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ABSTRACT

Waves, winds and currents can cause specific environmental effects that a marine
structure has to withstand. Amongst these, wave action is the fundamental source of
load on the marine structure. In order to ensure safety, operability, economy and
design-life duration of a marine structure, theoretical estimates of wave loads and
structural response play an increasingly important role in the overall design process.

The interaction between a structure and a fluid medium is of great concern in
numerous engineering problems, e.g., slamming of ships in rough seas, vibration of
water retaining structures under earthquake loading etc. All these dynamic problems
include the interaction, which takes place between the structure and surrounding fluid.
It is of practical importance to estimate the effect of the induced fluid loading on the
dynamic state of the vibrating structure. If the vibration takes place in a relatively
low-density fluid, such as air, in comparison with the structural material, in most
situations, the loading will have a comparatively small influence on the vibration.
However, when the vibrating structure is in contact with a fluid which has a
comparable density, such as water, the fluid loading which depends on the structural
surface motions will significantly alter the dynamic state of the structure from that of
the in vacuo vibration. In other words, the equations of structural and fluid motions
are inexorably linked. Therefore, development, improvement and application of
numerical techniques for analyzing such an interaction become one of the most
important activities of naval architecture researchers.

The following document is about the interaction mentioned above and particularly
studied on the slamming issue and its main characteristic, transient excitation and
response.

A dry analysis is presented on simple beams, idealized SWATH ship as a preamble to
a future wet deck slamming analysis and plates (unstiffened and stiffened). As the
basis of subsequent harmonic and transient analyses, modal characteristics of each
system is studied and in conjunction with the results obtained from these, responses
on frequency and time domain are calculated in this document.

In the following part of the thesis beams and plates are analysed under transient
excitation, since this is the basis for modelling the excitation and response induced by
slamming. Results are produced and compared both using theoretically established
convolution method and ANSYS (transient analysis with full and mode superposition
methods).

Realistic stiffened plates and their equivalent flat plates are also studied and analysed
in the subsequent sections. Difficulties encountered during the structural modelling
(finite element modelling) are briefly outlined, with particular emphasis to the
importance of the selection of appropriate finite elements.
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NOMENCLATURE

The definitions of a given symbol in the document are given in this section.
-Through out the document, overdots signify differentiation with respect to time,
primes signify differentiation with respect to space.

-Symbols are also defined where they appear in the text.

A Cross section area

Ao Vibration amplitude for plates
ar Generalised added mass

[a] Generalised mass matrix

B(x) Sectional beam

b Generalised added damping
[b] Generalised damping matrix
Crr Generalised added stiffness
[c] Generalised stiffness matrix
D Bending flexural rigidity for plates
E Young’s modulus

EI Flexural rigidity

F, f Force

G Shear modulus

G(x) Shape factor

g Acceleration of gravity

I Moment of inertia

K] Stiffness matrix

kAG Shear rigidity

L,1 Length

M Bending moment

M] Mass matrix

P Pressure

Pr Principal coordinate corresponding to the ™ mode shape
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{p:}

Wr

X, x

Z,z

Principal coordinate vector for six rigid body modes
Sampling period

time/thickness

Forward speed

Rigid body degrees of freedom (i=1,2..6)
Velocity vector

Shear force

Horizontal transition

Vertical transition

Mode shape

Longitudinal Cartesian coordinates axes
Horizontal Cartesian coordinates axes

Vertical Cartesian coordinates axes

Shear damping constant
Bending damping constant
Displacement

Time increment
Kronecker delta
Rotation

Mass per unit length
Poisson ratio

Modal damping factor
Damping ratio

Shear strain

Density

Velocity potential
Modal natural frequency
Summation

Gradient operator
Laplacean operator

Vector

15



ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Prof. P. Temarel for his valuable and
patient inspiration and guidance throughout my work. Most of the time, he was more
than a supervisor. Also many thanks, to Prof. W.G. Price for giving me the
opportunity to work under the roof of this unique scientific institution and keeping
interest in the work and to Dr. A. Ergin for supporting me to do this study and

opening a new page in my life.

Special thanks to Dr. B. Uzunoglu, Dr. K. Yelen, Dr. S. E. Hirdaris, Dr. M. Meunier,
Dr. R. Pemberton, Dr. M. Thibaudeau, Corrrado Labriola and all other colleagues in
the Department for their technical and moral support.

On a personal note my gratitude to my wife Yina Zheng Demirtas and Vera
Thompson for being the most supportive and sharing every difficulty with me
throughout my study.

Finally by no means least, the most special thanks go to my mother-Sevim Demirtas

who gave me the inspiration and the support to be here today and to my dearest

father-Avni Demirtas who is always in my heart.

16



1 INTRODUCTION

In order to ensure safety, operability, economy and design-life duration of a marine
structure, theoretical estimates of loads and structural response play an important role
in the overall design process. Especially in slamming, due to its severe nature, the

interaction between a structure and a fluid medium is of great concern.

Therefore, modelling of excitation and response induced by impact and development,
improvement and application of numerical techniques that can be used to analyze

slamming on mono- and multi-hulled vessels are investigated in this document.

In the analysis, whilst allowing for local structural details, it is also important to
acknowledge the effects of these details on modelling and response side of the
problem, such as accuracy, simplicity or complexity. Subsequently, under the
influence of these ideas, the overall aims and objectives of this study are given as in

next section.

1.1 Aims and Objectives
The aim of this proposed research is to generate mathematical models for excitation
and response due to impact slamming which also take into account the local structural

details and material properties in mono- and multi-hulled vessels.

The objectives of this research project are mainly:

e To generate mathematical models simulating impact excitation and response
whilst allowing for the influence of structural configuration and material
properties, such as;

- stiffened and unstiffened flat plates,

- longitudinal, transversal and orthogonal stiffening,

- stiffened and unstiffened wedge shapes of varying deadrise angles to stand
for the bow visualization,

The following objectives were further envisaged, towards a PhD thesis:
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e To incorporate these mathematical models in two and three dimensional fluid-
structure interaction software to simulate the impact slamming of high speed
mono- and multi-hulled vessels

o To investigate the possibilities of reducing impact induced loads by ways of active

or passive systems (e.g. smart materials, damping mechanisms)

1.2 Layout of the Thesis

The thesis is arranged in 7 chapters. Chapter 2 is intended to give a brief background,
beginning with ideal fluid equations for rigid body analysis and hydroelasticity theory
for elastic bodies, and then continuing with literature survey on the problem of

slamming and the modelling of stiffened plates.

In chapter 3 modal analysis of simple beams is studied using ANSYS and results are
compared with theory. This work was carried out to gain a better understanding of the
fundamentals in modelling “dry” dynamic analysis of beamlike structures. The modal

characteristics are later used in the frequency domain response analysis of the beams.

Chapter 4 represents the dry analysis of a SWATH ship taken from the thesis of Wu
(1984) and includes the comparisons between two models. This investigation was
carried out to gain a better understanding of modelling the “dry” dynamic analysis of
non-beamlike structures. It was the intention to use the wet deck of a twin-hulled

vessel as an application of the impact model developed in this thesis.

In chapter 5 transient analyses of beams and plates is presented. Modal characteristics
are obtained prior to obtaining the transient response through the mode superposition
method. Impulse excitations such as triangular, rectangular and sinusoidal are applied
to the beam and plate models. Transient responses are found using ANSYS FEA
program and using the, so-called, numerical method (mode superposition) throughout
this document. Results from these two methods are compared and studied. Towards
the end of chapter 5 issues related to modelling stiffened plates are investigated.

Different directional stiffeners are included in the plate FE models using shell and
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beam elements. Various combinations of stiffening and finite elements are considered
in the modal and transient analyses. On the other hand particular examples of
stiffened plates from literature are also used for the verification of FE modelling and
modal analysis. A stiffened single bottom plate of a tanker is modelled and studied to
see the response of a real system. The stiffened plate is studied dynamically using
different finite elements and methods. At the end of chapter 5, a preliminary
equivalent plate is created to represent structurally a stiffened flat panel and static and

dynamic response comparisons are presented.

Conclusions of the work carried out and recommendations for future work are given

in chapter 6 and chapter 7, respectively.
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2 BACKGROUND and LITERATURE SURVEY

Accurate prediction of wave-induced motions and hydrodynamic loads is very
important in ship design. In the design process, naval architect has to consider the
initial cost, safety, reliability, operability and life duration of the floating structure.
Empirical, quasi-static, hydrodynamic (i.e. rigid body analysis) and hydroelastic

approaches can be the tools to analyze the interaction at different stages of the design.

Empirical rules are generally based on tests and past experience, which are costly and
not open to progress. Static or quasi-static methods are used in the early stages of
design (preliminary design) mainly in industry and by classification societies as a

result of their simplicity.

In reality ships operate in conditions determined randomly by environment (e.g. wind,
seaway etc.) which has dynamic characteristics. Traditionally the behaviour of a
moving, floating structure in water can be divided into three. These are (Bishop et al,
1986); a) manoeuvring which deals with the behaviour of a rigid ship in calm water
when it is subject to external actions caused by forced motion of rudder, stabilizer
fins, propellers or thrusters. b) Seakeeping, which describes the responses of a rigid
ship, moving or stationary, in regular sinusoidal waves or in a random seaway. In
other words wave-induced motions of ships have been investigated widely under this
topic. In order to predict the motions of a ship in waves, the ship is regarded as an
unrestrained rigid body with six degrees of freedom. These degrees of freedom consist
of three translation components, which are surge, heave and sway; and three rotation
components, which are roll, pitch and yaw (Figure 1). ¢) Structural theory, based on
empirical rules, which determine the loading, imposed on the structure, and then the
use of structural analysis of a quasi-static nature. Since ships are treated as rigid
bodies in seakeeping and manoeuvring theories, magnitudes and characteristics of
bodily responses are the main interests. In other words rigid body assumption

excludes the strains and stresses.
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In linear hydrodynamics the unsteady motions of the ship and the fluid are assumed to
be small. To be able to investigate the motions, the formulation of fluid-structure
interaction is required. In this interaction, ship undergoes prescribed oscillatory
motion in each of its six degrees of freedom in calm water causing radiation problem
and at the same time as a result of diffraction problem incident waves act upon the
ship in its equilibrium position. Evaluation of the fluid-structure interaction involves
determination of added mass and damping coefficients (hydrodynamics), hydrostatic

restoring coefficients and wave excitation forces and moments.

In the mid-seventies the hydroelasticity theory was developed and introduced (Bishop
and Price, 1979) in order to provide more accurate predictions of the dynamic loads
and responses of beamlike hulls travelling in random seas. In its most general form
this approach subsumes both manoeuvring and seakeeping theories. This theory is
extended to non-beamlike structures in the three dimensional hydroelasticity (Bishop
et al, 1986). The advantage of hydroelasticity is that it is unified, that is to say it is
capable of predicting the rigid body as well as the distortional responses of floating,

fixed and submerged structures in a fluid domain.

u; (heave)
z u, (sway)
1
us aw) €] ’

us (pitch)

x Uy (surge)

< u4 (roll)

Figure 1 Six degrees of freedom for rigid body motions

2.1 Rigid Body Analysis

The study of wave loads, ship motions and structural responses has improved much
due to the significant increase in size and speed of ships. Initially the ship
hydrodynamics was studied on the roll motion of the steamships by Froude (1861).
Kriloff (1896) studied the pitch and heave motions of ships with increasing power and

speed. These two scientists derived differential equations of ship motions for the
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inertial and restoring forces of the ship. In their work, the pressure field of the
undisturbed incident waves was considered and the resultant force on the ship has
become known as the Froude-Krylov exciting force. Another major advance on the
ship’s hydrodynamic disturbance followed in a study by Lewis (1929) considering the
added mass associated with hull vibrations in structural modes. In this study the
characteristic frequency is sufficiently large, so that inertial effects are dominant and
gravitational forces can be neglected. On the other hand Lewis assumed the ship hull
to be slender and used a strip theory approach for the integration of the hydrodynamic
force longitudinally in terms of the two-dimensional characteristics of each transverse
section. This appears to be the first development of a strip theory in ship
hydrodynamics (Newman, 1978). Later Haskind (1946a,b) used Green’s theorem to
construct the velocity potential due to the presence of the ship hull and derived the
necessary Green’s function or source potential. The velocity potential was
decomposed into a form including separately the solution of the diffraction problem

and solutions of the radiation problem for each mode of oscillatory ship motion.

According to the different treatment of the ship’s hydrodynamic disturbance,
theoretical studies of wave-ship interaction can be categorized into two- or three-
dimensional problems to be solved in the time or frequency domain using linear or
nonlinear methods. A brief overview of the methods is given in the following

sections.

Idealized fluids can be analyzed mathematically by deleting stress tensor of the
Navier-Stokes equation, which is generalized equation for the fluid motion. In the
motion of an ideal fluid, the fundamental equations are the continuity equation and

Euler’s equations. The velocity vector V = (ul,uz,u3) must satisfy the continuity and

Euler’s equations (Newman 1977),

VVv=0 or + + =0 (1)

i=123 ()
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Z= X4

Figure 2 Coordinate system

where, pis the normal pressure stress, p is the fluid density and F; is the external
force field which consist only of the gravitational force pg acting vertically

downwards.

ou. ou,
If F=0-pg0) = Dhgy%_ 10 .
. =(0,-pg,0) 8t+u15xj pax(p+pgx2)

To simplify these equations, it is assumed that the motion is irrotational. An
irrotational flow is one in which fluid elements moving in the flow field do not
undergo any rotation. Further, if the velocity field is irrotational, it can be represented
as the gradient of the scalar functiong, or the velocity potential. In other words, if the
fluid motion is irrotational, the velocity can be derived from gradient of a scalar
potential ¢ . The velocity potential ¢ exists only for irrotational flow. The reason for
replacing the velocity by its potential is that the velocity can be envisaged and
measured in the laboratory by experiments, whereas the velocity potential is no more
than a mathematical abstraction. However, the velocity is a vector quantity with three
unknown scalar components, where as the velocity potential is a single scalar
unknown from which all three-velocity components may be computed:

u, =0¢/0x,, 3)
or V=Vg. 4)

If equation (3) is substituted for the velocity vector in the continuity equation (1), the

Laplace equation, which expresses conservation of fluid mass for potential flows and
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provides the governing partial differential equation to be solved for the function ¢, is

attained
_a_a¢+aa¢+aa¢=0 (5)
Ox, Ox, Ox, Ox, Ox; Ox,
2 2 2
or vip=00,00,.00 4 ©)

2 2 2
Oox,” oOx," Ox,

Bernoulli’s equation can be obtained by integrating the Euler’s equations to give an
explicit equation for the pressure. There are two flow cases for the presentation of

Bernoulli’s equation.

If the flow is considered to be steady, but non irrotational, then Euler’s equations take
the form (after omitting the time dependent terms)

ou. 0
O _ 9 (] p+ex 7
“ax " o (p/p+gx,) ™)

The pressure is obtained after integrating equations (7), as

1
p==2pV" - pgr, +C, (®)
where y? = Z uu, =u’ +v: +w’. C))

The second form of Bernoulli’s equation, valid for unsteady irrotational flows, is
more useful since the flow of an inviscid fluid is generally irrotational but may be
unsteady. It is obtained by substituting equation (3) in the general form of Euler
equation (2) for F, = (0,—pg,0),

53—24—%{%%:—%%(‘04—%)&)’ (10)
after integrating equation (10),

99 109 09 _

1
S C 11
AT o+ )+ CO), (11)

the second form of Bernoulli’s equation is obtained, where C() may be chosen

arbitrarily(equal to zero, deleted, etc.).

24



2.1.1 Two-Dimensional Hydrodynamics

Strip theory is the main tool of hydrodynamics. It gives an opportunity for a quick and
reasonably accurate prediction of the wave loads. In its basic definition, strip theory is
used to calculate the inertia loads and the fluid actions due to the wave-induced
motions of a slender hull by dividing it into transverse strips in longitudinal direction.
Hydrodynamic properties of added mass and damping are associated with each strip.
The excitations induced by the waves and reciprocally experienced by the hull are

evaluated using the hydrodynamic contribution of these strips.

Korvin-Kroukovsky (1955) first developed a strip theory for ship motions. Some
refinements and extensive experimental comparisons were provided later by Korvin-
Kroukovsky and Jacobs (1957). Grim and Schenzle (1969) generalized the strip
theory to the prediction of roll, sway and yaw motions in oblique waves. Later, a
range of linear strip theories has been proposed by Gerritsma and Beukelman (1964),
Tasai and Takaki (1969) and probably the most cited and well-known strip theory of
Salvesen et al. (1970).

The essence of strip theory is thus to reduce a three-dimensional hydrodynamic
problem to a series of two-dimensional problems which are easier to solve. The major
difficulty in determining the ship motions is to perform the calculations needed to find
the coefficients of added mass, damping and the diffraction exciting forces, which

requires the solution of difficult hydrodynamic problems.

If a body moves in an infinite ideal fluid, hydrodynamic pressure forces and moments
will result which can be expressed most simply in terms of the added-mass

coefficients.

The added-mass coefficients physically represent the amount of fluid accelerated with
the body. The added mass can be interpreted as a particular volume of fluid particles
that are accelerated with the body. However, the particles of fluid adjacent to the body

will accelerate to varying degrees, depending on their position relative to the body.
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The three-dimensional added-mass coefficients can be approximated by a strip theory
synthesis, in which the flow at each section is assumed to be locally two-dimensional.

The flow field at any cross section of the ship may be approximated by the assumed
two-dimensional flow in that strip. To obtain the total effect on the ship, the effects of
all individual strips are integrated along the length. For example, the strip theory

approximation for the heave added mass is

Ay = [y (x)dx (12)

L

where a,,(x) is the two-dimensional added mass and L denotes that the integration is

taken over the ship length.

In the process of estimation of hydrodynamic loading applied to the hull by a
sinusoidal wave, fluid actions are estimated by means of strip theory. According to the
theory it is thought that at some instant ¢, a slice of the hull lies in the plane of a slice
of water. Strip theory predicts the force exerted by the fluid slice on its
instantaneously coincident hull slice. In other words, strip theory seeks to predict the

force applied by the strip of fluid to the hull (Bishop and Price, 1979).

Figure 3 The hull slice
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In Figure 3 the thin slice of hull is normal to 4X,, distant X, from the origin 4 of

the fixed axes and x from the origin O of the equilibrium axes. (Bishop and Price,
1979)

Attimetr, X, =Ut+x

At the instant # = 0 when O coincided with 4, % =-U

The relative displacement of the ship and water surface is

2(x,8) = w(x,£) — £ (x,1) (13)
where w(x,t) is the upward displacement of the section of the hull coincident with the
strip and £ (x,7) is the local surface elevation. The quantity 2(x,f) is thus a measure
of hull emergence at the water strip. The upward force per unit length exerted by the
fluid on the hull, F(x,t), is dependent upon ;(x,t) and its total derivatives with

respect to time.

F(x,t>=—{ [()Dz(x ’)} N(x)%wgf?(xﬁ(x,o} (14)

m(x) is the local ‘added mass’ per unit length, N(x) is the local ‘fluid damping
coefficient’ and the operator _ll)—); is the total derivative with respect to time; that is

D _0,0d& 0 50 (15)
Dt ot oxdt o Ox

Dz(x,t) (0
DR (3 Yoo

D?*z(x,t) _ (_a_ — 9
ot Ox

O -U —j z(x,1) (17)

— dm(x)

Fx.t) = —m(x )22—2512 [N() 7

}-—D—— peB(x)z(x,1) (18)
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The relative displacement z(x,#) can be eliminated by introducing the quantity
[w(x, H-<(x, t)]. B(x)is the sectional beam. In this way it is found that
F(x,t)=—H(x,t)+ Z(x,1) (19)

where

H(x,t)= m(x)ﬂz—;f%tl + [N (x)- U dn:iix)} DWJ;:’ ) + pgB(x)w(x,t)  (20)

Z(x,t) = m(x)Q%f’—t) + [N(x) _U d’;i")} D 4;;: Dy peBx)t(nn) Q1)

. . DL = D¢ o s .
After using equations - —iowd and D =-w*°{ related with Smith correction
we find that

Z(x,t) = £ m(x)0* - io|N(x) - Um'(x) |+ pgBEK (x0) 22)

The strip theories mentioned above all assume unsteady potential flow analysis and
they assume the ship is slender, speed is moderate and hull sections are wall sided.
These strip theories are low-speed theories. However, Blok and Beukelman (1984)
showed that the heave and pitch results from strip theory were still satisfactory when
the Froude number reached 0.57~1.4.

Conformal mapping techniques are also used in literature to derive hydrodynamic
properties such as added mass and damping for each section. Lewis and multi-
parameter mapping are some examples to conformal mapping techniques. Multi-
parameter conformal mapping also permits the transformation of asymmetric sections
to a circle, where Lewis mapping is more suitable for hull sections, which are
symmetric (Westlake et al, 2000). Investigations by Kerczek et al. (1969), Westlake et
al. (2000) and textbook by Newman (1977) can be studied for further information on

conformal mapping techniques.
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Faltinsen and Zhao (1991a,b) have presented a modified liner strip theory (high speed
strip theory), where the three-dimensional free surface boundary condition is used to
interrelate the two-dimensional problems at each strip. Faltinsen (1993) generalized
the high-speed slender body theory of Chapman (1975) to consider the interaction
between the steady and unsteady flow fields around the ship. Since the two-
dimensional velocity potential satisfies a three-dimensional free surface condition and
the diverging wave system generated by the ship motion is included, the high-speed
slender body theory is also called 2%2-D method. This is the main difference to the
conventional strip theory where the two-dimensional velocity potential satisfies a
lineralized two-dimensional free surface condition, so that only the transverse wave

system is considered.

Linear strip theories have been widely used in the literature to estimate the
performance of a ship in waves, due to their computational simplicity. However when
the ship forward speed gets higher, it is no longer reasonable to apply the
conventional strip theory, because the fluid field near the ship hull cannot be
described sufficiently as a two dimensional flow. In addition strong nonlinearity is
probably the most prominent feature of high-speed vessels even in moderate sea states
(Wu and Moan, 1996). More over in the extreme seas due to large ship motions the
nonlinearity problem arises. When the literature is investigated there are studies in

which nonlinear ship motions and structural responses have been observed.

Existing nonlinear analyses can be categorized as perturbation or time-domain
simulation methods. In the perturbation method the boundary conditions or the
hydrodynamic coefficients and the responses are expanded into perturbation series
and a sequence of linear problems in ascending order are solved separately in the
frequency domain (Jensen and Pedersen, 1979, 1981). Based on this procedure Jensen
and Pedersen (1979) developed a nonlinear quadratic strip theory formulated in the
frequency domain for predicting wave loads and ship responses in moderate seas.
According to their observation, the first order fluid forces are identical to those of the
classical linear strip theory (Gerritsma and Beukelman, 1964), while quadratic terms

arise due to the nonlinearity of the exciting waves, the flare of the ship hull geometry,
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and the perturbation of the two-dimensional hydrodynamic coefficients. The
limitation of this nonlinear analysis is that, if the perturbation parameter is larger, the

higher order corrections will not improve the linear results (Wu and Moan, 1996).

The time simulation method on the other hand is the most suitable for describing the
real nonlinear problem. Furthermore there are several advantages in using time-
domain analysis compared to a frequency-domain analysis. Time-domain analysis can
deal with the exact instantaneous body surface for large-amplitude motions of a
vessel. Most importantly transient impact is easily treated in the time-domain.
Because of its advantages, at the beginning scientists worked on developing nonlinear
time domain strip methods extracted directly from frequency domain strip theory
formulations. Some of these attempts are presented by Mayerhoff and Schlachter
(1980), Yamamoto et al. (1980), and Guedes Soares (1989). These theories are found
to be weak in irregular waves due to neglecting hydrodynamic memory effects and the

hydrodynamic coefficients in the equations of motion.

The time-domain solution for the free surface hydrodynamics means to solve the
initial boundary problem in the time-domain. The basic work was done by Finkelstein
(1957). He systematically derived various time-domain free surface Green functions.
Cummins (1962) decomposed the time-domain velocity potential in to instantaneous
and memory parts based on the impulsive response function, separating the ship
geometry from the ship motion. Ogilvie (1964) generalized this approach by including

the forward speed.

De Kat and Paulling (1989) and Fonseca and Guedes Soares (1998) studied partly
nonlinear strip theories based on time-domain potential flow representation or the
Fourier transform of frequency dependent transfer functions. The fluid action consists
of linear and nonlinear parts. The linear fluid forces are expressed by a time
convolution as discussed by Cummins (1962). The nonlinear hydrostatic restoring
force and the Froude-Krylov force are calculated accurately. These approaches are
verified with experimental results from model tests (Xia and Wang, 1997). Fonseca

and Guedes Soares (1998) presented a time domain strip method to predict the vertical
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motions and sectional induced loads of ships in large amplitude waves. Their solution
is obtained in the time-domain using convolution to account for the memory effects

related to the free surface oscillations.

Watanabe and Guedes Soares (1999) presented a comparison between the predictions
of different non-linear time-domain codes applied to study the vertical wave induced
bending moment in a container ship in waves of different steepness. Most of the
methods in this study are based on strip theory formulations applied to both rigid and
flexible hull formulations. In the lower wave height region the results computed from
different methods are similar, however, the agreement among the computed values

becomes poor in the higher wave region.

2.1.2 Three-Dimensional Hydrodynamics

The linear two-dimensional theories are computationally efficient, but since the
forward speed terms are neglected in the free surface boundary condition, they are not
suitable for high-speed vessels. In this sense three-dimensional approaches can
incorporate forward speed effects more properly. However, strip theories are efficient
in evaluating symmetric motions for slender beamlike ships, these theories fail in the
case of non-beamlike and high speed vessels. The need for three-dimensional theories
is parallel to the developments in the design of high-speed multi-hull vessels and other

ocean structures.

In literature, in order to consider the speed and three-dimensional effects, slender
body theories are proposed. In these theories fluid domain is considered to be made of
two parts, which are inner fluid field and outer (far) field. The inner fluid field is
treated as a two-dimensional problem matched with a three-dimensional solution for
the far field. The outer solution can be constructed from a singularity distribution
method, known as Green function method (Panel method). In this method the mean
wetted surface, which stands for the hull boundary, is discretized into panels. The
singularities, which are located in the discretized boundary, satisfy the free surface
condition. After evaluating the strength of singularities (sources), these are used to

determine the fluid pressure and forces acting on the hull. (Fonseca and Guedes
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Soares, 1998). Based on different solutions of the inner two-dimensional problem,
different kinds of slender body theories have been proposed, such as the original
slender body theory (Newman, 1964), which is a low frequency theory assuming the
wave length of the incident waves in the same magnitude as the ship’s length, the
unified slender body theory (Newman, 1978) which eliminates the limitations of
original theory on the wave lengths and encounter frequency, the high-speed slender
body theory (Chapman, 1975), and the new slender body theory (Yeung and Kim,
1984).

Majority of three-dimensional solutions are based on the boundary integral equation
method and the unsteady potentials are solved either in the frequency or in the time-
domain, using Green function methods or Rankine source methods (Fonseca and
Guedes Soares, 1998). Chang (1977) is the first who successfully applied the Green
function method in the frequency domain. Inglis and Price (1980), Guevel and Bougis
(1982) applied the method to a ship with steady forward speed. Other investigations
also carried out on this method differing in the computation of the Green function,
such as Wu and Eatock-Taylor (1987) and Ba and Guilbaud (1994). On the other
hand, time domain linear solutions applying Green function method were presented
by Liapis and Beck (1985), King et al. (1988) and Bingham et al. (1994).

Wenyang and Yishan (1999), studied the time-domain calculation of hydrodynamic
forces on ships particularly with large flare in two and three-dimensional cases. In
their two-dimensional and three-dimensional time-domain free surface Green function
source distribution applications on large flared ship hulls (non wall sided), it is found
that the source strength diverges with the time stepping which makes the calculation
fail. In their 3-D application, as an alternative to panel method, they introduced a wall
sided surface which encloses the hull surface in the fluid and used Green theorem to

solve the problem.
Ye and Hsiung (1999) proposed an investigation based on Cummins’ potential

decomposition and Chapman’s wave body interaction analysis to compute the ship

motion with forward speed in regular head waves. They used impulse response
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functions to solve the equations of motions in the time domain. They applied the
method to compute the radiation forces of a catamaran with forward speed. It was
noted that the time-domain computation for ship motions is particularly important in

the cases where the forward speed effect is considered.

2.2 Hydroelasticity

Ships are treated as rigid bodies in seakeeping and manoeuvring studies, with interest
focused on the magnitudes and characteristics of the bodily responses as mentioned in
the previous section. A ship moves as a rigid body and also distorts. The rigid body
motions are investigated as if the ship does not distort. However, this set of motions is
only a subset of a larger group of motions for, in reality, a ship is a flexible structure
capable of distorting in an infinite number ways. There is a simplification in the
assumption of a rigid body that it excludes the ideas of strains and stresses. To
overcome such limitations, hydroelasticity theory was developed, based on the fact
that a flexible structure distorts through applied fluid actions, along with a
mathematical model founded on the scientific principles of solid mechanics and fluid
dynamics (Aksu et al, 1993). Hydroelasticity theory, in which the coupled
hydrodynamic and structural dynamic problems are solved simultaneously, has been
introduced to determine the wave-induced motion, internal forces and stresses more

accurately.

Hydroelasticity is the study of the behaviour of a flexible body moving through a
liquid. (Bishop et al., 1986). This describes the behaviour of a flexible ship hull or
offshore structure distorting due to the actions of external fluid loading arising from
the seaway, rudder, propeller, etc. The steady state and transient responses of flexible
ship structures in regular and irregular seaways can be investigated employing
hydroelasticity analysis. The theory involves a description of the structure of the
vessel and the fluid actions applied to it. In its most general form, it encompasses both
seakeeping and structural dynamics. The hydroelasticity theory of ships is a milestone

in the study of wave-structure interaction.
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There are two-dimensional and three-dimensional hydroelasticity theories to predict
the responses (bodily motions, deflections, bending moment, shear force, twisting
moment, stresses) at any point within a flexible structure excited by regular and
irregular waves approaching the structure at an arbitrary heading angle. For beam-like
ship structures, both symmetric (vertical bending) and anti-symmetric (lateral bending
and twisting) responses can be predicted by the two-dimensional theory as well as the
influence of hull slamming assessed. For flexible structures of arbitrary shape (e.g.
jack-up structure, barge, multi-hulled vessels) a general three-dimensional
hydroelasticity allows responses to be evaluated and the theory includes the ability to
predict transient slamming responses excited in oblique seaways (Aksu et al., 1993).
The principles of both two and three dimensional hydroelasticity theories are the
same. The main difference is the employment of different methods in terms of
idealization of the structure and the evaluation of the fluid-structure interaction. In
two dimensional hydroelasticity theory, the structure is idealized as a Timoshenko
beam whilst a strip theory is used to determine the hydrodynamic coefficients and
wave excitation associated with rigid body motions and distortions (Bishop and Price,
1979). On the other hand for the three dimensional theory, a finite element
idealization of the structure and a panel element discretisation of the wet surface of
the hull is employed. In this case a source whose strength is determined from
boundary conditions is situated at the center of each panel and use is made of suitable
Green’s functions (Bishop et al., 1986)

Evaluation of the dynamic loads and responses using hydroelasticity theory for a
vessel travelling at arbitrary heading in regular waves and irregular seaways are lead
by two subsequent approaches, dry and wet analysis. The dry or in vacuo analysis, in
which the structure vibrates freely in vacuo, in the absence of any structural damping
or external force and the wet analysis introducing the fluid actions, which are applied

as an external loading to the flexible structure.
In describing the responses, it is necessary to assign coordinates to deflections at

various degrees of freedom and one particular set of generalized coordinates, having

the advantage of being unambiguous and easily commended, is the set of principal
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coordinates of the dry structure. Hydroelasticity theory is based on this set of principal
coordinates with six coordinates describing the rigid body motions and as many
generalized coordinates as necessary describing the symmetric and anti-symmetric
responses. This implies that it is necessary to analyze the behaviour of the flexible
structure in vacuo (dry analysis) to evaluate the principal modes of corresponding to
the principal coordinates, and in the wet analysis, when the structure is in fluid, all
fluid actions are treated as externally applied generalized fluid forces acting on the

structure (Aksu et al., 1993).

In the dry analysis, when the floating structure is a slender hull (beam-like ships),
Timoshenko beam theory, in which the rotation of the cross section is considered as
the sum of the shearing angle and the rotation of the neutral axis, can be used (Bishop
and Price, 1979). On the other hand, for non-beam-like vessels, linear finite-element
approach is convenient to be used to describe the dynamical behaviour of dry

structure in vacuo.

According to the hydroelasticity theory developed for beam-like structures, the

symmetric responses, vertical displacement w(x,?), bending moment M(x,t)and
shear force V(x,t) at any point along the structure measured from the stern can be

expressed by summations in the form (for free-free beam representation) (Bishop and
Price, 1979)

w(x,t>=‘;w,<x>p, () (23)
M(x,ty="> M, (x)p, (1) (24)
V(xt) =2, ()p.(1) (25)

where p, (¢) denotes the 1™ principal coordinate of the principal column vector {p(t)}

of order N+1.

Principal coordinate {p(t)} is a solution of the equation, if we assume the generalized

values in matrices belong to dry hull
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laRBO)}+ PR3+ [chp()} = {F ()} (26)

where [a] is the generalized mass matrix, [b] is the generalized damping matrix, [c]
is the generalized stiffness matrix, {p(t)} is the principal coordinate representing the
response and {F (t)} is the generalized force representing input loading. [a], [b] and

[¢] are diagonal matrices, {p(1)} and {F ()} are column vectors.

In general two-dimensional hydroelasticity theory, the dynamic responses against the
excitation (i.e. motions, distortions, shearing forces, bending moments, and twisting
moments) can be determined by using techniques of modal analysis. The ship’s hull is
assumed to be beam-like. Its dynamic characteristics are determined in a dry-hull
analysis. By treating the hull as a non-uniform Timoshenko beam and adopting a
suitable process for representing the continuous structure as one with finite number of
degrees of freedom, a set of principal modes and natural frequencies may be

determined.

In order to describe the fluid motion around oscillating deformable structures, the
interface boundary condition must be given. Price and Wu (1985) presented a linear
potential flow theory of flexible marine structures, where the classical kinematic rigid
body (Timman-Newman) boundary condition for seakeeping problems (Newman,
1978) was generalized as the interface boundary condition. (Xia, 1996) gave a general
linear boundary condition for hydroelastic analysis of arbitrarily shaped floating

structures with ideal or viscous fluids.

The complexity of ship dynamics has led to the adoption of the most basic
assumptions (Bishop and Price, 1991). The structural and hydrodynamic analyses are
usually performed separately. Wave-induced motions of ships have been thoroughly
studied in the field of seakeeping. When wave induced internal forces and structural
performances of ships are to be examined, the fluid is put aside and all the fluid loads

are assumed to be prescribed, for example, by seakeeping theory. These assumptions
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bring some questions to discussion; if the natural frequencies associated with elastic
deflections are within the spectrum of wave loads, the structure may suffer steady
state global elastic vibration, referred as springing. On the other hand if the ship
undergoes slamming, it may be accompanied by transient vibration, i.e. whipping. To
be able to determine these fluid-induced structural responses accurately, the coupling
effects between the structural and hydrodynamic problems cannot be neglected (Xia
and Wang, 1997).

2.2.1 Two-Dimensional Hydroelasticity

In the two dimensional hydroelasticity, which is also referred as unified strip theory
developed by Bishop and Price (1979), fluid actions are represented by strip theories
(Gerristma and Beukelman, 1964; Salvesen, Tuck and Faltinsen, 1970), while the
generalized modes are composed of the rigid motion modes and the additional dry

modes of the ship structure represented as a non-uniform beam vibrating in vacuo.

Bishop et al. 1977, Bishop et al. 1980 and Bishop et al 1986 applied this method on
various beamlike ships to investigate symmetric, antisymmetric and unsymmetric

dynamic behaviour in waves.

Beam model brings limitations to the analysis especially in the case of multi-hull
vessels such as SWATH ship. Mainly the slender ship and high speed assumptions
restrict the two-dimensional theory, since strip theory particularly takes into account

monohulls which usually modelled as Timoshenko beams and zero forward speed.

To overcome the limitations imposed by two-dimensional strip-beam theory, Wu, Xia
and Du (1991) proposed a general slender body hydroelasticity theory by extending
Newman’s unified ship motion theory (Newman, 1978) to admit distortions of the
ship hull. The hull is treated as a Timoshenko beam. The resulting unified theory is

valid generally for all wave frequencies of practical importance.

Hermundstad et al. (1994) presented a linear hydroelastic analysis of a high speed

mono-hull which is based on modal technique (using dry modes) and involves a three
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dimensional free surface condition with forward speed to predict the symmetric
responses. The results suggested that the hydroelastic effect in linear responses is
insignificant for most high-speed vessels as far as extreme values are concerned, but it

may influence fatigue life.

(Hermunstad, 1995) reported a linear hydroelastic approach based on the 2Y%
dimensional fluid method (Zhao and Aarsnes, 1995), which is a slender body theory
for ships moving at high forward speeds. Hermundstad et al. (1999) also used a
similar method, which is the generalized version of the method presented by
(Faltinsen and Zhao, 1991a,b) and investigated the linear hydroelastic analysis of high
speed catamarans and monohulls in regular waves. In this modified method, they
properly included the hydrodynamic interactions between catamaran hulls into the
theory and they avoided the numerical differentiation of the velocity potential by
utilizing Tuck’s theorem (Ogilvie and Tuck, 1969). Wu and Moan (1996) used high-
speed strip theory and considered a Vlasov beam idealization including rotary inertia
and shear deformation effects to investigate the hydroelastic responses of ships in
irregular head waves. They presented linear and nonlinear hydroelastic formulations
in frequency and time domains for the ship hull response analysis and concluded that

nonlinearity becomes important with the high speed of the vessels.

In the cases where the hydrodynamic loading on the structure is of a non-linear
character, then the time-domain analysis is more appropriate. Gu, Wu, and Xia (1989)
presented a time domain hydroelastic simulation for the prediction of vertical ship
motions and bending moments in the moderate regular and irregular seas. They used a
Timoshenko beam model of the ship structure. Xia and Wang (1997) verified this
approach with the ship model tests. They generalized the three-dimensional time
domain free surface potential flow method to account for the flexibility of floating
structures. This resulted in a linear time domain theory for hydroelastic analysis of
ships and offshore structures. After simplifying the theory, they used Timoshenko
beam idealization and slender body strip method. They numerically investigated the
responses for a warship hull and a S175 containership in regular and irregular waves.

The results pointed out the importance of the nonlinear effects on ship motions and
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internal forces. Hence Xia et al. (1998) studied nonlinear wave loads and ship
responses using a time domain strip theory. A nonlinear hydroelastic method for wave
and slamming induced vertical motions and structural responses of ships is
introduced. They presented numerical results for the S175 containership with two

different bow flare forms and also compared the results with experiments.

2.2.2 Three-Dimensional Hydroelasticity

In order to examine the fluid-structure interaction behaviour of non-beamlike flexible
floating structures (i.e. multi-hull vessels, jack-up rigs, catamarans and semi-
submersibles, etc.), Wu (1984); Price and Wu (1985) and Bishop et al. (1986)
presented a three-dimensional hydroelasticity theory, in which the limitations of two-
dimensional theory are avoided by using three-dimensional potential theory (pulsating
source distribution on the mean wetted surface of the structure) to model the fluid

forces and creating a three-dimensional finite element model of the structure.

Since the three-dimensional hydroelasticity theory is well capable of modelling the
non-beam like structure case, it has been used to investigate the dynamic behaviour of
SWATHSs in waves (Bishop et al, 1986; Bishop, Price and Temarel, 1986; Price,
Temarel and Wu, 1987; Price et al. 1994) the problem of jack-up transportation (Fu,
Price and Temarel, 1987), the behaviour of a dry dock (Lundgren, Price and Wu,
1989). Ergin et al. (1992) studied on a flexible cylindrical shell in air and submerged

using an alternative time domain analysis to illustrate the effects of impulsive loading.

Price et al. (1994) presented a hydroelastic analysis of a SWATH (T-AGOS 19) in
waves to account for the steady state responses. They presented comparisons between
simplified (for preliminary design stage) and refined (for final design and the
assessment of the effects of loading) stage finite element models. The main
differences between the two models are the structural details and weight distribution.
Stress distributions in the structure were obtained and discussed at various travelling

speeds and heading angles in irregular seas in frequency domain.
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Che et al. (1994) brought a new approach into the discussion of the analysis of wave
induced hydroelastic response of floating, slender structures. They developed a
method that combines a three dimensional structural model with fluid forces from
two-dimensional potential theory (strip theory). Since a three-dimensional finite
element model of the structure is used, the method allows direct computation of three-
dimensional response of the structure. On the other hand, because of using a two-
dimensional fluid model, the large computational effort of three-dimensional
hydroelasticity (three-dimensional potential theory) is avoided. To demonstrate and to
verify the method a SWATH ship is analyzed. The results of this method are
compared with a full three-dimensional hydroelastic analysis. The results indicated
that the 2D/3D composite method could be an alternative to three-dimensional

hydroelasticity for large floating structures that can be characterized as slender.

Aksu et al. (1991) compared two and three-dimensional hydroelasticity theories
including the effect of slamming. Comparisons were made in time-domain steady
state and transient slamming responses for head seas. They investigated the
behaviours of slender uniform and non-uniform barge structures travelling in irregular
seas using both theories. In the case of uniform barge travelling in head seas, the
response simulations agree in both methods. However, for a non-slender uniform
barge differences occur between the two theories. Results from three-dimensional
hydroelasticity theory are found to be reliable and investigation was extended to

slamming,

Janardhanan, Price and Wu (1992) developed a three-dimensional time-domain
hydroelastic approach, incorporating time history effect and non-linear fluid loading
from wave effects. The theory is based on the fluid field representation in terms of the

frequency-domain Green function.

Wu and Moan (1996) and Wu et al. (1996) reported a time-domain hydroelastic
analysis for ships at high forward speed, using 2% dimensional simplification in the
fluid force prediction. The total vertical loads are decomposed into linear and

nonlinear modification parts. The linear part is evaluated by use of appropriate linear

40



potential flow theory. The nonlinear modification part comes from the hydrodynamic
force caused by slamming and nonlinear modifications in Froude-Krylov, hydrostatic
restoring, radiation and diffraction forces. This non-linear hydroelastic theory to
predict the wave-induced structural responses in ships with large amplitude motion in
head or following seas using the decomposition approach of total response to linear
and nonlinear parts, developed by Wu and Moan (1996), is applied to a catamaran
model in regular head waves and theoretical results are compared with model tests in
the study of Wu et al. (1996).

Cheung et al. (1998) studied the hydroelastic analysis of a SWATH structure and
other methods of analysis of the primary structure of SWATH ships such as quasi-
static and rigid body-dynamic are also applied together with hydroelasticity.
Deflections and stresses are calculated after each method and compared. In all three
methods the hydrodynamic pressure is evaluated by the source distribution method
and the structural deformation and stress are modelled by the finite element method.
To verify the accuracy of the hydroelastic analysis, the convergence of the solution to
the number of modes is investigated. It is noted that the discrepancy between the
hydroelastic prediction and the other two approaches is generally more pronounced
near the stern of the ship, where the lower hulls are more flexible and hydroelastic
effects are important. In addition it is reported that the first two methods generally
give very close predictions of the deformation and stress. Further more, due to the
elastic response, the hydroelastic approach gives consistently higher predictions of the
lower hull deflection and the stress in the strut, but lower predictions of the stress in

the upper hull compared with the other two methods.

The assumption in most seakeeping, two-dimensional and three-dimensional
hydroelasticity theories that the advancing of the ships does not generate non-uniform
steady flow around and behind the vessel is not applicable for a fast moving non-
slender or thick body. This problem that the steady state disturbance cannot be
omitted in high forward speeds, led Du and Wu (1998) to investigate the effect of
forward speed on the hydroelastic behaviour of ship structures and to illustrate the

calculations of an ellipsoid moving beneath wave surface, and a surface ship of the
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semi-ellipsoid form travelling in waves. Numerical comparisons of the hydrodynamic
coefficients, wave exciting forces, rigid body motions, and flexible body distortions
are made for different forward speeds, different slenderness parameters, and different
heading angles. The contributions from the velocity field of non-uniform steady flow
to the interface boundary condition, and the generalized hydrodynamic forces are

included in the three-dimensional hydroelasticity analysis.

2.3 Slamming

In rough seas where large relative amplitude ship motions occur, the bow may emerge
out of the water. The impact phenomenon that follows, as the bow re-enters the
incoming wave, is commonly referred to as slamming. Slamming is the main transient
loading for a ship and can cause important local and global loads on a vessel.
Slamming on mono-hulls is often categorized as bottom slamming and bow flare

slamming.

Under certain conditions the sea imparts a severe transient loading to the hull, because
of rapid and deep immersion of the bow when there is a pronounced flare or as a
consequence of local emergence of the hull either near the stern or at the forefoot.
After emergence, the subsequent re-entry of the forefoot may create substantial forces
due to sudden pressure changes in the region as the ship strikes the water surface
(bottom impact slamming). This may result in high frequency transient responses in
the structure. When the relative velocity of the ship’s bottom and the sea surface is
large enough, the vessel will slam when its forefoot re-enters the water. An impulsive
loading will be applied which will make the ship oscillate and may cause damage.
There may also be local damage and equipment may suffer as result of the shock

loading.

When a bow flare section of a ship enters the water, the local loads around the flare
are not influenced by hydroelasticity. On the other hand hydroelasticity is important in
a global analysis. When the ship is considered as elastic beam, the integrated water-
entry force on a bow flare section causes transient hydroelastic response (whipping)

of the beam (Faltinsen, 1997). Despite the pressure field due to impact remains

42



localized in space and time, slamming loads can locally create plastic deformations of
the hull external structure. They are also involved in the high-frequency whipping
type response of the global ship structure and lead to an increase of the vertical
bending moments. In the severe cases these loads are seen responsible for the loss of

ships.

Different physical effects may have an influence during slamming. When the local
angle between the water surface and the body surface is very small at the impact
position, an air cushion may be formed between the body surface and the water
surface. Compressibility of the air influences the airflow. The airflow interacts with
the water flow, which is influenced by the compressibility of the water. When the air
cushion collapses, air bubbles are formed. The large loads that can occur during
impact between a nearly horizontal body and a water surface can cause important
local dynamic hydroelastic effects. This can lead to subsequent cavitation and

ventilation (Faltinsen, 1999)

The calculation of impact load is needed in order to determine the required strength of
the structure involved. A better understanding of the whole phenomenon of slamming
will also give information on how to design the shape of the structure for the

minimization of the impact load.

Many researchers have studied vessel impact problems since the early 1930s. The
pioneering works are von Karman’s (1929) impact analysis of seaplane landing and

Wagner’s (1932) flat plate model.

Impact forces can be obtained from the slamming pressure due to bottom impact
(Ochi and Motter, 1973; Stavovy and Chuang, 1976). On the other hand, the forces
applied to hull during the penetration of the waves after the initial impingement can
be evaluated from the momentum slamming theory (Leibowitz, 1963). These two
theories have different characteristics. Bottom impact induces a sharp peak of short
duration while the penetration of the waves induces a smoother peak of relatively

longer duration (Belik et al., 1980). The total slamming force may consist of the
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impact and/or the momentum forces. Belik et al. (1988) reported that use of the
impact forces or the momentum forces or their combination results in very small

differences.

Based on the theories mentioned above, the actual magnitude of the slam can be
described in two distinct ways. It is assumed that the total slamming force consists of
these two distinct components.

Eolal (x’ t) = F;'mpacl (x’ t) + Fmoml (x’ t) (27)

The first one, which is impact slamming, attempts to evaluate the forces due to sudden
pressure change around bottom of the hull at the instant when the hull strikes the free
surface of the waves. The characteristics of this type of slam are short duration, the
compressibility of the water, the significance of the influence of air cushioning and
the dependency of the impact pressure on the relative velocity at the re-entry (Bishop
and Price, 1979).

Impact theory assumes that the impact pressure and hence the slamming impact force
at the instant of impact is proportional to the vertical velocity (Bishop and Price,
1979). In impact theory, the transient forces are continuously distributed over a length
of the hull, which was initially clear of the water near the forefoot; the distributed
force must be discretised for the purposes of calculation. This can be done by
assuming the transient to be stepwise distributed over some of slices into which the

hull is imagined cut for the purposes of structural or hydrodynamic calculations.

The generalized two-dimensional transient excitation force at the s ® coordinate is
)
Z,(6)= [ Fx, 0w, (x)ax (28)
(0]

where F (x,t) is the transient force per unit length acting on the hull and w, is the

displacement at coordinate s .
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This theory is based on the assumption that the slamming force and hence the impact
pressure at the instant of impact is proportional to the n™ power of the impact
velocity: (Belik et al., 1987)

pressure, p = k(impact _velocity)”
The constants £ and » are determined experimentally by systematic drop tests on

plates, sections of hulls, etc. or on ship models towed in waves.

The expression assumed for the impact force per unit length is given by
F;ny;ac! (x> t) = pmax (X)G(X)f(t) (29)
In the application of impact slamming theory, the following equation for the transient

loading can be used. (Bishop and Price, 1979)

a-5)
F(x,t) = pTﬂG(x)te Ty (30)

0

where G(x)is the shape factor, p_, 1s the maximum pressure and 7}, is the time that

elapses between the instant at which the bottom strikes the wave surface and the

instant at which the loading reaches its maximum value.

The second method, which is called momentum slamming, is associated with fluid
actions describing the rate of change of momentum as the hull re-enters the water and
describes the effect of pressure variations around the hull surface as it penetrates the
moving fluid after the initial entry. Flare slamming can be described adequately only

by the second approach.

The transient force, which is related to the rate of change of momentum of the

surrounding fluid and the instantaneous buoyancy, is (Bishop and Price, 1979)

F(x,t)= —{% [m(x, t)%wm,(x,t)} - pgS(x, t)} (31

where m(x,t)and S(x,¢) are the instantaneous added mass and submerged area of the
hull section as it re-enters the water. w,,, is the relative displacement at a section x on

the hull.
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Ochi and Motter (1973) divided the slamming loads in three different problems
related with the determination of the slamming pressure, the pressure distribution and
the time variation of the slamming load. Subsequently several authors proposed
different methods to predict these parameters. Kawakami et al. (1977) proposed a
different method to predict the time variation of the slamming load, Stavovy and
Chuang (1976) proposed a method to predict the maximum slamming pressure. After
defining the slamming force, the structural response has been treated by several
authors, for example Belik et al. (1983) and Guedes Soares (1989), who performed
time simulations for irregular seas using different methods for the prediction of the

slamming loads.

The main problem in slamming is the determination of the maximum slamming
pressure, which is assumed by all methods in the following relation;

1
= — v’
pmax 2

where k is a non-dimensional factor that depends on the section geometry and this
factors plays the main role in determining the maximum slamming pressure (Ramos
and Soares, 1998). In the method of Ochi and Motter (1973) k factor is established as;
b = o(1377+21494,-0873a,+0.624a;)
Stavovy and Chuang (1976) evaluate the value of k using the local deadrise angle. It
is obtained using a series of polynomials that fit experimental results. Zhao and
Faltinsen (1993) compared three different methods to evaluate k in their study. The
first one 1s based on the non-linear boundary method with a jet flow approximation.
The second one was a new similarity solution for wedges with the deadrise angle
varying from 4 to 81 degrees and the last one was an asymptotic solution based on the
Wagner solution. The comparison of these five different empirical methods (k versus
deadrise angles varying from 0 to 45° ) for the evaluation of the slamming loads based
on experimental results can be found in the work by Ramos and Guedes Soares (1998)
where they presented a method to predict the stresses induced on ship hull when the
forward bottom impacts in water. The relative motion between the ship and waves is

determined using a linear strip theory. They calculated the vibratory response of a
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container ship by modelling it with finite elements and using modal superposition
together with central differences for the time integration. The results obtained using
different methods to calculate the slamming forces, differ very largely for the slam

induced vertical moment amidships.

As well as the investigations on steady state responses, the transient responses due to
slamming in regular head waves using impact and momentum slamming theories have
been studied by Bishop et al. 1980 and Belik et al. 1980. The latter paper is a
continuation of the previous one and the combined effects of bow slamming and
steady state responses for a destroyer travelling in regular waves are investigated. In
both studies transient impact and momentum loading is examined separately and
using linear superposition, total responses are obtained. In order to simulate a real
slam, the attention is drawn to the necessity of using both impact and momentum
theories together rather than using only one. Belik and Price (1982) compared the
existing slamming theories ((Ochi and Motter, 1973) and (Stavovy and Chuang, 1976)
for impact slamming, (Leibowitz, 1963) for momentum slamming) in the time domain
simulation of ship responses in irregular waves. The Ochi-Motter impact slamming
theory is found to be contributing to the existing steady state response values much
less than the Stavovy-Chuang theory. Furthermore, the latter approach was found to
be more capable of predicting the localized damage on the structure (eg.plating). On
the other hand the momentum slamming effect was reported as dominating both of
these impact responses and providing a significant increase in the steady response.
They also pointed out the dependence of magnitudes of slamming transient responses
on the structural damping. In addition to impact slamming theories, bow flare
slamming was incorporated into the available modal approaches to analyze transient
responses due to the effects of bottom and bow flare slamming on a destroyer (Belik
et al, 1988). With this paper Belik et al. clarified that the responses derived by
combining impact and momentum slamming effects in the time domain are not
necessarily larger than those derived from separate evaluations using the two theories
because of phase differences. They concluded that a better simulation of bottom

slamming is achieved by combining the two theories. In addition to the earlier
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investigations of the same authors it is concluded that momentum slamming theory

allows for the investigation of flare slamming and the effects of forward hull form.

The response of the hull to a transient excitation (e.g. slamming) is associated with the
resonance frequencies of the distortion mode shapes of the hull (Belik, Bishop and
Price, 1980, 1983). Comparisons of the predictions of hydroelasticity theory with full-
scale measurements for two frigates in a severe weather trial (Bishop, Clarke and
Price, 1984), a fast patrol boat travelling in rough seas (Aksu, Price, Suhrbier and

Temarel, 1993) include steady state and transient (slamming) responses together.

Kvalsvold and Faltinsen (1994) investigated the hydroelastic response due to the
slamming against the wetdeck of a multihull vessel in head sea waves analytically and
numerically. In theoretical slamming model, they used a two-dimensional, asymptotic
method valid for small local angles between the undisturbed water surface and the
wetdeck. Local hydroelastic effects in the local slamming area are also accounted for.
Shear deformations and the rotatory inertia effects are all considered in their work.
They modelled the wetdeck as a Timoshenko beam with rotatory springs at the beam
ends to get the shear deformation and rotatory inertia effects properly. The
hydrodynamic formulation of the problem is based on the extension of Wagner’s
(1932) two-dimensional theory. The main indication of the results is that the
slamming loads on the wetdeck are significantly influenced by the elasticity of the
wetdeck structure.

Slamming against rigid wetdecks has been studied by Kaplan and Malakhoff (1978)
and Kaplan (1987, 1991). Kaplan (1992) reported that wetdeck slamming could cause
a hydrodynamic loading in the order of the weight of the vessel or even larger, which
may lead to severe local as well as global damages of the hull structure. Zhao and
Faltinsen (1992) reported that the global heave and pitch motions of a catamaran were
influenced by wetdeck slamming, however they did not account for any local or
global elastic effects of the catamaran. Kvalsvold and Faltinsen (1995) improved their
previous study on the wetdeck slamming of a multihull vessel in head sea waves

(Kvalsvold and Faltinsen, 1994) by modelling the wetdeck as a set of three
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Timoshenko beams in the transverse direction. The main difference between these
two subsequent studies is reported by Kvalsvold and Faltinsen (1995); in the previous
single Timoshenko beam model the lack of the inertia effects in the wetdeck outside
the beam influenced the hydroelastic response when the wetted length was of the
order of the beam length. In the latter study they extended the previous study to
account for an arbitrary relative position between the undisturbed free surface of the
waves and the wetdeck at the moment of initial water impact. As a result the resulting
absolute maximum stresses are found to be slightly dependent of where the waves hit
initially between two transverse stiffeners in the wet deck. In the work by Kvalsvold
and Faltinsen (1995) two different approaches are used to calculate the wetted length
of the beams. First one is based on the von Karman (1929) method and the other is the
generalization of Wagner (1932) method. The fundamental difference between those

two is that the latter method accounts for the pileup water effects.

Faltinsen (1997) studied the wetdeck slamming theoretically by a hydroelastic beam
model. The analysis is simplified by introducing an initial structural inertia phase and
a subsequent free vibration phase. Theoretical results are validated with drop tests of
elastic plates on waves. The reported results indicate that the effect of the forward
speed from the free surface conditions is not important for realistic wetdeck slamming
conditions. The important effect comes from the body boundary conditions as an
angle of attack effect. Another key result from the study is that both theory and
experiments show that maximum bending stress is proportional to the drop velocity
and is not sensitive to where the waves hit the wetdeck nor the curvature of the crest

in the impact region.

Aksu et al. (1996) studied the effects of operational parameters, such as forward speed
and loading condition, and seaway parameters, such as significant wave height,
characteristic wave period and randomness, on the predicted steady state and
slamming induced loads and stresses, using a bulk carrier and a tanker as examples.
The intensity and severity of slamming are examined as a function of significant wave
height and characteristic wave period used to describe the random seaways generated

from ISSC wave spectra. They restricted their investigation on the symmetric bending
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and shear of beamlike hulls in random head seas. In the calculation of transient
slamming forces they considered the combination of the bottom impact forces
(Stavovy and Chuang, 1976) and the rate of change of momentum as the forefoot
penetrates the water surface (Leibowitz, 1963).

Vessel impact problems generally have been solved by two-dimensional or simplified
three-dimensional model with basic assumptions of zero gravity, zero viscosity and
zero compressibility. Some main examples of these two different approaches are by
Cointe (1989, 1991), Zhao and Faltinsen (1993, 1996), Vorus (1996) and Zhao et al.
(1997) for the two-dimensional solutions and by Troesch and Kang (1986,1988) and
Lai and Troesch (1995,1996) for the simplified three-dimensional solutions. These are

all symmetric body solutions.

On the other hand Xu et al. (1998) proposed a two-dimensional theory for asymmetric
impact problems of vessels with arbitrary geometry. Based on Vorus’s (1996) flat-
cylinder theory, they established two types of flow models for cases of small and large
asymmetry and calculated the asymmetric impact (slamming) loads due to extreme
vessel motion by applying the method of discrete vortices. The difference between the
two types is whether the flow is attached or separates at the keel on the first instances

of impact.

Greenhow (1987) investigated the two-dimensional wedge entry into initially calm
water. He considered the time dependent motions of wedges of various angles with
both gravity and the nonlinearity of the boundary conditions on the wedge and free
surfaces.

The water entry problem has been analyzed for studying water entry of a two-
dimensional body of arbitrary cross-section by a numerical approach by Zhao and
Faltinsen (1993). Through a boundary element formulation with a jet flow
approximation, they simulated the flow around a wedge for different values of the
deadrise angle. In view of the extension to three-dimensional problems, the model has

been successively applied to asymmetric bodies (Zhao and Faltinsen, 1998).
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Korobkin (1998) considered the impact of an elastic body onto a liquid, when the
possibility of the liquid to escape from the impact region is highly limited. In order to
solve this problem a catamaran wetdeck and its response to liquid impact is taken as
example. The results mainly show that any possibility of restricting the liquid flow
near the impact region has to be avoided at the design stage, since the limitation on

the liquid flow leads to high level of stresses in the elastic bottom.

Faltinsen (1999) analyzed the water entry of a slender hull with wedge shaped cross
sections using orthotropic plate theory. Systematic studies on the importance of
hydroelasticity as a function of deadrise angle and impact velocity are also presented.
The effect of structural vibrations on the fluid flow is incorporated solving the two-
dimensional Laplace equation in the cross sectional fluid domain by Wagner’s theory.
The theory is also validated by comparison with full-scale experiments and drop tests.
The effect of hydroelasticity is found to be significant in the smaller deadrise angles

due to the larger impact velocity.

Campana et al. (2000) studied the impact of cylindrical bodies over the water surface
in the compressible and incompressible stages. In the compressible phase the
hydrodynamic analysis is carried out and a closed form expression for the maximum
impact force is found for a wedge section and for a circular cylinder. For the
incompressible stage they used an unsteady boundary element method to compute the
free surface evaluation and the slamming force on the body. They analyzed the effect
of the entry velocity reduction during the impact (e.g. the effect of the inertial force in
water shock). The inertial effect leads to a characteristic maximum in the time history
of the slamming force and this makes it natural to investigate the role played by the
mass of the impacting body on the slamming load. In the case of a circular cylinder, a
closed form relationship between the maximum slamming force and the mass of the
impacting body could not be found in their investigation. They concluded that for
either compressible or incompressible conditions, a similar increasing trend of the
maximum slamming load acting on impacting wedges is obtained for increasing body

mass.

51



Carcaterra and Ciappi (2000) investigated the response of simple systems (rigid and
elastic) impacting on the water surface. An elastically deformable wedge and a rigid
wedge coupled with an oscillator were taken as examples. The wedges were consisted
of two elastically coupled bodies and the body shape is elastically deformed during
the impact in the first one, while the second one is a rigid impacting body. The
investigation led to the following conclusions. In both models, the hydrodynamic
force evaluation was not effected by the presence of elastic coupling. The deformable
wedge presented a feedback control of the impact force when the deformation tended
to increase the wetted surface, a consequent velocity reduction was observed. It was
noticed that when the rigid wedge is coupled with oscillator, the hydrodynamic force
had an order of magnitude larger with respect the elastic reaction. Therefore in both
cases the rigid wedge approximation is suggested to be used in predicting the

maximum hydrodynamic slamming force.

With respect to the role of hydroelasticity on slamming, Bereznitski (2001) carried out
an alternative investigation based on a large number of calculations using a two-
dimensional wedge shaped body and stated that the ratio between the duration of the
impact and the first period of the natural vibration of the dry structure is the key factor
for defining when hydroelasticity should be taken into account or can be neglected.
Bereznitski (2001) also developed a three-dimensional model for bottom slamming.
He considered a steel plate with stiffeners and applied drop tests on it. The effects of
hydroelasticity and compressibility are taken into account in the analysis. The factors
influencing the impact interaction such as the air entrapped between the structure and
the water surface, penetration of structure inclined at a specified angle, acceptability

of 3-D/2-D model conversion, are discussed in this paper.

Faltinsen (2002) analyzed the water entry of a rigid wedge using matched asymptotic
expansions under the assumptions of incompressible water and irrotational flow. A jet
domain, inner domains at the spray and outer domain are defined. The matched
asymptotic expansion solution of Armand and Cointe (1987), in which the deadrise

angle is limited with very small values, is extended by assuming finite deadrise angles
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when the outer and inner domain solutions are found. This new solution method is
found satisfactory for gravity free water entry of a general two-dimensional body

shape.

Hansen et al. (1994) investigated the wave induced high-speed vessels’ hull vibrations
(springing and whipping). A parametric study is also performed to determine the
importance of hull flexibility and ship length on the springing and whipping response
of fast mono-hull vessels. The calculations are carried out using nonlinear strip

theory.

Chihua and Yousheng (1997) developed a boundary element method for calculating
the two-dimensional flare ship hull slamming with a constant entry velocity. The
exact nonlinear free surface boundary conditions are accounted for, and the linear
element assumption is adopted. Results obtained show that the slamming on the flare
section of ship hull may cause more structural damage than when using a U-shape

section.

Varyani et al. (2000) presented an investigation on the slamming impact of a
catamaran together with its motions in head seas including and omitting forward
speed. For the ship motions they used strip theory and three-dimensional pulsating
source method. On the other hand they developed a computational fluid dynamics

method to predict the slamming loads acting on the catamaran.

In literature there are some fundamental experiments related with slamming. Chuang
(1966, 1967) analyzed the slamming problem experimentally through a series of drop
tests with a flat plate and a wedge. In the flat bottom slamming experiment the effect
of the trapped air between the falling body and the water, causing the maximum
impact pressure to be much lower than the pressure expected, was observed.
Subsequent experiments in slamming of wedge shaped steel models with small
deadrise angles were performed by the same author. The results of drop tests are used
to provide charts for estimating the maximum impact pressure due to rigid body

slamming of wedges.
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Verhagen (1967) investigated the impact of a flat plate on a water surface
theoretically and experimentally. Lewison (1970) presented a paper on the reduction
of slamming pressures. He used a flat water impact theory which takes account of the
air trapped between the falling body and the water surface. Two sets of experiments
are introduced in the study; in the first set, pressure measurements on a flat plate were
made on a large vertical drop test machine and second set of experiments were on a
small scale model in head seas. As a result of the experiments it was concluded that
end flanges would sharply reduce the peak pressures because of entrapping a greater
volume of air. In other words, the slamming pressures under the forefoot were
reduced sharply, if the air cushion was artificially reinforced. Beukelman (1978)
carried out forced oscillation tests about the water surface to obtain bottom impact

(slamming) pressures using two-dimensional approach.

Shibue et al. (1994) presented a transient structural response analysis for drop tests of
two-dimensional cylinders on water surface to reproduce the time histories of strain
under water impact pressure. They focused on the effects of maximum pressure values

on the maximum strain values.

2.4 Stiffened Flat Plates

Many structures such as those used for aerospace, marine and offshore applications
are, generally, made up of unstiffened/stiffened plate panels. The design of these
structures involves detailed analysis for static and dynamic responses. In order to
model these structures, it is necessary to identify and adopt suitable
analytical/numerical methods, which will be reliable as well as economical in

representing the structural behaviour of the plate panels.

Stiffened plates are encountered in bridge decks, floor slab systems, ship
constructions, etc. The primary advantage of stiffening the plate lies in the structural
efficiency of the system, since great savings of weight can be attained with no
sacrifices in strength or serviceability of the structure. Stiffening a plate gives higher

strength/weight ratio of the structure compared to a bare plate having the same
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material. Hence stiffened plate construction is widely used in aerospace and marine
structures, where weight is of great significance. The structural system is composed of
plate elements, above which the load is applied, reinforced by stiffener (or beam, rib,
stringer, girder) elements located at discrete spacings in one direction (longitudinal or
transverse) and in some cases in both directions. The former stiffening system is often
referred to as uniaxially or longitudinally stiffened plate and the latter as orthogonal or
waffle type stiffing. If the stiffeners are symmetrical about the mid-plane of the plate
they are referred to as concentric stiffening, and if they are located on one side of the

plate they are referred as to as eccentric stiffening (Bedair, 1997).

Section A-A

||
Concentric Stiffener

>

AN

/ Plan view

) Eccentric Stiffener
Stiffener

Figure 4 Stiffened plate (Tanaka et al., 1998)

The methods used for dynamic and static analyses of plates are similar. The following
is a review of analytical and numerical tools for studying dynamic behaviour of

stiffened plates.

The various approaches include orthotropic plate approximation, grillage
approximation and plate-beam idealization. The philosophy of each depends upon the
treatment of plate and stiffener elements. Research on the static and dynamic

characteristics of stiffened plates can be divided into these three broad headings:

2.4.1 Orthotropic Plate Approximation
The orthotropic plate theory was first developed by Huber, in which smearing the
stiffener into the plate forms a relatively simpler approach to the solution of stiffened

plate problems (Satsangi et al., 1989). This approximation converts the plate from one
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having stiffeners dispersed throughout, to one having orthotropic properties as seen in
Figure 5 (Bedair, 1997). The resulting idealized structure is therefore composed of the

original plate layer and additional layer.

|

/ = tp
4

Figure 5 Orthotropic plate idealization (Bedair,2 1997)

Main publications regarding orthotropic plate theory can be given as follows; Natural
frequencies have been calculated according to Navier’s solution by Huffington (1956)
and Hoppman et al. (1956); a study of nodal patterns followed by Hoppman et al.
(1957) that was modified by Thorkildsen et al. (1959) to introduce rotary inertia
effects. Rotary inertia of both the plate and the stiffeners were incorporated later by
Huffington et al. (1965). The response of a damped, simply supported stiffened plate
subjected to sinusoidal and random excitation is determined analytically including
shear and rotary inertia by Laura (1968). Smith et al. (1970) presented an
experimental and analytical study of vibration of clamped stiffened and unstiffened
plates subjected to inplane loading. Natural frequencies have been calculated for
rectangular plates having fixed, simply supported and free boundary conditions. The
influence of aspect and rigidity ratios on the plates has been examined by Grace et al.
(1985). A higher order shear deformation theory was developed for investigation of
free vibration characteristics of a thick, simply supported, orthotropic plate by Doong
et al. (1987). The boundary element method was used for the free vibration analysis of
orthotropic plates (Sun et al., 1987). This theory is used efficiently if the stiffeners are
small, identical and placed uniformly at close intervals. If the stiffeners are not
identical in both directions or not equally spaced then the resulting thickness becomes
non-uniform (Satsangi et al., 1989). These issues impose limitations. Moreover, as the
plate and the stiffeners are converted into an equivalent plate, the evaluation of the

stresses in the plate and the stiffeners separately becomes difficult.
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2.4.2 Grillage Approximation

The stiffened plate structure is idealized as a set of intersecting beams for the
convenience of the analysis. Static analysis of stiffened plates using this
approximation is more than the dynamic analysis of stiffened plates. Free vibration
studies of grillages have been done by Balendra and Shanmugan (1985). The transfer
matrix technique has been used to determine frequencies of a grillage in the study of
Leckie (1963). In the idealization of a stiffened plate as a grillage the effective breadth
of plating is assumed as the flange of the beam. According to various researchers this
effective breadth varies from 50% to 100% of the stiffener spacing (Satsangi et al.,
1989). There are basically two drawbacks in this approach (Satsangi et al., 1989).
First the centroidal planes of the beams in different directions are assumed to be the
same, which affect the accuracy of the stresses calculated. Secondly the beam
properties are derived by considering the effective breadth of the plate. There is no
simple method available for the calculation of effective breadth of plating. This
creates difficulties in evaluating the true stresses in the plate and the stiffeners

(Satsangi et al., 1989).

Hirherto two earlier methods of idealization of stiffened plates are mentioned. Both
these methods fail in the case when the stiffeners are sparse and are therefore not
suitable for the solution of generalized stiffened plate applications as a result of the
limitations they impose (Mukherjee and Mukhopadhyay, 1988).

2.4.3 Plate and Beam Idealizations

It is more realistic to consider the plate and the stiffener as separate entities and then
enforce the compatibility between the two. Various approaches exist in the literature
for the analysis of stiffened plate problems by considering the plate and the stiffener
as separate identities. For many plate problems of considerable practical interest,
analytic solutions to the goveming differential equations cannot be found. On the
other hand numerical treatment of differential equations can yield approximate results,

acceptable for most practical problems (Szilard, 1974). Some of these numerical
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techniques are finite difference methods, energy methods, matrix method, finite strip

method, finite element methods and others.

In finite difference method the derivatives in the differential equation under
consideration are replaced by finite difference quantities at some selected points.
These points are located at the joints of a rectangular, triangular or other reference
network, called finite difference mesh (Szilard, 1974). The entire continuum is
subdivided into a uniform mesh and an approximate solution is obtained (Satsangi and
Mukhopadhyay, 1989). Troitsky (1976) has reviewed earlier work on the finite
difference method. Finite difference method has been used to calculate natural
frequencies of stiffened plates with equally spaced identical stiffeners by Wah (1964).
Equations formulated from the variational principle for free vibration of stiffened
plates have been solved by the finite difference method by Aksu and Ali (1976). The
method has extended to include in-plane inertia and in-plane displacements by Aksu
(1982). Mukhopadhyay (1989) extended his existing theory for plates using semi
analytic finite difference method to the vibration and stability analysis of stiffened
plates. In this method a displacement function satisfying boundary conditions along
two opposite edges is assumed. This function is then substituted into the differential
equations of the free vibration and stability of the stiffened plate and then by using
suitable transformation, they are reduced to ordinary differential equations with
constant coefficients, which are solved by the finite difference technique. The solution
of the eigenvalue problem gives the natural frequencies for free vibration and the
critical load for the stability analysis of the stiffened plate. Under this methodology
vibration and stability analysis of concentric stiffened plates considering bending
displacements of the plate and the stiffener only are studied by Mukhopadhyay
(1989). The same method is extended to the vibration analysis of eccentric stiffened
plates, considering bending and axial (in-plane) displacements. It is noted that the
eccentricity of the stiffeners gives rise to axial and bending displacement in the
middle plane of the plate resulting in three coupled partial differential equations,
which have been solved by the semi analytic method (Mukhopadhyay, 1989). This
method has also been applied to the static analysis of both concentric and eccentric

stiffened plates. On the other hand, Mukhopadhyay and Samal (1990) have carried out
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transient analysis of plates using this method. The method being semi-analytic in
approach, takes much less computer time than the ordinary finite difference method
(Mukhopadhyay, 1994).

As an energy method the Rayleigh-Ritz method, which involves determination of the
kinetic and potential energies of the structural system using assumed shape functions
that satisfy the geometrical boundary conditions and approximates the actual modes of
vibrations, has been extensively used to study vibration problems of stiffened plates.
The natural frequencies of the first symmetric and first antisymmetric modes of a
simply supported rectangular plate with two different forms of stiffener cross section
(rectangular and T) are determined using this method and the ratio (frequency of
stiffened plate/frequency of unstiffened plate of equal mass) is also obtained for
rectangular and T-section stiffeners (Kirk, 1970). Leissa (1973) presented
comprehensive analytical results for the free vibration of rectangular plates using the
Ritz method. Twenty-one cases exist involving the possible combinations of clamped,
simply supported and free edge conditions in this study. Natural frequencies and mode
indexes are presented for various plate aspect ratios. Madsen (1978) analyzed
orthogonally stiffened panels for free vibration; he incorporated bending and warping
torsion and axial deformation of the stiffener to obtain dynamic equations and applied
the Rayleigh-Ritz method. Bhat (1982) studied the effect of stiffener spacing on free
vibration. Wu and Liu (1988) applied this technique for the free vibration of stiffened
plates having edges elastically restrained in rotation, based on plate and beam
idealization. The first lower four frequencies for restrained plates with up to six

stiffeners are calculated.

A transfer matrix method has been developed to predict natural frequencies and
normal modes for a finite number of panels that differ in width, thickness and material
properties by Mercer and Seavy (1967). Long (1971), in his formulation for free
vibration, neglected in-plane displacements across the direction of stiffener in the

dynamic stiffness matrix.

59



In finite strip method the plate is divided into a number of strips. A semi-analytical
finite strip method has been developed by Cheung (1976) in order to achieve
economic solution with reasonable accuracy, particularly for regular shaped
structures. The method has some drawbacks like mixed boundary conditions,
continuous span, internal opening and interior supports. These are mostly due to the
characteristic beam functions used as displacement interpolation function along the
longitudinal direction of the strip (Sheikh and Mukhopadhyay, 1993). The spline
finite strip method has been subsequently proposed to eliminate most of the
shortcomings of the finite strip method (Cheung et al., 1982). In this method spline
functions are adopted in one direction and finite element shape functions are adopted
in the other direction as interpolation functions of displacement field (Sheikh and
Mukhopadhyay, 1993). In other words the spline function is used as displacement
interpolation function in the longitudinal direction of the strip (along the nodal lines)
(Sheikh and Mukhopadhyay, July 1993). Later this method has been generalized so
that plates having any arbitrary shapes can be analyzed with a single formulation (Li
et al., 1986). Sheikh and Mukhopadhyay have applied the method to static (Sheikh
and Mukhopadhyay, 1992) and free vibration analysis (Sheikh and Mukhopadhyay,
1993) of stiffened plates in a linear range. The spline finite strip method has been
extended to the analysis of plate structures having edges elastically restrained against
translation and rotation for both unstiffened and stiffened plates (Sheikh and
Mukhopadhyay, July 1993). The same authors also used this method for the linear and
nonlinear transient vibration analyses of plates and stiffened plates (Sheikh and
Mukhopadhyay, 2002).

Among all the numerical methods finite element method is the most realistic and
versatile tool being reasonably accurate and less complex to model stiffened panels
(Palani et al., 1992). Since many investigators have applied this method for the
analysis of stiffened plate structures, considerable amount of literature is available in
various publications. Herein only some of the main literatures on finite element
analysis of plates are presented. The theory behind finite element method can be

found in many textbooks (e.g.Zienkiewicz, 1977).
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Olson and Hazel (1977) studied the effect of stiffness on various modes of vibration
and they performed experiments using real time holography. The plate was modelled
using triangular elements including bending and in-plane displacements. The
stiffeners were modelled by beam bending and torsion elements. The first twenty four
vibration modes were predicted and measured for four different type of stiffened
plates. Experimental results were compared with those analytically obtained using the
high precision triangular plate bending element. Experimental results have been
compared with a finite element model consisting of a three noded plate element with
three degree of freedom per node and associated with a compatible beam element by
Rao et al. (1978). Different finite element models have been proposed by
Mukhopadhyay and Satsangi (1984) and Deb and Booton (1988) for static analysis,
and by Mukherjee and Mukhopadhyay (1988) for vibration and dynamic analysis of
stiffened plates with arbitrarily located eccentric stiffeners. Similar approaches which
involve plane element shape functions (eight noded Serendipity) are used in deriving
the stiffness/mass properties of the stiffeners and assembled with the stiffness/mass of
the plate to arrive at the stiffness/mass of the eccentric stiffened plate models in the
studies above. The early studies in the literature on stiffened plates/shells with
arbitrarily located stiffeners have been restricted to use eight noded isoparametric
Serendipity element; however, this element locks in shear for thin plates (Palani et
al., 1993). The shear strain term considered on the basis of Mindlin’s theory in the
isoparametric element gives rise to the shear locking problem with the decreasing
thickness in the element (Barik and Mukhopadhyay, 1998). Barik and Mukhopadhyay
(1998) use a new four noded plate bending element for the free vibration of arbitrary
plates to overcome the drawback of isoparametric element. Two finite element models
for static and vibration analysis of stiffened plates/shells with eccentric stiffeners
(Palani et al., 1992) have been extended to perform the same analysis of stiffened
plates/shells with arbitrarily located eccentric stiffeners in Palani et al., (1993). An
isoparametric stiffened plate bending element for dynamic analysis of stiffened plates
under time varying loads (distributed and point sinusoidal loading and air blast
loading) has been studied by Mukherjee and Mukhopadhyay (1987).
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Mukherjee and Mukhopadhyay (1988) compared the use of consistent mass matrix
and lumped mass matrix in the plate formulations. In their study it is suggested that
while using a coarser mesh, the lumped mass scheme produces better results, whilst
those from the consistent mass scheme improve gradually as the mesh divisions are
increased. Since the consistent mass matrix provides a proper discretization
procedure, it involves additional computing. The tendency of the lumped mass is to
render the structure more flexible. A coarser mesh gives a stiffer structure. The
counter balancing effect of the lumped mass results in a softer element at a coarse
mesh. However for higher mesh divisions, the consistent mass formulation gives
better results than the lumped mass. The result from the consistent mass is marginally
better for higher natural frequencies. They also investigated the effect of eccentricity
in clamped and simply supported stiffened plates. It is concluded that for boundary
conditions where the inplane motions of the supported edges are restrained (e.g.
clamped), no significant change of frequencies is obtained through the consideration
of inplane degrees of freedom. For plates where the inplane motions take place at the

boundary (e.g. simply supported), the effect of eccentricity is significant.

Static three-dimensional finite element analysis of ship structures is studied using a
superior stiffened plate element to the existing isoparametric element of
(Mukhopdhyay and Satsangi, 1984) by Kumar Satish and Mukhopadhyay (2000).
This element can accommodate any number of arbitrarily oriented stiffeners and

eliminates the use of mesh lines along the stiffener.

Vibration of a square clamped panel with varying stiffener length is investigated by
Nair and Rao (1984) using high precision triangular plate bending elements and beam

elements including bending and torsion for stiffener.

Koko et al. (1992) have developed the so-called “super element”, which allows a
coarser mesh to be considered, typically one or a few elements between adjacent
stiffeners, to model the free vibration of stiffened plates. Only a single element per

bay or span is needed to model the response.
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Bardell (1988) has developed a hierarchical FEM for the vibration analysis of plates.
A distinct advantage of this method is that the system matrices for a given
interpolation order can be used to form the matrices for a larger interpolation order.
The interpolation functions used by Bardell are based on integrated Legendre
orthogonal polynomials. Beslin and Nicholas (1996) have proposed a set of
trigonometric hierarchical functions in order to predict high order modes of vibration
of bending plates with arbitrary boundary conditions. Barrette et al. (2000) investigate
vibration analysis of stiffened plates using hierarchical finite elements with a set of
trigonometric interpolation functions. The trigonometric set offers better numerical

stability at higher frequency, compared to polynomial set of Bardell (1988).

Szilard (1974) and Mota Soares et al. (1980) have investigated the transient vibration
analysis of bare plates subjected to sinusoidal excitation by the analytical solution and
the mixed finite element model, respectively. Transient linear dynamic response of
plates and shells with or without stiffeners, subjected to different kinds of load-history
has been studied by the finite element method (Sinha and Mukhopadhyay, 1995).

As a conclusion finite element method is the most widely used approach. However,
the method requires many elements for accurate modelling of the structure and the
accuracy of the response increases with the higher mesh density. With the increasing
frequency due to the shortening wavelength of structural deformation, the finite
element method requires mesh refinement (Bercin, 1997). Hence the method is costly
regarding computer time. Therefore the method can be seen unattractive for

preliminary design where repeated calculations are inevitable.
Depending on the structural configuration, loading, boundary conditions, accuracy of

the results required and the computer capabilities available, one can make a proper

selection of the method for the analysis of stiffened plate problems.
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3 PERIODIC RESPONSE of UNIFORM BEAMS

3.1 Modal Analysis of Beams

Modal analysis is used to determine the vibration characteristics (natural frequencies
and mode shapes) of a structure or a machine component while it is being designed.
The natural frequencies and mode shapes are important parameters in the design of a
structure for dynamic loading conditions. It also can be a starting point for another,
more detailed, dynamic analysis, such as a mode superposition harmonic, transient, or

a spectrum analysis.

Here, two basic beams with different boundary conditions, free-free and pinned-
pinned as shown in Figure 7 and Figure 8, respectively, are examined by a modal
analysis to determine their dynamic characteristics. The Euler-Bernoulli beam theory,
in which the beam deformations are assumed due to the bending moment as a result of
having small cross-sectional dimensions compared to the length of the beam, is used
to obtain the dynamic characteristics. The effects of rotary inertia and shear
deformation are neglected in the Euler-Bernoulli beam theory. These effects are
considered in the Timoshenko beam theory. These theories can be found easily in
every mechanical vibration book, therefore in the following part only a brief

description of the relevant basic equations related to Euler beam is presented.

An element of Euler beam subject to external force f(x,¢), bending moment M (x,¢)

and shearing force V'(x,¢) is given in Figure 6:

fix1) M(x,t)+dM(x,1)
M(x,t)

Vixt)+dV(xt)

w(x,t) Vix) <____>d |
X

Figure 6 A beam in bending(Rao, 1995)
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According to the Euler beam theory, the equation of motion for the forced lateral

vibration of a uniform beam is (Rao, 1995):

o*w 0w
El——(x,t)+ pA
ox* @0+ p ot?

where w(x,t) is the transverse displacement,”~ is Young’s modulus and 7 is the

(x,0) = f(x,0) (32)

moment of inertia of the beam cross section about the y-axis, p is the mass density,
A is the cross-sectional area of the beam and f(x,f) is the external force per unit

length of the beam.

For free vibration, f(x,t) = 01is substituted and after the free vibration solution:
W(x)=C, cos fx+C,sin A+ C, cosh fx+ C, sinh fAx (33)

EI
pAl*

o=p 2 _(ay (34)
pA

are obtained. The function W (x) is the normal mode (mode shape) or characteristic

function of the beam and @ 1is the natural frequency of vibration. For any beam there
will be an infinitive number of normal modes with one natural frequency associated

with each normal mode. The unknown constants C; to C, and the value of S can be

determined from the boundary conditions of the beam as indicated below.

The common boundary conditions are as follows:
o*w
2

=0

Free end: Bending moment= £/ 2
X

2
Shear force= _6_ El 0 ;V =0
ox ox

Simply supported (pinned) end:

Deflection=w=20

Bending moment= EJ =0

Fixed (clamped) end:

Deflection= 0

Slope = w_ 0
Ox
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3.1.1 Free-Free Uniform Beam
The free-free uniform beam with the dimensions shown in Figure 7 is taken as a

sample:

10 m

|/ 100 m

Figure 7 Free-free uniform beam

The properties of the beam are as follows:
Young’s modulus, E =207e’N/m*
Mass density, p =7860kg | m’

3
Moment of inertia, /(x) = bILZ =833.33m"

As mentioned in the previous section, natural frequencies for each mode » can be
found using the Eq.(34):

El
pAl*

g b B 2
eFEp a—(ﬂnl)

The values of B3,/ for each type of boundary condition can be found in textbooks and

in this case, for the free-free uniform beam, these are:
Sl =4.730041, pB,/=7.853205, [,/=10.995608, p,/=14.137165, (f =0 for
rigid body mode) (Rao, 1995)

Using the above f,/ values and the formula for natural frequency, the natural

frequencies for the first four lateral deflected modes of free-free beam are found as

follows:

@, =33.144rad /s =5.275hz @, =91.364rad /s =14.541hz
@43 =179.108rad / s = 28.506hz @, =296.079rad /s = 47.122hz

The corresponding mode shapes will be:
X 5 : - ¥
W, (x)=C, [cosh(ﬂl)" i +cos( ), 7} Il [smh(ﬂl)" 7 +sin(fl), 7] (33a)

_ ., sinh(BD), =sin(AD),

where y =
cosh(/3l), — cos( 1),

(33aa)
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3.1.2 Pinned-Pinned Uniform Beam

The pinned-pinned uniform beam with its dimensions is shown in Figure 8:

10 m

i B
s Ty [

| 100 m R
-~

~

Figure 8 Pinned-pinned uniform beam

The properties of the pinned-pinned beam are as follows:
Young’s modulus, E =207¢°N/m*
Mass density, p =7860kg / m’

3
Moment of inertia, /(x) = % = 833.33m"

The values of S,/ for pinned-pinned uniform beam are:
Bil=r, Bd=3x, B,l=2x , B,]=4r (Rao 1995)
After substituting all the unknowns in Eq.(34), the natural frequencies for the first

four lateral deflected modes of pinned-pinned beam are found as follows:

o, =14.621rad /s = 2.327hz ®, =58.483rad /s =9.308hz
@, =131.587rad | s = 20.943hz @, =233.933rad /s =37.232hz

The corresponding mode shapes will be:

W,(x)= ,/ (ﬂ) (33b)

3.2 Numerical Modal Analysis of Beams

The beams used in the previous section are modelled in the Finite Element Analysis
(FEA) software called ANSYS. Beam-3 (2-D Elastic Beam) type 20 beam elements
and 21 nodes are used to build the beam in the FE modelling. Beam-3 element shown
in Figure 9, is a two-node uniaxial element with tension, compression, and bending
capabilities. The element has three degrees of freedom at each node: translations in
the nodal x and y directions and rotation about the nodal z-axis (ANSYS Elements

Reference).
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Figure 9 2D-Elastic beam element used in the FE modelling of the beams
(ANSYS Elements Reference)

The translations in the nodal x and y directions are constrained to account for the

pinned —pinned boundary conditions in the FE model of the pinned-pinned beam.

Modal solution is applied after modelling the beams and 10 modes are extracted for
each beam excluding the rigid body modes and the modes with longitudinal
translations. The natural characteristics of these beams obtained from FEA are
presented in Figure 10, Figure 12 and compared separately in the section 3.2.1 and
A2

3.2.1 Free-Free Uniform Beam

Natural Frequency (Hz) Mode shape
Model 5.1695 2 X
Mode2 13.922 & X

Mode3 26.515

Moded 42.367 |
| e o

Mode 5 60.942 Bxx

Figure 10 Mode shapes and natural frequencies of free-free uniform beam-ANSYS

68



F-F beam
Mode 1 Mode 2 Mode 3 Mode4
N. Frequencies
Analytical 5.275 14.541 28.506 47.122
Numerical-4nsys 5.170 13.922 26.515 42.367

Table 1 Comparison of natural frequencies (Hz) for F-F beam after numerical and analytical solutions

Natural Frequencies of F-F Beam

50

45

40

w
o
L

Frequency (Hz)
[
w

Theoretical
------ Numerical-ANSYS

1 2 3 4
Mode number

Figure 11 Comparison of natural frequencies obtained theoretically and numerically for F-F beam

3.2.2 Pinned-Pinned Uniform Beam

Natural Frequency (Hz) Mode shape

Model 2.3175

Mode2 2.1588

Mode3 20.209

Mode4 35.005

ModeS 52.997

Mode6 73.624

Mode7 96.359

Figure 12 Mode shapes and natural frequencies of pinned-pinned uniform beam-ANSYS
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P-P beam
Mode 1 Mode 2 Mode 3 Mode4
N.Frequencies
Analytical 2.327 9.308 20.943 - 37.232
Numerical-ansys 2.318 9.159 20.209 35.005

Table 2 Comparison of natural frequencies (Hz) for P-P beam after numerical and analytical solutions

Natural Frequencies of P-P Beam

Frequency (Hz)
N
S

Theoretical
----- Numerical- ANSYS

Mode number

Figure 13 Comparison of natural frequencies obtained theoretically and numerically for P-P beam

The comparison of analytical and numerical modal analysis shows that the natural
frequencies obtained from both methods are reasonably close (Table 1, Table 2).
However, it is evident that the natural frequencies of lower modes for both beams
agree better than the higher modes. In other words as the number of mode increases,
the differences between the analytical and the numerical results also increase, because
natural frequencies get higher with the involvement of higher modes (Figure 11,
Figure 13). This effect is more dominant in F-F beam as it has higher natural

frequencies than the P-P beam.
As a result the natural characteristics found through the modal analysis by FEA-

ANSYS are satisfactory to use in the following mode superposition harmonic and

transient analyses.
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3.3 Determination of Generalized Coordinates

In the light of orthogonality relations of mode shapes (characteristic functions or
principal modes), it can be shown that the mode shapes satisfy the equations (Bishop,
R.E.D. and Price, W.G., 1979)

[(uan,w, +1,0,0, Y= a5, 35)
0

(E16'0! + kAGy,y Yx = wla, b, =c, (36)

rorsers

Y S

1 ! !
f [akAG}/,}/S + fEIB, 8, )dx =2a,0,0,5,=b, (37
0

where u(x) is the mass per unit length, w, (x) and w,(x) are two of the mode
shapes, a,, is the generalized mass which determines the scales of the characteristics
functions, c,, and b, are generalized stiffness and generalized damping respectively,
I,(x) is the moment of inertia per unit length, &(x,¢) is the slope attributable to

bending, EI(x) is the flexural rigidity, k4G(x) is the shear rigidity, k£ is the constant
related with the shape of the cross section of the structure being examined, y is the
shear strain, ¢ and B are damping constants relating to shearing and bending
distortions respectively, @, is the natural frequency of the ™ mode, v, is the modal

damping factor, and &, is the Kronecker delta function defined by

0 for r£s
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—‘J.(/’W +1, 492

- w’a, jEJ@’%kAGys)dx (38)
0

b“
lI

f (ckdGy? + BEIO? Yix
0

If no allowance is to be made for shear effect and rotatory inertia £ and [, must be

taken as zero and the functionsw_(x), w,(x) will be different;

ju(x)w (X)W, (x)dx = a,,8,,
(39)

rors

_[EI(x)w, w, (dx=w’as,

In modal analysis, the equation of motion for an undamped system, expressed in
matrix notation is;

[ Jo}+ [ o} = {0} (40)
For a linear system, free vibrations will be harmonic of the form:

{w} = {w, }cos Wt
where {w,} is the eigenvector representing the mode shape of the r™ natural
frequency, w, is the r™ natural circular frequency, and ¢ is the time.
Equation (40) becomes:

(- @2 [M]+ [ fw, }= 0} @41
This equality is satisfied if either {w, }={0} or if the determinant of ([K |- oM ]) 18
zero. The first option is the trivial one and, therefore, is not of interest. Thus, the
second one gives the solution:

‘[K]—a)z[M] =0
This is an eigenvalue problem, which may be solved for up to » values of @ and »

eigenvectors {w, }, which satisfy equation (41)
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For mode shape normalization, the mode shapes can either be normalized to the mass

matrix that each eigenvector (mode shape) {w, } is normalized such that:
b ¥ M, }=1
or the mode shapes can be normalized to unity instead of the mass matrix that {w, } is

normalized such that its largest component is 1.0 (unity).

After determining the mode shapes normalized to either mass matrix or unity, it is
possible to derive the generalized mass associated with the ™ mode shape from a
comparison of (a) the mass matrix and, (b) the unit displacement normalization

schemes given as:
(a) {wr }Tn [M]{wr }m = 1 > le arr = 1

®) {5, [MKw,}, =a,

where a,, 1s the required corresponding generalized mass.

Let s, be a scaling factor corresponding to the r™ mode so that:

W s =,

Substituting the above expression into equation (b) gives

S" {wr }; [M]{wr mSI' = aﬂ'

which reduces to

generalized mass =q, = s

(6]

Generalized masses of the beams, calculated according to the different mode shape

normalization (to mass matrix and unity) in ANSYS are as follows:

Mode shapes normalized to mass matrix:

0.960332722 0.916487786 0.864961161 0.80781805 0.747882354
Deflection term | Deflection term | Deflection term | Deflection term | Deflection term
0.03967032 0.083518798 0.135044643 0.19176211 0.250268898
Rotation term | Rotation term | Rotation term | Rotation term | Rotation term
1.000003042 1.000006584 1.000005805 0.99958016 0.998151252
gm(4) g.n) gm(3) Gig.n’) gm(7) (kg.nt) gm(8) kgn) | gm(10) (kg.nt)

Table 3 Generalized masses of the free-free beam (consisting of 20 finite elements) for modes 1-5
corresponding to actual modes 4-5-7-8-10
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0.99183957 [0.967637159|0.931130446| 0.88749587 | 0.8313391 0.769061 0.713577
def. term def. term def. term def. term def. term def. term def. term
4.99705E-1410.031851581]0.068929199] 0.11634051 |0.170727701| 0.228925 0.28834
rot. term rot. term rot. term rot, term rot. term rot. term rot. term
0.99183957 | 0.99948874 |1.000059645| 1.00383637 |1.002066801| 0.997986 1.001916
gm(l) (kg.n?) |gm(2) (kg.n?) | gm(3) (hg.nt) | gm(5) (kg.nt) | gm(7) (hg.rt’) | gm(8) (kg.n?) [gm(10)(kg.n?)

Table 4 Generalized masses of the pinned-pinned beam(consisting of 20 finite elements) for modes 1-7
corresponding to actual modes 1-2-3-5-7-8-10

Mode shapes normalized to unity:

1.96004E+07 1.97903E+07 2.01884E+07 2.08442E+07 2.18060E+07
def. term def. term def. term def. term def. term
8.09701E+05 1.80382E+06 3.15406E+06 4.95423E+06 7.30888E+06
rot. term rot. term rot. term rot. term rot. term
2.04101E+07 2.15941E+07 2.33425E+07 2.57985E+07 2.91149E+07
gm(4) (kg.n) gm(5) (kg.n’) gm(7) (kg.nt) gm(8) (kg.n’) gm(10) (kg.nt)

Table 5 Generalized masses of the free-free beam (consisting of 20 finite elements) for modes 1-5
corresponding to actual modes 4-5-7-8-10

3.93002E+07
def. term

3.93003E+07
def. term

3.92998E+07
def. term

4.34487E+07
def. term

3.92997E+07
def. term

3.92896E+07
def. term

3.92914E+07
def. term

3.23229E+05
rot. term

1.29293E+06
rot. term

2.90906E+06
rot. term

5.71778E+06
rot. term

8.08055E+06
rot. term

1.16328E+07
rot. term

1.58325E+07
rot. term

3.96235E+07
gm(l) (kg.nt)

4.05932E+07
gm(2) (kg.m’)

4.22088E+07
gm(3) (kg.nt)

4.91665E+07
gm(3) (kg.m’)

4.73802E+07
gm(7) (kg.nr)

5.09224E+07
gm(8) (kg.n’)

5.51239E+07
gm(10)(kg.n’)

Table 6 Generalized masses of the pinned-pinned beam(consisting of 20 finite elements) for modes 1-7
corresponding to actual modes 1-2-3-5-7-8-10

The deflection and rotation values in the above tables stand for the numerical

integration results of the first and the second part of the given integral respectively in

Eq.(35). The sum of these two gives the generalized mass.

After mode shape normalization to mass matrix in ANSYS, generalized masses for

each mode shape must be equal to 1 as explained earlier. Hence the integral in Eq.(35)

giving the generalized masses is evaluated numerically for each beam and for each

mode, resulting with generalized masses equal to 1 as shown in Table 3 and Table 4.

The generalized masses found after mode shape normalization to unity shown in

Table 5 and Table 6 can also be used if a subsequent analysis is going to be performed

based on this type of normalization.
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3.4 Analytical Calculation of the Beam Deflections
The general form of the equation of motion of a multiple degrees of freedom system

in matrix form is namely

[ap0}+ BRoO} )} = tF (1)} (42)
where [a] is the generalized mass matrix, [b] is the generalized damping matrix, [c]
is the generalized stiffness matrix, {p(t)} is the principal coordinate representing the
response and {F(¢)} is the generalized force representing input loading. [a], [p] and

[¢] are diagonal matrices, {p(¢)} and {F(¢)} are column vectors.

For a harmonic excitation of the form F(¢) = Fsinwt or F(¢t)= Fcoswt or more

iof

conveniently in complex format F(t) = Fe'” , F indicates the amplitude and @ the

frequency of the harmonic excitation.

According to the theorem due to Rayleigh, any distortion of the beam may be
expressed as an aggregate of distortions in its principal modes. That is to say, for a
symmetric deflection, (Bishop, R.E.D. and Price, W.G., 1979)

w(xt) = 3 p, O, () (43)

where p () is the - principal coordinate.

After solving principal coordinates from the equation of motion for each mode, they
are substituted in Eq.(43) and then total deflection for the desired location is found

using the mode shapes and principal coordinates.

For a harmonic excitation{F'(t)} = Fe™', the response is also harmonic and in the
form { p(¢)} = Pe™ .
{p(t)} = Pice™ . {BO)}=—Pate™

The generalized force F.(¢) corresponding to p, () is (Rao 1995)

F(0)= [ f(x0)w, (n)dx (44)
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In definition, generalized force is equal to the product of the amplitude of the
harmonic force with the modal displacement at the point where the force is applied.
After substituting the equations above to the equation of motion (42)
{PY-lalo? + oo +le]) = {F} (45)

is obtained.
As a result of orthogonality relations

P(-a,0” +ibo+c,)=F, (46)
can be written, where,

a,, =1 (Generalized mass after mode shape normalization to mass matrix)
b, =2a, o, v, (Generalized damping)
c, = w’a,, (Generalized stiffness)

For the undamped condition (5,, =0)

r
"o vad) “n

r

For the damped condition

L,
(0? - 0*) +i20,0,0) 48

r =

Each uncoupled equation for p.(f) is solved and then substituted in the total

deflection equation (43) together with modal deflections for each mode obtained from

FE modal analysis.

A harmonic force is applied to the uniform pinned-pinned beam defined in Figure 8

and the FE visualization of the beam under forced vibration is illustrated in Figure 14.

F =30000sin ot

| 50m

Node 1

Node 11\[/

\

2.
§__

+ D

RN

100 m

Figure 14 FEA model of the uniform pinned-pinned beam
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3.5 Comparison of Numerical Results with Theoretical Calculations on the

Frequency Domain

In this section, a comparison is made in the amplitudes of displacement between
analytical calculation (Eq.43, Eq.47 & Eq.48) and ANSYS after applying mode

superposition harmonic analysis on the pinned-pinned uniform beam considering both

undamped and damped conditions. Following the presentation of the key results,

discussion is made in section 3.6.

3.5.1 Undamped Condition

Forcing frequency range is taken between 0-100 Hz and the comparisons are made at

nodes 5, 11, and 14 with the harmonic force applied at node 11. Only the responses at

node 5 are presented here in Table 7 and Figure 15. In the analytical solution, totally

5, 10 and 17 principal modes are used for harmonic mode superposition.

forcing
freq.(Hz)

2

10

30

50

80

100

ANSYS

8.18150E-06

1.73590E-07

2.34200E-08

5.19140E-09

5.13480E-09

1.84260E-08

17 mode

8.18195E-06

1.73610E-07

2.33978E-08

5.16994E-09

5.11214E-09

1.84486E-08

10 mode

8.18202E-06

1.73541E-07

2.34685E-08

5.24441E-09

5.19753E-09

1.83500E-08

5 mode

8.18092E-06

1.74650E-07

2.22350E-08

3.66922E-09

1.09529E-09

6.57520E-10

Table 7 The values of undamped case amplitudes (in meters) at node 5 (F applied at node 11) on the
frequency domain between ANSY'S and theory (superposition of first 5,10, and 17 modes)

Node 5 {F at node 11)

A;‘tp. (m)
g

0 5 10 152025 DFHPLHDDSOENVDOE DD W 200608

Node§ {F 2 node 1)
o —— 17 rge
-~ —10mde 8058 -~ ~10mode
..... Stode -+ Srode
- ANSYSSH -~ A/
GE®
€ 463
20608
QUOBHD e R +
b 5 101520533354)455055&)&57075&)&35)95717

Freg (2} ) Freg (%)
Figure 15 Theoretical and numerical comparisons of forced-undamped nodal responses at node 5 (F at
node 11), using 5,10 and 17 modes in the harmonic mode superposition method-Both the amplitude
and zoomed in plots shown respectively
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3.5.2 Damped Condition

Three different modal damping ratios 0.01, 0.1 and 0.5 are considered in the system.

The amplitudes are found at nodes 5, 11, and 14, for the damping ratio 0.01. Only the

results found at node 5 with harmonic force applied at node 11 and node 12 are

presented here in Figure 16 and Figure 17 separately. To see the overall effect of

using different damping ratios, Figure 20 and Figure 21 are also added to the end of

this section.

Damping Ratio = 0.01

forcing
freq.(Hz)

2

10

30

50

80

100

ANSYS

8.16279E-06

1.73597E-07

2.33918E-08

5.16859E-09

5.10420E-09

1.78065E-08

17 mode

8.16330E-06

1.73597E-07

2.33913E-08

5.16905E-09

5.10396E-09

1.78062E-08

10 mode

8.16337E-06

1.73528E-07

2.34620E-08

5.24350E-09

5.18930E-09

1.77114E-08

5 mode

8.16228E-06

1.74638E-07

2.22297E-08

3.66921E-09

1.09530E-09

6.57525E-10

Table 8 The values of damped case (dmp.r.=0.01) amplitudes (in meters) at node 5 (F applied at node
11) on the frequency domain between ANSYS and theory (superposition of first 5,10, and 17 modes)

Nock Sap refio-Q0KF at noce 1)

Amp. {m}

) 5 VW BEDBFT I FTDSHSEDPFTODEDHEDDEDSDA

Freq {9)

Am% (m)

Noxk5davp ri0-00KF & noce 1)

0 50UBDSIIPI6DFTOBBDHDDS DD

Fieq ()

Figure 16 Theoretical and numerical comparisons of forced-damped (dmp.r.=0.01) nodal responses at
node 5 (F at node 11), using 5,10 and 17 modes in the harmonic mode superposition method- Both the

amplitude and zoomed in plots shown respectively
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65,0506 10807
—— 17 mode
— — — 10 mode
----- 5mode
40606 — . — <ANSYS54 8008
30606 60608
E E
d. 20806 d 40608
E 3
< <
10606 20508
10821 s = T TS e —— Q0E+00
5 10 1 20 25 30 3B 40 45 50 55 60 & T 75 &0 & W B W
-1.0806 -20E08

Node 5-dampingiF at node 12)

Node 5-campinglF at node 12)

Freq ()

Freg (i)

Figure 17 Theoretical and numerical comparisons of forced-damped (dmp.r.=0.01) nodal responses at
node 5 (F at node 12), using 5,10 and 17 modes in the harmonic mode superposition method-Both the

amplitude and zoomed in plots shown respectively

Amp. (m)

.0E

.BE

.6 E

.8 E

1.2E

.0E

.0E

2.0E-

0E-

.0E-

-07

-07

-07

-07

-07

-08

-08

08

08

0.0E+00O

Node 5

(ANSYS)(F atnode 12)

damp.
no damp.

0

Figure 18

5 10

15 20 25 30 35 40 45 50 55

Freg.{(hz)

60

65 70 75 80 85

Comparison of amplitudes obtained from harmonic excitation-ANSYS (F at node 12) with

and without damping (dmp.r.=0.01)

Amp. (m}

.0E

-1.0€

0 E-

.0 E-

-07

-07

-07

-07

Node 5 (anaiytical)(F a

tnode 12)

A

ode dam p.
ode no dam p

10

15 35 40 45 50 58 60

Freq. (hz)

Figure 19 Comparison of amplitudes obtained from harmonic excitation-analytical (F at node 12) with

and without damping (dmp.r.=0.01)
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Amp. (m)

ANSYS resutts with different Damping ratios(Node 7.F at node 11) ANSYS results with different damping ratios(Node 7.F at node 11)

1.0E-05 1.0E-07
1 ey
-~ = = Damping ratio=0.01 [ — & — Damping ratio=0.01
9.080610 e Dampling ratic=0.1 9.0E-08 1 H - - © - -Damplng rallo=0.1
— - —-Damping ratio=0.5 L ? — -4~ - Damplng ratio=0.5
8.0E-06 Undamped 8.0E-08 1 F b Undamped
7.0E-06 7.0E08 4
6.0E-06 6.0E-08
E
5.0E-06 4 50608
] £
<
4.0E-06 4.0E-00
3.0606 1} 3.0E-08
i
2,0E-06 |L_A 2.0E-08
1.0E-06 1 1.0E-08
0.08+00 A 0.0E+00 v ) =

05’:1‘01‘52‘0253’03‘54’04‘55‘05’56‘06’57‘07‘55‘08‘59;]9’5100 05‘:1‘01‘520253‘03‘540455‘051’)6“0867’07‘5B‘O9095100
Frag. (hz} Freq. (hz)

Figure 20 Comparison of amplitudes (at node 7) obtained from ANSYS (F at node 11) using different

damping ratios-Both the amplitude and zoomed in plots shown respectively

Analytical resuits with different damping ratios{Node 7-F at node 11) Analytical results with different damping ratios(Node 7.F at node 11)
10E.05 1.06-07 =" t+—
= — =17 mode 4=0.01 4 3 — 8 — 17 mode dr=0.01
I I I TP 17 mode d=0.1 9.0E-08 - [ - 0---17 mode dr=0.1
— -~ 17 mode G=0.5 y ¢ ~ 417 mode d=0.5
8.0E08 —— Undamped 8.08-08 I B Undemped
4
70806 7.0E-08 \
4
60506 6.0E-08
E E
& 50E-08 & 5.06-08 -
E E
< <
4.0E-06 4.0E-08
30606 3.06-08
i
20806 { 2.0E-08
10606 1.06-08
JPL ) i el RS
0.06+00 —— - - 0.0E+00 —— —
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 &5 90 95 100
Freg. (hz) Freq. (hz)

Figure 21 Comparison of amplitudes (at node 7) obtained from 17 mode harmonic superposition (F at
node 11) using different damping ratios-Both the amplitude and zoomed in plots shown respectively

3.6 Discussion

At the beginning of Chapter 3, theoretical and numerical-ANSYS modal analyses are
applied to a uniform beam with two different boundary conditions, free-free and
pinned-pinned, as the basis of following harmonic and transient mode superposition
analyses. Good agreements are obtained after comparing both theoretical and

numerical methods.

Generalized components in the generalized equation of motion are determined

depending on the normalization of mode shapes according to mass matrix and unity.
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Expected generalized mass values are obtained and confirmed after mode shape

normalization to mass matrix.

After obtaining the principal modes, natural frequencies and the generalized
components, a harmonic mode superposition method is used to calculate the
amplitudes of the total deflections in different nodes for a frequency range of 0-100
Hz.

In the mode superposition method 5,10 and 17 principal modes are used to see the

difference when different numbers of modes are superposed.

When the figures showing amplitudes versus frequencies are examined in both
undamped and damped harmonic responses, it’s seen that there are significant peaks
in the amplitudes. These peaks occur at different frequencies with different
magnitudes for each node location due to resonance. However the natural frequencies
of the pinned-pinned beam in Figure 12 do not coincide with all the frequencies where

peaks in the amplitudes occur. Because, p,(#) 1 Eq. (43) is equal to zero for

particular modes as a result of zero value generalized force which is equal to the
product of the amplitude of the harmonic force with the modal displacement at the
point where the force is applied. In other words, there are peaks at 2.318Hz,
20.209Hz, 52.997Hz and 96.359Hz, except 9.159Hz, 35.005Hz and 73.624Hz in
Figure 15. By simply looking at Figure 12, it is easy to notice that at node 11, where
force is applied, the modal deflections for natural frequencies 9.159Hz (mode2),
35.005Hz (mode4) and 73.624Hz (mode6) are all zero. To make this point clearer,
Figure 17, representing forced-damped (damp.r. =0.01) nodal responses at node 5
when harmonic force is applied at node 12, is also a good example. There are six
peaks in this graph and all coincide with the natural frequencies of the pinned-pinned
beam in Figure 12 except 52.997Hz. Because in this case, modal deflection required
at the force application node 12 for generalized force calculation is not zero at
52.997Hz(modeS-Figure 12), but the modal deflection at node 5 itself is zero. This

results with a zero value contribution of mode 5, which has a natural frequency of
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52.997Hz, in the mode superposition method and erases the resonance effect from

Figure 17 for this particular natural frequency.

Another conclusion that must be given here is the effect of using 5, 10 and 17 number
of modes in harmonic mode superposition. As the forcing frequency increases,
convergence of 5 modes is not sufficient. On the other hand, using 10 and 17 modes
brings the contribution of higher modes to the overall response and makes the mode
superposition converge successfully (Figure 16). The ANSYS results agree with the
analytical mode superposition method results using 10 and 17 modes as seen in Figure
16.

Same analysis is repeated for damped condition and results are compared analytically
and numerically. As expected, the amplitudes decreased with the existence of
damping which can be seen in Figure 18 and Figure 19. To see the effect of different
damping ratios in ANSYS and theory, and to be sure about modelling the damping
correctly in two methods, harmonic responses of pinned-pinned beam with damping,
at node 7 is presented in Figure 20 and Figure 21 respectively. In these figures it is
evident that as the damping ratio increases from 0.01 to 0.1 and 0.5, the amplitudes

decreases accordingly.
Both ANSYS and analytical calculations give the same responses. Thus, the

modelling of harmonic response with damping also verifies each other in these

methods.
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4 DRY ANALYSIS of a SWATH

Dry analysis of a multi-hulled vessel is presented in this chapter. Multi-hulled vessels

have a great importance in naval architecture because of their advantages. A SWATH-

like uniform ship is taken as an example. The concept of the Small Waterplane Area

Twin Hull ship (SWATH) evolved through many years and is still quite attractive.

Since the early 70s, a lot of research has been carried out concerning the structural

design of these vessels. A SWATH ship’s key advantages are:

¢ Ability to sustain a high proportion of its normal cruising speed in rough seas, in
other words it has overall seakeeping quality,

o Steadiness and ride quality ending up with the decrease in the possibility of
becoming seasick,

¢ Its broad loading deck compared to a single hull ship of equivalent displacement.

The dry analysis of an idealised SWATH ship is carried out, as a preamble to a future

deck analysis.

4.1 Modelling of a Uniform Idealised SWATH Ship by ANSYS
The dynamic characteristics of the SWATH ship in vacuo are determined using the

FEA program ANSYS (modal analysis) after modelling it with the same dimensions
used by Wu (1984).

To create the FE model of the ship, Beam44 (3-D tapered unsymmetrical beam) and
Shell 63 type of elements are used in ANSYS. Beam44 in Figure 22, is a two-node
uniaxial element with tension, compression, torsion, and bending capabilities. The
element has six degrees of freedom at each node: translations in the nodal x, y, and z
directions and rotations about the nodal x, y, and z axes. This element allows a
different unsymmetrical geometry at each end and permits the end nodes to be offset
from the centroidal axis of the beam axes (ANSYS Elements reference). Beam 44 can
also be used with any cross section type such as rectangular, I, L, T, Z, including any

user defined cross section.
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The geometry, node locations, and coordinate system for this element are shown in
Figure 22. The element is located by a reference coordinate system (x’, y’, z’) and
offsets. The reference system is defined by nodes I, J. The principal axes of the beam
are in the element coordinate system (x, y, z) with along the cross-section centroid
(C3.),

DX, DY and DZ are offset constants and they define the centroid location of the
section relative to the node location. TKZT1 and TKYT1 are top thicknesses at end 1
where TKZB1 and TKYBI1 are bottom thicknesses (ANSYS Elements reference).

v

Figure 22 BEAM44 3-D Tapered unsymmetric beam (ANSY S Elements reference)

Element Shell63 in Figure 23 has both bending and membrane capabilities. Both in-
plane and normal loads are permitted. The element has six degrees of freedom at each
node: translations in the nodal x, y, and z directions and rotations about the nodal x, y,

and z axes (ANSYS Elements reference).

The geometry, node locations, and coordinate system for this four-node element are as

shown in Figure 23.

84



Figure 23 SHELLG63 Elastic shell (ANSYS Elements reference)

Beam44 elements are used to model lower hulls and Shell63 elements are used to

model struts and the deck as given in Figure 26.

The reason of using offset beam elements can be explained by referring to Figure 24.

node Strut
(Shell
element)

/

node

Before merging the

Lower
hull
(Beam

element) After merging the
After merging the

13
A}
A
\ )
A A
) \
] 1
)
A}
1
pemmm e mmmm———m
)
)

nodes of Beam44

nodes without using offset element with

nodes of the strut
offset beam the nodes of Shell63

Figure 24 Comparison of offset and non-offset element application, based on the real constant
descriptions

While modelling the SWATH-like ship, the main dimensions are taken same as the
main dimensions of the model SWATH in Wu’s thesis (1984). In the following
section, modal analysis results will be compared with each other. The only difference
from Wu’s model is, mass and stiffness distributions used in his model are taken as

uniform in this current model.
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pd

22754 m

Shell63 element

12.197 m

Figure 26 Finite element idealization of the SWATH model

A =2788ton, (10.66 ton less than the model of Wu)

Dimension of lower hulls with square cross section =4.541x4.541m (Beam 44

element thickness for lower hulls is also 4.541m)
Width of struts with rectangular cross section =2.189m (Shell 63 element thickness

for struts)
Height of bridging structure =4.225m (Shell 63 element thickness for bridge)

Young’s modulus, £ for the lower hulls, £,=1411074110 N/m?
for the struts and the bridge, £, = £, = 0.6E, = 846644466 N /m*
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4.1.1 Modal Analysis of the Idealised SWATH Ship by ANSYS
The following natural frequencies and mode shapes were obtained:
Mode 7, Natural Freq.=1.433 Hz

*

--;______%

e

e
.__JI\\\{{\__.
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Mode 14, Natural Freq.=5.355 Hz
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Mode 15, Natural Freq.=5.511 Hz
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Mode 16, Natural Freq =5.591 Hz
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Mode 20, Natural Freq.=9.004 Hz
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4.2 Comparison of FEA results with an Existing Study on the Similar Model
SWATH and Discussion

The preliminary results obtained from current modal analysis are compared with the

model created by Wu (1984). The following Table 9 represents the comparison of

natural frequencies of non-rigid body modes in both analyses.

Mode index 7 8 9 10 | 11 | 12 | 13 | 14 | 15
Natural Freq. (Hz)(ANSYS) |1.433|1.439/1.813/2.297 2.909]/2.980|3.161|5.355|5.511
Natural Freq. (Hz)(Wu's model)|1.51511.539/1.954 2.661/3.126{3.14313.413 5.612|5.738

Table 9 Comparison of natural frequencies obtained from ANSYS in this current document and the
modal analysis done by Wu (1984).

When the natural frequencies are compared numerically, there are differences in the
values, mainly because of the difference in the mass and stiffness distribution.
However, when the natural frequencies are compared graphically in Figure 27, it is
seen that they both have similar characteristics. On the other hand, if this model
SWATH ship was going to be build, an intense attention has to be paid on the
connections of struts with hulls as a result of the local modal deflections especially in

higher frequencies (sec. 4.1.1).

Comparison of Natural Freq. Between Two models

—£&—Model by ANSYS
--<-~Model by Wu

Natural Freq. (Hz)

& 7 8 9 10 11 12 13 14 15 18
Mode index

Figure 27 Comparison of the natural frequencies of the SWATH-like vessel modeled by Wu and the
similar one modeled in this document

The results above show that the 3D-dry analysis of the SWATH in this document is
done successfully. At the same time an advanced modelling in comparison to beam is
performed and especially useful knowledge is gained regarding offset node

application. These all can form the basis of a more complicated dry analysis.
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5 THEORETICAL and NUMERICAL MODELLING of TRANSIENT
ANALYSIS

If a structure is excited by a suddenly applied non-periodic excitation, the response is

transient since steady state oscillations are not produced. When the forces are applied

for a short interval of time, the term ‘transient’ should be applied to the situation.

Subsequent motion of the structure is free vibration, which will decay due to the

damping present.

If the forces are applied for a short time, the maximum response will occur during the
first oscillations. If the damping is small, its effect on the maximum response will be

small (Thomson, 1981).

5.1 Impulse Excitation
The simplest form of a transient force is the impulsive force. An impulsive force is

one that has a large magnitude F and acts for a very short period of time Af. By

designating the magnitude of the impulse FAr by F , it can be written that (Rao,
1995),

1+AL
F= [Fdt (49)

t

When F is equal to unity, such force is called the unit impulse and defined as;

1+At

f:m [ Fat=Fdr =1 (50)

5.1.1 Response to an Impulse
Considering the response of a single degree of freedom system to an impulse
excitation as an example is important in studying the response under more general

excitations.
If a viscously damped spring-mass system is subjected to a unit impulse at # =0, as

shown in Figure 28, the equation of motion of this underdamped system and its

solution is given by;
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Figure 28 Unit impulse (Rao, 1995)

w
Figure 29 Impufse response function (Rao, 1995)

where

damping ratio,

frequency of damped vibration,

natural frequency of the system.

If the mass is at rest before the unit impulse is applied (x = X =0 for t <0), from the

impulse-momentum relation (Rao, 1995);

Impulse= 7 =1= mi(r = 0)— mi(t < 0) = ms, (52)
Thus the initial conditions are given by;
x(t=0)=x,=0
53
)2(t=0)=)&0=l >3)
m
In view of Egs.(53), Eq.(51) reduces to
e—;’a}nt
x(t)=g(t)= sin @t (54)
ma,

Equation (54) is the response of a single degree of freedom underdamped system to a

unit impulse, which is also known as the impulse response function, denoted by g(¢)

in Figure 29.
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If the magnitude of the impulse is £ instead of unity, the initial velocity X, 1S Elm

and the response of the system becomes

e_gwnr

x()=F

sinw,f = Fg(f) (55)
ma,

If the impulse F is applied at an arbitrary time ¢ =7 as shown in Figure 31(a), it will
change the velocity at f=7 by an amount Elm. Assuming that x=0 until the
impulse is applied, the displacement x at any subsequent time ¢, caused by a change
in the velocity at time 7, is given by Eq.(55) with ¢ replaced by the time elapsed after

the application of the impulse, that is, 7 ;

x(t)=Fg(t-7),  shown in Figure 31(b) (56)
F
@ T
AN
Flommemee _
F (1)
N\
F(r
F0, .
! /
I : % <
to : ! % 1 T
vy ! % 1
[ 1' % 1
da 2 '
s ? x(f)
P % : b
b % : A
0 | i : : 5
t
T T+AT
Figure 30 Arbitrary forcing function (Rao, 1995)
0
.

Figure 31 Impulse at arbitrary time (Rao,1995)
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5.1.2 Response to a General Forcing Condition-Arbitrary Excitation

An arbitrary external force F(¢), shown in Figure 30, may be assumed to be made up
of a series of impulses of varying magnitude. Assuming that at time 7, the force F(7)
acts on the system for a short period of time Az, the impulse acting at f =7 is given

by F(r)Ar and its contribution to the response at time ¢ is dependent upon the
elapsed time (¢ -7). So the response of the system at ¢ due to this impulse alone is
given by Eq.(56) with ¥ = F(t)Atg(t—1);

Ax(t)=F(t)Arg(t-7) (57)
The total response at time ¢ can be found by summing all the responses due to the

elementary impulses acting at all times 7 (Rao, 1995);
x(1)= ) F(r)glt—r)dr (58)

If Az — 0 and summation is replaced by integration;

!
x(t) = jo F(t)g(t~1)dr (59)
The integral in Eq.(59) is called the Convolution Integral (Rao,1995). By substituting
the impulse response function g(¢)in Eq.(54) into Eq.(59),

1
me,

x(t) = jo’ F(r)e ™ sinw, (t—1)dr (60)

which represents the response of an under-damped single degree of freedom system to
the arbitrary excitation /(¢), is obtained (Rao,1995).
For the undamped case of single degree of freedom system to the arbitrary excitation,

=0 and @,=0,= x() =—1—J’F(r)sinwn(t-r)dr (61)
ma, <0

5.2 Transient Response of the Beams
Transient analysis is the basis for modelling the excitation and the response induced
by slamming. Because of the nature of the slamming forces, transient excitations will

be studied in the following parts.

Any arbitrary excitation can be regarded as a superposition of impulses of varying

amplitude and time of application as explained earlier.
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To be able to build the basic idea of modelling the excitation and the response for any
arbitrary excitation, triangular and sinusoidal impulses are applied to a pinned-pinned
and free-free beam as examples. The responses to these impulses are obtained by
using numerical evaluation (convolution sum) of convolution integral. The results are
then compared with ANSYS (transient analysis using both mode superposition and
full methods). The method for numerical evaluation of convolution integral used in
the extraction of principal coordinates is also compared with the analytical solution of

convolution integral.

The symmetric responses (i.e. vertical displacement w(x,7), bending moment
M(x,t), and shear force V' (x,t)) at any point along the structure can be expressed by

summations in the form,

w(x,r)=§p,(r>w,(x) (62)
M(x,0=3 p(OM,(x) 63)
vt =3 pV.(x) (64)

where p,(t) is the 1™ principal coordinate.

Together with the orthogonality, system can be regarded as consisting of n single
degree of freedom uncoupled equations of motion. After solving each uncoupled
equation for p,(¢)using generalized components, different number of mode shapes
from FE analysis are used together in the total deflection equations similar to the

method in section 3.4.

The response of an underdamped single degree of freedom system given by Eq.(60)

can be taken as the principal coordinate of ' mode;

1

a,a,

p.(0) = j;F,(r)e'“’"r " sin e, (t - 7)dr (65)
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5.2.1 Methodology
For the forcing functions that can not be easily modelled analytically, a discrete time
method may be used to obtain the solution of convolution integral. According to this

method excitation and response are going to be treated as discrete functions of time.

The continuous forcing function 7(¢) will be defined for discrete values of time ¢,
(k=0,1,2,...) as seen in Figure 32. The discrete time values are taken ordinarily at
equal time interval, so that ¢, =k7, where 7T is the sampling period. As an
illustration, assuming that the continuous-time function F(¢) shown in Figure 32 is

sampled every T seconds beginning at f=0, the discrete-time function
F(kT) = F(k)consists of the sequence F(0),F(1),F(2),..., where for simplicity the
sampling period 7" is omitted from the argument (Meirovitch, 1986).

F(t) F(t,)
N /

o~

Figure 32 Conversion of a continuous function into a discrete one

Under this methodology the response of the system can be denoted as the discrete-

time response by p(n):

p(n):iF(k)g(n—k)ziF(k)g(n—k), t,=nT=n (66)

Equation (66) is the response of a linear discrete-time system in the form of a
convolution sum and it represents the discrete-time counterpart of the convolution
integral given by Eq.(59) where p is the principal coordinate representing the
response, ['is the generalized force and g is the impulse response as issued in

section 5.1.1.
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While using this method it is important that the sampling interval 7' is small enough

that the angular frequency w, exceeds the highest natural frequency of the system

being analyzed. If it does not, higher frequency components present in x(n) or p,(n)

will lead to errors. @, is called the Nyquist frequency and given by @, =7/T

(Newland,1989).

5.2.2 Pinned-Pinned Uniform Beam

The same pinned-pinned uniform beam, which is studied in chapter 3 with the same

properties, shown in Figure 33 is under transient excitation.

F()
4 Node 11
g 50 m ul o 10m
I le!
E
| | i
| 100 m I
Figure 33 Pinned-Pinned uniform beam
Mode 12|13 |4|S5]|6]|7 8 9 10 11 12 13 14 15 16 17
N(.II:'IrZe)q. 2.319.2120.2|35.0/53.0|73.6/96.4| 120.7 | 146.4 | 173.0|200.4 | 228.5|257.0|286.0|315.4|345.3|375.5

Table 10 Natural Frequencies of the pinned-pinned beam (Hz)

Rectangular and triangular pulses illustrated in Figure 34 are applied to the pinned-

pinned beam. ANSYS results are compared with the results in which principal

coordinates are evaluated from the numerical solution of the convolution integral by

using the method explained in section 5.2.1.

F(0) F(t) F()
30000 N 30000V 30000V
t(sec.) t(sec.) t(sec.)
0 1 i 0 o5 1 0 05 1 4

Rectangular Pulse

Triangular Pulse

Sinusoidal Pulse

Figure 34 Rectangular, triangular and sinusoidal pulses used in the transient analysis
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The rectangular and triangular pulses in Figure 34 are applied to the pinned-pinned
beam. Here only the responses to the triangular impulse are given in Figure 35.
Rectangular impulse responses show the same characteristics with a different overall
response as shown in Figure 89 in Appendix. To compare the accuracy in evaluating
the principal coordinates by convolution sum, two different discrete time intervals are

used, 7=0.01sand T =0.002s.

PP Beem Tergler Rise, Nods 11 PP Beamn Triengufer Puse, Node 11
@mr=001) x10" (O.=00)

£ E
315,, .................................................................................... o g

P-P Baam , Trianguiar Pulse, Node 11
x 10 {Omp.r=0.01)

Amp. (m)

(©)

—— 17 mode, dt=0.01
w4 ANSYS
—=— 17 mode, dt=0.002 |

i
2.8

Time (s)

Figure 35 Comparison of ANSYS results against convolution sum results using two different time
intervals such as dt=0.01s. and dt=0.002s. for the transient response of the pinned-pinned beam as
displacements(uz) at node 11 to a triangular impulse as shown in section 5.2.2
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When the damped transient response in Figure 35a is examined, two phases are
significant. The first phase which takes place during the pulse between 0-1sec. and the
second phase which is after the end of the pulse between 1-4sec decaying due to the

damping ratio 0.01.

Figure 35b shows the zoom-in view of the first phase and here the Nyquist frequency
effect is present for the discrete time interval 0.01s.. 17 mode transient superposition
using time intervals of 0.002s. in the numerical evaluation of the principal coordinates
in the transient response of the pinned-pinned beam, coincides with the transient
response obtained from ANSYS. Decreasing the time interval to 0.002s. brings the
response obtained using convolution sum closer to ANSYS result. However, in the
second phase after the end of the pulse in Figure 35¢, using 0.01s. and 0.002s. time

intervals gives the same response.

Amp. (m)

P-P Baam,Triangular Pubss, Noda 11 RPBem Tiarg fer Ruse, Nock 11
> Wt Dmp.~001), 40002 <10 OmrQ0f, d=0ap
e T T T T T T I
i 1 : =+ 17 med2
-4 made
3 == Smide
35_ i 't-Ldl'u'ni':i H
=i Imedz
8- 2meda
EIRAET S B SO s I ke 1.0 AR LI NSO -6 | madz

Tirma (3)

(@) (b)
Figure 36 Convergence analysis of different number of modes in the transient response of pinned-
pinned beam as displacements (uz) at node 11 under triangular impulse, using mode superposition with
dmp.r.=0.01 and discrete time interval dt=0.002s.

Another issue, which is illustrated in Figure 36, is the convergence of the modes in the
mode superposition method used in the transient analysis. Convergence occurs after
superposing 5 modes as seen in Figure 36b. In other words, the superposition of first 4

modes does not converge.
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The sinusoidal pulse shown in Figure 34 is also applied to the pinned-pinned beam
and displacements and bending moments in the middle of the beam are calculated for
two different discrete time intervals same as before. Results are then compared with
using analytical solution of the convolution integral in the extraction of principal
coordinates. The procedure followed in this stage is as follows;

- 30000sinzt 0<r<1 7
= 0 t<0 and t>1 )

The response during the pulse is given by:

1
arr a)d

p,(0)= jo’ F.(r)e ™ Vsinw,(t-1)dr (68)

and the response any time subsequent to the termination of pulse is given the same as

Eq.(60) with only difference in the upper limit of the integral,
p()=—— [ F(9)e P sino (- 0)dz  (69)
an'a)d b

The responses obtained using the numerical solution to the above integral are referred

to as Analytical results in the following charts.

PP Beam Sirascidal Pudse, Hode 11
i 104 {Omp.F00Y)

T i T T T I
: P | — W mode, 000
o 17 mode, =002

@ (b)

Figure 37 Comparison of analytical results against convolution sum results using two different time
intervals such as dt=0.01s. and dt=0.002s. for the transient response of the pinned-pinned beam as
displacements (uz) at node 11 to a sinusoidal impulse as shown in section 5.2.2
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In Figure 37, the response belonging to convolution sum method with 0.01s. time
interval differs from the other two. Convolution sum method with 0.002s. time

interval gives the same response as analytical solution method.

i oo’ (DOmp.=0.01), #=0002

P-P Beam,Sinusoidd Pulse, Hode 11

T
—+ 7 mods
-+ 10mads
== 5 mode
& 4 medz
& Imode
1.8 2meds |
-5 1madz

(@) (b)
Figure 38 Convergence analysis of different number of modes in the transient response of pinned-
pinned beam as displacements (uz) at node 11 under sinusoidal impulse, using mode superposition with
dmp.r.=0.01 and discrete time interval dt=0.002s.

Modes also convergence in Figure 38 showing the displacements over time under

sinusoidal excitation.

After the following two figures Figure 39 and Figure 40, illustrating the bending
moments of the pinned-pinned beam at mid-element 11 with two different time
intervals, are studied, it can be said that the Nyquist frequency also effects the
convergence of the modes. On the other hand if the convergence in the displacement
results is compared with the one in the bending moment results for the same discrete
time interval 0.002 as in Figure 38 and Figure 40 respectively, it is noticed that the
number of modes used has more effects on bending moments than the displacements.
This can be explained by the similar logic given in the discussion 3.6 related with

modal bending and modal-uz deflections.
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Referring to the mode shapes and modal bending moments of pinned-pinned beam in
Appendix is necessary at this stage. In the modal bending illustrations at mid-element
11 in Figure 91, the values of bending moments different from zero continue to
increase as the number of modes increase resulting with the convergence pushed into

higher modes.

However, in the mode shapes illustration in Figure 90 in Appendix, at node 11 where
the impulse is applied, the values of modal deflections different from zero do not
continue to increase, relatively to the case above, as the number of modes increase.
Hence a better convergence is obtained using the same range of modes in the transient

mode superposition method.

SPAD Beam, F ot Nods 11, Brd o elament 11 SPRPBam Fat Nk 1, Bvidt davert 11
i [y =001, TR0 [Om=Q01, 17001

=+ 17 Mode Come
+ {0bote O |, |
-5 pde Com ]
D[ bl |

4+ il |

10 2MedeCom. [T
£ hde e

i I | | 1 | \ \

0 .1 D [<1] 0 9]
0 LI 10 Ll b A n k)] a !
drserste tog vaiuasfsamylog perd ) dstetine\shestiamping i)
(a) (b)

Figure 39 Convergence analysis of different number of modes in the bending moment response of
pinned-pinned beam at element 11 under sinusoidal impulse, using mode superposition with
dmp.r.=0.01 and discrete time interval dt=0.01s.
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Figure 40 Convergence analysis of different number of modes in the bending moment of pinned-
pinned beam at element 11 under sinusoidal impulse, using mode superposition with dmp.r.=0.01 and
discrete time interval dt=0.002s.

5.2.3 Free-Free Uniform Beam
The uniform free-free beam in Figure 7 in chapter 3 with the same properties is also
used as a sample for the transient excitation. The natural frequencies for its higher

modes are given in Table 11:

Mode | y | 2|3 |4|5|6| 7| 8| 9 | 10| 11| 12|13/ 14] 15

N Freq.
(Hz)

5.2 113.9|126.5|42.4160.9(81.7| 104.3|128.3|153.4(179.5/206.2|233.6|261.6|290.0(319.0
Table 11 Natural Frequencies of free-free beam (Hz)

This time the same sinusoidal impulse is applied on the free-free beam at node 21.
Following figures illustrate the bending moments at element 11 with two different

discrete time intervals used as before.
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Figure 41 Convergence analysis of different number of modes in the bending moment response of the

free-free beam at element 11 under sinusoidal impulse, using mode superposition with dmp.r.=0.01 and
discrete time interval dt=0.01s.

Figure 41 shows a very poor convergence. Superposition of 10 and 15 modes goes
apart from the rest, which form a cluster. As the time interval is decreased to 0.002s,
the same illustration turns into Figure 42, in which now a relatively better
convergence is observed. This suggests that if a smaller time interval than 0.002s is

used the expected convergence is going to be the best of all.

S.PFF Boarn, F at Yode 21, BM ¢ i, elemant 11, [Omp =001, As(TF0 002} S.P.F-F Beam, F al Node 21, BMal mid. elemnent 11, {[Dmp.r=0.01, 1s(T)=0.002)
f Comulian Sum x10° Camalution Sum

M (nm)

X 5 ' 2
3 an

%
Time D002 {s) Time "0.002 (5)

(a) (b)
Figure 42 Convergence analysis of different number of modes in the bending moment response of the
free-free beam at element 11 under sinusoidal impulse, using mode superposition with dmp.r.=0.01 and
discrete time interval dt=0.002s.
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Additionally, the position of the pulse and the position where displacements, bending
moments etc. is evaluated also effects the convergence issue as explained in the
previous section. It is a matter of zero value presence of the modal responses at the

positions mentioned above.

5.2.4 Conclusive Remarks

The aim of this part of the document was obtaining transient response for simple
beams. To do the comparisons easily three different types of impulses, which are
rectangular, triangular and sinusoidal, are used. In the previous sections, results

regarding triangular and sinusoidal impulses are presented.

In the transient analysis methodology, using 7 = 0.002 s. discrete time interval, which
is small enough, particularly for pinned-pinned beam gives closer results to ANSYS
and analytical calculations. Apart from being required by the nature of discrete
systems, smaller time intervals are needed because of the high natural frequencies of
the beams which can be seen in Table 10 and Table 11. The beams taken as examples
have rigid characteristics and especially free-free beam has quite high natural
frequencies. Hence, a smaller time interval than 0.002s. in the transient analysis of

free-free beam must be used.

During the analysis, convergence is also appeared to be another significant issue. It is
seen that the number of modes used in superposition has more effect on the bending
moment results than the displacement results. This is explained by establishing a
relation between the values of modal responses such as mode shapes, modal bending

moments and the locations of impulse application and the evaluated response.
As a conclusion, using discrete-time method in convolution sum is a satisfactory

method for principal coordinate evaluation, when used with small enough time

increments. Any type of excitation can be analyzed by using this method.
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5.3 Transient Response of the Flat Unstiffened and Stiffened Plates

The aim of this section is to analyze the transient response of a local structure on a
vessel, consisting of stiffened (in various directions) flat plates. This report is a part of
modelling of the excitation and response induced by impact slamming on more
realistically visualized structural parts which can potentially be studied as a part of a

further study.

The following work begins with a brief theory on plates and continues with the
transient response formulation of the plates. Various stiffened plates are modelled
next and these are compared with other stiffened plates studied in the literature. In the
subsequent section, a modal analysis is applied on four main models of plates by
using ANSYS-FEA software. These are unstiffened, longitudinally, transversely and
orthogonal stiffened plates. Later on, modal characteristics of these models are used in
the transient mode superposition to get transient response and then compared with the
ANSYS results (both mode superposition and full methods are used). The penultimate
section 1s all about carrying the experience gained in the previous section to an
analysis of a realistic plate taken from a tanker bottom forward end. Discussions can
be found throughout the sections. This part of document ends up with the general
conclusive remarks given in section 5.3.6. Complementary figures regarding the

discussions are presented in the Appendix (Figure 104 - Figure 127).

5.3.1 Theory of Plates
It is important to have a brief idea about the theory beyond the plates before starting

to model their behaviour under excitation.

The governing equation for a rectangular plate subjected to lateral loads is given by
(Vinson, 1974);

_o'w 8w oW _ f(xy)

VW +2 = 70
ox* ox*ey* oyt D (70
3
Dsz (71)
12(1-0%)

W{(x,y) is the lateral deflection, f{x,y) is the lateral load per unit area,v is the

Poisson’s ratio and D represents the bending of flexural rigidity of the plate.
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After solving the homogenous part of the equation (70) by using particular boundary
conditions for the corresponding type of plate, and natural frequencies can be
obtained. For the case of a simply supported flat plate (all edges) natural frequencies
are (Szilard, 1974):

m 2 n 2 D
o, = 2[{‘“} +[_” mn=123.. (72)
a b ptp

and corresponding natural modes are (Meirovitch, 1967)

AL Gin 7Y mn=1273.. (73)
a b

W..(x,y)=A4, sin

where p and ¢, are the density and thickness of the plate respectively, a and b are the
length and the width of the plate respectively and A4 _, is the vibration amplitude for

each value of m and n.

5.3.2 Transient Response

To be able to examine the response of a flat plate to an arbitrary excitation, a
triangular impulse is applied to a fixed ended (all edges) flat plate with 3 different
types of stiffening. These include longitudinal, transverse and orthogonal stiffening.
The responses to these impulses are obtained by using numerical evaluation
(convolution sum) of convolution integral. The results are then compared with
ANSYS.

AR

o

Figure 43 Uniform rectangular plat irovitch, 1967

Using the same theorem given in the part “transient response of the beams”, the
displacement of a uniform rectangular plate defined over the domain 0 < x <a and

0 < y < b asin Figure 43 is (Meirovitch, 1967),

w(x, y,t) = iian(x,y)p”m(t) mn=1273.. (74)

m=| n=]
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where the normal modes W,,,(x, y)depend on the boundary conditions and p,, (¢)are
the corresponding principal coordinates which are solved from the equation of motion
for each mode and substituted in the equation above to obtain the total deflections for
the desired location. Principal coordinates can be calculated from the following

equation for the undamped case (Meirovitch, 1967);
Do) = -1—.[’Fm(r)sin o, (t—7)dr (75)
@,, "°

for an under damped case;

1

P ()= [ Fue =D sinod,,-0)dr,  od,,=,1-¢
a,od,, '
(76)
The generalized force F,,,(¢), corresponding to p,  (¢) is (Meirovitch, 1967);
a b
Eyp©)= [ [ W, (e ). (x, 3, £)dlxcly (77)

All the variables in the formulations above are the same as the ones in previous
section. The same methodology used in the transient response of beams is also applied
on the plates. The mode shapes for clamped stiffened and unstiffened plates are
obtained from ANSYS, and these modal responses are then used in the subsequent
numerical transient analysis as well as transient analysis in ANSYS using mode

superposition method.

5.3.3 Verification of Modal Analysis

The position, physical properties and orientation of stiffeners create considerable
variations in the modal properties as compared with the bare plates of similar
construction. This makes each of the stiffened plate identification problem rather
unique (Mukhopadhyay, 2000).

As the unique behaviour of modelling and analyzing of stiffened plates mentioned
above, before moving on to particular interest of stiffened plates, herein a verification
on modelling and modal analysis issues is presented using plates with different

stiffening conditions taken as examples from literature.

The single stiffened rectangular plate in Figure 44 is studied and used for comparisons
in literature by many researchers (Olson-1977, Koko-1992, Mukhopadhyay-2000 and
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Rikards-2001). Hence the same stiffened plate with t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>