0.36 l.00 0.62 

Other -l.16 -1.25 0.38 0.38 0.39 0.39 1.05 0.83 

Table 3.9 LM for gender role attitude score - wave one. 

Variables age group, economic activity and educational level are significant at the 5% 

level, considering both 'naIve', jackknife and linearization results. We notice one possible 

difference in the significance tests results (see category 'QF' of the educational level 
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covariate), at the 5% level, when comparing results that considers data is selected by srs 

with those which account for complex survey design structure. 

Misspecification effects are sufficiently close to one for most of the categories of all 

the covariates included in the model, when considering the actual BHPS sampling design. 

There are some differences between weighted and non-weighted parameter estimates, 

which are not very strong in this case. Therefore, we could say that the influence of the 

BHPS sampling scheme on the estimation of the cross-sectional model parameters is not 

very strong, when considering wave one data. 

The meffL * are also either very close to one or even smaller than one for some 

coefficients. Recall that these misspecification effects were calculated considering constant 

AC 

the sampling weights, which may have contributed to a reduction of varL[p ]. These 
_PML 

meffvalues shall be used in further comparisons that shall be performed later in this chapter. 

Results in the table above suggest that the results for jackknife and linearization 

AC 

variance estimators are very similar for P ,when considering attitude score, from 
_PML 

BHPS data, as response variable. There are a number of empirical and analytical 

investigations in the literature for comparing the performances of jackknife and 

linearization procedures. We can find in Rust (1985, Section 7) a comprehensive literature 

review on the comparison among variance estimation methods. That article gives also an 

extensive list of references on this issue. 

Our result agrees with findings of Rust (1985) and most of the references included 

there, which say that both variance estimation methods present methodological advantages 

and similar accuracy. Shah, Barnwell, & Bieler (1997) also say that those two variance 

estimation methods usually yield very similar estimates. Additionally, our results could 

somehow be an indication that adopting the sampling scheme described in Example 2.2, in 

Sub-section 2.5.1 is a reasonable approximation for the BHPS sampling design when 

calculating linearization variance estimators in a cross-sectional context. 

In terms of model interpretation, considering weighted parameters results, for the 

variable economic activity we can say, that women in 'family care' have on average an 

attitude score about 3.5 points less than women in 'full time employment' in 1991 (wave 

one data). Controlling for all the remaining covariates, it indicates that women in full time 

employment tend to be more egalitarian than women in family care. For the covariate 
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educational level we can say that women with 'other' educational level, which is the 

lowest educational level, have an attitude score about 1.25 point less on average than those 

with first or higher degree. Controlling for all the remaining covariates, it indicates that 

women with higher educational levels tend to be more egalitarian in 1991. 

Table 3.10 presents the final LM fitting results for the women gender role attitude 

score as response variable, considering only wave nine data. 

s.e. 
Covariatet ~c 

// ~var"[fh Jvar,[fY ] ~varJ[ft' 1 
mejp 

fJ OLS Jvarrl~:'MJ _PML _PML _PML 

Intercept 21.65 21.66 0.34 0.35 0.38 0.37 1.12 

16-21 (*) 

Age 22-27 (**) 

group 28-33 -0.08 -0.07 0.34 0.35 0.39 0.38 1.18 

More than 34 -0.73 -0.70 0.31 0.31 0.31 0.31 1.00 

FTemp. 

PTemp. -1.70 -1.76 0.23 0.23 0.22 0.21 0.83 
Econ. 

O. inactive -1.71 -1.70 0.37 0.47 0.50 0.49 1.09 
activity 

FT stud. -0.39 0.12 0.87 0.88 0.95 0.90 1.05 

Fam. Care -3.39 -3.25 0.27 0.29 0.28 0.28 0.93 

Degree 

QF -0.40 -0.31 0.30 0.32 0.31 0.31 0.94 
Educ. 

A-level -0.55 -0.51 0.35 0.37 0.36 0.36 0.95 
level 

O-level -0.18 -0.32 0.31 0.33 0.31 0.31 0.88 

Other -0.55 -0.53 0.33 0.35 0.34 0.33 0.89 

(*) There are no women aged 16-21 in the sample at wave 9. 
(**) Reference category. 
t Covariate parenthood status was originally significant for 1999 data. Nevertheless, for 
consistency with Table 3.9, that variable was not included in the final model presented in this table. 

Table 3.10 - LM for gender role attitude score - wave nine. 

The parameter estimates for wave nine data are similar to the wave one results. Note, 

however, that the base line category for the covariate age group is now '22-27', instead of 

'16-21'. In addition, we notice one difference in the significance tests results (see category 

'A-level' of the educational level covariate), at the 5% level, when comparing 'naYve' and 

jackknife p-values. 
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Misspecification effects are sufficiently close to one for most of the categories of all 

the covariates included in the model. The largest meffresult is 1.18 for the category '28-

33' of covariate age group. Therefore, we could say that the influence of the BHPS 

sampling scheme on the estimation of the cross-sectional model parameters is not very 

strong, also when considering wave nine data. We shall not try to give any attitudinal 

interpretation for estimates given in Table 3.10. 

3.3.3 Longitudinal model fit results 

In this sub-section, we shall concentrate on identifying and illustrating variance effects of 

clustering for longitudinal studies. We shall also study patterns of changes in the gender 

role attitudes of women and establish the direction and magnitude of its relationship with a 

set of explanatory variables. We shall thus provide a description of pattems of change and 

a concise analysis of causal relations. 

We shall adopt in this sub-section the model described in Chapter 2, Example 2.1. 

Note that in a more elaborate analysis we could have adopted a measurement error model 

for the attitude variable of interest, as for example considered in Fan and Marini (2000), 

with each of responses to the six statements considered as ordinal variables. However, we 

follow a more straightforward approach, treating the aggregate attitude score ~t and the 

associated vector of coefficients fJ as scientifically interesting, with the measurement 

error included in the model error term Bit. 

The adoption of the uniform correlation model, which assumes an exchangeable 

structure for the working correlation matrix V, is supported by the fact that - a robust 

variance may be estimated for jJ when n is large relative to T. According to Diggle et al. 

(2002), when the last statement is true, valid inferences may be obtained even when the 

correlation is misspecified. That is the case here as n = 1340 and T = 5 . See also Chapter 

2, Sub-sections 2.3.2 and 2.5.1 for information on robust variance estimators. 

We again exclude covariates with coefficients which do not attain a 5% level of 

significance. As in Sub-section 3.3.2, we adopt here a backward elimination procedure for 

model selection. The candidate covariates in the model are variables from ii to vi listed in 

Sub-section 3.2.2. Only final longitudinal model fitting results are presented in this sub

section. 
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The model formulation that we work with in this sub-section assumes that a change in 

the dependent variable is a function of changes in the explanatory variables, even though 

the models do not explicitly involve change variables19
. We compare score for women 

who belong to different categories of each explanatory variable, controlling for the 

remaining covariates. 

Models parameters presented in this sub-section have interpretation for the population 

rather than for any subject, i.e. they describe how the population-averaged response 

depends on the explanatory variables. These models focus more on the difference in the 

population-averaged response among groups (treatment versus control) than on the change 

in an individual's response over time (see Zeger, Liang & Albert, 1988). 

We thus present some longitudinal model fitting results including both jJ(V), given 

by (2.15), in Chapter 2, Section 2.2, and jJ PML (V), given by (2.27), in Section 2.4. We 

assume here that (2.29), included in Chapter 2, Section 2.4, holds even when we substitute 

Wi by w;r. Some of the results presented in this sub-section shall be weighted, with 

longitudinal respondent weights w;r (see Chapter 1, Section 1.3) being adopted. We thus 

substitute Wi by w~ for jJ PML (V) estimated here. Furthermore, we shall also produce 

some results considering the 'new clustering' described earlier in Sub-section 3.2.2, 

treating the weights as constant and ignoring stratification in order to capture only the 

effects of clustering. 

We shall perform s.e. estimation for jJ(V) considering a 'naIve' estimator, denoted by 

~va~JjJ(V)] (see Chapter 2, Sub-section 2.3.1). And for /J PMJV) , we shall adopt: (i) a 

robust estimator, denoted by ~varr[!l.PML (V)]; (ii) a jackknife estimator, denoted by 

~varA!l.PML (V)] ; and (iii) a linearization estimator, denoted by ~varL[!l.(V)PML]' For further 

information of these methods see Chapter 2, Sub-sections 2.5.1, 2.5.2 and 2.5.3, 

respectively. 

When estimating V AR[jJ(V )PML] VIa linearization we assume that the sampling 

scheme described in Example 2.2, in Chapter 2, is a 'good' approximation for the BHPS 

19 According to Menard (1991), the use of any change measure is not a simple issue, because the reliability 
of the changes is frequently not the same as the reliability of the original variables. 
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sampling design, described in Sub-section 3.2.1. Therefore, method described in Chapter 

2, Sub-section 2.5.1 is adopted for calculating varL[p(V)PML]' 

For evaluating the influence of the BHPS sampling design on the estimated 

longitudinal model parameters estimated in this sub-section, we adopt meffL defined by 

(2.43) in Chapter 2, Section 2.6. 

We include in Table 3.11 longitudinal model fitting results considering data from 

waves one, three, five, seven and nine. 

Covariate 

Intercept 

T 

Age Group 

Economic 

Activity 

16-21 

22-27 

28-33 

34+ 

FTemp. 

22.18 22.30 

-0.04 -0.04 

0.0 0.0 

-0.70 -0.64 

-0.87 -0.80 

-1.00 -1.00 

0.0 0.0 

PT emp. -0.91 -0.86 

O. inactive -0.73 -0.75 

FT stud. 0.17 0.20 

Fam. Care -2.05 -2.01 

Degree 0.0 0.0 

QF -0.51 -0.52 

Qualification A-level -0.60 -0.65 

O-level -0.43 -0.49 

Other -1.17 -1.22 

0.25 

0.01 

0.16 

0.19 

0.22 

0.10 

0.15 

0.20 

0.11 

0.21 

0.21 

0.22 

0.23 

0.30 

0.02 

0.20 

0.22 

0.25 

0.11 

0.17 

0.21 

0.14 

0.24 

0.26 

0.25 

0.26 

s.e. 

0.32 

0.02 

0.22 

0.24 

0.28 

0.12 

0.38 

0.22 

0.16 

0.28 

0.29 

0.27 

0.28 

0.30 1.00 

0.03 1.00 

0.21 1.10 

0.24 1.19 

0.28 1.25 

0.11 1.00 

0.17 1.00 

0.24 1.31 

0.14 1.00 

0.25 1.09 

0.26 1.08 

0.25 1.00 

0.26 1.00 

Table 3.11 - Five waves longitudinal model considering the actual BHPS sampling 
design. 

We can see some differences when comparIng the prevIOUS table's estimated 

parameter with those in Tables 3.7 and 3.9, specially regarding to coefficients of the 

explanatory variable 'economic activity'. It may be indicating that the longitudinal model 
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IS somehow picking up within-women changes III time, as well as cross-sectional 

differences between women. 

We notice additionally that the results for ~varJ~(V)pML] are again very similar to 

/varAP (V)]. The results of greatest interest in Table 3.11 are the misspecification If _PML 

effects, which are in general reasonably close to one. Additionally, we may also notice 

some differences between weighted and non-weighted parameter estimates, although they 

are not very strong in this case. 

For the model fitting results presented above, the variables time, age group, economic 

activity and educational level may be considered significant at the 5% level. Overall, for 

the variable economic activity we can see, for example, that an average woman in 'family 

care' has an attitude score about two points less than an average woman in 'full time 

employment'. Controlling by the remaining covariates, it indicates that women in full time 

employment tend to be more egalitarian than women in family care. For the variable 

educational level we can see that an average woman with 'other' educational level has an 

attitude score about 1.2 less than an average woman with 'first or higher degree'. 

Controlling for the remaining covariates, it indicates that women with higher educational 

levels tend to be more egalitarian. 

As we assume here an exchangeable working correlation, the estimated within 

individual correlation (see Chapter 2), p, is 0.59, which could also be interpreted as a 

fairly substantial between-woman component in the attitude scores unexplained by the chosen 

covariates. 

She shall provide in Table 3.12 longitudinal model fitting results waves '1 to 9', 

considering now the 'new clustering' BHPS sampling design, treating the weights as 

constant and ignoring stratification in order to allow for clearer comparisons. 
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s.e. 

Covariate 11 (V) ~ var, [§.(v)] ~varL [~(V)l mejJL * 

Intercept 22.20 0.29 0.30 1.06 

-0.04 0.01 0.01 0.96 

16-21 0.0 

22-27 -0.70 0.19 0.25 1.65 
Age Group 

28-33 -0.87 0.21 0.27 1.59 

34+ -1.00 0.24 0.27 1.34 

FTemp. 0.0 

PTemp. -0.91 0.10 0.10 0.91 
Economic 

O. inactive -0.73 0.17 0.15 0.81 
Activity 

FT stud. 0.17 0.21 0.24 1.31 

Fall. Care -2.05 0.12 0.10 0.67 

Degree 0.0 

QF -0.51 0.23 0.21 0.84 

Qualification A-level -0.60 0.24 0.24 1.01 

O-level -0.43 0.23 0.20 0.73 

Other -1.17 0.25 0.22 0.82 

Table 3.12 - Five waves longitudinal model considering the 'new clustering' BHPS 
sampling design. 

The misspecification effects presented in Table 3.12 for the coefficients of the 

intercept, and 'age group' are larger than the ones presented in Table 3.11, which 

considered the actual BHPS sampling design. For the covariates 'time', 'economic 

activity' and 'qualification' meffs are in general very similar when comparing Table 3.12 

with 3.11. However, when comparing the misspecification effects presented in the table 

above with meffL * included in Table 3.9 we may notice that meffs for waves '1 to 9' are 

in general greater than for wave 1. These results agree with Table 3.6's results and suggest 

that variance effects of clustering are stronger for longitudinal studies than for cross

sectional ones. 

For further investigate the variance effects of clustering in longitudinal models, we 

also fit longitudinal models considering (i) waves one and three (Table 3.13), (ii) waves 

one, three and five (Table 3.14), and (iii) waves one, three, five and seven (3.15). Our aim 
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is to verify how the meffs results behave when additional waves are included in the data 

set. Moreover, Tables 3.13 to 3.15 shall also include meffL * , i.e. a misspecification effect 

calculated considering the 'new clustering' BHPS design, with constant sampling weights 

and ignoring stratification. Thus, the following table presents information for the final 

longitudinal model, considering data from waves one and three. 

s.e. 

Covariate J1(V) ~PML (V) ~varn[~(v)] ~var'[~PML (v)] ~varL@V)pML 1 
mejJL mejJL * 

Intercept 22.77 22.95 0.35 0.37 0.37 l.00 0.87 
T 0.03 0.02 0.04 0.05 0.05 l.00 0.86 

16-21 

22-27 -0.97 -0.89 0.24 0.29 0.31 1.14 l.37 Age Group 
28-33 -l.26 -1.21 0.26 0.30 0.30 l.00 1.40 
34+ -l.30 -l.28 0.27 0.31 0.32 l.07 l.10 
FTemp. 

Economic 
PTemp. -l.46 -l.37 0.18 0.19 0.18 0.90 0.95 
O. inactive -l.25 -l.33 0.26 0.30 0.30 l.00 0.96 Activity 
FT stud. -0.03 0.04 0.31 0.34 0.36 1.12 1.32 
Fam. Care -2.45 -2.47 0.18 0.20 0.22 l.21 0.59 
Degree 

QF -0.71 -0.80 0.33 0.34 0.34 l.00 0.64 
Qualification A-level -0.71 -0.88 0.31 0.31 0.31 l.00 0.87 

O-level -0.79 -0.94 0.30 0.30 0.30 1.00 0.62 

Other -l.37 -1.49 0.30 0.32 0.33 l.06 0.83 

Table 3.13 Waves one and three longitudinal model. 

We notice some differences in the model estimated coefficients when comparing 

previous table with Table 3.11, which could be due to the exclusion of data from waves 

five, seven and nine. For the covariate 'economic activity', the misspecification effects 

when considering the actual BHPS sampling scheme, are larger than the ones from the 

cross-sectional model for wave one presented in Table 3.9. For the remaining covariates, 

meffL values are very similar when comparing Table 3.13 with Table 3.11. When 

considering the 'new clustering' BHPS sampling design, with constant sampling weights 
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and ignoring stratification, meffs for the covariate 'age group' are larger in the table above 

than in Table 3.9. For the other covariates, meffL * values are very similar when 

comparing Table 3.13 with Table 3.9. Furthermore, in the table above we can not see 

strong differences between weighted and non-weighted parameter estimates. 

We do not give any attitudinal interpretation for estimated models parameters in Table 

3.13, as our main interest in this situation is to evaluate the misspecification effects, when 

considering data from two waves. 

Fitting results for the final longitudinal model, considering data from waves one, three 

and five, are included in Table 3.14 below. 

s.e. 

Covariate ~(V) ~PML (V) )varn[ji(v)] )var,[jiPMJv)] JvarL[~(v)PMLl mejJL mejJL * 

Intercept 22.64 22.74 0.30 0.35 0.34 0.94 0.87 
T -0.03 -0.03 0.02 0.03 0.03 1.00 0.69 

16-21 

22-27 -0.77 -0.67 0.19 0.23 0.24 1.09 1.44 Age Group 
28-33 -1.09 -1.03 0.22 0.26 0.26 1.00 1.45 

34+ -1.24 -1.23 0.24 0.28 0.29 1.07 1.12 

FTemp. 

Economic 
PTemp. -0.99 -0.95 0.14 0.15 0.15 1.00 0.96 

o. inactive -0.77 -0.81 0.20 0.22 0.21 0.91 0.68 Activity 
FT stud. 0.09 0.10 0.25 0.26 0.26 1.00 1.23 

Fam. Care -2.20 -2.21 0.15 0.17 0.19 1.25 0.70 
Degree 

QF -0.81 -0.81 0.28 0.30 0.32 1.14 0.75 
Qualification A-level -0.82 -0.86 0.27 0.28 0.29 1.07 0.94 

a-level -0.89 -0.96 0.26 0.29 0.27 0.87 0.59 
Other -1.48 -1.50 0.27 0.30 0.29 0.93 0.78 

Table 3.14 - Waves one, three and five longitudinal model. 

We observe some differences in the model estimated coefficients when comparing the 

previous table with Tables 3.12 and 3.13, which could be due to the fact that those tables 

are based on different sets of waves. For most of the coefficients the misspecification 
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effects when considering the actual BHPS sampling scheme, are similar to the values 

presented in Tables 3.9 and 3.13. When considering the 'new clustering' BHPS sampling 

design, with constant sampling weights and ignoring stratification, meffs for the covariate 

'age group' are larger in the table above than in Tables 3.9 and 3.13. For the remaining 

covariates, meffL * values are very similar when comparing Table 3.14 with Table 3.13 

and Table 3.9. Similarly to the results from previous tables, there are some differences 

between weighted and non-weighted parameter estimates, which are not very strong. We 

also do not give any interpretation for estimated model parameters presented in Table 3.14. 

Table 3.15 presents information for the final longitudinal model, considering data from 

waves one, three, five and seven. 

s.e. 

Covariate ~(V) /lPML (V) ~varn[~(v)] Far'[~PML (v)] )varL[~(V)PAfL 1 
mejJL mejJL * 

Intercept 22.45 22.57 0.27 0.32 0.32 1.00 1.03 

T -0.04 -0.03 0.02 0.02 0.02 1.00 0.59 

16-21 

22-27 -0.74 -0.70 0.17 0.20 0.22 1.21 1.73 Age Group 
28-33 -0.99 -0.96 0.20 0.23 0.25 1.18 1.68 

34+ -1.19 -1.24 0.23 0.26 0.27 1.08 1.26 

FTemp. 

Economic 
PTemp. -0.99 -0.91 0.11 0.13 0.13 1.00 1.06 

O. inactive -0.80 -0.85 0.17 0.18 0.18 1.00 0.77 Activity 
FT stud. 0.06 0.10 0.22 0.22 0.25 1.29 1.39 

Fall. Care -2.17 -2.16 0.13 0.15 0.17 1.28 0.78 

Degree 

QF -0.70 -0.69 0.24 0.27 0.29 1.15 0.87 
Qualification A-level -0.74 -0.80 0.23 0.27 0.29 1.15 0.94 

O-level -0.65 -0.74 0.24 0.27 0.27 1.00 0.69 

Other -1.25 -1.28 0.25 0.29 0.29 1.00 0.80 

Table 3.15 - Waves one, three, five and seven longitudinal modeL 

For most of the model parameters, the misspecification effects presented in Table 3.15 

calculated considering the actual BHPS sampling design are larger than the ones included 
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in Table 3.14. If we consider the 'new clustering' BHPS sampling design, with constant 

sampling weights and ignoring stratification, meffL * for most of the coefficients are also 

larger in the table above than in Table 3.14. We may still highlight the meffL * values for 

the parameters for the categories of the covariate 'age group", which are again larger than 

the cross-sectional models ones. 

In Table 3.16 we try to summarise the misspecification effects results calculated 

accounting for the 'new clustering' BHPS sampling design, ignoring stratification and 

considering constant weights. 

Waves 
Covariate 

1 to 3 1 to 5 1 to 7 1 to 9 

Intercept 0.95 0.87 0.87 1.04 1.07 

T 0.86 0.69 0.59 0.96 

22-27 1.22 1.37 1.44 1.73 1.64 

Age Group 28-33 1.38 1.40 1.46 1.68 1.59 

34+ 0.94 1.10 1.13 1.26 1.34 

PTEmp. 0.97 0.95 0.96 1.06 0.91 

Economic O. inactive 0.60 0.96 0.68 0.77 0.81 

Activity FT stud. 0.93 1.32 1.23 1.39 1.32 

Fam. Care 0.77 0.59 0.70 0.78 0.67 

QF 0.77 0.64 0.75 0.87 0.85 

A-level 0.98 0.87 0.94 0.94 1.01 
Qualification 

O-level 0.62 0.62 0.59 0.69 0.73 

Other 0.83 0.83 0.78 0.80 0.82 

Table 3.16 Misspecification effects for model parameters. 

We can observe in Table 3.6 a general tendency in the meffs to increase when 

additional waves of the survey are included in the data set considered in the model fitting. 

The misspecification effects values for the parameters of the covariate 'age group' are 

good examples of that trend. 

We could say that we have some empirical evidence that the clustering effects are 

larger for longitudinal models than for cross-sectional ones, when modelling the BHPS 
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data. Indeed we could not find any tendency for the meffi to converge to one as the 

number of waves increases. 

3.4 Discussion 

This chapter compares empirically design effects for longitudinal estimators and cross

sectional ones. We have presented and examined empirical evidences that variance effects 

of clustering may be stronger for longitudinal studies than for cross-sectional ones. Design 

effects for certain kinds of longitudinal analysis may be greater than for corresponding 

cross-sectional analyses. Hence, it is important to allow for complex designs in 

longitudinal analysis. In this section, we consider a possible theoretical explanation for that 

postulation. 

Furthermore, we have noticed some differences between weighted and non-weighted 

parameter estimates, although they are not very strong for most of the model parameters. 

Nevertheless, the results presented in this chapter have generally indicated that we should 

be aware of checking the importance of taking the sampling design into account when 

modelling longitudinal complex survey data. 

Additionally, differences have been found between parameters' s.e. estimates when 

comparing non-weighted estimates, ~varn[j3(V)], and weighted estimates without taking 

the sampling design into account, ~varr[d.PML (V)], with weighted estimates considering the 

sampling design, 'varj [j3 (V)] and 'varL[,B (V)]. \j _PML \j -PML 

We have observed only a few issues regarding significance tests results for cross

sectional model parameters, which are based upon the s.e. estimates. P-values usually 

seem to be more significant for non-weighted estimates, without taking the sampling 

design into account. That may, in some situations, cause possible false positive tests of 

covariate effects. This fact is also confirmed by the misspecification effects results that 

have been produced above. 

Moreover, our results have somehow indicated that cluster effects anse when 

longitudinal regression models are fitted. We provide below some further discussion with 

the objective of giving some theoretical justification on that statement. We shall suppose 

that the principal component of the design effects arises from clustering. Consider 
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converting the two-level model, described in Example 2.1, Chapter 2, into a simple three

level model (Goldstein, 1995) 

(3.8) 

where Yijt is the attitude score for individual i, in cluster j, at wave t, E(Yijt) denotes the 

expected value of Yijt, an additional random term 77j with variance cr~ represents the area 

effect, assumed independent of uij and vijt. Let cr,; and cr; denote the variances of of uij 

and vijt respectively. 

At first, we shall use the model in (3.8) to analyse the nature of misspecification 

effects in a cross-sectional analyses context, where t is held fixed as t = 1 . In this situation, 

if we suppose that E(Yijt) is simply the mean of Yijt in (3.8) and that there is a common 

sample size m per PSU, then (Hansen, Hurwitz, and Madow, 1953; and Kish, 1965, p. 162) 

mefJ == 1 + (m -1)p;, (3.9a) 

where (Skinner, 1989b) 

is the intra-cluster correlation coefficient, a measure of cluster homogeneity, or 

mefJ == 1 + (m -l)p;, (3.9b) 

when the sample sizes per cluster are unequal, where m is the average sample size 

per cluster. Note that (3.9a) and (3.9b) were derived for the case of a clustered sampling 

design which selects m clusters, and all its elements, via srs, and for samples with a 

large m. 

• From (3.9), we have that the larger PI' the larger mefJ. Note the distinction in 

notation between p;, given above, and P which is the intra-individual correlation 

coefficient first defined in Chapter 2, Example 2.2. 

We may now consider the longitudinal case, where now E(r:jt) is a longitudinal mean 

of Yijt for t = 1, .. . ,T . The same theory for mefJs will apply, but with p; being replaced by 

p' , which shall represent the intra-cluster correlation for 77j and uij + vijt averaged over 

the waves, i.e. 

73 



Hence, under this model, the misspecification effect increases as T increases, if (J~ > o. 

We may now extend the theoretical reasoning for this finding further, note that the 

model in (3.8) is seemingly an oversimplification as the area effects are likely to show 

some variation over time, suggesting that we write 7J}t rather than 7J) so that 

where eijt are random individual effects, and eijt = uij + vijt' The intra-cluster correlation, 

p' , would then become 

where 

• _ V AR(ry}) _ (J~(1 + (T -1)p;) 
P - V AR(ryJ+ V AR(eJ - (J~(1 + (T -1)p~)+ (J~(1 + (r -1)pJ' 

VAR(eJ= VAR(u) +vJ, 

7J} = t7J}t IT, 
eij= i:eijt IT, 

i=l I j 

and we have assumed that 

p~ = CORR(7J}s' 7J}J , 

and 

(3.10) 

(3.11) 

(3.12) 

are both constant, free of sand t. In (3.11) and (3.12), CORR(.,.) denotes correlation and 

we have P~ and Pe representing the cluster correlation over time and the individual 

correlation over time respectively. 

Our empirical finding that the misspecification effect for a longitudinal statistics is 

greater than that for the corresponding cross-section statistic then corresponds, from (3.9), 

to the inequality p' > P; which itself corresponds, from (3.10) to the inequality P; > Pe' 

i.e. that cluster effects are more stable than individual effects. 

Remark 3.1: To understand the equalities in (3.1 0) and the subsequent theoretical 

discussion, let Zt be any variable. Therefore, we would have 
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T 

VAR(ZI +Z2 + ... +ZT)= LVAR(zJ+ LCOV(zs,zJ. 
1=1 

If we assume that V AR(zt) = (7; , 
var(zJ +Z2 + ... +zT)=T(7; + L(7; ·CORR(zs,zJ. 

s;"1 

And if we assume that CORR(zs,zt) = Pz' 

VAR (ZI + Z2 + ... + ZT)= T(7; + T(T -l)pz(7; = To-; (1 + (T -l)pJ. 

Consequently, we would have as extreme cases, when there is no correlation over 

time, i.e. pz = 0, 

and when there is perfect correlation over time, i.e. {J = 1 , . z 

Our main argument for the variance effects of clustering to be stronger for longitudinal 

studies than for cross-sectional ones is that the random cluster effects could be more 

correlated over the time than the random individual effects. See Example 3.2 below. 

Example 3.2: If P~ = 0.5, Pe = 0 and T = 5, 

* _ 3· (J~ * 
P - 3 2 2 > PI . II1II 

• (Jll + (Je 

Our assertion is based on the presupposition that women's views regarding their roles 

individually are less stable (less correlated over time) than their views when considered as a 

group (or as a cluster), so that var(77j) may be expected to decline more slowly with T 

than var(eJ. We may state that our results suggest that the cluster units could possibly be 

manifesting homogeneity over time. This seems plausible, in particular because individual 

responses include a measurement error component which tend to reduce Pe' whereas 

random individual measurement error effects may be expected to cancel out in the ryjt 

terms. 
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Our theoretical explanation may also be supported by the fact that the regression 

model parameters that we have included in this chapter could be alternatively interpreted 

as coefficient averages of cross-sectional models over time. 

3.5 Concluding remarks 

In this chapter we have presented some evidence that, at least for the specific analysis 

considered, variance-inflating impacts of complex sampling schemes tend to be greater for 

longitudinal analyses than for corresponding cross-sectional analyses. Our empirical 

evidence is based upon a regression analysis of longitudinal data on gender role attitudes 

from the BHPS. We have investigated reasons for this finding and suggest that it arises 

from a specific longitudinal feature ofthe analysis. 

We have addressed longitudinal aspects of regression analyses of BHPS data on 

attitudes to gender roles and their relation to demographic and economic variables. In 

terms of attitudinal model interpretation, we have found from our longitudinal regression 

model fitting results that the factor that is mostly influencing the women gender role 

attitudes is the economic activity that the women are involved. Moreover, we confirm 

previous research results that younger women, employed women and those with higher 

educational levels tend to have more egalitarian attitudes concerning women's roles (see 

Berrington, 2002). 

In the next chapter, we mainly introduce new approaches for making inference about 

random effects models. We shall consider the model as a covariance structure model for 

the TxT covariance matrix of Yit. We shall then consider the population variance

covariance matrix 2: to be a multivariate outcome for each time point and to be 

constrained to be functions of the b x 1 parameter vector of interest f1.., as discussed by 

Skinner (2003b, Section 13.2) and Skinner and Holmes (2003). 
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Chapter 4 

Covariance structure models 

for complex survey data 

4.1 Introduction 

We return to the models considered in Chapter 2. We consider a finite population denoted by 

V (see Chapter 1, Sub-section 1.3.1), which is fixed on occasions 1, .. . ,T. Let N represent the 

ciZp Af '0- T pt N - N. T 
"-,,-'- '" '-'...L • ..I...J'Io.I" 0 - ..L. 

, 
Recall that I.i = (1';1" .. , 1';T) is a random vector containing T repeated observations on the 

study variable for unit i = 1,2, .. . ,N over the Twaves of the survey. As in Chapter 2, let 

(4.1) 

be the T x 1 vector with their respective expected values, where 

(4.2) 

and ~it is a vector of values of the covariates. Again, note the distinction in notation between 

L , which represent random variables, and ~i which are observed values of I.i (data). 

As in Chapter 2, we also assume in this chapter that (i) the observations are equally 

spaced in time, and that (ii) the number of individuals is 'large' relative to the number of 

observations per individual. We also suppose here that (iii) the sample is selected on one 

occasion and then the same sample units are returned to on each of the T -1 subsequent 

waves of the survey; and again (iv) we assume that there is not any nonresponse. 

A covariance structure model is a model for the TxT symmetric popUlation variance

covariance matrix of .I:i , which is 

(4.3) 

where COV(.) denote population variance and popUlation covanance, respectively. We 

assume in this chapter that this matrix is the same for each unit i, and that k = T(T + 1)/2 

distinct elements of the variance-covariance matrix I:(~) are constrained to be functions of 



the b x 1 parameter vector of interest fL, with b < k , as for example in Fuller (1987, Sub

section 4.2.1), Skinner and Holmes (2003), and Hand and Crowder (1996). 

If we consider Example 2.1 in Chapter 2, L:(fL) would thus have diagonal values o-~ + a; 
and off-diagonal values o-l~ . Such a covariance structure is called compound symmetric (see 

Crowder and Hand, 1990; and Jones, 1993). 

Another example of this model is given by Diggle et al. (2002), who define L: as 

L:(~)=()2V(Q), (4.4) 

where 0-2 = V AR(YJ is an unknown scalar (assumed to be constant for t and i), V(g:) IS a 

TxT matrix with ones on the diagonal, g: is a parameter vector and we may write 

fL = (0- 2 ,g:) . Note the distinction between V in (4.4) and V, which is the working covariance 

matrix (see Chapter 2). 

Joreskog (1970), Anderson (1973) and Wiley, Schmidt and Bramble (1973) are possibly 

the earliest articles to suggest the adoption of structural analysis of covariance matrices for 

estimating variance components. More recently, Pourahmadi (1999), Pourahmadi (2000), and 

Pan and Mackenzie (2003) discuss modelling mean-covariance structures with applications to 

longitudinal data, in classical independent and identically distributed (iid) observations 

multivariate analysis. In this chapter, we shall pay particular attention to inference procedures 

for random effects models with longitudinal complex survey data. More specifically, we 

concentrate on new estimation methods for fL , allowing for complex survey data. 

Estimation procedures for model parameters, previously discussed in Chapter 2, are 

extended in Section 4.2, whilst Section 4.3 describes methods on inference about the 

covariance matrix L: and for the variance estimation of :f: . 

Section 4.4 discusses and reviews some estimation methods for the parameter fL, 

including unweighted least squares (Sub-section 4.4.1), generalised least squares under the 

classical approach (Sub-section 4.4.2), and maximum likelihood (Sub-section 4.4.4), and 

proposes some new methods, as unweighted least squares for complex surveys (also in Sub

section 4.4.1), generalised least squares under the complex survey approach (Sub-section 

4.4.3), and pseudo maximum likelihood (Sub-section 4.4.5). Some concluding remarks are 

given in Section 4.5. 

It is illustrative at this stage to discuss a class of random effects models in Example 4.1 

below, additionally to Example 2.1 introduced in Chapter 2. Models discussed in both 
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Example 2.1 and Example 4.1 may be referred to as variance component models, error 

component models, mixed effects models, multilevel models and hierarchical models (see 

Skinner and Holmes, 2003). 

Example 4.1: transitory random effects as a first-order autoregressive process 

We consider the following class of random effects model (see Model B, in Skinner and 

Holmes, 2003), given by 

1';1 = :s..itfJ + ui + Vii' with t = 1, .. . ,r. (4.5) 

This model is so-called exponential correlation model and it is more elaborate than the 

one presented in Example 2.1, in Chapter 2. The transitory random effects Vit are generated 

by a stochastic first-order autoregressive process (AR1)2o 

Vii = J'ViH + Cit' with t = 1, .. . ,r. (4.6) 

If Y = 0, Vii = Cit' and the ARI model described here reduces to the uniform correlation 

model introduced in Chapter 2, Example 2.1. In (4.6), (see Jones, 1993) 

-1<y<l, 

is considered as a regression parameter, Cit are the residuals, with 

and 

VAR(cJ = (J; . 

If we let V AR( Vii) = (J~ and assume that Vii and Cit are mutually independent and 

stationary, (see Skinner and Holmes, 2003; Crowder and Hand, 1990; and Jones, 1993) 

2 
2 _ (Jc 

(Jv ---2 . 
l-y 

Taking the expectation of Yit, yields the model 

E(Y;J= :s..itfJ = !!.(:s..it,fJt witht = 1, ... ,r, 

(4.7) 

(4.8) 

which equals (2.5) in Chapter 2. From (4.5), (4.7) and (4.8), the variance of Yit and the 

covariance between 1';1 and 1';1' are respectively given by 

2 

2 VAR(Y ) 2 2 2 (J" 
(J = il = (Ju +(Jv = (Ju +--2' 

l-y 

and 

20 Jones (1993, section 3.5), and Hand and Crowder (1996, Chapter 6) discuss some issues regarding the 
adoption of more complicated error structures than AR1. 
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This model assumes that the covariance within individuals decreases when the distance in 

time (lag) increases. Note that the AR1 are the most popular models among other specific 

structures usually adopted in longitudinal analysis, according to Pourahmadi (1999). 

, 
For Example 2.1, in Chapter 2, we may define the parameter vector fl. as fl. = (0",;,0";) , 

with b = 2. For the current example, the parameter vector fl. may be defined as 

e ( 2 2 ),21 _= O"u,O"v,Y • III 

When working in the context of the models discussed in the previous example, modelling 

procedures be considered to belong to the disaggregated approach (see Chapter 1, Section 

1.4, Sub-section 1.4.2). The target model parameters are defined with respect to some of the 

design variables (see Chapter 1, Section 1.3, Sub-section 1.3.1), including for example 

individual indicator variables and random effects. 

In this chapter, the approach we adopt for making inference about random effects models 

is to consider the model as a covariance structure model for 2:, which is thus treated as a 

multivariate outcome for each time point. 

4.2 Estimation procedures for parameter fJ given () 

Recall the estimation procedures for fJ, first considered in Chapter 2, Sections 2.2 and 2.4. 

Suppose, following (2.8), that 

L ~ Nr[~i(j3),2:(fl.)], (4.9) 

where 2:(fl.) is a TxT positive definite covariance matrix. 

The census joint density function in (2.9) may now depend on e as well as j3 and 

becomes 

( 
.)_ ( )-N

o
/21 ( 'IJ- N/ 2 -~~i-~i(~)jL(!z)-'~i-~i(~W2 

f Yp·· "YN,j3,fl. - 2ff 2: fl." e . (4.10) 

The expression in (4.10) is denoted by /: N ~,fl.J. 

If fl. is held fixed and the linear model holds then the pseudo maximum likelihood 

argument in Chapter 2, Section 2.4 leads to the following expression22 

21 And we may alternatively define the parameter vector as ~ = (at ,a
2
), where at = (]",; / (]"2 and a2 = r ' when 

adopting for example Diggle et al. (2002)'s formulation. 
22 Note that Sutradhar and Kovacevic (2000, section 2.5) adopt a similar approach. 
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(4.11) 

where V in (2.27) is replaced by L(tz). Note that for calculating jJ PML (L(tz)) , L needs to be 

estimated to be plugged in (4.11). We shall consider methods for calculating i: in the 

following section while methods for estimating tz shall be discussed in Section 4.4. 

4.3 Inference about L 

4.3.1 Estimation of L 

In this section we consider the estimation of the TxT variance-covariance matrix of L, L, 

presented in (4.3). We first examine the finite population covariance matrix SN, denoted by 

( varN(rn) 

_ r ] -lcov N(L2,fil) varN(fi2) 
SN - LSN tt' - • 

covN(iiT,fil) covN(fiT,fiJ 

'\ 

: : : var (Y. )J' 
N -IT 

(4.12) 

where the subscript N indicates a finite population (or census) parameter. 

Under the classical set up, it is natural to let varN(') and covNO, in (4.12), be the 

population level estimator for the variance and covariance, respectively given by (Skinner, 

Holt and Smith, 1989, p. 13) 

N 

varAfit) = (N _1)-1 I(Yit - ft'Nit)2 , 
;=1 

and 
N 

covN(L,rJ= (N -lt
1
I(Yit - {tNilXYit' - {tNif')' 
i=1 

where {t N it is a population level estimator of flit' Thus, S N depends upon the estimated mean 

In the simple case, as for example in Pourahmadi (1999, Section 2.2), when fl. = fl it is 
-I -

natural to set {t Nit = 1'; , where 

N 

1'; =N-1IYit, 
i=1 

is the finite population mean ofthe response variable at time t. 
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In general, the T x 1 mean vector fli = ~i Vi) depends upon the covariates, in which case 

we might set it N i = ~i ~J for some estimator P N of f3. For example, we might set 

it . = fl t ;; (V = I)), which is equivalent to P (see Chapter 2, Section 2.2, 
_N 1 _I IE!...PML N -N,OLS 

expression (2.17); Pourahmadi, 1999, Section 2.3; and also Pourahmadi, 2000), where P 
-N,OLS 

is the census OLS estimator of f3, i.e. the value of f3 which minimises 

Thus, (Rencher, 1998) 

varN(Lt)= (N - q)-If~it - !itP N,OLS) , 

i=1 

where q is the number of fixed covariates, as defined in example 4.1, and 

coy NeL,]:::t') = (N - qr
l f~it -!itP N,OLS'f.yil' - !it' jJ N,OLS)' 

i=1 

(4.13) 

(4.14) 

Note that the term (-q) in the denominator of (4.13) and (4.14) is a degrees of freedom bias 

correction term. 

Let N* = (N - q). Under the assumptions of the classical approach, the matrix SN is a 

natural estimator of L:, as (see, for example, Rencher, 1998, Sub-section 7.4.4; and Johnson 

and Wichern, 1998, Chapter 7, Result 7.2) 

varN(lil) 

N 

(N'tI(YiZ -:'iiZ~N,OL)(yiJ -:'iiJ~N,oL) 
i=1 

VAR(lil) 
COV(li2,lil) VAR(L2) (4.15) 
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Now suppose, that we only observe Y, for units i in a sample s and that s was selected 
-I 

from a complex sampling design. We shall propose Sw to be a weighted sample covariance 

matrix, 

N
A 

-I ~ ( A)2 L.... Wi Yil - I'il 
i=1 

n 

= N-1 I Wi (Yi2 - .lli2 XYil - .lliJ 
i=1 i=1 

n n 

N-1 I Wi (YiT - .lliT XYil - .llil) N-1 I Wi (YiT - .lliT XYi2 - .lli2) NA-l~ ( A)2 
L.... Wi YiT -l'iT 

i=1 i=1 i=1 

where Wi is as defined in Section 4.2, 

and 

(4.16) 

with ~it and jJ PML (V) defined respectively as a 1 x q vector with the q fixed covariates and a 

q x 1 vector with the estimated pseudo-maximum likelihood coefficients. 

Following Isaki and Fuller (1982), (see also Chapter 1, Section 1.3, Sub-section 1.3.1) 

Ep(N)=N, 

and for large n, we may treat (4.17) 

Under the complex design approach, 

N' -1 {-, ( , )2 
L.. Wi Yn - f.1n 
i=1 

i=1 

which, assuming n large and (4.17), is approximately 
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N-1Ep[ ~ Wi(YiI - ftilY] 

_ N-IEp[~Wi(Yi2 - fti2)(YiI - ftiJ] 

which, following (1.1) in Chapter 1, Section 1.3, Sub-section 1.3.1, is approximately 

N 

N-1I(Yil-ftNilY 
i=1 

N N 

_ N-1 I (Yi2 - ftNi2)(Yil - ftNiJ N-
1 I (Yi2 - ftNi2Y 

i=1 i=1 

N N N 

N-1 I (YiT - ftNiT )(Yil - fiNil) N-1I(YiT - ftNiT )(Yi2 - ftNi2) N-1I(YiT - ftNiTY 
i=1 i=1 [::::::1 

Thus, 

E {S )=(N-q)S =S 
p\' W N N N 

assuming ,uit is consistent for ,uNit' and from (4.15), we have 

for any fixed choice of V, where V is as previously defined in Sub-section 4.2.1 and in 

Chapter 2, Section 2.2. 

It is also convenient at this stage to define the unweighted sample covariance matrix, 

-I~( A )2 n L..J Yil - Jii1 

n-I ~)Yi2 - ft;2)2 , (4.18) 
i=1 

i=1 i=1 

Note that, as S is defined here as a special case of Sw when the sampling weights are constant, 

we shall not consider the degrees of freedom bias correction term in the denominator of each 

element of (4.18). 

4.3.2 Variance estimation for f 

Under the classical set up and under normality (Browne, 1987; see also Joreskog and 

Goldberger, 1972; Swain, 1975; Fuller, 1987, Sub-section 4.2.1, Theorem 4.2.2; Shapiro and 

Browne, 1987; Amemiya and Anderson, 1990; Ghosh, 1996; and Yuan and Bentler, 1997b), 

n.S~WAL:,n-l), 
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where W Tis T-variate Wishart distribution with n degrees of freedom and parameter .L:, with 

.L: = .L:(tZ) and n denoting the sample size. See Krzanowski (2000, Section 7.3), Johnson and 

Wichern (1998, Section 4.4), and Rencher (1998, Chapter 2), for example, for information on 

the properties of the Wishart distribution. 

We shall initially present in this sub-section a brief review of variance estimation 

methods for f: that assume multivariate normality for Ii and no covariates. From the classical 

multivariate analysis literature, we may write the following expression, (Joreskog and 

Goldberger, 1972; see also Swain, 1975; and Joreskog and Sorbom, 1997) 

(4.19) 

which is an asymptotic covariance k x k matrix of S. 

Let vech[S] and vech [.L:(tZ)] be k x 1 vectors formed from the nonduplicated elements of 

Sand .L:(tZ), respectively (see Browne, 1982) 

vech[S] = [Slp S2P" "STpS22'" "ST2'" "STT]' 

and 

Moreover, let the residual covariance matrix be denoted by E, so that 

Then, we may alternatively write 

vech[E] = vech[S]- vech[.L:(tZ)], 

(4.20) 

(4.21a) 

where the operator vech is as defined for (4.20). Note so forth the distinction in notation 

between E, which is adopted for the residual covariance matrix, and E which is adopted as 

the usual symbol for the expectation operator (see Chapter 1, Section 1.3, Sub-section 1.3.1). 

We consider that (Browne, 1977) 

E{vech[E]} = 0, 

as for example in Fuller (1987, Sub-section 4.2.1), which is equivalent to 

E(S) = .L:(tZ). 

Let 
, 

C = n . COY {vech[E], vech[E] } . 

Let CU',!'I" represent a typical element of C , where 

C = lim C. 
11-*00 
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Under the assumptions of normality and iid observations with no weighting, the elements of 

the matrix C have the following form (Browne, 1982), 

(4.23) 

We treat C/n as the asymptotic covariance matrix of vech[S]. We seek a consistent 

estimator ofthis matrix and let U be a consistent estimator of C , i.e. 

plim(U -C)= o. 
n-->oo 

See Bollen (1989, Appendix B), for a brief overview on asymptotic distribution theory. 

Let Utt',t"I" represent a typical element of the k x k matrix U. Additionally let the TxT 

matrix W be any consistent estimator of 2: (Bentler and Weeks, 1980; Swain, 1975), such as 

S (or Sw). Under the classical set up, we may set (Joreskog and Goldberger, 1972; Swain, 

1975) 

(4.24) 

where OJII , represent a typical element of W. In this case U is consistent for C as required 

(Browne, 1982). 

So far in this sub-section we have discussed procedures suitable for normally distributed 

variables under iid assumptions. We shall consider below techniques for non-normally 

distributed data or asymptotically distribution-free (ADF) methods. Thus, for data with 

arbitrary distribution, matrix C would have the following typical element 

according to Browne (1984; see also Bentler and Dudgeon, 1996, for example), where 2:1t'1"1" 

are forth-order moments about the mean. 

Suppose again that there are no covariates and again that the complex design is ignored 

so that fl. = fl and {iii = YP where fl is as introduced in Section 4.1 and Section 4.3, Sub-
-I _ 

section 4.3.1, for example. In addition, let (see, for example, Bentler and Dudgeon, 1996; and 

Olsson, Foss, and Troye, 2003) 

n 

mlt'J"I'" = n -1 I (Yil - YI XYil' - YI' XYil" - YI" XYit'" - Yt'") , 
i=1 

(4.25) 

where mit' 1"/" are fourth-order sample moments about the mean. Let U* be a k x k matrix and 

let U;I't"t" represent a typical element ofU*. An assumption that all eighth-order moments are 

86 



finite guarantees that [S] ft' will be a consistent estimator of [2:] It' without specifying a 

particular distribution for I.i , so that (Browne, 1982; Browne, 1984) 

(4.26) 

will be a consistent estimator of ct:' t'l~ • 

Note that U could be a stochastic matrix so that (Browne, 1984) 

-* 
U =lim U* , (4.27) 

-* 
where U is a matrix of constant rank (see also, for example, Satorra, 1989, Remark 3.1). 

Expression (4.26) is an estimator of the asymptotic covariance between the 'product 

variables' (Yit - Y;"XYil' - ~,) and (Yil" -~, XYit' - ~. ). Each element of U* may thus be 

calculated by (4.26). See also Bollen (1989, p. 425-427), and Muthen and Satorra (1995) 

.c fi h '.c . 1\ If • f' . 1 h 1 r1 r<' ",1 c: . .. ..' T T* lOf ~ufLef lTIlOl11latlOn. ~V.loreover, I .. n IS .Larger t .Lan K, anu '-' IS pOSItive uel.lilhe, matrIX u 

described by (4.26) will certainly be positive definite, according to Browne (1984). 

Recall that previous discussion assumes f.1. = f.1. We propose initially to generalise 
-I _ 

mtt't"t" , given by (4.25), to 

(4.28) 

where 

(4.29) 

In (4.29), ~i' y. and jJ.. are T x 1 vectors, and ~i = [SiP' .. ,SiT r , with 
-I _1 

f.1A = X. fJA (V) 
-i -1I_PML • 

(4.30) 

In (4.30), jJ (V) is given by (2.15) in Chapter 2, Section 2.2, which is a special case of 
-PML 

jJ (V) when the sampling weights are constant. 
-PML 

Moreover, we may alternatively represent S, given in (4.18), as 
n , 

[S]It' =n-!I~i~i , (4.31 ) 
i=! 

where ~i is as defined above in expressions (4.29) and (4.30). 

Recall that vech [S] is a k x 1 vector formed from the non-redundant duplicated elements 

of S and write 
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where 

with 

f: = vech[S] = 

C· = -I 

BiTBi(T-I) 

BiT BiT 

n 

C1 n-I LBnBn 

= 

i=1 

n 

n-
I 
LBiTBi(T-I) 
;=1 

n 

Ck n-
I LBiTBiT 

i=1 

(4.32) 

Note the distinction in notation between the italicised c (f:, c1 and fi' for example) 

introduced above, and CIt',I't" which was introduced earlier in this sub-section and represents a 

typical element of matrix C. 

According to Browne (1984), vech[S] is generally asymptotically normally distributed 

under the classical set up. See Press (1972, Section 4.4) for information on multivariate 

central limit theorems. By adopting (4.26), (4.28), and (4.31), the k x k covariance matrix 

V AR {vech [S]} could be estimated, assuming independence, by (Skinner, 1989a, Section 3.4; 

see also Fuller, 1987, Sub-section 4.2.1, Example 4.2.3) 

n , 

var(f:) = n -I (n -It I (fi - f:Xfi - f:) , 
i=1 

which may alternatively expressed as 

n 

= n -I (n -It I (BitBil' - Stt} (Bit,Bit" - SI'I" ) 
;=1 

(4.33) 
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where f is as defined by (4.32) and the subscripts t denote time. Fuller (1987) considers this 

type of estimation method to be robust to deviations from distributional assumptions and that 

var(f) is a consistent estimator of V AR {vech [S]}. Note that by adopting (4.33) for 

estimating V AR {vech[S]} we are dividing u;t't"t" by (n -1) , as in Skinner (1989a) instead of n. 

Inference techniques appropriate to non-normal data could be generalised for the analysis 

of complex survey data, as suggested for example by Skinner (1989a), followed by Satorra 

(1992), and Muthen and Satorra (1995). We have considered above, the case where the 

sampling weights are constant. 

Furthermore, we shall consider the case of unequal weights. We consider below a 

weighted version ofthe residual covariance matrix. Let Ee be a TxT defined as 

where the SUbscript c denotes 'complex', Sw is the weighted sample covariance matrix, as 

defined in Sub-section 4.3.1. 

We may alternatively define 

vech[EJ = vech[SJ- vech[L(~)], 

where vech [Ee] is a k x 1 vector formed from the nonduplicated elements ofEe. 

and 

Similarly to (4.21 b) and (4.22) we assume that 

E{vech[EJ} = 0, 

Ep {vech[EJ} = 0, 

n· COV~ech[EJ vech[EJ}= Cc ' 

where n is the sample size, E(.) denotes the model expectation, E p (.) denotes the expectation 

with respect to the sampling distribution of statistics over repeated samples s generated by the 

sampling design, and Ce is a k x k nonnegative definite matrix defined, under complex 

survey design. 

We assume that (similarly to Browne, 1984) 

the limiting covariance matrix exists. 

Let vech[SJ, be a k x 1 vector formed from the nonduplicated elements of Sw, defined in 

Sub-section 4.3.1, and Wi denote the sampling weight for individual i, so that 
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vech[SJ= 

( ~ Wi r ~ W;&iT&i(T-I) 

( ~ Wi J -I ~ W;&iT&iT 

(4.34) 

where ~L is a k x 1 vector which is defined as for (4.32). In (4.34), ~i is as defined in 

expressions (4.29) and (4.30) now with jJ (V) instead given by (2.27) in Chapter 2, 
-PML 

Section 2.4, which allows for unequal sampling weights. 

Note that 

n 

"we. ~ i-I 

f:w = veeh[SJ = ..::.:::;=:..:...~--
LW; 
;=1 

is being expressed as a ratio of two totals. 

(4.35) 

We shall adopt below the linearization variance estimation method for developing a 

derivation of the approach recommended by Browne (1984). See also Chapter 2, Section 2.5, 

Sub-section 2.5.1 of this thesis for some characteristics of the Taylor linearization method. 

We shall propose an estimator for V AR(vech[SwD, which considers complex sampling 

schemes, following Skinner (1989a). Hence, we may explicitly rewrite (4.35) as 

where 

and 

with 

veeh[SJ= ~ , 
W 

fl 

W =n-1Iwi , 

i=1 

fl - -1" ~=n ~~i' 
i=1 

~i = Wi' f.;. 

(4.36) 

In (4.36), n is the sample size, Wi is the sampling weight for individual i, fi is defined as for 

(4.32), and ~ and ~i are k x 1 vectors. A first order Taylor expansion gives (see Binder, 

1983; Woodruff, 1971; Cochran, 1977, p. 169-171; Skinner, 1989b; and Shah et al., 1995) 
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f.1 11l( f.1 J 1 vechrS ]= -z +_ '" z. - -z W. ._ L' w .i..J -l 1 . 

f.1w n i=1 f.1w f.1w 

Thus, the variance of vech[S,J may be approximated by 

VAR{vech[SJ} = VAR(!' I~;J = (!)2 . VAR(I~;J = (1)2. VAR(e) , 
n 1=1 n 1=1 n 

(4.37) 

where the k x 1 vector 1:!:.i is given by 

u· = _1 . (z - ~z w J ' -1 -1 1 

~w ~lV 
(4.38) 

and 

n 

B="u. 
- ~_l 

;=1 

We could then estimate1:!:.i and ~ respectively by 

A 1 ( z) u· =_. z· --=-w. -1 _ -1 _ 1 

W W 
(4.38b) 

and 

n 

B="a. - L...;-l 
;=1 

Note that E, above, is a k x 1 vector of totals and thus has the form of an estimate of a 

population total vector B . 

We may then revisit Example 2.2 discussed in Chapter 2, where we considered a 

multistage stratified sampling scheme that involves sampling with replacement at the first 

stage of primary sampling units (PSUs) from each of a total of H strata, and sampling with or 

without replacement at subsequent stages. We also consider equal or unequal selection 

probabilities at both the first and subsequent stages. We may thus explicitly consider 

stratification and clustering by rewriting E as 

H H m h H mh nil) 

~= I~h = II~hj = IIIahj;' 
h=1 h=1 j=1 h=1 j=1 ;=1 

where H is the number of strata in the sample, mh is the sample number of PSUs in stratum 

h, nhj is the sample number of individual size in PSU j in stratum h, and ahji is the k x 1 

vector for individual i in PSU j in stratum h. From Shah et al. (1995, Sub-section 2.2.3), an 

estimator for the covariance matrix of E , considering the sampling scheme described above, 

is given by 

(4.39) 
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with subscripts v and I denoting respectively v = (t,t') and 1= (t",t"'). In (4.39) ~hj is an 

estimator of a total vector in PSU j in stratum h, and ~h is the mean of ~hj in stratum h. See 

also Cochran (1977, Section 1l.9). Note that (4.37) could thus be estimated by 

(4.39b) 

We shall also propose a special case of the estimator considered above when working 

under independence assumptions. We could consider that the population consists of only one 

stratum and that each individual i is a PSu. Under this circumstances, (4.39) could be 

rewritten as 

where i1i is given by (4.38b), and 

(4.39c) 

Note that (4.38b) could be rewritten as 

~ n [ ( _)] u --_. w, c -c 
-i - n i -i _w , 

LWi 
i~l 

with fw given by (4.35), and that (4.39c) is a null vector. Thus, V AR(vech[S,vD could 

alternatively be estimated by 

(4.40) 

Note that (4.40) may also be derived from the standard expression for a variance of a ratio 

estimate, in the simple random sampling context (see Cochran, 1977, Chapter 6, Section 6.3; 

see also Sfundal, Swenson and Wretman, 1992, Chapter 5, Section 5.3), when ignoring the 

finite population correction. Thus, note that even though the estimator given in (4.40) allows 

for unequal sampling weights, it does not fully accounts for complex sampling designs. Note 

that (4.40) reduces to (4.33) when the sampling weights are constant. 
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4.4 Estimation methods for parameter Q 

In this section we are interested in estimating Q. From Section 4.3 we suppose that Sw (or S) 

is a good estimator of L(Q). We should like to estimate Q by an estimator ~, such that Sw 

(or S) and i: = L(~) are 'close' (Joreskog and Goldberger, 1972; Swain, 1975). We let 

F(Sw,L) be the fitting function23
, which measures the distance between Sw and L, and 

following Browne (1984) let 

F(Sw,L(~))= min F(Sw,L(Q)) , 
{tEe 

(4.41) 

where e is a parameter space, which is a subset of a b-dimensional Euclidean space, with b 

as defined in Section 4.1. For further information, see also Browne (1987), Shapiro (1986), 

and Satorra (1989). The minimisation of F(Sw,L(Q)) , with respect to Q yields ~, which is 

the minimum discrepancy function estimator of Q. We assume this is uniquely defined by 

(4.41). For simplification we shall denote the fitting function F by F(Q). 

We now consider the choice of F(Q). The fitting function F(Q) may be formulated in 

different ways. We discuss in this section three important well known choices of F(Q) , 

which lead to different estimation methods of Q , (i) unweighted least squares, (ii) generalised 

least squares, and (iii) maximum likelihood. We additionally propose fitting functions, and 

consequently estimation methods, which allow for data from complex surveys. 

We assume the following properties (see Browne, 1982; and Browne, 1984): (i) F(Q) is a 

scalar; (ii) F(Q) ~ 0; (iii) F(Sw,L(Q)) = 0 if and only if Sw = L; and (iv) F(Q) is a twice 

continuously differentiable function of Sw and L. These will be assumed throughout the 

current section, and in the remaining of this thesis even when no explicit discussion is made. 

See also Joreskog and Goldberger (1972), Browne (1987), Shapiro (1986), Satorra and 

Bentler (1986), Satorra and Bentler (1988), Bollen (1989), Satorra (1989), Satorra (1992), 

and Bentler and Dudgeon (1996), for example, for some discussion on these assumptions. 

If Q is identified24 and L(Q) is continuous in Q, the minimisation of any F(Sw,L(Q)) 

will provide consistent ~ (see Browne, 1982; and Browne, 1984, Proposition 1) assuming Sw 

23 It is so called discrepancy function, and less frequently loss function. 
24 Let us consider an unknown parameter as a parameter whose identification status is unknown. According to 
Bollen (1989, p. 89): "If an unknown parameter in fJ.. can be written as a function of one or more elements of 2:, 
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(or S) is consistent for 2..:(~). Moreover, under appropriate regularity conditions (see Swain, 

1975, with proof; see also Browne, 1982; Lee, 1985; Shapiro, 1986; Browne, 1987; Satorra 

and Bentler 1988; Chou, Bentler and Satorra, 1991; Satorra, 1992; Satorra and Bentler, 1994; 

Yuan and Bentler, 1997a; Yuan and Bentler, 1997b), 

is asymptotically normal with zero mean and a nonnegative definite covariance matrix. 

4.4.1 Unweighted least squares (ULS) 

The ULS approach is analogous to the OLS regression. But the ULS addresses attention to 

the observed and predicted covariances, while the OLS works with the response variable 

observed and predicted values. So forth, let tr refer to the trace of a matrix. The ULS method has 

the following fitting function (see Joreskog and Goldberger, 1972; Knight, 1978; Long, 1983; 

and Bollen, 1989), 

F(~)ULS = ± . tr{[S - 2..:(~)]2} , (4.42 a) 

which is equivalent to one half the sum of squares of each element in the TxT residual 

covariance matrix E, defined in Subsection 4.3.2. When minimising F(~)ULS' we minimise 

the differences between the empirical variances and covariances and the corresponding ones 

predicted by the model that we consider. The square in (4.42a) denotes the square of a 

matrix, i.e. the matrix multiplied by itself. 

Under a complex design, unweighted sample covariance matrix S may not be consistent 

for 2..: and it is more natural to consider the following adaptation to the ULS fitting function, 

(4.42b) 

where ULSC indicates that complex survey data is considered, and Sw is the weighted sample 

covariance matrix defined in Sub-section 4.3.1. Note again that S is a special case of Sw 

when the sampling weights are constants. 

The estimates for ~ have to be produced mmmg the minimisation of F(~tLS or 

F(~)ULSC' The fitting function F(~)ULSC' for example, is minimised when ~ULSC is chosen by 

differentiating F(~tLSC' 

that parameter is identified. If all unknown parameters in f!.. are identified, then the model is identified. Moreover, 

if a parameter is not identifiable in a model it has no consistent estimator (Bentler and Weeks, 1980), although 
identifiability does not necessarily mean that there is a consistent estimator. 
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8F(flJuLsc = 0 
8e ' 

with respect to each of the b unknown parameters included in the parameter vector ft . 

Once ~ULSC is estimated, a sufficient condition for it to minimise F(ft)ULSC is that the 

following matrix (see Bollen, 1989), 

8
2 
F(ft)ULS 

8(py 

o 

o 

o 

8
2 
F(ft)ULS 

8(8;Y 
o 

o 

o 

8F(ft)ULS 

8(8:y 

is positive definite, when ft = (O"l~' 0";, r )' , for example. In addition to being positive definite, 

Q should be regular in order to guarantee the identification of ft . Note that this condition 

could not hold in situations where any element of ft approaches zero. Matrix QULS is a b x b 

diagonal matrix with the second partial derivatives of F(ft)ULS' with respect to ft, on the 

diagonal. 

As long as ft is identified and Sw (or S) is consistent for L, the ULSC (or ULS) method 

leads to consistent estimation of ft. Although the ULS type of methods has a very intuitive, 

computationally cheap, and an easy to understand fitting function, it has some disadvantages. 

It does not lead to the asymptotically most efficient estimator of ft, and it is neither scale 

invariant nor scale free (Joreskog and Goldberger, 1972). More infonnation on scale 

invariant and freeness is given in Bollen (1989), and briefly later in Sub-section 4.5.4, which 

regards maximum likelihood estimators. 

We consider below a continuation for Example 4.1. 

Example 4.1 (Continuation 1) 

Assuming the model discussed in Example 4.1, the TxT matrix L:(ft) is represented as 

1 l 

1 
= 

1 

95 



2 2 
au + a 1' 

and 

~2 ~2 

au + a 1' 
~ 2 ~ ~ 2 

au +r a 1' 
"2 "2 au + a 1' 

We may expand (4.42a), for simplicity for the case where T= 3, as 

F(flJuLsc = ~ [SW,11 - a,~ - a~ J + [SW,21 - a,~ - ra~ J + [SW,31 - O"~ - r2 a~ J + ~ [SW,22 - a,~ - a~ J 
+ [SW,32 - a~ - ra~ J + ~ [SW,33 - a,~ - a~ J ' 

where Sw,ll' Sw,21' Sw,31' Sw,22' Sw,32 and Sw,33 are elements of the symmetric [swL, as 

defined in Sub-section 4.3.1. 

The partial derivatives are 

8F(flJuLsc _ 2 2 [s 2 2] 4 2 rS 2 2 2] 2 2 [S 2 2] 8r - - a 1" w,21 - au - ra1' - ra1"/: w,31 - au - r o"v - a 1" w,32 - all - ra1' , 

(4.43) 

8F(flJuLsc _ S 2 2 2 2 2 S S 
--'--'-=2 ="'- - - w 11 + 9au + 3a1' - 2Sw 21 + 4ra1' - 2Sw 31 + 22 o"v - Sw 22 - 2 w 32 - w 33 , 8 all ' , , ", 

(4.44) 

and 

8F (flJuLsc _ S 3 (2 2) 2 rS 2 2] 2 2 [ 2 2 S 2 2 2 ] 8a2 - - w,11 + . \all + a v - r'/: w,21 - all - ra v - r . - r . w,21 - au - r a" 
v 

- Sw,22 - 2r' [SW,32 - a,~ - ra~]- Sw,33 . 
(4.45) 

Setting (4.43), (4.44) and (4.45) to zero and solving this system of three equations and 

three parameters r, a,~ and a~ , we find that the solution is respectively 

6- 2 = _1_. [- 3Sw,21 + 2Sw,11 + 2Sw,22 - 3Sw,32 + 2SW ,33f 
v,ULSC 12 - 3Sw,21 + 3Sw,31 - 3Sw,32 + Sw,ll + Sw,22 + Sw,33 ' 

and 
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~ _ 3 Sw,21 - 2Sw,31 + Sw,32 
YULSC - • 

- 3Sw,21 + 2Sw,11 + 2Sw,22 - 3Sw,32 + 2Sw,33 

Explicit solutions for CT,; and CT; when assuming the model discussed in Chapter 2, 

Example 2.1 with T = 5 are presented in Appendix C. III 

When we can not determine a final solution analytically, iterative numerical techniques25 

would be required. Loehlin (1987; see also, for example, Joreskog and Goldberger, 1972; 

Swain, 1975; McDonald, 1980; and Bentler and Weeks, 1980) suggests various procedures, 

as steepest descent, Fletcher-Powell, Newton-Raphson, and the EM algorithm as good 

alternatives. These techniques generally adopt search procedures across all possible solutions 

for the parameters values. See Joreskog and Goldberger (1972), Pourahmadi (2000), and Pan 

and Mackenzie (2003), for example, for further information on Newton-Raphson type 

methods. 

4.4.2 Generalised least squares (GLS) under the classical approach 

In essence, the ULS method attaches equal weight to all elements of the resultant residual 

covariance matrix E. That does not make any allowance for different variances and 

covariances of different elements. The GLS estimation procedure26 was proposed by 

Joreskog and Goldberger (1972i7 and weights observations to allow for unequal variances or 

nonzero covariances of the residuals. This method is thus a generalisation of the ULS 

estimation method (Bentler and Weeks, 1980). 

Let us define the following quadratic form or objective function (see Browne, 1977), 
I 

F(fl)cLs = {vech[S]- vech[L(~)]} V-I {vech[S]- vech[L(~)]} , (4.46) 

where V is a k x k positive definite weight matrix defined in (4.24), with k as defined in 

Section 4.1, and vech[S] and vech[2:(e)] are as defined in Sub-section 4.3.2. 

We assume that ~ is identified and that L(~) is positive definite. Expression (4.46) 

represents a GLS distance function, under the classical set up. For further information, see 

Knight (1978), Dahm, Melton and Fuller (1983), Shapiro (1986), Shapiro and Browne (1987); 

Fuller (1987, Chapter 4), Skinner (1989a), and Yuan and Bentler (1997a). 

We consider a GLS approach in which U is defined in terms of the covariance matrix of 

vech[E]. See Sub-section 4.3.2, expression (4.24). According to Browne (1977), U could 

25 Most of the softwares that could be adopted for performing numerical procedmes usually find a minimum 
rather than a maximum. 
26 This method is also known as minimum chi-square analysis (see Muthen and Satorra, 1995). 
27 J6reskog and Goldberger (1972) adopt the well known Aitkens's generalised least squares principle. 
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alternatively be represented as (see also, for example, Satorra and Bentler, 1989; Kano, 

Berkane and Bentler, 1990, Section 2; Muthen and Satorra, 1995, Section 3.2; and Bentler 

and Dudgeon, 1996) 

U=2.K'(W0W)K, (4.46b) 

where K is a k x T2 transition (or elimination) matrix, and 0 is the operator for the right 

Kronecker product (see McDonald, 1980). Matrix K is denoted 'transition' because (see, for 

example, Le, 1990; and Chou, Bentler and Satorra, 1991) 

K'· vec(S) = vech(S) , 

where vec(S) is a T2 x 1 column vector obtained by stacking the columns of S. In (4.46), we 

would then have (Shapiro, 1986; and Browne, 1987) 

U-I =±'K*(W-1 0W-I)K*', 

with 

K* = (K'KtK'. 

By considering (4.46b), Browne (1977) shows that (4.46) then reduces to (see also 

Joreskog and Goldberger, 1972; and Swain, 1975) 

(4.47) 

where the TxT matrix W is any consistent estimator of I: as defined in Sub-section 4.3.2, 

such as S when considering the classic set up. Note that expression (4.47) is computed more 

easily than (4.46). If W-I is an identity matrix, then F(flJcLs reduces to F(flJuLs . 

The estimator ~CLS' which minimises F(f!JCLS is referred to as a GLS estimator of fl. . 

Note that ~CLS has some important properties. It is: (i) a consistent estimator of fl., i.e. 
A 

P lim fl.CLS = fl. ; 

(ii) asymptotically distributed as a multivariate normal with a known asymptotic covariance 

matrix28
; and it is (iii) scale invariant and scale free29 (Joreskog and Goldberger, 1972). 

Browne (1982, Section 1.2) and Swain (1975), for example, provide some further 

information respectively on invariance under changes of scale and scale freeness. Fuller 

28 It allows for tests of statistical significance. 
29 The fitling function F[S,L:(§2)] is scale invariant if F[S, L:(§2)] = F[DSD, DL:(§2)D], where D is a diagonal, 

non-singular matrix with positive values on the diagonal. If the main diagonal of D contains the inverses of the 
standard deviations of the observed variables, the term DSD may be substituted for S, and DL:(Q)D may be 

substituted for L:(§2). An estimator is scale free when an equivalency between the structural parameters and 

estimates in a model with the original variables, and those in a model with linearly transformed variables, is 
maintained (Bollen, 1989, p. 109). 

98 



(1987, Sub-section 4.2.1) also provides an extensive discussion on the characteristics of the 

least squares approach methods. 

Under the classical approach, the estimator ~GLS obtained by the minimisation of (4.46) 

has minimum asymptotic variance if U = C (see Browne, 1984, Proposition 3), where U 

and C are as defined in Sub-section 4.3.2. For further infonnation, see also Bollen (1989, p. 

426). 

Moreover, the efficiency of ~GLS depends on which matrix W has been chosen. Then, 

how to select W is an important issue on GLS estimation. Bollen (1989) discusses some 

assumptions, which lead to the choice of a suitable weighting matrix W. The key assumption 

is that the asymptotic distribution of the elements of matrix S is multivariate normal with 

means COV(r;t,r;t')' and that the asymptotic covariances of cov(r;pr;() and cov(r;t",r;t-) are 

equal to (4.19). See Sub-section 4.3.2 and Bollen (1989, p. 427). A requirement for this 

second assumption to hold is that the data follow the presuppositions of the classical set up, 

and that the fourth-order moments of Yi exist. 

When W is so adopted, ~GLS has the properties (i) to (iii) listed above and it is also 

asymptotically efficient, under the assumptions of the classical set up (Joreskog and 

Goldberger, 1972; Bentler and Weeks, 1980; Swain, 1975). But even though several choices 

of W-I are consistent estimators of L:-1 
, a natural choice is (Joreskog and Goldberger, 1972; 

Swain, 1975; Amemiya and Anderson, 1990; Yuan and Bentler, 1998) 

W-I =S-I , 

which makes (4.47) equal to 

(4.48 a) 

which is minimised when ~GLS is chosen by differentiating F(fllLs with respect to each of 

the unknown parameters (Joreskog and Goldberger, 1972). Then, another alternative of 

representing the GLS estimator is as the solution of estimating equations. Let the scalar Bj 

denotes any of the b elements included in the b x 1 parameter vector ft., with j = 1, .. . ,b. We 

A2 
may obtain ft. GLS by solving 

F(ft.)~LS = tr{s-I . [L:(ft.) - S]. S-I . aL:(ft.)} = o. 
a~ a~ 

See Result D.1 in the Appendix D. Note the distinction in notation between j, introduced 

above, and the italicised j introduced in Chapter 2 for denoting the jth primary sampling unit. 
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In the GLS type fitting function, it appears to be advisable that elements of [S - L:(fl)] are 

weighted according to their variances and covariances with other elements. Another 

alternative would thus be (see Swain, 1975; Amemiya and Anderson, 1990) 

W = L:(fl) , 

which makes (4.47) equal to 

(4.48b) 

Although flGLS has several appropriate characteristics, it has also some limitations 

(Bollen, 1989), as: (i) the general asymptotic standard errors and chi-square tests of 

significance could not be precise if the assumption described above are not fulfilled (or 

specially when the distribution of the marginal variables has very thin tails); (ii) the 

asymptotic covariance matrix for ~GLS may be very complicated; and (iii) its properties are 

'just' asymptotic. Moreover, according to Bollen (1989): "very little is known about the small 

sample behaviour of ~GLS but it appears that it has bias toward zero in small samples". 

4.4.3 Generalised least squares (GLS) under the complex survey approach 

It is our aim in this sub-section to propose an adaptation for the GLS approach, allowing its 

application for complex survey data. 

We suppose that Sw is a consistent estimator of the TxT popUlation variance-covariance 

matrix l:(fl). Recall that vech[SJ and vech[L:(fl)] are k x 1 vectors formed from the 

nonduplicated elements of Sw and l:(fl) , respectively. We may consider a discrepancy 

function with the following quadratic form or objective function, 

I 

F(e)GLSC = {vech[SJ- vech[l:(e)]} U-1{vech[SJ- vech[l:(e)]} , (4.49) 

where the subscript GLSC expresses that F(fl) could be considered as an alternative GLS 

fitting function for complex survey data, and U is a k x k positive definite weight matrix, as 

defined previously in the current chapter. 

One choice of fitting function analogous to (4.47) would be 

F(fl)~LSC = (±)- tr{(Sw - L:(fl))W-
1 J }, (4.50) 

where W is any consistent estimator of l:, as discussed previously in the current chapter, 

such as Sw when considering the complex survey data set up. 
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Thus, a natural strategy that could be adopted, if we consider that the data set was 

collected from a complex sampling scheme, is replace W in (4.50) by Sw, 

(4.51) 

which is minimised when ~GLSC is chosen by differentiating F(fl)~LSC with respect to each of 

the unknown parameters. Then, another alternative of representing the GLSC estimator is as 

A2 
the solution of estimating equations. We may then obtain flGLSC by solving 

F(fl)~LSC = tr{s-I . [L:(O) - S ]. S-I . 8L:(fl)} = 0 
80. w - w W 80. ' 

J J 

(4.51a) 

where OJ is as defined in Sub-section 4.4.2. See Result D.1 in Appendix D. Furthermore, 

note that (4.51) may be alternatively expressed as (see Fuller, 1987, p. 334) 

()
2 1 ~ 2 

F fl GLSC = - (n - 1) L) At - 1) , 
2 1=1 

(4.51b) 

were ~, .. . ,At are eigenvalues of S~1I2L:(fl)S~I12 . 

Note that in order to reduce (4.49) to (4.50), and then to (4.51), we have to assume that 

n· Sw is distributed as a multivariate Wishart distribution (see Section 4.3, Sub-section 

4.3.2), when defining matrix U. We shall suppose here that if the sampling weights are not 

excessively variable, this assumption might still provide a good approximation. We shall thus 

treat matrix U with W replaced by Sw only as a working estimator of Cc ' where Cc is as 

defined in Section 4.3, Sub-section 4.3.2. 

From Sub-section 4.4.2, an additional choice of fitting function that could lead to 

consistent estimates of 0 is 

(4.52) 

Note that, according to Fuller (1987, Sub-section 4.2.1, Example 4.2.1), deviations from 

normality in Ii may have large effects on the distribution of the estimators for variance 

components, included in the parameter vector fl, that rely upon normality assumptions. 

Moreover, matrix U in (4.49) could be misspecified if U * C, where U and C are as 

defined in Sub-section 4.3.2. Under this circumstance, the GLS estimator would not be 

necessarily asymptotic efficient. This may happen in practice if C depends upon the complex 
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survey design but U does not. In that situation we could is substitute C by Cc ' where C
C 

IS 

also as defined in Sub-section 4.3.2. 

Recall that we have proposed earlier in Sub-section 4.3.2 an adaptation of ADF methods, 

originally proposed by Browne (1982) and Browne (1984), for the analysis of complex 

survey data. Under the assumptions of iid observations with no weighting, for example, an 

ADF type estimator for f1. is acquired by minimizing (4.49), with respect to f1., and 

substituting U by U', with u;/',t"/" given by (4.26). 

As stated previously, an estimator ~GLS with minimum asymptotic variance could be 

achieved by defining the matrix U as a consistent estimator of Cn introduced earlier in 

Section 4.3, Subsection 4.3.2, say Cc ' so that 

I 

F(f1.)~LSC = {vech[SJ- vech[Z:(f1.)]} Cc -1 {vech[SJ- vech[2:(f1.)]}, (4.53) 

where 

Cc = n· var{vech[SJL,l' (4.53b) 

with the k x k positive definite matrix var{vech [sJL,l given by (4.39b). The estimator given 

in (4.53) could thus be considered an ADF method, and thus the use of var[vech(SJ] as a 

weight matrix should yield asymptotic optimality (in the sense of leading to efficient 

estimators) for any distribution of L, where K.i is as defined in Section 4.2. 

Another alternative could be to calculate var{vech [sJL,l by adopting (4.40). In this case, 

the resultant ADF estimator would allow for unequal sampling weights, but it would not fully 

consider complex sampling designs. 

However, ADF methods have to be used very carefully according, for example, to Bollen 

(1989, p. 432), Satorra (1992), Muthen and Satorra (1995), Satorra (2000), and Satorra and 

Bentler (2001), mainly because fourth order moments are large in number and could be 

unstable in small samples. The larger is T the more important last statement is. Note that the 

sample size necessary for convergence may be larger for this method than for the other 

methods considered in the present chapter. This type of method could consequently result in 

computational overload and lack of robustness in samples of 'small' and 'moderate' sizes. 

We shall evaluate the ADF fitting function F(f1.)~LSC' and compare its performance with 

other methods, through an extensive simulation study, which results are presented in the next 
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chapter. We shall also assess the behaviour of the proposed methods when the sample size is 

reduced. 

4.4.4 Maximum likelihood (ML) 

We initially show in the present sub-section how to obtain the ML fitting function 

directly from the multivariate normal probability distribution function (as in J6reskog, 1970; 

and Bollen, 1989, Appendix 4A). See Chapter 2, Section 2.2, and Section 4.2 earlier in the 

present chapter for additional information on ML estimation. Under the classical set up, if we 

take the distribution of 1'; to be of the multivariate normal form, the log likelihood function 

with respect to fJ for given fl is 

(4.54) 

One alternative is to estimate the parameter vector B simultaneously with fJ VIa 

maximisation of (4.54), i.e. by minimising 

n .loglz.:(fl~ + t [Yi - f-li ~)J z.:(flt [Yi - f-li ~)J = 
i=l 

= tr[ L(iZ)' ~ (y, - IlJ(Y, - IlJ] + n 10~L(iZ~ = 

= n . 'r[ L(!,l)' n ., ~ (y, - IlJ(Y, - IlJ} n . 10 gIL(!,l~. 
(4.55) 

We may substitute f-li for its estimator ,ui' defined by (4.16) with constant weights, in (4.55) 

so that it equals 

(4.56) 

where 

(4.57) 
i=l 

Matrices Sand L(fl) are assumed to be positive definite, and IL:(~~ denote the determinant of 

L(fl). We may define from (4.56) the ML fitting function, as (see J6reskog, 1970; J6reskog 

and Goldberger, 1972; Wiley, Schmidt and Bramble, 1973; and J6reskog and Goldberger, 

1975) 

or equivalently (4.58) 
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which may be considered as a distance measure between Sand L:(Q) (Browne, 1984), and 

has to be minimised in order to estimate the parameter vector ft.. Note that the term n, present 

in (4.56), is not present in (4.58) as it does not affect the estimation of Q . 

The term -log/S/- T is included in (4.58) because it is desirable to make F ML an 

appropriate fitting function (see, for example, Loehlin, 1987), by allowing it to equal zero 

when i; = S . This term does not depend upon f3 and ft., hence does not change the values of 

f3 and ft. minimising this function. 

The included term in (4.58) guarantees that FML = 0 when L:(~)= S, because (i) Sand 

L:(ft.) would have the same determinant, and (ii) SL:(ft.t = I , with the sum of the diagonal 

elements equal to T, as the identity matrix I is a TxT matrix. 

Bollen (1989, Appendix 4B) and Amemiya and Anderson (1990), for example, provide 

an alternative derivation for (4.58), which is based upon the fact that the sample covariance 

matrix S has a Wishart distribution, as it was stated earlier (see Sub-section 4.3.2, in the 

current chapter). 

The fitting function F ML is minimised when ~ML is chosen by differentiating F(Q)ML with 

respect to each of the unknown parameters (Wiley, Schmidt and Bramble, 1973). Then, 

another alternative of representing the ML estimator is as the solution of estimating 

equations. We may obtain ~ML by solving 

8F~;M' = +:(Ill' . [L(Il) - S 1 L(ii)' . 8!~) } = 0, 

where OJ is as defined in Sub-section 4.4.2. See matrix differential calculus results m 

Appendix D (Result D.2). 

Once ft.ML is estimated, a sufficient condition for it to mmlmlse F(ft.)ML is that the 

following matrix (Bollen, 1989), 
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a2F(flJML 0 0 
a(p)2 

Q ML = 0 a2 F(flJML 0 
a(8~y 

aF(fi)ML 0 0 
a(8:Y 

is positive definite, again when fi = ((): ,()~ ,y), for example. Q ML is a matrix with the second 

partial derivatives of F(fi)ML' with respect to fi, on the diagonal. Recall from Sub-section 

4.4.1 that Q should also be regular in order to guarantee the identification of fi . 

Two different strategies could be adopted when minimising F(fi)ML' A first option could 

be (i) to estimate fJ separately by adopting (2.15) from Chapter 2, Section 2.2, (ii) plug 

fJ in (4.57) and (4.58), and then (iii) minimise (4.58) with respect only to fi. As a second 

alternative, we could minimise (4.58) simultaneously with respect to fJ and fi as stated 

earlier in the current sub-section. We shall present, in the next chapter, simulation results 

produced by considering the first alternative estimation procedure. 

ML estimators have many considerable and desirable asymptotic properties. They are (i) 

asymptotically unbiased, (ii) consistent, (iii) asymptotic efficient, and (iv) asymptotically 

nonnally distributed (see, for example, Bollen, 1989, for further infonnation on ~ML 

characteristics; Joreskog and Goldberger, 1972; Swain, 1975; Knight, 1978; and Pourahmadi, 

2000). Beyond that, tests of statistical significance are possible for ~ML' given the 

characteristics of its asymptotic covariance matrix. 

Note that, according to Anderson (1973), under nonnality and under the classical set up, 

~GLS given by (4.48a) converges to the maximum likelihood estimator, and consequently it 

has the same asymptotic properties for linear covariance structures. Furthennore, Fuller 

(1987, Sub-section 4.2.2) perfonns an impeccable study on the relationships between least 

squares and maximum likelihood methods in the context of covariance structure models. See 

also Joreskog and Goldberger (1972), Swain (1973), Browne (1977), Bentler and Weeks 

(1980), Satorra (1992), Bentler and Dudgeon (1996), and Ogasawara (2005) for further 

infonnation. 

According to Browne (1987), F(fi)ML is the most often adopted fitting function. Other 

important characteristics are: (v) F(fi)ML is generally scale invariant and scale free (Swain, 

1975), and (vi) the ML estimator yields a X 2 test for the model goodness of fit (see, for 
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example, Wiley, Schmidt, and Bramble, 1973; Swain, 1975; Bentler and Weeks, 1980; 

Browne, 1984; Fuller, 1987, Theorem 4.2.1; and Shapiro, 1986). 

See Pourahmadi (1999), Pourahmadi (2000), Pan and Mackenzie (2003) for more recent 

studies on ML estimation, in the context of modelling mean-covariance structures with 

balanced longitudinal data. 

4.4.5 Pseudo maximum likelihood (PML) 

The estimation methods for Q, discussed in the previous sub-section, were not originally 

designed to handle complex survey data. In this sub-section we shall adapt the ML fitting 

function, allowing for complex sampling design, using the PML approach earlier discussed 

for fJ in Section 4.2 (where we assumed that Q was known) and also in Chapter 2. 

The log census likelihood with respect to fJ for given fl.. is given in Chapter 2, Section 

2.4. The parameter vector Q could be estimated simultaneously with fJ via maximisation of 

the pseudo log likelihood, i.e. by minimising 

N .10gIL(~~ + i W; [y; - 11; (/3 )J L(~t [y; - 11; ~)] , 
;=1 

which is the weighted estimate of the logfl N [fJ,Q]' ignoring constants. Alternatively, since N 

may be unknown, we may minimise 

t. w; lo~2:(!l~ + t{ t. w; (y; - I'Jfll1; - 1'; {tilJ 2:(!lt ] = 

t. w; lo~2:(!l~ + t. w; . tr[ ( t. wJ . t. w; (y; - 1'; {tiJIy; - 1'; (,tJ)J 2:(!lt ] = (4.59) 

t. w; . {logl2:(!l~ + I{ ( t. wJ . t. W; (y; - 1'; (p l1; -1'; (p lJ 2:(!lt ]} 

We may substitute Pi by its estimator iti' as defined in (4.16), in (4.59) so that it equals 

(4.60) 
i=! 

where 

(4.61) 
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Note that the minimisation of the 10g£N[fi,~n is unaffected by scale multiplication of Wi. 

In (4.61), Sw is the weighted sample covariance matrix (see Sub-section 4.3.1). 

In a similar way to the FML case in (4.58), we add the following term, 

into the braces in (4.60). 

Then the pseudo maximum likelihood fitting function, F(fl.)PML could be defined as 

or equivalently (4.62) 

The fitting function F(f}..)PML is minimised when ~PML is chosen by differentiating 

F(fl.)PML with respect to each of the unknown parameters. We may obtain ~PML by solving 

(4.62a) 

where Bj is as defined in Sub-section 4.4.2. See matrix differential calculus results III 

Appendix D (Result D.2). Note that F(fl.)PML reduces to F(fl.)ML when the weights Wi are 

constant. 

By comparison with (4.51 a), the PML estimator gIven by (4.62a) is found to be 

asymptotically equivalent to the GLSC2 estimator, if the model holds, i.e. if Sw converges to 

L.:(fl.). Moreover, following Fuller (1987, p. 334), (4.62) may alternatively be expressed as 

T 

F(fl.)PML = L)logA1 + A~l), (4.62b) 
t~l 

were ~, ... ,AI is as defined earlier for (4.51b), in Section 4.4, Sub-section 4.4.3. Thus if the 

model holds, both GLSC2 and PML estimators are obtained by minimizing (see Fuller, 1987, 

p.335) 

therefore confirming that the GLSC2 and PML estimators may be considered asymptotic 

equivalent. 
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As in the ML case, the included tenns in (4.62) guarantee that F(fl.)PML = 0 when 

2.:(~) = Sw' because (i) Sw and 2.:(fl.) would have the same determinant, and (ii) Sw2.:(fl.t
1 

= I , 

with the sum of the diagonal elements equal to T, as the identity matrix I is a TxT matrix. 

Note that, similarly to the case of the ML method, we shall (i) to estimate fJ separately 

by adopting (2.27) from Chapter 2, Section 2.4, then (ii) plug jJ in (4.61) and (4.62), 

and then (iii) minimise (4.62) with respect only to fl., instead of minimising (4.62) 

simultaneously with respect to fJ and fl. . 

In cases where the solution for (4.62a) is not found analytically, iterative numerical 

techniques would be required. Iterative numerical routines, as for example NeIder and Mead 

(1965) simplex algorithm or Newton-Raphson iteration, could be adopted in this situation. 

4.5 Discussion 

In this chapter we have proposed some inference procedures for covariance structure models, 

in the context of longitudinal complex survey data. We have paid particular attention to 

estimation methods for the parameter vector of interest fl., allowing for complex surveys. We 

have initially extended estimation methods for model parameters, previously discussed in 

Chapter 2, considering in the present chapter that the variance-covariance matrices 2.:(fl.) are 

constrained to be functions of e . 

We have also discussed methods for making inference about the covariance matrix 2.: and 

proposed a new method for calculating i. Further developments when considering the 

complex survey approach have also accomplished here, mainly by adopting Taylor expansion 

techniques in order to extend asymptotically distribution-free (ADF) methods for estimating 

the variance of i . 

We have produced III this chapter a reVIew on classic estimation methods for the 

parameter vector fl., including unweighted least squares, generalised least squares under the 

classical approach, and maximum likelihood. Furthennore we may consider another 

achievement presented in this chapter the proposition of new estimation methods, including 

generalised least squares type of estimators, under the complex survey approach, and also 

pseudo maximum likelihood. 
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Throughout the present chapter and previous chapters we have assumed that the full 

random sample of individuals is available for the observed variables at each wave of the 

survey. Bollen (1989, Chapter 8, p. 369-376) gives an introductory overview of the problem 

of missing values in the covariance structure modelling context, including alternative 

estimators of covariance matrix, explicit estimation methods, and systematic missing values. 

We shall present in Chapter 5 the characteristics and results of a simulation study, which 

shall have as main objective to evaluate the statistical properties of the point estimation 

procedures discussed and proposed in the current chapter. 
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Chapter 5 

Simulation study I 

5.1 Introduction 

The use of simulation techniques in statistics has its origins in the beginning of the 20th 

century (see Morgan, 1984). Lewis and Orav (1989) define simulation as a controlled 

statistical procedure (experiment) based on repeated sampling carried out on a computer. We 

present in this chapter the characteristics and results of a simulation study, which has the 

main objective of evaluating the statistical properties of the point estimation procedures 

proposed in Chapter 4. 

Hence, we shall consider two unweighted least squares (ULS) type of fitting functions, 

the classic F(flJuLs, and the modified F(flJuLsc, where f!... is our parameter vector of interest 

(as defined in Chapter 4, Section 4.1). For additional information on ULS and unweighted 

least squares for complex survey data (ULSC) methods, see Chapter 4, Sub-section 4.4.1. 

We shall also evaluate three proposed generalised least squares fitting functions for 

complex survey data (GLSC), F(f!...)~LSC' F((lJ~Lsc' and F(f!...)~LSC . See Chapter 4, Sub-section 

4.4.3, for further information on GLSC methods. Moreover, three different choices of fitting 

functions shall be evaluated when considering the generalised least squares method (GLS), 

F(fllLs , F(flJ~Ls' and F(f!...)~LS' where F(f!...)~LS is a special case of F(f!...)~LSC when 

considering that the sampling weights are constant. For additional information on the GLS 

approach see Chapter 4, Sub-section 4.4.2. 

We shall additionally consider maximum likelihood type methods (ML) for estimating 

f!... . See Chapter 4, Sub-section 4.4.4 for additional information on the ML estimation method. 

Furthermore, we shall evaluate the proposed pseudo maximum likelihood (PML) fitting 

function FpML , which could be adopted when analysing complex survey data. See Chapter 4, 

Sub-section 4.4.5 for additional information on the PML estimation method. 

Thus, in the current chapter we also aim to compare the properties of the proposed 

methods with the traditional statistical techniques also described in Chapter 4. We shall 

present here detailed information on how the simulation study is implemented, which is given 

in Section 5.2. Moreover, results and some further discussion are presented in sections 5.3 

and 5.4, respectively. Concluding remarks shall be included in Section 5.5. 



5.2 Simulation procedures 

A simulation experiment is by definition a method that one could use for obtaining 

approximate answers for probabilistic problems. After programming the point estimation 

procedures developed and described in Chapter 4, we shall apply them and evaluate their 

statistical properties in this simulation study in terms of both bias and variance. 

This simulation study shall involve simulating d = 1, .. . ,D replicate samples. Note the 

distinction in notation between D, which is a diagonal, non-singular matrix with positive 

values down its diagonal introduced earlier in Chapter 4, Sub-section 4.4.2, and D which is 

the number of simulated repeated datasets. 

Each replicate sample considered in this study is based upon a BHPS data subset, which 

was adopted earlier in Chapter 3, with size 1340 subjects. Initially we fix the sample size of 

each replicate sample as n sim = 1340 (results included in Sub-section 5.3.2), the same as is 

the BHPS subset. The values of the x variable are fixed and the values of fit are simulated 

from different models, independently for each replicate. The superscript sim is added to 

denote simulation. 

To assess the effect of sample size we also repeat this exercise but with reduced sample 

sizes, n sim = 500 (results presented in Sub-section 5.3.3), n sim = 200 (results in Sub-section 

5.3.4), and nsim = 100 (results in Sub-section 5.4.5). These reduced samples are obtained by a 

simple random sampling without replacement scheme. We undertook two approaches to 

sampling: (i) select a sample and hold the same values for x in every replicate but varying Y; 

and (ii) select a different sample, with different values for x, for every replicate. We found 

little difference in the results and we shall report here for results for (ii). 

We shall initially adopt a uniform correlation model (UCM), 

(5.1) 

which was introduced on Example 2.1, Chapter 2, for generating sample values of .Y;f that we 

are going to use in this simulation study, with 

u i ~ N(O,()~), 

and 

In (5.1), .Y;t is the value (scalar) for the response variable for unit i = 1,2, ... ,n sinz at wave t of 

the survey, ~it is a 1 x q vector with the q fixed covariates, jJ is the q x 1 vector of the 
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unknown fixed coefficients for the x variables, Ui are the pennanent random effects, and vit 

are transitory random effects. 

In order to represent the possible effects of complex sampling in our simulation, we shall 

also consider the following alternative UCM type of model, which allows the impact of 

clustering, 

Yijt = ~ijJJ + '7 j + uij + v ijt , (5.2) 

shall also be considered in this simulation study, with 

'7j ~ N(O,O"~), 

uij ~ N(O,O"~), 

and 

Viit ~ N(O,O";), 

where Y;jt is the value (scalar) for the study variable for unit i = 1, ... , n sim
, III cluster 

j = 1, ... , m sim , at wave t of the survey, '7 j are random cluster effects, with m sim denoting the 

number of clusters in each simulation sample, and jJ, Ui and vit are as defined for (5.1). 

We shall refer to the model described in (5.1) as UCM in the remaining of this chapter, 

and to the model described in (5.2) as UCM-C, where C denotes cluster. 

For simplicity, we shall not attempt to allow for the impact of either stratification or 

unequal probability sampling in this simulation study, although we shall consider the 

properties of some weighted estimators where the weights are those taken for the BHPS for 

the 1340 women. This will enable us to study the impact of weighting in circumstances when 

it is not needed for bias correction. 

In order to obtain the parameters that are necessary for producing the simulating replicates 

we shall initially fit the models described above in expressions (5.1) and (5.2). The 

simulation parameter jJ is a q x 1 vector, where q is the number of fixed covariates, and is 

estimated by (see expression (2.15), in Chapter 2, Section 2.2) 

(5.3) 

where y. are T x 1 vectors with the observed values for the response variable for each 
-/ 

individual i included in the considered BHPS subset, Xi are T x q matrices with the values 

for the q explanatory variables for each individual i in each wave, and V is a TxT 

exchangeable covariance matrix. 
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In order to consider realistic values for simulation parameters, we shall adopt the gender 

role attitude score (see Chapter 3, Section 3.2, Sub-section 3.2.3) as the dependent variable 

and (i) wave number (time covariate), (ii) age group (with four categories), (iii) economic 

activity (with five categories), and (iv) educational level (with five categories), as explanatory 

variables, we obtain for the UCM model (see Tables 3.1 and 3.11, in Chapter 3) 

22.18 

-0.04 

-0.70 

-0.87 

-1.00 

- 0.91 (5.4) 
"sim 

J3=J3 - 0.73 

0.17 

- 2.05 

-0.51 

- 0.60 

-0.43 

-1.17 

Then, for simulation purposes we shall also assume that 

2 2 sim ~ 6 744 
(Tu = (Tu =. , 

,..,.2 = ,..,.2 sim :::::: 4 965 
'-'v Vv -. , (5.5) 

p = psim ~ 0.576 . 

Note that (T2 sim 2 sim and u ,(Tv 
psim are calculated VIa Swamy-Arora method, which is 

described by Stata Corp. (2003), for estimating variance components. Note that, according to 

Boomsma (1985), a choice of values for (T,~ sim and (T; sim close to zero could lead for an 

increase in the occurrence of improper solutions and inaccuracies of the point estimates. This 

issue shall not be further investigated in this study. 

When fitting a UCM-C model, we obtain 
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22.16 

-0.04 

-0.70 

-0.87 

-1.00 

-0.91 
(5.6) 

jJ = jJsim,C = -0.73 

0.17 

-2.05 

- 0.51 

-0.60 

- 0.42 

-1.17 

and for simulation purposes we shall also assume that 

a~ = a~ sim,C == 0.088 

2 = 2 sim,C ::::: 7 135 au au _. , 

,","2 = ,","2 sim,C ::::: 4 981 
\...Iv \....Iv _. , (5.7) 

p = psim,C == 0.589. 

The variance components a~ sim,C, a,~ sim,C and a~ sim,C , and psim,C are calculated by applying 

a GLS type method, which is described by Goldstein (1995) and Rasbash et al. (2002). 

5.2.1 Simulation under multivariate normality 

We initially simulate each replicate d from 

a
2 

pa
2 

(d) - N XJJ, y. - T 
-I 

pa
2 

a
2 

pa
2 

, with i = 1, ... , n sim , d = 1, ... , D , 

pa
2 

pa
2 

pa
2 

(5.8) 

and fix Xi for each d as the values from the BHPS data, where /d) are T x 1 vectors with 
_I 

the T-dimensional normally distributed simulated values for the response variable for each 

individual i in each wave for replication d, and Xi are as defined for (5.3). We shall adopt for 

simulation purposes the values for fJ, a~, and a~, which are presented respectively in (5.4) 

and (5.5), when considering a UCM model. 

Thus, the simulation shall involve generating 

Z(d) ~ N(O 1) setting U(d) = a . Z(d) 
I , I U I ' 

with au given in (5.5), generating 
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r(d) ~ N(O 1) setting V(d) = 0' . r(d) 
It , It v It , (5.10) 

with a v given in (5.5), and finally generating 

(d) _ fJ (d) (d) 
Yit - ::£il _ + U i + ViI ' (5.11) 

with fJ given by (5.4). 

Additionally, when considering a UCM -C model, we shall adopt estimated values 

included in (5.6) and (5.7) respectively for fJ, and a~, 0': and (J'~. Thus, 

where 

and 

with 

and 

(d) _ fJ (d) (d) (d) 
Yijt -::fiit_ +7Jj +Uij +Vijt' 

C;d) ~ N(O,l), 

Z;d) ~ N(O,l), 

5.2.2 Simulation under multivariate Student's t-distribution 

Statistical procedures usually depend somehow upon the data distribution. We thus also aim 

in this simulation study to evaluate how the methods described in Chapter 4, including the 

ones we propose, behave under departures from the normality distributional assumptions. 

Hence we shall alternatively consider, 

a Z paz 

t(d) = t 
~i T.u~5 XifJ, 

paz 0'2 

pa 2 
, with i = 1, ... ,n sim

, d = 1, ... ,D, 

po' 2 pa2 

where /(d) are T x 1 vectors with the T-dimensional t distributed simulated values for the 
-/ 

response variable for each individual i in each wave for replication d, and Xi' 0'2, and p are 

as defined for (5.8). Note the distinction in notation between t, which is so far adopted in this 
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thesis for denoting time, and tv which is adopted as usual for the t distribution with u 

degrees of freedom. 

We also consider here for simulation purposes the values for au' a v and fJ, which are 

presented respectively in (5.4) and (5.5), when considering a UCM model. Thus, the 

simulation involve initially generating 

t' (d) ~ t 
Zi v=5 

and 

where the superscript t* denote that Zi and 'it follow a t distribution, with non-standardised 

variance. Both z;' (d) and 'i:'{d) may be standardised respectively by 

zt{d) = / (d)/~var(t ) 
I I v=5 (5.12) 

and 

t{d) _ t'{d)/"; ( ) 'it - 'it var t V =5 . (5.13) 

In (5.12) and (5.13), var(tv=J may be obtained from (Johnson, Kotz and Balakrishnan, 1995) 

r[! (p + 1 )Jr[! (u - p)] 
() 

p/2 2 2 
m p tv = U· [ 1 ] [1 ] r - r-u 

2 2 

if p is even, where m p (tv) is the pth central moment of a tv distribution. For p = 2 , 

m2(tJ= var(tJ= _u_, 
u-2 

and with u = 5, 

var(tv=J ~ 1.666667. 

Thus, 

and 

and 

We may then set 

Ut{d) = a . zt{d), 
I U I 
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Vt(d) = (j . t(d) 
It v 'it , 

and finally generate 

Y t(d) = x. fJ + Ut(d) + V:(d) 
It -11_ I It' 

with fJ given by (5.4) and (5.6). 

Furthermore, when considering a UCM-C model, we consider values included in (5.6) 

and (5.7) for (j~, (ju' (j v and fJ . And thus, 

where 

and 

with 

and 

Y t(d) = x .. f3 + nt(d) + Ul(d) + Vt(d) 
lJI -lJt _ 'f) lJ lJt' 

nt(d) = (j . Ct(d) 
'f) 1'/}' 

CYd) ~ t u=s(O,I) 

Z~(d) ~ t u=s(O,I), 

5.3 Results 

Let Q = ((j,~ , (j~ , r)' be our b x 1 parameter vector of interest, with b = 3. Recall that the 

estimators of Q for which simulation results are produced in the current chapter, were defined 

in Chapter 4: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(Vii) 

(Viii) 

see expression (4.42a) for fl.ULS; 
~2 

see expression (4.48a) for fl.GLS; 
~3 

see expression (4.48b) for fl.GLS; 

see expression (4.46), with matrix U being substituted by U* given by (4.26), (4.28), 
~4 

and (4.31), for fl.GLS; 

see expression (4.58) for fl.ML; 

see expression (4.42b) for ~ULSC; 
~2 

see expression (4.51) for fl.GLSC ; 
~3 

see expression (4.52) for QGLSC; 
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(ix) see expreSSIOns (4.53) and (4.53b), with var{vech [SJ}v,l calculated by adopting 
~4 

(4.40), for f2. GLSC ; and 

(x) see expression (4.62) for ~PML • 

~ ~2 ~3 ~4 ~ 

Note that f2. ULSC ' f2. GLSC' f2.GLSC' f2. GLSC' and f2.PML are weighted point estimators, which were 

proposed in Chapter 4 and allow for complex survey data. 

We shall adopt the mean square error as a criterion for evaluating an estimator. Moreover 

(Cochran, 1977), 

MSE(B) = VAR(B) + [BIAS(B)]2 , (5.14) 

where Bj denotes any of the b elements included in the parameter vector f2., V AR( B) is the 

true variance of Bj' BIAS( Bj) denote the true bias of an estimator and may be estimated by 

(5.15) 

In (5.15), £(B) is the estimated expected value of Bj • Information on how VAR(B) IS 

estimated and how £( B) is calculated shall be provided later on in this section. Let 

reI bias( B) denote the estimated relative bias of Bj , so that 

~ bias(B) 
reI bias( B) = J • 100 . 

Bj 

For each replicate we shall estimate BY), via each ofthe estimation methods listed above. 

We then calculate 

£CB.) = ~ ~ B(d) 
J D~ J ' 

d=l 

where £(B) is as introduced above, and is the mean of our parameter of interest estimated 

over repeated simulation ofthe datasets. 

Moreover, 

var(Bj ) =_l_f[B}d) -£(B)J, 
D -1 d=l 

where var( B) is a simulation estimator of V AR( B) in (5.1). 

The MSE(B) may thus be estimated by 

mse( Bj ) = var( Bj ) + [bias( Bj ) J ' 

the simulation standard error of £( B) by 
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and an approximately 95% simulation confidence interval for Bj may be defined as 

i(B) ± 1.96· se[i(B)J . (5.16) 

Furthermore, the coefficient of variation of Bj shall be calculated by 

We shall initially fit an UCM model and assume that the TxT population covariance 

matrix L(~) has the following structure, (see Sub-section 4.1, Chapter 4) 

2 + 2 
(J'u (J'v 

2 2 2 

L(~)= 
(J'u (J'u + (J'v 

2 2 (J'2 + (J'2 (J'u (J'u u v 

Moreover, in order to evaluate how the methods behave in the context of a more complex 

model, we shall also fit, for each d, a transitory random effects as a first-order autoregressive 

process model (AR1), which is described in Chapter 4, Example 4.1. In this case, it is 

assumed that L(~) is structured as 

2 2 
(J'u + (J'v 

2 + IS-II 2 
(J'u r (J'v 

It should be observed that each evaluated method shall be analysing exactly the same data 

for each situation considered in this simulation study. 

Note that Sub-sections from 5.3.2 to 5.3.5 shall only present summarised simulation 

results. More complete tables are confined to Appendix E, for simulation circumstances 

where n sim = 1340 is considered. Detailed results for the remaining considered sample sizes 

have also been produced, although they shall not be included in the thesis. 

5.3.1 Software and minimisation procedures 

In this simulation study, we shall adopt the statistical computer software R (Ihaka and 

Gentleman, 1996) both for generating the replicated data for the simulation study and for 
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programming techniques that have been studied and developed in Chapter 4. R is available 

through the Internet under the General Public License. 

This software has the following desired characteristics (see Dalgaard, 2002): (i) it is a 

complete programming language (what makes it very flexible), which is very similar to the S 

language; (ii) it allows for statistical analysis and graphics; and (iii) it allows for further 

computations on the results of a statistical procedure. 

The estimation methods that are being evaluated in this chapter are all based on the 

minimisation of fitting functions F (see Chapter 4). See Appendix C for explicit solutions for 

parameters when adopting ULSC (and ULS) and PML (and ML) estimation methods and 

fitting a UCM model. Note that according to analytic results reported in Appendix C, ULSC 

and PML are found to be equivalent when considering a UCM model. This may represent an 

interesting finding as ULS type methods are considered to be computationally cheap when 

compared to other estimation approaches, while ML methods have many considerable and 

desirable asymptotic properties, which were comprehensively described in Chapter 4, Section 

4.4, Sub-section 4.4.4. 

For the remaining estimation methods and for all situations involving AR1 model fitting, 

we shall perform the necessary minimisations by adopting an iterative numerical method. We 

shall utilise a Newton type algorithm for carrying out numerical derivatives of F, as similarly 

suggested for example by Pourahmadi (1999). See also Dennis and Schnabel (1983, chapters 

5 and 6), Schnabel, Koontz and Weiss (1985), and Bollen (1989, Appendix 4C). That method 

is readily available in the function nIm included in the software R (R Development Core 

Team, 2003). Note that results presented in this chapter shall be produced considering only 

replicates for which the numerical method achieved convergence for every considered point 

estimation method. Information on non-convergence shall be reported for each method and 

considered simulation situation (as in Boomsma, 1985), whenever it occurs. 

One of the reasons for the adoption of a numerical method for minimising the fitting 

functions F is that, according to Bollen (1989) and Long (1993), ULS, GLS and ML fitting 

functions usually come out with equations that are typically nonlinear in the parameters. 

Therefore, in general explicit solutions for the parameters are often not achievable. 

The selection of initial values may affect the numerical minimisation procedures III 

various ways. That could influence the number of iterations necessary, for example. 

Furthermore a choice of starting values that are far from the final ones may augment the 

probability of finding a local minimum rather than the global minima, or even of not finding 

a convergent solution. For further discussion on this issues see Boomsma (1985). See also 

Bollen (1989, Appendix 4C), where a very brief consideration on this subject is provided. For 
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the reasons explained above, we have adopted as starting values for ~, the values given in 

expression (5.5), which are referred to by Boomsma (1985) as ideal starting values. 

5.3.2 Simulation results for samples of size n sim 
= 1340 

The results presented in the current sub-section are produced by using replications of the 

whole simulation population, with nsim = 1340 (see Sub-section 5.2.1), D = 1000 (as, for 

example, adopted in Satorra, 1992; and Muthen and Satorra, 1995), and generated by making 

use of both UCM and UCM-C models. 

Table 5.1 includes results that were produced when fitting both UCM and ARI models 

and considering normality conditions, with simulated ~t values generated by a UCM model. 

Note that in all tables included in the current chapter, and in those presented in Appendix 

E, no results for the component r shall be presented when a UCM model is fitted as we have 

f!.. = (a,; ,a;), in this situation. Moreover, in situations where a ARI model is fitted, relative 

bias and coefficient of variation shall not be reported (NR) for the component r as simulated 

~t values, as stated above, are generated by a UCM model, and UCM are special cases of the 

AR1 models when r = 0 . 

Additionally, all bias results that were found not to be significantly different from zero at 

the 95% level shall be indicated with "NS", when the interval given by (5.16) includes the true 

value of the parameter of interest. That shall indicate situations where the simulations do not 

provide enough evidence that the estimator is biased. 
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parameter 

~ULS 

,2 

fiGLS 

~ML 

,2 

fiGLSC 

~PML 

reI bias 

-0.88% 
0.06%NS 

-1.42% 
-0.74% 

-0.60% 

0.47% 

-1.46% 
-0.74% 

-0.88% 
0.06%NS 

-0.34% 
-0.27% 

-0.96% 
-1.18% 

_0.03%NS 

0.18% 

-1.06% 
-1.29% 

-0.34% 
-0.27% 

UCMmode1 

cv(e) 
4.26% 
1.87% 

4.29% 
1.90% 

4.27% 

1.88% 

4.33% 
1.93% 

4.26% 
1.87% 

4.57% 
2.01% 

4.61% 
2.06% 

4.58% 
2.02% 

4.65% 
2.09% 

4.57% 
2.01% 

mse 
(x 1000) reI bias 

84.707 -0.89% 
8.655 0.08%NS 

90.683 
10.162 

83.481 

9.297 

92.427 
10.365 

84.707 
8.655 

95.062 
10.131 

98.968 
13.616 

95.402 
10.170 

101.470 
14.572 

95.062 
10.131 

NR NS 

-1.45% 
-0.64% 
NR NS 

-0.61% 

0.45% 
NR NS 

-1.48% 
-0.65% 
NR NS 

-0.89% 
0.08%NS 
NR NS 

-0.33% 
-0.29% 
NR NS 

-0.95% 
-1.13% 
NR NS 

0.003%NS 
0.10%NS 
NR NS 

-1.05% 
-1.22% 
NR NS 

-0.35% 
-0.25% 
NR NS 

NS _ denotes 'absolute bias not significant! y different from zero at 95% level' . 
NR - denotes 'no reported'. 

ARI model 

cv(e) 
4.31% 
2.05% 
NR 
4.32% 
2.02% 
NR 
4.29% 
2.00% 
NR 
4.35% 
2.04% 
NR 
4.29% 
1.99% 

NR 
4.61% 
2.20% 
NR 
4.64% 
2.18% 
NR 
4.61% 
2.14% 
NR 
4.67% 
2.21% 
NR 
4.77% 
2.92% 
NR 

mse 
(x 1000) 

86.497 
10.432 
0.537 

92.071 
10.942 
0.355 

84.500 
10.415 

0.348 
93.569 
11.162 
0.358 

85.822 
9.820 
0.348 

96.495 
12.048 
0.593 

99.971 
14.590 
0.394 

96.600 
11.379 
0.390 

102.199 
15.466 
0.402 

103.246 
21.001 

1.391 

Table 5.1 - Evaluation of e with normally distributed errors (population - replications 
generated by UCM model). 

By looking across each row of Table 5.1 we can notice that, in general, there is not much 

difference between mse when companng different point estimation methods. Those 

differences are noticeable, but not enormous. Moreover, we may observe that the impact of 

the relative bias is relatively small when compared to the coefficient of variation, i.e. the c.v. 

is the main component contributing to the mean square error of for all the estimators in the 
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simulation situation considered above, under normality conditions and a sample of size 1340. 

This shall be true in most cases for the remaining situations considered in this sub-section. 

When fitting a UCM model, ULS, ML and GLS3 are the methods with the lowest relative 

bias, although the differences to the remaining unweighted methods are not gigantic. In terms 

of variance, methods are broadly very similar, with ULS and ML presenting a marginally 

smaller C.v. than the other methods. When considering the weighted methods, GLSC3 is the 

one with the somewhat smallest relative bias, while all weighted methods behave almost 

identically in terms of variance. 

Generally, very similar remarks may be made when considering the AR1 model fitting. 

However, we may notice that the PML method has a reasonably larger mse for estimating r 
comparatively to the other weighed methods and also to the unweighted ones. 

The estimator GLS4, which is the distribution free method (ADF), proposed in Chapter 4, 

had somewhat the largest bias among the unweighted methods, although in terms of 

coefficient of variation results that method was very similar to the other ones, when fitting 

both UCM and AR1 models. Very similar conclusions may be drawn for GLSC4 when 

comparing than to the remaining weighted methods. 

Results above, and in all the following tables included in the current chapter, illustrate our 

finding that for situations where a UCM is considered, ULS and ML point estimators are 

equivalent (see Subsection 5.3.1 and Appendix C). Under these circumstances the ULS 

estimator could be considered as an alternative to GLS type methods which are 

computationally more expensive, as ML methods have several desirable asymptotic 

properties. Furthermore, we may observe that even for situations where an AR1 model is 

fitted ULS results are very similar to those calculated for the ML estimator. Note that our 

finding agrees with Bollen (1989, p. 112), which says that ML and ULS estimates are usually 

very close. 

In terms of the asymptotic equivalence between GLS2 and ML methods (Anderson, 

1973; and Fuller, 1987, Sub-section 4.2.2, for example), discussed also in Chapter 4, Section 

4.4, we may observe that there is not a large difference between the mse results when 

comparing these two methods and also for GLSC2 and PML. That of course will become less 

clear in later sub-sections when simulations with smaller samples sizes shall be considered. 

We may also observe that weighted methods presented larger variance than the 

unweighted methods especially because, considering the framework adopted in this 
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simulation study, there would be no need for utilising weighted estimators for bias correction. 

This result is expected from the survey sampling literature (see, for example, Pfeffermann 

and LaVange, 1989; and Skinner, 2003a, and references therein). Recall that we do not allow 

for the impact of either stratification or unequal probability sampling when generating values 

of ~t. 

Furthermore, according to our results, weighted methods appear to have slightly lower 

bias when compared to the unweighted ones. This shall become clearer in later sub-sections 

when the sample size is reduced. Nevertheless, we shall not claim here that this is always 

true, as there is not any clear theoretical reason for this result. It is important also to notice 

that the impact of bias is relatively less important of that caused by the coefficient of 

variation, at least at this stage when we are considering samples of size 1340. 

Table 5.2 includes results for both UeM and ARl models considering normality 

conditions, with simulated ~t values generated by an UCM-e model. Recall that the UCM

e, introduced earlier in Section 5.2, allows for the impact of clustering. 
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UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) reI bias (x 1000) 

'2 
O"u -0.87% 4.37% 101.771 -0.88% 4.38% 102.345 

tl..ULS 
' 2 

O"v 0.06%NS 1.90% 8.935 0.09%NS 2.11% 11.037 

r NR NS NR 0.522 
'2 

O"u -1.44% 4.40% 108.740 -1.47% 4.42% 110.245 
,2 

[leLs 

,2 
O"v -0.78% 1.92% 10.478 -0.68% 2.09% 11.796 

r NR NS NR 0.347 
'2 

O"u -0.58% 4.38% 100.470 -0.59% 4.40% 101.475 
,3 , 2 

0.48% 1.91% 9.687 0.47% 2.09% 11.462 [leLs O"v 

r NR NS NR 0.344 
'2 

O"u -1.44% 4.39% 108.463 -1.47% 4.42% 110.053 
,4 ,2 

-0.78% 1.93% 10.647 -0.69% 2.10% 11.992 [leLs O"v 

r NR NS NR 0.352 
'2 

O"u -0.87% 4.37% 101.771 -0.88% 4.39% 102.905 

~ML 
'2 

O"v 0.06%NS 1.90% 8.935 0.09%NS 2.07% 10.711 

r NR NS NR 0.343 
'2 

O"u -0.34% 4.69% 114.744 -0.33% 4.69% 114.705 

[lULSC 

,2 
O"v -0.22% 2.01% 10.136 -0.23% 2.23% 12.378 

r NR NS NR 0.603 

,2 a: -1.00% 4.73% 119.557 -0.99% 4.76% 120.744 
fiCLSC ,2 -1.17% 2.04% 13.453 -1.11% 2.19% 14.741 O"v 

r NR NS NR 0.403 

,3 

,2 
O"u -0.01 %NS 4.70% 115.135 O.Ol%NS 4.72% 116.240 

fiCLSC ,2 
O"v 0.25% 2.03% 10.413 0.18% 2.20% 12.127 
y NR NS NR 0.400 

,4 
'2 

O"u -1.07% 4.73% 120.163 -1.06% 4.76% 121.693 
fiCLSC ,2 

O"v -1.25% 2.07% 14.255 -1.19% 2.22% 15.439 

r NR NS NR 0.411 
'2 

O"u -0.34% 4.69% 114.744 -0.32% 4.72% 115.825 

~PML 
,2 

O"v -0.22% 2.01% 10.136 -0.25% 2.18% 11.909 

r NR NS NR 0.398 
NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 

Table 5.2 - Evaluation of e with nOl1llally distributed errors (population - replications 

generated by UCM-C model). 

Overall similar conclusions may be drawn when comparing Table 5.2 (data generated by 

a UCM-C model) with Table 5.1 (data generated by a UCM model). Methods ULS, ML and 

GLS3 are the unweighted methods with the lowest relative bias. We may notice that the 

effects of clustering did not lead to an increase in the bias of the evaluated point estimators. 

However, as expected from the survey sampling literature (see, for example, Deming, 1950; 

Kish, 1957; Kish and Frankel, 1974; and Kish, 1980) we may notice that most methods have 
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had an increase in their mse for both fitted models (UCM and AR1), mainly because of a 

modest inflation of variance. 

Table 5.3 includes results for both UCM and AR1 models considering non-normality 

conditions (t distribution, as described in Section 5.2, Sub-section 5.2.2), with simulated ~t 

values generated by an UCM model. 

UCMmodeI AR1 model 
parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) 

reI bias (x 1000) 
'2 

CJ" -1.15% 7.10% 230.181 -1.14% 7.14% 232.672 

iJ..ULS 
'2 CJv 

_O.lO%NS 3.33% 27.306 -0.11 %NS 3.45% 29.276 

f NR NS NR 0.510 
'2 

CJ" -1.71% 7.12% 235.758 -1.76% 7.14% 237.751 
,2 , 2 

-1.37% 3.18% 28.838 -1.25% 3.26% 29.443 f!..GLS CJ v 

f NR NS NR 0.360 
'2 

CJ" -0.87% 7.11% 229.277 -0.90% 7.12% 230.385 
,3 '2 0.55% 3.54% 31.976 0.56% 3.66% 34.145 f!..GLS CJ v 

f NR NS NR 0.367 
'2 CJu -2.43% 7.50% 270.097 -2.47% 7.50% 271.024 

,4 , 2 
-3.06% 3.16% 46.184 -2.86% 3.24% 44.592 f!..GLS t CJ v 

f NR NS NR 0.367 
'2 CJu -1.15% 7.10% 230.l81 -1.18% 7.12% 231.553 

iJ..ML 
' 2 CJv 

_O.lO%NS 3.33% 27.306 _0.06%NS 3.43% 28.984 

f NR NS NR 0.358 
a~ -0.67% 7.98% 288.059 -0.64% 8.02% 290.805 

iJ..uLse 
'2 

CJv -0.49% 3.52% 30.869 -0.53% 3.67% 33.537 

f NR NR 0.584 
0-: -1.31% 7.99% 290.443 -1.32% 8.01% 292.149 

,2 '2 -1.91 % 3.32% 35.139 -1.82% 3.43% 36.l37 ElGLse CJ v 

f NR NS NR 0.412 
'2 

CJ" -0.35% 8.00% 289.460 -0.34% 8.01% 289.996 
,3 '2 0.25% 3.90% 37.802 0.21 %NS 4.13% 42.373 ElGLse CJ v 

f NR NS NR 0.430 
'2 

CJ" -2.25% 8.28% 320.966 -2.28% 8.22% 317.109 
,4 '2 -3.80% 3.35% 61.251 -3.63% 3.44% 59.502 ElGLSe t CJv 

f NR NS NR 0.407 
'2 

CJ" -0.67% 7.98% 288.059 -0.75% 8.54% 328.958 

iJ..PML 
,2 

CJv -0.49% 3.52% 30.869 -0.46% 3.79% 35.675 

f NR NS NR 1.411 
NS denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.1 % of the replicates. 

Table 5.3 - Evaluation of e with tv=5 (0,1) distributed errors (population - replications 

generated by UCM model). 
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When comparing Table 5.3 (data generated by a UCM model with t distributed errors) 

with Table 5.2 (data generated by UCM model with normally distributed errors), we may 

notice that all methods have had a large increase in their mse for both fitted models (UCM 

and AR1), caused by a modest increase in bias and variance. Perhaps contrary to what we 

expected the ADF point estimators, GLS4 and GLSC4, have not performed better than the 

other methods, although those had generally the smallest coefficient of variation for 

estimating (J'~ and also small values of mean square error for estimating r . 

Table 5.4 includes results for both UCM and AR1 models considering non-normality 

conditions (t distribution), with simulated ~t values generated now by an UCM-C model. 

UCMmodel AR1 model 
parameter cv(e) mse cv(e) mse 

rel bias (x 1000) reI bias (x 1000) 
'2 au -1.05% 7.53% 294.868 -1.10% 7.59% 300.327 

~ULS 
' 2 a v 0.26% 3.47% 30.183 0.33% 3.58% 32.251 
f NR NS NR 0.544 
'2 au -1.63% 7.54% 300.991 -1.67% 7.58% 304.406 

,2 

fiCLS 
'2 a v -1.02% 3.28% 28.792 -0.90% 3.34% 29.207 

f NR NS NR 0.385 
, 2 

au -0.76% 7.53% 294.094 -0.78% 7.58% 297.780 
,3 '2 0.92% 3.66% 36.009 0.92% 3.72% 37.081 fiCLS 

a v 

f NR NS NR 0.378 
'2 au -2.56% 7.44% 307.947 -2.61% 7.47% 311.410 

,4 , 2 
-2.75% 3.21% 42.941 -2.54% 3.28% 41.374 fiCLS t a v 

f NR NS NR 0.367 
'2 au -1.05% 7.53% 294.868 -1.08% 7.57% 298.410 

~ML 
,2 

a v 0.26% 3.47% 30.183 0.30% 3.53% 31.332 

f NR NS NR 0.375 
, 2 

-0.50% 8.03% 333.788 _0.50%NS 8.09% 338.859 au 

~ULSC 
,2 a v 

_0.02%NS 3.73% 34.592 _0.03%NS 3.82% 36.242 

f NR NS NR 0.594 

,2 
,2 

au -1.17% 8.04% 336.526 -1.17% 8.08% 339.501 
flCLsc ,2 

a v -1.49% 3.44% 33.999 -1.42% 3.50% 34.589 
y NR NS NR 00411 

,3 
'2 au _0.16%NS 8.03% 335.589 _O.13%NS 8.08% 339.568 

flCLsc ,2 
a v 0.74% 4.07% 43.179 0.67% 4.14% 44.139 

f NR NS NR 0.414 
,2 

au -2.27% 7.92% 339.247 -2.26% 7.95% 341.682 
,4 

flCLSC t 
'2 a v -3.47% 3.38% 56.301 -3.32% 3.44% 54.795 

f NR NS NR 0.396 
, 2 

au -0.50% 8.03% 333.788 _0.48%NS 8.07% 337.358 

~PML 
,2 a v 

_0.02%NS 3.73% 34.592 _0.05%NS 3.80% 35.804 
NR NS NR 0.406 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.2% of the replicates. 

Table 5.4 - Evaluation of e with t u;s(O,l) distributed errors (population - replications 

generated by UCM-C model). 
127 



Results presented in Table 5.4 (data generated by a UCM-C model with t distributed 

errors) above lead us to make similar conclusions to those made previously for Table 5.2 

(data generated by a UCM-C model with normally distributed errors). Nevertheless, we may 

observe that most methods have had a large increase in their mse for both fitted models 

(UCM and AR1), mainly because of a modest increase in bias and also inflation of the 

coefficient of variation. Estimators GLS4 and GLSC4, i.e. ADF methods, have again have 

generally not performed better than the other methods, although those were the methods with 

the lowest levels of variance in all situations considered in the table above for estimating all 

the components of fZ . 

Moreover, when comparing Table 5.4 with Table 5.3 (data generated by UCM model 

with normally distributed errors), we may notice that all methods have had an increase in 

their mse for both fitted models (UCM and AR1), caused by a modest inflation in the 

coefficient of variation. 

5.3.3 Simulation results for samples of size nsim = 500 

This subsection presents results that are produced making use of samples of size nsim = 500 

selected by srs from replications of the whole simulation popUlation, as described in Section 

5.2, with D = 1000, and generated by UCM and UCM-C models. 

Table 5.5 includes results for both UCM and AR1 models considering normality 

conditions, as described in Section 5.2, Subsection 5.2.1. The values of r;t are generated here 

by an UCM model. 
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UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) reI bias (x 1000) 

" -1.92% 7.08% 236.411 -2.06% 7.21% 246.391 a~ 

riULS 

,2 
a v 0.47% 3.25% 26.827 0.66% 3.58% 33.167 
f NR NR 1.482 
'2 au -3.40% 7.16% 270.239 -3.51% 7.25% 278.756 

,2 

flGLS 
'2 a v -1.74% 3.39% 34.812 -1.41% 3.62% 36.252 
f NR NS NR 1.002 
'2 au -1.18% 7.12% 231.661 -1.25% 7.19% 236.511 

,3 ,2 

flGLS (Tv 1.59% 3.27% 33.447 1.60% 3.48% 37.112 
f NR NS NR 0.970 
'2 au -3.41% 7.19% 272.544 -3.52% 7.33% 283.505 

,4 

flGLS 

, 2 
a v -1.72% 3.44% 35.533 -1.40% 3.68% 37.363 
f NR NS NR 1.038 
'2 au -1.92% 7.08% 236.411 -2.01 % 7.16% 242.442 

rlML 
'2 

(Tv 0.47% 3.25% 26.827 0.59% 3.47% 30.888 
f NR NS NR 0.968 
'2 au -0.66% 7.54% 257.025 -0.73% 7.65% 265.017 

riULSC 
'2 

(Tv -0.33% 3.43% 29.139 _0.23%NS 3.76% 34.875 
f NR NS NR 1.659 
" -2.36% 7.65% 279.108 -2.39% 7.72% 284.412 ,2 a: 

fiGLSC '2 
(Tv -2.78% 3.55% 48.376 -2.55% 3.77% 49.353 
f NR NS NR 1.104 

,3 
,2 
au 0.21 %NS 7.57% 262.204 0.23%NS 7.64% 266.679 

fiGLSC ,2 
0.90% 3.48% 32.485 0.79% 3.67% 35.328 a v 

f NR NS NR 1.053 
,4 

,2 
au -2.48% 7.77% 289.052 -2.50% 7.87% 296.1 05 

fiGLSC ,2 
a v -2.96% 3.63% 52.260 -2.72% 3.90% 53.785 
f NR NS NR 1.178 
,2 

au -0.66% 7.54% 257.025 -0.66% 7.61% 261.675 

rlPML 

,2 
a v -0.33% 3.43% 29.139 -0.34% 3.64% 32.779 

NR NS NR 1.054 
NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no repOlied'. 

A 

(n sim = 500, replications Table 5.5 - Evaluation of () with nonnally distributed errors 

generated by UCM model). 

From results included in Table 5.5 we can make very similar remarks to those made for 

results presented in Table 5.1, in tenns of comparing the methods. Again, the estimator 

GLSC4 has had the largest bias among the weighted methods, although in tenns of efficiency 

this was very similar to the other methods, when fitting both models. Results in Table 5.5 

indicate increases of both bias and variance when compared to those in Table 5.1, caused by 

a reduction in the number of cases from 1340 to 500. 
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Table 5.6 includes results for both UCM and AR1 models considering normality 

conditions, with simulated 1';1 values generated now by an UCM-C model. 

UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) mse 
ReI bias (x 1000) 

reI bias (x 1000) 
, 2 

au -1.88% 7.49% 299.989 -1.97% 7.51% 302.818 

rl.ULS 
'2 a v 0.35% 3.12% 24.603 0.48% 3.48% 30.963 
y NR NS NR 1.579 
'2 au -3.33% 7.53% 333.952 -3.39% 7.55% 337.235 

-2 

f!..GLS 
, 2 a v -1.83% 3.27% 33.972 -1.56% 3.50% 35.533 

Y NR NS NR 1.011 
'2 au -1.15% 7.54% 296.629 -1.19% 7.57% 299.035 

-3 , 2 
33.820 f!..GLS a v 1.45% 3.14% 30.319 1.41% 3.36% 

Y NR NS NR 0.964 
'2 -3.25% 7.63% 339.025 -3.34% 7.64% 342.691 au 

-4 

f!..GLS 
, 2 

a v -1.83% 3.34% 35.057 -1.55% 3.57% 36.561 

Y NR NS NR 1.052 
, 2 

au -1.88% 7.49% 299.989 -1.93% 7.52% 302.626 

rl.ML 
,2 

0.35% 3.12% 24.603 0.42% 3.35% 28.582 a v 

y NR NS NR 0.964 
,2 

-0.62% 7.90% 323.596 -0.61% 7.94% 327.029 au 

rl.ULSC 
,2 a v -0.49% 3.29% 27.269 -0.52% 3.71% 34.468 
y NR NR 1.756 
·2 -2.25% 8.01% 345.944 -2.21% 8.04% 347.401 

-2 
au 

ElGLse -2 -2.94% 3.44% 49.l03 -2.80% 3.72% 51.887 a v 

y NR NR 1.141 
'2 O.2O%NS 7.93% 329.596 0.27%NS 7.97% 333.385 

d 
au 

ElGLse -2 a v 0.74% 3.34% 29.390 0.53% 3.62% 33.573 
y NR NR 1.099 
, 2 

-2.31% 8.21% 363.150 -2.30% 8.23% 364.697 
-4 

au 

ElGLse ·2 -3.11% 3.54% 53.292 -2.96% 3.81% 55.654 a v 

y NR NR 1.208 
, 2 

au -0.62% 7.90% 323.596 -0.56% 7.94% 326.520 

rl.PML 

,2 a v -0.49% 3.29% 27.269 -0.59% 3.59% 32.435 
y NR NR 1.094 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 

Table 5.6 - Evaluation of e with normally distributed errors (n siJn =500, replications 

generated by UCM-C model). 
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Similar conclusions may be drawn when comparing Tables 5.6 and 5.5. Nevertheless, we 

may observe that most methods have had an increase in their mse for both fitted models 

(UCM and ARl), mainly because of a modest increase in the variance especially when 

estimating the variance component (j",~ • 

Table 5.7 includes results for both UCM and AR1 models considering non-normality 

conditions (t distribution), with simulated 1';1 values generated by an UCM model. 

UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) 

reI bias (x 1000) 

'2 au -2.61% 12.37% 690.612 -2.65% 12.37% 691.055 

~ULS 
' 2 a v 0.27%NS 5.59% 77.544 0.32%NS 5.78% 83.130 
r NR NS NR 1.381 
'2 au -4.07% 12.41% 719.647 -4.15% 12.41% 721.556 

,2 

fiCLS 

,2 
a v -3.03% 5.20% 85.411 -2.76% 5.30% 84.220 
r NR NS NR 0.975 
'2 au -1.87% 12.40% 689.077 -1.91% 12.40% 689.311 

,3 

fiCLS 
'2 a v 2.02% 6.53% 119.593 2.00% 6.57% 120.415 

r NR NS NR 0.975 
'2 au -6.06% 11.53% 700.446 -6.14% 11.53% 704.369 

,4 , 2 
-6.01% fiCLS t a v 5.31% 150.514 -5.55% 5.37% 139.265 

r NR NR 0.956 
'2 au -2.61% 12.37% 690.612 -2.66% 12.37% 691.220 

~ML 
'2 a v 0.27%NS 5.59% 77.544 0.35%NS 5.67% 80.097 
r NR NS NR 0.943 
'2 au -1.50% 13.55% 820.430 -1.45% 13.55% 820.790 

~ULSC 
'2 a v -0.65% 5.89% 85.472 -0.71% 6.15% 93.284 
r NR NR 1.542 

,2 
,2 

au -3.13% 13.63% 837.429 -3.12% 13.63% 836.813 
fiCLSC ,2 

a v -4.26% 5.43% 111.429 -4.10% 5.59% 112.306 
r NR NR 1.120 

,3 
'2 au _0.67%NS 13.57% 828.043 _0.61%NS 13.56% 828.145 

fiCLSC ' 2 a v 1.29% 7.19% 135.003 1.12% 7.24% 135.141 
r NR NR 1.114 
• 2 

au -5.37% 12.39% 756.275 -5.41% 12.37% 755.286 
,4 

fiCLSC t 
,2 

a v -7.57% 5.55% 206.132 -7.16% 5.70% 195.401 
r NR NS NR l.091 
·2 au -1.50% 13.55% 820.430 -1.45% 13.54% 819.841 

~PML 
,2 
a v -0.65% 5.89% 85.472 -0.70% 6.02% 89.435 
r NR NR 1.079 

NS - denotes' absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical rninirnisations did not achieve convergence for 0.1 % of the replicates. 

Table 5.7 Evaluation of e with tv=s(O,l) distributed errors (n Sim = 500, replications 

generated by UCM model). 
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When comparing Table 5.7 with Table 5.6, we may notice that all methods have had a 

large increase in their mse for both fitted models (UCM and AR1), caused by an inflation of 

both bias and variance. The ADF method GLSC4 has shown the best performance, measured 

by the mean square error, among the weighted methods for estimating (J'~ when fitting a 

UCM model and for estimating both (J',; and r when fitting a AR1 model, although that 

method is the one with the largest levels of bias. The reason, thus, for its better performance 

are the c.v. results. Generally similar commentaries could be made if we consider the 

unweighted ADF method GLS4. 

Table 5.8 includes results for both UCM and AR1 models considering non-normality 

conditions (t distribution), with simulated ~t values generated in the current situation by an 

UCM-C model. 
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UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) 
mse 

reI bias (x 1000) 
reI bias (x 1000) 

-2 au -2.54% 12.l0% 759.045 -2.59% 12.14% 764.228 

~ULS 
-2 

a" 0.51% 5.55% 77.756 0.58% 5.76% 84.189 

f NR NS NR 1.360 
- 2 au -4.05% 12.10% 788.304 -4.11% 12.14% 794.531 

-2 

flGLS 
-2 a v -2.65% 5.23% 81.645 -2.39% 5.36% 82.071 

f NR NS NR 0.969 
-2 au -1.78% 12.l7% 761.232 -1.82% 12.20% 765.733 

-3 - 2 
flGLS 

a v 2.18% 6.08% 107.520 2.17% 6.20% 111.122 

f NR NS NR 0.953 
-2 au -6.16% 11.72% 828.391 -6.21% 11.73% 832.693 

-4 -2 -5.58% flGLS t a" 5.16% 136.241 -5.17% 5.28% 128.515 

f NR NS NR 0.952 
-2 au -2.54% 12.10% 759.045 -2.59% 12.14% 764.005 

~ML -2 a v 0.51% 5.55% 77.756 0.59% 5.67% 81.555 

f NR NS NR 0.929 
-2 au -1.18% 13.11% 882.082 -1.16% 13.12% 883.958 

~ULSC - 2 -0.43% 5.82% 83.823 -0.47% 6.04% 90.227 a v 

f NR NR 1.546 

_2 

-2 au -2.88% 13.06% 881.941 -2.86% 13.09% 886.110 
flGLSC -2 

a" -3.93% 5.52% 107.947 -3.78% 5.69% 109.668 

f NR NR 1.114 

_3 

-2 au _0.33%NS 13.21% 904.824 _0.26%NS 13.25% 910.477 
flGLSC - ? 1.42% 6.30% 106.310 1.24% 6.44% 109.230 a\: 

f NR NR 1.084 
-2 au -5.44% 12.45% 877.106 -5.41% 12.49% 880.550 

-4 -2 
-7.16% 5.44% 190.393 -6.84% 5.55% 182.239 flGLSC t a v 

f NR NR 1.083 
- 2 au -1.18% 13.11 % 882.082 -1.11% 13.13% 885.635 

~PML 
-2 a v -0.43% 5.82% 83.823 -0.49% 5.97% 88.146 

f NR NR 1.056 
NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.1 % of the replicates. 

Table 5.8 - Evaluation of e with t v=5 (0,1) distributed errors (n Sim = 500, replications 

generated by UCM-C model). 
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By looking across each row of Table 5.8 we can notice that, when fitting both UCM and 

AR1 models ML and ULS are the methods with the lowest mse for estimating 0",; and CJ; 
among the unweighted methods while GLSC4 is the method with the lowest mse among the 

weighted methods for estimating the variance component CJ: and PML is the method with 

the lowest mse for estimating 0"; (and r for the AR1 model). Note that ADF methods have 

performed better than the other methods in some situations, although that method is the one 

with the worst bias results. 

When comparing results presented in Table 5.8 with those presented in Tables 5.5 and 

5.6, we may observe that all methods have had a large increase in their mse for both fitted 

models (UCM and AR1), mainly because of a modest bias inflation and also an increase in 

the variance. Moreover, when comparing Table 5.8 with Table 5.7, we may notice most 

methods have also had an increase in their mse for both fitted models (UCM and AR1), 

caused in general by modest variance inflation. 

Tables included in this sub-section have all indicated an increase of both bias and 

coefficient of variation when compared to those presented in the previous sub-section, caused 

presumably by a reduction in the number of cases to 500 units. 

5.3.4 Simulation results for samples of size n sim = 200 

In the current sub-section results are produced making use of samples of size nsim = 200 

selected by srs from replications of the whole simulation population, and generated by UCM 

and UCM-C models. The number of simulated repeated datasets had to be reduced to 

D = 700 in this sub-section, mainly as result of computation problems with the function nim 

from the software R (see Sub-section 5.3.1 earlier), which had more difficulties in yielding 

converged solutions with the sample size decrease to 200. 

Table 5.9 includes results for both UCM and AR1 models considering normality 

conditions. The values of the simulated ~t are generated here by an UCM model. 
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UCMmodel AR1 model 

parameter 

cv(e) 
mse 

cv(e) 
mse 

reI bias (x 1000) rel bias (x 1000) 

'2 
(Ju -5.61 % 11.68% 695.721 -5.84% 11.86% 722.191 

iiULS 

,2 
(Jv 0.74% 5.09% 66.111 1.05% 5.65% 83.011 

f NR NS NR 3.733 
, 2 

(Ju -9.21% 12.14% 937.882 -9.43% 12.29% 968.127 
,2 '2 -4.68% fLGLS (Jv 5.56% 123.275 -3.93% 5.89% 117.028 

f NR NS NR 2.626 
'2 

(Ju -3.77% 11.77% 647.897 -3.91% 11.87% 661.138 
,3 , 2 

3.51% fLGLS (Jv 5.20% 101.633 3.46% 5.55% 110.864 

f NR NS NR 2.394 
, 2 

(Ju -9.23% 12.76% 997.576 -9.43% 12.90% 1,024.906 
,4 ,2 

-4.60% 5.83% 128.387 -3.84% 6.22% 124.593 fLGLS t (Jv 

f NR NS NR 2.834 
, 2 

(Ju -5.61% 11.68% 695.721 -5.77% 11.80% 713.529 

iiML 

,2 
0.74% 5.09% 66.111 0.95% 5.45% 76.810 (Jv 

f NR NS NR 2.369 
'2 

(Ju -2.44% 12.56% 709.745 -2.47% 12.70% 725.534 

iiULSC 

,2 
(Jv -1.23% 5.39% 73.560 -1.18% 6.02% 90.670 

f NR NS NR 4.357 

,2 
'2 

(Ju -6.62% 12.94% 863.855 -6.57% 13.07% 875.016 
fiGLSC ,2 

-7.16% 5.90% 200.225 -6.72% 6.26% 195.212 (Jv 

f NR NR 2.913 
'2 _0.27%NS 12.79% 740.548 _O.lO%NS 12.89% 753.650 ,3 (Ju 

fiGLSC ,2 
(Jv 1.83% 5.53% 86.426 1.34% 5.85% 91.071 

r NR NR 2.624 
'2 

(Ju -6.96% 13.81 % 970.834 -6.95% 13.86% 975.971 
,4 

fiGLSc t 
,2 

(Jv -7.35% 6.19% 214.237 -6.87% 6.63% 210.403 

f NR NR 3.147 
, 2 

-2.44% 12.56% 709.745 -2.31% 12.66% 720.447 (Ju 

iiPML 

,2 
(Jv -1.23% 5.39% 73.560 -1.41% 5.74% 83.859 

f NR NR 2.603 
NS denotes 'absolute bias not significantly different from zero at 95% level'. 
NR denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.3% of the replicates. 

Table 5.9 - Evaluation of e with normally distributed errors (n sim = 200 , replications 

generated by UCM model). 

In terms of methods comparison, results included in Table 5.9 are very similar to those in 

Tables 5.5 and 5.1. We may however highlight here that ULS, ML and GLS3 are the methods 

with the lowest relative bias, now with larger differences to the remaining unweighted 

methods. In terms of variance, methods are generally very similar with ULS and ML with a 
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smaller coefficient of variation than the other methods. Once more, the estimator GLS4 has 

had the largest relative bias among the unweighted methods, although in terms of efficiency 

this was reasonably similar to the other methods, when fitting both models. Results in Table 

5.9 indicate inflation in both bias and variance when compared to those in Tables 5.5 and 5.1, 

caused by a reduction in the number of cases to 200 units now. 

Table 5.10 includes results for both UCM and AR1 models under normality conditions, 

with the simulated values of 1';( generated by an UCM-C model. 

UCMmodel ARI model 

parameter 

cv(e) mse cv(e) mse 
Rel bias (x 1000) rel bias (x 1000) 

, 2 
au -5.53% 11.87% 814.974 -5.71% 12.04% 842.151 

fiULS 
'2 

O"v 0.50% 4.87% 60.111 0.76% 5.37% 73.996 
f NR NS NR 3.487 
'2 au -9.25% 12.30% 1,095.938 -9.48% 12.44% 1,130.456 

,2 ,2 -4.94% 5.29% 123.229 -4.21 % 5.47% 112.102 fiGLS 
a v 

f NR NR 2.275 
, 2 

au -3.61% 12.03% 769.231 -3.76% 12.12% 783.029 
,3 ,2 

3.30% 5.03% 93.928 3.34% 5.36% 103.672 fiGLS 
a v 

r NR NR 2.128 
,2 

au -9.07% 12.82% 1,138.103 -9.32% 12.94% 1,170.130 
,4 ,2 -4.93% 5.40% 125.634 -4.18% 5.62% 115.401 fiGLS t a v 

f NR NR 2.510 
, 2 

-5.53% 11.87% 814.974 -5.71% 11.98% 835.011 au 

~ML 
,2 

a v 0.50% 4.87% 60.111 0.77% 5.17% 68.844 

f NR NR 2.071 
'2 au -2.48% 12.73% 835.511 -2.47% 12.87% 853.695 

ilULSC 

,2 
a v -1.69% 5.15% 70.607 -1.70% 5.74% 86.032 

f NR NR 4.221 
,2 

-6.69% 13.20% 1,023.774 -6.68% 13.29% 1,034.695 ,2 au 
fiGLSC ,2 

-7.68% 5.64% 213.783 -7.24% 5.84% 202.739 a v 

f NR NR 2.702 
'2 _0.29%NS 12.92% 865.788 _0.19%NS 12.97% 874.047 ,3 au 

fiCLSC '2 a v 1.40% 5.34% 77.608 1.03% 5.66% 83.737 

f NR NR 2.506 
'2 au -6.51% 13.81 % 1,090.377 -6.49% 13.86% 1,095.724 

,4 ,2 
-8.00% 5.86% 230.711 -7.48% 6.12% 218.364 fiGLSC t a v 

f NR NR 2.925 
,2 

au -2.48% 12.73% 835.511 -2.41% 12.80% 844.362 

~PML 
,2 

a v -1.69% 5.15% 70.607 -1.79% 5.46% 79.171 
f NR NR 2.442 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.4% of the replicates. 

Table 5.10 - Evaluation of e with normally distributed errors (n Sim =200, replications 

generated by UCM-C model). 
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Similar conclusions may be drawn when comparing Tables 5.10 and 5.9. Nevertheless, 

we may observe that most methods have had an increase in their mse for both fitted models 

(UCM and AR1), mainly because of a modest increase in variance especially when 

estimating the variance component cr,~ . 

Table 5.11 includes results for both UCM and ARl models under non-normality 

conditions (t distribution), with the simulated values of ~t generated by an UCM model. 

parameter 

(lULS 

f 

f 

r 

f 

fiML 

f 

~ULSC 
f 

f 

f 

f 

~PML 

reI bias 

-5.46% 
0.98% 

-8.98% 
-6.54% 

-3.69% 

5.04% 

-12.22% 
-10.89% 

-5.46% 
0.98% 

-2.77% 
-1.03% 

-6.72% 
-9.20% 

_0.80%NS 

3.45% 

-10.46% 
-l3.73% 

-2.77% 
-l.03% 

UCMmodei 

cv(e) 
19.82% 
8.27% 

19.90% 
7.77% 

20.01% 

9.31% 

20.02% 
7.99% 

19.82% 
8.27% 

20.20% 

8.93% 

20.33% 
8.32% 

20.37% 
10.29% 

20.68% 

8.73% 

20.20% 
8.93% 

mse 

(x 1000) 

1,733.078 
174.3lO 

1,859.575 
235.527 

1,75l.308 

298.359 

2,082.938 
417.203 

1,733.078 
174.3lO 

1,789.7l3 
195.l21 

1,840.788 
349.445 

1,859.864 
308.483 

2,057.537 
604.661 

1,789.713 
195.l21 

reI bias 

-5.61 % 
l.18% 
NR 

-9.16% 
-5.87% 

NS 

NR NS 

-3.76% 

4.92% 
NR 

-12.47% 
-9.97% 

NS 

NR NS 

-5.56% 
1.02% 
NR 

-2.73% 

-1.09% 
NR 

-6.67% 
-8.79% 
NR 

NS 

_0.58%NS 

2.92% 
NR 

-10.58% 
-l3.01 % 

NR 
-2.60% 
-l.24% 
NR 

NS _ denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.4% of the replicates. 
t Numerical minimisations did not achieve convergence for 0.1 % of the replicates. 

ARI model 

cv(e) 
19.98% 
8.65% 
NR 

19.99% 
8.02% 
NR 

20.07% 

9.49% 
NR 

20.07% 
8.24% 

NR 
19.89% 
9.30% 
NR 

20.32% 
9.25% 
NR 

20.38% 
8.56% 
NR 

20.42% 
lO.33% 
NR 

20.64% 
8.89% 
NR 

20.25% 
9.lO% 
NR 

mse 
(x 1000) 

1,760.609 
192.143 

3.690 
1,882.111 

225.340 
2.742 

1,76l.696 

304.357 

2.635 
2,110.l37 

380.816 
2.826 

1,746.055 
220.255 

5.719 
1,810.858 

209.201 
4.030 

1,847.667 
340.997 

3.104 
1,876.328 

299.905 
2.909 

2,058.255 
564.782 

3.l22 
1,800.507 

202.969 
2.777 

Table 5.11 - Evaluation of e with t V=5 (0,1) distributed errors (n Sim = 200, replications 

generated by UCM model). 
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When comparing Table 5.11 with Table 5.10, we may observe that all methods have had 

a large increase in their mse for both fitted models (UCM and AR1), caused in most cases by 

a moderate increase in bias and inflation in variance results. Dissimilar to results in Tables 

5.7 and 5.8, results in Table 5.10 suggest that the ADF methods, i.e. GLS4 and GLSC4, have 

not performed better than the remaining methods (those were not even more efficient in any 

situation). We may notice that, when fitting both UCM and AR1 models, ML and ULS are 

the methods with the lowest mse for estimating both variance components Q'"~ and a~ 

among the unweighted methods, while PML and ULSC are the methods with the lowest mse 

among the weighted methods. 

Table 5.12 includes results for both UCM and AR1 models produced when considering 

non-normality conditions (t distribution), with simulated values of ~t generated now by an 

UCM -C model. 
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UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) reI bias (x 1000) 

'2 au -5.16% 22.00% 2,408.666 -5.42% 22.04% 2,418.613 

!lULS 
' 2 a v 0.62%NS 8.62% 187.740 0.99% 8.98% 206.525 

f NR NR 3.606 
'2 au -8.75% 22.07% 2,513.558 -9.00% 22.13% 2,536.356 

,2 , 2 -7.13% 8.08% 265.693 -6.35% 8.37% 252.291 tiGLS a v 

f NR NR 2.700 
'2 au -3.32% 22.28% 2,476.950 -3.52% 22.32% 2,482.437 

,3 , 2 
4.83% 9.92% 326.058 4.96% 10.21 % 345.776 tiGLS t* a" 

f NR NR 2.585 
'2 au -13.00% 18.55% 2,239.679 -13.14% 18.79% 2,289.138 

,4 , 2 
-11.54% 8.23% 461.896 -10.56% 8.45% 418.473 tiGLS t a v 

f NR NS NR 2.846 
'2 au -5.16% 22.00% 2,408.666 -5.36% 22.06% 2,423.559 

fiML 
' 2 a v 0.62%NS 8.62% 187.740 0.97% 8.89% 201.996 

f NR NR 2.401 
'2 au _1.26%NS 24.94% 3,171.113 _1.29%NS 24.94% 3,169.397 

fiuLse 
,2 -1.62% 9.05% 203.206 -1.59% 9.42% 219.305 a v 

f NR NS NR 4.043 
,2 

-5.59% 24.98% 3,063.605 -5.60% 25.00% 3,068.562 ,2 au 
£tGLse ,2 

-10.02% 8.52% 394.959 -9.54% 8.83% 384.248 a v 

f NR NR 3.073 
'2 0.96%NS 25.27% 3,399.987 1.07%NS 25.30% 3,415.449 ,3 au 

£tGLSe ,2 
2.96% 10.35% 303.464 2.61% 10.66% 313.668 a v 

r NR NR 2.908 
,2 

au -11.15% 19.80% 2,261.811 -11.06% 19.80% 2,254.076 
,4 ,2 

-14.73% 8.62% 672.754 -14.05% 8.85% 633.530 tiGLSe t a v 

f NR NR 3.247 
'2 au _1.26%NS 24.94% 3,171.113 _1.50%NS 23.26% 2,748.618 

fipML 
,2 

a v -1.62% 9.05% 203.206 -1.64% 11.28% 312.244 
NR NS NR 6.755 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.4% of the replicates. 
t Numerical minimisations did not achieve convergence for 0.1 % of the replicates. 

* D = 699, as 1 (0.14%) of the estimates was improper (see Boomsma, 1985) or inadmissible. By inadmissible, 
similarly to Hox and Maas (2001), we shall mean in this chapter either negative variance estimates or estimates 
'much' larger than the simulated population values. 

Table 5.12 - Evaluation of e with t V =5 (0,1) distributed errors (n sim = 200, replications 

generated by UCM-C model). 

By looking across each row of Table 5.12 we can notice that, when fitting UCM models, 

GLS4 is the method with lower mse for estimating 0': , and ML and ULS are the methods 
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with the lowest mse for estimating a-~ among the unweighted methods, while GLSC4 is the 

method with lower mse for estimating a-,; , and PML and ULSC are the methods with the 

lowest mse for estimating a-~ among the weighted methods. When fitting ARI models, 

GLS4 is the method with lower mse for estimating a-; , and ML is the method with lower 

mse for estimating a-~ and r among the unweighted methods, while GLSC4 is the method 

with the lowest mse for estimating a-,; , ULSC for estimating a~ and GLSC3 for estimating r. 

Note that ADF methods, i.e. GLS4 and GLSC4, have performed better than the other 

methods in some situations, although that method is generally the method with larger bias 

results. The reason, again, for the good performance of those methods are the low variance 

results. 

When comparing results presented in Table 5.12 with those presented in Tables 5.9 and 

5.10, we may observe that all methods have had a large increase in their mse for both fitted 

models (UCM and ARl), generally because of a modest increase in bias and also an inflation 

in variance results. Moreover, when comparing Table 5.12 with Table 5.11, we may observe 

that most methods have also had an increase in their mse for both fitted models (UCM and 

ARl), caused in general by a modest increase in variance. 

Tables included in this sub-section have all indicated inflation in both bias and variance 

when compared to those presented in the two previous sub-sections, related to a reduction in 

the number of cases to 200 units. 

5.3.5 Simulation results for samples of size n sim = 100 

This subsection presents results that are produced making use of samples of size nsim = 100 

selected by srs from replications of the whole simulation population, with D = 300 (unless 

otherwise stated), and generated by UCM and UCM-C models. The number of simulated 

repeated datasets had to be further reduced to D = 300 (unless otherwise stated) in this sub

section, for the same reasons stated in the previous sub-section. Note that, according to 

Boomsma (1985) and Bollen (1989, p. 255), there is some indications that non-convergent 

solutions could be more common for samples with size less than 150. 
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Table 5.13 includes results for both UCM and ARl models considering normality 

conditions, as described earlier in Section 5.2, Sub-section 5.2.1. Note that the simulated 

values of ~t are generated by an UCM model. 

UCMmodeI ARI model 

parameter 

cv(e) 
mse 

cv(e) 
mse 

reI bias (x 1000) reI bias (x 1000) 

'2 
0"" -9.94% 17.18% 1,538.694 -10.35% 17.58% 1,617.425 

f1.ULS 
'2 

0"" 0.89% 6.84% 119.462 1.44% 7.63% 152.690 

f NR NS NR 6.872 
,2 

O"u -16.76% 17.77% 2,272.044 -17.21% 18.04% 2,361.748 
·2 ·2 -9.70% 8.41% 374.188 -8.15% 8.93% 329.595 f1.GLS O"v 

f NR NS NR 6.312 ., 
O"u -6.43% 17.69% 1,434.730 -6.56% 17.98% 1,478.911 

.3 ,2 
6.41% f1.GLS 0"" 7.19% 245.501 6.23% 7.70% 260.823 

r NR NS NR 4.747 
" -15.79% 19.44% 2,353.018 -16.16% 19.51% 2,404.134 0"" 

,4 ·2 -9.89% 9.04% 404.644 -8.46% 9.62% 367.664 f1.GLS t O"v 

f NR NS NR 6.530 
" -9.94% 17.18% 1,538.694 -10.19% 17.4% 1,582.899 0"" 

flML 
" 0.89% 6.84% 119.462 1.25% 7.51% 146.308 O"v 

f NR NS NR 4.745 
, 2 

0"" -4.58% 18.28% 1,478.769 -4.66% 18.61% 1,530.982 

ilULSC 

·2 
0"" -2.89% 7.40% 148.031 -2.80% 8.28% 178.880 

f NR NS NR 8.149 
" -12.79% 18.68% 1,951.320 -12.80% 18.89% 1,979.546 ,2 O"u 

flGLSC • ? 

-14.06% 9.14% 639.369 -13.07% 9.69% 596.107 0"; 

f NR NR 6.598 
" _0.24%NS 18.96% 1,627.318 0.16%NS 19.10% 1,665.179 ,3 O"u 

flCLSC ·2 
O"v 3.04% 7.74% 179.725 2.06% 8.21% 183.488 

f NR NR 5.524 
" -12.30% 20.80% 2,202.142 -12.28% 20.93% 2,218.344 O"u 

,4 ., 
-14.45% flCLsC t O"v 9.92% 692.289 -13.45% 10.47% 648.446 

f NR NR 7.627 
., 

0"" -4.58% 18.28% 1,478.769 -4.32% 18.41 % 1,495.924 

ilPML 

,2 
(Tv -2.89% 7.40% 148.031 -3.23% 8.05% 175.395 

f NR NR 5.336 
NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR denotes 'no reported'. 
t Numerical minimisations did not achieve convergence for 0.7% of the replicates. 

Table 5.13 - Evaluation of e with normally distributed errors (n sim 
= 1 00, replications 

generated by UCM model). 
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When comparing the various evaluated methods, results included in Table 5.13 are very 

similar to those in Tables 5.9, 5.5 and 5.1. Once more, the estimator GLSC4 has had the 

largest relative bias among the weighted methods, although in terms of variance results these 

were very similar to the other methods, when fitting both models. 

Table 5.14 includes results for both UCM and AR1 models under normality conditions. 

The simulated values of Yit are now generated by an UCM-C model. 

UCMmodel AR1 model 

parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) 

reI bias (x 1000) 

'2 au -11.08% 16.40% 1,748.798 -11.65% 16.49% 1,814.117 

(lULS 
' 2 a v 1.37% 6.62% 116.355 2.16% 8.42% 195.327 

f NR NS NR 8.638 
, 2 

-17.58% 17.03% 2,639.260 -17.94% 17.12% 2,706.602 au 
,2 ,2 -9.61% 8.33% 369.611 -8.17% 8.87% 330.493 fiGLS a v 

f NR NS NR 5.740 
, 2 

au -7.75% 17.32% 1,644.813 -8.05% 17.42% 1,675.613 
,3 ,2 

7.07% 6.90% 259.431 7.01% 7.48% 280.855 fiGLS 
a v 

r NR NS NR 5.259 
,2 

au -17.38% 18.33% 2,770.673 -17.91 % 18.03% 2,814.489 
,4 ,2 

-9.80% 8.91% 398.392 -8.16% 9.27% 345.297 fiGLS t a v 

r NR NS NR 7.176 
,2 

au -11.08% 16.40% 1,748.798 -11.37% 16.52% 1,792.lO4 

fiML 
,2 

a v 1.37% 6.62% 116.355 1.79% 7.20% 141.255 

f NR NS NR 4.984 
'2 -5.46% 17.16% 1,528.424 -5.60% 16.92% 1,494.091 au 

(lULSC 

,2 
a v -2.93% 7.28% 145.113 -2.76% 8.93% 206.083 

f NR NS NR 9.785 
,2 

-13.05% 17.77% 2,132.430 -12.92% 17.79% 2,120.730 ,2 au 
fiGLSC '2 -14.69% 9.18% 687.444 -13.95% 9.51% 648.607 a" 

f NR NR 6.157 
'2 _1.43%NS 18.36% 1,718.589 -1. 19%NS 18.27% 1,706.759 ,3 au 

fiGLSC ,2 
3.31% 7.74% 185.940 2.38% 8.19% 188.448 a v 

f NR NR 5.812 
,2 

au -13.10% 19.67% 2,419.104 -12.96% 19.46% 2,372.202 
,4 ,2 

-14.99% 9.83% 730.998 -14.16% lO.06% 682.340 fiGLSC t a v 

f NR NR 7.261 
'2 au -5.46% 17.16% 1,528.424 -5.21% 17.16% 1,521.837 

~PML 
,2 

a v -2.93% 7.28% 145.113 -3.32% 7.73% 165.733 

f NR NR 5.383 
NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 
t Numerical rninirnisations did not achieve convergence for 0.7% of the replicates. 

Table 5.14 - Evaluation of e with normally distributed errors (n sim = 100, replications 

generated by UCM-C model). 
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Reasonably similar conclusions may be drawn when comparing results from Table 5.14 

to those in Table 5.13. We may highlight here the performance of the ULS and ML methods 

when estimating the variance component (J"~, with much lower bias than the remaining 

methods. Furthermore, we may notice that most methods have had an increase in their mse 

for both fitted models (UCM and AR1), mainly because of a modest inflation in bias. 

Although we did not expect effects of clustering to lead to increase in bias, we suspect that 

most estimation methods were more sensitive to data generated by using UCM-C models 

than to those generated by UCM models, in the current situation with samples of size 100 

comparatively to previous sub-sections which have considered larger sample sizes. 

Table 5.15 includes results for the unweighted methods when fitting a UCM model 

considering now a stronger departure from the normality condition (with non-standardised t 

distribution; see Section 5.2, Sub-section 5.2.2). The values of ~t are generated here by an 

UCM model, with D = 200 . 

cv(e) mse 
parameter reI bias (x 1000) 

,2 
62.51% 26.20% 26,016.160 au 

fiULS ,2 
71.42% 10.14% 13,320.640 a v 

,2 
50.36% 26.99% 19,027.960 ,2 au 

fiGLS ,2 
47.67% 10.57% 6,202.951 a v 

,2 
67.81% 27.01% 30,260.690 ,3 au 

fiGLS ,2 
87.75% 19.11 % 22,156.120 a v 

'2 42.55% 27.42% 15,183.655 ,4 au 
fiGLS ,2 

32.82% 11.97% 3,227.955 a v 

,2 
62.51% 26.20% 26,016.160 

~ML 
au 
,2 

71.42% 10.14% 13,320.630 a v 

Table 5.15 - Evaluation of Q for UCM model, with tv~5 distributed29 errors (n sim = 100 ). 

In general, all the methods performed not very well for this non-standardised t 

distribution situation. However, we may still make some brief comparisons. The GLS4, i.e. 

the ADF method, is the method with the best performance for estimating both components of 

{!... This method has generally lower bias and variance in this situation with a more severe 

departure from the normality condition. 

Table 5.16 includes results for both UCM and AR1 models considering non-normality 

conditions (t distribution), with simulated values of ~t generated by an UCM model. 

29 With non-standardised variance. 
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parameter 

ilULS 

IlML 

ilULSC 

,2 

fiGLSC 

r 

r 

IlPML 

reI bias 

-12.66% 
1.21 %NS 

-19.26% 
-13.06% 

-9.25% 

9.36% 

-22.37% 

-18.70% 

-12.66% 
1.21 %NS 

-7.43% 

-2.86% 

-15.14% 

-17.92% 

-3.36% 

5.88% 

-18.99% 

-23.52% 

-7.43% 
-2.86% 

UCMmodel 

cv(e) 
24.52% 
11.62% 

25.26% 
11.18% 

24.89% 

14.62% 

26.72% 
12.62% 

24.52% 

11.62% 

24.77% 

12.74% 

25.89% 
11.63% 

25.10% 

16.15% 

27.06% 

13.02% 

24.77% 
12.74% 

mse 

(x 1000) 

2,814.730 
344.702 

3,578.367 
653.536 

2,709.491 

846.390 

4,233.014 
1,121.805 

2.814.730 

344.702 

2,642.143 

397.800 

3,238.309 
1,016.030 

2,726.981 

806.333 

3,826.830 

1,608.108 

2,642.143 
397.800 

rel bias 

-12.85% 
1.46% 
NR 

-19.72% 
-11.53% 

NS 

NR NS 

-9.28% 

9.02% 

NR 
-23.06% 
-16.76% 

NS 

NR NS 

-12.78% 

1.61% 
NR 

-7.21 % 

-3.16% 
NR 

-15.13% 

-16.96% 
NR 

-2.99% 

4.88% 
NR 

-19.39% 
-22.14% 

NR 
-7.05% 
-2.91 % 
NR 

NS 

NS _ denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 

t Numerical minimisations did not achieve convergence for 1.0% of the replicates. 
t Numerical minimisations did not achieve convergence for 0.3% of the replicates. 

* D = 299, as 1 (0.3%) of the estimates was inadmissible. 

ARI model 

cv(e) 
24.59% 
12.05% 
NR 

25.42% 
11.42% 
NR 

25.04% 

14.77% 

NR 
26.27% 

12.50% 
NR 

24.59% 

12.20% 
NR 

24.69% 

13.27% 
NR 

25.97% 

11.84% 
NR 

25.13% 

16.65% 
NR 

27.24% 

13.25% 
NR 

24.72% 
14.59% 
NR 

mse 

(x 1000) 

2,839.475 
373.731 

6.873 
3,664.026 

579.363 
6.245 

2,738.277 

840.298 

5.547 
4,277.594 

959.767 
8.025 

2,835.910 
385.172 

8.381 
2,623.082 

431.967 
8.132 

3,250.858 
947.552 

6.844 
2,744.175 

810.591 
6.468 

3,902.797 
1,470.509 

8.779 
2,628.038 

515.340 
9.056 

Table 5.16 - Evaluation of () with tV~5(0,1) distributed errors (n sim =100, replications 

generated by UCM model). 

When comparing Table 5.16 with Table 5.14, we may notice that all methods have had a 

large increase in their mse for both fitted models (UCM and AR1), caused in most cases by 

an inflation in bias and a reasonably large increase in variance. Dissimilarly to results in Tables 

5.7 and 5.8, but similarly to results included in Table 5.11, results in Table 5.16 suggest that 

the ADF methods have generally not performed better than the other methods. Nevertheless, 
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we may highlight here that the GLS4 method had in the considered situation much lower c.v. 

results than the GLS3 method for estimating the variance component 0";. 

Table 5.17 includes results for both UCM and ARI models considering non-normality 

conditions (t distribution), with simulated values of ~t generated by an UCM-C model. 

UCMmodel ARI model 

parameter 

cv(e) mse cv(e) mse 
reI bias (x 1000) 

reI bias (x 1000) 

'2 au -10.33% 28.91% 4,060.477 -10.76% 29.15% 4,133.001 

fiULS 
'2 a v 1.56% 10.84% 307.027 2.18% 11.41% 349.009 
y NR NS NR 6.956 
'2 au -16.73% 29.27% 4,558.109 -17.28% 29.45% 4,651.307 

,2 , 2 
-12.30% 10.98% 605.528 -10.64% 11.30% 533.901 fiGLS a v 

y NR NR 6.297 
'2 -7.11% 29.26% 4,115.177 -7.60% 29.54% 4,186.547 au 

,3 ,2 
9.45% 14.00% 804.026 9.80% 14.76% 889.899 fiGLS t a v 

y NR NR 6.084 
'2 au -21.82% 29.11 % 5,181.865 -22.30% 29.07% 5,253.813 

,4 ,2 
-17.18% 11.74% 966.778 -15.43% 12.10% 850.643 flGLS t a v 

r NR NS NR 6.595 
, 2 

au -10.33% 28.91 % 4,060.477 -10.80% 29.12% 4,125.330 

~ML 
,2 

1.56% 10.84% 307.027 2.58% 11.84% 382.492 a v 

y NR NR 8.711 
'2 au -5.12% 31.21% 4,709.861 -5.23% 31.44% 4,771.979 

~ULSC 
'2 a v -2.41 % 12.27% 370.143 -2.26% 13.05% 416.320 
y NR NS NR 7.573 
, 2 

-12.92% 31.62% 4,824.704 -12.97% 31.84% 4,879.829 ,2 au 
flGLSC ,2 

-17.39% 11.94% 991.670 -16.45% 12.28% 932.715 a v 

y NR NS NR 6.283 
, 2 

au _1.22%NS 31.52% 5,062.768 _1.36%NS 31.83% 5,148.707 
,3 

flGLsc :j: 
,2 

a v 6.46% 18.04% 1,018.290 6.32% 20.10% 1,231.931 
y NR NS NR 6.357 
'2 au -18.80% 30.92% 5,129.531 -18.69% 30.76% 5,083.114 

,4 ,2 
-22.40% 12.81% 1,489.880 -21.30% 12.90% 1,381.160 flGLSC t a v 

y NR NR 6.923 
,2 

au -5.12% 31.21 % 4,709.861 -5.17% 31.35% 4,747.471 

~PML 
,2 a v -2.41 % 12.27% 370.143 -2.31% 13.07% 417.936 

NR NS NR 5.348 
NS - denotes 'absolute bias not significantly different from zero at 95% level'. 
NR - denotes 'no reported'. 

t Numerical minimisations did not achieve convergence for 1.0% of the replicates. 
:j: Numerical minimisations did not achieve convergence for 0.3% of the replicates. 

Table 5.17 - Evaluation of () with t u=s(O,I) distributed errors (n Sim = 100, replications 

generated by UCM-C model). 
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By looking across each row of Table 5.17 we can notice that, when fitting UCM models 

ML and ULS are the methods with lower mse for estimating both variance components (J"~ 

and O"~ among the unweighted methods, while PML and ULSC are the methods with lower 

mse for estimating also both 0",; and O"~ among the weighted methods. When fitting AR1 

models, ML is the method with lower mse for estimating O"~ and r, and ULS is the method 

with lower mse for estimating O"~ among the unweighted methods, while PML is the method 

with lower mse for estimating O"~ and r, and ULSC is the method with lower mse for 

estimating O"~ among the unweighted methods. Note that now with a sample of size 100, 

ADF methods have not performed better than the other methods in most situations, although 

that method is the one with the lowest variance some circumstances. We may highlight again 

that the GLS4 method had much lower c.v. results than the GLS3 method for estimating the 

When comparing results presented in Table 5.17 with those presented in Tables 5.13 and 

5.14, we may notice that all methods have had a large increase in their mse for both fitted 

models (UCM and AR1), generally because of a modest increase in bias and also a 

reasonably large inflation of variance. Moreover, when comparing Table 5.17 with Table 

5.16, we may notice most methods have also had reasonably large increase in their mse for 

both fitted models (UCM and AR1), caused in general by a large inflation in variance. 

Moreover, we may observe that tables presented in the current sub-section have all 

presented an increase in both bias and variance when compared to those included in the three 

previous sub-sections, probably caused by a reduction in the number of cases to 100 units. 

5.4 Further discussion 

The current section summarizes in an alternative manner some ofthe results already shown in 

the previous section. It is our aim here to further evaluate the general behaviour of each of 

estimation methods summarised in Section 5.3 for different (i) sample sizes (1340, 500,200, 

and 100), (ii) whether or not under normality condition, (iii) model fitting complexities (UCM 

and AR1), and (iv) model adopted for generating data (whether or not allowing for clustering). 

In Figure 5.1, for simplicity, we shall focus our attention on unweighted estimators 

relative bias results for 0",; and O"~ (denoted by "Sigma2u" and "Sigma2v" respectively in 

the figure) estimation, when fitting AR1 models. Note that in the figure's legend, "Normal" 

shall mean normal simulated values of 1';t generated via UCM model, while "t" shall mean t 

distributed simulated values of 1';t generated via UCM model. 
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Figure 5.1 - Relative bias for a,~ and a; estimation when fitting an AR1 model. 
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By looking at Figure 5.1 above we may make several observations. In general all methods 

perform better for normal than for t distributed simulated values of r:t' when the sample size 

is fixed. Both ULS and ML, and somewhat GLS3, when considering either distributions, 

have a positive bias which is very close to zero even for the smallest considered sample size 

when estimating a; , while these methods have a negative relative bias, which gets near zero 

for samples sizes of size at least 200, when estimating a,; . Methods GLS2 and GLS4, which 

is the ADF unweighted method, have negative bias for estimating both variance components 

a,; and a; that gets close to zero for samples sizes larger or equal to 500 when considering 

either distributions. All but the GLS4 method seem not to be much affected by the considered 

departure from the normality assumption, especially when considering samples of size 200 or 

more. Curiously the ADF GLS4 method needed the largest considered sample size, i.e. 

n = 1340, for the results produced under both considered distributions to become similar, 

even though we might expect that method to behave better under departures from normality 

conditions when compared to the remaining ones. 

Table 5.18 includes information on how sensitive each method is for departures of the 

normality assumptions and sample size reductions, now with data generated by a UCM-C 

model, which allows for effects of clustering. 
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mse tu:
5
(0,1)/mseN (0,1) with n

sfm 
= 100 mse ,im /mse 'im with N(O,l) 

n' ~100 n =500 

parameter 
UCMmode1 AR1 model UCM model AR1 model 

'2 au 2.32 2.28 5.83 5.99 

rtULS 
' 2 a v 2.64 1.79 4.73 6.31 
f 0.81 5.47 
'2 au 1.73 1.72 7.90 8.03 

,2 ,2 
1.64 1.62 10.88 9.30 flGLS 

a v 

f 1.10 5.68 
'2 au 2.50 2.50 5.55 5.60 

,3 , 2 
3.10 3.17 8.56 8.30 flGLS 

a v 

f 1.16 5.46 
'2 au 1.87 1.87 8.17 8.21 

,4 ,2 
2.43 2.46 11.36 9.44 flGLS 

a v 

f 0.92 6.82 
'2 2.32 2.30 5.83 5.92 au 

e -ML 

,2 a v 2.64 2.71 4.73 4.94 
f 1.75 5.17 
, 2 

au 3.08 3.19 4.72 4.57 

rtULSC 

,2 a v 2.55 2.02 5.32 5.98 
r 0.77 5.57 

,2 
,2 

au 2.26 2.30 6.16 6.10 
ElGLSe ,2 

a v 1.44 1.44 14.00 12.50 
f 1.02 5.40 
, 2 

2.95 3.02 5.21 5.12 d au 
ElGLSe ,2 

a v 5.48 6.54 6.33 5.61 
f 1.09 5.29 

,4 
,2 

au 2.12 2.14 6.66 6.50 
ElGLSe ,2 

a v 2.04 2.02 13.72 12.26 
f 0.95 6.01 
'2 3.08 3.12 4.72 4.66 au 

~PML 
,2 a v 2.55 2.52 5.32 5.11 
f 0.99 4.92 

Table 5.18 - Comparative evaluation ofthe considered estimation methods. 

Interestingly, results included in Table 5.18 above indicate effects of non-normality on all 

the evaluated methods, as a result of the increases in the variance of the estimators. Note that 

results presented above are samples of size 100. Results for samples of larger sizes were 

somewhat similar. Moreover: (i) among the unweighted methods, GLS2 and GLS4 are the 

methods less sensitive to departures from the normal distribution assumption when fitting a 

UCM model; (ii) among the weighted methods, GLSC2 and GLSC4 are the methods less 

sensitive to departures from the normal distribution assumption when fitting a UCM model; 

(iii) among the unweighted methods, ULS and GLS2 are the methods less sensitive to 
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departures from the nonnal distribution assumption when fitting a AR1 model; (iv) among 

the weighted methods, GLSC4, GLSC2 and ULSC are the methods less sensitive to 

departures from the nonnal distribution assumption when fitting a AR1 model. 

Regarding sample size impacts, we may notice from Table 5.18 that when fitting both 

UCM and AR1 models, GLS2 and GLS4 are in general the methods more sensitive to sample 

size reductions among the unweighted methods, while GLS2C and GLS4C are the more 

sensitive ones among the weighed methods. 

Table 5.19 provides infonnation on the perfonnance of each of the evaluated methods 

when applied for clustered generated data compared to non-clustered data, when considering 

n sim = 100 and t distributed errors. 

unweighted UCMmodel ARI model weighted UCMmodel ARI model method method 
, 2 

au 1.44 1.46 '2 au 1.78 1.82 
fiULS ,2 a v 0.89 0.93 ilULSC 

'2 a v 0.93 0.96 
f 1.01 f 0.93 
, 2 

1.27 1.27 '2 1.49 1.50 ,2 au ,2 au 
fiGLS ' , 

0.93 0.92 fiGLSC '2 0.98 0.98 a; a v 

f 1.01 f 0.92 
'2 1.52 1.53 ' 2 1.86 1.88 ,3 au ,3 au 

fiGLS ,2 
0.95 1.06 fiGLSC '2 1.26 1.52 a v a v 

f 1.10 f 0.98 
0-2 1.22 1.23 '2 1.34 1.30 ,4 u ,4 au 

fiGLS A 2 
0.86 0.89 fiGLSC '2 0.93 0.94 a v a v 

f 0.82 f 0.79 
'2 1.44 1.45 '2 1.78 1.81 au 

ilPML 

au 

ilML 
'2 0.89 0.99 '2 0.93 0.81 a v a v 

f 1.04 f 0.59 

Table 5.19 Further comparative evaluation of the considered estimation methods, 

mseUCM -C Data / mseUCM Data • 

By looking across each row of Table 5.19 we can notice that in most cases there is overall 

a modest increase in the mean square error when comparing clustered data results (generated 

by UCM-C model) with non-clustered data ones (generated by UCM model). In particular, 

we may observe that the ADF methods, i.e. GLS4 and GLSC4, are among the considered 

methods the ones which suffer the lesser impact from clustering. 

150 



5.5 Concluding remarks 

We have presented in this chapter the characteristics and the main results of an extensive 

simulation study which has mainly the aim of evaluating the estimation methods we propose 

in Chapter 4. In Section 5.3, methods were compared mainly in terms of their bias and 

variance, for different types of data (clustered and non-clustered), different distributions 

(normal and t), considering various sample sizes (1340, 500, 200, and 100). Some additional 

observations were drawn in Section 5.4, in order to further investigate the impacts of 

departures from normality conditions, of clustering and of sample sizes. 

Additionally to all the interpretation already included in this chapter, the main conclusion 

we may draw from the results is that overall most of the proposed methods have a reasonably 

good performance in terms of bias and variance when compared to the classical methods. As 

expected, weighted estimation methods had larger variance than the unweighted methods 

especially because, considering the current simulation setup, there would be no need for 

utilising weighted estimators for bias correction. We may recapitulate here that we do not 

allow for the impact of either stratification or unequal probability sampling in this simulation 

study. Moreover, our results indicated that weighted methods appear to have slightly lower 

bias when compared to the weighted ones, although there is not any clear theoretical reason 

for this result, as we have stated earlier. 

Regarding the ADF method GLS4, this has overall not always performed as we expected 

when dealing with t distributed data, although very often these were at least the most efficient 

methods in some situations and generally less sensitive to clustered data. These methods have 

behaved particularly better for samples size 500 and 200 relatively to the remaining 

estimation methods when considering non-normality conditions particularly with simulated 

~t values generated by an UCM-C model, which allows for clustering. However, in general 

our results agree with Bollen (1989, p. 432), Satorra (1992), and Yuan and Bentler (1997b), 

for example, and we would therefore also recommend that ADF methods should be used 

carefully in situations where only samples of small size are available. Yuan and Bentler 

(1997b) considers that in some situations n = 1000, for example, may not be considered 

large enough. Olsson, Foss, and Troye (2003) have also reported that ADF methods should 

be considered reliable for samples larger than 1000, when working with simple models, and 

larger than 5000, when working with more complex models. 

Nevertheless we may highlight here the performance of the GLS4 estimation method 

when considering now non-standardised t distributed data, generated by an UCM model (see 
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Table 5.15). That method was in that situation with a stronger departure from the normality 

conditions is the method with the best performance for estimating f!.., with the smallest values 

for relative bias and coefficient of variation. 

We may emphasize that ADF methods have in several situations had good general 

performance, even though these methods have not shown 'good' levels of bias. For fully 

understanding the reasons for that method not to perform similarly to the other proposed 

methods we may need to undertake further investigations in the future. 

The ML (and PML) point estimators have in general produced relatively 'good' 

performance in terms of bias and variance, even in situations where the normality assumption 

was violated, as reported for example by Satorra and Bentler (1986). Furthermore, we would 

also recommend that if there is enough evidence of normality, and specially if the sample size 

is 'too small', that normal theory methods should be adopted. 

A Shapiro-Wilk normality test (Shapiro and Wilk, 1965) has been adopted for evaluating 

the univariate distribution of each component of the estimators considered in the present 

simulation study. That test did not reject the null hypothesis of normality at the 95% level for 

most of the estimators in most of the situations considered, even for samples of size 100, 

especially in circumstances where simulated values of Yit are generated under normality 

conditions. 

We shall consider in the following chapter, methods for e 's variance estimation. We 

shall discuss existing variance estimation methods and propose alternative methods which are 

able to handle complex survey data. We shall also consider testing techniques for structural 

models for covariance matrices. 
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Chapter 6 

" Variance estimation for () and 

covariance structure model evaluation 

6.1 Introduction 

Recall that V denotes a finite population, which is fixed on occasions 1, .. . ,T, with size N. 

I 

Let Ii = (liP .. . ,IiT) be a random vector containing T repeated observations on a variable 

for unit i = 1,2, .. . ,N, over the Twaves of the longitudinal survey. 

We shall make in the present chapter the same assumptions described in Chapter 4, 

Section 4.1. Furthermore, we shall consider that the fitting function F({i) satisfies the 

conditions enumerated in Chapter 4, Section 4.4, where fl is a b x 1 parameter vector, 

introduced in Chapter 4, Section 4.1. 

It is our main aim in this chapter to discuss methods for vanance estimation for 

generalised least squares (GLS; see Chapter 4, sub-sections 4.4.2 and 4.4.3) and (pseudo) 

maximum likelihood (ML and PML; see Chapter 4, subsections 4.4.4 and 4.4.5) point 

estimators of {i. We shall consider here the covariance structure model given by (4.3), also 

in Chapter 4, Section 4.1. 

Additionally, testing techniques for structural models for covariance matrices shall also 

be reviewed in the current chapter in the classical independent and identically distributed 

(iid) observations context, while we shall discuss model fitting statistics for those models in a 

complex survey design framework. 

As in previous chapters of this thesis, we shall be aiming to study methods under the 

survey sampling approach for covariance structure modelling of complex survey data 

(aggregate modelling). We shall not be considering here methods for disaggregated 

covariance structure modelling, i.e. a multilevel modelling approach for covariance models 

(for current developments considering this approach see, for example, Lee, 1990; Muthen 

and Satorra, 1995, Section 5; Muthen, 1997; Lee and Poon, 1998; Hox and Maas, 2001; and 



more recently Yuan and Hayashi, 2005). We may also acknowledge here that Yuan and 

Bentler (1998) have developed a structural equation modelling estimation method that is 

robust to the presence of outliers, although those shall not be considered here. 

The purpose of the present chapter is then two-fold. We shall review variance estimation 

methods (Section 6.2) and model fitting statistics (Section 6.4, Sub-section 6.4.1), under the 

classical approach. Furthermore, we shall also provide some new developments on both 

variance estimation (Section 6.3) and model fitting statistics when working under the 

complex sampling approach (Section 6.4, Sub-section 6.4.2). Some very brief concluding 

remarks shall be presented in Section 6.5. 

" 6.2 Variance estimation for fl - Classical case 

We shall review in this section variance estimation methods which rely on the assumption 

that the data are obtained by simple random sampling (srs) from large populations. We shall 

consider variance estimation only for the point estimation methods that are built upon the 

same presupposition, i.e. generalised least squares (GLS; see Chapter 4, Sub-section 4.4.2) 

and maximum likelihood (ML; see Chapter 4, Sub-section 4.4.4). Moreover, we shall initially 

assume that Ii is multivariate normally distributed. 

Consider first the ~GLS' a generalised least squares estimator for the parameter vector fl., 

that may be obtained by minimizing the GLS fitting function F(fl.)GLS given by (4.46) and 

(4.47) in Chapter 4, Section 4.4, Subsection 4.4.2. Let S be the unweighted sample 

covariance matrix, given by expression (4.18) in Chapter 4, Section 4.3, Sub-section 4.3.1. 

According to Bentler and Weeks (1980), Swain (1975), and Bollen (1989, p. 114), for example, 

an asymptotic covariance matrix of ~GLS is given by 

aCOv(e )= (~). [E(ci F(fl.)GLS J]-1 
\~GLS n oB oB' ' (6.01) 

when U in (4.46), from Chapter 4, Section 4.4, Subsection 4.4.2, is given by (4.24), from 

Chapter 4, Section 4.3, Sub-section 4.3.2, with 

plim W-1 = T L:-1 
, (6.02) 

n-->oo 

where n is the sample size, W is any consistent estimator of L: (such as S), and T is any 

constant (typically T = 1), as defined in Chapter 4. Note that in (6.01), the matrix in brackets 

is the information matrix. 
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We may substitute ~GLS for fl in (6.01) in order to calculate acov(~GLS)' which is an 

estimated asymptotic covariance matrix for ~GLS' Note that the matrix acov(~GLS) has the 

estimated asymptotic variances of ~GLS down its main diagonal and the estimated 

covariances in its off-diagonal elements. 

Similarly, Bollen (1989, Appendix 4B) shows that the asymptotic covariance matrix of 

~ML is also given by (6.01), substituting ~ML for ~GLS' and F(fl)ML for F(fl)GLS' where 

F(fl)ML is a ML fitting function. We may also substitute ~ML for fl in (6.01) in order to 

calculate acov(~ML)' which is an estimator for the asymptotic covariance matrix of ~ML' See 

also Bollen (1989, p. 107-109), Joreskog (1970), Swain (1975), Bentler and Weeks (1980), 

and Matsueda and Bielby (1986), for additional information. 

Formulas for the asymptotic covariance matrix under non-normality have also been 

developed. According to Bollen (1989), when the multivariate normality of l:.i is violated the 

consistency of the ML, GLS and ULS estimators is not affected. However, it may lead to the 

estimated asymptotic covariance matrix discussed above being inconsistent. 

Let (Browne, 1982; Browne, 1984) 

Ll = a{vech[2:(fl)]} 
ae ' 

(6.03) 

be a k x b matrix of partial derivatives of elements of vech[2.:(~)] with respect to the elements 

of fl, i.e. the Jacobian matrix of vech[2.:(fl)], with columns 

Ll. = a{vech[2.:(fl)]} 
1 ae. 

1 

with j = 1, .. . ,b, where b is the dimension of population parameter vector fl, and the k x 1 

vector vech[2.:(fl)] and k = r(r + 1)/2 are as introduced in Chapter 4, Section 4.1, with r 

being as defined in Section 6.1. See also Muthen and Satorra (1995). 

Under fairly general conditions, from the central limit theorem, Joreskog and Goldberger 

(1972) prove that 

-rn. {vech[S]- vech[2.:(fi)]}~ L N JO, C) (6.04) 

as n ~ CIJ, where ~ L denotes convergence In distribution, and N k (0, C) denotes a k

dimensional multivariate normal with zero mean vector, and a k x k nonnegative definite 

variance-covariance matrix C = V AR {-rn . vech [S]} , introduced in Chapter 4, Section 4.3, 

Sub-section 4.3.2, given by (4.19) when working under normality assumptions. Fuller (1987, 
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Appendix 4.B, Theorem 4.B.4) also proves result (6.04). For further discussion on this 

subject, see J6reskog and Goldberger (1972), Swain (1975), Browne (1984), Satorra and 

Bentler (1986), Shapiro (1986), Browne (1987), Satorra and Bentler (1988), Le (1990), 

Satorra (1989), Chou, Bentler and Satorra (1991), Satorra and Bentler (1994), Bentler and 

Dudgeon (1996), Satorra (1992), and Yuan and Bentler (1998). For some material on 

convergence in distributions see, for example, Bollen (1989, Appendix B). 

From (6.04), if we adopt ~GLS' obtained by minimizing (4.46) from Chapter 4, Section 

4.4, Sub-section 4.4.4, for estimating f!.., we would have the following asymptotic b x b 

covariance matrix of ~ (Browne, 1984; see also Skinner, 1989a; Satorra and Bentler, 1988; 

Satorra, 1989; Chou, Bentler and Satorra, 1991; Satorra, 1992; Satorra and Bentler, 1994; 

Muthen and Satorra, 1995; and Bentler and Dudgeon, 1996) 

(6.05) 

for a finite sample size n, where U is the k x k weight matrix first defined in Chapter 4, 

Section 4.3, Sub-section 4.3.2, assuming that (Browne, 1984): (i) ~GLS is a consistent 

estimator of f!.. ; (ii) .1. and L:(f!..) are continuous functions of f2 ; (iii) .1. is of full rank b; and 

(iv) systematic errors caused by lack of fit of the model to the population variance covariance 

matrix are not large relative to random sampling errors in S. 

When .1.'U-1C U-1.1. is asymptotically equal to .1.'U-1.1., i.e. when U is consistent for C, 

(6.05) simplifies to (Browne, 1984; see also Satorra, 1989; Satorra, 1992; Muthen and 

Satorra, 1995; and Bentler and Dudgeon, 1996) 

aCOV(~)= n-1(.1.'U-1.1.t ' (6.06) 

which holds for both ~GLS and for asymptotically distribution-free (AD F) methods estimates 

(see Muthen and Satorra, 1995), discussed earlier in Chapter 4. See also Fuller (1987, Sub

section 4.2.1, Theorem 4.2.1). 

For estimating aCOV(~) we need to evaluate .1. = .1.(f!..) at ~. Furthermore, we have to 

estimate the non-singular matrix C, which could be estimated considering a variety of ways. 

If the sample is selected from a normally distributed population, we may have 

c = U = 2· K'(W 0 W)K, (6.07) 

or equivalently (4.24) from Chapter 4, Section 4.3, Sub-section 4.3.2, as suggested by 

Browne (1987), Shapiro (1986) and Muthen and Satorra (1995), for example. In (6.07), as 

defined in Chapter 4, Section 4.4, Sub-section 4.4.2, K is a k x T2 transition matrix, 0 is the 
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operator for the right Kronecker product, and W is any consistent estimator of L:;, such as S. 

See Chapter 4, Sub-section 4.4.2. 

We may observe from (6.05) that we do not necessarily need to have C = U. Therefore, 

when estimating normal theory parameter point estimates we could estimate their variances 

by choosing a C appropriate for situations where non-nonnality occurs (Satorra, 1989; 

Muthen and Satorra, 1995). Recall that under the classical set up, V AR {vech [S]} may be 

estimated by (4.33) from Chapter 4, Section 4.3, Sub-section 4.3.2 (see also Skinner, 1989a). 

According to Muthen and Satorra (1995), the adoption of (4.33) for estimating C leads to 

asymptotic optimal (again in the sense of leading to efficient estimators, as in Chapter 4, Sub-

section 4.4.3) estimates for aCOV(~), i.e. robust standard errors, for any distribution of L, 

where Ii is as defined in Section 6.1, when plugging (4.33) into (6.05). 

According to Browne (1987), violation of multivariate normality of L can severely 

invalidate the use of (6.06) for estimating the variance of the estimators. The greater is the 

kurtosis of the distribution of Ii' the stronger the previous statement is. Notice, however, 

that if Ii has a distribution with null fourth order cumulant, or no kurtosis, then we would 

not face the problems described above. Note, however, that Satorra (2002) has shown that for 

a broad class of linear-latent variable models, under certain model and independence 

assumptions, normal theory point estimators and normal theory associated variance 

estimators are valid, even with non-normally distributed data. 

We also acknowledge that Yuan and Bentler (1997b) have proposed a correction to the 

estimator of the asymptotic covariance of the ADF point estimator (especially for situations 

with small sample sizes), although that shall not be considered here. 

"-

6.3 Variance estimation for f1. under the complex survey approach 

In the current sub-section, we discuss methods for variance estimation of ~ assuming that 

the sample is selected under the complex survey design approach. Under this circumstance 

we may not assume that the observations are iid. 

Let us assume that 

-.In. {vech[Swl- vech[L:;~)]}~ L Nk (0, Cc ) (6.08) 
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also holds, with Cc = VAR {Fn· vech[Swl}, introduced in Chapter 4, Section 4.3, Sub-section 

4.3.2. In (6.08), vech[Sw] denotes a k x 1 vector fonned from the nonduplicated elements of 

Sw' which is the weighted sample covariance matrix, as defined in Chapter 4, Sub-section 

4.3.1, recalling that E(Ep(S,J) == E(SN) = 2:, where SN is the finite population covariance 

matrix given by expression (4.12). 

Observe that in situations where the sample has been selected with unequal selection 

probabilities and clustering, (6.07) and (4.33) are not appropriate for estimating Cc • Skinner 

and Holmes (2003) suggest the adoption of 

aCOV(~)= n-1(L1'U-1L1t L1'U-1Cc U-1L1(L1'U-1L1t (6.09a) 

for calculating a cov(~), with a choice of estimator for C c that takes the complex sampling 

design into account. As previously adopted in this thesis for a stratified multistage scheme, 

let H be the number of stratum in the sample, mh the sample number ofPSUs in strata h, and 

nh) the sample number of individual size in PSU j in stratum h. When considering a 

multistage stratified sampling design (see Example 2.2, Chapter 2), we propose that Cc could 

be estimated by adopting (see Chapter 4, Section 4.3, Sub-section 4.3.2) 

{CJv,/ = n· var{vech[Swlt.l' (6.09b) 

which allows for complex surveys, with subscripts v and l denoting respectively v = (t,t') 

and l = (t",t"'), and var{vech[SwlLI given by (4.39b), from Chapter 4, Section 4.3, Sub

section 4.3.2. 

We could then calculate acov(~) by plugging (6.09b) into (6.09a). Note that the estimator 

we proposed above has as special cases the estimators proposed by Skinner (1989a), followed 

by Satorra (1992; when considering no sampling weighting and no covariates), and Skinner 

and Holmes (2003; also when considering no covariates). A variance estimator of this type 

would then be, according to Skinner (1989a; see also Satorra, 1992; and Muthen and Satorra, 

1995), appropriate to non-nonnal complex survey data, although a 'large' number of PSUs 

units would be required to guarantee the asymptotic approximation to be correct, especially 

when working with large models. Note that this approach may also be adopted for estimating 

distribution-free variances of point estimators obtained under the nonnality assumption 

(Muthen and Satorra, 1995), and thus could be called robust normal theory analysis (Muthen 

and Satorra, 1995). Moreover, as (6.09b) belongs to a class of ADF methods, that estimator 
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could suffer from problems described in Chapter 4 when working with small samples in 

situations where T is large, as discussed earlier in this thesis. 

A special case of the estimator given by (6.09b) when working under independence 

assumptions is (see again Chapter 4, Section 4.3, Sub-section 4.3.2) 

(6.10) 

By plugging (6.10) into (6.09a) for estimating acov(~), we would be adopting an estimator 

that allows for unequal sampling weights but does not fully accounts for complex sampling 

designs. Moreover, the estimator given in (6.10) is also suitable for non-normal L. 

Alternatively we may follow the approach of Binder (1983) for estimation of 

aCOV(~PMJ, the asymptotic covariance matrix of the PML point estimator ~PML. Recall that 

F(f!..)PML is given by (4.62) in Chapter 4, Sub-section 4.4.5. Let ¢(f!..) denote the b x 1 

pseudo-score function with jth element given by (see Chapter 4, Sub-section 4.4.5 and 

Appendix D, Result D2) 

~j({lJ = aF~~PML = ,+V:'t . [E(f!) - Sw J. EV:'t . a!~~l (6.11) 

with j = 1, ... , b . To obtain an expression for the estimator of the variance-covariance matrix 

of the pseudo maximum likelihood estimator ~PML' we may take a Taylor expansion of 

£(~PMJ at ~PML = f!... Thus (Binder, 1983) 

so that 

B¢(f!..) (;. ) 
£(f!..) == - 8e \flPML - f!.. . (6.12) 

Let 

I(e) = _ B£(f!..) 
- Be 

be the b x b pseudo information matrix. Note here the distinction in notation between I(.) 

introduced above, and 1 which denotes an identity matrix in previous chapters. Moreover, it 

follows that (Binder, 1983) 

(6.13) 

159 



after taking variances of both sides of (6.12). Furthermore, expression (6.13) is equivalent to 

(Binder, 1983) 

(6.13b) 

where COV(~PML) is a b x b matrix, the b x b matrix cov[~(fD] is a consistent estimator of the 

variance-covariance matrix of ~(f!..) for fixed f!.., and cOV[~(~PML)] is the value of cov[~(f!..)] 

when evaluated at f!.. = f!..PML . 

Observe that we may express ¢j(f!..) as constant plus a ratio of two totals, (see Appendix 

D, Result D3) 

(6.14) 

where 

where ft. is defined in Section 6.2, expression (4.30), with jJ (V) given by (2.27) from 
-I -PML 

Chapter 2. By re-writing (6.11) as (6.14), and ignoring the constant term, we allow 

cOV[¢(~PMJ] to be formulated as the covariance matrix of means, considering ft. as fixed. 
_ -I 

Let a i = WiZi , i = 1, .. . ,n. Then, 

R. =~ = E{aJ 
J Jiw E(w)' 

where j is as defined for (6.11), 

and 

11 - -I" a j = n . L..aji' 
i=1 

11 

w=n-I'Lwi , 

i=1 

(6.15) 

We can notice that both Jia and Jiw are linear statistics and we could then apply the 

Taylor series linearization method for estimating R j 's variance. See Chapter 2, Section 2.5, 

Sub-section 2.5.1 for some characteristics of the linearization method. It follows that 

(Woodruff, 1971; see also Chapter 4, Section 4.3, Sub-section 4.3.2) 
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· f.1a 1 II ( f.1a J 1 R.=-+-~ a·--w . . -J L-J Jl I • 
f.1w n i=! f.1w f.1w 

The variance of R j may thus be approximated by 

where 

and 

n 

B j = LUji. 
i=l 

We could then adopt 

1 ( a J ~ _ J u·. --. a·. --w. 
Jl w Jl W I 

and 

n 

B.=~u., 
J L-J Jl 

i=! 

for estimating (6.16a) and (6.16b), respectively. Let, 

~ = [Bp ... ,BbJ', 

(6. 16a) 

(6.16b) 

be a b x 1 vector of totals. Taylor series approximation for R j imply that (see Shah et al., 

1995, Sub-section 5.1) 

cov[ tC!D 1 ~ C )' cov[!1], 

for any complex sampling design. 

We may then revisit again Example 2.2 (from Chapter 2), where we considered a 

multistage stratified sampling scheme. In that situation, we could calculate cov[~] by (see 

Shah et aI., 1995, Sub-section 2.2.3) 

Notice that for evaluating the matrix I(Q.), it is required to differentiate 

aL:(Q.) 
ae 
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with respect to f!.., i.e. it is required to differentiate 2:(f!..) with respect to f!.. twice. However, 

we could avoid this complication by assuming that the model is correct (see Result D.4 in 

Appendix D), i.e. that E[SJ= 2:(f!..). We could then alternatively define the information 

matrix as 

In this situation, the jkth element of I(f!..) is 

1(8). = tr[2:(8)-1 a2:(f!..) 2:(8)-1 a2:(f!..)] 
- Jk - a8

j 
- a8

k 
' 

and we would need to differentiate 2:(f!..) only once. 

Replication variance estimation methods, such as Jackknife (Chapter 2, Section 2.5, Sub

section 2.5.2), could also be adopted for variance estimation of ~ assuming that the sample 

is selected under complex survey sampling, although we shall not consider this approach 

here. 

6.4 Model fitting tests 

Recall from Chapter 4, Section 4.1, expression (4.3), that 

2: = 2:(~), (6.18) 

which shall be our covariance structure hypothesis. Model fit measures are used to assist in 

the evaluation of whether (6.18) is valid or not, and if not, such measures could help to 

calculate the deviation of 2: from 2:(~), according to Bollen (1989). 

We shall review model fitting statistics under the classical approach in Sub-section 6.4.1, 

while we shall propose some new developments on fitting measures when working under the 

complex sampling approach in Sub-section 6.4.2. Note that we shall not discuss incremental 

fit indices (or model modification indices) and model components fit measures (or model 

parameter tests) here. For a comprehensive review on these subjects, considering the classical 

approach, see Bollen (1989). For further information, see also Jereskog and Serbom (1989), 

Joreskog and Sorbom (1997), Matsueda and Bielby (1986), Satorra (1989), Bentler and 

Dudgeon (1996), and Yuan and Bentler (1997b). 

In this section, let ~ denote an estimator of f!.. which minimizes either F(f!..)ML or F(f!..)GLS 

in Sub-section 6.4.1 (unless otherwise stated), and F(f!..)PML or F(f!..)GLSC' when working 
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under the complex sampling context, which shall be considered in Sub-section 6.4.2 (unless 

otherwise stated). 

6.4.1 Model testing in the classical context 

In this section we shall be working under the assumptions of iid observations. 

Both L: and L:(fl) are unknown population parameters. Thus for calculating model fit 

measures we would in fact need to consider their estimators S and L:({l.), where L:(~) is the 

covariance matrix evaluated at ~ (or fitted covariance matrix, as suggested by Joreskog and 

Sorbom, 1989; and Joreskog and Sorbom, 1997). 

Most of the model fit measures proposed in the literature consider functions of Sand L:. 

Bollen (1989) discusses some limitations of overall model fit measures, as for example: (i) 

these measures are inapplicable to exactly identified modes (as S always equals L:(~) in this 

circumstance); and (ii) these may contradict the fit of parts of the model (for example, the 

global fit may be favourable but parameter estimates could not be statistically significant). 

See Joreskog and Sorbom (1997) for further discussion on limitations of overall model fit 

statistics. 

In order to perform a goodness of fit test, we may initially define a null and a genenc 

alternative hypothesis as respectively (see, for example, Bentler and Weeks, 1980; 

Browne, 1982; Satorra and Bentler, 1986; Satorra and Bentler, 1988; Satorra, 1989; and 

Satorra and Bentler, 1994) 

Ho : 2: = 2:(fl) 

against 

HI : 2: is an unrestricted covariance matrix (any TxT positive definite matrix). Let 

the population residual covariance matrix be denoted by Ep, so that 

Ep = [2: - 2:(fl)]. (6.19) 

When Ho is true, Ep is a zero matrix. The sample residual covariance matrix E, defined as 

could help us to identify components of the variance-covariance matrix that are not well fit. 

See Chapter 4, Section 4.3, Sub-section 4.3.2. 

Bollen (1989) considers E as the simplest model fit measure. In fact, let 

[SIt' - 2:(fl) 1/' ] 
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be individual sample residual covariances, where Stt' and L:(~) It' are the tt'th elements in S 

and 2:(fD respectively. Note that the mean or the median of absolute individual residuals may 

be utilized as summary measures for evaluating model fit. 

Furthermore, Joreskog and Sorbom (1989) proposed the following statistic for 

summarising the residuals, 

RMR = 2· f t [St!' - L:(~)tt' Y 
t=1 t'=1 r(r + 1) , 

where RMR stands for root mean-square residual. This measure may be adopted to compare 

the fit of two different models for the same data. Moreover, according to Joreskog and 

Sorbom (1989) and Joreskog and Sorbom (1997), the RMR would work better if L are 

standardized, and according to Bollen (1989), this measure usually leads to very similar 

conclusions when compared to the mean absolute value of the unsta..lldardized residuals. 

Sample residuals are not only affected by differences between 2: and 2:(~), but also by 

the scales of L and by sampling fluctuations (errors). A direct solution for the scales issue 

may be to calculate correlation residuals as (Bollen, 1989) 

"rt'-"rt" 

where "rt' is the sample correlation between Lt and [it" and ~t' denotes the model predicted 

correlation, so that 

A L:(~)tt' 

"rt' = ~L:(~)tt' L:(~)t't' 
Although this correlation residual is allowed to range from - 2 to + 2, we should expect 

values rather close to zero for models with a reasonably good fit. 

Regarding sampling errors, we know that even when Ho is true the expected amplitude 

ofthe individual sample residual covariances depends on n, and (Bollen, 1989) 

Therefore, we shall introduce below a simultaneous significance test, based on sample 

residuals. Notice that the Ho discussed above could be tested via a chi-square test (or a 

minimum discrepancy test statistic). 

Under multivariate normality of [i and no covariates, if Ho holds, if ~ is identified, if 

(6.03) is of full rank b, it holds that (Joreskog and Goldberger, 1972; see also, for example, 
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Wiley, Schmidt, and Bramble, 1973; Swain, 1975; Bentler and Weeks, 1980; Browne, 1982; 

Browne, 1984; Shapiro and Browne, 1987; Fuller, 1987, Theorem 4.2.1; Shapiro, 1986; 

Matsueda and Bielby, 1986; Satorra and Bentler, 1986; Browne, 1987; Satorra and Bentler, 

1988; Satorra, 1989; Amemiya and Anderson, 1990; Muthen and Satorra, 1995; Bentler and 

Dudgeon, 1996; Yuan and Bentler, 1997b; and Bollen, 1989) 

n.F(~)ML (6.20) 

has an asymptotic chi-square distribution with k - b degrees of freedom (d£), i.e. 

A 2 
n· F((DML ~ Xk-b (6.21) 

under H 0' when F (f}J ML is evaluated at the final estimates and the model is true, where b is 

the number of free parameters. 

Remark 6.1: We shall examine initially the n· F (~) ML asymptotic distribution by using the 

likelihood ratio principle, as in Bollen (1989). 

We may consider L:Ul.), which is the fitted covariance matrix at Ho' Let log f 0 denote the 

maximised value of the log of the likelihood function (see Chapter 4, Section 4.4, Sub

section 4.4.4) under H o' given by 

n A I A 

logfo = -"2' {tr[SL:(~r ] + log I L:(~) I}, (6.22) 

ignoring the unnecessary constants. Assuming again normality and having a sufficiently large 

n (J6reskog and S6rbom, 1997), a model fit test could be performed working with a likelihood 

ratio statistic, with (6.22) as the log of the numerator. Moreover, we may consider defining 

HI by specifying L:(Q) for example to the unweighted sample covariance matrix S in (6.22). 

We could then define the log likelihood function for H] as 

n 
logf] =--·{T+logISI}' 

2 
(6.23) 

also when ignoring the unnecessary constants. In this case, the expression given by (6.23) 

could then be adopted as the log of the denominator of the likelihood ratio statistic. Note that 

defining HI as above makes us to test Ho against a perfect fit situation, with L:(~) = S . 

It is well known that (see, for example, Specht and Warren, 1976) 

[
fo] 2 -210g - ~X f k-b' 

I 

when n is large. Notice that, from (6.22) and (6.23), 
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[
f ] ~ ~ - 210g f ~ = n . [log 1 ~(Q) 1 +tr(~(fD-l S) -log 1 S 1-T] , 

which is n times the ML fitting function (see Chapter 4, Section 4.4, Sub-section 4.4.4), when 

substituting L(fD for the ML fitted covariance matrix. We have therefore shown that (6.21) is 

valid. III 

It is also true, when L is multivariate normally distributed, that (see proof in J6reskog 

and Goldberger, 1972; and Fuller, 1987, Sub-section 4.2.1, Theorem 4.2.2; see also Browne, 

1982; Browne, 1984; Shapiro, 1986; Satorra and Bentler, 1988; Matsueda and Bielby, 1986; 

Amemiya and Anderson, 1990; and Muthen and Satorra, 1995) 

n· F(Q)GLS (6.24) 

has the same property as n· F(Q)ML' i.e. 

(6.25) 

when (6.02) holds, and in large samples. Note that (6.25) is a Wald goodness of fit test 

statistic, which may be obtained as the minimum value of F(Q)GLS given by expression 

(4.46), introduced in Chapter 4, Section 4.4, Subsection 4.4.2, i.e. when (4.46) is evaluated at 

QGLS' See Buse (1982), Satorra (1989), and Satorra (1992) for some further discussion. 

We shall not consider here the case of the ULS fitting function as some adjustments 

would be necessary in order to make the chi-square measure also asymptotically valid for that 

method (see Browne, 1984; J6reskog and S6rbom, 1989; and Joreskog and S6rbom, 1997). 

Although the adoption of chi-square statistics to test covariance structure model fit is 

frequent in the literature (Teachman et aI., 2001), we have to be careful when working with 

that measure. The reason is that the chi-square approximation presupposes that (Bollen, 

1989): (i) K:i has no kurtosis; (ii) n is sufficiently large30
; and (iii) Ho holds exactly. In 

practice, often at least one of these assumptions is infringed, as for example with the 

incidence of non-normal data with excessive kurtosis (Browne, 1982; Browne, 1984; and 

Shapiro and Browne, 1987), which can gravely invalidate the chi-squared asymptotic 

distribution of the test statistic (Browne, 1987). Moreover, as models are only a tentative 

representation ofthe reality, the prospect that the model does not hold exactly has to be taken 

into account (Browne, 1984). Note that, under certain assumptions and conditions discussed 

30 For situations where the sample size is not large enough, there have been developed adjusted multiplying 
factors that could be substituted for n in (6.27) and (6.28). For further information see Browne (1982). 
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by Satorra (2002), in the context of linear-latent variable models, nonnal theory chi-square 

statistics could still be valid, when the model holds, despite non-nonnality. 

Another disadvantage of adopting the chi-square test is that this may become too 

powerful with increases in the sample size or with 'too little' power to detect noticeable 

deviations in rather small samples (Browne, 1982; Satorra and Saris, 1985; and Teachman et 

at., 2001; for further infonnation on statistical power in covariance structure models, see also 

Matsueda and Bielby, 1986). Therefore, Joreskog and Sorbom (1997) recommend that the 

chi-square statistic should be adopted as a goodness-of-fit measure instead of a test statistic, 

using the df as a guide to evaluate whether X 2 is large or small. 

Browne (1984), followed by Satorra and Bentler (1988), propose more generic goodness

of-fit tests of structural models for covariance matrices, which does not assume nonnality31 

and leads to precise test statist~cs. 

Remark 6.2: In principle, we could perfonn a model fit test by adopting (6.25), with 

F(fllLs given by expression (4.46) from Chapter 4, Section 4.4, Sub-section 4.4.2, with 

matrix U given by (4.33), i.e. an ADF GLS fitting function. Following Browne (1982) and 

Browne (1984), we shall assume that ~ is an estimator (of f!.. ) that, as n ~ 00, Fn· (~- fD 

has an asymptotic nonnal distribution with a null mean vector and a finite covariance matrix. 

Note that according to Browne (1984), both GLS and ML types of point estimators, when 

considering regularity conditions described in that article, have the above property. 

Let 11* be a kx(k-b) matrix valued function of fl., with rank (k-b), so that 11*'11=0 

when 11 is given by (6.03). Moreover, let Ii* denote 11* evaluated at fl. = ~ (either ~ML or 

~GLS' according to Satorra, 1989; see also Muthen and Satorra, 1995). If C is any consistent 

estimator ofC, as for example C given by (4.33), then (see proof in Browne, 1984) 

X = n . {vech[E], Ii* (Ii*' C Ii*rl Ii*' vech[E]) ~ XLb' 

or equivalently (Browne, 1982; Browne, 1984; see also, for example, Satorra and Bentler, 

1988; and Bentler and Dudgeon, 1996) 

X = n· vech[E],-{C-1 
- C- I 

. 1i(Ii'C-llirl Ii'C- I
}. vech[E] ~ XLb' (6.26) 

31 See Amemiya and Anderson (1990), for information on conditions under which some normal theory variance 
estimation procedures and fit test would be asymptotically correct even when data is not normally distributed, 
considering the case of a class of factor analysis models. 
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Observe that, according to Browne (1984, Corollary 4.1), if C = U , (6.26) reduces to 

(6.25). Moreover, according to Satorra and Bentler (1988), (6.26) is chi-squared distributed 

regardless of the distribution of li' and the matrix U adopted in the point estimation 

procedure, if the model holds, n is large enough, and C is properly estimated. 

Nevertheless, according to Satorra and Bentler (1994), Bentler and Dudgeon (1996), 

Satorra (2000), and Satorra (2002), for example, X given by (6.26) could possibly be affected 

by the same problem which act on ADF methods in general when working with small 

samples, especially in situations with large T. Furthermore, according to Bentler and 

Dudgeon (1996), there is some empirical evidence that n would be required to be unrealistic 

large for the theory to hold (at least n = 5000). 

Satorra and Bentler (1988) have proposed two types of corrections for standard test 

statistics, suitable for a more general distribution than the elliptical c1ass32 (see also Bentler 

and Dudgeon, 1996): a (i) Bartlett-type scaled statistic (Xs )' and a (ii) Satterthwaite-type 

adjusted statistic (XA ). The scaled statistic (i) is a mean-correct chi-square and is given by 

(6.27) 

where (Satorra and Bentler, 1988; see also Satorra, 1989; Chou, Bentler and Satorra, 1991; 

Satorra, 1992; Satorra and Bentler, 1994; Muthen and Satorra, 1995; and Satorra and 

Bentler, 2001) 

A* tr{[U-1 
- U-I 

. Li(Li'U-lLirlLi'U-I ].C} 
17 = (k-b) 

(6.28) 

The statistic (6.27) is asymptotically chi-squared distributed with (k - b) degrees of freedom, 

under Ho' In (6.28), U is a consistent estimator of n· aCOV(Stt"Sf"f") adopted for performing 

the point estimation (for example, when minimizing (4.46) in Chapter 4, Section 4.4, Sub

section 4.4.2). However, as (6.27) does not assume that U is correctly specified (Bentler and 

Dudgeon, 1996), we shall assume that U is given by (4.24), from Chapter 4, Section 4.3, Sub

section 4.3.2, which assumes normality. Hence, one possible strategy could be to utilise the 

conventional normal theory point estimators and adopt the corrected variance estimators and 

test statistics (as suggested by Browne, 1984; Satorra, 1992; and Muthen and Satorra, 1995). 

Note that Chou, Bentler and Satorra (1991) have found in an extensive simulation study, 

that under certain circumstances scaled test statistic given by (6.27) performed better than the 

32 Elliptical distributions are symetric with no skewness and have the normal as a special case, but also include 
platykurtic and leptokurtic distributions. For further information on elliptical distributions see Browne (1984), 
and references therein, and Satorra and Bentler (1988). 
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ADF test statistic proposed by Browne (1982) and Browne (1984), also discussed above, 

given by (6.26). Moreover, Satorra and Neudecker (1997) have developed asymptotic chi

squared scaled statistics in the context of testing equality of moment vectors, considering in 

principle a dis aggregated analysis approach. 

The statistic (ii) is adjusted for mean and variance and is given by 

X A = (7trl 
. n· F(r}J, (6.29) 

where (Satorra and Bentler, 1988; see also Satorra, 1992; and Satorra and Bentler, 1994) 

~+ d 
7J = tr{[U-I - U-I'~(~'U-I~rl~'U-I].C}' 

with d denoting the nearest integer to 

* {tr[(U-I - U-I ·~(~'U-I~rl~'U-I)·C]}2 

d = tr[(U-I-U-I'~(~'U-I~rl~'U-I).C]2 

(6.30) 

(6.31) 

The statistic (6.29) is asymptotically chi-squared distributed with d degrees of freedom, under 

Ho' We shall consider in (6.30) and (6.31) that U is as defined for (6.28). Note that (6.29) is 

based on both scaling and a degrees of freedom adjustment (Satorra and Bentler, 1988). 

Moreover, according to Bentler and Dudgeon (1996), (6.29) is more nearly approximately 

chi-squared distributed than (6.27). See Satorra and Bentler (1988) for details on how the 

expressions for Xs and X A are obtained. 

We shall not consider here the direct approach proposed by Browne (1982), Browne 

(1984, with proof), and extended by Shapiro and Browne (1987), which involves applying 

simple corrections for kurtosis in order to make standard results applicable to a class of 

elliptical distributions. According to Satorra and Bentler (1994), these corrections may be 

very sensitive to violations of the elliptical assumption so that the corrected test statistic 

could be even more distinct from the reference distribution than the uncorrected statistic. 

Olsson, Foss and Troye (2003) have recently shown that Browne (1984) ADF test 

statistic, and also those proposed by Satorra and Bentler (1988), have their expected values 

decreased with increases in the kurtosis. 

Note that we shall not consider here the testing approach developed by Lee (1985), which 

also does assume nonnality. Moreover, Yuan and Chan (2002) have proposed another 

rescaled test statistic which has (6.29) as a special case, although that shall not be considered 

here. II1II 

169 



The covariance structure model testing statistics given above are suitable in situations 

where it is acknowledged that the distribution of Ii is non-normal. In that situation we still 

need to work under the assumptions that n is sufficiently large and that Ho holds exactly. 

Furthermore, we still need to be cautious regarding the power of the tests with increases in 

the sample size. Note that Satorra and Saris (1985) have developed a method for calculating 

the power of the likelihood ratio test in the covariance structure analysis context, although we 

shall not consider that procedure here. 

We shall now discuss some alternative asymptotically equivalent (Satorra, 1989; Buse, 

1982) significance tests for the difference in model fit chi-square statistics for nested models: 

(i) likelihood ratio test (LRT) or chi-square difference test (Wilks, 1938); (ii) Lagrangian 

multiplier test (LMT; Silvey, 1959) or efficient score test; and (iii) Wald test (WT; Wald, 

1943); which all assume that F(f!..) is asymptotic optimal, i.e. leads to efficient estimators 

and chi-square statistics33
. Moreover, these tests have been developed under the assumption 

that the asymptotic covariance matrix of vech[S] and the infonnation matrix of the model are 

non-singular (Satorra, 1989; see Shapiro, 1986, for situations where this assumption is 

violated). 

In general, these types of test aim to compare an 'initial' model with a restricted model, 

which has a sub-vector of parameters that is set to be equal to zero. Suppose that the b x 1 

parameter vector f!.. is rewritten as 

where ()R is a b * x 1 vector that corresponds to the restraints imposed to the umestricted 

model, with b * < b, and f!..u is a (b - b') x 1 vector. We may then define the null and 

alternative nested hypotheses as respectively 

H : ()R = 0 o _ _ 

against 

Let 

~ML,r = (~uJ 
flr 

be the ML estimator when considering the restrictive (nested) model, and let 

33 See Satorra (1989), for generalised test statistics that do not require such assumption. 
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be the ML estimator when considering the covariance structure model without constraints. 

We shall initially discuss the LRT, which has (Joreskog, 1970; see also Swain, 1975; 

Buse, 1982; Satorra and Saris, 1985; Lee, 1985; Shapiro and Browne, 1987; Browne, 1987; 

Matsueda and Bielby, 1986; Satorra, 1989; Bollen, 1989; and Yanagihara, Tonda and 

Matsumoto, 2005) 
~ ~ 

- 2[logf(~ML,r) -logf(~ML,J], (6.32) 

or alternatively 

n· [F(~ML,J - F(~ML,u)] (6.33) 

as its test statistic. The chi-square difference test statistic IS the most often adopted test 

adopted to compare nested models (Satorra, 1989). Under mild regularity conditions, it has 

X 2 limiting distribution with df equal to the difference between the df for the chi-square test 

statistics for the restricted and unrestricted models, i.e. the number of restrictions constrained 

by the null hypothesis. Notice that (6.32) may be obtained from Remark 6.1 presented above. 

The LMT aims to confront the fit of a restrictive model to a less restrictive model. Its test 

statistic is based on 

a log f(fz] 
ae 

(6.34) 

where logf[~] is the unrestricted log likelihood function, as given by expression (4.54) in 

Chapter 4, Section 4.4, Sub-section 4.4.4. Note that the unrestricted components of ~ML,r are 

expected to have a zero partial derivative, considering that the solution for the ML estimator 

~ML,r is obtained by setting these partial derivatives to zero. Nevertheless, the restrictions 

have to hold exactly so that the elements of (6.34), equivalent to the restricted parameters, are 

zero. We may thus check whether the restrictions are valid or not by substituting ~ML,r for ~ 

in (6.34). Moreover, observe that sample errors must be considered as these could cause non

zero values even in cases where the restrictive model is valid. Therefore, let (Bollen, 1989) 

[ OIOgf[~]]' . {_ E[a210gf[~]]}-1 . [OIOgf[~]] 
ae aeae' ae - - - -

fi=~ML,r 

(6.35) 

be the statistic for the LMT, which may be alternatively expressed as (see, for example, Buse, 

1982; and Bollen, 1989) 
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~. [aF(fD]' . {E[a 2 F(fD]}-1 . [aF(fD] 2 ae aeae' ae - - - -
fi=~ML,r 

The LMT statistic has also a X2 limiting distribution with df equal to the difference between 

the dffor the chi-square test statistics for the restricted and unrestricted models. 

We may now discuss the WT. Observe that ft is zero by conception for the restrictive 

~R 

model. Moreover, if the restrictive model is true, flu is also expected to be zero within 

sampling error. Let (see, for example, Buse, 1982; and Bollen, 1989) 

(6.36) 

be the WT statistic, which establishes how much e -ML,u deviates from the restrictions 

enforced by the nested model. In (6.36), a COV(~ML,J is an estimator of the asymptotic 

covariance matrix of ~ML,U while the term in braces { . } is an estimator of the asymptotic 

~R 

covariance matrix of flu' The WT statistic given by (6.36) has asymptotically a X:. 
distribution (Buse, 1982; and Bollen, 1989), where b* is as defined above. 

Notice that the three significance tests of difference in model fit statistics for nested 

models, reviewed above, present the power limitations that we discussed earlier for the case 

of the chi-square tests (Bollen, 1989). Moreover, we acknowledge here that Satorra (2000) 

and Satorra and Bentler (2001) have extended the Satorra and Bentler (1988) corrections, 

discussed in the Remark 6.2, to LRT, LMT and WT considering a disaggregated analysis 

approach. Furthermore Yanagihara, Tonda and Matsumoto (2005) have recently provided 

some further theoretical investigation on the effects of non-normality on asymptotic 

distributions of some likelihood ratio criteria for testing covariance structures under the 

normal assumption. 

We shall additionally consider in this section some alternative approaches for performing 

model selection. We shall then consider in this sub-section some further descriptive ad hoc 

measures of overall model fit, which were developed following the fact that LRT statistic 

could present different values for different sample sizes, for a given difference between the 

'initial' model and the restricted model (Matsueda and Bielby, 1986). 
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We may thus discuss the Joreskog and Sorbom (1989) goodness of fit indices (GFI), 

given by 

GFI =1_{tr[(L:(~)~IS-I)2J}, 
ML tr[ (L:(fD -I S)2 J 

(6.37) 

when considering F(r!J ML , where I is a TxT identity matrix. This index computes relatively 

the magnitude of the variances and covariances in S, predicted by L:(~) when adopting ML 

estimators (see also Bollen, 1989). Joreskog and Sorbom (1989) also proposed versions of 

the GFI for F(flJuLs' which is given by 

GFI =1_{tr[(S-L:(~))2J}. 
ULS tr[ (S)2 J (6.38) 

A GLS version of the goodness of fit indices was proposed by Tanaka and Huba (1985), and 

is given by (see also Bollen, 1989) 

GFI =1_{tr[(I-L:(~)S-I)2J} 
GLS T' (6.39) 

or equivalently (see also Joreskog and Sorbom, 1989; and Joreskog and Sorbom, 1997) 

GFI = 1- {{VeCh[SJ - vech[L:(~)]}' U-
I 
{vech[SJ - VeCh[L:(~)]}} 

GLS vech[S]' U-1vech [SJ ' 
(6.40) 

which has as numerator the GLS fitting function given by expression (4.46), introduced in 

Chapter 4, Section 4.4, Subsection 4.4.2, when evaluated at ~GLS • 

Joreskog and Sorbom (1989) proposed additionally an adjusted fit index (AGFI), which 

penalises the models with more parameters, and is given by (see also Joreskog and Sorbom, 

1997; Matsueda and Bielby, 1986; and Bollen, 1989) 

AGFI = 1-(; }(l-GFI), (6.41) 

where k is as defined in Chapter 4, Section 4.1. Observe that both GFI and AGFI achieve 

their maximum of one when S is perfectly predicted by L(~) 34, and that they do not 

explicitly depend upon the sample size. Nevertheless, according to Joreskog and Sorbom 

(1997) and Bollen (1989), the sampling distribution of these measures may be influenced by 

the size of n. 

34 Authough these measures are expected to be between zero and one, according to Joreskog and Sorbom (1989) 
and Joreskog and Sorbom (1997), it is in theory possible, in situations where the models fits worse than 'no 
model at all', for them to become negative. 
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We do not expect to have entirely reviewed the vast literature on covariance structure 

model fitting evaluation procedures in this sub-section. See, for example: (i) Browne (1982, 

Section 1.8) for information on a cross validation approach for model selection; and (it) 

Matsueda and Bielby (1986), and Bollen (1989) for material on the Critical N statistic 

proposed by Hoelter (1983); which shall both not be discussed here. 

6.4.2 Model testing under complex sampling 

In this sub-section, we shall consider some further developments on covariance structure 

model fitting statistics when assuming that the sample is selected under the complex survey 

design approach, i.e. we shall not assume that the observations are iid. In covariance structure 

modelling, accurate computation of fitting statistics is as essential as estimation of standard 

errors of point estimators (Muthen and Satorra, 1995). Furthermore, according to Skinner, 

Holt and Smith (1989), ignoring the characteristics of the complex samples can lead us to 

calculate invalid statistical tests. 

For calculating model fit measures in the present context we shall adopt Sw' the weighted 

sample covariance matrix, as defined in Chapter 4, Sub-section 4.3.1, as an estimator of L:, 

recalling again that E(E/S,J) == E(SN) = L: (see Chapter 4, Section 4.3, Sub-section 4.3.1). 

We shall then consider model fit measures which are functions of Sand L:. Note that in the w 

current context, overall model fit measures also have the same limitations discussed by 

Bollen (1989), and Joreskog and Sorbom (1997), and reviewed in the previous sub-section. 

Moreover, we shall work here with the same Ho, and a generic alternative hypothesis HI' as 

defined in Sub-section 6.4.1. 

For examining (6.19), i.e. for identifying components of the variance-covariance matrix 

that are not well fit, we shall now adopt the sample weighted residual covariance matrix Be' 

defined as 

where the SUbscript c denotes 'complex'. See Chapter 4, Section 4.3, Sub-section 4.3.2. 

Moreover, let 
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be the individual weighted sample residual covariances, where Sw,t!' is the tt'th element in Sw 

and L,(~)tt' is as defined in Sub-section 6.4.1. The RMR measure proposed by Joreskog and 

Sorbom (1989) may be adapted to 

T f [S _ L(e) ]2 
RMR = 2'LL W,If' - If' 

c /=1 /'=1 T(T + 1) , 

which has as special case the RMR measure when the sampling weights are constant, and 

could also be utilised for comparing the fit of two different models for the same data. 

Theory developed in the categorical complex survey data analysis and modelling 

literature (see Rao and Scott, 1979; followed, for example, by Rao and Scott, 1981; Rao and 

Scott, 1984; Rao and Scott, 1987; Rao and Thomas, 1988; Rao and Thomas, 1989; Skinner, 

1989a; and more recently, Rao and Thomas, 2003) suggests that, under complex sampling, 

n·F(f}JPML' where F(flJpML is the PML fitting function given by (4.62) from Chapter 4, 

Section 4.4, Sub-section 4.4.5, would not be asymptotically chi-squared distributed. In that 

context, simple corrections have been proposed, which may be adapted so that they could be 

applied to n· F (rD PML in order to make it approximately chi -squared distributed. Note that 

we shall be considering below the complex survey data set up, and following an approach 

proposed by Skinner (1989a, Section 3.4). 

Remark 6.3: We shall initially consider the case of a GLSC type estimator, obtained by 

minimizing the F(fl)CLSC fitting function given by expression (4.49), introduced in Chapter 4, 

Section 4.4, Subsection 4.4.3, with matrix U given by 

U = 2 . K'(W ® W)K , (6.42) 

where W is any consistent estimator of L. Under this situation, a Wald goodness of fit test 

statistic is given by (Skinner, 1989a) 
I 

X~,srs = n· {vech[SJ- vech[L:(e)]} U-1 {vech[SJ- vech [L(e)]} , 

which implies, (see Chapter 4, Section 4.4, Sub-section 4.4.3) 

when Sw is considered, for example, as a choice for W in (6.42). Note that the subscript srs is 

added above to emphasize that U is defined under simple random sampling assumptions. 

Note, nevertheless, that according to Skinner (1989a), the test statistic X~ srs is no longer 

asymptotically chi-squared distributed, but in fact asymptotically (see also Rao and Scott, 
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1981; Rao and Scott, 1984; Rao and Scott, 1987; Rao and Thomas, 1988; Rao and Thomas, 

1989; Rao and Thomas, 2003) 

k-b 

X~,srs ~ I Ad %1
2 

d=1 

under H o' where %1
2 are independent chi-squared distributed random variables, and Ad are 

non-zero eigenvalues of 

where Cc is the asymptotic covariance matrix of vech[S,J As a one moment approximation, 

Skinner (1989a) 

(k - b) . X~ srs 
tr(H) 

(6.43) 

is asymptotically distributed as a %~-b' and may be adopted for testing the goodness of fit of 

a covariance structure model when assuming that the sample is selected under the complex 

survey design approach. 

Note that as F(fDpML is asymptotic equivalent to F(fD~LSC (see Chapter 4, Section 4.4, 

Sub-section 4.4.5; see also Fuller, 1987, p. 334-335), given by (4.51) in Chapter 4, Section 

4.4, Sub-section 4.4.3, the approach proposed above is also valid for situation where 

F ({D PML is adopted for estimating ~ . 

We could also consider substituting matrix U by C c' i.e. 

X~ = n· {vech[SJ- vech[2:(e)]}' Ce {vech[SJ- vech[2:(B )]}, 

where Ce , given by (6.09b), is a consistent estimator for Cc (Skinner and Holmes, 2003), 

which was defined in (6.08). In this context, X~ is approximately distributed as %i-b under 

Ho (Skinner, 1989a; and Skinner and Holmes, 2003). Note that when U is consistent for Ce, 

(k-b)·X 2 

X2 = X2 = W,srs 
W W,srs tr(H) , 

as tr(H) = k - b in that situation. II 

Furthermore, in our context we shall consider methods for non-normal data which, 

according to Skinner (1989a), followed by Satorra (1992) and Muthen and Satorra (1995), 

are special cases oftechniques for complex survey data (see also Chapter 4). 
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Remark 6.4: Let us assume here that (i) the model is correct, and that (ii) Ce , given by 

(6.09b), is consistent for Ce • It is also assumed here that ~ is an estimator (of flJ which, as 

n ~ 00, -r;;. (~ - f!J has an asymptotic normal distribution with a null mean vector and a 

finite covariance matrix. We shall assume that both GLSC and PML estimators, proposed in 

Chapter 4, have the above property, when considering regularity conditions described in 

Browne (1984). Hence, we could propose modifying (6.26) by substituting C by Ce, given 

by (6.09b), and E by Ee , so that the test statistic becomes 

(6.44) 

which, following earlier argument from Remark 6.2 has XLb asymptotic distribution under 

H o' when assuming (i) and (ii) included above, where ~ is given by (6.03), with ~ 

evaluated at f!.. = ~ (either ~PML or ~GLSC)' Observe that (6.44), as well as (6.26), may also be 

affected by the fact that the ADF estimator Cc could produce unreliable results when the 

sample size is not large enough and T is large (see Section 6.4.1; and Remark 6.2), as 

discussed earlier in this thesis. 

Furthermore, we also propose modifying the corrections developed by Satorra and 

Bentler (1988) for standard test statistics in the classical context, so that those could be used 

when working with complex survey data. We shall propose substituting Ce for C in (6.28), 

with Cc given by (6.09b), so that (see Remark 6.2) 

,,* -1 "-
X Sc =(17J ·n·F(e), ,. -

with (6.45) 

where we shall still considerer that matrix U is as defined in (6.42). Note that the Satorra and 

Bentler modified test statistic proposed in (6.45) is equivalent to test statistic we proposed in 

(6.43), following Skinner (1989a) approach. Therefore, we may confirm that XS,e is also 

asymptotically chi-squared distributed with (k - b) degrees of freedom. 

Moreover, we could follow a similar strategy and substitute Ce for C also in (6.30) and 

(6.31). It follows that 

XA,c = (f;;r1 
• n· F(~), 

with 
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~+ de 
lJe = tr{[U- I - U-I . Li(Li'U-lLirlLi'U-I].C\} , 

where dc denotes the nearest integer to 

* {tr[(U-1 - U-I . Li(Li'U-lLirl Li'U-I). C
e

]}2 

de = tr[(U- I - u-I.Li(Li'U-lLirlLi'U-I),Ce]2 

Note that the modifications we propose above have as special case those modifications 

developed by Satorra (1992), where a similar approach is suggested in a context without 

covariates. From argumentation in Satorra (1992), and Muthen and Satorra (1995), XA,e 

should be distributed as Xd' II1II 

We may now consider a Wald significance test for nested hypothesis, i.e. difference in 

model fit chi-square statistics for nested models (discussed in the previous sub-section in the 

classical case), for situations where the PML fitting function is adopted. Note that we shall 

follow an approach proposed by Skinner (1989a, Section 3.4). 

Remark 6.5: We shall assume that the asymptotic covariance matrix of vech[SJ and the 

information matrix of the model are non-singular. Thus, let (lPML,r be the PML estimator for 

the restrictive (nested) model, and let ~PML,u be the PML estimator for the covariance 

structure model without constraints. Moreover, recall that (lR is a b * x 1 vector when fiR = Q 

corresponds to the restraints imposed to the unrestricted model, where b * < b. We propose a 

modification to the Wald test, given by (6.36), so that 

(6.46) 

where we could adopt the approach of Binder (1983), adapted to the covariance structure 

models context proposed earlier in Section 6.3, for calculating a COV(~PML,J. If the null 

hypothesis is true, and if R . (~PML - fD is asymptotically normal distributed (see Chapter 

4, Section 4.4), then the modified WTc statistic introduced above should be asymptotically 

X:. distributed (Skinner, 1989a, p. 84) under Ho' II1II 

We may still propose in the current sub-section modifying the overall model fit 

descriptive measures, such as the Joreskog and Sorbom (1989) goodness of fit indices (GFI) 

discussed in the previous sub-section. Let 
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be a modified version GFI for complex survey data, when considering F(~)PML' Observe that 

the GFIc calculates the relative magnitude between Sw and '2:(~) when adopting the PML 

estimator (see also Bollen, 1989). In a similar way we may also propose a GFI version for the 

F(~)ULSC' given by 

Furthermore, we could also modify Tanaka and Huba (1985) GLS verSIOn of the 

goodness of fit indices, so that 

or 

GFIl =l_{tr[(I -'2:(~)Sw-l)2]} 
c,GLSC T ' 

GFI2 = 1- {{VeCh[Sw] - vech['2:(O)]}' U-
1 
{vech[Sw] - VeCh[2:(O)]}} . 

c,GLSC vech[S,J'U-1vech[Sw] 

Modified adjusted fit indices (AGFIc), could thus be calculated as 

AGFIc = 1- ( :f) . (1 - GFIc)' 

6.5 Discussion 

In this chapter we have proposed variance estimation procedures for covariance structure 

models point estimators, in the context of longitudinal complex survey data. We have 

discussed methods for variance estimation for GLS and PML point estimators of fl that take 

the sampling scheme into account. 

Moreover, goodness of fit testing techniques for structural models for covariance matrices 

have been reviewed for the classical iid observations case. We have then proposed 

modifications to some test statistics to be used in situations where the complex sampling 

approach is considered. 

We shall present in Chapter 7 the characteristics and results of a second simulation study, 

which shall have as main objective to evaluate the statistical properties of the variance 

estimation procedures discussed and proposed in the current chapter. Note that the testing 

procedures discussed in Section 6.4 shall not be considered in the following chapter as result 

of time constraints. 
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Chapter 7 

Simulation study II 

7.1 Introduction 

We presented in Chapter 5 the results of a simulation study, which had the main purpose of 

evaluating the statistical properties of the point estimation procedures proposed in Chapter 4, 

and also to compare their properties with those of the traditional methods that were reviewed 

also in Chapter 4. 

The current chapter is an extension of Chapter 5. The variance estimation procedures 

proposed in Chapter 6 shall have their statistical properties examined in the current chapter. 

We shall thus present here the characteristics and main results of a second simulation study, 

where we shall contrast the behaviour of the proposed methods with that of the classic 

techniques, also discussed in Chapter 6. 

In this chapter we shall initially present detailed information on how this simulation study 

is implemented, which is given in Section 7.2. Moreover, results and some further discussion 

are presented respectively in sections 7.3 and 7.4, while Section 7.5 includes some concluding 

remarks. 

7.2 Simulation procedures 

After programming the variance estimation procedures described in Chapter 6, we shall apply 

those and assess their statistical properties through the current simulation study. 

As in Chapter 5, this simulation study shall involve simulating d = 1, .. . ,D replicate 

samples. We shall consider again the BHPS subset, which has n = 1340 , which we considered 

in Chapter 5, and examined earlier in Chapter 3, for generating simulation samples in the 

current chapter. Note that we shall hold the values of the x variable as fixed and that the values 

of ~t shall be simulated from a model, which we shall describe below, independently for each 

replicate. The superscript sim is added again to denote simulation. Once more, we shall work 

with T = 5. 



As in Chapter 5, for simplicity we shall not pursue to allow for the impact of either 

stratification or unequal probability sampling in this second simulation study. Furthermore, we 

shall only evaluate here the properties of variance estimators for unweighted point estimators, 

described in Chapter 4. 

We shall assess the vanance estimation methods considering different sample SIzes. 

Moreover, we shall consider a two-stage cluster sampling scheme that involves simple random 

sampling with replacement of primary sampling units (PSUs). We shall initially select 

msim = 47, where m sim denotes the number of clusters in the sample. We shall then consider 

msim = 20 and msim = 15. Let nt' denote the size of cluster j in the original BHPS subset 

adopted here. In each selected PSU, j = 1, .. . ,m sim
, nt secondary sampling units (SSUs) 

shall be selected also by simple random sampling with replacement. We shall consider several 

scenarios: (i) nt' = nt", (ii) nt = 15, (iii) n~im = 10, and (iv) nt = 5. 

Moreover, we shall suppose that the BHPS subset, adopted for generating simulation 

samples, is grouped in m = 47 primary sampling units, instead of the original 248 clusters. 

See Chapter 3 for further information on (i) how the original clusters were combined for 

creating the new clustering, and (ii) the reasons why we have chosen to work with a new 

aggregated clustering. 

L t Y b th I ( I) !": th t d . bl.C". ·t· 1 2 sim I·n cluster e ijt e e va ue sca ar lor e s u y vana e lor um 1 = , , ... , n , 

j = 1, .. . ,msim 
, at wave t of the survey. As in Chapter 5, we shall use the following uniform 

correlation model, which allows for the impact of clustering, 

(7.1) 

with 

'lj ~N(O,(}~), uij ~N(O,(},~), and Vijt ~N(O,(}~), 

for generating the values of Yijt that we are going to use in the simulation study. As in 

Chapter 5, we shall refer to the model described above as UCM-C, where C denotes cluster. 

We shall thus generate 

(d) _ fJ (d) (d) (d) 
Yijt -::s.ijt_ +'lj +Uij +vijt' 

where 'l)d), ubd), and vb~) are as given in Sub-section 5.2.1, Chapter 5. 

Note that we shall consider again a gender role attitude score (see Chapter 3, Sub-section 

3.2.3) as the dependent variable, and the same covariates adopted and listed in Section 5.2, 
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Chapter 5. We shall adopt the values for fJ, a,;, a;, and p as those given by (5.6) and (5.7), 

in Chapter 5. In particular, we shall consider here different choices for a~ , 

2 sim,C:::::o 15 0'1) _., 

a~ sim,C ::::: 0.45, 

and 

a~ sim,C ::::: 0.75, 

to enable the evaluation of effects of different impacts of clustering on the considered variance 

estimation procedures. 

7.3 Simulation results 

Let var(Q) be an estimator of our b x b covariance matrix of interest, V AR(Q). Let alternatively 

V AR( B) represent the diagonal element of V AR(Q) that includes the variance of the 

estimator for the component ()j of f1 . We shall estimate V AR( Bj ) in this simulation study by 

VARfB.)= _1_~[B(d) _£(B.)]2 
~J D-1L..... J J' 

d=l 

(7.2) 

where 

An approximately 95% simulation confidence interval for the true covariance matrix is 

given by 

where 

and 

with 

~ VAR(BJ±1.96.~~, 

Moreover, let 

MSE[ var( B)] = V AR[ var( B)] + {BIAS [ var( B)]} 2 , 
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where V AR[ yare B)] is simulation variance of yare B), BIAS [ yare Bj )] denotes the simulation 

estimate of the bias of the variance estimator, and may be calculated by 

bias[var(B)] = E[var(B)] - V AR(B), (7.4) 

where E[var(B)] is the simulation estimated expected value of var(B). We shall provide 

information on how V AR[ yare B)] and E[ yare B)] are calculated later in the current section. 

Recall that yare Bj ) represents a diagonal element of b x b covariance matrix estimator var(~) . 

For evaluating the impacts of simulation errors, an approximately 95% simulation 

confidence interval for the bias ofthe variance estimator is given by 

bias[ yare B)] ± 1.96 . (7.5) 

where 

and 

var(z,(d)) = _1_ f k(d) - z'], 
D -1 d=l 

with 

Furthermore, let reI bias[var(B)] denote the estimated relative bias of var(B), so that 

A bias[ yare B )] 
relbias[var(B)]= A J ·100. 

VAR(B) 

Note that, as in Muthen and Satorra (1995), we shall not consider in this study a relative bias 

ofless than 10% to be 'practically significant'. 

For each replicate we shall estimate var(Bjd), VIa each of the vanance estimation 

methods included in Chapter 6. We may then calculate 

A A 1~ A () 

E[var(B)] = - L.. var(B) d • 

D d=l 

Moreover, 

var[var(Bj )] = -1-f[var(Bjd) - E[var(B)]J ' 
D -1 d=l 

where var[var(B)] is a simulation estimator of V AR[var(B)] in (7.3). 
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The MSE[ var( Bj )] may thus be estimated by 

mse[ var( OJ)] = var[ var( OJ)] + ~ias[ var( OJ)]}2 , 

the standard error of E[ var(~)] by 

se[E[var(O)]] = ~var[var(O)]/ Ji5, 

and an approximately 95% simulation confidence interval for V AR(Oj) may be defined as 

E[var(O)] ± 1.96· selE[var(Oj)]J. 

Furthermore, the coefficient of variation of var(~) is calculated by 

[
A] ~var[var(B.)] 

cv var( B) = A A J • 100 . 
E[var(Bj )] 

We aim to present in this chapter results based on D = 10,000 replicates. After some 

investigation our results strongly suggested that a smaller number of replicates, as for example 

D = 1000 or D = 5000 was not large enough for providing reliable and stable simulation 

estimates, given by (7.2), of the true covariance matrix in this simulation study. Recall that in 

Chapter 5 we have adopted an iterative numerical method (Newton type algorithm; see 

Section 5.3, Sub-section 5.3.1) for carrying out numerical derivatives and perform the 

necessary minimisations of fitting functions F. 

The use of several other alternatives for performing the necessary numerical minimizations 

was also considered: (i) a NeIder and Mead (1965) method; (ii) a quasi-Newton method or 

variable metric algorithm, proposed simultaneously by Broyden, Fletcher, Goldfarb and 

Shanno in 1970 (see Nocedal and Wright, 1999); (iii) a conjugate gradients method (Fletcher 

and Reeves, 1964); (iv) Byrd et al. (1995) method, which is a modification of method (ii); and 

(v) a stochastic global optimization method proposed by Belisle (1992). All these methods are 

also implemented in the software R, in the function optim. In essence, we may report here that 

methods (i) to (iii) provided virtually the same result as those given by the adopted Newton 

type algorithm, while methods (iv) and (v) had difficulties in yielding converged solutions 

even for the largest sample size considered. 

Recall that analytic solutions for PML (and ML) estimation methods have been produced 

when fitting a UCM model, and are included in Appendix C. Thus, as in Chapter 5, we shall 

perform here necessary minimisations for the GLS method by adopting an iterative numerical 

method. Note that we have evaluated the accuracy of the adopted numerical minimisation 

procedure for the evaluation of variance estimators in this simulation study by calculating 

184 



(7.2) and (7.6) for the PML (and ML) method, considering both analytic and numerical 

methods. Difference was found only on the seventh decimal place for D = 10,000, which 

suggests that the adopted Newton type algorithm provides enough precision. 

Note that, as in Chapter 5, each evaluated method shall be analysing exactly the same data 

for each situation considered in this second simulation study. We shall again be fitting for each 

dreplicate a UCM (see Chapter 2, Example 2.1; and Chapter 5, Section 5.3) model. We shall 

then evaluate the variance estimation methods considering Y';jt generated by a UCM-C model, 

as described in Section 7.2. 

Let varn (~ML) , where the subscript n denotes naIve, be a linearization variance estimator 

for the ~ML point estimator under the assumption of simple random sampling, based upon 

expressions (6.13b) and (6.17) in Chapter 6, Section 6.3, when considering that the population 

consists of only one stratum, and that each individual i is a PSU. For information on how f2ML 

is estimated, see Chapter 4, Sub-section 4.4.4. 

Let varc(~ML)' where c denotes complex, be a linearization variance estimator for ~ML' 

which is based upon expressions (6.13b) and (6.17) when considering a two-stage sample 

design, with m primary sampling units (PSUs) being selected with replacement, and H = 1, 

where H is the number of stratum in the sample, and constant sampling weights. 

~2 ~2 

Let va~,(f2cLS) be a variance estimator for f2 CLS ' when adopting (6.06) from Chapter 6, 

Section 6.2, with matrix U given by (4.24) in Chapter 4, Section 4.3, Sub-section 4.3.2, when 

considering the unweighted covariance estimator S to be a consistent estimator of 2: . Note that 

~2 

the estimator f2 CLS is given by (4.48a), in Chapter 4, Section 4.4, Sub-section 4.4.2. 

~2 ~2 

Let varadf (f2CLS) be a distribution free (ADF) variance estimator for f2 CLS' when adopting 

expression (6.05) from Chapter 6, Section 6.2, with matrix U given by (4.24), in Chapter 4, 

Section 4.3, Sub-section 4.3.2, when considering S to be a consistent estimator of 2:, and 

~2 

matrix C being estimated by (4.33). Note that varadf (f2CLS) does not consider the complex 

~2 

sampling design when estimating V AR(f2CLS) . 

~2 ~2 

Let varc(f2cLS) be an ADF variance estimator for f2 CLS that takes the complex sampling 

scheme into account, when adopting expression (6.09a) from Chapter 6, Section 6.2, with 

matrix U given by (4.24), in Chapter 4, Section 4.3, Sub-section 4.3.2, when considering S to 
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be a consistent estimator of l:, with C being estimated by (6.09b), considering a two-stage 

sample design as described above for varc(~ML)' As suggested by Muthen and Satorra (1995), 

we shall evaluate here distribution-free variance estimators for normal theory point estimators. 

Recall that we are not allowing for unequal probability sampling in this simulation study. 

Therefore, we shall only gauge here the statistical properties of variance estimators for 

unweighted point estimators. 

Moreover, note that this chapter only presents summarised simulation results. 

Additionally, all bias results that were found not to be significantly different from zero at the 

95% level are flagged with "NS", when the interval given by (7.5) includes the value zero. As 

in Chapter 5, that shall illustrate circumstances where the simulations do not provide sufficient 

evidence that the variance estimator is biased. Note that more detailed tables with results are 

confined to Appendix F, when considering (J'~ sim,C ~ 0.75. Complete results for the remaining 

considered values of (j'~ have also been calculated, although they shall not be presented in the 

thesis. 

We shall include initially in Table 7.1 results which were produced when considering 

msim = 47 and nt' = nt', and different choices for (j'~ . 

reI bias cv(var~)) 
Estimator 

(),~ = 0.l5 (),~ = 0.45 ()~ = 0.75 ()~ = 0.15 (),~ = 0.45 (),~ = 0.75 

varl1 ( ~ML ) 
var(a~ ) _1.79%NS -9.52% -19.89% 11.04% 11.33% 11.65% 

yare a;) _1.68%NS -3.97% -4.56% 7.65% 7.57% 7.61% 

var,,( ~~LS) 
var(a~) -2.51 %NS -10.15% -20.64% 8.92% 9.18% 9.65% 

yare a;) -6.25% -9.37% -9.26% 5.84% 5.85% 5.83% 

varadr ( ~~LS ) 
var(a,;) _2.40%NS -10.15% -20.63% 11.07% 11.36% 11.69% 

var(a;) -4.69% -7.84% -7.79% 7.67% 7.60% 7.64% 

varc( ~ML ) 
var(a~) -1. 14%NS -2.81% -4.62% 24.14% 25.90% 29.04% 

yare a;) _0.70%NS -3.10% -3.84% 22.43% 22.98% 23.04% 

va~(~~LS ) 
var(a~) _1.75%NS -3.51 % -5.56% 24.33% 26.02% 29.09% 

var(a;) -3.77% -6.99% -7.17% 22.82% 23.37% 23.35% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.1 - Evaluation of var(~) considering m sim = 47 and n~im = nt' . 
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Simulation results presented above allow us to make several observations. Methods that do 

not take the sampling scheme into account, i.e. the first three evaluated methods, clearly 

underestimate the variance. This result agrees with the survey sampling literature (see, for 

example, Kish and Frankel, 1974; and Skinner, Holt and Smith, 1989) and thus confirms the 

relevance of further investigating complex survey sampling issues when performing 

covariance structure modelling (see also Muthen and Satorra, 1995). Furthermore, we may 

notice here that the underestimation tends to increase rapidly with increases in ()~, i.e. for 

larger the impact of clustering there is an inflation in the downward relative bias. 

Yet regarding methods that do not account for clustering, the naIve variance estimation 

method for ~ML seems to be not very sensitive to small impacts of clustering. For ()~ = 0.15, 

this method performed satisfactorily and did not seriously underestimate the variance. 

Nevertheless, for larger values of ()~ this method presents very similar levels of relative bias 

as the other methods that do not consider the sampling design, especially for var( 81~). The 

A2 
ADF variance estimators for the GLS point estimator fl CLS seems to be performing slightly 

better in terms of relative bias at lower levels of clustering than the naive estimator 

A2 
varn (flCLS) , although that is not clearly true when higher impacts of clustering are permitted. 

Both methods that allow for clustering and take the sampling design into account have 

achieved noticeable improvements in terms of relative bias, when compared to methods that 

ignore the sampling scheme characteristics. Methods that perform variance estimation under 

the complex survey approach seem, nevertheless, to be still biased downwards as expected 

(Wolter, 1985, Chapter 8; and Kott, 1991; see also Chapter 2, Section 2.5, Sub-section 2.5.1). 

Those methods also appear to be sensitive in terms of bias to increases in the impact of 

clustering, although this inflation in bias is perceptibly not as accelerated as it is for the case of 

methods that do not take the sampling scheme into account. 

Furthermore, we may observe that methods that consider the sampling design presented 

larger variance than the remaining classic methods as expected (see for example, Kott, 1991; 

and Korn and Graubard, 1995), as result of reduced degrees of freedom for the variance 

estimation. See also Raj (1968, Chapter 9) for some discussion on the relationship between the 

stability of a variance estimator and the number of degrees of freedom involved. Moreover, 

A A2 

the cvs for both vare (flML) and vare (flCLS) appear to have a slight tendency of increasing with 
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larger impacts of clustering. This pattern however cannot be observed for the coefficient of 

variation of methods that do not account for clustering, which tend to have their variance 

reasonably stable with inflations in (j"~ • 

Table 7.2 includes results that were produced when considering msim =47 and nt' = 15, 

and different choices for (j"~ • 

reI bias cv(var~)) 
Estimator 

(J"~=0.15 (J",~ = 0.45 (J",~ = 0.75 (J"~ = 0.15 (J",~ = 0.45 (J"~ = 0.75 

f, ) 
yare o-,~) -0.39%NS -7.75% -11.43% 14.07% 14.27% 14.54% 

Yar"l ElML 
yare 0-;) 1.78%NS _2.44%NS _0.30%NS 8.54% 8.54% 8.59% 

var,,( ~~LS) 
yare 0-:) -1.54%NS -8.96% -12.47% 10.71% 11.14% 11.37% 

yare 0-;) -5.18% -10.25% -7.14% 5.39% 5.54% 5.47% 

vararif( ~~iLS ) 
yare 0-:) -1.51 %NS -9.07% -12.60% 14.13% 14.34% 14.61 % 

yare 0-;) -4.14% -9.20% -6.01 % 8.62% 8.70% 8.69% 

yar'(~ML ) 
yare 0-,;) 0.27%NS -4.58% -3.55% 24.65% 25.41% 26.85% 

yare 0-;) 2.53%NS -2.35%NS 0.99%NS 22.01% 21.86% 21.98% 

var,.( ~~LS) 
Yar(o-,; ) -0.85%NS -6.02% -4.91% 24.78% 25.51% 27.00% 

yare 0-;) -3.48% -9.13% -4.80% 22.33% 22.24% 22.43% 

NS denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.2 - Evaluation of var(Q) considering m sim = 47 and nym = 15. 

Under the current considered simulation situation, with 15 secondary sampling units 

selected from each primary sampling unit, we may again note that methods that do not take the 

sampling scheme into account generally underestimate the variance, especially for larger 

values of (j"~ , i.e. for larger impacts of clustering. Once more, the naive variance estimation 

method for QML appear not to be very sensitive to small impacts of clustering, even though for 

larger values of (j"~ this method behaves very similarly to other methods that do not consider 

the sampling design, at least for var( a-~) . 

Variance estimation methods that take the sampling scheme into account tend to lead to 

noticeable improvements in terms of relative bias when compared to methods that ignore the 

sampling scheme characteristics, especially for (j"~ = 0.45 and (j"~ = 0.75. These methods 

under the current situation, distinctively from the previous considered scenario, do not appear 
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to be clearly sensitive in tenns of bias to increases in ()~. Moreover, we may observe again 

here that methods that consider the sampling design presented larger variance than the 

remaining methods and that those variances seem to have a slightly tendency of increasing 

with larger impacts of clustering, at least for var( 8,~) . 

Table 7.3 includes results that were produced when considering ms;m = 47 and reducing the 

number of selected SSUs per cluster to nt = 10, and different choices for ()~. From this 

table onwards we shall neither report nor make any further detailed comments on simulation 

results for variance estimation methods that do not account for the sampling design as results 

follow a similar pattern ofthose presented in Tables 7.1 and 7.2. 

reI bias cv(var~)) 
Estimator 

(j~ = 0.15 (jl~ = 0.45 (j~ = 0.75 (jl~ =0.15 (j~ = 0.45 (j~ = 0.75 

yar,( ~ML) 
Yar(o-,; ) -2.22% NS -2.09% NS -5.10% 26.25% 27.21% 28.13% 

yare 0-;) -0.56% NS -0.51% NS 1.01% NS 22.37% 22.44% 22.45% 

varc( ~~LS ) 
yare 0-:) -4.00% -3.64% -5.98% 26.50% 27.35% 28.24% 

yare 0-;) -8.32% -9.09% -8.17% 22.76% 22.79% 22.81% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.3 - Evaluation of var(~) considering ms;m = 47 and nt = 10. 

Under the present scenario, considering simulation with 470 cases, variance estimation 

methods that account for the sampling scheme generally led to appreciable improvements in 

tenns of relative bias when compared to methods that ignore the sampling scheme 

characteristics. In fact, we may also observe here that the variance estimator for ~ML had an 

~2 

evidently better perfonnance in tenns of bias than those for fiGLS ' especially when estimating 

These variance estimation methods under the complex survey approach have again not 

shown a clear tendency of a relative bias inflation with increases in ()~, although in tenns of 

variance we may notice here that these methods appear to have a slightly trend of increasing 

their cvs with larger impacts of clustering. 

Furthennore, these methods had a larger variance than the methods that do not take the 

sampling design into account, as under all the scenarios considered later in this chapter. For 
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this reason we shall not make any further comments in this section on this specific aspect of 

the simulation results. 

Table 7.4 includes results that were produced when considering msim = 47 and nt = 5, 

and again different choices for ()~ . 

reI bias cv(yar~)) 
Estimator 

0"~=0.15 O"~ = 0.45 O"~ = 0.75 2 
Ury = 0.15 O",~ = 0.45 O"~ = 0.75 

Yar, ( ~Ml.) 
yare o-~) -2.54%NS -3.92% -6.55% 30.56% 31.46% 32.25% 

yare o-\~) -2.93% -2.82% -1.19%NS 24.08% 23.96% 24.09% 

ya~( ~~LS) 
yare o-~) -4.69% -6.24% -9.07% 30.77% 31.67% 32.40% 

yare 0-:) -17.42% -16.77% -16.32% 24.55% 24.47% 24.40% 

NS denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.4 - Evaluation of var(~) considering msim = 47 and nt = 5. 

Note that we are still evaluating situations with a sampling design with a 'large' number of 

PSUs, but now with a limited number of SSUs selected per cluster and therefore a sample size 

reduced to 235. Under this scenario, only the variance estimator that accounts for the sampling 

scheme for ~ML has led to noticeable improvements in terms of relative bias when compared 

~2 

to methods that ignore the sampling scheme characteristics. Variance estimators for fiGLS' 

specifically for var( 8~), presented very poor bias results. Therefore, again we may note that 

~ ~2 

the variance estimator for fiML had a better performance in terms of bias than those for fiCLS • 

Once more the two considered variance estimation methods have not shown a very 

obvious trend of a relative bias increase for larger (}1~' and we found that these methods may 

have a slightly tendency of inflating their cvs with larger impacts of clustering. 

Table 7.5 includes results that were produced when considering msim = 20 and nt = nt*, 
and different choices for ()~ . 
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Estimator 
reI bias cv(var~)) 

0"~=0.15 O"~ = 0.45 0",: = 0.75 u~=0.15 O"~ = 0.45 
2 

O"~ = 0.75 

vaI;( ~ML ) 
var(a~ ) -3.39% -3.91% -l.78%NS 37.71 % 40.01% 42.83% 

var(a;) -0.49%NS -1.68%NS -0.40%NS 35.23% 35.62% 35.49% 

var,( ~~LS) 
var(a~) -4.80% -5.05% -3.01% 37.97% 40.07% 42.90% 

var(a;) -8.06% -10.28% -8.75% 35.79% 36.19% 36.09% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.5 Evaluation of var(~) considering mSim = 20 and nt = nt'. 

Notice that the number of selected PSUs is now reduced to 20, but the number of SSUs 

selected per cluster is equal to the cluster size in the original BHPS subset. Under this 

situation, the variance estimators that take the sampling scheme into account for both flML and 

~2 

flGLS have led to marked betterments in terms of relative bias when compared to the classic 

methods and ADF methods that ignore the sampling scheme characteristics. 

Again the considered variance estimation methods have not shown a very evident trend in 

the relative bias with increases in ()~, although differently from previous results there appears 

to be a trend in the opposite direction, i.e. of the bias to decrease with an inflation in the 

impact of clustering. Furthermore, we may observe more clearly now that these methods have 

a some tendency of having their cvs increasing with larger O"~ • 

Table 7.6 includes results that were produced when considering msim = 20 and nt' = 15, 

i.e. 300 cases, and again different choices for ()~ . 

rei bias cv(var~)) 
Estimator 

0"~=0.15 O"~ = 0.45 O"~ = 0.75 u~ = 0.15 0",: = 0.45 O"~ = 0.75 

(. ) var(a~) -5.17% -5.25% -4.69% 38.07% 39.03% 40.75% 
var'l!ZML 

yare a;) -1.54%NS -0.69%NS -0.49%NS 33.55% 33.79% 34.44% 

var, ( ~~[:> ) 
var(a~) -7.31% -7.60% -6.55% 38.42% 39.17% 40.83% 

var(a;) -14.17% -12.87% -12.23% 34.26% 34.39% 35.00% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.6 - Evaluation of var(~) considering m sim = 20 and nt = 15. 
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A A2 
Variance estimators that take the sampling scheme into account for both fl.ML and fL GLS 

have generally led to noticeable improvements in terms of relative bias when compared to 

A2 
methods that ignore the sampling scheme characteristics. Variance estimators for fL GLS ' 

specifically for var( &;), presented inadequate relative bias results. In consequence, we may 

observe that the variance estimator for ~ML had a better performance in terms of bias than 

A2 

those for fLGLS • 

Again the two considered variance estimation methods have generally not shown a very 

obvious trend of a relative bias increase for larger a~, and we found that these methods may 

have a slight tendency of inflating their cvs with larger impacts of clustering. However, we 

may note that, for var(8;), there may be a trend of varJ~ML) to decline with rises in the 

clustering impacts. 

Table 7.7 includes results that were produced when considering m sim = 20 and n~im = 10, 
.1 

and various choices for a~ . 

reI bias 
Estimator 

cv(yar~)) 

()~ = 0.15 ()~ = 0.45 ()~ = 0.75 (}7~ = 0.15 ()~ = 0.45 ()~ = 0.75 

yare ( ~Mi.) 
yar(a: ) -7.90% -8.37% -4.70% 40.65% 41.57% 42.69% 

var(a;) -0.79%NS -3.30% -0.87%NS 34.49% 34.91% 34.69% 

yarC(~~LS ) 
yar(a: ) -11.12% -10.80% -7.68% 41.07% 42.00% 43.04% 

var(a;) -17.08% -18.17% -17.58% 35.22% 35.55% 35.29% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.7- Evaluation of var(~) considering m sim = 20 and nt = 10 . 

Note that the number of SSUs selected per cluster is now reduced to 10 and consequently 

the sample size decreases to 200. Under this situation, only the variance estimator that 

accounts for the sampling scheme for ~ML has generally led to noticeable improvements in 

terms of bias when compared to the classic variance estimation methods. Variance estimators 

A2 
for fl.GLS presented very poor bias results. 
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Once more the two considered vanance estimation methods have not shown a very 

obvious trend of a relative bias increase for larger (j~. If there is a tendency, it is in the 

opposite direction. Again, it appears that these methods may have a marginal trend of 

increasing their cvs for larger impacts of clustering. 

Table 7.8 includes results that were produced when considering msim = 20 and nsim = 5 
.1 ' 

and different choices for (j~ . 

reI bias cv(yar~)) 
Estimator 

0"~=0.15 O"~ = 0.45 O"~ = 0.75 O",~ = 0.15 O",~ = 0.45 
2 

O"ry = 0.75 

yar,( ~ML) 
yare o-~) -8.75% -8.05% -9.14% 48.44% 48.26% 50.12% 

yare 0-;) -2.45%NS -4.51% -4.41% 37.13% 36.45% 36.85% 

Yar,( ~~LS) 
yar(o-~) -13.69% -12.01% -13.70% 48.82% 48.79% 50.75% 

yare 0-;) -30.50% -31.03% -30.08% 38.28% 38.01% 38.30% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.8 - Evaluation of var(Q) considering msim = 20 and nt = 5. 

The number of SSUs selected per cluster is now further reduced to 5 and consequently the 

sample size decreases to 100 cases, which is the smallest n considered so far in this simulation 

study. Under the current scenario, again only the variance estimator that accounts for the 

sampling scheme for QML has generally led to some improvements in tenns of bias when 

compared to the classic variance estimation methods. The achieved gain in bias reduction is 

however reduced here if compared to previous considered situations. Note that variance 

A2 
estimators for both (leLs presented inferior bias results. 

The evaluated variance estimation methods have not shown now any evidence of a 

tendency of a relative bias increase for larger (j~. Distinctively from previous results we may 

not observe any obvious trend of an increase in the cvs for larger impacts of clustering. 

Table 7.9 includes results that were produced when considering msim = 15 and nt = nt* 
and distinct choices for (j~ . 
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reI bias cv(var~)) 
Estimator 

(J7~ = 0.15 (J~ = 0.45 (J~ = 0.75 2 (J7~ = 0.45 
2 

(J1] =0.15 (J~ = 0.75 

var, ( ~ML) 
var(a;) -5.07% -4.03% -7.84% 44.25% 46.94% 49.91% 

yare a;) -1.95%NS -1.75%NS -2.54%NS 41.64% 42.33% 41.95% 

va~( ~:LS) 
var(a:) -6.60% -5.67% -9.23% 44.34% 47.03% 49.86% 

var(a:) -12.29% -11.50% -12.43% 42.60% 43.04% 42.40% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.9 - Evaluation of var(~) considering msim = 15 and nym = nt'. 

Notice that the number of selected PSUs is now reduced to 15, but the number of SSUs 

selected per cluster is equal to the cluster size as for results presented earlier in Table 7.5. 

Under this situation, the variance estimators that take the sampling scheme into account for 

A A2 
both fiML and fiGLS have led to some marked gains in terms of bias when compared to the 

classic methods and ADF methods that ignore the sampling scheme characteristics. Variance 

A2 
estimators for fiGLS again presented poor bias results. 

Again the considered variance estimation methods have not shown a very evident trend in 

the relative bias with increases in O"~ . Moreover, we may notice that these methods have some 

tendency of having their variances to be inflated with larger (J~ • 

Table 7.10 includes results that were produced when considering msim = 15 and n;lill = 15, 

and different choices for O"~ • 

reI bias cv(var~)) 
Estimator 

(J~ = 0.15 (J~ = 0.45 (J~ = 0.75 (J~ = 0.15 (J~ = 0.45 (J~ = 0.75 

var, ( ~ML ) 
var(a:) -4.90% -3.68% -3.88% 44.79% 45.31% 48.16% 

yare a;) -2.07%NS -2.96% -2.47%NS 39.99% 39.53% 39.00% 

va~( Q:LS) 
var(a~) -7.89% -5.04% -6.48% 45.12% 45.80% 48.38% 

var(a;) -17.09% -18.63% -18.28% 41.12% 40.23% 40.08% 

NS - denotes 'absolute bias not significantly different from zero at 95% level'. 

Table7.1O-Evaluationofvar(~) considering m sim =15 and nym =15. 
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Under this scenario, variance estimators that account for the sampling design for ~ML and 

~2 

f!..GLS have led to some noticeable improvements in terms of bias when compared to methods 

that ignore features of the sampling scheme. Variance estimators for ~~LS' when considering 

var( 8~), presented very poor bias results. Therefore, again we may note that the variance 

~ ~2 

estimator for f!..ML led to better results than those for f!..GLS. 

Once more the evaluated variance estimation methods have not shown a very obvious 

trend of a relative bias increase for larger CT~, and we found that these methods may have 

some tendency of inflating their cvs with larger impacts of clustering. 

Table 7.11 includes results that were produced when considering m sim = 15 and n~im = 10, 

and different choices for CT~ . 

reI bias cv(var~)) 
Estimator 

(J",~ = 0.l5 (J"~ = 0.45 (J",~ = 0.75 (J"~ = 0.15 (J"~ = 0.45 (J",~ = 0.75 

var, ( ~ML ) 
yare 0-:) -5.48% -6.11% -4.87% 47.86% 47.80% 50.19% 

yare 0-;) -3.41 % -2.68%NS -1.38%NS 41.05% 40.43% 40.87% 

var, ( ~~LS) 
yare 0-:) -9.26% -9.63% -8.64% 48.57% 48.09% 50.85% 

yare 0-;) -23.34% -24.21 % -21.92% 42.07% 41.22% 41.86% 

NS denotes 'absolute bias not significantly different from zero at 95% level'. 

Table 7.11 - Evaluation of var(~) considering msim = 15 and n;irn = 10. 

Under the current considered situation, the number of SSUs selected per cluster is now 

reduced to 10 and therefore the sample size is diminished to 150. We may observe that 

~ ~2 

variance estimators for f!..ML and f!..GLS have led to some gains in bias when compared to classic 

~2 

methods. Variance estimators for f!..GLS' when considering var( 8~), produced nevertheless 

very large relative bias results. 

We cannot observe a very clear tendency of an increase in bias for larger impacts of 

clustering under this scenario. If there is a trend, it is in the other direction. Furthermore, we 

may not notice here any evident trend of an increase in the cvs for larger impacts of clustering. 
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Table 7.12 includes results that were produced when considering msim = 15 and nt = 5, 

and once more different choices for O"~ • 

reI bias cv(var~)) 
Estimator 

CT~ = 0.l5 CTl~ = 0.45 CT~ = 0.75 CTl~=O.15 CTl~ = 0.45 CT~ = 0.75 

var, ( QMf,) 
var(a~) -12.02% -12.78% -14.03% 55.57% 57.32% 58.49% 

yare a;) -4.64% -4.94% -5.26% 43.06% 42.49% 43.26% 

va~( Q~LS ) 
var(a~) -16.84% -17.45% -18.82% 56.55% 58.42% 59.75% 

yare a;) -35.69% -37.07% -37.11% 44.73% 44.35% 45.37% 

Table 7.12 - Evaluation of var(~) considering m sim = 15 and n 5im = 5 . 

The number of SSUs selected per cluster is now further contracted to 5 and therefore the 

sample size is reduced to 75 cases, which shall be the smallest n considered in this second 

simulation study. Under this scenario, only the variance estimator that accounts for the 

sampling scheme for ~ML has generally led to some improvements in terms of bias when 

compared to the classic variance estimation methods. This gain in bias terms is, as for results 

of Table 7.8, albeit reduced when compared to the majority of the previous considered situations. 

~2 

Variance estimators for flGLS presented considerably poor relative bias results. 

The evaluated variance estimation methods have shown now some evidence of a tendency 

of a relative bias increase for larger O"~, and also some trend of increases in variance for larger 

impacts of clustering. 

7.4 Further discussion 

The present section illustrates some of the results presented in the previous section. It is our 

aim here to highlight the general behaviour of the proposed variance estimation methods that 

account for the complex sampling scheme. We shall again consider different (i) sampling 

design characteristics, (ii) sample sizes, and (iii) clustering impacts. 

~ ~2 

In Figure 7.1, we shall initially consider simulation results for vare (flML) and vare (flGLS) , 

which shall be denoted by "var for ML" and "var for GLS2", respectively. More specifically 

we shall only consider relative bias results for var(6\~). Furthermore, note that we shall adopt 

"+" to denote situations where the sample size is variable, i.e. in scenarios where the number 

SSUs selected per cluster is equal to the cluster size in the original BHPS subset. 
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Figure 7.1 - Relative bias for vare (flML) and vare (flGLS) . 
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By looking at Figure 7.1 above we may draw vanous observations. An immediate 

conclusion is that, interestingly, both methods above evaluated follow, for every pair of 

graphs, a very similar pattern but with distinct bias levels, i.e. with varc(~ML) presenting 

~2 

lower bias in all situations. Furthennore, vare (flGLS) appear to be more sensitive to sample size 

reductions than vare (~ML)' As stated in the previous section, under most scenarios with 

various sampling designs and samples sizes, it is not very clear whether there is a tendency of 

an increase in bias for larger impacts of clustering, although this may be true for some 

situations. The method Vare(~ML) produces reasonably 'good' bias results in all situations 

~2 

with sample sizes of 100 or more, while varc(flGLS) generally required n to be at least 150. 
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In Figure 7.2, we shall present simulation results for approximately 95% simulation 

confidence intervals for the absolute bias, given by (7.5), for the variance estimators 

A ~2 2 
Vare(flML) and vare(flGLS). We shall only contemplate results for var(G,;) and (J''l = 0.15. 
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Figure 7.2 - 95% simulation confidence intervals for bias for yare (fl ML ) and vare (flGLS) . 

The graphs included in the figure presented above agree with those in Figure 7.1, as these 

~ ~2 

indicate that vare (flML) and vare (flGLS) appear to have very similar absolute bias patterns for 

different sampling designs and sample sizes, although vare (ilML) presents lower bias in all 

situations. Moreover, we may observe similar levels of bias for both estimators in scenarios 

with samples of size of approximately 200 or more. 
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In Figure 7.3, we shall consider coefficient of variation simulation results for varcCfZML) 

~2 

and vare (fZGLS) . Again we shall only consider results for var( a,~) . 
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Figure 7.3 - Coefficient of variation for VareCfZML) and varJ~GLS)' 

By examining Figure 7.3 we may observe that both evaluated methods have virtually the 

same coefficient of variation in most of the situations considered. If there is any difference 

between them, it occurs in situations with sample sizes of around 200 or less, with vare (fZML) 

having slightly smaller cvs. In general, as noticed in the previous section, it appears that in 

most situations there is some tendency of increases in variance for larger values of ()~ . 
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7.5 Concluding remarks 

This chapter included the features and the essential results of a second simulation study which 

had primarily the objective of assessing variance estimation methods we propose in Chapter 6. 

In Section 7.3 the methods were compared mainly in terms of their bias and variance, for 

different designs and considering several different sample sizes. Note that the proposed 

methods were also contrasted with classic variance estimation methods and with distribution 

free methods that do not account for the sampling scheme. Different choices for ()~ were 

considered in order to allow us to assess the effects of different impacts of clustering on the 

considered variance estimation procedures. Some illustrations were provided in Section 7.4, 

where further considerations were made. 

From all the observations already presented in this chapter, we may draw some 

conclusions. In summary, simulation results included here suggest that methods that do not 

take the sampling scheme into account underestimate the variance, in some situations 

seriously. Additionally, the underestimation has a tendency to increase rapidly for larger 

impacts of clustering. Nevertheless, the naIve variance estimation method for flML appears to 

be not very sensitive to small impacts of clustering, at least in situations with sample sizes 

larger than around 200 cases. The ADF variance estimators for the GLS type point estimators, 

that do not consider the sampling design, seem to present some advantages over naIve 

variance estimators in terms of bias, at least for smaller values of ()~ . 

In essence, both methods that allow for clustering and take the sampling design into 

account tend to lead to noticeable improvements in terms of relative bias when compared to 

methods that ignore the sampling scheme characteristics, at least for situations where the 

sample size is over around 200 cases. These methods presented larger values of coefficient of 

variation when compared to classic variance estimation methods. Furthermore, for some 

scenarios the variances appear to have somewhat a trend of increasing with larger impacts of 

clustering. 

Certainly the most interesting result reported in the current chapter is the difference in 

A2 
performance when comparing results for vare (flGLS) ' extended in Chapter 6, with those for 

varC(~ML)' proposed in the previous chapter following Binder (1983)'s approach. The 

A2 
variance estimator proposed under the complex survey approach for flGLS presented poor bias 

results in situations in samples sizes less than around 200 cases. The variance estimator for 
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~ ~2 

fiML had an evidently better perfonnance in tenns of bias than those for fieLs in all considered 

situations, and led to reasonably 'good' results in all situations with sample sizes larger than 

100. 

In tenns of variance, both estimators that take the sampling design into account performed 

very similarly, with virtually the same coefficient of variation in most of the simulation 

scenarios considered. 

~3 ~3 

Some simulation results have also been produced for varn (fieLs ), varadj (fieLs ), and 

~3 

vare (fieLS ), although those shall not be reported in this thesis. Those results were in general 

~2 

similar to the ones calculated and presented in the current chapter for varn (fi eLs ) , 

~2 ~2 

varadj (fieLs) , and vare (fieLS) ' respectively. Moreover, by comparing the results for the three 

~3 

considered variance estimation methods for fieLS we could draw generally very similar 

conclusions to those considerations presented in this chapter when perfonning comparisons 

~2 A3 
among variance estimation methods for fieLS' In addition, vare (fieLs) have also tended to 

~2 

present poor bias results in situations with 'small' samples sizes, similarly to vare (fieLs) . The 

~3 

estimator fieLS is given by (4.48b), in Chapter 4, Section 4.4, Sub-section 4.4.2. 

We acknoledge here that we have assessed in this simulation study variance estimators of 

estimators of variance components in a context of random effects models. We have not 

checked whether or not results would have been different when evaluating variance estimators 

of factor loadings and regression coefficients. 

Note that an alternative variance estimation method for GLS type point estimator III 

~2 ~3 

situations where vare (fieLs) and vare (fieLs) did not perform very well could be a replication 

method, as for example the Jackknife method that was described earlier in Chapter 2, Section 

2.5, Sub-section 2.5.2. An evaluation of this approach could be included in a potential 

extention ofthe current simulation study. 

Moreover, an interesting exercise could be to compare the results presented in the current 

chapter, and those included earlier in Chapter 5, with results produced by adopting estimation 

procedures that are currently implemented in comercial softwares, for example LISREL 

(Joreskog and Sorbom, 1997) and Mplus (Muthen and Muthen, 2005). This has not been done. 
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Chapter 8 

Conclusions 

We shall attempt to summarise in this final chapter the principal results and conclusions 

included in this doctoral dissertation. We shall emphasise here the main achievements of the 

research project. Potential further research topics shall also be addressed. 

This thesis consists of investigating methods for the analysis of longitudinal complex 

survey data, with the analytic use of sample surveys as the main focus of interest. Specialised 

statistical tecp..niques are required when analyzing longitudinal data, as the inter-correlation 

among observations on one subject should be accounted for. Beyond that, complex sample 

schemes may additionally cause correlation structure among observations. 

We may subdivide this dissertation in three major areas of study: (a) impacts of complex 

sampling schemes on the analysis and modelling of longitudinal survey data (Chapters 2 and 

3); (b) covariance structure models point estimation (Chapters 4 and 5); and (c) variance 

estimation and covariance structure model fitting assessment (Chapters 6 and 7). 

Statistical practitioners and longitudinal survey data users generally utilise standard 

statistical tools, which in most situations do not consider the characteristics of the complex 

sample schemes. In particular, part (a) of the thesis has answered the following general question 

of interest, to our knowledge for the first time: what are the possible impacts of complex 

sampling designs on longitudinal analysis? 

Therefore, this thesis initially reviews estimation procedures for longitudinal regression 

model parameters considering both the classical (Liang and Zeger, 1986; Zeger and Liang, 

1986; Zeger, Liang and Albert, 1988; Jones, 1993; and Diggle et aI., 2002) and the complex 

survey data contexts (Kish and Frankel, 1974; Fuller, 1975; and Skinner, 1989a). The pseudo 

maximum likelihood method (PML) for estimation of longitudinal model parameters 

allowing for complex designs is discussed. Furthermore several methods for variance 

estimation are examined, including linearization (Binder, 1983; Rust, 1985; Skinner, 1989a; 

and Shah et aI., 1995) and jackknife (Krewski and Rao, 1981; Rust, 1985; and Shah, 

Barnwell, and Bieler, 1997) approaches. Issues regarding design effects (Kish, 1965) and 



misspecification effects (meffs; Skinner, 1989b) are also addressed considering the 

longitudinal context. 

An empirical investigation using longitudinal survey data from the British Household 

Panel Survey (BHPS) is executed applying methods mentioned above. The main 

characteristics of the BHPS data set (Berrington, 2002) and of the BHPS sampling design 

(Taylor et a!., 2001) are detailed. Model fitting results are produced considering two different 

setups, allowing for: (i) longitudinal structure and survey weights, original clustering, and 

stratification; and (ii) longitudinal structure and a new aggregated clustering, treating the 

weights as constant and ignoring stratification. 

Variance effects of clustering for longitudinal studies are then identified. The empirical 

results indicate that variance effects of clustering could be stronger for longitudinal studies 

than for cross-sectional studies, at least for certain kinds of longitudinal analysis. The main 

argument for that result is that the random cluster effects could be more correlated over the 

time than the random individual effects, suggesting that the cluster units could possibly be 

manifesting homogeneity over time. Our theoretical argumentation is also supported by the 

fact that attitude scores of individual women are affected both by measurement error and genuine 

changes in attitudes. 

The results of our empirical study provide one specific achievement of this dissertation, 

which could be valuable for longitudinal data analysts, such as demographers, sociologists 

and epidemiologists. In general the evidence presented in Chapter 3 indicates that we should 

recognise the importance of taking the survey sampling design into account when analysing 

longitudinal survey data. 

Nevertheless, we should stress that the patterns discovered for mejJs in these kinds of 

analyses may well not be extended to other kinds of longitudinal analyses. To conjecture 

about the class of models and estimators for which the patterns observed in part (a) of this 

thesis might apply, we suggest that inflated misspecification effects for longitudinal analyses 

will occur when the longitudinal design allows temporal 'random' variation in individual 

responses to be extracted from between-person differences and thus to decrease the 

component of standard errors due to these differences, but provides less 'explanation' of 

between cluster differences, so that the relative influence of this component of standard errors 

mcreases. 

Further research could also be performed for better understanding of this phenomenon. As 

a possible topic for further research, we could evaluate the variance effects of clustering 
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considering the use of data from other longitudinal studies. One candidate survey could be 

the Brazilian Monthly Labour Force Survey (BMLFS). This is a large scale survey carried 

out by the Brazilian National Bureau of Statistics (IBGE). The BMLFS has as main objective 

to estimate level and change in employment, unemployment and other labour force 

characteristics. It covers 6 Brazilian metropolitan areas (approximately 25% of Brazilian 

popUlation). Note that this is not actually a panel survey. In fact, that survey adopts a 4-8-4-

rotation scheme with a sample overlap of 75% each moth. Brazilian users of that data have 

been pointing out some current problems, as for example the inexistence of any treatment for 

non-response, and the lack of use of the survey repetition for improving estimates, i.e. each 

month has been treated as a cross-section survey. 

Following the findings presented in part (a), it has also been a purpose of this thesis to 

propose statistical methods for the analysis of longitudinal data collected under complex 

sampling designs. Part (b) of this dissertation discusses mainly point estimation procedures 

for covariance structure models parameters. A weighted estimation procedure (Sw) is 

proposed for estimating the population covariance matrix 2:, considering covariates. 

Additionally, a review of established variance estimation methods for i: is carried out, while 

further developments on this issue when considering the complex survey approach are also 

accomplished mainly by adopting Taylor expansion techniques in order to modify or to 

extend asymptotically distribution-free (ADF) methods. 

Note that the use of covariance structure models is emphasised in the research project 

because that approach includes a wide range of modelling techniques, which have a potential 

use, especially in the social sciences, for the structural analysis of covariance matrices. 

Classical estimation methods such as unweighted least squares, generalised least 

squares, and maximum likelihood (ML) are discussed. These methods are then modified and 

unweighted least squares and generalised least squares under the complex survey approach 

methods are proposed by considering the weighted sample covariance matrix SW. In addition, 

a pseudo maximum likelihood for covariance structure models is also derived via 

maximisation of the pseudo log likelihood function. 

A possible area for further research, when considering part (b) of the thesis, is the 

extension of the restricted (or modified) maximum likelihood (REML) procedure. Patterson 

and Thompson (1971) introduced this estimation method originally for estimation of variance 

components in generalised linear models. Note that the loss in degrees of freedom, which is 

result of the estimation of the fixed effects, is taken into account by the REML (Harville, 
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1977; and Smyth and Verbyla, 1996). This issue is not considered under the traditional ML 

approach, which makes the estimators for the variance components, according to Robinson 

(1987) biased downwards, mainly when the number of fixed parameters is 'large' relative to 

the sampling size. The REML generally produces less biased estimates of the variance 

components than the ML method (Jones, 1993; Hocking, 1985; and Diggle at a!., 2002). 

Following the pseudo maximum likelihood method discussed in this thesis a refinement for 

the REML approach could be proposed for situations where complex survey data is 

considered. Note that Robinson (1987) provides a brief discussion about the use of variance 

components estimation techniques, including REML, to the estimation of standard errors in 

complex surveys. 

An initial simulation study is carried out in this research project with the main objective 

of examining the statistical properties of the point estimation procedures proposed in this 

thesis. Moreover, the properties of the proposed methods are compared with those of the 

classic methods also discussed in this dissertation. Situations with clustered and non

clustered data are considered, alongside two different distributions (normal and t) and various 

alternative sample sizes. 

The principal conclusions we may extract from the simulation results are: (i) overall most 

of the proposed methods have satisfactory performances in terms of bias and variance when 

compared to the classical methods; (ii) ADF methods do not always perform as we expected 

when dealing with departures from normality assumptions, although frequently these were 

the most efficient methods and generally less sensitive to clustering; (iii) ADF methods 

should be adopted carefully in situations where only samples of small size are available 

(agreeing with Bollen, 1989; Satorra, 1992; Yuan and Bentler, 1997b, and Olsson, Foss, and 

Troye, 2003, for example); (iv) ADF methods are the ones with the best performance in a 

situation with stronger departures from the normality conditions; and (v) maximum 

likelihood and pseudo maximum likelihood estimators have in general produced satisfactory 

performance in terms of bias and variance, even in situations where the normality assumption 

was violated (agreeing with Satorra and Bentler, 1986). 

Part (c) of this thesis considers methods for variance estimation for generalised least 

squares and (pseudo) maximum likelihood point estimators, initially in the classical 

independent and identically distribution approach, both under normality assumptions and 

under departures from normality conditions. 

Moreover, under the complex survey data approach, we extend in this research project 

ADF variance estimation methodology developed by Skinner (1989a), followed by Satorra 
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(1992), Muthen and Satorra (1995), and Skinner and Holmes (2003). In addition, we propose 

a method for estimating the asymptotic covariance matrix of the PML point estimator in the 

context of covariance structure models, by following the approach of Binder (1983). 

Furthermore, testing techniques for structural models for covariance matrices are also 

reviewed in the classical context, including goodness of fit tests, test statistics for comparing 

nested models and goodness of fit indices. 

We also consider methods that work under normality assumptions and methods that allow 

for departures from normality conditions, including distribution free methods, and scaled and 

adjusted test statistics. 

Model testing is an important step in any model fit procedure. According to Menard 

(1991), in longitudinal models there is an increase to problems comparably to cross-sectional 

models in this regard. Eltinge (1999) acknowledged the need to improve and to develop new 

techniques for model assessment and diagnostic in the complex survey data context. Classic 

measures that are frequently used in model testing are appropriate for situations where data is 

obtained from a simple random sampling design. 

Therefore, we propose some new developments on model fitting statistics when working 

with longitudinal data in a complex survey design framework. We initially modify the root 

mean-square residual measure proposed by Joreskog and Sorbom (1989). Moreover, 

following Rao and Scott's conceptions (Rao and Scott, 1979; followed by, for example, Rao 

and Scott, 1981; Skinner, 1989a; and more recently, Rao and Thomas, 2003), we propose 

modifying the Wald goodness of fit test in the context of models for covariance structures. 

Note that our proposition is equivalent to modifying the scaled test statistics developed by 

Satorra and Bentler (1986) and Satorra and Bentler (1988). Furthermore, we also propose a 

modification for the Wald significance test for nested hypothesis, following an approach 

suggested by Skinner (1989a, Section 3.4). Goodness of fit indices proposed by Joreskog and 

Sorbom (1989) are also modified in order be utilised in the complex survey data context. 

A second simulation study is performed with the principal objective of evaluating the 

statistical properties of the variance estimation procedures discussed and proposed in this 

dissertation. Proposed methods are compared with classic variance estimation methods and 

with distribution free methods that do not account for the sampling scheme. Different impacts 

of clustering on the variance estimation procedures are considered, alongside different 

specifications for the sampling design and consequently several different sample sizes. 
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Simulation results suggest essentially that: (i) methods that do not take the sampling 

scheme into account underestimate the variance, in some situations very gravely; (ii) 

underestimation tend to increase rapidly with inflations in the impacts of clustering; (iii) ADF 

methods that allow for clustering and take the sampling design into account tend to lead to 

noticeable improvements in terms of relative bias when compared to methods that ignore the 

sampling scheme characteristics, in situations where the sample size is over around 200 

cases; and (iv) the variance estimator we propose for estimating the variance of the maximum 

likelihood point estimator has an evidently better performance in terms of bias than those 

proposed for estimating the variance for the generalised least squares (GLS) estimators. 

Another suggestion for some further investigation could be evaluating the behaviour of 

alternative variance estimation methods, such as the Jackknife replication method, for GLS 

type point estimators in situations where the proposed methods do not perform very well. 

Moreover, further research could still involve evaluating the consequences of using 

standard model fit test techniques without consideration to the complexity of the sample, by 

extending for example the second simulation study performed in this dissertation. 

Notice that a substantial portion of the research performed in both parts (b) and (c) of 

this dissertation involves further investigation and further evaluation of ADF methods when 

adapted to the complex survey data context. Another potential area for further research is 

thus to investigate the reasons why those methods did not perform relatively well in some 

situations considered in both simulation studies. Certainly this is a topic that goes beyond the 

purposes of the present thesis. 
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Appendix A 

Gender role attitude statements 

Table A.I presents the set of statements concerning the family, women's roles, and work 

out of the household, included in waves one, three, five, seven and nine. 

A pre-school child is likely to suffer if his or her mother works 

2 All in all, family life suffers when the woman has a full-time job 

3 A woman and her family would all be happier if she goes out to work 

4 Both the husband and wife should contribute to the household income 

5 Having a full-time job is the best way for a woman to be an independent person 

6 A husband's job is to earn money; a wife's job is to look after the home and family 

7 Children need a father to be as closely involved in their upbringing as the mother 

8 Employers should make special arrangements to help mothers combine jobs and childcare 

9 A single parent can bring up children as well as a couple 

Source: Benington (2002). 

Table A.I Gender role attitude statements. 

Note that the answers to these affinnations may possibly present some measurement 

error as some of the statements are very imprecise and abstract to have a standard 

interpretation (Berrington, 2002). 



Appendix B 

Evaluation of the distribution of yand 

individual profiles over time 

We provide below a brief evaluation of the distribution of the dependent variable gender 

role attitude score. Figure B.l presents histograms for that variables for waves one, three, 

five, seven and nine, respectively. 
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Figure B.l - Histo grams for y for waves 1, 3, 5, 7 and 9. 



By observing the graphs presented above we do not have enough evidence that the 

univariate marginal distributions of yare not normal appearance. However it is possible 

for variables to have normal marginal distributions but not have multivariate normal 

distribution. We may also evaluate the multivariate distribution by presenting below in 

Figure B.2 scatter plots of pairs of observations of y on different time t (Johnson and 

Wichern, 1998). 
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Figure B.2 - Scatter Plots for y. x y. , . 
-It -It 
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Figure B.2 - Scatter Plots for ~it X~it' (continued). 

If y is multivariate normally distributed we would expect to have to scatter plots above 

having elliptical appearance. By analysing Figure B.2, we cannot observe any 

characteristic that could give us enough evidence to conclude that y is not multivariate 

normally distributed. 

Moreover, we may present below a graphical display of the repeated observations for 

the response variable for each individual. 

5 
wave number 

Figure B.3 - Data on the attitude scores of 1340 women over a nine-year period. 
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On Figure B.3, lines connect the repeated observation for each woman. Note however, 

as all the observations from the adopted BHPS subset (see Chapter 3, Section 3.2, Sub

section 3.2.2) were used, it is very hard to observe individual response profiles. We shall 

represent below only a sample of 25 women selected from the original data subset, mainly 

in order to exemplify the type of pattern we may expect to observe. 

5 9 
wave number 

Figure B.4 - Data on the attitude scores of25 women over a nine-year period. 
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Appendix C 

Explicit solution for parameters when 

adopting ULSC and PML estimation methods 

and fitting a UCM model 

Assuming the model discussed in Chapter 2, Example 2.1, the TxT matrix 2:(fl) may be 

represented as 

2 2 
cyu + cyv 

2 
cy

2 + cy
2 

2:(fl) = 
cy

u u v (C.1) 

cy 2 2 2 2 
U 

CY
li 

CY
li 

+ cyv 

and 

A 2 A 2 
cyu + cyv 

i = 2:(Q) = 
A2 8 2 +82 cy

u u v 

A2 A2 8 2 +82 
CY

li 
cy

u U V 

We may expand the unweighted least squares for complex survey data fitting function 

given by (4.43b) in Chapter 4, Sub-section 4.4.1, as 

( ) 1 f 2 2]2 [ 2 2]2 [ 2 2]2 [ 2 2]2 F fl. ULSC = "2 lSw,11 - cyu - cyv + Sw,22 - cyu - cyv + Sw,33 - cyu - cyv + Sw,44 - cyu - cyv 

+ [SW,44 - cy~ - cy: ]2 }+ [SW,12 - cy~]2 + [SW,13 - cy~]2 + [SW,14 _ 0"~]2 + [SW,15 _ cy~ ]2 

+ [SW,23 - cy~ y + [SW,24 - cy~ y + [SW,25 - cy~ y + [SW,34 - cy~ y + [SW,35 - cy~ y + [SW,45 - cy~ y 
for T = 5, where Sw,tt' are elements of the symmetric matrix [SJIf' as defined in Sub-

section 4.3.1. 



The partial derivatives are 

aF(flJuLsc - S S S S S S S a 2 - - w,ll - w,22 - w,33 - w,44 - w,55 - 2 w,12 - 2 w,13 - 2Sw,14 - 2Sw,15 
au (C.2) 

- 2Sw,23 - 2Sw,24 - 2Sw,25 - 2Sw,34 - 2Sw,35 - 2Sw,45 + 25(),; + Sa; , 

and 

aF(flJuLsc - S S S S S 2 2 aa2 - - w,11 - w,22 - w,33 - w,44 - w,55 + 5au + 5av 
v 

(C.3) 

Setting (C.2) and (C.3) to zero and solving this system of two equations and two 

parameters a; and a; , we find that the solution is respectively 

and 

8;ULSC =![SWll +Sw22 +Sw33 +SW44 +SW55J , 5' , , , , 
(C.5) 

- 1~ [SW,12 + Sw,13 + Sw,14 + Sw,15 + Sw,23 + Sw,24 + Sw,25 + Sw,34 + Sw,35 + SW,45]. 

The estimators 8,;,ULS and 8; ULS may be obtained by substituting Sw for S in (C.4) 

and (C.5). 

Furthermore, analytic solutions for the pseudo maximum likelihood estimators 8; PML 

and 8; PML may also be found when assuming the model discussed in Chapter 2, Example 

2.1, with 2:(fZ) given by (C.1) and T = 5. We may expand the PML fitting function (4.63). 

We have performed this expansion with the aid of the computer software Maple version 

9.51 and shall not present detailed results here because of the long length. By taking the 

partial derivatives of F(fZ)PML with respect to a; and ()~, and then setting the two 

equations to zero solving that system. For this specific situation we have found that 8,;,PML 

and 8; PML would be also given by (C.4) and (C.5) respectively. 
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Appendix D 

Differential calculus results relevant to 

Chapters 4 and 6 

Let (see Chapter 4, Sub-section 4.4.2) 

(D.1) 

~2 

Result D.l We may obtain an expression for f!..GLSC by solving 

F(f!..)~LSC = tr{s-I . [L:(e) _ S ]. S-I . ClL:(f!..)} = o. 
Cle. w - W W Cle. 

J J 

(D.2) 

Proof. 

As both Sw and L:(f!..) are symmetric matrices, we may re-write (D. I) so that 

F(f!..)~LSC = (~)- tr[(Sw - L:(f!..))S:1 I(Sw - L:(f!..))S:I]}= (~)- tr~:1 (Sw - L:(f!..))2S:I}= 

= (~) . tr{f - 2L:(f!..)S:1 + S:I L:(f!..) 2 S:I }, 

where f denotes an identity matrix. 

We may then differentiate (D.3) with respect to f!... It follows that 

ClF(f!..)~LSC = (~) . tr{ Clf _ Cl2L:(f!..)Sw -I + ClS w -I L:(f!..) 
2 

Sw -I} = 
Cle 2 Cle. Cle. Cle. 

J J J J 

= (~) . tr{- 2 . ClS:
1 

L:(f!..) + ClS:
2 

L:(f!..) 2 } == 
2 Cle. Cle 

J J 

(D.3) 

= (~). tr{- 2S-1 • ClL:(f!..) + 2S-2L:(e). ClL:(f!..)j' = tr{s-2 L (e). ClL:(f!..) _ S-I . ClL:(f!..)} = 
2 w Cle. w - Cle. \V - Cle. W Cle 

J J J J 

= tr{rs -2 L:(e) _ S -I ]. ClL:(f!..)} = tr{[s -I L:(e) _ f] . S -I . aLe e)} 
~ w - \V Cle. w - W Cle. ' 

J J 

(D.4) 



which equals (D.2). l1li 

Moreover, let (see Chapter 4, Sub-section 4.4.2) 

A2 
We may show that rz.GLS may be obtained by solving 

by substituting Sw by S in (Do4). l1li 

Furthermore, let matrices Sw and 2:(rz.) be positive definite, and 12:(rz.~ denote the 

determinant of 2:(rz.) , and let (see Chapter 4, Sub-section 404.4) 

F(rz.)PML = tr[Sw2:(rz.t ]-log/Sw2:(rz.t / ' 

be the pseudo maximum likelihood fitting function, when ignoring the term - T in (4.62). 

Result D.2 We may obtain an expression for the ~PML by solving 

Proof. 

Let 

We may split (D.6) in two terms, 

and 

8tr[Sw2:(rz.t] 
8Bj 

81og/Sw2:(rz.t / 
8Bj 
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(D.S) 

(D.6) 



Let, 

and as 

as w = 0 
ae. ' 

J 

then 

Let, 

We may now plug (D.6) and (D.7) back in (D.6). It follows that 

aF~~PM' = tr{ Sw [[-l:~tl a!~) [l:~J-' l]} + tr{ l:(I1J-' a!~)} = 

= +~J-' a!~) + l:~)' . (-SJ l:(I1)' . a!~)} = 

= +(11)' . [ a!~) + (- s J l:~)' . a!~)]} = 

= +~)' [f + (- SJ l:~)' J a!~)}, 
which equals (D.S). In (D.S), I denotes an identity matrix. II1II 
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(D.6) 

(D.7) 

(D.S) 



Let the maximum likelihood fitting function be given by (see Chapter 4, Sub-section 

4.4.4) 

when ignoring the term - T in (4.55). 

We may show that an expression for the fl.ML may be obtained by solving 

by substituting Sw by Sin (D.6) and (D.7). l1li 

Result D.3 Note that (D.5) may be expressed as constant plus a ratio of two totals, (see 

Chapter 6, Section 6.3) 

where 

z .. = _r. _ ~ )' L:(e)-I aL:(fl.) L:(e)-I r. _ ~ ). 
Jl ~i!!:..i - ae. - ~i !!:..i 

J 

Proof. 

aF~~PM' ~ I+(et . [L(e) - SJ L(et . a!~~) } ~ 
~ Ir{ V -L(etS,J(!1t . a!~~)} ~ 

~ Ir{ [L(et - L(e)' SwL(et 1 a!~)} ~ 

~ I{ L(et' . a!~)] -Ir[ L(et SwL(e) , . a!~~)] . 
Note that 

~ W [- ( - ~ )' L:(e)-I aL:(fl.) L:(e)-I r. _ ~ )~ 
[ 

( )] 
~ i \l:i !!:..i - ae. - \l:i Pi 

_ tr L:(e)-I S L:(e)-I. aL: fl. = 1-1 J • l1li 
- ]V - ae. n 

J LWi 
i=I 
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Result D.4 When estimating of aCOV~PMJ, by assuming that the model is correct, i.e. 

that 

(D.9) 

we could define the information matrix alternatively as (see Chapter 6, Section 6.3) 

In this situation, the jkth element of I(~) is 

1(0), = tr[2:(O)-1 a2:(~) 2:(0)-1 a2:(~)] 
- Jk - aO

j 
- aO

k 
' 

and we would need to differentiate 2:(~) only once. 

Proof. 

Recall that 

and thus 

and as we assume (D.9), 
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It follows that, 

Thus, 

r(e). = tr[L:(e)-l aL:(fl) L:(e)-l aL:(fl)]. II1II 
- Jk - ae

j 
- aek 
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Appendix E 

More detailed results obtained in simulation 

study I 

Tables E.l to E.8 below provide more detailed information about the results obtained in 

simulation study I, when considering n sim = 1340 . 



tv 
tv 
tv 

parameter 

QULS 

-2 

fl GLs 

-3 

fl GLS 

-4 

fl GLs 

QML 

QULSC 

-2 

fiGLSC 

-3 
fl GLSC 

-4 

flGLSC 

flpML 

-2 
au 

-2 a v 

-2 
au 

-2 a v 

-2 
au 

-2 a v 

-2 a v 

-2 
au 

-2 a v 

-2 
au 

-2 a v 

-2 
au 

-2 a v 

-2 
au 

-2 a v 

- 2 au 

-2 a v 

-2 
au 

- 2 a v 

pop value £(0) reI bias min max 

6.744011 6.684898 -0.88% 5.728593 7.709990 

4.965116 4.968341 0.06% 4.677198 5.229038 

6.744011 6.648070 -1.42% 5.699861 7.681686 

4.965116 4.928314 -0.74% 4.642093 5.201775 

6.744011 6.703272 -0.60% 5.742010 7.724002 

4.965116 4.988362 0.47% 4.691102 5.243107 

6.744011 6.645528 -1.46% 5.641908 7.686811 

4.965116 4.928468 -0.74% 4.649028 5.197126 

6.744011 6.684898 -0.88% 5.728593 7.709990 

4.965116 4.968341 0.06% 4.677198 5.229038 

6.744011 6.721061 -0.34% 5.759628 7.798238 

4.965116 4.951611 -0.27% 4.659896 5.242011 

6.744011 6.679199 -0.96% 5.714510 7.773242 

4.965116 4.906411 -1.18% 4.614110 5.187970 

6.744011 6.741997 -0.03% 5.782132 7.830875 

4.965116 4.974265 0.18% 4.680629 5.269621 

6.744011 6.672204 -1.06% 5.686740 7.807193 

4.965116 4.901303 -1.29% 4.610579 5.185511 

6.744011 6.721061 -0.34% 5.759628 7.798238 

4.965116 4.951611 -0.27% 4.659896 5.242011 

var(e) 

0.081212 

0.008644 

0.081479 

0.008808 

0.081821 

0.008757 

0.082728 

0.009022 

0.081212 

0.008644 

0.094536 

0.009949 

0.094767 

0.010170 

0.095398 

0.010086 

0.096314 

0.01050 

0.094536 

0.009949 

cv(e) 

4.26% 

1.87% 

4.29% 

1.90% 

4.27% 

1.88% 

4.33% 

1.93% 

4.26% 

1.87% 

4.57% 

2.01% 

4.61% 

2.06% 

4.58% 

2.02% 

4.65% 

2.09% 

4.57% 

2.01% 

s.e [£(0)] 

0.009012 

0.002940 

0.009027 

0.002968 

0.009045 

0.002959 

0.009096 

0.003004 

0.009012 

0.002940 

0.009723 

0.003154 

0.009735 

0.003189 

0.009767 

0.003176 

0.009814 

0.003240 

0.009723 

0.003154 

conf. interval for £(0) 
lower bound upper bound 

6.666875 

4.962461 

6.630017 

4.922378 

6.685181 

4.982444 

6.627337 

4.922460 

6.666875 

4.962461 

6.701615 

4.945302 

6.659729 

4.900033 

6.722462 

4.967913 

6.652576 

4.894822 

6.701615 

4.945302 

6.702922 

4.974221 

6.666124 

4.934250 

6.721363 

4.994280 

6.663719 

4.934475 

6.702922 

4.974221 

6.740507 

4.957919 

6.698668 

4.912789 

6.761531 

4.980617 

6.691832 

4.907784 

6.740507 

4.957919 

mse 

0.084707 

0.008655 

0.090683 

0.010162 

0.083481 

0.009297 

0.092427 

0.010365 

0.084707 

0.008655 

0.095062 

0.010131 

0.098968 

0.013616 

0.095402 

0.010170 

0.101470 

0.014572 

0.095062 

0.010131 

Table E.1 - Evaluation of Q for UCM model, nonnally distributed errors (popUlation, replications generated by UCM model) - further results. 



parameter pop value £(0) reI bias rmn max var(e) cv{a) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
, 2 

au 6.744011 6.684080 -0.89% 5.637698 7.722812 0.082905 4.31% 0.009105 6.665870 6.702290 0.086497 

ilULS 
'2 a v 4.965116 4.969155 0.08% 4.641652 5.264862 0.010416 2.05% 0.003227 4.962701 4.975610 0.010432 

p 0.000000 -0.000190 -0.064315 0.072885 0.000537 0.000733 -0.001656 0.001276 0.000537 
'2 au 6.744011 6.646476 -1.45% 5.599646 7.688807 0.082558 4.32% 0.009086 6.628304 6.664649 0.092071 

,2 
'2 4.965116 4.933144 -0.64% 4.611927 fl GLS 

a v 5.207543 0.009920 2.02% 0.003150 4.926844 4.939443 0.010942 

p 0.000000 0.000140 -0.060618 0.058398 0.000355 0.000596 -0.001052 0.001331 0.000355 
'2 

au 6.744011 6.702699 -0.61% 5.650292 7.756588 0.082793 4.29% 0.009099 6.684501 6.720897 0.084500 
,3 '2 4.965116 4.987288 0.45% 4.644202 5.256862 0.009923 2.00% 0.003150 4.980988 4.993588 0.010415 flGLS a v 

N 
p 0.000000 0.000006 -0.060909 0.06066 0.000348 0.000590 -0.001174 0.001186 0.000348 

N '2 6.744011 6.644307 -1.48% 5.540856 7.692414 0.083628 4.35% 0.009145 6.626017 6.662597 0.093569 w au 
,4 '2 4.965116 4.933038 -0.65% 4.615804 5.213083 0.010133 2.04% 0.003183 4.926671 4.939404 0.011162 flGLS O"v 

P 0.000000 0.000129 -0.063480 0.060272 0.000358 0.000598 -0.001068 0.001325 0.000358 
'2 

au 6.744011 6.683989 -0.89% 5.632939 7.722781 0.082220 4.29% 0.009068 6.665854 6.702124 0.085822 

flML 

,2 
O"v 4.965116 4.969213 0.08% 4.633311 5.236255 0.009803 1.99% 0.003131 4.962951 4.975475 0.009820 

P 0.000000 0.000048 -0.060818 0.059997 0.000348 0.000590 -0.001133 0.001228 0.000348 

Table E.2a - Evaluation of e for ARI model, normally distributed errors (popUlation, replications generated by UCM model) - further results, 

part a. 



parameter pop value £(0) reI bias mm max var(e) cv(e) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
'2 

O"u 6.744011 6.721986 -0.33% 5.678600 7.795814 0.096010 4.61% 0.009798 6.702389 6.741583 0.096495 

~ULSC '2 
O"v 4.965116 4.950683 -0.29% 4.628642 5.255275 0.011840 2.20% 0.003441 4.943801 4.957564 0.012048 

f 0.000000 -0.001128 -0.081778 0.086721 0.000592 0.000769 -0.002667 0.000411 0.000593 
'2 

O"u 6.744011 6.680122 -0.95% 5.619967 7.793276 0.095890 4.64% 0.009792 6.660538 6.699707 0.099971 
,2 ,2 

4.965116 fl.GLSC O"v 4.909048 -1.13% 4.575270 5.209533 0.011446 2.18% 0.003383 4.902281 4.915814 0.014590 

f 0.000000 -0.001236 -0.073310 0.059544 0.000393 0.000627 -0.002490 0.000017 0.000394 
, 2 

O"u 6.744011 6.744201 0.003% 5.696572 7.827110 0.096600 4.61% 0.009829 6.724544 6.763858 0.096600 
,3 ,2 

4.965116 fl.GLSC O"v 4.970292 0.10% 4.624750 5.272025 0.011353 2.14% 0.003369 4.963553 4.977030 0.011379 

N r 0.000000 -0.001380 -0.074022 0.061348 0.000388 0.000623 -0.002625 -0.000135 0.000390 
N '2 ,.t:::.. O"u 6.744011 6.672996 -1.05% 5.562603 7.824269 0.097156 4.67% 0.009857 6.653282 6.692709 0.102199 

,4 
'2 4.965116 fl.GLSc O"v 4.904301 -1.22% 4.567990 5.213887 0.011767 2.21% 0.003430 4.897440 4.911161 0.015466 

f 0.000000 -0.001211 -0.076389 0.062811 0.000400 0.000633 -0.002477 0.000054 0.000402 
'2 

O"u 6.744011 6.720216 -0.35% 4.081795 7.815855 0.102680 4.77% 0.010133 6.699950 6.740482 0.103246 

flpML 
'2 

O"v 4.965116 4.952879 -0.25% 4.608172 8.050978 0.020852 2.92% 0.004566 4.943747 4.962012 0.021001 

r 0.000000 -0.000337 -0.073796 1.000229 0.001390 0.001179 -0.002695 0.002021 0.001391 

Table E.2b - Evaluation of ~ for ARI model, normally distributed errors (popUlation, replications generated by UCM model) - further 

results, part b. 



tv 
tv 
VI 

parameter 

QULS 

·2 

QGLS 

d 

QGLS 

,4 

QGLS 

QML 

ilULSC 

·2 

fiGLSC 

.3 

fi GLSC 

·4 
fi GLSC 

fipML 

., 
au 

·2 a v 

·2 
au 

·2 a v 

., 
au 

·2 a v 

·2 a v 

·2 
au 

·2 a v 

., 
au 

·2 a v 

., 
au 

·2 a v 

·2 
au 

·2 a v 

·2 
au 

·2 a v 

'2 
au 

'2 a v 

pop value £(0) reI bias mm max 

7.221 7.158534 -0.87% 5.985205 8.340737 

4.981 4.984107 0.06% 4.693027 5.292875 

7.221 7.117084 -1.44% 5.977545 8.266750 

4.981 4.942235 -0.78% 4.652814 5.269032 

7.221 7.179365 -0.58% 5.988974 8.376041 

4.981 5.005060 0.48% 4.713303 5.304449 

7.221 7.116674 -1.44% 5.963821 8.251120 

4.981 4.942078 -0.78% 4.654301 5.289679 

7.221 7.158534 -0.87% 5.985205 8.340737 

4.981 4.984107 0.06% 4.693027 5.292875 

7.221 7.196278 -0.34% 5.919973 8.383219 

4.981 4.969890 -0.22% 4.666173 5.316020 

7.221 7.148928 -1.00% 5.920690 8.348793 

4.981 4.922792 -1.17% 4.616839 5.292325 

7.221 7.220128 -0.01% 5.919321 8.421725 

4.981 4.993504 0.25% 4.689925 5.327507 

7.221 7.143911 -1.07% 5.864213 8.282758 

4.981 4.918713 -1.25% 4.612373 5.311029 

7.221 7.196278 -0.34% 5.919973 8.383219 

4.981 4.969890 -0.22% 4.666173 5.316020 

var(e) 

0.097869 

0.008925 

0.097942 

0.008975 

0.098736 

0.009108 

0.097579 

0.009132 

0.097869 

0.008925 

0.114133 

0.010012 

0.114363 

0.010065 

0.115134 

0.010257 

0.114220 

0.010375 

0.114133 

0.010012 

cv(e) 

4.37% 

1.90% 

4.40% 

1.92% 

4.38% 

1.91% 

4.39% 

1.93% 

4.37% 

1.90% 

4.69% 

2.01% 

4.73% 

2.04% 

4.70% 

2.03% 

4.73% 

2.07% 

4.69% 

2.01% 

s.e [£(0)] 

0.009893 

0.002988 

0.009897 

0.002996 

0.009937 

0.003018 

0.009878 

0.003022 

0.009893 

0.002988 

0.010683 

0.003164 

0.010694 

0.003173 

0.010730 

0.003203 

0.010687 

0.003221 

0.010683 

0.003164 

conf. interval for £(0) 
lower bound upper bound 

7.138749 

4.978132 

7.097291 

4.936243 

7.159492 

4.999025 

7.096918 

4.936035 

7.138749 

4.978132 

7.174912 

4.963561 

7.127540 

4.916447 

7.198668 

4.987099 

7.122537 

4.912271 

7.174912 

4.963561 

7.178320 

4.990082 

7.136877 

4.948227 

7.199238 

5.011096 

7.136431 

4.948122 

7.l78320 

4.990082 

7.217645 

4.976218 

7.170316 

4.929137 

7.241589 

4.999909 

7.165286 

4.925155 

7.217645 

4.976218 

mse 

0.101771 

0.008935 

0.108740 

0.010478 

0.100470 

0.009687 

0.108463 

0.010647 

0.101771 

0.008935 

0.114744 

0.010136 

0.119557 

0.013453 

0.115135 

0.010413 

0.120163 

0.014255 

0.114744 

0.010136 

Table E.3 Evaluation of e for UCM model, normally distributed errors (population, replications generated by UCM-C model) - further results. 



parameter pop value £(0) reI bias rmn max var(e) cv(e) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
'2 au 7.221 7.157192 -0.88% 5.950597 8.286306 0.098273 4.38% 0.009913 7.137366 7.177019 0.102345 

!lULS 
'2 

au 4.981 4.985438 0.09% 4.689615 5.356894 0.011017 2.11% 0.003319 4.978799 4.992076 0.Q11037 

f 0.000 0.000070 -0.060675 0.096566 0.000522 0.000722 -0.001375 0.001515 0.000522 
'2 

au 7.221 7.115183 -1.47% 5.928219 8.252438 0.099048 4.42% 0.009952 7.095279 7.135088 0.110245 
,2 ,2 

fl.GLS 
a v 4.981 4.947157 -0.68% 4.591754 5.315491 0.010651 2.09% 0.003264 4.940630 4.953684 0.011796 

f 0.000 0.000192 -0.054302 0.064516 0.000347 0.000589 -0.000986 0.001371 0.000347 
'2 au 7.221 7.178638 -0.59% 5.942271 8.357754 0.099681 4.40% 0.009984 7.158670 7.198606 0.101475 

,3 , 2 

fl.GLS 
a v 4.981 5.004386 0.47% 4.680100 5.344372 0.010915 2.09% 0.003304 4.997778 5.010994 0.011462 

N f 0.000 0.000184 -0.050321 0.065750 0.000344 0.000587 -0.000990 0.001357 0.000344 
N '2 0\ au 7.221 7.114976 -1.47% 5.945531 8.245595 0.098812 4.42% 0.009940 7.095095 7.134857 0.110053 

,4 

fl.GLS 
"2 a v 4.981 4.946783 -0.69% 4.591640 5.324690 0.010821 2.10% 0.003290 4.940204 4.953362 0.Q11992 

f 0.000 0.000136 -0.052156 0.066484 0.000352 0.000593 -0.001051 0.001322 0.000352 
'2 au 7.221 7.157445 -0.88% 5.937630 8.323543 0.098866 4.39% 0.009943 7.137559 7.177331 0.102905 

flML 
'2 

au 4.981 4.985282 0.09% 4.662017 5.331072 0.010693 2.07% 0.003270 4.978742 4.991822 0.010711 

f 0.000 0.000183 -0.050583 0.065333 0.000343 0.000586 -0.000988 0.001354 0.000343 

Table EAa - Evaluation of ~ for ARI model, normally distributed errors (population, replications generated by UCM-C model) - further 

results, part a. 



parameter pop value £(0) reI bias mm max var(O) cv(e) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
'2 au 7.221 7.196827 -0.33% 5.884590 8.333739 0.114121 4.69% 0.010683 7.175462 7.218193 0.114705 

~ULSC 
,2 

a v 4.981 4.969334 -0.23% 4.637085 5.381083 0.012242 2.23% 0.003499 4.962336 4.976332 0.012378 

f 0.000 -0.000963 -0.072566 0.103611 0.000602 0.000776 -0.002515 0.000589 0.000603 
'2 au 7.221 7.149489 -0.99% 5.881007 8.343415 0.115630 4.76% 0.010753 7.127983 7.170996 0.120744 

,2 '2 
flGLSC a v 4.981 4.925740 -1.11% 4.603064 5.318797 O.oI 1688 2.19% 0.003419 4.918903 4.932578 0.014741 

f 0.000 -0.001159 -0.055659 0.078758 0.000402 0.000634 -0.002427 0.000109 0.000403 
, 2 

au 7.221 7.221972 0.01% 5.876044 8.430054 0.116239 4.72% 0.010781 7.200410 7.243535 0.116240 
,3 '2 

flGLSC a v 4.981 4.990018 0.18% 4.671968 5.363621 0.012046 2.20% 0.003471 4.983077 4.996960 0.012127 

tv f 0.000 -0.001126 -0.056961 0.080755 0.000398 0.000631 -0.002389 0.000136 0.000400 
tv , 2 
-...) au 7.221 7.144790 -1.06% 5.845829 8.285207 0.115885 4.76% 0.010765 7.123260 7.166320 0.121693 

,4 , 2 

flGLSC a v 4.981 4.921895 -1.19% 4.579014 5.325428 O.oI 1945 2.22% 0.003456 4.914983 4.928808 0.015439 

f 0.000 -0.001222 -0.059107 0.078794 0.000410 0.000640 -0.002503 0.000058 0.000411 
'2 au 7.221 7.197732 -0.32% 5.877930 8.380295 0.115283 4.72% 0.010737 7.176258 7.219206 0.115825 

(lPML 
' 2 a v 4.981 4.968527 -0.25% 4.649510 5.347761 0.011753 2.18% 0.003428 4.961670 4.975383 0.011909 

r 0.000 -0.001142 -0.056550 0.080050 0.000397 0.000630 -0.002402 0.000118 0.000398 

Table EAb - Evaluation of iJ... for ARI model, normally distributed errors (popUlation, replications generated by UCM-C model) - further 

results, part b. 



N 
N 
00 

parameter 

QULS 

,2 

f!..GLS 

,3 

f!..GLS 

,4 

f!..GLS 

fiML 

QULSC 

,2 

fiGLSC 

,3 

fl. GLSC 

,4 

fiGLSC 

fiPML 

'2 
au 

, 2 a v 

'2 
au 

'2 a v 

'2 
au 

, 2 a v 

'2 a v 

'2 
au 

'2 a v 

'2 au 

'2 a v 

'2 
au 

, 2 a v 

'2 
au 

'2 a v 

'2 
au 

'2 a v 

'2 
au 

'2 a v 

pop value £(0) reI bias mIll max 

6.744011 6.666327 -1.15% 5.370200 8.947343 

4.965116 4.960034 -0.10% 4.539989 5.919019 

6.744011 6.628686 -1.71% 5.360541 8.878588 

4.965116 4.896950 -1.37% 4.514558 5.382400 

6.744011 6.685308 -0.87% 5.374801 8.979263 

4.965116 4.992641 0.55% 4.547729 6.484145 

6.744011 6.580430 -2.43% 5.387002 10.665942 

4.965116 4.813360 -3.06% 4.312328 5.306838 

6.744011 6.666327 -1.15% 5.370200 8.947343 

4.965116 4.960034 -0.10% 4.539989 5.919019 

6.744011 6.698981 -0.67% 5.186295 11.520522 

4.965116 4.940688 -0.49% 4.447631 6.317477 

6.744011 6.655871 -1.31% 5.16296911.419777 

4.965116 4.870154 -1.91% 4.421098 5.460875 

6.744011 6.720677 -0.35% 5.196864 11.566581 

4.965116 4.977467 0.25% 4.461252 7.565965 

6.744011 6.592567 -2.25% 5.182134 13.148404 

4.965116 4.776220 -3.80% 4.244927 5.284544 

6.744011 6.698981 -0.67% 5.186295 11.520522 

4.965116 4.940688 -0.49% 4.447631 6.317477 

var(e) 

0.224146 

0.027281 

0.222458 

0.024192 

0.225831 

0.031219 

0.243338 

0.023154 

0.224146 

0.027281 

0.286031 

0.030272 

0.282674 

0.026121 

0.288915 

0.037650 

0.298031 

0.025569 

0.286031 

0.030272 

cv(e) 

7.10% 

3.33% 

7.12% 

3.18% 

7.11% 

3.54% 

7.50% 

3.16% 

7.10% 

3.33% 

7.98% 

3.52% 

7.99% 

3.32% 

8.00% 

3.90% 

8.28% 

3.35% 

7.98% 

3.52% 

s.e [£(0)] 

0.014971 

0.005223 

0.014915 

0.004918 

0.015028 

0.005587 

0.015599 

0.004812 

0.014971 

0.005223 

0.016912 

0.005502 

0.016813 

0.005111 

0.016998 

0.006136 

0.017264 

0.005057 

0.016912 

0.005502 

conf. interval for £(0) 
lower bound upper bound 

6.636384 

4.949588 

6.598856 

4.887113 

6.655253 

4.981466 

6.549232 

4.803736 

6.636384 

4.949588 

6.665156 

4.929684 

6.622245 

4.859932 

6.686682 

4.965195 

6.558040 

4.766107 

6.665156 

4.929684 

6.696270 

4.970480 

6.658517 

4.906787 

6.715363 

5.003816 

6.611629 

4.822983 

6.696270 

4.970480 

6.732806 

4.951692 

6.689497 

4.880376 

6.754672 

4.989738 

6.627095 

4.786334 

6.732806 

4.951692 

Mse 

0.230181 

0.027306 

0.235758 

0.028838 

0.229277 

0.031976 

0.270097 

0.046184 

0.230181 

0.027306 

0.288059 

0.030869 

0.290443 

0.035139 

0.289460 

0.037802 

0.320966 

0.061251 

0.288059 

0.030869 

Table E.5 - Evaluation of ~ for UCM model, tv=s(O,l) distributed errors (population, replications generated byUCM model) - further results. 



parameter pop value £(0) reI bias min max var(e) cv(e) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
'2 6.744011 6.666937 -1.14% 5.340912 8.970265 0.226732 7.14% 0.015058 6.636821 6.697052 0.232672 au 

~ULS 
'2 a v 4.965116 4.959424 -0.11% 4.486214 5.917083 0.029244 3.45% 0.005408 4.948608 4.970239 0.029276 

p 0.000000 -0.000891 -0.068276 0.080259 0.000509 0.000714 -0.002319 0.000536 0.000510 
'2 au 6.744011 6.625544 -1.76% 5.334642 8.871264 0.223716 7.14% 0.014957 6.595630 6.655458 0.237751 

~2 '2 4.965116 f!..GLS 
a v 4.903214 -1.25% 4.475744 5.425369 0.025611 3.26% 0.005061 4.893093 4.913336 0.029443 

P 0.000000 0.000838 -0.062923 0.069544 0.000359 0.000599 -0.000361 0.002037 0.000360 
'2 au 6.744011 6.683550 -0.90% 5.342382 8.964003 0.226730 7.12% 0.015058 6.653435 6.713665 0.230385 

,3 '2 4.965116 f!..GLS 
a v 4.993010 0.56% 4.514113 6.669555 0.033367 3.66% 0.005776 4.981457 5.004562 0.034145 

N P 0.000000 0.000720 -0.061434 0.073544 0.000367 0.000606 -0.000491 0.001931 0.000367 
N 
1.0 '2 6.744011 6.577232 -2.47% 5.380775 10.456871 0.243209 7.50% 0.015595 6.546041 6.608422 0.271024 au 

~4 ,2 
4.965116 f!..GLS a v 4.823245 -2.86% 4.272679 5.296753 0.024465 3.24% 0.004946 4.813353 4.833137 0.044592 

P 0.000000 0.000635 -0.062524 0.058065 0.000367 0.000606 -0.000576 0.001847 0.000367 
'2 au 6.744011 6.664119 -1.18% 5.339409 8.934012 0.225171 7.12% 0.015006 6.634108 6.694131 0.231553 

~ML 
'2 

O"v 4.965116 4.962346 -0.06% 4.507670 6.018046 0.028976 3.43% 0.005383 4.951580 4.973112 0.028984 

P 0.000000 0.000751 -0.061883 0.072220 0.000358 0.000598 -0.000445 0.001947 0.000358 

Table E.6a - Evaluation of ~ for AR1 model, tv =5 (0,1) distributed errors (popUlation, replications generated by UCM model) - further results, 

part a. 



parameter pop value £(0) reI bias mm max var(e) cv{e) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
'2 

O"u 6.744011 6.700974 -0.64% 5.146865 11.530258 0.288953 8.02% 0.016999 6.666977 6.734971 0.290805 

f!..ULSC 

,2 
4.965116 4.938693 -0.53% 4.375454 6.319095 0.032839 3.67% 0.005731 4.927232 4.950155 0.033537 O"v 

f 0.000000 -0.001696 -0.068527 0.097586 0.000581 0.000762 -0.003220 -0.000171 0.000584 
'2 

0"" 6.744011 6.654936 -1.32% 5.137076 11.410044 0.284215 8.01% 0.016859 6.621219 6.688653 0.292149 
,2 , 2 

4.965116 fiCLSC O"v 4.874646 -1.82% 4.380560 5.445977 0.027952 3.43% 0.005287 4.864072 4.885220 0.036137 

f 0.000000 -0.000405 -0.067243 0.087184 0.000412 0.000642 -0.001689 0.000879 0.000412 
'2 6.744011 6.720960 -0.34% 5.159738 11.55016 0.289465 8.01% 0.017014 6.686932 6.754987 0.289996 O"u 

d '2 4.965116 fi CLSC O"v 4.975695 0.21% 4.410660 8.047166 0.042261 4.13% 0.006501 4.962694 4.988697 0.042373 

tv f 0.000000 -0.000364 -0.066796 0.147210 0.000429 0.000655 -0.001675 0.000946 0.000430 
w 
0 '2 6.744011 6.590565 -2.28% 5.176667 12.682419 0.293563 8.22% 0.017134 6.556298 6.624833 0.317109 0"" 

,4 '2 4.965116 fiCLSC O"v 4.785079 -3.63% 4.220377 5.317978 0.027088 3.44% 0.005205 4.774669 4.795488 0.059502 

f 0.000000 -0.000537 -0.065458 0.070371 0.000406 0.000637 -0.001811 0.000738 0.000407 
'2 6.744011 6.693142 -0.75% 0.404484 11.505795 0.326371 8.54% 0.018066 6.657011 6.729274 0.328958 0"" 

flPML 

,2 
4.965116 4.942368 -0.46% 4.400935 6.530737 0.035157 3.79% 0.005929 4.930509 4.954226 0.035675 O"v 

f 0.000000 0.000594 -0.066930 1.000175 0.001411 0.001188 -0.001782 0.002969 0.001411 

Table E.6b - Evaluation of ~ for ARl model, tv=5 (0,1) distributed errors (population, replications generated by UCM model) - further results, 

part b. 



N 
w 
........ 

parameter 

QULS 

,2 

flGLS 

,3 

flGLS 

,4 

fl GLs 

fiML 

fiULSc 

,2 

fiGLSC 

,3 

fiGLSC 

,4 

fiGLSC 

fiPML 

'2 
O'u 

'2 
O'v 

'2 
O'u 

, 2 
O'v 

, 2 
O'u 

, 2 
O'v 

, 2 
O'u 

'2 
O'v 

'2 
O'u 

, 2 
O'v 

'2 
O'u 

'2 
O'v 

'2 
O'u 

, 2 
O'v 

'2 
O'u 

'2 
O'v 

,2 
O'u 

,2 
O'v 

'2 
O'u 

,2 
O'v 

pop value £(0) reI bias min max 

7.221 7.144893 -1.05% 5.557217 10.178167 

4.981 4.994016 0.26% 4.384034 5.784704 

7.221 7.103215 -1.63% 5.515122 10.061680 

4.981 4.929945 -1.02% 4.337172 5.462889 

7.221 7.165865 -0.76% 5.581923 10.244999 

4.981 5.026982 0.92% 4.406344 6.077280 

7.221 7.035859 -2.56% 5.471824 9.302476 

4.981 4.844238 -2.75% 4.315569 5.378118 

7.221 7.144893 -1.05% 5.557217 10.178167 

4.981 4.994016 0.26% 4.384034 5.784704 

7.221 7.185028 -0.50% 5.742142 10.604283 

4.981 4.979864 -0.02% 4.398174 6.019979 

7.221 7.136706 -1.17% 5.684590 10.483784 

4.981 4.906872 -1.49% 4.353484 5.568116 

7.221 7.209400 -0.16% 5.774508 10.676616 

4.981 5.017985 0.74% 4.419076 6.498920 

7.221 7.057246 -2.27% 5.630109 9.887106 

4.981 4.808065 -3.47% 4.317640 5.366489 

7.221 7.185028 -0.50% 5.742142 10.604283 

4.981 4.979864 -0.02% 4.398174 6.019979 

var(e) 

0.289076 

0.030014 

0.287118 

0.026186 

0.291055 

0.033894 

0.273670 

0.024238 

0.289076 

0.030014 

0.332494 

0.034591 

0.329421 

0.028504 

0.335455 

0.041811 

0.312431 

0.026395 

0.332494 

0.034591 

cv(e) 

7.53% 

3.47% 

7.54% 

3.28% 

7.53% 

3.66% 

7.44% 

3.21% 

7.53% 

3.47% 

8.03% 

3.73% 

8.04% 

3.44% 

8.03% 

4.07% 

7.92% 

3.38% 

8.03% 

3.73% 

s.e [£(0)] 

0.017002 

0.005478 

0.016945 

0.005117 

0.017060 

0.005822 

0.016543 

0.004923 

0.017002 

0.005478 

0.018234 

0.005881 

0.018150 

0.005339 

0.018315 

0.006466 

0.017676 

0.005138 

0.018234 

0.005881 

conf. interval for £(0) 
lower bound upper bound 

7.110888 

4.983059 

7.069326 

4.919711 

7.131744 

5.015338 

7.002773 

4.834392 

7.110888 

4.983059 

7.148559 

4.968101 

7.100406 

4.896194 

7.172769 

5.005053 

7.021894 

4.797790 

7.148559 

4.968101 

7.178897 

5.004973 

7.137104 

4.940180 

7.199986 

5.038626 

7.068945 

4.854085 

7.178897 

5.004973 

7.221497 

4.991626 

7.173006 

4.917550 

7.246031 

5.030917 

7.092597 

4.818340 

7.221497 

4.991626 

mse 

0.294868 

0.030183 

0.300991 

0.028792 

0.294094 

0.036009 

0.307947 

0.042941 

0.294868 

0.030183 

0.333788 

0.034592 

0.336526 

0.033999 

0.335589 

0.043179 

0.339247 

0.056301 

0.333788 

0.034592 

Table E.7 - Evaluation of fl for UCM model, t v=5 (0,1) distributed errors (population, replications generated by UCM -C model) - further results. 



parameter pop value £(e) reI bias mIll max var(e) cv{o) s.e [£(e)] conf. interval for £(e) 
mse 

lower bound upper bound 
'2 au 7.221 7.141699 -1.10% 5.621463 10.199508 0.294038 7.59% 0.Q17148 7.107404 7.175994 0.300327 

!lULS 
'2 a v 4.981 4.997204 0.33% 4.372269 5.798344 0.031988 3.58% 0.005656 4.985892 5.008515 0.032251 

r 0.000 0.000981 -0.073462 0.075796 0.000543 0.000737 -0.000493 0.002455 0.000544 
'2 au 7.221 7.100190 -1.67% 5.537889 10.021532 0.289811 7.58% 0.017024 7.066142 7.134237 0.304406 

-2 '2 
f!..GLS a v 4.981 4.936322 -0.90% 4.359079 5.457860 0.027211 3.34% 0.005216 4.925889 4.946754 0.029207 

r 0.000 0.000738 -0.065002 0.063380 0.000384 0.000620 -0.000502 0.001978 0.000385 
'2 au 7.221 7.164536 -0.78% 5.603583 10.217272 0.294592 7.58% 0.017164 7.130209 7.198863 0.297780 

,3 '2 
f!..GLS 

a v 4.981 5.026929 0.92% 4.427374 6.034731 0.034971 3.72% 0.005914 5.015101 5.038756 0.037081 

N r 0.000 0.000601 -0.065850 0.065446 0.000378 0.000615 -0.000628 0.001831 0.000378 
\.).) 

N '2 au 7.221 7.032869 -2.61% 5.496093 9.297604 0.276017 7.47% 0.016614 6.999642 7.066097 0.311410 
-4 -2 

f!..GLS a v 4.981 4.854272 -2.54% 4.310482 5.396218 0.025314 3.28% 0.005031 4.844209 4.864334 0.041374 

r 0.000 0.000851 -0.064921 0.059076 0.000366 0.000605 -0.000358 0.002061 0.000367 
'2 au 7.221 7.142958 -1.08% 5.579357 10.146751 0.292319 7.57% 0.017097 7.108764 7.177153 0.298410 

fl.ML 
-2 a v 4.981 4.996088 0.30% 4.405379 5.760269 0.031105 3.53% 0.005577 4.984933 5.007242 0.031332 

r 0.000 0.000641 -0.065593 0.064833 0.000375 0.000612 -0.000584 0.001865 0.000375 

Table E.8a Evaluation of ~ for ARI model, t
V
=5(0,1) distributed errors (population, replications generated by UCM-C model) - further 

results, part a. 



parameter pop value £(0) reI bias min max var(e) cv(e) s.e [£(0)] conf. interval for £(0) 
mse 

lower bound upper bound 
'2 

O'u 7.221 7.185248 -0.50% 5.796745 10.639245 0.337581 8.09% 0.018373 7.148501 7.221994 0.338859 

~ULSC 
,2 

O'v 4.981 4.979642 -0.03% 4.383212 6.027588 0.036241 3.82% 0.006020 4.967602 4.991682 0.036242 

f 0.000 -0.00076 -0.085915 0.072488 0.000593 0.000770 -0.002301 0.00078 0.000594 
'2 

O'u 7.221 7.136812 -1.17% 5.698179 10.446093 0.332413 8.08% 0.018232 7.100348 7.173277 0.339501 
,2 '2 

ftGLSc O'v 4.981 4.910334 -1.42% 4.374390 5.544706 0.029595 3.50% 0.005440 4.899453 4.921214 0.034589 

f 0.000 -0.000913 -0.071793 0.065284 0.000411 0.000641 -0.002194 0.000369 0.000411 
'2 

O'u 7.221 7.211366 -0.13% 5.787531 10.653409 0.339475 8.08% 0.018425 7.174516 7.248216 0.339568 
,3 '2 

ftGLSC O'v 4.981 5.014580 0.67% 4.437965 6.436482 0.043011 4.14% 0.006558 5.001464 5.027697 0.044139 

tv f 0.000 -0.001014 -0.072722 0.072522 0.000413 0.000642 -0.002299 0.000271 0.000414 
w 
w ' 2 

O'u 7.221 7.057676 -2.26% 5.646515 9.905772 0.315008 7.95% 0.017748 7.022179 7.093173 0.341682 
,4 '2 

ftGLSC O'v 4.981 4.815447 -3.32% 4.309541 5.373717 0.027387 3.44% 0.005233 4.804981 4.825914 0.054795 

f 0.000 -0.000804 -0.070577 0.064559 0.000395 0.000629 -0.002061 0.000454 0.000396 
, 2 

O'u 7.221 7.186326 -0.48% 5.755407 10.576838 0.336155 8.07% 0.018335 7.149657 7.222995 0.337358 

fiPML 
'2 

O'v 4.981 4.978736 -0.05% 4.417755 5.980887 0.035799 3.80% 0.005983 4.96677 4.990703 0.035804 

r 0.000 -0.000994 -0.072398 0.070146 0.000405 0.000636 -0.002266 0.000279 0.000406 

Table E.8b Evaluation of Q. for ARl model, tv=s(O,l) distributed errors (population, replications generated by UCM-C model) - further 

results, part b. 



Appendix F 

More detailed results obtained in simulation 

study II 

Tables F.I to F.12 below provide more detailed information about the results obtained in 

simulation study II, when considering O"~ sim,C == 0.75. 

pop E(var~)) reI bias var(var~)) cv(var~)) s.e·lE(var~))j mse 

var" ( QML) var(8,~ ) 0.148558 0.119016 -19.89% 1.92 x 10-4 11.65% 1.39 x 10-4 1.07 X 10-3 

yare 8;) 0.010553 0.010072 -4.56% 5.88 x 10-7 7.61% 7.67xlO-6 8.19x 10-7 

var" ( 12 GLS: ) var(8:) 0.148536 0.117877 -20.64% 1.29 x 10-4 9.65% 1.14 x 10-4 1.07 x 10-3 

var(8;) 0.010606 0.009624 -9.26% 3.15x10-7 5.83% 5.61 x 10-6 1.28 X 10-6 

var"df ( QULS2 ) var(8,~ ) 0.148536 0.117892 -20.63% 1.90 x 10-4 11.69% 1.38 x 10-4 1.13 x 10-3 

yare 8;) 0.010606 0.009780 -7.79% 5.59 x 10-7 7.64% 7.48 x 10-6 1.24 x 10-6 

var, ( QML ) var(8:) 0.148558 0.141689 -4.62% 1.69 x 10-3 29.04% 4.11x10-4 1.74 x 10-3 

yare 8;) 0.010553 0.010148 -3.84% 5.47 x 10-6 23.04% 2.34x 10-5 5.63 x 10-6 

var, ( QGJ,S, ) var(8:) 0.148536 0.140274 -5.56% 1.67 x 10-3 29.09% 4.08 x 10-4 1.73 X 10-3 

var(8;) 0.010606 0.009845 -7.17% 5.28 x 10-6 23.35% 2.30x 10-5 5.86 x 10-6 

Table F.Ia - Evaluation of var(~) considering msim = 47 and n7 = n;im* (part a). 

95% ci for pop 95% ci for E(var~)) 95% ci for bias 
min max lower upper lower upper lower upper 

bound bound bound bound bound bound 

var" ( QML) var(8: ) 0.0764 0.1968 0.144337 0.152779 0.118744 0.119288 -0.033726 -0.025329 

yare 8;) 0.0074 0.0138 0.010262 0.010844 0.010057 0.010087 -0.000770 -0.000189 

var" ( 12 GLS2 ) var(8:) 0.0828 0.1696 0.144327 0.152745 0.117654 0.118100 -0.034832 -0.026457 

var(8;) 0.0075 0.0120 0.010314 0.010898 0.009613 0.009635 -0.001272 -0.000689 

varadf ( QGLS2) var(8:) 0.0761 0.1891 0.144327 0.152745 0.117622 0.118162 -0.034817 -0.026442 

var(8;) 0.0073 0.0135 0.010314 0.010898 0.009765 0.009794 -0.001116 -0.000533 

var, ( QML) var(8,~ ) 0.0442 0.4654 0.144337 0.152779 0.140883 0.142496 -0.011067 -0.002642 

var(8;) 0.0037 0.0210 0.010262 0.010844 0.010102 0.010194 -0.000697 -0.000110 

var,. ( 12 GLS2 ) 
var(8:) 0.0465 0.4760 0.144327 0.152745 0.139474 0.141074 -0.012452 -0.004043 

yare 8;) 0.0039 0.0198 0.010314 0.010898 0.009800 0.009890 -0.001054 -0.000465 

TableF.lb-Evaluationofvar(~) considering msim =47 and nt =nt* (part b). 



var" ( QML ) yare o-~) 

yare 0-;) 

yar(o-~ ) 

yare 0-;) 

yare o-~) 

yare 0-;) 

yare o-~) 

yare 0-;) 

yare o-~) 

yare 0-;) 

pop i:(yar~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))j mse 

0.253266 0.224323 -11.43% 1.06 x 10-3 14.54% 3.26 x 10-4 1.90 X 10-3 

0.019143 0.019085 -0.30% 2.69 x 10-6 8.59% 1.64 x 10-5 2.69 X 10-6 

0.253008 

0.019455 

0.253008 

0.019455 

0.253266 

0.019143 

0.253008 

0.019455 

0.221465 -12.47% 6.34x 10-4 

0.018066 -7.14% 9.77 x 10-7 

0.221131 -12.60% 1.04 x 10-3 

0.018285 -6.01 % 2.53 x 10-6 

0.244278 -3.55% 4.30 x 10-3 

0.019333 0.99% 1.80x 10-5 

0.240589 -4.91 % 4.22 x 10-3 

0.018521 -4.80% 1.73 X 10-5 

1l.37% 2.52 x 10-4 1.63 x 10-3 

5.47% 9.88 x 10-6 2.91 X 10-6 

14.61% 

8.69% 

26.85% 

2l.98% 

27.00% 

22.43% 

3.23 X 10-4 2.06 X 10-3 

1.59 x 10-5 3.90x 10-6 

6.56xlO-4 4.38xlO-3 

4.25xI0-5 1.81x10-5 

6.50xlo-4 4.37xlO-3 

4.15xlO-5 1.81x10-5 

Table F.2a - Evaluation of yar(~) considering m sim = 47 and n;illl = 15 (part a). 

yare 0-:) 

yare 0-;) 

yare 0-:) 

yare 0-;) 

yare 0-:) 

yare 0-;) 

yare 0-:) 

yare 0-;) 

min 

0.1282 

0.0140 

0.1424 

0.0145 

max 

0.3820 

0.0264 

0.3326 

0.0217 

0.1216 0.3868 

0.0133 0.0254 

0.0834 0.6438 

0.0075 0.0389 

0.0831 0.6454 

0.0068 0.0393 

95% ci for pop 
lower upper 
bound bound 

0.246268 0.260264 

0.018610 0.019676 

0.245983 

0.018917 

0.245983 

0.018917 

0.246268 

0.018610 

0.245983 

0.018917 

0.260033 

0.019993 

0.260033 

0.019993 

0.260264 

0.019676 

0.260033 

0.019993 

95% ci for 
lower 
bound 

0.223683 

0.019053 

0.220971 

0.018047 

0.220498 

0.018254 

0.242993 

0.019250 

0.239316 

0.018439 

E(yar~)) 95% ci for bias 
upper lower upper 
bound bound bound 

0.224962 -0.035884 -0.021952 

0.019117 -0.000588 0.000476 

0.221958 -0.038501 -0.024535 

0.018085 -0.001923 -0.000850 

0.221765 -0.038844 -0.024859 

0.018316 -0.001705 -0.000631 

0.245564 -0.015992 -0.001933 

0.019416 -0.000346 0.000729 

0.241862 -0.019452 -0.005336 

0.018602 -0.001474 -0.000390 

Table F.2b - Evaluation of yar(~) considering msim = 47 and nt' = 15 (part b). 

yare 0-;) 

yare 0-;) 

yar(o-: ) 

yare 0-;) 

Yar(o-:) 

yare 0-;) 

yare o-~) 

yare o-;~) 

yare 0-:) 

yare 0-;) 

pop i:(yar~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))j mse 

0.372950 0.335870 -9.94% 3.60xlO-3 17.86% 6.00xlO-4 4.98xlO-3 

0.028285 0.028519 0.83% 8.90xlO-6 10.46% 2.98xI0-5 8.96xlO-6 

0.368915 

0.029370 

0.368915 

0.029370 

0.330089 -10.52% 2.08 x 10-3 

0.026728 -9.00% 3.23xl0-6 

0.329514 -10.68% 3.50x 10-3 

0.026951 -8.24% 8.08 x 10-6 

13.82% 

6.73% 

17.97% 

10.55% 

4.56xlO-4 3.59xlO-3 

1.80 X 10-5 1.02 X 10-5 

5.92 X 10-4 5.06 X 10-3 

2.84 X 10-5 1.39 X 10-5 

0.372950 0.353928 -5.10% 9.91 x 10-3 28.13% 9.96 x 10-4 1.03 X 10-2 

0.028285 0.028569 1.01% 4.11xlO-5 22.45% 6.41xl0-5 4.12xI0-5 

0.368915 0.346859 -5.98% 9.60x 10-3 28.24% 9.80x 10-4 1.01 x 10-2 

0.029370 0.026971 -8.17% 3.78xlO-5 22.81% 6.15xlO-5 4.36xlO-5 

Table F.3a - Evaluation of yar(~) considering m sim = 47 and n;im = 10 (part a). 
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yar,,( ~ML) 

Yar, ( ~(;1.s2 ) 

yare 8~) 

yare 8;) 

yare 8;) 

yare 8;) 

yare 8~) 

yare 8;) 

yare 8:) 

yare 8;) 

min 

0.1511 

0.0198 

0.1986 

0.0212 

max 

0.6885 

0.0427 

95% ci for pop 
lower upper 
bound bound 

0.362386 0.383514 

0.027492 0.029078 

0.5451 0.358512 0.379318 

0.0347 0.028540 0.030200 

95% ci for 
lower 
bound 

0.334694 

0.028460 

0.329194 

0.026692 

E(yar~)) 95% ci for bias 
upper lower upper 
bound bound bound 

0.337046 -0.047513 -0.026571 

0.028577 -0.000555 0.001029 

0.330983 -0.049084 -0.028496 

0.026763 -0.003468 -0.001811 

0.1482 0.7059 0.358512 0.379318 0.328354 0.330674 -0.049684 -0.029045 

0.0178 0.0401 0.028540 0.030200 0.026895 0.027007 -0.003246 -0.001586 

0.1170 0.9991 0.362386 0.383514 0.351976 0.355879 -0.029511 -0.008458 

0.0108 0.0673 0.027492 0.029078 0.028444 0.028695 -0.000514 0.001088 

0.1164 

0.0088 

1.0119 0.358512 0.379318 

0.0590 0.028540 0.030200 

0.344939 

0.026851 

0.348779 -0.032397 -0.011643 

0.027092 -0.003233 -0.001558 

Table F.3b - Evaluation of var(Q) considering mSim = 47 and nt' = 10 (part b). 

var" ( ~(;IS2 ) 

yare 8:) 

yare 8;) 

yare 8:) 

yare 8;) 

yare 8,~) 

yare 8;) 

yare 8;) 

yare 8;) 

yare 8:) 

yare 8;) 

pop i:(var~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))J mse 

0.722939 0.659269 -8.81% 2.75xlO-2 25.13% 1.66xlO-3 3.15xlO-2 

0.057222 0.056528 -1.21% 7.17x 10-5 14.98% 8.47x 10-5 7.22x 10-5 

0.715733 

0.061321 

0.715733 

0.061321 

0.722939 

0.057222 

0.715733 

0.061321 

0.640339 -10.53% 1.57 x 10-2 

0.051435 -16.12% 2.55xlO-5 

0.635932 -11.15% 2.59 x 10-2 

0.051285 -16.37% 6.18xlQ-5 

0.675565 -6.55% 4.75 xl 0-2 

0.056543 -1.19% 1.86x 10-4 

0.650831 -9.07% 4.45 x 10-2 

0.051313 -16.32% 1.57xlO-4 

19.54% 

9.82% 

25.30% 

15.32% 

32.25% 

24.09% 

32.40% 

24.40% 

1.25xlO-3 2.13x10-2 

5.05xlQ-5 1.23 x 10-4 

1.61 X 10-3 3.22x 10-2 

7.86x 10-5 1.62 x 10-4 

2.18xlO-3 4.97xlO-2 

1.36 X 10-4 1.86 X 10-4 

2.11xlQ-3 4.87xlO-2 

1.25xlO-4 2.57xlO-4 

Table FAa - Evaluation of var(~) considering m sim = 47 and n~im = 5 (part a). 

yar,,( ~ML) 

yar" ( ~(;LS2 ) 

Yar, ( ~ML) 

var, ( ~GLS2 ) 

yare 8;) 

yare 8;) 

yare 8:) 

yare 8;) 

yare 8:) 

yare 8;) 

yar( 8~) 

yare 8;) 

min 

0.2620 

0.0325 

0.2648 

0.0353 

0.2457 

0.0293 

0.2019 

0.0185 

0.1731 

0.0183 

95% ci for pop 
max lower upper 

bound bound 

1.8880 0.702144 0.743734 

0.1022 0.055606 0.058838 

1.3164 0.695157 0.736309 

0.0762 0.059614 0.063028 

1.7180 0.695157 0.736309 

0.1019 0.059614 0.063028 

2.5506 

0.1340 

2.1944 

0.1257 

0.702144 0.743734 

0.055606 0.058838 

0.695157 0.736309 

0.059614 0.063028 

95% ci for E(yar~)) 95% ci for bias 
lower upper lower upper 
bound bound bound bound 

0.656021 0.662517 -0.084126 -0.043070 

0.056362 0.056694 -0.002298 0.000920 

0.637887 0.642792 -0.095502 -0.055141 

0.051336 0.051534 -0.011578 -0.008183 

0.632779 0.639085 -0.100014 -0.059445 

0.051131 0.051439 -0.011733 -0.008329 

0.671295 

0.056276 

0.646698 

0.051068 

0.679836 -0.067949 -0.026654 

0.056810 -0.002294 0.000947 

0.654963 -0.085223 -0.044437 

0.051559 -0.011712 -0.008292 

Table FAb - Evaluation of var(~) considering m sim = 47 and n~im = 5 (part b). 
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var" (iJ.ML ) 
yar(a: ) 

yare a:) 
yar(a:) 

yare a;) 
yare a:) 
yare a;) 
yare a:) 
yare &;) 

yare a:) 
yare a;) 

pop 

0.333080 

0.024174 

0.331252 

0.025080 

0.331252 

0.025080 

0.333080 

0.024174 

0.331252 

0.025080 

i:(yar~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))j mse 

0.281794 -15.40% 2.57xI0-3 

0.023940 -0.97% 8.06 x 10-6 

0.277689 -16.17% 1.72 x 10-3 

0.022561 -10.04% 4.31 x 10-6 

0.276975 -16.39% 2.49 x 10-3 

0.022773 -9.20% 7.28 xl 0-6 

0.327163 -1.78% 1.96 x 10-2 

0.024078 -0.40% 7.30 x 10-5 

0.321287 -3.01 % 1.90 x 10-2 

0.022885 -8.75% 6.82 xI 0-5 

17.99% 

11.86% 

14.93% 

9.20% 

18.02% 

11.85% 

42.83% 

35.49% 

5.07xlO-4 5.20xlO-3 

2.84x 10-5 8.12x 10-6 

4.15xlo-4 4.59xI0-3 

2.07 X 10-5 1.06 X 10-5 

4.99 X 10-4 5.44 xl 0-3 

2.70xlO-5 1.26xI0-5 

1.40 x 10-3 1.97 x 10-2 

8.54 xl 0-5 7.30 xl 0-5 

42.90% 1.38 x 10-3 1.91 X 10-2 

8.26x 10-5 7.30x 10-5 

Table F.Sa - Evaluation of yar(~) considering m sim ::: 20 and n;fm ::: n;im* (part a). 

var" ( iJ.GLS2 ) 

var,(iJ..w) 

yare a:) 
yare &,7) 

yare a:) 
yare &;) 

yare &~) 

yare &;) 

yare &:) 

yare &;) 

yare a~) 

yare &;) 

mIll 

0.1514 

0.0149 

0.1608 

0.0161 

0.1516 

0.0138 

0.0521 

0.0050 

0.0526 

0.0044 

max 

0.5558 

0.0380 

0.5291 

0.0325 

0.5523 

0.0365 

1.5054 

0.0860 

1.4812 

0.0806 

95% ci for pop 
lower upper 
bound bound 

0.323479 

0.023513 

0.321716 

0.024395 

0.321716 

0.024395 

0.323479 

0.023513 

0.321716 

0.024395 

0.342681 

0.024835 

0.340788 

0.025765 

0.340788 

0.025765 

0.342681 

0.024835 

0.340788 

0.025765 

95% ci for 
lower 
bound 

0.280800 

0.023884 

0.276876 

0.022520 

0.275996 

0.022720 

0.324417 

0.023911 

0.318586 

0.022723 

E(yar~)) 
upper 
bound 

95% ci for bias 
lower upper 
bound bound 

0.282788 -0.060754 -0.041752 

0.023996 -0.000891 0.000428 

0.278501 -0.062958 -0.044103 

0.022602 -0.003200 -0.001833 

0.277953 -0.063688 -0.044801 

0.022826 -0.002989 -0.001621 

0.329909 -0.015554 0.003786 

0.024246 -0.000773 0.000587 

0.323989 -0.01 9532 -0.000332 

0.023046 -0.002896 -0.001490 

Table F.Sb - Evaluation of var(~) considering m sim ::: 20 and nt' ::: n;fm* (part b). 

yar" ( iJ. GLS2 ) 

var, ( iJ.ML ) 

yare &:) 

yare &;) 

yare &~) 

yare &;) 

yare &:) 

yare &;) 

yare &:) 

Yare &;) 

yare &:) 

yare &;) 

pop 

0.583875 

0.044425 

0.577675 

0.046465 

0.577675 

0.046465 

i:(yar~)) reI bias var(var~)) cv(yar~)) s.e.lE(var~))j mse 

0.517089 -11.44% 1.33 x 10-2 

0.043912 -J.15% 3.32x 10-5 

0.505002 -12.58% 7.83xl0-3 

0.040540 -12.75% 1.21 X 10-5 

0.502581 -13.00% 1.26 x 10-2 

0.040557 -12.71% 2.94xlO-5 

22.27% 

13.13% 

17.53% 

8.57% 

22.33% 

13.37% 

1.15 x 10-3 1.77 x 10-2 

5.76xI0-5 3.35xI0-5 

8.85 X 10-4 1.31 x 10-2 

3.47xlO-5 4.72xlO-5 

1.12 x 10-3 1.82xlO-2 

5.42x 10-5 6.43 x 10-5 

0.583875 0.556483 -4.69% 5.14 x 10-2 40.75% 2.27 x 10-3 5.22 X 10-2 

0.044425 0.044208 -0.49% 2.32 x 10-4 34.44% 1.52 x 10-4 2.32 X 10-4 

0.577675 

0.046465 

0.539852 -6.55% 4.86 x 10-2 

0.040783 -12.23% 2.04x 10-4 

40.83% 2.20 x 10-3 5.00 xI 0-2 

35.00% 1.43 x 10-4 2.36xl0-4 

Table F.6a Evaluation of var~) considering m sim ::: 20 and n sfm ::: 15 (part a). 
J 
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var" ( I1ML ) 

var" ( 11 GLS2 ) 

var(a;) 

var(a;) 

var(a~) 

var(a;) 

var(a,~ ) 

yare a,;) 
var(a;) 

var(a;) 

min max 
95% ci for pop 
lower upper 
bound bound 

0.567364 0.600386 

95% ci for 
lower 
bound 

0.514832 0.2299 

0.0273 

1.1772 

0.0746 0.043183 0.045667 0.043799 

0.2678 0.9397 0.561332 0.594018 

0.0270 0.0566 0.045157 0.047773 

0.2171 1.0978 0.561332 0.594018 

0.0248 0.0740 0.045157 0.047773 

0.503268 

0.040472 

0.500381 

0.040451 

0.0838 

0.0059 

2.3166 

0.1338 

0.567364 0.600386 0.552039 

0.043183 0.045667 0.043909 

0.0718 

0.0076 

2.1821 0.561332 

0.1302 0.045157 

0.594018 

0.047773 

0.535532 

0.040503 

E(var~)) 95% ci for bias 
upper lower upper 
bound bound bound 

0.519346 -0.083017 -0.050437 

0.044025 -0.001749 0.000731 

0.506737 -0.088670 -0.056561 

0.040608 -0.007222 -0.004617 

0.504781 -0.091163 -0.058911 

0.040663 -0.007209 -0.004597 

0.560928 -0.043954 -0.010713 

0.044506 -0.001481 0.001055 

0.544172 -0.054183 -0.021348 

0.041063 -0.007006 -0.004348 

Table F.6b Evaluation of var(~) considering m sim = 20 and n~im = 15 (part b). 

var(a~ ) 

var(a;) 

var(a~) 

var(a;) 

var(a~) 

var(a;) 

var(a; ) 

var(a;) 

var(a:) 

var(a;) 

pop E(var~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))j mse 

0.839370 0.763898 -8.99% 4.29x 10-2 27.12% 2.07x 10-3 0.048610 

0.066161 0.065438 -1.09% 1.13 x 10-4 16.22% 1.06 x 10-4 0.000113 

0.828626 

0.070983 

0.828626 

0.070983 

0.738846 -10.83% 2.45 x 10-2 

0.059060 -16.80% 3.97x 10-5 

0.732514 -11.60% 4.01xW-2 

0.058499 -17.59% 9.39x10-5 

21.18% 

10.67% 

27.33% 

16.56% 

1.57 X 10-3 

6.30x10-5 

2.00x 10-3 

9.69 X 10-5 

0.032557 

0.000182 

0.049310 

0.000250 

0.839370 0.799886 -4.70% 1.17x10-1 42.69% 3.41x10-3 0.118144 

0.066161 0.065589 -0.87% 5.18x10-4 34.69% 2.28xW-4 0.000518 

0.828626 0.765029 -7.68% 1.08 x 10-1 

0.070983 0.058505 -17.58% 4.26 x 10-4 

43.04% 3.29 x 10-3 

35.29% 2.06 x 10-4 

0.112463 

0.000582 

Table F.7a Evaluation of var(~) considering m sim = 20 and n~im = 10 (part a). 

var(a~) 

yare a;) 
var(a~ ) 

yare a;) 

var(a;) 

yare a;) 
var(a~) 

var(a;) 

mm max 

0.2734 2.2053 

0.0338 0.1478 

0.3117 

0.0383 

1.5081 

0.0839 

95% ci for pop 95% ci for E(var~)) 95% ci for bias 
lower upper lower upper 
bound bound bound bound 

lower upper 
bound bound 

0.816075 

0.064348 

0.805662 

0.069046 

0.862665 0.759838 

0.067974 0.065230 

0.851590 0.735779 

0.072920 0.058936 

0.767958 -0.098422 -0.052355 

0.065646 -0.002523 0.001090 

0.741914 -0.112221 -0.067174 

0.059183 -0.013846 -0.009987 

0.2711 1.9905 0.805662 0.851590 0.728590 0.736437 -0.118717 -0.073344 

0.0279 0.1053 0.069046 0.072920 0.058309 0.058689 -0.014412 -0.010543 

0.1630 3.2148 

0.0155 0.2518 

0.1272 2.9557 

0.0095 0.1861 

0.816075 

0.064348 

0.805662 

0.069046 

0.862665 0.793193 

0.067974 0.065143 

0.851590 0.758575 

0.072920 0.058101 

0.806578 -0.062897 -0.015905 

0.066034 -0.002413 0.001281 

0.771482 -0.086641 -0.040389 

0.058910 -0.014435 -0.010507 

Table F.7a Evaluation of var~) considering m sim = 20 and n Si11l = 10 (part a). 
J 

238 



var" ( ~ML) 

var" ( ~ GLS' ) 

var(a: ) 

var(a;) 

var(a:) 

yare a;) 
var(a:) 

yare a;) 
var(a: ) 

var(a;) 

var(a,; ) 

yare a;) 

pop 

1.631626 

0.133216 

1.584676 

0.148327 

1.584577 

0.148316 

E(var~)) reI bias 

1.461839 -10.41% 

0.127079 -4.61% 

1.374454 -13.27% 

0.107566 -27.48% 

1.349494 -14.84% 

0.103244 -30.39% 

1.631626 1.482539 -9.14% 

0.133216 0.127345 -4.41% 

1.584479 1.367448 -13.70% 

0.148273 0.103666 -30.08% 

var(var~)) cv(var~)) s.e.lE(var~))J mse 

0.317611 

0.000835 

0.176290 

0.000293 

0.277523 

0.000598 

38.55% 

22.74% 

30.55% 

15.92% 

39.04% 

23.68% 

0.552066 50.12% 

0.002202 36.85% 

0.481593 50.75% 

0.001577 38.30% 

0.005636 

0.000289 

0.004199 

0.000171 

0.005269 

0.000244 

0.346439 

0.000873 

0.220483 

0.001955 

0.332788 

0.002629 

0.007430 0.574293 

0.000469 0.002236 

0.006940 0.528695 

0.000397 0.003566 

Table F.8a - Evaluation of var(~) considering m sim = 20 and n;im = 5 (part a). 

Yar,,( ~ML) 

var" ( ~GLS' ) 

yar(a: ) 

yar(a;) 

yar(a:) 

yar(a;) 

yar(a:) 

yar(a;) 

var(a:) 

yare a\~) 

mIll 

0.3572 

0.0523 

0.3329 

0.0544 

max 

5.7767 

0.3040 

4.0834 

0.2013 

95% ci for pop 
lower upper 
bound bound 

1.583848 1.679404 

0.129458 0.136974 

1.538211 

0.144066 

1.631141 

0.152588 

95% ci for 
lower 
bound 

1.450793 

0.126513 

1.366225 

0.107231 

E(yar~)) 95% ci for bias 
upper lower upper 
bound bound bound 

1.472885 -0.216107 -0.123140 

0.127646 -0.009848 -0.002398 

1.382684 -0.254576 -0.165550 

0.107902 -0.044975 -0.036518 

0.2918 4.8223 1.538109 1.631045 1.339167 1.359820 -0.280019 -0.189831 

0.0384 0.2435 0.144054 0.152578 0.102765 0.103723 -0.049292 -0.040822 

0.2079 7.9503 1.583848 1.679404 1.467976 1.497102 -0.195964 -0.101884 

0.0277 0.4288 0.129458 0.136974 0.126426 0.128265 -0.009659 -0.002055 

0.1340 8.1074 1.538011 1.630947 1.353845 1.381051 -0.262512 -0.171233 

0.0210 0.3605 0.144012 0.152534 0.102888 0.104444 -0.048866 -0.040318 

Table F.8b - Evaluation of var(~) considering m sim = 20 and nt' = 5 (part b). 

var" (~ML) 

var" ( ~ G[~~' ) 

var,( ~ML) 

yare ( ~GLS2 ) 

yar(a:) 

var(a;) 

yar(a:) 

var(a;) 

yar(a: ) 

yare a;) 
yar(a:) 

yare 0-;) 

yar(a,;) 

yar(a;) 

pop E(var~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))J mse 

0.477175 0.386391 -19.03% 7.22x 10-3 21.99% 8.50x 10-4 1.55 x 10-2 

0.033756 0.033059 -2.06% 2.23 x 10-5 14.30% 4.73 x 10-5 2.28 xl 0-5 

0.472661 

0.035210 

0.472661 

0.035210 

0.378737 -19.87% 4.72x 10-3 

0.030817 -12.48% 1.19x 10-5 

0.377801 -20.07% 6.87 x 10-3 

0.031017 -11.91% 1.93 x 10-5 

18.14% 

11.22% 

21.93% 

14.17% 

6.87 X 10-4 1.35 X 10-2 

3.46 X 10-5 3.12 X 10-5 

8.29 xl 0-4 1.59 xl 0-2 

4.39x1O-5 3.69xlO-5 

0.477175 0.439764 -7.84% 4.82x1O-2 49.91% 2.20xlO-3 4.96xlO-2 

0.033756 0.032900 -2.54% 1.91 x 10-4 41.95% 1.38 x 10-4 1.91 X 10-4 

0.472661 

0.035210 

0.429026 -9.23% 4.57 x 10-2 

0.030832 -12.43% 1.71 x 10-4 

49.86% 2.14x 10-3 4.77x 10-2 

42.40% 1.31 x 10-4 1.90 x 10-4 

Table F.9a - Evaluation of var(~) considering m sim = 15 and nt' = n;im* (part a). 
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var,,( ~ML) 

var" ( ~ GLS' ) 

var(a~) 

var(a;) 

var(a~) 

yare a;) 

var(a~) 

var(a;) 

var(a~) 

yare a;) 

min 

0.1751 

0.0192 

0.1885 

0.0191 

max 

0.8897 

0.0539 

0.7027 

0.0451 

95% ci for pop 
lower upper 
bound bound 

0.463731 0.490619 

0.032823 0.034689 

0.459261 

0.034227 

0.486061 

0.036193 

95% ci for 
lower 
bound 

0.384726 

0.032967 

0.377390 

0.030749 

i:(var~)) 95% ci for bias 
upper lower upper 
bound bound bound 

0.388056 -0.104039 -0.077433 

0.033152 -0.001624 0.000237 

0.380083 -0.107103 -0.080651 

0.030884 -0.005371 -0.003409 

0.1716 0.8724 0.459261 0.486061 0.376177 0.379425 -0.108092 -0.081533 

0.0179 0.0507 0.034227 0.036193 0.030931 0.031104 -0.005171 -0.003207 

0.0505 2.0874 

0.0034 0.1221 

0.0401 

0.0033 

2.1364 

0.1145 

0.463731 

0.032823 

0.490619 

0.034689 

0.459261 0.486061 

0.034227 0.036193 

0.435462 

0.032630 

0.424834 

0.030576 

0.444067 -0.050993 -0.023733 

0.033171 -0.001813 0.000108 

0.433219 -0.057163 -0.030012 

0.031088 -0.005382 -0.003367 

Table F.9b - Evaluation of var(~) considering m sim = 15 and n;im = n;im* (part b). 

var" ( ~GLS' ) 

var(a~ ) 

yare a,~) 

var(a~) 

var(a;) 

var(a~) 

yare a;) 
var(a,~) 

var(a,;) 

var(a~) 

var(a;) 

pop E(var~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))j mse 

0.765576 

0.059867 

0.757259 

0.064683 

0.757259 

0.064683 

0.679436 -11.25% 3.lOx 10-2 

0.058165 -2.84% 7.83 x 10-5 

0.660279 -12.81% 1.79x 10-2 

0.053032 -18.01% 2.90x 10-5 

0.654696 -13.54% 2.92x 10-2 

0.052598 -18.68% 6.81 x 10-5 

25.90% 

15.21% 

20.27% 

10.15% 

26.12% 

15.69% 

1.76 x 10-3 3.84xI0-2 

8.85x1O-5 8.12xI0-5 

1.34 x 10-3 2.73xlO-2 

5.39xI0-5 1.65 x 10-4 

l.71xI0-3 3.98x10-2 

8.25xlO-5 2.14x10-4 

0.765576 0.735903 -3.88% 1.26 x 10-1 48.16% 3.54x 10-3 1.26 x 10-1 

0.059867 0.058387 -2.47% 5.19 x 10-4 39.00% 2.28 x 10-4 5.21 X 10-4 

0.757259 0.708222 -6.48% 1.17x10-1 48.38% 3.43x10-3 1.20x10-1 

0.064683 0.052861 -18.28% 4.49 x 10-4 40.08% 2.12x10-4 5.89x10-4 

Table F.lOa Evaluation of var(~) considering m sim = 15 and n;im = 15 (part a). 

var, ( ~ML) 

var(a;) 

var(a;) 

var(a~ ) 

yare a;) 
var(a~) 

var(a;) 

min 
95% ci for pop 95% ci for i:(var~)) 95% ci for bias 

max lower upper lower upper 
bound bound bound bound 

lower upper 
bound bound 

0.2466 1.8227 0.744097 0.787055 

0.0349 0.1008 0.058193 0.061541 

0.3140 1.3703 0.735879 0.778639 

0.0350 0.0776 0.062885 0.066481 

0.2359 1.7913 0.735879 0.778639 

0.0303 0.0935 0.062885 0.066481 

0.0885 

0.0048 

0.0805 

0.0057 

3.8642 0.744097 0.787055 

0.2103 0.058193 0.061541 

3.8247 0.735879 

0.1794 0.062885 

0.778639 

0.066481 

0.675987 

0.057992 

0.657656 

0.052927 

0.651345 

0.052437 

0.728957 

0.057941 

0.701507 

0.052446 

0.682885 -0.107148 -0.064978 

0.058339 -0.003363 -0.000028 

0.662902 -0.117775 -0.076035 

0.053138 -0.013434 -0.009855 

0.658048 -0.123461 -0.081514 

0.052760 -0.013872 -0.010284 

0.742850 -0.051284 -0.007907 

0.058833 -0.003199 0.000251 

0.714937 -0.070537 -0.027387 

0.053276 -0.013657 -0.009975 

Table F.I0b Evaluation of var(~) considering m sim = 15 and n;im = 15 (part b). 
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var" ( ~.Ifl.) 

var,.( ~ML ) 

var'(~GW ) 

var(8~) 

yare 8,;) 

var(8:) 

yare 8;) 

var(8,~) 

var(8;) 

var(8: ) 

var(8;) 

var(8:) 

var(8;) 

pop E(var~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))J mse 

1.096834 0.997739 -9.03% 9.65 x 10-2 31.14% 3.11 xl 0-3 0.106361 

0.088289 0.086617 -1.89% 2.54 x 10-4 18.39% 1.59 x 10-4 0.000257 

1.078658 

0.096592 

1.078658 

0.096592 

0.956722 -11.30% 5.52 x 10-2 

0.076531 -20.77% 9.20 x 10-5 

0.945363 -12.36% 8.87x 10-2 

0.075123 -22.23% 2.06xlO-4 

24.55% 

12.53% 

31.50% 

19.11% 

2.35 X 10-3 

9.59 X 10-5 

2.98 X 10-3 

1.44 x 10-4 

0.070020 

0.000494 

0.106421 

0.000667 

1.096834 1.043433 -4.87% 2.74 x 10-1 50.19% 5.24 xl 0-3 0.277060 

0.088289 0.087068 -1.38% 1.27 x 10-3 40.87% 3.56 x 10-4 0.001268 

1.078658 

0.096592 

0.985440 -8.64% 2.51 x 10-1 50.85% 5.01 x 10-3 

0.075423 -21.92% 9.97 x 10-4 41.86% 3.16 x 10-4 

0.259816 

0.001445 

Table F.Ila - Evaluation of var~) considering m sim = 15 and n
sim = 10 (part a). 
J 

vaI;, ( ~ Gm ) 

var, ( ~GLS' ) 

var(8:) 

var(8;) 

var(8:) 

var(8;) 

var(8:) 

var(8;) 

var(8:) 

var(8;) 

min 

0.2649 

0.0416 

0.3224 

0.0459 

max 

3.3397 

0.1656 

2.2463 

0.1154 

95% ci for pop 
lower upper 
bound bound 

95% ci for 
lower 
bound 

1.065946 

0.085871 

1.127722 0.991649 

0.090707 0.086305 

1.047954 

0.093947 

1.109362 

0.099237 

0.952119 

0.076343 

E(var~)) 
upper 
bound 

95% ci for bias 
lower upper 
bound bound 

1.003829 -0.129368 -0.068603 

0.086929 -0.004081 0.000755 

0.961324 -0.151731 -0.091927 

0.076719 -0.022688 -0.017415 

0.2584 3.5117 1.047954 1.109362 0.939527 0.951199 -0.163348 -0.103027 

0.0379 0.1610 0.093947 0.099237 0.074842 0.075405 -0.024103 -0.018816 

0.1066 

0.0095 

0.1068 

0.0086 

7.3566 

0.3221 

6.9005 

0.3226 

1.065946 

0.085871 

1.047954 

0.093947 

1.127722 

0.090707 

1.109362 

0.099237 

1.033170 

0.086371 

0.975618 

0.074804 

1.053697 -0.084396 -0.022187 

0.087766 -0.003707 0.001283 

0.995262 -0.123959 -0.062262 

0.076042 -0.023860 -0.018459 

Table F.Il b Evaluation of var~) considering m sim = 15 and n~im = 10 (part b). 
J 

var" ( ~ML) var(8:) 

yare 8;) 

var(8:) 

var(8;) 

var(8:) 

var(8;) 

var(8:) 

yare 8;) 

var(8:) 

var(8;) 

pop E(var~)) reI bias var(var~)) cv(var~)) s.e.lE(var~))J mse 

2.222778 

0.178319 

2.127350 

0.204034 

2.127993 

0.203879 

2.222778 

0.178319 

2.128328 

0.203844 

1.882306 -15.32% 

0.168233 -5.66% 

1.738628 -18.27% 

0.135696 -33.49% 

1.700549 -20.09% 

0.128130 -37.15% 

1.911003 -14.03% 

0.168942 -5.26% 

1.727843 -18.82% 

0.128204 -37.11% 

0.740876 

0.001933 

0.415753 

0.000668 

0.627852 

0.001287 

1.249229 

0.005340 

1.065758 

0.003383 

45.73% 

26.14% 

37.09% 

19.05% 

46.60% 

28.00% 

58.49% 

43.26% 

59.75% 

45.37% 

0.008607 

0.000440 

0.006448 

0.000259 

0.007927 

0.000359 

0.011177 

0.000731 

0.010329 

0.000582 

0.856797 

0.002035 

0.566858 

0.005338 

0.810560 

0.007025 

1.346432 

0.005428 

1.226146 

0.009104 

Table F.12a - Evaluation of var(~) considering mSim = 15 and nt' = 5 (part a). 
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95% ci for pop 95% ci for E(var~)) 95% ci for bias 
mm max lower upper lower upper lower upper 

bound bound bound bound bound bound 

varn( ~ML) var(a:) 0.3221 10.8445 2.158452 2.287104 1.865436 1.899177 -0.402035 -0.278463 

yar(a:) 0.0622 0.4623 0.173285 0.183353 0.167371 0.169095 -0.015091 -0.005044 

yarn ( ~GLS2 ) var(a,;) 0.3602 10.9200 2.064886 2.189814 1.725989 1.751266 -0.447438 -0.329581 

yare a:) 0.0134 0.2540 0.198347 0.209721 0.135190 0.136203 -0.073957 -0.062677 

var"df ( ~(iLS' ) var(a:) 0.1205 10.6746 2.065488 2.190498 1.685012 1.716087 -0.487046 -0.367415 

var(a;) 0.0371 0.4986 0.198198 0.209560 0.127427 0.128834 -0.081387 -0.070069 

var, ( ~ML) var(a: ) 0.1481 15.2083 2.158452 2.287104 1.889096 1.932909 -0.374646 -0.248460 

yare a;) 0.0247 0.6780 0.173285 0.183353 0.167510 0.170375 -0.014497 -0.004221 

var, ( ~GLS2 ) var(a:) 0.0522 12.8831 2.065815 2.190841 1.707598 1.748089 -0.461204 -0.339339 

yar(a;) 0.0131 0.8297 0.198163 0.209525 0.127063 0.129344 -0.081334 -0.069906 

Table F.12b - Evaluation of var(~) considering msim = 15 and nt' = 5 (part b). 

242 



Appendix G 

R code used in both simulation studies for 

the pseudo maximum likelihood estimator 

We do not intend to present in the current appendix the complete code we have written for 

implementing the techniques we have studied and developed in this Thesis, as that would 

require a reasonably large number of pages. With mainly illustration purposes, we shall 

thus only present an extract with some attention to procedures related to pseudo maximum 

likelihood estimation. Figure G.l below provide the R code for weighted estimator of the 

covariance matrix included in Chapter 4, Section 4.3, Sub-section 4.3.1. 

#Calculating yi-MU 
EE<-Ys-tMU 
EE<-as.matrix(EE) 

#using wave LONGITUDINAL WEIGHTS (WAVE 9) 
sigmaw001<-matrix(O, 5,5) 
sigmaw001[1,1]< sum(w*(EE[,l] )A 2 )/sum(w) 
sigmaw001[1,2]<-sum(w*(EE[,1])*«EE[,2])))/sum(w) 
sigmaw001[1,3]<-sum(w*(EE[,1])*«EE[,3])))/sum(w) 
sigmaw001[1,4]<-sum(w*(EE[,1])*«EE[,4])))/sum(w) 
sigmaw001[1,5]<-sum(w*(EE[,1])*«EE[,5])))/sum(w) 
sigmaw001 [2,1] <-sigmaw001 [1,2] 
sigmaw001[2,2]<-sum(w*(EE[,2])A 2 )/sum(w) 
sigmaw001[2,3]<-sum(w*(EE[,2])*«EE[,3])))/sum(w) 
sigmaw001[2,4]<-sum(w*(EE[,2])*«EE[,4])))/sum(w) 
sigmaw001[2,5]<-sum(w*(EE[,2])*«EE[,5])))/sum(w) 
sigmaw001[3,1]<-sigmaw001[1,3] 
sigmaw001[3,2]<-sigmaw001[2,3] 
sigmaw001[3,3]<-sum(w*(EE[,3])A 2 )/sum(w) 
sigmaw001[3,4]<-sum(w*(EE[,3])*«EE[,4] )))/sum(w) 
sigmaw001[3,5]<-sum(w*(EE[,3])*«EE[,5])))/sum(w) 
sigmaw001 [4,1] <-sigmaw001 [1,4] 
sigmaw001[4,2]< sigmaw001[2,4] 
sigmaw001[4,3]<-sigmaw001[3,4] 
sigmaw001[4,4]<-sum(w*(EE[,4])A2 )/sum(w) 
sigmaw001[4,5]<-sum(w*(EE[,4])*«EE[,5])))/sum(w) 
sigmaw001 [5,1] <-sigmaw001 [1,5] 
sigmaw001 [5,2] <-sigmaw001 [2,5] 
sigmaw001 [5,3] <-sigmaw001 [3,5] 
sigmaw001[5,4]< sigmaw001[4,5] 
sigmaw001[5,5]<-sum(w*(EE[,5])A2 )/sum(w) 

comment(sigmaw001)< "Sw - Weighted S" 
print(comment(sigmaw001)) 
print (sigmaw001) 

Figure G.l R code for weighted estimator of the covariance matrix. 



Figure G.2 provide the R code for the pseudo maximum likelihood estimators when 

fitting an UCM model (with analytic solution), and an ARI model (with numerical 

minimisation) respectively. 

# pml UCM 

mIX1<-matrix(O,1,3) 

mIXX1<-matrix(O,1,2) 

mIXX1[1]<-(1/lO)*s21w+(1/lO)*s31w+(1/lO)*S41w+(1/lO)*s51w+(1/lO)*s32w+(1/lO)*s42w+ 
(1/lO)*s52w+(1/lO)*s43w+(1/lO)*s53w+(1/lO)*s54w 

mIXX1[2]<-(1/5)*sllw-(1/lO)*s21w-(1/lO)*s31w-(1/lO)*S4lw-(1/lO)*s51w+(1/5)*s22w
(1/lO)*s32w-(1/lO)*s42w-(1/lO)*s52w+(1/5)*s33w-(1/lO)*s43w- (1/lO)*s53w+(1/5)*s44w
(1/lO)*s54w+(1/5)*s55w 

mlXl [1] <-mIXXl [1,1] 
mlXl [2] <-mIXXl [1,2] 
mIX1[3]<-mIXX1[1,1]/(mIXX1[1,1]+mIXX1[1,2]) 

ml<-mIXl 

thetalOOapmltre[f,]<-ml 

# pml arl 
source ("/home/marcel/Marcel/pointl/Fpml.txt") 
min9<-nIm(Fpml,c(7.135,4.981,O)) 
comment (min9$estimate) <-"Theta estimates - Fpml arl" 
print(comment(min9$estimate)) 
print (min9$estimate) 
ml<-t(matrix(min9$estimate)) 

thetalOOapml[f,]<-ml 

Figure G.2 - R code for the pseudo maximum likelihood estimator. 

Figure G.3 provide the R code for estimating the variance of the pseudo maXImum 

likelihood point estimator, following the approach of Binder (1983), proposed in Chapter 

6, Section 6.3. 

#variance estimation for THETA hat pml 

#dSigma(THETA)/dsigmau - dlSigma 
dlSigma<-matrix(1,5,5) 
#dSigma(THETA)/dsigmav - d2Sigma 
d2Sigma<-diag(5) 

#Sigma(THETA) 
SigmaVector<-
c(ml[1]+ml[2] ,ml[l] ,ml[l],ml[l] ,ml[1],ml[1],ml[1]+ml[2],ml[1] ,ml[l] ,ml[l] ,ml[l] ,ml[l]. 
ml [1] +ml [2] ,ml [1] ,ml [1] ,ml [1] ,ml [1] ,ml [1] ,ml [1] +ml [2] ,ml [1] ,ml [1] ,ml [1] ,ml [1] ,ml [1] • ml [1] + 
ml [2]) 
Sigma<-matrix(SigmaVector, 5,5) 

Figure G.3 R code for estimating the variance of the pseudo maximum likelihood point 

estimator. 
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#Inverse of Sigma 
SigmaI<-solve(Sigma) 

#Calculate terms Al and A2 (see your personal notes!) 
AI<-SigmaI%*%dISigma%*%SigmaI 
A2<-SigmaI%*%d2Sigma%*%SigmaI 

#Calculating Mui 
#calculated earlier 

#Calculating yi-MU 
#calculated earlier 

#Calculating vector zli 
zli<-matrix(O,dim,l) 
for (k in I:dim) 
( / 

zli[k,]<-t(as.matrix(EE[k,]»%*%AI%*%as.matrix(EE[k,]) 
} 

#Calculating vector z2i 
z2i<-matrix(O,dim,l) 
for (k in I:dim) 
( 
z2i[k,]<-t(as.matrix(EE[k,]»%*%A2%*%as.matrix(EE[k,]) 
} 

#Create matrix z 
z<-cbind(zli,z2i) 
z<-as.matrix(z) 

#Calculate u(theta)1 
uthetaIi<-sum(w*zli)/sum(w) 

#Calculate u(theta)2 
utheta2i< sum(w*z2i)/sum(w) 

#Create vector uthetai 
uthetai<-cbind(uthetaIi,utheta2i) 

#Calculate vector (capital) ZZI 
ZZI<-matrix(O,dim,l) 
for (k in I:dim) 
{ 
ZZI[k,]< «w[k,]*zli[k,])-(uthetaIi*w[k,]»/(sum(w» 
} 

#Calculate vector (capital) ZZ2 
ZZ2<-matrix(O,dim,l) 
for (k in I:dim) 
{ 
ZZ2 [k,] <- «w [k,] *z2i [k,] ) - (utheta2i*w [k,] » / (sum (w) ) 
} 

# Create ZZ matrix 
ZZ<-cbind(ZZI,ZZ2) 

#Calculate ZZhat vector 
ZZhat<-cbind(sum(ZZI) ,sum(ZZ2» 

#Reminder: number of clusters => M 

#Add cluster id to ZZI and ZZ2 
ZZI<-cbind(ZZI,szl[,24]) 
ZZ2<-cbind(ZZ2,szl[,24]) 

Figure G.3 - R code for estimating the variance of the pseudo maximum likelihood point 

estimator (continued). 
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#create vector for allocating Sum ZZI in each cluster 
ZZlhatm<-matrix(O,M,I) 

for (m in 1 :M) 
( 
ZZltemp<-ZZI[ZZI[,2]==m,] 
ZZlhatm[m,]<-sum(ZZltemp[,I]) 
} 

#create vector for allocating 
ZZ2hatm<-matrix(O,M,I) 

for (m in I:M) 
( 
ZZ2temp<-ZZ2[ZZ2[,2]==m,] 
ZZ2hatm[m,]<-sum(ZZ2temp[,I]) 
} 

#create matrix ZZhatm 
ZZhatm<-cbind(ZZlhatm,ZZ2hatm) 

Sum ZZ2 in each cluster 

#calculate vector ZZhatmbar 
ZZhatmbar<-cbind(sum(ZZlhatm)/M,sum(ZZ2hatm)/M) 

#Caculate CovLZZhat 
matrix<-matrix(O,2,2) 
for (m in I:M) 
( 
matrixO<-t(ZZhatm[m,] -ZZhatmbar)%*%(ZZhatm[m,]-ZZhatmbar) 
matrix<-matrixo+matrix 

matrix<-(M/(M-l»*matrix 

#calculate Information Matrix for Theta (p)ml 
InfthetaML<-matrix(O,2,2) 
InfthetaML[I,I] <-sum(diag(SigmaI%*%dlSigma%*%SigmaI%*% dlSigma» 
InfthetaML[I,2] <-sum(diag(SigmaI%*%dlSigma%*%SigmaI%*% d2Sigma» 
InfthetaML[2,1] <-sum(diag(SigmaI%*%d2Sigma%*%SigmaI%*% dlSigma» 
InfthetaML[2,2] <-sum(diag(SigmaI%*%d2Sigma%*%SigmaI%*% d2Sigma» 

#calculate covariance matrix for theta 
covthetaML<-(solve(InfthetaML»%*%matrix%*%(solve(InfthetaML» 

COvML<-C(covthetaML[I,I] ,covthetaML[2,2]) 

varPLM[f,]<-covML 

Figure G.3 - R code for estimating the variance of the pseudo maximum likelihood point 

estimator (continued). 
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Glossary 

y 

y. 
_I 

y. 
-I 

::s..it 

q 

c 
x· _I 

V 

N 

T 

S 

n 

peS) 

;; 
S 

Sr 

PSU 

H 

m 

study variable or survey variable 

random vectors 

population values of y or a joint realisation of y;, ... , YN 

random vector containing T repeated observations on Y for individual i 

T x 1 vectors with the observed values for the response variable for 
each individual i 

1 x q vector with q fixed covariates 

T x q matrices with covariates for individual i 

number of fixed covariates 

any variable 

1 x q vector with the q fixed covariates (cross-sectional context) 

finite popUlation 

number of elements in the finite population or popUlation size 

number of waves of the survey 

joint distribution of ~, ... , YN under model 

sample or a subset of V 

number of elements in the sample or sample size 

sampling scheme 

set of all possible samples 

actual selected sample 

longitudinal sample 

sampling weight for individual i 

inclusion probabilities for individual i 

longitudinal weight for individual i at time T 

primary sampling unit 

number of strata 

number ofPSUs in the sample 



srs 

B· _I 

Ui 

p 

p 

fJ 

fJ
N 

fJ 

fJc 

Y1 

-* 
Yt 

simple random sample (or sampling) 

error term 

T x 1 vector with errors 

permanent random effects or unobservable individual specific factors 

transitory random effects 

random area effects 

model variance of 1';1 

estimator of ()2 

model variance of Ui 

model variance of Vii 

model variance of Bit 

model variance of 17 j 

model intra-individual correlation 

model intra-cluster correlation 

q x 1 vector of the unknown fixed coefficients for the x variables 

maximum census likelihood estimator for the parameter fJ 

estimator for the parameter fJ 

q x 1 vector of the unknown fixed coefficients for the x variables (cross
sectional context) 

cross-section estimator for the regression coefficient 

finite population mean for the study variable at wave t 

weighted estimator for r; 
unweighted estimator for ~ 

standard deviation of Y considering wave t 

an estimator the standard error, also denoted by s.e. 

contrast 
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v 
g 

R 

I 

s 
w 

U 

VAR(.) 

COV(.) 

aCOV(.) 

an unweighted estimator ofthe contrast 

a weighted estimator of the contrast 

TxT working covariance matrix 

Maximum considered lag covariance 

TxT working correlation matrix 

TxT identity matrix 

TxT model variance-covariance matrix 

TxT model variance-covariance matrix constrained to be function of f!.. 

generic target model parameter or a 1 x b parameter vector of interest 

an estimator of the parameter of interest f!.. 

number of distinct elements of 2:: 

TxT finite population covariance matrix 

TxT weighted sample covariance matrix 

TxT unweighted sample covariance matrix 

any consistent estimator of 2:: 

typical element of W 

positive definite weight matrix 

typical element ofU 

forth-order moments about the mean 

transition matrix 

fitting function 

parameter space 

population residual covariance matrix 

residual covariance matrix 

weighted residual covariance matrix 

model variance 

model covariance 

asymptotic covariance 
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CORR(.) 

varM'.) 

COVN (.) 

var(.) 

varn (.) 

varr (.) 

varJ (.) 

varL (.) 

vardj (·) 

varc(.) 

GEE 

LM 

ARI 

UCM 

ADF 

iid 

ML 

PML 

OLS 

ULS 

ULSC 

GLS 

model correlation 

population level estimator of the variance 

population level estimator of the covariance 

estimator of the variance 

'naIve' variance estimator 

robust variance estimator 

jackknife variance estimator 

linearization variance estimator 

distribution free variance estimator 

distribution free variance estimator that accounts for the sampling design 

generalised estimating equation 

linear regression cross-sectional model 

stochastic first-order autoregressive process 

uniform correlation model 

asymptoticall y distribution-free 

independent and identically distributed 

T-dimensional multivariate normal distribution 

k-dimensional multivariate normal distribution 

T-dimensional multivariate Wishart distribution 

t distribution 

t distribution with non-standardised variance 

census likelihood function 

logarithmic census likelihood 

maximum likelihood 

pseudo maximum likelihood 

ordinary least squares 

unweighted least squares 

unweighted least squares for complex survey data 

generalised least squares 
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GLSC 

plim 

vech[.] 

vec[.] 

tr(.) 

1·1 

® 

DejJKish (.) 

mejJ(.) 

RMR 

LRT 

LMT 

WT 

GFI 

AGFI 

MSE(.) 

cv 

D 

generalised least squares for complex survey data 

model expectation 

expectation with respect to the sampling distribution of statistics over 
repeated samples s generated by the sampling design p(s) 

probability limit of 

a vector formed from the nonduplicated elements of a matrix 

a vector obtained by stacking the columns of a matrix 

trace of a matrix 

determinant of a matrix 

right Kronecker product 

Kish's design effect 

the true variance that considers the true sampling scheme used 
for the selection of the sample 

hypothetical variance when considering that the sample was selected 
by srs with replacement 

a consistent estimator of the variance, when we assume that the 
observations are iid 

misspecification effect 

Root mean-square residual 

likelihood ratio test 

lagrangian multiplier test 

Wald test 

goodness of fit index 

adjusted goodness of fit index 

mean square error of an estimator 

coefficient of variation 

number of simulated replicates 
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