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ABSTRACT
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by Mike Westmacott

This thesis describes research into an area of content based image retrieval (CBIR), that
of feature indexing for the purpose of rapid retrieval. The techniques in this thesis draw
from the field of text IR and demonstrate that individual image extraction algoritluns
can be optimised for use with an inverted index, which could lead to CBIR systems

capable of sub-second retrieval times on collections of millions of images.

A novel global feature algorithm, QMNS; is presented. which is capable of capturing both
colour and texture information in a spatially insensitive manner. Images are divided into
regular patches from which dominant colowr modes are derived using the mean shift
algorithm. The RGB bi-modal colowr space is quantised giving a set of labelled feature
terms with associated frequencies and the terms inserted into an inverted index. Terms

in the index are retrieved with a TF*IDFE algorithm.

The performance of QMNS and the index is measured by comparison with an RGB
colour histogram, an RGB CCV histogram, and the unquantised MNS features. Pre-
cision and recall results show that the indexed feature performs equally as well as the
other algorithms for an image collection of photographic images. An analysis of the
distribution of each type of feature term was performed, showing that Zipf’s law holds
in each case. Quantisation parameters for the algorithms were varied, demonstrating
that a tradeoff exists between vocabulary size. the average precision, and the speed of

retrieval.

This thesis indicates that the current generation of highly successtully text IR systems,
which are implemented using inverted indexes, could provide the basis for very rapid
image and multimedia retrieval. The optimisation techniques shown can be used for any
quantisable feature, and allow retrieval to be pertformed without specialised comparison

algorithms.
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Chapter 1

Introduction

1.1 ‘Finding Out About’

Rik Belew’s book on search engine technology, entitled ‘Finding Out About’[13], empha-
sises the cognitive aspects of information retrieval, and as such identifies a key aspect
of the discipline. There are many applications where information retrieval is required
in order to replace lluman operators with machines, and a highly desirable property for
these machines to own is the ability to act as humans. When designing wachines to
replace humans it is therefore of prime importance to understand how a human would

perform such a task.

Possibly the reason that as humans we are as intelligent as we are is our ability to
find out about things - we are adept at the skills of knowledge acquisition, storage,
transformation and dissemination. Using our senses of vision. learing, touch, smell
and taste we are able to interpret and understand our enviroument, and to determine,
through beliefs about our environment and capabilities, appropriate actions that allow

us to achieve certain goals that we may have.

Of these senses, our vision is perhaps the strongest and most acute. It is certainly that
which presents us with the most information on a daily basis, thirough tlie recognition of
objects around us and our inherent abilities in written communication. Our brains allow
us to interact with our physical environment by taking visual stimuli and interpreting
these as salient objects in a three dimensional world. We are performing a continual
process of information retrieval as we look at scenes that surround us, comparing objects

that we see with objects that we have memories of.

Whilst machines that have vision and intelligence comparable to our own are still a
dream, we can use the knowledge we have about how we perform our own information

retrieval to create machines that assist us in searching through the huge quantities of
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information contained in our libraries, offices, hospitals, and of course, in the world wide

web.

The field of CBR (Content Based Retrieval) will hopefully allow us to achieve some of
these goals. There are, however, many aspects that must be overcome. Of particular
importance to this thesis is the concept of ‘information overload’ - the overwhelming
amount of information which is generated and stored on computer systemns. The mani-
festation of this is the difficulty of attempting to locate desired information. It is the task
of the information retrieval community to solve such problems. The now wmature text
retrieval field has already demonstrated that good quality retrieval from massive cor-
pora is possible (consider the Google web search engine). and with advances in natural

language processing is getting better.

This thesis aims to demonstrate to the reader that technologies developed for text IR
(the inverted index and associated retrieval mechanisms) are applicable to iinage, and
other multimedia, retrieval systems. Whilst not demonstrated. it is theorised that careful
development and analysis of features®, their information domains, and the distribution
of ‘feature terms’ will allow a multimedia database to store millions of documents, and

to respond to client’s requests in sub-second time.

1.2 Aims and Objectives

The key aims and objectives of the research presented in this thesis are as follows:

e To demonstrate that sub-second content based image retrieval is possible from

massive image collections:
— Use available feature extraction algorithms, or develop a novel global colour
feature extraction algorithm.
— Develop a technique for transforming image features into a form storable in

an inverted index.

e To provide techniques that allow analysis of the distribution of the feature space

of different features:
— Identify how changing a feature extraction algorithm’s parameters change the
distribution of points in feature space.
— Investigate the effects of different techniques of feature space quantisation.

— Present optimisations for indexed feature descriptors.

'Throughout this thesis the term ‘feature’, when used alone, will refer to either a semantic feature
(for example coarseness is a textural feature), or to the data that is generated by a feature extraction
algorithm for a particular image (also referred to as feature vector or feature descriptor. The surrounding
paragraph will determine the contert.
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1.3

This

To demonstrate whether feature term retrieval is flexible and extensible.

— Show the potential for heterogeneous feature storage.

Thesis Structure

thesis is split into the following chapters:

Chapter 2 - Fundamentals of Information Retrieval: Background material

on image features, feature indexing, the inverted index and retrieval evaluation.
3 b)

Chapter 3 - Multimedia Information Systems: Background ou applications
and architectures of content based retrieval systems, and examples of a number of
old and new MIS.

Chapter 4 - INVISTOR - An Inverted Index Multimedia Search En-
gine: This chapter describes the software applications that were developed for
this researchi. These include the image processing API. the CBIR image indexer

and query processor, the results analysis module and the index analysis module.

Chapter 5 - QMNS - The Quantised Multimodal Signature: The QMNS
feature algorithm forms the basis for a lot of the work in this thesis. This chapter
describes how the features are extracted and represented, and presents tests which
analyse the retrieval performance of QMNS and other colour features. The distri-
bution of feature terms is investigated. and it 1s shown that it is the most cormuon
terms for QMNS which are the best for retrieving images. Work presented in this

chapter is published in [142].

Chapter 6 - Generalised Feature Indexing: Extending the work from the
previous chapter, this chapter looks in more detail at the distribution of {eature
terms, how changes in the underlying QNMNS parameters effect this, and how to
optimise the index by pruning terms which are not good discriminators. Work

presented in this chapter is published in [141]

Chapter 7 - Conclusion: The results of the research are outlined, and the
alms and objectives listed above are shown to have been fulfilled by this thesis,
presented as relevant contributions to the field of content based retrieval. Future

work is discussed in the context of the work that has been completed.



Chapter 2

Fundamentals of Information

Retrieval

2.1 Introduction

The use of computers to either assist, or replace, human operatives is dependant on
a thorough understanding of the duty that their couuterparts must perform - current
technology is a long way from the ideal of generic, adaptive, machines capable of any task.
The type of task will determine many of the functional requirements of the computer

system which must be designed carefully from tlie outset.

The field of computer vision and image understanding encompasses tasks where a com-
puter is required to take data in the form of images and motion video! and extract salient
information from it. There are two main application areas for such systems: Those that
are for autonomous systems. requiring no interaction from an operator, and those where

the system provides a (possibly) interactive service for an operator.

Both applications require that the system is capable of analysing an image (or a sequence
of images in the case of video) and extracting succinct information that may allow for
discrimination of objects and structure within that scene. They may also be required
to apply knowledge they have to identify, and reason about, those objects. This process
will therefore need to involve activities such as delineation of regions within the image,
in order to determine object boundaries, and the comparison of the image, or parts of

it, with other known objects and images.

It is this process, where the content of images are compared to find similarities (and

hence similar objects), that forms a core part of computer vision?, and is the topic of

'Both image and video media may originate from sources which are non-visual, such as x-ray, radar,
or sonar.

2Cogniti d intelligence f he ¢ b allowi : eas

Cognition and intelligence form the counterpart here, allowing a system to reason about similar
objects, and to then label with attributes those objects.

4
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this thesis. The broad topic is known as Content Based Retrieval (CBR), and is a key
part of a wide variety of subjects ranging from text retrieval to digital libraries. The
following sections of this chapter introduce these coucepts and the seminal, and state of

the art, techniques that researchers have developed over the past few decades.

The second section introduces the processes involved in CBR and some of the research
projects and real-world applications that use it. The third section looks at the kev
entities that are involved in one form of CBR - document based retrieval - and how
these are used to rate the similarity of images and other media. The fourth section
looks at text retrieval, which is itself a form1 of CBR. and the techniques that allow
massive databases of text to be searched incredibly rapidly. The next section moves the
focus back to image retrieval, and reviews image processing algoritling for extracting
low level features. Sections six and seven are about the indexing of these features, and
present some of the core concepts that shall be explored throughout this thesis. The last
main section discusses how the quality of results produced by CBR systems should be
evaluated, in order to compare algorithms and systems. Finally the chapter concludes
with questions about the future of CBR aud presents the hypothesis again, this timme in

the context provided by this background work.

2.2 Content Based Retrieval

Content Based Retrieval (CBR) is a techuique that will retrieve documents from some
form of store, or archive, such that the retrieved documents satisty the informational re-
quirements of a given query. This process typically involves extracting information from
media in the query document. and compariug this with the inforination known about
the media and documents in the archive. CBR results are normally ranked according
to how ‘similar’ each document is to the query. Text IR is a form of CBR - documents
containing the same. or similar, terms as the query string are returned, usually ranked

by a function of the frequency of the matching query terms.

As human beings we perform a form of CBR on a daily basis in aluiost all activities.
Every time we look at something we are comparing the visual stimuli from our eyes
with experiences we have in memory in order to find the hest match. The processing
capabilities of our brains, however, are significantly more comnplex than current CBR
techniques, and we have the ability to associate much higher level concepts with stimuli
than a computer can. CBR is currently able to provide a measure as to how similar two
objects are - but it cannot say whether, for example, one picture of a cup shows the

same cup as another picture.

Exactly how we perform such actions is still unknown, but there is extensive research
into how we represent such associations between stimuli and experience in our minds.

Semiotics, as founded by the linguist Ferdinand de Saussure (1857-1913) and Charles



Chapter 2 Fundamentals of Information Retrieval 6

Peirce (1839-1914), is the study of signs. Too complex a subject to describe here, it
provides a foundation for describing commmunication in terms of language and culture.
Put very simply, a sign is some representation of an object. or concept, in the real world.
The word CAR is a sign for an object that, in our culture. is deened to be a car. The
pixels that constitute the area in an image corresponding to a picture of a car are also

a sign for car, and together are called a signature of the car.

Given that there are an almost infinite number of lmage based sigus for objects and
concepts (let alone the other media in which sigus exist. such as audio), it is uwusurprising
then, that sign based retrieval is a difficult task. As humans we have the intelligence
to interpret our stimuli as signs very easily, but with computers we must compare a
signature that we wish to identify with all other known signatures. We assue that
if we find two similar signatures then the two objects that they signify must also be

similar. It is these ideas that form the basis of CBR.

2.2.1 Applications of Computer Vision and CBR

The applications for which a vision and CBR system could be useful are endless. The
following list includes some of the niore typical applications, aud research projects that

have demonstrated themn:

e Medical Imaging: Medical imaging systemns - PACS (Picture Archiving and
Communication Systems) - are designed to provide imaging support for clinical
use. Originally defined by Huang in [64], these MIS allow operators to archive and
retrieve the many different modes of image that are acquired by devices such as
X-Ray, MRI and CAT scanners. These systems have to cope with hluge quantities
of image data, which may be requested from remote sites. and so the storage aud
network functions of the system must be designed appropriately. CBR in PACS
often involves image registration, thie process of mapping 3D data from images of

one source to those of another.

e Web Retrieval: Web based retrieval would provide access to the vast multimedia
content available on the Internet. Such services would be provided by search

engines such as Google, or by content portals such as Yahoo and MSN.

e Digital Archives: Many institutions have large archives of books, artwork, and
other physical artifacts which would benefit from the advanced cataloging and re-
trieval functions of a computer system. Digital archives (such as those developed
for the Artiste and Sculpteur projects) provide access to archive material that has
been digitised and stored. Once the information is available on computer, analy-

ses may be performed to extract more data, or to cross-reference. The Artiste
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project employed techniques such as colour and texture analysis and crack detec-
tion and classification to assist art researchers, restorers and enthusiasts in their
work. Sculpteur extends the Artiste systemn by providing digitising and retrieval
of 3D models.

e Manufacturing Inspection: Components can be checked by vision systems as
they come off assembly lines. In this case the system may be looking for the pres-
ence, or absence, of elements in the component. or it may be measuring elements

to check that they have been produced correctly.

e Autonomous and Robotic Systems: The military ave the biggest investor in
research in this area, developing surveillance equipment and weaponry that are
capable of performing their functions autonomously. To this end DARPA (the
American Defence Advanced Research Projects Agency) are offering a $1 million
prize to the first team that can build a vehicle to complete a 150km course in the
Mohave desert?. Deep sea exploration, mining, aud space exploration are other

examples of applications where the practicality of sending humans is a limitation.

All of these applications share four common stages:

e Acquisition: Images (and other media) must be acquired through sone source.
This may be through a camera, or other sensor, or it may involve using existing
media. Images are simply arrays of pixels, and so any sensor capable of generating
an array of discrete data is a candidate for image acquisition. In the case of non-
visual sensors, such as x-ray or radar, post processing may be required to create

an image suitable for viewing by people.

e Analysis: Once acquired the images are analysed according to application do-
main specifics: Salient information that will in some way assist the application is
extracted. The x-ray component of a PACS may be required to delineate certain
bone structures, or if the source is that of a security scanner it may attenipt to

identify hazardous or prohibited articles.

e Storage: The information extracted from the images, and maybe the original
images, are required to be stored. Stored images and the extracted information
can be catalogued, aiding future retrieval by showing positive examples of objects.
The indexing of this information can then allow for rapid retrieval of the images

in the archive.

e Retrieval: Without mechanisms for using the stored information, the application
would be of limited use. This is perhaps the most important aspect, for which

the other stages are only preparatory. Retrieval may be performed by browsing

3At the time of writing (April 2004) the furthest a vehicle managed has travelled on the course is
Tkm.
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through catalogues, by providing an example of what is required, and even by

sketching a composition.

Now a well established research field, computer vision systeims are now enjoying a large
amount of high profile commercial success. bio-metric scanners that identify people
based on the unique pattern of their iris have been installed at Heathrow airport as part
of a trial by Virgin Atlantic, British Airwavs, and EyeTicket Corporation to allow rapid
boarding of flights for first class business customers [7]. Less highly regarded amongst
the public are a new generation of speed cameras which read the licence plate of speeding

cars and automatically issue a ticket.

A major reason for the increased commercial interest has been due to the ever reducing
cost and size of electronic equipment required to provide such facilities. There is now
much interest in personal assistant computers incorporating computer vision whiclh could
continually record what you do (via a camera worn in a suitable location, for example in
glasses) and then analyse the imagery and record certain relevant pieces of information.
They could, for example, record the text of a restaurant menu so that it could be recalled
at a later date and emailed. Nokia have already developed software called Lifeblog [8]

which organises data from a phone and its camera into a multimedia blog.

2.2.2 Paradigms of Information Retrieval

The method by which we search for information is crucial to the quality of the results
gained, and will depend on the scope of results which we deem will answer our query.
Some queries require a very specific answer - perhaps a single document - whilst others
may be less definitive, being answerable by any document which has a topic which is
the same as the query’s. Below are listed some of the methods by which information

may be retrieved.

e Query By Example: Perhaps the most conuon query form, QBE systews
require an example which they compare with those in their database. They answer

the question: “Find me documents lzke this”.

e Query By Sketch (or by Humming): QBS requires slightly more interaction
from the user, and allows them to generate a proxy document for which they wish
to find similar documents. In image retrieval this could involve laying out coloured
shapes to indicate where particular colours should occur in the desired documents
[65]. In audio this might involve humming a tune to indicate the direction of the

pitch (i.e. up, or down) [56, 18].

e Browsing: Browsing is perhaps the retrieval technique which is used by most
people on a daily basis when attempting to search for anything (not on a com-

puter), and is primarily an iterative process. The first iteration involves locating
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the collection of items in which the desired object exists. for example, a particular
book will probably exist in a library. The following iterations reduce the size of
items through which to search. Within a library this will lead the searclier to the
appropriate section (perhaps with the aid of Dewey decimal catalog codes) to row

of shelves, then to a shelf and then to the books which are of interest.

e Navigation: The concept of retrieving information by navigation is restricted
purely to the domain of computing, and is best illustrated by the web, and HTML
documents. Normally a link on a web page is static - it provides a path from the
current document to another. A generic link, when clicked upon, will provide a
selection of documents to navigate to. The documents will be determined. not
statically, but dynamically, by using the link auchor as a query passed to content

based retrieval engine.

2.3 Documents, Features and Signatures

In information retrieval we are tvpically looking for an answer to some sort of question,
presented in the form of a query. We will direct our querv at an appropriate source
of information, and with luck, and a well posed query, we hope to find that piece of
information which we desire. Unfortunately, where information is stored digitally, and
unlike ‘querying’ a human counterpart who is able to construct just the right answer,

we are unlikely to find the exact piece of information we require.

Documents provide the core entity for information storage and retrieval. A document
can be defined as a source of information that shares in common some topic, and that
has been authored explicitly to record - or documnent - that concept. A book contains
writings that all pertain to the same topic, or in the case of fiction, all pertain to the
same, fictitious reality. An image contains representations of a particular scene, and a

3D model represents a physical dimensions of an object, be it real or conceptual.

This simiple definition contrasts with the dogmatic dictionary definition, and does not
reflect the richness of modern multimedia documents which are available. An alternative,
more general, definition is that a document is a collection of signs all associated by a

common topic, or concept (which is itself a sign).

2.3.1 Documents and Media

Documents have always consisted of a combination of text and image, and such forms
of recording events as the hieroglyphics of the ancient Egyptians show the use of sigus

directly. Today multimedia authoring allows us to combine different media very easily
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into a document, and hypermedia allows us to control the order in which these media

are viewed, providing a personalised view of the information.

Electronic documents come in a wide variety of tvpes and formats. Nost share in
common the ability to combine different types of media at different locations, spatially
and possibly temporally. Some formats allow for interaction with certain elements of
the document In order to keep the mmodel of a document siniple such interactions shall

be ignored, and a document will be cousidered to be a static entity?.

Techniques for decomposing documents are necessary since information within them
is spatially (and temporally in the case of video) organised - that is that pieces of
information close together are more likely to be on the same topic than those that are

tar apart.

Many documents are composed of different types of media, aud depending on the doc-
ument format, the different nmiedia elenments may be in different formats. Text may be
plain ASCII, RTF, HTML or one of the many other formats. Images could be in bitmap
or vector format, and possibly the most complex media tvpe. video. comes in a myriad

encodings, sizes, frame rates, and audio formats.

Any information system that deals with complex documents must have some method
for parsing the media elements, so that thiey may be analysed and information extracted
from them. How the system stores this extracted information, and whether it maintains
document structure information (which may incur a high storage cost), is determined

by the application of the system.

2.3.2 Features

The lowest level entity involved in information retrieval is the feature. A feature can be
described as ‘an entity which is a representation of some salient aspect of the document’.
In text the features that are used correspond to characters. words, phrases, sentences,
chapters and other constructs that we typically use in natural language. Such features
have an immediate ‘semantic value’, corresponding almost directly to the concept that

they are a sign for.

A good, and useful, feature is one which is both salient (important) and relevant in a
given context. In the human vision system there are a limited number of cues with which
we are able to interpret a scene presented to us. In particular our visual sensitivity to
horizontal and vertical straight lines is particularly strong. It is a form of both condi-
tioning and of inherent ability that we are able to accurately interpret and understand

our surroundings using our vision. Inlerent abilities in the human vision system seem

4Documents, such as those in the HTML format published on the WWW, which allow interactive
navigation are still considered, since navigation does not change their authored content.
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to take second place as we grow older aud as our brains become familiar witl visual cues

they encounter.

As with biological vision systems there are a number of primitive features that are used
in computer vision: colour, texture and shape. We can use the colour and texture in
an image to segment regions that we believe might be salient objects, or we could trace
edges that are found in convoluted representations of the image which may also give rise
to shape. We can combine these primitives to form more complex features, or we can
employ the information that they provide to focus on a particular area. When designing
a feature for use in image retrieval there are two key factors which must be taken into

account:

e (ontext: The information domains in which the stored documents and the user’s
query exist. In set terms this is an intersection of the topics that exist within
documents of the corpus and the typical information requirement of the user issuing

a query.

o Retrieval Time: The size of the corpus, at both intra- and extra-document levels,
and the speed with which results should be delivered to the user. Where some
applications may demand rapid response times by their very nature (such as real
time medical and military systems). others suffer siniply from the desired response

time of their users - now!

Image and other multimedia features vary in the level of abstractuess that they convey.
Some image features (described further in section 2.5) simiply provide a count of the
number of pixels of a certain colour which are present. whilst others are capable describ-
ing much higher level concepts, sucl as thie location, size and density of muscle tissue
inside the heart. The first tvpe of feature lies in the broad application doniain. whilst
the second is clearly in a very narrow application domain. Iu [125], and presented in

table 2.1, Smeulders et al define the two application domains succinctly.

Their original table has been annotated to inchude some examples of typical applications.
In general we know that the narrower the domain of the application, the more specific,
and hence the less data each feature needs to carry. It is important to note that whilst a
feature may describe a complex entity within a specific context, the feature itself may be
very simple. In [145] the primary information required is the size, defined by width and
breadth, of Candida yeast cells. The template matching used by the feature extraction al-
gorithm is relatively complex - requiring a model of the size and shape of the cell and the
optical density. The resultant data output is a very concise representation for each of the

cells as a six place tuple containing: < locz,locy, width, breadth, angle, con fidence >.
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Narrow Broad

Variance of content low high

Sources of knowledge specific generic

Semantics homogenous heterogenous

Ground truth likely unlikely

Content description objective subjective

Scene and sensor possibly controlled unknown

Target application specific generic

Tvpe of application professional public

Tools model-driven, perceptual, cultural,
specific invariants general invariants

Interactivity limited pervasive, iterative

Evaluation quantitative qualitative

System architecture tailored database-driven modular interaction-driven

Size medium large to very large

A source of inspiration object recognition information retrieval

Typical applications radar - esp. delence web document retrieval
medical imaging digital archives and libraries

TABLE 2.1: Narrow versus broad domain in image retrieval (Smeulders et al [125])

2.3.3 Signatures

The signature of a document is a representation of features contained within that doc-
ument. A signature i1s usually restricted to one type of feature, and so a document
will have as many signatures as types of feature extracted. Ideally a signature should
be unique to a document, but it should also be able to identify documents that have

similar content.

An important aspect of a signature is that it ideally needs to be a compact representation
of the signified document. Small signatures may be stored easily and searched rapidly.
but can only store a small, succinct amount of information - that which is extracted by

the feature.

2.3.4 Document Similarity

Once document signatures have been generated and stored, retrieval of documents may
be performed. In a QBE system the user presents a query docuiment for whicli they wish
to find other similar documents. A signature will be generated for the query which must
be compared with the stored signatures, and the results are presented to the user in order
of similarity. Measuring document similarity is a process of signature classification, and

it is the features that determine which inforination the classes are based upon.

All signatures can be represented as either a single, or multiple points, within the n-
dimensional space of the feature algorithm. As such, points that are close are similar
signatures, hence represent documents that are similar - according to the information

extracted by the feature algorithm.
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Imagine that one has a particular query that needs to be answered. Consider an abstract
information space where all the docuunents that answer the query are close together, and
those that do not are farther apart. The feature that is best suited to answering tlie
query is the one where the useful docuinents are also close together in the feature space.

The feature, however, may not be any good for other queries.

There exist a great number of methods for measuring how far apart points are in Euclid-

ean space. The following list presents some of the most often used metrics:

e Ln Measures. The L, measures share the conunon form:

distin(a,y) = (O (v —yil)") (2.1)

i
The greater the value of n, the more a large difference in one component will
differentiate the two points. As n is increased the function will approach max(|x; —
y;|) (known in some literature as the Chebychev distance). These measures are
typically used where the values provided are interpreted as being points, and not

vectors, 1n space.

— L (City block, or Manhattan Distance): The distance is simply the
sum of the differences for each component, which in 2 dimensions is seen as

two perpendicular lines.

[
[0V
~—

distpy(x,y) = Z |z — il (

— Lo (Euclidean Distance): Possibly the most often used measure, the L2

distance measure returns the shortest line distance between two points:

distpa(z,y) = Z(ari —y)? (2.3)

i

e Correlation Metrics. These metrics are used to compare vectors and return val-
ues between zero and 1, unlike the L, metrics. They are used where the direction

of the vectors being comapred is considered important.

— Uni-polar: uc() ranges from 0 to 1, where 1 is identity. To use as a metric

(where 0 indicates no difference between two entities) 1 — uc() must be used.

— Bipolar: bc() ranges from -1 to 1, where 1 is identity. To use as a metric,
either 1 — be() or %’C() must be used.
- Uncentered (cosine): This metric treats the two vectors as points and

calculates the angle between them:

2y’

Va'z/y'y

dist cosine(T,y) = 1 — (2.4)
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where z’ and y are the transposed forms of 2 and y.

o Vector Set Comparison measures. In the situations where a single signature
is composed of multiple poiuts a slightly different approach must be used. Points
in the two signatures must be paired in some manner so that some predicate is
satisfied in each case. Various names exist for this type of operation, including

joins and stable marriage matching.

— Hausdorff Distance. This measure compares eacli point in the source set
to each point in the target, and then takes the distance from the point in
the source that is farthest frour any point in the target to the point in the
target that is closest to it. The directions of the sets are then reversed and

the maximum value taken as the distance. [32, 67].

— Stable Marriage Matching. Given two equally sized sets of n objects, m
and w, two nan matrices are created where each row contains rank values
for the corresponding object in the opposite set. The rank values are created
according to some predicate, and each must contain a distinct value. In [54]
Gale and Shapley state that there exists a valid and stable marriage for any
combination of the rankings. A stable marriage occurs when there are no two
pairs {m;, w;}, {me, w} such that wy is ranked higher than w; by m,, and m;
is ranked higher than my by wy.

— Earth Mover’s Distance: This algoritlun measures the distance bhetween
two distributions, calculating the minimal amount of work required to trans-
form the source distribution into the target. It also provides for partial match-
ing [114, 115].

As well as these generalised point and vector distance metrics, many CBR techniques
employ their own algorithms. Notably there are a large number of metrics dedicated to

the comparison of colour histogram features [129].

All of these metrics are only useful for comparing identical feature spaces, and so for
a document composed of multiple media, or for a single media element with multiple
features, a query will return multiple similarity values. Where the result of a query is
to be presented to a human user these classifications must be combined into a single hit

list.

2.3.5 Classification and Clustering

Simple similarity based searches using point comparison, as shown in the previous sec-
tion, are a highly valuable tool, and are used to find document signatures which are
like the query’'s. This is a simple form of classification - identifying which documents

are in the same class as the query. By proactively classifying and labelling documents
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according to the signatures that they contain the probability and ease of finding docu-
ments that match a query are increased - if one document in a class matches then the
others are in some respects guaranteed to also match. Immediately we have reduced the

number of signatures we must search through.

Classification of feature vectors involves finding the clusters of points in the feature
space, and assigning each point to one or more clusters. There are a large nunber of
techniques which can be used, ranging from the minimal spanning tree algoritlim [16].
the K-means group of algorithms [84, 121] to the mean shift algorithm [51, 28, 41]. A

thorough review of classifiers is provided in [71].

The spanning algorithm initially treats all poiuts in the space as individual clusters.
and then using a distance measure appropriate to the data, finds the two clusters in the
space that are nearest each other and merges them. This process is repeated until either
the required number of clusters is formed. or the clusters reachh a maximumn size (either

in number or volume).

The K-means group of algorithms start by taking the n points in space that are farthest
apart, with n being the number of desired clusters. and assigning these points as the
initial clusters. Next the clusters are iteratively assigned the points that are closest to
them, after each point is added to a cluster its ceutroid is recalculated. The overall effect

is that the clusters will each move towards (but not reacli) the centroid of all the points.

The mean shift is another iterative algorithm which will cluster points. The method
looks at each point in the population in turn and examines other points that fall inside
a window centred on it. The mean position of this subset of points is calculated, and the
current point is shifted by that vector. The process is iterated for each point until the
mean move is less than a designated threshold. The movement of the poiuts will {forin
clusters whose original points will not be outside the window centred about the cluster

centroid.

2.3.6 Combining Classifiers

The author of a particular CBR algoritlim that can classify 90% of documents correctly
may believe that his technique is best and does not require the use of another algorithm
that can only classify 20% of documents correctly (given the same sets of documents).
If the correct documents classified by the second algorithm were part of the set correctly
classified by the first algorithm, then the first algorithm is clearly superior and using
the second can not improve the results. If however, the patterns of classification do not
overlap, and the second algorithm can classify documents that the first can not, then

there is a good case for combining the results of the two.
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The field of classification crosses into many other different fields, providing mechanisms
that allow decisions to be made when multivariate, or multidimensional data is found.

There are two primary approaches for decision making:

e Centralised: A single inference mechanism receives all data inputs (that have
possibly been pre-processed) and provides a decision so to the classification of the

data input given predetermined classes.

e Distributed: Each data input is processed and a decision made. These decisions
and then passed to a second level inference mechanisin which produces a final

decision.

The second approach applies to most systems since 1993, aud is referred to as classifier
combination. According to Kittler et al [71]. there are two reasons for combining clas-
sifiers - efficiency and accuracy. Simple classification tasks may be achieved by using
multistage classifiers, such that classification stops once an object has been identified to
a desired level of certainty. More complex objects may require additional features and

additional procedures and rules.

The key inference mechanisms that are used in basic Al and CBR are listed below:

e Knowledge Rules: Decisions are based on boolean algebra. FEach coudition
is either fulfilled, or not - there is no allowance for errors in measurement. For
example: (Condition A) AND (Condition B) = Condition C

e Fuzzy Logic: A simple extension of knowledge rules where a condition is assigned
a value that determines how well it has been fulfilled - there are various degrees
of class membership. Membership functions are used to determine how much a
particular object belongs to a class, based on a measurement. The function returns
0 for no membership at all, and 1 for complete membership. Various rules similar

to those for boolean algebra exist for both conjunctive and disjunctive reasoning.

e Probabilistic and Belief Approaches: Tlese techniques work on the ability
to model the degree of belief that a particular event has occurred. Belief results
from uncertainty, which may be due to a lack of information. Common models are
the classical probability model. the Bayesian model, upper and lower probabilities
model, and Demster’s model. [60] introduces logical models of inference, and

[39, 122, 124] provide background material for the Demster-Shafer approach.

e Bayesian Networks: An extension of the classical Bayesian probability model,
where the interactions amongst knowledge entities are explicitly modelled. This
makes Bayesian Networks simple to use and apply to other existing models. In

[108] Pearl originally introduced the concept of the inference network.
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e Neural Networks: Using the neurons found in many living organisis as a fouun-
dation, neural networks are trainable structures that accept data measurements
and provide a classification of the data. Each neural node can have multiple in-
puts, and when the sum of those inputs exceed some threshold, the neuron triggers
and sends messages on to other neurons. By applying known data to the inputs
the network can be weighted so that it can classify unknown data. Neural net-
works are often attributed to the work of Frank Rosenblatt [113] who developed

the perceptron neural network in 1957.

Content based retrieval is ultimately a classification activity. We wish to determine
whether a document fits into the same information classes, which we have in our mind,
as our answer. We may not know what these classes are, but we will know whether a
document fits them. By creating a good model of classes of documents we are able to
better group them so that when we find one document that answers a query (by the

user’s standards) we have also found many others.

2.4 Text Document Retrieval

A great deal of work has been performed in the field of Content Based Text Retrieval
(CBTR), beginning with such early work as Dewey’s decimal system. His system allowed
books containing similar content to be grouped together, so allowing a primitive form of
CBR. Of course, this techinique only provides insight into the broad topic that a hoolk

is concerned with, and requires manual categorisation.

CBTR has a distinct advantage over other forms of CBR, for example image retrieval,
because of the inherent semantic content of words. The word WORD® brings about ideas
of language, groups of characters, news (e.g. word of mouth) and others. These concepts,
whilst not being immmutable, are defined by our language and culture, and maintain a

very high level of semantic interpretation.

Text retrieval systems are commonly known as search engines and all operate on the
same principles. The system is split into three core components: the indexer, the index

and the retrieval engine.

The indexer has two functions: inter- and intra-document parsing. Inter-document
parsing involves the acquisition and maintenance of files that will form the corpus of the
searchable index. This component is best called a document management system, and
may perform actions such as crawling the web and downloading files, controlling access
to the stored documents and other ancillary functions. The intra-document parser will

extract the actual terms and phrases that are to be indexed.

5The author shall assume the standard linguistic approach of using small caps to denote that it is
the concept of the written word, and not the word itself, that is the object of reference.
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The index is the data structure that stores information about documents and the words
that occur within them. It can be simple, and indicate only the presence, or absence, of
a word in a document, or it can be complex and store the location of each occurrence
of a word. and even the locations of similes. Section 2.7 explains a particular type of

index - the inverted index in detail.

The retrieval engine provides the user with access to the documents stored in the index
through queries. A query could be a couple of keywords. or it could be a cowmplete
document. In either case the retrieval is performed in a similar manner - docunients in
the index are compared with the query. and, in general, those documents that contain

the same words as the query are returned, in a ranked hit list.

2.4.1 Lexical Analysis

Intra-document parsing is performed by the lexical analyser, its task being to extract and
count all the tokens within the document. In a plain text retrieval system, the document
would at this stage be blocks of plain text with other media elements removed, and so

tokens will be sequences of characters.

The types of sequences that could be extracted will vary depending upon the search
requirements of the application’s users. Some may require just words, or words and

numerics, and mixed character sequences.

o Words: Regular words that appear to be part of a seutence. The case may be ini-
portant for distinguishing names, and so tokens such as INTERNET and INTERNET

could be treated as being different.

o Numbers: There may be a requirement to record nunibers. This may appear to
be a burden to the index, however the string token may be converted into a more

compact integer or floating point representation as required.

o Mixed: As with numeric tokens, alphanumeric tokens may be indexed according

to the search requirements.

o Phrases: Some retrieval systems may also need to index phrases that relate to
the search application’s information domain. Technical search engines, and appli-

cations requiring indexing of peoples full names are examples of such systems.

2.4.1.1 Parsing Process

The parsing process requires some form of grammar in order to operate. The grammar

is specified by defining a finite state machine which will determine when a sequence of
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F1GURE 2.1: A Simple Text Parsing Finite State Machine. capable of extracting nglish

words.

characters legitimately forms a token. A shmple parser to extract only words will have

a very simple graminar:

e Start

— If current character is a letter. ignore the case, add to current token. and
proceed to next character.

— If current character is a number, whitespace or other then finish the current
token. Increment the count for the current token, start a new, empty. foken

and proceed to next character.

e No more characters: Finish

This simple algorithni. illustrated in diagramm 2.1, is a shnple finite state machine that
will parse text. The letters ws indicate a whitespace character, such as a space. or
punctuation. Execution starts at the left hand node of the diagram, and depeuding on
the character moves to either the top or bottom node. When execution is at the top
node it will stay there until either there are no more characters left in the text. or a
non alphabetical character is encountered. In either case on leaving the top node a new

token will have been parsed.

2.4.1.2 Token Handling

When a new token is found in the text it must be handled accordingly. Not all gram-
matically valid tokens will actually be a desirable token. and may be discarded based
upon the granularity requirements of the index. This helps to reduce the size of the

index and makes it more concise.

These stop-words (also known as noise words) are a list of words which it is not desirable
to store in the main index. These are words which are very common - words which it can

be expected will occur frequently in every document. Such words do not aid retrieval
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since they do not discriminate between the documents in an index, a point originally
noted by Luln [82]. Sowme of these are function words that may be important to the
syntactic structure of sentences, but carry little meaning on their own - for example A.
THE, IT, and AND. Not all frequently occurring words are noise words, with the words
TIME, WAR, HOME, LIFE, WATER and WORLD being among the top 200 words in English
Literature [48].

The noise words are stored in a list known as a negative dictionary, and during the
indexing process may be stored in a secondary negative index so that should a particular
query require some of them, then they are available but are not aflecting the performance

and conciseness of the main index.

2.4.1.3 Morphology

Many of the words encountered in a text will present the same root meaning, but will
have had syntactic pre-, or post-fixes applied depending on their exact meauing witlin
the sentence. Stemming is the process of removing these surface markings. Since IR
is normally only concerned with the presence or absence of a particular sign, the dif-
ferent words ENGINEER, ENGINEERS. ENGINEERING, ENGINEERED, and RE-ENGINEER
can all refer legitimately to the sign ENGINEER. which invokes concepts of the design,

construction, industry and of engines.

The lexical analyser will have certain generic rules to remove suffixes that denote plu-
rality (-S, -ES etc), past tense (-ED), ownership (-'S, -S), and others, in the form of a
context-sensitive transformation grammar [48]. This will be backed up by otlier rules

for words which do not adhere to the grammar, for example - WOMAN/WOMEN.

2.4.2 Text Indexing

When complete, thie lexical analysis will provide a list of terms, possibly steninied, and
categorised as noise, or non, and the frequency witlt which they occur in the text - the
document frequency, d;y. Advanced systems may also contain for each word a list of
the locations where that word occurs (the Wordnet system [45]), and pointers to similes
(IBM’s STAIRS system).

There exist three primary techniques for storing the information provided in this list - the
inverted index, signatures, and bitmap files [119, 13], each having certain advantages and
disadvantages. In [149] Zofel et al provide a good comparison of the first two approaches,

by examining the effect of different types of compression of the different indexes.

¢ Inverted Index: Otherwise known as an inverted file, this data structure consists

of a list of terms present in the text corpus. For each term there is a list of the



Chapter 2 Fundamentals of Information Retrieval 21

term trequenc document | document
q 4 id frequency
‘ information ‘ 43 ‘ N -{ 01 l 23 ‘

r retrieval ‘ 15 ’ 4 o0 | 10 ‘

FIGURE 2.2: A Simple Inverted Index

documents in which that term occurs and the corresponding document frequency,
and depending on the granularity of the index, additional information such as term
location. Diagram 2.2 shows an example of a simple inverted index. Section 2.7

discusses this data structure in greater depth.

The inverted index is suitable in situations where the corpus is very large. or where
additional information is required about each individual occurrence of a term. It
is very fast to retrieve documents when there are ouly a lew query terms, and in
general slower for large numbers of query terins, but certain implementations (such
as distributed indexes, see section 2.7.4) can allow document-document similarity

to be calculated very rapidly.

This type of index suffers from poor update performance, due to optimisations
which are applied to the postings list - which can be very long in a large corpus.
Typically a secondary update index is used to store incremental changes to the

index, which is then merged with the main index periodically.

e Signature Files: This type of index employs hashing techniques to create a
signature for a docwment which allows the calculation of the probability that a
particular term will occur within a docunient in the index. After lexical analysis is
complete each term is assigned a binary hash string. One technique for generating
the hash is to use three different functions that return a value that is at most equal
to the number of bits in the hash string. This will mean that the string can have
1, 2, or 3 bits set in it.

Even when a hash collision occurs, there is no need to change the hash because the
second stage of indexing involves combining all the hash strings for all the terms
in a document to produce the signature. The hash strings are or’d together to
produce a final signature. To test if a term is present the hash string for the query
term is generated and if all the relevant bits are set in the signature then it was
probably present. Other combinations of term hash strings might have created
the same pattern as the query term, and the bl‘obﬂbilify of this can be calculated.
This probability will be a function of the number of the number of documents and

terms in the corpus, the length of the hash string, and the hashing function.
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If the signatwe is of a suitable size then many documents can be eliminated rapidly
from a query because the correct bits aren’t set. The other documents must be
scanned to determine whether the terim does actually occur. Various enhancements
have been developed for signatwre files including bit slicing where the bits that
correspond to the samne terms are stored together on disk - a teclhinique which

makes the index very similar to an inverted file.

e Bitmap Files: These are the simplest wav to store document-term information,
and consist of large bit strings with as many bits as there are docunients in the
corpus. Presence, or absence, of a term in a document is shown by setting the
bit for the document at the appropriate document’s index in the term’s bit string.
These bitvectors are perfectly suited to Boolean retricval since the vector for each
term in the query is combined using the appropriate Boolean operation. The result

is a bit vector which indicates the docuinents that satisfy the query.

Since the number of documents could be very large each bitvector can be com-
pressed, however a compressed bitmap file is very similar to an inverted index, and
the performance advantage is lost. Bitinap files are not regularly used because of

*

the sheer size that they occupy - N documents * n terms bits.

2.4.2.1 Term Weighting

Not all terms in a document will be related to the subject that a document is about, in
particular the stop-words. There will, however, be certain words in the document which
are definitely about the subject, for example the title, the introduction chapter, or the
abstract. If we know about the structure of a document, then we can apply a weighting
to these elements as they are inserted into the index {we could apply a weighting later,
however this weighting does not take into account their location structurally in the
document). To make these terms more important we could choose to count each term in
the title 10 times, and perhaps each term in the abstract 5 times, or apply a weighting

that is somne fraction of the size of the docunent.

2.4.3 Text Retrieval

The previous section illustrated some of the data structures that are commonly used
in text retrieval and the advantages and disadvantages that they have. Aside from the
differences in retrieval performance their purpose and uses are nearly identical. The
process of retrieval involves looking for terms that are present in the query and finding

which documents also share those terms.

The signature and bitmap techniques offer some limitations in querying since they do

not store the document frequency for terms, and as such two documents that contain
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the same query terms, regardless of frequency. will be judged to be equally similar. The
inverted index, however. is able to rank documents based ou the number of times that
the query terms occur. A thesis often attributed to Lulin’s seminal work [82] is that
a term must be relevant to a document’s content if that term occurs often within the

document.

As such, a documnent that contains a query term once will be rated lower than another
that contains it many times. This effect is enhaunced by lexical operations such as

stemming since it is the stem and not the word that is counted.

Another consideration in text retrieval is that a documieut that coutaius frequently a
term that occurs rarely within the corpus as a whole must almost definitely contain
content that is related to that term. From this it can be deduced that the terms that
are best for retrieval are neitlier those that occur frequently within the corpus, nor those
that occur rarely, but those that lie in the midrange. By removiug noise words the shape

of the curve is changed so that it becomes close to an exponential curve.

This premise lies behind much of the thinking that forms tle basis of some of the retrieval

techniques in the following sections.

2.4.3.1 Boolean Retrieval

Documents are retrieved according to the presence, or absence of terms. An expression

is formed using Boolean algebra to determine which docunients match, for exainple:

information AND retrieval AND (bitmap OR signature)

Enhancements to the simplest type of Boolean retrieval, which only determines whetlier
documents match, or do not match, the query, include term-document frequency ranking
and fuzzy Boolean matching. The first technique ranks documents according to a func-
tion (normally the sum) of the frequencies of query terins, so the more often a document
contains a query term, the higher its ranking. Fuzzy Boolean matching again employs
the term-document frequency, but uses fuzzy Boolean membership functions (see section
2.3.6) where the frequency of the terms determines the size (and hence fuzziness) of sets.

Lee et al provide a comparison of these two extensions to Boolean retrieval in [78].

2.4.3.2 Weighted Retrieval

Much like extended Boolean retrieval with only conjunctive operators, weighted retrieval
uses the term-document frequencies available in the index. Since this technique relies on
these frequencies it is only a viable option for an inverted index. For each query term

the term frequencies are retrieved from the appropriate postings list in the index.
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The simplest scoring function sums the term-document frequency tf;; (for further math-

ematical definitions, refer to the mathematical section of the glossary):

3]
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~

scorej = Z tfij (2.

v ie(QNTy):i£0

This is a very simple form that can be used for keyword queries, since it does not take
into account the frequency of query terms. The general form of a weighted retrieval

extends equation 2.5:

score; = Z qu; - QT - Wi - Ty (2.6)
Vie(QNTy):i#0

Here qw; refers to a weight applied to the query term 7, and gr; is a relative term
frequency value. The other values w;; and r;; refer to the weight and relative frequency
for term 7 in document j. The relative term frequency values are calculated from the

term frequencies, and can simply count the presence of a term,

rij =1 (2.

-1
~—

or the actual frequency in the document,

Tij = th (28)

or a normalised frequency, shown here according to the number of terms in the document,

tnj,

and can incorporate a logarithm to minimise the effect of large frequencies,

T =1+ logetfjj (2.10)

Values for the relative query term frequencies, gr;, can be calculated similarly. The
document frequency can be used to promote documents that contain many occurrences
of a query term which occurs in few other documents. According to Luhn and Zipf's
relevant hypotheses (section 2.4.3), this weight needs to be high when the document

frequency is low, and so the inverse is used. Typical calculations are:
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.
wij = loge(1 + 5) (2.11)
t m
wij = loge(1 + ;, ) (2.12)
and
N — dfi
wij = lOQe(T) (2.13)

where N is the number of documents in the corpus and ¢ f™ is the largest term frequency
in the index. Again, values for the query term weighting, quw,, can be calculated similarly.
Whenever the term frequency tf;; increases monotonically, and the docunment frequency
df; is used in a monotonically decreasing way (as in equations 2.11 to 2.13), the similarity

heuristic is known as TFXIDF - Term Frequency times Inverse Document Frequency.

There are many different combinations for the weightings and relative term frequencies,

however a commonly used combination for keyword queries is:

N
qu; = loge(1 + d_f[) 1
wij =i = 1+ loget fij (2.14)

Here the relative query frequency g¢r; is 1, since query terms should only occur once,
and is multiplied by the inverse document frequency of the term. The term weighting

is equal to the relative term frequency.

2.4.3.3 Vector Space Models

If we consider that V, the vocabulary, contains all possible terms, and create an n-
dimensional space, where n is equal to the number of terms in V, then vectors in this
space can represent documents. We can then use the metrics defined in section 2.3.4
to measure the similarity between a query and a document. Using the Euclidean, L2,

distance we have:

scorej = \/Z(qwi qri — Wi - Tij)? (2.15)
i

If the relative term frequencies have been normalised then this method will compensate

for different length documents, but if they haven’t then documents closer in length to
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the query will automatically be favoured. In most situations the direction of the vector
is more important, and we can measure the difference in direction between two vectors
using the cosine rule. For two vectors X and Y the angle 6 between them can be

calculated:

cosine(X.,Y) = cosf = 21 TiY; (2.16)
;2

7?\/ P .%2

Substituting 2; = qw; - gry and y; = wy; - 75 gives the cosine similarity heuristic for

Xy
Xyl
| XY >

documents.

2.4.4 Advanced Text Retrieval

The techniques for text retrieval presented above provide a commmon frameworlk that is
adopted by most text retrieval applications. There are a number of advanced features

that have been developed to extend this framework.

¢ Relevance Feedback: A query specified by a user may not always be well formed,
or the terms used relate to a synouyin that is semantically related, and so the
document desired is not returned, but others that are of some relevance are. By
allowing the user to indicate which docunients that have been retrieved by a query
are genuinely relevant, and those that are not, the retrieval system can adjust the
vector of the query by nioving it towards the centroid indicated by the relevant

vectors.

Conversely it is also feasible to adjust the index so that documents are moved
toward common query vectors. If an index is searched repeatedly using similar
queries the documents considered relevant to that query by users will be moved
towards the query centroids. Documents that are rarely retrieved or are marked

non-relevant move to the fringes of the query space.

e Spatially Sensitive Retrieval: Quite often the terns in a query will forni a
phrase, or part of a sentence, or paragrapl, that the user wishes to be present
in the target document. In such a situation a docunent that contains the query
terms many times, but very spread out, should be rated less relevant than one
which contains the terms once only, but clustered very close together (and even

better, in the specified order).

To support such a query the index will need to record term location information,
and depending on the granularity and target size of the index will record the loca-
tion of each occurrence of the term. The character, term, sentence and paragraph
position within the document are all viable location descriptors which could he

included in the index.
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o Adaptive Information Retrieval: Manual indexing, and categorisation, of doc-
uments provide superb resources that are coherent aud effective in use. The nun-
ber of corpora which have actually received thorough attention is, however, very
low. Automated document classification tools attempt to perform the same task

for digital collections.

Because there are some collections that have been manually indexed they provide
data with which to design, test and train automated svstems. Classification svs-
tems attempt to cluster document vectors in term space. A query that is within

the cluster will then retrieve all the documents in the class.

All of the techniques showi in section 2.3.6 are applicable here.

o Content Based Navigation: Described briefly in section 2.2, CBN provides
linking in a hypertext environment such that selecting a word in a document will
provide a list of links to other suitable docwments in which that word occurs
(derived directly from the postings in the index). In order to reduce the number of
documents shown the system may only display those that are in the same document

cluster (see previous item) and contain the same tern.

This section has introduced the very basics of text retrieval, which is a very broad topic.

Section 2.7 examines the inverted index in greater detail.

2.5 Image Features

The concept feature, as introduced in section 2.3 denotes some element of an image
such that it is useful for discriminating between images. For each application where
content based retrieval of images is required, features that provide a high discriminating
power should be selected. Some applications may require more than one feature for
identification of objects, and could have a highly specific feature , or one that may be
very general. Medical imaging requires features that are highly accurate and are capable
of stating a confidence factor for features extracted [19, 140]. General purpose retrieval
for large databases of unrelated images requires an approach that is less exact and must

take into account the image as a whole.

2.5.1 Colour Features

Colour forms a significant part of human vision, and without it many everyday tasks
would prove very difficult. We are able to distinguish objects very effectively based on
colour alone. Lai and Tait [131] have used our perception of colour to directly index
and navigate around retrieved images. This was extended to create the CHROMA [70]

image browsing and navigation system. Mojsilovic presented a vocabulary and grammar
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of colour patterns in [95] obtained through subjective experiment and demonstrated

through colour features.

The simplest form of colour feature is perhaps the colour histogram [129] as created by
Swain and Ballard. The histogram is created by a quantisation of the colour space, and
typically each axis is divided by 4, so that in an RGB histogram there are 64 separate
partitions, or bins, in the colour space. Each of the bins is assigned a label. and for
every pixel colour that falls into that bin the bin value is incremented. The resultant
signature is a 64 dimensional vector that can be compared to others by simple Euclidean
distance, or by more complex methods like the quadratic formula [46] and histogram

back projection [129].

The image histogram is a very flexible construct and has Deen used extensively for
image retrieval. The Colour Colierence Vector (CCV) [107] takes a two stage approach
to generating the signature. Firstly the image is segmeuted by reducing the number
of colours in the image, and then the pixel values that are in regions sized above a
particular threshold area are stored in a coherent vector, and those that are under the
threshold size are stored in an incoherent vector. Results are presented that show that

the CCV is better at retrieval than the simple histogramn.

Different images of real life objects will rarely show the same colours in a histogram.
This is due to changes in swroundings, ambient and directed lighting, orientation and
scale. It is particularly necessary to attempt to make retrieval invariant to illumination,
and colour features that are iimmune to lighting changes are much sought after. Funt and
Finlayson take the original work by Swain and Ballard and histogram the ratios of RGB
values to provide colour constant indexing [52]. Drew et al [42] nvestigate the transform
that the RGB channels undergo when illumination is altered and demonstrate a linear

transformation that may be applied to features to make them illumination invariant.

2.5.2 Textural Features

Texture in images is a function of the intensity, or colour, difference between pixels in an
image. Tamura et al [130] were perhaps the first to extract textural features in images
that the human visual system is highly tuned to. They showed that coarseness, contrast,
directionality, line-likeness, regularity and roughness are attributes that we are sensitive

to, but they could only implement sensors for the first three.

The characteristics of texture that Tamura highlighted have proved to be fundamental
to textural analysis. The Fourier transform will turn a signal into representation of the
frequencies within that signal, and for images the signal is the 2D discrete set of pixels.
Not all signals make sense in the frequency domain, but the regularities and frequencies

displayed by textures are ideal. A simple texture feature would involve histogramming
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the discrete Fourier signal of an image. The more advanced Wavelets [135] display better

localisation and the resultant signal is generally smaller than the equivalent Fourier.

2.5.3 Shape Features

Shape features are extracted from regions in images that have been segmented in some
way. Shapes can be represented in many wayvs, from chain codes that follow individual
pixel outlines to splined vector formats. Simpler representations can also be used, such
as the quad-tree whiclh is a binary representation of a 2"x2™ grid, or descriptors that

describe the boundary of an object.

2.5.4 Hybrid Features

Hybrid features use a combination of techniques to form a retrieval system. Pecenovic
takes colour histogram and wavelet texture descriptors and incorporates them into a
single index using LSI (Latent Semantic Indexing) [110, 109] and presents encouraging
results. In [138] Wang uses a variation of the TF/IDF text term weighting techinique
with features - RF/IPF (Region Frequency / Inverse Picture Frequency) to index regions
within images, and combines this with text retrieval. Paek also uses a similar approach
in [106], however his system requires training in order to classify regions aud objects

within a scene so that they may be labelled and introduced to the index.

2.6 Feature Indexing

A key problem with content based retrieval lies in the process of searching through
signatures to determine their similarity with thie query. In a large collection this O(n)
operation can take a long time, and be compute intensive. By indexing the signatures
it is hoped that the retrieval speed can be significantly improved, and also that the size

of the signatures is reduced.

2.6.1 Representation of Features

Any signature can be represented as a point, or points, in a Euclidean space of some
number of dimensions. In the first case document comparison is a simple matter of point
to point comparison, however multiple feature vectors require a more complex approach

such as the stable marriage matching algorithm [88].
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2.6.2 Multi-dimensional Indexing

Feature vector similarity may be calculated as the distauce between two points, or the
distance between a point and the centre of a volume. Other tests may be required, such
as whether a point is inside a volume. or whether a voluine is inside a volume. In [53]
Gaede, et al, gives a clear review of what is required from a multidimensional database,

and then introduces a large number of techniques for storing and retrieving such data.

The majority of the data structures designed to store multi-dimensional data use the
approach of dividing space into sections, variously called buckets, cells and bins. Each
cell may be subdivided when it has too many entries. or the space may be completely
re-divided. By searching through each cell descriptor first it is possible to deteriine
which cells do, or do not, contain useful data, so that they may be searched thoroughly.
Many of the structures employ a hierarchical, or tree. structure. so that whole branches

of cells may be eliminated from the search very rapidly.

The B-Tree (Balanced Tree) [11] is such a structure. but is designed to store only one-
dimensional data. Each node in the tree has a lower and an upper bound for the nuber
of children (descendants) that it can contain. A node can only be created if there are
sufficient entries to go into it - until then the entries are lield in other nodes on the tree.
When a node reaches its upper bound it must be split - a procedure which may recurse
thirough tlie whole tree. This guarantees that the branclies of the tree arve loaded fairly

equally.

GRID files [102] subdivide multi-dimensional space using orthogonal grids. In two di-
mensions this can be seen as a series of infinitely long horizontal and vertical lines,
splitting the space into rectangles. Each of these cells corresponds to a data-page (the
smallest single unit retrieved or written in a single operation by a disk operating system)
inside the GRID file, so it i1s the operating system that determines the number of entries
in each cell. When a cell exceeds the size of its cdata-page it must be split by introducing
another hiyper-plane into the space - splitting any other cells that are orthogonal to the
splitting cell. There are a number of variants on the GRID file, the Two-Level GRID
file [62] where the first grid is a directory that points to a second level of GRID files,
and the twin GRID file [66] which employs two different grids in the same space, points

are allocated to the file that best accommodates them.

A multi-dimensional version of the B-Tree is Antonin Guttman's R-Tree [59] which uses
hyper-cuboids as cells, stored in a balanced tree. The upper and lower bound for each
dimension must be stored for every node, so the actual size of the nodes (not including
actual data) becomes an issue for the data structure. This more complex tree requires
significantly more complex algorithms for inserting and removing data, for splitting and

merging cells when their bounds are breached, and for searching through the tree.
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Many variations on the R-Tree exist: the R*-Tree [12] which has modified insertion
and splitting algorithms, the Hilbert R-Tree [69] that uses the integer value of the
Hilbert space filling curve to locate points close to each other. and the distributed GPR-
Tree (Global Parallel R-Tree) [50] which is designed to work on a CoW (Cluster of
Workstations). Berchtold et al [17] take a different approach by pre-computing the
distance between points, which demonstrates high efficiency. Their technique is also
dynamic and allows poiuts to be inserted (but uot removed). Aunother variation of the
R-tree is the vantage point tree [30] which automatically selects the appropriate start
position and scope to search through in a tree structure. Yet another is the M-Tree [29]

for which a generalized liyperplane approach is taken for splitting the N-space.

These are just a few of the data structures and algorithms, however there are wany more
in existence, each claiming to be more efficient at some aspect of multi-dimensional data
storage than the others - and unfortunately there are few comprehensive reviews of the
techniques, and no independent performance tests. Which algorithm to use will depend
on the dimensionality, the quantity, and the distribution in space of the data to be
indexed. Other factors such as the speed of insertion, retrieval. update, deletion and the

target size of the data structure must be considered.

2.6.3 Dimensionality Reduction Techniques

Another solution which can be used In conjunction with nmultidimensional indexing in-
volves reducing the number of dimensions in feature space. The principle behind this
is that within the data there may exist correlations that would allow dimensions to
be collapsed without much detriment to the information held within them. Figure 2.3
shows an example of a 2-dimensional cluster which would e suitable for collapsing into

1 dimension.

e PCA - Principle Component Analysis: PCA directly identifies the planes of
correlation in the data through the generation of eigenvectors. The small eigen-
vectors correspond to the minimal variations in data (the axis perpendicular to
the line of best fit in figure 2.3) and may be discarded. The result is a trans-
formation matrix through which is applied the raw data and generates the lower

dimensionality data. PCA is the most often used reduction technique [133, 70|
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o K-L transform: The Karhunen aud Loeve transtorm [139, 134] is nearly identical

to PCA, but achieves the same results through a different set of computations.

o Kohonen Self Organising Maps: An ordered form of neural network, the self

organising map [72] will adapt its weights by dimensionality reduction.

Because many multi-dimensional index structures do not operate well with high dimnen-
sional data, due to the overliead incurred by management of the bucket or cell structures,
data is often reduced, using the techmiques above, first. Ultimately there is a limit to
the dimensionality of data before it becomes too expensive to process - lience the well

known phrase ‘the curse of dimensionality’.

2.7 The Inverted Index

Introduced in section 2.4.2, the inverted index has many different variations and optimni-
sations. It is a very flexible data structure and is perfectly suited to parallelisation. As
with many data structures, if it is to work well then it must be ordered, and in particular
it must be kept ordered. The first sub-section here describes the nature of the term data
that is stored in inverted indexes for text IR, the second describes structural variations,
and tle third presents some of the typical optimisations that can be nsed to enhance

retrieval.

2.7.1 Zipfian Distributions

A property of many types of groups of object is that their distributions obey a form
of the power law. There are many groups which contain a small number of the object
and a small number of groups which contain many of that object. In his 1949 book,
human behaviour and the principle of least effort [148], George Kingsley Zipf observes
this in many elements of the universe, including galaxy sizes, city populations, and the

distribution of words in natural language.

Known as Zipf’s law, this form of the power law provides an excellent model for text
based term indexes, and allows quite accurate approximation of posting list lengths.
The law states that the frequency rankings of terms in a text are inversely proportional

to the corresponding frequency:

log f = C —zlogr (2.17)

Where f, is the frequency of the term at rank r, 2 is the exponent coefficient (near to

unity) and C is a constant. There has been some work in identifying C for different
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natural languages, with Gelbukh and Siborov showing that English and Russian texts

could be identifiable by the term distribution alone [55].

In order to determine the distribution it is necessary to analyse the number of collections
which have a particular size. Chen provides a good technique by assigning an index to
sequential observations of the data [27], which has been used throughout this thesis for
the analysis of term distributions. He presents two representations of the distribution:
Rank-count and rank-frequency. Four entities are observed in the analysis {this excerpt

taken from his paper):

e word count n: the number of occurrences of a certain word contained in a text
e count frequency f{(n): the number of words of eacli count
e word rank r: tlie cumulative frequency of words of the same or greater count

e rank frequency ¢(r): the number of words of the sanie rank

Figure 2.4 illustrates the two types of distribution for the sanie data. Tle rank-count
data cannot be plotted as a curve due to tlie lack of uniqueness in the count variable,
unlike the rank-frequency data which is shown as a clear curve. The shape of the curve

is significant, and this is investigated later, in chapter 6.

This simple model allows the length of postings lists to be approximated (the documnent
frequency of a term in a corpus is proportional to its overall term frequency), so when
given a corpus of text of a known size and language it is possible to approximate tlie

size of the index.

Whilst a simple index may benefit only slightly from such knowledge, a distributed index
(see section 2.7.4) can be managed such that the size of each part of the index can be

predicted.
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2.7.2 The Index Structure

The index may be a simple structure. but its effectiveness lies in the Implementation
used. Figure 2.5 shows how the index structures are typically configured. The main
index is stored in main memory whilst thie posting lists are stored as files on secondary
storage. The main index will contain a pointer for each term which specifies where the

postings start, and also a pointer to the posting in a secondary update index.

The update index is required because rebuilding a postings list is an expensive procedure,
without which the postings file would become fragniented. An index will typically be
rebuilt at a time when the load on the index is minimal (or the index is offline) and
the update index has grown to a size where it is no longer efficient. This approach
guarantees that the main postings file will be contiguous, and that a posting list can be

retrieved sequentially from disk.

The implementation of the data structures varies, however the majority of systems use a
B-tree to store the main dictionary, which for each term points directly to the postings

list, be it in memory, on disk, or on another node.

2.7.3 Index Optimisations

Small, and fixed, document collections only require optimisations for tlie index retrieval
operation, since updates to the index are rarely (if ever} required. Large collections
containing many gigabytes of documents require more care when they are generated, and
the indexing must be performed on disk. Frieder et al provide a clear review of efficiency
considerations for text indexes in [49].The topic of such optimisations is very complex,
and outside the scope of this work, and so this section will concentrate on optimisations
to the index file that benefit retrieval performance. There has however been much
research into dynamic index update strategies: Cutting and Pedersen were among the

first to develop algorithms [34], and Clarke et al [31] describe another distributed system.

The majority of index retrieval time is spent in searching through postings lists, and it

is through the careful construction of these that the best performance increases can be
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achieved. In many retrieval algoritlims the termn frequency for eaclhh document is used
to calculate the amount that a term contributes to the document’s score (in particular
the TFXIDF algorithins). By ordering the postings list by decreasing frequency the
number of postings that need to be retrieved can be reduced, since there will come a
point in the list where the term frequency is so low that adding it to a document’s score
will no longer change the rankings of the retrieved documents [21]. Similarly the index
is queried in descending order of query term frequency (should the query terms have

frequencies greater than just 1).

2.7.3.1 Index Compression

Reducing the size of the index on disk can save in both storage and access time. A
significant amount of work has been done in this field by Moffat, Witten and Bell, in
various publications [94. 143]. This can be achieved by compressing the postings data,
and can result in considerable savings. The information stored in a simple posting is the
tuple < docID, freq >, requiring 8 bvtes if both fields are integers. If the document 1D

list for the posting is ordered by descending frequency then the difference can be stored.

Rather than storing thesis A values as smaller integers, we can encode them into variable
bit length representations. One such binary code is the unary code which takes a non
zero, non negative, integer x and encodes it as © — 1 1's followed by a single zero. The
unary code for 4 is then 1110. When the delta values are small this code is very efficient,
but when they are larger it can consume a very large number of bits. An alternative is
the v code which represents z in two parts. The first part uses unary coding to represeut
1 + log 2 and is followed by a code of log x bits that represents the value of  — 2097
For 4 this gives the two part code 110 00. There are a number of other suitable codes,

including the ¢ and Bernoulli codes.

2.7.3.2 Limited Retrieval

A technique that can be used in conjunction with others is to restrict the amount of
terms retrieved by a query. The removal of stop-words from a query significantly reduces

the time to retrieve postings lists and also thie number of documents that are retrieved.

Zig-zag database joins allow significant improvements in retrieval time where a conjunc-
tive query has more than one term. Consider a query with two terms, one term which
occurs frequently in many documents, and one which is rare. Retrieved documents must
contain both terms, and so it is the intersection of the two postings lists that are re-
quired. The zig-zag join allows selective retrieval of postings from the long list given the

set of documents from the short list.
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2.7.4 Distributed Indexes

Much work has been done in the field of distributed retrieval engines, mostly for inverted
indexes, and is split into two primary groups: Parallel building of inverted indexes, and
parallel retrieval from inverted indexes. In tle first category is the work of Ribeiro-Neto
et al [112] who describe a number of algorithms that run in a distributed shared-nothing
architecture, also Melnik et al [92] who exanine the use of a pipelined architecture with
an embedded database system. In the second category, Tomasic and Garcia-Molina
[132] examine the performance of queries and identify the variables which most strongly
influence response time and tradeoff, Mamalis et al [86] imiplement a parallel system
that runs on a distributed memory multi-processor enviromuent, and Frieder et al [49)]

look at general considerations for parallelisation.

Distributing the postings files (and the main dictionary, which points to the postings)
can benefit small. as well as large, indexes. The index can casily be spht so that the
postings for different terms are spread across multiple machines, allowing the retrieval
of some to be performed concurrently. Martin et al [89] describe some of the strategies
for dividing the index in an early parallel system that adapted IBM's STAIRS retrieval

engine. Figure 2.6 illustrates four such strategies:

e A. Here each node contains a complete database - the dictionary, index and text
files. Each node contains a subset of the database, and each must be queried

separately.

e B. A vertical split allows each node to be dedicated to a particular task, in this

case a node for the dictionary, index and the text files.

e C. A horizontal split spreads one or more of the functions across multiple nodes,

allowing some parallelisation of the function.

e D. Another type of split creates redundancy in the functions such that concurrent

operations on the index can be balanced across the nodes.
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Each of these strategies has its advantages and disadvantages, and the choice of which
one to use will depend on the demands required of the system in terms of: Its ability
to be updated (static or dynamic index), the size of the collection (a few megabytes or
many gigabytes) and the query load (occasional keyword queries or multiple document

comparisons).

2.8 Evaluation of Content Based Retrieval

The performance of retrieval systems can be measured by how many documents returned
for a particular query ave actually relevant to a query. If the query is very simple like a
boolean text query then the correctness of a retrieval can be exactly calculated, however
a more human query such as “Find me documents that arc on the same subject as this
document” is incredibly subjective. To solve this problem collections of documents must
be created where distinct categories are manually created. Only documents from within
the known categories are used as queries, with a substantial amount of filler material
used to bulk up the corpus. This approach has been used with much success in the
text retrieval community for conferences like TREC (Text REtreival Conference) where
there is a standard corpus of documents and categories, and a well defined system for

retrieval engine evaluation.

2.8.1 Precision and Recall

Measurement of the accuracy of a query performed with known categories is achieved
using precision and recall metrics [85, 119, 136, 81, 126|. The precision of a query
is defined as the ratio of relevant documents to non-relevant returned by a retrieval
system®. Recall is a measure of how many documents from the relevant category were
returned, and is defined as the ratio of relevant retrieved documents returned to the

total number of relevant documents.

retrieved relevant

precision = -
retrieved

recall — retrieved relevant (2.19)
relevant

Precision and recall are normally represented on a graph on opposing axes. This data
is created by calculating the precision and recall up to each of the rankings in turn, so

forming a graph containing as many points as documents retrieved. Equation 2.20 is

SPrecision and recall metrics assume that there is a limit to the number of documents returned - the
size of the hil list returned. Perfect recall will always be achieved if there is no limit to the number of
documents returned
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FIGURE 2.7: Precision and Recall Graphs

called the precision at n, where n is a particular point in the hit list. Similarly recall

at n is calculated as in equation 2.21. Here rel; is 1 if the ' document is relevant and

zero if not, and R is the total number of relevant documents for the query.

I
precision; = ren (2.20)
izt 7
7‘611
recallj = g - 2.21
recall; 7 (2.21)

i=1.j

This 1s, however, not entirely sufficient since it does not take into account how well the
documents were ranked. A perfect retrieval would return all relevant documents ranked
sequentially from the top hit. In figure 2.7 graplis a and b are for two queries where the
same number of relevant documents are retrieved, but in the second graph the ranking
is not perfect. Since the first few documents in the second query were not relevant the
initial precision is not 1.0, and so the graph starts low. A perfect retrieval as in graph c
where only relevant documents are retrieved would form a straight line (precision = 1).
By calculating the area under the graph we obtain the average precision for the query.
This metric does take the ranking of the relevant documents into account and so provides

an ideal measure for retrieval effectiveness.

Taking n to be the number of documents in the hit list, average precision is defined as:

onj - rel;

= (2.22)

L. Precist
Average Precision = §
Jj=l.n

As well as the average precision there are also other measures that can be calculated

from precision and recall:
e R-Precision is the precision at rank R where recall becomes 1 - when R is equal
to the number of documents in the category.

e Initial Precision is the precision when recall is equal to 0, as calculated by inter-

polation.
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e Fullout is a measure of how quickly precision drops as recall is increased, and is

defined as: fallout = nenrclevant retricied "Recy]] - fallout curves can be plotted to

show this measure.

2.9 The Future of Content Based Image Retrieval

The potential of content based image retrieval systems is very great, and in certain
domains is being fulfilled. In narrow domain applications, wlhere much is known about
the entities which must be identified. it 1s possible to extract features and to reconstruct
a certain amount of a scene in real time, but only where the acquisition of the scene is

controlled.

The far harder task of retrieving images where the couteut of both the query and the
searchable database is uncontrolled is still beyond the horizon. Whilst the paradigs
of query by example and query by sketch are proving to be very useful in providing a
basis for retrieving using content, they still have fixed notions of content and use a very

limited semantic domain.

We are far away from understanding how the human brain interprets visual stimuli, and
associates them with abstract and concrete concepts and ideas that it has learnt and
experienced. Bridging the semantic gap that exists between low level features and high

level concepts is not impossible, but will take time.

The growth of the Internet, and the advances in technology which provide much faster
bandwidth network connections are increasing the feeling of information overload. It is
true that the capacity of storage devices is increasing at a similar rate to the speed of
processors, and also to the quantity of data produced by unage acquisition devices. This
results in situations where data can be produced far faster than it can be analysed. Text
search engines on the web struggle to keep up with continually changing information,

and users desire only the most up to date information in their searches.

A possible solution to this is to ensure that as much as possible of the feature extraction
is done at the point of origin, and that feature information is stored together with the
original data. The choice of feature would then become very important. A suitable
feature might offer a sensible blending of colour, texture and shape information. The
MPEG-T7 content description layer [87] is making some progress towards offering such

content description for video as an additional strcam.

Other future technologies which would place a strain on systems are those which have
a requirement for continuous content retrieval. Applications such as video security sur-
veillance, automated control systems (in particular vehicle control), autonomous robotic
devices (such as those deployed on extraterrestrial planets) and personal assistants (when

combined with a personal software agent) must not only be able to continuously receive
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and interpret information, but they are also required to store new information. and. to

an increasing degree, generate semantic associations.

The combination of such future techuologies will result in requirements for larger data-
bases to store information, and the need to be able to share information. A conunon
problem with current CBR techuiques is that the feature algorithms must be available
not only for the feature extraction, but also for signature comparison. Whilst some sig-
natures can be compared simply as vectors in n-space it is commnon for features to have
complex comparison algorithms. The heterogeneity of features creates restrictions on
how extracted information can be used. The work presented in this thesis shows an index
in which heterogeneous features may be stored together, and additionally demonstrates

that the feature terms that it uses are highly portable.

2.10 Summary

In this chapter a lot of material has been introduced, covering a wide variety of topics.
Information retrieval has been shown as an activity exercised by hunmans on a continuous
basis, as a fundamental aspect of our society today. Applications of information retrieval
are not only restricted to umans, but to autonomous systems. The way in which queries
are presented to the information source is discussed, demonstrating the need to have an

understanding of the structure and scope of stored information.

In order to make the information accessible to the target user suitable {eatures must be
selected. The information requirements of the user, and the domain of the imformation
may be well defined, which would allow the use of a specific [eature. A suitable algorithm
can be developed to locate this feature, allowing queries to return precise answers. On
the other hand, the corpus of information may be formed from very diverse sources,
with equally diverse demands from the user. The [eatures required in this situation
would need to be less specific, resulting in less precise answers. These ideas lead to the
definition of narrow (specific) and broad (general) information sources and queries - an

important factor in the design and implementation of a retrieval systen.

Regardless of the type of feature used, a content based retrieval systemn must be capable
of measuring the similarity between the features of a user’s query, and the features con-
tained in the stored documents. Classification and clustering techniques are vital to this
process, providing quantitative measures for the similarity of the features. Techniques

are shown which draw from Euclidean mathematics and artificial intelligence.

Techniques in text retrieval have been evolving for a number of decades, and a signifi-
cant amount of literature has been produced on the field. The extraction of tokens and
identification of terms which are equivalent is highly important, and will define the gran-

ularity of a text index. The field of linguistics provides mechanisms such as morphology
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for finding the root meaning of words which can increase the precision of retrieval and

also reduce the size of the index.

The storage of extracted terins is a key factor in the success of a text retrieval sys-
tem. Different data structures offer different performance characteristics and need to
be selected based on the application: Quantity of documents. frequency of index up-
date (addition and removal of documents). the tvpe of query being performed and the
volume of queries. The index and query terms can be weighted to emphasise, or lower,
their importance. Various automated weighting scliciies have been devised which use

properties of the term distribution to determnine the relevance of terms in text.

The distribution of text terms is shown to adliere to a form of the power-law - Zipf's
law. This law relates the frequency of terms to the munber of terms which ocenr with
a particular frequency. This law is important in the coustruction of inverted indexcs

because it will allow the size of the index. and the speed of retrieval, to be estimated.

A variety of different tvpes of lmage feature types are illustrated. Colour forms the
basis of all image features, and leads to second order features like texture. Image fea-
tures consist of multi-dimensional data which leads to difficulties in the management
and comparison of them. Multi-dimmensional indexing attempts to overcome some of
these problems by transforming the data into a more manageable form, or by providing

complex data structures which support comparative queries.

Given a complete content-based retrieval system, with a corpus of documents. sunitable
features and an index, it is necessary to quantity the usefuluess of the retrieval. Precision
and recall metrics provide a measure of the accuracy of the documents retwrned by a
hitlist, and the average precision gives an overall measure, taking into account how close

to the top of the hitlist relevant documents are.

There are many topics in CBR, of which only those relevant to this thesis have been
examined. For a more compreliensive review of the field, with greater attention to image
features, the reader is referred to Smeulders paper - Content-Based Image Retrieval - at
the End of the Early Years [125].
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Multimedia Information Systems

3.1 Introduction

The aim of research in the field of content based retrieval is to provide rapid, coherent,
and useful, access to the wealth of information which we now store in computer based
systems. Returning to the ideas outlined in the introduction chapter, we wish to provide
systems with which people are able to find out about topics which are of interest to them.
It is also absolutely necessary that the information is stored in a flexible manner which
allows not only for the querying of it, but for its growth and transformation. Multimedia

Information Systems (MIS) offer complete computer based solutions for the tasks.

Such systems can be largely divided into two main categories - academic and research
systems, and commercial and military (or other goverunment) svstems. In the research
domain the aim is to either investigate the worth of an information retrieval framework,
or to provide a fixed framework which facilitates the development of other components
of the systemn. Commiercial systems will transfer research technologies, and engineer an
application that may be accessed concurrently by many different users, possibly in real
time, through an intertace that allows the user to express their niformation requirements
adequately and accurately (within the relevant information domain). There are also
the hybrid systems which lie somewlere between the two categories, providing both
a practical environment in which to test techniques and algorithms, and also a viable

information retrieval application.

MIS provide two core areas of functionality: Information storage, and information re-
trieval. FEmphasised in systems whose primary objective is to archive material, the
storage aspect of MIS is equally as important as the retrieval aspect. According to a
review of human information production, Lyman and Varian [83] state that medical
and astronomical applications already produce many petabytes of data yearly, with the

volume increasing in line with Moore's law.

42
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This chapter presents the types and architectures which MIS adopt, examining the types
of image corpus which is stored, the domain of the queries, and the storage and retrieval
architecture of the index. Section 3 presents some of the classic CBR systems, including

QBIC, MARS and MAVIS.

3.2 Types and Architectures of Multimedia Information

Systems

Section 2.2.1 introduced some of the applications of computer vision and the environ-
ments in which they operate. Whilst these systems all have a commmon set of components
their architectures will all be quite different. There are a nuuber of factors which must
be taken into consideration when designing the architecture of an MIS system, which
can be split into two overall groups - the source of the information (i.e. documents
and images) and the user (not necessarily human) froni whoni queries are elicited and

responses returned:

¢ Information Source: Wlhere the source information originates from is very im-

portant and will define many aspects of the system.

— Domain and Scope: Is the information domain in which the processing is
to be performed restricted (narrow) in any way? Does the retrieval systemn
have to interface with any domain dependant systems? If the information
domain is restricted then is the scope of the domain liable to change?
Where the domain is restricted, the information extracted by features will
also be restricted. This means that the algorithms used are liable to be more
complex but will also be highly specific. Measures of accuracy will become
important as a qualitative assessinent of the objects that are being recognised

needs to provided.

— Volume and Detail: What is the quantity of information to be analysed?
What is the format of the source information - are images of a high resolution?
How much information must be extracted from the source?

If the source is providing very large numbers of images then this will mean
that the system will need to be able to provide sufficient processing power to
analyse them. This becomes a serious consideration where the system must
process incoming data in real time - a factor which applies to video sources.
It may be required of a system to archive the original source, to allow for

normal viewing alongside feature data, or for additional post processing.

e Target Users:
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— Response Time and Availability: How mauy coucurrent nsers are ex-
pected? Is the syvstem ruuuning in real time? Will users expect to wait for a
result to be returned? Must tlie system be available 24x77
The answer to the first question will have a large iimpact on the architecture
of the system, for if multiple concurrent users are accessing the system then
additional loads will be placed on the retrieval engine. If the archive is up-
dateable by users then an update mechanism must be provided on the index
to prevent updates from blocking retrievals.

A real time system such as the EyeTicket biometric systen [7] must respound
within a matter of seconds and must have an effective uptime of 100% which
will lead to architecture that provides fail-over systems. If the processing
demands are sufficiently slow then an offline queuing system could be used,

like that in the Artiste and Sculpteur svstews.

— Retrieval Accuracy: Does tlie system have to return a true or false response
to a query, rather than a set of matching results? Could Larm be caused by
inaccurate results?

Certain applications will require an automated system to be entirely au-
tonomous and so must make decisions based upon the results of retrieval
(comparison) operations. Where this is true there must be a clear under-
standing of the consequences that will occur should an incorrect judgment be
made. For example, in a medical PACS which diagnoses patients, an incorrect
result that is automatically processed could result in harm to the patient, and
on the other hand a missile might be designed to commit to striking when it
has positively identified its target. In general it may be better to err on the

side of caution and provide {alse negatives rather than false positives.

3.2.1 Information Retrieval Environments
3.2.1.1 Medical Systems : PACS

Medical Picture Archiving and Communication Systems |[G4] present a number of the
issues described above. Perhaps the most difficult of these problems to cater for is
the heterogeneity of the systemns involved. Image acquisition sources in a clinical envi-
ronment will be very varied, including Computed Axial Tomography (CAT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), X-ray as well as reg-
ular photography. Each sensor system must be linked into the PACS so that image files
are correctly associated with an individual clinical session and patient, for which the
records may reside on another external database. A single examination may produce a

few hundred megabytes of image data which must be stored and analysed.
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Not only must the data be stored. but nnages and records must also be secure which could
lead to problems where an institution has policies about holding and transmitting clinical
data off site. The storage facilities themselves must be both reliable and permaneut,
which leads to the use of hierarchical storage syvstems. Incoming images will be stored
onto disk (RAID) arrays where they may be kept whilst analysis is performed. Once this
is complete they may be moved onto tape based offline storage until they are required

again.

The emphasis in PACS is on the provision of rapid storage of incoming media from het-
erogeneous sources. with analyvsis and retrieval functions placed by necessity in secoud.
Major developments in the area include GRiD [47] techuologies to support distributed
processing of images, the Semantic Web [137] to enhance interoperability, and a variety
of novel image processing algorithins. One active research project combining elements
of these fields is MIAKT (Medial Imaging with Advanced Knowledge Technologies)
(35, 146, 63].

3.2.1.2 Digital Libraries

The key aim of digital libraries is to provide electronic access, and all that that entails,
to archives of items. The most literal instance of a digital library is one which coutains
textual material - both documents that have been produced electronically as well as
those that have been captured from paper or other media. The web sites of acadeniic
journals provide advanced retrieval functions to allow precise location of papers from
often very large collections. In such a system the library may not actually coutain
the documents themselves, providing only an information retrieval service without the

storage facilities.

The Malibu project [61] defined a framework for sharing disparate resources between
academic institutions, centred on the humanities disciplines. It offers an infrastructure
to combine distributed collections into a lhybrid library that is accessed by common
tools. Citeseer [77] provides a highly specialised digital library that indexes research
papers, extracting citation information using ACI (Autonomous Citation Indexing) and

providing a clean and easily navigable interface.

The architecture of such systemns is as varied as the subject matter which is contained on
them. Some may offer indexing services, whilst others will provide only the framework
required to connect others together. It is the development of a uniform and coherent
which poses the biggest challenge, requiring methods for querying the composite systems
and presenting the retwrned information. Agent architectures have proven to be suc-
cessful in this area, with ontologies providing the means to interpret information from

heterogeneous sources.
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3.2.1.3 Web Retrieval

The public internet search engine Google [20] has achieved a well deserved amount of
success and is currently uot rivaled by any of its older competitors (Altavista, Yahoo.
WebCrawler, etc.). Its success can be largely traced to a clever ranking algorithm, an
architecture that has scaled successfully [9]. and an aggressive crawling strategy. The
PageRank techmology developed by Google will rauk highly documents (and complete
websites) which have a high number of links to them from other pages. This in effect
states that people consider a site to be relevant and worthwhile because they ave ref-
erencing it, even though this takes no account of the actual content of the site. The
Google index provides a document caclie containing text only copies of each page in the
index from the last time that they were indexed. This means that a hit for a page which

may have changed since it was last indexed can still be viewed.

Given the enormous quantity of documents available across the internet, web retrieval
engines must employ state of the art techniques in order to be successful. Not ouly do
they have to index millions (if not billions) of HIML pages, but they must keep popular
pages in the index up to date, and they must serve millions of requests that must be
answered in a matter of seconds. Google's chosen architecture is one of massive levels of
parallelisation using inexpensive servers. A hierarchy of machines provide frout cluster
(network) and rear cluster (index processing) balancing, with mirrors situated across

the globe.

This approach is not only highly scalable, but it is sustainable. As equipment prices
drop and processing power rises new servers are purchased and placed onto thie networl,
moving older machines into less demanding roles. So far this approach has enabled the
search engine to keep pace with the expansion of the internet, both in terms of the

volume of web pages and the nuinber of users.

3.2.1.4 Life Recording

This aspect of information retrieval has only started to emerge as a viable research field
in the past few years due to the continued miniaturisation and reduction in cost of
electronics. The aim of this technology is to allow the continuous recording of one’s own
life, with two main outcomes: The user is provided with an enhanced memory through
the retrieval functions of the system, and can publish a multimedia diary of their life

(to those who wish to know about it).

An element of such systems is the ability to determine what the user wishes to remember
- it would be very ambitious to request of the system that it record all events - and to
reduce that information to a manageable quantity. Incorporating a personal assistant

would remove the need for intervention by the user in determining the events that are
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recorded (and the detail in which they are recorded), but introduces room for errors in

judgnient on the part of the system.

An obvious requirement for a life recorder is large amouuts of storage, but this should not
be physically located with the recording device itself - which needs to remain portable.
Instead the system needs to reduce the information in real time as much as possible so
that it can either be uploaded across a wireless network, or, where a link is unavailable,

can be saved in the limited local storage.

HP’s CoolTown project [10], the European Equator project [1] and others have been
spearheading research into the applications of portable (and indeed wearable) computers.
Companies such as Xybernaut are selling compact personal coniputers which can be worn

on a belt, and are supplied with high resolution display mouocles.

3.2.1.5 Consumer Content Delivery

The general public are a good reference point for the maturity of technology - conipli-
cated and unusable systems are rejected by the market. Personal content delivery is
starting to become a reality with the availability of broadband home network connec-
tions, and cheap digital AV recorders (set top box DVD and hard disk recorders). The
Sky+ package provides a hard disk recording system and a stream of chamels from
which the user selects the programs they would like to watch. They are then able to

watch at their leisure.

The ability to provide a useful content laver is therefore becoming highly desirable - not
least because the media industry themselves would be a primary user. The MPEG-7 [87]
standard is attempting to provide flexible descriptors, and has support for some image
features. The BUSMAN (Bringing User Satisfaction to Media Access Networks) project
[6, 68, 144] looks at how such content description streams can be successfully managed
in heterogeneous environments, with the potential for media to become transtormed or

corrupted on its course from source to destination,
Some of the objectives which the BUSMAN project hopes to, and indeed has, achieved
are:
o Access to and delivery of multimedia content on consumer devices (digital televi-
sion, computer systems, information kiosks, mobile devices).

e The integration of delivery channels such that content will be transformed from

the source to the destination seamlessly.

e Content protection throughout the delivery channel by advanced watermarking

techniques capable of withstanding transformations.
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¢ Content based search facilities with a wide range of coutent descriptors.

The architecture developed for this project has two key server components, and two
client types. The input unit part of the server provides ways to submit content to the
system and the annotation client allows professional users to annotate the coutent -
adding, for example. semantic and shot boundary metadata. The information server
connects to the end-user terminal and provides content tailored for the terminal type
(two types have been developed: fixed PC desktop and wireless. mobile, terminals). aud

the query engine functionality.

Data is embedded into video content using watermarks tailored to both MPEG-2 and
MPEG-4. These techniques will insert a Digital Item Identifier (DII) into the video
stream by using a narrow band signal over the wide band of chanuel of the video signal
which attempts to minimise visible artifacts being introduced. The DII contains a
Busman Content Tag (BCT) which will allow a server to determine the appropriate

metadata for the content without having to send metadata with the content itself.

The metadata used with BUSMAN is in accordance with the MPEG-7 standard, with

visual descriptors (

3.3 Image Retrieval Multimedia Information Systems

3.3.1 QBIC

QBIC [46, 101] was the first commercially available CBR systen, available as a extension
to IBM’s mainframe DB2 database system. It provided both image and video retrieval
together with a browseable user interface and a novel query by sketch interface. The sys-
tem is broadly divided into four subsystems - image and video analysis, media database,

feature index, and user interface.
Media Analysis Subsystem

QBIC has three levels of feature extraction: Scenes, which include {global) spatial colour
and texture features; Object, which includes location, shape and user defined colour and

texture features; and Video, which includes object and camera notion features.

Object extraction in QBIC is performed using a combination of manual and automatic
methods, as required by the user. A foreground/background (threshold) model is pro-
vided, for which the results may be augmented by selecting background pixels to enhance
the thresholding. A region growing algorithm similar to a flood fill is also provided. where
the user initiates the region with the selection of one or more pixels. The threshold of
the homogeneity constraint that determines whether the pixel is part of the object or

not, is user adjustable. The third technique is based on snakes, which the user can
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sketch around an object before allowing the algorithin to iteratively adjust the shape of

the snake to the object.

Video features are limited to shot detection (shot boundaries exist where global colour
change or global motion exceeds a threshold) aud motion detection. Motion in the iw-
age 1s calculated using a specifically developed algorithin that computes the global view
transformation while remaining insensitive to local changes caused by objects and bright-
ness changes [120]. Object identification is performmed by examining the motion flow for
coherent areas of motion; if this is lacking and the global motion is uniform, then cai-
era motion is assumed. Identified objects become candidates for the object extraction

techniques described above and are stored in a layered structural representation.
Image Features

A number of colour coordinates are extracted: (R.G.B), (Y.i.q), (L.a,b) and MTM
(Mathematical Transform to Muusell) [93]. A complex series of algoritlins are used
to extract a colour histogram. which begins with the generation of a 163 = 4096 bin
histogram. This histogram is populated with RGB values from the image or object.
and then the MTM coordinate of each cell is calculated. and these coordinates clustered
using the minimum swm of squares to find the ‘best’” 256 colours, called super-cells.
Histograms are compared by calculating the weighted Euclidean distance of histogram

vectors, allowing the user to. for example, reduce the influence L has in an (L.a,b) query.

Described in detail in [43], the texture extraction techuique employs Tanra’s notions of
contrast, coarseness and directionality (see section 2.5.2). The algoritlhns were modified
to make them computationally less expensive and so miore viable for an enterprise scale

system. Texture comparison is also by means of weighted Euclidean distance

Shapes in QBIC are described by a combination of heuristics: Area, circularity, eccen-
tricity, major axis orientation and moment invariants. Each shape is also stored in the
database as a binary pixel mask. To support the query by sketch function, images are
reduced to single band luminance, then passed through a Canny edge filter. The image

is then reduced to 64x64 pixels using a filter that maintains edge structures.
User Interface and Queries

A query may be formed of an entire image, an object, or a set of object attributes. Both
colour and texture pick palettes are provided, as well as a shape creation tool (with
various drawing tools) and the query by sketch interface. Shape creation can be based

on an existing image in the database, which allows the use of the snake outline tool.
Indexing

The index m QBIC is built as a modular component so that it could be updated as

faster multidimensional indexing techniques are found. The indexing used by QBIC in
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its early phases relied on either a flat file. or Starburst relational database, for the image
features, which were retrieved sequentially. The R*-tree was tested, and interest was

shown in linear quadtrees and grid-files (see section 2.6).

3.3.2 MARS

The MARS project [65, 105, 104. 103] has been highly successful, and produced many
papers {over 45 at the time of writing) on a large number of CBIR topics. Of particular
note are the contributions to video representation [147, 118, 116] and multidimensional
indexing [23, 22]. Like QBIC, MARS/IRS (MARS Image Retrieval System) is divided

into four primary systems, supported by the Postgres SQL database server.
Image Analyser

The early versions of MARS used three salient image properties, and did not provide
support for video. An HSV colour histograni provided the colour feature. the colour
model being chosen due to its perceived uniform colour space. The histograms are
compared using Swain’s intersection method [129] which allows better matching where
query and target histograms have a subset of similar colours, for example in inages with

the same central object on different backgrounds.

Texture similarity was provided by a 3D texture histogram. the componeuts being
Tamura’s coarseness, contrast and directionality. The neighbourliood around each pixel
is examined for the strength of the three measures, and the appropriate bin incremented.
The decision to use a histogram was made because of the potential for indexing, unlike

Tamura’s scalar approacl.

Shapes are extracted by clustering in the spatial-colour-texture space provided by the
colour and texture histograms using c-means clustering. Like k-mmeans this approach in-
volves iteratively pairing ¢ starting cluster centroids to their nearest unpaired neighbour.
The process is repeated until convergence occurs. The resulting areas will be divided
until they are spatially contiguous, or discarded if they fall below a threshold area. A
threshold is set in the colour-texture space to determine objects and background using

an attraction (gravity) based method [117].

Images are represented on two levels - the global and the object. The global descriptors
consist of fixed text metadata and free text, and low level image properties {colour and
texture) for the entire image. Objects have the same descriptors for their pixels, but

also include the shape only properties of area and centroid.
Indexer

Initially the indexing subsystem used flat files and R* trees, however the index did not

scale to the large image databases and complex feature spaces required by the project.
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Later efforts include a localised method for principle component analysis [24] and a
hybrid tree that combines techniques from data partitioning structures (for example the
R-Tree family) and space partitioning structures (for example the kDB-tree). The index
also contains a text processing component, which is used for textual metadata associated

with images and objects.
User Interface and Querying

The query interface provides three types of query: simple, complex and similarity. In a
simple query a colour and texture palette are provided to allow the user to select colours
and textures that should be present in the images retrieved. Complex queries may be
constructed by creating objects with attributes which are desired in the target hmages.
A graphical interface allows shapes to be created, to which colour and textures may be
assigned. The last query type is the global similarity query, in which all features, be

they global or object, are compared with the query image.

3.3.3 VisualSEEk, MetaSEEk and WebSEEk

VisualSEEk provides a comprehensive diagrannming query systen which will return im-
ages based on the relative proximity and location of similar objects in the query. Regions
in images are extracted using colour set back-projection [127], and a 166 colour histograim
(created by transforming RGB to HSV and quantising iuto 18 hues, 3 saturations, 3 val-
ues and 4 greys) is derived. Regions are compared by non-spatial attributes first, then
the locations of the identified regions froni the candidate images are transformed into a

2-D string which is compared with that of the query image's regions.

WebSEEL [26] extends the architecture of its predecessor with web spiders that download
web pages, following links, and retrieving images and video to index. Unlike VisualSEEK,
WebSEEL does not store the images themselves, only the images features and metadata
that it has extracted. Similarly MetaSEEk [15] is a web based system, but has no active
image analysis components. As a meta-search engine it selects target visual search
engines and scripts queries to them based on the query that the user gives to it. A
core part of its functionality is the ability to learn the characteristics of its target search

engines, and provide relevance feedback during the query process.

3.3.4 VideoQ

The key attribute in VideoQ [5] is that of motion, which can be sketched in the user
interface. This allows video objects (defined as sets of contiguous regions of pixels that
are homogenous according to a low level feature that display consistency over a number
of frames) to be retrieved based primarily on their motion. Care is taken in the work

to ensure that the size of video data does not affect the user’s retrieval experience, and
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so candidate video shots that match a query are displaved to the user as key framnes. It
is shown that in most cases this is sufficient for the user to determine whether the shot

will actually be a desirable match.

3.3.5 MAVIS

The Microcosm system [36, 37] explored hyperniedia techniques for linking docunents,
and navigating between tliem. The linkbase and generic link was proposed and deimon-
strated, a function that performs a query against known documents based on the text
contained in the link. The MAVIS (Microcosm Architecture for Video, Image and Sound)
project [79] delivers the same functionality for non-textual media. The user is allowed to
select multimedia elements in a document with whicli the system will execute a content-
based retrieval query against other media elements in the database, resulting in a list of
generic links. The MAVIS 1T [80] systemn moves into the semantic domain by adding a
multimedia thesaurus that extends the functionality of the linkbase. Media elements in

the database can be linked to concepts, which are stored hierarchically.

3.3.6 Artiste and Sculpteur

Both of these projects have developed digital libraries for museum artifacts. The frst,
Artiste [57, 25, 3|, produced a system for content based retrieval and analysis of paint-
ings. A core framework and API [4] for image analysis and indexing was developed. Au
important factor in the design of the system was to be able to process and store very
large images - of up to 10k? pixels, for which low level feature processing demands are
very high. QMNS, the algorithm presented in chapter 5, was implemented as a fea-
ture for Artiste, and the API was used throughout this thesis to compare the retrieval

performance of the tested features.

The Sculpteur (Semantic and Conteut-based mULtimedia exPloiTation for EURopean
benefit) project [2, 58] introduces technology from tlie semantic web comniunity, com-
bined with 3D object storage and vetrieval, to provide a comprehensive, interoperable

MIS.

3.3.7 Viper and GiFT

The name of the group that performed the research, and of an implementation of a
CBR system, Viper (Visual Image Processing for Enhanced Retrieval) has three pri-
mary assets: MRML, the Multimedia Retrieval Markup Language [100], provides an

abstraction of content based retrieval systems. Many aspects of the field have been cov-

ered, including: support for multiple query paradigms, relevance {eedback, metadata,
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and evaluation. The Viper retrieval systemn [128, 98] uses NMRML to provide image re-
trieval from an inverted index. Whilst the low level features themselves are not novel
(a HSV colour histogram and real, circularly symmetrical Gabor texture filters) they

demonstrate good retrieval at very high speeds.

The GiFT (GNU image Finding Tool) [99, 97] is a framework for content based retrieval.
built with modular components for multimedia storage, processing, feature extraction
and indexing, retrieval and evaluation. Access to the framework is via an MRML enabled

client. The Viper system was re-implemented as a plug in for this framework.

3.4 Summary

There are many different uses for content based retrieval, as illustrated by the second
section of this chapter. It is very hard to think of any computer based application where
content based retrieval would not be useful, be the source of information a relational
database system, or a video feed. Architecturally the systems are all very similar. There
is a component to store documents, one to analyse then, a index to store the features

in, a query processor and sonie form of user interface.

Some architectures are designed for flexibility, to be adaptable and allow the addition
of new components, and, indeed, to research the suitability ot the architecture itself.
Others are intended for proot of concept of one, or more, of the individual systemns.
In order to understand how well the system is performing it is necessary to evaluate
retrieval, and it is in this area that the field is currently lacking. The Viper group lhave
been involved in the Benchathlon network [96] which is attempting to form an evaluation
community and resources similar to that provided as part of the TREC text retrieval
conference series. Until a standardised evaluation technique is available, it will be very

difficult to compare CBR systems.



Chapter 4

Invistor - An Inverted Index

Multimedia Search Engine

4.1 Introduction

This chapter presents the systems that were used for the research work presented in the
next two chapters. Using a mixture of C, C++ and Java, the systems create a complete
platform for generating, testing, and analysing binary signature and feature term based
indexes. Split roughly into three categories the systems cover feature extraction and

indexing, index data analysis and retrieval cvaluation.

This chapter is divided into four main sections after this introduction. The first describes
the overall architecture of the system. The second section presents the largest component
of the system - the CBIR image indexer. which extracts the actual {eatures from images
(and potentially any document) and stores them in the verted index. The third part
describes the techniques and algorithms used to extract data about the distribution of
the feature terms leld in the index, and the fourth describes the Java program that

generated the metrics used to measure the performance of the retrieval systeni.

After these sections, in section 4.6, there is a short discussion on potential improvements
to the system, issues of scalability and the architecture of a future system. Finally the

chapter ends with a brief conclusion.

4.2 The Architecture of Invistor

The architecture of the Invistor system is divided into two parts - the systems that
perform processing, and the databases. Figure 4.2 presents an overall view of the ar-

chitecture, showing each of the key components in the system. On the left are the
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FI1GURE 4.1: Invistor - Overall Architecture

processing modules, including the CBIR image indexer. the retrieval results analysis
module, the Artiste image analysis library and the index data analysis module. On the
right are the two databases, one of which stores metadata about the documents and the
other which contains the main index. The information that is transferred between the

modules is shown by arrows.

The CBIR image indexer is responsible for most of the processes that are involved in
the system. A user is able to submit images to the indexer which are processed by the
Artiste image analysis library. The library outputs signatures in either a binary form,
or a feature term form. These signatures are then inserted into the metadata and index
databases. A user is also able to query the system by submitting a single image to
the indexer which is processed and then compared with the other images in the index.

Results are provided in a formatted HITML report, and a tabulated text format.

The retrieval results analysis module accepts test scripts containing categories of images
which form the ground truth for recall-precision metric generation. The module will
then execute a series of queries by calling the indexer and analysing the results that are
returned by it. Once all tests are complete it produces a report of the recall-precision

data.

The distribution analysis module performs only one task, which is to generate a Zipl

distribution for the data in a specified feature term index.
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4.3 The CBIR Image Indexer

Written in C, the CBIR image indexer provides the core functionality for the whole sys-
tem. Controlled via command line options in a UNIX envirommnent it has five commands:
Initialise database, index one image, index multiple iinages. compare two images and

query lmage against index.

¢ Initialise Database: This command will create a document metadata database
in MySQL, and will either create a blob index for normal signatures, or an inverted
index for feature termn signatures.(See the next section for details on the signature

data structures).

¢ Index Single Image: This command takes a single iimage filename and the codes
for the desired Artiste image processing class, and generates the signature. If a
feature term signature is required a switch can be enabled that will cause the image
processing class to generate a feature term signature, which may be iuserted into

an inverted index. The name of a valid database is also passed with this commmand.

e Index Multiple Images: Extending the previous command, this function allows

the user to index all the images listed in a file.

e Compare Two Images: The first of the two database querying commands, this

function will compare two images, returning a similarity score.

e Query Index: Tle last main command will query the index and generate a
hitlist for the best retrieved images. If the query image is already in the index its
signature is retrieved and is compared against all signatures. When the comparison

is complete the first image is ignored since it is the query itself.

4.3.1 The Relational Database Index

The indexer stores information about images, and the signatures of the images, in a
relational database - MySQL. The use of such an RDBMS removed the need for design-
ing and implementing some complex data structures. The database system provides a
reliable and efficient means for storing data, and allowed efforts to be focussed on the

core functionalilty of the systems.

The database system is used for two purposes - storing metadata about the images
submitted to the index, and storing the actual signatures themselves. Since the indexer
supports both raw binary signatures (of an arbitrary format, known to each image
processing alorithm)} and feature term signatures, two versions of the database were
created. Figure 4.3.1 shows the two tables required for the binary signature index (top)

and the three tables required for the feature term index (bottom). Table 4.1 describes
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images features

imagelD : integer [I \
path : string [I] Binary signatures
ﬁIeStatus . integer imagelD : integer 1] database
indexStatus : integer ’

lastindexTime : float signature : longblob
imageX : integer
imageY : integer

images features bintotals

imagelD : integer

path : string [1] N

ﬁIeStatus : |nt§ger \ imagelD : integer [1] Term signatures

indexStatus : integer . R X . . R

lastindexTime : floal bano . long integer [I) ——— b!nNo : Iopg integer [I] database
ST binFreqNorm : double binFreq : integer

totalBins : integer binFreq : integer

totalF eatures : integer ’

imageX : integer

imageY : integer

FI1GURE 4.2: Relational Tables: Top. Binary Signatures, Bottom. Feature Term Sig-
natures. Underline indicates primary key, [I] indicates indexed field

the purpose of each of the fields in the tables, indicating where fields are common, or

not, to the two types of index.

Table | Database Field Description
images both hnagelD A unique ID for each lmage document
path The path to the image
fileStatus Status of the file - exists, not exist. corrupt
indexStatus Status of the signature - unindexed, indexing, indexed
lastIndexed Date and time that the last index of the image started
lastIndexTime | Time (in millis) that the last index took
imageX Width of the image in pixels
imageY Height ol the image in pixels
term totalBins The total munber of different terns in the hmage
totalFeatures | The total number of features in the image
features both imagelD The image 1D
binary signature The binary feature signature
term binNo The unique term identifier
binFreqNorm | The normalised frequency of the term in the image
binkreq The frequency of the term in the image
bintotals binary binNo The unique term identifier
binkreq The number of documents in which the term occurs

TABLE 4.1: Index database table definitions

4.3.1.1 The Image Metadata Table

The metadata table stores a small amount of information about each image that is

submitted into the index. The path indicates the location of the file, and may be in any
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format. The CBIR indexer uses the UNC file naming conventions. Ouly the dimensions
of the image (in pixels) are recorded since it is assunied that all of the feature extraction
algorithms provide their own methods for converting different images from their original

colour model to that which they require.

A flag to indicate the status of the file is provided. so that the indexer is able to indicate
whether the files submitted for indexing are valid files and has the following values:
unknown, ok, does not exist, corrupt, non-image. The indexer can determine some of
the possible states togetlier with the iimage algorithn returning either corrupt. or non-

image should it be unable to generate a valid signature for the file.

Also provided is a flag to indicate the status of the signature inn the index, should it exist.
There are four possible index states: unknoun. indexed, indexing, unindered. Where the
file status indicates anything otlier than an ok status the index flag is set to unindexed.
Since multiple copies of the indexer may be run concurrently (see section 4.3.3.1) the
indexer is able to set the index status to either indexed, or indexing. This also allows

another CBIR client to perform queries whilst an index update is being performed.

The metadata table for a feature term index includes two further fields that record data
about the feature terms in the image. The totalTerms field shows the number of unique
terms within the image (the vocabulary size). and the totalFeatures field shows lhow

many feature terms existed in total in the image.

4.3.1.2 The Index Tables

The index tables used to store the signatures for the image are entirely different for the
two types of index. The binary index uses only one table, whilst the feature term index

uses two.

The Binary Index The binary index stores signatures which are of an arbitrary format
determined by the image processing algorithm used. A single entry in is stored in the

table for each image, containing the image ID and the binary object (blob).

The Feature Term Index The data structures required to build an efficient aud
reliable inverted index are complex. The preferred technique for building an inverted
file is to use a B-Tree like structure and a flat file. This B-Tree provides rapid access via
the data key to the information stored in the flat file, and should ideally exist entirely in
main memory. Since MySQL provides good indexing on tables it was decided that there
was no requirement for a bespoke inverted file implementation. The index provided by
MySQL is implemented as an abstract B-Tree that can store any datatype, provided

that a suitable comparison for the datatype 1s available.

To simplify the index further each term posting is stored separately. This allows the

index table to adopt the structure shown in table 4.1. The normalised term frequency
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is provided because it can not always be calculated from the tenun frequency and the
image dimensions. This will occur when a feature extraction algorithm does not always
generate the same number of features for a particular image size. The QMNS algoritlun,
for example, does not create features for some patcles, whereas the histogram algoriths

(the RGB histogram and thie CCV) always count every pixel in an image.

The second feature term index table, termtotals, provides data for scoring algoritluns
which requirve the document frequency of a featwre termi. This table contains only two

fields - the term number and the document frequency.

The term number field in both tables is indexed causing MNMySQL to generate a B-Tree
for the table keyed against it. When querying the SQL table for all postings that are for
a particular term the database will locate thie desired entry in the table index and is then
able to return those postings without further searching. In the current implementation

this does, however, still incur a significant overlhiead in disk accesses.

4.3.2 The Artiste Image Processing Library

The Artiste image processing API [4] was developed by Stephen Chan for the Artiste
project to allow for a modular, extensible, architecture. huplemented as two C+-+
classes, the interface provided two functions that an image processing algorithin had to
implement: The ability to generate a signature for a given image, and the ability to
compare two signatures. Each algorithm implemented in the API had to supply its own
image processing library, however it was the VIPS (Vasari Image Processing System)

that was used by most researchers.

Here follows a list of the image processing modules created. and the authors of the

module:

¢ RGB Histogram (Dupplaw): A simple RGB histogram capable of quantizing each

axis of colour space independantly.

o CCV (Chan): A colour coherence vector histogram that provided 8 levels of quan-

tisation.

e MCCV (Chan): The CCV above, but extended with a multiresolution spatial

encoding.

s QMNS (Westmacott): The QMNS algorithm, as described in chapter 5,section
5.2.

o PWT (Fauzi): A Pyramid Wavelet Transform algorithm for extracting texture

features.
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o DWT (Fauzi): A Discrete Wavelet Transform algoritlun for extracting texture

features.

The two classes provided are the ImageProcessor, which contains the code to generate
and compare signatures, and the FeatureVector class. which contains code to store the

signature as a machine independant binary object (in database terminology a BLOB).

The Artiste project used the modules by linking them with the database, and referencing
each one individually. Since the modules were i1 a state of continuous development,
and more were being written, a library to contain them in was created. Each of the
modules was altered to take advantage of the inheritance features of C+4 so that any
module had as its parent either an ImageProcessor class. or a FeatureVector class for
image processing functions and signature storage functions respectively. The library
1s implemented using the Linux dynamic C library, which allows binaries to be loaded
dynamically during program execution. Because this libravy is written in C, and the
Artiste API is in C++. it was necessary to implement class factories that would return

a reference to the required Artiste class.

The final stage in creating the completed Artiste library was to provide one further
function on the feature vector interface which would couvert a binary signature into
a list of feature terms. Since each binary signature is unique to its inage processing
algorithm, this function is implmented by each feature vector class. The output {rom
this function is an array containing the term munber, the docmment frequency and the
normalised document frequency. Each of the image processing algorithins has a unique

range of term numbers which allows heterogenous features to be stored in a single index.

The completed library provides a means for auy researcher to access the image processing
algorithms using one library file via a short nunber of calls {provided they use a Linux
environment and program in C or C++), together with a great deal of flexibility over

which image formats may be processed.

4.3.3 The Index Operation

Regardless of the technique used to start indexing, each individual inage is indexed in
the same manner, with some differences depending on whether a binary or feature term

signature is required. The indexing operation follows this simple algorithm:

o File Check: The file supplied is checked to see whether it is a valid file (as opposed
to an incorrect filename or a directory) on the file system, and also to find if it is
already in the index or not. If the file is invalid then execution ceases here. If it is
valid then an entry in the document metadata table is created (or replaced if the

filename already exists) and the indexing flag is set to indezing.
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o Signature Generation: Tle appropriate Artiste image processing modules will
already have opened during initialisation of the indexer, and now the valid file is

passed to the module.

— Format Check: The image processing module will attempt to load the

image file and convert it into a format suitable for feature extraction.

— Feature Extraction: Next the module will generate the set of features for

the image.

— Signature Creation: Ouce tlie extraction process is completed the module
will store the feature data in a feature vector class, and will return control to

the indexer.

e Signature Indexing: The indexing varies depending ou the type of signature

required:

— Binary Signature: The indexer will take the feature vector class returned
by the image processing module and request the binary signature. This binary
signature is then encoded as an ASCII string for insertion iuto the MySQL

feature table.

— Feature Term Signature: The indexer will request the quantised, labelled,
version of the binary signature. The {eature vector class will generate the set
of feature terms and frequencies and package them as an array for return to
the indexer. Once returned the indexer will insert each feature term into the

index:
* The posting is inserted into the features table.

* The relevant record in the termtotals table is incremented by 1.

e Index Update: The indexing flag in the images table is updated to iudicate

indexed, and the other fields in the record are populated accordingly.

4.3.3.1 Parallelisation of Indexing

The generation of image features is a very compute intensive process which called for
some method for parallelisation of the indexing process. The chosen method allows
multiple instances of the indexer to compete to index images. FEach instance of the
indexer is passed the same list of files to index together with the database in which the

mdex 15 to be stored.

Each indexer will perform a file check on all the files in the list. This is necessary since
each indexer process may be running on different physical machines. Once each indexer
has a list of valid files to index it will begin indexing, checking the index status of each

image in the database, and generating a signature for an image if it is not present, or is
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marked as unindexed. In order to maiutain sychrouisation of the processes the following

procedure is used when indexing;:

e Lock Table images This is required so that no otlier process can insert a new

record, or update an existing record whilst the current process is checking it.

e Index Check If the image to process is not in the index then create a new record
and mark the index status as indexring. If the file exists and is unindexed then
mark the index status as indexring. For all other cases the table is unlocked and

the next image in the list is processed.
e Unlock Table images
e Generate Signature

e Lock Table features (and termtotals) This lock is required so that any processes

which may be querying the index do not retrieve partial signature data.
e Insert Signature
e Unlock Table features (and termtotals)
e Lock Table images

e Update Metadata The last stage is to update the metadata in the images table

and set the index flag to indezed

¢ Unlock Table images

4.3.4 The Query Operation

The difference between binary and feature term retrievals is quite substantial, warranting
an explaination for each. In both cases the retrieval is perforined and then a hitlist
generated. The hitlist holds entries that contain the filename of the image and its
similarity score. This list is sorted using a quick-sort routine. By default the 100 most
similar images are listed to the console together with their similarity scores, and if
required an HTML results file may be produced which provides icons of the images.
The time taken to index the query image, and the overall retrieval time are recorded
and included in the output. Where a binary signature database is being queried the

time taken to compare each individual signature is also recorded.

4.3.4.1 Binary Signature Retrieval

Binary signature retrieval is performed sequentially and all signatures in the database

must be compared. The database is queried for all images which have a valid signature,
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which returnus individual records on demand to the indexer. Each record coutaius the
image details (filename and dimensions) and the signature. The test signature is ex-
tracted and a new feature vector class created with it. The test feature vector class and
the query feature vector class are then passed to the image processor for comparison.
The image processor will return a similarity (or dissimilarity) score for the test image
which is recorded. Once all images have been processed the hit list is generated, sorted

and the results output.

4.3.4.2 Feature Term Signature Retrieval

Feature term retrieval considers only the images in the database which have features
in common with the query. Once tlie query feature terms liave been extracted then
retrieval is completed by generating a score for each image which has the saine features
as the query. The niethod with whicli the anmount a particular term counts towards an
image’s score is discussed in chapters 5.1 and 6.1, and will, to a high degree, determine

the quality of the retrieval operation.

Inspired by text retrieval techniques the different {feature term scoring algoritluns require
different information about the terms and the images to which they belong. CMRI1
requires no information about the frequency of terms since it counts only thie number of
terms common to the query and test images. CMNR2 requires the query term frequency,
and CMRS3 requires both the query and test image's normalised frequencies. CMRA4,
which is a TFXIDF scoring algorithm, requires the query and test image frequencies
(not normalised) and also the document frequency for each query term with which the
TF/IDF weightings are calculated.

4.4 The Index Data Analysis Module

The purpose of the index analysis module is to generate a rank-frequency (see 2.7.1)
curve for an inverted index. Using this data it is then possible to test whetlier the index
conforms to a Zipfian distribution, and also to approximate the index size for a given

number of images.

The algorithm used to calculate the rank-frequency curve is taken from the work of Clien
[27], which compounds different approaches for rank-frequency distribution calculation,

and provides techniques for analysing the different sections of such distributions.

As a module that was not intended for frequent use, the analysis module was written in
Java, and with no advanced data structures. As such the performance of the module,
which performs a number of loops over large arrays, is not excellent, but is entirely

satisfactory for its purpose. The module is written as two java classes - the analysis
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class which accepts as input term-frequency tuples and outputs rank-frequency data,
and an executable class which provides a method for connecting to and extracting term-

frequency data from a particular index via the command line.

This module was used to generate the rank-frequency graphs for the RGB Histogram,
the CCV and the QMNS algoritlin that are shown in section 6.3. For each algoritlim
the quantisation level was varied. which has a positive correlation with the vocabulary
size, and an index generated. Eacli of these indexes was then analvsed using the analysis

module, which produced the data for the graphs.

4.5 Retrieval Results Analysis Module

The final member of the Invistor collection of CBIR componeuts is the retrieval results
analysis module. The decision to use the precision-recall (see 2.8) fanily of metrics to
measure the quality of image retrieval from an index, and the requirement to be able
to test multiple indexes meant that a flexible method of results generation and analysis
was required. The solution needed to be able to apply the same sequence of queries
against multiple indexes and generate overall recall-precision metrics for eacl test, and

group of tests.

Inspiration was taken from the Text REtrieval Conference (TREC) whichh has been
running for over a decade. The conference is dedicated to the evaluation of new text
retrieval algorithms and techniques, and for each conference sets of documents ranging in
size from a few gigabytes to a hundred gigabytes are provided. Contributors index these
collections and query their retrieval engines using secoudary scts of query documents.
Within the collections are ground truth categories - subsets of documents which have

been manually indexed - with which the quality of retrieval may be measured.

Queries from each ground truth category are executed against a collection and recall
and precision metrics are calculated. Once all quieries in a category have been executed
then the average precision for that category can be calculated. This metric indicates
how good the retrieval engine is at retrieving documents from that category. The averge
precision over all categories is then calculated to provide a final, overall, indicator of the

quality of the system.

This is the basis behind the results analysis module, which can perform queries in
groups and will calculate recall-precision and average precision metrics over different
indexes with different algorithms. In order to be as flexible as possible the module runs
executable programs and reads the results which it prints to the console (as long as these

are in a particular format).
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4.5.1 Input File

The input file contains three distinct sections. The first defines the executables that will
be used in the tests, the second defines the ground truth categories and the last section

sets the combinations of executables, categories and databases that will form the tests.

Because the analvsis module was developed in parallel with the core hmage analysis
components it was necessary to ensure that there was plenty of flexiblility in the way in
whicli each executable could be controlled. A simiple method was to provide a replace-
ment mechanism that could insert the filenae of a query, the name of an SQL database

containing an index and the naine of a results file from which the query results are read.

Figure 4.3 shows an excerpt of the executables section, showing two different algoritlins.
The CBIR image analysis module provides two conunand line switches (-mid and -fid)
for selecting the Artiste image processing and signature modules, query and database
selection switches (~query and -database) and another for setting the output results file.

The -v option enables verbose output.

EXECUTABLES: 3

EXECUTABLE: rgb 1

cbir -init

cbir -query \% q -database \% d -res \} r -mid 1010 -fid 1009 -v
EXECUTABLE: gmns-cprl 1

cbir -init

cbir -query \% q -database \}% d -res \}, r -mid 1008 -fid 1007 -q 1
>> -mns rapid_gmns -v

EXECUTABLE: qgrgb 1

cbir -init

cbir -query \% q -database \}% d -res \), r -mid 1010 -fid 1009 -q 2 -v

FIGURE 4.3: Executables section. The > symbol denotes a broken line continued [rom
above.

The first executable uses the RGB colour histogram algoritlun and will store and retrieve
the signature from a binary index. The secoud executable uses the MNS algoritlun, and
enables feature term retrieval from an inverted index by giving the -q switch. The pa-
rameter supplied with this switch determines the CMR feature term scoring algorithm;
for example -q 1 selects CMR1. The -mns switch selects one of the preset MNS para-
meter configurations. Also provided (but not illustrated here} are switches which allow

complete control over MNS parameters.

The third executable uses the RGB colour histogram again, but this time with a featwre
term index and the CMR2 scoring algorithm. Whilst the CMR (Colour Mode Retrieval)
algorithms were originally designed for retrieving quantised MNS features (hence mode)

they were also perfectly applicable for use with RGB and CCV feature terms.

The next section defines the ground truth categories, with each category being defined

by two sets of filenames. The first set of filenames must correspond with images in
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an index for whom it has been determined share some comnmounality. In the case of
the ground truth categories used throughout this thesis the image categories share high
level semantic features (objects, layout and colour). The second set of filenames are
for queries that shall be executed against an index. Images from the first set that are
retrieved will allow precision and recall metrics to be calculated (see the next section).
See Appendix B for the complete pink flowers category.

CATEGORIES: 1

CATEGORY: PinkFlowers 4 3

general/06340031. jpg

general/06340032. jpg

general/06340033. jpg

general/06340034. jpg

QUERIES:

general/06340031. jpg

general/06340032. jpg
pinkflower001. jpg

FIGURE 4.4: Categories section.

The last section sets the actual tests themselves, declaring the executable that will be
used in the test, the categories which will be tested, and the databases against which
each category will be tested. In all the tests run for this thesis only one database was
used at a time because the recall-precision metrics are calculated across individual tests.
TESTS: 1

TEST: rgb-dbl 2 1

rgh

PinkFlowers

BeachScenes
RGBDB1

F1GURE 4.5: Categories section.

4.5.2 Precision and Recall Calculation

The results analysis module accepts two parameters when run: a valid input filename
and a file to write results to. Tests are executed in the order in which they appear in

the input file, as are categories within each test, and the queries within each category.

Each executable is expected to output query results in the form of a hitlist formatted
as 1 result per line, containing the rank of the result, the filename of the result and the
similarity score, delimited by whitespaces. The CBIR prograin could return a result for
all images that are in the database, however there is little point since it is guaranteed
that all images from a category would be returned. A user will rarely look at all the
results returned by a search engine, instead being only tuterested in the top results. The
default hitlist length in returned by CBIR is 101 results.
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The reason for returning 101 results (rauked 0 to 100} is that the query image is in
the database, and is always expected to be returned first - since the signature in the
database will be identical to the signature generated for the query. This assuption can
only be employed where the signature extraction algorithms are deterministic and are
guaranteed to always return tle same signature for a particular image. This determinisim
was exploited to speed up the testing process by examining the database for the existence
of the query signature. If it exists in the database then the signature is retrieved and
the database queried, otherwise the signature is generated first. Note that this does
not affect the speed of the retrieval itself. This functionality was only implemented for

binary signature indexing, and not for the feature term index.

Once the executable has returned the hitlist is searched for the existence of any of the
other images from the query’s category. The position in the hitlist of any matches are

recorded and a new PR object instantiated to calculate the PR values.

4.5.2.1 PR Class

This class provides for storage. and calculation, of PR metrics. The only data that is
required for PR calculation is the size of the hitlist, the nuuber of relevant images in
the category that the query belongs to. and the positions in the hitlist at which relevant

images occur.

From this information it is possible to plot each point on the graph - the precision and
recall components being calculated as in equations 2.20 and 2.21 (chapter 2, section 2.8).
This single hitlist graph will typically be very jagged in appearance, with characterisic

steps moving from the upper left down to the lower right.

The class is able to calculate the average precision for the query whicl is equal to the
area under the PR graph, using equation 2.22. Another method allows the averaging
of multiple PR objects, which is used to combine query results from a category into a
single graph, and then the category results into an overall test graph. An averaged PR
object is created by taking interpolated precision points at regular intervals along the
recall axis from each of the source graphs and finding the average. In all cases the recall
axis is sampled at intervals of 0.1, ranging from 0 to 1. The sample at recall value 0, is
the initial precision, and provides an indication of the relevance ranking of the top few
hits. Similarly the sample at 100% recall indicates the precision that would be obtained
by extending the hitlist until all relevant documents have been retrieved (if they haven’t

already).
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4.5.3 Output File

After each category within a test is complete the precision-recall data from the PR
objects for each of the queries are output. Formatted in a similar fashion to the the

TREC results, each query has the following data output:

e Interpolated Precision-Recall: 11 point interpolated recall-precision points, from
0 to 1 in the recall axis.
e Recall at N Documents: The recall value in the hitlist every 5 docunents.

e Precision at N Documents: The precision value in the hitlist every 5 documnents.

Raw Precision-Recall: The precision-recall values at each relevant retrieval.

Average Precision: The AP for the query.

The individual query PR values are then merged together to form a category PR graplh,
and the points from this are output together with the category average precision. Simi-

larly, each category PR graph is averaged to form the overall test result.

4.5.4 Subimage Testing

As well as full image matching, the algorithms needed to be tested for their subimmage
matching capabilities. In such tests precision and recall are meaningless since the re-
trieval must be evaluated on the presence, or absence, of just one image - the source (or

parent) of the subimage.

Subimage testing is enabled by providing just one image in the test category, the parent
image, and one image in the query section of that category - the subimage to be matched.
A command line switch changes the evaluation metric from precision and recall to the
subimage comparison metric (section 5.4.2). This metric evaluates to 1 for a hitlist in
which the subimage parent is at rank 1, and 0 if the subnmage parent is not retrieved at
all. A metric to calculate the subimage pertformance over a series of subimage queries is
also provided, evaluating to 1 where the subimage parent is retrieved at rank 1 for all

queries, and O where the subimage parent is never retrieved.

4.6 Scalability and Future Work

The Invistor system has a very simple architecture. The Artiste image processing mod-
ules have allowed different feature types to be used, but there is no modular indexing

capability. The two index types were immplemented separately, and allowed little flexbility
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in their operation. Any future system would require significant architectural reworking,
and would be better replaced by an exisiting research framework - such as the GiFT (see
section 3.3.7). This freely available package already contains indexing components that
could be modified to test alternative indexing and retrieval strategies, and a cominon

GUI which operates on the MRML which would not require anyv modifications.

The index itself is also very modest. a reflection of the work presented in this thesis
which is less concerned with the implementation of an index but with the data which
is stored within it. This said. the index would benefit from any of the compression

techniques described in section 2.7.

4.7 Summary

The research in this thesis required a syvstem capable of supporting binary signatures and
an inverted index, and performing precision and recall evaluation of queries. The col-
lection of applications written fulfil these requirements adequately, allowing the desired

research to be carried out effectively.
This chapter has described the different components of the system:
e The CBIR image index whichh uses the Artiste image processing library and a
relational database to store signatures and features terms.

e The results analysis module - a Java application that executes groups of queries

with the CBIR indexer, and generates precision and recall data for test sets.

e The term distribution analysis module - another Java application that reads termn

data from an index and calculates the Zipfian distribution from it.



Chapter 5

QMNS - The Quantised
Multimodal Neighbourhood

Signature

5.1 Introduction

The chapter presented here introduces tlie core research in this thesis. A novel global
colour algorithm, QMNS, is presented which i1s impleniented for the Invistor retrieval

application as a module in the Artiste API.

The process by which QMNS features are extracted is discussed, then the index opera-
tions (insertion and retrieval) are described. Following this section is a description of the
evaluation of the test algorithms, covering the test image collection and ground truth
categories, and the individual test scripts executed. The first part of the test determines
the best parameters for the MNS algoritlun, comparing with an RGB colour histogram
and an RGB colour coherence vector histogram. The hest MNS configuration is selected,
and put forward into two further tests - full image and subimage tests. Both of these
tests use the image collection at different scales. The results for these tests are then
presented and discussed, and it is shown that the retrieval algorithm based on TF*IDF

1s most successful.

An extension to the QMNS algorithm is given, which increases the feature’s term vo-
cabulary. The distribution of the new vocabulary is discussed and a series of tests
evaluating the different types of QMNS terms are analysed. The results demonstrate
that for QMNS 1t is the common terms which are most important for retrieval, and not

the rarest.

The work presented in this chapter has, in part, been published in [142].

70
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MNS Signature Generation

Bi-colour
Neighbourhood

Mono colour

Neighbourhood
(discarded)
Original Image with Grid Extracted Colour Clustered (filtered)
Neighbourhoods Neighbourhoods
| /] '_'|
| ] J..__'
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=] 52 a2
Signature Colour Pair

FIGURE 5.1: Generation of MNS Signature

5.2 MNS - The Multimodal Neighbourhood Signature

The MNS algorithm [90, 74, 73. 91], created by Jiri Matas and Dinitri Koubaronlis of
the CVSSP group at the University of Surrey, was originally intencled {or indexing video
sequences for the purpose of rapid content-based retrieval, and also to allow tracking ol
objects through the sequences. As a statistical (low-level) image feature MNS provides
only hints as to the actnal content of the image. in the form of colour pairs that are
prevalent in the scene. These colour pairs form a signature for kevfranies from video

data which arc stored in a sequentially accessed database.

Aimed at applications such as archive footage recovery for television prograim production
and at home for video on demand, the algorithm would be used on massive amounts
of video data. The size of the frame signature generated by MXNS is tvpically very
small at around 100 bytes for an average frame. The retrieval algorithm that computes
signature similarity compensates for differing lighting conditions. As well as invariant
colowr features the algorithi is not affected by changes in scale, rotation, translation.
and it is resistant to noise. Generation of the signature is very rapicd, withoul requiring
any spatial segmentation or filtering. In [73] a high match pereentage is claimed on
the Simon Fraser University [75] lmage database, and with their own data. a hit rate
(percentage correct of images returned for a query) of 92% on a database of video frames

is reported in their papers.

As with all low level inmage feature algorithins. MNS is split into two distinet processes

- signature generation (involving feature extraction) and signature comparison. "L'he
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extraction of the colour pair features follows a three stage process. Firstly the mage
is split into a grid of neighbourhoods which are perturbed by a simall random amount
to avoid aliasing problems. and then the colour distribution of each neighbourliood is
identified using the mean shift algorithm [51, 28, 41, 40]. Neighbourhoods that coutain
two significant modes (the largest two modes must occupy at least seven eighths of the
area of a neighbourhood) have the bi-modal value stored as a six dinreusional vector
representing the RGB colour pair. This space is denoted RG B space. The set of colour
pairs that is most representative of the image is then found using the mean shift in the

RGB? space, providing the final signature.

The signature comparison process is a form of the stable marriage matching problem
[88] between two (not necessarily equally sized) sets in order to determine the distance
(or how similar) the two sets are. This problem attempts to match pairs of elements
from the two sets such that each pair satisfies some predicate. This is quite similar to
the Hausdorff distance [32] which is a measure of the similarity between two sets. and
also to the similarity join in databases [53]. The original MNS algorithm was aimed at
video databases and so the author developed similarity predicates that were based on
physical surface reflectance characteristics. such as the diagonal modcl of illuminalion
change [52]. Here the two sets are composed of the six dimensional colour-pairs from
a query image and a test image. The matching algoritlnn first builds a matrix of all
the pairwise distances between the two feature sets, then orders these values iu a list.
It then moves along this list from minimal pair distance to maximal taking the Arst
occurrence of each feature in the query set and adding the distance to the image's score.
The algorithm penalises any unmatched query features by adding a fixed penalty {or
each unmatched feature - this implies that the number of query features should be lower
than the number of test featwres and so the algorithm is trying to match a sub-image.
The more query features that are matched to test features, the lower the overall score,

and the more similar the signatures and hence images.

5.3 QMNS - The Quantised MNS and the Colour Mode
Retrieval Algorithms

In order to label colour pair features for inclusion in an inverted index the RGB? feature
space must partitioned in some manner. The most logical method and the best starting
point was to create evenly sized bins in the feature space like those made in the three
dimensional space for colour histograms. Initially we chose to use a division of 4 units per
axis giving 4° = 4096 bins in the feature space, although other divisions were examined
for suitability. We treat these partitions, or bins as being equivalent to terms in a text
index, and are sometimes referred to as atomic index tlems. Whilst bins and terms are

synonymous we shall use bin to describe the partitions in {eature space and the word
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term, or plhrase feature term to refer to a particular bin in the feature space that has a

frequency of features associated with it.

5.3.1 Implementation of the Index

A generalised inverted index in its raw form is quite a simple structure, making imple-
mentation straightforward. A straightforward implementation will however, not supply
the performance that is required from a data structure that may hold hundreds of tliou-
sands of data entries. The main consideration for designing a fast inverted index is
to consider the top level - the term level. A typical query will be to retrieve all the
postings for one, or a number of. terms. Rather than adopt the most common aud
efficient approach, a B-Tree of terins pointing to a flat file of postings, we have chosen to
implement tlie index in a relational database. This lias allowed us to concentrate on the
functionality of the index application and the retrieval algorithms, and leave the data

management, multi-user transactions, back-up and user-control to the DBMS.

We chose to use the MySQL relational database primarily due to its availability. Whilst
MySQL does not yet support all SQL (Standard Query Language)} commands or nested
statements, BLOBS (Binary Large OBjectS) are a supported data type. aud the tables
can be indexed allowing for very fast access. In [111] Putz describes advanced tech-
niques for creating and maintaining an inverted text index using a fully featured T-5SQL

{Transactional-SQL) relational database server.

Two approaches for creating the index as tables are available - one which uses two
tables and another that uses just one. The first type is more efiicient in terms of storage,
however under MySQL the time performance difference between the two is negligible due
to table and column indexing. We chose the second option since it is less complicated
to update and allowed us to make modifications to our algorithms very easily. Section

4.3.1.2 describes the relational tables used in the index.

5.3.2 MNS Quantisation

The last phase of MNS signature generation is to find tlie modes of all the colour
pairs in RGB? space using the mean shift. Since this has a clustering effect we have
omitted it from the quantised signature generation. A simple partitioning algorithin,
shown in figure 5.2, transforms an N dimensional vector into an N digit decimal coded
representation of the feature space. Each of the digits ranges from 1 (indicating the bin
that is closest to zero for a particular component) to the nuniber of bins required per
component. To illustrate take the RGB colour pair < BLACK,WHITE > which is
represented in RGB? space by the point (0,0,0,255,255,255). When the feature space

is quantised by 4 it becomes a value in the bin represented by 111444.
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double MAX: // Maximum value of components in the vector
double VECTOR]]: // Array containing vector values
int  COMPONENTS; // Number of components in the vector
int  BINS: // Number of partitions in cach axis
int  bin; // The decimal coded bin
bin = 0 // Set bin label to zero
for (int i=0: i<COMPONENTS; i++)} // For cach component in the vector
{
for (int x=0; x<BINS; x++) // And for cach partition
{ // Calculate which partition the value is in

if( ( VECTOR[i] >= x * (MAX/BINS) ) && (VECTOR/i}] <= (x+1)*(MAX/BINS) ) )
{

bin += (int)(BINS — x) * pow(10.i); // Add appropriate bin at appropiiate powet of 10
break; /7 Next

F1GURE 5.2: Feature Term Labelling Procedure

Since the term is in an integer form a single term lookup in the index table will be an
atomic integer lookup - MySQL uses the table index to find all occurrences of an entry
in a column which due to the nature of MySQL’s index will be in a group. This means

that all the postings pertaining to a particular term will be recovered very rapidly.

A second index table is employed to record the frequency of a particular term - its
document frequency whicl is required by the TF /IDF scoring algorithm presented in the
next section. Together with a metadata table that describes each inage and its current
index status this table completes the relational database componeunt of our inverted

index.

5.3.3 Operations on the Index

Rather than develop all four methods of the CRUD (Create, Retrieve, Update and
Delete) database paradigm we found it was not necessary to define an Update algorithin
- since our database is not intended for rigorous updates a delete followed by a create

suffices.

5.3.3.1 Term Insertion

The insert operation places a new entry for an image into the database. Firstly the
metadata table is queried to check whether another process is already trying to index
the given image. If there is no entry one is created and the entry marked as indexing.
The MNS signature is then generated and quantised. At this point the inverted index
and document frequency tables are locked for both read and write operations. Each
feature term is then inserted into the inverted index table, as the four place tuple <
ImagelD, BinNo, NormFreq, IntFreq >. ImagelD corresponds to the unique integer
created for the image in the metadata table. BinNo is the integer number of the bin
that the feature term refers to. The IntFreq component is the frequency of the feature

term - that is the number of colour pair features that occurred within the bin that the

10
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feature term refers to. The floating point NormFreq compouent is the IntFreq value
normalised by the maximum possible number of individual features in the image, which
is the total mumber of neighbourhioods in the image. After each terwn is inserted into the
index table, the docwunent frequency total table must be updated for that feature term.
The two index tables can now be safely unlocked. To end the operation the metadata

entry for the image is set to indicate a successful index operation.

5.3.3.2 Term Deletion

The delete operation will remove a term from the index aud decrease the document
frequency for the feature term across the entire index. All tables are locked for the table
updates. The posting for the term is retrieved from tlie index table and then deleted.
Next the terms document frequency is retrieved, then decremented by the frequency

retrieved in the posting and then updated. The tables are then unlocked.

5.3.3.3 Term Retrieval

The retrieval operation should not be confused with an image query. A single index
retrieval will retrieve all the postings for a particular term - the retrieval term. All
postings for the term are retrieved from the inverted index table using an SQL query.

A single term retrieval does not require the index tables to be locked.

5.3.4 Querying the Index

A complete image query consists of a terni retrieval for each feature term from the query
image, and then a process of merging the postings to form a similarity ranked list of
images in the database. Each of our four QMNS algoritluns takes a different approach
to this merging and scoring process. The four CPR (Colour Pair Retrieval) algorithms
follow the same outline process, as illustrated below. The first step is to generate all the
QMNS feature terms for the query image. For each of these {cature terms a term retrieval
is performed on the index, and then {for each of the postings returned a running total of
image scores are updated according to the particular CPR algorithm. The following is

an outline description of the matching algorithm:
o Generate QMNS signature and extract feature terms for the query image

e FOR ALL feature terms in the query signature with a non-zero frequency

— Retrieve Document Frequency for query term

— Perform SQL query for postings matching the query term on the inverted

index table
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V| the set of all terms

D | the set of all image

N | the number of images

g | the number of neighbourhoods in the query
fj | the number of neighbourhoods in image j
@ | the set of query terms

T; | the set of terms in image j

g; | the frequency of query term i

ti; | the frequency of term ¢ in image j

g, | the normalised frequency of query term i
t:. | the normalised {requency of term i in image j
d; | the docuwment frequency of term ¢

¢ | the document frequency cut off fraction

TABLE 5.1: Definitions for the CPR Algorithms

— FOR ALL postings returned
x [F CPR1 THEN Increment posting image score by 1
x ELSE IF CPR2 THEN Increment posting image score by the integer query
term frequency
x ELSE IF CPR3 THEN Increment posting image score by weighted, nor-
malised term frequency
* ELSE IF CPR4 THEN Increment posting image score by TF/IDF weighted

query term frequency

e Rank by ascending score: Highest score is most similar

5.3.5 CPRI1 - Original Algorithm

CPRI1 is the simplest algorithm, awarding 1 for every feature term in an image that is
also in the query image. Since the score is integer this version of the algorithm suffers

when the results are ranked - many inages will share the same rank.

score; = Z 1 (5.1)

Vie(QNT;):i#0

5.3.6 CPR2 - Sub-Image Matching

CPR2 takes advantage of the term frequency information stored in the postings in order
to favour images that contain the query as a sub-image. For each feature term that is
also in thie query image an image will have its score incremented by the integer query
term frequency. This gives greater weight to terms which occur frequently in the query
image. The algorithm is designed to best match images that contain the query image at

any size - it is scale invariant.
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5.3.7 CPRS3 - Full Image Matching

This version of the algorithm is aimed at situations where a full image, scale independent
match is required. For each feature term that is also in the query image an image will
have its score incremented by a weighted normalised term frequency. The term frequency

is normalised by the maximum number of features in the lmage.

The query terms are weighted such that the closer the query term frequency is to data-
base image term frequency the higher the score awarded. This benefits images where a
feature term is present in the same ratio as the query. We have also adopted a process ol
eliminating feature terms that are comumon across the corpus, the docuent frequency
cut-off point, denoted by ¢, for these terms ranging between 25% and 75% of the images
in the corpus. This is analogous to removing stop words in text, and has the effect of
speeding up the retrieval by reducing the number of index lookups that need to be per-
formed. Equations 5.3 and 5.4 give the normalised term frequencies for a query image

term and a test image term.

i=2 (53)
tis
i f—.’, (5.4)
T3
A
scorej = Z g (11— |(]77”) (5.5)

max(q.t.
Vi€ (QNTy):i0,d; < & (g ’J)

5.3.8 CPR4 - Weighted Full Image Matching

The fourth algorithm has its roots in text retrieval, being based on the TF /IDF weighted
scoring method for inverted text indices. We have employed this technique since analysis
of the distribution of QMNS features terms throughout our primary image database
showed large numbers of features that occur in the majority of images. Whilst using
a cut-off for some of these common features is useful, it does not penalise other terins
that still occur in large quantities. Like in text retrieval these feature terms are deemed
to not have very good discriminatory power. We chose to use the log of the inverse

document frequency (equation 2.11).
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Category Description Inmages
Beach Scenes Images containing scenes of beaches 15
Pink Flowers Images of pink flowers on a background of foliage 10
Buildings at Night | Images of famous buildings illuminated at night 20
Sea and Sky limages containing views of the sea and or sky 47
Sea World Images from Sea World 6

TABLE 5.2: The categories selected rom the General image collection
(=) (=]

Beach Scenes Pink Flowers  Buildings at Night Sea and Sky Ocean World

FIGURE 5.3: Example Images From the Collection

scorej = z gi - log(=) (h.6)

Y i (QNTy )i#0,di < X

5.4 Evaluation of QMNS

5.4.1 Image Collections

One image dataset was used in the testing. It contains 769 digitally photographed images
of a wide variety of subjects and locations and has been titled the ‘general’ collection.
Whilst the images are very diverse there are also a number of distinet image categories
contained within. Table 5.2and figure 5.3 show examples of these categories. The image
collection has also been scaled to torm two collections that are half and double the
size of the original set in order to be able to test the effectiveness of algorithms wlen
querying a collection that is at a different scale. The scaling algorithm used was a

bilinear interpolation.

5.4.2 Evaluation Metrics

In order to measure the effectiveness of the algorithims precision and recall metrics
(described in section 2.8) have been used which provide a clear, overall indicator to the

erformance of the algorithm. These metrics, represented by graphs, are interpolated
(=] o o H
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and averaged across each query to provide results for each of the image categories and

tests.

Subimage tests require a slightly different metric since it is ouly a single image that we
are attempting to retrieve. Given an ordered set that contains /N images returned for a

sub image query, containing the correct full image at rank 4, a suitable metric is:

(N+1)—i
N

,\
(s}
~

o

Which will give 1 for a perfectly ranked image and zero for an image that is not retrieved
at all. If we perform 7" subimage tests, and use r; to record the number of queries for

wliich the correct image is retrieved at rank ¢ then an overall metric is:

Z (N+D)—i
i=1.N N T
T

5.4.3 Test Harnesses

Two test harnesses have been developed for running tests using each of the algoritlins
and for extracting precision and recall data. The first harness, a signature generator and
storage application named CBIR, uses image processing modules written for the Artiste
project [57] to create signatures which are stored as binary objects in a MySQL database.
The Artiste image processing API supports two main tfunctions - signature gencration
and signature comnparison. In normal use the database may be queried sequentially to
build a ranked list of images in the database that are similar, preseuted as an HTML
document. The CBIR test harness also contains tlie QMNS specific code, and in the

application’s second mode access to the inverted index in MySQL is enabled.

The second test harness is a Java application that runs individual queries using CBIR
and generates precision and recall data. This siinple program takes lists of files that
are known to belong to a category a priori and sets of queries that should be run, the
databases to query and the algoritluus witlhh which to query them. All query data is
saved and the program will generate all precision and recall data for a test, interpolate

and calculate average and overall test results.

5.4.4 Computer Hardware

Primarily one computer system was used for all development and testing. This system
is an HP LT 6000r Server with Six 700MHz Xeon processors, and 1.7GB 133MHz ECC
SDRAM. This is supported by ten 36GB disks (10k rpm Ultra2) and two 74GB disks
in a RAID configuration.
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5.5 Test Specification

The evaluation of QMNNS was been divided into three separate areas. The first test was
needed to help determine the best parameters for the MNS algorithm on the iimage sets
being used. The second test measured the effectiveness for retrieving similar images from
a database when using a complete image as a query. The third test was to determine
how well the algorithms perform at retrieval from a dataset when using a randomly
selected sub-image extracted from some of the lmages. Every test was performed on

each of the three differently scaled 1mmage sets.

5.5.1 Test Algorithms

The algorithms tested are as follows: 18 variations of the MNS algorithm. including 2
that use a 5 dimensional chrominance feature rather than the 6 dimensional RGB? one.
There are then 8 versions of the QMNS algorithius - 1 for each of the CPR1, CPR2 and
CPR3 variations, and then 5 for the CPR4 variation. A table presenting the parameters
changed is given in Appendix A, table A.2, followed by a written description of the
algorithm. Two variations of the QMNS algoritlun arve called 8 Bin QMNS and 5 Bin
QMNS. The numbers refer not to the total number of bins, or terms but to the divisions

along each dimension of feature space.

Before testing was performed all the signature dexes needed to be created. Thir-
teen different databases were generated for the MNS variations, five were generated for
QMNS, and one database each for the CCV, RGB Histogram and MCCV algorithns.
This process was repeated for each of the image scales, resulting in 63 signature indexes.
Once all the indexes had been generated, metadata was extracted from the databases.
For the MNS and QMNS algorithims and variants this included index time and feature

statistics, but for all others only time statistics were recorded.

Test 1 : Variations of parameters within the MNS algorithm.

— TEST OBJECTIVE
e To determine the best parameters of the base NMNS algorithin for different datasets.
— TEST METHOD

e For each of the adjustable parameters in MNS, perform tests with the parameter
varied. Measurements are based on precision and recall metrics. Refer to Appendix
A for the parameters descriptions.

e Use all five categories and use all images in each category as a query. Perlorm
retrievals and calculate precision and recall metrics for each test, then average for

each category, and then for each algorithm.
e The test shall be run against each scale of the three image collections.

— TEST OUTCOMES
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¢ Precision and recall data for each of the different variations of the NNS algoritlim
at individual query, category and test levels.

¢ Minimum, average and maximum retrieval speeds for each different paramneter change
at each Iimage scale.

Test 2 : Evaluation of each QMNS algorithm for full image retrieval.

— TEST OBJECTIVE

¢ To determine whether CPR3 and CPR4 display better full image retrieval perfor-
mance than other algorithms.

— TEST NMETHOD

e Use all five categories and use all images in each category as a query. Perform
retrievals and calculate precision and recall metrics for each test, then average lor
each category, and then for each algorithm.

e The test shall be run against each scale of the three image collections.

~ TEST OUTCOMES

e Precision and recall data for all QMNS algorithms, CCV and an RGB Colour His-
togram at individual query, category and test levels.

¢ Ninimum, average and maximum retrieval speeds for each algorithm at each image

scale.
Test 3 : Evaluation of each QMNS algorithm for subimage retrieval.

— TEST OBJECTIVE

o To determine whether CPR2 is better than other QMNS, and MCCV algorithms at
sub-image retrieval.

— TEST METHOD

o Use all images in the randomly extracted subimage collection as queries for each of
the QMNS, Base MNS, RGB Histograin and MCCV algorithms.

¢ The test shall be run against each scale of the three image collections.

— TeEST OUTCOMES

e Subimage metrics for all QNINS algorithms, NCCV and an RGB Colour Histograni.

e Minimum, average and maximumn sub-image retrieval speeds for each algorithm at

each image scale.

The first test was run with 13 variations of the MNS algorithm. The parameters for
the MNS variations are explained and given in Appendix A. The first and second tests
used all of the images from the 5 categories in the general collection as queries with the
precision and recall metrics from each query being averaged across each category, and
then the averaged values averaged across the whole test. The third test for sub-image
accuracy used a 100 sub-images extracted randomly from the images. The sub-images
were restricted to a minimum size of 64x64 pixels or 10% of the original image dimensions
and a maximum size of 50%. Measuring the effectiveness of sub-image queries was a
matter of performing a query and finding the rank of the full image that the sub-image

was extracted from. Overall effectiveness was calculated using equation 5.8.
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------------------------------------------------------------ at 95 docs:
Category:PinkFlovers Query Image:general/06340031.jpg Precision:
S e e e at 5 docs: 0.

®

at 10 docs: 0.8
Recall - Precision values: at 15 docs: 0.533
at 01 at 20 does: 0.4
at 0.1 1 at 25 docs: 0.32
at 0.2 1 at 30 docs: 0.267
at 0.3 1 at 35 docs: 0.229
at 0.4 1 at 40 docs: 0.2
at 0.5 0.833 at 45 does: 0.178
at 0.6 0.75 at 50 docs: 0.18
at 0.7 0.778 at 55 docs: 0.164
at 0.8 0.8 at 60 docs: 0.15
at 0.9 0.191 at 65 docs: 0.138
at 1 0.191 at 70 docs: 0.129
at 75 docs: 0.12
Recall: at 80 docs: 0.112
at 5 docs: 0.4 at 85 docs: 0.106
at 10 docs: 0.8 at 90 docs: 0.1
at 15 docs: 0.8 at 95 docs: 0.095
at 20 docs: 0.8
at 25 docs: 0.8 Recall and Precision:
at 30 docs: 0.8 0.11
at 35 docs: 0.8 0.21
at 40 docs: 0.8 0.31
at 45 docs: 0.8 0.4 1
at 50 docs: 0.9 0.5 0.833
at 55 docs: 0.9 0.6 0.75
at 60 docs: 0.9 0.7 0.778
at 65 docs: 0.9 0.8 0.8
at 70 docs: 0.9 0.9 0.191
at 75 docs: 0.9
at 80 docs: 0.9 Average Precision for All Points:
at 85 docs: 0.9 Avg 0.735
at 90 docs: 0.9

FIGURE 5.4: An Example of the Precision and Recall Data Produced

5.6 Results

The Java test harness outputs test results in a format similar to that output by the
SMART database used in conjunction with the TRECEVAL program developed for
the TREC (Text REtrieval Conference) conferences. For each test in a batch the test
description is printed together with a list of the image categories that are to be tested
against and the executable file to be used. Following this the precision and recall data for
each query (as illustrated in table 5.4) are presented followed by tlie category averages.
Once all the category results in a test have been printed the overall average results are
listed.

When the test harness is processing subimage results the precision and recall data are
not presented since they are not relevant. Instead the ranking of the correct full image

for a query is given, or zero if it was not in the top 100 results.

5.6.1 Test Group 1 - MINS Variations

Figure 5.5 and table 5.3 present the indexing speeds for the different MNS variations
compared with the three histogram algorithms - RGB Histogram, CCV and MCCV.
Eight of the variations (Base MNS, Fixed MNS, Rapid MNS (Random 0.5), Enhanced
MNS, Reduced MNS, Large Mode MNS and Small Mode MNS) all have approximately

the same indexing times for each of the three scales of image collection. This is easily
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['IGURE 5.5: MNS Variation Indexing Times
Algorithm Indexing Time (s) Average Colour Pair Fealures
Half Normal Double Half Normal Double
Base MNS 3.002 12.395 51.025 8437 10.808 10.663
Fixed MNS 3.138 12.263 50.660 5.1363 10718 10,551
Big MNS 15.095 1 146.919 6.316 9.2586 1ldos
Bigger MNS T7.865 276.060 700,809 3.792 6.5:10 0.614
Rapid MNS (0.5} 17.545 8,137 10,571 10,155
Rapid MNS (0.3} 13.375 9.155 11,646 10 957
Rapid MNS (0.1) 16.268 6.049 8283 6618

Rapid MNS (Random 0.5) H.81 10.7-13 10 64141
Enhanced MNS 26.811 15,628 GO 5208
Reduced MNS 2,192 2.239 1.817
Large Mode NNS 9.027 LL-dos b1:752
Small Mode MNS 7.395 9.849 0209
Base Chrominance NNS 12.625 14. 110 22917 2613
RGB Histogram 0.019 0.072
ceyv 0.818 0.828
Mooy 0.265 0.986

TABLE 5.3: MNS Variation Indexing Times and Average Fealure Statistics

explained by the MNS generation process - the parameters for these varintions do not
alter or add to the overall complexity of the process. 'T'he parameter altered in Big MNS,
and Bigger MNS has a profound affect on the indexing time. These two variations have
a neighbourhood size of 16x16 pixels and 32x32 pixels respectively, compared to 8x8&.
"I'his results in 256 and 1024 pixel RGDB triples being passed to the mean-shift algorithm
for modality derivation instead of just 64. Our implementation ol the mean-shift s
not efficient and suffers from O(N?) complexity ([33] presents an cHicient algoritinn for
the mean-shift). Since the number of neighbourhoods varies linearly with the area of

neighbourhood to total image area these two results are unsurprising.

An alternative approach is to use less of the pixels in the neighbourhood to determine
the modes, and the first three Rapid versions of MNS show a satisfactory decrease in
indexing time for images, however Rapid MNS (0.1). which uses a tenth of the pixel
data for each neighbourhood, is slower than Rapid NNS (0.3) which uses a thivd. The
results for this variation are invalid due to the incorrect configuration of (he parameter

set; the results are included here for completeness.

All the versions are much slower at indexing images than the histogram techniques -
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['1IGURE 5.6: MNS Variations Average Precision

probably due to the poor implementation of the mean-shift algorithin and other over-
heads associated with calculating neighbourhood modality. Attention is drawn to the
CCV results, which do not display an increase in indexing time that is exponentially
proportional to image size - in fact all three scales of image are indexed in the same av-
erage time. This is most likely due to a process of normalising the image to a particular

size before extracting the coherent and non-coherent histograms.

Figure 5.6 presents the overall average precision values for each ol the MNS variations
at each of the image collection scales. The majority of the variations display retrieval
accuracy that is slightly lower for both the half and double scale collections, although
there are some exceptions to this. Increasing the size of the neighbourhoods has a neg-
ative effect on accuracy, more so for the Bigger MNS algorithm, although both ol these
vartations display better retrieval on the larger scale collection. This can he expected
sinece the query images are taken from the normal sized collection. and =o using neigh-
bourhoods that are double the normal size on images that are also double the normal

size will result in approximately the same feature set for the same query and database.

Analysing only half of the pixels in each neighbourhood results in only shghtly lower
precision levels, as demonstrated by Rapid MNS (0.5). Using a third of the pixels
results in better retrieval rates, and this could be explained by a reduction in noise levels
that result in a more accurate representation ol the colowr maodes ol a neighbourhood.
Rapid MNS (0.1) offers worse performance since the sampling rate is too low and the
colour modes become less accurate, however the tradeofl between retrieval accuracy and

indexing speed is still worthwhile.

Creating more image features by reducing the size of the window used by the meanshilt
at both the neighbourhood and feature clustering stages results in a considerable increase
in performance. Retrieval rates for Enhanced MNS with the double scale dataset are
nearly twice those of the Base MNS algorithm. The normal scale is also considerably

better, however performance for the half scale set do not show the same level of increase.
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FIGURE 5.7: MNS Variations Test Average and Individual Query Precision and Recall
Curves

Figure 5.7 presents four recall-precision curves for three of the MNS variations. 'The main
eraph shows overall averaged and interpolated curves for an centire test run. 'The three
smaller graphs show curves for a single query at the three different image scales. Since
the area under a recall-precision curve is the average precision a response that extends
into the top right indicates that a particular algorithmn is good. In the mdividual queries
this can be seen very well with the Enhanced MNS algorithin heing clearly better than
the other two for the normal and double scale collections - in both cases achieving perfect

precision for over half of the documents in the category being queriecd.

The results from this test have shown that increasing the nmumber ol features that ave
extracted from the image has a very positive effect on retrieval rates, and that using
less of the pixels in a neighbourhood still provides very good results. A variation that
employs both of these parameter changes should be tested to see whether the same
retrieval rates for Enhanced MNS are achieved with the same indexing speeds as Rapid
MNS (0.3). The Enhanced MNS variation has been put forward to be tested with the
QMNS algorithms

5.6.2 Test Group 2 - Full Image Tests

Since both MNS and QMNS algorithms are similar apart from signature generation, the

indexing times for QMNS shown in figure 5.8 are nearly the same as for MNS. This
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IFIGURE 5.9: QMNS Variations Average Precision

second test compares the QMNS algorithms (both indexing and retrieval parts) against
a CCV and a Multi-Scale CCV. RGB histograms display excellent indexing times as do
CCVs. The Multiscaled CCV (MCCV) is indexed in the same time as Rapid QMNS
(using the Rapid MNS (0.3) variation).

Figure 5.9 shows average precision values for the different combinations of datasets and
retrieval algorithms (the database used is shown vertically above the retrieval algoritii)
and clearly demonstrates that QMNS has better precision than just MNS alone. Whilst
the first three CPR algorithms show little difference in performance, CPR4, which uses
logarithmic term weighting, outperforms them. Using the same signature generation
parameters as Enhanced MNS does not make a significant difference to the retrieval

for CPR4, in fact overall the results are worse for Enhanced QQMNS than for the Base
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Algorithm Index Overall Test Average Precision Average Retricval
Half Scale Normal Scale Double Scale Overall Time (s)

CPR1 QNINS 0.286 0.320 0.3458 0.318 11.649
CPR2 QMNS 0.344 0.369 0.333 11.650
CPR3 QMNS 0.330 0.301 0.3038 11.5756
CPR4 QMNS 0.397 0412 0.376 11.575
CPR4 Enhanced QMNS 0.398 0.341 0.348 10.624
CPR4 3 Bin QNNS 0.369 0.350 0.3564 11.490
CPR4 5 Bin QNINS 0.408 0.431 0.403 11.533
CPR4 Rapid QMNS 0.413 0.382 0.396 1.522
Base NNS Basc MNS 0.245 0.232 G.230 14.122
RGB Histogram RGB Histogram 0.367 0.369 0.367 0.198
ccv ccv (.408 0.407 G.408 0.463
MCCV MCCV 0.300 0.311 0.306 12.526

TABLE 5.4: QMNS Overall Average Precision and Average Retrieval Tinies

QMNS index. The normal scale results for Enhanced QMNS/CPR4 are good, but the

half and double scale results are worse.

Using 3 bins to partition each dimension in the 6D feature space, which results in
less possible feature terms, also has a slightly detrimental effect when CPR4 is used for
retrieving the features, yet using five has a positive eflect - overall reaching slightly above
QMNS/CPR4. A very encouraging result is for Rapid QMNS/CPR4, which together

give very good retrieval performance with good indexing tines.

Table 5.4 gives overall average precision and average retrieval times. The retrieval time
includes the time taken to generate the image signature. and clearly shows that using
the QMNS inverted index is as effective as using a sequential index. Whilst the time
for the histogram features i1s very low the difference Detween any of the QMNS indexes
and retrieval algorithms is nearly three seconds, with Rapid QMNS being over twelve

seconds faster.

These results are disappointing in the sense that the CPR3 retrieval algoritlun was
designed to provide scale independent retrieval, vet overall it scores the worst in thesc
tests, behind even CPR1 the prototype index retrieval algorithim. Overall CPR1, CPR2
and CPR3 offer full image retrieval performance that is very similar. Like the MNS
Variation tests. the results for the double scale collection are soimetimes better than the
normal scale collection, but rarely worse than the half scale collection. [t is highly likely
that this is due to the way thie MNS algorithm extracts features from neighbourhoods
which stay the same size, no matter what the image scale is. 'This could have a positive
effect in some cases since a particular area in an image will be larger at a large scale, and
so more neighbourhoods will occupy the same area than for a smaller scale image. CPR3
uses normalized feature frequencies in order to combat this scale problem, although the

results do not indicate that this has helped the situation.

The results for CPR4 are very good, especially when used with the Rapid QMNXNS index-

ing algorithm, and make any further enhancements to the algorithms very promising.



Chapter 5 QMNS - The Quantised Multimodal Neighbourhood Signature 88

Ao [] Half Scale

a‘) @ Normal Scale .
E A 0O Double Scale =
| []
>
2
| & 0.8
o
o
I
£ 0.7
-
S
»w 06 ,
%) %] %] ) %) %) %) =
z z z z B £z Sz 2= 2 O
> > > > 0 > = © = s Q
o 6] e e g = | 0 (we | =g = b
£ 8
w &

RGB
Histogram

CPR4 CPR4 CPR4 Base RGB MCCV
MNS Histogram

o
ael
D
~

CPR1 CPR2 CPR3 CPR4

I'IGURE 5.10: Subimage Relrieval NMetrices

Algorithm Database Retrieval Index
Half Scale Normal Scale Douhle Seale Averago

CPRI1 QMNS 0.744 0.833 0.827 0802 =
CPR2 QMNS 0.778 0.839 0.532 0.816
CPR3 QMNS 0.834 0.824 0.853 0.837
CPR4 QNINS 0.806 0.839 0.530 0.825
CPR4 Enhanced QMNS 0.825H 0.850 0.817 0.5:11
CPR4 3 Bin QMNS 0.747 0.780 0755 0761
CPR4 5 Bin QMN 0.839 0.868 0.83R8 0.819
CPR4 Rapid QNMNNS 0.8:42 0.820 0.822 0.8285
Base MNS Base MNS 0.849 0.921 0875
RGB Histogram RGB Histogram 0.855 0.822 3 08143
MCCV MOV 0.852 0.919 0.955 (909

TABLE 5.5: Subimage Retrieval Metrics - Averages
5.6.3 Test Group 3 - Sub Image Tests

Graph 5.10 and Table 5.5 presents the subimage retrieval metrics (ecquation 5.8) from
the second test. Like in the previous test, the four CPR algorithis achieve very similar
results with the QMNS index. CPR3 does however have a marginally higher averagoe
score, even though CPR2 was designed to be better at sub-image retrieval. Again using

the Enhanced index results in better performance, again by a slight amount.

The index created with 3 bins offers worse average performance, vet the index with 5
bins offers better than average performance. The explanation behind this again may lie
in the difference fact that more bins results in features that are more distinctive, and

hence are better discriminators.

Again the Rapid index performs very well, proving that it is a very practical and wseful

improvement over the original signature generation variation.

The three control algorithms all perform better compared to the QMNS variations,
with the Base MNS algorithm outperforming QMNS. Interestingly Base MNS does not
perform well at all seale levels, and a very good score for the normal scaled collection is
not reflected in the half and double scale collections. A general explanation for why any

MNS algorithm does not work well in such a situation is provided by the positioning
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of neighbourhoods. Whilst the neighbourlioods are shifted randowly from their regular
grid layout the positioning of the raundom subimages could be in any location, aund so

the neighbourhoods lie over different features.

The MCCV algorithm outperforins all the others and wonld perliaps have perforued
better, if not for some anomaly that appeared in the results. MCCV scores highly, yvet
almost half of the correct images are ranked at third, noue at second and ouly four in
first. The same is also true for the other results. although to a lesser extent. This would
appear to indicate that there was something wrong with the test haruess that produced
the results, however closer inspection of the test data indicates that the results are indeed

correct, and that another unknown factor seems to have caused the anomaly.

These results show that whilst using the QMNS inverted index does not create improved
subimage retrieval it does provide effective retrieval. A disappointing result is that CPR2

does not outperform the other CPR algoritluus as it was inteuded to.

5.6.4 Results Analysis

In the testing it was demonstrated that CPR2, an algoritlin specifically designed for
subimage retrieval, was not as good at subimage retrieval as CPR3, an algorithm de-

signed for scale independent full image retrieval.

The algorithms for each of the CPR algorithims are shown in section 5.3.4. All of these
scoring techniques share a common procedure, which is the process that determines the
intersection of the two image’s term sets. Given the intersection, CPR1 awards 1 for
each shared term, a simple technique that was designed to be equivalent to thie MNS
scoring process (5.2). CPR2 was designed to award a high score to au hmage that is a
subimage of another target image. 1t was assuined that the intersection between the two
image’s term sets would correspond to the set of terms for the whole query subimage
and the set of terms that lay in the area of the target mage that correspouded to the

query.

CPR3 on the other hand was designed to award a high score to an image that contained
proportionally (in terms of area) the same number of terins as a target image. As such
the target image could have been a different scale to the query since the normalisation
applied to the term frequencies removed the physical size constraints. There was an
underlying assumption that two images identical apart from scale would have similar
normalised term frequencies. To ensure that the best score was awarded eaclh term was

weighted so that the closer the frequencies of the query and target, the higher the score.

CPR4 is based on research from the text information retrieval commuuity and weights
terms according to how common they are throughout a corpus. Common terms are

deemed to have a low informational content and are given low weightings. A rare term
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that occurs in both a query and another document is given a very high weighting, since

the two documents share something in common that few others do.

The results from a thorough evaluation of these techniques showed that CPR2 was in
fact worse than CPR3 at subimage retrieval and also that for full scale image retrieval
CPR2 was better than CPR3. Whilst CPR4 was better than CPR2 at subimage and
better than both CPR2 and CPR3 at full image retrieval. the two keyv algoritluns we

designed perforimed against our expectations.

5.6.4.1 Analysis

In order to test the full iimage retrieval capabilities of the algoritlins it was necessary
to use an image collection that had images at different scales. As such each lmage
was scaled up by a factor of two and down by a factor of a half. Only the normal
sized collection was used for queries and the images for the subimage testing were also
extracted from this collection. The images were all scaled using the bicubic resampling

algorithm provided with Adobe Photoshop.

Whilst this initially appeared to be sufficient further analysis has shown that merely
resampling images does not provide ideal test collections. In an end user application a
CBIR systemn may be required to retrieve images that have been created from diflerent
capture sources, such as digital cameras, scanners or other sources. The actual level of
semantic detail between two images of the same object, or sceue will be different, and
indeed greater for the image that has a higher rvesolutioin. Using software to resample an
image acquired from a single source does not provide an accurate representation of scale
change. Using a bicubic filter to increase the size of an hage results in the blurring of
pixels and when decreasing the size artifacts that would not be present in an original

small scale image are introduced.

The effect of image reduction is not as serious as enlargement since information is being
removed, and there is no way that any algorithm can add information to an mage
without knowledge of the object, or scene that the immage represents. The MNS algorithm
suffers badly from the blurring effect of enlarged images very hadly, since the patch size
used is constant. As the image is enlarged colour boundaries and textures are blurred
and once the image is scaled by a factor equal to the pixel width, or height, of a patch,

every patch in the image will become unimodal.

In MNS the RGB? features will gradually separate and become more sparse, but when
quantised into QMNS terms such artifacts begin to cause problems. Since terms in
QMNS are not associated to one another once a feature in RGB? space moves over a
bin partition it becomes a new unrelated term. Whilst there will often be enough terms
in an image to mask this effect it is the terms that occur infrequently that carry a high

discriminatory power that are affected the most.
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Expected Term Sets Actual Term Sets
Case 1: Exact image match

Case 2: Images match, query is smaller

Case 3: Images match, query is larger

Case 4: Exact Sub-image match

Case 5: Sub-image match, query scale is smaller

Q

Case 6: Sub-image match, query scale is larger

Q

@@@@@
Q0O QOO0

FIGURE 5.11: QMNS Term Intersections - Correct Query Cases

Diagram 5.11 presents the six cases for a query and correct target image for sub-iimage
and full-image retrieval together with Venn diagram representations of the QMNS ter
sets. It is the intersection of the two sets that is considered in the scoring process. The
left hand column gives example images, the central column shows the ideal sets that
might be expected and the right hand columu gives the sets as they are more likely to
be.

The overall effect of this is that the actual intersection of the two sets does not necessarily
correspond to the image area shared by both images. Both images may have terms that
aren’t present in the other, and for subimage queries the shared terms might not just
be from the common area, but could be from auywhere in the image. Diagram 5.12

illustrates how terms from the image could be located in the sets.

The the location of the subimage within the target will change the effectiveness of the
query. The example shown in figure 5.12 shows a subimage that does not encompass
an entire segment of an image. Figure 5.13 shows a subimage where an entire object is
within the subimage. The terms that form the main object area are not present in the
area outside the subimage, making this image very well suited to the CPR2 algorithm,
but far less so for CPR3. CPR3 picks out another very similar image before the correct

target because it has more of the green colour in it.
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FIGURE 5.12: QMNS Term Distribution

IGURE 5.13: A Good Subimage for CPR2 Retrieval

A particularly important factor in the success of subimage retrieval with CPR2 is that
the number of terms present in the query subimage should be fairly low, and that they
do not occur in the large majority of iimages in the collection. If there are a large number
of terms then it is highly likely that there will be a large number of images that shave

at least some of them in common.

Another general problem that exists is the file format used to store images. As a lossy
image storage algorithin the JPEG encoding system modifies changes the information in
an image so that it is compressed more. JPEG uses a DCT (Discrete Cosine Transforina-
tion) operation on pixel blocks that are 8x8 pixels - the same as MNS neighbourhoods.
Figure 5.14 shows an extract of an iimage and the same image cnlarged and enhanced,
clearly showing the artifacts introduced through encoding. The image colleetion used in
testing QMNS has been encoded using JPEG.

5.6.4.2 Solutions

The scoring mechanism could itself be altered to allow for better retrieval by introdicing

penalties for images that do not match all of the terins in a query image. The MNS
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FIGuRrE 5.14: JPEG Artifacts

scoring algorithm adds a fixed penalty for every query feature not matched to a target
image feature (within a certain distance in RG B? space), aud adding a fixed penalty
for every QMNS term not matched in query is equivalent. Terms that do occur in
both images may also be penalised if the frequencies are not valid lor the query. A
subimage should not have more of a particular term than a correct target image and
so CPR1 and CPR2 could also penalise excessively large query frequencies when the
term is also present (in lower frequencies) in the target image. Whilst some correct, and
relevant, images would be penalised because of the sensitivity of the QMNS quantisation
procedure to slightly differences in the position of patches (as described in the previous

section) non-relevant images would be penalised even more.

A system where spatial information was recorded together with the QMNS terms wonld
considerably help subiinage retrieval by indicating which teris should occeur together in
an image and which shouldn’t. This, however, would be a very difficult task to approach

and would result in an equally difficult implementation.

Ultimately the end application should be considered furthier. 'The subimage tests run
for the QMNS cvaluation used subimages that were selected at random from the test
collection, and whilst this was still a valid approach many of the subimages were not ol
high level (semantic) objects in the original image. Many were from areas of images thal
contained little detail, and did not correspond to salient regions, or objects. A subimage
of an object in a scenc is far more likely to contain features that are not preseut elsewhere
in the inage than a randomly selected subimage. Since CPR2 is sensitive to regions in
images that are homogenous future subimage queries should be designed to better reflect

the needs of the user.

A typical users subimage query would be of an object in an image, and the purpose of
a query would be to retrieve images in which that object occurred - for example the
original image. A subimage query might also be to retrieve images in which a particular

texture occurs, in which case the query might be of a homogenous region.
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5.6.5 Test Conclusion

There are many tests that could have beeu run, liowever the original aim of this work
was to show that retrieval performed using a QMNS feature stored in an inverted index
and retrieved using a CPR algorithm was as good as using a standardized teclmique
such as an RGB Histogram, or a CCV.

The first test was to determine indexing times and shows that whilst MNS is a slow
algorithm for signature generation. there are iimprovements that can be made that de-
crease the indexing time without affecting retrieval eflectiveness. and that significantly
increase the retrieval effectiveness without affecting indexing time. Interpolated recall
and precision graphs for overall test results and graplhs for individual queries are shown

with explanations for the particular responses.

The second test introduces the QMNS CPR algorithims and also the two different versions
of the index. A QMNS index based on the Enhanced MNS and the Rapid MNS (0.3)
variations are introduced to see whether the results achieved in the first test are carried
through to the second test. The comparison was against an RGB Histogram, a CCV
and a Multiscale CCV. All versions of QNMNS pertorm better than just the Base MNS
variation, and offer retrieval that is approximately equal to the otlier three algoritlins.
The test demonstrated that CPR3 is not as well suited to scale invariant full image
retrieval as CPR1 and CPR2. but that CPR4 is the hest.

The final test compares the same algorithms as the second. using one hundred randomly
selected subimages. Algorithins are rated according to how many of the correct images
are retrieved at high level rankings. The results are disappointing since the CPR2
retrieval algorithm was intended to be better at subimage matching than the others,

and the difference between all QMNS versions is negligible.

Overall the tests do demonstrate that the QMNS and CPR algorithms do achieve the
same and better levels of retrieval accuracy, as nicasured using recall and precision
metrics. The scale invariancy of the algorithing appears to be good, although the extent
of the scale testing was not rigorous. A particular aspect that was not examined in these
tests was how well the inverted index managed with differing sizes of image collection
in terms of retrieval speed. This needs to be tested in the future, since it is a key

requirement of the index that it scales well.

5.7 Multimodal Patch Retrieval

After testing the configurations possible with bi-modal patches, we extended QMNS to
accept uni- and tri-modal patches, where the modality refers to colour. Implementation-

ally this was a matter of adjusting the rules which determine what the clusters found
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by the mean-shift. The binary signature was already capable of storing multiple modes
for each feature, which left ouly the modifications to the quantisation process. For eacl
mode the term label was generated by concatenating the relevant 2 digit bin number
from each colour axis together, resulting in an integer of the form RRGGBB. The label
for each mode was then concatenated forming a 6, 12, or 18 digit label. The frequency
for each bin was incremented for every feature present in the bin of that modality. Since
the algorithm no longer just retrieved colour pairs, the CPR (Colour Pair Retrieval)

name was dropped in favour of CNMR - Colour Mode Retrieval.

5.7.1 Multimodal Patch Retrieval Testing

Two types of test were performed for this component of the research: Full and sub-image
retrieval. Both types of testing included only the original scale iinage set with the same

image categories as before.

We chose to test the effectiveness of our algorithms at subimage retrieval by creating a
set of subimages selected by potential users from the image collection. By using people
to select the subimages, rather than extracting random regions from random nmages.
the test set created contains objects that are representative of typical queries - in alimost
all cases the selection bounds an object in the image. Ten subjects were selected and
asked to choose 9 images from the complete image collection at random, and one further
image was provided from the categories for eacli of the subjects. Tle subjects were then
able to select a region in each of the images at randow (care was taken to ensure that

no two subjects selected the sanie object in an hmage) which {formed the subimage.

We compared our algorithms, and each of the parameter variations, against a 64 bin
RGB colour histogram, a 64 bin CCV and a (4 bin nwltiscalar CCV [25]. Two of the
parameter sets were selected from the analysis presented in the previous section. The
first used 8x8 pixel patches with a minimum mode size of 6 pixels and a mean shift
window of 22, The second used 16x16 pixel patches with a minimum mode size of 10
pixels and a mean shift window of 22. For both of these configurations indexes were
generated that contained the following combinations of modalities: uni-, bi-, tri-, uni-
and bi-, bi- and tri-. and uni-,bi- and tri-modal, resulting in 12 different configurations.
Each of these variations was tested with each of the four CMR retrieval algorithms,

forming a complete test set of 48 QMNS tests and 3 histogram tests.

5.7.2 Analysis of Multimodal Terms

In text retrieval, word terms carry a great deal of semantics on their own, unlike our

colour feature terms. However, both types of term share the notion that a term that
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Algorithm ‘ Time(s) Algorithm ‘ Time(s)
RGB 0.109 QMINS, 8x8. miodes:1 1.207
CCV 0.426 QMINS, 8x8, modes:1.2 1.318

MCCV 1.001 QMNS, 8x8, modes:1,2.3 1.324
Algorithm ‘ Tine(s)
QMNS, 16x16, modes:1 4.556

QMNS, 16x16, modes:1,2 4.639
QMNS. 16x16. modes:1.2.3 4.872

TABLE 5.6: Average lmage Indexing Times

occurs infrequently throughout a corpus as a whole, yet occurs many times in one par-
ticular document, is very likely to be of importance to the information content of that

document. That term is said to have a high discriminatory power.

In QMNS the modalities of the terms directly affect their discrimiinatory power. When
a quantisation factor of 4 is used with the 3 chaunels of RGB there are ouly 64 (4%)
possible uni-modal terms, but 4096 (4°) bi-modal and 262144 (4°) tri-modal terms. The
higher the modality the higher the information content and thie more discriminating the

term. However, there will also be far fewer of these high-imodality terms.

There are only a fixed number of patches. and hence individual terms, in an image.
and so it is desirable to maximise the number of high-modality terms that are created
by the MNS algorithin and also the quantisation procedure. QMNS has a number of
parameters that directly affect generation of tlie MNS features: The size of a patch
controls the maximun number of patches and lience features in an image, the size of the
mean shift window controls the colour clustering of pixels within a patcl, and an integer
parameter determines the minimum nuinber of pixels that must belong to a cluster for

it to be classed as a mode.

By increasing the window size the size, and separation, of the mode clusters will increase.
This should result in an increase in the number of patches that have a low nunber of
modes, and to a point, the number of different terms and their frequencies will increase
before decreasing as the mean shift blurs the patches - ultimately resulting in 100%

unimodal patches.

Once all MNS features have been generated the gquauntisation lactor will determine the
number of unique terms (the vocabulary) of an image. It is desirable to have a vocabulary
where each term has the best balance of discrimination and occurrence, and if, by using
a high factor, there are too many terms, each term may be highly discriminatory but
may only occur a few times across an entire corpus. A low factor would lead to a small
vocabulary of terms that would occur many times in all images. Either situation will

lead to poor retrieval results, and so the best balance needs to be determined.
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Quantisation Uni-Modal Bi-Modal Tri-Nodal Proportion
Factor Maximum ‘ Actual | Maximumn | Actual | MNaxinum | Actual
3 27 23 729 211 19683 1517 0.0857
4 64 52 4096 561 262144 271 0.0033
5 125 93 15625 1222 1953125 423 0.0008

TABLE 5.7: Vocabulary Sizes for Diflering Quantisation Factors. Parameters used were
8x8 pixel patches, 22 window size and minimum 6 pixels per mode.

The remainder of this section presents an analvsis of QMNS parameter changes. and the
effect this has on the distribution of terms in the corpus. Indexes were generated using

the collection of 769 photographic images known as the ‘general’ collection.

The generation of QMNS feature terms is not as fast as the generation of auny of the
three histogram algorithms, however it is still a relativelv fast procedure, as shown in
table 5.6. The index times for the larger 16x16 pixel patchies are slower because the
mean shift algorithm (an O(N?) algorithm) is slow when used with a large nunber of

data points.

In total 43 different parameter changes were made. 23 of the variations used 8x8 pixel
patches, and the other 20 used 16x16 pixel patches. In the 8x8 group the minimum
mode size was varied from 5 to 8 and the mean shift window size from 11 to 55 (in steps
of 11), and additionally the quantisation factor was tested at 2.3 and 5 divisions. The
16x16 group had a minimum mode size variation from 10 to 25 in steps of 5, and the

same mean shift window changes.

Table 5.7 shows the maximum number of terms created by diflering factors, and also
the actual number generated in the index. As thie quantisation factor increases the

proportion of terms actually present drops exponeutially, as expected.

The two graphs in figure 5.15 illustrate how changing the two main parameters aflects
the distribution of terms in the index. In both graphs the left axis corresponds to unique
terms - the vocabulary - and the axis on the right corresponds to the actual mumber of
terms, both values as generated in our iimage collection. As the window size is increased
the number of unique terms increases across all modes, up to a value of 33, where it
starts to recede again. The number of wni-modal patclies coutinually increases due to
the blurring effects of the mean shift, coupled by a reduction in the number of bi-inodal

and tri-modal patches. Ultimately all patches in the image would becomne uni-modal.

Increasing the minimum pixels per mode has the effect of reducing the number of different
terms in the index, which occurs as the number of pixels required for a cluster to be
classed as a mode increases. At values of 7 and 8 there are no tri-imodal features, however
at lower values their numbers increase rapidly, and becone more abundant than the
unique uni- and bi-modal patches. The total number of tri-modal features in the index
doesn’t increase as rapidly, and at its greatest, peaks at 15687, representing just 1% of

all the features in the index. This indicates that there are too many different tri-modal
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features in the index. and thev occur too infrequently to have a high discriminatory

power in retrieval.

When the terms from a complete index are ranked by frequency and plotted on log scales
they form nearly straight curves, indicating that they fit to a Zipfian distribution [148],
as do other collections such as the frequency of words. This distribution of text terms
led to the use of a log weighting in the TF/IDF weighting algorithm, and the presence
of such a distribution in owr feature terms indicates that CMR4 shiould be well suited

to feature term retrieval.

Our approach in this analysis has been to take a starting point, namely the parameter
set of 8x8patches, shift window of 22 and 8 minimwun pixels per mode, and vary the
parameters in order to determine the best distribution of feature terms. Our aim was to
achieve a balance of uni-, bi-, and tri-inodal terms, such that the discriminatory power
of each was highest. A tradeoff that took into account the blurring effect of the mean
shift at large patch sizes and large window sizes, the increased level of noise added by a
low minimum pixel count per mode and a suitable quantisation factor led us to adopt

the following two parameters sets for the evaluation:
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e 8x8 pixel patches. 22 mean shift window, 6 minimuin pixels per mode

e 16x16 pixel patches, 22 mean shift window, 10 minimum pixels per mode

Due to the large number of tests run, not all results will be shown in this section. Instead
the most important comparisons are presented. These include comparisons between the

CMR retrieval algorithms, the modes used in retrieval, and the size of patch used.

5.7.3 Full Image Tests

Figure 5.17 shows an example of a full image query. Along the top of the figure are the
6 images from the Sea World category. the image on the far left being the query. Below
them are the top 8 images returned by 5 of the algorithms tested. The parameters for
the QMNS examples were 8x8 pixel patches with a window size of 22, All three modes

were used in the retrieval.

Figure 5.18 shows recall and precision curves for a single query (shown in figure 5.17),
averaged values for all queries in a category and averaged values for all categories. The
further to the top right that a vecall-precision curve extends, the better the retrieval.
In the example all of the algorithms perform very well. with CNR4 just possessing the
most area under the curve. The category average shows low the different algorithns
start to separate out. with CMR4 as the clear best. Graph(c) shows the averaged curves

for all queries over all image categories, aud how the CCV algovithm is the overall best.

In figure 5.19, chart(a) shows that using uni-, bi- and tri-modal patches in an image
provides significantly better retrieval vesults than tri-modal patches alone. When 8x8
pixel patches are used very few tri-inodal patches are extracted from an image, resulting
in the very low score for the first variation. This is also shown in chart(b), where a {ull
comparison of modes is given. Each of the tests was run using 8x8 patclies and a window
size of 22. The use of uni- and bi-modal patches alone provides very good retrieval

capabilities, and when combined together the results are better still. As expected from
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FIGURE 5.16: Frequency Distribution of Terms Across a Corpus
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Fragure 5.17: Full lmage Query Example

the analysis of term distribution, using tri-modal patches makes no dillerence to the
results at all, only slowing down the retrieval time by adding more feature terms to the

query.

5.7.4 Subimage Tests

Figure 5.20 presents an example of a sub-image query in the same manner as the full-
nnage query example. At the top is the sub-image used as the query and its parent
image. The RGB histogram and CMR3 both attempt to match (Le hnage signatures
based on the proportion of the image that contains a certain feature. As such both
retrieve images that contain a large proportion of features preseut in the query as well
as other unrelated features. The MCCV performs in a similar fashion, but has retrieved
the correct image first due to the use of multiple CCV histograms [rom thic parent image.
Both CMR2 and CMR4 retrieve images that contain the query features at any frequency,

including images that have a substantial number of other features.

Whilst the MCCV is the best algorithm for retrieving the correct parent image at the top
rank (42% of the images, compared with 31% for CMR2 and CMR4 and 19% for CMR3)
the overall effectiveness of each algorithin at retrieval is measured using equation 5.8 and
by plotting the percentage of images retrieved to rank N. Figure 5.21 shows retrieval
curves for each algorithm. Similar to recall and precision curves, the area under the curve

indicates overall effectiveness with a larger value corresponding to a better algorithm.

MCCYV is the best up to rank 10 atter which the number of images correctly retrieved
starts to drop, whereas for CMR2 and CMRR4 this drop off is more gradual. By rank 20
CMR4 has retrieved 4% more correct images than MCCV and 3% more than CMR2.
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Measurements such as this are very useful since a typical user may not wish to view

more than 20 images before deciding their query has not been successtully.

Test results between different parameter sets appear similar to the full image results.
Retrieval using only tri-modal patches proves to be poor. especially when using 8x8
pixel patches, due to the low number of terms. As before, when comparing across oue
parameter set and only varying the modalities of patches retrieved, the use of both uui-
and bi-modal patches is the best combination. The characteristics of CMR2 ensure that
it performs better than the other CMR algoritluns. although this is by a small margin.

CMR3 performs worst, confirming the need to restrict its use to full-image retrieval.

Of the four CMR algoritlims CMR4 is the overall best, being equivalent to CMR2 at
subimage retrieval, a task for whicl it was purposely designed. It is also better than
both CMR2 and CMR3 at full image retrieval, but due to changes in the parameters
CMR3 is often not the best algorithm at this task. Tle results for CMR4 compare to
text retrieval results that show that TF/IDF is suited to both sub-document queries

(such as keywords) and full document comparisons.
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FIGURE 5.18: Full Image Recall and Precision Curves: The recall and precision

data shown was taken from the tests for QMNS when the parameters were as lollows:
8x8 pixel patches, modes: 1,2 and 3, window size:22
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Sub Image Retrieval Example
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Algorithm Results
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MCCV
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QMNS CMR4

FIgure 5.20: Sublmage Query Example

On the use of different colour modes for retrieval, table 5.8 shows a quick comparison ol
one parameter set which is consistent with others. Tri-modal patches are of little use on
their own, and when combined with others do nothing to enhance performance. Using
bi-modal patches alone is better than just uni-modal patches, but when combined there

is a distinct improvement.

This section has presented an analysis of the distribution ol colour feature terms stored
in an inverted index. Parameters that directly affect the distribution were varied and the
effects measured. The aim of the analysis was to determine the parameter set that would
provide a balanced distribution of feature terms between the modalities of the colonr

features. In order to be effective in retrieval, features must be selected that have a high
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Modes Used Sub image score Full image score

CNR2 | CAR3 | CMNR4 | CAR2 | CMR3 | CMR4

1.2 0.305 0.737 0.8 0.412 0.389 0.457
1,2.3 0.805 0.737 0.799 0.413 0.389 0.457

2 0.720 0.558 0.706 0.3064 0.338 0.397

2.3 0.719 0.558 0.706 0.304 0.338 0.397
0.608 0.661 0.613 0.324 (.334 0.36

3 0.010 0.01 0.01 0.016 0.013 0.011

TABLE 5.8: Retrieval Effectiveness ol NModes. Full image metric taken from the results
for 8x8 pixel patches using a window ol22 and minimum pixels per mode of 6 when
using CMR4. Sub image metric taken {rom the same parameter set when using CNR2.

power of discrimination, and, based on the analysis. parameter sets were cliosen. Four
retrieval algorithms are compared, using two comuon types of example based queries -
the full image and sub image queries. Comparisons are also made between the use of
uni-, bi- and tri-modal feature terms. The retrieval algoritluns CMR2 and CMR3 were
designed to be superior to the original CMR1 algoritlin at sub image and full image
retrieval respectively. Whilst both are indeed better than CAMR1, i1 many cases CMR3
is not better than CMR2 at tull image retrieval. The fourth algoritlnn, CMR4, that is
derived from work from the text retrieval community, proves to be equal to bothh CMR2
and CMR3. An evaluation of the performance of some of the parameter sets has also
demonstrated that using the more specific tri-modal terms is not as effective as using
either uni- or bi-modal terms. The combination of the two lower order terims is shown
to be more effective than either on their own, or when combined with the higher order

term.

5.8 Summary

This chapter has introduced QMNS - the Quantised Multimodal Neighbourhood Sig-

nature. We have extended the MNS algorithm by first quantising the original feature
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FIGURE 5.21: Sub Image Query Curves: For each algorithm the curve shows the
percentage of the 100 subimages that were retrieved within rank N
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FIGURE 5.22: Sub lmage Query Charts

space, and then by allowing different modalities of colour ol the underlying RGDB feature.
Tests have been run to compare different types of retrieval algorithm including T'F*IDF

style scoring.

The key findings in this chapter have been:
3 & P

e MNS Signature Genceration: I'he number of neighbour pixels passed to the mean
shift can be reduced to 30% without a negative effect on the retrieval accracy, and

if the mean shift window size is set at 11 the average precision is ahmost doubled.

e Algorithm Comparison: The base form of MNS does not perform as well as cither
the RGB or CCV histograms, but with the modifications stated in the previous
point the results are equivalent. T'he four forms of QMNS retrieval are shown.
and it is CPR4, which uses TF*IDF scoring which is the hest. Subimage retrieval
for the QMNS algorithms is at best equivalent to results provided by an RGDB
histogram, although the normal MNS algorithm is better. The MCCV is shown

to be much better than any of the other algoritlins.

e QMNS Extension: Quantising multi-inocdal QMNS features leads to better perlor-
mance when the uni- and bi-modal patches are used. ‘1rvi-modal patches offer very

poor performance due to their rareness in images.



Chapter 6

Generalised Feature Indexing

6.1 Introduction

The tradeoff between retrieval accuracy and retrieval response is one that needs to be
considered carefully, and is highly dependant on the retrieval application. Wlhere some
systems may require very accurate retrieval (for example medical imaging) and real time
queries are not an issue, others require very fast response times (for example internet

search engines) but may not need to retrieve all relevant docunents.

Sequentially comparing the signatures of a small number of documents is inexpensive,
but the large number of documents that applications are required to search through,
and the amount of information that we desire to search through, makes this approach
redundant. A solution is to index documents in somme manner, so that the amount of
information that must be searched through is considerably less per document. Section
2.7 introduced sonie of the techniques for mdexing iinage signatures so that they may
be retrieved more rapidly. The section following tlis shows how the text retrieval com-
munity (and indeed all of us) have been indexing text documents for centuries, and how
this has been translated into the inverted index which allows modern text retrieval to

be so rapid for such large corpora.

The previous chapter introduced the global, colour, image {eature QMNS, that emiploys
an inverted index in which to store image features. Whilst not the first feature indexed in
such a manner, it is nonetheless novel in its use of colour patches. The conversion of the
tfeature into a format that was acceptable by the index was a relatively straightforward
process, and rather than showing a degradation in retrieval performance, the feature
generally performed better. What were the processes involved in the indexing of this

feature, and how can this be applied to other features?

Inverted indexes store terms - any distinct, countable, element of a document, be it a

word in the English language or the RGB colour 255,0,0. The second section looks at

105



Chapter 6 Generalised Feature Indexing 106

the space in which features exist and categorises the different techniques available for
discretising this space so that feature terms can be generated. and stored in the index.
QMNS was quantised using a simple, regular, algorithm. but could it have benefited
from a different technique? When populated by all the documents in a corpus, the
feature space of a good feature will contain clusters of documents - showing that those

documents share some forni of content.

Given a particular feature, quantisation algoritlun and document collection there are
still many changes that can be made to improve retrieval {rom an inverted index. In
particular the coarseness of quantisation will change the number of unique terms that
the feature space is divided into. The fourth section looks at the tradeoff to be made
between the number of terms (directly related to the retrieval speed) and the retrieval

accuracy.

In text information retrieval the terms specificity and exhaustivity refer to the power
of discrimination of the index. An index can be said to be specific if users are able to
retrieve those few documents that are highly relevant, whilst an exhaustive index will
contain many more less relevant topics. This relates directly to the recall and precision

metrics discussed in chapter 2.8,

6.2 Term Distribution Tests Index Generation

The previous chapter examines a large number of QMNS configurations, which amougst
other variables, look how the modes are extracted from patches. and what constitutes a
mode as opposed to noise. This showed clearly that the Enhanced MNS version, which
produces a larger number of modes due to a sinall mean-shift window size, is very good.
This section extends the testing of niode creation by introducing another variable - the

threshold pixel value that deternmiines whetlier a cluster forms a mode.

For this test set the window size was varied from 5 to 35 iu steps of 5, the mode pixel
threshold from 2 to 10 in steps of 1, and the quantisation level (bius) from 2 to 9 in steps
of 1. This produced 504 indexes. all of which were tested with the 5 image categories.

In this set only the bi-modal patches are extracted.

For each index the Zipfian distribution was generated, and the logest {a function that
determines the power-law coefficient), average precision, term count and vocabulary sizes
collated. To many to present lere, the results have been reduced to illustrate the effect

on the retrieval performance and distribution that the variables have.

The first comparison is between the minimum pixels per mode and the window size.
The quantisation level is fixed at 8 bins Figure 6.1 shows this data set in two grapls,
both have the minimum pixels on the x axis, and the window size as the series. The

graph on the left shows the resulting average precision, and that on the right shows
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the vocabulary size - the two measures directly relating to retrieval performauce. In all
window sizes the vocabulary size naturally drops as the number ol pixels required to

form a cluster increases, however the average precision does not drop as dramatically.

The second pair of graphs, in figure 6.2 holds the windows size at 20, and shows the
nuwber of bins in the series. We see that the higher the number of bins, the better the
average precision, up to 8 bins. The higher quantisation factor has a direct effect on
the vocabulary size, but the miniinuin pixels per mode has an interesting effect on this

neasure, causing peaks and troughs in the curve.

The last pair of graphs in figure 6.3 also shows that the quantisation level alone does not
have a huge effect on the average precision, but does on the vocabulary size. The large
peaks in the vocabulary at high and low window as the quantisation level inereases size

demonstrate a particular sensitivity in the clustering process.

The data shown in this section serves to underline the need for quantitative analysis of
features when quantising. The changes in the variables show delinite (rends. however
there are many local maxima and minima occurring irregularly that might distupt af-
tempts to model the performance or vocabulary size. A key unkunown variable that will
influence this data is the pixel colour distribution of the image collection as o whole;
given a different set of images the overall curve trends may be similar. hut with a different

local structure.

An overall view of the tests is presented in the [ollowing four graphs. Figure 6.1 shows
the Logest and the total number of terms plotted against the average precision for all
504 indexes. Both graphs show a stroug positive correlation. as does the right hand
graph in figure 6.5 for vocabulary. On the left of this figure is a plot ol vocabunlary
against the Logest of the distribution which, apart from a lew outliers. shows a very

clear correlation between the two measures.
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6.3 The Distribution of Feature Terms

The second chapter introduced the fact that the English language. and indeed anv
natural language, has an interesting distribution of terms. There are only a few words

which occur very frequently, yet a great number which occur very inlrequently.

Such Zipfian distributions have a natural compatibility with inverted indexes. This is
because those terms which occur very frequently are not good discriminators. and are
unable to distinguish between documents - which makes the index efficient to use. since
there the less frequent terms will have much shorter posting lists, and allows terms to be
removed completely from the index. Exactly why the Zipfian distribution is important
will be explained in the next section. Presented here is an analysis ol the distribution of
feature terms, which will allow a particular feature to be engineered to it into an index

such that the trade-off between retrieval speed and retrieval accuracy is halanced.

Like text indexes, inverted indexes that store feature terms can be pruncd so that terms
that are not good discriminators are not stored. This is very important for inverted
mdexes since each query term involves a relatively expensive index lookup. The stop-
words in text indexes are noted in a negative dictionary, and are not stored in the main

index, nor are they used in queries. They are both words that are very common - A, OR.
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1I° (function words) - and words that are very rare - PHENOMENOLOGICAL. These words
lie at either end of the rank-frequency term graph (see section 2.7.1 for a discussion
on Zipf and rank-frequency graphs) and have feature based counterparts - for example
very bright (near white) and very dark (near black) pixel colours tend to occur most
frequently and in all images, vet colours such as spring green (in RGB values this is
RO00G255B127) occur very rarely.

Words in natural language conform to the Zipfian distribution, which means that the
stop-word list can be generated automatically by looking at the term distribution of a
corpus. The frequency distribution of the terms {bins) of a some histogram leatures may
not be Zipfian, which makes this procedure more difficult. Histogram leatures have a raw
count of features in feature space. For the RGB histogram this is the count for each of
the different 16,581,375 R.G,B values from each image. For QMNS this is a combination
of uni-modal, bi-modal and tri-modal patch counts, resulting in a discrete feature space
of approximately 4.55- 10?! possible points. These feature spaces are quantised into bins.
resulting in a set of feature terms representing an image, or an entire corpus. Changing
the method of quantising the feature space will result in a different set of feature ters,

and a different distribution.

Throughout this discussion three simple image features shall be used - the RGB colour
histogram, the CCV colour histogram and the QMNS algorithm. All three ol these

algorithms have simple feature spaces where the effects of changes can be scen casily in
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the distributions. For each algoritlun a set of indexes were created, with each sub-index
differing in vocabulary size. For each index rank-frequency data was generated. and all

category tests were run, resulting in the data analvsed in the following section.

6.3.1 Effect of the Vocabulary Size on Feature Term Distributions

When the number of divisions along eacli quauntisable axis is increased, the term vocab-
ulary - the number of different, unique. feature terms - naturally increases. The limnit
to the number of divisions that may be made is set only by the representation (the
datatype) of the feature space. As such, the integer RGB colour space used in the CCV
and RGB Histogram is limited to 255 divisions, providing over 16 million different terms.
QMNS also uses RGB colour space. however, the integer values have been clustered and
averaged using the mean shift algorithm, and each point in this space is recorded as a
triple of doubles. Having 8 bytes. a double provides a resolution of 1.8 - 10! and a
potential vocabulary of approximately 1.0 - 109! In reality there is no need to go to
this resolution, or anywhere near it, and the useful rauge is actually below 10 divisions,

providing a more realistic vocabulary size of 1 billion terms or less.

This peak was determined by adjusting the divisions parameter for QMNS, ranging from
2 divisions up to 10 in steps of 1 and from 10 divisions to 100 in steps of 5, as well as
an additional division at the limit - 255. Both of the RGDB fcatures were also tested,
with the RGB histogram ranging from 3 to 200 (in uneven steps) divisions and the
CCV ranging from 1 to 8 ‘divisions’. The use of quotes liere is due to the notion of a
division in the CCV algorithm: Rather than being defined as the mumber of partitions
created along each axis, the CCV ‘divisions’ define the number of bits that each colour
channel will be reduced into. 3 bits would result in 2 = 8 divisions per axis, resulting
in a total vocabulary of (2%)% -2 = 128. The factor of 2 at the cnd is because the CCV
contains two histograms - the coherent and the incoherent components. The set of values
assigned to the division parameter for the histogram and the CCV is linited by each
algorithm’s implementations, aud i1 these tests each feature space was quantised beyond
useful limits in order to gather data about the nature of the term distributions. In some
cases the size of the image signature was bigger than the image itself, and a single index

query took minutes.

Table 6.1 gives outline data from the tests, showing thie changes in each indexes tern
distribution according to the vocabulary size. For clarity the data in this table has been
kept brief, refer to table E.1 for the complete data. Note that the average precision
value for the histogram at 255 divisions is absent: The histogram comparison function

was unable to cope with the number of bins. The colunns should be read as follows:

!Since floating point arithmetic is performed using a 48bit mantissa and a 16bit exponent the actual
accuracy of the number is less than this value suggests.
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Histogram 4 64 56 0.875 17062 222  0.8080 0.237
10 1000 689 0.689 93486 121.6  0.9847 0.441
60 216000 102567 0.475 30694780 4804.7  0.9994  0.538
127 2048383 754151 0.368 12818258 16683.4 1.0000 0.543

255 16581375 1317793 0.079 18033673 23450.8  1.0000

CCV 1 16 16 1.000 7431 9.66 0.7408 0.137
2 128 100 0.781 21066 27.39  0.9051 0.331
4 8192 3151 0.385 248145 322,74 0.9954  0.485
6 524288 120182 0.229 3303475  5406.67 0.9980 0.584

8 33554432 1365400 0.041 18069469  23497.36  0.9976 0.5741

QMNS 5 1.97E+06 3173 1.61E-03 65881 87.39 0.9952  0.47
10 1.00E+409 19762  1.97E-05 149916 194.95 0.9991 0.513

20 5.12E411 72771 1.42E-07 279745 303.78  0.9966  0.52

100 1.00E+18 371008 3.71E-13 748441 973.27  1.0000  0.35¢

255  4.56E+21 716195 1.57E-16 998235 1301.48 1.0000 0.216

TaABLE G.1: Feature Vocabulary Sizes.

e Divisions The value of the parameter that directly determines the quantisation

of the algorithm’s feature space.

e Vocabulary The total number of terms possible given the number of divisions.

The total number of bins that feature space is partitioned into.

e Used Vocabulary The number of unique terms actually present in the collection.

¢ Vocabulary Usage The ratio of used to total vocabulary.

o Total Postings The number of index entries - a posting for each unique term

that occurred in each image. A dirvect indicator of index size.

e Average Terms The average number of terms per image. An indicator of retrieval

time and index size.

e Curve Slope The estimated slope of the rank-frequency curve, calculated by

logarithmic regression (the Logest function in the MS Excel package.

e Average Precision The average precision achieved by the index for the ‘standard’

test.

This table is accompanied by the rank-frequency data presented in graphs 6.7 to 6.9,

and a comparison of some of the metrics from the table above, shown in graphs 6.10 and

6.11.
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The rank-frequency curves for each algorithm can be broken down into four distinct
regions, illustrated in figure 6.6. These are related to the regions identified by Chen in
[27], although in these curves there is an additional region, c. Region a (corresponding to
Chen’s region I), where the rank and density of data points are low, is characterised by
a jagged appearance, and was ideutified by Chen as eitlier concavely decreasing, linearly
decreasing, or convexly decreasing. In the case of both the histogram and CCV there
is a slight concave curve, whereas the curves for QMNS appear linear. Regious b and
d (corresponding to Chen’s regions II and III} are linear. However, between these two
lies region ¢ which is convexly decreasing. The histograin and the CCV share curves
that are of a similar shape, and also undergo a similar transformation as the feature

vocabulary is increased.

When the number of divisions along each feature axis is increased the term vocabulary -
the number of different, unique, feature terms - increases. Table 6.1 shows the changes in
term distribution according to the vocabulary size, showing the usage of the vocabulary,
averages for indexing titne and number of {feature terms per hnage and the overall average

precision for the complete category test.

For each of the features as term vocabulary is increased by changing the number of
divisions in feature space the rank-frequency term curve moves towards an approximate
slope of 1.0 in the log-log domain (the curve slope column). The distribution also
becomes more linear, and as such becomes Zipfian. Both the histogram and the CCV
show a continual increase in the retrieval accuracy, as shown by the average precision,
whilst the QMNS algorithm peaks at 8 divisions (refer back to figure 6.1). This peak is
the point at which the feature terms start to become too rare, each occurring in fewer

documents, and hence becoming too specific for gencral retrieval purposes.

A measure of specificity in the terms is the vocabulary usage. Tlhis is defined as the ratio

of distinct terms present in a corpus to the total possible vocabulary. This is hard to
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define in text since the vocabularies of natural languages are not strictly defined and
continually change as new words are coustructed. With feature terms the vocabulary
is defined by the extent of feature space and how it is discretised. Consider a set of
documents of an arbitrary medium. A feature space for those documents that coutains
few, sparse, features is highly specific, and if that feature is unable to extract salient
features that are common to the documents then it will be a poor feature for retrieval.
On the other hand a feature space that 1s highly populated and contains many clusters
that are commion to all documents will also e a poor feature for retrieval, since it is too

general.

In all three feature types the average precision 1s higher when the vocabulary usage is
low, and both the CCV and QMNS peak at a certain value (0.229 and 9 * 107°), the
limit of the feature’s specificity. The RGB histogram data doesn’t show this peak since
the algorithm is limited to the number of divisions that can be made, however the curve
shown in figure 6.10 indicates that the precision will start to drop at a higher vocabulary

size.

As the vocabulary size increases the average number of different terms in documents will
naturally increase as the term specificity rises. At the same time the average muuber
of documents per term, that is the number of documents that contain at least one
occurrence of a term, will decrease. These metrics are the most important for optimising
an inverted index for use with features. The total postings indicates the size of the
database - the number of records stored in it. The larger it is. the longer it will take
an index algorithm to find the location of all the appropriate postings for a term. Once
a term is found it is the average number of documents per term - the postings length -

that becomes important.

The RGB and CCV histogram features are less specific than those ol the QMNS algo-
rithm, which is shown by QMNS’ very low vocabulary usage. This means that whilst the
histograms may out perform QMNS in retrieval accuracy, their retrieval speeds rapidly
degrade. At its best average precision, QNNS is retrieving aun average of 132 terms for
12 documents for a query, resulting in 1,584 index postings retrieved. For the same
precision, the histograms are retrieving 173,052 and 75.295 postings for RGB and CCV

respectively.
The RGB Histogram

Eleven values of RGB space quantisation were tried for the RGB Histogram, ranging
from 3 divisions up to 255 divisions. The lowest value creates a very small vocabnlary
of only 27 terms, which is only slightly less than the typical configuration of a histogram
where 4 divisions are used providing 64 terms. Both of these configurations have a very
high vocabulary usage, showing that most of the bins in feature space contained an
RGB feature point from an image. Both of these curves do not reach the bottom of the

rank-frequency graph (where the frequency is equal to 1) highlighting this further by
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shiowing that all the bins contained more than one point, and resulting in the absencc
of region b, and a near vertical region d. The low number of terms causes the total
number of postings in the collection and the average number of terms per image to be
low. Because the feature points are evenly spread between the terms the graph has an
approximate slope that is not near -1. The average precision for these two configurations
1s very low, a clear indication that the terms generated are not very good for using in

retrieval.

As the vocabulary size is increased the average gradient of the slope becomes shallower
and the different regions become more apparent. Region a tends towards a concave
curve, but only marginally. Region b extends, and its gradient moves away from -1,
becoming shallower, before entering into region ¢, which becomes less convex as the
vocabulary increases. Region d, initially almost vertical, becomes more shallow, and
the whole curve begins to approximate linearity. At the limit, of 255 divisions (where
the vocabulary contains a term for every possible 24bit RGB combination), the curve is

fatter still. but region ¢ is still convex.
The CCV

The curves belonging to the CCV appear very similar to the RGB histogram’s. Like
the RGB histogram the lowest number of divisions leads to curves that do not reach the
rank axis. When compared with an RGB histogram index that has approximately the
samce vocabulary usage, the CCV has both a lower average number of terms per image,
and images per term. A key reason for this lies in the colour reduction used in the
segmentation algorithm, which creates the coherent and non-coherent segments. Rather
than counting the raw RGDB value for the pixel the colour value that the whole segment

was merged to is counted.

QMNS
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FFIGURE 6.8: Term Distribution for the CCV

The curves for QMNS are somewhat different to both the histogram and the CCV.
staving closely packed even though the associated vocabulary size is up to 1012 times
greater than the used vocabulary, and never passing beyond 1,000,000 in either the rank
or frequency. Graph 6.9 shows the curves for the QMNS indexes generated from 10 -

100 divisions (in steps of 10) and at the limit of 255.

At 10 divisions the distribution starts in a smooth convex curve, before moving into a
very linear section that has a slope close to -1. The final section, d, of this distribution
does not become steeper as the other two algorithms showed, but becomes shallower.
remaining linear. As the divisions are increased section b becomes apparent, and extends
to cover more of the distribution. The curved section moves diagonally down and to

the right of the graph, and the shallow ‘tail’ at the end becomes more prominent. At
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FIGURE 6.9: Term Distribution for QMNS
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the limit, the curve of section ¢ has disappeared completely and the whole distribution

adopts a coucave appearance.

6.3.1.1 Analysis of Distributions

Section a in all three of the distribution graphs appears as quite ragged and uneven due
to the low density of data points and greater separation of units at the low end of the
log scale. For most of the indexes it appears as approximately linear. This shows that
the number of terms which are rare decreases at a regular exponential rate. When it is
apparent section b is also nearly linear, and at low vocabulary sizes (low divisions) is of
approximately the same slope as section a. When the vocabulary size is high it tends to

be shallower than when it is lower.

The curved section ¢ first appears towards the high rank (rare) end of the distribution,
obscuring section b, and moving towards the low rank(couunon) end as the vocabulary
size increases. Always a convex curve, it shows a gradual change in the rate of change
of the frequency of terms of a particular count. This change shows that the mumber
of terms which occur very frequently begins to drop - that is to say that the conunon
terms become more common, with the nuber of termns at each ranking becoming rapidly
fewer. This section is followed by another linear section, showing that this rate of change

has ended and the frequency returns to changing exponentially.

The exception to this is QMNS. where section d does not continue on from section ¢
smoothly, but instead contains a kink. Whilst this artefact does result in the complete
loss of the curved section ¢ at the limit of the vocabulary size, it displays a sudden change
in the terms. From the gradual decrease in the rate of change of term frequencies we see
a sudden increase in the count of the most common terms. Looking at the data poiuts
for the distribution it can be seen that this is caused by one value - the most common
term. This term occurs, in most cases, far more times throughout the collection than
any other. It is a unimodal patch which i1s a very light grey, but contains slightly more

red than blue or green.

Quite naturally the distribution will show changes according to the colours that are in
the collection. Since the algorithms that have been used are global colour features the
distributions have similar shapes, with QMNS being the least similar due to the inclusion
of higher order global colour features (the bi- and tri-modal patches). The curve in the
distributions shows that there tend to be more common terms than rare, and this moves
and becomes less marked as the vocabulary is increased due to the increased quantisation

of feature space.
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FIGURE 6.10: Vocabulary Size and Usage versus Average Precision
6.3.1.2 The Distribution and Retrieval Performance

As the number of divisions and hence vocabulary size is increased, the vocabulary usage
increases - but not at the same rate. This is due to the fixed number ol feature points
and the increased partitioning of feature space. This leads Lo a more regular distribution
of the feature points between the available terms, which is displayed by the slope of the
curve, which approaches -1 as the vocabulary mereases. If the original feature space
contained uniquely random points, of a coutinuous. rather than discrete, nature, and
the resolution of the quantisation was smaller than the smallest distance bhetween two
points, the distribution of the terms would reduce to a single point. T'his wounld happen
because every single occurrence of a feature point would be binned and would become a
term in its own right. Since every term would have an ocenrrence frequency (count) of
1, the single point on the rank-frequency graph would he located at rank 1%, and af a
frequency equal to the total number of feature points in the entire collection. This would
be a highly undesirable situation, since a query term could only ever match one image
at most. It is also a situation that would be very unlikely to occur, since feature space
is not typically continuous®, and so any quantisation finer than the original resolution

of the discrete data will have no effect.

*Rank 1 here does not refer to the frequency of each term, the point is the only point and so must be
ranked first. The frequency on these curves indicates the number ol terms which ocenr with a particular
count, i.e. the far left of the graph shows terms that have a low count, yet there are many of them. and
vice-versa on the far right.

3 Again the digital nature of floating poiut numbers is apparcnt. but can be ignored due to the
precision of double accuracy foating point number.
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Graph 6.10 shows how the vocabulary size of the algorithms compared to the resulting
average precision. Average precision is a meaningful metric to use for comparing the
different feature’s distributions because of its comnion grounding - the image collection
and categories used in the test. In the diagram there are two sets of curves - those that
are solid. which show the corpus vocabulary size (the number of unique terms in the
collection) and those that are dashed. which show the average number of unique terms

per mmage.

Both the histogram and the CCV exhibit a high vocabulary usage, shown on this graph
by the proximity of solid and dashed curves. QMNS has a signiticantly lower usage,
especially when the vocabulary is at its largest. Whilst both the CCV and the colour
histogram surpass QMNS in greatest average precision, QMNS does achicve a peak
precision of 0.52 at a significantly lower vocabulary usage. More significantly, it is [or
QMNS that the average number of terms per document attains a higher precision at lower
values. It is this metric that is the most important for considering the eHectiveness ol a
particular combination of a feature extraction and quantisation algorithuir. Thie position
of the curve will determine the overall worth of this strategy - a curve that flits high into
the top left will have a very good retrieval rate with a veryv low uumber ol terms - a

good combination of accuracy and speed.

The three curves shown for each ol the algorithims approximately follow a log-lincar
enrve, before peaking at a high vocabulary size. In the case of both the RGB histogram
and the CCV the end of the graph indicates the end of the workable Thnit ol hoth algo-
rithims, since the quantisation parameters cannot be adjusted to imcrease the vocabulary
size further. QMNS, however, contains a clear peak indicating its useinl Hinil. alter
which it begins to drop dowu. All three ol the curves contain undulations, resulting in
some local maxima and minima, the cause of which has not been ascertained. Graph
6.11 shows the average terms graph for just QMNS, where the ndulations are more
apparent. The solid section of the graph contains data points taken at o resolution of |
(uantisation division, and the dashed section contains points taken at a resolution of 5
divisions. Since the resolution of the curves is determined by the gquantisation parameter

(which for the histogram aud CCV is integer) little more inlormation about these peaks
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FIGURE 6.11: Average QNMNS Terms per linage versus Average Precision
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can be determined. A possible explanation for these undulations lies in the quantisation
procedure itself, which may be subject to a form of moiré as the already discrete features

are discretised further.

The results presented in this section demonstrate the affect on the index of a change in
vocabulary size. The size of the vocabulary directly affects index size and retrieval speed
and also changes the quality of retrieval. By generating the distribution data (which
fits, in general, a Zipfian curve) for different vocabulary sizes, the size of the index can

be configured to provide a suitable balance between retrieval time and quality.

6.4 Specificity, Exhaustivity and Discrimination

So far in this chapter we have looked at lhow an index transforms information from
a document into a form that may be stored and queried rapidly. These notions of
information are however. not suitable for measuring the utility of an indexed feature -
in high level, semantic, terms. We would like to know how good a particular term, or
set of terms are at discriminating relevant documents from non-relevant. We would like
to be able to choose between a specific index on the one hand, which would allow us
to focus on a particular topic, and an exhaustive index, where we can search for many

different topics.

A highly specific feature is a one that fits into a narrow information domain, one the is
not very specific into the broad domain. Of the metrics shown so far there are a some

which have an obvious correlation with specificity, and some with discrimination.

6.4.1 Vocabulary Usage

A measure of specificity of terms is the vocabulary usage. This is defined as the ratio
of distinct terms present in a corpus to the total possible vocabulary. This is hard to
define in text since the vocabularies of natural languages arc not strictly defined and
continually change as new words are constructed. With feature terms the vocabulary
is defined by the extent of feature space and how it is discretised. Consider a set of
documents of an arbitrary medium. A feature space for those documents that contains
few, sparse, features is highly specific, and if that feature is unable to extract salient
features that are common to the documents then it will be a poor feature for retrieval.
On the other hand a feature space that is highly populated but contains many clusters
that are common to all documents will also be a poor feature for retrieval, since it is too

general.
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1Quite often the literature gets the ends mixed - the order is determined by whether the graph is
rank-frequency or rank-count
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of potential cut off levels. The diagrams in figure 6.12 present some of the potential

weightings and cut off points:

The linear weighting exclusively concentrates on the central area of the graph - ters
that are neither too rare nor too common. Such a weighting would beuefit a broad
category retrieval application that maintains a large number of documents, since the
cut-off points are at the end of the high linear section. The location of the cut-off points

minimises the number of ters in the index. allowing for rapid retrieval.

The gaussian weighting is again targeted at the broad category. however it makes use
of more terins and weights them rather than simply dropping them from the index..
The cut-off points remove some of the rare and common terms, those that are left
in are weighted appropriately. Such a scheme could provide slower retrieval than the
linear weighting due to the additional effort of weighting the terins, but provides better

precision.

The log weighting, used commonly in text retrieval, favours rare terms for retrieval.
This scheme is used in conjunction with the document fhrequency of the term - that is
the number of documents in which the term occurs - such that a rare term that occurs
many times in one document but very little throughout the entire corpus is weighted

favourably.

The sigmoid weighting adopts a similar approach, only altering the weighting so that

the balance is shifted back towards the centre of the distribution.

The approach used will depends on the terms that are iimportant to the application, and
the number of terms that can realistically be dropped from the index without affecting

retrieval quality too much.

6.4.2 Index Pruning

In order to determine the amount that terms contribute to the effectiveness of an in-
dex different sections of the distribution may be extracted, and inserted into a separate
index, then tested. Since each term contributes towards the query similarity score in-
dependently, the sections tested do not need any overlap. Rather than dividing the
distribution equally from the log perspective, each section may contain the same nmun-
ber of unique terms. This will result in sections like in figure 6.14. If the graph was
of a rank-count distribution, as opposed to the rank-frequency distributions used here,
or if the distribution were divided so that each section contained the same number of
features (occurrences of terms), then the divisions would appear largest on the left of

the log-log scale.

The manner in which the sections are divided has implications for how each section

will perform. Using the equal term approach will create sections that contain very few
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features at the rare end (low ranking) of the distribution (since each individual term is
rare and has a low count there are many of them, giving it a low rauk), aud sections
that contain the same number of terms vet each at a very high count. The equal feature
approach will mean that sections contain approximately tlie sanme nunber of features

(equal to the sum of the count of each terin).

The sub-indexes were generated by listing all terms in the index In ascending frequency
order and then splitting and extracting all the terms for each section and inserting theim
directly into a the new index. For the equal term approach the last section will be
smaller than the others if the number of sections doesn’t divide exactly into the nuuber
of terms. For the equal count approach terms are added to the section until the sumn
of the term counts exceeds the maximum count size of the section. This means that in
sections at the common (high ranking) end of the distribution may exceed this value
quite considerably, due to the very large termn count of common terms, and also that

additional sections may be required.

Section | Equal Terms Equal Count

Terms Count Hi Terms  Count Hi
0 1977 1977 1 19164 117966 102
1 1977 1977 1 407 118242 397
2 1977 1977 1 98 118836 512
3 1977 1977 1 39 122089 1141
4 1977 1977 1 21 119478 812
5 1977 3913 2 14 121880 895
6 1977 5158 3 10 130761 654
7 1977 9034 6 6 151257 1033
8 1977 21805 15 3 177928 1365
9 1969 1128642 1365 0 0

TABLE 6.2: Size of the Sub-Indexes in Both Approaches
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The indexes from which the sub-indexes were generated were for the QNNS algorithm.
using the sanie parameters as the distribution tests in the previous section. Retrieval
was performed using the CNR4 algorithu. Four indexes were used, with quantisation
divisions of 5, 10, 15 aud 20. Each equal term index was split exactly into 10 sub-indexes,
and each equal count index was measwred to split into 10 sub-indexes, but did in fact
split into 9, 14, 15 and 10 sub-indexes respective to the quantisation divisions. Table
6.2 shows the sections for the two types of sub-index when the QMNS feature space is
quantised by 5 divisions. The terms colunmmn shows the number of ters in the section.
the count column shows liow many individual features (the sum of the counts for all
the terms) are in the section and the hi colummn shows the highest count of any term in
the section. Note how the terms value stays constant in the cqual terns index. and how

the count stays approximately the same in the equal count index.

The results for the two different approaches. shown in graphs a and b of figure 6.15
appear to be at opposites, yet with further analysis they concur. The first section
{section 0) for the equal terms approach shows a clear separation for each of the four
sub-indexes, with the sub-index with the largest vocabulary (the largest quantisation
value) performing better than the others, which come below it aud in descending order
of quantisation value. Since the overall vocabulary is bigger the number of terms in
each section will be bigger, which provides better retrieval performance (at least for the
first two sections). From sections 0 until section 3 there is an overall downward tremd in
the average precision, which without further analyvsis caunot easily be explained. From
the third section onwards the average precision continually increases and as the terms

become more comimon.

Graphs a and b appear to indicate that rare QMNNS terms are not useful to retrieval,
and that the more common terms are. Closer inspection reveals that sections 0-4 con-
tain almost exclusively rare terms which each occur only ouce throughout the corpus.
Such terms are not ever useful for retrieval, and can be safely ignored. As cach term’s
individual count increases, so does the muuber of documnents it is likely to occur in. At
the common end of the graph the terns are occurring in many wmore docunients, and so

the probability that a query and a relevant document will share common terms is high.

The second graph, in figure 6.15.b for the equal count approach shows a different result.
In the graph the left hand graph shows tlie equal term approach and the right the equal
count approach. Here it is the sections at the rare end of the graph that provide better
retrieval performance. Table 6.2 shows this is because the first section of the graph
contains over 96% of the terms in the index. The remaining sections are effectively
sub-indexes of the last sub-index of the equal term approach, and show a decline as the

number of terms in the index drops to just a few terms.

From these two views of the distribution it could be concluded that for QMNS it is the

common terms that are the most important to retrieval. The tradeoff between retrieval
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FIGURE 6.15: Retrieval Perlormance ol Sections Within the Distribution.

time and performance for the image collection tested, and the ground truth known about
it, has a balance that would enable just section Y from the equal terms group To bhe usced.
This would provide retrieval accuracy that was just slightly less than using the entire

set of terms, but only using a tenth of the terms.

Looking at the distribution of terms as a ‘bag of features™ is uselul in providing o lot ol
formation about the algorithin and the image collection it s applicd to, but we lose a
lot of information regarding the documents from which the terms are derived. A term
that occurs regularly (has an average count in the distribution) may be spread evenly
throughout the documents of the collection, or it may be concentrated in a few. [n 2.1.3.2
we saw that a good weighting system for text is TF*IDIF, a weight that acknowledges
terms which occur infrequently throughout most of the collection, yet are [requent in
some docuents, must be important to those documents. We can use this as another
approach to analysing the distribution, and split it up according to the regularity of the

terms.
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When the terms are ranked according to the TF*IDF? weight and divided into equal
term sections the results are only slightly different from the first equal term test. A
quick comparison of graphs 6.15.a and .d makes this apparent. This demonstrates that
the document frequency is highly correlated with the corpus frequency, and that the

same sections in the two equal term approaches contained nearly identical sets of terms.

The equal term graphs show that the commonest 10% of the terms in the index may be
used reliably for full image, general. retrieval. Graph 6.15.¢ shows that within this 10%
it is still possible to create even smaller sub-indexes (containing 1% of the ters of the

original index) which still achieve an average precision of over 0.4.

The tests presented in this section have demonstrated that the size of a QMNS index
can reduced by removing terms which are not good discriminators. It has been shown
that the global QMNS colour algorith is, for the selected image collection and ground
truth images, effective in the ‘common’ part of the index only. and that a significant
proportion of the other ‘rarer’ terms can be removed without degrading retrieval quality.
Since the quality of retrieval 1s measured by the ground truth another set of categories in
the collection might provide different results. A category of images that contains colours
not present often in the other Images in the collection would provide the best retrieval
results when used with a sub-index containing rarer terms. Such a specific index would
then only work well a small number of images, and would provide good recall aud poor

precision.

Alternatively, an exhaustive index can be generated that contains all the terms, but
which may be weighted to favour some part of the distribution {(such as the common
terms). The index would be better at retrieviug different types of images, and would

have a poor recall due to the and high precision due to the extra features being retrieved.

6.5 Summary

This chapter introduces techiniques which can be used to optimise a feature term for
inclusion in an inverted index. An extensive set of indexes was generated for QMNS by
modifying signature generation parameters, providing an excellent comparison of term
distributions. The feature term distributions of QMNS, and two other features, an RGB

and a CCV histogram, are analysed.
The key findings in this chapter have been:
o QMNS Vocabulary: The clustering performed by the mean shift on neighbourhood

pixels can be controlled, which has a great effect on the distribution of terms

produced. Testing then shows which type of distribution is the best for retrieval.

5Here TF indicates the corpus frequency of the term, whereas it is the query term frequency when
used in a query
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o Degree of Quantisation: The amount by which the feature space is quantised
directly effects the size of a feature's vocabulary. The effect it has on different
features will depend on the nature of the feature itself - the average number of

terms per image is significantly less in QMNS than in the RGB or CCV histograis.

e Term Distribution: The distribution of terms approaches linear in the log-log
domain as the vocabulary is increased - whicli makes it easier to model as a Zipfian

distribution.

o QMNS Term Specificity: It has been found that rare QMNS terius are too specific

and are not useful for retrieval, whilst the most comunon terms are the best.

o Index Optimisation: It is possible to remove a significant numnber of terms from a
QMNS index because they are poor discriminators, as demonstrated by a test of
different portions of the index. There are a number of different ways in which the

index can be partitioned.



Chapter 7

Conclusion

7.1 Overview of Thesis

7.1.1 Background Material and Literature Review

This thesis begins with an overview of the field of content based retrieval, where it is
introduced as a primarily cognitive activity. An lmportant distinction that is made is
that content based retrieval is about the retrieval of documents - defined as an ordered,
coherent, collection of information with a comimon concept, that may be composed of

multiple forms of media 2.2.

The focus is then moved to thie applications of computer vision and CBR 2.2.1, il-
lustrating their role in medical systems. web retrieval. digital archives. wmanufacturing
inspection and autonomous systems. It i1s shown that there are four key stages in CBR
- acquisition, analysis, storage and retrieval. The last stage is that which is exposed to
the user (be it a human or machine), for which there are a nunmber of paradigins - query

by example, query by sketcli, browsing and navigation.

The next section returns to the idea of document retrieval, discussing the structure of
media within docunients, and then introducing the concept of {features 2.3.2. The {eature
is described broadly as an entity which is a representation of some salient aspect of the
document - a statement intended to highlight the potential range and scope of features.
The role of a document’s signature as a container for features is given, and a series of
metrics for comparing feature points in Euclidean space are described - the Minkowsky

metrics, correlation metrics, and three vector set comparison metrics.

Since feature comparison is essentially an exercise in classification, sections 2.3.5 to 2.3.6
provide examples of clustering techniques such as the spanning algorithm, K-means and

the mean shift (which is used by the QMNS algorithm). Approaches to combining tle
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results from classifiers is given: the use of knowledge rules and fuzzy logic. probabilistic

and belief approaches. and neural networks.

Section 2.4 introduces the field of text retrieval. beginning with the descriptions of the
inter-document parsing process, which is part of the acquisition and storage stages,
and the intra-document parsing which involves the lexical analysis of text corpora. The
analysis is formed of a number of stages: text parsing (token extraction), token handling

{manipulation and transformation. such as morphology) and the token indexing.

The indexing of text is the area in the field of text IR which this research has drawn
from the most. Three types of index are listed: The inverted index, which is the most
commonly used, and has excellent retrieval performance at the loss of update speed. the
signature file, a system based on hashing to determine the probability that a term exists
in a document, and bitmap files which have excellent documnent-documnent comparison

speeds, but are very large.

Retrieval of terms from the index is presented in section 2.4.3 in the three forms of
boolean, weighted, and vector space model retrieval. This is followed by some notes
on advanced topics, including relevance feedback, spatial and adaptive retrieval, and

content based navigation.

Image features are considered in section 2.5, which briefly discusses types of colour.
textural, shape and hybrid features, with citations to relevant research. After this
some approaches to the problem of indexing multi-dimensional data, such as that of
features, are given. GRID files and R-Trees are two such techiniques which may be
used in conjunction with dimensionality reduction algorithius like principle component
analysis or the K-L transform. The Kohonen self orgamsing neural network offers a

useful alternative from the artificial intelligence community.

In section 2.7 the inverted index i1s examined in more detail, starting with a look at the
Zipfian distribution found in the terms of natural language which is provides a useful
mode] for the index. The structure of these indexes is explored. aud attention given to

optimisations that can speed up the process of retrieving data.

This background chapter concludes with notes on the future of content based image

retrieval.

The third chapter explores the applications in which computer vision is employed. The
requirements of the multimedia information system are split into two groups: The source
of the information that is to be stored, analysed and retrieved, and the target users
from whom queries are issued and responses returned. The information source will
have certain domain, scope, and volume, which must be considered when designing the
architecture of the system and the features which will be required. User consideratious

include the response time, query scope, and retrieval accuracy.
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Five types of MIS architecture are given: The medical PACS svstems (which may have
sources such as MRI, CAT and PET scanuers). digital libraries (archives of existing
material), web retrieval, life recording (continuos storage and query requirements), and

content delivery svstems.

The second section of this chapter is a review of small nuber of image retrieval systems
(section 3.3.1 to 3.3.7). QBIC, the first commercial available content based retrieval svs-
tem is described in detail. The media analysis subsystem performs histogramn extraction.
object segmentation. video shot detection and motion analysis. The features are then
stored by the modular indexing component, for which an R*-tree experimental index
was tested. The user interface offers the ability to query by example or sketch, and

provides palettes for the user to select prototype features frowm.

The academically highly successful NMARS project is architecturally and functionally
very similar to QBIC, however the scope of work accomplished in this later project is
far greater. Extensive work was done on video indexing and multidimensional feature

indexing.

The two systems that are described next (VisualSEEkL and VideoQ) both offer novel
query interfaces: The ability to diagram queries visually associating feature prototypes
with objects in the former, and a system for sketching the motion of a desired video

object in the latter.

The MAVIS systems include support for niultimedia navigation, with the second project
of the same name offering generic multimedia links and a concept thesaurus. The Artiste
and Sculpteur systems offer image and 3D retrieval capabilities for musewm artifacts.
The last system described is from the Viper group who developed MRML, the multime-

dia markup language, and created the GiFT (GNU image finding tool).

7.1.2 Core Research

Chapters 4 to 6 form the core of the thesis. The first of these chapters introduces the
architecture and applications used to perform the research. Collectively titled Invistor,

the system comprises three main components.

Section 4.3 deals with the CBIR image indexer. This component encapsulates all four
stages of CBR (section 2.2.1). A relation database is used to store image metadata,
binary signatures and the term features, which are generated using image analysis mod-
ules written for the Artiste project. Image indexing can be performed in parallel by
running multiple instances of the application. The output of queries is in the form of
HTML and a simple hitlist file.
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The next component described is the index analysis module. This small Java com-
ponent will connect to a feature term index and will geuerate its Zipfian distribution

automatically.

The last component is the results analysis module that is designed to run sequences of
queries using the CBIR indexer, and produce precision and recall data and the average
precision metric for ground truth categories which have been defined. It is also capable
of executing sub image queries and calculating the sub lmage retrieval metric (section
5.4.2).

QMNS, the Quantised Multimodal Neighbourliood Signature. is presented in chapter §
which is broken down into the following sections: A description of how the original MNS
algorithm functions and the extensions written to form QMNS (sections 5.2 and 5.3),
the test environment, image collection, and test scripts followed by an analysis of the
results (section 5.4 and 5.6), finally presenting the testing of QMNS wheun it is used to

generate multimodal signatures 5.7.

The MNS signature is extracted by dividing the image into regular patches, or neigh-
bourhoods. The pixels from each neighbourhood are clustered using the mean shift
algorithm to find the colour modes. Information on bi-modal patches is then clustered
using the mean shift to produce the signature points. Comparison is performed using a

form of stable marriage matching.

QMNS quantises the bi-modal features that are extracted from each neighbourhood,
labelling them as terms. The frequency of eacli quantised bi-modal term is inserted iuto

the index with the document ID.

After the descriptions of the signature generation the chapter moves into describing
the three index operations supported - termn insertion, deletion, retrieval - including
descriptions of the four retrieval techniques. CPRI awards 1 to a target image for
each term that it shares in commmon with the query, whilst CPR2 adds the query term
frequency in an attempt to return target images where the query is a subimage. CPR3
is intended for full image retrieval and uses weighted normalised frequencies, as does
CPR4 but with a TF*IDF scoring method.

Section 5.4 presents the image collection used for testing, and the ground truth cat-
egories used for the precision and recall statistics. Section 5.5 details the three tests
that are initially executed: Variations of parameters in MNS (designed to find the best

configuration for retrieval), QMNS full image testing and QMNS subimage testing.

After this the results are presented, and from the testing of the different configurations
of our implementation of MNS, we have found an optimal set of parameters. A key
addition to the original MNS algorithm is the reduction in the number of pixels required
to find the modes of a neighbourhood. We have shown that by using 30% of the pixels

in each neighbourhood we are able to achieve better retrieval results than when using all
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of them. Reducing the number of poiuts whicl are clustered using the mean shift also
leads to much faster feature generation times. Another parameter which proved to be
very influential on retrieval accuracy is the window size of the wean shift. By making
this smaller. and therefore increasing the munber of clusters per neighbourhood. we have
increased the number of different features present in an image. This has in turn led to

better results.

The first series of QMNS tests shiow that the indexing times for QMNS are much slower
than the RGB histogram and the CCV. The rapid version of QMNS (using a reduced
number of neighbourhood pixels) is shown to be as fast as the multiscale CCV feature
generation. The average precision of the different CPR retrieval algoritlnus is much
better than the normal MNS feature. and equivalent to the RGB histogran and the
CCV. Improvements are seen in QMNS results when quantising using 5 divisions (bins)
per feature axis. Retrieval speed for QMNS is slow, but is 10 times {aster when using

the rapid index - due to the reduced number of terms which must be retrieved.

Section 5.6.3 presents the subimage retrieval results which show that there is little dif-
ference between the CPR algorithms in this test. Again hmprovements are scen when
5 bins are used. The MCCYV proves to be superior to all othier tested algoritlnus at

subimage retrieval.

The next section provides an analysis of the fiudings from the tests described above.
It is theorised that the MNS features used suffer wlhen iimages are scaled, because the
neighbourhood sizes stay the same, and that a possible solution would bhe to use a

hierarchical series of different sized neighbourlicods to generate features.

The original version of MNS only uses bi-inodal patches. which is addressed by the work
in section 5.7. In multimodal retrieval the uni-modal and tri-modal neighbourhoods are
kept in the signature, and quantised into RGB and RGB?* space respectively. Larger
sized neighbourhoods of 16x16 pixels are also tested. The indexing times for such patches

is naturally longer even wlien a reduced nunber of pixels is clustered by the mean shift.

43 test indexes were generated, the parawmeter changes being the neighbourhood size,
minimum mode (cluster) size, mean shift window size and quantisation factor. As the
bin size is increased the number of uni and bi-modal terms in the index increases,
however the tri-modal terms decreases. Using the indexes a optimum set of paraineters

for multinmodal retrieval are found.

The full image and sub image tests from earlier in the chapter are repeated for the
multimodal indexes (section 5.7.3 and 5.7.4). It is found that the use of tri-modal terns
alone leads to very poor retrieval, and that the best combination is offered by uni- and

bi-modal terms.

The last chapter discusses generalised feature indexing, and introduces indexes contain-

ing terms from the RGB histogram and the CCV. The testing of QMNS configurations
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are extended to cover a far wider range of the parameters, resulting in 504 indexes.
The effect on the termn vocabulary and the index size is examined in detail when the

minimum mode size, the mean shift window and the bin size is changed.

Correlations between the Logest of the index distribution and the vocabulary versus the
average precision are seen showing that a larger number of terms offers better retrieval.
It is noted, however. that the best configuration will be one which does actually have a
small vocabulary, and hence the average nuber of teris per iimage will be lower leading

to faster retrieval.

Section 6.3 presents results for the indexing of QMNS, the RGB histogram, and the
CCV at different levels of quantisation up to the maximum level possible. All three of
the algorithms have a peak where retrieval is best. This data is accompanied by graphs
of the Zipfian distributions of the indexes, which are seen to become more linear in
the log-log domain as the vocabulary increases. Iour scctions in the distribution are

observed and discussed for each of the three feature algoritlnns.

The terms of QMNS are deemed to be more specific because far fewer of themn than
for either the RGB histogram or the CCV are required to produce a particular average
precision. This is also seen in the average nunber of postings retrieved, where the CCV
must retrieve approximately 50 times more terms than QMNS. and the RGB histogram
must retrieve 100 times more. Even though thie QMNS is outperformed in most cases
by the histogram and the CCV in terms of average precision it is considerably faster to

retrieve.

The final section of this chapter looks in further detail at the specificity of the terms in the
QMNS indexes. The merits of four different weightings are discussed - linear, guassian,
log and sigmoid weighting. The premise behind these weightings s that certain teris
in the distribution - those that are very rare, and those that are very connuon, arc not
useful for retrieval because they are not good discriminators. This was demonstrated by

the poor retrieval ability of the tri-modal patches which were very few in munber.

To test whether certain sections of the distribution are indeed good discriminators the
index was pruned. Section (.4.2 describes liow these test mdexes were formed. Two
approaches to dividing the termi distribution are given - equal term sections, where
each section contains the same number of terms from the vocabulary, and equal count

sections, where the sum of the term frequencies in each section are approximately equal.

Four QMNS indexes (with different bin sizes and hence vocabularies) were split using
the two techniques and the standard category retrieval tests executed against them. We
see that the rare terms are not good for retrieval, and find that it possible to prune 90%
of these terins from the index without degrading retrieval performance. It is noted that
this is only demonstrated for the ground truth categories and image collection used in

the testing and might not be true for other collections.
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The chapter is sununarised by considering the exhaustivity of an index. Oune that is
exhiaustive will contain all possible terms. which means that recall is improved at the
cost of the size of the index and lence retrieval speeds. The configuration of the index is
very important for retrieval, and the steps taken to optiwise it will always result in less
information - but it is possible to determine which teris are actually good discriminators

for a particular image collection.

7.2 Contribution to the Field

The aims and objectives of this thesis, listed in section 1.2 have been fulfilled, and are

presented here with a summary of the work accomplished:

e To demonstrate that sub-second coutent based lmage retrieval is possible from

massive image collections:

— Use available feature extraction algorithms, or develop a novel
global colour feature extraction algorithm: The MNS feature extrac-
tion algorithm was adapted and improved, and three histogram algorithins
were used for investigating retrieval techniques.

— Develop a technique for transforming image features into a form
storable in an inverted index: The QMNS algorithm was desigued ex-
plicitly to quantise multi-dimensional feature space into labelled bing with

their associated frequencies (collectively called feature terms).

e To provide techniques that allow analysis of the distribution of the feature space

of different features:

— Identify how changing a feature extraction algorithm’s parameters
change the distribution of points in feature space: Rigorous work
was performed in chapter 5 to find both thie most cffective paranmeter set lor
retrieval {measured using recall and precision data) of {four image features,
and the distributions analysed.

— Investigate the effects of different techniques of feature space quan-
tisation: The degree of quantisation of feature space was varied and the

results presented in chapters 5 and 6.

— Present optimisations for indexed feature descriptors: Using data
from the analysis of different parameter sets it was found that a significant
proportion of image feature terms could be excluded without reducing re-

trieval performance.

e To demonstrate whether feature term retrieval is flexible and extensible.
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— Show the potential for heterogeneous feature storage: An index was
populated with feature terms from three different image features, and retrieval

against this index performed successtully.

e To develop a novel global colour feature: The Quantised Multimodal Neigh-
bourhood Signature is a novel exteusion to a global colour algorithm, which is

flexible, fast, and has highly specific features.

e To investigate the distribution of this algorithm’s feature space: Ex-
tensive testing was performed on the QMNS algoritlun, involving varving feature
generation parameters, producing a large number of indexes for which the tern

distributions were analysed.

e To develop techniques for optimising image features for use with an
inverted index: The pruning of term distributions has demonstrated that not
all feature terms produced by a feature algorithms are useful, resulting in a more

compact and concise index.

e To demonstrate such techniques are applicable to any multimedia fea-
ture: The RGB histogram and CCV were shown to operate well when stored in

an inverted index.

7.3 Future Work

There is a significant amount of work which can he done to extend the research presented
in this thesis. This can be split into three primary categories: Techniques for feature

generation and term extraction, evaluation of retrieval, and indexing technologies.

7.3.1 Term Generation

The work on QMNS itself is quite comprehensive, however there are still certain areas
which could be given attention. In terms of implementation there is many improvements
which could be made to the algorithm. In particular the use of the mean shift could
be considered a disadvantage because of its inherently slow processing. There has been
some work on fast mean shift algorithms [14] which could prove useful, or a different

clustering algorithm could be used.

A significant modification discussed in section 5.6.4.2 would be to introduce multiple
levels of hierarchical neighbourhoods. Cluster the large sized neighbourhoods might
prove very time consuming so it might be useful to resample them to the same size.

This use of different neighbourhoods would help in making QNMNS more scale invariant.
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QMNS lolds no spatial information. and it could be that the addition of a spatial
variable into the feature would help certain tyvpes of retrieval. This could be achieved by
extending the feature space to include two spatial axes, which would be quantised with
the colour data. This variable would need to be quautised, or clustered, very roughly.
otherwise the terms generated would be too specific - although there might be certain

applications where this was desirable.

Some work was done on creating a colour invariant version of QMNS, which would
reflect the work by the original authors of NINS. The § dimensional chirominance feature
proved to be worse than the RGB feature. and with a higher dimensionality was slower
to generate and compare. The use of an HSV colour space could result in feature that

was less susceptible to colour change.

Chapter 6 includes some work on the RGB and CCV histograms and the distributions
that their term indexes have when different levels of quantisation are used. It would he
very worthwhile examining not only these features. but other [eatures in greater detail.
Other features were written for the Artiste image processing library, including a PW'T
(pyramid wavelet transform) [44]. could easily be modified by adding a quantisation

routine so that they would generate feature terms.

Multimedia features could also be explored. and comparisons between them found. This
would help extend the available information on feature term distributions and would
help lead to a generalised model of feature terms. Initial investigations into the storage
of feature terms was investigated, and this avenue would be an exciting one to continue
on. Retrieval of postings from an mverted index does not require a specific comparison
algorithm for individual feature types - only a model of the distribution of the terms
- which means that this approach could be very flexible and portable. Needing no
knowledge of the underlying features makes query processors and clients far simpler,
and with appropriate labelling of terms it would be possible to weight the different

feature individually.

7.3.2 Evaluation of Retrieval

Without good evaluation techniques it is very difficult to determine the worth of any
retrieval algorithm, leaving results susceptible to subjective analysis. Section 3.3.7 looks
at the work of the Viper image retrieval group who have had influence in the organisation
of a content based image retrieval evaluation group - known as Benchathlon [96]. This

aims to provide tools and techniques for assessing retrieval performance.

The use of only one image collection in this research has meant that results are very
limited. If the tests were to be executed using a standardised image collection, with

accepted ground truth categories then the data produced would help to turther establish
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the theories presented in this research. In particular the scalability of the system was

never tested with a large image collection (see forward to the next section).

7.3.3 Indexing Systems

The inverted index is central to the work presented here. The implementation (described
in section 4.3) was only intended for proof of concept, and did not have an efficient
retrieval engine. Much work could be done on improving the index itself, to provide a
better postings structure. The postings could be compressed and maintained in blocks
[111] or it could be distributed across multiple machines. The understanding of term
distributions would be very valuable in such situations, allowing the most often retrieved

terms to be separated.

The CMR algorithms used to rank documents in the index would benefit from a bet-
ter implementation - in particular the inclusion of a system for dynamically weighting
terms would be highly beneficial. Given the knowledge gained from an analysis of the
term distributions and their pruning (sections 5.6.4, 6.4.2) a better TF*IDF weighting

algorithm could be developed.

Inverted indexes are not the only type index that might be applicable to feature term
retrieval. The signature and bitmap techniques (section 2.4.2) could both prove to he
suitable. Like text retrieval (except boolean), image feature term retrieval does uot
have to have all terins present to match documnents, making the probabilistic approach
of signature files attractive. Bitmap files would he less likely to be worthwhile due to
their large size - which would be compounded by the large vocabularies sizes of some

feature terms.

Other technigues that have been developed for text retrieval are Latent Semantic Index-
ing [38] which has already been investigated in the image domain in [109]. Relevance
feedback is another area which it would provide worthwhile investigation, althougl there

is a large ainount of research which has already been done in this area.

7.4 Summary

This thesis has presented a novel global colour algorithm, QMNS, which is indexed using
techniques adopted from the text retrieval community. It is shown that the QMNS
algorithm has features which are more specific than those of an RGB histogram, and a
CCV, allowing retrieval to be performed with a relatively low number of features. The
term distributions of the three algorithms is shown to be Zipfian in nature which provides

a good model and allows the index to be optimised. Analysis of the distributions has
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shown it is possible to optimise the index by pruning of feature terms, making the index

more compact and concise.
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Technique Signature Generation Signature Comparison
Naine MNS Feature Neighboiirhood Definition Mean Shift Technique Measure Thresh

Location Pixels Ncighbouthood Signature

X Y Aliased FR(‘(luction Factor “% Mode Size Thresh Size Thresh
General Database Groups
RGB MNS Group
Base NINS RGB2 8 8 TRUE None 100.00% 12.50% 22 0.5 44 1 Seq Stable Marriage Euclidean 20
Fixed NNS RGB2 8 8 FALSE None 100.00% 12.50% 22 0.5 4.4 1 Seq Stable Narriage Euclidean 20
Big MNS RGB2 16 16 TRUE None 100.00% 12.50% 22 0.5 44 1 Seqp Stable Marriage Tuclidean 20
Bigpger NMNS RGB2 32 32 TRUE None 100.00% 12.50% 22 0.5 41 1 Seq Stable Mariiage Euclidean 20
Rapid NNS 0.5 RGB2 8 8 TRUE Pseudo 50.00'% 12.50% 22 0.5 44 1 Seq Stable Marriage Enclidean 20
Rapid NNS 0.3 RGRB2 8 8 TRUE Pscudo 30.00%, 12.50% 22 0.5 44 1 Seq Stable Marriage Euclidean 20
Tapid NMNS 0.1 RGRB2 8 8 TRUE Pscudo 10.00% 12.50% 22 0.5 44 1 Seq Stable Martiage Euclidean 20
Rapid AMNS Raudom 0.5 RGB2 8 8 TRUE Random 50.00% 12.50% 22 0.5 44 1 Seq Stable Marriape Enclidean 20
Rapid Big NNS 0.3 RGB2 12 32 TRUE Random 30.00% 12.50% 22 0.5 41 1 Seq Stable Marriage Euclidean 20
Enhanced MNS RGB2 8 8 TRUE None 100.00% 12.50% 11 4.5 22 1 Seq Stable Marriage Euclidean 20
Reduced NMNS RGR2 8 8 TRUE None 100.00% 12.50% 44 0.5 88 1 Seq Stable NMarriage Euclidean 20
Latge Mode MNS RGB2 8 8 TRUE None 100.00% 15.00% 22 4.5 44 1 Seq Stable Marriage Fuclidean 20
Small Mode NNS RGB2 R 8 TRUE None 100.00% 10.00% 22 0.5 41 1 Seq Stable NMartiage Euclidean 20
Iigh Thresh MNS RGB2 8 8 TRUE None 100.00% 12.50% 22 0.5 44 1 Seq Stable NMarriage Euclidean 30
Low Thresh MNS RGB2 8 R TRUE None 100.00% 12.50% 22 0.5 44 1 Seq Stable Marriage Euclidean 10
City MNS RGB2 8 8 TRUE Nonce 100.00%. 12.50% 22 0.5 44 1 Seq Stable Marriage City 20
Chrominance MNS Group
Base CNNS Chrominance 8 8 TRUE None 100.00% 12.50% 22 0.5 44 1 Seq Stable Marriage Fuclidean 20
Rapid Big CNNS 0.3 Chrominance 32 32 TRUE Random 30.00% 12.50% 22 5 44 1 Seq Stable Marriage Euclidean 20
QMNS Group
QMNS CPR1 RGB2 8 8 TRUE None 100.00% 12.50% 22 0.5 44 1 Inverted Tndex n/a n/a
QMNS CI’R2 RGB2 8 8 TRUE Noune 100.00% 12.50% 22 0.5 ER 1 Inverted Index n/a n/a
QMNS& CPR3 RGB2 8 8 TRUE None 100.00% 12.50% 22 0.5 44 1 Inverted Index n/a n/a
QMNNS CPRY RGB2 8 8 TRUE None 100.007% 12.50% 22 0.5 41 1 Inverted Index n/a n/a
3 Bin QMNS CPR4 RGB2 8 8 TRUE None 100.00% 12.50% 22 0.5 44 1 Inverted Index n/a n/a
5 Bin QNMNMNS CPR4 RGB2 8 8 TRUE Nonc 100.00% 12.50% 22 0.5 44 1 Inverted Index nj/a n/a
Rapid QMNS 0.3 CPR4 RGB2 8 8 TRUE Nonc 30.00% 12.50% 22 0.5 44 1 Inverted Index n/a n/a
Enhanced QNMNS CPR4 RGB2 8 8 TRUE None 30.00% 12.50% 11 0.5 22 1 Inverted Index n/a n/a

TABLE A.1: MNS

Configuration Parameters

SRR U0 RINSYUO) SNV V XIpuaddy
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Variation Name

Description

Base MNS
Fixed NINS

Big MNS

Bigger NINS

Rapid NNS 0.5

Rapid MNS 0.3

Rapid MNS 0.1

Rapid MNS Random 0.3

Enhnaced MNNS

Reduced NINS

Large Mode MNS
Small Mode MNS
High Thresh NMNS
Low Thresh MNS

City MNS

Baseline parameters. defined by Koubaroulis in [73].

As for Base MNS, but each neighbourhood is fixed in position and
not randomly shifted.

As for Base NINS. but the neighbourhood size is 16x16 pixels.

As for Base MNS, but the neighbourhood size is 32x32 pixels.

As for Base NINS. but a pseudo random grid is used to select only
0.5 of the pixels in the neighbourhood.

As for Base NMNS. but a pseudo random grid
0.3 of the pixels in the neighbourhood.

As for Base MNXS. but a pseucdo random grid is used to select only
0.1 of the pixels in the neighbourhood.

As for Base NINS. but a only random 0.3 of the pixels are selected in
the neighbourhood.

As for Base NINS. but the radius of the shift window in the mean shift
operation at hoth neighbourhood and signature clustering stages is
halved.

As for Base MNS. but the radius of the shift window in the mean shift
operation at both neighbourliood and signature clustering stages is
doubled.

As for Base NMNS. but a larger proportion of the pixels in a neigh-
bourhood must be homogenous for modes to to qualify.

s used to select only

As for Base NMNS, but a sinaller proportion ol the pixels in a neigh-
bourhood must be homogenous for modes to to qualify,

Signature generated as for Base MNS. but the threshold distance
between two RGB? features is increased,

Signature generated as for Base NMNS. but the threshold distance
between two RGB? features is reduced.

Signature generated as for Base NINS. hut the distance measure he-
tween two RGB? features is the L1, or City Block distance.

Base CNINS

Rapid Big CMNS 0.3

As for Base MNS, but the feature used is not RGB? hut a 5 dimen-
sional chrominance feature.

As for Rapid Big MNS 0.3, but the feature used is not RG'B? but a
5 dimensional clirominance feature.

QMNS CPRI

QMNS CPR2

QMNS CPR3

QMNS CPR4

3Bin QMNS CPR4

5Bin QMNS CPR4

Rapid QMNS 0.3 CPR4

Enhanced QMNS CPR4

As for Base MNS, but the signature is gquantised and translated into
feature terms. The CPR1 retrieval algorithm is nsed to calculate
image siimilarity.

As for Base NMNS, but the signature is quantised and translated into
feature terms. The CPR2 retrieval algorithm is used to caleulate
image similarity.

As for Base MNS, but the signature is quantised and translated into
feature terms. The CPR3 retrieval algoritlm is used to calculate
image similarity.

As for Base MNS, but the signature is quantised and translated into
feature terms. The CPR4 retrieval algorithm is used to calculate
image similarity.

As for QMNS CPR4, but the signature is quantised using 3 partitions
per axis (equivalent, to 3% = 729 possible terms). The CPR4 retrieval
algorithm is used to calculate iimage similarity.

As for QMNS CPR4, but the signature is quantised using 3 parti-
tions per axis (equivalent to 5% = 15625 possible terms). The CPR4
retrieval algorithm is used to calculate tmage similarity.

As for Rapid MNS 0.3, but the signature is quantised and translated
into feature terms. The CPRA4 retrieval algorithm is used to calculate
Image similarity.

As for Enhanced MNS, but the signature is quantised and translated
into feature terms. The CPRA retrieval algorithm is used to calculate
image similarity.

TABLE A.2: MNS Variations Descriptions
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Example Query

B.1 Query Image and Image Category

Ficure B.1: Example Query Image

This query image is taken from the Pink Flowers category. Shown below are all the

other images in this category:

FIGURE B.2: limages in the Pink Flowers calegory
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Algorithm

Base MNS

Fixed MNS

Big MNS

Rapid MNS 0.3
Enhanced MNS
Large Mode MNS
High Thresh MNS
QMNS CPR1
QMNS CPR2
QMNS CPR3

QMNS CPR4

Results

Ficure B.3: Query Results
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Appendix C

Test Results Tables

C.1 Test Group 1 - MNS Variations

Algorithm Indexing Time (s)

Half Scale Normal Scale Double Scale

min avg max min max min ave max
Basc MNS 1.388 3.092 4.375 5.944 20.949 19.344 51.025 U8.2:106
Fixed MNS 1.354 3.138 4.561 5.724 19.130 18.544 50.660 102.884
Big MNS 6.700 15.095 23.673 23.136 . 93.846 61.549 146.919 294.061
Bigger MNS 26.420 77.865 156.787 104.155 276.060 521.919 2068.298 700.809 1972.139
Rapid MNS (0.5) 0.421 0.795 1.648 3.488 6.512 5.560 17.845 5B.529
Rapid MNS (0.3) 0.132 0.348 0.704 1.808 4.545 2.394 13.375 55.931
Rapid MNS (0.1) 0.350 0.774 1.612 3.299 5.603 5.662 16.268 52.661
Rapid MNS (Random 0.5) 1.448 3.159 5.74G 12.303 19.767 19.551 50.793 106.782
Enhanced MNS 1.442 2.773 5.742 11.091 15.327 19.699 45.820 BG.277T
Reduced MNS 1.501 2.967 5.856 11.230 19.798 19.771 42,682 91.930
Large Mode MNS 1.402 3.165 5.748 12.564 20.124 19.650 111.912
Small Mode MNS 1.504 3.152 5.732 12,464 20.546 20.074 99.033
Base Chrominance MNS 1.481 3.143 5.752 12,025 19,141 19.6R0 18.403 83.561
RGB Histoglam 0.016 0.019 0.040 0.004 0.072 0.132 0.172 0.411 0.596
ccv 0.219 0.818 1.081 0.629 0.828 0.987 0.448 0.829 1.499
MCCV 0.113 0.265 0.557 0.634 0.986 1.195 2.992 5.085 10.173

TaABLE C.1: NINS Variations - Minimum, Average and Maximum Indexing Times

Algorithm Features

Half | Normal | Double

min avg max min ave max min ave max
Base MNS 1 8,437 34 1 10.808 57 1 10.063 63
Fixed MNS 1 8.363 37 1 10.718 54 1 10.584 55
Big MNS 1 6.316 20 1 9.286 41 1 11.408 65
Bigger MNS 0 3.792 11 1 6.540 22 1 9.514 16
Rapid MNS (0.5} 1 8.137 32 1 10.574 52 1 10.155 54
Rapid MNS (0.3) 1 9.155 33 1 11.646 55 1 10.957 57
Rapid MNS (0.1) 1 6.049 17 1 8.283 34 1 G.G18 32
Rapid MNS (Random 0.5} 1 8.481 33 1 10.743 56 1 10.644 55
Enhanced MNS 3 26.814 72 3 45.628 179 5 69.523 333
Reduced MNS 1 2.192 8 1 2,239 11 1 1.817 9
Large Mode MNS 1 9.027 33 1 11.403 64 1 11.752 G8
Small Mode MNS 1 7.395 25 1 9.849 49 1 9.299 48
Basc Chrominance MNS§ 2 14.140 46 2 22.917 82 2 26.613 108

TABLE C.2: MNS Variations - Feature Statistics

C.2 Test Group 2 - Full Image Tests
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Algorithm Test Category and Image Size
PinkFlowers BeachScenes BuildingsAtNight
alf Normal Double Hulf Normal Double Normal Daouble
194 291 0.342 0.204 0.137 0.129 0.302
275 : 0.318 0.167 0,159 0.367
6.1 0.187 0.086  0.175 0318
NS 0.088& 0 0.069  0.041 0.252
Rapid MNS (0.5) 0.2 0.131 0.15 0.2
Rapid MNS (0.3) 0.262 0167 0.184 [USES!
Rapid MNS (0.1) (284 0.127 0.148 (0.393
Rupid MNS (Random 0.5) 0.198 0.149 0.177 0387
Enhanced MNS 0,462 0.666 0.202 0.243 0.535
Reduced MNS 0.096 0.077 0.03 0.028 0.127
Large Mode MNS 0.234 0.26 0.102  0.202 0.373
Small Mode MN 2T 274 0.19 0.137 (0.341
High Thresh M 291 0.523 0.178 0.137 0.551
Low Thesh MN 0.053 0.201 0.199 0.107  0.137 0174
City MNS 0.035 0.109 0.074 0.024 0.025 0.278
Base Chrominance MNS 0.308 0.394 0.418 0.043  0.061 8.122
Algorithm Test Category and lmage Size
AndSky SeaWorld Test Average
Normal Dauble Normal Double Half Normal Double Overall
Base MNS 0.103 0.105 0.192 0.212 0.246 g
Fixed B 0.103 0.118 0.103 0.25 0,202 0.: 0227667
Big M 0.099 0.148 0.162 0.:445 0.118 0 0.181667
Bigpger NINS 0.061 0.12 0127 0.205 0,009 Q. 0.130667
Rapid MNS (0.5) 0.084 0.103 0.108 0.087 0. 0.2096G7
Rapid MNS (0.3) 0.099 0.137 0.089 0.209 0 0.248
Rapid MNS (0.1) 0.102 0.107 0.105 0.009 0 0.213333
Rapid MNS (Random 0.5) 0.096 0.116 0.094 0.124 0. 0.1964
Enhanced MNS 0.075 0.123 QLT U688 0. 0.387
Reduced MNS 155 0.203 0.135 0.125 Q. 0.114
Large Mode MNS 0.113 0.143 0.134 0.230 o 0.229
Small Mode MNS 0.096 0.113 0.11 0.119 i} 0.203
High Thresh MNS 0.12 0.103 0.129 0.437 0,245 0.277
Low Thesh MNS 0.074: 0.103 0.08 0.145 0.245 0.160667
City MNS 0.015 0.007 0.009 0.064 0.102 0.05BG6GT
Base Chrominance MNS 0.12 0.138 0.152 0.429 0.23 0.215
TABLE C.3: MNS Variations - Average Precision for Categories
Algorithm Retrieval Time (s)
Half Scale Normal Scale Double Scale
min ave max min ave max min v
Base MNS 11.828 14.0806 {).2:2] 0.302 9.508 L1.sds
Fixed MNS 11.772 14.124 ; 9 5206 11.508
Big MNS 51.219 62.690 10,0681 51.285 62 780
Bigger MNS 253,926 331.614 198.641 306K 331,669
Rapid MNS (0.5) 3527 4.374 y 2 : 4408
Rapid MNS {0.3) 21773 1.978 2 808
Rapid MNS (0.1) 2.588 3.870 3.279 3.875
Rapid MNS (Random 0.5) 9.496 14.077 11.514 14.125
Enhanced MNS 10.073 it 14.064 13.180 15.256 1H. 288
Reduced MNS 9.180 10.762 13.007 9.178 10 760 13.006
Large Mode MNS 4 11.955 14.530 9.61x 12,001 14.5491
Small Mode MNS 13.970 9.431 : 14.003
Base Chrominance MNS 13.899 10,198 E 14177
High Thresh MNS 14.067 9.530 11.804 14.116
Low Thesh NNS E 14,084 11.821 14131
City MNS 9.479 14.056 11.708 14.103
TaBLE C.4: MNS Variations - Minimum, Average and Maximum Retrieval Times
Database Indexing Time (s) Feature Statistics (Normmnal)
Half Scale Normal Scale Double Scale Features Uniqgue Terms
Nin Avyg Min Avg Max Min Avg Max Min Avy Max Nin Avyp
QMNS 1.3€ 3.07 5.96 13.16  20.86 15.90° 44447 0401 34 120.2 681 3 35
Enhanced QMNS 1.40 2.70 6.19 11.97 18.55 1879 41.94 54.09 16 373.9 641 [0 42.7F
3 Bin QMNS 1.47 3.17 5.70 12.37 19.10 19.68 4:1.99 66,80 36 319.8 6G2 3 :
5 Bin QMNS 1.45 3.18 5.85 14.12  33.40 1887 4412 64.72 36 420.2 681 1
Rapid QMNS 0.17  0.29 0.66 1% 1.40 2,146 4.20 5.40 27 3775 692 6
Base MNS 1.35 3.09 5.94 12,39 20.94 19.32 51.02 08,23
RGB Histogram 0.01 0.01 0.06  0.07 0.13 0.17 0.31 0.59
cev 0.21 0.81 0.62  0.82 0.98 0.44 0.82 1.49
NCCV 0.11 0.26 0.63 0.95 1.19 2.99 5.08 1017

TABLE C.5: QMNS Variations - Minimum, Average and Maximum Indexing Times



Appendix C Test Results Tables

Algorithmn

Database

Test Category and Image Size

PinkFlowers

BeachScenes

BuildingsAtNight

Half Normal Double Half Normal Double Hall Normal Double
CPRI1 0.457 0.407 0.333 0.092 0:137 0.149 0178 (1.289
CPR2 0.488 0.-109 0.096 0.196 0.207 ! 0.307
CPR3 0.345 0.156 0.131 0.208 0.211 : 0,345
CPR4 QMNS ! 0.500 0.119 0.189 0.166 0.304 0.393
CPRA4 Enhanced QNMNS . 253 0.136 0.150 0.111 0,154 0.2583
CPR4 3 Bin QMNS 0.416 513 0.074 0.073 0.079 0.307 0 390
CPRA4 5 Bin QMNS 0. 0.467 0.200 0.224 0.208 0.369 0.427 0.508
CPR4 Rapid QMNS 0.5 0.477 0.150 0.181 0.117 : 0.439 0.600
Base MNS Base MNS 0 0.342 0.204 0.137 0.129 0406 [ORTR
RGB Histogram RGB Histogram 0.393 0.390 0.394 0.154 0.138 0.143 0.G33 0.632
GOV acy 0.415 0.421 0.430 0.164 0.158 0.149 0.616 0.G:14
MCCV NMeey 0.274 0.088 0.159 0.166 0459 0.5:36
Algorithm Database Test Catepgory and Image

SeaAndsky ‘orld Test Average

Half Normal Double Normal Normal Double
CPRI1 QNINS 0144 0.107 0.096 0.600 (VIR [TIREE
CPR2 0.184 0.137 0.127 0.590 ; 0.314 0.369
CPR3 0.178 0.168 0.154 0.582 0.279 0.330 0.301
CPR4 0.231 0.176 u.142 0.682 0.319 0.307 0412
CPR4 Enhanced QNNS 0.227 0.228 0.152 0.693 0.:304 0.398 0.341
CPR4 3 Bin QMN 0.137 0.114 0.611 0.3:04 0304 0.350
CPR4 0.172 0.1149 0.689 0.364 0108 0.431
CPR4 0.213 0.134 0.647 0.393 0113 0.382
Base MNS MNS 0.103 0.105 0.227 0.212 0.245 0.232
RGB Histogram Hisvogram 0.331 0.332 3 0360 0.367 0.3649
ccv 0.309 0.310 0.410 0.-108 0.407
MCCV MCCN 0.370 0.351 0.300 0413

TABLE C.G: QMNS Variations - Average Precision lor Calegories

_ Overall

0.3006

Retrieval Algorithm Database Retrieval Time (s)
Halfl Scale Normal Scale | Double Scale
Min A Max Alin Avg
CPR1 WQMNS 9.299 11 3 1z ) thAno 11649
CPR2 QMNS 9 11.479 13 4406 11 G50
CPR3 QNMINS 11.417 13 9.435 11.575
CPR4 QMNS 11.418 13 £ 7 11.6756
CPR4 Enhanced QNNS 10,589 1 B.hOK 10.624
CPR4 3 Bin QN 3 11.387 ki
CPR4 5 Bin QN 11.392 13
CPR4 Rapid QMNS 1.370 1
Base MNS Base NINS 14,086 0.
RGB Histogrom RGB Histogram 0.197 0.12¢
cCv cev 0.463 0.467 0118
MCCV MCCV My B ss  6 Lahi| 0493

TaBLE C.7: QMNS Variations - Minimum, Average and Maximum Retrieval Times




Appendix D

Categorisation of Features

The QMNS algorithin, as a general purpose global colour feature, produces three modes
of RGB colour feature, corresponding to patches in the image that contain one, two
or three dominant colours. These result in feature tuples that contain three, six and
nine floating point values. Both QMNS and the Candida cell feature have variable sized
signatures that are composed of multiple features, whercas otlier features define only
one fixed length feature. The RGB histogram defines a vector i1 which the value of eacli
component is the number of pixels that occur in one particular region of RGB space.
Typically these regions are created by evenly dividing the space into regular cubes -
as in figure D. This process is known by a number of different names - quauntisation.

discretisation and binning.

The CCV histogram contains two vectors, which count the coherent and the incoher-
entpixels, by quantising both RGB feature spaces according to the same paranieters. All
three algorithms can be classed as global colour features. They are global in the sense
that the resultant signature contains no reference to the location within the image of
the features. Whilst QMNS divides the image into patches whilst processing and so may
seem to perform localisation functions this is analagous to the histogram operation of a
histogram as it scans across the image. CCV also segements the image, but again the

spatial information recorded is lost when the two parts of the iinage are histogrammed.

The degree to which a feature is narrow, or broad, is important when generating a
suitable signature for storage, and when retrieving documents from a collection, however
all features carry a certain amount of information and have a certain size. This needs
to be considered when determining the size of the index for a collection and the speed

in which documents can be indexed and retrieved.

FiGUureE D.1: Simple quantisation of RGB space
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Figure D.2: Information Coding: a. A discrete, noiseless, channel. b. A discrete
channel with noise. ¢. A document retrieval system as a filtered information channel.
a and b adapted fromn [123]

D.1 The Information Transformation of Features

We have determined that of all the different types of features (be they extracted from
images or other media) some provide very specific information that can be used only in a
certain context, or domain, and others provide very general information that can be used
in very broad domains. This leads us to examine the information transformations that
occur from document to feature, from an information theoretic point of view. Chapter
3.1 introduced the concepts of multimedia information systems as a system for storing
and retrieving documents according to a particular information requirement. The ar-
chitecture of a typical MIS was presented in section 4.2, figure 4.2, showing the flow
of information through the system. This high level semantic description of information

flow can be reduced into a very simple description by using information theory.

Shannon’s seminal work on the mathematical theory of communication, [123], defines
the simplest form of discrete communication as a system where information is encoded,
transmitted and decoded. Figure D.l.a and b shows this diagrammatically. In the
channel, over which the information is transmitted, an additional factor is taken into
account - noise. Shannon’s work was written in the 1940s, when digital electronics
were just starting to appear, and transmission over noisy communication media was an

important factor of their work. The noise corrupts the information so that when recoded
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at the end of the channel it is incorrect in some way. The noise effectively filters the

information randomly ! transforming the information.

When we wish to find information in the form of a document from a collection of doc-
uments we are doing two things (phrase this better). Firstly we are looking at each
document to determine its information content, and then we are evaluating, according
to some query criterion, whether that document satisfies our information needs. We are
encoding each document in some manner? - perhaps simply reading the title, or another
proxysuch as the abstract, to determine the significant concepts contained within, aud
then filtering it according to its relation with the queryv concepts. Figre D.1.c enhances
Shannon’s notion of information travelling across a physical medium to that of infor-
mation retrieval. The information source of the original schematic is now a corpus of
documents, which are encoded (and stored) by feature extraction and indexing algo-
rithms. A query document is also encoded in the same manner. and acts as a filter on
the indexed documents, selecting those that are desirable. This may seem to oppose the
notion of noise since that is considered to be a bad thing, vet in reality noise is merelv *
the entropy of the channel, and other external systems, trausforming the signal. and can
be managed and dealt with effectively. The filtered, encoded, document information is
then decoded to form complete documents again. Whilst this may be as simmple as using
each document identifier to retrieve the document from a database, conceptually there
is a form of decoding occuring. The resultant information then is the set of documents

that, hopefully, will be semantically coherent with the query.
The questions that Shannon was asking about communication are also perfectlv applica-
ble in this context (this excerpt taken from Weaver’s section in [123]:

¢ How does one measure an amount of information?

¢ How does one measure the capacity of a communication chiannel?

e The action of the transmitter in changing the message into the signal often involves
a coding process. What are the characteristics of an eflicient coding process. And
when the coding is as efficient as possible, at what rate can the channel convey

information?

D.1.1 The Size of a Document

In discrete information theory the base unit is the bit, able only to indicate the pre-

sense or absense of one symbol. In communications one symbol is useless, however when

1This is not entirely true, since much of the noise is in a pseudorandom form, created by the entropy
of the channel and from other transmissions that are picked up in the electrical (or whichever medium)
characteristics. Much of this noise was shown to be in a fractal form by Mandelbrot and later (?) Cantor.

2There is also an inherent form of decoding - that of transforming the symbols that lie on the page
into words and in turn into concepts within our brain
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bits are combined together to form a sequence thiat represents other symbols they have
meaning. The internal organisation and operation of all modern computer and conunu-
nication systems can be reduced down to bits. which allows us to calculate the amount

of information stored in documents.

In order to determine the size of a particular document in a particular mediuni we must
not look at the size of the file on the computer - this is already an encoded form of the
information, possibly already compressed, possibly containing much redundant infornuna-
tion. Instead we must consider the different combinations of svmbols available in the
document. A text docunient contains many syviubols - the alphamumnerics. punctuation.
parentheses, currency symbols and many more. The alphabet used creates a particular
problem since we must consider whetlier or not we are counting upper and lower case as
different symbols. This will depend on whether or not the the recipient of the document
at the destination needs to have the svmbols or not. Old teletype and telegraph systeins
encoded one alphabet and used a shift svmbol to indicate that the following character
would be in upper case. In the ASCII sviubol set both upper aud lower case characters
are included, as well as various punctuation, international and mathematical symbols.
ASCII also includes 32 symbols to control the channel and the cursor, although many

of these are now redundant.

A typical document retrieval syvstem will not have to ever try to decode the encoded
information Leld in the index because it will always have direct access to the original
document, and so we only need to encode. Tlis has a distinct advantage 1 that we
can afford to lose more information than would be possible across a traditional chanuel.
Section 2.4.2 describes in detail how the indexing process from text document to coni-
plete index works, and so the final representation of individual words stored in the index
is the only important factor. It should be noted that this discussion considers only the

simplest text index - at the expense of those that index all combinations of symbols.

The raw size of a document in bits will be equivalent to thie number of symbols in the

document multiplied by the number of bits required to encode those symbols.

dys = dsymbl.Og‘z 1044 (Dl)

An ASCII text document with 6000 symbols will therefore have a raw size of 6000l0g, 10128 =
768, 000bits.

Whilst images may not seem to be composed of symbols there is a discrete set of the
different possible colours that any pixel may assume, and it is these that form the
information stream*. An image of dimensions 1024 by 768 pixels, in 24bit RGB (8 bits

for each colour channel) would have a raw size of 102476824 = 18, 874, 368bits.
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D.1.2 The Encoding of Documents

The process of extracting features fron1 a document, whether they be text based, or of
some other form, is a process of encoding. It is a form of lossy encoding designed not to
allow transmission of tlie document over a chaunel, but to provide a succint version of

the information in the document for retrieval purposes.

Like calculating the amount of information in an a docunient, measuring the amount of
information in a signature is a matter of looking at the different possible combinations of
data that can be stored. In a vector based signature there must be limits to the range of
values that each component may assume, otherwise the number of choices is effectively
unlimited. If the signature contains integer values tlien its size in bits is equal to the

product of the difference of eachh component’s range:

Spits = H componentupper; — componentlower; (D.2)

i=1..1

If the signature contains continuous values, or near coutinuous values such as floating
point representations, the size can not be calculated in terms of bits without first some
form of discretisation. It might seem tempting to simplv use the bitwise size of a float
value, which is typically Xbits, however a float is already in an encoded format and
wouldn’t represent the raw data properly. By quantising eacli component at the highest
resolution that will ever be required then the amount of information in the signature can
be calculated. Alternatively this value could be calculated using Shannon’s continuous
measurements of information[123|, which is beyond the scope of this thesis. These two
expressions allow us to calculate the amount by which a document is comnpressed by
the indexing process. Equation D.3 shows this ratio in the case where multiple features

(denoted by the subscript 7) are used:

Z‘i:l..i Sbhilsi

o
deom P Yo = ]
Upit s

(D.3)

D.1.3 The Capacity of a Document Retrieval System

Communication theory defines capacity as the amount of information transmitted per
second, in bits per second, along a communication channel. Capacity is important since
it allows us to measure the number of symbols (not just bits) that can be transmitted per
second. Taken from Weaver's contribution to [123], the following paragraph describes a

fundamental theorem for a noiseless channel transmitting discrete symbols:

This theorem relates to a communication channel which has a capacity of C'

bits per second, accepting signals from a source of entropy (or information)
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of H bits per second. The theorem states that by devising a proper coding
procedures for the transmitter it is possible to transmit symbols over the
channel at an average rate ® whiclh is nearly C/H . but which, no matter how

clever the coding, can never be made to exceed C/H.

The capacity of a document retrieval system is therefore equivalent to tlie average re-
trieval time for a query, which concerns the number of documents that can be retrieved
from the index per second. The relevancy of retrieved documents is not an issue here
since we are not measuring the indexes ability to discriminate between documents based

on the query.

3Footnote from [123]: We remember that the capacity C involves the idea of information transmitted
per second, and is thus measured in bits per second. The entropy H here measures information per
symbol, so that the ratio of C to H measures symbols per second.
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QMNS, CCV and RGB
Algorithm Data
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Histogram 3 27 25 0.926 10435 13.6 54.28% 416.64 0.113 (0.6298 0.216
4 64 56 0.875 17062 22.2 39.63% 303.5 0.126 0.8080 0.237
5 125 105 0.840 25300 32.9 31.33% 240.19 0.119 0.8907 0.317
10 1000 689 0.689 03486 121.6 17.64% 208.52 0.245 0.9847 0.441
15 3375 2116 0.627 214469 278.9 13.18% 135.46 0.440 0.9944 0.407
30 27000 14739 0.546 0918331 1194.2 R.10% 62.59 2.091 0.9985 0.503
60 216000 102567 0.475 3694780 4804.7 4.68% 36.02 10.259 0.9994 0.538
100 1000000 407407 0.407 8289981 11560.44 2.81% 21.82 26.380 1.0000 0.543
127 20-18383 75415] 0.368 128182h8 16683.4 2.21% 16.99 47.978 1.0000 0.543
200 &000000 1166126 0.146 16790377 21845.01 1.87% 14.398 42.780 1.0000 0.539

255 16581375 1317793 0.079 18033673 23450.8 1.78% 13.6818 1.0000
CcCv 1 16 16 1.000 71431 9.66 60.407 463.31 1.42 0.7408 0.137
2 128 100 0.781 21066 27.39 27.397% 210.37 0.82 0.9051 0.331
3 1024 569 0.556 65487 85.16 11.97% 114.92 1.37 0.9839 0.460
4 R192 3151 0.385 248115 322.74 10.24% TR.68 1.58 0.9954 0.485
5 65536 18932 0.289 1053326 1369.73 T.24% 55.61 4.42 0.9969 0.496
6 524288 120182 0.229 3303475 5406.67 4.50% 27.83 25.18 0.9980 0.584
7 4194304 T68653 0.183 12980550 16879.78 2.20% 16.89 72.52 0.9978 0.573
8 33554432 1365400 0.0:11 18069169 23497.36 1.72% 13.25 182.48 0.9976 0.574
QNINS 5 1.97E4+06 3173 L.61E-03 65881 &7.39 2.75% 19.469 0.9952 0.471
10 1.00E t 09 19762 1.97E-05 149916 194.95 0.99% T.586 0.9991 0.513
15 3.RAE+10 44439 1.16E-06 219043 0.64% 4.929 0.9973 0.513
20 5. 12E+11 T 3 1. 42E-07 0.50% 3.844 0.9966 0.521
25 3.RIE 12 102454 2.69E-08 0.42% 3.214 0.9972 0.518
30 1.9TE+ 13 130410 6.63E-09 0.37% 2.857 0.9977 0.513
35 7.8RE+13 156893 1.99E-00 411580 0.31% 0.9982 0.522
40 2.62E + 14 182865 6.9RE-10 448042 0.327% 0.9989 0.517
45 7T.HTEA414 205302 2.7T1E-10 AR1342 0.30%% 0.9994 0.491
50 1.95E+4 15 226090 1.16E-10 51 0.29% 0.9999 0.498
55 4.61E+15 245529 5.33E-11 0.29% 1.0000 0.489
60 1.01E+16 263031 2.61E-11 0.28% 1.0000 0.496
65 2.07TE+16 278696 1.35E-11 596991 0.28% 1.0000 0.470
70 4.04E-+16 293432 7.27E-12 622592 0.28% 1.0000 0.446
75 7.51E4+16 307399 1.09E-12 646882 0.27% 1.0000 0.435
&0 1.34E+17 320614 2.39E-12 669412 0.27% 1.0000 0.424
85 2.32E+17 333407 1.14E-12 6RIO9GH 0.27% 1.0000 0.407
90 3.87TE+17 346128 R.93E-13 T10932 0.27% 1.0000 0.376
95 6.30E+17 358412 5.69E-13 730133 949.46 0.26% 1.0000 0.365
100 1.00E+ 1& 371008 3.71E-13 748441 973.27 0.26% 1.0000 0.359
255 4.56E+21 TI6195 1.57E-16 998235 1301.48 0.18% 1.0000 0.216

TABLE

E.1: Complete Feature Vocabulary Data - RGDB Ilistogram, CCV ITistogram and QNNS
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Glossary

ACI

agent

Artiste

ASCI

bin

bio-metric

bit

bitvector

blog

acronym Autonomous Citation Indexing. The extraction of citation (bib-

liographic) information from academic documents.

An instance of the agent computing software paradigm. An agent is typified
by its ability to communicate and exist in lieterogenous environments, its
social behaviour and its artificial intelligence, with which it seeks to achieve

certain preordained goals.

project A european project to develop a digital library for archiving, analy-

sis and retrieval of paintings.

acronym American Standard Code for Information Interchange. A 7 hit

code.

A single, contiguous, volume in feature space partitioned by some manner

of quantisation.

Some element of people which can be used to uniquely identify them: Fin-

gerprints, irises, gait.

1. Information Theory A binary digit can indicate the presence or absence
of just one symbol.
2. Flectronics An electric signal that is typically either a high voltage - 1,

or a low voltage - 0.

abbr. Weblog. An online, public, diary onto which is published the incon-

sequencies of the lives of some individuals.
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(@}

C

capacity  (bps) The amount of information transmitted per second by a communica-

tions channel.

CBR acronym Content Based Retrieval. The process of retrieving documents

based on the informational content that they contain.

centroid The centre of a cluster of points in n-space, often defined as the point ob-

tained by calculating the average value for each component.

cue Of the senses: a sparticular sign. Often accompanied by the sense - e.g.

visual cues.

D

Dewey decimal A system invented by X Dewey in the latter 19th century for manual

cataloging of books.s.

document A ordered, coherent, collection of information with a common concept, most
often considered as being in writing, but may be in any form of media, and

is most often a combination of media.

document frequency The number of documents in a corpus in which a particular tern

occurs.

E

exhaustivity The degree to which a term, document, or index is able to include a wide

range of topics.

F

feature 1. A high level element of an image, as in global colour feature.
2. The data produced by a feature extraction algorithm, as in feature in-

dering.

finite state machine A mathematical model, where different states of execution can

be entered and left according to predfined rules.
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G

generic link A type of hypermedia link which provides as targets a list of documents

returned by a CBR search engine using the link anchor as a query.

granularity A measure of the amount of detail stored in an index. A coarse index will
merge terms and synonyms together using morpliology, lLelping to reduce

storage. A fine index will store all terms.

H

hitlist The ranked results of a query, normally ordered by similarity to the query

item. A hitlist will typically include a numerical similarity score.

homogenous In computer vision, a property of a collection of .

L

linkbase A database containing links from document to docuiment, which avoids direct

references in the documents themselves, helping to avoid broken links,.

MIS Acronym Multimedia Information System. A complete system for multime-
dia document management and retrieval. Will typically contain integrated

CBR components.

morphology . See 2.4.1.3.

N

negative dictionary A list of noise, or stop-words. Also known as a stop-list.

P

PACS Acronym Picture Archiving and Communication System. MIS used in the
medical industry.

pixels acronym A Picture element. The smallest individual component of an

image.

power of discrimination How well a term, or query, is able to discriminate between

documents of different topics.
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proxy A succint description of a document that provides a good description of the
entire content. The terms in a text document proxy are typically weighted

more than others in the document.

query In information retrieval, a question provided to a search engine that should

return a hitlist of similar documents.

query by humming A audio query paradigm that allows a user to hum the pitch

changes of a desired tune. Analogous to query by sketch in audio.

query by sketch A image query paradigm that allows a user to sketch the outline of an
object which is required from the database. Analogous to query by humming

in audio.

R

registration The process of fitting a model to an acquired image source, used, for
example, when overlaying a 3D model of a scene of a video of parts of the

scene.

RTF acronym Rich Text Format. A simple text markup language that allows

limited control over fonts and layout.

S

Sculpteur acronym Semantic and content-hased multimedia exploitation for European
benefit. A three year European project to research and develop a systemn
for multimedia information organisation, storage, and retrieval of iteins aucd

artifacts held in museums. www.sculpteurweb.org.

segment  The process of grouping homogenous regions in an image that are deemed

to represent part, or the whole, of an object in the depicted scene.

snake A visual segmentation device that uses a combination of heterogeneity con-
strains on pixels and energy functions to iteratively adapt itself to an objects

outline.

specificity The degree to which a term, document or index is able to focus? on a

particular topic.

stemming A particular application of morphology where syntactic pre- and post-fixes

are removed to reveal the underlying root meaning of a word.
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fein ]
[os]

stop-list  See stop-words.

stop-words Terms in natural language that are functional words (i.e. A, THE, IT, OF
ETC ) with a correspondingly high frequency count, and as such have a low

power of discrimination. Also stop-list.

T

template matching A simple, but useful, technique for identifying objects in images
by moving a template of pixels over an image. At each location in the image
the number of pixels matching the template are counted, and where the

count exceeds a threshold the object is deemed to exist.

TFxIDF Term Frequency times Inverse Document Frequency A docunient
vector similarity heuristic.
Vv

vocabulary usage The ratio of distinct terms present in a corpus to the total possible
vocabulary. In natural language the total vocabulary is taken from a fixed

source, eg a dictionary contemporary to the corpus.

Z

Zipfian A rank-frequency distribution that when plotted on a log-log scale has a
log-linear slope that is near to -1.0.

Mathematical Definitions

d; Document j from the set of all documents, D in a corpus.

df; The document frequency - the number of docunients in which term ¢; occurs

at least once.

qry The relative term frequency given to term ¢; in the query.

qu; The weight given to term ?¢; in the query.

Tij The relative term frequency given to term ¢; in document d;.

t; Term i from the set of all terms, T that are present in a corpus, or index.
tfis The frequency of ¢; in document d;.

in; The number of terms in document j.
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v The set of all possible terms.

wij The weight given to term ¢; in document d;.
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