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Foreground/background segmentation is an active research area for moving object analy-
sis. Many applications in machine vision depend on high quality and robust extraction of
moving objects. Established and popular methods are mixture modelling and a thresh-
old based technique (Horprasert et al., 2000). To find a better motion classifier, a new
technique is developed here, a modified Unary classifier approach that uses the bases of
SVM theory. As neither the mixture modelling nor the Unary approach had implicit
shadow detection, this is achieved by including colour invariant colour models. The
threshold based technique has the ability to detect shadow but with the consequences
of mislabelling part of the foreground. The shadow detection criterion was improved
by adding a statistical constraint to the shadow detection process. In order to further
extend the performance, we formed different classifiers by combining base classifiers
with a Bayesian approach. The observed performance advantages are associated with
the fusion of operators with complementary properties. Tests on outdoor and indoor
sequences confirm the efficacy of this approach. The new algorithms can successfully
identify and remove shadows and highlights with improved moving-object segmentation.
A particular advantage of our evaluation is that it is the first approach that compares
foreground/background labelling with results obtained from labelling by broadcast tech-

niques, comparing a computer vision technique with an established baseline.
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Chapter 1

Introduction

1.1 Motivation

Detecting moving objects is an initial step of information extraction in many computer
vision applications including: video surveillance, people tracking and traffic monitoring.
In these applications, reliable moving object extraction is required. Such a procedure

should feature:

e Iigh accuracy in shape detection.

o Flexibility to handle diverse scenarios (indoor, outdoor) and weather conditions

(clouds, rain, etc).

e Ability to operate at video rate (in some applications).

In the following sections of this chapter some of the potential applications will be pre-
sented as a motivation to this work on motion estimation. This will be followed by a
section that will highlight the contributions of this work. The next section will state the
assumptions that will be used as a base to produce new motion extraction techniques.

The final section will introduce the layout of the whole thesis.

1.2 Motion estimation

The problem of motion estimation has been approached using different methodologies.
For each there are advantages and disadvantages. The final application, the require-
ments, speed and quality of the method usually dictate the approach and the criteria
to be chosen. In this chapter we will give a brief overview of some of the approaches to

motion extraction.
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1.2.1 Background subtraction

In the most basic approaches, moving regions are detected through a pixel by
pixel differencing between a current image and a reference background image (a
background model}, Then, the resulting image is usually thresholded. The final
result is a binary segmented image of the objects existing in the new frames and

not in the reference image (i.e. the moving segments).

There are many methods available to produce the background model. Simple ways
include taking an image of the background without moving objects. Methods using
this background model suffer from many problems, such as the requirement of a
training period where moving objects are absent. In addition, the background
objects are assumed to be static and any movement of a background object (e.g.
removal of an object from the background) would disturb the result of the tested
frames. This requires the whole background model to be produced again. Also
the system cannot handle gradual change in the background illumination (such as
illumination change between daylight and dusk or change due to clouds and rain).
Rosin (2002) used the simple way of background subtraction and implemented
four different thresholding techniques to overcome the noise resulting from the

differencing process.

Other approaches differ in forming the background model and in the procedure
used to update the model. The simplest geometric background model is produced
by averaging a sequence of images temporally (Dagless et al., 1993). A more robust
form is to use the median (Arseneau and Cooperstock, 1999; Cucchiara, Grana,
Piccardi, and Prati, 2000; Cutler and Davis, 1998} to form the background model.
In Arseneau and Cooperstock (1999) a simple temporal median over N frames was
used. Cutler and Davis (1998) used the same method for forming the background
model for grey images. For colour images the background model was formed by
computing each colour channel (RGB) separately. Cucchiara et al. (2000} used the
median filter of N frames joined with a previously computed background (with the

median as well) to form the model.

Other methods were also used to make the background model adaptive to back-
ground illumination changes. Kilger (1992} used a Kalman filter to adapt to the

temporal dynamic changes of the weather and illumination.

1.2.2 Statistical methods

Many statistical techniques for motion extraction were inspired by background
differencing methods and can be seen as improvements to the differencing methods
(notice that some of the techniques mentioned on the background difference section
could also be described as statistical methods).
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Some statistical approaches provided a better background model (compared to the
basic differencing techinique) by using the characteristics of each individual pixel or
groups of pixels (like illumination, colour models, etc). Each pixel can be labelled
as foreground, background or even shadow by comparing the tested pixel with the
available statistics of the different regions (the background, the foreground and
the shadow).

Horprasert et al. (1999, 2000) introduced a new computational colour model which
separates the brightness from the chromaticity component. This separation was
used to distinguish between shading background from the ordinary background or

moving foreground objects.

Gaussian models were also used as methods to obtain a motion extractor. A single
Gaussian per pixel was used to model the background by Wren et al. (1997).
While Stauffer and Grimson (1999) and Friedman and Russell (1997) have used a
mixture of Gaussians to model the moving object and the background, Friedman
and Russell (1997) modelled the shadow as well.

1.2.3 Temporal differencing

To extract moving regions, the temporal differencing approach applies a pixel-wise
differencing between two or three consecutive frames in an image sequence. Even
though temporal differencing can adapt to change in background, the method can
suffer from poor quality whereby holes may exist in the extracted body. Holes
are due to differencing a foreground pixel that appears on the same pixel in the
successive frames (this happens if the moving object stops or if a foreground surface

of a similar colour covers many consecutive pixels spatially).

Lipton et al. (1998) performed a temporal difference between consecutive video
frames (two frames temporal differencing) followed by a thresholding process to
determine change (i.e. moving pixels). A double differencing system was presented
by Kameda and Minoh (1996), where three successive frames are used in a differ-
encing operation. Each two frames are differenced separately and then an AND
operator is applied on the resulting differenced images. The method was applied

as a day time traffic monitoring system (Cucchiara, M. Piccardi, and Mello, 2000).

1.2.4 Stereo techniques

Stereo methods were used as another geometric method to form a background
model (Jones and Malik, 1992; Polat et al., 2003), especially after the recent de-
velopment of real time depth computation from stereo cameras. In (Polat et al.,
2003) a stereo system is used for 3D feature extraction. The features are extracted
from 2 camera sequences and matched to obtain the 3D coordinates. Stereo meth-
ods based on depth alone can form unreliable results in substantial parts of the
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scene, and can fail to extract moving objects in close proximity to the background,
such as feet touching a floor (Eveland et al., 1998).

1.3 Applications

This area of development is powered by the potential applications of motion extraction:

Surveillance (Kim and Kim, 2003; McKenna et al., 2000; Collins et al., 2001) is a
major beneficiary of motion estimation. In this area subjects are monitored and possibly
tracked over time. The security of the monitored premises is related to the robustness

and efficiency of the surveillance system.

Traffic Control (Smith et al., 1996; Michalopoulos, 1991) where moving vehicles with

different speeds and different sizes are extracted and monitored for traffic control.

Gait Recognition (Grant et al., 2002; Hayfron-Acquah et al., 2001) is used as a bio-
metric concerning recognising people by the way they walk. In gait recognition, a moving
object is extracted from a sequence of frames (one cycle). The extracted moving objects

are then used to find a gait signature for that person.

Motion Capture Controlled Devices - this concerns devices that are controlled and
directed through extracted motion. In many industries, especially where conveyor belts
are used, a high number of repeated operations occur. These are mainly carried out
by machines/robots to ensure similarity in production and speed. As the operation
becomes more complex it become more complicated to program them to carry out the
operations. To tackle this problem, a human performs the operation while a computer
captures his/her motion. Afterwards, the computer may use the captured motion data

to control the same machine performing the operation (Moeslund, 2000).

Video Coding (Jing et al., 2003; Boinovic and Konrad, 2005)- motion estimation plays
an important role in this field (Su et al., 1999). The high temporal redundancy between

successive frames is exploited to achieve high compression efficiency.

Virtual Reality Systems (Ohya et al., 1999; Davis and Bobick, 1997) and Video
Games (Wren et al.,, 1997) - Motion extraction presents a powerful business tool for
recreation and virtual reality games. In the ALIVE system (Maes et al., 1997), the
motion extraction method is utilised to place the user in a scene with some artificial life

forms, in real-time.

Medical Applications (Patias, 2002) motion extraction can be utilised for moving
disabilities monitoring, clinical studies of orthopaedic patients, and X-rays of moving
body parts.
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Motion estimation can be accomplished through either active or passive sensing. In
active sensing, devices are placed on the subject (to transmit the generated signals)
and in the swrroundings (to receive the generated signals). Active sensing is widely
used when the applications are situated in well-controlled environment (laboratories).
In passive sensing, natural signal sources are used, e.g. visual light. In applications
where mounting devices on the subject is not an option, passive sensing is mainly used
(e.g. surveillance). Computer vision is used as a tool for implementing passive sensing.

In this work passive sensing will be used with no markers placed on moving subjects.

1.4 Contributions

The primary objective of this thesis is to provide a robust technique to extract moving

objects. The following techniques were developed and implemented to accomplish this:

e Improved a statistical shadow extraction method by further evaluating the shadow
labelling process, Section 2.4.

e Analysed a mixture of Gaussian technique on indoor and outdoor environment

and provided a simple way to optimise it, Chapter 3.

e Introduced a new theory of Unary Classification to the area of motion extraction.
We provided a parameter optimising procedure of the Unary Classifier motion

segmenter along with an assessment of performance, Chapter 4.

e Improved the performance of the Unary Classifier by improving its decision theory.
The improvement resulted in an increase in the efficiency of motion extraction for

both indoor and outdoor environments, Section 4.6.

e Accomplished an assessment of five different colour models when applied on the
area of motion estimation. This process helped us in finding a suitable colour
invariant model that can help in suppressing shadows when the motion extraction

process is implemented, Chapter 5.

e Improved evaluation process in which it is the first approach that compares fore-
ground /background labelling with results obtained from labelling by broadcast
techniques. In addition different methodologies of assessments were utilised. In
which each method gave a prospective with a deferent angle providing collectively

a better evaluation.

e Provided a simple way of combining motion extraction classifiers and proved that
such process can improve the final extracted output. The followed procedure

resulted in a novel production of multiple efficient motion extractors, Chapter 6.
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e Tested different ways of data fusing, MAX, SUM, PRODUCT and MEDIAN. Also

gave a comparison to their overall performance, Chapter 6.

e Provided a new way to estimate the probability for the used classifiers. The results

supported the competence of such estimation.

In addition the systems are designed to be model-independent. Model-independent
means that it can handle different testing model types (humans, vehicles, bicycles, etc).

The models can be detected over different speeds and different motion trajectories.

A comparison of the implemented techniques with two-state-of the art algorithms (Hor-
prasert et al., 2000; Stauffer and Grimson, 2000) is provided in the process of analysing

the produced techniques.

This work has so far resulted in the following publications:

o Al-Mazeed, A., M. Nixon, and S. Gunn (2003). Fusing complementary operators
to enhance foreground/background segmentation. In the British Machine Vision
Conference (BMVC 2003), pp. 501-510. (Al-Mazeed et al., 2003) BMVC is the

main UK conference on machine vision.

o Al-Mazeed, A. H., M. S. Nixon, and S. R. Gunn (2004). Classifiers combination for
improved motion segmentation. In A. Campilho and M. Kamel (Eds.), Proceedings
of International Conference on Image Analysis and Recognition, Lecture Notes in
Computer Science, Volume LNCS 3212, pp. 363-371. Springer. (Al-Mazeed et al.,
2004).

1.5 Assumptions

In this research we have developed novel approaches for extracting moving objects in
successive frames in unconstrained indoor and outdoor video scenes. Certain assump-
tions are taken into consideration in our approaches. These assumptions will define

among others, the background model and the foreground (or the moving subject):

[ single camera | A single camera will be used (no stereo algorithms).
[ static camera | The camera is assumed to be static.

[ background definition | The background consists of all non-moving objects and
objects that have repetitive motion (including computer monitor flicker, tree mo-

tion, a flag, sea waves, etc.).

[ foreground definition ] Everything that is not background is considered as fore-

ground (such as humans, animals, vehicles, etc).



Chapter 1 Introduction 7

[ scene independence | Object segmentation is model-independent i.e. the system
detects different model types (humans, vehicles, bicycles, etc) whatever their speed,

motion and trajectory.

1.6 Structure

This chapter has given a brief motivation for motion estimation. We have presented the
applications, the contributions of this thesis, and the assumptions that were used as a
basis to accomplish the target motion extractor. Also we clarified the data sets used
along with the results assessment measures. In this section we will give an outline of

the remaining chapters:

e Chapter 2
This chapter discusses a motion extraction algorithm called the Statistical Back-
ground Disturbance technique, (SBD) (Horprasert et al., 2000, 1999). The chapter
presents an improvement made to enhance shadow extraction in this technique.
An assessment on the technique is also presented using indoor and outdoor motion

sequences.

e Chapter 3
This chapter presents a Mixture of Gaussians (MOG) technique as a motion ex-
tractor (Stauffer and Grimson, 2000, 1999; Grimson et al., 1998). The Mixture of
Gaussians parameters are optimised. The technique is assessed using indoor and

outdoor sequences.

e Chapter 4
In this chapter we present a new SVM technique called the Unary Classifier. An
assessment is pursued on the technique performance in motion extraction. Also it
is shown how the technique can be modified to give better performance in motion

extraction. The technique is tested on indoor/outdoor sequences.

e Chapter 5
Since the MOG algorithm and the Unary Classifier method originally lacked the
ability to extract shadows, different invariant colour models are tested to find a
colour model that can suppress shadows. The following colour models are tested
and compared: RGB, normalised rgb, HSV, and two more colour models titled
l1l5l3 and cicacs. Prelabelled images for the shadow, the background and the
motion pixels are used to test the colour models performance on the three different

regions.

e Chapter 6
In this chapter the three different techniques presented earlier (MOG, SBD and
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the Unary Classifier) are combined using Bayes theorem. The performance of each
combination is assessed using indoor and outdoor sequences. A comparison of the
performance of all the combinations are presented.

e Chapter 7
The chapter presents conclusions on the overall outcome of this thesis. This chapter

also discusses the possible future paths that can be taken to carry on in this work.



Chapter 2

Statistical Background

Disturbance

The Statistical Background Disturbance (SBD) algorithm (Horprasert et al., 2000, 1999)
decomposes the colour space using prior knowledge established on a statistical computa-
tional model to separate the chromaticity from the brightness component. The algorithm
is able to cope with shadow and highlights. The outcome of the algorithm is labelled

pixels of one of four groups: motion pixels, background pixels, shadow and highlights.

In (Prati et al., 2003) this algorithm was tested against three different shadow extraction
algorithms. The algorithm was found to be robust to noise detection. The study also
concluded that this algorithm appears to be the best choice (among the tested algo-
rithms) if there are different planes onto which the shadows are cast. Also the algorithm

was found to be highly efficient in detecting shadows.

The algorithm was used in a system (Chang and Huang, 2000) to analyse the human
walking motion. The system starts with the SBD method to find the moving object.
Then the process of analysing the human motion uses a skeleton-based method [ollowed
by a Hidden Markov Model (HMM) to describe the motion type. The SBD was also
used to segment the head of a system user to form a 3D virtual reality representation of
the same user (Rajan et al., 2002).

In the tracking area, the algorithm was used to form silhouettes for articulated body
model acquisition and tracking from voxel data (Mikic et al., 2003, 2001). The algorithm
was also used in a tracking system to handle occlusion (Senior et al., 2001). Furthermore,
a method derived from the basics of the SBD algorithm was used in a surveillance system
(KaewTrakulPong and Bowden, 2003).

The SBD algorithm has also been applied in gait recognition. In (Bobick and Johnson,
2001) a gait recognition technique used the SBD technique (brightness distortion) for
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shadow extraction. Also the technique was used to find the body contour in a method

to analyse and extract the human gait motion (Yoo et al., 2002).

An overview of the algorithm is presented in Figure 2.1.
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FIGURE 2.1: The flow chart describes the way the Statistical Background Disturbance
technique functions.

2.1 Disturbance parameters

Horprasert et al. (1999, 2000) proposed a colour model in a 3 dimensional RGB colour
space to separate the brightness from the chromaticity component. Figure 2.2 demon-

strates the proposed colour model.

The algorithm initially uses N frames to form the background model. From these
frames, the mean and the standard deviation is computed for each colour band (RGB)
in each pixel. The chrominance distortion C'D and the brightness distortion 3 between

a background pixel and a new pixel x are computed as
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FIGURE 2.2: The proposed colour model to separate the brightness () from the chro-
maticity component (CD). E; is the expected chromaticity line for the background
image

where u. and o, represent the mean and the standard deviation for each background
pixel colour band, respectively. The normalised chrominance distortion CD and the

brightness distortion E are used to classify each new pixel in frame ¢
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The following decision criteria are used to classify each pixel according to
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Foreground : CD;>7cp or i < Ta,

M) = Background : E, < 781 and B, > 782, (2.5)
"] Shadow : B; <0 N
Highlight : otherwise

where 7cp and 7p;, are thresholds used to specify the borders of the foreground. 74
and 7g2 are thresholds used to identify the borders of the background. These thresholds
are determined automatically through a statistical learning procedure (Horprasert et al.,
1999, 2000).

This algorithm suffered in the design process from classifying motion pixels with low
RGB values as shadows (Horprasert et al., 1999). Therefore the authors added the test
B\i < Tgi, to the foreground decision to solve this problem. Setting the threshold 74,
is a trade off between the shadow extraction and the motion detection criteria in this
algorithm. Setting it to be high will result in better quality motion extraction (moving
object extraction) at the expense of a decrease in quality in shadow extraction and vice
versa for when it is low. In setting this threshold, the overall error will be considered
in order to compensate between the shadow and the quality of the extracted motion

subject.

One problem with the way the background is modelled is that there is no learning (the
background model is not updated, i.e. not adaptive). The stored background parameters
are not updated, which may lead to a deterioration in the quality of extraction if a
background change occurs (illumination change or addition or removal of objects to the
background).

2.2 Automatic Thresholding

Through the background building process a histogram is constructed for CTEZ and B\,
The thresholds are then computed after fixing a detection rate which fixes the expected
proportions of the image contents. The detection rate can be set to any value between
0 and 1 where a large value will result in a better overall motion accuracy and vice
versa where it is low. Using a high detection rate will result in including most of the
background histogram in consideration when setting the thresholds. On the contrary,
having a small detection rate will include only the more frequent pixel values apparent in
the tested background frames. This will allow more freedom for the foreground enabled
colour values (more colours can be used for the foreground and will not be detected as
background) but at the same time increase the background noise. 7¢p is the normalised
chromaticity distortion value at the detection rate. 7g; is the value of E, at the detection
rate while 7, is the value of B; at ( 1- detection rate). 7gy, is determined by varying the

parameter on a set of training samples until a minimum false detection error is reached.



Chapter 2 Statistical Background Disturbance 13

2.3 Experimental Results

We will start by introducing the data that will be used for our assessment along with the
evaluation measures which will be used for this chapter and the chapters that follows.
The SBD testing results will then be introduced.

2.3.1 Data and Assessment

10 indoor sequences from the University of Southampton gait database (Shutler et al.,
2002) were used in the testing of each method in this thesis. In each one 50-52 frames
are used to form a background model (these frames were specifically recorded so as
not to contain any foreground moving objects). Each frame is of a dimension of 720 x
367 pixels. Figure 2.3 shows an indoor database sample. Table 2.1 gives a list of the
indoor sequences. To analyse the data, silhouettes provided with the database were used
as an approximation to ground truth. The silhouettes were generated by chroma-key

extraction via the green background (Shutler et al., 2002).

FIGUrRE 2.3: A sample database image showing different categories available in an
indoor environment

To further test the robustness of an algorithm 10 outdoor sequences were used of the form
shown in Figure 2.4. These sequences have different weather conditions (windy, cloudy,
sunny, etc.) but image the same subjects walking in a non-laboratory environment with
a similar geometry. Each frame is of a 220 x 220 pixels dimension. 48-55 background
frames were used for background adaption. For each outdoor sequence, silhouettes for
moving subjects were produced by manual labelling to provide a form of ground truth.

Table 2.2 lists the outdoor sequences.

Throughout the thesis we present samples of extracted sequences for each presented

classifier. The same samples are used in each evaluation for cross comparison.
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Sequence Number Background

Number of Frames Frames
008a013s00L 178 51
009a017s00L 169 52
010a024s08L 187 51
013a037s00L 114 50
013a040s00L 184 50
017a054s00L 188 50
017a055s00R 162 50
018a059s00L 188 50
018a060s00L 179 50
019a063s00L 186 50

TABLE 2.1: Indoor sequences list

Tree leaves, repetitive Movmg Object
motion (Background) (Foreground)

~ Background

Nonmoving Cars
(Background)

Moving Shadow

FIGURE 2.4: A sample of an outdoor image showing different categories that might
appear in an outdoor sequences.

The following assessment measures were used to evaluate the performance of an algo-
rithm: the Receiver Operating Characteristics curve (ROC) technique, the Root Mean
Square Error (RMSE), the Peak Signal to Noise Ratio (PSNR), the percentage of error,

and the regional percentage of error.

e Receiver Operating Characteristics curve (ROC) technique
The ROC curve is used as an assessment measure to find the optimal settings for a
technique parameter. The ROC plot is a graphical representation of points defined

by sensitivity and (1 - specificity).
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Sequence Number Background

Number of Frames Frames
008e013s00L 100 48
009e017s01L 96 50
010e024s00L 94 53
013e037s00L 158 55
013e040s00L 151 49
017e054s00L 112 52
017e055s00R 88 50
018e059s01L 104 49
018e060s00L 88 50
019e063s05L 112 50

TABLE 2.2: Outdoor sequences list
Cutoff point
z

Class_1 Class_2
N Background Foreground TR

FIGURE 2.5: Two different classes with the TP, TN, FP and FN identified

Given a set of cutoffs (a cutoff is a parameter value) and test results, each obser-
vation can be classified into one of: true positive (TP); false negative (FN); true
negative (TN); or false positive (FP). Figure 2.5 shows two classes with a cutoff
z. Classy (the x’s) can be visualised as the background class in a set of motion
sequences and classa (the circles) as the foreground class. The cutoff point will
classify all the points to its left as part of class; (background) and any pixels to
the right as part of classy (foreground). Any background pixel classified on the
left of the cutoff point is regarded as a TN. A background pixel found on the right
of the cutoff point (the circled group of x’s on the right) will be regarded as FP.
For the foreground pixels, if they are on the right of the cutoff point then they are
TP otherwise they are FN (the circled circles on the left). The Specificity, Sp, and
the Sensitivity, Sy, are calculated for each cutoff point

TN

% = TN+ FP il
TF

Sn (2.7)

~ TP FN
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Finding the best cutoff point (or the optimal cutoff point) which gives the best
setting for a parameter (i.e. the best threshold) is the main concern for using this
technique. This goal can be accomplished through finding the maximum value for
the ROC optimal cutoff measure (Grzymala-Busse et al., 2003, 2002), which is a
measure of the difference between the probability of true positive and false positive
probability as

ROCoptimal_cutoff = argmax(Sn, — (1 —Sp,))
F4
= argmax(S,, +Sp, — 1) (2.8)
F4

e Root Mean Square Error (RMSE)

RMSE is one of the widely used assessment techniques in distortion/quality metrics
(Wang et al., 2003). When the dimension of a tested image, Itest, and a silhouette
image , Isyn, are N x M, RMSE is given by

M N
1 . .
RMSE = N ;; [Ttest(1,5) — ISilh(Z;J)]2 (2.9)

e Peak Signal to Noise Ratio (PSNR)
The PSNR in (dB) is computed by

PSNR (2.10)

= 1 —_—
201080 7375E
where L represents the dynamic range of a pixel (Wang et al., 2003).

Although RMSE, and PSNR have been widely criticised (Toet and Lucassen, 2004;
Lai and Kuo, 2000; Winkler, 1999a; Wang and Bovik, 2002; Eckert and Bradley,
1998; Eskicioglu and Fisher, 1995; Winkler, 1999b; Teo and Heeger, 1994), they are
widely used because they are simple to calculate. Also they have a clear physical

meaning, and are mathematically easy to deal with for optimisation purposes.

e Overall percentage error
The overall percentage error is compared to number of motion pixels in the sil-
houettes instead of comparing it to the whole image dimension (as in the RMSE).
The overall percentage error will be calculated as follows

Misclassified Pizels
Silhouette’s Motion Pizels

Overall Percentage Error = x 100 (2.11)
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The main concern in our results is extracting the motion pixels. Therefore having
a measure describing the percentage of error compared to the motion pixels will

give us a measure of how much that error compares to our moving object.

This measure might be affected by bias to the background if the moving object
is relatively very small compared with the background, or vice versa. Knowing
the average relative size of the foreground to the background can ameliorate this
problem. For the motion sequences used, the foreground represents around 10%

of the background area.

¢ Regional percentage error
The regional percentage error is used to measure the percentage error for a specific
region. The region in our tests will be either the background or foreground (motion
pixels). Also it will be used for shadow region assessment in the colour model
chapter, Chapter 5.

Misclassified Regional Pizels

Regional Percentage Error = x 100 (2.12)

Region's Pizels
The RMSE and the PSNR can give false indications to the performance of an
algorithm. For instance if we have a system that performs well in suppressing
background pixels but has a bad performance in motion extraction. The RMSE
can be minimised by using images with a background larger than the (small)
moving object. In this case the RMSE will give a smaller error value even if
more than half of the moving object is not labelled correctly. A better way to
measure the performance is to measure the performance of a method in each region
(background, foreground), i.e. regional percentage error. Now in the regional
percentage error, if a region was more proportionally dominant than another, the

regional error will still indicate the correct percentage of error in that region.

e The Variance

To test the consistency of our results we will use the variance of one of the presented
errors. The variance of an error measure, FRM, of N samples and a mean of,

ULERM, is calculated by

s SN (ERM; — pprm)’
o =
N -1

(2.13)

The error measure should cover the whole image area and not part of it (which
excludes the foreground and the background error measures). The overall error is
a relative measure comparing the error to a changing value of the size of the sil-
houette’s motion pixels. Thus to measure the consistency for each tested sequence
result we are left with the RMSE and the PSNR.
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Seq. No. TRMSE OPSNR OFG 9BG  TOverall
008a013s00L 4.886E-05 0.661 0.344 0.004 0.854
0092017s00L.  3.893E-05 0.468 1.236 0.002 1.194
010a024s08L 6.261E-05 0.733 2.101 0.003 3.157
013a037s00L 3.822E-05 0.728 0.985 0.002 1.034
013a040s00L.  6.092E-05 0.762 0.626 0.012 2.571
017a054s00L 5.722E-05 0.325 0.518 0.032 5.991
017a055s00R 2.682E-05 0.399 0.502 0.003 1.576
018a059s00L, 2.826E-05 0.442 0.374 0.001 0.858
018a060s00L 2.736E-05 0.328 1.097 0.007 0.860
019a063s00L.  7.372E-05 0.996 3.636 0.003 2.792

Average 4.629E-05 0.584 1.142 0.007 2.089

TABLE 2.3: Detailed variance assessment for all the used measurements in Table 2.5

The PSNR function is based on finding the log of the reciprocal of the RMSE.
The PSNR results were processed using the logarithmic function while the RMSE
preserve the error evaluation without such processing. Therefore we will use the

variance of the RMSE as a consistency measure in our implemented evaluations.

Despite this, we have included a tabulation of the variances of all measures in Table
2.3. The tabulated variances are for the results of the SBD indoor extraction that
will be shown and discussed later in this chapter. An illustrative copy of the

extraction table is also given below , Table 2.4.

We notice in Table 2.3, that the variance of the foreground error is proportionally
higher than for the other measures. This is because the foreground concerns the
silhouette of the walking subject and the variance can be much higher as it depends
on the gait of the walking subject, relative to the sequence. The overall error is
proportionally high as well since, as mentioned before, this error compares the
whole error in each frame to the motion pixels in a silhouette. The size of the mo-
tion pixels in silhouette changes from one frame to another. Therefore the results

of those two measures will be considered with caution when drawing conclusions.

The small RMSE variance, in Table 2.3, justifies the use of three digits after the
decimal point for the RMSE. Those digits are significant with such small variance.
Further, we can see the the other variances are proportionate. For these reasons,

only the RMSE variance will be quoted in later tables.

2.3.2 SBD results

We tested the method on indoor and outdoor sequences with a detection rate set to
0.9999 to accommodate most of the background pixel values within the background
model giving it a better representation of the scene. In the following parts of this
section we present the indoor and the outdoor tests along with assessment measures on

each. Samples of indoor and outdoor extractions are also presented.
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Sequence Number RMSE PSNR FG BG Overall

Number of Frames (dB) Error! Error?  Error3
008a013s00L 178 0.077 22.275 3.810 0.346 8.139
009a017s00L 169 0.080 21.952 4.613 0.372 10.044
010a024s08L 187 0.080 21.959 4.707 0.375 10.316
013a037s00L 114 0.065 23.733 4.671 0.192 8.114
013a040s00L 184 0.080 21.938 4.169 0.427 10.908
017a054s00L 188 0.119 18.529 1.160 1.432 21.215
017a055s00R 162 0.072 22.879 3.297 0.332 8.133
018a059s00L 188 0.071 23.047 3.846 0.266 7.640
018a060s00L 179 0.081 21.830 3.928 0.427 9.840
019a063s00L 186 0.075 22.550 4.302 0.319 9.138

Average 0.080 22.069 3.850 0.449 10.349

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 2.4: Overall assessment on a number of motion indoor sequences using the SBD
algorithm

e Indoor Motion Sequences
10 indoor sequences are used in these tests. 50-52 frames from each were used for
background modelling (these frames are pure background and do not contain any

moving objects).

Samples of the extracted images are shown in Figure 2.6 presenting some of the
problems in the SBD extraction. From the samples shown, the background pixels
were mostly detected correctly though with some problem near the seam of the
background cloth. The background is suppressed well in the samples 008a013s00L,
0092017s00L. and 010a024s08L with few misclassified background pixels. The ex-
tracted background in sample 017a054s00L has some noise (there are few misclas-

sified background pixels).

The motion pixels can be misclassified as reflected by the holes that appear in
the moving objects (this is not always the case; we focus on examples that are
instructive to performance analysis). The holes are most serious in 009a017s00L
where the legs have many small isolated holes, and some larger connected ones.
The holes are due to the statistical nature of the technique: the area in which the
larger holes occur is consistent across the sequences, but the small isolated holes
appear uncorrelated. Sequences 008a013s00L, 010a024s08L and 017a054s00L also

have holes.

The noise is due to the large background intensity variation in these pixels that
the algorithm cannot label correctly. The algorithm uses the same thresholds on
all the pixels (global thresholding). This property leads the algorithm to try to

compensate between having large thresholds that can accommodate variation in
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ctte

I

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ctte

(&) A sample frame from (h) The extracted image (i) The extracted image silhou-
0102024s08L ette

I

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ette

FIGURE 2.6: Examples of indoor images extracted using the SBD algorithm

intensity (the isolated noise), and between having small thresholds to cover only
the most common background pixel values. This avoids a background pixel from
covering more colour intensity which gives it more tendency to consider some of
the moving object colours as background, as we have in the large holes in the

moving objects samples.

The uncorrelated noise pixels and even the larger holes can be overcome if other
motion segmenter’s noise appears in another position. A combination can then
result in a better overall output. Such combination requires a confidence measure
for each decision showing poor confidence on the misclassified pixels and high

confidence on the correctly labelled pixels, to be discussed in Chapter 4.
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The shadow suppression performs well in the tested indoor images though some
shadow can remain in the extracted images. The shadow has mostly disappeared
in sequences 008a013s00L and 009a017s00L. Small traces of the shadow appear
in sample 010a024s08L. The shadow is clearly apparent in sequence 017a054s00L
sample.

A detailed assessment for the indoor motion sequences is presented in Table 2.5.
The table shows the RMSE, the PSNR, and the percentage error for the back-
ground, foreground and the overall error compared to the frames silhouette motion

pixels.

Sequence Number RMSE PSNR FG BG  Overall o%55

Number of Frames (dB) Error! Error?  Errord
008a013s00L 178 0.077 22.275 3.810 0.346 8.139 4.886E-05
009a017s00L 169 0.080 21.952 4.613 0.372 10.044 3.893E-05
010a024s08L 187 0.080 21.959 4.707 0.375 10.316 6.261E-05
013a037s00L 114 0.065 23.733 4.671 0.192 8.114 3.822E-05
013a040s00L 184 0.080 21.938 4.169  0.427 10.908 6.092E-05
017a054s00L 188 0.119 18.529 1.160 1.432 21.215 5.722E-05
0172a055s00R 162 0.072 22.879 3.297 0.332 8.133 2.682E-05
018a059s00L 188 0.071 23.047 3.846 0.266 7.640 2.826E-05
018a060s00L 179 0.081 21.830 3.928  0.427 9.840 2.736E-05
019a063s00L 186 0.075 22.550 4.302 0.319 9.138 7.372E-05

Average 0.080 22.069 3.850 0.449 10.349 4.629E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 2.5: Overall assessment on a number of motion indoor sequences using the SBD
algorithm

The highest RMSE was scored by motion sequence 017a054s00L. The minimum
PSNR was also scored in this motion sequence. The lowest RMSE occurred with
013a037s00L which has also given the highest PSNR. For the foreground percent-
age the values were fairly similar (in the range of 3.30% to 4.71%) except for
017a054s00L where it gave a smaller value of 1.16%. The average foreground error
was 3.85%. The maximum value for the background percentage error was 1.43%
for the sequence 017a054s00L. The minimum background error is 0.19% and the
average background error is 0.45%. The overall error compared to the silhouette’s
motion pixels ranged from 7.64%, by 018a059s00L, to 21.22% in 017a054s00L (21%
is an abnormal maximum error where the second max is 10.91%). The overall av-
erage for the percentage error is 10.35%. The variance of the averaged RMSE
measure shows that the error displacement is limited to a small range in all the
tested motion sequences. This also shows the stability of the SBD algorithm in
each tested motion sequence. The variance of the averaged RMSE measure shows
that the error displacement is limited to a small range in all the tested motion
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sequences. This also shows the stability of the SBD algorithm in each tested mo-
tion sequence. The variance of the averaged RMSE measure shows that the error
displacement is limited to a small range in all the tested motion sequences with
a maximum variance of 7.37E-05 in 019a063s00L. This also shows the stability of

the SBD algorithm in each tested motion sequence.

The low background error percentage is due to the ability of this algorithm to
identify and remove shadows along with efficiency in background detection. The
algorithm performs well in indoor sequences background and shadow areas but the
algorithm fails sometimes to fully extract the motion pixels, which reflect in the

higher foreground error.

e Outdoor Motion Sequences

For the outdoor sequences, 10 were tested using the SBD algorithm. 48-55 back-

ground frames were used for background adaption.

Figure 2.7 shows samples of outdoor extracted images. From the samples shown the
algorithm’s performance was less successful than when applied to indoor sequences.
Motion pixels are not always detected correctly. Holes can be seen on all the
presented images in all the different sequences. The problem is more serious in
motion sequences 008e¢013s00L and 009e017s01L where holes are more than in the
other two sequences. In addition, the edges of the moving object are not finely

extracted.

The shadow detection criteria does not perform as well as in indoor sequences.
The shadow is not always removed. The shadow can be seen in the first three
shown sequences, 008e013s00L, 009e017s01L and 010e024s00L.

The SBD still performs well in extracting the background: few background pixels

erroneously labelled as motion pixels in all the shown samples.

The evaluation of the averaged error of each outdoor sequence is shown in table 2.6.
The table shows the RMSE, the PSNR, and the percentage error of the foreground,

background and the overall error over the silhouette motion pixels.

Motion sequence 017e055s00R gave the highest RMSE, and the minimum PSNR
value. While 018e059s01L motion sequence provided the minimum RMSE and the
highest PSNR. For the foreground percentage error, motion sequence 017e055s00R.
gave the highest percentage error recorded by all the sequences. The range of
error here is in the interval of 6.88% to 30.79% with an average of 14.60%. The
minimum foreground percentage error was given by 010€024s00L motion sequence.
The background percentage error gave a lower average of 2.14% with a range of
error between 1.17% to 4.10%. When looking at the percentage of the overall error
over the silhouette’s motion pixels, the maximum error was as high as 43.26%
while the minimum was 16.91%. The average error here is 29.14%. The variance

of the RMSE shows that the SBD error on these sequences is consistent since the
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(a) A sample frame from (c¢) The extracted image silhou-
008¢013s00L ctte

AT

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e¢017s01L ette

(g8 A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

() A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ctte

FIGURE 2.7: Examples of outdoor images extracted using the SBD algorithm
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Sequence Number RMSE PSNR FG BG  Overall 0%y 9p
Number of Frames (dB) Error! Error*> Error®
008e013s00L 100 0.178 15.127 10.544 2.055 23.893 9.653E-04
009e017s01L 96 0.200 13.986 15.300 2.408 32.146 1.340E-04
010e024s00L 94 0.212 13.500 6.878 4.095 31.768 6.356E-05
013e037s00L 158 0.154 16.297 7.344 1.659 19.020 1.480E-04
013e040s00L 151 0.225 12.965 28.141 1.984 43.036 2.345E-05
017e054s00L 112 0.221 13.164 18.455 2.674 34.840 5.689E-04
017e055s00R. 88 0.234 12.638 30.792 1.810 43.257 1.118E-04
018e059s01L 104 0.146 16.700 8.878 1.165 16.909 3.484E-05
018e060s00L 88 0.178 14.999 8.580 2.311 23.174 2.968E-05
019e063s05L 112 0.147 16.663 11.010 1.269 23.398 5.618E-05
Average 0.189 14.604 14.592 2.143 29.144 2.136E-04

1 FG Error Foreground Percentage Error

2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 2.6: An overall assessment on a number of motion outdoor sequences using the

SBD algorithm

variance is small in all the motion sequences. The maximum variance is 9.653E-04
in 008e013s00L.

The algorithm managed to maintain low background error. The averaged overall

percentage error reaches almost one third of the motion pixels suggests that the

algorithm has room for improvement to reduce the foreground labelling error.

The foreground region remain the main error of concern with an average error of

14.59%.

The performance analysis clearly suggests that the technique can be improved to

reduce errors and remove the defects, especially in the foreground region for both

indoor and outdoor motion sequences.

2.4 Improvements on shadow extraction process

To improve the SBD algorithm we tested the performance of each region condition in

this algorithm. Figure 2.8 shows the pixel labelling for each region where each region’s

pixels are labelled with a different colour.

Notice that the moving object’s holes in

the indoor samples are mainly caused by mislabelling motion pixels as shadow. In the

outdoor sample small parts of the holes are caused by the shadow.

In the SBD decision function (2.5), the shadow detection condition plays a factor in

reducing the error by identifying and extracting shadows. At the same time the shadow
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detection criterion mislabels some motion pixels as shadows which causes holes to appear

in the moving object.

(a) Indoor motion sequence (b) Indoor motion sequence (¢) Indoor motion sequence
009a017s00L 010a024s08L 017a054s00L

(d) Outdoor motion sequence (e) Outdoor motion sequence (f) Outdoor motion sequence
008e013s00L 017¢055s00R 018e060s00L

FIGURE 2.8: SBD algorithm region labelling

To optimise this process a threshold distance between the background mean and a virtual
border for the shadow class is determined. The border is drawn at the point where the
distance from the tested pixels to the mean gives the minimum overall error. In this
process a training set of N frames is used. Then a search is performed by incrementing
a parameter, MULTIP in the border function

Shadow_Border = MULTIP x \/o% + 0% + 0%. (2.14)

Any shadow pixel with a distance exceeding the shadow border will be considered as a

motion pixel.

The result of this improvement is shown in the images of Figure 2.9. The improvements
are marked in green and the shadow in red. In the indoor sequences the holes are
partially filled in the sequences. The improvement has filled half of the large holes and
most of the small holes in the sample of 009a017s00L and 010a024s08L. Part of the
large hole in 017a054s00L is also filled. In sample 010a024s08L, in reducing the errors of
the moving object the new condition has added more error in the shadow region. The
outdoor sequences shows only slight improvement on the shown sequences (only small

green pixels can be seen filled in the moving object).
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(a) Indoor motion sequence (b) Indoor motion sequence (c) Indoor motion sequence
009a017s00L 010a024s08L 017a054s00L

(d) Outdoor motion sequence (¢) Outdoor motion sequence (f) Outdoor motion sequence
008e013s00L 017c055s00R. 018e060s00L

FIGURE 2.9: Modified SBD algorithm region labelling

Samples of extracted indoor motion sequences are shown in Figure 2.10. comparing
these samples with the original SBD samples, Figure 2.6, motion sequences 008a013s00L,
009a017s00L, and 010a024s08L results improved (the large holes are smaller also some
of the scattered small holes had disappeared). The outdoor motion sequences are shown
in Figure 2.11 without much noticeable improvement when comparing to the outdoor
results of the original SBD, Figure 2.7.

Table 2.7 shows the effect of function (2.14) on indoor sequences errors. From the table
we can see that the modification implemented has reduced the error slightly. The av-
eraged RMSE, the foreground percentage , and overall percentage errors have dropped
slightly. The averaged PSNR has also increased slightly. The averaged percentage back-
ground error is the only result were the error has slightly increased. The RMSE variance
is small in all tested sequences with a maximum value of 6.859E-05 in 013a040s00L. This

means that the algorithm is fairly consistent in its performance in each motion sequence.

Table 2.8 shows the result of the modifications on outdoor sequences. When compar-
ing the result with the original SBD algorithm outdoor table, the RMSE is similar.
The PSNR values have slightly increased. The averaged foreground error have slightly
dropped from 14.59% to 14.45% while the averaged background error has slightly in-
creased. The overall averaged error has slightly dropped from 29.14% to 29.08%. Though
we are testing outdoor sequences, the algorithm shows a steady performance error wise
with a range of variance between 2.272E-05 and 9.485E-04.
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L otte

(d) A sample frame from (¢) The extracted image (f) The extracted image silhou-
009a017s00L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 2.10: Examples of indoor images extracted using the modified SBD algorithm

As an overall assessment we can say that the effect of this modification is more apparent
on the indoor sequences while on outdoor sequence such modification has only a slight

positive effect.

2.5 Conclusions

This chapter has presented the Statistical Background Disturbance (SBD) algorithm.
The algorithm was tested on indoor and outdoor motion sequences. The assessment
of the motion sequences showed the problems of the algorithm in indoor and outdoor
sequences. The SBD suffers from holes which appear erroneously in the moving subjects.

On the outdoor data the algorithm fails sometimes to extract the shadows. The shadow
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

() A sample frame from (k) The extracted image (I) The extracted image silhou-
013e037s00L ette

FIGURE 2.11: Examples of outdoor images extracted using the modified SBD algorithm
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Sequence Number RMSE PSNR FG BG Overall ORAISE

Number of Frames (dB) Error! Error® Errord
0082013s00L 178 0.076 22.430 2.943 0.392 7.853 4.860E-05
009a017s00L 169 0.076 22.468 2.383  0.448 3.923 3.325E-05
010a024s08L 187 0.077 22.285 2.581 0.464 9.520 3.487E-05
013a037s00L 114 0.065 23.738 4.648 0.193 8.104 3.824E-05
013a040s00L 184 0.078 22.167 2.745 0.484 10.395 6.859E-05
017a054s00L 188 0.118 18.553 0.955  1.438 21.095 5.438E-05
017a055s00R. 162 0.070 23.151 2.419  0.357 7.629 2.648E-05
018a059s00L 188 0.069 23.317 3.125 0.284 7.190 2.854E-05
018a060s00L 179 0.078 22.149 2.450 0.483 9.149 2.880E-05
019a063s00L 186 0.070 23.162 2.345 0.367 7.894 4.293E-05

Average 0.078 22.342 2.659  0.491 9.775 4.047E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 2.7: Overall assessment on a number of motion indoor sequences using the
improved SBD algorithm

Sequence Number RMSE PSNR FG BG Overall o558

Number of Frames (dB)  Error! Error? Error3
008e013s00L 100 0.178 15.110 11.539 1.913 23.969 9.485E-04
009e017s01L 96 0.200 13.986 15.300 2.408 32.146 1.340E-04
010e024s00L 94 0.211 13.506 6.757 4.107 31.721 6.167E-05
013e037s00L 158 0.154 16.306 7.211 1.674 18.991 1.544E-04
013e040s00L 151 0.225 12.969 27.911 2.009 42.992 2.272E-05
017e054s00L 112 0.221 13.170 17.953 2.749 34.797 5.676E-04
017e055s00R 88 0.233 12.645 30.655 1.821 43.192 1.110E-04
018e059s01L 104 0.145 16.808 7.937 1.243 16.502 3.771E-05
018e060s00L 88 0.178 15.014 8.409 2.326  23.095 3.045E-05
019e063s05L 112 0.147 16.669 10.860 1.281 23.363 5.770E-05

Average 0.189 14.618 14.453 2.133 29.077 2.126E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 2.8: Overall assessment on a number of motion outdoor sequences using the
modified SBD algorithm

decision criteria in the SBD algorithm was improved by adding a second condition to
test the distance of the shadow labelled pixel to the background mean of the tested pixel.
The improvement in error reduction was more apparent in the indoor rather than the

outdoor motion sequences.
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Mixture of Gaussians

3.1 Introduction

In density estimation a commonly used approach is to represent the probability density
in a functional form, which consists of a number of adjustable parameters. Then the
values of the parameters are optimised to model the density of the data. A simple density

estimation model is the Gaussian distribution (also called the normal distribution).

Univariate Gaussian distributions can be used for univariate data (grey levels of images

for instance), for colour images (multi-value data) multivariate Gaussians can be used.

Gaussian distributions are useful in practice for two reasons: first, the normal distrib-
ution serves as a bona fide population model in some instances; second, the sampling
distributions of many multivariate statistics are approximately normal, regardless of the

form of the parent population (Johnson and Wichern, 2002).

A Mixture of Gaussians can be used to model the density of single or multivariate data
when the density is more complex, e.g. bimodal. In addition, a mixture of Gaussians
model is a very appealing approach to data fitting as it scales favourably with dimen-
sionality of the data, has good analytic properties and many data sets form clusters

which are approximately Gaussian in nature (Roberts et al., 1998).

Mixture models in general provide powerful techniques for density estimation. In the
remainder of this section we will provide a recent history of the use of Gaussians models

in the motion estimation area.

Pfinder (Wren et al., 1997; Maes et al., 1997) used a multi-scale statistical model of colour
and shape with a single Gaussian per pixel to model the background. The algorithm
succeeded in finding a 2-D representation of head, hands and feet locations of a moving
human subject. In contrast, Friedman and Russell (1997) took a simpler approach to

modelling the statistical nature of the image by using a mixture of Gaussians with a

30



Chapter 3 Mixture of Gaussians 31

single distribution to model the whole of the background and two other distributions to

model the variability in shadows and moving objects.

In real situations the background is typically multi-modal. A single Gaussian would
suffice to approximate the background if each pixel resulted from a single surface under
fixed lighting. Often multiple surfaces appear on a particular background pixel and the
lighting conditions change. Multiple adaptive Gaussians can cope with such situations
and thus they are a suitable solution to model multi-modal backgrounds.

Traven (1991) introduced a stochastic on-line technique to optimise the parameters
of a Gaussian mixture model. An extensive simulation study was presented in (Cwik,
1996). Stauffer and Grimson (2000, 1999); Grimson et al. (1998) used the ouline mixture
of Gaussians technique for motion estimation and tracking. The persistence and the
variance of each of the Gaussians is used to identify background distributions. The
approach was designed to deal robustly with bimodal backgrounds, lighting changes,
repetitive motions of scene elements. The method lacks the capability to remove shadows
and highlights. The method was extended to be used for a moving camera in (Mittal and
Huttenlocher, 2000). Javed et al. (2002); Javed and Shah (2002) used the same updating
parameters along with a gradient based modelling scheme. The same principle of Stauffer
was applied in an on-line EM algorithm (KaewTraKulPong and Bowden, 2001a,b) and
combined with Horprasert et al. (1999) for shadow extraction. McKenna et al. (1999,
1998) used also an adaptive EM algorithm with an HSI colour representation to track
a multi-colour moving object. Elgammal et al. (2002, 2000) used a Gaussian density
estimator as a kernel in the process of background modelling. The final background
model is updated by combining a short and a long term model of the background. A

colour representation was used to suppress shadows.

3.2 Gaussian Density Function

The Gaussian density function for a single variable is presented in the form

S P — (—M) (3.1)

© (2mo2)1/2 202

where p is the mean, and o2 is the variance, and the function is normalised such that

/oo p(z)dr =1 (3.2)

—0o0

For d-dimensions the general multivariate Gaussian density function is written
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p(x) = W €xp (-%(X —p) T2 (x - p)) (3.3)

where p is a d-dimensional vector and X is a d X d covariance matrix

3.3 Mixture Model

The principle here is to model the distribution of a candidate as a mixture of Gaussian

densities. The density of the input data is modelled as follows:

K

p(x) =Y _p(x | )P() (3.4)

Jj=1

where p(x | j) are the component densities and P(j) are the priors. The priors are
chosen to satisfy the constraints

K
Y PG =1 (3.5)
=1
and
0<P(j) <1 (3.6)

The component density functions, p(x | j), are normalised so that

/p(x | dx=1, j=1.K (3.7)

An important property of such mixture models is that, for many choices of component
density function, they can approximate any continuous density to arbitrary accuracy
provided the model has a sufficiently large number of components, and provided the
parameter of the model are chosen correctly (Bishop, 1996).

3.4 Stauffer mixture of Gaussians algorithm (MOG)

This approach (Stauffer and Grimson, 2000, 1999; Grimson et al., 1998) models the back-
ground with independent distributions that are updated by an efficient on-line method.

Figure 3.1 gives an overall view of how this algorithm operates. The model applies a
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pixel-by-pixel process. A pixel is scalar for a grey pixel and a vector for a colour pixel.
The recent history of each pixel is modelled as a mixture of K Gaussian distributions.

For coloured (RGB) pixels, the probability of a pixel intensity, x = (zr, G, 2B),

Input pixel

]

Calculate the distance

between x; and allthe €——

distributions

Is x,with in 2.5 standard
deviation of one of the
distributions ?

Replace the distribution
| with the least value of

Find the Background |

distributions

Sort all the distributions
by
wlo

«—

Yes

Y

Update the mean and the
variance parameters for

the matching distribution
only

\ 4

Update and normalise
the distribution weights

| wlo
I with a new distribution

Classify x; as foreground

!

Classification
results

Y

Classify x; according to
the matching distribution
type (either foreground or

background)

!

Classification
results

FIGURE 3.1: An overall view of how the mixture of Gaussians algorithm operates.

p(x

K

=1

(3.8)

where K is the number of distributions (a value 3 to 5 is often used). The number of

distributions is supposed to be chosen so as to give a reasonable fit to the true density.
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w; is the weight estimate for the j** distribution, p; is the mean value for the j*
distribution, 3; is the covariance matrix for the 4 distribution, and it is assumed to
be of the form ¥£; = 0']2-]: (to simplify computation). 7 is a Gaussian probability density

function formed from the multivariate Gaussian

2
1 X — My

n(x, nj,05) = WGXP (‘%) (3.9)
J

where d is the input dimension which is 3 for the (RGB) colour model.

The algorithm implements an on-line K-means approximation method. Every new pixel
value, x, is compared to the existing K Gaussian distributions. The pixel is classified
to be in a particular distribution if the pixel is within 2.5 times the standard deviation
of the distribution (this number is chosen to make the probability of detection for a
distribution data equals 0.99, i.e 99%). The pixel is checked against the background

distributions first and then to the foreground distributions.

The distributions are ordered according to the ratio of the weight over the standard
deviation of each distribution, w;/o;. This process will rank the most probable (those
with high weight and low variance) to the least probable background distributions (those
with low weight and high variance). The background model is formed from a number of

background distributions

b
B= i i >T 3.10
arg min ;w] > (3.10)

where T € [0, 1] controls the number of modes of variations in the background. A small
value for 7" will result in a strict background where only unimodal background surfaces
are accepted. In contrast, a large value for T will enable the system to allow bimodal
backgrounds (sea surface, moving trees, etc) to be considered as part of the background.

If a pixel does not match any of the K distributions, the pixel will be considered as a new
distribution replacing the distribution with the smallest w;/o;. The new distribution
mean, p;;, will be the pixel value. The distributions with small w;/o; are presumed to
be non-background pixels. The distributions are meant to model the background. Allo-
cating a Gaussian for non-background pixels makes the model adaptive to any change in
the background model (like adding an item to the scene). Now if a non-background pixel
(part of a moving object) does not move over a period of time, its distribution weight
over time will increase and its variance will decrease until this distribution becomes part
of the background model.
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The prior weight of a new distribution will be set to a low weight and the variance to
a high variance. After evaluating a new pixel, the K distributions prior weights are

updated at time ¢

wjr = (1 — @)wje—1 + aMjy (3.11)

where « is the learning rate. Mj;; is 1 for the matching distribution, and 0 for the
remaining distributions. The weights are normalised after this process. The values of

M, and a?’t are updated only for the matching distribution

K= (1= p)pje_y + pxe (3.12)
0_72',t = (1 - P)U]Q',t—l (% — Nj,t)T(xt — M) (3.13)

where
p = om(Xe, Pjy—1,0jt-1) (3.14)

A pixel is identified as a motion pixel if it matches a non-background distribution or if
it does not match any of the available distributions of a pixel. All the motion pixels are
tested using a connected component algorithm (Horn, 1986) to remove the noise pixels.
The Stauffer Mixture of Gaussians algorithm was implemented on images of indoor and
outdoor scenes. Samples of indoor and outdoor extracted images are shown in Figures

(3.2 - 3.3)(the connected components process is not applied on these frames).

(a) An input frame (b) Motion extraction result

FIc¢URE 3.2: Indoor image shows an input frame and an extracted moving subject with
Stauffer mixture of Gaussians algorithm.

The shadow in the extracted moving object is a concern that has to be rectified to im-
prove the extraction of this method. Noise pixels exist in the background area. Stauffer
and Grimson (2000, 1999) used the connected components method to remove compo-
nents of two or even single pixels but this process does not assure the removal of all the

background noise.
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(a) An outdoor frame (b) Motion extraction result

FIGURE 3.3: Stauffer mixture of Gaussians algorithm used to extract an outdoor frame
from the HumanID database (Phillips et al., 2002)

3.4.1 Parameter Settings

The setting of the parameters in this algorithm is very important. The effects of each
parameter will be illustrated using an indoor sequence. Then the same process will be
repeated for an outdoor sequence. This is because parameters settings are dependent
on the motion sequence scene, i.e. if another indoor/outdoor sequences were used with
a different background scene the parameters should be reoptimised for the new scene.
The parameters are as follows: the learning rate, «; the initial weight; the background
threshold, T; the initial variance; and different number of Gaussians per mixture. The
same initial parameter setting is used for indoor and outdoor data unless stated oth-
erwise. Essentially the effect of each parameter is assessed independently aiming to
determine an optimal set for later use. The assessment was performed without includ-
ing the shadow part of the images. This was done due to the fact that the algorithm
does not support shadow extraction and including such pixels will give wrong indications
by adding more pixels to the false positive region. Also for some parameters varying its
values while including shadow pixels will give mistakenly better results in the overall
extraction result while in fact the motion extraction deteriorates (such an effect was

noticed clearly in initial setting of the variance parameter).

e The learning rate (&)

The initial learning rate can be set between [0-1]. The effect of changing
the learning rate will be shown by testing a variable learning rate on an
indoor motion sequence. The test was performed with the initial weight set
to 0.05, the background threshold set to 0.6, the initial variance set to 50
and 5 Gaussians per mixture.

Using different learning rates, we will be testing how long the mixture of
Gaussians algorithm takes to adapt to the background. Also the performance
of the algorithm in motion detection will be measured.
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Percentage of Erroncous Pixels

For the tested sequences, having fast adaptation of (2 - 5) frames will not be
suitable since a moving object surface (with a human movement speed) might
take such time to finish passing through a pixel i.e. the background mixtures
with fast learning rates might replace the background with the moving object
surface colour and use it as a background. Also we need more frames to allow
more time for a moving object, e.g. a person, to stop for a short time or at
least to consider persons moving in slower speeds. A learning rate taking 20

frames or more to adapt to the background will be considered as reasonable.
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F1GURE 3.4: The effect of varying the learning rate on background adaption

In the beginning the learning rates: 0.1, 0.01 and 0.001 were used. 50 back-
ground frames were used to test how fast the algorithm will adapt to the
background. Figure 3.4(a) shows the cffect on using different learning rates
on background adaptation. As it shows using 0.1 gave a very fast adaptation
in four frames and the system was not robust in maintaining the background
model since the error started to rise later. Therefore a learning rate with a
0.1 value is not suitable. On the other extreme using a very slow learning
rate of 0.001 led to all 50 frames passing without the system adapting to the
background. In this figure the optimuimn learning rate for our criteria is 0.01
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which took 16 frames to adapt to more than 90% of the background aud took
another 15 frames to handle most of the remaining background pixels. The
system with this algorithm continued robustly in containing the background
pixels as we can see in frames 32 to frame 50.

Since the gaps between these learning rates (0.1, 0.01, and 0.001) arc large,
the effect of changing the learning rate in smaller steps around the 0.01 learn-
ing rate was investigated. The same test was repcated on 50 background
frames with the following values for the learning rate: 0.004, 0.006, 0.008,
0.010, 0.012 and 0.014. The result is shown in Figure 3.4(b). The figure
shows that the learning rates of 0.006 to 0.014 gave a rcasonable adaption
time. The 0.004 learning rate made the algorithm so slow to adapt that it
took the algorithm 40 frames to start to accommodate almost 84% percent
of the background pixels and it finished the whole 50 frames without totally
adapting to the background pixels. Therefore this learning rate was disqual-
ified. Figure 3.4(c) gives a more enlarged view of background adaptation on
the last frames of the background. The relationship between the adaptation
rate and the number of frames gave an exponential trend as it is shown in
Figure 3.4(d). The figure is a plot of the point where adaption accommodates
most of the background.

(a) Large learning rate variations (b) Small learning rate variations
LR* RMSE PSNR ROC** LR* RMSE PSNR ROC**
(dB)  Cutoff (dB)  Cutoff
0.1 0.642 3.861 0.328 0.004 0.238 12.496 0.938

0.01 0.261 11.732 0.753 0.006 0.196 14.267 0.845
0.001 0.964 0.323 0.001 0.008 0.233 12.714 0.772

0.01 0.261 11.732 0.753
* Learning Rate 0.012 0.286 10.932 0.730
** ROC Optimal Cutoff Measure 0.014 0.307 10.332 0.705

TABLE 3.1: Assessment tests on the MOG using different learning rates on an indoor
motion sequence

To choose a specific value of adaptation among the values shown in Figure
3.4(b), the algorithm was tested with an indoor motion sequence after the
first 50 background frames. The motion sequence with the different learning
rates was analysed with three different assessment tests the RMSE, the PSNR
and the ROC optimal cutoff measure (Grzymala-Busse et al., 2003, 2002),
Table 3.1. Table 3.1(a) shows the large variation of learning rates. The 0.01
learning rates showed better results in all the three measurements, where it
gives the minimum error for the RMSE, the largest PSNR and maximum
ROC cutoff value. Looking on smaller variation close to 0.01, Table 3.1(b),
0.006 gives the smallest RMSE, the largest PSNR value and the second best
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cutoff value after the excluded 0.004 rate. Thercfore 0.006 will be used as
the learning rate for the MOG algorithin on indoor sequences.

(a) Large learning rate variations (b) Small learning rate variations
LR* RMSE PSNR ROC** LR* RMSE PSNR ROC**
(dB)  Cutoff (dB)  Cutoff

0.1 0.561 5.028 0.329 0.004 0.454 6.857 0.683
0.01 0.349 9.155 0.623 0.006 0.379 8.444 0.725
0.001 0.921 0.714 0.002 0.008 0.364 8.788 0.625

0.01 0.349 9.155 0.623
* Learning Rate 0.012 0.345 9.261 0.621
** ROC Optimal Cutoff Measure 0.014 0.345 9.271 0.613

TABLE 3.2: Assessment tests on the MOG using different learning rates on an outdoor
sequence

For outdoor sequences, testing the learning rate with the large variations
resulted in Table 3.2(a). The result also shows the MOG with 0.01 as the
learning rate performs better than the 0.1 and 0.001 in all the asscssment
measures used, RMSE, PSNR and ROC optimal cutoff measure. This result
led us to test the values around 0.01 with small variation steps which resulted
in Table 3.2(b). The assessment measures does not agree on a single valuc,
but when searching for a rate that performed better in most of the measurcs
we find that 0.012 and 0.014 performed better in the RMSE and the PSNR
measures. These two values for the learning rate gave the samec value for
the RMSE. The 0.012 performs better in the ROC optimal cutoff mecasure
while 0.014 performs better in the PSNR measure. Since 0.012 and 0.014
are almost equal in preference, we will choose 0.012 since it is slightly slower
(slower learning rate means more persistent background modecl).

o Initial weight

The initial weight can be set to any value larger than zcro. We will dis-
cover the effect of changing the initial weight through testing differcnt initial
weights on an indoor sequence. The test was performed with the learning
rate set to 0.01, the background threshold set to 0.6, the initial variance sct
to 50 and 5 Gaussians per mixture.

The indoor motion sequence assessment result is shown in Table 3.3. The
decrease of the initial weight resulted in a decrease in the RMSE and an
increase in the PSNR value. 0.0005 gave a similar result to the valucs of
0.005 initial weight but slightly better. 0.0005 initial weight gave the best
result in RMSE and in the PSNR. In the ROC optimal cutoff measure all
the three 0.05, 0.005 and 0.0005 gave similar result with minor differences.
Due to the good results accomplished by 0.0005 initial weight in the RMSE
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the PSNR and a reasonable result in the ROC optimal cutoff measure, it was
used as the initial weight.

Initial RMSE PSNR ROC*

Weight (dB)  Cutoff
0.5 0.307 10.259 0.650
0.05 0.261 11.732 0.753

0.005 0.250 12.105 0.748
0.0005 0.249 12.152 0.749

* ROC Optimal Cutoff Measure

TABLE 3.3: Assessment tests on the MOG using different initial weights for an indoor
motion sequence

The tests on the outdoor motion sequence is given in Table 3.4. The table
shows that the variation of the initial weight is not significant on outdoor
motion sequences (i.e. when the parameter is changed the output results is
not affected). The initial weight will be set to be the same as the indoor
sequence initial weight, 0.0005

Initial RMSE PSNR ROC*

Weight (dB) Cutoff
0.5 0.349 9.155 0.623
0.05 0.349 9.155 0.623

0.005 0.349 9.155 0.623
0.0005 0.349 9.155 0.623

* ROC Optimal Cutoff Measure

TABLE 3.4: Assessment tests on the MOG using different initial weights on an outdoor
motion sequence

e The background threshold (T)

The background threshold, T, can have a value of 0 < T < 1. The smaller
the value of T, the more chance for more Gaussians to be considered as part
of the background model. A larger value of T makes the system being able
to accommodate multi-modal backgrounds, such as a waving flag, the sca
tide or tree leaves moving with the wind. Smaller values of T' will allow only
few Gaussians to be in the background model. The effect of changing the
background threshold will be shown through testing different threshold values
on an indoor and an outdoor motion sequence. The test was performed with
the learning rate set to 0.01, the initial weight set to 0.05, the initial variance
set to 50 and 5 Gaussians per mixture. Even though T can be varied between
0 to 1, we will use 0.2 as a minimum value for our tests. Since we are using
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5 Gaussians, if we assume a similar priority in the beginning a persistent
background Gaussian should be of a value above 0.2.

T* RMSE PSNR ROC*

(dB)  Cutoff
0.2 0.115 18.774 0.982
04 0.175 15.212 0.950
0.6 0261 11.732 0.753
0.8 0268 11.507 0.736

* Background Threshold
** ROC Optimal Cutoff Measure

TABLE 3.5: Assessment tests on the MOG using different background thresholds for
an indoor motion sequence

Table 3.5 shows an assessment for the background threshold parameter vari-
ation on the MOG algorithm using an indoor sequence. The performance
is inversely proportional to the value of the background threshold. We can
see as we decrease the value of T' the error decreases. 0.2 threshold gives
the smallest RMSE, the largest PSNR and the largest ROC optimal cutoft
measure. Thus 0.2 was used as a value for 7'

T* RMSE PSNR ROC™

(dB)  Cutoff
02 0265 11.547 0.840
04 0295 10.607 0.819
0.6 0.349 9.155  0.623
08 0334 9535  0.606

* Background Threshold
** ROC Optimal Cutoff Measure

TABLE 3.6: Assessment tests on the MOG using different background thresholds

Table 3.6 gives the assessment for varying the background threshold on an
outdoor motion sequence. The minimum RMSE, the maximum PSNR and
ROC optimal cutoff measure is scored by the 0.2 background threshold. This
value will be used as a background threshold for the outdoor motion sc-
quences.

e Initial variance

This parameter will be used as an initialisation variance for any new Gaussian.
The value is supposed to be large enough to accommodate a normal back-
ground pixel variation. The effect of changing the initial variance will be
shown through testing variable initial variances on an indoor and outdoor
motion sequences. The test is performed with the learning rate set to 0.01,
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the initial weight set to 0.05, the background threshold set to 0.6 and 5
Gaussians per mixture.

(a) Large Initial Variance variations (b) Small Initial Variance variations

Init. RMSE PSNR ROC** Init. RMSE PSNR ROC**
Var.* (dB) Cutoff  Var* (dB)  Cutoff

5 0.817 1.754 0.278 10 0.462 6.725 0.744

50 0.261 11.732 0.753 30 0.293 10.731 0.793

500 0.247 12,189 0.418 50 0.261 11.732 0.753

70 0.248 12.173 0.718

* Initial Variance 90 0.238 12.500 0.690

** ROC Optimal Cutoff Measure 110 0.229 12.823 0.666

TABLE 3.7: Assessment tests on the MOG using different Initial Variances for an indoor
motion sequence

The assessment table for the initial variance, Table 3.7, gives two assessment
stages on the same parameter. The first stage is done with large increments in
initial variance starting with the following variances 5, 50, 500. The 500 ini-
tial variance gave the best result in two of the the three assessment measures
(RMSE and PSNR). Such a value might make the acceptable background
range too wide which might endanger the accuracy of the algorithm (i.e. if
a moving object with a colour similar to the background might be labelled
as background). This will be the case until the background distribution con-
verges to its proper size but with such a large variance this might take a long
time. So the test was done again starting from variance 10 onwards in steps
of 20. The test aimed to find a value smaller than the 500 variance with
comparable performance. The test was successful where the initial variance,
110 gave even better performance in all the assessment measures than the
500 initial variance. Therefore 110 was used as an initial variance for the
indoor sequences.

(a) Large Initial Variance variations (b) Small Initial Variance variations

Init. RMSE PSNR ROC** Init. RMSE PSNR ROC**

Var.* (dB)  Cutoff Var.* (dB)  Cutoff
5 0.761 2.370 0.283 10 0.624  4.098 0.470
50 0.349  9.155 0.623 30 0.403  7.906 0.641
500 0.376  8.496 0.304 50 0.349 9.155 0.623
70 0.337  9.467 0.587
* Initial Variance 90 0.335 9.500 0.549
** ROC Optimal Cutoff Measure 110 0.337 9.469 0.517

TABLE 3.8: Assessment tests on the MOG using different initial variances on an outdoor
motion sequence
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Table 3.8 gives the evaluation tables for two different tests for changing the
initial variance for an outdoor motion sequence one using the large steps of 5,
50 and 500 on Table 3.8(a), and the other using small steps (20 cach) starting
from 10 and reaching up to 110, Table 3.8(b). In Table 3.8(a) we can sce the
initial variance of 50 giving the best RMSE, PSNR and ROC optimal cutoff
measure. In Table 3.8(b) smaller steps were used near the best performing
initial variance, 50, to find an optimal initial variance. The 90 initial variance
managed to score the best rate in two of the three evaluation measurcs, the
RMSE and PSNR, and therefore it was used as the initial variance for the
outdoor motion sequences.

e Number of Gaussians per mixture

The number of Gaussians was varied from 2 to 9 Gaussians per pixel to
test the effect on the system performance. Bearing in mind that the more
Gaussians used, the more the speed performance of the system will degrade.
Also we started with two Gaussians (not one) where one will be used for
the background model and the other is used for motion pixels. The test was
performed with the learning rate set to 0.01, the initial weight set to 0.05, the
initial variance set to 50 and the background threshold set to 0.2. Here we
used a small background threshold, 0.2, because it was chosen as a threshold
for indoor and outdoor sequences. Also by testing using this threshold we
will make sure that using such a small threshold will not hinder multiple of
Gaussians from building the background model and decrease the error.

(a) Changing number of Gaussians (2 - 5) (b) Changing number of Gaussians (5 - 9)
No. of RMSE PSNR ROC** No. of RMSE PSNR ROC**
Gauss.* (dB) Cutoff  Gauss.* (dB)  Cutoft
2 0.474 6.484 0.576 ) 0.115 18.774  0.982
3 0.161 15.861 0.971 7 0.124 18.141 0.958
4 0.119 18.521 0.983 9 0.193 14.366 0.784
5 0.115 18.774 0.982

* Number of Gaussians
** ROC Optimal Cutoff Measure

TABLE 3.9: Assessment tests on the MOG algorithm using different number of Gaus-
sians per pixel for an indoor motion sequence

The evaluation of using different number of Gaussians on an indoor motion
sequence is shown in Table 3.9. Using 5 mixture of Gaussians gives the best
result in the RMSE and the PSNR.. Also in the ROC optimal cutoff measure
5 Gaussians scored very close to the highest value. Accordingly, 5 Gaussians
will be used for extracting indoor motion sequences.
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(a) Changing number of Gaussians (2 - 5) (b) Changing number of Gaussians (5 - 9)
No. of RMSE PSNR ROC** No. of RMSE PSNR ROC**
Gauss.* (dB)  Cutoff  Gauss.* (dB)  Cutoff
2 0.570  4.896 0.367 5 0.265 11.547 0.840
3 0.383  8.353 0.757 7 0.220 13.169 0.855
4 0.312 10.130 0.812 9 0.248 12.126  0.747
5 0.265 11.547  0.840

* Number of Gaussians
** ROC Optimal Cutoff Measure

TABLE 3.10: Assessment tests on the MOG algorithm using different number of Gaus-
sians per pixel on outdoor motion sequence

Table 3.10 shows the evaluation of changing the number of Gaussians for
the MOG algorithm using an outdoor motion sequence. An MOG with 7
Gaussians gives the best result for the outdoor sequence giving the smallest
RMSE, the highest PSNR and the highest ROC optimal cutoff measure as
well. Therefore 7 Gaussians was used for outdoor motion sequences.

3.4.2 Experimental Results

The final settings for the indoor and the outdoor motion sequences were used to further

test more motion sequences.

e Indoor Motion Sequences

The 10 indoor sequences were processed using the MOG algorithm with the op-
timised settings (in each one, 50-52 frames were used for background modelling).
The optimised settings are: learning rate 0.006, the initial weight 0.0005, the initial

variance 110, 0.2 background threshold and § Gaussians per mixture.

Samples of the extracted images are shown in Figure 3.5. From the samples shown,
the motion pixels were mostly detected correctly in all the shown sequences. In the
background region, some background pixels were labelled erroneously as motion
pixels. The algorithm as stated does not suppress shadows. The shadow pixels are

often erroneously labelled as motion pixels.

The evaluation of the averaged error of each sequence is shown in Table 3.11.
The table shows the RMSE, the PSNR, and three different percentage errors, the
background, foreground and the overall percentage error compared to the motion
pixels.

Motion sequence 017a055s00R, gave the highest RMSE, and the minimum PSNR
value. While 019e063s00L motion sequence provided the minimum RMSE and the
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(&) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ctte

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ctte

F1GURE 3.5: Examples of indoor images extracted using the MOG algorithm

highest PSNR. The percentage error for the foreground and the background pixels
are low. But when comparing the total erroneous pixels to the motion pixels the
result is quite different where the minimum error can reach one quarter of the
motion pixels, 26.48% in 019a063s00L. The maximum percentage error reaches
63.51% in 017a055s00R (the error is more than half the actual motion pixels).
The overall percentage error gives an indication that improvements is needed to
reduce the overall detection error by removing the shadow and improving the
shadow detection process. The recorded RMSE variance is small for all the tested
sequences. The largest variance in motion sequence 008a013s00L is 7.361E-04.
The small variance values shows the MOG consistency in its performance in each

motion sequence.

When comparing the results of the MOG indoor sequences with the results of



Chapter 3 Mixture of Gaussians 16

Sequence ~ No. of RMSE PSNR FG BG  Overall o%,5k

Number Frames (dB) Error! Error®> Errord
008a013s00L 178 0.172 15.389 0.482 3.236 41.557 7.361E-04
0092a017s00L 169 0.148 16.670 0.605 2.331 34.925 3.564E-04
010a024s08L 187 0.142 17.006 0.912 2.083 32.267 9.206E-05
013a037s00L 114 0.135 17.518 1.371 1.913 36.270 5.746E-04
013a040s00L 184 0.154 16.378 0.963 2.500 41.115 5.545E-04
017a054s00L 188 0.195 14.232 0.395 4.102 58.479 4.337E-04
017a055s00R 162 0.201 13.979 0.661 4.284 63.510 2.778E-04
018a059s00L 188 0.138 17.246 1.181 1.983 20.788 2.419E-04
018a060s00L 179 0.174 15.209 0.729 3.237 46.140 6.101E-04
019a063s00L 186 0.128 17.896 1.094 1.665 26.483 3.693E-05

Average 0.159 16.161 0.839 2.733 41.053 3.914E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 3.11: Overall assessment on a number of motion indoor sequences using the
MOG algorithm

the modified SBD using the RMSE (0%;,55) values, the SBD scored less RMSE
with an average of 0.078 (4.047E-05) compared to a 0.159 (3.914E-04) MOG. The
modified SBD also scored better results in the PSNR and the overall error. The
foreground region extraction for the MOG is better with less foreground error and
no holes in the moving subject. On the other hand, the background extraction is
better in the modified SBD with less background error (0.49% in the modified SBD
and 2.73% in the MOG) and less noise in the background region. When comparing
the sample figures of extraction for both classifiers, Figure 3.5 and Figure 2.10,
the same conclusions can be reached where the MOG gives better foreground
extraction with less holes and the SBD gives better background suppression. The
shadow suppression is a clear advantage for the SBD where most of the shadow (if
not all in some of the samples) had disappeared while for the MOG the shadow is
apparent on the extracted sequences. This difference in performance when utilised
properly by using each classifier’s strengths, justifies the fusion of both classifiers
aiming for a better classifier, to be discussed later in Chapter 6 (notice also that

the isolated mislabelled pixels mostly appear in different positions in the scene).

e QOutdoor Motion Sequences

In the process of evaluating the MOG, 10 outdoor sequences were tested using
this algorithm. 48-55 background frames were used for background adaption. The
MOG algorithm with the optimised outdoor parameters were used. The parame-
ters are: learning rate of 0.012, an initial weight of 0.0005, an initial variance of

90, 0.2 for the background threshold and 7 Gaussians per mixture.
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L: ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ette

(g) A sample frame from
010e024s00L

(i) The extracted image silhou-
ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ette

FIGURE 3.6: Examples of outdoor images extracted using the MOG algorithm
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Figure 3.6 shows samples of outdoor extracted images. From the shown samples the
motion pixels are not always detected correctly. In motion sequences 008e013s00L,
009e017s01L and 013e037s00L the problem is clearly illustrated with big holes
appearing on the moving object. Sample of motion sequence 010e024s00L shows
small holes in the moving object. Also, the background is not detected precisely
where many groups of points can be observed in many parts of the background.
Sample of motion sequence 013e037s00L has the worst background extraction. The

shadow is labelled as motion pixels in all the extracted images.

The evaluation of the averaged error of each outdoor sequence is shown in Table
3.12. The table shows the RMSE, the PSNR, the background/foreground per-

centage error and the overall percentage error compared to the silhouette’s motion

pixels.

Sequence No. of RMSE PSNR FG BG  Overall o%y sk

Number Frames (dB) Error? Error?  Error?
008e013s00L 100 0.207 13.719 8.634 3.587 31.932 2.964E-04
009e017s01L 96 0.226 12.923 16.551 3.479 41.119 1.151E-04
010e024s00L 94 0.237 12.533 8.216 5.176  39.679 1.395E-04
013e037s00L 158 0.216 13.365 11.520 3.747 37.868 6.922E-04
013e040s00L 151 0.240 12.403 8.370 5.408 48.967 4.123E-05
017e054s00L 112 0.220 13.184 12.949 3.498 34.476 2.398E-04
017e055s00R 88 0.251 12.036 8.304 6.025 50.033 3.709E-04
018e059s01L 104 0.190 14.426 10.194 2.663 28.540 6.936E-05
018e060s00L 88 0.207 13.691 7.171 3.846 31.445 2.294E-04
019e063s05L 112 0.169 15.458 8.184 2.331 30.935 1.763E-04

Average 0.216 13.374 10.009 3.976 37.499 2.370E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 3.12: Overall assessment on a number of motion outdoor sequences using the
MOG algorithm

Motion sequence 017e055s00R gave the highest RMSE, and the minimum PSNR
value. While 019e063s05L motion sequence provided the minimum RMSE and
the highest PSNR. The foreground percentage error is higher than in the indoor
sequences (expected since outdoor sequences are more challenging) where the min-
imum error recorded is 7.17% and the maximum 16.55%. The average foreground
error is 10.01%. For the background percentage error the values ranged between
2.33% to 6.03%. The average error for the background region is 3.98%. Finally the
percentage error compared to the silhouette motion pixels gives high results where
the average is 37.50% with a minimum of 28.54% and a maximum of 50.03%. The
same conclusion can be reached here (the same as the indoor conclusion), such
percentage indicates that there is still room for improvement on motion detection

and shadow suppression. The MOG error variance ,RMSE variance, gave a small
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value which means large consistency in its performance in each sequence. The
variance ranged from 4.123E-05 in 013e040s00L to 6.922F-04 in 013e037s00L.

Comparing the sample images for the MOG in Figure 3.6 with the modified SBD in
Figure 2.11 shows that in motion sequences 009e017s01L and 010e024s00L MOG
gave better extraction for the moving subject (than the modified SBD) but in the
other two samples, 008e¢013s00L and 013e037s00L, the MOG result were worse
than the modified SBD with large wholes in both motion sequences. On the other
hand, the background region in the modified SBD has few noisy pixels compared
with groups of connected noisy points in the MOG. In the shadow region, the
modified SBD managed to suppress the shadow in 013e037s00L while the MOG
does not support shadow suppression. We notice from the comparison that the
classifiers perform differently in different regions. When comparing the results of
the MOG classifier with the modified SBD for the outdoor sequences using the
RMSE (0%,,55) values, the SBD scored less error with an averaged RMSE of
0.189 (2.126 x 10™%) compared to 0.216 (2.370 x 10™%) for the MOG. The modified
SBD also scored better results in the PSNR and the overall error. The MOG gave
better results for the the foreground region (considering also the moving object
holes shown in the SBD samples figure). In the background region, the modified
SBD performed better with an error of 2.15% compared to an error of 3.98% in the
MOG classifier. Proper fusion of those different performing classifiers can result

in improving the overall performance.

3.5 Conclusions

In this chapter the MOG algorithm was presented. Optimised performance was achieved
by experimenting with different settings of the algorithm’s parameters. The best values
were those which optimised performance figures developed earlier for moving object
extraction analysis. When optimised values had been selected, the algorithm was tested
on indoor and outdoor motion sequences. Also different analytical assessment methods
were used to clarify the algorithm performance. The algorithm lacks the ability to
extract shadows. The algorithm’s background suppression can still be optimised further
and the algorithm’s motion extraction showed some shortcomings on outdoor sequences
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Unary Classifiers

4.1 Introduction

Unary classification (UC) is concerned with a single class with a decision function that
states the likelihood of a given data being a member to such class. The method deter-

mines a class boundary using the data given for a class.

Support Vector Machines (SVMs) can be used to implement unary classification (Schélkopf
et al., 2001; Chen et al., 2001; Manevitz and Yousif, 2001). There exist two SVM based
methods that can be used for unary classification, Hyperplane (Schélkopf et al., 2001)
and Hypersphere (Tax and Duin, 1999) methods. In a Hyperplane method, data is
bounded using a hyperplane in a feature space. In a Hypersphere the data is bounded
using a hypersphere in a feature space. The strategy we use is to map the data into a

feature space and then to use a hypersphere to determine membership of the class.

In the following sections we will present our new motion classifier using the Hypersphere
UC method. We will start with a section on kernel functions followed by a section on
the Hypersphere method in which we will explain the details of our classifier. After that
we will present the results of using the UC on indoor and outdoor motion sequences.
This section will be followed by a novel improvement on the UC method to improve
its performance. Finally, we will show the results of the improved UC on indoor and

outdoor sequences.

4.2 Kernel Functions

Kernel functions are a way to represent an inner product. In many learning algorithms
the only place the data appears is in an inner product between examples in feature

space. Kernel functions are an implicit representation of this inner product in the input

50
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space. Using the kernel functions data representation and then bounding the data using
a hyperplane or a hypersphere increases the options in making class boundaries for the
data.

The mapping function ® : x — F' maps vectors from input space to feature space. The

dot product between examples can be computed by evaluating some simple kernel.

k(x,x) = ®(x) - 9(%) (4.1)
Many kernels can be used
Linear : k(x,x)=x-% (4.2)
Polynomial : k(x,x)=(x-x"+1)? (4.3)
12

Gaussian Radial Bias : k(x,x) = exp(— |[x2 );“ ) (4.4)

o

. e g - X

Exponential Radial Bias : k(x,x) = exp( 577 ) (4.5)

o

where x is a point in input space, p is the polynomial degree, and o2 is the variance.

The Gaussian radial basis kernel will be used as a kernel which is known to be useful to

approximate multivariate functions efficiently (Buhmann, 2000).

4.3 Hypersphere Method

For a training set of X1, ...,x¢ € x where £ € N is the number of the trained samples and

X is some set. A hypersphere in a feature space is defined by:

{cp(x) |Vx € R, R%— [|®(x) — c||® = o} (4.6)

Where R € R is the hypersphere radius in a feature space, ¢ € RY is the hypersphere

centre in a feature space. The decision function will be

f(x) = sgn(R? — | ®(x) — c[?) (4.7)

If the function is positive then x lies with in the boundary of the sphere defined by the

R and c, if the function is negative then x lies outside the sphere, Fig 4.1.

To encapsulate most of the data within a minimal sphere we solve the following equation
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Y-Axis

Outside Class
Negative Sign

X-AXxis

FIGURE 4.1: A Hypersphere with clustered data. Data in the sphere will be given a
positive sign while negative signs will be set for data outside the sphere

¢
: 2
min R+ — &
RER+ £€R! ccF vl Z o

2

subject to [|®(x) —c|* < R*+¢&, & >0fori=1,..,L (4.8)

Where v is a margin coefficient that controls the amount of training vectors to be
included within the hypersphere boundary, and &; is the error cost corresponding to
each training vector.

By using the Lagrangian multiplier method, the following dual optimisation problem
will result

(4 4
m(inZa,-,ajk(xi,xj) - Zaik(xi,xi) (4.9)
1,9 i
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¢
. 1
subject t0 0 < a; < ik ;m =1 (4.10)

where «; are the Lagrange multipliers. The centre of the hypersphere is

4
c= Zai‘b(xi), (4.11)

The final decision function will become

14 £
fx)=sgn | B = ouogk(xi,x;) +2 ) cusk(xi,x) — k(x,X) (4.12)
8J i
R? is computed such that for any x; with 0 < a; < & the argument of the sgn is zero.

4.4 UC Results

The method was tested on indoor and outdoor sequences. In the following parts of this
section we present the indoor and the outdoor tests along with assessment measures on
each. Samples of indoor and outdoor extractions will also be presented. Experimenting
using the RGB colour model resulted in shadows appearing erroneocusly as part of the

foreground both on indoor and on outdoor motion sequences as shown in Figure 4.2

A detailed analysis of the Unary Classifier using different colour models is shown in
Chapter 5. The chapter concludes in choosing ¢;cocs colour model, Section 5.2.5, to
optimise the Unary Classifier performance. A detailed test for the Unary Classifier
using cjcecs colour model will be shown in this section using indoor and outdoor motion

sequences.

To set up the UC parameters for indoor and outdoor motion sequences, the soft margin
coefficient, v, is set to 0.01 (to include 99% of the background pixels in the background
model). Also the RBF’s o is set to a large value of 10 to enable the RBF kernel which
is used with in the UC to include the wide range of background pixels variations. A
detailed analysis and assessments of different settings for o will be discussed later in
Chapter 5.

e Indoor Motion Sequences
10 indoor sequences are used in these tests. 50-52 frames from each were used for
background modelling (these frames are pure background and do not contain any

moving objects).
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(a) A sample frame from (b) A sample frame from (c) A sample (d) A sample
008a013s00L 013a040s00L frame from frame from
009e¢017s01L 013a040s00L

(e) Extracted Silhouette for (f) Extracted Silhouette for (g) Ex- (h) Ex-
008a013s00L 013a040s00L tracted tracted
Silhou- Sithou-
ette for otte for
009e¢017s01L 013a040s00L

F1GURE 4.2: Examples of indoor and outdoor images extracted using the Unary Clas-
sifier algorithm using the RGB colour model

Figure 4.3 shows samples of extracted sequences using the Unary Classifier. From
the samples shown, the background is noisy with background pixels misclassified
as motion pixels. The sample of motion sequence 017a054s00L showed more noise
than the other three motion sequence samples. The motion pixels are detected
well in all the shown samples except for the moving object borders where it is not,
finely extracted. A reasonable part of the shadow has disappeared due to the use
of the cicocs colour model instead of the RGB. Part of the shadow is still resident

in all the shown samples.

A detailed assessment for the indoor motion sequences is presented in Table 4.1.
The table shows the RMSE, the PSNR, and the percentage error for the back-
ground, foreground and the overall error compared to the frames silhouette’s mo-

tion pixels.

The maximum RMSE was scored by motion sequence 017a054s00L which has also
given the minimum PSNR. The minimum RMSE is scored by 018a059s00L. The
maximum PSNR was given by the same motion sequence along with 013a040s00L.
For the foreground percentage the error was small for all the motion sequences
with a maximum of 0.33% scored by both 010a024s08L and 013a040s00L. The
average foreground error was 0.22%. In the background percentage error, the
maximum value was given by 017a054s00L with 11.72%. All the other sequences
scored similar values in the range of 7.26-8.82%. The overall error compared to the
silhouette motion pixels was very high in all the sequences exceeding even the size

of the motion object. The values ranged from 104.87-164.87% with an average of



Chapter 4 Unary Classifiers 55

(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ette

FIGURE 4.3: Examples of indoor images extracted using the UC algorithm

118.66%. The RMSE variance is small for all the sequences ranging from 7.279E-
06 in 009a017s00L to 7.982E-05 in 008a013s00L. The small error variance means

a large consistency performance for this algorithm.

Comparing the indoor results of the UC with the previously presented classifiers
using the RMSE (UQRMSE) results, the minimum error is scored by the modified
SBD, 0.078 (4.047E-05), followed by the MOG, 0.159 (3.914E-04), and the UC
scored the highest error, 0.273 (3.941E-05). The MOG and the modified SBD, the
UC scored the worst overall error with an average of 118.66% (i.e. larger than the
silhouette), followed by the MOG with an averaged overall error of 41.05%. The
modified SBD gave the minimum overall error, 9.78%. When looking closely to

the results the UC main weak point is in the background region with an averaged
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Sequence Number RMSE PSNR FG BG  Overall o%,5z

Number of Frames (dB)  Error! Error?  Error®
008a013s00L 178 0.286 10.879 0.212 8.816 112.038 7.982E-05
009a017s00L 169 0.265 11.547 0.117 7475 109.847 7.279E-06
010a024s08L 187 0.262 11.626 0.326 7.329 110.363 6.062E-05
013a037s00L 114 0.263 11.597 0.498 7.291 132.105 4.966E-05
013a040s00L 184 0.262 11.655 0.326  7.258 115.937 7.540E-05
017a054s00L 188 0.331 9.607 0.094 11.724 164.872 8.615E-06
017a055s00R 162 0.270 11.373 0.181 7.782 114.147 2.264E-05
018a059s00L 188 0.261 11.655 0.207 7.298 104.866 1.357E-05
018a060s00L 179 0.273 11.290 0.172 7966 111.480 6.465E-05
019a063s00L 186 0.262 11.651 0.104 7.284 110.984 1.188E-05

Average 0.273 11.288 0.224 8.022 118.664 3.941E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 4.1: Overall assessment on a number of motion indoor sequences using the UC
algorithm

error of 8.02%. The MOG background error was less than 3%. The best performer

in this region is the SBD with an an averaged error less than 0.5%.

When comparing the sample results of the UC, Figure 4.3, with the modified SBD
and the MOG samples, Figure 2.10 and Figure 3.5 respectively, the background
region in the UC is excessively noisy compared with the other two classifiers. On
the other hand, when comparing the moving subject extraction quality of the three
classifiers, the UC and the MOG scored the best results while the modified SBD

moving subject has some large holes in addition to some small isolated noisy pixels.

The overall result of extraction of this classifier is not encouraging especially in the
background region. Therefore an effort was made to improve the overall results of

this classifier and will be shown in the following section.

e Outdoor Motion Sequences

For the outdoor sequences, 10 sequences were tested using the UC algorithm. 48-55
background frames were used for background adaption.

Figure 4.4 shows samples of outdoor extracted images. From the shown samples,

the algorithm performance did not perform as well as in indoor environment.

Motion pixels are mostly detected correctly but holes still show in the moving
subject in all the presented sequences samples. The problem is more serious in
motion sequence 009e017s01L. The borders of the extracted objects are again not
finely extracted. The background region is very noisy in all the presented samples
with background pixels mislabelled as motion pixels. Shadow disappeared from
sequence 013e037s00L but still resident in all the sequences.
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(a) A sample frame from (b) The extracted image (c) The extracted image sil-
008e013s00L houette

(d) A sample frame from (¢) The extracted image (f) The extracted image silhou-
009e017s01L ette

(g A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

() A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ette

FIGURE 4.4: Examples of outdoor images extracted using the UC algorithm



Chapter 4 Unary Classifiers a8

The evaluation of the averaged error of each outdoor sequence is shown in table 4.2,
The table shows the RMSE, the PSNR. and the percentage error of the foreground.

background and the overall error over the silhouette’s motion pixels,

Sequence Number RMSE PSNR FG BG  Overall o%,,.p

Number of Frames (dB) FError! Error®  Ervor®
008e013s00L 100 0.330 9.625 6.418  11.618 81.768 1.683F-04
009e017s01L 96 0.314 10.086 16.709 8.8382 79158  3.189E-04
010e024s00L 94 0.343 9,298 5.61Q0 12.800 83.350  3.243E-05
013e037s00L 158 0.275 11,216 3.981 R.096 60.877  1.339E-04
013e040s00L 151 0.376 8508 20.397 13.335 120.390 3.001E-04
017e054s00L 112 0.312 10.118 17.726 8.454 69.696  1.621E-04
017e055s00R 83 0.329 9.653 8.528  11.199 85951 1.552B-04
018e059s01L 104 0.267 11.492 3,412 7.644 56.100  9.R76E-05
018e060s00L 88 0.294 10.623 4.960 9.256 63.491 3.101E-05
019063s05L 112 0266 11512 4914 7.284 76572 2.06LE-05

Average 0.311 10.213  9.265 9.857 7 77.735  1.4TIE-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Errar

3 The percentage of the overall error compared to the motion pixels only

TABLE 4.2: Overall assessment on a number of motion outdoor sequences nsing the
UC algorithm

Motion sequence 013e040s00L gave the highest RMSE, and the minimum PSNR
value. While 019e063s05L, motion sequence provided the minimum RMSE and the
highest PSNR. The range of error for the foreground is in the interval of 3.41%
to 20.40% with an average of 9.27%. The background percentage error gave a
similar average of 9.86% with a range of error between 7.28% to 13.34%. When
looking at the percentage of the overall error over the silhouette’s motion pixels,
the maximum error was as high as 120.39% while the minimun was 56.10%. The
average error here is 77.74%. The small RMSE variance that ranges between
2.061E-05 and 3.501E-04 shows a large system consistency in error performance in

each tested motion sequerce.

The percentage of the background error is substantial especially when visualising
the effect of such error in the samples presented previously, Figure 4.3 and Figure
4.4. Also, the score of the overall error is high with an average exceeding two
thirds of the moving object size. This flags a problem in this algorithm and leaves

room for improvement to reduce the error.

When comparing the outdoor results of the UC classifier in Table 4.2 with the
results of the modified SBD and the MOG using the RMSE (05,55, the modified
SBD scored the least error, 0.189 (2.126F — 04), followed by the MOG, 0.216
(2.370E-04). The UC scored the worst highest error among the three classifiers,
0.311 (1.471E-04) which is more than 40% of error difference than the other two
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classifiers. The overall error for the UC is more than double the error in the other
two classifiers (77.74% in UC, 29.08% in modified SBD, and 37.50% in MOG).
In the background region, the UC again scored the worst result with 9.86% error
while the MOG and the modified SBD error is only 3.98% and 2.15% respectively.
The UC scored the least error in the foreground error region, 9.27%. The MOG
scored almost the same error, 10.01%, while the modified SBD scored the worst
with a 14.45% of error.

When comparing the UC samples, in Figure 4.4, with the samples of the modified
SBD, Figure 2.11, and the MOG, Figure 3.6, the background region of the UC
is excessively noisy while the SBD has few isolated noisy background pixels. The
MOG background shown some noise. In the moving subject quality extraction
(the foreground region), the modified SBD result was the worst with large holes
appearing on the moving subject body. The MOG and the UC overall foreground

extraction is better (than the SBD) in most of the shown samples.

Overall this algorithm, as the indoor and outdoor result indicates (figures and tables),
has a high accuracy in identifying the foreground pixels. On the other hand, the al-
gorithm’s main problem is in misclassifying the background pixels. This is due to the
fact that this algorithm has drawn a hypersphere around the training background pixels
and even though it had left some margin of error, this margin is not sufficiently wide
to tolerate the range of change experienced with background pixels. Thus the extracted
samples with the error analysis suggest clearly that there is still work to be done to re-
duce such errors especially in the background region for both indoor and outdoor motion

sequences.

4.5 Improved UC

As concluded in the last section that the main problem is the tightness of the sphere
size encapsulating the training data. The value for v was selected so as to include all
the data i.e & was set to a maximum value as well but still the result as shown in the
previous section was not satisfactory with an average error exceeding the moving object
size in the indoor sequences and more than two thirds of the moving object size in the
outdoor sequences. Enlarging the size of the sphere will enable the system to be more
tolerant to changes in the background model. To accomplish this goal we modified the

sphere radius in the decision function of the UC to be

Rimproved.vc = Ruc + MrRyc (4.13)
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where Mg € N is the radius multiplier and Ry¢ is the unary classifier sphere radius.

The final decision function becomes

¢ ¢
f(x)=sgn | (Ryc+ NRyc)? - Zaiajk(Xi,Xj) + ZZaik(xi,x) — k(x,x)
i\j i

(4.14)

4.6 Improved UC Results

The improvement was tested on indoor and outdoor motion sequences with an incre-

mental values for the radius multiplier starting from 0 with a step of 2 until the optimal

value is reached for the tested sequence. A stopping criteria is adopted to stop the

incrementing procedure when the error reduction does not exceed 0.5% in the overall

percentage error. This condition will avoid enlarging the radius size excessively for a

minimal error reduction.

e Indoor Motion Sequences

The same 10 indoor sequences used in the UC section are used in these tests. Each

sequence is tested by changing the radius size.

Table 4.4 shows the optimising table for the same indoor motion sequence, 018a059s00L.

Mz ROC' RMSE PSNR FG  BC  Overall olysp
(dB)  Error?> Error® Error?
0.925 0.261 11.655 0.207 7.298 104.866 1.357E-05

0

2 0.981 0.103 19.721 0.816 1.089 16.448 2.729E-05
4 0.981 0.081 21.847 1.33¢ 0.612 10.106 3.255E-05
6
8

0.978 0.072 22.850 1.788 0.435 8.021 3.043E-05
0.974 0.068 23.422 2223 0335 7.020 2.461E-05
10 0971 0.065 23.785 2.634 0.266 6.445  2.091E-05
12 0.967 0.063 23.984 3.047 0.217 6.149  1.879E-05
14  0.964 0.063 24.092 3.442 0.178 5.992 1.651E-05
16 0.960 0.063 24.082 3.868 0.149 5.999  1.528E-05
1 ROC Optimal Cutoff Measure
2 FG Error Foreground Percentage Error

3 BG Error Background Percentage Error

4 The percentage of the overall error compared to the motion pixels only

TABLE 4.3: Assessment on the indoor motion sequences 018a059s00L using the im-
proved UC algorithm

In Table 4.4 the highest optimal cutoff measure for the ROC, 0.981, is scored by
the radius multiplier 2 and 4. The best RMSE is scored by Mg 12, 14 and 16 with a

value of 0.063. For the PSNR radius multiplier size 14 scored the maximum value.
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In the foreground error column we notice that the minimum error is in the smallest
radius, Mpr = 0. The foreground error increases as we increase the radius size with
a maximum error in Mg = 16. The background error behaves in the opposite
manner. Mg = 0 gave the highest error with the error decreasing as we increased
the radius size. The overall error gives a compromise between the foreground and
the background error. The overall error compared to the motion pixels presented
Mg = 14 with the minimum error. But to abide by the condition set (not to
excessively increase the radius size) the error drops less than %0.5 after Mgz = 10.
Thus a radius multiplier size of 10 will be used for motion sequence 018a059s00L.

All the detailed tables for the other sequences are presented in appendix A.1.

The final assessment for the indoor motion sequences with the selected radius
multiplier are presented in Table 4.4. The table shows the radius multiplier Mg,
RMSE, the PSNR, the background and foreground percentage error, and the over-

all error compared to the frames silhouette’s motion pixels.

Sequence Number Mpr RMSE PSNR FG BG  Overall o%55

Number of Frames (dB) Error! Error? Error
008a013s00L 178 12 0.079 22.066 3.031 0.438 8.528  4.420E-05
009a017s00L 169 14 0.072 22,910 2.532 0.378 ~ 8.046 2.424E-05
010a024s08L 187 12 0.073 22.809 3.126 0.352 8.393 2.098E-05
013a037s00L 114 10 0.070 23.144 4.409 0.274 9.310 5.052E-05
013a040s00L 184 12 0.077 22.292 3.346 0.427 10.102 6.996E-05
017a054s00L 188 16 0.078 22.189 2.028 0.509 9.127  3.284E-05
017a055s00R 162 12 0.069 23.217 2.300 0.357 7.505 3.132E-05
018a059s00L 188 10 0.065 23.785 2.634 0.266 6.445 2.091E-05
018a060s00L 179 14 0.075 22.522 2.741 0.407 8.388  2.351E-05
019a063s00L 186 10 0.065 23.784 1.865 0.326 6.801 2.092E-05

Average 0.072 22.872 2.801 0.373 8.265 3.394E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 4.4: Overall assessment on a number of motion indoor sequences using the UC
algorithm

The minimum RMSE is scored by 018a059s00L and 019a063s00L. The maximum
PSNR was given by 018a059s00L. The maximum RMSE was scored by motion se-
quence 008a013s00L which has also given the minimum PSNR. For the foreground
percentage error, the smallest error was 1.87% by motion sequence 019a063s00L.
The maximum error was for motion sequence 013a037s00L with an error of 4.41%.
The average foreground error was 2.80%. In the background percentage error col-
umn, the error was small for all the sequences with a maximum of 0.51% scored
by 017a054s00L. The average background error over all the sequences is 0.38%.
The overall error compared to the silhouette motion pixels was in the range of
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6.45-10.10% with an average of 8.27%. The modified UC RMSE variance illus-
trates small error displacement when performing in indoor motion sequences. The
largest error variance scored is 6.996E-05, in motion sequence 013a040s00L. The

small RMSE variances demonstrates a large error consistency for the modified UC.

When comparing the modified UC result, Table 4.4, with the original UC classifier,
Table 4.1 the reduction in the error is quite substantial. For instance, the RMSE
dropped almost 74% from 0.273 to 0.072. The PSNR improved from 11.288dB to
22.872dB (more than 100% improvement). The background error and the overall
error dropped as well. The foreground error is the only error which appeared to
increase. Given that there is less confidence in this measure, the modification

overall would appear successful.

Comparing the performance of the modified UC on indoor sequences, Table 4.4,
with the modified SBD, Table 2.7, and the MOG classifiers, Table 3.11, shows that
the modified UC outperformed the other two in most of the measurements. For
the RMSE (0%;,55) result, the modified UC also scored the best results with the
least RMSE of 0.072 (3.394E-05), followed by the modified SBD, 0.078 RMSE and
(4.047E-05) variance. The worst performer in this measure is the MOG with a
RMSE of 0.159 (3.914E-04). Also in the background region, the modified UC gave
the least error, 0.37%, followed by the modified SBD, 0.49%, and then the MOG,
2.73%. In addition, the modified UC results in the improved UC overall error, the
PSNR are also better than the other two classifiers. However, the modified UC
scored the highest error in the foreground region but with a value very close to
the modified SBD error (2.80% for the modified UC and 2.66% for the modified
SBD). The MOG scored the least error in this region, 0.84%.

Figure 4.5 shows samples of extracted sequences using the improved Unary Classi-
fier. The samples of the extracted images in Figure 4.5 show the background is now
much cleaner except for the small traces of shadow noticeable in 017a054s00L. The
motion pixels are detected well in all the shown samples, though some small noise
holes exist in all the extracted subjects. When comparing the extracted samples
of the modified UC with the the modified SBD, Figure 2.10, and the MOG, Figure
3.5, extracted samples. The background of the UC is much cleaner than the other
two classifiers background. The shadow extraction of the modified UC is also as
good as the improved SBD (UC is slightly better). For the the quality of the ex-
tracted subject, the MOG is the best performer in this region while the improved
SBD is the worst. The extraction quality of the improved UC is comparable to
the MOG quality except for some small holes (mostly isolated noisy pixels).

e Outdoor Motion Sequences

The 10 outdoor sequences used in the UC section are used in these tests. The radius

size was changed also on each sequence to determine its effect on performance.
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(a) A sample frame from (b) The extracted image with (c) The extracted image silhou-
008a013s00L Mp=12 ette

(d) A sample frame from (e) The extracted image with (f) The extracted image silhou-
009a017s00L Mp=14 ette

(8) A sample frame from (h) The extracted image with (i) The extracted image silhou-
010a024s08L Mp=12 ette

(i) A sample frame from (k) The extracted image with (1) The extracted image silhou-
017a054s00L Mp=16 ctte

FIGURE 4.5: Examples of indoor images extracted using the improved UC algorithm

Table 4.5 shows the optimising table for the indoor motion sequence 018e059s01L.
The highest optimal cutoff measure for the ROC, 0.901, is scored by Mg = 2. The
least RMSE value 0.16 is scored by the sphere radius multiplier 2. For the PSNR,
radius multiplier size 2 scored the maximum value of 16.01dB. In the foreground
error column we notice that the minimum error is in the smallest radius, Mg = 0.
The foreground error increases as we increase the radius size with a maximum error
in Mp = 16. The background error behaves in the opposite manner. Mp = 0 gave
the highest error with the error decreasing as the radius size was increased. The
foreground and the background error are inversely proportional. The overall error
over the silhouette’s motion pixels gives a compromise between the foreground and

the background error. The minimum overall error 19.94% is given by Mg = 2.
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Mgr ROC! RMSE PSNR FG BG  Overall o%pygp
(dB) Error> Error® Error
0 0889 0267 11.492 3412 7.644 56.100 9.876E-05
2 0901 0.159 16.005 8.170 1.708 19.937 1.195E-04
4 0860 0.161 15901 12.938 1.084 20410 1.127E-04
6 0.813 0.173 15273 17.854 0.824 23.539 8.873E-05
8 0766 0.187 14.581 22.750 0.695 27.541 5.903E-05
10 0722 0199 14.024 27.211 0.590 31.278 4.619E-05
12 0.686 0.209 13.613 30.868 0.509 34.372 4.089E-05
14 0654 0.217 13.263 34.170 0.445 37.235 2.948E-05
16 0.625 0.225 12.967 37.111 0.399 39.855 2.746E-05

1 ROC Optimal Cutoff Measure

2 FG Error Foreground Percentage Error

3 BG Error Background Percentage Error

4 The percentage of the overall error compared to the motion pixels only

TABLE 4.5: Assessment on the outdoor motion sequences 018e059s01L using the im-
proved UC algorithm

Thus radius multiplier size 2 will be used for motion sequence 018e¢059s01L. All

the detailed tables for the other sequences are presented in appendix A.2.

The final assessment for the outdoor motion sequences with the chosen radius

multipliers is presented in Table 4.6. The table shows the radius multiplier, Mg,
the RMSE, the PSNR, and the background foreground percentage error, and the

overall error compared to the frames silhouette’s motion pixels.

Sequence Number Mgr RMSE PSNR FG BG  Overall o%,5

Number of Frames (dB) Error! Error? Errord
008e013s00L 100 4 0.202 13.915 19.138 1.740 30.414 1.774E-04
009e017s01L 96 2 0.248 12.102 33.998 2.218 49.529 9.127E-05
010e024s00L 94 2 0.236 12.567 13.808 4.228 39.512  9.564E-05
013e037s00L 158 4 0.153 16.307 12.249 0.933 18.815 6.633E-05
013e040s00L 151 4 0.259 11.731 43.961 1.763 57.197 6.092E-05
017e054s00L 112 2 0.257 11.820 34.688 2.041 47.166 3.969E-04
017e055s00R, 88 4 0.213 13.433 24.040 1.720 35.875 1.188E-04
018e059s01L 104 2 0.159 16.005 8.170 1.708 19.937 1.195E-04
018e060s00L 88 4 0.188 14.545 15.117 1.677 25.728 3.786E-05
019e063s05L 112 4 0.156 16.134¢ 15.103 1.165 26.511 1.322E-04

Average 0.207 13.856 22.027 1.919 35.068 1.297E-04

1 FG Error Foreground Percentage Error

2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 4.6: Overall assessment on a number of motion outdoor sequences using the
UC algorithm

Motion sequence 013e040s00L gave the highest RMSE, and the minimum PSNR
value. While 013e037s00L motion sequence provided the minimum RMSE and the
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highest PSNR. For the foreground percentage error, motion sequence 013e040s00L
gave the highest percentage error recorded by all the sequences. The range of
error here is in the interval of 8.17% to 43.96% with an average of 22.03%. The
minimum foreground percentage error was given by 018e059s01L motion sequence.
The background percentage error gave an average of 1.92% which is a much lower
error than in the foreground error. The error ranged from 0.93% to 4.23%. When
looking at the percentage of the overall error over the silhouette’s motion pixels,
the maximum error was 57.20% while the minimum was 18.82%. The average error
here is 35.07%. The RMSE variance is small in the tested sequences which ranged
from 3.786E-05 to 3.969E-04. These values illustrate that the improved UC error

performance is consistent on outdoor motion sequences.

When comparing Table 4.6 with Table 4.2, the RMSE dropped more than 30% from
0.31 to 0.21. The PSNR also improved from 10.21dB to 13.86dB. The foreground
error has increased in the modified UC, from 9.27% to 22.03%, but at the same
time the background error decreased, from 9.86% to 1.92%. The overall error also
decreased in the modified UC.

Comparing the performance of the improved UC on outdoor motion sequences,
Table 4.6, with the performance of the improved SBD, Table 2.8, and the MOG,
Table 3.12, yields that the improved UC gave the second best result in the RMSE,
the PSNR, and the overall error. The best result was scored by the improved
SBD. Though the improved UC has scored the worst result in the foreground
region, but it scored the best result in the background region with an error of
1.92% compared to an error of 2.15% and 3.98% in the improved SBD and the
MOG classifiers respectively.

Figure 4.6 shows samples of outdoor extracted images. From these samples the
algorithm performance did not perform as well as in indoor environment. However,
the background region is much cleaner than in the original UC algorithm. All the
presented samples showed less error in the background region. Motion sequence
013e040s00L sample showed more error especially in the top left corner where this

is the position of a tree leaves moving due to the wind in this sequence.

The shadow is still persistent in three of the four presented samples. Large part of
the shadow is showing in motion sequence 008e013s00L. Smaller shadow parts are
also showing in 013e040s00L and 017e055s00R. The shadow in 018e060s00L has
mostly disappeared.

Foreground detection has deteriorated compared to the original UC. This is due
to the enlargement of the background radius sphere which resulted in classifying
motion pixels erroneously as background pixels. Foreground region of sequence
018e060s00L sample has less deterioration effects.
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(a) A sample frame from (b} The extracted image with (c) The extracted image silhou-
008e013s00L Mp=4 ette

(d) A sample frame from (e) The extracted image with (f) The extracted image silhou-
009e017s01L Mp=2 ette

(g8) A sample frame from (h) The extracted image with (i) The extracted image silhou-
010e024s00L Mp=2 ctte

i

(i) A sample frame from (k) The ecxtracted image with (1) The extracted image silhou-
013e¢037s00L Mp=4 ette

FIGURE 4.6: Examples of outdoor images extracted using the improved UC algorithm
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The overall result on the outdoor motion sequences is positive. Overall a better
extraction was achieved for the motion sequences but with a disadvantage of loosing

accuracy in moving subject (foreground) extraction.

Comparing the outdoor extraction of the improved UC, Figure 4.6, with the ex-
traction of the original UC, Figure 4.4, shows a large improvement in the overall
extraction. Though, the moving subject extraction holes increased in all the sam-
ples, but the background noise had dropped substantially. We notice the back-
ground became cleaner with only few isolated noise in addition to a slight decrease
in the shadow in samples 008e013s00L and 009e017s01L. Also comparing the same
results of Figure 4.6 to the results of the improved SBD, Figure 2.11, and the MOG
classifier, Figure 3.6, the improved UC and the improved SBD gave the best back-
ground result with only few isolated noise pixels. Some parts of the shadow were
removed by the improved SBD and the improved UC (in sequences 008e013s00L
and 013e037s00L). In the extraction of the moving subject’s quality, the MOG
gave the best results (in all the sequences except 013e037s00L sample) where the
improved SBD and the improved UC extracted subjects had more holes (improved
UC holes are larger than in the improved SBD).

4.7 Conclusions

In this chapter we have developed a new classifier algorithm for motion extraction,
the Unary Classifier. The Unary Classifier performed well in extracting the motion
region but failed in performing as well in the background region. The indoor/outdoor
sequences shown excessive noise in the background with almost a 10% of error (9.86%
for outdoor and 8.02 for indoor). The overall error exceeded 100% of the silhouette’s
pixels in the indoor sequences and over 70% for the outdoor sequences. We provided an
improved version for the UC algorithm. The improvement reduced the RMSE noticeably
in both the indoor and the outdoor motion sequences. The error dropped on average
more than 70% for indoor sequences and more than 30% for outdoor sequences. The
UC performance leaves an opportunity for enhancements through combining with other

classifiers to get a better collective decision leading to a better extraction.
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Shadow Suppression using

Invariant Colour Models

5.1 Motivation

In the process of distinguishing between motion pixels and background pixels, the pix-
els containing shadow can appear as a major area of misclassification for many motion
extraction algorithms (the mixture of Gaussians algorithm and the unary classifier al-
gorithm are clear examples for such a problem). The reason behind the difficulty of
correctly classifying shadow pixels as background pixels is due to the fact that those
pixels have suffered from a change in luminance resulting in a change in intensity. These
changes led those pixels to be out of the domain of the background model. The problem
of shadow extraction can be solved by statistical measures (Horprasert et al., 2000, 1999).
Other research also aimed to accommodate shadow extraction by using colour models
that minimise (if not remove) the effect of shadows luminance change to the background
pixels (Gevers and Smeulders, 2000; Cheng et al., 2001; Gevers and Smeulders, 1999).
Since in this work we consider using different classifiers to strengthen the final outcome
of motion extraction, we will consider using different methods for shadow suppression
for the same reason. So that techniques as yet without inherent shadow suppression
(MOG and Unary Classifier) can have performance in this respect equally to that of the

SBD algorithm. In this way, performance is then balanced for future fusion.

In the process of finding a suitable colour model we tried different colour models that
were claimed to be effective in this arena. Accordingly, we will compare the RGB colour
model with four different colour models to find empirically an effective model to enhance

the overall labelling process.

68



Chapter 5 Shadow Suppression using Invariant Colour Models 69

5.2 Colour space

A colour model is an abstract mathematical model that describes a representation of
colours as a set of numbers, typically as three or four values or colour comnponents.
There are several models used to describe the colour scheme: RGB (Red, Green, and
Blue), normalised rgb, HSV (Hue, Saturation, and Value) etc. Each model is derived
for specific purposes and has certain advantages over the others. Converting between
the different models is generally achieved by a relatively simple mapping. Selecting the
best colour space is still one of the difficulties in colour image segmentation (Gauch and

Hsia, 1992). In this section we will consider five different colour models.

5.2.1 RGB

Colour is defined as a combination to tristimuli R (red), G (green), and B (blue). From
the RGB representation other colour models can be derived. RGB is the most commonly
used model for television and for pictures acquired by digital cameras (Cheng et al.,
2001).

The brightness value of the scene can be used to represent the three primary colours
(R,G,B) through the following equation

C = /A E.(\)So(\)dA (5.1)

for C € (R, G, B) where E.()) is the radiance spectrum, S.(}) is the filter for the colour
C and ) is the wave length.

The RGB model can be represented geometrically by a 3- dimensional cube Figure 5.1
where the position of a point is in vector space. White, for instance, can be represented
when all the primary colours are at k, where & is the maximum light intensity (when &
is set to 1 a unity cube is produced). The derivation of the other colours is shown on
the cube.

RGB is suitable for colour display but not good for colour scene segmentation and
analysis because of the light correlation among the R, G, and B components (Pietikainen
et al., 1996; Littmann and Ritter, 1997). Thus if the intensity changes, all the three
components will change accordingly. Also the RGB colour model measurement does not

represent colour differences within a uniform scale.
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FIGURE 5.1: RGB colour cube

5.2.2 Normalised rgb

The normalised rgb model is an efficient method to get the variations of intensities

uniformly across the spectral distribution. The normalised colour space is defined as

r=R/(R+ G+ B) (5.2)
g=G/(R+G+ B) (5.3)
b=B/(R+G+ B) (5.4)

The model components have to satisfy the following condition

r+g9+b6=1 (5.5)

Due to condition (5.5), we may only use two of the three colour components since the
third can be derived from them (Golland and Bruckstein, 1996).

The normalisation process removes intensity information, thus the rgb values are "pure
colours” (Stdrring, 2004). This property led to one of the advantages of the normalised
rgb colour system which is its independence to the brightness of the image (Andreadis
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et al., 1990). Normalisation also reduces the sensitivity of the distribution to colour
variability (Terrillon et al., 1998). The normalised colours are very noisy when pixel
values reflect low intensity (Zheng, 2004; Cheng et al., 2001; Pietikainen et al., 1996).

5.2.3 HSV

The HSV (hue-saturation-value) (Rui et al., 1996; Tsang and Tsang, 1996; Kim et al.,
1996; Etemadnia and Alsharif, 2003) model is another commonly used colour space in
image processing which is more intuitive to human vision. Each component in this
space contributes directly to visual perception (Wan and Kuo, 1998). In HSV each
axis can be quantised independently which makes this colour space very useful (Park
et al., 1999). Wan and Kuo (Wan and Kuo, 1996) concluded that a colour quanti-
sation scheme based on HSV space performed better than one based on RGB colour
space. There are many different variations of HSV model, such as HSB (hue-saturation-
brightness) (Tepichin-Rodriguez et al., 1995), HSL (hue-saturation-lightness), and HSI
(hue-saturation-intensity) (Carron and Lambert, 1994; Kim and Park, 1996).

Hue (H) is an attribute associated with the dominant wavelength in a mixture of light
waves. Thus hue represents dominant colour as perceived by an observer. Saturation (S)
refers to relative purity or the amount of light mixed with a hue (Gonzalez and Woods,
1992). Value (V) represents intensity. Hue and saturation taken together are called
chromaticity, and therefore may be characterised by its intensity, (V), and chromaticity
(HS). This characteristic of the HSV model can be used for shadow suppression. Shadow
effects mainly the brightness (intensity) of the background. Therefore, using only the
(HS) colour components (jointly or separately) should eliminate the shadow effect on
the background resulting in extracting the foreground only without the shadow. In this
thesis we implemented all the colour models including the HSV as a three dimensional
model (including all the colour components). The two dimensional implementation of
the (HS) (or even using each one of them alone) will be left for implementation as future

work.

A hue-saturation slice of HSV is derived by projecting the surface of an RGB colour cube
onto the R+ G+ B =1 plane. The saturation and hue of a point on the projection are
its polar coordinates r and € with respect to the centre of the projected surface, while
the value (V) of all the points on the projection is simply the length of the diagonal of
the colour cube projected (Schwarz et al., 1987). The RGB can be transformed to HSV
by a standard procedure (Smith, 1978).
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5.2.4 Lll,

Gevers and Smeulders (Gevers and Smeulders, 1999, 1996) proposed this colour model.
The colour model was analysed and evaluated with various colour features by colour-

metric histogram matching under varying illumination environment.

The colour model is formulated as follows:

h:m—aﬁ+m_3y+@_3y (5.6)
(R-B)?

& (R-G)2+(R-B)?2+ (G- B)? (5.7)

= - (5.8)

(R-G)2+(R-B)2+ (G- B)?

where R, G, B are the colour members of the RGB colour model. The experiments
applied by Gevers and Smeulders (Gevers and Smeulders, 1999) showed that this colour
model is invariant to viewing direction, surface orientation, highlights, illumination di-

rection, and illumination intensity.

The I3l5l3 colour space was applied by Sebe and Lew (Sebe and Lew, 2001) with a

maximum likelihood approach in a colour-based retrieval algorithm.

5.2.5 cjicacy

This colour model was proposed by Gevers and Smeulders (Gevers and Smeulders, 1999)
as a colour invariant model. The same procedure used in the l;l2l3 colour space was used

by the authors to verify its competence. This colour space formulation is as follows:

= arctan(m) (5.9)
Co = Mctan(m) (510)
c3 = Mctan(ﬁ{%g}—) (511)

The evaluation by the authors showed that, like the ;123 model, this model is invariant
to viewing direction, surface orientation, highlights, illumination direction, and illumi-
nation intensity.
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The model was used with an edge detector in (Salvador et al., 2001) for shadow identi-
fication and classification. It was also used to segment only cast shadows for both still
images and motion sequences in (Salvador et al., 2004). The result of extraction gave

an 80-90% segmentation accuracy most of the time in a sequence of 300 frames.

5.3 Colour Model Evaluation

In order to find a better colour invariant colour space that can eliminate and suppress
the shadow from being detected as a motion object, we tested the colour spaces: RGB,
normalised rbg, HSV, [1lal3, and cicacs. The evaluation was done through using each
colour model with a motion segmenter while monitoring the effect of the colour model
on the three pre-labelled regions: moving object, background and shadow. Due to the
difficulty in obtaining ground truth data for the shadow region, the SBD algorithm
was used to identify and label the shadow region. Any pixel identified by the SBD as
shadow is grouped in the shadow region as long as it is not identified in the silhouette as
foreground. This is due to the SBD algorithm outcome which can wrongly label motion
pixels as shadows. Also shadow pixels are allowed only to be in the area under the knee
level in the sequences used. The background appearing above the knee was at too far a
distance from the camera for shadows to affect it, with the lighting arrangement used.
This will avoid having pixels that are supposed to appear in the background region being
mislabelled as shadows.

The Unary Classifier was used as a motion segmenter to test the colour spaces. The
parametrisation of the Unary Classifier is much simpler with less parameters (compared
to the MOG algorithm) suggesting the bias associated with parameter choice can be

mitigated, thus ensuring focus on shadows alone.

5.3.1 Parameterising Unary Classifier

The soft margin coefficient, v, set to 0.01 (to include 99% of the background pixels
in the background model). Different settings of o were used: 1, 10, 100 on an indoor
motion sequence, 018a060s00L, with a dimension of 240 x 367 pixels. The o values were
chosen initially large to examine the effect of such size on the performance of the UC in
accommodating the background pixels variations. Also the same o values were used on
an outdoor motion sequence, 013e037s00L, with the same dimensions used in the data
sets. The test was done using all the colour models being tested. The result for the

indoor sequence is shown in Table 5.1.

The table shows that increasing the standard deviation from 1 to 100 have minor effect
on the result on colour models: cjcocs, {123, Normalised rgb and RGB. HSV colour

model is the only colour model affected by changing the kernel . The HSV colour
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Colour o | RMSE PSNR FG BG Shadow  Overall  o%,5g
Model (dB) Error!  Error 2 Error? Error?
€162C3 1 0.323 9.827 0.202 10.003 49.989 64.301 4.94E-05

10 | 0.322 9.838  0.203 9.969 49.969 64.132 4.86E-05
100 | 0.321 9.878 0.202 9.850 49.911 63.539 4.92E-05
HSV 1 0.595 4.513 0.001 39.063 99.983 224.435 5.36E-04
10 | 0.402 7.936 2.002 13.487 99.863 103.794 6.83E-04
100 | 0.368 8.715  2.405 9.980 99.856 87.703 8.27E-04
lilals 1 0.262 11.643 1.536 7.377 16.847 42.436 G6.46E-05
10 | 0.262 11.652 1.537 7.358 16.851 42.370  6.50E-05
100 | 0.255 11.860 1.538 6.938 16.881 40.358 6.57E-05
norm.rgh | 1 0.336 9.489 0.131 10.695 55.686 69.786 5.48E-05
10 | 0.335 9.497 0.131 10.670 55.657 69.649 5.39E-05
100 | 0.341 9.347 0.131 11.187 55.644 72.082 5.21E-05
RGB 1 0.366 8.751 0.053 10.427 99.384 86.236 6.36E-04
10 | 0.366 8.763  0.053 10.382 99.374 86.021 6.41E-04
100 | 0.364 8.798 0.053 10.242 99.381 85.328 6.37E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error
3 BG Shadow Percentage Error

4 The percentage of the overall error compared to the motion pixels only

TABLE 5.1: The effect of changing the standard deviation on an indoor sequence using
different colour models

model overall error decreased as o was increased (inversely proportional). Nevertheless,
the fact that the shadow error in HSV is maintained close to 100% even when o was
changed, indicates that continuing to increase ¢ for this model is pointless since we are
targeting a colour model that suppresses shadows. Also the foreground error increased

as ¢ increased.

From the table, choosing any ¢ value will keep the colour model error order the same.
o will be set to 10 for indoor sequences. A further discussion of the specific amount of
error for each region will be discussed in the next section with more sequences used in

the evaluation process.

The results for the outdoor motion sequence with different settings to the kernel standard
deviation is shown in Table 5.2. From the table, the amount of error decreased as o
increased. However, in most of the colour models the change in the error is minimal,
1-2% (notice: c¢jcacs, Normalised rgb and RGB). The change is only noticeable when o
changed from 1 to 10 in HSV and [;/5l3 and also when ¢ changed form 10 to 100 in HSV.
Continuing to increase the kernel o for HSV might decrease the percentage error value
for HSV. But as in the indoor sequences, the shadow error is large and changes little
with increase in ¢. Since we are looking for a colour model that suppresses the shadow,
continuing to increase the standard deviation is of no benefit to our goal. The error has
mostly given a stable value on a ¢ of 10 for most of the colour models therefore we will

use it for a more thorough investigation using more outdoor motion sequences.
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Colour o | RMSE PSNR FG BG Shadow  Overall  o%,/55
Model (dB) Error! Error 2 Errord Error?
ci1cacs 1 0.277 11.161  3.976 7.947 18.161 61.643 1.33E-04
10 | 0.275 11.216 3.981 7.835 18.147 60.877 1.34E-04
100 | 0.270 11.369  4.002 7.533 17.801 58.776 1.32E-04
HSV 1 0.563 4996 0.614 34.424 99.775 254.569 1.01E-04
10 | 0.358 8.935 7.194 11.383 97.611 102.949 1.43E-04
100 | 0.326 9.741 8.878 8.636 96.310 85.591 1.47E-04
l1lsl5 1 0.341 9.348 27.648 9.267 15.319 93.927 2.28E-04
10 0.319 9.935 29.754 7.292 14.231 82.265 3.51E-04
100 | 0.313 10.093 30.417 6.794 13.690 79.409 4.07E-04
norm.rgb | 1 0.287 10.851 3.165 8.598 22.954 66.201 1.03E-04
10 0.285 10.913 3.186 8.459 22.954 65.277 1.04E-04
100 | 0.281 11.034 3.205 8.200 22.808 63.494 1.06E-04
RGB 1 0.333 9.567 2.866 9.947 99.822 89.164 2.12E-04
10 | 0.331 9.600 3.008 9.832 99.822 88.534 2.33E-04
100 | 0.327 9.706 3.013 9.520 99.837 86.398 2.29E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error
3 BG Shadow Percentage Error

4 The percentage of the overall error compared to the motion pixels only

TABLE 5.2: The effect of changing ¢ on a outdoor sequence using different colour
models

5.3.2 Indoor Evaluation

Figure 5.2 shows examples of extracting an indoor image with different colour models.
Figure 5.2(a) is the input image. Figure 5.2(b) is the silhouette used with black iden-
tifying the background region, white is the foreground region and red is the shadow

region.

Figure 5.2(c) gives the extraction using c¢jcacs colour model. The moving object is
extracted with few holes. Part of the shadow has disappeared. The background is not
perfectly extracted and many background pixels mislabelled as motion pixels. Later on
after comparing the extraction using this colour model with other colour models, this
colour model will show as a better option than other colour models though it is not

perfect.

The HSV model extraction in Figure 5.2(d) gave a more noisy background. The shadow
region is not suppressed at all as it shows in the image. Holes in the moving object
appear in areas where darker regions are in-between light areas (like in the folds of the

t-shirt of the moving subject).

For the l1lpls extracted image in Figure 5.2(e), the background is noisy with motion
pixels. The noise motion pixels appearing in the background are larger than in the

background extracted using other colour models. The extracted moving object is one
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(a) Indoor input frame (b) The Shadow Labelled

(c) c1c2¢3 (d) HSV

() llals (f) RGB

(g) Normalised rgb

FIGURE 5.2: Indoor images extracted using different colour models.

of the worst compared to the other colour models where holes appear on most of the
body (small holes). Also the moving object extracted edges are not as well defined as
the other colour models. Even though this model is not a competitor with some of the
colour models in extracting the background and the foreground regions, the model gives
the best performance in extracting the shadow. From the given sample the algorithm

with the l1l5l3 succeeded in removing most of the shadow region.

The RGB colour model sample in Figure 5.2(f) reveals that in the given samples this

colour model is the best in extracting the moving object with no holes and with well
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extracted edges. The background is noisy. The shadow region as a whole is mislabelled

where we can see the shadow region labelled as foreground pixels.

The normalised rgb, Figure 5.2(g), gives a similar performance to the cjcocs where part
of the shadow is not suppressed, the background is noisy with motion pixels, and the

moving object is extracted without many holes.

Colour RMSE PSNR FG BG Shadow Overall O'%]\/[SE

Model (dB) Error! Error 2  Error® Error?

c1cac3 0.273 11.288 0.224 7.011 47.434 118.664 3.941E-05
HSV 0.383 8.360 3.897 13.423 99.896 233.140 1.539E-04
lilols 0.242 12.358 2.072 5.848 18.165 93.017 3.613E-05
norm.rgb  0.286 10.905 0.173 7.624 53.313 129.567 4.779E-05
RGB 0.330 9.663 0.076 9.516 99.559 173.046 1.385E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error
3 BG Shadow Percentage Error

4 The percentage of the overall error compared to the motion pixels only

TABLE 5.3: Averaged overall assessment of different colour models on 10 motion indoor
sequences using the UC algorithm

In order to evaluate the tested colour models we are not going to concentrate on the
shadow region only since a colour model that performs well on a region might not
necessarily perform as well on other regions. Thus the evaluation was done on each
region separately then an overall measurement of performance was obtained. Table
5.3 shows the performance measures using RMSE; PSNR; the percentage of the overall
error compared to the silhouette’s motion pixels; and regional performance measures:
background, foreground, and shadow. Each measurement in the table is an averaged

measure over 270 frames using 10 different sequences.

In Table 5.3 the RMSE column shows [;12l3 giving the minimum error followed by ¢jcacs
and then the normalised rgb colour model. RGB and HSV gave the worst RMSE over all
the colour models. The PSNR gave the same ranking for the colour models with ;1513
giving the best result. In the foreground region, RGB scored the minimum foreground
error followed by normalised rgb and cicec3. HSV and l;lal3 gave the worst result in
this region (both colour models samples contained erroneous holes in the moving subject
in Figure 5.2). In the background region, l;lsl3 colour model gave the minimum error
followed by cicacs and then the normalised rgb. HSV and RGB colour models were
the worst performers in this region. For the shadow region, HSV and RGB gave the
worst result with most of the shadow region mislabelled. The normalised rgb and the
colour model cjcocg managed to suppress almost half of the shadow region with 53.31%
for the first and 47.43% for the second. The l1lol3 model showed the best result in
this region with only 18.17% error. The overall percentage error over the silhouette
motion pixels gave the minimum error rank to ljlal3 followed by cicocs and then the

normalised rgh colour model. HSV and RGB colour models performed worst with the
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highest percentage error exceeding twice the amount of the motion pixels for the HSV
and 173.05% for RGB.

The overall measurement is mainly affected by the dominance of the background region.
It is true that ljlol3 is the best performer in the background and the shadow regions
but it is one of the worst in the foreground region. Such an extreme result lowers the
expectations on this colour model especially if the quality of extracting the foreground
region is a main concern. The cjeacs colour model appears best as a best option with
the second best performance in the RMSE, PSNR, background region, shadow region,
and the overall percentage error. Though the consistency of the UC was already shown
previously in Chap. 4, the UC illustrates a large consistency even when the colour model

is changed (the RMSE variance is small for all the different colour models).

Averaged Foreground Percentage Error Averaged Background Percentage Error
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FIGURE 5.3: The averaged error of ten indoor sequences in different regions along with
the overall percentage error

Figure 5.3 shows the averaged errors for the different colour models in different regions

for 27 frames averaged over 10 different motion sequences.
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The foreground percentage error is shown in Figure 5.3(a). While ¢;cac3, normalised rgb
and RGB colour model maintained the extraction with the lowest error, HSV followed

by l1l2l3 gave the highest percentage error.

Figure 5.3(b) shows the averaged percentage error over the background region. HSV
continued to score the highest error as an average over all 10 sequences. RGB scores the
second highest percentage error then below that comes the error for the c¢jcacs and the
normalised rgb, but with small differences. Overall, the [;l3l3 model scored the lowest

percentage error in this region.

Figure 5.3(c) shows the error in the shadow region. HSV and the RGB colour models
gave the highest error in this region. [jlpl3 gave the minimum error in the shadow
region. cjcpes and then normalised rgb gave similar results suppressing around 40% to
50% percent of the shadow.

The diagram for overall percentage error over motion pixels in the silhouette is shown in
Figure 5.3(d). The result is the same as earlier results in Table 5.3 where it shows [1lal3
giving the lowest error followed by cjecac3 and then the normalised rgb colour models.
RGB and HSV gave the highest errors.

We can notice from the results that cjcpcs and normalised rgb usually give similar

performance with the cjcacs colour model slightly better in most of the regions.

5.3.3 Outdoor Evaluation

Figure 5.4 shows examples of extracting an outdoor image with different colour models.
Figure 5.4(a) is the input image. Figure 5.4(b) is the silhouette used with black colour
identifying the background region, white the foreground region and red the shadow

region.

Figure 5.4(c) gives the extraction using the cjcocs colour model. The moving object is
extracted with few holes. The moving object edges are not clearly extracted. Also the
feet are not extracted well. Most of the shadow has disappeared. The background is
not perfectly extracted where many background pixels are mislabelled as motion pixels.
Even though the extraction using this colour model is not perfect, it will be shown later

that the performance using this colour model is better than the other colour models.

The background in the HSV extraction in Figure 5.4(d), has more noise than cjcacs.
The shadow region is hardly suppressed. More holes appear on the moving object than

in the ¢jcoc3 extracted sample.

For l113l3 sample image in Figure 5.4(e), the extracted moving object is the worst com-
pared to the other colour models where large holes appear on most of the body. The

background is noisy with motion pixels. Also the moving object extracted edges are not
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(b) The Shadow Labelled

(c) crcacs (d) HSV

(e) hilals (f) RGB

(g) Normalised rgb

FIcURE 5.4: Outdoor images extracted using different colour models.

as well extracted as the other colour models. This colour model gives the same per-
formance on the shadow region as in indoor sequences where it can extract this region

efficiently.
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The RGB colour model sample in Figure 5.4(f) shows the moving object with some holes.
The background is noisy with motion pixels. This colour model’s main weak point is
in the shadow region, as it appears in the sample image, where the shadow pixels are
resident and labelled as motion pixels.

The same as in the indoor extracted samples, the normalised rgb in Figure 5.4(g) gives
a similar performance to the cjcocg model. The shadow is suppressed well. The back-
ground region is noisy with motion pixels. The moving subject extracted well with few
holes in it except the moving subject edges and the feet part where it is not extracted

well.

Colour RMSE PSNR FG BG Shadow Overall ojR MSE

Model (dB) Error! Error 2 Error? Error?

C1CaC3 0.308 10.278 9.580 9.260 34.275 77.288 1.471E-04
HSV 0.404 7.985 7.528 16.629  99.139 135.106 3.434E-04
l1lal3 0.338 9.464 32.037 8.293 26.661 92.445 1.521E-04
norm_rghb  0.321 9.928 7.967 10.290 40.977 82.768 1.344E-04
RGB 0.365 8.905 4.240 13.673 99.854 109.787 4.036E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error
3 BG Shadow Percentage Error

4 The percentage of the overall error compared to the motion pixels only

TABLE 5.4: Averaged overall assessment of different colour models on 10 motion out-
door sequences using the UC algorithm

The same evaluation was done as on the indoor sequences for each region (background,
foreground and shadow) and an overall assessment is obtained as well. Table 5.4 shows
the performance measures using RMSE; PSNR,; regional performance measures: back-
ground, foreground, and shadow; and the percentage of the overall error compared to
the silhouette’s motion pixels. Each measurement in the table is an averaged measure

over 50 frames using 10 different sequences.

In Table 5.4, the RMSE column shows cjcacs giving the minimum error followed by the
normalised rgh and then the l1/5l3 colour model. RGB and HSV gave the worst RMSE
over all the colour models. The PSNR gave the same ranking for the colour models with
c1czcs giving the best result and RGB and HSV giving the worst. In the foreground
region error, RGB scored the minimum foreground error followed by the HSV model.
Then comes the normalised rgb and cjcacs. [1l2l3 gave the worst result in this region
(the colour model sample showed big holes in the moving object in Figure 5.4(e)). All
the other models gave results with less than 10% error in the foreground region while
the [1lal3 colour model value is very large, 32.04%. In the background region, the l;l2l3
colour model gave the minimum error followed by cjcacz and then the normalised rgb.
HSV and RGB colour models were the worst performers in this region. For the shadow
region, HSV and RGB gave the worst result with most of the shadow region mislabelled.
The [115l3 model showed the best result in this region with only 26.66% of error. cjcacs
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followed the top performer in this region with only 34.28% of error. The normalised
rgb percentage error then follows with 40.98%. The overall percentage error over the
silhouette’s motion pixels minimum error is scored by cjcocy with 77.29% error. The
normalised rgh and the l)lol3 followed with an increase of almost 5% for the first and
15% for the second. HSV and RGB colour models both scored more than 100% of error
to perform worst of all the colour models. Notice that for all the different colour models
with the high overall error recorded, the RMSE variance is small. This means that the
UC gives high consistency in motion extraction even if the colour model is changed.
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FIGURE 5.5: The averaged error of ten outdoor sequences in different regions along
with the overall percentage error

Figure 5.5 shows the averaged errors for the different colour models in different regions

over 10 different motion sequences.

The foreground percentage error is shown in Figure 5.5(a). While RGB performed
the best in this region, ¢jcec3, normalised rgb and HSV colour models maintained the

extraction with the lowest error (less than 10%). l1lsl3 gave the highest percentage error.

Figure 5.5(b) shows the averaged percentage error over the background region. HSV
maintained to score the highest error. RGB scored the second highest percentage error.
Then came the group of normalised rgb, cjcocs and ljlalz with the similar and lower

error (maintained less than 11%).
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For the shadow region, Figure 5.5(c), HSV and the RGB colour models gave the highest
error in this region. [1l2l3 gave the lowest shadow error. c¢;cocs and the normalised rgh

gave similar results to [3l2lg colour model with small difference.

The overall percentage error over the motion pixels in the silhouette is shown in Figure
5.5(d). The result is the same as the result in Table 5.4 where it shows cicocs giving
the lowest error followed by normalised rgb and then the l1l3l3 colour models. RGB and
HSV gave the highest errors.

The same note can be made on the performance of ¢icacs and the normalised rgb where
they usually give similar performance with the normalised rgb usually slightly better in
the foreground region and the cjcacs is better in the background, the shadow and the

overall percentage error.

For the HSV, (V) represents intensity while (H,S) are the chromatic components. There-
fore to utilise the intensity and chromaticity components in shadow extraction the HS
components (separately or jointly) can be used for motion extraction (Gevers and Smeul-
ders, 1999; Bowden, 1999). This procedure will be added as future work.

The ¢1cac3 model showed one of the best performances in the colour models assessments
(best in outdoor and the second best in the indoor sequences). Therefore, this colour

model will be selected for further use in the Unary Classifier in the fusion process.

5.4 MOG and the cjcocs colour model

Since the MOG has more parameters to optimise than the UC, we performed the colour
model evaluation using the UC. From the evaluation we found that c;cac3 colour model is
the most suitable colour model. Now we will test the performance of ¢1cac3 colour model
on the MOG. The MOG parameters are tuned using the same process as in Chapter 3.
The MOG parameters tuning procedure using the cjcacs colour model with the detailed

tests and tables are in Appendix B.

5.4.1 Extraction Results for the MOG using cjcacs colour model

The final settings for the indoor and the outdoor motion sequences were used to further

test more motion sequences.

e Indoor Motion Sequences



Chapter 5 Shadow Suppression using Invariant Colour Models 84

The 10 indoor sequences were processed using the MOG algorithm with the opti-
mised settings (In each one of them 50-52 frames were used for background mod-

elling). The optimised settings are: learning rate 0.004, the initial weight 0.0005,

the initial variance 0.01, 0.4 background threshold and 7 Gaussians per mixture.

(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The cextracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 5.6: Examples of indoor images extracted using the MOG algorithm with the
¢1cpes colour model.

Samples of the extracted images are shown in Figure 5.6. Looking at the extracted
samples in a colour format, in the second column, leads us to conclude that the
extraction is optimal. However when turning the result into binary images, the pros
and cons of extraction is more obvious. The system performs well in suppressing
the shadow in all the shown samples except for small traces in 010a024s08L and
017a054s00L. MOG also performs well in extracting the foreground region with

only small holes in the legs of the moving objects. For the background region
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the extraction seemed to be noiseless in the coloured view (the second column of
images in Figure 5.6). However when looking at the binary view for these images,
third column, the extraction process fails to label the top left corner of the frames
as part of the background region. This is because the intensity values of this part
are very small, close or equal to zero. The same problem is encountered in HSV
and normalised colour models. Colours in these colour models becomes unstable
near such values where a small perturbation of RGB value might cause a large
jump in the transformed values. These value are called singularity values and the
essential singularity of normalised coordinates is at black R = G = B = 0 (Stokman
and Gevers, 2001; Kender, 1976).

The evaluation of the averaged error of each sequence is shown in Table 5.5. The
table shows the RMSE; the PSNR, and three different percentage errors, the back-

ground, foreground and the overall percentage error compared to the motion pixels.

Sequence No. of RMSE PSNR FG BG Overall o%,55
Number Frames (dB)  Error! Error? Error®

0082a013s00L 178 0.142 16.969 6.598 1.651 27.520 3.981E-05
009a017s00L 169 0.123 18.194 5772  1.232 23.844 3.940E-05
010a024s08L 187 0.133 17.541 6.204 1.467 28.251 2.813E-05
013a037s00L 114 0.119 18.509 9.282 0.973 26.924 2.496E-05
013a040s00L 184 0.120 18.433 6.816 1.099 24.309 3.458L-05
017a054s00L 188 0.109 19.297 5.750 0.852 17.720 1.924E-05
017a055s00R 162 0.106 19473 6.142 0.786 17.653 1.637E-05
018a059s00L 188 0.115 18.835 6.983 0.915 20.096 2.617E-05
018a060s00L 179 0.113 18.950 5.308 0.988 19.106 2.827E-05
019a063s00L 186 0.113 18.932 6.030 0.968 20.746 2.442E-05

Average 0.119 18.513 6.488 1.093 22.617 2.814E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 5.5: Overall assessment on a number of motion indoor sequences using the
MOG algorithm with the ¢;cocs colour model.

Motion sequence 017a055s00R gave the best results in the RMSE, the PSNR, the
background error, and the the overall error compared to the silhouette’s motion
pixels. On the other hand, 010a024s08L gave the worst results in most of the
measurement except for the foreground and the background error. The averaged
error for the foreground error is 6.49%. The averaged background error is smaller,
1.09%. The overall percentage error compared to the silhouette’s motion pixels is
22.62%. The RMSE variance is small in all the tested motion sequences with a
maximum value of 3.981E-05 in sequence 008a013s00L. This means that in indoor

motion sequences, the ¢icacs MOG performs in a large consistency.
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When comparing these results with the results of the indoor MOG using the RGB
colour, Table 3.11, the cjcacs MOG results are smaller in the background and the
overall errors. The results of Table 3.11 are 0.84%, 2.73%, and 41.05% for the
foreground error, the background error and the overall error respectively. While
in Table 5.5, the results are 6.85%, 1.09% and 22.62% for the same regions (fore-
ground, background, and overall error respectively). The RMSE decreased almost
25% from 0.16 to 0.12. The PSNR also improved scoring here 18.51dB while in
the RGB colour scored 16.16dB.

e Outdoor Motion Sequences

In the process of evaluating the MOG with the cijcocs colour model, 10 outdoor
sequences were tested using this algorithm. 48-55 background frames were used for
background adaption. The MOG algorithm with the optimised outdoor parameters
were used. The parameters are: learning rate of 0.04, an initial weight of 0.0005,
an initial variance of 0.007, 0.4 for the background threshold and 7 Gaussians per

mixture.

Figure 5.7 shows samples of outdoor extracted images. From the shown samples
c1c2¢3 MOG with the used settings failed to extract the motion properly. Most of
the foreground region was mislabelled especially in motion sequence 009¢017s01L.
The shadow region seems to be extracted well except for small part of it. The

background region has excessive noise.

The evaluation of the averaged error of each outdoor sequence is shown in Table 5.6.
The table shows the RMSE, the PSNR, the background/foreground percentage
error and the overall percentage error compared to the silhouette’s motion pixels.

Sequence No. of RMSE PSNR FG BG  Overall o%ysk

Number Frames (dB) Error! Error?  FError3
008e013s00L 100 0.331 9.723 69.099 2.050 82.254 2.863E-03
009e017s01L 96 0.353 9.054 76.855 3.316 100.031 3.811E-04
010e024s00L 94 0.353 9.051 61.725 4,283 88.035 1.702E-04
013e037s00L 158 0.325 9,781 61.111 3.364 84.894 2.337E-04
013e040s00L 151 0.341 9.364 76.594 2.949 98.693 1.762E-04
017e054s00L 112 0.379 8.440 82.023 3.338 102.445 4.085E-04
017e055s00R 88 0.337 9.464 68.843 3.014 89.496 3.019E-04
018e059s01L 104 0.351 9.105 75.844 3.088 97.111 1.593E-04
018e060s00L 88 0.341 9.340 65.465 3.150 85.301 1.904E-05
019e063s05L 112 0.283 10.967 71.267 1.577 86.675 1.089E-04

Average 0.339 9.429 70.882 3.013 91.493 4.822E-04

1 FG Error Foreground Percentage Error

2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 5.6: Overall assessment on a number of motion outdoor sequences using the
MOG algorithm with the ¢jeacs colour model.
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ctte

() A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

(i) A sample frame from (k) The extracted image (1) The extracted image sithou-
0172054s00L ctte

FiGcure 5.7: Examples of outdoor images extracted using the MOG algorithm with
the ¢)cacs colour model.
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The performance of the cjcacs MOG with the settings used is not satisfying. The
averaged RMSE error is 0.34 while the PSNR gave an average of 9.43dB. The
motion pixels are mostly misclassified where less than 30% in average are classified
correctly. The background region performance was better in numbers where the
percentage of error on average was 3.01%. The overall error is large where the
average error is close to cover the full amount of the motion pixels, 91.49%. When
comparing these results with the results of the outdoor MOG using the RGB colour
model, Table 3.11, the amount of RMSE increased by almost 57% (from 0.22 to
0.34) and the PSNR value detriorated by 29% (13.37dB to 9.43dB). The results of
the cicocs MOG is also larger in the foreground error. The foreground error here
is 70.88% while with RGB it was 10.01%. Also the overall error in the RGB MOG
was 37.50% compared to 91.49% in c¢;cacs MOG. However the background error
here is smaller than in the RGB MOG, 3.01% compared to 3.98% in the RGB
MOG.

Motion sequence 008e013s00L gives the highest RMSE variance, 2.863E-03. The
RMSE variances recorded are still small which means that though cjcocs MOG
gives high overall errors in outdoor sequences, its performance variation is con-

tained in a small range in all the motion sequences, 1.904E-05 to 2.863E-03.

As an overall the MOG using the c;cae3 colour model performed better than RGB MOG
in indoor sequences. While it performed worst in outdoor motion sequences. Thus when
further combining the MOG with other classifiers, we will use cjcacs colour model for

indoor sequences only. For the outdoor motion sequences we will use RGB colour model.

5.5 Conclusions

In this chapter we presented multiple colour invariant models that can be used with
a motion segmenter in order to add the criteria of suppressing shadow pixels from the
detected motion pixels. The colour models tested were indicated in the literature as
invariant to illumination changes. The Unary Classifier was used as a segmenter. In the
assessment procedure different overall measures were used. In addition, the assessment

was performed on each region (shadow, background and foreground) individually.

Due to the satisfying performance of the cjcacs model on outdoor and its reasonable
performance in indoor (the second best performer with better foreground performance
than the best performer), this colour model will be selected for further use in the Unary

Classifier.
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An assessment was made on using c¢jcsc3 colour model with the mixture of Gaussians.
The MOG performance was enhanced with the ¢jcocs in indoor sequences only. There-
fore for the mixture of Gaussians c¢jcac3 colour model will be used only for indoor se-

quences but for outdoor motion sequences RGB colour model will be used.



Chapter 6

Combining Classifiers

6.1 Introduction

The potency of individual classification is challenged by pattern recognition systems
based on combining measures (Valev and Asaithambi, 2001; Leandro Rodrguez-Liares
et al., 2003), which can show better classification (Ruta and Gabrys, 2005; Duin, 2002;
Chen et al., 1997; Ho et al., 1994; Huang and Suen, 1995). Classifiers that differ in
their classification decision can offer complementary information about the patterns to
be classified, which can be harnessed to improve performance of the selected classifier
(Kittler et al., 1998).

The objective of combination is not to rely on a single decision scheme. Instead, the
decisions of single classifiers are combined to derive a consensus decision, where the
combination method should enable us to use the benefits and avoid the weaknesses of
each classifier in order to achieve the optimal possible performance. Combining identical
classifiers will confer no performance benefits at the expenses of increased complexity.
On the other hand, different but low performing classifiers are unlikely to bring any
benefits in combined performance (Ruta and Gabrys, 2005). It is believed that optimal
combined classifiers should be diverse (i.e. with minimum number of coincident failures)
and have at the same time good individual performance (Sharkey and Sharkey, 1997).
In the previous chapters we have presented three different classifiers. After improving
the classifier’s performance either by optimising the classifier’s parameters, as in the
MOG, or by improving the overall design of the technique, as in the SBD and the UC,
we succeeded in reaching a reasonable performance for each classifier. In addition, it
was highlighted that the performance of each classifier is different in each region and
the erroneous noise points were mostly not overlapping (diversity). The techniques are

quite different and this should promote diversity.

Another important factor that has to be considered is the combination method itself.

Among all the combination methods, simple methods like the Sum, the Product, the

90
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Maximum, and the Median have received much attention (Czyz et al., 2004; Alexandre
et al., 2001; Kuncheva et al., 2001; Kuncheva, 2002; Kittler et al., 1998).

Many different studies differ as to which rule is better in performance. Kittler et al.
(1998) used different combination schemes namely the Sum, Product, Maximum, Mini-
mum, Median and majority vote rules. They reported that the Sum rule produces the
most reliable decisions. They also proved that the Sum is more resilient to error than the
Product rule and called the Sum “remarkably robust”. In (Alkoot and Kittler, 1999) a
comparison was made between the four simple combination rules (Sum, Product, Maxi-
mum, Median) and a single expert decision. The study reached a general result stating
that, the results prove the combiners to be better than the single expert, especially the
Sum and the Median. Tax et al. (1997) compared the Product and the Mean rules and
concluded that the Product rule leads to a better performance when all the classifiers
produce small errors. If at least one classifier produces large errors then the Mean rule
gives better result (It is well known that a robust estimate of the Mean is the Median
(Kittler et al., 1998)). Shakhnarovich and Darrell (2002) experimentally assessed the
performance of the Maximum, Minimum, Sum and Product rules for combining face
and gait cues. From the experiments the authors reached a conclusion that while the
combination almost always improved the classification accuracy of the system, the best
performance was produced by using the Product rule. The Minimum rule performed
poorly in the experiments and on occasions resulted in lower performance to give an

overall performance less than that of the best individual classifier.

Classifier combination was applied to many different applications such as biometrics
(gait, face, ear recognition, etc.) (Czyz et al., 2004; Jing and Zhang, 2003; Shakhnarovich
et al., 2001; Kale et al., 2004; Chang et al., 2003; Bazin et al., 2005), handwriting
recognition (Rahman and Fairhurst, 1997; Xu et al., 1992), speech recognition (Tur
et al., 2005), and information retrieval (Lee, 1998; Nottelmann and Straccia, 2005).

In the following sections we will present different new combinations of the SBD, the
MOG and the UC classifiers in a novel probabilistic form. When combining only two
classifiers the Maximum rule is used for the economy of analysis. For the combination
of the three classifiers more elaborate combinations are used. We will use the Sum, the
Product, the Maximum and the Median combination rules. We will start by presenting
the posterior probabilities derived. Then we will describe the combination methods used
to obtain the final decision. Finally we will present the combination results. Notice that
the improved SBD and the improved UC are the classifiers used for combination and

comparison and we refer to them in this chapter simply as SBD and UC, respectively.
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6.2 Bayesian Classification

A natural way to combine probabilistic classifiers is through Bayes theorem. The fact
that both algorithms operate using pixel wise operations facilitated the process of cou-

bination. The combination of the classifiers using Bayes theorem is given as

pxICO)P(C) _  pIC)P(C)

PO =y = Sp0PO)

where C is the class and x is the tested pixel.

For classifiers that do not have a natural probabilistic output, one can approximate a
probability by fitting a logistic function to the output (Bishop, 1996; Platt, 1999; Wahba,
1992). The posterior probability can be expressed using the logistic sigmoid function

1

An estimation of a will be given in the following section.

6.3 Probability Estimation

The posterior probabilities for the classifiers used are determined using the logistic sig-

moid function formulated as

P(Clx) =

1
6.3
1+ exp—(We — Dy) (6-3)
where —(W¢ — Dy) is the decision function used for each algorithm. Expanding the
classifiers under consideration (SBD, MOG, and UC) can all be placed in framework 6.3
by “substituting” the appropriate expression for -(Wg — D).

e The MOG classifier
For the MOG algorithm, the background is modelled as Gaussians. Each Back-
ground Gaussian is considered as a class. W = 2.50 and Dy is calculated as the
distance between the the tested pixel and the closest background Gaussian mean.

The foreground probability is calculated as follows
P(Crglx) =1 - P(Cpglx) (6.4)

e The SBD classifier
For the SBD classifier, the values of W for the background and the shadow
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classes are calculated using the same procedure. The class mean is calculated as
the arithmetic mean of the class thresholds (the thresholds are the upper and the
lower bound for the class). W is then calculated as the distance from one of the
class boundaries (thresholds) to the estimated mean.

Dy is calculated as the distance between the brightness distortion parameter, Ei»
for a tested pixel and the class mean, refer to Chapter 2 for the details of this

parameter. The foreground probability is calculated as in the MOG classifier.

e The UC classifier
To calculate (Wg — Dy) for the UC we used the decision function formulated in
Chapter 4

2 2

(We=Dx) = | (Ruc + NRyc)® = Y _ avogk(xi, x;) + 2> auk(x;, %) — k(x,X)
Y] i

(6.5)

6.4 Combination Rules

In this section, we present the different combination rules that use posterior probabilities.
We use the Bayes decision rule as the principle for combining the classifiers. The Bayes

rule assigns the pixel to the class with the maximum posterior probability.

fay = 4o PGl > PG

Cy otherwise.

When combining different classifiers with independent conditional probabilities the prod-

uct rule can be used

Ca if [I; P(Calxi) > [1; P(Chlx:)

Cy, otherwise.

f(x)Product =

where 1 represents the used classifier.

When the conditional probabilities are not conditionally independent, this rule is vio-
lated. For sufficiently accurate classifiers, scores are likely to be positively correlated
because the classifiers will agree on the majority of classifications and classify them cor-
rectly. In addition to the product rule, several other combination rules can be used and

may be more appropriate when score independence is not satisfied (Czyz et al., 2004)



Chapter 6 Combining Classifiers 94

Ca if 2 P(Calxi) > 32; P(Chlxi)

f(-'r)Sum =
Cpy otherwise
Cq if max; P(Ca|xi) > max; P(C’b]xz)
f(m)Ma:m'mum =
Cy otherwise
Co  if med;P(Cqalx;) > med; P(Chlx;)
f(x)Median =

Cy otherwise.

In experiments, the Maximum rule will only be used when combining two classifiers
for economy of analysis. For combining three classifiers, we will investigate all four

combination rules.

6.5 Weight averaging the classifiers decisions

The combination of the classifiers can be optimised by adding a weighting factor to the
overall probability of classifiers (Kittler et al., 1997; Kittler and Hojjatoleslami, 1998).
The weight functions as a confidence factor for each classifier. The weight is conditioned

to Y, w; = 1. The combination rules become

Co if Hz [wiP(Calx;)] > Hi [w; P(Ch|x;)]

f(-'r)Product =
Cpy otherwise
Co if 25 [wiP(Calxi)] > 37, [wiP(Cplxs)]
f(:l?) Sum =
Cy otherwise
Co if max; [wiP(Cqlx;)] > max; [wiP(Ch|x;)]
f(a:)Ma:vimum =
Cy otherwise
Ca Zf med; [wz-P(C’alxi)] > medi [sz(C’b|xz)]
F(Z) Median =

Cy otherwise.

We will also use this method to combine classifiers. The classifier weight is derived
from the overall performance on the foreground/background extraction expressed as a

percentage in comparison with the other techniques.
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6.6 Experimental results

The experimental results are implemented by combining two and three classifiers.

6.6.1 Two Classifiers Combination

(a) A sample frame from (b) The extracted image (¢) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The cxtracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 6.1: Indoor images extracted using the combined UC and SBD classifiers

Using the weighted Maximum rule, the UC, the SBD and the MOG are combined in
pairs. To choose the values of the weights, N Motion samples (non-background) are used
for each motion sequence. Then a search is performed using gradient decent approach
for the weights until optimal values are found that produces the minimum overall error.

10 samples are used for indoor sequences and 5 for outdoor sequences.
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(o2}

Figures 6.1 shows the results of combining the UC and the SBD on indoor motion
sequences. The samples show a clean background with no noticeable noise. Most of the
shadow has disappeared. 010a024s08L motion sequence gave small traces of shadow.
The sample of 017a054s00L shows a larger shadow but still as an overall result most of
the shadow had disappeared even in this sample. For the moving subject extraction,

most of the extracted samples are extracted well with few small negligible holes.

When comparing the images shown with the samples of the original classifiers, Figures
4.5 and 2.10, the combined results outperformed the original SBD extraction especially
in the foreground region where in the SBD large holes appeared mostly in the legs of
the moving subject. In the combined UC/SBD samples, few holes can be observed and
with much smaller size. The result of the UC and the combined UC/SBD is comparable
in all the regions.

(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

H

() A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ctte

(j) A samplc frame from (k) The cxtracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 6.2: Indoor images extracted using the combined UC and MOG classifiers
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Figure 6.2 represents samples of extraction of indoor motion sequences using the com-
bined UC/MOG classifiers. The combined UC/MOG managed to label the background
and the shadow regions correctly with traces of shadows showing in the samples of
010a024s08L and 017a054s00L motion sequences. The foreground extraction is fairly
well extracted with some small holes in the samples.

The combined results managed to overcome the problems of the MOG extraction where
it misclassifies areas of low intensities. In the MOG the top left (the black curtain)
is a noisy area but the combined UC/MOG classified it correctly. The foreground
extraction of the MOG suffered from a large number of holes especially in the legs area.
The combined UC/MOG extraction of the foreground region is better than in the MOG
with less holes. The extraction of the combined UC/MOG is similar to the UC classifier
extraction in all the region except for the shadow region where the combined UC/MOG
performed better in this region. Clearly, the combined classifier enjoys the advantages
of the different classifiers.

The extraction of the combined MOG/SBD classifiers for indoor motion sequences is
shown in Figure 6.3. In the background region the new classifier managed to label most
of the region pixels correctly. For the shadow region, most, if not all, of the shadow has
disappeared in the shown samples. Sequence 017a054s00L shows more obvious traces of
the shadow. The foreground region has some small to medium size holes especially in

the area of the legs.

Comparing the combined results of the MOG/SBD classifier of Figure 6.3 with the
results of the original techniques, the MOG in Figure 3.5 and the SBD in Figure 2.10,
the combined classifier’s overall performance is better than the other two. The combined
MOG/SBD classifier performed better than the MOG in the background region. The
MOG had a noisy top left corner while the combined MOG/SBD has an overall clean
background. The SBD also behaved well in extracting the background region. For the
foreground region, the combined MOG/SBD has some small holes, especially in the area
of the legs, but the MOG has more small holes and the SBD suffered even from larger
holes. For the shadow region their behaviour is similar where they all behave well in

suppressing this region.

When comparing the three different combinations, the UC/SBD, the UC/MOG and the
SBD/MOG, the extraction results are fairly similar particularly in the background and
the shadow regions. In the foreground region the combined MOG/SBD has more smaller
holes than the other two.

The overall result for combining two classifiers using indoor motion sequences is shown
in Table 6.1. The detailed results are in Appendix C. For the RMSE the three new
classifiers gave better results, with a result lower than the original classifiers. Also in
the PSNR, the results of the new classifiers are higher than for the original classifiers.

The combined classifiers all scored a PSNR value above 23.2. In the foreground region,
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(a) A sample frame from (b) The extracted image (¢) The extracted image silhou-
008a013s00L ette

¥

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(i) A sample frame from (k) The extracted image () The extracted image silhou-
017a054s00L ette

FIGURE 6.3: Indoor images extracted using the combined MOG and SBD classifiers

Combined RMSE PSNR FG BG  Overall o%ysp
Classifiers (dB)  Error! Error? Error?

UC and SBD 0.070 23.201 2.805 0.331 7.661  3.188E-05
UC and MOG 0.069 23.267 3.296 0.287 7.521  3.214E-05
MOG and SBD 0.068 23.385 4.787 0.174 7.330 4.109E-05

SBD 0.078 22.342 2.659  0.491 9.775  4.047E-05
MOG 0.119 18,513 6488 1.093 22.617 2.814E-05
UuC 0.072 22.872 2.801 0.373 8.265  3.394E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 6.1: The overall assessment of combining three sets of two combined classifiers
using indoor motion sequences
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the SBD and the UC gave the best results in this region. The UC/SBD classifier scored
a result close to the UC results. The worst result was scored by the MOG with a 6.49%
error. For the background region, all the three combinations scored better than the
original classifiers with 0.17% error for the MOG/SBD, 0.29% error for the UC/MOG
and 0.33% error for the UC/SBD. Finally, in the overall error, compared to the motion
pixels in the silhouette region, all the new combined classifiers scored better than the
original classifiers with 7.33% error for the MOG/SBD followed by a 7.52% error for the
UC/MOG and 7.66% error for the UC/SBD.

The averaged RMSE variance is small for all the provided classifiers which means that
each classifier by itself provides high consistency in its performance. Utilising this accu-
racy in comparing the classifiers using the RMSE, we can say that the most successful
classifier in this group is the MOG/SBD classifier. This classifier outperformed all the
other classifiers by scoring the least RMSE, 0.068. Also this classifier gave a better
fusing model by utilising the differences of its originator and outperforming them with
a significant amount (compared to the others). The MOG/SBD managed to give better
results than the SBD by 13% and better than the MOG by 43%. The UC/MOG and
the UC/SBD gave also reasonable RMSE value, 0.069 and 0.70 respectively, but those
two classifiers gave a small improvement difference from one of their originator, the UC
(4% for the UC/MOG and 3% for the UC/SBD).

Figure 6.4 shows the outdoor extraction for the combined UC/SBD classifier. The
background region is well extracted with few noise pixels. The foreground region is
extracted with some holes (of varying size). The shadow is resident in most of the
sequences except sample 013e037s00L. When comparing the result of this classifier with
the UC, Figure 4.6, and the SBD classifiers, Figure 2.11, the quality of extracting the
foreground region has improved. The holes are reduced in size compared with the holes
by the original classifiers. The background and the shadow suppression is fairly similar

in the UC/SBD combined classifier and its originating classifiers.

Figure 6.5 presents the outdoor extraction of the combined UC/MOG classifier. The
foreground is extracted with varying quality of extraction. The extraction of 013e037s00L
resulted in extracting most of the foreground region pixels with few holes. On the other
hand, the foreground extraction of sequence 008e013s00L sample resulted in some large

holes.

Compared with the original classifiers result, the UC in Figure 4.6 and the MOG in
Figure 3.6, the background suppression for the combined UC/MOG classifier is better
than the MOG and similar to the UC in most of the samples (sample 009e017s01L of
UC/MOG showed a noisy background). For the shadow region, the MOG classifier
samples all showed shadows (the MOG here uses the RGB colour model which is not
a colour invariant model). The combined classifier managed to suppress the shadow
similar to the UC. For the foreground region, the MOG was the best performer in one
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ctte

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ctte

FIGURE 6.4: Outdoor images extracted using the combined UC and SBD classifiers
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(a) A sample frame from
008e013s00L

(c) The extracted image silhou-
ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ette

FIGURE 6.5: Outdoor images extracted using the combined UC and MOG classifiers
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of the samples, 008e013s00L, but was not in another sample, in 013e037s00L the the
combined classifier was better.

Figure 6.6 shows the outdoor motion sequences extraction using the combined MOG/SBD
classifier. The classifier performs well in the background region with only few noise pix-
els. The algorithm succeeds in eliminating the shadow of one sample out of the four
presented samples. In the foreground region, the combined classifier manages to classify

correctly most of the region but there still exist some holes in the moving subject.

The MOG/SBD classifier outperforms the original classifiers in some of the shown sam-
ples. The MOG/SBD classifier performs mostly better than the MOG and the SBD in
producing a better foreground region with less holes. Also in the background region,
the new classifier performs as well as the SBD classifier in producing a high quality
background labelling while the MOG does not produce such quality in the background
region (with a noisy background in MOG). For the shadow region, the worst performer
is the MOG while the combined classifier’s performance is similar to the SBD in this

region.

From the shown samples, the UC/SBD gave the best performance in the foreground
region. In the background region the UC/MOG was the worst performer especially
in sample 009e017s01L though the same classifier performed well in suppressing the
background in other samples. For the shadow region the original classifiers were not
successful in suppressing the shadows in most of the shown samples which resulted in

the combined classifier giving a similar result.

Combined RMSE PSNR FG BG  Overall o%u5g
Classifiers (dB) Error! Error? Error®

UC and SBD 0.182 14.961 13.158 2.010 26.801 1.936E-04
UC and MOG 0.193 14.380 15.623 2.104 30.113 1.400E-04
MOG and SBD 0.184 14.862 15.911 1.685 27.337 2.222E-04

SBD 0.189 14.618 14.453 2.153 29.077 2.126E-04
MOG 0.216 13.374 10.009 3.976 37.499 2.370E-04
ucC 0.207 13.856 22.027 1.919 35.068 1.297E-04

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 6.2: The overall assessment of combining three sets of two combined classifiers
using outdoor motion sequences

Table 6.2 presents the overall assessment of outdoor motion sequences using the new
combinations of the UC/SBD, the UC/MOG and the MOG /SBD, with original classifiers
results for comparison. The detailed assessment can be found in Appendix C. In the
RMSE and the PSNR, the UC/SBD and the MOG/SBD classifiers outperformed the
original classifiers. The UC/MOG gave better result than their originators, the UC
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009¢017s01L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

(j) A sample frame from (k) The extracted image (I) The extracted image silhou-
013e037s00L ette

FIGURE 6.6: Outdoor images extracted using the combined MOG and SBD classifiers
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and the MOG, but fell below the results of the SBD. For the foreground percentage,
the UC/SBD scored the second best result in this region. The UC/MOG and the
MOG /SBD took the fourth and fifth position with a relatively small increase in the error
value compared to the SBD which was placed in the third position. For the background
region, the MOG/SBD classifier scored the best result in this region followed by the
UC, the UC/SBD and the UC/MOG classifiers with minor difference between them.
Using the RMSE and the overall error compared to the silhouette’s motion pixels, the
new UC/SBD classifier scored the best result in extraction outdoor motion sequences.
MOG/SBD was the second in scoring the minimum overall error followed by the SBD
and then the UC/MOG classifier. The averaged RMSE variance is small for all the
classifiers. This means that each classifiers variation is constrained in a small limited

range of displacement.

It is clear that classifier combination achieves better performance. All the combinations

managed to produce an overall error less than their originating classifiers.

6.6.2 Three Classifiers Combination

In combining three classifiers, we used the Maximum, the Median, the Sum and the
Product rules using different principles. The classifiers are combined first using the
simple Bayes decision function. Then the weight averaging probability method is used.
Fach classifier weight is derived from the individual classifier performance. For indoor
sequences, the SBD performance was 90%, the MOG was 77%, and the UC was 92%.
So after a normalisation process, the SBD weight will be 0.348, the MOG weight will be
0.297, and the UC weight will be 0.355. For outdoor sequences, the SBD performance
was 71%, for the MOG 63%, and for the UC 65%. Therefore after normalisation the
weights will be: 0.357 for the SBD, 0.317 for the MOG, and 0.326 for the UC.

Figure 6.7 shows the result of extracting indoor motion sequences by combining three
classifiers, the UC, the SBD and the MOG, using the Maximum rule. The resulting
background is noisy especially in the top left corner which indicates dominance of the
MOG classifier decision for this part (this error occurs specifically in the MOG classifier
samples only). The shadow has disappeared from two samples but a small part is still
resident in the last two samples, 010a024s08L and 017a054s00L. The foreground region
is extracted well with few holes (holes are more noticeable in the sample of motion
sequence 008a013s00L).

Figure 6.8 shows the result of extracting indoor motion sequences using a new classifier
that combines the UC, the SBD, and the MOG classifiers using the Median rule. The
background of the extracted sample is clear with no noise pixels. The shadow has

disappeared from most of the sequences except for small traces in sample 010a024s08L
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(a) A sample frame from (b) The extracted image (c¢) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
0092017s00L ette
(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette
(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ette

FIGURE 6.7: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Maximum rule

and 017a054s00L. The foreground region is extracted well with some mislabelled pixels,

which are more obvious in 010a024s08L.

Figure 6.9 presents the indoor classification using the Product of the UC, the SBD and
the MOG classifiers. The background is mostly clean except for the left top corner and
another small corner in the bottom right corner of the scene. The shadow had mostly
disappeared in most of the samples. The foreground region is extracted well but with

more small holes than in the previous combinations of three classifiers.

Figure 6.10 shows an indoor sequences extraction by the Sum of the UC, the SBD and the
MOG classifiers. We notice an improvement in extracting the moving subject compared

with the Product combiner, though some pixels are misclassified. The left top corner is
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ctte

(g) A sample frame from (h) The extracted image (1) The extracted image silhou-
010a024s08L ette

() A sample frame from (k) The extracted image (1) The extracted image silhou-
0172054s00L ctte

F1GURE 6.8: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Median rule

also noisy in this classifier as well as the bottom right corner. Most of the shadow has
disappeared from all the samples except some small parts showing in motion sequences
010a024s08L and 017a054s00L.

Comparing the results of Figure 6.7 - 6.10 with their originating classifiers, Figures
2.10, 3.5, and 4.5, the Median combination behaves as well as the UC and the SBD in
classifying the background region. The Maximum, the Sum, and the Product classifiers
performed well in most of the scene parts except the top left corner which was noisy,
similar to the result of the MOG.

In the foreground region all the new classifiers performed well except for the Product

rule combination which suffered from more small holes in the moving subject. The
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
0092017s00L ette

(g8 A sample frame from (h) The extracted image (i) The extracted image silhou-
0102024s08L ctte

(J) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 6.9: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Product rule

good performers gave a similar result to the UC while the Product classifier gave results
similar to the MOG.

In the shadow region the Median and the Product combinations gave the best result
with a minimum traces of shadows showing in two samples only. Also the Max and Sum

rule behaved well in this region but with a little more shadow.

Figures 6.11 - 6.14 shows the samples of extracting indoor sequences using a the average
weighted combination (see Section 6.5) of the UC, the SBD, and MOG classifiers using
the Maximum, the Median, the Product, and the Sum combination rules, respectively.
When extracting the background region the median combination rule gave the best result

with no noticeable noise in the background except for the last sample, 017a054s00L,
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(a) A sample frame from (b) The extracted image (¢) The extracted image silhou-
008a013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 6.10: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Sum rule

where some isolated noise exists. The Maximum rule gives the second best performance
in the background region with some noisy pixels showing noticeably in the top left
corner. Again, 017a054s00L gave more background noise in this classifiers than the
other samples. The Sum rule background noise is more than the previous two classifiers.
The top left corner is the noisiest part of the background region. The Product classifier
gives the highest background noise compared to the other three combined weighted

classifiers.

For the shadow region similar results were apparent in all the four weighted combination
classifiers. In all the samples most of the shadow region is removed except some smail
parts showing in samples of 010a024s08L and 017a054s00L.
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ctte

(j) A sample framc from (k) The extracted image (I) The extracted image silhou-
017a054s00L ette

FIGURE 6.11: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the weighted Maximum rule

In the foreground region all the four classifiers gave a quality extraction of this region.
Small holes are noticed in 008a013s00L and 009a017s00L.

When comparing the results of the four weighted combinations with their originating
classifiers (Figures 2.10, 4.5 and 3.5), the new classifiers performed better than the MOG
and the SBD in labelling the foreground pixels. The UC gave similar performance to
the combined classifiers in this region. For the shadow region, the combined classifiers
behaved similarly to the SBD but the MOG and the UC performance seems to be slightly
better. In the background region, the new combination using the weighted Median rule
gave the best performance in this region. The UC and the SBD gave similar results.
The new combinations using the weighted Maximum, Product and Sum gave similar

results to the MOG, with a noisy background corner.
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(&) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (1) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 6.12: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the weighted Median rule

Table 6.3 presents the overall results for indoor motion sequences. For the detailed
assessment for each combination please refer to Appendix C. The table is divided to
three parts. The first part, Table 6.3(a), presents the Max, the Median, the Product,
and the Sum combination rules. The second part, Table 6.3(b), present the weighted
combination results using the same combination rules in part 6.3(a). The last part shows

the results of the original classifiers for comparison.

For the RMSE and the PSNR in the unweighted combinations, the best value is scored
by the Median with the least RMSE, 0.07, and the highest PSNR, 23.55dB. When using
the weights, we notice an improvement in the RMSE and the PSNR of the Max and
the Product combinations. The RMSE and the PSNR values of the Median and the
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ctte

FIGURE 6.13: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the weighted Product rule

Product either remained unchanged, for RMSE in the product, or deteriorated slightly.
The Median in this part also scored the best result in the RMSE and the PSNR.

For the foreground percentage error, the Max and the Sum scored the best results in
Table 6.3(a) followed by the Median and then the Product rule which scored the worst
result in this region. In the background percentage error the result is inverted where
the best result is scored by the Product and the worst by the Max and the Median.
For the results of the foreground region in the weighted combination, Table 6.3(b), the
foreground error is similar with a small difference in all the different combination rules.
The Max rule scored the best result in this region followed by the Median and then
the Sum and the Product. The relation seen in the unweighted combination does not

hold here, where the Product rule scored the worst foreground and background error as
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008a013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009a017s00L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010a024s08L ctte

(i) A sample frame from (k) The extracted image (1) The extracted image silhou-
017a054s00L ette

FIGURE 6.14: Indoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the weighted Sum rule

well. Also the Sum rule scored the second worst foreground and background error. The
minimum background error is scored by the Median with 0.34% followed by the Max
rule with a 0.39%.

The overall error compared to the silhouette’s motion pixels gave the first and the second
position to the new Median classifiers of parts 6.3(a) and 6.3(b) with an error of 7.07%
and 7.85% respectively. The weighted Maximum and Sum scored reasonably competitive
overall results but the result of the remaining four combined classifiers (the unweighted
Maximum, Product, and Sum and the weighted Product) were not satisfactory. We
notice that the Product combiner does not perform well wether a weight is used or
not. This is because the Product is more vulnerable of making one classifier’s erroneous

result more dominant (when compared to the other combination rules) especially if the
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(a) Combining by using only the classifiers probabilitics

Combined RMSE PSNR FG BG  Overall o355
Classifiers (dB) Error! Error? Error3

MAX 0.113 19.004 2972 1.169 20.169 3.351E-05
MEDIAN 0.067 23.546 3.922 0.216 7.073  3.472E-05
PRODUCT 0.113 18952 6.543 0.940 20.417 3.104E-05
SUM 0.113 19.004 2972 1.169 20.168 3.309E-05

(b) Combining by using weighted probabilities

Combined = RMSE PSNR  FG BG  Overall o%y5g
Classifiers (dB) Error! Error? Error?

MAX 0.074 22.737 2.954 0.387 8.598  4.084E-05
MEDIAN 0.070 23.149 2.963 0.336 7.849  3.464E-05
PRODUCT 0.113 19.004 2.972 1.169 20.168 3.351E-05
SUM 0.082 21.779 2971 0.525 10.655 3.448E-05

(c) Original classifiers result

Original RMSE PSNR FG BG Overall 0% \SE

Classifiers (dB)  Error' Error?  Error®

SBD 0.078 22.342 2.659 0.491 9.775  4.047E-05
MOG 0.119 18.513 6.488 1.093 22.617  2.814E-05
UC 0.072 22.872 2.801 0.373 8.265  3.394E-05

1 FG Error Foreground Percentage Error
2 BG Error Background Percentage Error

3 The percentage of the overall error compared to the motion pixels only

TABLE 6.3: The overall indoor motion sequences assessment of combining three clas-
sifiers using the Maximum, Median, Sum, and product using two different principle of
combination

classifier’s probability is too small or equal to zero. For the unweighted Maximum and
Sum, when compared to the averaged weighted result of the same combination rule, it
is obvious that using weights for each classifier can rescale each classifier probability in

comparison with the other classifiers in order to get a better performance.

Comparing the results of the new combined classifiers with the their original classifiers
in the RMSE, the PSNR and the overall error, the Median rule in parts 6.3(a) and 6.3(b)
scored better results than all the original classifiers. The Maximum weighted combina-
tion rule, Table 6.3(b), scored competitive results but fell behind the best originating
classifier, the UC. Similar to the UC and the SBD, the weighted Maximum rule man-
aged to score better results than the modified SBD and the MOG. For the foreground
error, the weighted combination managed to maintain an error less than 3.0% in all the
combinations used. The unweighted combination performed similarly in the Maximum
and the Sum rules but the error exceeded this percentage in the Median and the Product



Chapter 6 Combining Classifiers 114

rules. Finally in the background error, the SBD and the UC both gave results less than
0.5%. Most of the weighted combination scored similar or at least close results except
for the Product rule which scored the worst results in this region. In the unweighted
combinations, only one classifier managed to keep up to this level, the Median. The
best performers in the background are the unweighted Median followed by the weighted

Median classifier.

The averaged RMSE variance gives small results for all the shown classifiers with a
maximum RMSE variance in the weighted Maximum with a variance of 4.084E-05.

These small value means that each classifier performance result is highly consistent.

As an overall result, combining classifiers for indoor motion sequences can lead to better
performance results. The Median combiner is a powerful tool with a potential to give
competitive results. The combination without weights can give the best results in one
(or more) of the combination rules but using weights can ensure better results in many

combination rules by optimising the contribution of the inputs.

Figures 6.15 - 6.18 presents samples of the extraction of outdoor motion sequences using
the combination rules, the Maximum, the Median, the Product and the Sum. For
the background labelling the Median provides the best performance in this region with
only few scattered noisy pixels. All the other three classifiers suffers from noise in the
background area. For the shadow region in most of the provided samples, shadows
are still unsuppressed except for the fourth sample, 013e037s00L, where the majority
of the shadow disappeared from this sample. For the foreground region, though the
overall labelling is acceptable, the moving subjects suffered from holes of different sizes.
In comparing the results of the different combinations no clear difference is noticed in
samples of 008e013s00L and 009e017s01L. For the other two samples, 010e024s00L and
013e037s00L, though the Median region gave the best results in sample 013e037s00L but
in sample 010e024s00L gave the highest foreground error. The Product combination gave
the worst foreground result for sample 013e037s00L.

When comparing samples result of the outdoor extraction of the combined classifiers
with their original classifiers, the UC in Figure 4.6, the MOG in Figure 3.6, and the
SBD in Figure 2.11, the Median rule again managed to outperform all the classifiers.
The best performers for the background region are the Median, the SBD, and the UC
(with only very few noise pixels). For the foreground region, though the combined results
suffered from some holes in the foreground region but the holes are smaller in size than
some of the holes in the originating classifiers. For the shadow region, the UC seems to
be the best performer in this region while the MOG is the worst. The new combined
classifiers gave better shadow suppression than the MOG with a similar result to the
SBD but not as good as the UC in this region.
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhon-
009e017s01L ette

(g A sample frame from
010e024s00L

(i) The extracted image silhou-
ette

i 2

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ctte

F1GURE 6.15: Outdoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Maximum rule
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008c013s00L ctte

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ctte

(g) A sample frame from (h) The extracted image (i) The extracted image sithou-
010e024s00L ctte

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ette

FIGURE 6.16: Outdoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Median rule
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ctte

(d) A sample frame from (f) The extracted image silhou-
009e017s01L ette

(g) A sample frame from (h) The extracted image (i) The extracted image silhou-
010e024s00L ette

() A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ette

FIGURE 6.17: Outdoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Product rule
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(a) A sample frame from (c) The extracted image silhou-
008e013s00L ette

(d) A sample frame from (e) The extracted image (f) The extracted image silhou-
009e017s01L ctte

(g) A sample frame from
010e024s00L ette

(j) A sample frame from (k) The extracted image (1) The extracted image silhou-
013e037s00L ctte

FIGURE 6.18: Outdoor images extracted by combining the UC, the SBD, and the MOG
classifiers using the Sum rule
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(a) A sample frame from (b) The extracted image (c) The extracted image silhou-
008e013s00L ette

(d) A sample frame from (f) The extracted image silhou-
009e017s01L ette

(g8 A sample frame from (h) The extract