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Foreground/background segmentation is an active research area for moving object analy­

sis. Many applications in machine vision depend on high quality and robust extraction of 

moving objects. Established and popular methods are mixture modelling and a thresh­

old based technique (Horprasert et al., 2000). To find a better motion classifier, a new 

technique is developed here, a modified Unary classifier approach that uses the bases of 

SVM theory. As neither the mixture modelling nor the Unary approach had implicit 

shadow detection, this is achieved by including colour invariant colour models. The 

threshold based technique has the ability to detect shadow but with the consequences 

of mislabelling part of the foreground. The shadow detection criterion was improved 

by adding a statistical constraint to the shadow detection process. In order to further 

extend the performance, we formed different classifiers by combining base classifiers 

with a Bayesian approach. The observed performance advantages are associated with 

the fusion of operators with complementary properties. Tests on outdoor and indoor 

sequences confirm the efficacy of this approach. The new algorithms can successfully 

identify and remove shadows and highlights with improved moving-object segmentation. 

A particular advantage of our evaluation is that it is the first approach that compares 

foreground/background labelling with results obtained from labelling by broadcast tech­

niques, comparing a computer vision technique with an established baseline. 
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Chapter 1 

Introduction 

1.1 Motivation 

Detecting moving objects is an initial step of information extraction in many computer 

vision applications including: video surveillance, people tracking and traffic monitoring. 

In these applications, reliable moving object extraction is required. Such a procedure 

should feature: 

• High accuracy in shape detection. 

• Flexibility to handle diverse scenarios (indoor, outdoor) and weather conditions 

(clouds, rain, etc). 

• Ability to operate at video rate (in some applications). 

In the following sections of this chapter some of the potential applications will be pre­

sented as a motivation to this work on motion estimation. This will be followed by a 

section that will highlight the contributions of this work. The next section will state the 

assumptions that will be used as a base to produce new motion extraction techniques. 

The final section will introduce the layout of the whole thesis. 

1.2 Motion estimation 

The problem of motion estimation has been approached using different methodologies. 

For each there are advantages and disadvantages. The final application, the require­

ments, speed and quality of the method usually dictate the approach and the criteria 

to be chosen. In this chapter we will give a brief overview of some of the approaches to 

motion extraction. 

1 
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1.2.1 Background subtraction 

In the most basic approaches, moving regions are detected through a pixel by 

pixel differencing between a current image and a reference background image (a 

background model), Then, the resulting image is usually thresholded. The final 

result is a binary segmented image of the objects existing in the new frames and 

not in the reference image (i.e. the moving segments). 

There are many methods available to produce the background model. Simple ways 

include taking an image of the background without moving objects. Methods using 

this background model suffer from many problems, such as the requirement of a 

training period where moving objects are absent. In addition, the background 

objects are assumed to be static and any movement of a background object (e.g. 

removal of an object from the background) would disturb the result of the tested 

frames. This requires the whole background model to be produced again. Also 

the system cannot handle gradual change in the background illumination (such as 

illumination change between daylight and dusk or change due to clouds and rain). 

Rosin (2002) used the simple way of background subtraction and implemented 

four different thresholding techniques to overcome the noise resulting from the 

differencing process. 

Other approaches differ in forming the background model and in the procedure 

used to update the model. The simplest geometric background model is produced 

by averaging a sequence of images temporally (Dagless et aI., 1993). A more robust 

form is to use the median (Arseneau and Cooperstock, 1999; Cucchiara, Gretna, 

Piccardi, and Prati, 2000; Cutler and Davis, 1998) to form the background model. 

In Arseneau and Cooperstock (1999) a simple temporal median over N frames was 

used. Cutler and Davis (1998) used the same method for forming the background 

model for grey images. For colour images the background model was formed by 

computing each colour channel (RGB) separately. Cucchiara et al. (2000) used the 

median filter of N frames joined with a previously computed background (with the 

median as well) to form the model. 

Other methods were also used to make the background model adaptive to back­

ground illumination changes. I'Glger (1992) used a Kalman filter to adapt to the 

temporal dynamic changes of the weather and illumination. 

1.2.2 Statistical methods 

Many statistical techniques for motion extraction were inspired by background 

differencing methods and can be seen as improvements to the differencing methods 

(notice that some of the techniques mentioned on the background difference section 

could also be described as statistical methods). 
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Some statistical approaches provided a better background model (compared to the 

basic differencing technique) by using the characteristics of each individual pixel or 

groups of pixels (like illumination, colour models, etc). Each pixel can be labelled 

as foreground, background or even shadow by comparing the tested pixel with the 

available statistics of the different regions (the background, the foreground and 

the shadow). 

Horprasert et al. (1999, 2000) introduced a new computational colour model which 

separates the brightness from the chromaticity component. This separation was 

used to distinguish between shading background from the ordinary background or 

moving foreground objects. 

Gaussian models were also used as methods to obtain a motion extractor. A single 

Gaussian per pixel was used to model the background by Wren et al. (1997). 

While Stauffer and Grimson (1999) and Friedman and Russell (1997) have used a 

mixture of Gaussians to model the moving object and the background, Friedman 

and Russell (1997) modelled the shadow as well. 

1.2.3 Temporal differencing 

To extract moving regions, the temporal differencing approach applies a pixel-wise 

differencing between two or three consecutive frames in an image sequence. Even 

though temporal differencing can adapt to change in background, the method can 

suffer from poor quality whereby holes may exist in the extracted body. Holes 

are due to differencing a foreground pixel that appears on the same pixel in the 

successive frames (this happens if the moving object stops or if a foreground surface 

of a similar colour covers many consecutive pixels spatially). 

Lipton et al. (1998) performed a temporal difference between consecutive video 

frames (two frames temporal differencing) followed by a thresholding process to 

determine change (i.e. moving pixels). A double differencing system was presented 

by Kameda and Minoh (1996), where three successive frames are used in a differ­

encing operation. Each two frames are differenced separately and then an AND 

operator is applied on the resulting differenced images. The method was applied 

as a day time traffic monitoring system (Cucchiara, M. Piccardi, and Mello, 2000). 

1.2.4 Stereo techniques 

Stereo methods were used as another geometric method to form a background 

model (Jones and Malik, 1992; Polat et al., 2003), especially after the recent de­

velopment of real time depth computation from stereo cameras. In (Polat et al., 

2003) a stereo system is used for 3D feature extraction. The features are extracted 

from 2 camera sequences and matched to obtain the 3D coordinates. Stereo meth­

ods based on depth alone can form unreliable results in substantial parts of the 
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scene, and can fail to extract moving objects in close proximity to the background, 

such as feet touching a floor (Eveland et al., 1998). 

1.3 Applications 

This area of development is powered by the potential applications of motion extraction: 

Surveillance (Kim and Kim, 2003; McKenna et al., 2000; Collins et al., 2001) is a 

major beneficiary of motion estimation. In this area subjects are monitored and possibly 

tracked over time. The security of the monitored premises is related to the robustness 

and efficiency of the surveillance system. 

Traffic Control (Smith et al., 1996; Michalopoulos, 1991) where moving vehicles with 

different speeds and different sizes are extracted and monitored for traffic control. 

Gait Recognition (Grant et al., 2002; Hayfron-Acquah et al., 2001) is used as a bio­

metric concerning recognising people by the way they walk. In gait recognition, a moving 

object is extracted from a sequence of frames (one cycle). The extracted moving objects 

are then used to find a gait signature for that person. 

Motion Capture Controlled Devices - this concerns devices that are controlled and 

directed through extracted motion. In many industries, especially where conveyor belts 

are used, a high number of repeated operations occur. These are mainly carried out 

by machines/robots to ensure similarity in production and speed. As the operation 

becomes more complex it become more complicated to program them to carry out the 

operations. To tackle this problem, a human performs the operation while a computer 

captures his/her motion. Afterwards, the computer may use the captured motion data 

to control the same machine performing the operation (Moeslund, 2000). 

Video Coding (Jing et al., 2003; Boinovic and Konrad, 2005)- motion estimation plays 

an important role in this field (Su et al., 1999). The high temporal redundancy between 

successive frames is exploited to achieve high compression efficiency. 

Virtual Reality Systems (Ohya et al., 1999; Davis and Bobick, 1997) and Video 

Games (Wren et al., 1997) - Motion extraction presents a powerful business tool for 

recreation and virtual reality games. In the ALIVE system (Maes et al., 1997), the 

motion extraction method is utilised to place the user in a scene with some artificial life 

forms, in real-time. 

Medical Applications (Patias, 2002) motion extraction can be utilised for moving 

disabilities monitoring, clinical studies of orthopaedic patients, and X-rays of moving 

body parts. 
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Motion estimation can be accomplished through either active or passive sensing. In 

active sensing, devices are placed on the subject (to transmit the generated signals) 

and in the surroundings (to receive the generated signals). Active sensing is widely 

used when the applications are situated in well-controlled environment (laboratories). 

In passive sensing, natural signal sources are used, e.g. visual light. In applications 

where mounting devices on the subject is not an option, passive sensing is mainly used 

(e.g. surveillance). Computer vision is used as a tool for implementing passive sensing. 

In this work passive sensing will be used with no markers placed on moving subjects. 

1.4 Contributions 

The primary objective of this thesis is to provide a robust technique to extract moving 

objects. The following techniques were developed and implemented to accomplish this: 

• Improved a statistical shadow extraction method by further evaluating the shadow 

labelling process, Section 2.4. 

• Analysed a mixture of Gaussian technique on indoor and outdoor environment 

and provided a simple way to optimise it, Chapter 3. 

• Introduced a new theory of Unary Classification to the area of motion extraction. 

We provided a parameter optimising procedure of the Unary Classifier motion 

segmenter along with an assessment of performance, Chapter 4. 

• Improved the performance of the Unary Classifier by improving its decision theory. 

The improvement resulted in an increase in the efficiency of motion extraction for 

both indoor and outdoor environments, Section 4.6. 

• Accomplished an assessment of five different colour models when applied on the 

area of motion estimation. This process helped us in finding a suitable colour 

invariant model that can help in suppressing shadows when the motion extraction 

process is implemented, Chapter 5. 

• Improved evaluation process in which it is the first approach that compares fore­

ground/background labelling with results obtained from labelling by broadcast 

techniques. In addition different methodologies of assessments were utilised. In 

which each method gave a prospective with a deferent angle providing collectively 

a better evaluation. 

• Provided a simple way of combining motion extraction classifiers and proved that 

such process can improve the final extracted output. The followed procedure 

resulted in a novel production of multiple efficient motion extractors, Chapter 6. 
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• Tested different ways of data fusing, MAX, SUM, PRODUCT and MEDIAN. Also 

gave a comparison to their overall performance, Chapter 6. 

• Provided a new way to estimate the probability for the used classifiers. The results 

supported the competence of such estimation. 

In addition the systems are designed to be model-independent. Model-independent 

means that it can handle different testing model types (humans, vehicles, bicycles, etc). 

The models can be detected over different speeds and different motion trajectories. 

A comparison of the implemented techniques with two-state-of the art algorithms (I-Ior­

prasert et al., 2000; Stauffer and Grimson, 2000) is provided in the process of analysing 

the produced techniques. 

This work has so far resulted in the following publications: 

• AI-Mazeed, A., M. Nixon, and S. Gunn (2003). F\lsing complementary operators 

to enhance foreground/background segmentation. In the British Machine Vision 

Conference (BMVC 2003), pp. 501-510. (AI-Mazeed et al., 2003) BMVC is the 

main UK conference on machine vision. 

• AI-Mazeed, A. H., M. S. Nixon, and S. R. Gunn (2004). Classifiers combination for 

improved motion segmentation. In A. Campilho and M. Kamel (Eds.), Proceedings 

of International Conference on Image Analysis and Recognition, Lecture Notes in 

Computer Science, Volume LNCS 3212, pp. 363-371. Springer. (AI-Mazeed et al., 

2004). 

1.5 Assumptions 

In this research we have developed novel approaches for extracting moving objects in 

successive frames in unconstrained indoor and outdoor video scenes. Certain assump­

tions are taken into consideration in our approaches. These assumptions will define 

among others, the background model and the foreground (or the moving subject): 

[ single camera 1 A single camera will be used (no stereo algorithms). 

[ static camera 1 The camera is assumed to be static. 

[ background definition 1 The background consists of all non-moving objects and 

objects that have repetitive motion (including computer monitor flicker, tree mo­

tion, a flag, sea waves, etc.). 

[ foreground definition 1 Everything that is not background is considered as fore­

ground (such as humans, animals, vehicles, etc). 
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[ scene independence 1 Object segmentation is model-independent i.e. the system 

detects different model types (humans, vehicles, bicycles, etc) whatever their speed, 

motion and trajectory. 

1.6 Structure 

This chapter has given a brief motivation for motion estimation. We have presented the 

applications, the contributions of this thesis, and the assumptions that were used as a 

basis to accomplish the target motion extractor. Also we clarified the data sets used 

along with the results assessment measures. In this section we will give an outline of 

the remaining chapters: 

• Chapter 2 

This chapter discusses a motion extraction algorithm called the Statistical Back­

ground Disturbance technique, (SBD) (Horprasert et al., 2000, 1999). The chapter 

presents an improvement made to enhance shadow extraction in this technique. 

An assessment on the technique is also presented using indoor and outdoor motion 

sequences. 

• Chapter 3 
This chapter presents a Mixture of Gaussians (MOG) technique as a motion ex­

tractor (Stauffer and Grimson, 2000, 1999; Grimson et al., 1998). The Mixture of 

Gaussians parameters are optimised. The technique is assessed using indoor and 

outdoor sequences. 

• Chapter 4 

In this chapter we present a new SVM technique called the Unary Classifier. An 

assessment is pursued on the technique performance in motion extraction. Also it 

is shown how the technique can be modified to give better performance in motion 

extraction. The technique is tested on indoor/outdoor sequences. 

• Chapter 5 

Since the MOG algorithm and the Unary Classifier method originally lacked the 

ability to extract shadows, different invariant colour models are tested to find a 

colour model that can suppress shadows. The following colour models are tested 

and compared: RGB, normalised rgb, HSV, and two more colour models titled 

hl2l3 and CIC2C3. Prelabelled images for the shadow, the background and the 

motion pixels are used to test the colour models performance on the three different 

regions. 

• Chapter 6 

In this chapter the three different techniques presented earlier (MOG, SBD and 
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the Unary Classifier) are combined using Bayes theorem. The performance of each 

combination is assessed using indoor and outdoor sequences. A comparison of the 

performance of all the combinations are presented . 

• Chapter 7 

The chapter presents conclusions on the overall outcome of this thesis. This chapter 

also discusses the possible future paths that can be taken to carryon in this work. 



Chapter 2 

Statistical Background 

Disturbance 

The Statistical Background Disturbance (SBD) algorithm (Horprasert et al., 2000,1999) 

decomposes the colour space using prior knowledge established on a statistical computa­

tional model to separate the chromaticity from the brightness component. The algorithm 

is able to cope with shadow and highlights. The outcome of the algorithm is labelled 

pixels of one of four groups: motion pixels, background pixels, shadow and highlights. 

In (Prati et al., 2003) this algorithm was tested against three different shadow extraction 

algorithms. The algorithm was found to be robust to noise detection. The study also 

concluded that this algorithm appears to be the best choice (among the tested algo­

rithms) if there are different planes onto which the shadows are cast. Also the algorithm 

was found to be highly efficient in detecting shadows. 

The algorithm was used in a system (Chang and Huang, 2000) to analyse the human 

walking motion. The system starts with the SBD method to find the moving object. 

Then the process of analysing the human motion uses a skeleton-based method followed 

by a Hidden Markov Model (HMM) to describe the motion type. The SBD wa.s also 

used to segment the head of a system user to form a 3D virtual reality representation of 

the same user (Raj an et al., 2002). 

In the tracking area, the algorithm was used to form silhouettes for articulated body 

model acquisition and tracking from voxel data (Mikic et al., 2003, 2001). The algorithm 

was also used in a tracking system to handle occlusion (Senior et al., 2001). Furthermore, 

a method derived from the basics of the SBD algorithm was used in a surveillance system 

(KaewTrakulPong and Bowden, 2003). 

The SBD algorithm has also been applied in gait recognition. In (Bobick and Johnson, 

2001) a gait recognition technique used the SBD technique (brightness distortion) for 

9 
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shadow extraction. Also the technique was used to find the body contour in a method 

to analyse and extract the human gait motion (Yoo et al., 2002). 

An overview of the algorithm is presented in Figure 2.1. 

r--------------------------------------~ 

: N Initial inputs for pixel i Initialisation : 
I Process I 
I I 
I Next frame I 
Ir---------------~/ 

Mean and 
standard 

deviation of 
pixel i for all the 
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Normalised Brightness 
and colour distortion 
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and updating 

normalising factors 

Using the available 
histograms for all the 
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of 
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of 
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process for this pixel 
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thresholds will 
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Pixel 
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results M(/) 

FIGURE 2.1: The flow chart describes the way the Statistical Background Disturbance 
technique functions. 

2.1 Disturbance parameters 

Horprasert et al. (1999, 2000) proposed a colour model in a 3 dimensional RGB colour 

space to separate the brightness from the chromaticity component. Figure 2.2 demon­

strates the proposed colour model. 

The algorithm initially uses N frames to form the background model. From these 

frames, the mean and the standard deviation is computed for each colour band (RGB) 

in each pixel. The chrominance distortion CD and the brightness distortion (3 between 

a background pixel and a new pixel x are computed as 
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and 

B 

CD = L (Xc - f3J.lc) 
2 

cE{R,G,B} eTc 

f3 = LCE{R,G,B} (~ 1 
LCE{R,G,B} (~) 

G 

(2.1) 

(2.2) 

R 

FIGURE 2.2: The proposed colour model to separate the brightness (13) from the chro­
maticity component (CD). Ei is the expected chromaticity line for the background 

image 

where J.lc and eTc represent the mean and the standard deviation for each background 

pixel colour band, respectively. The normalised chrominance distortion CD and the 

brightness distortion f3 are used to classify each new pixel in frame i 

(2.3) 

(2.4) 

The following decision criteria are used to classify each pixel according to 
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1 
Foreground 

(
.) Background 

M z = 
Shadow 

Highlight 

CDi > TeD 

f3i < Tf31 

f3i < 0 

otherwise 

or f3i < Tf3lo, 

and "/3.; > Tf32, 

12 

(2.5) 

where TeD and Tf3lo are thresholds used to specify the borders of the foreground. Tf31 

and Tf32 are thresholds used to identify the borders of the background. These thresholds 

are determined automatically through a statistical learning procedure (Horprasert et al., 

1999, 2000). 

This algorithm suffered in the design process from classifying motion pixels with low 

RGB values as shadows (Horprasert et al., 1999). Therefore the authors added the test 

"/3.; < Tf3lo to the foreground decision to solve this problem. Setting the threshold Tf3lo 

is a trade off between the shadow extraction and the motion detection criteria in this 

algorithm. Setting it to be high will result in better quality motion extraction (moving 

object extraction) at the expense of a decrease in quality in shadow extraction and vice 

versa for when it is low. In setting this threshold, the overall error will be considered 

in order to compensate between the shadow and the quality of the extracted motion 

subject. 

One problem with the way the background is modelled is that there is no learning (the 

background model is not updated, i.e. not adaptive). The stored background parameters 

are not updated, which may lead to a deterioration in the quality of extraction if a 

background change occurs (illumination change or addition or removal of objects to the 

background) . 

2.2 Automatic Thresholding 

Through the background building process a histogram is constructed for CDi and "/3.;. 

The thresholds are then computed after fixing a detection rate which fixes the expected 

proportions of the image contents. The detection rate can be set to any value between 

o and 1 where a large value will result in a better overall motion accuracy and vice 

versa where it is low. Using a high detection rate will result in including most of the 

background histogram in consideration when setting the thresholds. On the contrary, 

having a small detection rate will include only the more frequent pixel values apparent in 

the tested background frames. This will allow more freedom for the foreground enabled 

colour values (more colours can be used for the foreground and will not be detected as 

background) but at the same time increase the background noise. TeD is the normalised 

chromaticity distortion value at the detection rate. Tf31 is the value of f3i at the detection 

rate while Tf32 is the value of "/3.; at ( 1 - detection rate). Tf3lo is determined by varying the 

parameter on a set of training samples until a minimum false detection error is reached. 
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2.3 Experimental Results 

We will start by introducing the data t hat will be used for our assessment along with the 

evaluation measures which will be used for t his chapter and the chapters that follows. 

The SBD testing results will t hen be introduced. 

2.3.1 Data and Assessment 

10 indoor sequences from the University of Southampton gait database (Shutler et al., 

2002) were used in t he testing of each method in t his thesis. In each one 50-52 frames 

are used to form a background model (these frames were specifically recorded so as 

not to contain any foreground moving objects). Each frame is of a dimension of 720 x 

367 pixels. Figure 2.3 shows an indoor database sample. Table 2.1 gives a list of the 

indoor sequences. To analyse t he data, silhouettes provided with t he database were used 

as an approximation to ground t ruth. The silhouettes were generated by chroma-key 

extract ion via the green background (Shutler et al. , 2002). 

FIGURE 2.3: A sample database image showing different categories available in an 
indoor environment 

To further test t he robustness of an algorithm 10 outdoor sequences were used of the form 

shown in Figure 2.4. These sequences have different weather condit ions (windy, cloudy, 

sunny, etc.) but image the same subjects walking in a non-laboratory environment with 

a similar geometry. Each frame is of a 220 x 220 pixels dimension. 48-55 background 

frames were used for background adapt ion. For each outdoor sequence, silhouettes for 

moving subjects were produced by manual labelling to provide a form of ground truth. 

Table 2.2 lists the outdoor sequences. 

Throughout the thesis we present samples of extracted sequences for each presented 

classifier. The same samples are used in each evaluation for cross comparison. 
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Sequence Number Background 
Number of Franles F'rames 

008a013s00L 178 51 
009a017s00L 169 52 
010a024s08L 187 51 
013a037s00L 114 50 
013a040s00L 184 50 
017a054s00L 188 50 
017a055s00R 162 50 
018a059s00L 188 50 
018a060s00L 179 50 
019a063s00L 186 50 

TABLE 2.1: Indoor sequences list 

Tree leaves, repetitive 
motion (Background) 

Moving Object 
(Foreground) 

Background 

Nonmoving Cars 
(Background) 

Moving Shadow 

FIGURE 2.4: A sample of an outdoor image showing different categories that might 
appear in an outdoor sequences. 

14 

The following assessment measures were used to evaluate the performance of an algo­

rit hm: the Receiver Operating Characteristics curve (ROC) technique, the Root Mean 

Square Error (RMSE), t he Peak Signal to Noise Ratio (PSNR) , the percentage of error, 

and t he regional percentage of error. 

• Receiver Operating Characteristics curve (ROC) technique 

The ROC curve is used as an assessment measure to find the optimal settings for a 

technique parameter. The ROC plot is a graphical representation of points defined 

by sensitivity and (1 - specificity). 
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Sequence Number Background 
Number of Frames Fl.·ames 

008e013s00L 100 48 
00ge017s01L 96 50 
010e024s00L 94 53 
013e037s00L 158 55 
013e040s00L 151 49 
017e054s00L 112 52 
017e055s00R 88 50 
018e059s01L 104 49 
018e060s00L 88 50 
01ge063s05L 112 50 

TABLE 2.2: Outdoor sequences list 

Cutoff point 
z 

Class_1 Class_2 
TN Background Foreground TP 

FIGURE 2.5: Two different classes with the TP, TN, FP and FN ident ified 

Given a set of cutoffs (a cutoff is a parameter value) and test results , each obser­

vation can be classified into one of: true positive (TP); false negative (FN); true 

negative (TN); or false positive (FP). Figure 2.5 shows two classes with a cutoff 

z . Classl (the x's) can be visualised as the background class in a set of motion 

sequences and class2 (the circles) as the foreground class. The cutoff point will 

classify all the points to its left as part of classl (background) and any pixels to 

the right as part of class2 (foreground). Any background pixel classified on t he 

left of the cutoff point is regarded as a TN. A background pixel found on the right 

of the cutoff point (the circled group of x's on the right) will be regarded as FP. 

For the foreground pixels, if they are on t he right of the cutoff point t hen they are 

TP otherwise they are FN (the circled circles on the left). The Specificity, Sp, and 

the Sensitivity, Sn , are calculated for each cutoff point 

TN 
Sp= TN+FP 

TP 
Sn = TP+FN 

(2.6) 

(2.7) 
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Finding the best cutoff point (or the optimal cutoff point) which gives the best 

setting for a parameter (i.e. the best threshold) is the main concern for using this 

technique. This goal can be accomplished through finding the maximum value for 

the ROC optimal cutoff measure (Grzymala-Busse et al., 2003, 2002), which is a 

measure of the difference between the probability of true positive and false positive 

probability as 

ROCoptimal_cutoff 

argmax(Snz + Spz -1) 
z 

(2.8) 

• Root Mean Square Error (RMSE) 

RMSE is one of the widely used assessment techniques in distortion/ quality metrics 

(Wang et al., 2003). When the dimension of a tested image, Itest , and a silhouette 

image, ISilh, are N x M, RMSE is given by 

RMSE= 
1 M N 

MN I: I: [Itest(i,j) - ISilh(i,j)f 
i=l j=l 

• Peak Signal to Noise Ratio (PSNR) 

The PSNR in (dB) is computed by 

L 
PSNR = 20log lO RMSE 

where L represents the dynamic range of a pixel (Wang et al., 2003). 

(2.9) 

(2.10) 

Although RMSE, and PSNR have been widely criticised (Toet and Lucassen, 2004; 

Lai and Kuo, 2000; Winkler, 1999a; Wang and Bovik, 2002; Eckert and Bradley, 

1998; Eskicioglu and Fisher, 1995; Winkler, 1999b; Teo and Heeger, 1994), they are 

widely used because they are simple to calculate. Also they have a clear physical 

meaning, and are mathematically easy to deal with for optimisation purposes. 

• Overall percentage error 

The overall percentage error is compared to number of motion pixels in the sil­

houettes instead of comparing it to the whole image dimension (as in the RMSE). 

The overall percentage error will be calculated as follows 

Misclassified Pixels 
Overall Percentage Error = S'lh 'M' P' l x 100 2 ouette s otwn 2xe s 

(2.11) 
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The main concern in our results is extracting the motion pixels. Therefore having 

a measure describing the percentage of error compared to the motion pixels will 

give us a measure of how much that error compares to our moving object. 

This measure might be affected by bias to the background if the moving object 

is relatively very small compared with the background, or vice versa. Knowing 

the average relative size of the foreground to the background can ameliorate this 

problem. For the motion sequences used, the foreground represents around 10% 

of the background area. 

• Regional percentage error 

The regional percentage error is used to measure the percentage error for a specific 

region. The region in our tests will be either the background or foreground (motion 

pixels). Also it will be used for shadow region assessment in the colour model 

chapter, Chapter 5. 

E 
Misclassified Regional Pixels () 

Regional Percentage rror = R. I . I x 100 2.12 
egwn s Pzxe s 

The RMSE and the PSNR can give false indications to the performance of an 

algorithm. For instance if we have a system that performs well in suppressing 

background pixels but has a bad performance in motion extraction. The RMSE 

can be minimised by using images with a background larger than the (small) 

moving object. In this case the RMSE will give a smaller error value even if 

more than half of the moving object is not labelled correctly. A better way to 

measure the performance is to measure the performance of a method in each region 

(background, foreground), i.e. regional percentage error. Now in the regional 

percentage error, if a region was more proportionally dominant than another, the 

regional error will still indicate the correct percentage of error in that region. 

• The Variance 

To test the consistency of our results we will use the variance of one of the presented 

errors. The variance of an error measure, ERM, of N samples and a mean of, 

J-lERM, is calculated by 

2 I:f:l (ERMi - J-lERM) 
2 

~ = ==~~------~----~ 
N-l 

(2.13) 

The error measure should cover the whole image area and not part of it (which 

excludes the foreground and the background error measures). The overall error is 

a relative measure comparing the error to a changing value of the size of the sil­

houette's motion pixels. Thus to measure the consistency for each tested sequence 

result we are left with the RMSE and the PSNR. 
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Seq. No. 2 .) 2 2 2 
O"RMSE O"pSNR O"FG O"BG 0" Ovemll 

008a013s00L 4.886E-05 0.661 0.344 0.004 0.854 
009a017s00L 3.893E-05 0.468 1.236 0.002 1.194 
010a024s08L 6.261E-05 0.733 2.101 0.003 3.157 
013a037s00L 3.822E-05 0.728 0.985 0.002 1.034 
013a040s00L 6.092E-05 0.762 0.626 0.012 2.571 
017a054s00L 5.722E-05 0.325 0.518 0.032 5.991 
017a055s00R 2.682E-05 0.399 0.502 0.003 1.576 
018a059s00L 2.826E-05 0.442 0.374 0.001 0.858 
018a060s00L 2.736E-05 0.328 1.097 0.007 0.860 
019a063s00L 7.372E-05 0.996 3.636 0.003 2.792 

Average 4.629E-05 0.584 1.142 0.007 2.089 

TABLE 2.3: Detailed variance assessment for all the used measurements in Table 2.5 

The PSNR function is based on finding the log of the reciprocal of the RMSE. 

The PSNR results were processed using the logarithmic function while the RMSE 

preserve the error evaluation without such processing. Therefore we will use the 

variance of the RMSE as a consistency measure in our implemented evaluations. 

Despite this, we have included a tabulation of the variances of all measures in Table 

2.3. The tabulated variances are for the results of the SBD indoor extraction that 

will be shown and discussed later in this chapter. An illustrative copy of the 

extraction table is also given below, Table 2.4. 

We notice in Table 2.3, that the variance of the foreground error is proportionally 

higher than for the other measures. This is because the foreground concerns the 

silhouette of the walking subject and the variance can be much higher as it depends 

on the gait of the walking subject, relative to the sequence. The overall error is 

proportionally high as well since, as mentioned before, this error compares the 

whole error in each frame to the motion pixels in a silhouette. The size of the mo­

tion pixels in silhouette changes from one frame to another. Therefore the results 

of those two measures will be considered with caution when drawing conclusions. 

The small RMSE variance, in Table 2.3, justifies the use of three digits after the 

decimal point for the RMSE. Those digits are significant with such small variance. 

Further, we can see the the other variances are proportionate. For these reasons, 

only the RMSE variance will be quoted in later tables. 

2.3.2 SBD results 

We tested the method on indoor and outdoor sequences with a detection rate set to 

0.9999 to accommodate most of the background pixel values within the background 

model giving it a better representation of the scene. In the following parts of this 

section we present the indoor and the outdoor tests along with assessment measures on 

each. Samples of indoor and outdoor extractions are also presented. 
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Sequence Number RMSE PSNR FO BO Overall 
Number of Frames (dB) Error l Error2 Error3 

008a013s00L 178 0.077 22.275 3.810 0.346 8.139 
009a0l7s00L 169 0.080 21.952 4.613 0.372 10.044 
010a024s08L 187 0.080 21.959 4.707 0.375 10.316 
013a037s00L 114 0.065 23.733 4.671 0.192 8.114 
0l3a040s00L 184 0.080 21.938 4.169 0.427 10.908 
017a054s00L 188 0.119 18.529 1.160 1.432 21.215 
017a055s00R 162 0.072 22.879 3.297 0.332 8.133 
018a059s00L 188 0.071 23.047 3.846 0.266 7.640 
018a060s00L 179 0.081 21.830 3.928 0.427 9.840 
0l9a063s00L 186 0.075 22.550 4.302 0.319 9.138 

Average 0.080 22.069 3.850 0.449 10.349 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 2.4: Overall assessment on a number of motion indoor sequences using the SBD 
algorithm 

• Indoor Motion Sequences 

10 indoor sequences are used in these tests. 50-52 frames from each were used for 

background modelling (these frames are pure background and do not contain any 

moving objects). 

Samples of the extracted images are shown in Figure 2.6 presenting some of the 

problems in the SBD extraction. From the samples shown, the background pixels 

were mostly detected correctly though with some problem near the seam of the 

background cloth. The background is suppressed well in the samples 008a0l3s00L, 

009a017s00L and 0l0a024s08L with few misclassified background pixels. The ex­

tracted background in sample 0l7a054s00L has some noise (there are few misclas­

sified background pixels). 

The motion pixels can be misclassified as reflected by the holes that appear in 

the moving objects (this is not always the case; we focus on examples that are 

instructive to performance analysis). The holes are most serious in 009a0l7s00L 

where the legs have many small isolated holes, and some larger connected ones. 

The holes are due to the statistical nature of the technique: the area in which the 

larger holes occur is consistent across the sequences, but the small isolated holes 

appear uncorrelated. Sequences 008a013s00L, 010a024s08L and 0l7a054s00L also 

have holes. 

The noise is due to the large background intensity variation in these pixels that 

the algorithm cannot label correctly. The algorithm uses the same thresholds on 

all the pixels (global thresholding). This property leads the algorithm to try to 

compensate between having large thresholds that can accommodate variation in 
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(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image 

(e) T he extracted image 

(h) The extracted image 

(k) The extracted image 
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(c) The e" .. tracted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image s ilhou­
ette 

(I) The extracted image si lhou­
ette 

F IGURE 2.6: Examples of indoor images extracted using the SED algorithm 

intensity (the isolated noise), and between having small thresholds to cover only 

t he most common background pixel values . This avoids a background pixel from 

covering more colour intensity which gives it more tendency to consider some of 

t he moving object colours as background, as we have in the large holes in the 

moving objects samples. 

The un correlated noise pixels and even the larger holes can be overcome if other 

motion segmenter's noise appears in another position. A combination can then 

result in a better overall output. Such combination requires a confidence measure 

for each decision showing poor confidence on the misclassified pixels and high 

confidence on t he correctly labelled pixels, to be discussed in Chapter 4. 
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The shadow suppression performs well in the tested indoor images though some 

shadow can remain in the extracted images. The shadow has mostly disappeared 

in sequences 008a0l3s00L and 009a0l7s00L. Small traces of the shadow appear 

in sample 0l0a024s08L. The shadow is clearly apparent in sequence 0l7a054s00L 

sample. 

A detailed assessment for the indoor motion sequences is presented in Table 2.5. 

The table shows the RMSE, the PSNR, and the percentage error for the back­

ground, foreground and the overall error compared to the frames silhouette motion 

pixels. 

Sequence Number RMSE PSNR FG BG Overall 2 
O"RMSE 

Number of Frames (dB) Error1 Error2 Error3 

008a0l3s00L 178 0.077 22.275 3.810 0.346 8.139 4.886E-05 
009a0l7s00L 169 0.080 21.952 4.613 0.372 10.044 3.893E-05 
0l0a024s08L 187 0.080 21.959 4.707 0.375 10.316 6.26IE-05 
013a037s00L 114 0.065 23.733 4.671 0.192 8.114 3.822E-05 
0l3a040s00L 184 0.080 21.938 4.169 0.427 10.908 6.092E-05 
017a054s00L 188 0.119 18.529 1.160 1.432 21.215 5.722E-05 
0l7a055s00R 162 0.072 22.879 3.297 0.332 8.133 2.682E-05 
0l8a059s00L 188 0.071 23.047 3.846 0.266 7.640 2.826E-05 
018a060s00L 179 0.081 21.830 3.928 0.427 9.840 2.736E-05 
0l9a063s00L 186 0.075 22.550 4.302 0.319 9.138 7.372E-05 

Average 0.080 22.069 3.850 0.449 10.349 4.629E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 2.5: Overall assessment on a number of motion indoor sequences using the SBD 
algorithm 

The highest RMSE was scored by motion sequence 017a054s00L. The minimum 

PSNR was also scored in this motion sequence. The lowest RMSE occurred with 

013a037s00L which has also given the highest PSNR. For the foreground percent­

age the values were fairly similar (in the range of 3.30% to 4.71%) except for 

017a054s00L where it gave a smaller value of 1.16%. The average foreground error 

was 3.85%. The maximum value for the background percentage error was 1.43% 

for the sequence 017a054s00L. The minimum background error is 0.19% and the 

average background error is 0.45%. The overall error compared to the silhouette's 

motion pixels ranged from 7.64%, by 0l8a059s00L, to 21.22% in 0l7a054s00L (21 % 

is an abnormal maximum error where the second max is 10.91%). The overall av­

erage for the percentage error is 10.35%. The variance of the averaged RMSE 

measure shows that the error displacement is limited to a small range in all the 

tested motion sequences. This also shows the stability of the SBD algorithm in 

each tested motion sequence. The variance of the averaged RMSE measure shows 

that the error displacement is limited to a small range in all the tested motion 
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sequences. This also shows the stability of the SBD algorithm in each tested mo­

tion sequence. The variance of the averaged R!vISE measure shows that the error 

displacement is limited to a small range in all the tested motion sequences with 

a maximum variance of 7.37E-05 in 0l9a063s00L. This also shows the stability of 

the SBD algorithm in each tested motion sequence. 

The low background error percentage is due to the ability of this algorithm to 

identify and remove shadows along with efficiency in background detection. The 

algorithm performs well in indoor sequences background and shadow areas but the 

algorithm fails sometimes to fully extract the motion pixels, which reflect in the 

higher foreground error. 

• Outdoor Motion Sequences 

For the outdoor sequences, 10 were tested using the SBD algorithm. 48-55 back­

ground frames were used for background adaption. 

Figure 2.7 shows samples of outdoor extracted images. From the samples shown the 

algorithm's performance was less successful than when applied to indoor sequences. 

Motion pixels are not always detected correctly. Holes can be seen on all the 

presented images in all the different sequences. The problem is more serious in 

motion sequences 008e013s00L and 00ge0l7s01L where holes are more than in the 

other two sequences. In addition, the edges of the moving object are not finely 

extracted. 

The shadow detection criteria does not perform as well as in indoor sequences. 

The shadow is not always removed. The shadow can be seen in the first three 

shown sequences, 008e013s00L, 00ge0l7sOlL and 010e024s00L. 

The SBD still performs well in extracting the background: few background pixels 

erroneously labelled as motion pixels in all the shown samples. 

The evaluation of the averaged error of each outdoor sequence is shown in table 2.6. 

The table shows the RMSE, the PSNR, and the percentage error of the foreground, 

background and the overall error over the silhouette motion pixels. 

Motion sequence 017e055s00R gave the highest RMSE, and the minimum PSNR 

value. While 018e059sOlL motion sequence provided the minimum RMSE and the 

highest PSNR. For the foreground percentage error, motion sequence 017e055s00R 

gave the highest percentage error recorded by all the sequences. The range of 

error here is in the interval of 6.88% to 30.79% with an average of 14.60%. The 

minimum foreground percentage error was given by 0l0e024s00L motion sequence. 

The background percentage error gave a lower average of 2.14% with a range of 

error between 1.17% to 4.10%. When looking at the percentage of the overall error 

over the silhouette's motion pixels, the maximum error was as high as 43.26% 

while the minimum was 16.91%. The average error here is 29.14%. The variance 

of the RMSE shows that the SBD error on these sequences is consistent since the 
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(a) A sample frame from 
008e0l3s00L 

(d) A sample fr ame from 
00ge017s01L 

(g) A sample fr ame from 
OlOe024s00L 

(j) A sample frame fro m 
013e037s00L 

(b ) The extracted image 

(e) The extracted im age 

(h) The extracted image 

(k) The extracted image 

(c) T he e},:tracted image s ilhou­
ette 

(f) T he extracted image s ilhou­
ette 

(i) The extracted image s ilhou­
ette 
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(I) T he extracted image silhou­
ette 

FIGURE 2.7: Examples of outdoor images extracted using t he SBD algorithm 
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Sequence Number RMSE PSNR FG BG Overall 'J 
aRMSE 

Number of Frames (dB) Error1 Error2 Error3 

008e013s00L 100 0.178 15.127 10.544 2.055 23.893 9.653E-04 
00ge017s01L 96 0.200 13.986 15.300 2.408 32.146 1.340E-04 
010e024s00L 94 0.212 13.500 6.878 4.095 31.768 6.356E-05 
013e037s00L 158 0.154 16.297 7.344 1.659 19.020 1.480E-04 
013e040s00L 151 0.225 12.965 28.141 1.984 43.036 2.345E-05 
017e054s00L 112 0.221 13.164 18.455 2.674 34.840 5.689E-04 
017e055s00R 88 0.234 12.638 30.792 1.810 43.257 1. 118E-04 
018e059s01L 104 0.146 16.700 8.878 1.165 16.909 3.484E-05 
018e060s00L 88 0.178 14.999 8.580 2.311 23.174 2.968E-05 
01ge063s05L 112 0.147 16.663 11.010 1.269 23.398 5.618E-05 

Average 0.189 14.604 14.592 2.143 29.144 2.136E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 2.6: An overall assessment on a number of motion outdoor sequences using the 
SBD algorithm 

variance is small in all the motion sequences. The maximum variance is 9.653E-04 

in 008e013s00L. 

The algorithm managed to maintain low background error. The averaged overall 

percentage error reaches almost one third of the motion pixels suggests that the 

algorithm has room for improvement to reduce the foreground labelling error. 

The foreground region remain the main error of concern with an average error of 

14.59%. 

The performance analysis clearly suggests that the technique can be improved to 

reduce errors and remove the defects, especially in the foreground region for both 

indoor and outdoor motion sequences. 

2.4 Improvements on shadow extraction process 

To improve the SBD algorithm we tested the performance of each region condition in 

this algorithm. Figure 2.8 shows the pixel labelling for each region where each region's 

pixels are labelled with a different colour. Notice that the moving object's holes in 

the indoor samples are mainly caused by mislabelling motion pixels as shadow. In the 

outdoor sample small parts of the holes are caused by the shadow. 

In the SBD decision function (2.5), the shadow detection condition plays a factor in 

reducing the error by identifying and extracting shadows. At the same time the shadow 
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detection criterion mislabels some motion pixels as shadows which causes holes to appear 

in the moving object. 

(a) Indoor mot ion sequence 
009a017s00L 

(d) Outdoor motion sequence 
008e013s00L 

(b) Indoor motion sequence 
OlOa024s08L 

(e) Outdoor motion sequence 
017e055s00R 

(c) Indoor motion sequence 
017a054s00L 

(f) Outdoor motion sequence 
o 18e060s00L 

FIGURE 2.8 : SBD algorithm region labelling 

To optimise this process a threshold distance between the background mean and a virtual 

border for t he shadow class is determined. The border is drawn at the point where the 

distance from t he tested pixels to the mean gives t he minimum overall error. In this 

process a training set of N frames is used. Then a search is performed by incrementing 

a parameter, MU LT I P in t he border function 

(2.14) 

Any shadow pixel with a distance exceeding the shadow border will be considered as a 

motion pixel. 

The result of this improvement is shown in t he images of Figure 2.9. The improvements 

are maJ.·ked in green and the shadow in red . In t he indoor sequences the holes are 

partially filled in the sequences . The improvement has filled half of t he large holes and 

most of the small holes in the sample of 009a017s00L and 010a024s08L. P art of t he 

large hole in 017a054s00L is also filled. In sample OlOa024s08L, in reducing t he errors of 

the moving object the new condition has added more error in t he shadow region. The 

outdoor sequences shows only slight improvement on the shown sequences (only small 

green pixels can be seen filled in the moving object). 
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(a) Indoor motion sequence 
009a017s00L 

(d) Outdoor motion sequence 
008e013s00L 

(b) Indoor mot ion sequence 
OlOa024s08L 

(e) Outdoor motion sequence 
017e055s00R 

(c) Indoor motion sequence 
017a054s00L 

(f) Outdoor mot ion sequence 
0l8e060s00L 

FIGURE 2.9: Modified SBD algorit hm region labelling 
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Samples of extracted indoor motion sequences are shown in Figure 2.10. comparing 

t hese samples wit h the original SBD samples, Figure 2.6, motion sequences 008a013s00L, 

009a0l7s00L, and 010a024s08L results improved (the large holes are smaller also some 

of t he scat tered small holes had disappeared). The out door mot ion sequences are shown 

in Figure 2.11 without much noticeable improvement when comparing to the outdoor 

results of the original SBD, Figure 2.7. 

Table 2.7 shows the effect of function (2. 14) on indoor sequences errors . From the table 

we can see that t he modification implemented has reduced the error slightly. The av­

eraged RMSE, t he foreground percentage , and overall percent age errors have dropped 

slight ly. The averaged PSNR has also increased slight ly. T he averaged percentage back­

ground error is the only result were the error has slightly increased. The RMSE variance 

is small in all tested sequences wit h a maximum value of 6.859E-05 in 013a040s00L. This 

means t hat the algorit hm is fairly consistent in its performance in each motion sequence. 

Table 2.8 shows the result of the modifications on outdoor sequences. W hen compar­

ing the result with t he original SBD algorit hm outdoor table, t he RMSE is similar . 

The PSNR values have slight ly increased. The averaged foreground error have slightly 

dropped from 14.59% to 14.45% while t he averaged background error has slightly in­

creased. The overall averaged error has slight ly dropped from 29.14% to 29 .08%. Though 

we are testing outdoor sequences, the algorit hm shows a steady performance error wise 

wit h a range of variance between 2.272E-05 and 9.485E-04. 
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(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) T he e}"i;racted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

27 

(c) T he e}"i;racted image silhou­
ett e 

(f) T he e}"i;racted image silhou­
ette 

(i) The extracted image silhou­
ette 

(1) The extracted image silhou­
et te 

FIGURE 2.10: Examples of indoor images extracted using the modified SED algorithm 

As an overall assessment we can say that the effect of this modification is more apparent 

on t he indoor sequences while on outdoor sequence such modification has only a slight 

positive effect. 

2.5 Conclusions 

This chapter has presented t he Statistical Background Disturbance (SBD) algorithm. 

The algorithm was tested on indoor and outdoor motion sequences. The assessment 

of the mot ion sequences showed t he problems of the algorithm in indoor and outdoor 

sequences. The SBD suffers from holes which appear erroneously in the moving subjects. 

On t he outdoor data t he algorit hm fails sometimes to extract the shadows. The shadow 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The extracted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) T he extracted image silhou­
ette 
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(1) The extracted image s ilhou­
ette 

FIGURE 2.11 : Examples of outdoor images extracted using t he modified SBD algorithm 
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Sequence Number RMSE PSNR FG BG Overall 
lj 

O"RMSE 

Number of Fl.·ames (dB) Error l Error2 Error3 

008a013s00L 178 0.076 22.430 2.943 0.392 7.853 4.860E-05 
009a017s00L 169 0.076 22.468 2.383 0.448 8.923 3.325E-05 
010a024s08L 187 0.077 22.285 2.581 0.464 9.520 3.487E-05 
013a037s00L 114 0.065 23.738 4.648 0.193 8.104 3.824E-05 
013a040s00L 184 0.078 22.167 2.745 0.484 10.395 6.859E-05 
017a054s00L 188 0.118 18.553 0.955 1.438 21.095 5.438E-05 
017a055s00R 162 0.070 23.151 2.419 0.357 7.629 2.648E-05 
018a059s00L 188 0.069 23.317 3.125 0.284 7.190 2.854E-05 
018a060s00L 179 0.078 22.149 2.450 0.483 9.149 2.880E-05 
019a063s00L 186 0.070 23.162 2.345 0.367 7.894 4.293E-05 

Average 0.078 22.342 2.659 0.491 9.775 4.047E-05 

1 FG Error Foreground Percentage Error 
2 BG Error Background Percentage Error 
3 The percentage of the overall error compared to the motion pixels only 

TABLE 2.7: Overall assessment on a number of motion indoor sequences using the 
improved SBD algorithm 

Sequence Number RMSE PSNR FG BG Overall 2 
O"RMSE 

Number of Frames (dB) Error1 Error2 Error3 

008e013s00L 100 0.178 15.110 11.539 1.913 23.969 9.485E-04 
00ge017s01L 96 0.200 13.986 15.300 2.408 32.146 1.340E-04 
010e024s00L 94 0.211 13.506 6.757 4.107 31.721 6.167E-05 
013e037s00L 158 0.154 16.306 7.211 1.674 18.991 1.544E-04 
013e040s00L 151 0.225 12.969 27.911 2.009 42.992 2.272E-05 
017e054s00L 112 0.221 13.170 17.953 2.749 34.797 5.676E-04 
017e055s00R 88 0.233 12.645 30.655 1.821 43.192 1. 110E-04 
018e059s01L 104 0.145 16.808 7.937 1.243 16.502 3.77IE-05 
018e060s00L 88 0.178 15.014 8.409 2.326 23.095 3.045E-05 
01ge063s05L 112 0.147 16.669 10.860 1.281 23.363 5.770E-05 

Average 0.189 14.618 14.453 2.153 29.077 2.126E-04 

1 FG Error Foreground Percentage Error 
2 BG Error Background Percentage Error 
3 The percentage of the overall error compared to the motion pixels only 

TABLE 2.8: Overall assessment on a number of motion outdoor sequences using the 
modified SBD algorithm 

decision criteria in the SBD algorithm was improved by adding a second condition to 

test the distance of the shadow labelled pixel to the background mean of the tested pixeL 

The improvement in error reduction was more apparent in the indoor rather than the 

outdoor motion sequences. 
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Mixture of Gaussians 

3.1 Introduction 

In density estimation a commonly used approach is to represent the probability density 

in a functional form, which consists of a number of adjustable parameters. Then the 

values of the parameters are optimised to model the density of the data. A simple density 

estimation model is the Gaussian distribution (also called the normal distribution). 

Univariate Gaussian distributions can be used for univariate data (grey levels of images 

for instance), for colour images (multi-value data) multivariate Gaussians can be used. 

Gaussian distributions are useful in practice for two reasons: first, the normal distrib­

ution serves as a bona fide population model in some instances; second, the sampling 

distributions of many multivariate statistics are approximately normal, regardless of the 

form of the parent population (Johnson and Wichern, 2002). 

A Mixture of Gaussians can be used to model the density of single or multivariate data 

when the density is more complex, e.g. bimodal. In addition, a mixture of Gaussians 

model is a very appealing approach to data fitting as it scales favourably with dimen­

sionality of the data, has good analytic properties and many data sets form clusters 

which are approximately Gaussian in nature (Roberts et al., 1998). 

Mixture models in general provide powerful techniques for density estimation. In the 

remainder of this section we will provide a recent history of the use of Gaussians models 

in the motion estimation area. 

Pfinder (Wren et al., 1997; Maes et al., 1997) used a multi-scale statistical model of colour 

and shape with a single Gaussian per pixel to model the background. The algorithm 

succeeded in finding a 2-D representation of head, hands and feet locations of a moving 

human subject. In contrast, Friedman and Russell (1997) took a simpler approach to 

modelling the statistical nature of the image by using a mixture of Gaussians with a 

30 
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single distribution to model the whole of the background and two other distributions to 

model the variability in shadows and moving objects. 

In real situations the background is typically multi-modal. A single Gaussian would 

suffice to approximate the background if each pixel resulted from a single surface under 

fixed lighting. Often multiple surfaces appear on a particular background pixel and the 

lighting conditions change. Multiple adaptive Gaussians can cope with such situations 

and thus they are a suitable solution to model multi-modal backgrounds. 

Traven (1991) introduced a stochastic on-line technique to optimise the parameters 

of a Gaussian mixture model. An extensive simulation study was presented in (Cwik, 

1996). Stauffer and Grimson (2000,1999); Grimson et al. (1998) used the online mixture 

of Gaussians technique for motion estimation and tracking. The persistence and the 

variance of each of the Gaussians is used to identify background distributions. The 

approach was designed to deal robustly with bimodal backgrounds, lighting changes, 

repetitive motions of scene elements. The method lacks the capability to remove shadows 

and highlights. The method was extended to be used for a moving camera in (Mittal and 

Huttenlocher, 2000). Javed et al. (2002); Javed and Shah (2002) used the same updating 

parameters along with a gradient based modelling scheme. The same principle of Stauffer 

was applied in an on-line EM algorithm (KaewTraKulPong and Bowden, 200la,b) and 

combined with Horprasert et al. (1999) for shadow extraction. McKenna et al. (1999, 

1998) used also an adaptive EM algorithm with an HSI colour representation to track 

a multi-colour moving object. Elgammal et al. (2002, 2000) used a Gaussian density 

estimator as a kernel in the process of background modelling. The final background 

model is updated by combining a short and a long term model of the background. A 

colour representation was used to suppress shadows. 

3.2 Gaussian Density Function 

The Gaussian density function for a single variable is presented in the form 

1 ( (X_p,)2) 
p(x) = (27l'0'2)1/2 exp - 20'2 (3.1) 

where p, is the mean, and 0'2 is the variance, and the function is normalised such that 

(3.2) 

For d-dimensions the general multivariate Gaussian density function is written 
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(3.3) 

where JL is a d-dimensional vector and ~ is a d x d covariance matrix 

3.3 Mixture Model 

The principle here is to model the distribution of a candidate as a mixture of Gaussian 

densities. The density of the input data is modelled as follows: 

K 

p(x) = LP(x I j)P(j) 
j=l 

(3.4) 

where p(x I j) are the component densities and P(j) are the priors. The priors are 

chosen to satisfy the constraints 

K 

LP(j) = 1 (3.5) 
j=l 

and 

0:::; P(j) :::; 1 (3.6) 

The component density functions, p(x I j), are normalised so that 

J p(x I j)dx = 1, j= 1...K (3.7) 

An important property of such mixture models is that, for many choices of component 

density function, they can approximate any continuous density to arbitrary accuracy 

provided the model has a sufficiently large number of components, and provided the 

parameter of the model are chosen correctly (Bishop, 1996). 

3.4 Stauffer mixture of Gaussians algorithm (MOG) 

This approach (Stauffer and Grimson, 2000,1999; Grimson et al., 1998) models the back­

ground with independent distributions that are updated by an efficient on-line method. 

Figure 3.1 gives an overall view of how this algorithm operates. The model applies a 
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pixel-by-pixel process. A pixel is scalar for a grey pixel and a vector for a colour pixel. 

The recent history of each pixel is modelled as a mixture of K Gaussian distributions. 

For coloured (RGB) pixels, the probability of a pixel intensity, x = (XR, XC, XB), 

Input pixel 

Calculate the distance 
between Xi and all the 

distributions 

Is Xi with in 2.5 standard 
deviation of one of the 

distributions? 

No 

Replace the distribution 
with the least value of 

co/O" 
with a new distribution 

I 
! I 
I ! 

I Classify Xi as foreground I 

Classification 
results 

! 
I 

Find the Background 
distributions 

Sort all the distributions 
by 

co/O" 
~---------------

Update the mean and the 
>-Y:_es--.-~ variance parameters for 1-_-+1 

the matching distribution 
only 

Classify Xi according to 
the matching distribution 
type (either foreground or 

background) 

Classification 
results 

Update and normalise 
the distribution weights 

FIGURE 3.1: An overall view of how the mixture of Gaussians algorithm operates. 

K 

p(x) = L WjTJ(x, #Lj' ~j) (3.8) 
j=l 

where K is the number of distributions (a value 3 to 5 is often used). The number of 

distributions is supposed to be chosen so as to give a reasonable fit to the true density. 
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Wj is the weight estimate for the lh distribution, /-Lj is the mean value for the lh 
distribution, :Ej is the covariance matrix for the jth distribution, and it is assumed to 

be of the form :Ej = a-JI (to simplify computation). 7] is a Gaussian probability density 

function formed from the multivariate Gaussian 

(3.9) 

where d is the input dimension which is 3 for the (RGB) colour model. 

The algorithm implements an on-line K-means approximation method. Every new pixel 

value, x, is compared to the existing K Gaussian distributions. The pixel is classified 

to be in a particular distribution if the pixel is within 2.5 times the standard deviation 

of the distribution (this number is chosen to make the probability of detection for a 

distribution data equals 0.99, i.e 99%). The pixel is checked against the background 

distributions first and then to the foreground distributions. 

The distributions are ordered according to the ratio of the weight over the standard 

deviation of each distribution, Wj/(Jj. This process will rank the most probable (those 

with high weight and low variance) to the least probable background distributions (those 

with low weight and high variance). The background model is formed from a number of 

background distributions 

B = argmln (tWj > T) 
J=l 

(3.10) 

where T E [0,1] controls the number of modes of variations in the background. A small 

value for T will result in a strict background where only unimodal background surfaces 

are accepted. In contrast, a large value for T will enable the system to allow bimodal 

backgrounds (sea surface, moving trees, etc) to be considered as part of the background. 

If a pixel does not match any of the K distributions, the pixel will be considered as a new 

distribution replacing the distribution with the smallest Wj/(Jj. The new distribution 

mean, /-Lj,t, will be the pixel value. The distributions with small Wj/(Jj are presumed to 

be non-background pixels. The distributions are meant to model the background. Allo­

cating a Gaussian for non-background pixels makes the model adaptive to any change in 

the background model (like adding an item to the scene). Now if a non-background pixel 

(part of a moving object) does not move over a period of time, its distribution weight 

over time will increase and its variance will decrease until this distribution becomes part 

of the background model. 
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T he prior weight of a new distribut ion will be set to a low weight and the variance to 

a high variance. After evaluating a new pixel, the J( distrib ut ions prior weights are 

updated at t ime t 

Wj,t = (1 - O:)Wj,t-l + o:Mj,t (3.11) 

where 0: is t he learning rate. Mj,t is 1 for t he matching distribution, and 0 for the 

remaining distribut ions. T he weights are normalised after this process. The values of 

fL j,t and a},t are updated only for t he matching distribution 

fL j,t = (1 - p)fL j,t-l + pXt (3. 12) 

(3.13) 

where 

(3.14) 

A pixel is ident ified as a motion pixel if it matches a non-background distribution or if 

it does not match any of the available dist ribut ions of a pixel. All the motion pixels are 

tested using a connected component algorithm (Horn, 1986) to remove t he noise pixels. 

The Stauffer Mixture of Gaussians algorithm was implemented on images of indoor and 

out door scenes. Samples of indoor and out door extracted images are shown in Figures 

(3. 2 - 3.3)(the connected components process is not applied on t hese frames). 

(a) An input frame (b) Motion extraction resul t 

F IGURE 3. 2: Indoor image shows an input frame and an extracted moving subject with 
Stauffer mixture of Gaussians algorithm. 

The shadow in t he extracted moving object is a concern that has to be rectified to im­

prove t he extraction of t his method. Noise pixels exist in the background area. Stauffer 

and Grimson (2000 , 1999) used t he connected components method to remove compo­

nents of two or even single pixels but t his process does not assure the removal of all the 

background noise. 
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(a) An outdoor frame (b) Motion extraction result 

FIGURE 3.3: Stauffer mixture of Gaussians algorithm used to extract an outdoor frame 
from the HumanID database (Phillips et al. , 2002) 

3.4.1 Parameter Settings 

36 

The setting of the parameters in this algorithm is very important . The effects of each 

parameter will be illustrated using an indoor sequence. Then the same process will be 

repeated for an outdoor sequence. This is because parameters settings are dependent 

on the motion sequence scene, i.e. if another indoor/outdoor sequences were used with 

a different background scene the parameters should be reoptimised for the new scene. 

The parameters are as follows: the learning rate, O!; the initial weight; t he background 

threshold, T ; the initial variance; and different number of Gaussians per mixture. The 

same initial parameter setting is used for indoor and outdoor data unless stated oth­

erwise. Essentially t he effect of each parameter is assessed independently aiming to 

determine an optimal set for later use. The assessment was performed wit hout includ­

ing the shadow part of the images. This was done due to t he fact that the algorithm 

does not support shadow extraction and including such pixels will give wrong indications 

by adding more pixels to the false positive region. Also for some parameters varying its 

values while including shadow pixels will give mistakenly better results in the overall 

extraction result while in fact t he motion extraction deteriorates (such an effect was 

not iced clearly in initial setting of the variance parameter). 

• The learning rate (a ) 

The initial learning rate can be set between [0-1]. The effect of changing 

the learning rate will be shown by testing a variable learning rate on an 

indoor motion sequence. The test was performed with the initial weight set 

to 0.05 , the background threshold set to 0.6 , the init ial variance set to 50 

and 5 Gaussians per mixture. 

Using different learning rates, we will be testing how long the mixture of 

Gaussians algorithm takes to adapt to the background. Also the performance 

of the algorithm in motion detection will be measured. 
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For the tested sequences, having fast adaptation of (2 - 5) frames will not be 

suitable since a moving object surface (with a human movement speed) might 

take such time to finish passing through a pixel i.e. the background mixtures 

with fast learning rates might replace the background with the moving object 

surface colour and use it as a background. Also we need more frames to allow 

more time for a moving object , e.g. a person, to stop for a short time or at 

least to consider persons moving in slower speeds. A learning rate t aking 20 

frames or more to adapt to the background will be considered as reasonable. 
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(d) The major adapt ion points for the different 
learning rates 

FIGURE 3.4: The effect of varying the learning rate on background adapt ion 

In the beginning the learning rates: 0.1, 0.01 and 0.001 were used. 50 back­

ground frames were used to test how fast the algorithm will adapt to the 

background. Figure 3.4(a) shows the effect on using different learning rates 

on background adaptation. As it shows using 0.1 gave a very fast adaptation 

in four frames and the system was not robust in maintaining the background 

model since the error started to rise later. Therefore a learning rate with a 

0.1 value is not suitable. On the other extreme using a very slow learning 

rate of 0.001 led to all 50 frames passing without the system adapting to the 

background. In this figure the optimum learning rate for our criteria is 0.01 
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which took 16 frames to adapt to more than 90% of the background and took 

another 15 frames to handle most of the remaining background pixels. The 

system with this algorithm continued robustly in containing the background 

pixels as we can see in frames 32 to frame 50. 

Since the gaps between these learning rates (0.1, 0.01, and 0.001) are large, 

the effect of changing the learning rate in smaller steps around the 0.01 learn­

ing rate was investigated. The same test was repeated on 50 background 

frames with the following values for the learning rate: 0.004, 0.006, 0.008, 

0.010, 0.012 and 0.014. The result is shown in Figure 3.4(b). The figure 

shows that the learning rates of 0.006 to 0.014 gave a reasonable adaption 

time. The 0.004 learning rate made the algorithm so slow to adapt that it 

took the algorithm 40 frames to start to accommodate almost 84% pm'cent 

of the background pixels and it finished the whole 50 frames without totally 

adapting to the background pixels. Therefore this learning rate was disqual­

ified. Figure 3.4(c) gives a more enlarged view of background adaptation on 

the last frames of the background. The relationship between the adaptation 

rate and the number of frames gave an exponential trend as it is shown in 

Figure 3.4(d). The figure is a plot of the point where adaption accommodates 

most of the background. 

(a) Large learning rate variations (b) Small learning rate variations 

LR* RMSE PSNR ROC** LR* RMSE PSNR ROC** 
(dB) Cutoff (dB) Cutoff 

0.1 0.642 3.861 0.328 0.004 0.238 12.496 0.938 
0.01 0.261 11.732 0.753 0.006 0.196 14.267 0.845 
0.001 0.964 0.323 0.001 0.008 0.233 12.714 0.772 

0.01 0.261 11.732 0.753 
* Learning Rate 0.012 0.286 10.932 0.730 
** ROC Optimal Cntoff Measure 0.014 0.307 10.332 0.705 

TABLE 3.1: Assessment tests on the MOG using different learning rates on an indoor 
motion sequence 

To choose a specific value of adaptation among the values shown in Figure 

3.4(b), the algorithm was tested with an indoor motion sequence after the 

first 50 background frames. The motion sequence with the different learning 

rates was analysed with three different assessment tests the RMSE, the PSNR 

and the ROC optimal cutoff measure (Grzymala-Busse et al., 2003, 2002), 

Table 3.1. Table 3.1(a) shows the large variation of learning rates. The 0.01 

learning rates showed better results in all the three measurements, where it 

gives the minimum error for the RMSE, the largest PSNR and maximum 

ROC cutoff value. Looking on smaller variation close to 0.01, Table 3.1(b), 

0.006 gives the smallest RMSE, the largest PSNR value and the second best 
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cutoff value after the excluded 0.004 rate. Therefore 0.006 will be used as 

the learning rate for the MOG algorithm 011 indoor sequences. 

(a) Large learning rate variations (b) Small learning rate variation" 

LR* RMSE PSNR ROC** LR* RMSE PSNR ROC** 
(dB) Cutoff (dB) Cutoff 

0.1 0.561 5.028 0.329 0.004 0.454 6.857 0.683 
0.01 0.349 9.155 0.623 0.006 0.379 8.444 0.725 
0.001 0.921 0.714 0.002 0.008 0.364 8.788 0.625 

0.01 0.349 9.155 0.623 
* Learning Rate 0.012 0.345 9.261 0.621 
** ROC Optimal Cutoff Measure 0.014 0.345 9.271 0.613 

TABLE 3.2: Assessment tests on the MOG using different learning rates on an outdoor 
sequence 

For outdoor sequences, testing the learning rate with the large variations 

resulted in Table 3.2(a). The result also shows the rvIOG with 0.01 as the 

learning rate performs better than the 0.1 and 0.001 in all the assessment 

measures used, RMSE, PSNR and ROC optimal cutoff measure. This result 

led us to test the values around 0.01 with small variation steps which resulted 

in Table 3.2(b). The assessment measures does not agree on a single value, 

but when searching for a rate that performed better in most of the measures 

we find that 0.012 and 0.014 performed better in the RIvlSE and the PSNR 

measures. These two values for the learning rate gave the same value for 

the RMSE. The 0.012 performs better in the ROC optimal cutoff measure 

while 0.014 performs better in the PSNR measure. Since 0.012 and 0.014 

are almost equal in preference, we will choose 0.012 since it is slightly slmver 

(slower learning rate means more persistent background model). 

• Initial weight 

The initial weight can be set to any value larger than zero. \Ve ,vill dis­

cover the effect of changing the initial weight through testing different initial 

weights on an indoor sequence. The test was performed with the learning 

rate set to 0.01, the background threshold set to 0.6, the initial variance set 

to 50 and 5 Gaussians per mixture. 

The indoor motion sequence assessment result is shovm in Table 3.3. The 

decrease of the initial weight resulted in a decrease in the RIvlSE and an 

increase in the PSNR value. 0.0005 gave a similar result to the values of 

0.005 initial weight but slightly better. 0.0005 initial weight gave the best 

result in RMSE and in the PSNR. In the ROC optimal cutoff measure all 

the three 0.05, 0.005 and 0.0005 gave similar result with minor differences. 

Due to the good results accomplished by 0.0005 initial weight in the RJ'vlSE 
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the PSNR and a reasonable result in the ROC optimal cutoff measure, it was 

used as the initial weight. 

Initial RMSE PSNR ROC* 
Weight (dB) Cutoff 

0.5 0.307 10.259 0.650 
0.05 0.261 11.732 0.753 
0.005 0.250 12.105 0.748 
0.0005 0.249 12.152 0.749 

* ROC Optimal Cutoff Measure 

TABLE 3.3: Assessment tests on the MOG using different initial weights for an indoor 
motion sequence 

The tests on the outdoor motion sequence is given in Table 3.4. The table 

shows that the variation of the initial weight is not significant on outdoor 

motion sequences (i.e. when the parameter is changed the output results is 

not affected). The initial weight will be set to be the same as the indoor 

sequence initial weight, 0.0005 

Initial RMSE PSNR ROC* 
Weight (dB) Cutoff 

0.5 0.349 9.155 0.623 
0.05 0.349 9.155 0.623 
0.005 0.349 9.155 0.623 
0.0005 0.349 9.155 0.623 

* ROC Optimal Cutoff Measure 

TABLE 3.4: Assessment tests on the MOG using different initial weights on an outdoor 
motion sequence 

• The background threshold (T) 

The background threshold, T, can have a value of 0 < T :::; 1. The smaller 

the value of T, the more chance for more Gaussians to be considered as part 

of the background model. A larger value of T makes the system being able 

to accommodate multi-modal backgrounds, such as a waving flag, the sea 

tide or tree leaves moving with the wind. Smaller values of T will allow only 

few Gaussians to be in the background model. The effect of changing the 

background threshold will be shown through testing different threshold values 

on an indoor and an outdoor motion sequence. The test was performed with 

the learning rate set to 0.01, the initial weight set to 0.05, the initial variance 

set to 50 and 5 Gaussians per mixture. Even though T can be varied between 

o to 1, we will use 0.2 as a minimum value for our tests. Since we are using 



Chapter 3 Mixture of Gaussians -11 

5 Gaussians, if we assume a similar priority in the beginning a persistent 

background Gaussian should be of a value above 0.2. 

T* RMSE PSNR ROC** 
(dB) Cutoff 

0.2 0.115 18.774 0.982 
0.4 0.175 15.212 0.950 
0.6 0.261 11.732 0.753 
0.8 0.268 11.507 0.736 

* Background Threshold 

** ROC Optimal Cutoff Measure 

TABLE 3.5: Assessment tests on the MOG using different background thresholds for 
an indoor motion sequence 

Table 3.5 shows an assessment for the background threshold parameter vari­

ation on the MOG algorithm using an indoor sequence. The performance 

is inversely proportional to the value of the background threshold. We can 

see as we decrease the value of T the error decreases. 0.2 threshold gives 

the smallest RMSE, the largest PSNR and the largest ROC optimal cutoff 

measure. Thus 0.2 was used as a value for T. 

T* RMSE PSNR ROC** 
(dB) Cutoff 

0.2 0.265 11.547 0.840 
0.4 0.295 10.607 0.819 
0.6 0.349 9.155 0.623 
0.8 0.334 9.535 0.606 

* Background Threshold 

** ROC Optimal Cutoff Measure 

TABLE 3.6: Assessment tests on the MOG using different background thresholds 

Table 3.6 gives the assessment for varying the background threshold on an 

outdoor motion sequence. The minimum RMSE, the maximum PSNR and 

ROC optimal cutoff measure is scored by the 0.2 background threshold. This 

value will be used as a background threshold for the outdoor motion se­

quences. 

• Initial variance 

This parameter will be used as an initialisation variance for any new Gaussian. 

The value is supposed to be large enough to accommodate a normal back­

ground pixel variation. The effect of changing the initial variance will be 

shown through testing variable initial variances on an indoor and outdoor 

motion sequences. The test is performed with the learning rate set to 0.01, 
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the initial weight set to 0.05, the background threshold set to 0.6 aud 5 

Gaussians per mixture. 

(a) Large Initial Variance variations (b) Small Initial Variance variations 

Init. RMSE PSNR ROC** Init. RMSE PSNR ROC** 
Var.* (dB) Cutoff Var.* (dB) Cutoff 

5 0.817 1.754 0.278 10 0.462 6.725 0.744 
50 0.261 11.732 0.753 30 0.293 10.731 0.793 

500 0.247 12.189 0.418 50 0.261 11.732 0.753 
70 0.248 12.173 0.718 

* Initial Variance 90 0.238 12.500 0.690 
** ROC Optimal Cutoff Measure 110 0.229 12.823 0.666 

TABLE 3.7: Assessment tests on the MOG using different Initial Variances for an indoor 
motion sequence 

The assessment table for the initial variance, Table 3.7, gives two assessment 

stages on the same parameter. The first stage is done with large increments in 

initial variance starting with the following variances 5, 50, 500. The 500 ini­

tial variance gave the best result in two of the the three assessment measures 

(RMSE and PSNR). Such a value might make the acceptable background 

range too wide which might endanger the accuracy of the algorithm (i.e. if 

a moving object with a colour similar to the background might be labelled 

as background). This will be the case until the background distribution con­

verges to its proper size but with such a large variance this might take a long 

time. So the test was done again starting from variance 10 onwards in steps 

of 20. The test aimed to find a value smaller than the 500 variance with 

comparable performance. The test was successful where the initial variance, 

110 gave even better performance in all the assessment measures than the 

500 initial variance. Therefore 110 was used as an initial variance for the 

indoor sequences. 

(a) Large Initial Variance variations (b) Small Initial Variance variations 

Init. RMSE PSNR ROC** Init. RMSE PSNR ROC** 
Var.* (dB) Cutoff Var.* (dB) Cutoff 

5 0.761 2.370 0.283 10 0.624 4.098 0.470 
50 0.349 9.155 0.623 30 0.403 7.906 0.641 

500 0.376 8.496 0.304 50 0.349 9.155 0.623 
70 0.337 9.467 0.587 

* Initial Variance 90 0.335 9.500 0.549 
** ROC Optimal Cutoff Measure 110 0.337 9.469 0.517 

TABLE 3.8: Assessment tests on the MOG using different initial variances on an outdoor 
motion sequence 
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Table 3.8 gives the evaluation tables for two different tests for changing the 

initial variance for an outdoor motion sequence one using the large steps of 5, 

50 and 500 on Table 3.8(a), and the other using small steps (20 each) starting 

from 10 and reaching up to 110, Table 3.8(b). In Table 3.8(a) we can see the 

initial variance of 50 giving the best RMSE, PSNR and ROC optimal cutoff 

measure. In Table 3.8(b) smaller steps were used near the best performing 

initial variance, 50, to find an optimal initial variance. The 90 initial variance 

managed to score the best rate in two of the three evaluation measures, the 

RMSE and PSNR, and therefore it was used as the initial variance for the 

outdoor motion sequences . 

• Number of Gaussians per mixture 

The number of Gaussians was varied from 2 to 9 Gaussians per pixel to 

test the effect on the system performance. Bearing in mind that the more 

Gaussians used, the more the speed performance of the system will degrade. 

Also we started with two Gaussians (not one) where one will be used for 

the background model and the other is used for motion pixels. The test was 

performed with the learning rate set to 0.01, the initial weight set to 0.05, the 

initial variance set to 50 and the background threshold set to 0.2. Here we 

used a small background threshold, 0.2, because it was chosen as a threshold 

for indoor and outdoor sequences. Also by testing using this threshold we 

will make sure that using such a small threshold will not hinder multiple of 

Gaussians from building the background model and decrease the error. 

(a) Changing number of Gaussians (2 - 5) (b) Changing number of Gaussians (5 - 9) 

No. of RMSE PSNR ROC** No. of RMSE PSNR ROC** 
Gauss.* (dB) Cutoff Gauss.* (dB) Cutoff 

2 0.474 6.484 0.576 5 0.115 18.774 0.982 
3 0.161 15.861 0.971 7 0.124 18.141 0.958 
4 0.119 18.521 0.983 9 0.193 14.366 0.784 
5 0.115 18.774 0.982 

* Number of Gaussians 

** ROC Optimal Cutoff Measure 

TABLE 3.9: Assessment tests on the MOG algorithm using different number of Gaus­
sians per pixel for an indoor motion sequence 

The evaluation of using different number of Gaussians on an indoor motion 

sequence is shown in Table 3.9. Using 5 mixture of Gaussians gives the best 

result in the RMSE and the PSNR. Also in the ROC optimal cutoff measure 

5 Gaussians scored very close to the highest value. Accordingly, 5 Gaussians 

will be used for extracting indoor motion sequences. 
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(a) Changing number of Gaussians (2 - 5) (b) Changing number of Gaussians (5 - 9) 

No. of RMSE PSNR ROC** No. of RMSE PSNR ROC** 
Gauss.* (dB) Cutoff Gauss.* (dB) Cutoff 

2 0.570 4.896 0.367 5 0.265 11.547 0.840 
3 0.383 8.353 0.757 7 0.220 13.169 0.855 
4 0.312 10.130 0.812 9 0.248 12.126 0.747 
5 0.265 11.547 0.840 

* Number of Gaussians 

** ROC Optimal Cutoff Measure 

TABLE 3.10: Assessment tests on the MOG algorithm using different number of Gaus­
sians per pixel on outdoor motion sequence 

Table 3.10 shows the evaluation of changing the number of Gaussians for 

the MOG algorithm using an outdoor motion sequence. An MOG with 7 
Gaussians gives the best result for the outdoor sequence giving the smallest 

RMSE, the highest PSNR and the highest ROC optimal cutoff measure as 

well. Therefore 7 Gaussians was used for outdoor motion sequences. 

3.4.2 Experimental Results 

The final settings for the indoor and the outdoor motion sequences were used to further 

test more motion sequences . 

• Indoor Motion Sequences 

The 10 indoor sequences were processed using the MOG algorithm with the op­

timised settings (in each one, 50-52 frames were used for background modelling). 

The optimised settings are: learning rate 0.006, the initial weight 0.0005, the initial 

variance 110, 0.2 background threshold and 5 Gaussians per mixture. 

Samples of the extracted images are shown in Figure 3.5. From the samples shown, 

the motion pixels were mostly detected correctly in all the shown sequences. In the 

background region, some background pixels were labelled erroneously as motion 

pixels. The algorithm as stated does not suppress shadows. The shadow pixels are 

often erroneously labelled as motion pixels. 

The evaluation of the averaged error of each sequence is shown in Table 3.1l. 

The table shows the RMSE, the PSNR, and three different percentage errors, the 

background, foreground and the overall percentage error compared to the motion 

pixels. 

Motion sequence 017a055s00R gave the highest RMSE, and the minimum PSNR 

value. While 01ge063s00L motion sequence provided the minimum RMSE and the 
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(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image 

(e) T he extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The e},:tracted image s ilhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) The extracted image s ilhou­
ette 

(1) The extracted image s ilhou­
ette 

FIGURE 3 .5: Examples of indoor images extracted using the MOG a lgorithm 

45 

highest PSNR. The percentage error for t he foreground and the background pixels 

are low. But when comparing t he total erroneous pixels to the motion pixels the 

result is quite different where t he minimum error can reach one quarter of the 

motion pixels, 26.48% in 019a063s00L. The maximum percentage error reaches 

63.51 % in 017a055s00R (the error is more than half the actual motion pixels). 

The overall percentage error gives an indication that improvements is needed to 

reduce the overall detection error by removing the shadow and improving the 

shadow detection process. The recorded RMSE variance is small for all t he tested 

sequences. The largest variance in motion sequence 008a013s00L is 7.361E-04. 

The small variance values shows the MOG consistency in its performance in each 

motion sequence. 

When comparing the results of t he MOG indoor sequences with the results of 
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Sequence No. of RMSE PSNR FG BG Overall 2 
O"RAISE 

Number Frames (dB) Error l Error2 Error3 

008a013s00L 178 0.172 15.389 0.482 3.236 41.557 7.361E-04 
009a017s00L 169 0.148 16.670 0.605 2.331 34.925 3.564E-04 
01Oa024s08L 187 0.142 17.006 0.912 2.083 32.267 9.206E-05 
013a037s00L 114 0.135 17.518 1.371 1.913 36.270 5.746E-04 
013a040s00L 184 0.154 16.378 0.963 2.500 41.115 5.545E-04 
017a054s00L 188 0.195 14.232 0.395 4.102 58.479 4.337E-04 
017a055s00R 162 0.201 13.979 0.661 4.284 63.510 2.778E-04 
018a059s00L 188 0.138 17.246 1.181 1.983 29.788 2.419E-04 
018a060s00L 179 0.174 15.299 0.729 3.237 46.140 6.101£-04 
019a063s00L 186 0.128 17.896 1.094 1.665 26.483 3.693E-05 

Average 0.159 16.161 0.839 2.733 41.053 3.914E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 3.11: Overall assessment on a number of motion indoor sequences using the 
MOG algorithm 

the modified SBD using the RMSE (O"kMSE) values, the SBD scored less RMSE 

with an average of 0.078 (4.047E-05) compared to a 0.159 (3.914E-04) MOG. The 

modified SBD also scored better results in the PSNR and the overall error. The 

foreground region extraction for the MOG is better with less foreground error and 

no holes in the moving subject. On the other hand, the background extraction is 

better in the modified SBD with less background error (0.49% in the modified SBD 

and 2.73% in the MOG) and less noise in the background region. When comparing 

the sample figures of extraction for both classifiers, Figure 3.5 and Figure 2.10, 

the same conclusions can be reached where the MOG gives better foreground 

extraction with less holes and the SBD gives better background suppression. The 

shadow suppression is a clear advantage for the SBD where most of the shadow (if 

not all in some of the samples) had disappeared while for the MOG the shadow is 

apparent on the extracted sequences. This difference in performance when utilised 

properly by using each classifier's strengths, justifies the fusion of both classifiers 

aiming for a better classifier, to be discussed later in Chapter 6 (notice also that 

the isolated mislabelled pixels mostly appear in different positions in the scene). 

• Outdoor Motion Sequences 

In the process of evaluating the MOG, 10 outdoor sequences were tested using 

this algorithm. 48-55 background frames were used for background adaption. The 

MOG algorithm with the optimised outdoor parameters were used. The parame­

ters are: learning rate of 0.012, an initial weight of 0.0005, an initial variance of 

90, 0.2 for the background threshold and 7 Gaussians per mixture. 



Chapter 3 MiJ....'"ture of Gaussians 

(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017sOlL 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extract ed image 

(k) The extracted image 

(c) The e>-:tracted image silhou­
ette 

(f) The extracted image silhou­
ett e 

(i) The extracted image silhou­
ette 

(I ) The extracted image silhou­
ette 

FIGURE 3.6: Examples of out door images extracted using t he MOG algorithm 
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Figure 3.6 shows samples of outdoor extracted images. From the shown samples the 

motion pixels are not always detected correctly. In motion sequences 008e013s00L, 

00ge017s01L and 013e037s00L the problem is clearly illustrated with big holes 

appearing on the moving object. Sample of motion sequence 01Oe024s00L shows 

small holes in the moving object. Also, the background is not detected precisely 

where many groups of points can be observed in many parts of the background. 

Sample of motion sequence 0l3e037s00L has the worst background extraction. The 

shadow is labelled as motion pixels in all the extracted images. 

The evaluation of the averaged error of each outdoor sequence is shown in Table 

3.12. The table shows the RMSE, the PSNR, the background/foreground per-

centage error and the overall percentage error compared to the silhouette's motion 

pixels. 

Sequence No. of RMSE PSNR FG BG Overall 2 
O"RMSE 

Number Frames (dB) Error1 Error2 Error3 

008e013s00L 100 0.207 13.719 8.634 3.587 31.932 2.964E-04 
00ge017s01L 96 0.226 12.923 16.551 3.479 41.119 1. 151E-04 
010e024s00L 94 0.237 12.533 8.216 5.176 39.679 1.395E-04 
0l3e037s00L 158 0.216 13.365 11.520 3.747 37.868 6.922E-04 
013e040s00L 151 0.240 12.403 8.370 5.408 48.967 4.123E-05 
017e054s00L 112 0.220 13.184 12.949 3.498 34.476 2.398E-04 
017e055s00R 88 0.251 12.036 8.304 6.025 50.033 3.709E-04 
018e059s01L 104 0.190 14.426 10.194 2.663 28.540 6.936E-05 
018e060s00L 88 0.207 13.691 7.171 3.846 31.445 2.294E-04 
01ge063s05L 112 0.169 15.458 8.184 2.331 30.935 1.763E-04 

Average 0.216 13.374 10.009 3.976 37.499 2.370E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 3.12: Overall assessment on a number of motion outdoor sequences using the 
MOG algorithm 

Motion sequence 017e055s00R gave the highest RMSE, and the minimum PSNR 

value. While 01ge063s05L motion sequence provided the minimum RMSE and 

the highest PSNR. The foreground percentage error is higher than in the indoor 

sequences (expected since outdoor sequences are more challenging) where the min­

imum error recorded is 7.17% and the maximum 16.55%. The average foreground 

error is 10.0l %. For the background percentage error the values ranged between 

2.33% to 6.03%. The average error for the background region is 3.98%. Finally the 

percentage error compared to the silhouette motion pixels gives high results where 

the average is 37.50% with a minimum of 28.54% and a maximum of 50.03%. The 

same conclusion can be reached here (the same as the indoor conclusion), such 

percentage indicates that there is still room for improvement on motion detection 

and shadow suppression. The MOG error variance ,RMSE variance, gave a small 
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value which means large consistency in its performance in each sequence. The 

variance ranged from 4.123E-05 in 013e040s00L to 6.922E-04 in 013e037s00L. 

Comparing the sample images for the MOG in Figure 3.6 with the modified SBD in 

Figure 2.11 shows that in motion sequences 00ge017s01L and 0l0e024s00L lvIOG 

gave better extraction for the moving subject (than the modified SBD) but in the 

other two samples, 008e0l3s00L and 0l3e037s00L, the MOG result were worse 

than the modified SBD with large wholes in both motion sequences. On the other 

hand, the background region in the modified SBD has few noisy pixels compared 

with groups of connected noisy points in the MOG. In the shadow region, the 

modified SBD managed to suppress the shadow in 013e037s00L while the MOG 

does not support shadow suppression. We notice from the comparison that the 

classifiers perform differently in different regions. When comparing the results of 

the MOG classifier with the modified SBD for the outdoor sequences using the 

RMSE (a~MSE) values, the SBD scored less error with an averaged RMSE of 

0.189 (2.126 x 10-4 ) compared to 0.216 (2.370 x 10-4 ) for the MOG. The modified 

SBD also scored better results in the PSNR and the overall error. The MOG gave 

better results for the the foreground region (considering also the moving object 

holes shown in the SBD samples figure). In the background region, the modified 

SBD performed better with an error of 2.15% compared to an error of 3.98% in the 

MOG classifier. Proper fusion of those different performing classifiers can result 

in improving the overall performance. 

3.5 Conclusions 

In this chapter the MOG algorithm was presented. Optimised performance was achieved 

by experimenting with different settings of the algorithm's parameters. The best values 

were those which optimised performance figures developed earlier for moving object 

extraction analysis. When optimised values had been selected, the algorithm was tested 

on indoor and outdoor motion sequences. Also different analytical assessment methods 

were used to clarify the algorithm performance. The algorithm lacks the ability to 

extract shadows. The algorithm's background suppression can still be optimised further 

and the algorithm's motion extraction showed some shortcomings on outdoor sequences 
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U nary Classifiers 

4.1 Introduction 

Unary classification (UC) is concerned with a single class with a decision function that 

states the likelihood of a given data being a member to such class. The method deter­

mines a class boundary using the data given for a class. 

Support Vector Machines (SVMs) can be used to implement unary classification (SchOlkopf 

et al., 2001; Chen et al., 2001; Manevitz and Yousif, 2001). There exist two SVM based 

methods that can be used for unary classification, Hyperplane (SchOlkopf et al., 2001) 

and Hypersphere (Tax and Duin, 1999) methods. In a Hyperplane method, data is 

bounded using a hyperplane in a feature space. In a Hypersphere the data is bounded 

using a hypersphere in a feature space. The strategy we use is to map the data into a 

feature space and then to use a hypersphere to determine membership of the class. 

In the following sections we will present our new motion classifier using the Hypersphere 

UC method. We will start with a section on kernel functions followed by a section on 

the Hypersphere method in which we will explain the details of our classifier. After that 

we will present the results of using the UC on indoor and outdoor motion sequences. 

This section will be followed by a novel improvement on the UC method to improve 

its performance. Finally, we will show the results of the improved UC on indoor and 

outdoor sequences. 

4.2 Kernel Functions 

Kernel functions are a way to represent an inner product. In many learning algorithms 

the only place the data appears is in an inner product between examples in feature 

space. Kernel functions are an implicit representation of this inner product in the input 
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space. Using the kernel functions data representation and then bounding the data using 

a hyperplane or a hypersphere increases the options in making class boundaries for the 

data. 

The mapping function <I> : X -7 F maps vectors from input space to feature space. The 

dot product between examples can be computed by evaluating some simple kernel. 

k(x,x) = <I>(x) . <I>(X) ( 4.1) 

Many kernels can be used 

Linear k(x,x) = X· x' (4.2) 

Polynomial k(x, X) = (x· x' + 1)P (4.3) 

Gaussian Radial Bias k(x, X) = exp( Ilx . x11
2 

) 

20-2 (4.4) 

Exponential Radial Bias k(x, X) = exp( _ I/~~:11 ) (4.5) 

where x is a point in input space, p is the polynomial degree, and 0-
2 is the variance. 

The Gaussian radial basis kernel will be used as a kernel which is known to be useful to 

approximate multivariate functions efficiently (Buhmann, 2000). 

4.3 Hypersphere Method 

For a training set of Xl, ... , Xi' E X where fEN is the number of the trained samples and 

X is some set. A hypersphere in a feature space is defined by: 

{<I>(x) I \Ix E ]R, R2 - I/<I>(x) - cl/ 2 
= 0 } (4.6) 

Where R E ]R is the hypersphere radius in a feature space, c E ]RN is the hypersphere 

centre in a feature space. The decision function will be 

f(x) = sgn(R2 - I/<I>(x) - cl/2
) (4.7) 

If the function is positive then X lies with in the boundary of the sphere defined by the 

Rand c, if the function is negative then X lies outside the sphere, Fig 4.1. 

To encapsulate most of the data within a minimal sphere we solve the following equation 
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• 

• 

en 0 

'x 
4= 
>-

Outside Class 
Negative Sign 

X-Axis 

FIGURE 4 .1 : A Hypersphere with clustered data. Data in the sphere will be given a 
positive sign while negative signs will be set for data outside t he sphere 

subject to [[g'?(x) - c[[2 :::; R2 + ~i, ~i ~ 0 for i = 1, ... , e. (4.8) 

Where v is a margin coefficient that controls the amount of training vectors to be 

included within the hypersphere boundary, and ~i is the error cost corresponding to 

each training vector. 

By using the Lagrangian multiplier method, t he following dual optimisation problem 

will result 

e e 
min L CKiCKjk(X i, X j) - L CKik(Xi' Xi) 

Q 
(4.9) 

iJ i 
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b
. 1 

su Ject to 0 ::; (Yi ::; vf.' (4.10) 

where (Yi are the Lagrange multipliers. The centre of the hypersphere is 

(4.11) 

The final decision function will become 

f(x) = sgn (R2 - t (Yi(Yjk(Xi, Xj) + 2 t (Yik(Xi, x) - k(x, X)) 
~J ~ 

(4.12) 

R2 is computed such that for any Xi with 0 ::; (Yi ::; ;e the argument of the sgn is zero. 

4.4 DC Results 

The method was tested on indoor and outdoor sequences. In the following parts of this 

section we present the indoor and the outdoor tests along with assessment measures on 

each. Samples of indoor and outdoor extractions will also be presented. Experimenting 

using the RGB colour model resulted in shadows appearing erroneously as part of the 

foreground both on indoor and on outdoor motion sequences as shown in Figure 4.2 

A detailed analysis of the Unary Classifier using different colour models is shown in 

Chapter 5. The chapter concludes in choosing C1C2C3 colour model, Section 5.2.5, to 

optimise the Unary Classifier performance. A detailed test for the Unary Classifier 

using C1C2C3 colour model will be shown in this section using indoor and outdoor motion 

sequences. 

To set up the UC parameters for indoor and outdoor motion sequences, the soft margin 

coefficient, LJ, is set to 0.01 (to include 99% of the background pixels in the background 

model). Also the RBF's u is set to a large value of 10 to enable the RBF kernel which 

is used with in the UC to include the wide range of background pixels variations. A 

detailed analysis and assessments of different settings for u will be discussed later in 

Chapter 5. 

• Indoor Motion Sequences 

10 indoor sequences are used in these tests. 50-52 frames from each were used for 

background modelling (these frames are pure background and do not contain any 

moving objects). 
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(a) A sample frame from 
008a013s00L 

(e) Extracted Silliouett e for 
008a013s00L 

(b) A sample frame from 
0l3a040s00L 

(f) Extracted Silhouette for 
013a040s00L 

(c) A sample 
frame from 
00ge017s01L 

(g) Ex-
t racted 
Silliou-
ette for 
00ge017s01L 

(d) A sample 
frame from 
013a040s00L 

(h) Ex-
tracted 
Silhou-
ette for 
013a040s00L 

FIGU RE 4.2 : Examples of indoor and outdoor images extracted using the Unary Clas­
sifi.er algorithm using the RGB colour model 
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Figure 4.3 shows samples of extracted sequences using the Unary Classifier. From 

the samples shown, the background is noisy with background pixels misclassified 

as motion pixels. The sample of mot ion sequence 017a054s00L showed more noise 

than the other three motion sequence samples. The motion pixels are detected 

well in all the shown samples except for the moving object borders where it is not 

finely extracted. A reasonable part of the shadow has disappeared due to the use 

of the CI C2C3 colour model instead of the RGB. Part of t he shadow is still resident 

in all the shown samples. 

A detailed assessment for the indoor motion sequences is presented in Table 4. 1. 

The table shows the RMSE, t he PSNR, and the percentage error for the back­

ground, foreground and the overall error compared to t he frames silhouette's mo­

tion pixels. 

The maximum RMSE was scored by motion sequence 017a054s00L which has also 

given the minimum PSNR. The minimum RMSE is scored by 018a059s00L. The 

maximum PSNR was given by the same mot ion sequence along with 013a040s00L. 

For the foreground percentage the error was small for all t he mot ion sequences 

with a maximum of 0.33% scored by both 010a024s08L and 013a040s00L. The 

average foreground error was 0.22%. In t he background percentage error , t he 

maximum value was given by 017a054s00L with 11.72%. All the other sequences 

scored similar values in the range of 7.26-8.82%. The overall error compared to the 

silhouette motion pixels was very high in all the sequences exceeding even the size 

of the mot ion object. The values ranged from 104.87-164.87% wit h an average of 
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(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The ex"tracted image silhou­
ette 

(f) The extracted image silhou­
et te 

(i) The extracted image silhou­
ette 

(1) The extracted image silhou­
et te 

FIGURE 4.3: Examples of indoor images extracted using the DC algorithm 
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118.66%. The RMSE variance is small for all the sequences ranging from 7.279E-

06 in 009a0l7s00L to 7.982E-05 in 008a013s00L. The small error variance means 

a large consistency performance for this algorithm. 

Comparing the indoor results of the UC with the previously present ed classifiers 

using the RMSE ((J"~MSE) results, the minimum error is scored by the modified 

SBD, 0.078 (4.047E-05), followed by the MOG, 0.159 (3.914E-04) , and the UC 

scored the highest error , 0.273 (3.941E-05) . The MOG and t he modified SBD, the 

UC scored the worst overall error with an average of 118.66% (i.e. larger than the 

silhouette), followed by the MOG with an averaged overall error of 41.05%. The 

modified SBD gave the minimum overall error , 9.78%. When looking closely t o 

the results the UC main weak point is in the background region with an averaged 
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Sequence Number RMSE PSNR FG BG Overall 
.) 

IJRMSE 
Number of Frames (dB) Error1 Error2 Error3 

008a013s00L 178 0.286 10.879 0.212 8.816 112.038 7.982E-05 
009a017s00L 169 0.265 11.547 0.117 7.475 109.847 7.279E-06 
010a024s08L 187 0.262 11.626 0.326 7.329 110.363 6.062E-05 
0l3a037s00L 114 0.263 11.597 0.498 7.291 132.105 4.966E-05 
013a040s00L 184 0.262 11.655 0.326 7.258 115.937 7.540E-05 
017a054s00L 188 0.331 9.607 0.094 11.724 164.872 8.615E-06 
017a055s00R 162 0.270 11.373 0.181 7.782 114.147 2.264E-05 
018a059s00L 188 0.261 11.655 0.207 7.298 104.866 1.357E-05 
018a060s00L 179 0.273 11.290 0.172 7.966 111.480 6.465E-05 
019a063s00L 186 0.262 11.651 0.104 7.284 110.984 1. 188E-05 

Average 0.273 11.288 0.224 8.022 118.664 3.941E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 4.1: Overall assessment on a number of motion indoor sequences using the DC 
algorithm 

error of 8.02%. The MOG background error was less than 3%. The best performer 

in this region is the SBD with an an averaged error less than 0.5%. 

When comparing the sample results of the UC, Figure 4.3, with the modified SBD 

and the MOG samples, Figure 2.10 and Figure 3.5 respectively, the background 

region in the UC is excessively noisy compared with the other two classifiers. On 

the other hand, when comparing the moving subject extraction quality of the three 

classifiers, the UC and the MOG scored the best results while the modified SBD 

moving subject has some large holes in addition to some small isolated noisy pixels. 

The overall result of extraction of this classifier is not encouraging especially in the 

background region. Therefore an effort was made to improve the overall results of 

this classifier and will be shown in the following section. 

• Outdoor Motion Sequences 

For the outdoor sequences, 10 sequences were tested using the UC algorithm. 48-55 

background frames were used for background adaption. 

Figure 4.4 shows samples of outdoor extracted images. From the shown samples, 

the algorithm performance did not perform as well as in indoor environment. 

Motion pixels are mostly detected correctly but holes still show in the moving 

subject in all the presented sequences samples. The problem is more serious in 

motion sequence 00ge0l7sOlL. The borders of the extracted objects are again not 

finely extracted. The background region is very noisy in all the presented samples 

with background pixels mislabelled as motion pixels. Shadow disappeared from 

sequence 013e037s00L but still resident in all the sequences. 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image 

(e) T he extracted image 

(h) The extracted image 

(k) The extracted image 

(c) T he e).:tracted image sil­
houette 

(f) The extracted image s ilhou­
ette 

(i) T he extracted image silhou­
et te 

(1) T he extracted image silhou­
ette 

FIGURE 4.4 : Examples of outdoor images ext racted using t he DC algorit hm 
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The evaluation of the averaged error of each outdoor sequenct' if; shown ill t.able 4.:2. 

The table shows the Rl\ISE, the PSNR. BJld the percentage error of I.he fml',O;nmnd, 

background and the overall error over the silhouette's motion pixels, 

Sequence Number R~ISE PSNR FG BG Overall 
<5 

crj,'J\! oS£' 

Number of Frames (dB) Error l Error" Error:l 

00Se013s00L 100 0,330 9.625 6,418 1Uns 81.768 1.68:m~04 

00ge017sOlL 96 0.314 10.086 1G,709 8.882 79,158 3.189E-Ocl 
OlOe024s00L 94 0.343 9.298 5.G10 12.800 8:1.:350 :~.243E-llt) 

0l3e037s00L 158 0.275 11.216 3.981 S,096 60.877 1.:~:39t:>()4 

013e040s00L 151 0.376 8.506 20.397 1:3,3~j5 120.:390 a.50lE~[)4 

017e054s00L 112 0.312 10.118 17,726 8.454 69.696 l,62LE-04 
017e055s00R 88 0.329 9,653 8.528 11.199 85.951 1,552E-04 
OlSe059s01L 104 0.267 11.492 :3.412 7.644 56.100 9.876E~05 

O1Se060s00L 88 0.294 10.623 4.960 9,256 63.491 :3.101E~05 

01ge063s05L 112 0.266 11.512 4.914 7.284 76.572 2.061E-05 
Average 0.311 10.213 9.265 9.857 77.735 1.471£-04 

1 FG Error Foreground Percentage ErrOl" 

2 BG Error Background Percentage Ern". 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 4.2: Overall assessment on a number of motion outdoor sequences usin/2: the 
UC algorithm 

IvIotion sequence 013e040s00L gave the highest RMSE, and the minimum PSNR 

value. While 01ge063s05L motion sequence provided the minimum RtvrSE and tht~ 

highest PSNR. The range of error for the foreground is in the interval of :3.4191(1 

to 20.40% with an average of 9.27%. The background percentage error gave a 

similar average of 9.86% with a range of error between 7.28% to 13.34%. \-Vhen 

looking at the percentage of the overall error over the silhouette's motion pixds, 

the maximum error was lets high as 120,:39% while the minimum was 56, HY/(', , The 

average error here is 77.74%. The small Rj'vlSE varianc{~ that ranges between 

2.061E-05 and 3.501E-04 shows a large system consistency in error pC'l"fOrmflt1CP in 

each tested motion sequence. 

The percentage of the background error is :mhstantial especiA.lly when vi:-;uA.lising 

the effect of such error in the samples presented previously, Fignre 4.:3 and Fignrp 

4.4. Also, the score of the overall error is high "lith an average exceeding two 

thirds of the moving object size. This flags a problem in this algorithm and leave:-; 

room for improvement to reduce the error. 

When comparing the outdoor results of the ue classifier in Table 4,2 with the 

results of the modified SBD and the MaG using the RMSE (akMSE)' the modiHed 

SBD scored the least error, 0.189 (2.126E - 04), followed by the MaG, 0,216 

(2.370E-04). The ue scored the worst highest error among the three classifiers, 

0.311 (1.471E-04) which is more than 40% of error difference than the other two 
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classifiers. The overall error for the VC is more than double the error in the other 

two classifiers (77.74% in VC, 29.08% in modified SBD, and 37.50% in MOG). 

In the background region, the VC again scored the worst result with 9.86% error 

while the MOG and the modified SBD error is only 3.98% and 2.15% respectively. 

The VC scored the least error in the foreground error region, 9.27%. The :tvl0G 

scored almost the same error, 10.01%, while the modified SBD scored the worst 

with a 14.45% of error. 

When comparing the VC samples, in Figure 4.4, with the samples of the modified 

SBD, Figure 2.11, and the MOG, Figure 3.6, the background region of the VC 

is excessively noisy while the SBD has few isolated noisy background pixels. The 

MOG background shown some noise. In the moving subject quality extraction 

(the foreground region), the modified SBD result was the worst with large holes 

appearing on the moving subject body. The MOG and the VC overall foreground 

extraction is better (than the SBD) in most of the shown samples. 

Overall this algorithm, as the indoor and outdoor result indicates (figures and tables), 

has a high accuracy in identifying the foreground pixels. On the other hand, the al­

gorithm's main problem is in misclassifying the background pixels. This is due to the 

fact that this algorithm has drawn a hypersphere around the training background pixels 

and even though it had left some margin of error, this margin is not sufficiently wide 

to tolerate the range of change experienced with background pixels. Thus the extracted 

samples with the error analysis suggest clearly that there is still work to be done to re­

duce such errors especially in the background region for both indoor and outdoor motion 

sequences. 

4.5 Improved DC 

As concluded in the last section that the main problem is the tightness of the sphere 

size encapsulating the training data. The value for 1/ was selected so as to include all 

the data i.e ~ was set to a maximum value as well but still the result as shown in the 

previous section was not satisfactory with an average error exceeding the moving object 

size in the indoor sequences and more than two thirds of the moving object size in the 

outdoor sequences. Enlarging the size of the sphere will enable the system to be more 

tolerant to changes in the background model. To accomplish this goal we modified the 

sphere radius in the decision function of the VC to be 

RlmprovedBC = Ruc + MRRUC (4.13) 



Chapter 4 Unary Classifiers 60 

where MR E N is the radius multiplier and Rue is the unary classifier sphere radius. 

The final decision function becomes 

f(x) = sgn ((RUe + N Ruc)2 - t CtiCtjk(Xi, Xj) + 2 t Ctik(Xi' x) - k(x, X)) 
IJ I 

(4.14) 

4.6 Improved UC Results 

The improvement was tested on indoor and outdoor motion sequences with an incre­

mental values for the radius multiplier starting from 0 with a step of 2 until the optimal 

value is reached for the tested sequence. A stopping criteria is adopted to stop the 

incrementing procedure when the error reduction does not exceed 0.5% in the overall 

percentage error. This condition will avoid enlarging the radius size excessively for a 

minimal error reduction. 

• Indoor Motion Sequences 

The same 10 indoor sequences used in the DC section are used in these tests. Each 

sequence is tested by changing the radius size. 

Table 4.4 shows the optimising table for the same indoor motion sequence, 018a059s00L. 

MR ROC1 RMSE PSNR FG BG Overall 2 
uRN/BE 

(dB) Error2 Error3 Error4 

0 0.925 0.261 11.655 0.207 7.298 104.866 1.357E-05 
2 0.981 0.103 19.721 0.816 1.089 16.448 2.729E-05 
4 0.981 0.081 21.847 1.334 0.612 10.106 3.255E-05 
6 0.978 0.072 22.850 1.788 0.435 8.021 3.043E-05 
8 0.974 0.068 23.422 2.223 0.335 7.020 2.461E-05 
10 0.971 0.065 23.785 2.634 0.266 6.445 2.091E-05 
12 0.967 0.063 23.984 3.047 0.217 6.149 1.879E-05 
14 0.964 0.063 24.092 3.442 0.178 5.992 1.651E-05 
16 0.960 0.063 24.082 3.868 0.149 5.999 1.528E-05 

1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE 4.3: Assessment on the indoor motion sequences 018aOS9s00L using the im-
proved UC algorithm 

In Table 4.4 the highest optimal cutoff measure for the ROC, 0.981, is scored by 

the radius multiplier 2 and 4. The best RMSE is scored by MR 12, 14 and 16 with a 

value of 0.063. For the PSNR radius multiplier size 14 scored the maximum value. 
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In the foreground error column we notice that the minimum error is in the smallest 

radius, lvIR = O. The foreground error increases as we increase the radius size with 

a maximum error in lvIR = 16. The background error behaves in the opposite 

manner. lvIR = 0 gave the highest error with the error decreasing as we increased 

the radius size. The overall error gives a compromise between the foreground and 

the background error. The overall error compared to the motion pixels presented 

MR = 14 with the minimum error. But to abide by the condition set (not to 

excessively increase the radius size) the error drops less than %0.5 after AiR = 10. 

Thus a radius multiplier size of 10 will be used for motion sequence 018a059s00L. 

All the detailed tables for the other sequences are presented in appendix A.1. 

The final assessment for the indoor motion sequences with the selected radius 

multiplier are presented in Table 4.4. The table shows the radius multiplier AiR, 

RMSE, the PSNR, the background and foreground percentage error, and the over-

all error compared to the frames silhouette's motion pixels. 

Sequence Number MR RMSE PSNR FG BG Overall 2 
aRMSE 

Number of Frames (dB) Error 1 Error2 Error3 

008a013s00L 178 12 0.079 22.066 3.031 0.438 8.528 4.420E-05 
009a017s00L 169 14 0.072 22.910 2.532 0.378 8.046 2.424E-05 
010a024s08L 187 12 0.073 22.809 3.126 0.352 8.393 2.098E-05 
013a037s00L 114 10 0.070 23.144 4.409 0.274 9.310 5.052E-05 
013a040s00L 184 12 0.077 22.292 3.346 0.427 10.102 6.996E-05 
017a054s00L 188 16 0.078 22.189 2.028 0.509 9.127 3.284E-05 
017a055s00R 162 12 0.069 23.217 2.300 0.357 7.505 3.132E-05 
018a059s00L 188 10 0.065 23.785 2.634 0.266 6.445 2.091E-05 
018a060s00L 179 14 0.075 22.522 2.741 0.407 8.388 2.351E-05 
019a063s00L 186 10 0.065 23.784 1.865 0.326 6.801 2.092E-05 

Average 0.072 22.872 2.801 0.373 8.265 3.394E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 4.4: Overall assessment on a number of motion indoor sequences using the DC 
algorithm 

The minimum RMSE is scored by 018a059s00L and 019a063s00L. The maximum 

PSNR was given by 018a059s00L. The maximum RMSE was scored by motion se­

quence 008a013s00L which has also given the minimum PSNR. For the foreground 

percentage error, the smallest error was 1.87% by motion sequence 019a063s00L. 

The maximum error was for motion sequence 013a037s00L with an error of 4.41 %. 

The average foreground error was 2.80%. In the background percentage error col­

umn, the error was small for all the sequences with a maximum of 0.51 % scored 

by 017a054s00L. The average background error over all the sequences is 0.38%. 

The overall error compared to the silhouette motion pixels was in the range of 
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6.45-10.10% with an average of 8.27%. The modified UC RlVISE variance illus­

trates small error displacement when performing in indoor motion sequences. The 

largest error variance scored is 6.996E-05, in motion sequence 013a040s00L. The 

small RMSE variances demonstrates a large error consistency for the modified UC. 

When comparing the modified UC result, Table 4.4, with the original UC classifier, 

Table 4.1 the reduction in the error is quite substantial. For instance, the RMSE 

dropped almost 74% from 0.273 to 0.072. The PSNR improved from 11.288dB to 

22.872dB (more than 100% improvement). The background error and the overall 

error dropped as well. The foreground error is the only error which appeared to 

increase. Given that there is less confidence in this measure, the modification 

overall would appear successful. 

Comparing the performance of the modified UC on indoor sequences, Table 4.4, 

with the modified SBD, Table 2.7, and the MOG classifiers, Table 3.11, shows that 

the modified UC outperformed the other two in most of the measurements. For 

the RMSE (ukMSE) result, the modified UC also scored the best results with the 

least RMSE of 0.072 (3.394E-05), followed by the modified SBD, 0.078 RMSE and 

(4.047E-05) variance. The worst performer in this measure is the MOG with a 

RMSE of 0.159 (3.914E-04). Also in the background region, the modified UC gave 

the least error, 0.37%, followed by the modified SBD, 0.49%, and then the MOG, 

2.73%. In addition, the modified UC results in the improved UC overall error, the 

PSNR are also better than the other two classifiers. However, the modified UC 

scored the highest error in the foreground region but with a value very close to 

the modified SBD error (2.80% for the modified UC and 2.66% for the modified 

SBD). The MOG scored the least error in this region, 0.84%. 

Figure 4.5 shows samples of extracted sequences using the improved Unary Classi­

fier. The samples of the extracted images in Figure 4.5 show the background is now 

much cleaner except for the small traces of shadow noticeable in 017a054s00L. The 

motion pixels are detected well in all the shown samples, though some small noise 

holes exist in all the extracted subjects. When comparing the extracted samples 

of the modified UC with the the modified SBD, Figure 2.10, and the MOG, Figure 

3.5, extracted samples. The background of the UC is much cleaner than the other 

two classifiers background. The shadow extraction of the modified UC is also as 

good as the improved SBD (UC is slightly better). For the the quality of the ex­

tracted subject, the MOG is the best performer in this region while the improved 

SBD is the worst. The extraction quality of the improved UC is comparable to 

the MOG quality except for some small holes (mostly isolated noisy pixels). 

• Outdoor Motion Sequences 

The 10 outdoor sequences used in the UC section are used in these tests. The radius 

size was changed also on each sequence to determine its effect on performance. 
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(a) A sample frame from 
008a013s00L 

(d ) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image wit h 
MR=12 

(e) The extracted image with 
MR=14 

(h) The extracted image with 
MR= 12 

(k) The extracted image wit h 
MR =16 

(c) The e" .. t racted image silhou­
ette 
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(f) The extracted image s ilhou­
ette 

(i) The extracted image s ilhou­
ette 

(I) The extracted image s ilhou­
ette 

FIGURE 4.5: Examples of indoor images extracted using the improved DC algorit hm 

Table 4.5 shows the optimising table for the indoor motion sequence 018e059s01L. 

The highest optimal cutoff measure for the ROC, 0.901, is scored by MR = 2. The 

least RMSE value 0.16 is scored by t he sphere radius multiplier 2. For the PSNR, 

radius mult iplier size 2 scored the maximum value of 16.01dB. In t he foreground 

error column we notice that the minimum error is in t he smallest radius, MR = O. 

The foreground error increases as we increase t he radius size wit h a maximum error 

in MR = 16. The background error behaves in t he opposite manner. MR = 0 gave 

the highest error with t he error decreasing as t he radius size was increased . The 

foreground and the background error are inversely proportional. The overall error 

over the silhouette's motion pixels gives a compromise between t he foreground and 

the background error. The minimum overall error 19.94% is given by MR = 2. 
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MR ROC1 ID.1SE PSNR FG BG Overall 
,) 

(JRAfSE 
(dB) Error2 Error3 Error4 

0 0.889 0.267 11.492 3.412 7.644 56.100 9.876E-05 
2 0.901 0.159 16.005 8.170 1.708 19.937 1. 195E-04 
4 0.860 0.161 15.901 12.938 1.084 20.410 1. 127E-04 
6 0.813 0.173 15.273 17.854 0.824 23.539 8.873E-05 
8 0.766 0.187 14.581 22.750 0.695 27.541 5.903E-05 

10 0.722 0.199 14.024 27.211 0.590 31.278 4.619B-05 
12 0.686 0.209 13.613 30.868 0.509 34.372 4.089B-05 
14 0.654 0.217 13.263 34.170 0.445 37.235 2.948E-05 
16 0.625 0.225 12.967 37.111 0.399 39.855 2.746E-05 

1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE 4.5: Assessment on the outdoor motion sequences 018e059s01L using the im-
proved DC algorithm 

Thus radius multiplier size 2 will be used for motion sequence 018e059s01L. All 

the detailed tables for the other sequences are presented in appendix A.2. 

The final assessment for the outdoor motion sequences with the chosen radius 

multipliers is presented in Table 4.6. The table shows the radius multiplier, M R , 

the RMSE, the PSNR, and the background foreground percentage error, and the 

overall error compared to the frames silhouette's motion pixels. 

Sequence Number MR RMSE PSNR FG BG Overall 2 
(JRMSE 

Number of Frames (dB) Error1 Error2 Error3 

008e013s00L 100 4 0.202 13.915 19.138 1.740 30.414 1. 774E-04 
00ge017s01L 96 2 0.248 12.102 33.998 2.218 49.529 9.127E-05 
010e024s00L 94 2 0.236 12.567 13.808 4.228 39.512 9.564E-05 
013e037s00L 158 4 0.153 16.307 12.249 0.933 18.815 6.633E-05 
013e040s00L 151 4 0.259 11.731 43.961 1.763 57.197 6.092E-05 
017e054s00L 112 2 0.257 11.820 34.688 2.041 47.166 3.969E-04 
017e055s00R 88 4 0.213 13.433 24.040 1.720 35.875 1. 188E-04 
018e059s01L 104 2 0.159 16.005 8.170 1.708 19.937 1. 195E-04 
018e060s00L 88 4 0.188 14.545 15.117 1.677 25.728 3.786E-05 
01ge063s05L 112 4 0.156 16.134 15.103 1.165 26.511 1.322E-04 

Average 0.207 13.856 22.027 1.919 35.068 1.297E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 4.6: Overall assessment on a number of motion outdoor sequences using the 
DC algorithm 

Motion sequence 013e040s00L gave the highest RMSE, and the minimum PSNR 

value. While 013e037s00L motion sequence provided the minimum RMSE and the 
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highest PSNR. For the foreground percentage error, motion sequence 013e040s00L 

gave the highest percentage error recorded by all the sequences. The range of 

error here is in the interval of 8.17% to 43.96% with an average of 22.03%. The 

minimum foreground percentage error was given by 018e059s01L motion sequence. 

The background percentage error gave an average of 1.92% which is a much lower 

error than in the foreground error. The error ranged from 0.93% to 4.23%. When 

looking at the percentage of the overall error over the silhouette's motion pixels, 

the maximum error was 57.20% while the minimum was 18.82%. The average error 

here is 35.07%. The RMSE variance is small in the tested sequences which ranged 

from 3.786E-05 to 3.969E-04. These values illustrate that the improved DC error 

performance is consistent on outdoor motion sequences. 

When comparing Table 4.6 with Table 4.2, the RMSE dropped more than 30% from 

0.31 to 0.21. The PSNR also improved from 1O.21dB to 13.86dB. The foreground 

error has increased in the modified DC, from 9.27% to 22.03%, but at the same 

time the background error decreased, from 9.86% to 1.92%. The overall error also 

decreased in the modified DC. 

Comparing the performance of the improved DC on outdoor motion sequences, 

Table 4.6, with the performance of the improved SBD, Table 2.8, and the MOG, 

Table 3.12, yields that the improved DC gave the second best result in the RMSE, 

the PSNR, and the overall error. The best result was scored by the improved 

SBD. Though the improved DC has scored the worst result in the foreground 

region, but it scored the best result in the background region with an error of 

1.92% compared to an error of 2.15% and 3.98% in the improved SBD and the 

MOG classifiers respectively. 

Figure 4.6 shows samples of outdoor extracted images. Fl:om these samples the 

algorithm performance did not perform as well as in indoor environment. However, 

the background region is much cleaner than in the original DC algorithm. All the 

presented samples showed less error in the background region. Motion sequence 

013e040s00L sample showed more error especially in the top left corner where this 

is the position of a tree leaves moving due to the wind in this sequence. 

The shadow is still persistent in three of the four presented samples. Large part of 

the shadow is showing in motion sequence 008e013s00L. Smaller shadow parts are 

also showing in 013e040s00L and 017e055s00R. The shadow in 018e060s00L has 

mostly disappeared. 

Foreground detection has deteriorated compared to the original DC. This is due 

to the enlargement of the background radius sphere which resulted in classifying 

motion pixels erroneously as background pixels. Foreground region of sequence 

018e060s00L sample has less deterioration effects. 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image with 
MR=4 

(e) T he extracted image with 
MR= 2 

(h) The extracted image with 
MR= 2 

(k) The extracted image with 
MR=4 

(c) The extracted image s ilhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) T he extracted image s ilhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 4.6: Examples of outdoor images extracted using the improved UC algorithm 
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The overall result on the outdoor motion sequences is positive. Overall a better 

extraction was achieved for the motion sequences but with a disadvantage of loosing 

accuracy in moving subject (foreground) extraction. 

Comparing the outdoor extraction of the improved UC, Figure 4.6, with the ex­

traction of the original UC, Figure 4.4, shows a large improvement in the overall 

extraction. Though, the moving subject extraction holes increased in all the sam­

ples, but the background noise had dropped substantially. We notice the back­

ground became cleaner with only few isolated noise in addition to a slight decrease 

in the shadow in samples 008e013s00L and 00ge017sOlL. Also comparing the same 

results of Figure 4.6 to the results of the improved SBD, Figure 2.11, and the MOG 

classifier, Figure 3.6, the improved UC and the improved SBD gave the best back­

ground result with only few isolated noise pixels. Some parts of the shadow were 

removed by the improved SBD and the improved UC (in sequences 008e013s00L 

and 0l3e037s00L). In the extraction of the moving subject's quality, the MOG 

gave the best results (in all the sequences except 0l3e037s00L sample) where the 

improved SBD and the improved UC extracted subjects had more holes (improved 

UC holes are larger than in the improved SBD). 

4.7 Concl usions 

In this chapter we have developed a new classifier algorithm for motion extraction, 

the Unary Classifier. The Unary Classifier performed well in extracting the motion 

region but failed in performing as well in the background region. The indoor/outdoor 

sequences shown excessive noise in the background with almost a 10% of error (9.86% 

for outdoor and 8.02 for indoor). The overall error exceeded 100% of the silhouette's 

pixels in the indoor sequences and over 70% for the outdoor sequences. We provided an 

improved version for the UC algorithm. The improvement reduced the RMSE noticeably 

in both the indoor and the outdoor motion sequences. The error dropped on average 

more than 70% for indoor sequences and more than 30% for outdoor sequences. The 

UC performance leaves an opportunity for enhancements through combining with other 

classifiers to get a better collective decision leading to a better extraction. 



Chapter 5 

Shadow Suppression using 

Invariant Colour Models 

5.1 Motivation 

In the process of distinguishing between motion pixels and background pixels, the pix­

els containing shadow can appear as a major area of misclassification for many motion 

extraction algorithms (the mixture of Gaussians algorithm and the unary classifier al­

gorithm are clear examples for such a problem). The reason behind the difficulty of 

correctly classifying shadow pixels as background pixels is due to the fact that those 

pixels have suffered from a change in luminance resulting in a change in intensity. These 

changes led those pixels to be out of the domain of the background model. The problem 

of shadow extraction can be solved by statistical measures (Horprasert et al., 2000, 1999). 

Other research also aimed to accommodate shadow extraction by using colour models 

that minimise (if not remove) the effect of shadows luminance change to the background 

pixels (Gevers and Smeulders, 2000; Cheng et al., 2001; Gevers and Smeulders, 1999). 

Since in this work we consider using different classifiers to strengthen the final outcome 

of motion extraction, we will consider using different methods for shadow suppression 

for the same reason. So that techniques as yet without inherent shadow suppression 

(MOG and Unary Classifier) can have performance in this respect equally to that of the 

SBD algorithm. In this way, performance is then balanced for future fusion. 

In the process of finding a suitable colour model we tried different colour models that 

were claimed to be effective in this arena. Accordingly, we will compare the RGB colour 

model with four different colour models to find empirically an effective model to enhance 

the overall labelling process. 
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5.2 Colour space 

A colour model is an abstract mathematical model that describes a representation of 

colours as a set of numbers, typically as three or four values or colour components. 

There are several models used to describe the colour scheme: RGB (Red, Green, and 

Blue), normalised rgb, HSV (Hue, Saturation, and Value) etc. Each model is derived 

for specific purposes and has certain advantages over the others. Converting between 

the different models is generally achieved by a relatively simple mapping. Selecting the 

best colour space is still one of the difficulties in colour image segmentation (Gauch and 

Hsia, 1992). In this section we will consider five different colour models. 

5.2.1 RGB 

Colour is defined as a combination to tristimuli R (red), G (green), and B (blue). From 

the RGB representation other colour models can be derived. RGB is the most commonly 

used model for television and for pictures acquired by digital cameras (Cheng et al., 

2001). 

The brightness value of the scene can be used to represent the three primary colours 

(R,G,B) through the following equation 

(5.1) 

for C E (R, G, B) where Ee(>\) is the radiance spectrum, BeC>') is the filter for the colour 

C and A is the wave length. 

The RGB model can be represented geometrically by a 3- dimensional cube Figure 5.1 

where the position of a point is in vector space. White, for instance, can be represented 

when all the primary colours are at k, where k is the maximum light intensity (when k 

is set to 1 a unity cube is produced). The derivation of the other colours is shown on 

the cube. 

RGB is suitable for colour display but not good for colour scene segmentation and 

analysis because of the light correlation among the R, G, and B components (Pietikainen 

et al., 1996; Littmann and Ritter, 1997). Thus if the intensity changes, all the three 

components will change accordingly. Also the RGB colour model measurement does not 

represent colour differences within a uniform scale. 
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FIGURE 5.1: RGB colour cube 

5.2.2 Normalised rgb 

70 

The normalised rgb model is an efficient method to get the variations of intensities 

uniformly across the spectral distribution. The normalised colour space is defined as 

r=R/(R+G+B) (5.2) 

g=G/(R+G+B) (5.3) 

b=B/(R+G+B) (5.4) 

The model components have to satisfy the following condition 

r+g+b=1 (5.5) 

Due to condition (5.5), we may only use two of the three colour components since the 

third can be derived from them (Golland and Bruckstein, 1996). 

The normalisation process removes intensity information, thus the rgb values are "pure 

colours" (Storring, 2004). This property led to one of the advantages of the normalised 

rgb colour system which is its independence to the brightness of the image (Andreadis 
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et al., 1990). Normalisation also reduces the sensitivity of the distribution to colour 

variability (Terrillon et al., 1998). The normalised colours are very noisy when pixel 

values reflect low intensity (Zheng, 2004; Cheng et al., 2001; Pietikainen et al., 1996). 

5.2.3 HSV 

The HSV (hue-saturation-value) (Rui et al., 1996; Tsang and Tsang, 1996; Kim et al., 

1996; Etemadnia and Alsharif, 2003) model is another commonly used colour space in 

image processing which is more intuitive to human vision. Each component in this 

space contributes directly to visual perception (Wan and Kuo, 1998). In HSV each 

axis can be quantised independently which makes this colour space very useful (Park 

et al., 1999). Wan and Kuo (Wan and Kuo, 1996) concluded that a colour quanti­

sation scheme based on HSV space performed better than one based on RGB colour 

space. There are many different variations of HSV model, such as HSB (hue-saturation­

brightness) (Tepichin-Rodriguez et al., 1995), HSL (hue-saturation-lightness), and HSI 

(hue-saturation-intensity) (Carron and Lambert, 1994; Kim and Park, 1996). 

Hue (H) is an attribute associated with the dominant wavelength in a mixture of light 

waves. Thus hue represents dominant colour as perceived by an observer. Saturation (S) 

refers to relative purity or the amount of light mixed with a hue (Gonzalez and Woods, 

1992). Value (V) represents intensity. Hue and saturation taken together are called 

chromaticity, and therefore may be characterised by its intensity, (V), and chromaticity 

(HS). This characteristic of the HSV model can be used for shadow suppression. Shadow 

effects mainly the brightness (intensity) of the background. Therefore, using only the 

(HS) colour components (jointly or separately) should eliminate the shadow effect on 

the background resulting in extracting the foreground only without the shadow. In this 

thesis we implemented all the colour models including the HSV as a three dimensional 

model (including all the colour components). The two dimensional implementation of 

the (HS) (or even using each one of them alone) will be left for implementation as future 

work. 

A hue-saturation slice of HSV is derived by projecting the surface of an RGB colour cube 

onto the R + G + B = 1 plane. The saturation and hue of a point on the projection are 

its polar coordinates rand e with respect to the centre of the projected surface, while 

the value (V) of all the points on the projection is simply the length of the diagonal of 

the colour cube projected (Schwarz et al., 1987). The RGB can be transformed to HSV 

by a standard procedure (Smith, 1978). 
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Gevers and Smeulders (Gevers and Smeulders, 1999, 1996) proposed this colour model. 

The colour model was analysed and evaluated with various colour features by colour­

metric histogram matching under varying illumination environment. 

The colour model is formulated as follows: 

l _ (R - G)2 
1 - (R - G)2 + (R - B)2 + (G - B)2 

(5.6) 

(R - B)2 
l2 = (R _ G)2 + (R - B)2 + (G - B)2 (5.7) 

(G - B)2 
is = (R _ G)2 + (R - B)2 + (G - B)2 (5.8) 

where R, G, B are the colour members of the RGB colour model. The experiments 

applied by Gevers and Smeulders (Gevers and Smeulders, 1999) showed that this colour 

model is invariant to viewing direction, surface orientation, highlights, illumination di­

rection, and illumination intensity. 

The hl2l3 colour space was applied by Sebe and Lew (Sebe and Lew, 2001) with a 

maximum likelihood approach in a colour-based retrieval algorithm. 

This colour model was proposed by Gevers and Smeulders (Gevers and Smeulders, 1999) 

as a colour invariant model. The same procedure used in the hl2l3 colour space was used 

by the authors to verify its competence. This colour space formulation is as follows: 

R 
Cl = arctan( max{ G, B}) (5.9) 

G 
C2 = arctan( {B}) max R, 

(5.10) 

B 
C3 = arctan(max{R,G}) (5.11) 

The evaluation by the authors showed that, like the hl2l3 model, this model is invariant 

to viewing direction, surface orientation, highlights, illumination direction, and illumi­

nation intensity. 
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The model was used with an edge detector in (Salvador et al., 2001) for shadow identi­

fication and classification. It was also used to segment only cast shadows for both still 

images and motion sequences in (Salvador et al., 2004). The result of extraction gave 

an 80-90% segmentation accuracy most of the time in a sequence of 300 frames. 

5.3 Colour Model Evaluation 

In order to find a better colour invariant colour space that can eliminate and suppress 

the shadow from being detected as a motion object, we tested the colour spaces: RGB, 

normalised rbg, HSV, hl2l3, and CIC2C3. The evaluation was done through using each 

colour model with a motion segmenter while monitoring the effect of the colour model 

on the three pre-labelled regions: moving object, background and shadow. Due to the 

difficulty in obtaining ground truth data for the shadow region, the SBD algorithm 

was used to identify and label the shadow region. Any pixel identified by the SBD as 

shadow is grouped in the shadow region as long as it is not identified in the silhouette as 

foreground. This is due to the SBD algorithm outcome which can wrongly label motion 

pixels as shadows. Also shadow pixels are allowed only to be in the area under the knee 

level in the sequences used. The background appearing above the knee was at too far a 

distance from the camera for shadows to affect it, with the lighting arrangement used. 

This will avoid having pixels that are supposed to appear in the background region being 

mislabelled as shadows. 

The Unary Classifier was used as a motion segmenter to test the colour spaces. The 

parametrisation of the Unary Classifier is much simpler with less parameters (compared 

to the MOG algorithm) suggesting the bias associated with parameter choice can be 

mitigated, thus ensuring focus on shadows alone. 

5.3.1 Parameterising Unary Classifier 

The soft margin coefficient, 1/, set to 0.01 (to include 99% of the background pixels 

in the background model). Different settings of (J were used: 1, 10, 100 on an indoor 

motion sequence, 0l8a060s00L, with a dimension of 240 x 367 pixels. The (J values were 

chosen initially large to examine the effect of such size on the performance of the UC in 

accommodating the background pixels variations. Also the same (J values were used on 

an outdoor motion sequence, 0l3e037s00L, with the same dimensions used in the data 

sets. The test was done using all the colour models being tested. The result for the 

indoor sequence is shown in Table 5.1. 

The table shows that increasing the standard deviation from 1 to 100 have minor effect 

on the result on colour models: CIC2C3, hl2l3, Normalised rgb and RGB. HSV colour 

model is the only colour model affected by changing the kernel (J. The HSV colour 
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Colour a RMSE PSNR 
Model (dB) 

C1 C2C3 1 0.323 9.827 
10 0.322 9.838 

100 0.321 9.878 
HSV 1 0.595 4.513 

10 0.402 7.936 
100 0.368 8.715 

hl2 l3 1 0.262 11.643 
10 0.262 11.652 

100 0.255 11.860 
normJgb 1 0.336 9.489 

10 0.335 9.497 
100 0.341 9.347 

RGB 1 0.366 8.751 
10 0.366 8.763 

100 0.364 8.798 
1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 BG Shadow Percentage Error 

FG BG 
Error1 Error 2 

0.202 10.003 
0.203 9.969 
0.202 9.850 
0.001 39.063 
2.002 13.487 
2.405 9.980 
1.536 7.377 
1.537 7.358 
1.538 6.938 
0.131 10.695 
0.131 10.670 
0.131 11.187 
0.053 10.427 
0.053 10.382 
0.053 10.242 

4 The percentage of the overall error compared to the motion pixels only 

Shadow 
Error3 

49.989 
49.969 
49.911 
99.983 
99.863 
99.856 
16.847 
16.851 
16.881 
55.686 
55.657 
55.644 
99.384 
99.374 
99.381 

Overall 
Error" 

64.301 
64.132 
63.539 

224.435 
103.794 
87.703 
42.436 
42.370 
40.358 
69.786 
69.649 
72.082 
86.236 
86.021 
85.328 

TABLE 5.1: The effect of changing the standard deviation on an indoor sequence using 
different colour models 

i-.l 

aRMSE 

4.94E-05 
4.86E-05 
4.92E-05 
5.36E-04 
6.83E-04 
8.27E-04 
6.46E-05 
6.50E-05 
6.57E-05 
5.48E-05 
5.39E-05 
5.21E-05 
6.36E-04 
6.41E-04 
6.37E-04 

model overall error decreased as a was increased (inversely proportional). Nevertheless, 

the fact that the shadow error in HSV is maintained close to 100% even when a was 

changed, indicates that continuing to increase a for this model is pointless since we are 

targeting a colour model that suppresses shadows. Also the foreground error increased 

as a increased. 

From the table, choosing any a value will keep the colour model error order the same. 

a will be set to 10 for indoor sequences. A further discussion of the specific amount of 

error for each region will be discussed in the next section with more sequences used in 

the evaluation process. 

The results for the outdoor motion sequence with different settings to the kernel standard 

deviation is shown in Table 5.2. From the table, the amount of error decreased as a 

increased. However, in most of the colour models the change in the error is minimal, 

1-2% (notice: C1C2C3, Normalised rgb and RGB). The change is only noticeable when a 

changed from 1 to 10 in HSV and lll2l3 and also when a changed form 10 to 100 in HSV. 

Continuing to increase the kernel a for HSV might decrease the percentage error value 

for HSV. But as in the indoor sequences, the shadow error is large and changes little 

with increase in a. Since we are looking for a colour model that suppresses the shadow, 

continuing to increase the standard deviation is of no benefit to our goal. The error has 

mostly given a stable value on a a of 10 for most of the colour models therefore we will 

use it for a more thorough investigation using more outdoor motion sequences. 
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Colour IJ RMSE PSNR 
Model (dB) 

CIC2C3 1 0.277 11.161 
10 0.275 11.216 

100 0.270 11.369 
HSV 1 0.563 4.996 

10 0.358 8.935 
100 0.326 9.741 

lll2l3 1 0.341 9.348 
10 0.319 9.935 
100 0.313 10.093 

norm-.rgb 1 0.287 10.851 
10 0.285 10.913 

100 0.281 11.034 
RGB 1 0.333 9.567 

10 0.331 9.600 
100 0.327 9.706 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 BG Shadow Percentage Error 

FG BG 
Error1 Error 2 

3.976 7.947 
3.981 7.835 
4.002 7.533 
0.614 34.424 
7.194 11.383 
8.878 8.636 
27.648 9.267 
29.754 7.292 
30.417 6.794 
3.165 8.598 
3.186 8.459 
3.205 8.200 
2.866 9.947 
3.008 9.832 
3.013 9.520 

4 The percentage of the overall error compared to the motion pixels only 

Shadow 
Error3 

18.161 
18.147 
17.801 
99.775 
97.611 
96.310 
15.319 
14.231 
13.690 
22.954 
22.954 
22.808 
99.822 
99.822 
99.837 

Overall 
Error4 

61.643 
60.877 
58.776 

254.569 
102.949 
85.591 
93.927 
82.265 
79.409 
66.201 
65.277 
63.494 
89.164 
88.534 
86.398 

TABLE 5.2: The effect of changing a on a outdoor sequence using different colour 
models 

5.3.2 Indoor Evaluation 

75 

IJRMSE 

1.33E-04 
1.34E-04 
1.32E-04 
1.01E-04 
1.43E-04 
1.47E-04 
2.28E-04 
3.5IE-04 
4.07E-04 
1.03E-04 
1.04E-04 
1.06E-04 
2.12E-04 
2.33E-04 
2.29E-04 

Figure 5.2 shows examples of extracting an indoor image with different colour models. 

Figure 5.2(a) is the input image. Figure 5.2(b) is the silhouette used with black iden­

tifying the background region, white is the foreground region and red is the shadow 

region. 

Figure 5.2(c) gives the extraction using CIC2C3 colour model. The moving object is 

extracted with few holes. Part of the shadow has disappeared. The background is not 

perfectly extracted and many background pixels mislabelled as motion pixels. Later on 

after comparing the extraction using this colour model with other colour models, this 

colour model will show as a better option than other colour models though it is not 

perfect. 

The HSV model extraction in Figure 5.2(d) gave a more noisy background. The shadow 

region is not suppressed at all as it shows in the image. Holes in the moving object 

appear in areas where darker regions are in-between light areas (like in the folds of the 

t-shirt of the moving subject). 

For the lrl2l3 extracted image in Figure 5.2(e), the background is noisy with motion 

pixels. The noise motion pixels appearing in the background are larger than in the 

background extracted using other colour models. The extracted moving object is one 
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(a) Indoor input frame (b) The Shadow Labelled 

(d) HSV 

(f) RGB 

(g) Normalised rgb 

FIGURE 5.2: Indoor images extracted using different colour models. 

of the worst compared to the other colour models where holes appear on most of the 

body (small holes). Also the moving object extracted edges are not as well defined as 

the other colour models. Even t hough this model is not a competitor with some of t he 

colour models in extracting the background and the foreground regions, t he model gives 

the best performance in extracting t he shadow. From the given sample the algorithm 

with the l1l2l3 succeeded in removing most of the shadow region. 

The RGB colour model sample in Figure 5.2(f) reveals that in the given samples this 

colour model is the best in extracting the moving object with no holes and with well 
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extracted edges. The background is noisy. The shadow region as a whole is mislabelled 

where we can see the shadow region labelled as foreground pixels. 

The normalised rgb, Figure 5.2(g), gives a similar performance to the C1C2C3 where pm·t 

of the shadow is not suppressed, the background is noisy with motion pixels, and the 

moving object is extracted without many holes. 

Colour RMSE PSNR FG BG Shadow Overall 2 
O'RlIISE 

Model (dB) Error1 Error 2 Error3 Error4 

C1 C2C3 0.273 11.288 0.224 7.011 47.434 118.664 3.94IE-05 
HSV 0.383 8.360 3.897 13.423 99.896 233.140 1.539E-04 

hl2 l3 0.242 12.358 2.072 5.848 18.165 93.017 3.613E-05 
normJgb 0.286 10.905 0.173 7.624 53.313 129.567 4.779E-05 
RGB 0.330 9.663 0.076 9.516 99.559 173.046 1.385E-04 
1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 BG Shadow Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE 5.3: Averaged overall assessment of different colour models on 10 motion indoor 
sequences using the DC algorithm 

In order to evaluate the tested colour models we are not going to concentrate on the 

shadow region only since a colour model that performs well on a region might not 

necessarily perform as well on other regions. Thus the evaluation was done on each 

region separately then an overall measurement of performance was obtained. Table 

5.3 shows the performance measures using RMSE; PSNR; the percentage of the overall 

error compared to the silhouette's motion pixels; and regional performance measures: 

background, foreground, and shadow. Each measurement in the table is an averaged 

measure over 270 frames using 10 different sequences. 

In Table 5.3 the RMSE column shows lll2l3 giving the minimum error followed by CIC2C3 

and then the normalised rgb colour model. RGB and HSV gave the worst RMSE over all 

the colour models. The PSNR gave the same ranking for the colour models with lll2b 

giving the best result. In the foreground region, RGB scored the minimum foreground 

error followed by normalised rgb and C1C2C3. HSV and hl2l3 gave the worst result in 

this region (both colour models samples contained erroneous holes in the moving subject 

in Figure 5.2). In the background region, lll2l3 colour model gave the minimum error 

followed by C1C2C3 and then the normalised rgb. HSV and RGB colour models were 

the worst performers in this region. For the shadow region, HSV and RGB gave the 

worst result with most of the shadow region mislabelled. The normalised rgb and the 

colour model C1C2C3 managed to suppress almost half of the shadow region with 53.31% 

for the first and 47.43% for the second. The hl2l3 model showed the best result in 

this region with only 18.17% error. The overall percentage error over the silhouette 

motion pixels gave the minimum error rank to l1l2l3 followed by C1C2C3 and then the 

normalised rgb colour model. HSV and RGB colour models performed worst with the 
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highest percentage error exceeding twice the amount of the mot ion pixels for the HSV 

and 173.05% for RGB . 

The overall measurement is mainly affected by t he dominance of the background region. 

It is true t hat hl213 is t he best performer in t he backg"J."ound and the shadow region 

but it is one of the worst in the foreground reKion. Such an extreme result lowers t he 

expectations on this colour model especially if t he quality of extracting t he foreground 

region is a main concern. The Cl C2C3 colour model appears best as a best option with 

the second best performance in t he RMSE, PSNR, background region, shadow region, 

and the overall percentage error. Though the consistency of t1!e VC was already shown 

previously in Chap. 4, the VC illustrates a large consistency even when t he colour model 

is changed (the RMSE variance is smaH for all the different colour models) . 
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FIGURE 5.3: The averaged error of ten indoor sequences in different regions along with 
the overall percentage error 

Figure 5.3 shows the averaged errors for t he different colour models in different regions 

for 27 frames averaged over 10 different motion sequences. 
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The foreground percentage error is shown in Figure 5.3(a). While CIC2C3, normalised rgb 

and RGB colour model maintained the extraction with the lowest error, HSV followed 

by lll2l3 gave the highest percentage error. 

Figure 5.3(b) shows the averaged percentage error over the background region. HSV 

continued to score the highest error as an average over all 10 sequences. RGB scores the 

second highest percentage error then below that comes the error for the Cl C2C3 and the 

normalised rgb, but with small differences. Overall, the lll2l3 model scored the lowest 

percentage error in this region. 

Figure 5.3(c) shows the error in the shadow region. HSV and the RGB colour models 

gave the highest error in this region. l}l2l3 gave the minimum error in the shadow 

region. C1C2C3 and then normalised rgb gave similar results suppressing around 40% to 

50% percent of the shadow. 

The diagram for overall percentage error over motion pixels in the silhouette is shown in 

Figure 5.3( d). The result is the same as earlier results in Table 5.3 where it shows lll2l3 

giving the lowest error followed by C1C2C3 and then the normalised rgb colour models. 

RGB and HSV gave the highest errors. 

We can notice from the results that C1C2C3 and normalised rgb usually give similar 

performance with the C1 C2C3 colour model slightly better in most of the regions. 

5.3.3 Outdoor Evaluation 

Figure 5.4 shows examples of extracting an outdoor image with different colour models. 

Figure 5.4(a) is the input image. Figure 5.4(b) is the silhouette used with black colour 

identifying the background region, white the foreground region and red the shadow 

region. 

Figure 5.4(c) gives the extraction using the QC2c3 colour model. The moving object is 

extracted with few holes. The moving object edges are not clearly extracted. Also the 

feet are not extracted well. Most of the shadow has disappeared. The background is 

not perfectly extracted where many background pixels are mislabelled as motion pixels. 

Even though the extraction using this colour model is not perfect, it will be shown later 

that the performance using this colour model is better than the other colour models. 

The background in the HSV extraction in Figure 5.4(d), has more noise than C1C2C3. 

The shadow region is hardly suppressed. More holes appear on the moving object than 

in the C1C2C3 extracted sample. 

For lll2l3 sample image in Figure 5.4(e), the extracted moving object is the worst com­

pared to the other colour models where large holes appear on most of the body. The 

background is noisy with motion pixels. Also the moving object extracted edges are not 
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(a) Outdoor input frame (b) The Shadow Labelled 

(d) HSV 

(f) RGB 

(g) Normalised rgb 

FIGURE 5 .4: Outdoor images extracted using different colour models. 

as well extracted as the other colour models. This colour model gives the same per­

formance on the shadow region as in indoor sequences where it can extract this region 

efficiently. 
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The RGB colour model sample in Figure 5.4(f) shows the moving object with some holes. 

The background is noisy with motion pixels. This colour model's main weak point is 

in the shadow region, as it appears in the sample image, where the shadow pixels are 

resident and labelled as motion pixels. 

The same as in the indoor extracted samples, the normalised rgb in Figure 5.4(g) gives 

a similar performance to the C1C2C3 model. The shadow is suppressed well. The back­

ground region is noisy with motion pixels. The moving subject extracted well with few 

holes in it except the moving subject edges and the feet part where it is not extracted 

well. 

Colour RMSE PSNR FG BG Shadow Overall 2 
(JRMSE 

Model (dB) Error 1 Error 3 Error2 Error4 

Q C2C3 0.308 10.278 9.580 9.260 34.275 77.288 1.47lE-04 
HSV 0.404 7.985 7.528 16.629 99.139 135.106 3.434E-04 
lll2l3 0.338 9.464 32.037 8.293 26.661 92.445 1.52lE-04 
normJgb 0.321 9.928 7.967 10.290 40.977 82.768 1.344E-04 
RGB 0.365 8.905 4.240 13.673 99.854 109.787 4.036E-04 
1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 BG Shadow Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE 5.4: Averaged overall assessment of different colour models on 10 motion out­
door sequences using the UC algorithm 

The same evaluation was done as on the indoor sequences for each region (background, 

foreground and shadow) and an overall assessment is obtained as well. Table 5.4 shows 

the performance measures using RMSE; PSNR; regional performance measures: back­

ground, foreground, and shadow; and the percentage of the overall error compared to 

the silhouette's motion pixels. Each measurement in the table is an averaged measure 

over 50 frames using 10 different sequences. 

In Table 5.4, the RMSE column shows C1 C2C3 giving the minimum error followed by the 

normalised rgb and then the lll2h colour model. RGB and HSV gave the worst RMSE 

over all the colour models. The PSNR gave the same ranking for the colour models with 

C1C2C3 giving the best result and RGB and HSV giving the worst. In the foreground 

region error, RGB scored the minimum foreground error followed by the HSV model. 

Then comes the normalised rgb and C1C2C3. lll2l3 gave the worst result in this region 

(the colour model sample showed big holes in the moving object in Figure 5.4(e)). All 

the other models gave results with less than 10% error in the foreground region while 

the lrl2h colour model value is very large, 32.04%. In the background region, the lll2l3 

colour model gave the minimum error followed by C1C2C3 and then the normalised rgb. 

HSV and RGB colour models were the worst performers in this region. For the shadow 

region, HSV and RGB gave the worst result with most of the shadow region mislabelled. 

The lrl2l3 model showed the best result in this region with only 26.66% of error. C1C2C3 
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followed the top performer in t his region with only 34.28% of error. The normalised 

rgb percentage error then follows with 40.98%. The overall percentage error over the 

silhouette's mot ion pixels minimum error is scored by CI C2C3 with 77.29% error. The 

normalised rgb and the hhl3 followed with an increase of almost 5% for t he first and 

15% for the second. HSV and RGB colour models both scored more than 100% of error 

to perform worst of all t he colour models. Not ice that for all the different colour models 

with the high overall error recorded, the RMSE variance is small. This means t hat t he 

UC gives high consistency in motion extraction even if the colour model is changed. 
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FIGURE 5.5: The averaged error of ten outdoor sequences in different regions along 
with the overall percentage error 

Figure 5.5 shows t he averaged errors for the different colour models in different regions 

over 10 different motion sequences. 

The foreground percentage error is shown in Figure 5.5(a). While RGB performed 

the best in this region, CIC2C3 , normalised rgb and HSV colour models maintained t he 

extraction with the lowest error (less than 10%). hl2l3 gave the highest percentage error. 

Figure 5.5(b) shows the averaged percentage error over the background region. HSV 

maintained to score the highest error. RGB scored the second highest percentage error. 

Then came the group of normalised rgb, CIC2C3 and hl2l3 with t he similar and lower 

error (maintained less than 11%). 
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For the shadow region, Figure 5.5(c), HSV and the RGB colour models gave the highest. 

error in this region. lll2l3 gave t.he lowest shadow error. C1C2C3 and t.he normalised rgb 

gave similar result.s t.o lll2l3 colour model with small difference. 

The overall percentage error over the motion pixels in the silhouette is shown in Figure 

5.5(d). The result is the same as the result in Table 5.4 where it shows C1C2C3 giving 

the lowest error followed by normalised rgb and t.hen the lll2l3 colour models. RGB and 

HSV gave the highest errors. 

The same note can be made on the performance of C1 C2C3 and the normalised rgb where 

they usually give similar performance with the normalised rgb usually slightly better in 

the foreground region and the C1 C2C3 is better in the background, the shadow and the 

overall percentage error. 

For the HSV, (V) represents intensity while (H,S) are the chromatic components. There­

fore to utilise the intensity and chromaticity components in shadow extraction the HS 

components (separately or jointly) can be used for motion extraction (Gevers and Smeul­

ders, 1999; Bowden, 1999). This procedure will be added as future work. 

The QC2C3 model showed one of the best performances in the colour models assessments 

(best in outdoor and the second best in the indoor sequences). Therefore, this colour 

model will be selected for further use in the Unary Classifier in the fusion process. 

5.4 MOG and the Cl C2C3 colour model 

Since the MOG has more parameters to optimise than the UC, we performed the colour 

model evaluation using the UC. From the evaluation we found that C1C2C3 colour model is 

the most suitable colour model. Now we will test the performance of C1C2C3 colour model 

on the MOG. The MOG parameters are tuned using the same process as in Chapter 3. 

The MOG parameters tuning procedure using the C1C2C3 colour model with the detailed 

tests and tables are in Appendix B. 

5.4.1 Extraction Results for the MOG using C1C2C3 colour model 

The final settings for the indoor and the outdoor motion sequences were used to further 

test more motion sequences. 

• Indoor Motion Sequences 
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The 10 indoor sequences were processed using the MOG algorithm with the opti­

mised settings (In each one of them 50-52 frames were used for background mod­

elling). The optimised settings are: leaming rate 0.004, the initial weight 0.0005, 

the init ial variance 0.01, 0.4 background threshold and 7 Gaussians per mixture. 

(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The extracted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 5.6: Examples of indoor images extracted using the MOG algorithm with the 
C1C2C3 colour model. 

Samples of the extracted images are shown in Figure 5.6. Looking at the extracted 

samples in a colour format, in the second column, leads us to conclude that t he 

extract ion is optimal. However when turning the result into binary images, the pros 

and cons of extraction is more obvious. The system performs well in suppressing 

the shadow in all t he shown samples except for small traces in 010a024s08L and 

017a054s00L. MOG also performs well in extracting the foreground region with 

only small holes in the legs of the moving objects. For the background region 
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the extraction seemed to be noiseless in the coloured view (the second column of 

images in Figure 5.6). However when looking at the binary view for these images, 

third column, the extraction process fails to label the top left corner of the frames 

as part of the background region. This is because the intensity values of this part 

are very small, close or equal to zero. The same problem is encountered in HSV 

and normalised colour models. Colours in these colour models becomes unstable 

near such values where a small perturbation of RGB value might cause a large 

jump in the transformed values. These value are called singularity values and the 

essential singularity of normalised coordinates is at black R = G = B = 0 (Stokman 

and Gevers, 2001; Kender, 1976). 

The evaluation of the averaged error of each sequence is shown in Table 5.5. The 

table shows the RMSE; the PSNR; and three different percentage errors, the back­

ground, foreground and the overall percentage error compared to the motion pixels. 

Sequence No. of RMSE PSNR FG BG Overall 2 
O"RMSE 

Number Frames (dB) Error l Error2 Error3 

008a013s00L 178 0.142 16.969 6.598 1.651 27.520 3.981E-05 
009a017s00L 169 0.123 18.194 5.772 1.232 23.844 3.940E-05 
01Oa024s08L 187 0.133 17.541 6.204 1.467 28.251 2.813E-05 
013a037s00L 114 0.119 18.509 9.282 0.973 26.924 2.496E-05 
013a040s00L 184 0.120 18.433 6.816 1.099 24.309 3.458E-05 
017a054s00L 188 0.109 19.297 5.750 0.852 17.720 1.924E-05 
017a055s00R 162 0.106 19.473 6.142 0.786 17.653 1.637E-05 
018a059s00L 188 0.115 18.835 6.983 0.915 20.096 2.617E-05 
018a060s00L 179 0.113 18.950 5.308 0.988 19.106 2.827E-05 
019a063s00L 186 0.113 18.932 6.030 0.968 20.746 2.442E-05 

Average 0.119 18.513 6.488 1.093 22.617 2.814E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 5.5: Overall assessment on a number of motion indoor sequences using the 
MOG algorithm with the Cl C2C3 colour model. 

Motion sequence 017a055s00R gave the best results in the RMSE, the PSNR, the 

background error, and the the overall error compared to the silhouette's motion 

pixels. On the other hand, 010a024s08L gave the worst results in most of the 

measurement except for the foreground and the background error. The averaged 

error for the foreground error is 6.49%. The averaged background error is smaller, 

1.09%. The overall percentage error compared to the silhouette's motion pixels is 

22.62%. The RMSE variance is small in all the tested motion sequences with a 

maximum value of 3.981E-05 in sequence 008a013s00L. This means that in indoor 

motion sequences, the qC2c3 MOG performs in a large consistency. 
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When comparing these results with the results of the indoor MOG using the RGB 

colour, Table 3.11, the CIC2C3 MOG results are smaller in the background and the 

overall errors. The results of Table 3.11 are 0.84%, 2.73%, and 41.05% for the 

foreground error, the background error and the overall error respectively. While 

in Table 5.5, the results are 6.85%, 1.09% and 22.62% for the same regions (fore­

ground, background, and overall error respectively). The RMSE decreased almost 

25% from 0.16 to 0.12. The PSNR also improved scoring here 18.51dB while in 

the RGB colour scored 16.16dB. 

• Outdoor Motion Sequences 

In the process of evaluating the MOG with the CIC2C3 colour model, 10 outdoor 

sequences were tested using this algorithm. 48-55 background frames were used for 

background adaption. The MOG algorithm with the optimised outdoor parameters 

were used. The parameters are: learning rate of 0.04, an initial weight of 0.0005, 

an initial variance of 0.007, 0.4 for the background threshold and 7 Gaussians per 

mixture. 

Figure 5.7 shows samples of outdoor extracted images. From the shown samples 

Cl C2C3 MOG with the used settings failed to extract the motion properly. Most of 

the foreground region was mislabelled especially in motion sequence 00ge017s01L. 

The shadow region seems to be extracted well except for small part of it. The 

background region has excessive noise. 

The evaluation of the averaged error of each outdoor sequence is shown in Table 5.6. 

The table shows the RMSE, the PSNR, the background/foreground percentage 

error and the overall percentage error compared to the silhouette's motion pixels. 

Sequence No. of RMSE PSNR FG BG Overall 2 
O"RMSE 

Number Frames (dB) Error 1 Error2 Error3 

008e013s00L 100 0.331 9.723 69.099 2.050 82.254 2.863E-03 
00ge017s01L 96 0.353 9.054 76.855 3.316 100.031 3.811E-04 
01Oe024s00L 94 0.353 9.051 61.725 4.283 88.035 1.702E-04 
013e037s00L 158 0.325 9.781 61.111 3.364 84.894 2.337E-04 
013e040s00L 151 0.341 9.364 76.594 2.949 98.693 1.762E-04 
017e054s00L 112 0.379 8.440 82.023 3.338 102.445 4.085E-04 
017e055s00R 88 0.337 9.464 68.843 3.014 89.496 3.019E-04 
018e059s01L 104 0.351 9.105 75.844 3.088 97.111 1. 593E-04 
018e060s00L 88 0.341 9.340 65.465 3.150 85.301 1.904E-05 
01ge063s05L 112 0.283 10.967 71.267 1.577 86.675 1.089E-04 

Average 0.339 9.429 70.882 3.013 91.493 4.822E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 5.6: Overall assessment on a number of motion outdoor sequences using the 
MOG algorithm with the CIC2C3 colour model. 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
01Oe024s00L 

(j) A sample frame from 
0l7a054s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The extracted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 5 .7: Examples of outdoor images extracted using the MOG algorithm with 
the C1C2C3 colour model. 
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The performance of the ClC2C3 MOG with the settings used is not satisfying. The 

averaged RMSE error is 0.34 while the PSNR gave an average of 9.43dB. The 

motion pixels are mostly misclassified where less than 30% in average are classified 

correctly. The background region performance was better in numbers where the 

percentage of error on average was 3.01%. The overall error is large where the 

average error is close to cover the full amount of the motion pixels, 91.49%. When 

comparing these results with the results of the outdoor MOG using the RGB colour 

model, Table 3.11, the amount of RMSE increased by almost 57% (from 0.22 to 

0.34) and the PSNR value detriorated by 29% (13.37dB to 9.43dB). The results of 

the CIC2C3 MOG is also larger in the foreground error. The foreground error here 

is 70.88% while with RGB it was 10.01%. Also the overall error in the RGB MOG 

was 37.50% compared to 91.49% in CIC2C3 MOG. However the background error 

here is smaller than in the RGB MOG, 3.01% compared to 3.98% in the RGB 

MOG. 

Motion sequence 008e013s00L gives the highest RMSE variance, 2.863E-03. The 

RMSE variances recorded are still small which means that though ClC2C3 MOG 

gives high overall errors in outdoor sequences, its performance variation is con­

tained in a small range in all the motion sequences, 1.904E-05 to 2.863E-03. 

As an overall the MOG using the CIC2C3 colour model performed better than RGB MOG 

in indoor sequences. While it performed worst in outdoor motion sequences. Thus when 

further combining the MOG with other classifiers, we will use Cl C2C3 colour model for 

indoor sequences only. For the outdoor motion sequences we will use RGB colour model. 

5.5 Conclusions 

In this chapter we presented multiple colour invariant models that can be used with 

a motion segmenter in order to add the criteria of suppressing shadow pixels from the 

detected motion pixels. The colour models tested were indicated in the literature as 

invariant to illumination changes. The Unary Classifier was used as a segmenter. In the 

assessment procedure different overall measures were used. In addition, the assessment 

was performed on each region (shadow, background and foreground) individually. 

Due to the satisfying performance of the Cl C2C3 model on outdoor and its reasonable 

performance in indoor (the second best performer with better foreground performance 

than the best performer), this colour model will be selected for further use in the Unary 

Classifier. 
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An assessment was made on using CIC2C3 colour model with the mixture of Gaussians, 

The MOG performance was enhanced with the Cl C2C3 in indoor sequences only, There­

fore for the mixture of Gaussians Cl C2C3 colour model will be used only for indoor se­

quences but for outdoor motion sequences RGB colour model will be used, 



Chapter 6 

Combining Classifiers 

6.1 Introduction 

The potency of individual classification is challenged by pattern recognition systems 

based on combining measures (Valev and Asaithambi, 2001; Leandro Rodrguez-Liares 

et al., 2003), which can show better classification (Ruta and Gabrys, 2005; Duin, 2002; 

Chen et al., 1997; Ho et al., 1994; Huang and Suen, 1995). Classifiers that differ in 

their classification decision can offer complementary information about the patterns to 

be classified, which can be harnessed to improve performance of the selected classifier 

(Kittler et al., 1998). 

The objective of combination is not to rely on a single decision scheme. Instead, the 

decisions of single classifiers are combined to derive a consensus decision, where the 

combination method should enable us to use the benefits and avoid the weaknesses of 

each classifier in order to achieve the optimal possible performance. Combining identical 

classifiers will confer no performance benefits at the expenses of increased complexity. 

On the other hand, different but low performing classifiers are unlikely to bring any 

benefits in combined performance (Ruta and Gabrys, 2005). It is believed that optimal 

combined classifiers should be diverse (i.e. with minimum number of coincident failures) 

and have at the same time good individual performance (Sharkey and Sharkey, 1997). 

In the previous chapters we have presented three different classifiers. After improving 

the classifier's performance either by optimising the classifier's parameters, as in the 

MOG, or by improving the overall design of the technique, as in the SBD and the DC, 

we succeeded in reaching a reasonable performance for each classifier. In addition, it 

was highlighted that the performance of each classifier is different in each region and 

the erroneous noise points were mostly not overlapping (diversity). The techniques are 

quite different and this should promote diversity. 

Another important factor that has to be considered is the combination method itself. 

Among all the combination methods, simple methods like the Sum, the Product, the 

90 
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Maximum, and the l\Iedian have received much attention (Czyz et aI., 2004; Alexandre 

et al., 2001; Kuncheva et aI., 2001; Kuncheva, 2002; Kittler et aI., 1998). 

Many different studies differ as to which rule is better in performance. Kittler et a1. 

(1998) used different combination schemes namely the Sum, Product, Ma.ximum, Mini­

mum, Median and majority vote rules. They reported that the Sum rule produces the 

most reliable decisions. They also proved that the Sum is more resilient to error than the 

Product rule and called the Sum "remarkably robust". In (Alkoot and Kittler, 1999) a 

comparison was made between the four simple combination rules (Sum, Product, Ma.xi­

mum, Median) and a single expert decision. The study reached a general result stating 

that, the results prove the combiners to be better than the single expert, especially the 

Sum and the Median. Tax et a1. (1997) compared the Product and the Mean rules and 

concluded that the Product rule leads to a better performance when all the classifiers 

produce small errors. If at least one classifier produces large errors then the Mean rule 

gives better result (It is well known that a robust estimate of the Mean is the Median 

(Kittler et al., 1998)). Shakhnarovich and Darrell (2002) experimentally assessed the 

performance of the Maximum, Minimum, Sum and Product rules for combining face 

and gait cues. From the experiments the authors reached a conclusion that while the 

combination almost always improved the classification accuracy of the system, the best 

performance was produced by using the Product rule. The Minimum rule performed 

poorly in the experiments and on occasions resulted in lower performance to give an 

overall performance less than that of the best individual classifier. 

Classifier combination was applied to many different applications such as biometrics 

(gait, face, ear recognition, etc.) (Czyz et al., 2004; Jing and Zhang, 2003; Shakhnarovich 

et al., 2001; Kale et al., 2004; Chang et al., 2003; Bazin et al., 2005), handwriting 

recognition (Rahman and Fairhurst, 1997; Xu et al., 1992), speech recognition (Tur 

et al., 2005), and information retrieval (Lee, 1998; Nottelmann and Straccia, 2005). 

In the following sections we will present different new combinations of the SBD, the 

MOG and the VC classifiers in a novel probabilistic form. When combining only two 

classifiers the Maximum rule is used for the economy of analysis. For the combination 

of the three classifiers more elaborate combinations are used. We will use the Sum, the 

Product, the Maximum and the Median combination rules. We will start by presenting 

the posterior probabilities derived. Then we will describe the combination methods used 

to obtain the final decision. Finally we will present the combination results. Notice that 

the improved SBD and the improved VC are the classifiers used for combination and 

comparison and we refer to them in this chapter simply as SBD and VC, respectively. 
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6.2 Bayesian Classification 

A natural way to combine probabilistic classifiers is through Bayes theorem. The fact 

that both algorithms operate using pixel wise operations facilitated the process of com­

bination. The combination of the classifiers using Bayes theorem is given as 

P(Clx) = p(xIC)P(C) = p(xIC)P(C) . 
p(x) LP(xIC)P(C) 

(6.1) 

where C is the class and x is the tested pixel. 

For classifiers that do not have a natural probabilistic output, one can approximate a 

probability by fitting a logistic function to the output (Bishop, 1996; Platt, 1999; Wahba, 

1992). The posterior probability can be expressed using the logistic sigmoid function 

1 
P ( C Ix) = -l-+-ex-p-"'( --a-'-) (6.2) 

An estimation of a will be given in the following section. 

6.3 Probability Estimation 

The posterior probabilities for the classifiers used are determined using the logistic sig­

moid function formulated as 

1 
P( Clx) = ----;=--:=__:_ 

1 + exp -(We - Dx) 
(6.3) 

where -(We - Dx) is the decision function used for each algorithm. Expanding the 

classifiers under consideration (SBD, MOG, and UC) can all be placed in framework 6.3 

by "substituting" the appropriate expression for -(We - Dx) . 

• The MOG classifier 

For the MOG algorithm, the background is modelled as Gaussians. Each Back­

ground Gaussian is considered as a class. We = 2.50' and Dx is calculated as the 

distance between the the tested pixel and the closest background Gaussian mean. 

The foreground probability is calculated as follows 

P(CFGlx) = 1- P(CBGlx) (6.4) 

• The SBD classifier 

For the SBD classifier, the values of We for the background and the shadow 
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classes are calculated using the same procedure. The class mean is calculated as 

the arithmetic mean of the class thresholds (the thresholds are the upper and the 

lower bound for the class). We is then calculated as the distance from one of the 

class boundaries (thresholds) to the estimated mean. 

Dx is calculated as the distance between the brightness distortion parameter, ,&, 
for a tested pixel and the class mean, refer to Chapter 2 for the details of this 

parameter. The foreground probability is calculated as in the MOG classifier. 

• The DC classifier 

To calculate (We - Dx) for the UC we used the decision function formulated in 

Chapter 4 

(We-Dx) = ((RUe + NRuc)2 - t G:iG:jk(Xi,Xj) + 2 t G:ik(Xi' x) - k(X'X)) 
2,J I 

(6.5) 

6.4 Combination Rules 

In this section, we present the different combination rules that use posterior probabilities. 

We use the Bayes decision rule as the principle for combining the classifiers. The Bayes 

rule assigns the pixel to the class with the maximum posterior probability. 

{

Ca ifP(Calx) > P(Cbl x ) 
f(x) = 

Cb otherwise. 

When combining different classifiers with independent conditional probabilities the prod­

uct rule can be used 

otherwise. 

where i represents the used classifier. 

When the conditional probabilities are not conditionally independent, this rule is vio­

lated. For sufficiently accurate classifiers, scores are likely to be positively correlated 

because the classifiers will agree on the majority of classifications and classify them cor­

rectly. In addition to the product rule, several other combination rules can be used and 

may be more appropriate when score independence is not satisfied (Czyz et al., 2004) 
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{

Ca 
f(x)sum = 

Cb otherwise 

{

Ca 
f(X)Maximum = 

Cb otherwise 

In experiments, the Maximum rule will only be used when combining two classifiers 

for economy of analysis. For combining three classifiers, we will investigate all four 

combination rules. 

6.5 Weight averaging the classifiers decisions 

The combination of the classifiers can be optimised by adding a weighting factor to the 

overall probability of classifiers (Kittler et al., 1997; Kittler and Hojjatoleslami, 1998). 

The weight functions as a confidence factor for each classifier. The weight is conditioned 

to Li Wi = 1. The combination rules become 

otherwise 

{

Ca 
f(x)Sum = 

Cb otherwise 

{

Ca 
f(X)Maximum = 

Cb otherwise 

We will also use this method to combine classifiers. The classifier weight is derived 

from the overall performance on the foreground/background extraction expressed as a 

percentage in comparison with the other techniques. 
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6.6 Experimental results 

The experimental results are implemented by combining two and three classifiers. 

6.6.1 Two Classifiers Combination 

(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) T he extracted image 

(c) The extracted image s ilhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image s ilhou­
ette 

(I) The ex t racted image s ilho u­
et te 

FIGURE 6.1: Indoor images extracted using the combined DC and SBD classifiers 

Using the weighted Maximum rule, the UC, the SBD and the MOG are combined in 

pairs. To choose t he values of the weights , N Motion samples (non-background) are used 

for each mot ion sequence. Then a search is performed using gradient decent approach 

for t he weights unt il optimal values are found that produces the minimum overall error. 

10 samples are used for indoor sequences and 5 for outdoor sequences. 
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Figures 6.1 shows the results of combining the UC and the SBD on indoor motion 

sequences. The samples show a clean background with no not iceable noise. Most of the 

shadow has disappeared. 010a024s08L motion sequence gave small t races of shadow. 

The sample of 017a054s00L shows a larger shadow but still as an overall result most of 

the shadow had disappeared even in this sample. For the moving subject extraction, 

most of the extracted samples are extracted well with few small negligible holes. 

When comparing t he images shown with the samples of the original classifiers, Figures 

4.5 and 2.10, the combined results outperformed t he original SBD extraction especially 

in the foreground region where in the SBD large holes appeared mostly in t he legs of 

the moving subject . In the combined UC/ SBD samples, few holes can be observed and 

with much smaller size. The result of the UC and the combined UC/SBD is comparable 

in all the regions. 

(a) A sample frame from 
008a013s00L 

(d) A sample frame from 
009a017s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
017a054s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The extracted image s ilhou­
ette 

(f) The extracted image si lhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 6 .2: Indoor images extracted using the combined UC and MOG classifiers 
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Figure 6.2 represents samples of extraction of indoor motion sequences using the com­

bined UC/MOG classifiers. The combined UC/1VIOG managed to label the background 

and the shadow regions correctly with traces of shadows showing in the samples of 

01Oa024s08L and 017a054s00L motion sequences. The foreground extraction is fairly 

well extracted with some small holes in the samples. 

The combined results managed to overcome the problems of the MOG extraction where 

it misclassifies areas of low intensities. In the MOG the top left (the black curtain) 

is a noisy area but the combined UC/MOG classified it correctly. The foreground 

extraction of the MOG suffered from a large number of holes especially in the legs area. 

The combined UC/MOG extraction of the foreground region is better than in the MOG 

with less holes. The extraction of the combined UC/MOG is similar to the UC classifier 

extraction in all the region except for the shadow region where the combined UC/MOG 

performed better in this region. Clearly, the combined classifier enjoys the advantages 

of the different classifiers. 

The extraction of the combined MOG /SBD classifiers for indoor motion sequences is 

shown in Figure 6.3. In the background region the new classifier managed to label most 

of the region pixels correctly. For the shadow region, most, if not all, of the shadow has 

disappeared in the shown samples. Sequence 017a054s00L shows more obvious traces of 

the shadow. The foreground region has some small to medium size holes especially in 

the area of the legs. 

Comparing the combined results of the MOG /SBD classifier of Figure 6.3 with the 

results of the original techniques, the MOG in Figure 3.5 and the SBD in Figure 2.10, 

the combined classifier's overall performance is better than the other two. The combined 

MOG /SBD classifier performed better than the MOG in the background region. The 

MOG had a noisy top left corner while the combined MOG/SBD has an overall clean 

background. The SBD also behaved well in extracting the background region. For the 

foreground region, the combined MOG/SBD has some small holes, especially in the area 

of the legs, but the MOG has more small holes and the SBD suffered even from larger 

holes. For the shadow region their behaviour is similar where they all behave well in 

suppressing this region. 

When comparing the three different combinations, the UC/SBD, the UC/MOG and the 

SBD/MOG, the extraction results are fairly similar particularly in the background and 

the shadow regions. In the foreground region the combined MOG/SBD has more smaller 

holes than the other two. 

The overall result for combining two classifiers using indoor motion sequences is shown 

in Table 6.1. The detailed results are in Appendix C. For the RMSE the three new 

classifiers gave better results, with a result lower than the original classifiers. Also in 

the PSNR, the results of the new classifiers are higher than for the original classifiers. 

The combined classifiers all scored a PSNR value above 23.2. In the foreground region, 
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(a) A sample frame from 
008aOl3s00L 

(d) A sample frame from 
009aOl7s00L 

(g) A sample frame from 
OlOa024s08L 

(j) A sample frame from 
Ol7a054s00L 

(b) The e>..1;racted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

(c) The e>..1;racted image silhou­
ette 

(f) The e>..1;racted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 6.3: Indoor images extracted using t he combined MOG and SED classifiers 

Combined RMSE PSNR FG BG Overa ll 2 
aRMSE 

Classifiers (dB) Error l Error2 Error3 

UC and SBD 0.070 23.201 2 .805 0 .331 7 .661 3.188E-05 

UC and MOG 0.069 23.267 3 .296 0 .287 7.521 3.214E-05 

MOG and SBD 0.068 23.385 4.787 0 .174 7.330 4.109E-05 

SBD 0.078 22.342 2 .659 0.491 9.775 4.047E-05 

MOG 0.119 18.513 6.488 1.093 22.617 2.814E-05 

UC 0 .072 22.872 2.801 0.373 8.265 3.394E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 
3 The percentage of the overall error compared to the motion pixels only 

TABLE 6 .1: The overall assessment of combining three sets of two combined classifiers 
using indoor motion sequences 
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the SBD and the DC gave the best results in this region. The UC/SBD classifier scored 

a result close to the DC results. The worst result was scored by the I'dOG with a 6.49% 

error. For the background region, all the three combinations scored better than the 

original classifiers with 0.17% error for the MOG/SBD, 0.29% error for the DC/MOG 

and 0.33% error for the DC/SBD. Finally, in the overall error, compru'ed to the motion 

pixels in the silhouette region, all the new combined classifiers scored better than the 

original classifiers with 7.33% error for the MOG/SBD followed by a 7.52% error for the 

DC/MOG and 7.66% error for the DC/SBD. 

The averaged RMSE variance is small for all the provided classifiers which means that 

each classifier by itself provides high consistency in its performance. Utilising this accu­

racy in comparing the classifiers using the RMSE, we can say that the most successful 

classifier in this group is the MOG/SBD classifier. This classifier outperformed all the 

other classifiers by scoring the least RMSE, 0.06S. Also this classifier gave a better 

fusing model by utilising the differences of its originator and outperforming them with 

a significant amount (compared to the others). The MOG/SBD managed to give better 

results than the SBD by 13% and better than the MOG by 43%. The DC/MOG and 

the DC/SBD gave also reasonable RMSE value, 0.069 and 0.70 respectively, but those 

two classifiers gave a small improvement difference from one of their originator, the DC 

(4% for the DC/MOG and 3% for the DC/SBD). 

Figure 6.4 shows the outdoor extraction for the combined DC/SBD classifier. The 

background region is well extracted with few noise pixels. The foreground region is 

extracted with some holes (of varying size). The shadow is resident in most of the 

sequences except sample 0l3e037s00L. When comparing the result of this classifier with 

the DC, Figure 4.6, and the SBD classifiers, Figure 2.11, the quality of extracting the 

foreground region has improved. The holes are reduced in size compared with the holes 

by the original classifiers. The background and the shadow suppression is fairly similar 

in the DC/SBD combined classifier and its originating classifiers. 

Figure 6.5 presents the outdoor extraction of the combined DC/MOG classifier. The 

foreground is extracted with varying quality of extraction. The extraction of 013e037s00L 

resulted in extracting most of the foreground region pixels with few holes. On the other 

hand, the foreground extraction of sequence OOSe0l3s00L sample resulted in some large 

holes. 

Compared with the original classifiers result, the DC in Figure 4.6 and the MOG in 

Figure 3.6, the background suppression for the combined DC/MOG classifier is better 

than the MOG and similar to the DC in most of the samples (sample 00ge0l7sOlL of 

DC/MOG showed a noisy background). For the shadow region, the MOG classifier 

samples all showed shadows (the MOG here uses the RGB colour model which is not 

a colour invariant model). The combined classifier managed to suppress the shadow 

similar to the DC. For the foreground region, the MOG was the best performer in one 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 

100 

(c) The extracted image silhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) The extracted image silhou­
ette 

(1) The extracted image silhou­
ette 

FIGURE 6.4: Outdoor images extracted using the combined UC and SBD classifiers 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

Ul A sample frame from 
013e037s00L 

(b) The extracted image 

(e) The extracted image 

(h) The extracted image 

(k) The extracted image 
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(c) The extracted image silhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 6.5: Outdoor images extracted using the combined UC and MOG classifiers 
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of the samples, 008e013s00L, but was not in another sample, in 0l3e037s00L the the 

combined classifier was better. 

Figure 6.6 shows the outdoor motion sequences extraction using the combined lvIOG/SBD 

classifier. The classifier performs well in the background region with only few noise pix­

els. The algorithm succeeds in eliminating the shadow of one sample out of the four 

presented samples. In the foreground region, the combined classifier manages to classify 

correctly most of the region but there still exist some holes in the moving subject. 

The MOG/SBD classifier outperforms the original classifiers in some of the shown sam­

ples. The MOG/SBD classifier performs mostly better than the MOG and the SBD in 

producing a better foreground region with less holes. Also in the background region, 

the new classifier performs as well as the SBD classifier in producing a high quality 

background labelling while the MOG does not produce such quality in the background 

region (with a noisy background in MOG). For the shadow region, the worst performer 

is the MOG while the combined classifier's performance is similar to the SBD in this 

region. 

From the shown samples, the DC/SBD gave the best performance in the foreground 

region. In the background region the DC/MOG was the worst performer especially 

in sample 00ge017sOlL though the same classifier performed well in suppressing the 

background in other samples. For the shadow region the original classifiers were not 

successful in suppressing the shadows in most of the shown samples which resulted in 

the combined classifier giving a similar result. 

Combined RMSE PSNR FG BG Overall 2 
O"RMSE 

Classifiers (dB) Error1 Error2 Error3 

DC and SBD 0.182 14.961 13.158 2.010 26.801 1.936E-04 
DC and MOG 0.193 14.380 15.623 2.104 30.113 1.400E-04 
MOG and SBD 0.184 14.862 15.911 1.685 27.337 2.222E-04 

SBD 0.189 14.618 14.453 2.153 29.077 2. 126E-04 
MOG 0.216 13.374 10.009 3.976 37.499 2.370E-04 
DC 0.207 13.856 22.027 1.919 35.068 1. 297E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 6.2: The overall assessment of combining three sets of two combined classifiers 
using outdoor motion sequences 

Table 6.2 presents the overall assessment of outdoor motion sequences using the new 

combinations ofthe DC/SBD, the DC/MOG and the MOG/SBD, with original classifiers 

results for comparison. The detailed assessment can be found in Appendix C. In the 

RMSE and the PSNR, the DC/SBD and the MOG/SBD classifiers outperformed the 

original classifiers. The DC/MOG gave better result than their originators, the DC 
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(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image 
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(c) The extracted image silhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 6.6: Outdoor images extracted using the combined MOG and SBD classifiers 
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and the MOG, but fell below the results of the SBD. For the foreground percentage, 

the UC/SBD scored the second best result in this region. The UC/IVIOG and the 

MOG/SBD took the fourth and fifth position with a relatively small increase in the error 

value compared to the SBD which was placed in the third position. For the background 

region, the MOG/SBD classifier scored the best result in this region followed by the 

UC, the UC/SBD and the UC/MOG classifiers with minor difference between them. 

Using the RMSE and the overall error compared to the silhouette's motion pixels, the 

new UC /SBD classifier scored the best result in extraction outdoor motion sequences. 

MOG/SBD was the second in scoring the minimum overall error followed by the SBD 

and then the UC /MOG classifier. The averaged RMSE variance is small for all the 

classifiers. This means that each classifiers variation is constrained in a small limited 

range of displacement. 

It is clear that classifier combination achieves better performance. All the combinations 

managed to produce an overall error less than their originating classifiers. 

6.6.2 Three Classifiers Combination 

In combining three classifiers, we used the Maximum, the Median, the Sum and the 

Product rules using different principles. The classifiers are combined first using the 

simple Bayes decision function. Then the weight averaging probability method is used. 

Each classifier weight is derived from the individual classifier performance. For indoor 

sequences, the SBD performance was 90%, the MOG was 77%, and the UC was 92%. 

So after a normalisation process, the SBD weight will be 0.348, the MOG weight will be 

0.297, and the UC weight will be 0.355. For outdoor sequences, the SBD performance 

was 71%, for the MOG 63%, and for the UC 65%. Therefore after normalisation the 

weights will be: 0.357 for the SBD, 0.317 for the MOG, and 0.326 for the UC. 

Figure 6.7 shows the result of extracting indoor motion sequences by combining three 

classifiers, the UC, the SBD and the MOG, using the Maximum rule. The resulting 

background is noisy especially in the top left corner which indicates dominance of the 

MOG classifier decision for this part (this error occurs specifically in the MOG classifier 

samples only). The shadow has disappeared from two samples but a small part is still 

resident in the last two samples, 0l0a024s08L and 017a054s00L. The foreground region 

is extracted well with few holes (holes are more noticeable in the sample of motion 

sequence 008aO 13s00L). 

Figure 6.8 shows the result of extracting indoor motion sequences using a new classifier 

that combines the UC, the SBD, and the MOG classifiers using the Median rule. The 

background of the extracted sample is clear with no noise pixels. The shadow has 

disappeared from most of the sequences except for small traces in sample 01Oa024s08L 
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(c) T he extracted image s ilhou­
ette 

(f) T he extracted image s ilhou­
ette 

(i) T he extracted image s ilhou­
et t e 

(I) T he extracted image s ilhou­
ette 

FIGURE 6.7: Indoor images extracted by combining t he VC, the SBD, and the MOG 
classifiers using t he Maximum rule 

and 017a054s00L. The foreground region is extracted well with some mislabelled pixels, 

which are more obvious in 010a024s08L. 

Figure 6.9 present s the indoor classification using t he Product of the UC, t he SBD and 

the MOG classifiers. The background is mostly clean except for t he left top corner and 

another small corner in t he bottom right corner of the scene. The shadow had most ly 

disappeared in most of t he samples. The foreground region is extracted well but with 

more small holes than in the previous combinations of three classifiers. 

Figure 6.10 shows an indoor sequences extraction by the Sum of t he UC, t he SBD and the 

MOG classifiers . We not ice an improvement in extracting t he moving subject compared 

with the Product combiner , though some pixels are misclassified. The left top corner is 
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(c) T he extracted image silhou­
ette 

(f) The e,,1;racted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) T he extracted image silhou­
ette 

FIGURE 6.8: Indoor images extracted by combining the UC, the SBD, and the MOG 
classifiers using the Median rule 

also noisy in this classifier as well as the bottom right corner. Most of the shadow has 

disappeared from all the samples except some small parts showing in motion sequences 

0l0a024s08L and 017a054s00L. 

Comparing the results of Figure 6.7 - 6.10 with their originating classifiers, Figures 

2.10 , 3.5, and 4.5, the Median combination behaves as well as the UC and the SBD in 

classifying the background region. The Maximum, the Sum, and the P roduct classifiers 

performed well in most of the scene parts except the top left corner which was noisy, 

similar to the result of the MOG. 

In the foreground region all the new classifiers performed well except for t he Product 

rule combination which suffered from more small holes in the moving subject. The 
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(c) T he ell.1;racted image silhou­
ette 

(f) T he extracted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) T he extracted image silhou­
ette 

FIGURE 6.9: Indoor images extracted by combining the DC, the SBD, and the MOG 
classifiers using the Product rule 

good performers gave a similar result to the DC while the Product classifier gave results 

similar to the MOG. 

In the shadow region the Median and the Product combinations gave t he best result 

with a minimum traces of shadows showing in two samples only. Also the Max and Sum 

rule behaved well in this region but with a little more shadow. 

Figures 6.11 - 6.14 shows t he samples of extracting indoor sequences using a t he average 

weighted combination (see Section 6.5) of the DC, the SBD , and MOG classifiers using 

the Maximum, the Median, the Product, and the Sum combination rules , respectively. 

When extracting t he background region t he median combination rule gave t he best result 

with no not iceable noise in the background except for the last sample, 017a054s00L, 
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(c) The e,,1;racted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 6.10: Indoor images extracted by combining the DC, t he SBD, and the MOG 
classifiers using the Sum rule 

where some isolated noise exists. The Maximum rule gives t he second best performance 

in the background region with some noisy pixels showing noticeably in the top left 

corner. Again, 017a054s00L gave more background noise in this classifiers than t he 

other samples. The Sum rule background noise is more than the previous two classifiers. 

The top left corner is t he noisiest part of the background region. The Product classifier 

gives the highest background noise compared to the other three combined weighted 

classifiers. 

For the shadow region similar results were apparent in all the four weighted combination 

classifiers. In all the samples most of the shadow region is removed except some small 

parts showing in samples of 010a024s08L and 017a054s00L. 
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(c) The extracted image s ilhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) T he extracted image s ilhou­
ette 

(I) T he extracted image silhou­
ette 

FIGURE 6.11: Indoor images extracted by combining t he DC, t he SBD, and the MOG 
classifiers using the weighted Maximum rule 

In the foreground region all the four classifiers gave a quality extraction of this region. 

Small holes are not iced in 008a013s00L and 009a017s00L. 

When comparing the results of the four weighted combinations with t heir originating 

classifiers (Figures 2.10,4.5 and 3.5), the new classifiers performed better than the MOG 

and the SBD in labelling the foreground pixels. The UC gave similar performance to 

the combined classifiers in this region. For the shadow region, the combined classifiers 

behaved similarly to the SBD but the MOG and the UC performance seems to be slight ly 

better. In the background region, the new combination using t he weighted Median rule 

gave the best performance in this region. The UC and the SBD gave similar results . 

The new combinations using t he weighted Maximum, Product and Sum gave similar 

results to the MOG, with a noisy background corner. 
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(c) The e)..i;racted image s ilhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) The extracted image s ilhou­
ette 

(1) T he extracted image s ilhou­
ette 

FIGURE 6.12: Indoor images extracted by combining the UC, the SBD, and t he MOG 
classifiers using the weighted Median rule 

Table 6.3 presents the overall results for indoor motion sequences. For t he detailed 

assessment for each combination please refer to Appendix C. The table is divided to 

three parts. The first part, Table 6.3(a), presents the Max, the Median, t he Product, 

and the Sum combination rules . The second part , Table 6.3(b) , present t he weighted 

combinat ion results using the same combination rules in part 6.3(a ). The last par t shows 

the results of the original classifiers for comparison. 

For the RMSE and the PSNR in the unweighted combinat ions, t he best value is scored 

by the Median with the least RMSE, 0.07, and the highest PSNR, 23.55dB. When using 

the weights , we notice an improvement in the RMSE and the PSNR of the Max and 

the Product combinations. The RMSE and the PSNR values of t he Median and t he 
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(c) The ext racted image s ilhou­
ette 

(f) The extracted image s ilhou­
ette 

(i) The extracted image s ilhou­
et te 

(1) The extracted image s ilhou­
et te 

FIGURE 6.13: Indoor images extracted by combining the DC, the SBD, and the MOG 
classifiers using the weighted Product rule 

Product either remained unchanged, for RMSE in the product, or deteriorated slight ly. 

The Median in this part also scored the best result in the RMSE and the PSNR. 

For the foreground percentage error, the Max and the Sum scored t he best results in 

Table 6.3(a) followed by the Median and then the Product rule which scored t he worst 

result in t his region. In the background percentage error t he result is inverted where 

the best result is scored by the Product and the worst by t he Max and the Median. 

For the results of the foreground region in the weighted combination, Table 6.3(b) , the 

foreground error is similar with a small difference in all the different combination rules. 

The Max rule scored the best result in this region followed by t he Median and then 

the Sum and the Product . The relation seen in the unweighted combination does not 

hold here, where the Product rule scored the worst foreground and background error as 
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(c) The extracted image s ilhou­
ette 

(f) The extracted image silhou­
ette 

(i) T he extracted image s ilhou­
ett e 

(1) The extracted image s ilho ll­
ette 

FIGURE 6.14: Indoor images extracted by combining the UC, the SBD, and the MOG 
classifiers using the weighted Sum rule 

well. Also the Sum rule scored t he second worst foreground and background error . The 

minimum background error is scored by the Median with 0.34% followed by the Max 

rule with a 0.39%. 

The overall error compared to the silhouette's mot ion pixels gave the first and t he second 

position to the new Median classifiers of parts 6.3(a) and 6.3(b) with an error of 7.07% 

and 7.85% respectively. The weighted Maximum and Sum scored reasonably competit ive 

overall results but the result of the remaining four combined classifiers (the unweighted 

Maximum, Product, and Sum and the weighted Product) were not satisfactory. We 

notice that the Product combiner does not perform well wether a weight is used or 

not . This is because the Product is more vulnerable of making one classifier 's erroneous 

result more dominant (when compared to t he other combination rules) especially if t he 
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(a) Combining by using only the classifiers probabilities 

Combined RMSE PSNR FG BG Overall 2 
O"RMSE 

Classifiers (dB) Error l Error2 Error3 

MAX 0.113 19.004 2.972 1.169 20.169 3.351E-05 
MEDIAN 0.067 23.546 3.922 0.216 7.073 3.472E-05 
PRODUCT 0.113 18.952 6.543 0.940 20.417 3.104E-05 
SUM 0.113 19.004 2.972 1.169 20.168 3.309E-05 

(b) Combining by using weighted probabilities 

Combined RMSE PSNR FG BG Overall 2 
O"RMSE 

Classifiers (dB) Error l Error2 Error3 

MAX 0.074 22.737 2.954 0.387 8.598 4.084E-05 
MEDIAN 0.070 23.149 2.963 0.336 7.849 3.464E-05 
PRODUCT 0.113 19.004 2.972 1.169 20.168 3.351E-05 
SUM 0.082 21.779 2.971 0.525 10.655 3.448E-05 

( c) Original classifiers result 

Original RMSE PSNR FG BG Overall 2 
O"RMSE 

Classifiers (dB) Errorl Error2 Error3 

SBD 0.078 22.342 2.659 0.491 9.775 4.047E-05 
MOG 0.119 18.513 6.488 1.093 22.617 2.814E-05 
UC 0.072 22.872 2.801 0.373 8.265 3.394E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 6.3: The overall indoor motion sequences assessment of combining three clas­
sifiers using the Maximum, Median, Sum, and product using two different principle of 

combination 
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classifier's probability is too small or equal to zero. For the unweighted Maximum and 

Sum, when compared to the averaged weighted result of the same combination rule, it 

is obvious that using weights for each classifier can rescale each classifier probability in 

comparison with the other classifiers in order to get a better performance. 

Comparing the results of the new combined classifiers with the their original classifiers 

in the RMSE, the PSNR and the overall error, the Median rule in parts 6.3(a) and 6.3(b) 

scored better results than all the original classifiers. The Maximum weighted combina­

tion rule, Table 6.3(b), scored competitive results but fell behind the best originating 

classifier, the UC. Similar to the UC and the SBD, the weighted Maximum rule man­

aged to score better results than the modified SBD and the MOG. For the foreground 

error, the weighted combination managed to maintain an error less than 3.0% in all the 

combinations used. The unweighted combination performed similarly in the Maximum 

and the Sum rules but the error exceeded this percentage in the Median and the Product 
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rules. Finally in the background error, the SBD and the DC both gave results less than 

0.5%. Most of the weighted combination scored similar or at least close results except 

for the Product rule which scored the worst results in this region. In the unweighted 

combinations, only one classifier managed to keep up to this level, the IvIedian. The 

best performers in the background are the unweighted Median followed by the weighted 

Median classifier. 

The averaged RMSE variance gives small results for all the shown classifiers with a 

maximum RMSE variance in the weighted Maximum with a variance of 4.084E-05. 

These small value means that each classifier performance result is highly consistent. 

As an overall result, combining classifiers for indoor motion sequences can lead to better 

performance results. The Median combiner is a powerful tool with a potential to give 

competitive results. The combination without weights can give the best results in one 

(or more) of the combination rules but using weights can ensure better results in many 

combination rules by optimising the contribution of the inputs. 

Figures 6.15 - 6.18 presents samples of the extraction of outdoor motion sequences using 

the combination rules, the Maximum, the Median, the Product and the Sum. For 

the background labelling the Median provides the best performance in this region with 

only few scattered noisy pixels. All the other three classifiers suffers from noise in the 

background area. For the shadow region in most of the provided samples, shadows 

are still unsuppressed except for the fourth sample, 013e037s00L, where the majority 

of the shadow disappeared from this sample. For the foreground region, though the 

overall labelling is acceptable, the moving subjects suffered from holes of different sizes. 

In comparing the results of the different combinations no clear difference is noticed in 

samples of 008e013s00L and 00ge017s01L. For the other two samples, 010e024s00L and 

013e037s00L, though the Median region gave the best results in sample 013e037s00L but 

in sample 010e024s00L gave the highest foreground error. The Product combination gave 

the worst foreground result for sample 013e037s00L. 

When comparing samples result of the outdoor extraction of the combined classifiers 

with their original classifiers, the DC in Figure 4.6, the MOG in Figure 3.6, and the 

SBD in Figure 2.11, the Median rule again managed to outperform all the classifiers. 

The best performers for the background region are the Median, the SBD, and the DC 

(with only very few noise pixels). For the foreground region, though the combined results 

suffered from some holes in the foreground region but the holes are smaller in size than 

some of the holes in the originating classifiers. For the shadow region, the DC seems to 

be the best performer in this region while the MOG is the worst. The new combined 

classifiers gave better shadow suppression than the MOG with a similar result to the 

SBD but not as good as the DC in this region. 
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(c) The extracted image s ilhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image silhou­
ette 

(1) The extracted image silhou­
ette 

FIGURE 6.15: Outdoor images extracted by combining t he DC, the SBD, and the MOG 
classifiers using the Maximum rule 
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(c) The extracted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image silhou­
ette 

(I) The extracted image s ilhou­
ette 

FIGURE 6.16: Outdoor images extracted by combining the DC, the SBD, and the MOG 
classifiers using the Median rule 
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(c) T he extracted image silhou­
ette 

(f) The extracted image silhou­
et te 

(i) T he extracted image silhou­
ette 

(I) The extracted image silhou­
et te 

FIGURE 6.17: Outdoor images extracted by combining the DC, the SBD, and t he MOG 
classifiers using the Product rule 
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(c) T he extracted image s ilhou­
ette 

(f) T he extracted image silhou­
ette 

(i) The extracted image s ilhou­
ette 

(I) T he extracted image silhou­
ette 

FIGURE 6 .18: Out door images extracted by combining t he DC, the SBD, and the MOG 
classifiers using the Sum rule 



Chapter 6 Combining Classifiers 

(a) A sample frame from 
008e013s00L 

(d) A sample frame from 
00ge017s01L 

(g) A sample frame from 
OlOe024s00L 

(j) A sample frame from 
013e037s00L 

(b) The extracted image 

(e) The extracted image 

(h) T he extracted image 

(k) T he extracted image 

119 

(c) The e,,1;racted image silhou­
ette 

(f) The e,,1;racted image silhou­
ette 

(i) T he extracted image silhou­
ette 

(1) The extracted image s ilhou­
ette 

FIGURE 6.19 : Out door images extracted by combining the UC, t he SBD, and the MOG 
classifiers using the weighted Maximum rule 
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(c) The extracted image silhou­
ette 

(f) The extracted image silhou­
ette 

(i) The extracted image s ilhou­
ette 

(I) The extracted image silhou­
ette 

FIGURE 6.20: Outdoor images extracted by combining the DC, the SBD, and the MOG 
classifiers using the weighted Median rule 
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FIGURE 6.21 : Outdoor images extracted by combining t he UC, the SBD, and the MOG 
classifiers using the weighted Product rule 
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(c) The extracted image s ilhou­
ette 

(f) The extracted image silhou­
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ette 

(I) The extracted image silhou­
ette 

FIGURE 6.22: Outdoor images extracted by combining the UC, t he SBD, and t he MOG 
classifiers using t he weighted Sum rule 
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Figures 6.19 - 6.22 shows outdoor motion sequences extracted using the weighted com­

bination of the Maximum, the Median, the Product, and the Sum rules. For the back­

ground region the Median combination rule, Figures 6.20, managed to correctly label 

most of the background pixels. The other three combination rules suffered more back­

ground noise (the Maximum gave the least background error among the those three). 

For the shadow region, all the four combination rules managed to suppress the shadow 

only in sample 013e037s00L but failed in the other three. 

In the foreground region, the Product rule gave the best performance in sample 010e024s00L 

while the Median rule gave the best performance in sample 013e037s00L. The other sam­

ples did not give any clear preference for a combination rule. 

The results of the combined classifiers gave in some cases better results than the original 

classifiers (Figure 2.11 for the SBD, Figure 3.6 for the MOG, and Figure 4.6 for the 

UC). In the background region, the median combiner, the SBD and the UC gave the 

best result in this region. For the shadow region, the MOG is the worst performer 

while the UC gave the best results. The weight combined classifiers along with the SBD 

suppressed the the shadows in one sample, 013e037s00L, but failed in others. For the 

foreground region, the weight combined classifiers suffered from the mislabelling of some 

of the foreground pixels but the size of the mislabelled groups is usually smaller than 

the original classifiers. 

Table 6.4 shows the assessment result for the the combination classifiers using the Max­

imum, the Median, the Product, and the Sum rule using a principle of unweighted 

combination, Table 6.4( a), and a weighted combination, Table 6.4(b). Also the table 

provides the original classifiers results, Table 6.4( c). 

For the unweighted combination RMSE, PSNR, and the overall error, the best values 

are scored by the Median classifier while the worst was scored by the Product classifier. 

For the foreground percentage error, the best result was scored by the Sum classifier 

with an error of 15.17%. The worst error was scored by the Product classifier. In the 

background error column, the minimum error is scored by the Median classifier, 1.58%, 

while the highest error was scored by the Sum and the Maximum classifiers. 

For the weighted combination rules, the Median classifier gave the best result for the 

RMSE, the PSNR and the overall error compared to the silhouette's motion pixels. The 

worst result in these measurement is scored by the product classifier. The foreground 

and the background errors are inversely proportional with the Median scoring the high­

est result in the foreground region and the minimum in the background region. The 

Product scored the minimum error in the foreground region and the highest error in the 

background region. 
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(a) Combining by using only the classifiers probabilities 

Combined RMSE PSNR FG BG Overall 
1) 

O"RMSE 

Classifiers (dB) Error l Error2 Error3 

MAX 0.203 13.982 15.197 2.668 33.569 2.088E-04 
MEDIAN 0.181 14.966 15.921 1.580 26.628 2.135E-04 
PRODUCT 0.206 13.868 16.395 2.601 34.317 2.305E-04 
SUM 0.203 13.985 15.170 2.668 33.545 2.074E-04 

(b) Combining by using weighted probabilities 

Combined RMSE PSNR FG BG Overall 2 
O"RMSE 

Classifiers (dB) Error l Error2 Error3 

MAX 0.192 14.468 15.628 2.074 29.835 1.896E-04 
MEDIAN 0.182 14.928 15.905 1.613 26.848 2.117E-04 
PRODUCT 0.203 13.982 15.197 2.668 33.569 2.088E-04 
SUM 0.198 14.196 15.241 2.424 31.896 1.988E-04 

(c) Original classifiers result 

Original RMSE PSNR FG BG Overall 2 
O"RMSE 

Classifiers (dB) Error i Error2 Error3 

SBD 0.189 14.618 14.453 2.153 29.077 2.126E-04 
MOG 0.216 13.374 10.009 3.976 37.499 2.370E-04 
UC 0.207 13.856 22.027 1.919 35.068 1.297E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE 6.4: The overall outdoor motion sequences assessment of combining three clas­
sifiers using the Maximum, Median, Sum, and product using two different principle of 

combination 
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The averaged RMSE variance ranged from 1.988E-04 to 2.305E-04 in the combined clas­

sifiers. These small values illustrates that the combined classifiers are highly consistent 

in their performance. 

Now we will rank the classifiers according to their performance in each region in Table 

6.4. For the background region, the best performer is the unweighted Median classifier 

followed by the weighted Median classifier and the UC. The worst result is scored by 

the MOG. In the foreground region, the best performer is the MOG followed by the 

SBD classifiers and then the combined classifiers. For the whole frame according to the 

RMSE, the PSNR, and the overall error compared to the silhouette's motion pixels, the 

best result is scored by the unweighted Median, followed by the weighted Median, and 

then the SBD. The worst result is again scored by the MOG. 
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6.7 Cond usions 

In this chapter we presented ways of producing better classifiers. We used the Bayes rule 

to combine classifiers. We combined two classifiers using an average weighted Maximum 

rule classifier. The resulting new classifiers all managed to score better results than 

their original classifiers in indoor and outdoor motion sequences. We used two different 

principles to combine three classifiers: weighted averaged classifiers and unweighted 

classifiers. Also we used different rules of combining classifiers: the Maximum, the 

Median, the Product and the Sum. The new classifiers, especially the Median classifiers, 

gave better results than some of the state of the art motion extractors, the MOG and the 

SBD. The Median gave more robust results compared to the other combination rules. 

Intuitively, the median might be better for working with disparate measures. 

The weighted classifiers in general gave better results than the unweighted classifiers 

when the same combination rules are used except for the Median. The unweighted 

Median classifier gave the best result when compared to all the other classifiers. 

A comparison between the performance of the two and three classifiers can not be applied 

with the given tests, since the combination conditions of each is different. Different 

weights selection procedure were used for the two and the three classifiers (exploring the 

two different weight selection procedures on two and three classifiers will be included in 

the future work). Also in the three classifiers we used more combination rules with a 

weighted and an unweighted principles, while in two classifiers we used only the weighted 

Maximum rule. Investigating these options will be left as a future work. 

We can reach to an overall conclusion that optimised combination of classifiers enjoys 

performance advantages of separate classifiers. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In this work we provided a systematic procedure to optimise the performance of state of 

the art classifiers (mixture of Gaussian and Statistical Background Disturbance). Also, 

the same procedure was applied to the Unary Classifier. 

In the assessment procedure we used five different measurement tools. Three measure­

ments assessed each frame by using the whole scene (RMSE, PSNR, Overall error). The 

RMSE and the PSNR are commonly used measurement tools in pattern recognition. 

The overall error measurement gave a relative scale of the overall scene error to the sil­

houette's motion pixels. Two more measurements were used which are concerned with 

regional assessment to provide more information on the performance of a classifier on a 

certain region (background, foreground). These were analysed on images in controlled 

laboratory scenario, and outdoors where many parameters varied. 

The Statistical Background Disturbance algorithm (Horprasert et al., 1999, 2000) is one 

of the state of the art motion extractors, Chapter 2. An advantage of this algorithm is 

its ability to classify pixels in one of four categories: foreground, background, shadow 

and highlights. The algorithm gives an acceptable level of shadow recognition in indoor 

sequences but does not perform as well in outdoor motion sequences. Also in order 

to accomplish a quality extraction of shadows, the quality of foreground detection is 

sometimes sacrificed which results in the appearance of holes on moving objects. In 

order to solve this problem, an improved version of the SBD was presented which mainly 

contributes to the improvement of shadow selection criteria by further investigating 

the validity of the shadow pixels through a distance measure to the background. The 

condition resulted in a small improvement in the shadow detection which improved the 

quality of foreground extraction as well. 

126 



Chapter 7 Conclusions and Future Work 127 

The Mixture of Gaussians (Stauffer and Grimson, 2000, 1999) is another state of the 

art algorithm, Chapter 3 . The classifier performs well in extracting the foreground of 

indoor sequences. Also, the classifier performs well on the background but with more 

isolated mislabelled pixels. For the outdoor foreground and background the result is 

not as precise as for the indoor sequences where large holes might result in the moving 

object and large connected mislabelled background pixels can be seen. Also one of the 

main problems of this technique is the shadow region. Shadows are usually labelled as 

motion pixels. In order to overcome this problem, we tested different colour invariant 

models and found a colour model that performs well in shadow suppression though the 

use of this colour model resulted in the appearance of some noise in different parts of 

the scene. 

We then established a new motion classifier which we called the modified Unary Clas­

sifier, Chapter 4. We used the original Unary Classifier for the first time as a valid 

classifier for the motion extraction area. The Classifier gave a high quality extraction 

for the foreground area but suffered noise in the background both for indoor and for 

outdoor motion sequences. So we modified the original classifier by improving its deci­

sion function to make the classifier competent enough to accommodate the background 

model. Also the classifier does not have the criteria of shadow detection or suppression. 

We used an invariant colour model to solve this problem. The resulting novel classifier 

challenged state of the art classifiers in this field and presented better results in the 

indoor environment and reasonably competent results in outdoor motion sequences. 

Two of the classifiers, the MOG and the modified UC, had no original capability to sup­

press shadows. To solve the problem, we investigated colour invariant models, Chapter 

5, and we monitored the final outcome of using each colour model. We noticed that 

some of these colour models behaved in indoor sequences more effectively than in out­

door sequences. The final outcome was an improvement in the overall performance of 

the classifier as a result of shadow suppression. 

After the assessment of the behavior of the MOG, the improved SBD and the improved 

UC we noticed that each one of them performs differently in each region and may 

produce non-overlapping misclassifications. This diversity along with the satisfactory 

performance of those classifiers led us to the direction of combining those classifiers in 

order to produce better motion extractors, Chapter 6. 

In Chapter 6, we combined the three classifiers (the MOG, the improved SBD and the 

improved UC) aiming to produce better motion extractors. In order to do that we used 

the logistic sigmoid function to estimate the probabilities for the SBD and the MOG. 

For the UC we used their decision function to calculate the probability. 

The different combinations of two classifiers produced better results than their origi­

nating classifiers. The new MOG/SBD classifier gave the best results in indoor motion 
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sequences while the new UC/SBD classifier gave the best performance in outdoor se­

quences. 

We combined three classifiers together using the Bayes decision function along with the 

Maximum, the Median, the Product or the Sum rules. The result of this combination 

produced the best motion extractor with the least overall error in indoor and outdoor 

sequences which is the Median classifier. Also this classifier gave the minimum error in 

labelling the background region. 

In addition, we combined three classifiers together using weight averaged Bayes decision 

function using the Maximum, the Median, the Product or the Sum rules. The weighting 

process improved the performance of some of the classifiers (Max, Product, and Sum). 

The Median classifier though gave the best results among the four weighted classifiers. 

7.2 Future Work 

There are still many interesting questions to be answered in this research area, aiming 

to improve performance. 

• To use different kernels with the UC. Possible kernels which await investigation 

include: linear, polynomial, exponential radial and sigmoid. The UC is based on 

the SVM theory and the performance of SVM largely depends on the used kernel 

(Amari and Wu, 1999). Using a different kernel may affect the overall performance 

of the UC classifier which might lead to a better motion extracting classifier. 

• To modify the nonadaptive classifiers to be adaptive. One of the major problem 

with the SBD and the UC is that they are nonadaptive i.e. if the background model 

changes (by global lighting change or by adding an object to the background) the 

system might fail to identify and suppress the background which results in a noisy 

or a distorted output. 

• The shadow extraction modification in the SBD algorithm can be further modified 

by adding a lower bound to the shadow region. We explained, in Chapter 2, 

that broad shadow thresholds can reduce foreground performance. The result was 

improved by conditioning the choice of the shadow region. This conditioning could 

be explored further. 

• The HSV colour model separates the intensity (V) from the chromatic components 

(H,S). Thus to utilise this property for shadow extraction, we can use the HS 

components (one or both of them) only for the classification while excluding the 

(V) component. This provides an added advantage that with the value components 

removed much of the lighting/shading difference are absent (Bowden, 1999; Gevers 

and Smeulders, 1999). 
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• When merging three classifiers we used different combination rules (the Maximum, 

the Median, the Sum, and the Product). We noticed that the overall performance 

of the combined classifiers changed when different combination rules were usee!. 

For two classifiers, we used only the Maximum rule. Therefore, combining two 

classifiers can be further explored by using different combination rules which ma.y 

result in a better performing classifier. 

• In merging two classifiers, in all the merged classifiers we mana.ged to obta.in a. 

low overall error. This is due to the procedure used to find a better performing 

classifier. In this procedure we searched for the optimal weights setting that min­

imises the overall error. The same procedure can be applied when combining three 

classifiers. 

• More simple and sophisticated combination rules could also be used, like Majority 

Voting, Bagging and Boosting. 

• Performance could be further investigated by analysing the objective performance 

on a larger database. In gait recognition, this could concern the variance of the 

feature vectors on the indoor data compared with that derived for the outdoor 

data. 

These suggestions might improve these new systems which has already been demon­

strated to meet their aims, namely improved foreground background segmentation in 

image sequences. Naturally we seek to analyse the advantages these new systems confer 

in practical applications 



Appendix A 

U nary Classifier sphere radius 

varying on motion sequences 

In Chapter 4 a modified UC was presented. The modification is based on enlarging the 

UC size until a proper size is reached that reduces the overall error. The radius size 

was changed in indoor and outdoor motion sequences. The following sections of this 

appendix will present the results of changes the radius sizes for each motion sequence. 

A.I Indoor motion sequences 

N ROC1 RMSE PSNR FG BG Overall 2 
(JRMSE 

(dB) Error2 Error3 Error4 

0 0.910 0.286 10.879 0.212 8.816 112.038 7.982E-05 
2 0.974 0.133 17.537 0.775 1.858 24.258 7.812E-05 
4 0.976 0.106 19.492 1.321 1.122 15.452 6.265E-05 
6 0.974 0.094 20.549 1.789 0.820 12.102 5.466E-05 
8 0.971 0.087 21.240 2.233 0.644 10.319 5.073E-05 
10 0.968 0.082 21.726 2.639 0.525 9.225 4.677E-05 
12 0.965 0.079 22.066 3.031 0.438 8.528 4.420E-05 
14 0.962 0.077 22.305 3.427 0.371 8.073 4.327E-05 
16 0.958 0.076 22.441 3.838 0.318 7.826 4.306E-05 
1 ROC Optimal Cutoff Measure 

2 FC Error Foreground Percentage Error 

3 BC Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.I: Assessment on the indoor motion sequences 008aOI3s00L using the im-
proved UC algorithm 
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N ROC I RMSE PSNR FG BG Overall 2 
(JUlIlSE 

( dB) Error2 Error3 Error4 

0 0.924 0.265 11.547 0.117 7.475 109.847 7.279E-06 
2 0.980 0.119 18.471 0.495 1.490 22.336 2.619E-05 
4 0.982 0.098 20.191 0.881 0.968 15.041 2.910E-05 
6 0.980 0.088 21.104 1.243 0.749 12.189 2.816E-05 
8 0.978 0.082 21.756 1.557 0.612 10.490 2.724E-05 
lO 0.976 0.077 22.250 1.880 0.513 9.364 2.579E-05 
12 0.974 0.074 22.625 2.193 0.438 8.590 2.442E-05 
14 0.971 0.072 22.910 2.532 0.378 8.046 2.424E-05 
16 0.968 0.070 23.135 2.863 0.328 7.644 2.483E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.2: Assessment on the indoor motion sequences 009a017s00L using the im-
proved UC algorithm 

N ROC! RMSE PSNR FG BG Overall 2 
(JRMSE 

( dB) Error2 Error3 Error4 

0 0.924 0.262 11.626 0.326 7.329 110.363 6.062E-05 
2 0.977 0.113 18.973 0.974 1.295 20.343 4.157E-05 
4 0.977 0.093 20.648 1.467 0.825 13.807 2.446E-05 
6 0.975 0.084 21.498 1.909 0.631 11.350 2.057E-05 
8 0.972 0.079 22.074 2.330 0.509 9.941 1.997E-05 
lO 0.968 0.075 22.500 2.736 0.420 9.012 2.032E-05 
12 0.965 0.073 22.809 3.126 0.352 8.393 2.098E-05 
14 0.962 0.071 23.012 3.526 0.300 8.011 2.232E-05 
16 0.958 0.070 23.154 3.937 0.255 7.759 2.512E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.3: Assessment on the indoor motion sequences OlOa024s08L using the im-
proved UC algorithm 
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N ROC l RMSE PSNR FG BG Overall 
.) 

(JRMSE 
(dB) Error2 Error3 Error4 

0 0.922 0.263 11.597 0.498 7.291 132.105 4.966E-05 
2 0.973 0.107 19.414 1.544 1.135 21.991 6.805E-05 
4 0.970 0.085 21.489 2.346 0.628 13.640 5.580E-05 
6 0.965 0.076 22.410 3.070 0.443 11.025 5.070E-05 
8 0.959 0.072 22.890 3.750 0.341 9.866 4.950E-05 
10 0.953 0.070 23.144 4.409 0.274 9.310 5.052E-05 
12 0.947 0.069 23.250 5.054 0.225 9.092 5.328E-05 
14 0.941 0.069 23.260 5.676 0.190 9.078 5.587E-05 
16 0.936 0.070 23.211 6.288 0.162 9.186 5.860E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.4: Assessment on the indoor motion sequences 013a037s00L using the im-
proved DC algorithm 

N ROC! RMSE PSNR FG BG Overall 2 
(JRMSE 

(dB) Error2 Error3 Error4 

0 0.924 0.262 11.655 0.326 7.258 115.937 7.540E-05 
2 0.976 0.117 18.701 1.039 1.393 23.166 1.253E-04 
4 0.975 0.097 20.285 1.598 0.915 16.101 1.070E-04 
6 0.972 0.089 21.062 2.085 0.718 13.451 9.248E-05 
8 0.969 0.084 21.600 2.530 0.591 11.878 8.452E-05 
10 0.966 0.080 21.992 2.943 0.499 10.839 7.646E-05 
12 0.962 0.077 22.292 3.346 0.427 10.102 6.996E-05 
14 0.959 0.075 22.499 3.773 0.369 9.615 6.328E-05 
16 0.955 0.074 22.665 4.193 0.319 9.245 5.980E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.5: Assessment on the indoor motion sequences 013a040s00L using the im-
proved DC algorithm 
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N ROC i RMSE PSNR FG BG Overall 
.) 

(JJ?MSE 
(dB) Error2 Error3 Error4 

0 0.882 0.331 9.607 0.094 11.724 164.872 8.615E-06 
2 0.976 0.137 17.270 0.409 1.988 28.302 3.692E-05 
4 0.981 0.108 19.378 0.696 1.196 17.450 4.554E-05 
6 0.981 0.097 20.248 0.944 0.954 14.283 4.425E-05 
8 0.980 0.091 20.807 1.173 0.814 12.556 4.072E-05 
10 0.979 0.087 21.251 1.388 0.712 11.335 3.905E-05 
12 0.978 0.083 21.612 1.608 0.632 10.428 3.697E-05 
14 0.976 0.080 21.918 1.819 0.566 9.719 3.537E-05 
16 0.975 0.078 22.189 2.028 0.509 9.127 3.284E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.6: Assessment on the indoor motion sequences 017a054s00L using the im-
proved UC algorithm 

N ROC1 RMSE PSNR FG BG Overall 2 
(JRMSE 

(dB) Error2 Error3 Error4 

0 0.920 0.270 11.373 0.181 7.782 114.147 2.264E-05 
2 0.980 0.118 18.554 0.521 1.465 21.929 4.774E-05 
4 0.983 0.094 20.582 0.855 0.885 13.776 4.491E-05 
6 0.981 0.083 21.644 1.202 0.657 10.788 3.799E-05 
8 0.979 0.077 22.352 1.546 0.522 9.159 3.314E-05 
10 0.977 0.072 22.863 1.905 0.428 8.140 3.155E-05 
12 0.973 0.069 23.217 2.300 0.357 7.505 3.132E-05 
14 0.970 0.067 23.460 2.686 0.302 7.097 3.157E-05 
16 0.967 0.066 23.621 3.062 0.259 6.839 3.160E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.7: Assessment on the indoor motion sequences 017a055s00R using the im-
proved UC algorithm 
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N ROC l RMSE PSNR FG BG Overall 
,) 

(fhM SE 

( dB) Error2 Error3 Error4 

0 0.919 0.273 11.290 0.172 7.966 11l.480 6.465E-05 
2 0.977 0.126 18.014 0.627 l.662 23.816 6.785E-05 
4 0.979 0.103 19.775 l.066 l.062 15.847 4.760E-05 
6 0.978 0.092 20.718 l.439 0.813 12.739 3.812E-05 
8 0.976 0.085 2l.385 l.788 0.657 10.912 3.152E-05 
10 0.973 0.081 2l.866 2.105 0.551 9.761 2.734E-05 
12 0.971 0.078 22.222 2.432 0.472 8.988 2.477E-05 
14 0.969 0.075 22.522 2.741 0.407 8.388 2.351E-05 
16 0.966 0.073 22.735 3.055 0.355 7.985 2.278E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.8: Assessment on the indoor motion sequences 018a060s00L using the im-
proved DC algorithm 

N ROC! RMSE PSNR FG BG Overall 2 
(fRMSE 

( dB) Error2 Error3 Error4 

0 0.926 0.262 11.651 0.104 7.284 110.984 l.188E-05 
2 0.985 0.101 19.930 0.451 1.059 16.499 2.360E-05 
4 0.986 0.081 21.807 0.796 0.656 10.721 2.573E-05 
6 0.984 0.073 22.726 1.135 0.498 8.675 2.245E-05 
8 0.981 0.068 23.342 1.484 0.400 7.528 2.059E-05 
10 0.978 0.065 23.784 1.865 0.326 6.801 2.092E-05 
12 0.975 0.063 24.067 2.270 0.272 6.378 2.239E-05 
14 0.971 0.062 24.235 2.693 0.228 6.136 2.295E-05 
16 0.967 0.061 24.306 3.128 0.193 6.042 2.483E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.9: Assessment on the indoor motion sequences 019a063s00L using the im-
proved DC algorithm 
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A.2 Outdoor motion sequences 

N ROC I RMSE PSNR FG BG Overall 
,) 

rFRMSE 
( dB) Error2 Error3 Error4 

0 0.820 0.330 9.625 6.418 11.618 81.768 1.683E-OLl 
2 0.833 0.206 13.753 14.012 2.720 31.691 2.365E-04 
4 0.791 0.202 13.915 19.138 1.740 30.414 1.774E-04 
6 0.756 0.206 13.723 23.015 1.345 31.711 1. 564E-04 
8 0.722 0.214 13.425 26.653 1.128 33.939 1.617E-04 
10 0.693 0.220 13.159 29.719 0.982 36.053 1.56IE-04 
12 0.667 0.226 12.925 32.406 0.874 38.043 1.558E-04 
14 0.642 0.232 12.691 34.985 0.799 40.137 1.480E-04 
16 0.619 0.238 12.487 37.382 0.727 42.064 1.498E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.I0: Assessment on the outdoor motion sequences 008e013s00L using the 
improved UC algorithm 

N ROC I RMSE PSNR FG BG Overall 2 
(JRMSE 

(dB) Error2 Error3 Error4 

0 0.744 0.314 10.086 16.709 8.882 79.158 3.189E-04 
2 0.638 0.248 12.102 33.998 2.218 49.529 9.127E-05 
4 0.551 0.259 11.726 43.353 1.519 53.987 9.738E-05 
6 0.488 0.270 11.371 50.005 1.226 58.586 1.108E-04 
8 0.439 0.279 11.100 55.043 1.044 62.347 1.109E-04 
10 0.404 0.285 10.906 58.722 0.926 65.198 1.165E-04 
12 0.373 0.291 10.734 61.836 0.857 67.831 1.069E-04 
14 0.348 0.295 10.602 64.390 0.791 69.921 1.009E-04 
16 0.328 0.299 10.499 66.453 0.737 71.603 1.033E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.ll: Assessment on the outdoor motion sequences 00ge017s01L using the 
improved UC algorithm 
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N ROC I RMSE PSNR FG BG Overall 
lj 

ajl/,ISE 
(dB) Error2 Error3 Error4 

0 0.816 0.343 9.298 5.610 12.800 83.350 3.243E-05 
2 0.820 0.236 12.567 13.808 4.228 39.512 9.564E-05 
4 0.761 0.236 12.566 20.857 3.094 39.722 1.954E-04 
6 0.703 0.245 12.234 27.081 2.600 42.995 2.494E-04 
8 0.658 0.253 11.967 31.897 2.260 45.770 2.916E-04 
10 0.626 0.258 11.772 35.436 2.018 47.839 2.825E-04 
12 0.600 0.263 11.618 38.224 1.830 49.479 2.545E-04 
14 0.576 0.267 11.466 40.749 1.686 51.128 2.170E-04 
16 0.556 0.271 11.352 42.811 1.552 52.367 1.796E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.12: Assessment on the outdoor motion sequences OlOe024s00L using the 
improved DC algorithm 

N ROC1 RMSE PSNR FG BG Overall 2 
aRMSE 

(dB) Error2 Error3 Error4 

0 0.879 0.275 11.216 3.981 8.096 60.877 1. 339E-04 
2 0.897 0.158 16.021 8.617 1.640 20.140 7.644E-05 
4 0.868 0.153 16.307 12.249 0.933 18.815 6.633E-05 
6 0.838 0.159 16.007 15.488 0.670 20.202 1.289E-04 
8 0.811 0.166 15.632 18.433 0.523 22.110 2.254E-04 
10 0.784 0.174 15.250 21.207 0.435 24.272 3.622E-04 
12 0.758 0.181 14.915 23.837 0.360 26.379 5.329E-04 
14 0.732 0.188 14.590 26.458 0.306 28.620 7.442E-04 
16 0.710 0.194 14.325 28.707 0.270 30.610 9.448E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.13: Assessment on the outdoor motion sequences 0l3e037s00L using the 
improved DC algorithm 
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N ROC I RMSE PSNR FG BG Overall 
ry 

aRJ\ISE 
(dB) Error2 Error3 Error4 

0 0.663 0.376 8.506 20.397 13.335 120.390 3.50lE-04 
2 0.613 0.260 11.708 35.773 2.889 57A53 2A94E-05 
4 0.543 0.259 11.731 43.961 1.763 57.197 6.092E-05 
6 0.492 0.265 11.555 49A67 1.349 59.595 9.699E-05 
8 OA51 0.270 11.378 53.779 1.107 62.091 1.080E-04 
10 OA18 0.275 11.222 57.248 0.945 64.346 1.089E-04 
12 0.388 0.280 11.074 60.331 0.830 66.567 1.039E-04 
14 0.364 0.283 10.957 62.857 0.735 68.383 9.904E-05 
16 0.344 0.287 10.858 64.973 0.662 69.947 9.132E-05 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.14: Assessment on the outdoor motion sequences 0l3e040s00L using the 
improved DC algorithm 

N ROC I RMSE PSNR FG BG Overall 2 
aRMSE 

(dB) Error2 Error3 Error4 

0 0.738 0.312 10.118 17.726 8A54 69.696 1.621B-04 
2 0.633 0.257 11.820 34.688 2.041 47.166 3.969B-04 
4 0.548 0.269 11.434 43.971 1.229 51A92 3.524E-04 
6 OA90 0.279 11.105 50.147 0.877 55.516 3.583E-04 
8 0.444 0.288 10.840 54.930 0.661 58.982 3A6lE-04 
10 0.407 0.295 10.621 58.793 0.525 62.015 3.549E-04 
12 0.379 0.300 10A63 61.646 OA36 64.317 3.739E-04 
14 0.355 0.305 10.322 64.172 0.370 66A32 3.82lE-04 
16 0.334 0.309 10.209 66.243 0.317 68.176 3.834E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.15: Assessment on the outdoor motion sequences 017e054s00L using the 
improved DC algorithm 
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N ROC! RMSE PSNR FG BG Overall 
'} 

CJRMSE 

(dB) Error2 Error3 Error4 

0 0.803 0.329 9.653 8.528 11.199 85.951 1.552E-04 
2 0.789 0.216 13.312 18.372 2.684 36.851 5.556E-05 
4 0.742 0.213 13.433 24.040 1.720 35.875 1. 188E-04 
6 0.706 0.217 13.269 28.058 1.343 37.277 1.42lE-04 
8 0.678 0.221 13.108 31.107 1.107 38.694 1.441E-04 
10 0.656 0.224 12.999 33.449 0.912 39.707 1.549E-04 
12 0.635 0.228 12.857 35.788 0.765 41.028 1.703E-04 
14 0.614 0.232 12.707 37.986 0.657 42.488 1.75lE-04 
16 0.595 0.236 12.572 39.934 0.570 43.842 1.903E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.16: Assessment on the outdoor motion sequences 017e055s00R using the 
improved DC algorithm 

N ROC1 RMSE PSNR FG BG Overall 2 
CJRMSE 

(dB) Error2 Error3 Error4 

0 0.858 0.294 10.623 4.960 9.256 63.491 3.101E-05 
2 0.867 0.191 14.369 10.720 2.546 26.821 4.980E-05 
4 0.832 0.188 14.545 15.117 1.677 25.728 3.786E-05 
6 0.794 0.194 14.257 19.277 1.303 27.521 8.233E-05 
8 0.759 0.201 13.929 23.007 1.061 29.722 1.423E-04 
10 0.728 0.209 13.618 26.290 0.903 31.999 2.40lE-04 
12 0.695 0.218 13.273 29.687 0.795 34.710 3.268E-04 
14 0.667 0.225 12.986 32.591 0.715 37.113 3.842E-04 
16 0.641 0.232 12.734 35.290 0.642 39.354 4.25lE-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.17: Assessment on the outdoor motion sequences 018e060s00L using the 
improved DC algorithm 
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N ROC1 RNISE PSNR FG BG Overall 
.j 

O"hAISE 

( dB) Error2 Error3 Error4 

0 0.878 0.266 11.512 4.914 7.284 76.572 2.06lE-05 
2 0.872 0.160 15.929 11.136 1.697 27.726 1.064E-04 
4 0.837 0.156 16.134 15.103 1.165 26.511 1.322E-04 
6 0.812 0.158 16.039 17.876 0.944 27.131 1.419E-04 
8 0.793 0.160 15.925 19.920 0.811 27.875 1.565E-04 
10 0.776 0.163 15.797 21.725 0.714 28.732 1.682E-04 
12 0.762 0.165 15.690 23.177 0.639 29.453 1.70lE-04 
14 0.748 0.167 15.581 24.618 0.566 30.176 1.540E-04 
16 0.739 0.168 15.525 25.557 0.510 30.569 1.487E-04 
1 ROC Optimal Cutoff Measure 

2 FG Error Foreground Percentage Error 

3 BG Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE A.18: Assessment on the outdoor motion sequences 01ge063s05L using the 
improved UC algorithm 



Appendix B 

MOG parameters setting 

procedure using the CIC2C3 colour 

model 

The tests are performed with the following basic parameter settings: a learning rate of 

0.005 for indoor sequences and 0.01 for outdoor sequences, an initial weight of 0.05, a 

background threshold of 0.6, an initial variance set to 0.01 for indoor sequences and 0.002 

for outdoor sequences, a background threshold of 0.6, and 5 Gaussians per mixture. In 

each test one of the parameters will be varied while having the other parameters fixed 

until a suitable value is reached. 

• The learning rate (a) 

The initial learning rate can be set between [0-1]. The effect of changing the 

learning rate will be shown first through testing variable learning rates on an 

indoor motion sequence. The MOG background adaption time will be tested 

using different learning rates. Also we well be measuring the effect of this 

change on the performance of the algorithm in motion detection. 

The following learning rates were tested: 0.1,0.01, and 0.001. 50 background 

frames were used to test how fast the algorithm will adapt to the background. 

Figure B.1(a) shows the effect of using different learning rates on background 

adaptation. Using a very slow learning rate of 0.001 resulted on the system 

finishing all the background frames without adapting to the background. On 

the other extreme using a fast adaption rate of 0.1 made the system adapt in 

3 frames. Such fast adaption is not suitable since a foreground object having 

a wide single colour surface can be considered as background in such fa.c;t 

adaption. A learning rate of 0.01 behaved rea.c;onably. 

140 
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FIGURE B.1 : T he effect of varying the learning rate on background adaption for MOG 
wit h a CI C2C3 colour model using an indoor motion sequence 

In Figure B.1 (b) small steps of learning rates around 0.01 are further ex­

plored. Figure B.1 (c) gives a very close look at t he last 9 frames error for t he 

small st eps used . All the learning rates adapted within the 50 background 

frames with t he fastest learning rate, 0.014, adapting within 12 frames and 

the slowest , 0.004, adapt ing in 39 frames. Figure B.1(d) gives t he adaption 

frame for the learning rate used. 

To choose a specific value of adaptation among the values shown in Figure 

B.1(b), t he algorit hm was tested with an indoor motion sequence after the 

first 50 background frames. Table B.1 shows the result. 

The motion sequence with t he different learning rates was analysed with dif­

ferent assessment tests ROC opt imal cutoff measure; the RMSE; the PSNR; 

and the percentage of error for the foreground, background and the overall 

error compared to the silhouette mot ion pixels, Table B. l. 

The first three rows show different scales of learning rates: 0.1, 0.01, and 

0.001. Learning rate 0.01 gave t he minimum RMSE, the highest PSNR, and 
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LRI ROC RMSE PSNR FG BG Overall 
Cutoff2 (dB) Error3 Error4 Error5 

0.1 0.309 0.277 11.164 65.510 3.563 114.800 
0.01 0.338 0.224 12.986 65.526 0.686 75.044 
0.001 0.000 0.966 0.302 0.002 100.000 1394.400 

0.004 0.939 0.110 19.150 5.163 0.935 18.189 
0.006 0.587 0.179 15.313 40.583 0.714 50.516 
0.008 0.351 0.221 13.108 64.285 0.627 73.002 
0.010 0.338 0.224 12.986 65.526 0.686 75.044 
0.012 0.338 0.225 12.950 65.466 0.736 75.668 
0.014 0.338 0.227 12.880 65.425 0.829 76.907 
1 LR Learning Rate 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.l: Assessment tests on the MOG using different learning rates on an indoor 
motion sequence with a CIC2C3 colour model 

the minimum overall error. 0.01 learning rate also gave the minimum back­

ground error. Learning rate 0.001 gave the minimum foreground error, but 

this is due to the fact that with this learning rate the system did not adapt to 

the background (notice 100% background error and see Figure B.1(a)). Thus 

the system with 0.001 was labelling erroneously all the scene as foreground 

which led to the minimum foreground error (almost zero). 

Then we started investigating learning rates near 0.01 with smaller learning 

steps. The values were bounded between 0.004 and 0.014. We choose not 

to go below 0.004 because this adapt ion rate is already so slow that it took 

the system 39 frames to adapt. Also using value above than 0.014 will give 

a fast adapt ion leading to increase in the foreground error due to its being 

adapted to the background (notice when we increased the learning rate reach­

ing up to 0.014 the foreground error had already increased to 65.43%, Table 

B.1). Learning rate 0.004 gave the best result in most of the shown columns. 

Learning rate 0.004 gave the highest ROC optimal cutoff value, minimum 

RMSE, highest PSNR, minimum foreground error and the minimum overall 

error, 18.19%. The background error was small with a value less than 1% 

but the it was the highest value among all the small steps tested. The results 

scored by learning rate 0.004 led us to choose it for indoor motion sequences 

testing. 

For the outdoor assessment of 50 background frames for the learning rate 

parameter different scales of learning rates were used. Testing learning rates: 

0.1, 0.01, and 0.001 resulted in Figure B.2(a). Using learning rate 0.001 
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FIGURE B.2 : The effect of varying t he learning rate on background adaption for MOG 
with a C1C2C3 colour model using an outdoor motion sequence 

resulted on the system finishing all the background frames without adapting 

to the background. When a fast adapt ion rate of 0.1 was used, t he system 

adapted to the background in 2 frames while maintaining a minimal error 

in the rest of the tested background frames. The adaption speed of 0.01 is 

more appropriate than the other two learning rates, 0.1 and 0.001. Then we 

tested with two different step scales of learning rates one with 0.02 starting 

from 0.02 to 0.08 , Figure B.2(b), and another with 0.004 step value starting 

from 0.004 to 0.20 , Figure B.2(c). 

In Figure B.2(b) we notice the system is adapting quickly with the values 

used,O.2 - 0.8. The system adapted in 9 frames in 0.02 while in the 0.08 it 

adapted in 3 frames. 

More testing values are used in Figure B.2(c) with slower adapting rates. 

The adapting rates started adapting in 9 frames in 0.02 reaching up to 39 

frames in 0.004. We notice that the slower the adaption time, the higher 

the error after adapt ion. 0.004 which is the slowest learning error used in 

this figure gave an error around 10% after adaption. Continuing with slower 
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learning rate will result in a higher overall error (over 10%) so we choose to 

stop at this learning rate. Figure B.2( d) gives the adaption frame for each 

learning rate (smaller step is used, 0.002). 

LRI ROC RMSE PSNR FG BG Overall 
Cutoff2 (dB) Error3 Error4 Error5 

0.1 0.246 0.386 8.278 69.282 6.106 106.664 
0.01 0.206 0.394 8.098 73.338 6.073 110.820 
0.001 0.000 0.927 0.658 0.003 99.985 617.476 

0.004 0.246 0.432 7.288 64.134 11.273 133.723 
0.006 0.257 0.408 7.789 65.611 8.658 119.053 
0.008 0.212 0.402 7.924 71.712 7.074 115.363 
0.010 0.206 0.394 8.098 73.338 6.073 110.820 
0.012 0.212 0.385 8.287 73.534 5.279 106.102 
0.014 0.215 0.380 8.418 73.727 4.736 102.937 
0.016 0.219 0.374 8.542 73.905 4.237 100.030 
0.018 0.218 0.371 8.617 74.327 3.893 98.306 
0.020 0.220 0.367 8.707 74.468 3.546 96.285 
0.022 0.221 0.365 8.760 74.540 3.347 95.128 

0.02 0.220 0.367 8.707 74.468 3.546 96.285 
0.04 0.234 0.365 8.767 72.990 3.597 95.026 
0.06 0.244 0.372 8.613 71.176 4.476 98.575 
0.08 0.248 0.380 8.426 69.785 5.436 103.041 
1 LR Learning Rate 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.2: Assessment tests on the MOG using different learning rates on an outdoor 
motion sequence with a CIC2C3 colour model 

Testing the learning rate with the large variations resulted in the upper three 

rows of Table B.2. The table shows that learning rate 0.001 classified most 

of the pixels as foreground (foreground error close to 0 and the background 

error close to 100%). This learning rate gave the worst error in most of the 

measurement (ROC optimal cutoff value, RMSE, PSNR, background error 

and the overall error). Learning rates 0.1 and 0.01 gave more reasonable 

values than 0.001 but the error is still high. 

When we tested the values around 0.01 the middle rows of the table are 

obtained. The overall error decreases as we increase the learning rate value. 

The RMSE, the PSNR and the background error are all improving as we 

increase the learning rate. The foreground error behaves in an opposite way 

were it increases as we increase the learning rate. 0.022 gave the minimum 

RMSE, the highest PSNR, the minimum background error, and the minimum 
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overall error compared to the silhouette's motion pixels. However 0.022 gave 

the highest foreground error. 

When changing the step scale to a larger step value, the bottom part of Table 

B.2) is produced. At learning rate 0.04 the optimal cutoff measure is not the 

best nor the foreground error but the RMSE, the PSNR, and the overall error 

are giving the best values at this learning rate. The background error is the 

second best in 0.04. Therefore we will use 0.04 for testing outdoor motion 

sequences. 

• Initial weight 

The initial weight can be set to any value larger than zero. We will dis­

cover the effect of changing the initial weight through testing different initial 

weights on an indoor sequence first. 

Initial ROC RMSE PSNR FG BG Overall 
Weight Cutoffl (dB) Error2 Error3 Error4 

0.5 0.835 0.129 18.092 15.736 0.779 26.582 
0.05 0.835 0.129 18.092 15.736 0.779 26.582 
0.005 0.835 0.129 18.092 15.736 0.779 26.582 
0.0005 0.835 0.129 18.092 15.736 0.779 26.582 
1 ROC Optimal Cutoff Measure 

2 FC Error Foreground Percentage Error 

3 BC Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE B.3: Assessment tests on the MOG using different Initial Weigh on an indoor 
motion sequence with a Cl C2C3 colour model 

The indoor motion sequence assessment result is shown in Table B.3. The 

change of the initial weight has no effect on the performance of the system 

extraction. We will set the initial weight to 0.0005 for extracting indoor 

motion sequences. 

Initial ROC RMSE PSNR FG BG Overall 
Weight Cutoffl (dB) Error2 Error3 Error4 

0.5 0.206 0.394 8.098 73.338 6.073 110.820 
0.05 0.206 0.394 8.098 73.338 6.073 110.820 
0.005 0.206 0.394 8.098 73.338 6.073 110.820 
0.0005 0.206 0.394 8.098 73.338 6.073 110.820 
1 ROC Optimal Cutoff Measure 

2 FC Error Foreground Percentage Error 

3 BC Error Background Percentage Error 

4 The percentage of the overall error compared to the motion pixels only 

TABLE B.4: Assessment tests on the MOG using different Initial Weigh on an outdoor 
motion sequence with a C[C2C3 colour model 
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The tests on the outdoor motion sequence is given in Table B.4. The t.able 

shows that varying the MOG initial weight is not significant on extracting 

outdoor motion sequences. The initial weight will be set the same initial 

weight as in indoor sequence, 0.0005 . 

• The background threshold (T) 

The background threshold, T, can have a value of 0 < T ::; 1. The larger 

T the more chance for more Gaussians to be considered as part of the back­

ground model. Smaller value of T will allow only fewer number of Gaussians 

to be in the background model. 

Tl ROC RMSE PSNR FG BG Overall 
Cutofi'2 (dB) Error 3 Error4 Error5 

0.2 0.941 0.105 19.548 5.047 0.829 16.599 
0.4 0.942 0.104 19.707 5.047 0.787 16.011 
0.6 0.835 0.129 18.092 15.736 0.779 26.582 
0.8 0.335 0.224 12.995 65.893 0.647 74.897 
1 T Background Threshold 

2 ROC Optimal Cutoff Measure 

3 FC Error Foreground Percentage Error 

4 BC Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.5: Assessment tests on the MOG using different background thresholds for 
an indoor motion sequence with a Cl C2C3 colour model 

For the indoor sequences, Table B.5 shows an assessment for varying the 

background threshold parameter on the MOG algorithm. We notice that 

the best performance for the algorithm is obtained in background threshold, 

T, of 0.2 and 0.4. 0.4 is slightly better than 0.2 in the ROC optimal cutoff 

measure, the RMSE, the PSNR, the background error, and the overall error 

compared to the silhouette's motion pixels. In the foreground error both 

thresholds gave the same minimum error. Thus the extraction of indoor 

motion sequences will be done through using 0.4 as a background threshold. 

Table B.6 gives the assessment result for varying the background threshold on 

an outdoor motion sequence. 0.4 and 0.8 are the best performing thresholds 

in this table. 0.8 is slightly better in the RMSE, the PSNR, the background 

error, and the overall error. On the other hand, 0.4 is better in the ROC 

optimal cutoff measure. Also it is better in a reasonable percent in the 

foreground error (almost 10%). Therefore 0.4 will be used as a background 

threshold for extracting outdoor sequences . 

• Initial variance 
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TI ROC RMSE PSNR FG BG Overall 
Cuto:ff2 (dB) Error3 Error4 Error5 

0.2 0.297 0.379 8.438 64.019 6.240 102.544 
0.4 0.295 0.375 8.526 64.660 5.799 100.470 
0.6 0.206 0.394 8.098 73.338 6.073 110.820 
0.8 0.211 0.373 8.583 74.998 3.900 99.114 
1 T Background Threshold 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.6: Assessment tests on the MOG using different background thresholds for 
an outdoor motion sequence with a C1C2C3 colour model 

The initial variance is expected to be large enough to accommodate a normal 

background pixel variations. The effect of changing the initial variance will 

be shown through testing variable initial variances on an indoor and outdoor 

motion sequences. 

Init. ROC RMSE PSNR FG BG Overall 
Var. 1 Cuto:ff2 (dB) Error3 Error4 Error5 

0.5 0.000 0.259 11.735 100.000 0.000 100.000 
0.05 0.409 0.202 13.902 58.927 0.171 61.194 
0.005 0.860 0.156 16.300 12.193 1.789 37.098 

0.01 0.835 0.129 18.092 15.736 0.779 26.582 
0.03 0.729 0.136 17.582 26.921 0.143 28.873 
0.05 0.409 0.202 13.902 58.927 0.171 61.194 
0.07 0.222 0.232 12.699 77.644 0.191 80.162 
0.09 0.126 0.245 12.240 87.261 0.136 89.051 

0.001 0.861 0.286 10.879 5.557 8.352 122.070 
0.003 0.872 0.179 15.038 10.132 2.721 48.033 
0.005 0.860 0.156 16.300 12.193 1.789 37.098 
0.007 0.850 0.141 17.221 13.797 1.239 31.049 
0.009 0.840 0.132 17.862 15.156 0.898 27.660 
1 Init. Var. Initial Variance 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.7: Assessment tests on the MOG using different Initial Variances for an 
indoor motion sequence with a Cl C2C3 colour model 

The assessment table for the initial variance, Table B. 7, was done in three 

parts. In part one, the test was performed using the following initial vari­

ances: 0.5, 0.05, and 0.005. We notice that in initial variance 0.5, all the 
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pixels are classified as background pixels. The smallest initial variances, 

0.005, gave the best values in all the measurement except for the foreground 

error were it has increased slightly. The results indicates that an optimal 

value, if it exists, will be smaller than 0.05. The value might fall between 

0.05 and 0.005 or even smaller than 0.005. 

In the second part we tested initial variance between 0.01 and 0.09 in a step of 

0.2. 0.01 gave the best result in all the measurement except the background 

error where it gave the worst error among the other tested initial variance 

but with a small error, 0.78%. 

In the third part we used smaller values to test whether the error decrement­

ing rate will continue. The values were set between 0.001 and 0.009 with a 

step of 0.002. The error in this stage changed the trend and increased a::; 

we went in decreasing the initial variance from 0.009 to 0.001. The change 

in trend can be noticed in the optimal ROC cutoft" measure, the RMSE, the 

PSNR, the background error, and the overall percentage of error compared to 

the silhouette's motion pixels. The foreground error is the only measurement 

the continued to decrease but it is negligible when comparing this decrement 

with the amount of the overall error increment. From the given table we 

choose 0.01 as an initial variance to extract indoor motion sequences. 

Init. ROC RMSE PSNR FG BG Overall 
VaL 1 Cutoff2 (dB) Error3 Error4 Error5 

0.5 0.000 0.374 8.543 100.000 0.000 100.000 
0.05 0.040 0.383 8.357 94.344 l.653 104.423 
0.005 0.145 0.373 8.571 82.822 2.685 99.363 

0.01 0.110 0.375 8.535 86.810 2.184 100.192 
0.03 0.069 0.386 8.288 90.597 2.551 106.185 
0.05 0.040 0.383 8.357 94.344 l.653 104.423 
0.07 0.025 0.379 8.447 96.528 0.938 102.254 
0.09 0.017 0.378 8.468 97.606 0.680 10l. 751 

0.001 0.266 0.429 7.358 62.175 1l.238 13l.497 
0.003 0.175 0.381 8.386 78.441 4.093 103.692 
0.005 0.145 0.373 8.571 82.822 2.685 99.363 
0.007 0.125 0.373 8.577 85.235 2.277 99.212 
0.009 0.113 0.374 8.548 86.471 2.191 99.890 

1 Init. Var. Initial Variance 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.8: Assessment tests on the MOG using different Initial Variances for an 
outdoor motion sequence with a C1C2C3 colour model 
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Table B.8 gives the evaluation tables for three stages of changing the initial 

variance for an outdoor motion sequence. In the first stage we tested the 

following initial variance: 0.5, 0.05, and 0.005. In initial variance 0.5 all the 

pixels are classified as background which means the initial variance size for 

the Gaussians is very large. In 0.05 and 0.005 the foreground error decreased 

while the background error increased. 0.005 gave the best values in all the 

measurements except in the background error where it had increased. The 

best setting for the initial variance in outdoor sequences is expected to be in 

between 0.05 and 0.005 or smaller than 0.005. 

In the second stage the values between 0.01 and 0.09 are tested with a step 

of 0.2. We notice that the best values are scored by 0.01 in the ROC optimal 

cutoff measure, the RMSE, the PSNR, the foreground error, and the overall 

error compared to the silhouette's motion pixels. The minimum background 

error is scored by initial variance 0.09. 

In the third stage we covered the values from 0.001 to 0.009 with a step of 

0.002. In this stage, 0.007 scored the best values in the RMSE, the PSNR, 

the overall error when compared to the silhouette's motion pixels. 0.007 

also scored the second best value in the foreground error. In all the three 

stages 0.007 scored the best value in RMSE, the PSNR, and the overall 

error. Therefore we will use this initial variance to extract outdoor motion 

sequences . 

• Number of Gaussians per mixture 

The number of Gaussians was varied from 2 to 9 Gaussians per pixel to 

test the effect of such change on the system performance. Bearing in mind 

that more Gaussians means more speed degrade. Also we started with two 

Gaussians (not one), since this is the minimum possible number of Gaussians 

where one will be used for the background model and the other is used for 

motion pixels. The test was performed with the background threshold set to 

0.2. 

The evaluation of using different number of Gaussians on an indoor motion 

sequence is shown in Table B.9. Using 7 mixture of Gaussians gave the best 

result in the optimal ROC cutoff measure, the RMSE, the PSNR, the fore­

ground error, and the overall error when compared to the to the silhouette's 

motion pixels. Also the 7 mixture of Gaussians scored close to the best 

performer in the background error. 7 Gaussians per pixels will be used for 

indoor motion sequences. 

Table B.10 shows the evaluation of changing the number of Gaussians for the 

MOG algorithm using an outdoor motion sequence. 7 Gaussians scored the 

second best in the ROC optimal cutoff measure, and the background error. 
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No. of ROC RMSE PSNR FG BG Overall 
Gauss. 1 Cutoff2 (dB) Error3 Error4 Error5 

2 -0.274 0.814 1.824 60.359 67.086 999.741 
3 0.257 0.340 9.695 65.231 9.076 190.564 
4 0.620 0.182 15.103 36.901 1.077 51.900 
5 0.835 0.129 18.092 15.736 0.779 26.582 
7 0.941 0.088 21.181 5.426 0.431 11.428 
9 0.903 0.095 20.562 9.452 0.291 13.492 

1 No. of. Gauss. Number of Gaussians 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.9: Assessment tests on the MOG using different number of Gaussians per 
pixel for an indoor motion sequence with a C1C2C3 colour model 

No. of ROC RMSE PSNR FG BG Overall 
Gauss. 1 Cutoff2 ( dB) Error3 Error4 Error5 

2 0.108 0.494 6.130 72.583 16.643 174.846 
3 0.259 0.422 7.502 63.811 10.282 127.275 
4 0.282 0.396 8.045 63.945 7.833 112.285 
5 0.297 0.379 8.438 64.019 6.240 102.544 
7 0.288 0.363 8.799 66.752 4.466 94.316 
9 0.241 0.364 8.792 72.260 3.598 94.461 

1 No. of. Gauss. Number of Gaussians 

2 ROC Optimal Cutoff Measure 

3 FG Error Foreground Percentage Error 

4 BG Error Background Percentage Error 

5 The percentage of the overall error compared to the motion pixels only 

TABLE B.10: Assessment tests on the MOG using different number of Gaussians per 
pixel for an outdoor motion sequence with a C1C2C3 colour model 

Also 7 mixture of Gaussians scored the best result in the RMSE, the PSNR, 

and the overall error compared to the silhouette's motion pixels. Therefore 7 

mixture of Gaussians will be used for outdoor motion sequences extraction. 



Appendix C 

Combined Classifiers Detailed 

Assessment results 

In Chapter 6, the overall combination results are presented for two and three classifiers 

combination. In this appendix we will present the detailed assessment tables for those 

combinations. 

C.l Two Classifiers 

C.l.I Indoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
fJRMSE 

Number Frames (dB) Error l Error2 Error3 

008a013s00L 178 0.074 22.677 3.818 0.286 7.407 3.930E-05 
009a017s00L 169 0.067 23.487 3.252 0.260 7.048 2.321E-05 
010a024s08L 187 0.068 23.441 3.782 0.233 7.269 2.451E-05 
013a037s00L 114 0.070 23.144 4.409 0.274 9.310 5.052E-05 
013a040s00L 184 0.072 22.924 4.437 0.271 8.702 5.50lE-05 
017a054s00L 188 0.071 23.029 3.176 0.312 7.523 3.230E-05 
017a055s00R 162 0.069 23.217 2.300 0.357 7.505 3.132E-05 
018a059s00L 188 0.065 23.785 2.634 0.266 6.445 2.09lE-05 
018a060s00L 179 0.070 23.182 3.286 0.283 7.204 2.340E-05 
019a063s00L 186 0.065 23.784 1.865 0.326 6.801 2.092E-05 

Average 0.069 23.267 3.296 0.287 7.521 3.214E-05 

1 FG Error Foreground Percentage Error 2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.l: Combining the UC and the MOG classifiers for indoor motion sequences 

151 
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Sequence No. of RlVISE PSNR FG BG Overall 
I) 

(J'hIlf SE 

Number Frames (dB) Error l Error2 Error3 

008a013s001 178 0.073 22.793 3.883 0.266 7.220 !!.262E-05 
009a017s001 169 0.069 23.194 2.622 0.337 7.537 2.272E-05 
01Oa024s081 187 0.071 23.023 3.252 0.317 7.989 1.997E-05 
013a037s001 114 0.063 23.995 3.808 0.214 7.646 3.681E-05 
013a040s001 184 0.075 22.561 3.473 0.381 9.490 6.665E-05 
017a054s001 188 0.078 22.189 2.028 0.509 9.127 3.284E-05 
017a055s00R 162 0.066 23.592 1.423 0.376 6.912 3.332E-05 
018a059s001 188 0.064 23.949 2.701 0.245 6.203 1.932E-05 
018a060s001 179 0.073 22.735 2.804 0.373 7.982 2.221E-05 
019a063s001 186 0.063 23.979 2.053 0.295 6.510 2.230E-05 

Average 0.070 23.201 2.805 0.331 7.661 3.188E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.2: Combining the DC and the SBD classifiers for indoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
(JRIIISE 

Number Frame8 ( dB) Error l Error2 Error3 

008a013s001 178 0.075 22.498 3.309 0.354 7.732 4.768E-05 
009a0178001 169 0.068 23.463 5.316 0.127 7.157 5.130E-05 
010a0248081 187 0.071 22.986 6.996 0.076 8.123 5.162E-05 
013a0378001 114 0.063 24.099 3.285 0.233 7.458 3. 11 1E-05 
013a0408001 184 0.070 23.142 6.172 0.135 8.296 5.882E-05 
017a0548001 188 0.071 23.055 5.739 0.126 7.487 3.432E-05 
017a055800R 162 0.065 23.808 4.187 0.163 6.574 2.979E-05 
018a0598001 188 0.068 23.356 4.444 0.187 7.117 2.582E-05 
018a060s001 179 0.067 23.535 3.573 0.222 6.647 2.103E-05 
019a063s001 186 0.064 23.906 4.850 0.123 6.705 5.939E-05 

Average 0.068 23.385 4.787 0.174 7.330 4.109E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.3: Combining the MOG and the SBD classifiers for indoor motion sequences 
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C.1.2 Outdoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
O"R!lISE 

Number Frames (dB) Error l Error2 Error3 

008e013s001 100 0.201 13.968 21.191 1.366 30.051 2.056E-04 
00ge017s011 96 0.211 13.525 9.207 3.780 35.826 1.359E-OLl 
010e024s001 94 0.222 13.092 18.898 2.660 35.172 1.932E-04 
013e037s001 158 0.153 16.307 12.249 0.933 18.815 6.633E-05 
O13e040s001 151 0.228 12.844 10.349 4.513 44.232 2.249E-05 
O17e054s001 112 0.214 13.422 12.273 3.304 32.604 2.022E-04 
O17e055s00R 88 0.206 13.732 27.163 0.918 33.499 1. 366E-OLl 
O18e059s011 104 0.159 16.005 8.170 1.708 19.937 1.195E-04 
018e060s001 88 0.186 14.606 18.419 1.111 25.454 1.690E-OLl 
01ge063s051 112 0.154 16.299 18.308 0.743 25.539 1.492E-04 

Average 0.193 14.380 15.623 2.104 30.113 1.400E-04 

1 Fe Error Foreground Percentage Error 

2 Be Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.4: Combining the DC and the MOG classifiers for outdoor motion sequence~ 

Sequence No. of RMSE PSNR FG BG Overall 2 
O"R!v[SE 

Number Frames (dB) Error l Error2 Error3 

008e013s001 100 0.177 15.167 11.819 1.810 23.576 8.785E-04 
00ge017s011 96 0.199 14.044 15.900 2.259 31.708 1.253E-04 
010e024s001 94 0.208 13.633 7.249 3.872 30.795 4. 14LlE-05 
013e037s001 158 0.141 17.030 8.053 1.134 16.045 1.1 18E-04 
013e040s001 151 0.218 13.236 29.124 1.503 40.404 9.486E-06 
017 e054s001 112 0.219 13.236 18.583 2.548 34.215 4.856E-04 
017e055s00R 88 0.202 13.903 17.716 2.118 32.319 7.977E-05 
018e059s011 104 0.141 17.048 5.813 1.427 15.645 6.880E-05 
018e060s001 88 0.169 15.454 7.160 2.176 20.912 5.147E-05 
O1ge063s051 112 0.144 16.854 10.166 1.255 22.397 8.352E-05 

Average 0.182 14.961 13.158 2.010 26.801 1.936E-04 

1 Fe Error Foreground Percentage Error 

2 Be Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.5: Combining the DC and the SBD classifiers for outdoor motion sequences 
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Sequence No. of RMSE PSNR FG BG Overall 
.) 

(Th!IISE 

Number Frames (dB) Error 1 Error2 Error3 

008e013s00L 100 0.178 15.115 12.401 1.761 23.854 8.764E-04 
00ge017s01L 96 0.200 13.988 15.260 2.411 32.129 1.338E-04 
010e024s00L 94 0.201 13.948 10.651 2.944 28.665 2.106E-05 
013e037s00L 158 0.148 16.670 10.818 0.951 17.560 2A5IE-04 
013e040s00L 151 0.215 13.372 29.946 1.228 39.162 6A40E-06 
017 e054s00L 112 0.220 13.199 19.193 2.504 34.561 5.645E-04 
017e055s00R 88 0.216 13.309 26.814 1.477 37.080 6.504E-05 
018e059s01L 104 0.145 16.808 7.937 1.243 16.502 3.77IE-05 
018e060s00L 88 0.173 15.287 12.859 1A17 21.808 2.005E-04 
01ge063s05L 112 0.143 16.925 13.234 0.909 22.046 7.168E-05 

Average 0.184 14.862 15.911 1.685 27.337 2.222E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.6: Combining the MOG and the SBD classifiers for outdoor motion sequences 

C.2 Three Classifiers with a Non-weighted Combination 

C.2.1 Indoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
(TRlvISE 

Number Frames (dB) Error1 Error2 Error3 

008a013s00L 178 0.132 17.628 3.238 1.612 23.632 2.756E-05 
009a017s00L 169 0.116 18.743 2.355 1.275 21.041 4.385E-05 
01Oa024s08L 187 0.125 18.066 2.484 1.503 25.056 2.480E-05 
013a037s00L 114 0.106 19.472 5.305 0.900 21.617 3.133E-05 
013a040s00L 184 0.115 18.836 2.958 1.212 22.241 5.452E-05 
017 a054s00L 188 0.115 18.780 1.572 1.320 20.134 6A16E-05 
017a055s00R 162 0.099 20.136 2.449 0.869 15.172 1.027E-05 
018a059s00L 188 0.105 19.575 4.154 0.893 16.954 2.186E-05 
018a060s00L 179 0.108 19.360 2.123 1.096 17.401 3.048E-05 
019a063s00L 186 0.107 19.446 3.084 1.012 18.439 2.63IE-05 

Average 0.113 19.004 2.972 1.169 20.169 3.35IE-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.7: Combining the UC, the SBD, and the MOG classifiers for indoor motion 
sequences using the Maximum combination rule 



Appendix C Combined Classifiers Detailed Assessment resul/;s 155 

Sequence No. of RMSE PSNR FG BG Overall 
.j 

(Jl?M SE 
Number Frames ( dB) Error l Error2 Error3 

008a013s00L 178 0.072 22.909 4.344 0.216 7.038 4.5mE-05 
009a017s00L 169 0.065 23.752 3.296 0.231 6.657 2.935E-05 
010a024s08L 187 0.066 23.633 3.651 0.221 6.952 2.335E-05 
013a037s00L 114 0.068 23.336 6.650 0.125 8.889 4.36SE-05 
013a040s00L 184 0.070 23.112 4.024 0.276 8.384 6.739E-05 
017a054s00L 188 0.069 23.225 2.672 0.326 7.211 3.629E-05 
017a055s00R 162 0.064 23.921 3.354 0.209 6.399 3.432E-05 
018a059s00L 188 0.065 23.773 4.576 0.130 6.445 1.494E-05 
018a060s00L 179 0.067 23.538 3.169 0.252 6.661 2.900E-05 
019a063s00L 186 0.061 24.264 3.479 0.173 6.100 2.389E-05 

Average 0.067 23.546 3.922 0.216 7.073 3.472E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.S: Combining the DC, the SBD, and the MOG classifiers for indoor motion 
sequences using the Median combination rule 

Sequence No. of RMSE PSNR FG BG Overall 2 
(JRMSE 

Number Frames ( dB) Error l Error2 Error3 

008a013s00L 178 0.134 17.470 7.221 1.364 24.515 3.405E-05 
009a017s00L 169 0.116 18.692 5.763 1.058 21.278 4.343E-05 
010a024s08L 187 0.125 18.089 6.138 1.248 24.898 2.907E-05 
013a037s00L 114 0.113 18.963 9.834 0.795 24.242 2.72IE-05 
013a040s00L 184 0.115 18.840 6.859 0.961 22.163 4.090E-05 
017 a054s00L 188 0.104 19.693 5.788 0.740 16.181 2.080E-05 
017a055s00R 162 0.102 19.853 5.873 0.704 16.181 1.750E-05 
018a059s00L 188 0.109 19.257 6.811 0.798 18.251 2.977E-05 
018a060s00L 179 0.108 19.328 5.199 0.884 17.542 3.489E-05 
019a063s00L 186 0.108 19.336 5.940 0.855 18.918 3.279E-05 

Average 0.113 18.952 6.543 0.940 200417 3.104E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.g: Combining the DC, the SBD, and the MOG classifiers for indoor motion 
sequences using the Product combination rule 
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Sequence No. of RMSE PSNR FG BG Overall 'J 
CTju.rsE 

Number Frames (dB) Error! Error2 Error3 

008a013s00L 178 0.132 17.628 3.238 1.612 23.632 2.756E-05 
009a017s00L 169 0.116 18.743 2.355 1.275 21.040 4.385E-05 
010a024s08L 187 0.125 18.066 2.484 1.503 25.056 2.480E-05 
013a037s00L 114 0.106 19.472 5.304 0.900 21.617 3.133E-05 
013a040s00L 184 0.115 18.836 2.958 1.212 22.241 5.452E-05 
017a054s00L 188 0.115 18.780 1.572 1.320 20.134 6.416E-05 
017a055s00R 162 0.099 20.136 2.449 0.869 15.172 1.026E-05 
018a059s00L 188 0.105 19.575 4.154 0.893 16.954 2.186E-05 
018a060s00L 179 0.108 19.360 2.123 1.096 17.401 3.048E-05 
019a063s00L 186 0.107 19.446 3.084 1.012 18.439 2.631E-05 

Average 0.113 19.004 2.972 1.169 20.168 3.351E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.lO: Combining the DC, the SBD, and the MOG classifiers for indoor motion 
sequences using the Sum combination rule 

C.2.2 Outdoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
CT RlvI SE 

Number Frames (dB) Error! Error2 Error3 

008e013s00L 100 0.198 14.129 13.535 2.435 29.351 5.840E-04 
00ge017s01L 96 0.234 12.626 23.555 2.892 43.968 8.674E-05 
010e024s00L 94 0.212 13.496 10.171 3.543 31.797 2.396E-05 
013e037s00L 158 0.184 14.753 12.018 2.184 27.353 4.772E-04 
013e040s00L 151 0.250 12.051 28.538 3.274 53.126 3.965E-05 
017 e054s00L 112 0.233 12.684 19.809 3.066 38.670 3.675E-04 
017e055s00R 88 0.234 12.628 12.267 4.516 43.566 2.431E-04 
018e059s01L 104 0.159 15.988 10.814 1.331 19.986 1.034E-04 
018e060s00L 88 0.173 15.269 9.053 2.021 21.825 9.887E-05 
01ge063s05L 112 0.155 16.197 12.211 1.414 26.047 6.373E-05 

Average 0.203 13.982 15.197 2.668 33.569 2.088E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.Il: Combining the DC, the SBD, and the MOG classifiers for outdoor motion 
sequences using the Maximum combination rule 
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Sequence No. of RMSE PSNR FG BG Overall 
,) 

CTi?MSE 
Number Frames (dB) Error l Error2 Error3 

008e013s00L 100 0.178 15.077 13.570 1.602 23.967 8.36LlE-O Ll 
00ge017s01L 96 0.208 13.658 22.434 1.750 34.677 1.666E-04 
010e024s00L 94 0.203 13.867 9.886 3.158 29.214 2.502E-05 
013e037s00L 158 0.144 16.910 11.312 0.750 16.627 2.578E-04 
013e040s00L 151 0.215 13.369 29.699 1.265 39.191 8.182E-06 
017e054s00L 112 0.218 13.262 19.846 2.305 34.012 4.992E-04 
017e055s00R 88 0.192 14.328 20.438 1.278 29.293 3.88lE-05 
018e059s01L 104 0.149 16.547 9.628 1.153 17.566 8.97lE-05 
018e060s00L 88 0.165 15.666 10.070 1.560 19.930 1.016E-04 
01ge063s05L 112 0.142 16.977 12.332 0.977 21.801 1. 12lE-04 

Average 0.181 14.966 15.921 1.580 26.628 2.135E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.12: Combining the DC, the SBD, and the MOG classifiers for outdoor motion 
sequences using the Median combination rule 

Sequence No. of RMSE PSNR FG BG Overall 2 
CTRMSE 

Number Frames (dB) Error l Error2 Error3 

008e013s00L 100 0.198 14.134 13.739 2.399 29.320 5.958E-04 
00ge017s01L 96 0.235 12.582 24.348 2.841 44.402 7.29lE-05 
010e024s00L 94 0.214 13.394 11.929 3.385 32.564 5.898E-05 
013e037s00L 158 0.189 14.504 14.071 2.123 28.971 4.75lE-04 
013e040s00L 151 0.250 12.059 29.020 3.198 53.035 4.617E-05 
017e054s00L 112 0.234 12.647 20.783 2.964 39.025 4.169E-04 
017e055s00R 88 0.238 12.499 13.718 4.481 44.779 1.985E-04 
018e059s01L 104 0.163 15.785 12.133 1.289 21.012 1.70lE-04 
018e060s00L 88 0.179 14.987 11.086 1.941 23.355 1.915E-04 
01ge063s05L 112 0.157 16.089 13.118 1.388 26.703 7.882E-05 

Average 0.206 13.868 16.395 2.601 34.317 2.305E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.13: Combining the DC, the SBD, and the MOG classifiers for outdoor motion 
sequences using the Product combination rule 
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Sequence No. of RMSE PSNR FG BG Overall 
.j 

CJl? i\I S E 

Number Frames (dB) Error l Error2 Error3 

008e013s00L 100 0.198 14.129 13.535 2.435 29.351 5.840E-0'! 
00ge017sOlL 96 0.234 12.626 23.555 2.892 43.968 8.674E-05 
010e024s00L 94 0.211 13.500 10.046 3.559 31.782 2.628E-05 
013e037s00L 158 0.184 14.754 11.997 2.183 27.330 4.658E-04 
013e040s00L 151 0.250 12.052 28.535 3.273 53.113 3.980E-05 
01 7 e054s00L 112 0.233 12.696 19.725 3.061 38.557 3.547E-04 
017e055s00R 88 0.234 12.630 12.254 4.516 43.554 2.445E-04 
018e059s01L 104 0.159 15.987 10.859 1.326 19.996 1.088E-04 
0l8e060s00L 88 0.173 15.262 9.094 2.021 21.863 1.022E-04 
01ge063s05L 112 0.155 16.216 12.100 1.413 25.931 6.124E-05 

Average 0.203 13.985 15.170 2.668 33.545 2.074E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.14: Combining the UC, the SBD, and the MOG classifiers for outdoor motion 
sequences using the Sum combination rule 

C.3 Three Classifiers with a Weighted Combination 

C.3.1 Indoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
CJRMSE 

Number Frames ( dB) Error l Error2 Error3 

008a013s00L 178 0.078 22.217 3.228 0.401 8.248 4.832E-05 
009a0l7s00L 169 0.071 23.002 2.338 0.385 7.954 4.603E-05 
010a024s08L 187 0.075 22.574 2.473 0.428 8.884 2.348E-05 
013a037s00L 114 0.069 23.249 5.287 0.209 9.043 3.063E-05 
0l3a040s00L 184 0.077 22.328 2.933 0.450 10.064 7.576E-05 
017a054s00L 188 0.090 20.990 1.556 0.758 12.194 7.71IE-05 
017a055s00R 162 0.068 23.446 2.429 0.323 7.153 3.499E-05 
018a059s00L 188 0.068 23.384 4.124 0.204 7.057 1.63IE-05 
018a060s00L 179 0.074 22.687 2.111 0.432 8.105 3.103E-05 
019a063s00L 186 0.067 23.493 3.063 0.279 7.283 2.477E-05 

Average 0.074 22.737 2.954 0.387 8.598 4.084E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.15: Combining the UC, the SBD, and the MOG classifiers for indoor motion 
sequences using a weighted Maximum combination rule 
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Sequence No. of RlVISE PSNR FG BG Overall 
.J 

(Jl?/If S E 

Number Frames (dB) Error! Error2 Error3 

008a013s001 178 0.074 22.616 3.234 0.345 7.537 5.172E-05 
009a017s001 169 0.068 23.375 2.345 0.340 7.311 4.760E-05 
010a024s081 187 0.070 23.150 2.480 0.355 7.790 2.799E-05 
013a037s001 114 0.067 23.559 5.296 0.175 8.431 3A56E-05 
013a040s001 184 0.073 22.781 2.946 0.389 9.102 8.223E-05 
017a054s001 188 0.087 21.222 1.561 0.713 11.567 7.678E-05 
017a055s00R 162 0.064 23.864 2.438 0.279 6.521 4.149E-05 
018a059s001 188 0.065 23.736 4.135 0.166 6.512 1.706E-05 
018a060s001 179 0.069 23.272 2.117 0.359 7.097 3A18E-05 
019a063s001 186 0.064 23.912 3.074 0.235 6.626 2.832E-05 

Average 0.070 23.149 2.963 0.336 7.849 4.419E-05 

! FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.16: Combining the UC, the SED, and the MOG classifiers for indoor motion 
sequences using a weighted Median combination rule 

Sequence No. of RMSE PSNR FG BG Overall 2 
(JRMSE 

Number Frames (dB) Error! Error2 Error3 

008a013s001 178 0.132 17.628 3.238 1.612 23.632 2.756E-05 
009a017s001 169 0.116 18.743 2.354 1.275 21.040 4.385E-05 
010a024s081 187 0.125 18.066 2.484 1.503 25.056 2.480E-05 
013a037s001 114 0.106 19.472 5.304 0.900 21.617 3.133E-05 
013a040s001 184 0.115 18.836 2.958 1.212 22.241 5.452E-05 
017a054s001 188 0.115 18.780 1.572 1.320 20.134 6.415E-05 
017a055s00R 162 0.099 20.136 2.449 0.869 15.172 1.026E-05 
018a059s001 188 0.105 19.575 4.154 0.893 16.954 2.186E-05 
018a060s001 179 0.108 19.360 2.123 1.096 17.401 3.047E-05 
019a063s001 186 0.107 19.446 3.084 1.012 18.439 2.631E-05 

Average 0.113 19.004 2.972 1.169 20.168 3.351E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.17: Combining the UC, the SED, and the MOG classifiers for indoor motion 
sequences using a weighted Product combination rule 
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Sequence No. of RMSE PSNR FG BG Overall 
.) 

(J/?M SE 
Number Frames (dB) Error l Error2 Error3 

008a013s00L 178 0.088 21.167 3.238 0.576 10.472 3.966E-05 
009a017s00L 169 0.079 22.043 2.352 0.515 9.880 4.046E-05 
010a024s08L 187 0.086 21.368 2.484 0.615 11.707 1.857E-05 
O13a037s00L 114 0.076 22.432 5.304 0.310 10.902 2.625E-05 
013a040s00L 184 0.086 21.366 2.956 0.601 12.492 6.522E-05 
O17a054s00L 188 0.095 20.460 1.570 0.867 13.752 7.584E-05 
017a055s00R 162 0.076 22.461 2.447 0.442 8.925 2.413E-05 
018a059s00L 188 0.076 22.457 4.151 0.319 8.730 1.638E-05 
018a060s00L 179 0.084 21.503 2.122 0.611 10.628 2.703E-05 
019a063s00L 186 0.075 22.534 3.083 0.395 9.064 2.131£-05 

Average 0.082 21.779 2.971 0.525 10.655 3.548E-05 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.lS: Combining the UC, the SBD, and the MOG classifiers for indoor motion 
sequences using a weighted Sum combination rule 

C.3.2 Outdoor motion sequences 

Sequence No. of RMSE PSNR FG BG Overall 2 
(JRMSE 

Number Frames (dB) Error l Error2 Error3 

008e013s00L 100 0.189 14.557 13.532 2.033 26.745 6.763E-04 
00ge017s01L 96 0.226 12.908 23.017 2.578 41.229 9.572E-05 
010e024s00L 94 0.206 13.711 9.753 3.352 30.258 2.276E-05 
013e037s00L 158 0.166 15.636 11.657 1.498 22.241 2.974E-04 
013e040s00L 151 0.231 12.743 28.869 2.185 45.265 1. 198E-05 
017e054s00L 112 0.227 12.928 19.512 2.784 36.619 4.189E-04 
017e055s00R 88 0.203 13.869 17.983 2.105 32.629 7.477E-05 
018e059s01L 104 0.156 16.179 10.477 1.255 19.128 9.993E-05 
018e060s00L 88 0.167 15.543 9.519 1.743 20.522 1.297E-04 
O1ge063s05L 112 0.148 16.606 11.963 1.205 23.715 6.816E-05 

Average 0.192 14.468 15.628 2.074 29.835 1.896E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.19: Combining the UC, the SBD, and the MOG classifiers for outdoor motion 
sequences using a weighted Maximum combination rule 
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Sequence No. of RMSE PSNR FG BG Overall 
.) 

(r Ri\ISE 
Number Frames (dB) Error l Error2 Error3 

008e013s00L 100 0.179 15.044 13.555 1.629 24.132 8.245E-04 
00ge017sOlL 96 0.210 13.589 22.530 1.812 35.223 1.558E-04 
010e024s00L 94 0.203 13.845 9.896 3.181 29.358 2.359E-05 
0l3e037s00L 158 0.145 16.827 11.369 0.786 16.939 2.582E-04 
013e040s00L 151 0.216 13.331 29.600 1.324 39.529 7.439E-06 
0l7e054s00L 112 0.219 13.244 19.829 2.333 34.162 5.079E-04 
017e055s00R 88 0.192 14.324 20.252 1.309 29.321 3.628E-05 
018e059sOlL 104 0.150 16.496 9.723 1.169 17.773 8.862E-05 
0l8e060s00L 88 0.165 15.651 10.010 1.582 20.003 1.073E-04 
01ge063s05L 112 0.143 16.928 12.283 1.006 22.043 1.073E-04 

Average 0.182 14.928 15.905 1.613 26.848 2.117E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.20: Combining the VC, the SBD, and the MOG classifiers for outdoor motion 
sequences using a weighted Median combination rule 

Sequence No. of RMSE PSNR FG BG Overall 2 
O'RMSE 

Number Frames (dB) Error l Error2 Error3 

008e013s00L 100 0.198 14.129 13.535 2.435 29.351 5.840E-04 
00ge017s01L 96 0.234 12.626 23.555 2.892 43.968 8.674E-05 
01Oe024s00L 94 0.212 13.496 10.171 3.543 31.797 2.396E-05 
013e037s00L 158 0.184 14.753 12.018 2.184 27.353 4.772E-04 
013e040s00L 151 0.250 12.051 28.538 3.274 53.126 3.965E-05 
017e054s00L 112 0.233 12.684 19.809 3.066 38.670 3.675E-04 
0l7e055s00R 88 0.234 12.628 12.267 4.516 43.566 2.431E-04 
018e059s01L 104 0.159 15.988 10.814 1.331 19.986 1.034E-04 
0l8e060s00L 88 0.173 15.269 9.053 2.021 21.825 9.887E-05 
0lge063s05L 112 0.155 16.197 12.211 1.414 26.047 6.373E-05 

Average 0.203 13.982 15.197 2.668 33.569 2.088E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.2l: Combining the VC, the SBD, and the MOG classifiers for outdoor motion 
sequences using a weighted Product combination rule 
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Sequence No. of RMSE PSNR FG BG Overall 
'} 

(JR!II SE 
Number Frames (dB) Error! Error2 Error3 

008e013s00L 100 0.194 14.282 13.540 2.279 28.363 5.820E-04 
00ge017s01L 96 0.231 12.753 23.271 2.754 42.720 9.798E-05 
010e024s00L 94 0.208 13.638 9.757 3.438 30.773 2.10lE-05 
013e037s00L 158 0.174 15.227 11.685 1.822 24.504 3.982E-04 
013e040s00L 151 0.240 12.397 28.691 2.710 49.030 2.554E-05 
017e054s00L 112 0.230 12.807 19.582 2.934 37.616 3.853E-04 
017e055s00R 88 0.226 12.930 14.034 3.834 40.592 1.99lE-04 
018e059s01L 104 0.158 16.058 10.613 1.313 19.661 9.995E-05 
018e060s00L 88 0.169 15.455 9.289 1.845 20.937 1.249E-04 
01ge063s05L 112 0.151 16.417 11.950 1.310 24.765 5.434E-05 

Average 0.198 14.196 15.241 2.424 31.896 1.988E-04 

1 FG Error Foreground Percentage Error 

2 BG Error Background Percentage Error 

3 The percentage of the overall error compared to the motion pixels only 

TABLE C.22: Combining the DC, the SBD, and the MOG classifiers for outdoor motion 
sequences using a weighted Sum combination rule 
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