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The use of feature detection is a standard process within the computer vision community 

for simplifying a complex image to a more manageable representation. Feature detec­

tion is typically applied to individual images, even if they are a part of a more extensive 

image sequence. In this thesis we present new methods for feature detection via phase 

congruency, applied to image sequences. This work shows the improvements that can be 

gained from taking an image in its context. The first section of work focuses upon ex­

tending a previous feature detector, phase congruency, to operate on an image sequence. 

This new technique shows improvements in the robustness of the feature detector under 

increasing levels of noise. It also improves feature orientation description allowing for 

the component velocity of a feature to be evaluated. After further evaluation however 

this method produced undesirable results for fast moving features. In response to this, 

a novel method for evaluating phase congruency has been developed. The new method 

is achieved by modelling the filtering process used to derive phase congruency by mea­

suring the standard deviation of the normalised energy response. Accordingly, the new 

method is termed statistical phase congruency. This new approach is implemented first 

for 2-D images, showing improvements over the initial image-based phase congruency 

technique. Furthermore, it is extended to detect time persistent features in image se­

quences whilst also providing improved results for detecting fast moving features. It is 

intended that the results of this work will provide a basis for detecting time persistent 

features under noisy conditions. The final portion of this thesis gives some conclusions 

and adds some direction for future work on these ideas. 
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Chapter 1 

Context and Contributions 

1.1 Feature detection 

Feature detection has been an area of research within computer vision for a number of 

decades. The aim of feature detection is to reduce a complex image to a line drawing 

or similarly abstracted image. Initial operators[24] were simple kernels convolved with 

the image in question, such as the Prewitt, Roberts or Sobel operators. Since then 

detectors have been designed for different environments and different 'ideal' features. 

Canny[9] first stated three key design criteria of non-spurious response, single edge re­

sponse, and correct location. Other important approaches with alternative bases include 

Spacek[30], Petrou[27]' and Marr-Hildreth[I8]. Each of these took a different view on 

what an important feature was, for example selecting 'step' features, or 'ramps', or al­

ternative differentiation paradigms. Other approaches have used cues from human and 

biological vision. These include using statistical methods to 'learn' what is perceived 

as a feature from a human perspective [15]. Further cues have also been gained from 

work by Morrone[22] showing that humans respond to points of high underlying phase 

congruency. This enables explanation of work by Kovesi [16], which detects features 

based upon measuring this phase congruency. Examples of phase congruency are shown 

in figure 1.1. 

These detectors differ in cost and performance, and have extensions to modify their 

behaviour. A common extension is that of sub-pixel feature detection, where the 'feature' 

is said to be positioned off the normal pixel grid [29]. Some operators are more robust, 

at the cost of computational effort. It is for these reasons that work continues in this 

area to allow the available choices when approaching such diverse problems as facial 

gesture recognition, automotive tracking or medical imaging to be broad enough for an 

acceptable solution to be found. 

With the increase in computing power, it is becoming possible to process images in 

sequences. l'vluch of the work within this thesis is particularly concerned with detecting 

10 
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(a) Square wave (b) Triangle wave ( c) Impulse wave 

FIGURE 1.1: Three example waveforms showing high phase congruency highlighted by 
circles. Figures l.1(a) to l.1(c) show the component frequencies that the waveforms 
can be built up from. In the highlighted regions it is possible to see the component 
frequencies align and become phase congruent, even though their amplitudes are very 
different. In figure l.1(a), an example of high phase congruency can be seen at the 
edge of a step function, and in figure l.1 (b) at the peak and trough of a triangle wave. 
Figure l.1 (c) also shows the occurrence of high phase congruency at the centre of an 
impulse function. In this way, features can be derived from phase congruent signals. 

11 

features within a sequence, both from a previously established single image feature 

detector[16]' and also a detector described within this thesis. 

Since we are concerned with extracting information from image sequences, the area of 

optical flow or motion estimation has also been instructive within the work. Optical 

flow estimation was first formulated by Horn and Schunck [12]. The initial ideas of 

estimating image motion as a low-level operator have been extended to use various 

bases of operation. Optical flow techniques can b e classified as gradient based operators 

(or first and higher order differential methods) [13, 25], correlation based approaches [5], 

and frequency based approaches [10, 11]. A number of reviews of optical flow operators 

have been conducted [4, 20] comparing these and other techniques on synthetic and real 

image sequences. It has been noted that the different types of operator have different 

properties, and broadly speaking frequency and gradient-based methods are more tuned 

to smaller velocities ( < 2 pixels per frame ), whereas correlation based methods are 

better suited to larger velocities and do not have the same apparent sub-pixel velocity 

resolution. Both of these problems can be circumvented to an extent with the use of 

image decomposition [2], or possibly image expansion/interpolation. These techniques 

are the vital first step in describing moving objects and phenomena, but they also give 

insight when developing a moving feature detector. 

Problems have been discovered in attempting to extract optical flow from an image 

sequence. Notably, the aperture problem, formulated by Marr [19], states that when 

looking at an image, or part of an image, if it has structure about only one axis, then full 

2D velocity estimation is ill-defined. This will particularly affect any effort to detect full 

2D velocity estimates of a feature , but should encourage component image velocity[l1] 
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estimates to be considered acceptable results. 

1.2 Time persistent feature detection 

Although computer vision has been analysing image sequences for many years, the most 

commonly taken approach to detecting features that persist over time is to apply a 

feature detector upon individual frames, and then apply some method of tracking. This 

approach typically uses spatial correlation to assist in the detection of features, but 

does not take advantage of temporal correlation, i.e. the time persistency of features, 

until after the feature detection is finished. This temporal correlation could enhance the 

process of feature detection itself, rather than just being used to filter out features that 

do not persist over time. 

There have been few attempts at detecting time persistent features. The closest to this 

thesis is that of Mulet-Parada[26]' who developed a moving feature detector for use in 

echocardiography. This was based initially upon the work of Kovesi, and the concept 

of phase congruency, but removed the use of multiple scales and used the log-Gabor 

framework to measure asymmetry as a measure of 'edge' strength that was robust to 

noise. This is in contrast to this thesis that maintains the multi-scale approach and 

detects features independently of their symmetry. 

Techniques for detecting motion boundaries, such as IVlitiche[l], Spoerri[31] or Lui[17]' 

are closely related to time persistent feature detection. Time persistent feature detection 

however, concerns an ability to detect features within an object that move with the same 

velocity as its surrounding region. 

Other work exist in detecting features or surfaces in 3D, such as Pudney's surface detec­

tion via local energy and ridge tracking[7, 28], and Monga's recursive filtering technique 

in 3D [21]. There have also been discussions as to the most appropriate method for 

extending the Sobel operator[14, 6, 8] into 3D. Each of these detectors ignores the prob­

lems associated with the object's movement and not forming smooth surfaces in the 

2D+ T domain, an aspect this thesis overcomes. 

There are a number of compelling aspects to detecting time persistent features. Firstly it 

is expected that a time persistent feature detector will be more robust to noise, extending 

the applications of computer vision into more difficult environments. Secondly, it also 

provides additional information with regards the velocity of a feature by describing a 

feature's spatio-temporal orientation. Detecting time persistent features may also help 

in the detection of optical flow by providing the motion boundaries within an image 

sequence. All these reasons mean that a time persistent feature detector could be a very 

useful commodity within the computer vision community and beyond. 



Chapter 1 Context and Contributions 13 

1.3 Thesis overview 

To summarise this thesis, we begin with background information into two previously 

published techniques. We describe the phase congruency operator, a robust feature 

detector, in section 2.1, and a moving feature detector in section 2.2. The contributions 

associated with this work are presented in three sections, firstly the temporal phase 

congruency operator, a new extension in time to phase congruency, is presented in 

chapter 3. Chapter 4 describes a novel approach to measuring phase congruency that 

specifically attempts to avoid some of the pitfalls of the earlier approach. This is then 

extended into 2D+ T and shown to be useful as a time persistent feature detector in 

chapter 5. We finish with some final conclusions as well as some ideas for future work in 

chapter 6. Appendix A also includes work into using time persistent feature detection 

to help reduce blur in optical flow, which provided motivation for this work. 

1.4 Contributions 

A number of papers have been written in the course of this research: these are listed 

below. The first is included in Appendix A as part of the motivation for the thesis as a 

whole, but is not an integral part of the thesis itself. 

P.J. Myerscough, IV1.S. Nixon, and J.N. Carter. Guiding optical flow estimation. In 

R. Harvey and J.A. Bangham, editors, British Machine Vision Conference, pages 679-

688. British Machine Vision Association, 2003. 

P.J. Myerscough and M.S. Nixon. Temporal phase congruency. In Proceedings South­

West Symposium on Image Analysis and Interpretation, 2004. 

P.J. Myerscough and M.S. Nixon. Measuring temporal phase congruency. In Proceed­

ings Symposium on Spatiotempoml Image Pmcessing. British Machine Vision Associa­

tion, 2004. 

P.J. Myerscough and M.S. Nixon. Estimating the phase congruency of localised fre­

quencies. In ProceedingsIEEE Intemational Conference on Image Pmcessing, 2004. 



Chapter 2 

Background 

The material provided in this chapter gives not only a technical background to this thesis, 

but also provided some of the motivation for the thesis itself. Section 2.1 describes phase 

congruency, a robust feature detector, and our extensions to it. Section 2.2 describes 

the work of Mulet-Parada, who began to extend phase congruency into 2D+T, but 

in focusing on an application specific feature type removed much of the framework of 

the original phase congruency technique. It is included here as a motivation and an 

introduction into time persistent feature extraction. 

2.1 Phase Congruency 

Phase congruency is a robust feature detector. It detects not only step and line re­

sponses, but also a broader set of features [3]. Its robustness is found in its ability to 

detect features in images with high levels of noise. Its other attributes include a high 

degree of invariance to lighting variation within images and a normalised measure of fea­

ture strength. This thesis extends the phase congruency technique to work with image 

sequences. 

The technique's main premise is that points of interest or features within an image can 

be highlighted by finding points in an image that have a high degree of phase congruency. 

The technique combines the measurement of phase congruency with a number of checks 

and balances. The first is that any feature must be composed of a spread of frequencies, 

this prevents pure sine waves from being detected as features. The second is that images 

typically contain noise, and it is helpful to be able to estimate the level of that noise so 

as to compensate for its effect. 

Phase congruency is measured as a 1D phenomenon that occurs within 2D images. The 

approach of applying 1D feature detection is similar to the Sobel operator, in that there 

is a primary feature detector that is convolved with an orthogonal spreading function. III 
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phase congruency the primary method of feature detection is the relationship between a 

series of quadrature filters, see equation 2.1, that are convolved with a number of different 

orthogonal Gaussian spreading functions, see equation 2.2. This produces filters with 

different central wavelengths and orientations of interest. They are then grouped into 

sets of filters by orientation and used to generate a measure of frequency spread and a 

noise estimate per orientation. The combination of phase congruency and these other 

two measures proves to be a robust feature detector that is invariant to lighting variation 

across an image. 

The following sections describe an initial naIve measure of phase congruency (sec­

tion 2.1.1), how to measure frequency spread (section 2.1.3), a method for estimating 

noise in images (section 2.1.4), and with a final section on how they are all combined to 

provide phase congruency as presented by Kovesi. 

2.1.1 A Naive Measure of Phase Congruency 

Phase congruency can naively be measured by convolving a set of filters with an image, 

and calculating the difference between the absolute of the sum of the filter responses 

and the sum of the absolute responses to the filters. The filters used are described 

in equation 2.3. This equation uses two filter types, one a log-Gabor filter with 'Jd' 

different central frequencies, 19(-·· ), and the other a Gaussian filter with 'L' different 

orientations, Ga(··· ). These act along two orthogonal axes. 

{ 

-(log(w/wm))2 

__ l_e 2(log(!3))2 W =J 0 
j27W~ 

o w=O 
1 _(8_81)2 

---::== e 2<7t 
J27r(/2 
Ga(e, el)lg(w, wm ) 

(2.1 ) 

(2.2) 

(2.3) 

where e and ware the spatial angle and frequency axis, el is the filter's angle of focus 

spatially and Wm is the centre frequency of the filter. (/8 controls the spread of the filter 

about the spatial angle axis. (3 is a constant describing the bandwidth of the filter. The 

filters must be constructed in the Fourier domain because the log-Gabor function has a 

singularity at w = 0 because logO is undefined. It is also worth noting that the filters 

in the form presented in equation 2.3 are a combination of a cosine and a sine based 

log-Gabor filter, and the response from each is separated into the real and imaginary 

parts of the response. 

To measure phase congruency, PC, about a single orientation, el , using these filter!; one 

could use equations 2.5 and 2.4. 
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Rm(X,y) 

PC(x, y) 

IF-1 [lg2D(e, w, el , W m )] (x, y) * irnage(x, y) 
M 

1 L Rm(x,y)1 
m=l 

M 

L IRm(x,y)1 + E 

rn=l 
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(2.4) 

(2.5) 

where Rm is the response to the convolution of the image with the rnth filter of }l.1 

different central frequencies and E is used to prevent divisions by zero. The processing 

of different spatial orientations separately to calculate feature strength suggests that if 

the correct spatio-temporal filters are constructed measuring temporal phase congruency 

in a spatio-temporal framework would be possible. 

2.1.2 An Improved Phase Congruency Measuring Function 

Although equation 2.5 is able to distinguish between points of high and low phase con­

gruency, differences are very small between degrees of phase congruency, when the level 

of phase congruency is high. Kovesi therefore proposed an improved function that used 

the cross and dot products between the cosine and sine based responses and the mean 

phase angle. This is presented in equation 2.6 

lv1 

L Am(.r, y) (cos (b..cPm (.r, y)) - 1 sin (b..cPm (.r, y)) I) 

iPCI(X, y) m=l 
M 

(2.6) 

L Am(x,y) + E 

m=l 

cPm (.r, y) - ¢ (.r, y) (2.7) 

where Am(x, y) is the magnitude of the response of the complex pair of log-Gabor filters 

and is equivalent to IRrn(x, Y)I. b..cPm is the difference between the phase of the rnth filter, 

cPm(x, y), and the mean phase, ¢(x, y). This improved measure of phase congruency 

provides a more linear variation in iPCI with respect to changes in the underlying 

phase congruency in an image. This is not though the final form for measuring phase 

congruency that Kovesi presents, but it is the basis. There are additional factors of a 

measure of frequency spread and an estimate of noise in the image. 
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2.1.3 Measuring the Frequency Spread 

Although a useful method for measuring phase congruency is shown in eqn. 2.5 it also 

detects high degrees of phase congruency when only one frequency is present in an 

image, for example a sine wave. Since this is an undesirable response, Kovesi developed 

a method to measure the frequency spread. Measuring the frequency spread uses two 

functions. The first provides an estimate of the frequency spread itself, and the second 

weights that measure to provide a more useful value. The measure of frequency spread 

is again calculated on a per orientation basis, with different filters varying by their 

wavelength. Here wm(x, y) is calculated as 

!vi 

L IRm(x,y)1 

() 
m=l Wm x. Y = --;-::-~-=---:-------:-;------:-

., (MIRmax(x, y)1 + E) 
(2.8) 

where IRm(x,y)1 is the absolute of the response to filter m and IRmax(.T,y)IIS the 

maximum absolute response for all the filters from all 111 central frequencies. E is a 

small constant used for avoiding division by zero which ensures that if the amplitude 

at a pixel becomes too small it is masked out. This is then mapped through a sigmoid 

function to produce Wm(.T, y) the measure of frequency spread. 

1 
Wm(x,y) = ( ()) 1 + e C-Wm x.y 9 

(2.9) 

where c and g control the mapping of Wm(.T, y) to l¥m(x, y). Wm(x, y) is then used to 

calculate the more robust implementation of phase congruency in section 2.1.5. Before 

this calculation is possible, an estimate of the noise within the image is calculated. 

2.1.4 Calculating an Estimate of Noise in an Image 

An estimate of the noise in an image is needed to reduce the amount of spurious re­

sponses that are produced by phase congruency. The estimate allows phase congruency 

to detect features that occur above the estimated noise's energy level whilst still not 

using energy specific feature detection. To provide this estimate of noise within an 

image, T, an orientation specific noise threshold is calculated. This is based upon a 

number of assumptions. These are that the noise is additive, that its power spectrum 

is even across the image, and that features occur infrequently within an image. Kovesi 

uses the estimated noise level in an image by subtracting it from the estimates of phase 

congruency. 

To estimate the noise level, Kovesi considers the noise to be zero mean additive Gaussian 

noise. The mean magnitude of the noise is therefore a Rayleigh distribution described 
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in equation 2.10 

(2.10) 

where x is the magnitude of the noise and CTb is the variance of the Gaussian. The mean 

of the Rayleigh distribution and therefore the mean level of noise, /-Lx, and the variance 

of the noise, CTl, is defined in equations 2.11 and 2.12. 

CTC~ 
4 - 1T 2 --CTc 

2 

(2.11) 

(2.12) 

where both equations depend upon CTb, the variance of the zero mean additive Gaussian 

noise, which is an unknown quantity. To estimate CTb Kovesi considers the expected 

value of the energy taken from the norm of the cosine and sine based filter pairs. The 

expected value of the energy squared is equivalent to twice CTb. The expected value can 

then be calculated from the filters and filter responses used in the rest of the technique. 

(2.13) 

where JE(E2) is the expected value of the squared energy responding to noise from all 

the filters used per orientation in phase congruency. Ni is the ith cosine or sine based 

filter. In the generation of a noise estimate the filters are not used in complex pairs, 

but as real valued filters represented here by N i . Finally 1.91 is the amplitude of the 

noise spectrum. This is estimated from the previous assumption that an image contains 

infrequent features, therefore the smallest filter used in phase congruency will mainly be 

responding to background noise. 

1 
'12 ~ -median(A6)/ln(.5) 
9 - 2 JE(lg 2Do) 

(2.14) 

where Ao is the amplitude response, or energy of the smallest central frequency filter. 

The median value from all the responses in Ao from an image is used. This helps to 

avoid the outliers generated by the actual features in the image. 192Do is the smallest 

sine and cosine filter. The resolution of 1§1 2 allows for the full calculation the mean noise 

energy, /-Lx, and its variance, CT x. These two quantities are then used to define a value 
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T, see equation 2.15, which is subtracted from the absolute sum of responses. 

T = /-Lx + kaX (2.15) 

where CTx is multiplied by k to allow for different percentages of the noise to be sub­

tracted, a value of between 2 and 3 allows for 60-90% of the noise to be removed, but 

also adds a slight bias to the resulting phase congruency estimate. 

2.1.5 Calculating a Robust Measure of Phase Congruency 

The phase congruency, PC, at each orientation, PCI, is calculated from the sum of the 

log-Gabor filter responses, Ri. 

PCI(X, y) 

pCm(X, y) 

.6.cPm (x, y) 

11'1 

L lAm(x, y)pCm(X, y) - TJ Wm(x, y) 
m=l 

11'1 

L Am(x,y) +c 
m=l 

cos (.6.cPm (x, y)) - I sin (.6.cPm (x, y)) I 

cPm (x, y) - ¢ (x, y) 

(2.16) 

(2.17) 

(2.18) 

where cPm(x, y) is the phase at point (x, y) for central frequency rn and ¢(x, y) is the mean 

phase across all filters at that point. The use of l J denoted that if the quantity is negative 

it is set to zero. The sum is thresholded by the noise level estimate, T, and scaled by the 

measure of the spread of the energy mapped through a sigmoid function, ~Vm(x, y). This 

is then divided by the total energy at the chosen orientation to produce a measure of 

phase congruency, PCI, for that orientation. The choice of central frequencies depends 

on the size of the features of interest in the images undergoing feature detection. The 

difference between central frequencies is typically a factor of two and gives a relatively 

good coverage of the frequency domain. The smallest scale is typically three times that 

of a feature's width, so in images where features of interest are a pixel wide then the 

smallest scale is 3 pixels. Repeating and summing of the results for the' L' orientations 

gives the improved phase congruency measure for the image, PC(.T, y). 

L 

PC(.T, y) = L PCI(.T, y) (2.19) 

This summing could be changed to a different function that combines the different 

orientation responses in a non-linear manner. 
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2.2 Feature Asymmetry Information Rich Algorithm 

FAIR, an intensity invariant feature detector, has been developed by Miguel ]'vlulet­

Parada and is described in [23, 26]. The technique took some of its inspiration from 

the work of Kovesi presented in section 2.1, but explicitly focused upon the application 

of feature extraction within the field of echocardiography. The resulting algorithm was 

formulated for single frames and sequences of echo cardiographic images. The technique 

is designed to be resistant to speckle noise and is a phase-based technique allowing it to 

work well in the highly variable lighting conditions found in echo cardiographic images. 

The technique has four stages that are applied to echocardiographic data generating a 

rich feature map. The initial stage is a series of log-Gabor filterings selecting different 

orientations of data. This is followed by the calculation of an energy independent mea­

sure of asymmetry. The last two stages threshold the data based upon the measured 

asymmetry, and extract additional information from the filtering process to describe 

the detected feature's orientation and whether it is a rising or falling edge. This is in 

contrast to phase congruency and the work presented in this thesis, which maintains its 

ability to detect a broad range of features. 

2.2.1 Log-Gabor filtering 

The first stage of FAIR is the convolving of a series of log-Gabor filters with the image 

data. The filters are constructed using polar co-ordinates in the Fourier domain. The 

radial component acting along the frequency axis is a log-Gabor filter similar to that 

described in equation 2.1, with f3 fixed at 0.55. This gives the filter a fixed bandwidth 

of 2 octaves. The FAIR algorithm uses filters in just one scale of operation that can 

be tuned to get better results. The guidelines given based on the data sets available to 

Mulet-Parada suggested the focus, W m , of any filter to be equivalent to 32-56 pixels. The 

FAIR algorithm is designed to be used in equipment operated by a medical practitioner 

so this parameter would be tunable by the operator. 

Convolved with the log-Gabor filter is a spreading function, spr(- .. ). This allows image 

data to be filtered based upon orientation. Mulet-Parada argues that this particular 

spreading function allowed for more efficient interpolation of a feature's orientation. 

{ 
-(!og(w/wm»2 

19(w,wm ) 
__ l_e 2(!og(.55»2 w#O 

(2.20) V21fa (3 

0 w=O 

spr(e, ed (1- C (0: Oil)') (2.21) 

192DF AIR(e, w, el, wm ) spr(e, el)lg(w, wm ) (2.22) 
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where w is the frequency axis and Wm describes the focus of the filter. e represents 

the spatial angular axis with el changing value to select filters of different orientations. 

This filter can be extended into the 2D+ T domain by calculating the angular difference, 

e - el , in 2D+T space using a dot product. 

These filters are typically multiplied with a Fourier transformed version of the image 

data. After inverse Fourier transformation the log-Gabor's even and odd components 

are represented in the real and imaginary parts of the complex result. This allows for a 

single inverse transform to calculate results for a filter pair. 

The number and arrangement of orientations for the filters is described in section 2.2.3. 

2.2.2 Measuring Asymmetry 

The detection of points in an image that have a high asymmetry is closely related to 

the detection of step edges. Parada uses the measurement of asymmetry in an image or 

image sequence to detect the edge of the heart tissue in echocardiographic images. The 

first stage of this measurement process involves the use of log-Gabor filters as described 

in section 2.2.1. Each filter is produces complex results with the real part containing the 

response to an even log-Gabor filter, e(X), and the odd part contained in the imaginary 

part of the response, o(X), where X are the axes: spatial or spatio-temporal. 

Equation 2.23 is used to calculate the asymmetry of a point in an image, X. This equa­

tion was shown in Parada's thesis to have a linearly varying response to the dominant 

phase of a feature. A step edge has a phase that is 90° different to an impulse, and 

for equation 2.23 is represented by a maximal response. The equation could also be 

interpreted in a more interesting manner. Since Parada is interested only in step edges, 

convolving the image with a step template would give a good level of step detection. If 

we then consider the Hilbert transform of the step we have an impulse like function, we 

can then improve our signal to noise ratio by penalising all the image points that match 

the Hilbert transform of our desired feature. This evaluation would give lo(X) 1-le(X) I, 

but with the inclusion of the denominator in eqn 2.23 the results can be normalised to 

be between 0 and 1, removing illumance variation in the results. 

asym(X) = lo(X)I- le(X)1 
Jo(X)2 + e(X)2 

(2.23) 

This robust calculation is then applied to the response of each filter pair generating a 

measure of asymmetry for each orientation about the chosen single central frequency of 

the filters. Since the response of this function to the phase of a feature is linear, Parada 

suggests a fixed thresholding based upon the desired variation from a pure step edge's 

response. This value was placed at .9, allowing for a phase variation of ±5°. 
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2.2.3 Filter Orientation Selection 

In selecting a set of filter orientations two criteria were considered important to the 

development of FAIR. The first was to use as few as possible to allow for fast processing 

of image data. The second was that the responses from the filters should allow for a 

more accurate degree of orientation to be assigned to a detected feature. Therefore, it 

is important that the set of filters give a unique response to each different orientation of 

feature. In [26] it is shown that 2n
-

1 + 1 orientations are needed for unique responses 

from a set of filters, where n is the number of dimensions. In 2D this means 3 filters 

spread 30 degrees apart, in 3D (or 2D+ T) this means 5 filters, but if 6 are used then 

they can be evenly spaced on the unit sphere, see figure 2.1. 

-0.5 -0.5 
0---

0.5 0.5 

Y-axis X-axis 

FIGURE 2.1: The focus of the 6 filter orientations used in the 2D+T FAIR algorithm. 

It is known that the angular spreading function controls the filter response with respect 

to feature orientation. It follows then that if the angular spreading function is fitted 

to the data the orientation of the feature can be estimated. To simplify this fitting, 

a polynomial spreading function was chosen, see equation 2.21. For the 2D FAIR al­

gorithm, the fitting then becomes a polynomial fit calculable via the pseudo-inverse of 

a Vandermonde matrix. In addition since all the spreading functions are known thcClc 

matrices can be pre-computed. The nature of this calculation makeCl it affordable to do 

on each feature pixel detected within an image. This technique produced very pOClitive 

results when testing. The mean error on a noiseless step was 1.180
, with a standard 

deviation 1.170
• This decreased if the number of orientations was increased, although 

for many applications this level of accuracy is sufficient, bearing in mind errors that can 

be attributed to discretisation of a feature. For the 2D+T FAIR algorithm, a different 

fitting method was used. It was commented that there are polynomial fitting algorithms 

available to fit a surface to 2Dl data, but they are non-linear and were deemed too costly 

in computational time for the chosen application. Parada therefore proposed the use of 

an ellipsoid fitting function for the FAIR 2DT implementation. 

1 Although FAIR 2DT works in the 2DT domain orientations are only 2D_ 
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2.3 Conclusions 

Both the techniques presented in this chapter strongly support the work of this thesis. 

Phase congruency provides a robust intensity invariant feature detector. In its current 

formulation however, it can not be applied to image sequences. This prevents it from de­

tecting features that persist over time, and lacks the benefits for robust feature detection 

that temporal correlation gives. It also does not provide the spatio-temporal orientation 

or velocity of a feature, stopping higher level computer vision techniques from using 

this information. The FAIR algorithm provides insight into extending filters into the 

spatio-temporal domain, but is limited to detecting features about a single scale. It is 

also only able to detect step edge features rather than the wider range of features of the 

techniques presented in this thesis. 



Chapter 3 

Temporal Phase Congruency 

3.1 Introduction 

In this chapter we describe the extension of phase congruency into the spatio-temporal 

domain. Creating this new temporal phase congruency operator has two main advan­

tages. The first advantage is found in the orientation at which phase congruency can 

be detected at a particular pixel. This now describes not only its spatial, but also its 

temporal orientation. This is the same as describing its velocity. Therefore all features 

extracted with this extended method also have their velocity extracted. 

Secondly the technique should be more robust to noise. This gain in robustness is jus­

tified by examining the neighbourhood of a pixel. In one-dimensional space a useful 

feature pixel exists in 'isolation'. In two-dimensions useful features are typically sur­

rounded by supporting similar features allowing spatial techniques to require or benefit 

from this neighbourhood support. This improves the signal-to-noise ratio when pro­

cessing an image. Therefore, when considering a point in 2D+T space, the supporting 

responses of a point's neighbours, in both spatial and temporal directions, increase the 

robustness of the detection process against noise. 

This chapter presents a new extension of phase congruency into the 2D+ T domain. Sec­

tion 3.2 describes the new technique, including extending all aspects of phase congruency 

into 2D+T and a method for estimating a feature's primary spatio-temporal orientation. 

Results from applying temporal phase congruency to a series of test image sequences are 

shown in section 3.3, including sequences highlighting the technique's response to occlu­

sion and noise, and examining its ability to measure feature velocity. The conclusions 

in section 3.4 cover the benefits and limitations of temporal phase congruency, and give 

further motivation for the work in chapters 4 and 5. 

24 
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(a) example in a 2D 
Cartesian co-ordinate 
system being used 
to select a region 
using two orthogonal 
functions 

(b) exa mple in a 2D po­
lar co-ordi nate system 
being used to select re­
gions us ing two or t hog­
ona.l functions 

FIGURE 3.1: Comparison of filter construction methods using Cartesian and polar 
co-ordinate systems to define a region in a 2D frequency space. 

3.2 Method 

25 

We now extend phase congruency to use inter-frame data to enable estimation of time 

persistent features with resilience to noise. Kovesi 's technique determined features in a 

two-dimensional image and used filters that were constructed from a one··dimensional 

signal, the log-Gabor function. This is convolved with an orthogonal spreading fun ction , 

in this instance the Gaussian function. An additional spreading function (orthogonal to 

the two original functions) is used to create a t hree-dimensional (2D+T) filter to enable 

the detection of time persistent features . 

3 .2 .1 Constructing filters under different co-ordinate systems 

In our extension from t he spatial(2D) to the spatio-temporal(2D+T) domain, we de­

scribe each stage of t he phase congruency operator. The initial stage of the technique is 

t he filt ering of an image sequence. We construct fi lters using a polar co-ordinate system 

in t he frequency domain continuing on from the work of Kovesi. These fi lters are separa­

ble about each polar axis. This approach is akin to successively applying different filters 

until a region is selected from t he overall domain. In figure 3. 1 t he shape of t he fi lter in 

a Cartesian system shows t hat it is roughly equivalent to a square, whereas using polar 

coordinates as in 3.1(b) the segment is an arc. 

Using a polar co-ordinate system in the frequency domain we extend this from a 2D 

system with axes of (w ,e) to 2D+T with axes of (w ,e,'ljJ) . In each case w represents the 

frequency axis , e represents the angle of that frequency with respect to the x-axis on the 

x-y plane, and 'ljJ represents the angle with respect to the t ime axis . We then take three 

orthogonal functions to select particular regions of the 2D+ T frequency dom ain. T his 
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extends the arc shape in the 2D domain to a patch from the surface of a sphere, like a 

time zone of the earth in the 2D+ T domain. The first orthogonal function, applied along 

the w-axis, is a log-Gabor function as in eqn. 2.3 and repeated here in equation 3.1. 

{ 

-(log(w/wn))2 

I ( ) 
e 2(log(;3) )2 

9 W,Wn = 
o 

W #0 
W=O 

(3.1) 

where W is frequency, Wn is the tuning frequency of the filter, and f3 controls the spread 

of the filter. We then use two Gaussian functions as our other orthogonal functions 

along the e-axis and the 1j;-axis to generate the new filter, Ig2DTn . 

19(w, wn ) (3.2) 

where W represents the spatio-temporal frequency, e represents the spatial angle of that 

frequency and '1/) represents the temporal angle. en and 1j;n are the angles the filters 

are focused upon, and (Je and (J1lJ control the spatial and temporal angular spread of 

the filters. Generating an even spread of these filters involves tiling the filters in a two 

dimensional orientation space. This allows for a wide range of tilings to be used and 

still generate an relatively even covering of the space. 

An alternative method of interpreting spatial and temporal orientation would be to use 

a dot product between a filter~s angular focus (en, 'ljJn) and the remainder of the Fourier 

space. This would then generate a uniform shape wherever the filter was focused in 

spatio-temporal angular space. This spreading function is described using Cartesian 

co-ordinates in equation 3.3 and combined with the log-Gabor function to give an alter­

native filter construction of Igdot2DTn . 

(3.3) 

where Wx , wyand Wt represent the frequency domain equivalent of the x-axis, y-axis and 

t-axis. The vector (WXn' wYn ' Wt,,) represents the filter's spatio-temporal angle of focus, 

and Wn describes the frequency of the filter along the w-axis. A single (J controls the 

spread of the filter in the angular axes. Arranging filters using this technique to achieve 

an even covering of 2D+ T space is a packing problem in three dimensions. This limits 

the even arrangements of the filters in 2D+ T space. 



Chapter 3 Temporal Phase Congruency 27 

Using the polar separable construction allows for filters to be spread evenly about the 

spatial and temporal angle axes. If the filters were constructed using the dot product 

type spreading function then the number of arrangements for evenly distributed filters 

is limited to 4, 6 or 10, of which only 6 or 10 are valid if the orientation of a feature is to 

be extracted[26]. We have therefore chosen to construct 2D+ T filters using equation 3.2 

rather than equation 3.3 because it allows for any number of filters to be evenly posi­

tioned. This in turn allows for primary feature orientation to be extracted with five or 

more filters. Additional filter orientations should allow for secondary feature orientation 

to be extracted. Secondary orientations could occur at junctions of features that are not 

intrinsically 1D in nature. Increasing the number of orientations should also increase 

the robustness of the technique, if we assume that a feature's energy occupies a confined 

section of frequency space, and noise is broadband in nature. Filters that cover a smaller 

part of the frequency domain will therefore have higher signal to noise ratios. 

Each filter is then multiplied in the frequency domain with a Fourier transformed version 

of the image sequence, and the result is inverse Fourier transformed to obtain the signal 

domain results. Previously stated in 2.1 the log-Gabor filters are required to be convolved 

in pairs, one a cosine based filter and the other a sine based filter. The above filter is in 

fact a combination of both these filters and when inverse Fourier transformation occurs 

the sine based results are present in the imaginary portion of the results and the cosine 

based results are in the real portion of the results. This removes the need to perform an 

inverse Fourier transform for each filter. 

3.2.2 Selecting the filter orientations 

There are a number of different schemes for selecting the arrangement of filters. The 

initial arrangement was to have each filter separated by 30 degrees spatially and tem­

porally. This allows two schemes to be proposed: one appears to exhibit 'singularities' 

1 with filters centred about 1/) = 0 and 1/J = ]i, fig. 3.2(b), but not extending to negative 

values or values greater than ]i, The other scheme has the temporal angles offset by 15 

degrees from the 'singularities' in fig. 3.2(d). In each case the spatial orientation is kept 

the same, so both of these filter distributions have been used in the work. 

3.2.3 Extending the helper functions into 2D+ T 

After each filtering operation the resultant filtered image sequence is essentially a 1D 

signal orientated at the angle of the filter used. In the 2D domain equations 2.8, 2.9, 

and 2.19 all process 1D signals orientated in a 2D 'block'. Extending these equations to 

lThese 'singularities' are similar to the north and south poles of the earth. On reaching the north 
pole it is impossible to travel further north, Similarly, the filters do not spread beyond t=O where a 
similar 'singularity' point lies. 
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--I~~X-Y 

(a) Temporal axes filter 
orientations with 'singu­
larities ' 

t 

~-----"X-Y 

(e) Temporal axes fil­
ter orientations without 
'singularities' point 

'. 

(b) 42 filter orientations with 'singulari­
t ies' 

(d ) 36 filter orientations without 'singu­
larities' point 

FIGURE 3 .2: This figure shows the differences between two sets of orientations of filters 
in 2D+ T space, where each is defined as being 30 degrees apart in both spatial and 
temporal axes. (The different colours are used to help distinguish the different vectors 

in the figures.) 
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operate using a 2D+ T 'block' is a mat ter of substituting their axes of operation from 

(x, y) to (x , y, t) . 

3.2.4 Feature velocity estimation 

In the process of detecting features in 2D+ T space, we can also gather useful information 

On the spatia-temporal orientation of the feature or velocity. The first approach to 

estimating the velocity of a feature is to find the orientation of the filter that produced t he 

largest t emporal phase congruency. This will give One of 36 (or 42) different velocit ies. 

This is a very poor estimate of t he true velocity of a feature. To improve the estimate 

we also consider the responses from orientat ions around the strongest response. These 

responses can be used to interpolate a more precise localised velocity estimate, for each 

feature point. 
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Also since the features we detect are not extracted from a ID signal, a point may have 

more than one strong orientation , i.e. it may be a 2D feature like a corner or junction 

between lines or a more complex 2D+ T feature. In the first inst ance however , it is 

important that the response of all the filters to a ID feature about various spatial and 

temporal angles is investigated. 

If we were calibrating the original technique by Kovesi (that operates upon single im­

ages), then we could examine just one orientation , and gather the response of that 

orientation to features of different orientation allowing us to generate a mapping from 

different orientation responses to a known orientation or to generate a function for ap­

proximation or interpolation. This differs from t emporal phase congruency in that it 

operates upon image sequences, which can suffer from the effects of temporal aliasing, 

as features move. Four sets of image sequences were used to calibrate the new temporal 

phase congruency operator. The first set was a series of image sequences containing a 

single anti-aliased step edge in each image. In each sequence the edges moved at differ­

ent speeds (temporal angle) and had different spat ial orientations. The spatial angles 

varied from 0 to 90 degrees in 5 degree increments. The t emporal angles ranged from 0 

to 90 degrees. For the first set of image sequences the temporal angles were converted 

to velocities and the feature position was calculated and an anti-aliased step edge was 

generated at that position. In testing these spatio-temporal angles against all orienta- . 

tions in the temporal phase congruency operator the other quadrants can be mapped 

out. To contrast this, a second set of image sequences was generated where the temporal 

angles were anti-aliased. In both of these test cases the anti-aliased step was posit ioned 

between pixels as shown in figure 3.3(a), a further two sets were generated with the fea­

ture point centred on a pixel, see figure 3.3(b). This slightly changes the profile of the 

feature , possibly towards a 'ramp ' like feature, except that surrounding pixels display a 

feature width of just one pixel. 

(a) A step edge 
feature centred 
'between ' pixel 
co-ordin ates 

(b) A step edge 
feat ure cent red 
on integer pixel 
co-ord inates 

FIGURE 3.3: These figures show step edges centre 'between ' pixels and in the middle 
of a pixel. 

Applying non-maximal suppression[24] to an output image is not useful to understand 

the response of temporal phase congruency to a feature at different orientations because 

of its reliance upon edge orientation data. Therefore in t he case of the feature being 
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centred between pixels , the mean value of the four surrounding pixels was collected. In 

the case of the feature being centred on an integer pixel value that value was collected. 

These results were t hen arranged into images with the pixel position being the angle of 

the edge in the image sequence, and its strength being the value extracted from after 

feature detection at the centre pixel(s). The images were 19x19 pixels in size, with the 

horizontal axis describing a 90 degree variation in the spatial angle of the feature, and 

t he vertical axis describing a 90 degree temporal variation. Images can then be generated 

combining the responses from the separate responses of the different filter orientations, 

and the different feature types. An example image is shown in figure 3.4 . 
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FIG URE 3.4: The responses from applying temporal phase congruency to an image 
sequence containing just one feature. The pixel intensities correspond to the feature 
strength detected at a single orientation with white being a strong response and black 
a weak one. The pixels are arranged such that pixels nearer the top of the graph are 
results from 'faster ' features . The pixels also vary from left to right as the angle of the 
test feature is rotated through 90 degrees. A phasor plot in figure 3.4( b) shO"ws the 
relationship between the response, R, and the spatial angle, e, the temporal angle, 't/J, 

and the x,y and taxes. 

In the example image in 3.4(a) the strongest responses in white are in the top right of 

the image. This signifies that the orientation of the filter is centred about a spatial angle 

of 90 degrees and a temporal angle of 90 degrees. From these results we can tell that 

this orientation is tuned to primarily detect stationary or very slow moving features. 

There are also some stronger responses in the bottom right hand corner of the image, 

these are associated with aliasing in the test sequence causing this filter to also detect a 

stronger response away from its central focus. 

Sets of these images are presented in tables of figures containing 36 or 42 images, see 

figures 3.6(b )-3.8(b). The images are each results from filters tuned to different central 
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frequencies. They are then arranged such that the filters tuned to the smallest temporal 

angle are positioned on the top row. Each successive row contains results from filters with 

a central frequency that is temporally 30 degrees more than the previous row. The middle 

row(s) show the slowest orientations with further rows 'increasing' in speed. The central 

frequency can also be altered in the spatial angle and so the central frequency of the 

filters used to calculate an image is incremented by 30 degrees between each horizontal 

image, with the final one wrapping around to the first. It is due to this wrapping around 

that the images are repeated in the table of images to show the relationships between 

the orientations more completely on paper. The two variations of the orientations are 

presented as in figure 3.5(a) for the singularity, and in figure 3.5(b) for the non-singularity 

arrangement. 
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(a) singularity layout 

1 2 3 4 5 6 31 32 33 34 35 36 
7 8 9 10 11 12 25 26 27 28 29 30 

13 14 15 16 17 18 19 20 21 22 23 24 
19 20 21 22 23 24 13 14 15 16 17 18 
15 26 27 28 29 30 7 8 9 10 11 12 
31 32 33 34 35 36 1 2 3 4 5 6 

o 30 60 90 120 150 180 210 240 270 300 330 
Spatial angular axis, filter centres relative to e = 0 

(b) non-singularity layout 

FIGURE 3.5: These plots show the layout of the responses of temporal phase congruency 
to features at different spatial and temporal angles using the singularity fig. 3.5(a) and 
non-singularity fig. 3.5(b) arrangement of filters. The images vary in spatial angle by 
column, with 30 degrees between each column of images. The images vary in temporal 
angle by row, with the fastest at the top and each lower row reducing by 30 degrees. 
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Temporal phase congruency uses Gaussian spreading functions about the spatial and 

temporal angle axes when generating the filters. In a noise free signal the filters will 

respond significantly to energy away from its angle of focus because the Gaussians never 

reach zero. To prevent this a small amount of additive Gaussian noise (zero mean, 

sigma equal to 10% of the size of the step) was added to the test sequences. The results 

show an understandable structure, and we see that the response of the temporal phase 

congruency operator is as expected, in that the shape of the responses appears Gaussian. 
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(a) results from fil ters us ing t he singularity layout 
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(b) results from filt ers using t he non-s ingu lar ity layout 

F IGURE 3 .6: T hese plots show the response of temporal phase congruency to feat ures 
at different spatial and temporal angles. T he images used were anti-aliased temporally, 
and t he feat ures were cent red between pixels. Each of t he images was also subjected to 
zero mean addit ive Gaussian noise with a sigma of 10% of the difference between the 

high and the low of t he step. 
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(b) results from fi lters us ing t he non-s ingu la.ri ty layout 

FIGURE 3 .7: T hese plots shoyv furt her responses of temporal phase congruency similar 
to that of figure 3.6(b). T he difference between t he two fi gures is t hat t he test features 

for t his figure were centred in the middle of a pixel. 
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From figures 3.6(a), 3.6(b), 3.7(a) and 3.7(b) there is an obvious structure to the re­

sponse of temporal phase congruency to features at different orientations. These figures 

contain results on features anti-aliased in the temporal axis with each sub-plot showing 

a 'window' of how a single orientation of temporal phase congruency responds to fea­

tures at different orientations. The combined effect of grouping the plots suggests that 

the individual orientations detect features at a strength that varies relative to the angle 

between the filter and the feature, in a Gaussian like manner. It is also worth noting 

that the different edge types show little difference and so we only present results for the 

features centred in the middle of a pixel. The results for aliased image sequences show 

a more complicated behaviour. 
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FIGURE 3 .8 : These plots show the response of temporal phase congruency to features 
at different spatial and t emporal angles. The images used contained no temporal anti­
aliasing, and t he features were centred in t he middle of a pixel. Each of the images 
was also subject ed to zero mean additive Gaussian noise with a sigma of 10% of t he 

difference between the high and t he low of the step. 
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Figures 3.8(a) and 3.8(b) show similar structure to figures 3.6(a)-3 .7(b) , but they also 

have erroneous responses due to temporal aliasing. This can be seen in the lower parts 

of the plots particularly in the second and third columns in the rows where 'ljJ = 45 or 

75. These slower channels are detecting high phase congruency at 0°, due to aliasing, 

and 90° , due to the features, on the temporal axis. This effect though does not affect 

the spatial variation in responses. 

3.2.5 Orientation Estimation 

From the experimental evidence presented in the previous section and from the design 

of the technique, feature responses vary with respect to the difference between the initial 

filter's angle or focus and the feature in a similar manner as the spreading function. We 

have therefore developed a geometrically inspired method which treats the orientation 

responses as amplitudes and the orientations as vector directions. The weighted vectors 

were then summed together. The mean angle of the responses is then taken as the 

estimate of the feature 's primary orientation. Since the orientations of the filters all 

occupy one half of the possible spatia-temporal angles, the resulting sums would all be 

biased towards the centre of this region . To avoid this the weighted basis vectors are 

summed a number of times with different centres. Example sums are shown graphically 

in figure 3.9 

~~---.... x 

(a) correctly biased orienta­
tions 

(b) wrongly biased orienta­
tions 

FIGURE 3.9: Two ways of summing feature strengths from different angles. Black vec­
tors represent the responses at the described orientation with longer vectors depicting 
greater response. The red vectors show the summing of the vectors with the resultant 
vector in blue. The correctly biased plot , figure 3.9(a) , has a greater resultant vector 

than figure 3.9 (b) . 

The sum that produces the greatest response has the least amount of destructive sum­

mation, and hence should be the best estimate. Mathematically this is described in 
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equation 3.4. 

k L 

ests = L tpqq + L tPCI( -el) (3.4) 
1=1 l=k+1 

where tpcI is the measure of temporal phase congruency measured using the lth filter. 

q is a basis vector that has the same orientation as the lth filter. All the basis vectors 

range between 0 and 'if radians, with the negative basis vectors ranging from -'if to 0 

radians. Whilst varying k between 1 and N the result, ests, that has the greatest value 

is the best approximation to a feature's orientation. For this calculation the feature 

strengths, tpq, are sorted so that the lth filter's angle is between that of the (I - l)th 

and (l + l)th filter's angle. 

This calculation is repeated separately for the temporal axis. In both instances the 

method produces acceptable results relatively quickly. 
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3.3 R esults 

The results for temporal phase congruency are presented in six sections examining dif­

ferent performance factors. The first section gives some examples of the output of the 

temporal phase congruency operator. The second section gives results for t he effects of 

noise on t he new technique and compares it to the original. The following section ex­

amines how the technique responds to occlusion. Section 3.3.4 contains results for tests 

on the accuracy of temporal phase congruency to estimate the orientation of a feature 

along with some example results of the orientation estimates . The fift h section shows 

how a sequence of images can be fi ltered according to velocity information to select , for 

example, static objects or quickly moving objects . The final section examines in more 

detail some of the problems that temporal phase congruency suffers, describing some of 

the limitations of phase congruency. 

3 .3 .1 Example results 

(a) original 
image 14 of 32 

(b) original 
image 15 of 32 

(f) origina l image 16 of 32 

(c) original 
image 16 of 32 

(d) origina l 
image 17 of 32 

(e) orig ina l 
image 18 of 32 

(g) temporal phase congruency output 

F IGURE 3.10: Results from the phase congruency operator on a tree sequence. Fig­
ure 3.10(g) is generated by t aking the maximum response from each of the different 

orientations. 

Figure 3.10 shows the results of applying temporal phase congruency to a sequence of 
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a camera moving parallel to a tree in front of a row of houses. The five central frames 

of the sequence are shown in figures 3.10(a) to 3.10(e) with the frame 16 shown again 

in figure 3.10(f) alongside figure 3.10(g) showing results of applying temporal phase 

congruency to frame 16. This sequence was chosen because it is commonly used in 

optical flow analysis due partially to the different layers of movement of the tree , the 

flower bed, and the houses in the background. These results , shown in figure 3.10, 

show the roofs of the houses in the background have been detected. The tree trunk, 

which moves relative to the camera, displays some minor blurring, but considering the 

high degree of variation in texture along its right side the detected strength of the edge 

remains quite constant. The lower left side of the tree trunk is not so strongly det ected , 

but in the original image the boundary is very ill defined and is more perceivable by a 

change in texture rather than a bounding line. It is important to note that the edge 

data that is extracted with this technique also contains velocity information as well as 

the normal spatial information the original phase congruency t echnique extracted. 

(a) original 
image 14 of 32 

(b) original 
image 15 of 32 

(f) original image 16 of 32 

(c) origin a l 
image 16 of 32 

(d) orig ina.l 
image 17 of 32 

(e) origin a l 
ima.ge 18 of 32 

(g) t empora.l phase congruency output 

FIGURE 3.11: Results from the phase congruency operator on a ping-pong ball se­
quence. 

A sequence of images of a person bouncing a ping-pong ball is often used in the evalua­

tion of techniques for optical flow calculation; some selected images from this sequence 

are shown in figures 3.11 (a )-3.11 (e) F igure 3.11 (f) is taken from the middle of a se­

quence of images of a person bouncing a ping-pong ball on a t able t ennis bat . In the 
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processed image, figure 3.11(g), the technique has highlighted strongly the edge of the 

table. In the sequence the table is not moving significantly as such, it is persistent as is 

the background. The background also appears 'noisy', this is due to the texture of the 

background which appears hashed with thin lines across it at many angles also being 

strengthened by their appearance in many frames. The ball is the fastest moving object 

within this sequence and shows 'echoes' from the previous and next frames appearing 

above and below its current position. These echoes are responses to the presence of the 

edge of the ball in the surrounding frames. This is an artifact of the current implemen­

tation. The echoes should be removable using the velocity information of the features 

as they are the positions of the ball in the surrounding frames, this could then leave the 

output clean with just one copy of the ball. 

3.3.2 Noise Testing 

The results shown in figures 3.10 and 3.11 show successful extraction of moving and 

stationary time-persistent features. In addition to this, a series of noise tests was per­

formed to gain a deeper insight in to the new technique. Two types of noise were used 

in increasing amounts with a synthetic image sequence of a slowly moving circle. The 

first noise used to test temporal phase congruency was additive Gaussian noise, where 

a zero-mean Gaussian distributed random number was added to each pixel. The second 

noise type was salt and pepper noise, where the 'noisy' pixels were randomly selected and 

then 50% were set to black and 50% to white, again using a random number generator. 

We used additive Gaussian noise because it is commonly used in noise testing and since 

the central limit theorem suggests that other forms of noise can in amalgamation be 

considered to be Gaussian distributed. The second type of noise was chosen because an 

impulse affects the whole spectrum and so applying salt and pepper noise adds a certain 

degree of broadband noise to a signal affecting the whole of the frequency space. In 

addition to this it could also be viewed as removing information from the images, as in­

dividual pixels are masked and replaced with a new random pixel. The resulting feature 

maps are then thresholded at different levels and compared with ground truth, where 

acceptable positions for a feature are compared with the actual feature map. Ground 

truth is defined here with all the pixels bordering a different colour pixel being consid­

ered a valid edge pixel when viewing a noise free version of the image. Decreasing the 

threshold increases the number of pixels detected as significant and so as the threshold 

is lowered the number of pixels with where features are detected is cumulative. These 

cumulative results are plotted as a percentage of features that are both positively and 

falsely detected as in figures 3.12 and 3.13. We also applied the same tests to Kovesi's 

image based phase congruency[16] to provide a comparison. 

Results in figure 3.12 show that temporal phase congruency is significantly more robust 

when attempting to detect features in a noisy environment than single image based 
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FIGURE 3.12: Results from testing a simple white disc moving on a black background 
with increasing amounts of Gaussian noise added. Crossed magenta or blue lines repre­
sent true features detected, circled red or green lines represent false features detected. 

Error bars show the range of results due to the test being run fifty times. 
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phase congruency. At moderate levels of noise, (J" = 50% of the difference between 

black and white in the image, temporal phase congruency detects about 90% of the 

features whereas image based phase congruency detects less than half the target features. 

Similarly, where the noise level is increased to (J" = 90% the detection rate of image based 

phase congruency is very low, whereas temporal phase congruency is detecting more than 

50% of the target features. It is interesting to also note that the shapes of the graphs 

appear very similar between phase congruency and temporal phase congruency. 

The results for the salt and pepper noise tests in figure 3.13 also show that the temporal 

phase congruency measure is detecting more feature pixels of the circle as it moves 

through the sequence, and with a higher measure of feature strength or significance. 

Again at (J" = 50% almost 80% of the features are detected succesfully whereas image 

based phase congruency has fallen to detecting around 30% of the target features. It 

also shows the limits of the technique, which is informative. The results are still very 

good considering the final two graphs in figures 3.13(d) and 3.13(e) have 70% and 90% 

of the image pixels removed and replaced with a random black or white pixels. These 

results are consistent for both types of additive noise across the whole range of noise 

levels with the new technique showing better detection rates and lower false detection 

results. 

A final set of examples shown in figure 3.14 show the massive improvement in detection 

that can be achieved using temporal phase congruency when compared to image based 
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FIGURE 3 .13: Results from testing a simple white disc moving on a black background 
with increasing amounts of salt and pepper noise. Crossed magenta or blue lines repre­
sent true features detected, circled red or green lines represent false features detected. 

Error bars show the range of results due to the test being run fifty times. 
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phase congruency. Both techniques detect features about a number of orientations, and 

they are displayed to show the difi"erences in contrast that the methods for combining 

the results to a single image have. In figure 3.14(b) the circle is detected, but the edges 

are somewhat erratic in strength. The noise however seems to have far less significance 

than compared to figure 3.14(c) where the boundary of the circle is consistent, but the 

noise has a greater significance. The summed variant is also much more variable, and is 

theoretically bounded between 0 and L where L is the number of orientations, where as 

the maximum value of each orientation is fixed at 1 so figure 3.14( c) is bounded between 

o and 1. More research could be done into methods for robustly combining multiple 

orientations into a single feature map, or higher level techniques could be implemented 

to take advantage of the separation of features by orientation. 

3.3.3 Occlusion 

Within many environments objects moving in a scene become occluded, thus it is im­

portant to test the response of the technique against occlusion. The t est sequence again 

was a moving circle and the occlusion was rectangular in shape, causing part of the 

moving circle to disappear. 

The expected behaviour of the technique would be that the occluded region would have 

some degree of blurring of feature information from the moving circle echoed from the 
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(a) Central frame from 
the input sequence 

(b) Temporal phase 
congruency resu lts 
(orientations summed) 

(c) Temporal phase 
congruency resul ts 
(max. of orientations) 

(d) Image based phase 
congruency results for 
central frame (orienta­
tions summed) 

(e) Image based phase 
congruency resu lts for 
central frame (max. of 
orientations) 

FIGURE 3. 14: Results from a sequence of a moving circle with zero mean Gaussian 
additive noise (sigma = 90% of difference between black and white). Temporal phase 

congruency used a 32 frame sequence. 
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surrounding time and space neighbourhood to where the circle ought to be without the 

occlusion there. The results t hough show much less blurring than expected, and are 

very promising. 

In figure 3.15 the circle is very clearly detected in all three cases. The circle has also 

maintained a uniform shape, with t he lines of occlusion being shown in the middle of 

each circle . They all though show some amount of blurring between the edges of the 

occlusion , but this sort of blurring can also be seen around the edge of the circle and 

should be removable via non-maximal suppression. 

Broader occlusions are shown in figure 3.16. These are much clearer as the distance 

between features is greater. 

3.3.4 Feature Velocity Testing 

Since temporal phase congruency is a time persistent feature detector , it can detect a 

feature 's orientation through space-t ime. It is important therefore to present examples 
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(a) 1 pixel wide (b) 3 pixels wide (c) 5 pixels wide 

FIGURE 3.15: Results from the temporal phase congruency operator on sequences 
with a fixed position bar occluding the image sequence. 

(a) 10 pixels wide (b) 15 pixels wide (c) 20 pixels wide (d) 25 pixels wide 

FIGURE 3.16: Results from the temporal phase congruency operator on sequences 
with a fixed position bar occluding the image sequence. 

results and test the accuracy of the orientation information of any detected features. 
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Figure 3.17 shows an example of the normal orientation data that can be extracted 

from temporal phase congruency. Presentation and evaluation of this data is difficult 

and so a quantitative approach testing against a simple test sequence of a shrinking 

and expanding circle in 2D+ T space was conducted. (This could also be considered 

a sphere in a 3D space and was constructed as such.) The test sequence had zero 

mean Gaussian noise (with a sigma of 10% of the difference between the circle and the 

background) added. This was to avoid the anomalies discussed in section 3.2.4. The 

test sequence was then passed through the temporal phase congruency feature detector, 

and then the orientation of all the significant feature points was established using the 

estimation method in section 3.2.4. The orientations are compared to values calculated 

when generating the test data and distances from this 'ground truth ' is calculated for 

all features over .7 in strength. The results are then presented and compared to similar 

results for a 3D Sobel operator[8] that has been applied to the sequence wi th addit ive 

noise. 
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80 100 

(a) Origina l image 

80 100 120 140 160 180 200 220 240 

(b) E xample results wit h orientation vectors overla id 

FIGURE 3.17: Example results of orientation information for features extracted from 
t emporal phase congruency of a hand and table tennis racket. 
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From the separate histograms in figure 3.18 t emporal phase congruency is able to de­

t ect feature orientation to a similar degree that a Sobel operator may. We do however 

see that the two operators fail in different ways. Temporal phase congruency, in fig­

ure 3.l8(c) , seems to have two narrow distribut ions centred correctly abou t zero radians 

error and incorrectly about 7r / 2 radians error. The estimates generated by the Sobel 

operator however do not have this second erroneous peak and most of t he estimates 

have less than .3 radians error , as shown in figure 3.l 8(d). Similarly about the temporal 

axis both detectors have different behaviours. Temporal phase congruency has a wider 

spread of absolute errors in figure 3.l8(a) which is not so tightly distributed as Sobel in 

figure 3.l8(b). 

3 .3 .5 Velocity Thresholding 

Since the new t echnique extracts the velocity of a feature, it is possible to t hreshold 

based upon that velocity. This could be useful for selecting features of interest based 
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(a) Spatial feature orientation results for 
temporal phase congruency 
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(c) Temporal feature orientation results 
for temporal phase congruency 
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(b) Spatial feature orientation results for 
a 3D Sobel operator 
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(d) Temporal feature orientation results 
for a 3D Sobel operator 

FIGURE 3.18: These plots show the ability of the temporal phase congruency operator 
to detect the orientation of a wiele variety of feature orientations 
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upon their velocity in an image sequence, such as detecting objects only movmg m a 

particular direction, or estimating the background feature map. This can be a post­

processing stage, or the technique can be altered so that it only looks for features at 

a particular velocity. Altering the technique should reduce the time taken to process 

a sequence, but the additional orientations at 'unwanted' velocities could be used in 

noise detections as features are detected in orientations that are similar to their true 

orientation, whereas typically noise is not. Example frames from a sequence of a person 

walking are shown in figure 3.19. 

In figure 3.19 the results show a strong progression from detecting the stationary back­

ground features such as the ceiling tiles and the floor, to progressively detecting more 

of the moving features in the scene. It is interesting to note that the slower moving 

orientations are detecting high phase congruency at the boundaries of the legs, and as 

the algorithm focuses upon increased speed the highest phase congruency is found in the 

centre of the legs giving an almost skeletal feature detection. This 'skeletal' detection is 
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(a) a ll velocit ies (b) near zero velocities se­
lected 

(c) slow velocities selected 

(cl) medium velocit ies selected (e) fast ve locities selected 

FIG URE 3. 1 g: Results from the temporal phase congruency operator on sequences 
with ranges of velocit ies select ed . 

explained by looking at a simplified 1D+T example. 
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Figure 3.20 shows three examples of a grey object on a white background in 1D+T. If 

we examine the width of the objects we see in figure 3.20(a) t he object is stationary 

and its minimum width is the spatial width of the object. In figure 3.20(b) we see that 

even slow movement can reduce the minimum width of t he object in space-time. In this 

figure if the object is viewed at an angle the width of t he object is 'reduced '. Finally in 

figure 3.20(c) the width of the object becomes nearly 1, t hus any 1D+T feature detector 

oriented at an appropriate angle would detect an impulse and not a rising t hen failing 

edge of a pulse. This reduction to an impulse changes the number of features t his object 

has from 2 to 1, an operation that the legs of the person in figure 3.19 also undergo. The 

detection of such an object like this should provide important information, as it firstly 

implies t hat there is an object of a determinable width centred at the peak feature point. 

The bounds of the object should also be linked to the velocity of the feature detected , 

as the transition from a pulse to an impulse is directly related to the objects width and 

velocity. 
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x-axis 

(a) A stationary ID object over t ime 

x-axis 

(b) A slow moving ID object over t ime 

x-axis 

(c) A fast moving ID object over t ime 

FIGURE 3 .20: T hese three figures illustrate that an object 's widt h in space-t ime, be­
comes smaller when moving.This illustrates why t he legs in figure 3.19 are detected as 

a single feature. 
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Re-examining figure 3.19, it is also interesting to t race t he front foot t hrough t he different 

velocities as it is clearly marked in figure 3.19(b), but in figures 3. 19(d) and 3.19(e) it 

is not present. The most noticeable aspects of t hese images t hough are t he multiple 

edges of the back and back leg found in figure 3. 19(b). T his shows t hat t he feature 

detector is possibly suffering t he effects of ali asing wit hin the image sequence as the 

signal is insufficient ly sampled to capture smooth motion between frames. Essentially 

what is being exposed is the response of t he feature detector to features present in 

t he surrounding frames. These results do suggest t hat the implementation allows for a 
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concept of velocity scale which emphasises differences from image base phase congruency 

and optical flow: it is possible to target features according to proportionate movement 

which is not possible with these techniques, except by analysis of results. 
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3 .3.6 Problem results 

This t echnique has shown an increased measure ofrobustness when compared to Kovesi's [1 6] 

image based technique. It is able to extract a feature's spatio-temporal angle giving new 

and important information for further stages in any computer vision system. However , 

during the testing of this new technique a number of images generated problematic 

results. 

Initial results show that faster movement can cause 'echoes' due to t emporal aliasing, but 

further investigation shows an interesting and very undesirable response. To understand 

the cause of these 'echoes' the input data was simplified to a time varying 1D signal 

(lD+T). Figure 3.21 shows a 1D+T signal where the signal is init ially uniform, t hen 

an impulse 'moves' along the signal at 4 pixels per sample. If viewed using a spatial 

framework, it could be thought of as a 'textured' line at a slight angle or an angled 

impulse train. In a more localised framework, a viewer may only see single impulses and 

no significant 2D feature. 

FIGURE 3.21: This image can be thought of as a ID+T signal represent ing a moving 
impulse, or an image with a 'loosely connected line' . 

The responses to this input image from t he 2D feature detector developed by Kovesi are 

presented on a per orientation basis. Here we use 6 orientations with 30 degrees between 

each. 

(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (f) 150° 

FIGURE 3.22: These show t he results from applying phase congruency upon t he ID+T 
moving dot signal in figure 3.3.6 

Since we became aware of temporal phase congruency's problems with synthetically 

'perfect' signals in section 3.2.4. VVe repeated this test with a similar measure of additive 

Gaussian noise. These results are shown in t he following figure 3.23. 

These results now show a more acceptable 'line ' across t he signal. There are many noisy 

'features ' detected, but t his is to be expected in this noisy signal. Adding noise seems 
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(a) 00 (b) 300 (c) 600 (d) 900 (e) 1200 (f) 1500 

FIGURE 3.23: These show the results from applying phase congruency upon t he 1D+ T 
moving dot signal from figure 3.3.6. 
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to reduce or remove these errors . Further t est s upon a similarly 'moving' step feature 

display problems with both the clean and the noisy image . The source images are shown 

in figure 3.24, with the results from phase congruency in figure 3.25 for t he clean signal 

and in figure 3.26 for the noisy signal.. 

(a) A mov­
ing step 

(b) A 
mov ing step 
w it h noise 

FIGURE 3.24: These two figures of a 1D+ T moving step function are used to highlight 
some of the problems phase congruency has . The noise added to fi gure 3.24(b) is 10% 

additive Gaussian noise. 

(a) 00 (b) 300 (c) 600 (d ) 900 (e) 1200 (1") 1500 

FIGU RE 3 .25: These figures show the results from applying phase congruency upon t he 
1D+ T moving step signal from figure 3.24(a) . 

Both sets of results in figure 3.25 and figure 3.26 show problem results. Results in 

figure 3.25 show a strong central line detected , which is acceptable, but there are lines 

running parallel that would remain even after non-maximal suppression . T he same lines 

are still present in figure 3.26 even if they are less consistent . From t he results, it appears 

prudent to consider an alternative method of measuring phase congruency. 



Chapter 3 Temporal Phase Congruency 

(a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (f) 150° 

FIGURE 3.26: These figures show the results from applying phase congruency upon the 
ID+ T moving step signal from figure 3.24(b). 

3.4 Conclusions 
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This chapter has successfully shown a new extension to phase congruency to allow the 

processing of time persistent features. This allows for computer vision algorithms that 

deal with image sequences to take advantage of an image's presence in a sequence and 

not just as an isolated signal. 

The new technique shows good improvements in t he robustness of the operator within 

noisy environments. This should allow progression of computer vision in more difficult 

imaging environments where noise is common and features persist in t ime. 

Temporal phase congruency also provides new and useful spatio-temporal orientation in­

formation that should assist in providing a richer set of feature properties to higher level 

computer vision algorithms. For example, t his spatio-temporal orientation information 

could be used to supplement optical fiow results. 

There has also been some useful analysis upon the limits of the technique which has 

provided motivation for further development in t he measurement of phase congruency 

within signals. This is addressed in the following chapters which overcome these limita­

tions. 



Chapter 4 

Statistical Phase Congruency 

From the previous chapter we have seen that although phase congruency can be extended 

to operate in the spatio-temporal domain there are a number of inputs that can cause 

multiple false high points of phase congruency to be detected in images and image 

sequences. This chapter looks at a new technique to measure phase congruency that 

avoids this behaviour, but is developed within this chapter to operate on single images 

and extended in chapter 5 to operate on images sequences. 

The chapter begins in section 4.1 by modelling phase congruency using a localised model 

of filtering. Using this model a new method for the calculation of phase congruency is 

developed that uses families of filters in section 4.2. The development of these filter 

families is continued in section 4.3 where they are evaluated in terms of their ability to 

measure phase congruency and also the spatial extent. Section 4.4 adds the use of the 

mean energy to prevent phase congruency from being detected in parts of an image that 

give filter responses that are dominated by noise. This final step of processing allows 

for the new feature detector to be tested and results produced. This is the subject of 

section 4.6 where example images and their statistical phase congruency feature detected 

results are presented. This section also examines the technique's response to noise in 

section 4.6.2, whilst the final section compares the Kovesi's method for calculating phase 

congruency with statistical phase congruency on the images that produced erroneous 

results. This shows a strong improvement for statistical phase congruency over Kovesi's 

method and points to a more appropriate feature detector for extending into 2D+ T. 

Further conclusions are presented in section 4.7. 

4.1 Modelling localised phase congruency 

Previously Gabor filters have been used to measure the phase of a signal for a particular 

frequency band. This phase information can be thought of as the mean phase for all the 
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frequencies contained within the selected band. Up until this point phase congruency 

has been an inter-band measure and does not allow the evaluation of the degree of phase 

congruency within the bands themselves. Analysing the intra-band phase congruency 

could remove the erroneous results found in section 3.3.6 because although the inter­

band phase is congruent, the intra-band phase is expected to contain incongruencies 

that will be detected and reduce or remove the erroneous results. 

This chapter therefore develops a technique that can measure the structure of these 

frequency bands, without attempting to measure more finely the frequencies, or the 

localisation of those frequencies. To achieve this measurement of the structure between 

the different frequencies we first model the process of (Gabor) filtering a 1D signal, as 

in eqn. 4.1. 

7n 

Gc L anCYn cos(en ) 

n=l 
m, 

Gs L bnCYn sin(en ) (4.1 ) 
n=l 

where an and bn are the even and odd filter coefficients, CY n is the nth frequency's 

amplitude of m frequencies, and en is the nth frequency's phase. Gc and Gs are the 

cosine and sine Gabor filter responses respectively. In equation 4.1 the frequencies 

are local frequencies, that are intractable due to the uncertainty principle, i.e. they 

are localised and separated. The coefficients are also intractable, but are intuitively 

assumed to be similar to those of the Gabor filter's Fourier domain representation. In 

other words, although the Fourier transform of a Gabor filter is Gaussian shaped, this 

is just a representation of the filter in a global sense. Locally it is impossible to know 

the exact coefficients of the filter. Similarly when we model any data, (CYn , en), it is 

local frequency data and not a Fourier transform of a whole signal, but rather the local 

spectrum. Without this, detecting phase congruency of Fourier components is possible 

from a Fourier transform, and would produce a global measure of phase congruency 

without localisation. 

Consider that if two frequencies in the sum are 'if radians out of phase then they will 

combine destructively. Unless all the frequencies are perfectly in phase, the sum of 

the absolute energy of the local frequencies will always be greater than the sum of the 

energy of the frequencies. l'vIathematically, to solve equation 4.1 using linear equations 

to find all the en's, we would need to repeat the filtering process many times with 

different coefficients. This is impractical and would also resolve the amplitude of each 

individual localised frequency, information we are not interested in. Instead, we note the 

relationship between the phase congruency of the frequencies and the sum of energy. It 

is known that phase congruent frequencies, when summed, give greater responses than 
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random phased frequencies that will destructively superpose. 

4.2 Measuring phase congruency 

To provide the new measure of phase congruency, we consider adding different phase 

shifts to the Gabor filter's coefficients. This will affect the sum of energy from the fil­

ters due to varying measures of constructive and destructive summation of local energy. 

When comparing between a normal Gabor filter and a phase shifted Gabor filter, per­

fectly congruent frequencies would be expected to reduce in the energy of response, and 

random phase frequencies remain of approximately the same energy. Such a filtering 

step is illustrated in eqn. 4.2. 

m 

Gc Lan cos('ljJn)an cos(en ) 
n=l 

m 

Gs L bn sin( 'ljJn)an sin( en) ( 4.2) 
n=l 

where 'ljJn represent the different phase angles of the Gabor filter's coefficients. (The 

values of these differing angles is discussed later.) Since the exact distribution of energy 

amongst the frequencies will be unknown, a single phase shift may not significantly 

affect the response to the filters. It is necessary then to repeat the filtering L times, 

forcing different amounts of phase shift to occur between different frequencies. In the 

repetition it becomes apparent that the variation of the phase shifted filters should 

describe the phase congruency sufficiently without the linear phase Gabor filter, which 

could be thought of as just one of the phase 'shifted' filters. 

Since the energy of the frequencies will be mixed between the cosine and sine-based 

Gabor filter responses, we use the combined energy of the filter pairs to extract a measure 

of the effect of the phase shifting, as in equation 4.3. 

( 4.3) 

where Gez and GS1 are the lth cosine and sine based phase shifted Gabor filter responses. 

Having calculated the energy for each filter pair we normalise by dividing by the mean 

energy, E. This is shown in equation 4.4. 

A Ez 
Ez== 

E 
( 4.4) 
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where El is the normalised measure of energy the lth filter pair generated. The normal­

isation of the filter energies is necessary as localised frequencies with the same degree of 

phase (in)congruency will have a standard deviation that is dependent upon the energy 

of the localised frequencies. It is however desirable that we only measure phase congru­

ency, and not the measure of local energy. This normalisation of El therefore removes 

the energy dependency, but retains the variation between the different filter results. We 

then calculate the standard deviation of each of the energies after normalisation by the 

mean energy giving PE. 

L 1"" 2 P E = L ~ (El - 1) ( 4.5) 
1=1 

where El is the normalised measure of energy for the lth filter pair of L filter pairs, and 

1 is the 'mean' due to El being normalised. 

To test whether PE describes the phase congruency of frequencies we use the model 

of filtering. We use sets of complex numbers as our frequency data. These sets will 

allow us to test whether a series of phase shifts can be used to detect phase congruency 

through the measure PE, and also whether our model is valid. Each set of synthetic 

frequencies has random amplitude and mean phase, with increasing measures of zero 

mean Gaussian noise perturbing the phase of the frequencies. If PE is to be a measure of 

phase congruency it should be correlated to the change in noise levels, or to the reduction 

in phase congruency. 

Before testing, the phase shifts applied to the Gabor filters need to be defined. If we 

look at randomly shifting each frequency element in the Gabor filter, the spatial extent 

of the filter would extend significantly possibly to the entire signal width. Therefore 

the phase shifts applied to the Gabor filter should affect the spatial extent as little as 

possible. There should also be different amounts of shift applied between frequencies. 

Initially we explored the use of linear phase shifts (?j!n = 2Jrn/m) which shifted the filters 

in the time domain, but it was important to investigate other functions to see if any 

improvement could be made on this set of phase shifts. 

4.3 Improving the phase shift functions 

Although the concept for measuring levels of phase congruency amongst the separate 

frequencies has been discussed the appropriate functions and parameters for those func:­

tions needed to be evaluated. Section 4.2 also assumed that a Gabor filter might be 

the appropriate choice for the basis filter. There are in fact at least 3 filter types that 

have been useful in phase analysis in this work. These are a standard Gabor filter. a 

log-Gabor filter and a log-Gabor filter convolved with a low pass filter. These will affect 
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the shape in the frequency domain of our filters. The log-Gabor filters can also be varied 

in bandwidth. The percentage bandwidth of a Gabor filter however cannot exceed 80% 

of an octave before the DC component starts to becomes significant. It is desirable to 

have a low level of DC sensitivity in any filter used so that any following technique will 

not be unduly affected by an image's lighting variation. The Gabor filter is thus limited 

to such a bandwidth during these tests. 

Additionally the central frequency of each filter can be altered. This will be important 

when considering the scale of a feature and also when considerations of spatial extent 

are examined. Smaller central wavelengths will be expected to produce smaller filters 

spatially. 

Once a basis function is chosen there are a number of possibly conflicting requirements 

for the 'optimal' solution to our problem of measuring phase congruency in this way. 

The possible requirements could be listed in such a way: 

Any filter (families) used should have: 

fixed gain A fixed gain for each frequency component in each of the different filters is 

important so that they can be compared. 

phase angle invariance Phase congruency can occur at any phase angle therefore the 

filter families need to be invariant to the actual phase of a feature. 

correlation between congruency and P E It is the correlation that enables the de­

tection of phase congruency whether it is a negative or positive correlation. 

limited spatial extent To detect local features and to avoid features affecting one 

another a limited spatial extent is important. 

4.3.1 Using sine based phase shifts 

The approach taken was to use a family of sinusoids. The different attributes of the sine 

waves were changed to attempt to find a better set of functions to use as phase shifts. 

These functions apply different phase shifts to the individual frequency components. We 

can define the lth phase shift function, pSh, in a family of L filters as in equation 4.6. 

(4.6) 

where rnl alters the shape of the filter without affecting the periodicity of the phase 

shift, walters the number of oscillations within the phase shift and Al alters the starting 

phase of the phase shifted filters. m was varied between .25 and 4. This equation allows 
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for sets of L filters to be tested. An alternative set of sine-waves was also tested, these 

used the absolute value of the cosine and sine functions, as in equation 4.7. 

(4.7) 

The phase shifts, An, were defined in two ways. The first provided linear phase shifts 

between different filters, as shown in equation 4.8. The second provided an increasing 

set of phase shifts between filters as in equation 4.9. 

rng * ZIL 

rng * Z2 I L2 

(4.8) 

( 4.9) 

where rng is the range the phase shifts are varied over. In all the following testing rng 

was set to either 1f or 21f. 

A search of the parameter space was then conducted which allowed for variation in 

all the described attributes, with the aim of determining how each variable could affect 

each of our design criteria. (It is acknowledged at this stage that any number of function 

families could be chosen instead of the sinusoids.) 

Initial testing had shown that functions that behaved better in the model also behaved 

better on real signals. Using the model allowed for the mean phase angle for phase 

congruency detection to be altered easily, as well as allowing for the extent of congruency 

to be altered in a measured manner. It is at this point the concept of phase congruency 

must be scrutinised. The underlying question that must be asked is: Does a useful 

measure of phase congruency include dependence upon energy? For example, consider 

a frequency spectrum consisting of 5 frequencies where 3 are congruent and very low 

amplitude, and the fourth and fifth frequency are orders of magnitude greater and one 

of them is congruent with the 3 very low amplitude frequencies whilst the other is 7r 

radians out of phase. An energy dependent model would state that the frequencies were 

not congruent, as the sum of the frequency components is significantly less than the sum 

of the magnitudes, but an energy independent measure would state that there is phase 

congruency of the order of 60-80% since 4 frequencies are congruent and a fifth is not. A 

more meaningful measure may be an energy dependent model, particularly for feature 

detection. Kovesi also resolved to measure phase congruency in this energy dependent 

manner. 

Having established the type of phase congruency we wished to measure, applying par­

ticular degrees of phase congruency would have been unnecessarily costly. Therefore we 

apply a constrained, but random amount of noise to the localised frequencies, and then 
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measure the actual phase congruency that this new spectrum possesses. This allows the 

response from the technique and the various functions under t est to be reviewed against 

a wide and varying range of phase congruency. 

During testing 10000 such randomised spectrum were produced to test each filter family. 

The tests produce a distribution of results. In figure 4.1 we see an example of one of the 

sets of results. 

1.4 

t: o 
~ 1.2 

0.2 

0.2 0.4 0.6 0.8 
Phase Congruency 

FIGURE 4.1: An example set of 10,000 measurements of phase congruency versus the 
measured normalised standard deviation, PE from one of the sine functions. A line of 

best fit is also overlaid upon the distribution. 

As can be seen from figure 4.1 this particular function does display a correlation between 

phase congruency and the normalised standard deviation with smaller normalised stan­

dard deviations correlating to higher degrees of phase congruency and vice versa. This 

result is somewhat unexpected, as it had been previously reasoned t hat more phase con­

gruent signals would have a higher variance in response to different phase shifted filters. 

It does not show a unique mapping between phase congruency and normalised standard 

deviation, but more of a distribution of results that changes for different measures of 

phase congruency. To use the normalised standard deviation we fit a line to the middle of 

the distribution that allows the mapping from the normalised standard deviation to t he 

phase congruency. When comparing the different sets of functions the key measurement 

is the spread of the distributions from the line used in the mapping. To measure the 

spread of the data we chose the normalised residual generated when fitt ing a polynomial 

to each set of data. 
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We note that the distribution becomes significantly wider from about 0.3 phase con­

gruency and the spread is significantly tighter about 1.0 phase congruency. To gain an 

increased insight into how the error from the line of fit varies as we decrease the degree 

of phase congruency, we apply the fitting process to different ranges of the data always 

starting from a phase congruency of 1. The results from this analysis are plotted in 

figure 4.2. Although they do not show the individual results clearly the figure does show 

the variation and the general shape of the normalised residual error against the ranges 

of phase congruency. 

0.5 

8 .L1---0~.2---0~.3---0~.4--~0.~5---0~.6---0~.7---0~.8--~0.-9 --~1 .0 
Phase Congruency 

FIGURE 4.2: The different residual errors as calculated from different ranges ofthe test 
data for all the test functions used. 

From this plot we chose to take the 0.3 phase congruency values as the point at which 

to differentiate between function performance. These points are firstly the maximum 

in figure 4.2 for many of the functions, but also signify reasonable points at which any 

phase congruency results could be thresholded. It was also important that any function 

chosen should operate well over the range between .3 and 1.0. This would enable a 

broader range of feature strengths to be extracted and for the resulting operator to be 

useful for images with different levels of phase congruent features. 

Using these results we can compare the effects of the various parameters that have been 

altered in our phase shift function. This though only represents the ability of our filters 

to distinguish phase congruency, but it is also important that our filters have a limited 

spatial extent . This is the focus of the following sections. 

4.3 .2 Filter construction in the Fourier domain 

In the prevIOUS sections we have modelled and developed filters that measure local 

phase congruency. These filters have been modelled in the local frequency domain and 
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have been optimised to measure the local frequency's degree of phase congruency. It 

is however impossible to construct a filter in the local frequency domain as frequency 

separation and localisation are inversely related. We have therefore considered that if a 

Gabor filter is transformed into the Fourier domain and the phase shifts applied to the 

filter in the same manner as has been applied to the local frequency domain then we 

assume that the filters will measure global phase congruency. If, however, the filters have 

a spatial extent that is just a small percentage of the real domain when inverse Fourier 

transformed then the phase congruency calculations will be considered to be calculated 

locally. It is with this perspective that we must therefore measure spatial extent. It is 

also important that we formalise how the filters are constructed. 

To develop and test the different phase shifting filters we have stated that the local 

coefficients of a Gabor filter are the similar to the coefficients of the Gabor filter's 

Fourier domain coefficients. This allowed us to test the ability of different phase shifting 

functions to measure local phase congruency. We now define the filters in terms that are 

realisable and so we reverse the notion and use the local filter coefficients to describe the 

Fourier domain coefficients of our filters. At this stage the filters will have a measurable 

spatial extent that will begin to define whether they are measuring local frequency 

information. The filters are thus defined as in equation 4.10 using polar coordinates. 

spc2dT) G(w, wn) Gaussian(B, Bn) PSn(w) 
-(e-en )2 

Gaussian(B, Bn) e 2at (4.10) 

where spc2dn is the nth filter in a family. G is the base Gabor filter and could be a 

log-Gabor filter or a Gabor filter, either of which will act along the w-axis and have 

their central frequency at wn. Gaussian is the spreading function that we use about 

the B-axis with the focal angle of the filter specified by Bn (CJe is usually less than the 

angular distance between filters). pST) is the phase shift function that also acts along the 

w-axis and it is results between filters with the same first two elements that are used 

to generate the normalised standard deviation, PE, on a per orientation and scale basis. 

We now consider the spatial extent of our filters. 

4.3.3 Measuring the spatial extent of the filters 

The spatial extent of our filters is important for a number of reasons. Firstly it is assumed 

that a smaller spatial extent of our filters should support better localisation of results. 

Secondly it allows for features to be detected closer together without interference. It is 

therefore important that the chosen filters be 'small'. 

Measuring the spatial extent of the chosen filters could be approached analytically, 
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except one of the base functions that we use, the log-Gabor filter, has a singularity in 

the Fourier domain, so this is not possible. Kovesi proposed two methods for evaluating 

the spatial extent of the log-Gabor filter so as to understand the behaviour with varying 

bandwidths. The first method was to measure the number of terms needed to represent 

a percentage of the filter's total area. The second method measured the distance from 

the centre of the filter to the term that was a small percentage of the peak value in that 

filter. We re-use these methods to measure the spatial extent of our phase-shifted filters. 

These we normalise against standard Gabor filters so as to provide a guide rather than 

a series of magical numbers. This leaves our measures of spatial extents in percentages 

of the normal Gabor or log-Gabor filter widths as appropriate. 

So as to provide further information we considered this for a range of percentages. For 

the area measure we evaluated the width of the filter needed to represent from 95-99% 

of the filter's area in 1 % increments. For the peak measure we examined the smallest 

width that contains all values smaller than 1 %-5% in 1 % increments of the greatest value 

in the filter. Since these filters are complex this operation is done on the magnitude of 

the filters, not their real and imaginary parts. In refining the choice of spatial extent 

measure it was argued that if our filters were cut off at the extent described then it 

would be important not to introduce too great an error. With this in mind an error 

of ±1 % was acceptible and so the area measure containing 99% of a filter's area was 

chosen. 

4.3.4 Interpreting the measures of spatial extent 

Having established a means to evaluate an individual filter's spatial extent, it is now 

important to consider that all the filters are not generated to produce isolated results. 

More precisely the statistical phase congruency measure uses the relationship between 

filters, therefore the spatial extent of a set of filters is the actual subject of interest. 

It could be argued that the spatial extent of such a family of filters is the greatest 

spatial extent of the individual filters, since there will be a change in response from the 

technique as the larger filter becomes affected by a 'nearby' feature. This effect though 

is balanced by the other filters in a family, and point towards a more important aspect 

being that of the smallest filter. Although the larger filters will hopefully align about 

a significant feature, a smaller filter may only do so when it is covering the feature of 

interest. This could be thought of as a coarse-to-fine view of how such a family of filters 

may work. 

Essentially the desired mathematics would be an analytical function that describes the 

effects of a single term in one filter upon the resulting response from the overall technique. 

It may then be possible to design functions that can balance this analytical basis of 

spatial extent against a similar analytical basis of phase congruency measurement. It is 
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suspected though that these two analyses will produce a tension that may not be solved 

or are inversely proportional similar to Gabor's understanding of frequency analysis 

and temporal localisation, but it is hoped that since the degree of frequency domain 

information that is being 'extracted' or measured is less than a Fourier or even Gabor 

like transform, that the degree of spatial localisation should be increased. 

In lieu of this, the use of mean spatial extents of a filter family has been used to analyse 

the filters. An alternative might be the measurement of the spatial extent of a filter 

constructed from the sum of the filters, but even then since the relationship between 

filter responses is non-linear through the use of standard deviation, that may provide no 

better information. 

4.3.5 Finding good solutions 

In the previous sections measures for the ability of the filter families to distinguish phase 

congruency and measures of spatial extent have been established. The filter families were 

then tested to establish their ability to distinguish phase congruency and their measure 

of mean spatial extent. From these results those families that had less than or equal to 

a 100% of a Gabor filter's width were selected. From this selection the five families with 

the lowest residual error were chosen. This process was then repeated for with different 

relative widths of Gabor filter ranging from 125% to 400%. The results for this process 

yielded only 7 filter families that are listed in table 4.1 

# 

1 
2 
3 
4 
5 
6 
7 

Base (3 Wn L A, rng Tn, Eq.n 
Filter used 
Gabor - 3 2-9 7fl/ L 47f 1 4.7 

log-Gabor 0.55 8 2-9 7fl/ L 47f 3 4.7 
log-Gabor 0.74 3 2-9 7fl/ L 47f 1 4.7 
log-Gabor 0.41 3 2-9 27fl2 / L2 27f .25 4.7 

log-Gabor + low pass 0.41 8 2-9 27fl2 / L2 7f 2 4.6 
log-Gabor + low pass 0.41 17 2-9 27fl2 / L2 47f 3 4.7 

Gabor + low pass - 3 2-9 27fl- L ') / 2 7f .25 4.7 

TABLE 4.1: The best 7 sets of parameters that have a limited spatial extent and a good 
ability to distinguish phase congmency 

The results from this table reveal a number of interesting facts. It appears that the 

number of different filters used per family can range from 2 to 9 and the resultant 

distinguishability of statistical phase congruency remains the same. The different mean 

spatial extents generated from using different numbers of phase shifts also appears to 

be stable. It is also interesting to see that equation 4.7 is favoured over equation 4.6. 

Finally it is important to remember that these values have been selected from tests run 

entirely upon synthetic data. 
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4.4 Energy Masking 

In section 4.3.5 a number of families of parameters have been selected for use in defining 

the phase shift function used in statistical phase congruency. This allows phase congru­

ency to be detected in an image. Though there are parts of an image , t hat may have 

near zero energy in the selected band of t he base fil ter. The responses from t hese fil ters 

and t he following measure PE will be therefore be based upon noise or numerical effects. 

To mask t hese points in an image the measured phase congruency is mult iplied by the 

mean energy. This is an effective solution and enables feature detection of valid features. 

4.5 Testing 

It is important to evaluate the parameters selected in section 4.3 .5 against real data. T he 

results of t esting are shown in figure 4.4 and show t he variation between t he different 

families. In each case t he number of filters used is 2. The four different images , shown 

in fig. 4.3, are useful because t hey have different properties varying in features present 

and levels of illumination. 

FIGURE 4.3: Four t est images of a circle, a t ree and some houses, a person walking, 
and a woman sat behind a desk. 

The first column of results are from a solid black circle on a white background. T his is a 

synthetic image useful for showing the response t hat each fil ter family has to step edge 

features. Since our t echnique relies on detecting phase congruency it is to be expected 

that 'ringing' occurs where an addit ional phantom feature is detected away from t he 

edge due to the underlying phase of the sine-waves re-aligning, but to a lesser degree. 

It is also to be expected that this ringing is present in a synthetic image wi t hout noise, 

but should reduce or disappear in real images where other features and noise disturb 

local frequency structure. In figure 4.4 we see t hat most of t he families show ringing 

in response to the circle , but families 1-3 and 6 also show ringing around t he edge of 

tree, walking person and t he woman sat at t he desk. This leaves families 4, 5 and 7 

as useful opt ions. We then consider t he problem cases of 'faster ' moving features from 

section 3.3 .6, and show t he results for a 'fast ' moving impulse and step wit h noise. 
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( a) using family 1 

(b) using family 2 

( c) using family 3 

(d) using family 4 

(e) using family 5 

(f) using family 6 

(g) using family 7 

FIGURE 4.4: Results from applying stat istical phase congruency to the test images of 
fig. 4.3 
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4.6 Results 

This section presents the results of statistical phase congruency. Section 4.6.1 shows 

some example results and compares them to standard image based phase congruency. 

This is followed by some results of applying noise to synthetic images in section 4.6.2. 

Finally in section 4.6.3 the response of statistical phase congruency is evaluated against 

two 1D+T signals that caused phase congruency to produce erroneous response. 

4.6.1 Example results 

This section reviews some of the results that are generated using statistical phase congru­

ency on images . To ease comparison we have just presented results for family 4. Families 

4, 5, 6, and 7 are considered more in the formal testing in sections 4.6.2 and 4.6.3. 

(a) or iginal image of a 
woman behind a desk 

(b) results from statist i­
cal phase congruency fea­
ture detection 

(c) resu lts from phase con­
gruency feature detection 

FIGURE 4.5: A woman behind a desk and t he resu lts from feature detection using 
statistical phase congruency and phase congruency. 

In figure 4.5 we see that statistical phase congruency is performing very well and detects 

the overall outline of the woman well. In addition t he edges of the stripes on the woman 's 

shirt are well detected even though the greyscale difference is small. Statistical phase 

congruency compares well with phase congruency in its detection of the features of t he 

flowers to the right of the woman. In figure 4.5(b) we see the second flower down has 

details of the pet als whereas figure 4.5(c) does not , but has generally sharper responses. 

Also the features detected in t he background vary both giving acceptable responses when 

detecting the folds. 

Figure 4.6 shows again a comparison between statistical phase congruency and phase 

congruency. This particular image contains a lot of noisy textures in the flower beds, on 

the tree trunk and the thin trees to the extreme right and on t he left. Statistical phase 

congruency does well at detecting these t hin trees and some of t he finer branches coming 
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(a) original image of a tree 
b ehind a desk 

(b) results from statisti­
cal phase congruency fea­
t ure detect ion 

(c) resul ts from phase con­
gruency feature detect ion 

FIGURE 4 .6: Results from feature detection using statistical phase congruency and 
phase congruency. The original image contains a tree in the foreground and houses in 

the background. 
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from the main branches on the left . In comparison to phase congruency, which does not 

detect these features, it should also be noted t hat it is again slight ly more blurred or 

has wider feature responses. 

(a) origina.l image of a walk­
ing inside behind a desk 

(b) resul ts from statist i­
cal phase congruency fea­
tu re detect ion 

(c) resul ts from phase con­
gruency feature detect ion 

FIGU RE 4 .7: A person walking inside and the results from feature detection using 
statistical phase congruency and phase congruency. 

Figure 4.7 shows the strongest improvement from phase congruency to statistical phase 

congruency. In figure 4.7 ( c) we see that the centre of the leg has been detected as a 

feature, whereas statistical phase congruency manages to detect just t he edges of the 

leg as expected. The ceiling also shows finer details being detected using statistical 

phase congruency particularly around t he vent. The torso in this image proves to be 

the most difficult to detect feature as the grey-scale differences between foreground 

and background are small . Phase congruency possibly produces bett er results for t he 

shoulder whereas statistical phase congruency produces better results around the hand 
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giving it a plausible outline. In fact, there is more of the arm's structure in statistical 

phase congruency compared with image based phase congruency. 

4.6.2 Noise testing 

In section 3.3.2 temporal phase congruency was tested using two different noise models. 

This section also examines the response of statistical phase congruency to noise. First 

zero mean additive Gaussian noise is applied to a synthetic test image, then salt and 

pepper noise is applied. The chosen image is that of a black circle on a white background. 

Figure 4.8 shows clearly the differences between the results generated from families 4 

and 5, and that statistical phase congruency provides a framework for feature detection 

and dependent upon the parameter choices can have different properties. Family 4 

has generated possibly more visually pleasing results in Section 4.6.1, but it is clear in 

figure 4.8 that this set of parameters is not resilient to higher levels of Gaussian noise 

since the circle disappears in the 50% noise case. Family 5 does at this point show that 

statistical phase congruency can be used in noisy environments to detect features with 

performance comparable to that of phase congruency. This difference in noise resilience 

could be because of the smaller central wavelength of family 4. 

Figure 4.9 shows that salt and pepper noise affects both statistical phase congruency 

and phase congruency significantly in their ability to detect features. Family 4 is again 

very poor and phase congruency appears slightly better than family 5, but neither detect 

the circle under 70% noise. 

Further testing shows that family 6 has the best performance at detecting features under 

these noisy conditions. Previously (in figure 4.4) family 6 produced blurred output, but 

was able to select the larger scale features such as the tree's trunk, and the outline of 

the woman. This highlights that this family operates at a larger scale due to its central 

wavelength being 17 pixels instead of the 3 and 8 of the other families. This makes 

family 6 more appropriate when pixel based noise is added to an image, and this can 

be seen from the results in figure 4.10 where there is considerably more structure in the 

response to 90% Gaussian noise than for phase congruency. This is also the case for 

the salt and pepper noise tests where there is good structure in the 50% noise case and 

residual structure at 70%. 
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(a) The test 
image with 
10% Gaussian 
noise 

(f) Results 
with 10% 
Gaussian 
noise 

(k) Results 
wit h 10% 
Gaussian 
noise 

(p) Results 
wit h 10% 
Gaussian 
noise 

(b) T he test 
image with 
30% Gaussian 
noise 

(g) Results 
w it h 30% 
Gaussian 
noise 

(I ) Resul ts 
w ith 30% 
Gaussian 
noise 

(q) Results 
wit h 30% 
Gaussia n 
noise 

(c) The test 
image wit h 
50% Gaussian 
noise 

Test images 

(h) Resul ts 
wit h 50% 
Gaussian 
noise 

Family 4 

(m ) Resul ts 
wit h 50% 
Gaussian 
noise 

Family 5 

(r ) Results 
wit h 50% 
Gaussia n 
noise 

Phase congruency 

(d) T he test 
image wit h 
70% Gaussian 
noise 

(i) Resul ts 
with 70% 
Gaussia n 
noise 

(n ) Resu lts 
wit h 70% 
Gaussian 
no ise 

(s) Resul ts 
wit h 70% 
Gaussia n 
noise 

(e) T he test 
image wit h 
90% Gaussian 
noise 

(j) Resu lts 
wit h 90% 
Gaussian 
no ise 

(0) Results 
wit h 90% 
Gaussian 
no ise 

(t) Resu lts 
with 90% 
Gaussian 
noise 

FIGURE 4.8: Responses of statistical phase congruency to a test image wit h increasing 
levels of zero mean addit ive Gaussian noise wit h comparative results generated using 

phase congruency. 
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(a) The test (b) The test (c) The test (d ) The test (e) The test 
image with image with image wit h image with image wi t h 
10% salt and 30% salt and 50% salt and 70% salt and 90% salt a nd 
pepper noise pepper noise pepper noise pepper noise pepper noise 

Test images 

(f) R esults (g) Results (h) Results (i) R esults (j) Results 
with 10% salt with 30% salt with 50% salt with 70% salt with 90% salt 
and pepper and pepper and pepper a nd pepper and pepper 
noise noise noise noise noise 

Family 4 

(k) Resu lts (1) R esults (01 ) Resu lts (n) Resul ts (0) Results 
with 10% salt with 30% salt with 50% salt wit h 70% salt wit h 90% salt 
and pepper and p epper and pepper and pepper and pepper 
noise noise noise noise noise 

Family 5 

(p) Results (q) Resu lts (r ) Results (s) Results (t) Resu lts 
with 10% salt wit h 30% salt wit h 50% salt wit h 70% salt with 90% salt 
a nd p epper and pepper a nd pepper a.nd pepper a nd pepper 
noise noise noise noise noise 

Phase congruency 

FIG URE 4.9: Response of statistical phase congruency to a test image wit h increasing 
levels of salt and pepper noise with comparative results generated using phase congru­

ency. 
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(a) Results (b) Results (c) Resu lts (d) Results (e) Results 
with 10% with 30% with 50% with 70% with 90% 
Gaussian Gaussian Gaussian Gaussian Gaussia n 
noise noise noise noise noise 

Family 6 

(f) Results (g) Results (h) Results (i) Resu lts (j) Resu lts 
with 10% with 30% with 50% with 70% with 90% 
Gaussian Gaussian Gaussian Ga.ussia n Gaussian 
noise noise noise noise noise 

Phase congruency 

(k) Results (l) Results (m ) Resu lts (n) Resul ts (0) Resul ts 
with 10% salt with 30% salt wit h 50% salt wit h 70% salt with 90% salt 
and pepper and pepper and pepper and pepper and pepp er 
noise noise noise noise noise 

Family 6 

(p) Results (q) Resul ts (1') Results (s) Results ( t) Resul ts 
with 10% salt with 30% salt with 50% salt with 70% salt wit h 90% salt 
and pepper and pepper a nd pepper a nd pepper a nd pepper 
noise noise noise noise noise 

Phase congruency 

FIG URE 4.10: Statistical phase congruency tuned to detect features even in extremely 
noisy conditions. 
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4.6.3 Examining the effects of 'discontinuous' lines 

One of the main motivations behind developing this technique for measuring phase 

congruency is the negative results from feature detection applied to a plain image with a 

line of dots traversing it, for example in fig. 4.6.3. The technique by Kovesi shows some 

odd behaviour, as do some results for moving features, both of which were discussed in 

Section 3.3.6. 

Figure 4.11 shows results for statistical phase congruency and phase congruency to two 

synthetic images. The results are present as complete images showing the overall re­

sponse, and alongside each image cross sections have been presented. The cross sections 

are taken from columns between the impulses and between the transitions in the step 

edge case. They are overlaid and each cross section is aligned such that the centre of 

the line is in the same place. Each of the resulting images show a strong response to the 

feature in the image. The cross section slices show strong feature detection even in the 

case of the impulses where no feature is actually present due to temporal support. The 

noise in both images produces stronger responses from the phase congruency operator 

than any of the statistical phase congruency families. It is also noticeable in the cross 

section of the moving step edge that phase congruency produces echoes to the sides of 

the main response. It is these echoes that statistical phase congruency was designed 

to reduce or remove. Removing these echoes is an important process when considering 

extending a feature detector into 2D+ T, where edges and features can move in such 

'disconnected' manners. 
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A zero mean Gaussian noised impulse and step used for testing. 

Family 4 

Family 5 

Family 7 

Phase congruency 

FIG URE 4.11: Different responses to a ' fast moving ' impulse and step from statistical 
phase congruency (family 4, 5 and 7) and phase congruency. Both in image form and 

plots of the cross sections from the columns between the points of 'movement ' . 
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4.7 Conclusions 

In this chapter a new method for measuring phase congruency has been presented. To 

do this the filtering process has been modelled. The model has been used to analyse 

different families of filters with respect to their ability to measure phase congruency. 

The spatial extent of each filter has also been measured and a mean value taken of 

each family. With both the spatial extent and a filter family's ability to measure phase 

congruency seven families were chosen. From these seven, three families showed good 

results against a series of test images. 

Noise testing of the new statistical phase congruency produced positive results with 

improvements over the previous method of measuring phase congruency. This is very 

encouraging, and in addition some problematic results found using phase congruency 

in chapter 3 have also been removed. In overcoming these problems we have designed 

a feature detector that should be more suitable for extending into 2D+ T. This is the 

subject of the next chapter. 



Chapter 5 

Temporal Statistical Phase 

Congruency 

In chapter 3 we extended phase congruency into the temporal domain. Further investi­

gation into phase congruency in section 3.3.6 showed some interesting and undesirable 

results. These results provoked the development of statistical phase congruency in chap­

ter 4. This new method for feature detection proved to produce good results on test 

images, but also produced acceptable results when tested against an image of an inclined 

line of impulses, or if viewed using a 1D+T framework, a fast moving impulse, some­

thing phase congruency fails to do. The ability of the technique to correctly detect a fast 

moving impulse in 1D+T, suggests that this method for measuring phase congruency 

should be more suited to temporal extension for detecting time persistent features. 

Since statistical phase congruency is fundamentally a 1D metric, section 5.1.1 describes 

the changes needed to transform the filters used in 2D in chapter 4 into the 2D+ T 

domain. The extension of statistical phase congruency into the temporal domain allows 

for features to be detected at multiple spatial and temporal angles. In section 5.3 

interpolation methods previously described in section 3.2.4 are applied to results and 

allow the dominant velocity and spatial orientation of a feature to be established. Results 

from applying temporal statistical phase congruency are presented in section 5.5. These 

begin with example images in section 5.5.1, with results from different noise tests in 

section 5.5.2. The technique's response to occlusion is examined in section 5.5.3 and 

section 5.5.4 evaluates the accuracy of the velocity interpolation aspect of temporal 

statistical phase congruency. The final set ofresults in section 5.5.5 show the effectiveness 

of temporal statistical phase congruency when used in velocity thresholding. The last 

section of this chapter gives some conclusions to the technique and suggests further 

possible areas of research. 
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5.1 Introduction 

In extending statistical phase congruency to image sequences a number of additional 

stages are necessary. Although we rely heavily upon the underlying ability of statistical 

phase congruency to detect features, we also attempt to detect these features at differ­

ent spatio-temporal angles in an image sequences. In section 5.1.1 of this chapter, we 

describe how the filters are extended into 2D+T. The use of these filters to measure 

temporal statistical phase congruency is described in section 5.2. Section 5.3 suggests 

the use of a velocity interpolation algorithm, and a noise reduction method is described 

in section 5.4. 

5.1.1 Filter construction 

The filters used in the temporal extension to statistical phase congruency are constructed 

using polar coordinates. If we consider the 2D filters described again in equation 5.1 we 

see that there are three constituent parts. Each filter is defined by a Gabor function, 

G(- .. ), either log-Gabor or normal Gabor function with or without low-pass filtering. 

This function selects the overall band of the frequency spectrum the filter is operating 

in. The second part is a Gaussian function, Gaussian(···), that defines the spatial 

angle of focus that the filter will operate on. The third part is the phase shift function, 

PSn(-· .). This function is defined more completely in equations 4.6 and 4.7, and it 

is the relationship between filters with different PSn that are used to estimate phase 

congruency. It is therefore worth noting that the first two parts of the filter, spc2dn , 

select the focus of the filter. 

spc2dn 

Gaussian(e, en) 

G(w, wn) Gaussian(e, en) PSn(w) 
- (e_e,,)2 

e 2o-~ 

(5.1) 

(5.2) 

where w is the spatial frequency and e is the spatial angle. Wn is the central frequency 

of the Gabor filter, and en is the centre angle of the filter. ae controls the spread of the 

filter about the angular axis. 

To extend these filters into the 2D+ T domain we add a further Gaussian function that 

operates about the temporal angular axis, 'l/J. This then gives us equation 5.3 composed 

of four distinct functions. The first three select the frequency band or scale of operation 

(wn ), the spatial angular focus (en) and the temporal angular focus ('l/Jn). This allows 

phase congruency to be detected within this section of frequency space using filters with 
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different phase shift functions, PSn. These phase shift functions are inherited from the 

2D version and all seven families will be evaluated. 

spc2dtn 

Gaussian( 'ljJ, 'ljJn) 

G(w , wn) Gaussian(e , en) Gaussian('ljJ , 'ljJn) PSn(w) (S .3) 
-(1/J-1/Jn)2 

e 20"~ 

(S.4) 

The number of filters used in estimating phase congruency using statistical phase con­

gruency is a combination of the number of different spatial and temporal angles selected, 

and the number of different phase shift functions are chosen. In developing temporal 

phase congruency we used two different arrangements of filters in 2D+ T space. We chose 

here to use just the 'singularity' arrangement in developing temporal statistical phase 

congruency. This arrangement sets some of the filters to be aligned to zero speed, which 

would make them particularly sensitive to stationary features which could be useful. 

Either arrangement is suitable, but choosing one reduces the number of tests needing 

to be completed as there are already 7 families of phase shift function to test with. A 

diagram of the 'singularity' arrangement of spatia-temporal foci is shown in figure S.l 

t 

x-y 

(a) Temporal axes filter orientations 
with 'singularities' 

(b) filter orientations with 'singularities' 

FIGURE 5 .1 : This diagram shows the foci of the filters used in temporal statistical 
phase congruency. 
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5.1.2 Frequency band and central wavelength selection 

In chapter 4 we examined a method for measuring phase congruency using multiple 

phase altered filters centred about a single section of the frequency space. The applica­

tion of multiple phase shifted filters has allowed the detection of features within images 

of differing feature scales based upon the bandwidth of the filter selected, and its central 

frequency. Re-applying this concept to the spatio-temporal domain, however could pro­

duce interesting results. If we consider that the spatio-temporal frequency is a mixture 

of the spatial and the temporal, then fixing the spatio-temporal frequency and altering 

the temporal angle will alter the portion of the frequency that pertains to a feature's 

spatial aspects. The alteration is actually a reduction in the amount of high frequency 

spatial frequencies the filter will capture, reducing the weighting given to smaller fea­

tures. This would cause a problem for filters with smaller bandwidths. Therefore, it 

may be important to use filters that cover the desired bandwidth with leeway given to 

the exact measure. This argument does not take into consideration the effects of aliasing 

upon what a given bandwidth may contain when smaller features move 'quickly'. 

5.2 Calculating temporal statistical phase congruency 

The calculation of temporal statistical phase congruency uses the results of filters with 

the same central wavelength, spatial angular focus and temporal angular focus, but 

different phase shift function to estimate the degree of phase congruency at a pixel in 

an image sequence. The result is an estimate of feature strength considering the filter's 

angle of focus. This allows a single point to have a high estimate about one spatio­

temporal angle and low estimates at others. It also allows for features to be detected 

with multiple high degrees of phase congruency that may signify a corner or other type 

of junction. 

We consider that Rn is the nth complex response of a filter (spc2dtn) to an image 

sequence, I. This is shown in eqn. 5.5 where the total energy from the filter's is En. 

1* spc2dtn (5.5) 

(5.6) 

This allows m filter responses all with the same central wavelength and spatio-temporal 

focus, yet different phase shift function to be combined to give the normalised standard 

deviation, p. 
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1 m 
E -LEn (5.7) 

m n=l 

En 
En 

(5.8) 
E 

1 f A 2 (5.9) p - (En - 1) 
m n=l 

where E is the mean energy for this set of filters and En is the normalised energy of the 

nth response. p then provides the basis for our measure of feature strength for the same 

orientation as the filters used to produce Rn. p has proved to be correlated to phase 

congruency, but inversely so. This means that p is mapped using a polynomial line of 

best fit, PO, to an estimate of phase congruency. Also p measures phase congruency, 

but it does not account for points in an image where the energy at a point is so small 

that the results are dominated by noise. To mask out these erroneous results the mean 

energy, E, is used as a mask, this is similar to Kovesi's implementation[16J. The final 

estimate of phase congruency, spc, is given in equation 5.10 and is calculated for each 

set of filter orientations, (en, 'ljJn). 

P{p}E (5.10) 

where the mapping PO is created by fitting a line to the distribution generated when 

modelling the response of p to differing levels of phase congruency, see section 4.3.1. 

5.3 Feature Velocity Interpolation 

Similar to temporal phase congruency, temporal statistical phase congruency also has 

the ability to detect features at different orientations in the spatio-temporal domain. The 

technique does this by using multiple filters with specific spatio-temporal orientations 

and detecting a pixel's strength with respect to that particular orientation. In combining 

these results from the different filters we gain a finer estimate of the feature's true spatio­

temporal orientation. 

The technique developed in section 3.2.4 is applicable again for estimating the primary 

orientation of a feature in 2D+ T space and results are presented in section 5.5.4. 
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5.4 Reducing the effects of noise 

The original 2D image based statistical phase congruency technique has no method 

for measuring or countering the effect of noise. The new temporal statistical phase 

congruency method however is able to estimate noise levels at each pixel. Using the 

assumption that a single pixel will not have significant structure about all orientations 

allows an estimate to be derived for the noise level at that pixel. The estimate is taken 

as the smallest response from one of the orientations as this is likely to be entirely 

based upon the noise that pixel is subject to. Therefore to counter the effects of noise 

we subtract the smallest feature strength from all orientations as in equation 5.11 to 

generate the noise reduced estimate of statistical phase congruency, nrspc. 

(5.11) 

where min(spc) is the minimum response of all sPCOn,'!/Jn' 
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5.5 Results 

This section shows the results of temporal statistical phase congruency on a number of 

different image types. Initially we show some example images and image sequences in 

section 5.5.1. Section 5.5.2 continues with more rigorous testing, and examines the 

effects of zero mean additive Gaussian noise and salt and pepper noise on the technique. 

Then repeating previous tests from section 3.3.3 we test the response to simple occluding 

of objects in section 3.3.3 and look at the ability of the technique to separate out different 

velocity features, in section 5.5.3. 

5.5.1 Example results 

(a) original 
image 14 of 32 

(b) origina l 
image 15 of 32 

(f) original image 16 of 32 

(c) original 
image 16 of 32 

(d) original 
image 17 of 32 

(e) original 
image 18 of 32 

(g) temporal stat istical phase congruency 
output 

FIGURE 5.2: Results from the temporal statistical phase congruency operator on a 
ping-pong ball sequence. 

Figure 5.2 shows the response of temporal statistical phase congruency to a range of 

movements. The images presented in figures 5.2(a)-5.2(e) show the ping pong ball moves 

relatively quickly and the hand, table and background are stationary. We see clearly 

that the technique strongly highlights the window fr ame and the table's edge. These are 

both strong features that persist in time through the whole sequence. The hand also 
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persists , but in the sequence of 32 frames used in t his test sequence it moves around. 

the t echnique is still able to give good feature positioning, and pick out the details of 

the edges between the fingers and the detail on t he sleeve on the arm. The ball however 

is a much fast er moving object, and it is detected at its strongest in the middle position, 

but there are echoes of the frames either side. This was also t he case in temporal phase 

congruency, and a suitable non-maximal suppression algorithm should be able to remove 

the duplicates with the added velocity of the features also being known. The side of the 

window fr ame does however have a slight surrounding echo that would not be removed by 

non-maximal suppression , but could be removed if the image was correctly thresholded. 

(a) original 
image 14 of 32 

(b ) origina.l 
image 15 of 32 

(f) original image 16 of 32 

(c) original 
image 16 of 32 

(d) original 
image 17 of 32 

(e) original 
image 18 of 32 

(g) temporal statist ical phase congruency 
out put 

FIGURE 5 .3: Results from the temporal statistical phase congruency operator on a 
tree seq uence. 

Figure 5.3 shows the result of applying temporal statistical phase congruency to an 

image sequence of a tree in front of some houses. Five images from the sequence are 

shown in figures 5.3(a)-5.3(e) these are taken from the sequence of 32 images used in 

processing. The central frame is repeated in figure 5.3(f) with t he time persistent feature 

detected image in figure 5.3(g). The feature detection process strongly highlights the 

outline of the tree part icularly where the edge of the tree becomes more distinct in the 

upper half of the image. The roof line is also distinctly marked with the main branches 

of the trees to the left of the main t runk being highlighted too. There is also some detail 
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within the main trunk near the top of the image that is also strongly highlighted, both 

bark detail and a line of symmetry in the middle of the trunk which is erroneous. This 

is probably caused by wrongly detecting the trunk of the tree as a broad line feature. 

In addition to this we also note that the time-persistent feature detection also provides 

velocity information for all the features. This should help in combining the objects in 

the image as the tree trunk will have a different velocity to the features it intersects with 

such as the roof line and the top of the flower bed. 

5.5.2 Noise Testing 

We repeat the same noise tests applied to temporal phase congruency to temporal sta­

tistical phase congruency. We use salt and pepper noise and additive Gaussian noise 

in testing, the first because of its effect on the whole spectrum and the second because 

other noise, at the limit, can be reduced to it. The tests consisted of detecting the edge 

of a circle moving in an image sequence. The region where valid feature pixels should be 

detected is a ring 2 pixels wide in each image and is a small percentage of the total im­

age sequence. In comparing the number of false pixels detected and the number of true 

feature detections we have used percentages of each region where features are detected. 

There is no accounting for feature orientation information in this test. The thresholds 

were at set intervals, measured in percentages of the peak value, of 10% between 30% 

and 100%. 

The first results are for the sequence with zero mean Gaussian noise added. The noise 

level is controlled by varying a, the spread of the Gaussian noise. This spread is measured 

as a percentage of the greyscale difference between the circle and the background. The 

results presented are for the central frame of the sequences. 

We have included the results from 4 families in figure 5.4 and compared them with the re­

sults from temporal phase congruency. The four different families show different degrees 

of resilience to noise. This is not surprising as they have different central wavelengths of 

their base filters. Family 6 produces the best results, and this is to be expected as the 

base filter for this family has a wavelength of 17. The other families all produce good 

results for a = 10%, and family 5 produces acceptable differences at a = 30%. Temporal 

phase congruency also shows some very good results in comparison, with an interesting 

difference between it and family 6. Family 6 detects the edge of the circle fully, even at 

the greatest noise level, but also begins to erroneously detect parts of the background 

as feature points. Temporal phase congruency detects less of the valid feature region, 

but also less of the background is picked out as noise. 

The second test is run using increasing salt and pepper nOIse. This noise affects an 

increasing number of pixels in the image, and randomly sets .50% of those selected 

pixels to black and the rest to white. These tests show that temporal statistical phase 
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FIGURE 5.4: Results from testing a simple white disc moving on a black background 
with Gaussian noise added. The plots show the percentage of each region that contains 
detected features. The magenta crossed line shows the percentage true positives and the 
red ringed line shows the percentage of false positives. A range of results are presented 

due to the test being run fifty times. 
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congruency produces better results if using family 6. 

Although both sets of results show varying degrees of success at detecting the correct 

edge pixels they also highlight the differences between the techniques. Families 4, 5, 

and 7 all have relatively small central wavelengths and the success of temporal phase 

congruency and family 6 highlights the fact that these tests are testing a technique's 

ability to distinguish between two regions. If the circle was a line feature rather that a 

step feature it would quickly disappear amongst the noise. 

5.5.3 Occlusion 

In this section we present results from applying temporal statistical phase congruency to 

image sequences that contain simple occlusion. All the sequences are of a circle moving 

vertically, with a fixed region of the circle being occluded. Testing against occlusion is 

important as it is a common occurrence in moving object analysis. Results presented 

here are for family 4. 

In figure 5.6 the circle is very clearly detected in all the images, and the edges are well 

defined at the point of occlusion. This is a positive result as it shows that even though 

the temporal aspect of the new operator enhances its resilience to noise, it does not blur 

the important boundaries between objects. 

Broader occlusions are shown in figure 5.7. These are much clearer as the distance 

between features is greater. 

5.5.4 Feature Velocity Testing 

Since temporal phase congruency is a time persistent feature detector. It can detect a 

feature's orientation through space-time. It is important therefore to present example 

results and test the accuracy of the orientation information of any detected features. 

Figure 5.8 shows an example of the normal orientation data that can be extracted from 

temporal phase congruency. From the image it looks like the normals to the features 

appear consistent with the underlying image data. A more quantitative set of results is 

also calculated from a synthetic image sequence. The sequence is the same as that used 

in section 3.3.4 which if defined in 3D space would be the same as a solid black sphere 

inside a solid white cube. This allows the testing of different spatial and temporal angles 

with a known 3D orientations, or known 2D+T velocities. A slight amount of zero mean 

additive Gaussian noise was also added. 

The test sequence was passed through the temporal phase congruency feature detector, 

and then the orientation of all the significant feature points was established using the 

estimation method described in section 3.2.4. 
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FIGURE 5.5: Results from testing a simple white disc moving on a black background 
with Gaussian noise added. The plots show the percentage of each region that contains 
detected features. The magenta crossed line shows the percentage true positives and 
the red ringed line shows the percentage of false positives. Error bars show the range 

of results due to the test being run fifty times. 
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(a) 1 pixel wide (b ) 3 pixels w ide (c) 5 p ixels wide 

FIGURE 5 .6 : Results from the temporal st atistical phase congruency operator on 
sequences of a circle moving vertically with a fixed position bar of differing heights 

occluding the circle. 

(a) 10 p ixels wide (b) 15 p ixels wide (c) 20 p ixels wide (d) 25 p ixe ls wide 

FIGUR E 5. 7: Results from the temporal st atistical phase congruency operator on 
sequences with a fixed posit ion bar of differing heights occluding t he image sequence. 
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The orientations are compared to values calculated when generating the test data and 

dist ances from this 'ground trut h ' is calculated for all features over .7 in strength . T he 

results are then presented and compared to similar results for a 3D Sobel operator[8] 

that has been applied to the same sequence. 

From the separate histograms in figure 5.9 temporal statistical phase congruency is 

able to det ect feature orientation better t han t he Sobel operator. T he spatial accuracy 

appears to be better than the temporal accuracy for the temporal statistical phase 

congruency operator , but both are an improvement upon the Sobel operator's estimate. 

It is important to note that temporal statistical phase congruency does of course inherit 

illumination invariant properties which are not a tenet in t radit ional edge detection. As 

such , though the improvement here does not appear to be considerable, t here remains 

significant advantage in feature det ection by temporal statistical phase congruency wit h 

improved (secondary) descript ion capabilit ies. 
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FIGURE 5.8: Example results of orientation normal information for features extracted 
from temporal phase congruency of a woman's face. 

5.5.5 Velocity Thresholding 

90 

Since temporal statistical phase congruency extracts the velocity of a feature, it is pos­

sible to threshold based upon velocity. This can be a post-processing stage, or the 

technique can be altered so that it only looks for features of a particular velocity. Alter­

ing the process should reduce the time the technique takes to process a sequence, but 

the additional orientations at 'unwanted ' velocities could be used in noise detections as 

features are detected in orientations that are similar to their true orientation, whereas 

noise is not necessarily detected. Example frames from a sequence of a person walking 

are shown in figure 5.10. 
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FIGURE 5.9: These plots show the ability of the temporal statistical phase congruency 
operator to detect the orientation of a wide variety of feature orientations. 
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Figure 5.10 show the results from selecting different velocity ranges from the results 

of applying temporal statistical phase congruency to an image sequence of a person 

walking. The different velocity ranges are very effective at showing the aspect of the 

image that is moving. In the results from each of the different techniques we see the front 

foot is very slow moving, and so is present in the near zero and slow velocity results, 

but not present in the two faster moving velocity ranges. The same is true of the ceiling 

which does not move at all. It is also interesting to see the front thigh and the whole of 

the back leg are detected at the higher speeds in each of the families. 
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FIGURE 5. 10: Results from the temporal statistical phase congruency operator on 
sequences with ranges of velocities selected. All results are taken from a sequence of 32 

frames of which the 16th frame is shown. 
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5.6 Conclusions 

In this chapter we have taken the statistical phase congruency operator and extended 

it to work in the spatio-temporal domain. This allows the detection of time persis­

tent features. The extension of statistical phase congruency into the 2D+ T domain 

has increased the information that is generated about feature points, particularly the 

orientation of a feature is now extended into time giving the velocity information. 

The extension into time has also given an increased degree of robustness and resilience 

to noise as shown in section 5.5.2, and has not affected the technique's ability to detect 

the edges of moving objects undergoing occlusion. 

It is also apparent that it is possible to use the technique's ability to detect the velocity 

of a feature. This was strongly highlighted by thresholding an image sequence and being 

able to select the different features based purely on their temporal angle of detection. 

This new dimension of data that is available if a feature is detected using a time persistent 

feature detector shows to be a useful element to the information that can be extracted 

from an image sequence, especially with the other benefits gained. 

The different parameters that can be used to define the filters used in temporal statistical 

. phase congruency have been shown to give different benefits. Three particular families 

seemed to produce results that detected the finer features, but due to their more localised 

operation were less resilient to noise. A fourth family which detected larger scale features 

did show a strong resilience to noise, equal to and at times an improvement on temporal 

phase congruency. The use of filters that were specifically chosen to have a small spatial 

extent could have effects on the overall technique's ability to withstand noise. Further 

research could look into the properties of filter families that were not as compact as 

those chosen and may produce improvements particularly under noisy conditions. 

Another method for improving the technique's ability to accurately detect time persis­

tent features would be to combine the results of the different families either by simply 

multiplying the results together or via some other method. The variations between the 

filters could also be different. Currently two filters are used 7r /2 radians apart, if they 

were perfect sine waves they would be orthogonal. It would therefore be interesting to 

combine the results from applying filters which are orthogonal in another manner i.e. 

via increasing numbers of oscillation. Investigation into results from different filters in 

this manner have not been carried out due to time constraints. 

In addition to extending statistical phase congruency, a new and quick method for noise 

suppression has been used in temporal statistical phase congruency that was not used 

in temporal phase congruency. The application of this form of noise suppression along 

side the current noise suppression method already used could increase the robustness of 

that technique, or replace it if a greater processing speed was required. 
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Conclusions 

In this thesis, time persistent feature detection using phase congruency has shown to be 

useful and deserving of future research. The two techniques described for time-persistent 

feature detection have shown marked advantages over image based feature detection. 

Time persistent feature detection allows for features to be detected in higher levels of 

noise. It takes advantage of temporal correlation and will hopefully allow computer 

vision to operate in more difficult imaging environments. 

Time persistent feature detection also gives new information of a feature's velocity within 

an image sequence. Previous techniques that grouped features together to give lines or 

shapes could only rely on a feature's spatial orientation. The new velocity information 

should also allow features that move together to be grouped together, and allow for lines 

and shapes to be separated in time and space more accurately and robustly. 

Temporal phase congruency has been shown to be a useful method for detecting time 

persistent features. Chapter 3 described the extension of phase congruency, an image 

based technique, to temporal phase congruency, a new image sequence based technique. 

This new idea allowed previously high levels of robustness to noise to be exceeded. It also 

allowed a global intensity invariant time persistent feature detector to be implemented. 

This is good because not only is the technique useful if there is a variation in illumination 

across an image, but also should the illumination change over time the technique should 

not be affected. The results proved also that the technique is able to extract useful 

features. The response of the technique to features at different spatial and temporal 

angles also highlighted the problems of temporal aliasing, and highlighted some of the 

limitations of phase congruency. The results from the different orientations were also 

combined in a new way to estimate the primary orientation of a feature in 2D+ T. 

One of the sections in chapter 3 highlighted some unusual results generated from phase 

congruency and also temporal phase congruency. This lead to the work of chapter 4 

which considered a new way of measuring phase congruency. This method was initially 
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developed for images and estimated the phase structure at a point using the variation in 

response from different filters. A process of modelling local frequencies was developed 

and allowed for different filter designs to be evaluated. Seven families of filters were 

selected and tested on a number of different images. Three families were then highlighted 

and results presented. These showed improvements over phase congruency, in particular 

the new technique avoided problems associated with detecting a shallow angled line. 

These results were exciting and provided a strong foundation for extending the technique 

to detect time persistent features. 

The final chapter of work within this thesis, chapter 5, described temporal statistical 

phase congruency. It contributes a novel, and robust feature detector to the field of 

computer vision. The technique builds upon the work of chapter 4 and applies a temporal 

extension using the work and inspiration from chapter 3. This new method for measuring 

spatio-temporal phase congruency detects features more robustly than temporal phase 

congruency and also estimates of feature angle are better. The different families used 

in temporal statistical phase congruency show the technique's ability to be adapted to 

different requirements. 

6.1 Future work 

There are a number of opportunities for further study into the research presented in 

this thesis. The first is shown in appendix A. This paper presented at British IVIachine 

Vision Conference 2003 described the use of temporal phase congruency for providing 

good estimates of phase congruency about boundaries of moving objects. This work 

with the further development of temporal statistical phase congruency and the ability 

to estimate more accurately spatio-temporal angle could be developed to provide more 

robust optical flow information, particularly at motion boundaries. 

This work has piloted new techniques in an area of emergent interest. Naturally, it is 

likely that tuning could improve performance further. For both spatio-temporal tech­

niques this tuning could involve a different method for the construction of 2D+ T filters or 

the number and arrangement of the filters in 2D+ T space. Temporal phase congruency 

also has a more computationally costly method for the estimation of noise than temporal 

statistical phase congruency, changing this noise estimation method could decrease the 

computational expense of the technique. 

Statistical phase congruency relies upon the choice of filter family to robustly detect 

features. During development families were selected based upon a measure of their 

spatial extent. After noise testing it was shown that filters with a high wavelength and 

therefore spatial extent were able to detect features with higher noise levels than filter 

families with smaller spatial extents. Further research could evaluate additional families 

with larger spatial extents, but similar or better abilities to measure phase congruency. 



Chapter 6 Conclusions 96 

To add to this the development of statistical phase congruency only investigated filter 

families constructed from sine-waves and feature strengths were calculated with filters 

with the same phase shape, but different positions on the frequency axis. Future research 

could consider mixing sine-waves with different frequencies in the same family, and 

also other phase varying functions. This sort of an extension to this thesis could also 

consider combining results from the current families in some way to further enhance 

the robustness of the technique. An alternative method for applying the phase shift 

functions about the B-axis and/or the ?,V-axis could also be considered. Currently the 

technique estimates the structure along the w-axis and yet there is no reason why phase 

shifting needs to be along such an axis if a feature exists in 2D+ T rather than being 

a ID feature oriented in 2D+T space. Investigations into filters constructed with such 

variations could also have interesting spatial properties as well. 

In a more fundamental regard, the central premise underlying this thesis has been that 

it is possible to detect time persistent features by processing an image sequence as a 

whole. As yet there has been no consideration of fundamental properties of moving 

feature analysis. In this regard, the basic nature of analysis could be refined further. 

Despite this, we have certainly demonstrated that it is possible to detect moving and 

time persistent features at different scales of velocity and in respect of practical image 

attributes including illumination, noise and occlusion. In this regard we look forward to 

further developments in this new area of spatio-temporal image analysis. 
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Abstract 

We show how optical flow estimates can be combined with boundary esti­
mation to improve estimates of motion. The improvement is associated with 
blending of estimates from complementary bases of operation. The paper 
combines a phase-based method for optical flow with a time extended ver­
sion of the phase congruency operator. By evaluation on synthetic and real 
image sequences, the combination of the two techniques is shown to im­
prove motion estimation with particular advantages at motion boundaries, 
regions which have posed considerable difficulty for previous motion esti­
mation techniques. The advantage is derived using the moving feature infor­
mation in an extended phase congruency operator to constrain correct data in 
the optical flow field. 

1 Introduction 

Motion blur is a real problem for optical flow calculation. Most optical flow techniques 
use operations on groups of pixels to calculate the optical flow at a particular point. To 
justify this, an assumption of a single motion field, (or a smoothly varying motion field) 
model is used. If, however, within a group of pixels there is a motion boundary, or multiple 
motions violate this assumption, then the resulting field will be biased or erroneous. We 
show that it is possible to use motion boundary infonnation to separate motion fields and 
reduce or remove blurring across such boundaries. 

Knowing that both optical flow and motion boundary estimation can be computation­
ally expensive, two techniques that are phase-based have been chosen as a basis for this 
work. The first is phase-based optical flow developed by Fleet and Jepson [4]. It provides 
dense flow fields and sub-pixel accuracy. In a review by Barron [2] it was shown to pro­
duce good results in comparison to a number of other techniques. The second is a robust 
feature detector which uses phase congruency, developed by Kovesi [6]. This technique 
is designed for image feature detection, but has been extended here to detect features that 
persist over time. 

1.1 Phase-based Optical Flow 

Fleet and Jepson[ 4] propose that the flow of the phase values of an image sequence's 
component frequencies is synonymous with the optical flow of the sequence. The first 
step of the technique is the convolution of a series of Gabor filters, N(x,y, t, cox·, ~ .. , COr·), 

, .1 1 



(with zero DC response), with the image sequence, I(x,y,t) as in eqn. 1 to obtain filtered 
images, Ri(x,y,t), as 

(1) 

where 

N(x,y,t, wx, ~., Wr) G(x,y,t) (e-i(w,x+w,'Y+Wrt) _ e-h2
/ 2) (2) 

G(x,y,t) -- e 20'2 ( 

I ) 3/2 -((x-xO)2+(Y-YO)2+(t-to)2) 

2ncr 
(3) 

2{3 + 1 

2{3 -I 
b = (4) 

and f3 is a measure of the bandwidth the filter has one cr from its centre. There are 
22 sets of constants wx;, ~;' and Wt; which orientate the filtering at six 30 0 intervals with 

wt; = 0, ten 36 0 intervals with wr; = 1/ J3, and six 60 0 intervals with Wr; = J3. The 
Gaussian envelopes are centred at (xo, Yo, to). This produces a set of complex responses 
for frequencies at various orientations in the sequence containing phase and amplitude 
information. The differentials of these responses about each axis [V R x(x,y, t),V' R,,(x,y, t) 
, VRr(x,y,t)] are then calculated using a 5-point complex central differencing kernel. 
These are then combined to produce an estimate of the phase gradient about each axes, 
V!jJx(x,y,t), V!jJy(x,y,t) and V!jJr(x,y,t), using the identity in equation 5. 

810g(R(x,y,t)) R* (x,y,t)VRx(x,y, t) Vp.,(x,y,t) . n ( ) 
----::-----'-'- = 2 = + 1. v!jJx x,y,t 

8x IR(x,)',t)1 p(x,y,t) 
(5) 

where R* (x,y, t) is the complex conjugate of the response, R(x,y, t). This in turn enables 
the component velocity, V(x,y,t), to be calculated as in equation 6. 

V (x,)" t) ( 
-(V!jJx(x,y,t)V!jJr(x,y,t) -(V!jJ,,(x,y,t)V!jJr(x,y,t)) 

V!jJx(x,y,t)2 + V!jJ,(x,y,t)2' V!jJx(x,y,t)2 + V!jJ,(x,y,t)2 
(6) 

The results are also thresholded dependent upon conditions that eliminate phase sin­
gularities [5] and points where the response to the Gabor filter is too small and possibly 
dominated by noise. A final step of applying a least squares operation on a local neigh­
bourhood of component velocities produces full 2D velocity estimates. 

1.2 Phase Congruency 

Phase congruency is a robust feature detector. It detects not only step and line responses, 
but also a broader set of features [I]. Its attributes include a high degree of invariance to 
lighting variation within images. This paper extends the phase congruency technique to 
work with image sequences. The technique's first step is to convolve the image with a 
set of log-Gabor filters at 'l' different orientations and' m' different scales. Log-Gabor 
filters are chosen because they have zero DC response, and in cosine and sine based pairs 
they have a quasi-quadrature relationship. At each orientation a measure of the spread of 
energy amongst the different scales, W n (x, y), is calculated. 

() 
An (x,y) 

Wn X,y = 
m (A,nlu'(x,y) + e) 

(7) 



where A" (x,y) is the amplitude of the response to the quadrature pair of filters at scale 
nand Amax(x,y) is the maximum amplitude response for the set of log-Gabor filters at 
all orientations. E is a small constant avoiding division by zero which ensures that if the 
amplitude at a pixel becomes too small it is masked out. This is then mapped through a 
sigmoid function to produce WIl(x,y) 

W,,(x,y) = ( ( 1 + e C-II·n x,y))g 
(8) 

where c and g control the mapping of w,,(x,y) to W,,(x,y). Also an estimate of the 
level of noise at the different scales, T, is calculated[6]. Then phase congruency, PC, at 
each orientation, PCI, is calculated from the vector sum of the log-Gabor filter responses, 
Ri. 

flr/>n (x,y) 

f lA" (x,y) (cos (flr/>" (x,y)) - 1 sin (flr/>Il (x,y)) I) - TJ w" (x,y) 
/l m (9) 

I,A,,(x,y) + E 

" 
r/>Il (x,y) - ¢ (x,y) (10) 

where r/>,,(x,y) is the phase at point (x,y) for scale nand ¢(x,y) is the mean phase 
across all scales at that point. The use of LJ depict that if the quantity between is negative 
it is set to zero. The vector sum is thresholded by the noise level estimate, T, and scaled 
by the measure of the spread of the energy mapped through a sigmoid function, WI1 (x,y). 

This is then divided by the total energy at the chosen orientation to produce a measure 
of phase congruency, PCI, for that orientation. Repeating and summing of the results for 
the' [' orientations gives the phase congruency measure for the image, PC(x,y). 

I 

PC(x,y) = I,Pq(x,y) (11) 

2 Method 

2.1 Temporal Phase Congruency 

We now extend phase congruency to use inter-frame data to enable estimation of moving 
features with resilience to noise. The original technique looked for features in a two­
dimensional image and used filters that were built from a one-dimensional signal, the 
log Gabor function. This was convolved with an orthogonal spreading function, in this 
instance the Gaussian function. An additional spreading function (orthogonal to the two 
original functions) can be used to create a three-dimensional (2D+ T) filter to enable the 
detection of moving features. The measures for the estimation of noise, and energy spread 
are also extensible to image sequences. The original log Gabor function is 

{ 

-Iog(w/wi) 

( ) 
_l_e 2Iog(o)w;1 

19 W, Wi = .,fiM 
o 

(12) 



where W is frequency, and Wi is the tuning frequency of the filter. (J controls the 
spread of the filter. 

This filter is convolved in the time domain ( multiplied in the frequency domain) as in 
equation 13 for 2D filtering and as in equation 14 for 2D+ T filtering. The filters are based 
upon a polar co-ordinate method for making log-Gabor filters, with the two orthogonal 
Gaussian spreading functions operating in the angular axes, and the log-Gabor filter about 
the radius or magnitude of frequency axis. 

Ig2Di(W, a, Wi, ai) (13) 

Ig2D + T;( w, a, lJI, Wi, ai, lJIi) 
2 0 1 -(8-f;) -('1'-'1';)-

--e ""- e ",,2 19(w Wi) 2n(J , 

(14) 

where W represents the spatial or spatio-temporal frequency, a represents the spatial 
angle of that frequency and lJI represents the temporal angle in frequency space. a i and lJIi 
are the angles the filters are focused upon, and again (J controls the spread of the filters. 

This extension to phase congruency has two main advantages. The first advantage 
is found in the orientation at which phase congruency is detected at a particular pixel. 
This describes not only its spatial, but also its temporal orientation. This is the same as 
describing its velocity. Therefore all features extracted with the extended method have 
this additional attribute already defined. 

Secondly the technique should be more robust to noise. This gain in robustness is 
justified by examining the feature that the filters respond to. In the one-dimensional case 
the filters are responding at a point. In the two-dimensional case the filters are responding 
at a point, which if part of a feature will likely be surrounded by valid feature points in a 
line on either side, that by themselves would cause a minor response to the filter due to the 
Gaussian spreading function. This improves the signal-to-noise ratio when processing an 
image. Therefore when considering a point in 2D+ T space, the supporting responses of a 
point's neighbours in both spatial and temporal directions should increase the robustness. 

2.2 Guiding Optical Flow Estimation 

Optical flow operators suffer from motion blurring since at a boundary the estimates for 
motion can become mixed between one moving object and another. This is because opti­
cal flow operators typically use neighbourhood operations to compute velocity estimates 
or in filtering stages. Both of these occur in Fleet's technique. An example of motion 
blurring can be seen in figure 1 where it is possible to see that the estimates for motion 
in the image blur across the boundary of the circle onto the stationary (smoothly varying) 
background. With a moving feature detector, it should be possible to define where the 
motion boundary is. With this information it is then possible to erode the motion field 
back towards the motion boundary, reducing errors in the motion field produced. 

The erosion process uses the current velocity estimates, v, the original velocity esti­
mates, Vor;g, and the phase congruency measures, pc to produce the new estimate, v ' as in 
equation 15. 



Figure 1: This fi gure shows part of a frame from a sequence of a moving circle with the 
motion vectors superimposed on each pi xel 

{

incorrect 

v' (x,y) = 
correct 

[l v(x ,y) - v(a, b)1 > II-] 1\ Vorig(X,y) > vOrig(a ,b)L,bE IR 1\ 

[pc( c, d) < A2lc,dE IR 
in all other cases 

( 15) 

Co-ordinates (x,y) are those of the current point being considered, (a , b) are the nearest 
points to (x,y) in direction of the m otion at that point. Points (c, d) are the points ' north ', 
'south', 'eas t' and ' west' of the current. A I controls vari ati on in the veloc ities. Previ­
ous values that have been deemed incorrect are always 'different ' from another ve locity 
estimate. A2 controls how signi fi cant a feature needs to be before it stops the erosion pro­
cess. In our studies , phase congruency values greater than 0.33 are signi ficant. Testing 
the ori ginal veloc ities means that the erosion hav ing started from a motion boundary onl y 
creeps in one direc ti on, that of the fas ter moving region. This is prescribed because fas ter 
moving regions should have a larger motion blur. Future work needs to examine more 
complex motion boundaries to ensure th is is a valid and useful assumption. 

3 Results 

3.1 Temporal Phase Congruency 

The new temporal phase congruency has been tested against the original phase congru­
ency technique on a synthetic sequence of moving circles. The fi rst test has been usi ng 
a simple visual compari son. Both techniques extracted the edges of thi s simple image 
sequence very well. To gain a deeper insight, salt and pepper noise was added to the 
sequence in increments of 10%. At 50% salt and pepper noise, half of the pi xels are set 
arbitraril y to black or white. Examples of the middle frame of the sequence with di fferent 
noise levels are shown in fi gure 2. 

The result ing 'feature ' maps are then passed through a veloc ity Hough transform [7], 
which is a robust moving circle detector. In the results shown in fi gure 3 onl y the high­
est point in the accumulator for that sequence was a correct identifi cati on of the circle 's 
velocity, and position. Anything different was considered a fa il , a harsh j udgement, but 
illustration enough of the perfo rmance poss ible here. 

The result sltows that the thres holded variant of the new temporal phase congruency 
operator improves results. This is because the number of sequences fo r which a correc t 



Figure 2: An example frame with 10%, 30%, 50%, 70% and 90% salt and pepper noi se. 

result obtained is more for the new technique and all except one exceed that of the original 
version. The lower results at 60% noise for the temporal phase congruency method when 
compared to the image based method could be attributed to too small a test set, but merits 
further investigation. 

3.2 Guided Optical Flow 

To test the new guided optical flow two sequences were used. The first was of a generated 
disc with a fixed random texture moving on a linearly varying background or 's lope '. The 
second was from the Southampton Gait Database [8], and involved a person walking on a 
green background. This sequence was processed three times using the separate red , green 
and blue channels, with the final flow fields being assimilated to produce a more dense 
flow field , than if either a grayscale sequence or a single colour channel was used. The 
densities of the flow fields even after combining the three channels were still too low. 
This is because Fleet's technique can only detect motion up to 2 pixels per frame without 
sub-sampling the images. Accordingly, another optical flow technique by Bulthoff [3] 
was used to buttress the density of the optical flow estimates. Differences in the densi ty 
of results can be seen in figure 4. 

It was assumed that within the circumference of the circle and the person were the 
only pixels that should contain any movement. In this way the results for this test were in 
four categories: 

- Correct results , non-zero velocity estimates only within the 'shapes ' . 

- False zero velocity estimates where velocity estimates should be higher than zero 

- False non-zero velocity estimates where background estimates should be shown 

- Unclassified results, pixels for which the velocity is indetenninable by the optical 
flow techniques, or is eroded. 
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Figure 3: Graph comparing the phase congruency and temporal phase congruency. 

(a) Original Image (b) Fleet(phase) (e) Bullhoff(correlalion) 

Figure 4: Flow fi eld estimation for a walki ng person. 



Iteration Total Correct False Zero False Positive Unclassified 
No. No. Percent No. Percent No. Percent No. Percent 

0 224660 94.80% 186 0.08% 12146 5.13% 0 0.00% 
I 224659 94.80% 186 0.08% 9700 4.09% 2447 1.03% 
2 224583 94.76% 186 0.08% 8088 3.41% 4135 1.74% 
3 224409 94.69% 186 0.08% 7440 3.14% 4957 2.09% 
4 224274 94.63% 186 0.08% 7260 3.06% 5272 2.22% 
5 224168 94.59% 186 0.08% 7213 3.04% 5425 2.29% 
6 224132 94.57% 186 0.08% 7180 3.03% 5494 2.32% 
7 224114 94.57% 186 0.08% 7157 3.02% 5535 2.34% 
8 224100 94.56% 186 0.08% 7134 3.01% 5572 2.35% 
9 224087 94.55% 186 0.08% 7111 3.00% 5608 2.37% 
10 224081 94.55% 186 0.08% 7088 2.99% 5637 2.38% 
11 224080 94.55% 186 0.08% 7076 2.99% 5650 2.38% 

Table 1: Results from a sequence of images with a textured circle moving on a smoothly 
varying background 

Iteration Total Correct False Zero False Positive Unclassified 
No. No. Percent No. Percent No. Percent No. Percent 

0 9139 55.78% 3261 19.90% 2283 13.93% 1701 10.38% 
I 8945 54.60% 3223 19.67% 1976 12.06% 2240 13.67% 
2 8816 53.81 % 3195 19.50% 1784 10.89% 2589 15.80% 
3 8737 53.33% 3164 19.31% 1668 10.18% 2815 17.18% 
4 8670 52.92% 3138 19.15% 1585 9.67% 2991 18.26% 
5 8614 52.58% 3116 19.02% 1530 9.34% 3124 19.07% 
6 8560 52.25% 3103 18.94% 1479 9.03% 3242 19.79% 
7 8516 51.98% 3095 18.89% 1439 8.78% 3334 20.35% 
8 8481 51.76% 3082 18.81% 1404 8.57% 3417 20.86% 
9 8454 51.60% 3067 18.72% 1380 8.42% 3483 21.26% 
10 8431 51.46% 3055 18.65% 1364 8.33% 3534 21.57% 
11 8416 51.37% 3041 18.56% 1349 8.23% 3578 21.84% 

Table 2: Results from the central frame of the walking person sequence. 



In both table 1 and table 2 the errors produced by the initial optical flow techniques 
are reclassified as 'unclassified'. This removes false confidences in the original data. The 
number of reclassifications is higher in the first few iterations, but the process stabilises 
and areas of blur are reduced to phase congruency boundaries. 

(a) Flow Superimposed (b) After Erosion 

Figure 5: Segments from the moving circle sequence with flow fields superimposed 

(a) Flow Superimposed (b) After Erosion 

Figure 6: Flow fields for the central frame of the walking person sequence. 

Both figure 5 and figure 6 show that there is motion blur after the original optical 
flow techniques. After twelve iterations the flow field in figure 5 has stopped receding 
and stabilised closer to the circle's boundary. Figure 6 shows the Bulthoff optical flow 
operator's broad flow fields can be guided in their reduction. In this instance the erosion 
has eroded some valid flow vectors, but results in table 2 show the invalid vectors are 
more greatly reduced. 



4 Conclusions 

Results from a moving feature extraction technique can be used to guide selection of 
correct optical flow estimates thus improving the quality of motion extraction. The tests 
shown are currently single objects moving on a stationary background and reclassification 
of velocity vectors removes erroneous vectors. Future work should include multiple ob­
jects passing behind and in front of each other, as well as more complex motion junctions. 

In developing this combination of motion detection, an enhanced form of the phase 
congruency operator has been developed. This shows improvements over the original 
operator in noisy conditions, although further work to remove some anomalies may be 
necessary. It also provides velocity information for the moving features detected. Inclu­
sion of this motion information in the combined algorithm should also be a future work. 

Preliminary studies on real image data were hampered by the sparsity of flow esti­
mates, in part due to the large motions in the test sequences. Currently fast motion causes 
problems in obtaining sufficiently dense optical flow fields. This may be over come by 
pyramid decomposition of the image sequence, along with a method for recombining 
multiple scales of velocity estimates. This and other aspects merit future investigation. 
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