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The use of feature detection is a standard process within the computer vision community
for simplifying a complex image to a more manageable representation. Feature detec-
tion is typically applied to individual images, even if they are a part of a more extensive
image sequence. In this thesis we present new methods for feature detection via phase
congruency, applied to image sequences. This work shows the improvements that can be
gained from taking an image in its context. The first section of work focuses upon ex-
tending a previous feature detector, phase congruency, to operate on an image sequence.
This new technique shows improvements in the robustness of the feature detector under
increasing levels of noise. It also improves feature orientation description allowing for
the component velocity of a feature to be evaluated. After further evaluation however
this method produced undesirable results for fast moving features. In response to this,
a novel method for evaluating phase congruency has been developed. The new method
is achieved by modelling the filtering process used to derive phase congruency by mea-
suring the standard deviation of the normalised energy response. Accordingly, the new
method is termed statistical phase congruency. This new approach is implemented first
for 2-D images, showing improvements over the initial image-based phase congruency
technique. Furthermore, it is extended to detect time persistent features in image se-
quences whilst also providing improved results for detecting fast moving features. It is
intended that the results of this work will provide a basis for detecting time persistent
features under noisy conditions. The final portion of this thesis gives some conclusions

and adds some direction for future work on these ideas.
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Chapter 1

Context and Contributions

1.1 Feature detection

Feature detection has been an area of research within computer vision for a number of
decades. The aim of feature detection is to reduce a complex image to a line drawing
or similarly abstracted image. Initial operators[24] were simple kernels convolved with
the image in question, such as the Prewitt, Roberts or Sobel operators. Since then
detectors have been designed for different environments and different ‘ideal’ features.
Canny|[9] first stated three key design criteria of non-spurious response, single edge re-
sponse, and correct location. Other important approaches with alternative bases include
Spacek[30], Petrou[27], and Marr-Hildreth[18]. Each of these took a different view on
what an important feature was, for example selecting ‘step’ features, or ‘ramps’, or al-
ternative differentiation paradigms. Other approaches have used cues from human and
biological vision. These include using statistical methods to ‘learn’ what is perceived
as a feature from a human perspective [15]. Further cues have also been gained from
work by Morrone[22] showing that humans respond to points of high underlying phase
congruency. This enables explanation of work by Kovesi [16], which detects features
based upon measuring this phase congruency. Examples of phase congruency are shown

in figure 1.1.

These detectors differ in cost and performance, and have extensions to modify their
behaviour. A common extension is that of sub-pixel feature detection, where the ‘feature’
is said to be positioned off the normal pixel grid [29]. Some operators are more robust,
at the cost of computational effort. It is for these reasons that work continues in this
area to allow the available choices when approaching such diverse problems as facial
gesture recognition, automotive tracking or medical imaging to be broad enough for an

acceptable solution to be found.

With the increase in computing power, it is becoming possible to process images in

sequences. Much of the work within this thesis is particularly concerned with detecting

10
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(a) Square wave (b) Triangle wave (c) Impulse wave

FIGURE 1.1: Three example waveforms showing high phase congruency highlighted by
circles. Figures 1.1(a) to 1.1(c¢) show the component frequencics that the waveforms
can be built up from. In the highlighted regions it is possible to see the component
frequencies align and become phase congruent, even though their amplitudes are very
different. In figure 1.1(a), an example of high phase congruency can be seen at the
edge of a step function, and in figure 1.1(b) at the peak and trough of a triangle wave.
Figure 1.1(c) also shows the occurrence of high phase congruency at the centre of an
impulse function. In this way, features can be derived from phase congruent signals.

features within a sequence, both from a previously established single image feature

detector[16], and also a detector described within this thesis.

Since we are concerned with extracting information from image sequences, the area of
optical flow or motion estimation has also been instructive within the work. Optical
flow estimation was first formulated by Horn and Schunck [12]. The initial ideas of
estimating image motion as a low-level operator have been extended to use various
bases of operation. Optical flow techniques can be classified as gradient based operators
(or first and higher order differential methods) [13, 25], correlation based approaches [5],
and frequency based approaches [10, 11]. A number of reviews of optical flow operators
have been conducted [4, 20] comparing these and other techniques on synthetic and real
image sequences. It has been noted that the different types of operator have different
properties, and broadly speaking frequency and gradient-based methods are more tuned
to smaller velocities ( < 2 pixels per frame ), whereas correlation based methods are
better suited to larger velocities and do not have the same apparent sub-pixel velocity
resolution. Both of these problems can be circumvented to an extent with the use of
image decomposition [2], or possibly image expansion/interpolation. These techniques
are the vital first step in describing moving objects and phenomena, but they also give

insight when developing a moving feature detector.

Problems have been discovered in attempting to extract optical flow from an image
sequence. Notably, the aperture problem, formulated by Marr [19], states that when
looking at an image, or part of an image, if it has structure about only one axis, then full
2D velocity estimation is ill-defined. This will particularly affect any effort to detect full

2D velocity estimates of a feature, but should encourage component image velocity[11]
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estimates to be considered acceptable results.

1.2 Time persistent feature detection

Although computer vision has been analysing image sequences for many years, the most
commonly taken approach to detecting features that persist over time is to apply a
feature detector upon individual frames, and then apply some method of tracking. This
approach typically uses spatial correlation to assist in the detection of features, but
does not take advantage of temporal correlation, i.e. the time persistency of features,
until after the feature detection is finished. This temporal correlation could enhance the
process of feature detection itself, rather than just being used to filter out features that

do not persist over time.

There have been few attempts at detecting time persistent features. The closest to this
thesis is that of Mulet-Parada[26], who developed a moving feature detector for use in
echocardiography. This was based initially upon the work of Kovesi, and the concept
of phase congruency, but removed the use of multiple scales and used the log-Gabor
framework to measure asymmetry as a measure of ‘edge’ strength that was robust to
noise. This is in contrast to this thesis that maintains the multi-scale approach and

detects features independently of their symmetry.

Techniques for detecting motion boundaries, such as Mitiche[l], Spoerri[31] or Lui[17],
are closely related to time persistent feature detection. Time persistent feature detection
however, concerns an ability to detect features within an object that move with the same

velocity as its surrounding region.

Other work exist in detecting features or surfaces in 3D, such as Pudney’s surface detec-
tion via local energy and ridge tracking|[7, 28], and Monga’s recursive filtering technique
in 3D [21]. There have also been discussions as to the most appropriate method for
extending the Sobel operator[14, 6, 8] into 3D. Each of these detectors ignores the prob-
lems associated with the object’s movement and not forming smooth surfaces in the

2D+T domain, an aspect this thesis overcomes.

There are a number of compelling aspects to detecting time persistent features. Firstly it
is expected that a time persistent feature detector will be more robust to noise, extending
the applications of computer vision into more difficult environments. Secondly, it also
provides additional information with regards the velocity of a feature by describing a
feature’s spatio-temporal orientation. Detecting time persistent features may also help
in the detection of optical flow by providing the motion boundaries within an image
sequence. All these reasons mean that a time persistent feature detector could be a very

useful commodity within the computer vision community and beyond.
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1.3 Thesis overview

To summarise this thesis, we begin with background information into two previously
published techniques. We describe the phase congruency operator, a robust feature
detector, in section 2.1, and a moving feature detector in section 2.2. The contributions
associated with this work are presented in three sections, firstly the temporal phase
congruency operator, a new extension in time to phase congruency, is presented in
chapter 3. Chapter 4 describes a novel approach to measuring phase congruency that
specifically attempts to avoid some of the pitfalls of the earlier approach. This is then
extended into 2D+T and shown to be useful as a time persistent feature detector in
chapter 5. We finish with some final conclusions as well as some ideas for future work in
chapter 6. Appendix A also includes work into using time persistent feature detection

to help reduce blur in optical flow, which provided motivation for this work.

1.4 Contributions

A number of papers have been written in the course of this research: these are listed
below. The first is included in Appendix A as part of the motivation for the thesis as a

whole, but is not an integral part of the thesis itself.

P.J. Myerscough, M.S. Nixon, and J.N. Carter. Guiding optical flow estimation. In
R. Harvey and J.A. Bangham, editors, British Machine Vision Conference, pages 679—
688. British Machine Vision Association, 2003.

P.J. Myerscough and M.S. Nixon. Temporal phase congruency. In Proceedings South-

West Symposium on Image Analysis and Interpretation, 2004.

P.J. Myerscough and M.S. Nixon. Measuring temporal phase congruency. In Proceed-
ings Symposium on Spatiotemporal Image Processing. British Machine Vision Associa-
tion, 2004.

P.J. Myerscough and M.S. Nixon. Estimating the phase congruency of localised fre-

quencies. In ProceedingsIEEFE International Conference on Image Processing, 2004.



Chapter 2
Background

The material provided in this chapter gives not only a technical background to this thesis,
but also provided some of the motivation for the thesis itself. Section 2.1 describes phase
congruency, a robust feature detector, and our extensions to it. Section 2.2 describes
the work of Mulet-Parada, who began to extend phase congruency into 2D+T, but
in focusing on an application specific feature type removed much of the framework of
the original phase congruency technique. It is included here as a motivation and an

introduction into time persistent feature extraction.

2.1 Phase Congruency

Phase congruency is a robust feature detector. It detects not only step and line re-
sponses, but also a broader set of features [3]. Its robustness is found in its ability to
detect features in images with high levels of noise. Its other attributes include a high
degree of invariance to lighting variation within images and a normalised measure of fea-
ture strength. This thesis extends the phase congruency technique to work with image

sequences.

The technique’s main premise is that points of interest or features within an image can
be highlighted by finding points in an image that have a high degree of phase congruency.
The technique combines the measurement of phase congruency with a number of checks
and balances. The first is that any feature must be composed of a spread of frequencies,
this prevents pure sine waves from being detected as features. The second is that images
typically contain noise, and it is helpful to be able to estimate the level of that noise so

as to compensate for its effect.

Phase congruency is measured as a 1D phenomenon that occurs within 2D images. The
approach of applying 1D feature detection is similar to the Sobel operator, in that there

is a primary feature detector that is convolved with an orthogonal spreading function. In

14
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phase congruency the primary method of feature detection is the relationship between a
series of quadrature filters, see equation 2.1, that are convolved with a number of different
orthogonal Gaussian spreading functions, see equation 2.2. This produces filters with
different central wavelengths and orientations of interest. They are then grouped into
sets of filters by orientation and used to generate a measure of frequency spread and a
noise estimate per orientation. The combination of phase congruency and these other
two measures proves to be a robust feature detector that is invariant to lighting variation

across an image.

The following sections describe an initial naive measure of phase congruency (sec-
tion 2.1.1), how to measure frequency spread (section 2.1.3), a method for estimating
noise in images (section 2.1.4), and with a final section on how they are all combined to

provide phase congruency as presented by Kovesi.

2.1.1 A Naive Measure of Phase Congruency

Phase congruency can naively be measured by convolving a set of filters with an image,
and calculating the difference between the absolute of the sum of the filter responses
and the sum of the absolute responses to the filters. The filters used are described
in equation 2.3. This equation uses two filter types, one a log-Gabor filter with ‘AL’
different central frequencies, ig(---), and the other a Gaussian filter with ‘L’ different

orientations, Ga(---). These act along two orthogonal axes.

—(log(w/wm))?

Lo 2(10g(8)?2 w#0
lg(w,wm) = 2mo (2.1)
0 w=20
Ga(6,8 L 2.2
a(b, = e 2% .
1g2D(0,w,0;,wm) = Ga(0,0))lg(w,wn) (2.3)

where 6 and w are the spatial angle and frequency axis, 6, is the filter’s angle of focus
spatially and wp, is the centre frequency of the filter. o5 controls the spread of the filter
about the spatial angle axis. 3 is a constant describing the bandwidth of the filter. The
filters must be constructed in the Fourier domain because the log-Gabor function has a
singularity at w = 0 because log0 is undefined. It is also worth noting that the filters
in the form presented in equation 2.3 are a combination of a cosine and a sine based
log-Gabor filter, and the response from each is separated into the real and imaginary

parts of the response.

To measure phase congruency, PC, about a single orientation, #;, using these filters one

could use equations 2.5 and 2.4.
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Rn(z,y) = F1[g2D(0,w,0;,wn)] (z,y) * image(z, y) (2.4)
M
| > Ru(z, )l
PC(z,y) = — = (2.5)
Z |Rn(z,y)| + €
m=1

where R,, is the response to the convolution of the image with the mth filter of M
different central frequencies and ¢ is used to prevent divisions by zero. The processing
of different spatial orientations separately to calculate feature strength suggests that if
the correct spatio-temporal filters are constructed measuring temporal phase congruency

in a spatio-temporal framework would be possible.

2.1.2 An Improved Phase Congruency Measuring Function

Although equation 2.5 is able to distinguish between points of high and low phase con-
gruency, differences are very small between degrees of phase congruency, when the level
of phase congruency is high. Kovesi therefore proposed an improved function that used
the cross and dot products between the cosine and sine based responses and the mean

phase angle. This is presented in equation 2.6

M
Y Am(z,y) (cos (Am (z.y)) — | sin (Mg (z,9)) |)
iPCi(z,y) = "= W (2.:6)
Z An(z,y)+¢

where A, (z,y) is the magnitude of the response of the complex pair of log-Gabor filters
and is equivalent to | Ry, (x, y)|. Ay, is the difference between the phase of the mth filter,
ém(z,y), and the mean phase, ¢(z,y). This improved measure of phase congruency
provides a more linear variation in iPC; with respect to changes in the underlying
phase congruency in an image. This is not though the final form for measuring phase
congruency that Kovesi presents, but it is the basis. There are additional factors of a

measure of frequency spread and an estimate of noise in the image.
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2.1.3 Measuring the Frequency Spread

Although a useful method for measuring phase congruency is shown in eqn. 2.5 it also
detects high degrees of phase congruency when only one frequency is present in an
image, for example a sine wave. Since this is an undesirable response, Kovesi developed
a method to measure the frequency spread. Measuring the frequency spread uses two
functions. The first provides an estimate of the frequency spread itself, and the second
weights that measure to provide a more useful value. The measure of frequency spread
is again calculated on a per orientation basis, with different filters varying by their

wavelength. Here wy,(z,y) is calculated as

M
Z |R7H(I>y)‘
wm(z,y) = m=1
o (M| Rmaz(z,y)| + €)

(2.8)

where |Ry,(z,y)| is the absolute of the response to filter m and |Rpaz(z,y)| is the
maximum absolute response for all the filters from all M central frequencies. ¢ is a
small constant used for avoiding division by zero which ensures that if the amplitude
at a pixel becomes too small it is masked out. This is then mapped through a sigmoid

function to produce W, (z,y) the measure of frequency spread.

1
1 _|_ e(C_1U771(Isy))g

where ¢ and g control the mapping of wy,(z,y) to Wi (z,y). Win(z,y) is then used to
calculate the more robust implementation of phase congruency in section 2.1.5. Before

this calculation is possible, an estimate of the noise within the image is calculated.

2.1.4 Calculating an Estimate of Noise in an Image

An estimate of the noise in an image is needed to reduce the amount of spurious re-
sponses that are produced by phase congruency. The estimate allows phase congruency
to detect features that occur above the estimated noise’s energy level whilst still not
using energy specific feature detection. To provide this estimate of noise within an
image, 7', an orientation specific noise threshold is calculated. This is based upon a
number of assumptions. These are that the noise is additive, that its power spectrum
is even across the image, and that features occur infrequently within an image. Kovesi
uses the estimated noise level in an image by subtracting it from the estimates of phase

congruency.

To estimate the noise level, Kovesi considers the noise to be zero mean additive Gaussian

noise. The mean magnitude of the noise is therefore a Rayleigh distribution described
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in equation 2.10

_z2

x

X(z) = —e*& (2.10)

e

where z is the magnitude of the noise and oré is the variance of the Gaussian. The mean
of the Rayleigh distribution and therefore the mean level of noise, px, and the variance

of the noise, Ug(, is defined in equations 2.11 and 2.12.

ux = ocy/3 (2.11)
4 —
ok = Qwaé (2.12)

where both equations depend upon O‘é, the variance of the zero mean additive Gaussian
noise, which is an unknown quantity. To estimate O'é Kovesi considers the expected
value of the energy taken from the norm of the cosine and sine based filter pairs. The
expected value of the energy squared is equivalent to twice O‘é. The expected value can

then be calculated from the filters and filter responses used in the rest of the technique.

E(E?) = 2|3]°E (Z N,%) +4l51°E | Y NN, (2.13)

1<g

where E(E?) is the expected value of the squared energy responding to noise from all
the filters used per orientation in phase congruency. N; is the ith cosine or sine based
filter. In the generation of a noise estimate the filters are not used in complex pairs,
but as real valued filters represented here by N;. Finally |§| is the amplitude of the
noise spectrum. This is estimated from the previous assumption that an image contains
infrequent features, therefore the smallest filter used in phase congruency will mainly be

responding to background noise.

512 = —median({A2)/In(.5)

E(4207) (2.14)

where Ag is the amplitude response, or energy of the smallest central frequency filter.
The median value from all the responses in Ap from an image is used. This helps to
avoid the outliers generated by the actual features in the image. [g2Dq is the smallest
sine and cosine filter. The resolution of |§|? allows for the full calculation the mean noise

energy, px, and its variance, oxy. These two quantities are then used to define a value
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T, see equation 2.15, which is subtracted from the absolute sum of responses.

T=px+kox (2.15)
where ox is multiplied by & to allow for different percentages of the noise to be sub-

tracted, a value of between 2 and 3 allows for 60-90% of the noise to be removed, but

also adds a slight bias to the resulting phase congruency estimate.

2.1.5 Calculating a Robust Measure of Phase Congruency

The phase congruency, PC, at each orientation, P(Cj, is calculated from the sum of the

log-Gabor filter responses, R;.

M
Z LAm(z, y)pem(z,y) — T] Win(z, y)
PCy(z,y) = == — (2.16)
Z Am(I, y) +e
m=1
pem(z,y) = cos(A¢m (z,y)) — |sin (Ady, (z,v)) | (2.17)

where ¢, (z,y) is the phase at point (z,y) for central frequency m and ¢(z, y) is the mean
phase across all filters at that point. The use of | | denoted that if the quantity is negative
it is set to zero. The sum is thresholded by the noise level estimate, T', and scaled by the
measure of the spread of the energy mapped through a sigmoid function, W,,(z,y). This
is then divided by the total energy at the chosen orientation to produce a measure of
phase congruency, PCj, for that orientation. The choice of central frequencies depends
on the size of the features of interest in the images undergoing feature detection. The
difference between central frequencies is typically a factor of two and gives a relatively
good coverage of the frequency domain. The smallest scale is typically three times that
of a feature’s width, so in images where features of interest are a pixel wide then the
smallest scale is 3 pixels. Repeating and summing of the results for the ‘L’ orientations

gives the improved phase congruency measure for the image, PC(z,y).

L
PC(z,y) =Y  PC(z,y) (2.19)
1

This summing could be changed to a different function that combines the different

orientation responses in a non-linear manner.
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2.2 Feature Asymmetry Information Rich Algorithm

FAIR, an intensity invariant feature detector, has been developed by Miguel Mulet-
Parada and is described in [23, 26]. The technique took some of its inspiration from
the work of Kovesi presented in section 2.1, but explicitly focused upon the application
of feature extraction within the field of echocardiography. The resulting algorithm was
formulated for single frames and sequences of echocardiographic images. The technique
is designed to be resistant to speckle noise and is a phase-based technique allowing it to

work well in the highly variable lighting conditions found in echocardiographic images.

The technique has four stages that are applied to echocardiographic data generating a
rich feature map. The initial stage is a series of log-Gabor filterings selecting different
orientations of data. This is followed by the calculation of an energy independent mea-
sure of asymmetry. The last two stages threshold the data based upon the measured
asymmetry, and extract additional information from the filtering process to describe
the detected feature’s orientation and whether it is a rising or falling edge. This is in
contrast to phase congruency and the work presented in this thesis, which maintains its

ability to detect a broad range of features.

2.2.1 Log-Gabor filtering

The first stage of FAIR is the convolving of a series of log-Gabor filters with the image
data. The filters are constructed using polar co-ordinates in the Fourier domain. The
radial component acting along the frequency axis is a log-Gabor filter similar to that
described in equation 2.1, with § fixed at 0.55. This gives the filter a fixed bandwidth
of 2 octaves. The FAIR algorithm uses filters in just one scale of operation that can
be tuned to get better results. The guidelines given based on the data sets available to
Mulet-Parada suggested the focus, wy,, of any filter to be equivalent to 32-56 pixels. The
FAIR algorithm is designed to be used in equipment operated by a medical practitioner

so this parameter would be tunable by the operator.

Convolved with the log-Gabor filter is a spreading function, spr(---). This allows image
data to be filtered based upon orientation. Mulet-Parada argues that this particular

spreading function allowed for more efficient interpolation of a feature’s orientation.

~(log (w/wm))?

L 2(log(-55))? 0
lg(w,wm) = { VEs© w7 (2.20)
0 w=10

2
spr(6,6) = (1— <M) ) (2.21)

1g2Dparr(8,w, 0, wy) = spr(6,0)lg(w, wn,) (2.22)
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where w is the frequency axis and w,, describes the focus of the filter. # represents
the spatial angular axis with 8; changing value to select filters of different orientations.
This filter can be extended into the 2D+T domain by calculating the angular difference,

6 — 0;, in 2D+T space using a dot product.

These filters are typically multiplied with a Fourier transformed version of the image
data. After inverse Fourier transformation the log-Gabor’s even and odd components
are represented in the real and imaginary parts of the complex result. This allows for a

single inverse transform to calculate results for a filter pair.

The number and arrangement of orientations for the filters is described in section 2.2.3.

2.2.2 Measuring Asymmetry

The detection of points in an image that have a high asymmetry is closely related to
the detection of step edges. Parada uses the measurement of asymmetry in an image or
image sequence to detect the edge of the heart tissue in echocardiographic images. The
first stage of this measurement process involves the use of log-Gabor filters as described
in section 2.2.1. Each filter is produces complex results with the real part containing the
response to an even log-Gabor filter, e(X ), and the odd part contained in the imaginary

part of the response, o(X), where X are the axes; spatial or spatio-temporal.

Equation 2.23 is used to calculate the asymmetry of a point in an image, X. This equa-
tion was shown in Parada’s thesis to have a linearly varying response to the dominant
phase of a feature. A step edge has a phase that is 90° different to an impulse, and
for equation 2.23 is represented by a maximal response. The equation could also be
interpreted in a more interesting manner. Since Parada is interested only in step edges,
convolving the image with a step template would give a good level of step detection. If
we then consider the Hilbert transform of the step we have an impulse like function, we
can then improve our signal to noise ratio by penalising all the image points that match
the Hilbert transform of our desired feature. This evaluation would give |o(X)|— |e(X)],
but with the inclusion of the denominator in eqn 2.23 the results can be normalised to

be between 0 and 1, removing illumance variation in the results.

|lo(X)] — le(X)]
o(X)? + e(X)?

asym(X) = (2.23)

This robust calculation is then applied to the response of each filter pair generating a
measure of asymmetry for each orientation about the chosen single central frequency of
the filters. Since the response of this function to the phase of a feature is linear, Parada
suggests a fixed thresholding based upon the desired variation from a pure step edge’s

response. This value was placed at .9, allowing for a phase variation of £5°.
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2.2.3 Filter Orientation Selection

In selecting a set of filter orientations two criteria were considered important to the
development of FAIR. The first was to use as few as possible to allow for fast processing
of image data. The second was that the responses from the filters should allow for a
more accurate degree of orientation to be assigned to a detected feature. Therefore, it
is important that the set of filters give a unique response to each different orientation of
feature. In [26] it is shown that 277! + 1 orientations are needed for unique responses
from a set of filters, where n is the number of dimensions. In 2D this means 3 filters
spread 30 degrees apart, in 3D (or 2D+T) this means 5 filters, but if 6 are used then

they can be evenly spaced on the unit sphere, see figure 2.1.
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FIGURE 2.1: The focus of the 6 filter orientations used in the 2D+T FAIR algorithm.

It is known that the angular spreading function controls the filter response with respect
to feature orientation. It follows then that if the angular spreading function is fitted
to the data the orientation of the feature can be estimated. To simplify this fitting,
a polynomial spreading function was chosen, see equation 2.21. For the 2D FAIR al-
gorithm, the fitting then becomes a polynomial fit calculable via the pseudo-inverse of
a Vandermonde matrix. In addition since all the spreading functions are known these
matrices can be pre-computed. The nature of this calculation makes it affordable to do
on each feature pixel detected within an image. This technique produced very positive
results when testing. The mean error on a noiseless step was 1.18°, with a standard
deviation 1.17°. This decreased if the number of orientations was increased, although
for many applications this level of accuracy is sufficient, bearing in mind errors that can
be attributed to discretisation of a feature. For the 2D+T FAIR algorithm, a different
fitting method was used. It was commented that there are polynomial fitting algorithms
available to fit a surface to 2D! data, but they are non-linear and were deemed too costly
in computational time for the chosen application. Parada therefore proposed the use of

an ellipsoid fitting function for the FAIR 2DT implementation.

! Although FAIR 2DT works in the 2DT domain orientations are only 2D.
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2.3 Conclusions

Both the techniques presented in this chapter strongly support the work of this thesis.
Phase congruency provides a robust intensity invariant feature detector. In its current
formulation however, it can not be applied to image sequences. This prevents it from de-
tecting features that persist over time, and lacks the benefits for robust feature detection
that temporal correlation gives. It also does not provide the spatio-temporal orientation
or velocity of a feature, stopping higher level computer vision techniques from using
this information. The FAIR algorithm provides insight into extending filters into the
spatio-temporal domain, but is limited to detecting features about a single scale. It is
also only able to detect step edge features rather than the wider range of features of the

techniques presented in this thesis.
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Temporal Phase Congruency

3.1 Introduction

In this chapter we describe the extension of phase congruency into the spatio-temporal
domain. Creating this new temporal phase congruency operator has two main advan-
tages. The first advantage is found in the orientation at which phase congruency can
be detected at a particular pixel. This now describes not only its spatial, but also its
temporal orientation. This is the same as describing its velocity. Therefore all features

extracted with this extended method also have their velocity extracted.

Secondly the technique should be more robust to noise. This gain in robustness is jus-
tified by examining the neighbourhood of a pixel. In one-dimensional space a useful
feature pixel exists in ‘isolation’. In two-dimensions useful features are typically sur-
rounded by supporting similar features allowing spatial techniques to require or benefit
from this neighbourhood support. This improves the signal-to-noise ratio when pro-
cessing an image. Therefore, when considering a point in 2D+T space, the supporting
responses of a point’s neighbours, in both spatial and temporal directions, increase the

robustness of the detection process against noise.

This chapter presents a new extension of phase congruency into the 2D+T domain. Sec-
tion 3.2 describes the new technique, including extending all aspects of phase congruency
into 2D+T and a method for estimating a feature’s primary spatio-temporal orientation.
Results from applying temporal phase congruency to a series of test image sequences are
shown in section 3.3, including sequences highlighting the technique’s response to occlu-
sion and noise, and examining its ability to measure feature velocity. The conclusions
in section 3.4 cover the benefits and limitations of temporal phase congruency, and give

further motivation for the work in chapters 4 and 5.
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Ficure 3.1: Comparison of filter construction methods using Cartesian and polar
co-ordinate systems to define a region in a 2D frequency space.

3.2 Method

We now extend phase congruency to use inter-frame data to enable estimation of time
persistent features with resilience to noise. Kovesi's technique determined features in a
two-dimensional image and used filters that were constructed from a one-dimensional
signal, the log-Gabor function. This is convolved with an orthogonal spreading function,
in this instance the Gaussian function. An additional spreading function (orthogonal to
the two original functions) is used to create a three-dimensional (2D+47T) filter to enable

the detection of time persistent features.

3.2.1 Constructing filters under different co-ordinate systems

In our extension from the spatial(2D) to the spatio-temporal(2D+1) domain, we de-
scribe each stage of the phase congruency operator. The initial stage of the technique is
the filtering of an image sequence. We construct filters using a polar co-ordinate system
in the frequency domain continuing on from the work of Kovesi. These filters are separa-
ble about each polar axis. This approach is akin to successively applying different filters
until a region is selected from the overall domain. In figure 3.1 the shape of the filter in
a Cartesian system shows that it is roughly cquivalent to a square, whereas using polar

coordinates as in 3.1(b) the segment is an arc.

Using a polar co-ordinate system in the frequency domain we extend this from a 2D
system with axes of (w,0) to 2D+T with axes of (w,0,2). In each case w represents the
frequency axis, 6 represents the angle of that frequency with respect to the x-axis on the
x-y plane, and v represents the angle with respect to the time axis. We then take three

orthogonal functions to select particular regions of the 2D+T frequency domain. This
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extends the arc shape in the 2D domain to a patch from the surface of a sphere, like a
time zone of the earth in the 2D+T domain. The first orthogonal function, applied along

the w-axis, is a log-Gabor function as in eqn. 2.3 and repeated here in equation 3.1.

— (log(w/wn ))?

(o}
lg(w,wa) = € =7 w#0 (3.1)

0 w=20

where w is frequency, wy, is the tuning frequency of the filter, and § controls the spread
of the filter. We then use two Gaussian functions as our other orthogonal functions

along the f-axis and the -axis to generate the new filter, (g2DT,.

2
1 —(6-6,)2 —(¥—v¥n)
ZQQDTn(w’ 9» Q/}awn» 9717 wn) = —F7— —F€¢ 2% € 7y lg(w, w‘ﬂ) (32)

A /27r0621 /27roi

where w represents the spatio-temporal frequency, 6 represents the spatial angle of that
frequency and 7 represents the temporal angle. 6, and 1, are the angles the filters
are focused upon, and oy and oy control the spatial and temporal angular spread of
the filters. Generating an even spread of these filters involves tiling the filters in a two
dimensional orientation space. This allows for a wide range of tilings to be used and

still generate an relatively even covering of the space.

An alternative method of interpreting spatial and temporal orientation would be to use
a dot product between a filter’s angular focus (6,,%n) and the remainder of the Fourier
space. This would then generate a uniform shape wherever the filter was focused in
spatio-temporal angular space. This spreading function is described using Cartesian
co-ordinates in equation 3.3 and combined with the log-Gabor function to give an alter-

native filter construction of lgdot2DT,.

60(w w wt) _ COS_l wzwzn + Wy(Uyn =+ wtu)tn
Xy Y — -
\/wg + w2 + wf\/w%n + w2 +w}
1 - (86)*
lgdot2 DT (s, o) = e2e% lg(w,wn) (3.3

Voro?

where w,, wy, and w; represent the frequency domain equivalent of the z-axis, y-axis and
t-axis. The vector (wg,, wy,, wy,) represents the filter’s spatio-temporal angle of focus,
and w, describes the frequency of the filter along the w-axis. A single ¢ controls the
spread of the filter in the angular axes. Arranging filters using this technique to achieve
an even covering of 2D+T space is a packing problem in three dimensions. This limits

the even arrangements of the filters in 2D+T space.
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Using the polar separable construction allows for filters to be spread evenly about the
spatial and temporal angle axes. If the filters were constructed using the dot product
type spreading function then the number of arrangements for evenly distributed filters
is limited to 4, 6 or 10, of which only 6 or 10 are valid if the orientation of a feature is to
be extracted[26]. We have therefore chosen to construct 2D+T filters using equation 3.2
rather than equation 3.3 because it allows for any number of filters to be evenly posi-
tioned. This in turn allows for primary feature orientation to be extracted with five or
more filters. Additional filter orientations should allow for secondary feature orientation
to be extracted. Secondary orientations could occur at junctions of features that are not
intrinsically 1D in nature. Increasing the number of orientations should also increase
the robustness of the technique, if we assume that a feature’s energy occupies a confined
section of frequency space, and noise is broadband in nature. Filters that cover a smaller

part of the frequency domain will therefore have higher signal to noise ratios.

Each filter is then multiplied in the frequency domain with a Fourier transformed version
of the image sequence, and the result is inverse Fourier transformed to obtain the signal
domain results. Previously stated in 2.1 the log-Gabor filters are required to be convolved
in pairs, one a cosine based filter and the other a sine based filter. The above filter is in
fact a combination of both these filters and when inverse Fourier transformation occurs
the sine based results are presént in the imaginary portion of the results and the cosine
based results are in the real portion of the results. This removes the need to perform an

inverse Fourier transform for each filter.

3.2.2 Selecting the filter orientations

There are a number of different schemes for selecting the arrangement of filters. The
initial arrangement was to have each filter separated by 30 degrees spatially and tem-
porally. This allows two schemes to be proposed : one appears to exhibit ‘singularities’
1 with filters centred about ¢y = 0 and ¥ = 7, fig. 3.2(b), but not extending to negative
values or values greater than 7, The other scheme has the temporal angles offset by 15
degrees from the ‘singularities’ in fig. 3.2(d). In each case the spatial orientation is kept

the same, so both of these filter distributions have been used in the work.

3.2.3 Extending the helper functions into 2D+T

After each filtering operation the resultant filtered image sequence is essentially a 1D
signal orientated at the angle of the filter used. In the 2D domain equations 2.8, 2.9,

and 2.19 all process 1D signals orientated in a 2D ‘block’. Extending these equations to

!These ‘singularities’ are similar to the north and south poles of the earth. On reaching the north
pole it is impossible to travel further north, Similarly, the filters do not spread beyond t=0 where a
similar ‘singularity’ point lies.
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F1GURE 3.2: This figure shows the differences between two sets of orientations of filters

in 2D+4T space, where each is defined as being 30 degrees apart in both spatial and

temporal axes. (The different colours are used to help distinguish the different vectors
in the figures.)

operate using a 2D+T ‘block’ is a matter of substituting their axes of operation from

(z,y) to (z,y,1).

3.2.4 Feature velocity estimation

In the process of detecting features in 2D+T space, we can also gather useful information
on the spatio-temporal orientation of the feature or velocity. The first approach to
estimating the velocity of a feature is to find the orientation of the filter that produced the
largest temporal phase congruency. This will give one of 36 (or 42) different velocities.
This is a very poor estimate of the true velocity of a feature. To improve the estimate
we also consider the responses from orientations around the strongest response. These
responses can be used to interpolate a more precise localised velocity estimate, for each

feature point.
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Also since the features we detect are not extracted from a 1D signal, a point may have
more than one strong orientation, i.e. it may be a 2D feature like a corner or junction
between lines or a more complex 2D+T feature. In the first instance however, it is
important that the response of all the filters to a 1D feature about various spatial and

temporal angles is investigated.

If we were calibrating the original technique by Kovesi (that operates upon single im-
ages), then we could examine just one oricntation, and gather the response of that
orientation to features of different orientation allowing us to generate a mapping from
different orientation responses to a known orientation or to generate a function for ap-
proximation or interpolation. This differs from temporal phase congruency in that it
operates upon image sequences, which can suffer from the effects of temporal aliasing,
as features move. Four sets of image sequences were used to calibrate the new temporal
phase congruency operator. The first set was a series of image sequences containing a
single anti-aliased step edge in each image. In each sequence the edges moved at differ-
ent speeds (temporal angle) and had different spatial orientations. The spatial angles
varied from 0 to 90 degrees in 5 degree increments. The temporal angles ranged from 0
to 90 degrees. For the first set of image sequences the temporal angles were converted
to velocities and the feature position was calculated and an anti-aliased step edge was
generated at that position. In testing these spatio-temporal angles against all orienta--
tions in the temporal phase congruency operator the other quadrants can be mapped
out. To contrast this, a second set of image sequences was generated where the temporal
angles were anti-aliased. In both of these test cases the anti-aliased step was positioned
between pixels as shown in figure 3.3(a), a further two sets were generated with the fea-
ture point centred on a pixel, see figure 3.3(b). This slightly changes the profile of the
feature, possibly towards a ‘ramp’ like feature, except that surrounding pixels display a

feature width of just one pixel.

(a) A step edge (b) A step edge
feature centred feature centred
‘between’ pixel on integer pixel
co-ordinates co-ordinates

FIGURE 3.3: These figures show step edges centre ‘between’ pixels and in the middle
of a pixel.

Applying non-maximal suppression[24] to an output image is not useful to understand
the response of temporal phase congruency to a feature at different orientations because

of its reliance upon edge orientation data. Therefore in the case of the feature being
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centred between pixels, the mean value of the four surrounding pixels was collected. In
the case of the feature being centred on an integer pixel value that value was collected.
These results were then arranged into images with the pixel position being the angle of
the edge in the image sequence, and its strength being the value extracted from after
feature detection at the centre pixel(s). The images were 19x19 pixels in size, with the
horizontal axis describing a 90 degree variation in the spatial angle of the feature, and
the vertical axis describing a 90 degree temporal variation. Images can then be generated
combining the responses from the separate responses of the different filter orientations,

and the different feature types. An example image is shown in figure 3.4.
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FIGURE 3.4: The responses from applying temporal phase congruency to an image
sequence containing just one feature. The pixel intensities correspond to the feature
strength detected at a single orientation with white being a strong response and black
a weak one. The pixels are arranged such that pixels nearer the top of the graph are
results from ‘faster’ features. The pixels also vary from left to right as the angle of the
test feature is rotated through 90 degrees. A phasor plot in figure 3.4(b) shows the
relationship between the response, R, and the spatial angle, 8, the temporal angle, ¢,
and the z,y and t axes.

In the example image in 3.4(a) the strongest responses in white are in the top right of
the image. This signifies that the orientation of the filter is centred about a spatial angle
of 90 degrees and a temporal angle of 90 degrees. From these results we can tell that
this orientation is tuned to primarily detect stationary or very slow moving features.
There are also some stronger responses in the bottom right hand corner of the image,
these are associated with aliasing in the test sequence causing this filter to also detect a

stronger response away from its central focus.

Sets of these images are presented in tables of figures containing 36 or 42 images, sce

figures 3.6(b)-3.8(b). The images are each results from filters tuned to different central
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frequencies. They are then arranged such that the filters tuned to the smallest temporal
angle are positioned on the top row. Each successive row contains results from filters with
a central frequency that is temporally 30 degrees more than the previous row. The middle
row(s) show the slowest orientations with further rows ‘increasing’ in speed. The central
frequency can also be altered in the spatial angle and so the central frequency of the
filters used to calculate an image is incremented by 30 degrees between each horizontal
image, with the final one wrapping around to the first. It is due to this wrapping around
that the images are repeated in the table of images to show the relationships between
the orientations more completely on paper. The two variations of the orientations are
presented as in figure 3.5(a) for the singularity, and in figure 3.5(b) for the non-singularity

arrangement.
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FIGURE 3.5: These plots show the layout of the responses of temporal phase congruenc
to features at different spatial and temporal angles using the singularity fig. 3.5(a) an
non-singularity fig. 3.5(b) arrangement of filters. The images vary in spatial angle b
column, with 30 degrees between each column of images. The images vary in tempora
angle by row, with the fastest at the top and each lower row reducing by 30 degrees.
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Temporal phase congruency uses Gaussian spreading functions about the spatial and
temporal angle axes when generating the filters. In a noise free signal the filters will
respond significantly to energy away from its angle of focus because the Gaussians never
reach zero. To prevent this a small amount of additive Gaussian noise (zero mean,
sigma equal to 10% of the size of the step) was added to the test sequences. The results
show an understandable structure, and we see that the response of the temporal phase

congruency operator is as expected, in that the shape of the responses appears Gaussian.
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FIGURE 3.6: These plots show the response of temporal phase congruency to features
at different spatial and temporal angles. The images used were anti-aliased temporally,
and the features were centred between pixels. Each of the images was also subjected to
zero mean additive Gaussian noise with a sigma of 10% of the difference between the
high and the low of the step.
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FIGURE 3.7: These plots show further responses of temporal phase congruency similar

to that of figure 3.6(b). The difference between the two figures is that the test features
for this figure were centred in the middle of a pixel.
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From figures 3.6(a), 3.6(b), 3.7(a) and 3.7(b) there is an obvious structure to the re-
sponse of temporal phase congruency to features at different orientations. These figures
contain results on features anti-aliased in the temporal axis with each sub-plot showing
a ‘window’ of how a single orientation of temporal phase congruency responds to fea-
tures at different orientations. The combined effect of grouping the plots suggests that
the individual orientations detect features at a strength that varies relative to the angle
between the filter and the feature, in a Gaussian like manner. It is also worth noting
that the different edge types show little difference and so we only present results for the
features centred in the middle of a pixel. The results for aliased image sequences show

a more complicated behaviour.
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FIGURE 3.8: These plots show the response of temporal phase congruency to features

at different spatial and temporal angles. The images used contained no temporal anti-

aliasing, and the features were centred in the middle of a pixel. Each of the images

was also subjected to zero mean additive Gaussian noise with a sigma of 10% of the
difference between the high and the low of the step.
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Figures 3.8(a) and 3.8(b) show similar structure to figures 3.6(a)-3.7(b), but they also
have erroneous responses due to temporal aliasing. This can be seen in the lower parts
of the plots particularly in the second and third columns in the rows where 1 = 45 or
75. These slower channels are detecting high phase congruency at 0°, due to aliasing,
and 90°, due to the features, on the temporal axis. This effect though does not affect

the spatial variation in responses.

3.2.5 Orientation Estimation

From the experimental evidence presented in the previous section and from the design
of the technique, feature responses vary with respect to the difference between the initial
filter’s angle or focus and the feature in a similar manner as the spreading function. We
have therefore developed a geometrically inspired method which treats the orientation
responses as amplitudes and the orientations as vector directions. The weighted vectors
were then summed together. The mean angle of the responses is then taken as the
estimate of the feature’s primary orientation. Since the orientations of the filters all
occupy one half of the possible spatio-temporal angles, the resulting sums would all be
biased towards the centre of this region. To avoid this the weighted basis vectors are

summed a number of times with different centres. Example sums are shown graphically

in figure 3.9
v
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tions tions

FIGURE 3.9: Two ways of summing feature strengths from different angles. Black vec-

tors represent the responses at the described orientation with longer vectors depicting

greater response. The red vectors show the summing of the vectors with the resultant

vector in blue. The correctly biased plot, figure 3.9(a), has a greater resultant vector
than figure 3.9(b).

The sum that produces the greatest response has the least amount of destructive sum-

mation, and hence should be the best estimate. Mathematically this is described in
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equation 3.4.

k L
estg = thclel + Z tpci(—ey) (3.4)
=1

I=k+1

where tpc; is the measure of temporal phase congruency measured using the [th filter.
e; is a basis vector that has the same orientation as the [th filter. All the basis vectors
range between 0 and 7 radians, with the negative basis vectors ranging from —7 to 0
radians. Whilst varying k between 1 and N the result, ests, that has the greatest value
is the best approximation to a feature’s orientation. For this calculation the feature
strengths, tpc;, are sorted so that the [th filter’s angle is between that of the (I — 1)th
and (I + 1)th filter’s angle.

This calculation is repeated separately for the temporal axis. In both instances the

method produces acceptable results relatively quickly.
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3.3 Results

The results for temporal phase congruency are presented in six sections examining dif-
ferent performance factors. The first section gives some examples of the output of the
temporal phase congruency operator. The second section gives results for the effects of
noise on the new technique and compares it to the original. The following section ex-
amines how the technique responds to occlusion. Section 3.3.4 contains results for tests
on the accuracy of temporal phase congruency to estimate the orientation of a feature
along with some example results of the orientation estimates. The fifth section shows
how a sequence of images can be filtered according to velocity information to select, for
example, static objects or quickly moving objects. The final section examines in more
detail some of the problems that temporal phase congruency suffers. describing some of

the limitations of phase congruency.

3.3.1 Example results

(a) original (b) original (c) original (d) original (e) original
image 14 of 32 image 15 of 32 image 16 of 32 image 17 of 32 image 18 of 32

(f) original image 16 of 32 (g) temporal phase congruency output

FiGure 3.10: Results from the phase congruency operator on a tree sequence. Fig-
ure 3.10(g) is generated by taking the maximum response from each of the different
orientations.

Figure 3.10 shows the results of applying temporal phase congruency to a sequence of
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a camera moving parallel to a tree in front of a row of houses. The five central frames
of the sequence are shown in figures 3.10(a) to 3.10(e) with the frame 16 shown again
in figure 3.10(f) alongside figure 3.10(g) showing results of applying temporal phase
congruency to frame 16. This sequence was chosen because it is commonly used in
optical flow analysis due partially to the different layers of movement of the tree, the
flower bed, and the houses in the background. These results, shown in figure 3.10,
show the roofs of the houses in the background have been detected. The tree trunk,
which moves relative to the camera, displays some minor blurring, but considering the
high degree of variation in texture along its right side the detected strength of the edge
remains quite constant. The lower left side of the tree trunk is not so strongly detected,
but in the original image the boundary is very ill defined and is more perceivable by a
change in texture rather than a bounding line. It is important to note that the edge
data that is extracted with this technique also contains velocity information as well as

the normal spatial information the original phase congruency technique extracted.

(a) original (b) original (c) original (d) original (e) original
image 14 of 32 image 15 of 32 image 16 of 32 image 17 of 32 image 18 of 32

(f) original image 16 of 32 (g) temporal phase congruency output

FIGURE 3.11: Results from the phase congruency operator on a ping-pong ball se-
quence.

A sequence of images of a person bouncing a ping-pong ball is often used in the evalua-
tion of techniques for optical flow calculation; some selected images from this sequence
are shown in figures 3.11(a)-3.11(e) Figure 3.11(f) is taken from the middle of a se-

quence of images of a person bouncing a ping-pong ball on a table tennis bat. In the
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processed image, figure 3.11(g), the technique has highlighted strongly the edge of the
table. In the sequence the table is not moving significantly as such, it is persistent as is
the background. The background also appears ‘noisy’, this is due to the texture of the
background which appears hashed with thin lines across it at many angles also being
strengthened by their appearance in many frames. The ball is the fastest moving object
within this sequence and shows ‘echoes’ from the previous and next frames appearing
above and below its current position. These echoes are responses to the presence of the
edge of the ball in the surrounding frames. This is an artifact of the current implemen-
tation. The echoes should be removable using the velocity information of the features
as they are the positions of the ball in the surrounding frames, this could then leave the

output clean with just one copy of the ball.

3.3.2 Noise Testing

The results shown in figures 3.10 and 3.11 show successful extraction of moving and
stationary time-persistent features. In addition to this, a series of noise tests was per-
formed to gain a deeper insight in to the new technique. Two types of noise were used
in increasing amounts with a synthetic image sequence of a slowly moving circle. The
first noise used to test temporal phase congruency was additive Gaussian noise, where
a zero-mean Gaussian distributed random number was added to each pixel. The second
noise type was salt and pepper noise, where the ‘noisy’ pixels were randomly selected and
then 50% were set to black and 50% to white, again using a random number generator.
We used additive Gaussian noise because it is commonly used in noise testing and since
the central limit theorem suggests that other forms of noise can in amalgamation be
considered to be Gaussian distributed. The second type of noise was chosen because an
impulse affects the whole spectrum and so applying salt and pepper noise adds a certain
degree of broadband noise to a signal affecting the whole of the frequency space. In
addition to this it could also be viewed as removing information from the images, as in-
dividual pixels are masked and replaced with a new random pixel. The resulting feature
maps are then thresholded at different levels and compared with ground truth, where
acceptable positions for a feature are compared with the actual feature map. Ground
truth is defined here with all the pixels bordering a different colour pixel being consid-
ered a valid edge pixel when viewing a noise free version of the image. Decreasing the
threshold increases the number of pixels detected as significant and so as the threshold
is lowered the number of pixels with where features are detected is cumulative. These
cumulative results are plotted as a percentage of features that are both positively and
falsely detected as in figures 3.12 and 3.13. We also applied the same tests to Kovesi's

image based phase congruency[16] to provide a comparison.

Results in figure 3.12 show that temporal phase congruency is significantly more robust

when attempting to detect features in a noisy environment than single image based
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FIGURE 3.12: Results from testing a simple white disc moving on a black background

with increasing amounts of Gaussian noise added. Crossed magenta or blue lines repre-

sent true features detected, circled red or green lines represent false features detected.
Error bars show the range of results due to the test being run fifty times.

phase congruency. At moderate levels of noise, 0 = 50% of the difference between
black and white in the image, temporal phase congruency detects about 90% of the
features whereas image based phase congruency detects less than half the target features.
Similarly, where the noise level is increased to o = 90% the detection rate of image based
phase congruency is very low, whereas temporal phase congruency is detecting more than
50% of the target features. It is interesting to also note that the shapes of the graphs

appear very similar between phase congruency and temporal phase congruency.

The results for the salt and pepper noise tests in figure 3.13 also show that the temporal
phase congruency measure is detecting more feature pixels of the circle as it moves
through the sequence, and with a higher measure of feature strength or significance.
Again at ¢ = 50% almost 80% of the features are detected succesfully whereas image
based phase congruency has fallen to detecting around 30% of the target features. It
also shows the limits of the technique, which is informative. The results are still very
good considering the final two graphs in figures 3.13(d) and 3.13(e) have 70% and 90%
of the image pixels removed and replaced with a random black or white pixels. These
results are consistent for both types of additive noise across the whole range of noise
levels with the new technique showing better detection rates and lower false detection

results.

A final set of examples shown in figure 3.14 show the massive improvement in detection

that can be achieved using temporal phase congruency when compared to image based
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FIGURE 3.13: Results from testing a simple white disc moving on a black background

with increasing amounts of salt and pepper noise. Crossed magenta or blue lines repre-

sent true features detected, circled red or green lines represent false features detected.
Error bars show the range of results due to the test being run fifty times.

phase congruency. Both techniques detect features about a number of orientations, and
they are displayed to show the differences in contrast that the methods for combining
the results to a single image have. In figure 3.14(b) the circle is detected, but the edges
are somewhat erratic in strength. The noise however seems to have far less significance
than compared to figure 3.14(c) where the boundary of the circle is consistent, but the
noise has a greater significance. The summed variant is also much more variable, and is
theoretically bounded between 0 and L where L is the number of orientations, where as
the maximum value of each orientation is fixed at 1 so figure 3.14(c) is bounded between
0 and 1. More research could be done into methods for robustly combining multiple
orientations into a single feature map, or higher level techniques could be implemented

to take advantage of the separation of features by orientation.

3.3.3 Occlusion

Within many environments objects moving in a scene become occluded, thus it is im-
portant to test the response of the technique against occlusion. The test sequence again
was a moving circle and the occlusion was rectangular in shape, causing part of the

moving circle to disappear.

The expected behaviour of the technique would be that the occluded region would have

some degree of blurring of feature information from the moving circle echoed from the
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(a) Central frame from (b) Temporal phase (¢) Temporal phase
the input sequence congruency results congruency results
(orientations summed) (max. of orientations)

(d) Image based phase (e) Image based phase
congruency results for congruency results for
central frame (orienta- central frame (max. of
tions summed) orientations)

FIGURE 3.14: Results from a sequence of a moving circle with zero mean Gaussian
additive noise (sigma = 90% of difference between black and white). Temporal phase
congruency used a 32 frame sequence.

surrounding time and space neighbourhood to where the circle ought to be without the
occlusion there. The results though show much less blurring than cxpected, and are

very promising.

In figure 3.15 the circle is very clearly detected in all three cases. The circle has also
maintained a uniform shape, with the lines of occlusion being shown in the middle of
each circle. They all though show some amount of blurring between the edges of the
occlusion, but this sort of blurring can also be seen around the edge of the circle and

should be removable via non-maximal suppression.

Broader occlusions are shown in figure 3.16. These are much clearer as the distance

between features is greater.

3.3.4 Feature Velocity Testing

Since temporal phase congruency is a time persistent feature detector, it can detect a

feature’s orientation through space-time. It is important therefore to present examples
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(a) 1 pixel wide (b) 3 pixels wide (c) 5 pixels wide

FIGURE 3.15: Results from the temporal phase congruency operator on sequences
with a fixed position bar occluding the image sequence.

(a) 10 pixels wide (b) 15 pixels wide (c) 20 pixels wide (d) 25 pixels wide

FIGURE 3.16: Results from the temporal phase congruency operator on sequences
with a fixed position bar occluding the image sequence.

results and test the accuracy of the orientation information of any detected features.

Figure 3.17 shows an example of the normal orientation data that can be extracted
from temporal phase congruency. Presentation and evaluation of this data is difficult
and so a quantitative approach testing against a simple test sequence of a shrinking
and expanding circle in 2D+T space was conducted. (This could also be considered
a sphere in a 3D space and was constructed as such.) The test sequence had zero
mean Gaussian noise (with a sigma of 10% of the difference between the circle and the
background) added. This was to avoid the anomalies discussed in section 3.2.4. The
test sequence was then passed through the temporal phase congruency feature detector,
and then the orientation of all the significant feature points was established using the
estimation method in section 3.2.4. The orientations are compared to values calculated
when generating the test data and distances from this ‘ground truth’ is calculated for
all features over .7 in strength. The results are then presented and compared to similar
results for a 3D Sobel operator[8] that has been applied to the sequence with additive

noise.
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(b) Example results with orientation vectors overlaid

F1GURE 3.17: Example results of orientation information for features extracted from
temporal phase congruency of a hand and table tennis racket.

From the separate histograms in figure 3.18 temporal phase congruency is able to de-
tect feature orientation to a similar degree that a Sobel operator may. We do however
see that the two operators fail in different ways. Temporal phase congruency, in fig-
ure 3.18(c), seems to have two narrow distributions centred correctly about zcro radians
error and incorrectly about 7/2 radians error. The estimates generated by the Sobel
operator however do not have this second erroneous peak and most of the estimates
have less than .3 radians error, as shown in figure 3.18(d). Similarly about the temporal
axis both detectors have different behaviours. Temporal phase congruency has a wider
spread of absolute errors in figure 3.18(a) which is not so tightly distributed as Sobel in
figure 3.18(b).

3.3.5 Velocity Thresholding

Since the new technique extracts the velocity of a feature, it is possible to threshold

based upon that velocity. This could be useful for selecting features of interest based
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FIGURE 3.18: These plots show the ability of the temporal phase congruency operator
to detect the orientation of a wide variety of feature orientations

upon their velocity in an image sequence, such as detecting objects only moving in a
particular direction, or estimating the background feature map. This can be a post-
processing stage, or the technique can be altered so that it only looks for features at
a particular velocity. Altering the technique should reduce the time taken to process
a sequence, but the additional orientations at ‘unwanted’ velocities could be used in
noise detections as features are detected in orientations that are similar to their true
orientation, whereas typically noise is not. Example frames from a sequence of a person

walking are shown in figure 3.19.

In figure 3.19 the results show a strong progression from detecting the stationary back-
ground features such as the ceiling tiles and the floor, to progressively detecting more
of the moving features in the scene. It is interesting to note that the slower moving
orientations are detecting high phase congruency at the boundaries of the legs, and as
the algorithm focuses upon increased speed the highest phase congruency is found in the

centre of the legs giving an almost skeletal feature detection. This ‘skeletal” detection is
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(a) all velocities (b) near zero velocities se- (¢) slow velocities selected
lected

(d) medium velocities selected (e) fast velocities selected

FIGURE 3.19: Results from the temporal phase congruency operator on sequences
with ranges of velocities selected.

explained by looking at a simplified 1D+T example.

Figure 3.20 shows three examples of a grey object on a white background in 1D+7. If
we examine the width of the objects we see in figure 3.20(a) the object is stationary
and its minimum width is the spatial width of the object. In figure 3.20(b) we see that
even slow movement can reduce the minimum width of the object in space-time. In this
figure if the object is viewed at an angle the width of the object is ‘reduced’. Finally in
figure 3.20(c) the width of the object becomes nearly 1, thus any 1D+ feature detector
oriented at an appropriate angle would detect an impulse and not a rising then failing
edge of a pulse. This reduction to an impulse changes the number of features this object
has from 2 to 1, an operation that the legs of the person in figure 3.19 also undergo. The
detection of such an object like this should provide important information, as it firstly
implies that there is an object of a determinable width centred at the peak feature point.
The bounds of the object should also be linked to the velocity of the feature detected,
as the transition from a pulse to an impulse is directly related to the objects width and

velocity.
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FIGURE 3.20: These three figures illustrate that an object’s width in space-time, he-
comes smaller when moving.This illustrates why the legs in figure 3.19 are detected as
a single feature.

Re-examining figure 3.19, it is also interesting to trace the front foot through the different
velocities as it is clearly marked in figure 3.19(b), but in figurcs 3.19(d) and 3.19(c) it
is not present. The most noticeable aspects of these images though are the multiple
edges of the back and back leg found in figure 3.19(b). This shows that the feature
detector is possibly suffering the effects of aliasing within the image sequence as the
signal is insufficiently sampled to capture smooth motion between frames. Essentially
what is being exposed is the response of the feature detcctor to features present in

the surrounding frames. These results do suggest that the implementation allows for a
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concept of velocity scale which emphasises differences from image base phase congruency
and optical flow: it is possible to target features according to proportionate movement

which is not possible with these techniques, except by analysis of results.
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3.3.6 Problem results

This technique has shown an increased measure of robustness when compared to Kovesi’s[16]
image based technique. It is able to extract a feature’s spatio-temporal angle giving new
and important information for further stages in any computer vision system. However,
during the testing of this new technique a number of images generated problematic

results.

Initial results show that faster movement can cause ‘echoes’ due to temporal aliasing, but
further investigation shows an interesting and very undesirable response. To understand
the cause of these ‘echoes’ the input data was simplified to a time varying 1D signal
(ID+T). Figure 3.21 shows a 1D+T signal where the signal is initially uniform, then
an impulse ‘moves’ along the signal at 4 pixels per sample. If viewed using a spatial
framework, it could be thought of as a ‘textured’ line at a slight angle or an angled
impulse train. In a more localised framework, a viewer may only see single impulses and

no significant 2D feature.

FIGURE 3.21: This image can be thought of as a 1D+T signal representing a moving
impulse, or an image with a ‘loosely connected line’.

The responses to this input image from the 2D feature detector developed by Kovesi are
presented on a per orientation basis. Here we use 6 orientations with 30 degrees between

each.

(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° () 150°

FIGURE 3.22: These show the results from applying phase congruency upon the 1D+T
moving dot signal in figure 3.3.6

Since we became aware of temporal phase congruency’s problems with synthetically
‘perfect’ signals in section 3.2.4. We repeated this test with a similar measure of additive

Gaussian noise. These results are shown in the following figure 3.23.

These results now show a more acceptable ‘line’ across the signal. There are many noisy

‘features’ detected, but this is to be expected in this noisy signal. Adding noise seems
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(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (f) 150°

F1GURE 3.23: These show the results from applying phase congruency upon the 1D+T
moving dot signal from figure 3.3.6.

to reduce or remove these errors. Further tests upon a similarly ‘moving’ step feature
display problems with both the clean and the noisy image. The source images arc shown
in figure 3.24, with the results from phase congruency in figure 3.25 for the clean signal

and in figure 3.26 for the noisy signal..

(a) A mov- (b) A
ing step moving step
with noise

FIGURE 3.24: These two figures of a 1D+T moving step function are used to highlight
some of the problems phase congruency has. The noise added to figure 3.24(b) is 10%
additive Gaussian noise.

(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (1) 150°

FIGURE 3.25: These figures show the results from applying phasc congruency upon the
1D+T moving step signal from figure 3.24(a).

Both sets of results in figure 3.25 and figure 3.26 show problem results. Results in
figure 3.25 show a strong central line detected, which is acceptable, but there are lines
running parallel that would remain even after non-maximal suppression. The same lines
are still present in figure 3.26 even if they are less consistent. From the results, it appears

prudent to consider an alternative method of measuring phase congruency.
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(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (f) 150°

FIGURE 3.26: These figures show the results from applying phase congruency upon the
1D+T moving step signal from figure 3.24(b).

3.4 Conclusions

This chapter has successfully shown a new extension to phase congruency to allow the

processing of time persistent features. This allows for computer vision algorithms that

deal with image. sequences to take advantage of an image’s presence in a sequence and
(o) la

not just as an isolated signal.

The new technique shows good improvements in the robustness of the operator within
noisy environments. This should allow progression of computer vision in more difficult

imaging environments where noise is common and features persist in time.

Temporal phase congruency also provides new and useful spatio-temporal orientation in-
formation that should assist in providing a richer set of feature properties to higher level
computer vision algorithms. For example, this spatio-temporal orientation information

could be used to supplement optical flow results.

There has also been some useful analysis upon the limits of the technique which has
provided motivation for further development in the measurement of phasc congruency
within signals. This is addressed in the following chapters which overcome these limita-

tions.



Chapter 4

Statistical Phase Congruency

From the previous chapter we have seen that although phase congruency can be extended
to operate in the spatio-temporal domain there are a number of inputs that can cause
multiple false high points of phase congruency to be detected in images and image
sequences. This chapter looks at a new technique to measure phase congruency that
avoids this behaviour, but is developed within this chapter to operate on single images

and extended in chapter 5 to operate on images sequences.

The chapter begins in section 4.1 by modelling phase congruency using a localised model
of filtering. Using this model a new method for the calculation of phase congruency is
developed that uses families of filters in section 4.2. The development of these filter
families is continued in section 4.3 where they are evaluated in terms of their ability to
measure phase congruency and also the spatial extent. Section 4.4 adds the use of the
mean energy to prevent phase congruency from being detected in parts of an image that
give filter responses that are dominated by noise. This final step of processing allows
for the new feature detector to be tested and results produced. This is the subject of
section 4.6 where example images and their statistical phase congruency feature detected
results are presented. This section also examines the technique’s response to noise in
section 4.6.2, whilst the final section compares the Kovesi’'s method for calculating phase
congruency with statistical phase congruency on the images that produced erroneous
results. This shows a strong improvement for statistical phase congruency over Kovesi’s
method and points to a more appropriate feature detector for extending into 2D+T.

Further conclusions are presented in section 4.7.

4.1 Modelling localised phase congruency

Previously Gabor filters have been used to measure the phase of a signal for a particular

frequency band. This phase information can be thought of as the mean phase for all the

ot
[



Chapter 4 Statistical Phase Congruency 56

frequencies contained within the selected band. Up until this point phase congruency
has been an inter-band measure and does not allow the evaluation of the degree of phase
congruency within the bands themselves. Analysing the intra-band phase congruency
could remove the erroneous results found in section 3.3.6 because although the inter-
band phase is congruent, the intra-band phase is expected to contain incongruencies

that will be detected and reduce or remove the erroneous results.

This chapter therefore develops a technique that can measure the structure of these
frequency bands, without attempting to measure more finely the frequencies, or the
localisation of those frequencies. To achieve this measurement of the structure between
the different frequencies we first model the process of (Gabor) filtering a 1D signal, as

in eqn. 4.1.

m
G, = Zanan cos(6,)
n=1

m
Gs = anansin(en) (4.1)
n=1

where a, and b, are the even and odd filter coefficients., «, is the nth frequency’s
amplitude of m frequencies, and 8, is the nth frequency’s phase. G, and G are the
cosine and sine Gabor filter responses respectively. In equation 4.1 the frequencies
are local frequencies, that are intractable due to the uncertainty principle, i.e. they
are localised and separated. The coefficients are also intractable, but are intuitively
assumed to be similar to those of the Gabor filter’'s Fourier domain representation. In
other words, although the Fourier transform of a Gabor filter is Gaussian shaped, this
is just a representation of the filter in a global sense. Locally it is impossible to know
the exact coefficients of the filter. Similarly when we model any data, (ay,.8,). it is
local frequency data and not a Fourier transform of a whole signal, but rather the local
spectrum. Without this, detecting phase congruency of Fourier components is possible
from a Fourier transform, and would produce a global measure of phase congruency

without localisation.

Consider that if two frequencies in the sum are 7 radians out of phase then they will
combine destructively. Unless all the frequencies are perfectly in phase, the sum of
the absolute energy of the local frequencies will always be greater than the sum of the
energy of the frequencies. Mathematically, to solve equation 4.1 using linear equations
to find all the 8,’s, we would need to repeat the filtering process many times with
different coefficients. This is impractical and would also resolve the amplitude of cach
individual localised frequency, information we are not interested in. Instead, we note the
relationship between the phase congruency of the frequencies and the sum of energy. It

is known that phase congruent frequencies, when summed, give greater responses than
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random phased frequencies that will destructively superpose.

4.2 Measuring phase congruency

To provide the new measure of phase congruency, we consider adding different phase
shifts to the Gabor filter’s coefficients. This will affect the sum of energy from the fil-
ters due to varying measures of constructive and destructive summation of local energy.
When comparing between a normal Gabor filter and a phase shifted Gabor filter, per-
fectly congruent frequencies would be expected to reduce in the energy of response, and
random phase frequencies remain of approximately the same energy. Such a filtering

step is illustrated in eqn. 4.2.

G. = Zancos(djn)ancos(ﬁn)

n=1

Gy = Z by, sin(¢n Yo sin(6y) (4.2)
n=1

where 1), represent the different phase angles of the Gabor filter’s coefficients. (The
values of these differing angles is discussed later.) Since the exact distribution of energy
amongst the frequencies will be unknown, a single phase shift may not significantly
affect the response to the filters. It is necessary then to repeat the filtering L times,
forcing different amounts of phase shift to occur between different frequencies. In the
repetition it becomes apparent that the variation of the phase shifted filters should
describe the phase congruency sufficiently without the linear phase Gabor filter, which

could be thought of as just one of the phase ‘shifted’ filters.

Since the energy of the frequencies will be mixed between the cosine and sine-based
Gabor filter responses, we use the combined energy of the filter pairs to extract a measure

of the effect of the phase shifting, as in equation 4.3.

B =,/G2+G? (4.3)

where G, and G, are the [th cosine and sine based phase shifted Gabor filter responses.
Having calculated the energy for each filter pair we normalise by dividing by the mean

energy, E. This is shown in equation 4.4.

E =

| &

(4.4)
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where E is the normalised measure of energy the Ith filter pair generated. The normal-
isation of the filter energies is necessary as localised frequencies with the same degree of
phase (in)congruency will have a standard deviation that is dependent upon the energy
of the localised frequencies. It is however desirable that we only measure phase congru-
ency, and not the measure of local energy. This normalisation of E; therefore removes
the energy dependency, but retains the variation between the different filter results. We
then calculate the standard deviation of each of the energies after normalisation by the

mean energy giving pg.

h l

L
Z E —1)? (4.5)

where E) is the normalised measure of energy for the Ith filter pair of L filter pairs, and

1 is the ‘mean’ due to E; being normalised.

To test whether pg describes the phase congruency of frequencies we use the model
of filtering. We use sets of complex numbers as our frequency data. These sets will
allow us to test whether a series of phase shifts can be used to detect phase congruency
through the measure pp, and also whether our model is valid. Each set of synthetic
frequencies has random amplitude and mean phase, with increasing measures of zero
mean Gaussian noise perturbing the phase of the frequencies. If pg is to be a measure of
phase congruency it should be correlated to the change in noise levels, or to the reduction

in phase congruency.

Before testing, the phase shifts applied to the Gabor filters need to be defined. If we
look at randomly shifting each frequency element in the Gabor filter, the spatial extent
of the filter would extend significantly possibly to the entire signal width. Therefore
the phase shifts applied to the Gabor filter should affect the spatial extent as little as
possible. There should also be different amounts of shift applied between frequencies.
Initially we explored the use of linear phase shifts (¢, = 27n/m) which shifted the filters
in the time domain, but it was important to investigate other functions to see if any

improvement could be made on this set of phase shifts.

4.3 Improving the phase shift functions

Although the concept for measuring levels of phase congruency amongst the separate
frequencies has been discussed the appropriate functions and parameters for those func-
tions needed to be evaluated. Section 4.2 also assumed that a Gabor filter might be
the appropriate choice for the basis filter. There are in fact at least 3 filter types that
have been useful in phase analysis in this work. These are a standard Gabor filter, a

log-Gabor filter and a log-Gabor filter convolved with a low pass filter. These will affect
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the shape in the frequency domain of our filters. The log-Gabor filters can also be varied
in bandwidth. The percentage bandwidth of a Gabor filter however cannot exceed 80%
of an octave before the DC component starts to becomes significant. It is desirable to
have a low level of DC sensitivity in any filter used so that any following technique will
not be unduly affected by an image’s lighting variation. The Gabor filter is thus limited

to such a bandwidth during these tests.

Additionally the central frequency of each filter can be altered. This will be important
when considering the scale of a feature and also when considerations of spatial extent
are examined. Smaller central wavelengths will be expected to produce smaller filters

spatially.

Once a basis function is chosen there are a number of possibly conflicting requirements
for the ‘optimal’ solution to our problem of measuring phase congruency in this way.

The possible requirements could be listed in such a way:

Any filter (families) used should have:

fixed gain A fized gain for each frequency component in each of the different filters is
important so that they can be compared.

phase angle invariance Phase congruency can occur at any phase angle therefore the

filter families need to be invariant to the actual phase of a feature.

correlation between congruency and pg It is the correlation that enables the de-

tection of phase congruency whether it is a negative or positive correlation.

limited spatial extent To detect local features and to avoid features affecting one

another a limited spatial extent is important.

4.3.1 Using sine based phase shifts

The approach taken was to use a family of sinusoids. The different attributes of the sine
waves were changed to attempt to find a better set of functions to use as phase shifts.
These functions apply different phase shifts to the individual frequency components. We

can define the [th phase shift function, ps;,, in a family of L filters as in equation 4.6.

psy, (w) = cos™ (wn + A7) + 1.sin™ (wn + A) (4.6)

where m; alters the shape of the filter without affecting the periodicity of the phase
shift, w alters the number of oscillations within the phase shift and \; alters the starting

phase of the phase shifted filters. m was varied between .25 and 4. This equation allows
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for sets of L filters to be tested. An alternative set of sine-waves was also tested, these

used the absolute value of the cosine and sine functions, as in equation 4.7.

psi, (w) = | cos™ (wn + A)| + 1.| sin™ (wn + A} (4.7)

The phase shifts, \,, were defined in two ways. The first provided linear phase shifts
between different filters, as shown in equation 4.8. The second provided an increasing

set of phase shifts between filters as in equation 4.9.

A, = rngxl/L (4.8)
N, = rngxI%/L? (4.9)

where rng is the range the phase shifts are varied over. In all the following testing rng

was set to either 7 or 27.

A search of the parameter space was then conducted which allowed for variation in
all the described attributes, with the aim of determining how each variable could affect
each of our design criteria. (It is acknowledged at this stage that any number of function

families could be chosen instead of the sinusoids.)

Initial testing had shown that functions that behaved better in the model also behaved
better on real signals. Using the model allowed for the mean phase angle for phase
congruency detection to be altered easily, as well as allowing for the extent of congruency
to be altered in a measured manner. It is at this point the concept of phase congruency
must be scrutinised. The underlying question that must be asked is: Does a useful
measure of phase congruency include dependence upon energy? For example, consider
a frequency spectrum consisting of 5 frequencies where 3 are congruent and very low
amplitude, and the fourth and fifth frequency are orders of magnitude greater and one
of them is congruent with the 3 very low amplitude frequencies whilst the other is 7
radians out of phase. An energy dependent model would state that the frequencies were
not congruent, as the sum of the frequency components is significantly less than the sum
of the magnitudes, but an energy independent measure would state that there is phase
congruency of the order of 60-80% since 4 frequencies are congruent and a fifth is not. A
more meaningful measure may be an energy dependent model, particularly for feature
detection. Kovesi also resolved to measure phase congruency in this energy dependent

manner.

Having established the type of phase congruency we wished to measure, applying par-
ticular degrees of phase congruency would have been unnecessarily costly. Therefore we

apply a constrained, but random amount of noise to the localised frequencies, and then
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measure the actual phase congruency that this new spectrum possesses. This allows the
response from the technique and the various functions under test to be reviewed against

a wide and varying range of phase congruency.

During testing 10000 such randomised spectrum were produced to test each filter family.
The tests produce a distribution of results. In figure 4.1 we see an example of one of the

sets of results.

Normalised Standard Deviation

0.2 0.4 0.6 0.8
Phase Congruency

FIGURE 4.1: An example set of 10,000 measurements of phase congruency versus the
measured normalised standard deviation, pg from one of the sine functions. A line of
best fit is also overlaid upon the distribution.

As can be seen from figure 4.1 this particular function does display a correlation between
phase congruency and the normalised standard deviation with smaller normalised stan-
dard deviations correlating to higher degrees of phase congruency and vice versa. This
result is somewhat unexpected, as it had been previously reasoned that more phase con-
gruent signals would have a higher variance in response to different phase shifted filters.
It does not show a unique mapping between phase congruency and normalised standard
deviation, but more of a distribution of results that changes for different measures of
phase congruency. To use the normalised standard deviation we fit a line to the middle of
the distribution that allows the mapping from the normalised standard deviation to the
phase congruency. When comparing the different sets of functions the key measurement
is the spread of the distributions from the line used in the mapping. To measure the
spread of the data we chose the normalised residual generated when fitting a polynomial

to each set of data.
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We note that the distribution becomes significantly wider from about 0.3 phase con-
gruency and the spread is significantly tighter about 1.0 phase congruency. To gain an
increased insight into how the error from the line of fit varies as we decrease the degree
of phase congruency, we apply the fitting process to different ranges of the data always
starting from a phase congruency of 1. The results from this analysis are plotted in
figure 4.2. Although they do not show the individual results clearly the figure does show
the variation and the general shape of the normalised residual error against the ranges

of phase congruency.
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FI1GURE 4.2: The different residual errors as calculated from different ranges of the test
data for all the test functions used.

From this plot we chose to take the 0.3 phase congruency values as the point at which
to differentiate between function performance. These points are firstly the maximum
in figure 4.2 for many of the functions, but also signify reasonable points at which any
phase congruency results could be thresholded. It was also important that any function
chosen should operate well over the range between .3 and 1.0. This would enable a
broader range of feature strengths to be extracted and for the resulting operator to be

useful for images with different levels of phase congruent features.

Using these results we can compare the effects of the various parameters that have been
altered in our phase shift function. This though only represents the ability of our filters
to distinguish phase congruency, but it is also important that our filters have a limited

spatial extent. This is the focus of the following sections.

4.3.2 Filter construction in the Fourier domain

In the previous sections we have modelled and developed filters that measure local

phase congruency. These filters have been modelled in the local frequency domain and
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have been optimised to measure the local frequency’s degree of phase congruency. It
is however impossible to construct a filter in the local frequency domain as frequency
separation and localisation are inversely related. We have therefore considered that if a
Gabor filter is transformed into the Fourier domain and the phase shifts applied to the
filter in the same manner as has been applied to the local frequency domain then we
assume that the filters will measure global phase congruency. If, however, the filters have
a spatial extent that is just a small percentage of the real domain when inverse Fourier
transformed then the phase congruency calculations will be considered to be calculated
locally. It is with this perspective that we must therefore measure spatial extent. It is

also important that we formalise how the filters are constructed.

To develop and test the different phase shifting filters we have stated that the local
coefficients of a Gabor filter are the similar to the coefficients of the Gabor filter’s
Fourier domain coefficients. This allowed us to test the ability of different phase shifting
functions to measure local phase congruency. We now define the filters in terms that are
realisable and so we reverse the notion and use the local filter coefficients to describe the
Fourier domain coefficients of our filters. At this stage the filters will have a measurable
spatial extent that will begin to define whether they are measuring local frequency

information. The filters are thus defined as in equation 4.10 using polar coordinates.

spe2dy, = G(w,wn) Gaussian(8,0,) psp(w)
—(9-0n)°
Gaussian(0,0,) = e %% (4.10)

where spc2d, is the nth filter in a family. G is the base Gabor filter and could be a
log-Gabor filter or a Gabor filter, either of which will act along the w-axis and have
their central frequency at w,. Gaussian is the spreading function that we use about
the #-axis with the focal angle of the filter specified by 6, (op is usually less than the
angular distance between filters). ps, is the phase shift function that also acts along the
w-axis and it is results between filters with the same first two elements that are used
to generate the normalised standard deviation, pg, on a per orientation and scale basis.

We now consider the spatial extent of our filters.

4.3.3 Measuring the spatial extent of the filters

The spatial extent of our filters is important for a number of reasons. Firstly it is assumed
that a smaller spatial extent of our filters should support better localisation of results.
Secondly it allows for features to be detected closer together without interference. It is

therefore important that the chosen filters be ‘small’.

Measuring the spatial extent of the chosen filters could be approached analytically,
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except one of the base functions that we use, the log-Gabor filter, has a singularity in
the Fourier domain, so this is not possible. Kovesi proposed two methods for evaluating
the spatial extent of the log-Gabor filter so as to understand the behaviour with varying
bandwidths. The first method was to measure the number of terms needed to represent
a percentage of the filter’s total area. The second method measured the distance from
the centre of the filter to the term that was a small percentage of the peak value in that
filter. We re-use these methods to measure the spatial extent of our phase-shifted filters.
These we normalise against standard Gabor filters so as to provide a guide rather than
a series of magical numbers. This leaves our measures of spatial extents in percentages

of the normal Gabor or log-Gabor filter widths as appropriate.

So as to provide further information we considered this for a range of percentages. For
the area measure we evaluated the width of the filter needed to represent from 95-99%
of the filter’s area in 1% increments. For the peak measure we examined the smallest
width that contains all values smaller than 1%-5% in 1% increments of the greatest value
in the filter. Since these filters are complex this operation is done on the magnitude of
the filters, not their real and imaginary parts. In refining the choice of spatial extent
measure it was argued that if our filters were cut off at the extent described then it
would be important not to introduce too great an error. With this in mind an error
of £1% was acceptible and so the area measure containing 99% of a filter’s area was

chosen.

4.3.4 Interpreting the measures of spatial extent

Having established a means to evaluate an individual filter’s spatial extent, it is now
important to consider that all the filters are not generated to produce isolated results.
More precisely the statistical phase congruency measure uses the relationship between

filters, therefore the spatial extent of a set of filters is the actual subject of interest.

It could be argued that the spatial extent of such a family of filters is the greatest
spatial extent of the individual filters, since there will be a change in response from the
technique as the larger filter becomes affected by a ‘nearby’ feature. This effect though
is balanced by the other filters in a family, and point towards a more important aspect
being that of the smallest filter. Although the larger filters will hopefully align about
a significant feature, a smaller filter may only do so when it is covering the feature of
interest. This could be thought of as a coarse-to-fine view of how such a family of filters

may work.

Essentially the desired mathematics would be an analytical function that describes the
effects of a single term in one filter upon the resulting response from the overall technique.
It may then be possible to design functions that can balance this analytical basis of

spatial extent against a similar analytical basis of phase congruency measurement. It is
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suspected though that these two analyses will produce a tension that may not be solved
or are inversely proportional similar to Gabor’s understanding of frequency analysis
and temporal localisation, but it is hoped that since the degree of frequency domain
information that is being ‘extracted’ or measured is less than a Fourier or even Gabor

like transform, that the degree of spatial localisation should be increased.

In lieu of this, the use of mean spatial extents of a filter family has been used to analyse
the filters. An alternative might be the measurement of the spatial extent of a filter
constructed from the sum of the filters, but even then since the relationship between
filter responses is non-linear through the use of standard deviation, that may provide no

better information.

4.3.5 Finding good solutions

In the previous sections measures for the ability of the filter families to distinguish phase
congruency and measures of spatial extent have been established. The filter families were
then tested to establish their ability to distinguish phase congruency and their measure
of mean spatial extent. From these results those families that had less than or equal to
a 100% of a Gabor filter’s width were selected. From this selection the five families with
the lowest residual error were chosen. This process was then repeated for with different
relative widths of Gabor filter ranging from 125% to 400%. The results for this process
yielded only 7 filter families that are listed in table 4.1

# Base 8 |w, | L Al rng | m; | Eq.n
Filter used
1 Gabor — | 3 (29| =l/L dr | 1 4.7
2 log-Gabor 055 | 8 | 29| =l/L dr | 3 | 4.7
3 log-Gabor 074 3 | 29| =l/L 4 | 1 4.7
4 log-Gabor 041 | 3 |29 | 2ml?/L? | 27 | 25| 4.7
5 | log-Gabor + low pass | 0.41 | 8 | 2-9 | 2wl2/L? | = | 2 | 4.6
6 | log-Gabor + low pass | 0.41 | 17 | 2-9 | 27l®/L? | 47 | 3 | 4.7
7 Gabor + low pass — | 3 |29 | 2r?/L% | ® | .25 | 47

TABLE 4.1: The best 7 sets of parameters that have a limited spatial extent and a good
ability to distinguish phase congruency

The results from this table reveal a number of interesting facts. It appears that the
number of different filters used per family can range from 2 to 9 and the resultant
distinguishability of statistical phase congruency remains the same. The different mean
spatial extents generated from using different numbers of phase shifts also appears to
be stable. It is also interesting to see that equation 4.7 is favoured over equation 4.6.
Finally it is important to remember that these values have been selected from tests run

entirely upon synthetic data.
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4.4 Energy Masking

In section 4.3.5 a number of families of parameters have been selected for use in defining
the phase shift function used in statistical phase congruency. This allows phase congru-
ency to be detected in an image. Though there are parts of an image, that may have
near zero energy in the selected band of the base filter. The responses from these filters
and the following measure pg will be therefore be based upon noise or numerical effects.
To mask these points in an image the measured phase congruency is multiplied by the

mean energy. This is an effective solution and enables feature detection of valid features.

4.5 Testing

It is important to evaluate the parameters selected in section 4.3.5 against real data. The
results of testing are shown in figure 4.4 and show the variation between the different
families. In each case the number of filters used is 2. The four different images, shown
in fig. 4.3, are useful because they have different properties varying in features present

and levels of illumination.

FIGURE 4.3: Four test images of a circle, a tree and some houses, a person walking,
and a woman sat behind a desk.

The first column of results are from a solid black circle on a white background. This is a
synthetic image useful for showing the response that each filter family has to step edge
features. Since our technique relies on detecting phase congruency it is to be expected
that ‘ringing’ occurs where an additional phantom feature is detected away from the
edge due to the underlying phase of the sine-waves re-aligning, but to a lesser degree.
It is also to be expected that this ringing is present in a synthetic image without noise,
but should reduce or disappear in real images where other features and noise disturb
local frequency structure. In figure 4.4 we see that most of the families show ringing
in response to the circle, but families 1-3 and 6 also show ringing around the edge of
tree, walking person and the woman sat at the desk. This leaves families 4, 5 and 7
as useful options. We then consider the problem cases of ‘faster’ moving features from

section 3.3.6, and show the results for a ‘fast’” moving impulse and step with noise.
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(e) using family 5

T

(g) using family 7

FIGURE 4.4: Results from applying statistical phase congruency to the test images of
fig. 4.3
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4.6 Results

This section presents the results of statistical phase congruency. Section 4.6.1 shows
some example results and compares them to standard image based phase congruency.
This is followed by some results of applying noise to synthetic images in section 4.6.2.
Finally in section 4.6.3 the response of statistical phase congruency is evaluated against

two 1D+T signals that caused phase congruency to produce erroneous response.

4.6.1 Example results

This section reviews some of the results that are generated using statistical phase congru-
ency on images. To ease comparison we have just presented results for family 4. Families

4, 5, 6, and 7 are considered more in the formal testing in sections 4.6.2 and 4.6.3.

(a) original image of a (b) results from statisti- (¢) results from phase con-
woman behind a desk cal phase congruency fea- gruency feature detection
ture detection

FIGURE 4.5: A woman behind a desk and the results from feature detection using
statistical phase congruency and phase congruency.

In figure 4.5 we see that statistical phase congruency is performing very well and detects
the overall outline of the woman well. In addition the edges of the stripes on the woman’s
shirt are well detected even though the greyscale difference is small. Statistical phase
congruency compares well with phase congruency in its detection of the features of the
flowers to the right of the woman. In figure 4.5(b) we see the second flower down has
details of the petals whereas figure 4.5(c) does not, but has generally sharper responses.
Also the features detected in the background vary both giving acceptable responses when

detecting the folds.

Figure 4.6 shows again a comparison between statistical phase congruency and phase
congruency. This particular image contains a lot of noisy textures in the flower beds, on
the tree trunk and the thin trees to the extreme right and on the left. Statistical phase

congruency does well at detecting these thin trees and some of the finer branches coming
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(a) original image of a tree (b) results from statisti- (c) results from phase con-
behind a desk cal phase congruency fea- gruency feature detection
ture detection

FIGURE 4.6: Results from feature detection using statistical phase congruency and
phase congruency. The original image contains a tree in the foreground and houses in
the background.

from the main branches on the left. In comparison to phase congruency, which does not
detect these features, it should also be noted that it is again slightly more blurred or

has wider feature responses.

(a) original image of a walk- (b) results from statisti- (c) results from phase con-
ing inside behind a desk cal phase congruency fea- gruency feature detection
ture detection

FIGURE 4.7: A person walking inside and the results from feature detection using
statistical phase congruency and phase congruency.

Figure 4.7 shows the strongest improvement from phase congrucncy to statistical phase
congruency. In figure 4.7(c) we see that the centre of the leg has been detected as a
feature, whereas statistical phase congruency manages to detect just the edges of the
leg as expected. The ceiling also shows finer details being detected using statistical
phase congruency particularly around the vent. The torso in this image proves to be
the most difficult to detect feature as the grey-scale differences between foreground
and background are small. Phase congruency possibly produces better results for the

shoulder whereas statistical phase congruency produces better results around the hand
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giving it a plausible outline. In fact, there is more of the arm’s structure in statistical

phase congruency compared with image based phase congruency.

4.6.2 Noise testing

In section 3.3.2 temporal phase congruency was tested using two different noise models.
This section also examines the response of statistical phase congruency to noise. First
zero mean additive Gaussian noise is applied to a synthetic test image, then salt and

pepper noise is applied. The chosen image is that of a black circle on a white background.

Figure 4.8 shows clearly the differences between the results generated from families 4
and 5, and that statistical phase congruency provides a framework for feature detection
and dependent upon the parameter choices can have different properties. Family 4
has generated possibly more visually pleasing results in Section 4.6.1, but it is clear in
figure 4.8 that this set of parameters is not resilient to higher levels of Gaussian noise
since the circle disappears in the 50% noise case. Family 5 does at this point show that
statistical phase congruency can be used in noisy environments to detect features with
performance comparable to that of phase congruency. This difference in noise resilience

could be because of the smaller central wavelength of family 4.

Figure 4.9 shows that salt and pepper noise affects both statistical phase congruency
and phase congruency significantly in their ability to detect features. Family 4 is again
very poor and phase congruency appears slightly better than family 5, but neither detect

the circle under 70% noise.

Further testing shows that family 6 has the best performance at detecting features under
these noisy conditions. Previously (in figure 4.4) family 6 produced blurred output, but
was able to select the larger scale features such as the tree’s trunk, and the outline of
the woman. This highlights that this family operates at a larger scale due to its central
wavelength being 17 pixels instead of the 3 and 8 of the other families. This makes
family 6 more appropriate when pixel based noise is added to an image, and this can
be seen from the results in figure 4.10 where there is considerably more structure in the
response to 90% Gaussian noise than for phase congruency. This is also the case for
the salt and pepper noise tests where there is good structure in the 50% noise case and

residual structure at 70%.
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(a) The test (b) The test (c) The test (d) The test (e) The test
image with image with image with image with image with
10% Gaussian 30% Gaussian 50% Gaussian 70% Gaussian 90% Gaussian
noise noise noise noise noise

Test images

(f) Results (g) Results (h) Results (i) Results () Results
with 10% with 30% with 50% with 70% with 90%
Gaussian Gaussian Gaussian Gaussian Gaussian
noise noise noise noise noise

Family 4

(k) Results (N Results (m)  Results (n) Results (o) Results
with 10% with 30% with 50% with 70% with 90%
Gaussian Gaussian Gaussian Gaussian Gaussian
noise noise noise noise noise

Family 5

(p) Results (q) Results (r) Results (s) Results (t) Results
with 10% with 30% with 50% with 70% with 90%
Gaussian Gaussian Gaussian Gaussian Gaussian
noise noise noise noise noise

Phase congruency

FIGURE 4.8: Responses of statistical phase congruency to a test image with increasing
levels of zero mean additive Gaussian noise with comparative results generated using
phase congruency.
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(a) The test (b) The test (c) The test (d) The test (e) The test
image with image with image with image with image with
10% salt and 30% salt and 50% salt and 70% salt and 90% salt and
pepper noise pepper noise pepper noise pepper noise pepper noise

Test images

(f) Results (g) Results (h) Results (i) Results () Results

with 10% salt with 30% salt with 50% salt with 70% salt with 90% salt

and pepper and pepper and pepper and pepper and pepper

noise noise noise noise noise
Family 4

(k) Results (1) Results (m)  Results (n) Results (o) Results

with 10% salt with 30% salt with 50% salt with 70% salt with 90% salt

and pepper and pepper and pepper and pepper and pepper

noise noise noise noise noise
Family 5

(p) Results (q) Results (r) Results (s) Results (t) Results
with 10% salt with 30% salt with 50% salt with 70% salt with 90% salt
and pepper and pepper and pepper and pepper and pepper
noise noise noise noise noise

Phase congruency

FIGURE 4.9: Response of statistical phase congruency to a test image with increasing
levels of salt and pepper noise with comparative results generated using phase congru-
ency.
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FIGURE 4.10: Statistical phase congruency tuned to detect features even in extremely

noisy conditions.
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4.6.3 Examining the effects of ‘discontinuous’ lines

One of the main motivations behind developing this technique for measuring phase
congruency is the negative results from feature detection applied to a plain image with a
line of dots traversing it, for example in fig. 4.6.3. The technique by Kovesi shows some
odd behaviour, as do some results for moving features, both of which were discussed in
Section 3.3.6.

Figure 4.11 shows results for statistical phase congruency and phase congruency to two
synthetic images. The results are present as complete images showing the overall re-
sponse, and alongside each image cross sections have been presented. The cross sections
are taken from columns between the impulses and between the transitions in the step
edge case. They are overlaid and each cross section is aligned such that the centre of
the line is in the same place. Each of the resulting images show a strong response to the
feature in the image. The cross section slices show strong feature detection even in the
case of the impulses where no feature is actually present due to temporal support. The
noise in both images produces stronger responses from the phase congruency operator
than any of the statistical phase congruency families. It is also noticeable in the cross
section of the moving step edge that phase congruency produces echoes to the sides of
the main response. It is these echoes that statistical phase congruency was designed
to reduce or remove. Removing these echoes is an important process when considering
extending a feature detector into 2D+T, where edges and features can move in such

‘disconnected’ manners.
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Phase congruency

FIGURE 4.11: Different responses to a ‘fast moving’ impulse and step from statistical
p g
phase congruency (family 4, 5 and 7) and phase congruency. Both in image form and
plots of the cross sections from the columns between the points of 'movement’.
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4.7 Conclusions

In this chapter a new method for measuring phase congruency has been presented. To
do this the filtering process has been modelled. The model has been used to analyse
different families of filters with respect to their ability to measure phase congruency.
The spatial extent of each filter has also been measured and a mean value taken of
each family. With both the spatial extent and a filter family’s ability to measure phase
congruency seven families were chosen. From these seven, three families showed good

results against a series of test images.

Noise testing of the new statistical phase congruency produced positive results with
improvements over the previous method of measuring phase congruency. This is very
encouraging, and in addition some problematic results found using phase congruency
in chapter 3 have also been removed. In overcoming these problems we have designed
a feature detector that should be more suitable for extending into 2D+T. This is the

subject of the next chapter.



Chapter 5

Temporal Statistical Phase

Congruency

In chapter 3 we extended phase congruency into the temporal domain. Further investi-
gation into phase congruency in section 3.3.6 showed some interesting and undesirable
results. These results provoked the development of statistical phase congruency in chap-
ter 4. This new method for feature detection proved to produce good results on test
images, but also produced acceptable results when tested against an image of an inclined
line of impulses, or if viewed using a 1D+T framework, a fast moving impulse, some-
thing phase congruency fails to do. The ability of the technique to correctly detect a fast
moving impulse in 1D+T, suggests that this method for measuring phase congruency

should be more suited to temporal extension for detecting time persistent features.

Since statistical phase congruency is fundamentally a 1D metric, section 5.1.1 describes
the changes needed to transform the filters used in 2D in chapter 4 into the 2D+T
domain. The extension of statistical phase congruency into the temporal domain allows
for features to be detected at multiple spatial and temporal angles. In section 5.3
interpolation methods previously described in section 3.2.4 are applied to results and
allow the dominant velocity and spatial orientation of a feature to be established. Results
from applying temporal statistical phase congruency are presented in section 5.5. These
begin with example images in section 5.5.1, with results from different noise tests in
section 5.5.2. The technique’s response to occlusion is examined in section 5.5.3 and
section 5.5.4 evaluates the accuracy of the velocity interpolation aspect of temporal
statistical phase congruency. The final set of results in section 5.5.5 show the effectiveness
of temporal statistical phase congruency when used in velocity thresholding. The last
section of this chapter gives some conclusions to the technique and suggests further

possible areas of research.

77
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5.1 Introduction

In extending statistical phase congruency to image sequences a number of additional
stages are necessary. Although we rely heavily upon the underlying ability of statistical
phase congruency to detect features, we also attempt to detect these features at differ-
ent spatio-temporal angles in an image sequences. In section 5.1.1 of this chapter, we
describe how the filters are extended into 2D+T. The use of these filters to measure
temporal statistical phase congruency is described in section 5.2. Section 5.3 suggests
the use of a velocity interpolation algorithm, and a noise reduction method is described

in section 5.4.

5.1.1 Filter construction

The filters used in the temporal extension to statistical phase congruency are constructed
using polar coordinates. If we consider the 2D filters described again in equation 5.1 we
see that there are three constituent parts. Each filter is defined by a Gabor function,
G(---), either log-Gabor or normal Gabor function with or without low-pass filtering.
This function selects the overall band of the frequency spectrum the filter is operating
in. The second part is a Gaussian function, Gaussian(---), that defines the spatial
angle of focus that the filter will operate on. The third part is the phase shift function,
psp(--+). This function is defined more completely in equations 4.6 and 4.7, and it
is the relationship between filters with different ps, that are used to estimate phase
congruency. It is therefore worth noting that the first two parts of the filter, spc2d,,

select the focus of the filter.

spe2d, = G(w,wn) Gaussian(,6,) psp(w) (5.1)

—(9—6n)>

Gaussian(0,0,) = e *%
(5.2)

where w is the spatial frequency and @ is the spatial angle. w, is the central frequency
of the Gabor filter, and 8, is the centre angle of the filter. o4 controls the spread of the

filter about the angular axis.

To extend these filters into the 2D+T domain we add a further Gaussian function that
operates about the temporal angular axis, ¥. This then gives us equation 5.3 composed
of four distinct functions. The first three select the frequency band or scale of operation
(wn), the spatial angular focus (6,) and the temporal angular focus (¢,). This allows

phase congruency to be detected within this section of frequency space using filters with
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different phase shift functions, ps,. These phase shift functions are inherited from the

2D version and all seven families will be evaluated.

spc2dt, = G(w,wn) Gaussian(0,0,) Gaussian(y,¥n) psa(w) (5.3)
—(¥—yn)?

Gaussian(y,,) = e 7%
(5.4)

The number of filters used in estimating phase congruency using statistical phase con-
gruency is a combination of the number of different spatial and temporal angles selected,
and the number of different phase shift functions are chosen. In developing temporal
phase congruency we used two different arrangements of filters in 2D+T space. We chose
here to use just the ‘singularity’ arrangement in developing temporal statistical phase
congruency. This arrangement sets some of the filters to be aligned to zero speed, which
would make them particularly sensitive to stationary features which could be useful.
Fither arrangement is suitable, but choosing one reduces the number of tests needing
to be completed as there are already 7 families of phase shift function to test with. A

diagram of the ‘singularity’ arrangement of spatio-temporal foci is shown in figure 5.1
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(a) Temporal axes filter orientations (b) filter orientations with ‘singularities’
with ‘singularities’

F1GURE 5.1: This diagram shows the foci of the filters used in temporal statistical
phase congruency.
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5.1.2 Frequency band and central wavelength selection

In chapter 4 we examined a method for measuring phase congruency using multiple
phase altered filters centred about a single section of the frequency space. The applica-
tion of multiple phase shifted filters has allowed the detection of features within images
of differing feature scales based upon the bandwidth of the filter selected, and its central
frequency. Re-applying this concept to the spatio-temporal domain, however could pro-
duce interesting results. If we consider that the spatio-temporal frequency is a mixture
of the spatial and the temporal, then fixing the spatio-temporal frequency and altering
the temporal angle will alter the portion of the frequency that pertains to a feature’s
spatial aspects. The alteration is actually a reduction in the amount of high frequency
spatial frequencies the filter will capture, reducing the weighting given to smaller fea-
tures. This would cause a problem for filters with smaller bandwidths. Therefore, it
may be important to use filters that cover the desired bandwidth with leeway given to
the exact measure. This argument does not take into consideration the effects of aliasing

upon what a given bandwidth may contain when smaller features move ‘quickly’.

5.2 Calculating temporal statistical phase congruency

The calculation of temporal statistical phase congruency uses the results of filters with
the same central wavelength, spatial angular focus and temporal angular focus, but
different phase shift function to estimate the degree of phase congruency at a pixel in
an image sequence. The result is an estimate of feature strength considering the filter’s
angle of focus. This allows a single point to have a high estimate about one spatio-
temporal angle and low estimates at others. It also allows for features to be detected
with multiple high degrees of phase congruency that may signify a corner or other type

of junction.

We consider that R, is the nth complex response of a filter (spc2dt,) to an image

sequence, I. This is shown in eqn. 5.5 where the total energy from the filter’s is E,,.

R, = 1Ixspc2dt, (5.5)

This allows m filter responses all with the same central wavelength and spatio-temporal
focus, yet different phase shift function to be combined to give the normalised standard

deviation, p.
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E = — - .
mnz::lE (5.7)
~ E,
% (5.8)
1 e~ -
p = aZ(En—n? (5.9)
n=1

where E is the mean energy for this set of filters and E,, is the normalised energy of the
nth response. p then provides the basis for our measure of feature strength for the same
orientation as the filters used to produce R,. p has proved to be correlated to phase
congruency, but inversely so. This means that p is mapped using a polynomial line of
best fit, P {}, to an estimate of phase congruency. Also p measures phase congruency,
but it does not account for points in an image where the energy at a point is so small
that the results are dominated by noise. To mask out these erroneous results the mean
energy, E, is used as a mask, this is similar to Kovesi’s implementation[16]. The final
estimate of phase congruency, spc, is given in equation 5.10 and is calculated for each

set of filter orientations, (6n,¥n).

SPCo, b = P{p}F (5.10)

where the mapping P {} is created by fitting a line to the distribution generated when

modelling the response of p to differing levels of phase congruency, see section 4.3.1.

5.3 Feature Velocity Interpolation

Similar to temporal phase congruency, temporal statistical phase congruency also has
the ability to detect features at different orientations in the spatio-temporal domain. The
technique does this by using multiple filters with specific spatio-temporal orientations
and detecting a pixel’s strength with respect to that particular orientation. In combining
these results from the different filters we gain a finer estimate of the feature’s true spatio-

temporal orientation.

The technique developed in section 3.2.4 is applicable again for estimating the primary

orientation of a feature in 2D+T space and results are presented in section 5.5.4.
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5.4 Reducing the effects of noise

The original 2D image based statistical phase congruency technique has no method
for measuring or countering the effect of noise. The new temporal statistical phase
congruency method however is able to estimate noise levels at each pixel. Using the
assumption that a single pixel will not have significant structure about all orientations
allows an estimate to be derived for the noise level at that pixel. The estimate is taken
as the smallest response from one of the orientations as this is likely to be entirely
based upon the noise that pixel is subject to. Therefore to counter the effects of noise
we subtract the smallest feature strength from all orientations as in equation 5.11 to

generate the noise reduced estimate of statistical phase congruency, nrspc.

NTSPCY,, 1, = SPCO, by, — MIN(SPC) (5.11)

where min(spc) is the minimum response of all spcg,, y, -
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5.5 Results

This section shows the results of temporal statistical phase congruency on a number of
different image types. Initially we show some example images and image sequences in
section 5.5.1.  Section 5.5.2 continues with more rigorous testing, and examines the
effects of zero mean additive Gaussian noise and salt and pepper noise on the technique.
Then repeating previous tests from section 3.3.3 we test the response to simple occluding
of objects in section 3.3.3 and look at the ability of the technique to separate out different

velocity features, in section 5.5.3.

5.5.1 Example results

(a) original (b) original (c) original (d) original (e) original
image 14 of 32 image 15 of 32 image 16 of 32 image 17 of 32 image 18 of 32

(f) original image 16 of 32 (g) temporal statistical phase congruency
output

FIGURE 5.2: Results from the temporal statistical phase congruency operator on a
ping-pong ball sequence.

Figure 5.2 shows the response of temporal statistical phase congruency to a range of
movements. The images presented in figures 5.2(a)-5.2(e) show the ping pong ball moves
relatively quickly and the hand, table and background are stationary. We see clearly
that the technique strongly highlights the window frame and the table’s edge. These are

both strong features that persist in time through the whole scquence. The hand also
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persists, but in the sequence of 32 frames used in this test sequence it moves around.
the technique is still able to give good feature positioning, and pick out the details of
the edges between the fingers and the detail on the sleeve on the arm. The ball however
is a. much faster moving object, and it is detected at its strongest in the middle position,
but there are echoes of the frames either side. This was also the case in temporal phase
congruency, and a suitable non-maximal suppression algorithm should be able to remove
the duplicates with the added velocity of the features also being known. The side of the
window frame does however have a slight surrounding echo that would not be removed by

non-maximal suppression, but could be removed if the image was correctly thresholded.

(a) original (b) original (c) original (d) original (e) original
image 14 of 32 image 15 of 32 image 16 of 32 image 17 of 32 image 18 of 32

(f) original image 16 of 32 (g) temporal statistical phase congruency
output

FiGURE 5.3: Results from the temporal statistical phase congruency operator on a
tree sequence.

Figure 5.3 shows the result of applying temporal statistical phase congruency to an
image sequence of a tree in front of some houses. Five images from the sequence are
shown in figures 5.3(a)-5.3(e) these are taken from the sequence of 32 images used in
processing. The central frame is repeated in figure 5.3(f) with the time persistent feature
detected image in figure 5.3(g). The feature detection process strongly highlights the
outline of the tree particularly where the edge of the tree becomes more distinct in the
upper half of the image. The roof line is also distinctly marked with the main branches

of the trees to the left of the main trunk being highlighted too. There is also some detail



Chapter 5 Temporal Statistical Phase Congruency 85

within the main trunk near the top of the image that is also strongly highlighted, both
bark detail and a line of symmetry in the middle of the trunk which is erroneous. This
is probably caused by wrongly detecting the trunk of the tree as a broad line feature.
In addition to this we also note that the time-persistent feature detection also provides
velocity information for all the features. This should help in combining the objects in
the image as the tree trunk will have a different velocity to the features it intersects with

such as the roof line and the top of the flower bed.

5.5.2 Noise Testing

We repeat the same noise tests applied to temporal phase congruency to temporal sta-
tistical phase congruency. We use salt and pepper noise and additive Gaussian noise
in testing, the first because of its effect on the whole spectrum and the second because
other noise, at the limit, can be reduced to it. The tests consisted of detecting the edge
of a circle moving in an image sequence. The region where valid feature pixels should be
detected is a ring 2 pixels wide in each image and is a small percentage of the total im-
age sequence. In comparing the number of false pixels detected and the number of true
feature detections we have used percentages of each region where features are detected.
There is no accounting for feature orientation information in this test. The thresholds
were at set intervals, measured in percentages of the peak value, of 10% between 30%

and 100%.

The first results are for the sequence with zero mean Gaussian noise added. The noise
level is controlled by varying o, the spread of the Gaussian noise. This spread is measured
as a percentage of the greyscale difference between the circle and the background. The

results presented are for the central frame of the sequences.

We have included the results from 4 families in figure 5.4 and compared them with the re-
sults from temporal phase congruency. The four different families show different degrees
of resilience to noise. This is not surprising as they have different central wavelengths of
their base filters. Family 6 produces the best results, and this is to be expected as the
base filter for this family has a wavelength of 17. The other families all produce good
results for o = 10%, and family 5 produces acceptable differences at o = 30%. Temporal
phase congruency also shows some very good results in comparison, with an interesting
difference between it and family 6. Family 6 detects the edge of the circle fully, even at
the greatest noise level, but also begins to erroneously detect parts of the background
as feature points. Temporal phase congruency detects less of the valid feature region,

but also less of the background is picked out as noise.

The second test is run using increasing salt and pepper noise. This noise affects an
increasing number of pixels in the image, and randomly sets 50% of those selected

pixels to black and the rest to white. These tests show that temporal statistical phase
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FIGURE 5.4: Results from testing a simple white disc moving on a black background

with Gaussian noise added. The plots show the percentage of cach region that contains

detected features. The magenta. crossed line shows the percentage true positives and the

red ringed line shows the percentage of false positives. A range of results are presented
due to the test being run fifty times.
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congruency produces better results if using family 6.

Although both sets of results show varying degrees of success at detecting the correct
edge pixels they also highlight the differences between the techniques. Families 4, 5,
and 7 all have relatively small central wavelengths and the success of temporal phase
congruency and family 6 highlights the fact that these tests are testing a technique’s
ability to distinguish between two regions. If the circle was a line feature rather that a

step feature it would quickly disappear amongst the noise.

5.5.3 Occlusion

In this section we present results from applying temporal statistical phase congruency to
image sequences that contain simple occlusion. All the sequences are of a circle moving
vertically, with a fixed region of the circle being occluded. Testing against occlusion is
important as it is a common occurrence in moving object analysis. Results presented

here are for family 4.

In figure 5.6 the circle is very clearly detected in all the images, and the edges are well
defined at the point of occlusion. This is a positive result as it shows that even though
the temporal aspect of the new operator enhances its resilience to noise, it does not blur

the important boundaries between objects.

Broader occlusions are shown in figure 5.7. These are much clearer as the distance

between features is greater.

5.5.4 Feature Velocity Testing

Since temporal phase congruency is a time persistent feature detector. It can detect a
feature’s orientation through space-time. It is important therefore to present example

results and test the accuracy of the orientation information of any detected features.

Figure 5.8 shows an example of the normal orientation data that can be extracted from
temporal phase congruency. From the image it looks like the normals to the features
appear consistent with the underlying image data. A more quantitative set of results is
also calculated from a synthetic image sequence. The sequence is the same as that used
in section 3.3.4 which if defined in 3D space would be the same as a solid black sphere
inside a solid white cube. This allows the testing of different spatial and temporal angles
with a known 3D orientations, or known 2D+T velocities. A slight amount of zero mean

additive Gaussian noise was also added.

The test sequence was passed through the temporal phase congruency feature detector,
and then the orientation of all the significant feature points was established using the

estimation method described in section 3.2.4.
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FIGURE 5.5: Results from testing a simple white disc moving on a black background

with Gaussian noise added. The plots show the percentage of each region that contains

detected features. The magenta crossed line shows the percentage true positives and

the red ringed line shows the percentage of false positives. Error bars show the range
of results due to the test being run fifty times.
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(a) 1 pixel wide (b) 3 pixels wide (c) 5 pixels wide

FIGURE 5.6: Results from the temporal statistical phase congruency operator on
sequences of a circle moving vertically with a fixed position bar of differing heights
occluding the circle.

IEEE

(a) 10 pixels wide (b) 15 pixels wide (c) 20 pixels wide (d) 25 pixels wide

FIGURE 5.7: Results from the temporal statistical phase congruency operator on
sequences with a fixed position bar of differing heights occluding the image sequence.

The orientations are compared to values calculated when generating the test data and
distances from this ‘ground truth’ is calculated for all features over .7 in strength. The
results are then presented and compared to similar results for a 3D Sobel operator[3]

that has been applied to the same sequence.

From the separate histograms in figure 5.9 temporal statistical phase congruency is
able to detect feature orientation better than the Sobel operator. The spatial accuracy
appears to be better than the temporal accuracy for the temporal statistical phase
congruency operator, but both are an improvement upon the Sobel operator’s estimate.
It is important to note that temporal statistical phase congruency does of course inherit
illumination invariant properties which are not a tenet in traditional edge detection. As
such, though the improvement here does not appear to be considerable, there remains
significant advantage in feature detection by temporal statistical phase congruency with

improved (secondary) description capabilities.
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FIGURE 5.8: Example results of orientation normal information for features extracted
from temporal phase congruency of a woman’s face.

5.5.5 Velocity Thresholding

Since temporal statistical phase congruency extracts the velocity of a feature, it is pos-
sible to threshold based upon velocity. This can be a post-processing stage, or the
technique can be altered so that it only looks for features of a particular velocity. Alter-
ing the process should reduce the time the technique takes to process a sequence, but
the additional orientations at ‘unwanted’ velocities could be used in noise detections as
features are detected in orientations that are similar to their true orientation, whereas
noise is not necessarily detected. Example frames from a sequence of a person walking

are shown in figure 5.10.
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FIGURE 5.9: These plots show the ability of the temporal statistical phase congruency

operator to detect the orientation of a wide variety of feature orientations.

Figure 5.10 show the results from selecting different velocity ranges from the results

of applying temporal statistical phase congruency to an image sequence of a person

walking. The different velocity ranges are very effective at showing the aspect of the

image that is moving. In the results from each of the different techniques we see the front

foot is very slow moving, and so is present in the near zero and slow velocity results,

but not present in the two faster moving velocity ranges. The same is true of the ceiling

which does not move at all. Tt is also interesting to see the front thigh and the whole of

the back leg are detected at the higher speeds in each of the families.
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(a) original (b) original (c) original (d) original (e) original
image 14 of 32 image 15 of 32 image 16 of 32 image 17 of 32 image 18 of 32

Test images

(f) all veloci- (g) near zero (h) slow veloc- (1) medium (j) fast veloci-
ties velocities ities selected velocities ties selected
selected selected
Family 4

(k) all veloci- (1) near zero (m) slow (n)  medium (o) fast veloci-
ties velocities velocities velocities ties selected
selected selected selected
Family 5

(p) all veloci- (q) near zero (r) slow veloc- (s)  medium (t) fast veloci-
ties velocities ities selected velocities ties selected
selected selected

Family 7

FIGURE 5.10: Results from the temporal statistical phase congruency operator on
sequences with ranges of velocities selected. All results are taken from a sequence of 32
frames of which the 16th frame is shown.
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5.6 Conclusions

In this chapter we have taken the statistical phase congruency operator and extended
it to work in the spatio-temporal domain. This allows the detection of time persis-
tent features. The extension of statistical phase congruency into the 2D+T domain
has increased the information that is generated about feature points, particularly the

orientation of a feature is now extended into time giving the velocity information.

The extension into time has also given an increased degree of robustness and resilience
to noise as shown in section 5.5.2, and has not affected the technique’s ability to detect

the edges of moving objects undergoing occlusion.

It is also apparent that it is possible to use the technique’s ability to detect the velocity
of a feature. This was strongly highlighted by thresholding an image sequence and being
able to select the different features based purely on their temporal angle of detection.
This new dimension of data that is available if a feature is detected using a time persistent,
feature detector shows to be a useful element to the information that can be extracted

from an image sequence, especially with the other benefits gained.

The different parameters that can be used to define the filters used in temporal statistical
. phase congruency have been shown to give different benefits. Three particular families
seemed to produce results that detected the finer features, but due to their more localised
operation were less resilient to noise. A fourth family which detected larger scale features
did show a strong resilience to noise, equal to and at times an improvement on temporal
phase congruency. The use of filters that were specifically chosen to have a small spatial
extent could have effects on the overall technique’s ability to withstand noise. Further
research could look into the properties of filter families that were not as compact as

those chosen and may produce improvements particularly under noisy conditions.

Another method for improving the technique’s ability to accurately detect time persis-
tent features would be to combine the results of the different families either by simply
multiplying the results together or via some other method. The variations between the
filters could also be different. Currently two filters are used /2 radians apart, if they
were perfect sine waves they would be orthogonal. It would therefore be interesting to
combine the results from applying filters which are orthogonal in another manner i.e.
via increasing numbers of oscillation. Investigation into results from different filters in

this manner have not been carried out due to time constraints.

In addition to extending statistical phase congruency, a new and quick method for noise
suppression has been used in temporal statistical phase congruency that was not used
in temporal phase congruency. The application of this form of noise suppression along
side the current noise suppression method already used could increase the robustness of

that technique, or replace it if a greater processing speed was required.
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Conclusions

In this thesis, time persistent feature detection using phase congruency has shown to be
useful and deserving of future research. The two techniques described for time-persistent
feature detection have shown marked advantages over image based feature detection.
Time persistent feature detection allows for features to be detected in higher levels of
noise. It takes advantage of temporal correlation and will hopefully allow computer

vision to operate in more difficult imaging environments.

Time persistent feature detection also gives new information of a feature’s velocity within
an image sequence. Previous techniques that grouped features together to give lines or
shapes could only rely on a feature’s spatial orientation. The new velocity information
should also allow features that move together to be grouped together, and allow for lines

and shapes to be separated in time and space more accurately and robustly.

Temporal phase congruency has been shown to be a useful method for detecting time
persistent features. Chapter 3 described the extension of phase congruency, an image
based technique, to temporal phase congruency, a new image sequence based technique.
This new idea allowed previously high levels of robustness to noise to be exceeded. It also
allowed a global intensity invariant time persistent feature detector to be implemented.
This is good because not only is the technique useful if there is a variation in illuinination
across an image, but also should the illumination change over time the technique should
not be affected. The results proved also that the technique is able to extract useful
features. The response of the technique to features at different spatial and temporal
angles also highlighted the problems of temporal aliasing, and highlighted some of the
limitations of phase congruency. The results from the different orientations were also

combined in a new way to estimate the primary orientation of a feature in 2D+T.

One of the sections in chapter 3 highlighted some unusual results generated from phase
congruency and also temporal phase congruency. This lead to the work of chapter 4

which considered a new way of measuring phase congruency. This method was initially
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developed for images and estimated the phase structure at a point using the variation in
response from different filters. A process of modelling local frequencies was developed
and allowed for different filter designs to be evaluated. Seven families of filters were
selected and tested on a number of different images. Three families were then highlighted
and results presented. These showed improvements over phase congruency, in particular
the new technique avoided problems associated with detecting a shallow angled line.
These results were exciting and provided a strong foundation for extending the technique

to detect time persistent features.

The final chapter of work within this thesis, chapter 5, described temporal statistical
phase congruency. It contributes a novel, and robust feature detector to the field of
computer vision. The technique builds upon the work of chapter 4 and applies a temporal
extension using the work and inspiration from chapter 3. This new method for measuring
spatio-temporal phase congruency detects features more robustly than temporal phase
congruency and also estimates of feature angle are better. The different families used
in temporal statistical phase congruency show the technique’s ability to be adapted to

different requirements.

6.1 Future work

There are a number of opportunities for further study into the research presented in
this thesis. The first is shown in appendix A. This paper presented at British Machine
Vision Conference 2003 described the use of temporal phase congruency for providing
good estimates of phase congruency about boundaries of moving objects. This work
with the further development of temporal statistical phase congruency and the ability
to estimate more accurately spatio-temporal angle could be developed to provide more

robust optical flow information, particularly at motion boundaries.

This work has piloted new techniques in an area of emergent interest. Naturally, it is
likely that tuning could improve performance further. For both spatio-temporal tech-
niques this tuning could involve a different method for the construction of 2D+T filters or
the number and arrangement of the filters in 2D+T space. Temporal phase congruency
also has a more computationally costly method for the estimation of noise than temporal
statistical phase congruency, changing this noise estimation method could decrease the

computational expense of the technique.

Statistical phase congruency relies upon the choice of filter family to robustly detect
features. During development families were selected based upon a measure of their
spatial extent. After noise testing it was shown that filters with a high wavelength and
therefore spatial extent were able to detect features with higher noise levels than filter
families with smaller spatial extents. Further research could evaluate additional families

with larger spatial extents, but similar or better abilities to measure phase congruency.
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To add to this the development of statistical phase congruency only investigated filter
families constructed from sine-waves and feature strengths were calculated with filters
with the same phase shape, but different positions on the frequency axis. Future research
could consider mixing sine-waves with different frequencies in the same family, and
also other phase varying functions. This sort of an extension to this thesis could also
consider combining results from the current families in some way to further enhance
the robustness of the technique. An alternative method for applying the phase shift
functions about the #-axis and/or the 1-axis could also be considered. Currently the
technique estimates the structure along the w-axis and yet there is no reason why phase
shifting needs to be along such an axis if a feature exists in 2D+7T rather than being
a 1D feature oriented in 2D+T space. Investigations into filters constructed with such

variations could also have interesting spatial properties as well.

In a more fundamental regard, the central premise underlying this thesis has been that
it is possible to detect time persistent features by processing an image sequence as a
whole. As yet there has been no consideration of fundamental properties of moving

feature analysis. In this regard, the basic nature of analysis could be refined further.

Despite this, we have certainly demonstrated that it is possible to detect moving and
time persistent features at different scales of velocity and in respect of practical image
attributes including illumination, noise and occlusion. In this regard we look forward to

further developments in this new area of spatio-temporal image analysis.
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Abstract

We show how optical flow estimates can be combined with boundary esti-
mation to improve estimates of motion. The improvement is associated with
blending of estimates from complementary bases of operation. The paper
combines a phase-based method for optical flow with a time extended ver-
sion of the phase congruency operator. By evaluation on synthetic and real
image sequences, the combination of the two techniques is shown to im-
prove motion estimation with particular advantages at motion boundaries,
regions which have posed considerable difficulty for previous motion esti-
mation techniques. The advantage is derived using the moving feature infor-
mation in an extended phase congruency operator to constrain correct data in
the optical flow field.

1 Introduction

Motion blur is a real problem for optical flow calculation. Most optical flow techniques
use operations on groups of pixels to calculate the optical flow at a particular point. To
justify this, an assumption of a single motion field, (or a smoothly varying motion field)
model is used. If, however, within a group of pixels there is a motion boundary, or multiple
motions violate this assumption, then the resulting field will be biased or erroneous. We
show that it is possible to use motion boundary information to separate motion fields and
reduce or remove blurring across such boundaries.

Knowing that both optical flow and motion boundary estimation can be computation-
ally expensive, two techniques that are phase-based have been chosen as a basis for this
work. The first is phase-based optical flow developed by Fleet and Jepson [4]. It provides
dense flow fields and sub-pixel accuracy. In a review by Barron [2] it was shown to pro-
duce good results in comparison to a number of other techniques. The second is a robust
feature detector which uses phase congruency, developed by Kovesi [6]. This technique
is designed for image feature detection, but has been extended here to detect features that
persist over time.

1.1 Phase-based Optical Flow

Fleet and Jepson[4] propose that the flow of the phase values of an image sequence’s
component frequencies is synonymous with the optical flow of the sequence. The first
step of the technique is the convolution of a series of Gabor filters, N(x,,t, w,;, @, , @),



(with zero DC response), with the image sequence, I(x,y,) as in eqn. 1 to obtain filtered
images , Ri(x,y,), as
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where
N(x,y,t, wx, CL)_‘-, CO,) _ G(x’y’t)(e—i(m_\'-\’+(l)_\-_\'+a)ﬂ) _ e—bz/Z) (2)
G 1 32 —((-r—-r())2+(.\'—.‘2'())2+('A'())2) 3
)t = P — 20

(x,3,1) (2 - G) e 3

28 41
b = - 4
Y )

and f is a measure of the bandwidth the filter has one ¢ from its centre. There are
22 sets of constants @y;, @y;, and @;, which orientate the filtering at six 30 ° intervals with
ay; = 0, ten 36° intervals with @, = l/\/§, and six 60° intervals with @, = V3. The
Gaussian envelopes are centred at (xp,yo,%). This produces a set of complex responses
for frequencies at various orientations in the sequence containing phase and amplitude
information. The differentials of these responses about each axis [VR ,(x,y,), VR (x,y,1)
, VR (x,y,1)] are then calculated using a 5-point complex central differencing kernel.
These are then combined to produce an estimate of the phase gradient about each axes,
Voe(x,y,1), Voy(x,y,1) and V¢, (x,y,1), using the identity in equation 5.

Slog(R(x,y,t))  R*(x,3,1)VR(x,y,t) _ Vpi(x,y1)
ox |R(x,y,1)|? p(x, 1)

where R*(x,y,1) is the complex conjugate of the response, R(x,y,#). This in turn enables
the component velocity, V(x,y,1), to be calculated as in equation 6.

V(X ‘l‘) _ ( —(Vd)_r(x,y,t)V(I),(x,y,t) —(V(I)_\-(x,y,t)Vq),(x,y,t) ) (6)
’.)’ B V¢X(x>y=t)2 + Vd)_\'(-x7yar)2 ’ V(P_‘.(X,y,[)z + V(P_‘-(x,)’,t)z

The results are also thresholded dependent upon conditions that eliminate phase sin-
gularities [5] and points where the response to the Gabor filter is too small and possibly
dominated by noise. A final step of applying a least squares operation on a local neigh-
bourhood of component velocities produces full 2D velocity estimates.

+ iV (x,y,1) 5)

1.2 Phase Congruency

Phase congruency is a robust feature detector. It detects not only step and line responses,
but also a broader set of features [1]. Its attributes include a high degree of invariance to
lighting variation within images. This paper extends the phase congruency technique to
work with image sequences. The technique’s first step is to convolve the image with a
set of log-Gabor filters at /" different orientations and 'm’ different scales. Log-Gabor
filters are chosen because they have zero DC response, and in cosine and sine based pairs
they have a quasi-quadrature relationship. At each orientation a measure of the spread of
energy amongst the different scales, w, (x,y), is calculated.

Ay (x, )’)

7 Ao (5,7) £ €) )

wa(x,y) =



where A, (x,y) is the amplitude of the response to the quadrature pair of filters at scale
n and Apqy(x,y) is the maximum amplitude response for the set of log-Gabor filters at
all orientations. £ is a small constant avoiding division by zero which ensures that if the
amplitude at a pixel becomes too small it is masked out. This is then mapped through a
sigmoid function to produce W,,(x,y)

1

1+ ele—mnlene ®)

Wa(x,y) =

where ¢ and g control the mapping of w,(x,y) to W, (x,y). Also an estimate of the
level of noise at the different scales, 7', is calculated[6]. Then phase congruency, PC, at
each orientation, PCy, is calculated from the vector sum of the log-Gabor filter responses,
R;.
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Ag, (x,y) = Pu(x,y)—¢ (x,y) (10)

where ¢y, (x,y) is the phase at point (x,y) for scale n and ¢(x,y) is the mean phase
across all scales at that point. The use of | | depict that if the quantity between is negative
it is set to zero. The vector sum is thresholded by the noise level estimate, T, and scaled
by the measure of the spread of the energy mapped through a sigmoid function, W, (x, y).

This is then divided by the total energy at the chosen orientation to produce a measure
of phase congruency, PC;, for that orientation. Repeating and summing of the results for
the *I’ orientations gives the phase congruency measure for the image, PC(x,y).

! . .
PC(x,y) = Y PC(x,y) (11

2 Method

2.1 Temporal Phase Congruency

We now extend phase congruency to use inter-frame data to enable estimation of moving
features with resilience to noise. The original technique looked for features in a two-
dimensional image and used filters that were built from a one-dimensional signal, the
log Gabor function. This was convolved with an orthogonal spreading function, in this
instance the Gaussian function. An additional spreading function (orthogonal to the two
original functions) can be used to create a three-dimensional (2D+T) filter to enable the
detection of moving features. The measures for the estimation of noise, and energy spread
are also extensible to image sequences. The original log Gabor function is

—log(w/w;)

1 2log(o/w;
lg(w’a)i) _ \/M_Ge log(o/w;) w # 0 (12)
0 w=0




where w is frequency, and w; is the tuning frequency of the filter. ¢ controls the
spread of the filter.

This filter is convolved in the time domain ( multiplied in the frequency domain) as in
equation 13 for 2D filtering and as in equation 14 for 2D+T filtering. The filters are based
upon a polar co-ordinate method for making log-Gabor filters, with the two orthogonal
Gaussian spreading functions operating in the angular axes, and the log-Gabor filter about
the radius or magnitude of frequency axis.

Ig2Di(w,0, w;, 6;) e 0 lg(o,w) (13)

1 -8 —(w-wp?
12D+ T(w,0,v,w;,0;,v;) = ot e 207 lg(w,w)

(14)

where w represents the spatial or spatio-temporal frequency, 6 represents the spatial
angle of that frequency and y represents the temporal angle in frequency space. 6; and y;
are the angles the filters are focused upon, and again ¢ controls the spread of the filters.

This extension to phase congruency has two main advantages. The first advantage
is found in the orientation at which phase congruency is detected at a particular pixel.
This describes not only its spatial, but also its temporal orientation. This is the same as
describing its velocity. Therefore all features extracted with the extended method have
this additional attribute already defined.

Secondly the technique should be more robust to noise. This gain in robustness is
justified by examining the feature that the filters respond to. In the one-dimensional case
the filters are responding at a point. In the two-dimensional case the filters are responding
at a point, which if part of a feature will likely be surrounded by valid feature points in a
line on either side, that by themselves would cause a minor response to the filter due to the
Gaussian spreading function. This improves the signal-to-noise ratio when processing an
image. Therefore when considering a point in 2D+T space, the supporting responses of a
point’s neighbours in both spatial and temporal directions should increase the robustness.

2.2 Guiding Optical Flow Estimation

Optical flow operators suffer from motion blurring since at a boundary the estimates for
motion can become mixed between one moving object and another. This is because opti-
cal flow operators typically use neighbourhood operations to compute velocity estimates
or in filtering stages. Both of these occur in Fleet’s technique. An example of motion
blurring can be seen in figure 1 where it is possible to see that the estimates for motion
in the image blur across the boundary of the circle onto the stationary (smoothly varying)
background. With a moving feature detector, it should be possible to define where the
motion boundary is. With this information it is then possible to erode the motion field
back towards the motion boundary, reducing errors in the motion field produced.

The erosion process uses the current velocity estimates, v, the original velocity esti-
mates, Vorig, and the phase congruency measures, pe to produce the new estimate, v as in
equation 15.
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Figure 1: This figure shows part of a frame from a sequence of a moving circle with the
motion vectors superimposed on each pixel

incorrect  [[v(x,y) = v(a,b)| > A1 Avoig(x,) > Vorig(a, b)), pez A
Vi(x,y) = [pe(e,d) < A, yew (15)
correct in all other cases

Co-ordinates (x,y) are those of the current point being considered, (a,b) are the nearest
points to (x,y) in direction of the motion at that point. Points (¢,d) are the points "north’,
‘south’, ’east’ and *west’ of the current. A controls variation in the velocities. Previ-
ous values that have been deemed incorrect are always ’different’ from another velocity
estimate. A, controls how significant a feature needs to be before it stops the erosion pro-
cess. In our studies, phase congruency values greater than 0.33 are significant. Testing
the original velocities means that the erosion having started from a motion boundary only
creeps in one direction, that of the faster moving region. This is prescribed because faster
moving regions should have a larger motion blur. Future work needs to examine more
complex motion boundaries to ensure this is a valid and uscful assumption.

3 Results

3.1 Temporal Phase Congruency

The new temporal phase congruency has been tested against the original phase congru-
ency technique on a synthetic sequence of moving circles. The first test has been using
a simple visual comparison. Both techniques extracted the edges of this simple image
scquence very well. To gain a deeper insight, salt and pepper noise was added to the
sequence in increments of 10%. At 50% salt and pepper noise, half of the pixels are set
arbitrarily to black or white. Examples of the middle frame of the sequence with different
noise levels are shown in figure 2.

The resulting ’feature’ maps are then passed through a velocity Hough transform[7],
which is a robust moving circle detector. In the results shown in figure 3 only the high-
est point in the accumulator for that sequence was a correct identification of the circle’s
velocity, and position. Anything different was considered a fail, a harsh judgement, but
illustration enough of the performance possible here.

The result sfiows that the thresholded variant of the new temporal phase congruency
operator improves results. This is because the number of sequences for which a correct



Figure 2: An example frame with 10%, 30%, 50%, 70% and 90% salt and pepper noise.

result obtained is more for the new technique and all except one exceed that of the original
version. The lower results at 60% noise for the temporal phase congruency method when
compared to the image based method could be attributed to too small a test set, but merits
further investigation.

3.2 Guided Optical Flow

To test the new guided optical flow two sequences were used. The first was of a generated
disc with a fixed random texture moving on a linearly varying background or ’slope’. The
second was from the Southampton Gait Database [8], and involved a person walking on a
green background. This sequence was processed three times using the separate red, green
and blue channels, with the final flow fields being assimilated to produce a more dense
flow field, than if either a grayscale sequence or a single colour channel was used. The
densities of the flow fields even after combining the three channels were still too low.
This is because Fleet’s technique can only detect motion up to 2 pixels per frame without
sub-sampling the images. Accordingly, another optical flow technique by Bulthoff [3]
was used to buttress the density of the optical flow estimates. Differences in the density
of results can be seen in figure 4.

It was assumed that within the circumference of the circle and the person were the
only pixels that should contain any movement. In this way the results for this test were in
four categories:

- Correct results, non-zero velocity estimates only within the ’shapes’.
- False zero velocity estimates where velocity estimates should be higher than zcro
- False non-zero velocity estimates where background estimates should be shown

- Unclassified results, pixels for which the velocity is indeterminable by the optical
flow techniques, or is eroded.
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Figure 3: Graph comparing the phase congruency and temporal phase congruency.

(a) Original Image (b) Fleet(phase) (¢) Bulthoff(correlation)

Figure 4: Flow field estimation for a walking person.



Iteration Total Correct False Zero False Positive Unclassified
No. No. Percent | No. | Percent No. Percent | No. | Percent
0 224660 | 94.80% | 186 | 0.08% | 12146 | 5.13% 0 | 0.00%
1 224659 | 94.80% | 186 | 0.08% 9700 | 4.09% | 2447 1.03%
2 224583 | 94.76% | 186 | 0.08% 8088 | 3.41% | 4135 1.74%
3 224409 | 94.69% | 186 | 0.08% 7440 | 3.14% | 4957 | 2.09%
4 224274 | 94.63% | 186 | 0.08% 7260 | 3.06% | 5272 | 2.22%
5 224168 | 94.59% | 186 | 0.08% 7213 | 3.04% | 5425 | 2.29%
6 224132 | 94.57% | 186 | 0.08% 7180 | 3.03% |5494 | 2.32%
7 224114 | 94.57% | 186 | 0.08% 7157 | 3.02% | 5535 | 2.34%
8 224100 | 94.56% | 186 | 0.08% 7134 | 3.01% |5572 | 2.35%
9 224087 | 94.55% | 186 | 0.08% 7111 3.00% | 5608 | 2.37%
10 224081 | 94.55% | 186 | 0.08% 7088 | 2.99% | 5637 | 2.38%
11 224080 | 94.55% | 186 | 0.08% 7076 | 2.99% | 5650 | 2.38%

Table 1: Results from a sequence of images with a textured circle moving on a smoothly
varying background

Iteration Total Correct False Zero False Positive Unclassified
No. No. | Percent | No. | Percent | No. | Percent | No. | Percent
0 9139 | 55.78% | 3261 | 1990% | 2283 | 13.93% | 1701 | 10.38%
1 8945 | 54.60% | 3223 | 19.67% | 1976 | 12.06% | 2240 | 13.67%
2 8816 | 53.81% | 3195 | 19.50% | 1784 | 10.89% | 2589 | 15.80%
3 8737 | 53.33% | 3164 | 1931% | 1668 | 10.18% | 2815 |17.18%
4 8670 | 52.92% | 3138 | 19.15% | 1585 9.67% | 2991 | 18.26%
5 8614 | 52.58% | 3116 | 19.02% | 1530 | 9.34% | 3124 | 19.07%
6 8560 | 52.25% | 3103 | 18.94% | 1479 9.03% | 3242 | 19.79%
7 8516 | 51.98% | 3095 | 18.89% | 1439 8.78% | 3334 | 20.35%
8 8481 | 51.76% | 3082 | 18.81% | 1404 8.57% | 3417 |20.86%
9 8454 | 51.60% | 3067 | 18.72% | 1380 8.42% | 3483 | 21.26%
10 8431 | 51.46% | 3055 | 18.65% | 1364 8.33% | 3534 | 21.57T%
11 8416 | 51.37% | 3041 | 18.56% | 1349 8.23% | 3578 | 21.84%

Table 2: Results from the central frame of the walking person sequence.



In both table 1 and table 2 the errors produced by the initial optical flow techniques
are reclassified as "unclassified’. This removes false confidences in the original data. The
number of reclassifications is higher in the first few iterations, but the process stabilises
and areas of blur are reduced to phase congruency boundaries.

(a) Flow Superimposed (b) After Erosion

Figure 5: Segments from the moving circle sequence with flow fields superimposed

(a) Flow Superimposed (b) After Erosion

Figure 6: Flow fields for the central frame of the walking person sequence.

Both figure 5 and figure 6 show that there is motion blur after the original optical
flow techniques. After twelve iterations the flow field in figure 5 has stopped receding
and stabilised closer to the circle’s boundary. Figure 6 shows the Bulthoff optical flow
operator’s broad flow fields can be guided in their reduction. In this instance the erosion
has eroded some valid flow vectors, but results in table 2 show the invalid vectors are
more greatly reduced.



4 Conclusions

Results from a moving feature extraction technique can be used to guide selection of
correct optical flow estimates thus improving the quality of motion extraction. The tests
shown are currently single objects moving on a stationary background and reclassification
of velocity vectors removes erroneous vectors. Future work should include multiple ob-
jects passing behind and in front of each other, as well as more complex motion junctions.
In developing this combination of motion detection, an enhanced form of the phase
congruency operator has been developed. This shows improvements over the original
operator in noisy conditions, although further work to remove some anomalies may be
necessary. It also provides velocity information for the moving features detected. Inclu-
sion of this motion information in the combined algorithm should also be a future work.
Preliminary studies on real image data were hampered by the sparsity of flow esti-
mates, in part due to the large motions in the test sequences. Currently fast motion causes
problems in obtaining sufficiently dense optical flow fields. This may be over come by
pyramid decomposition of the image sequence, along with a method for recombining
multiple scales of velocity estimates. This and other aspects merit future investigation.
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